
 
 

 

 

 Universidade de Aveiro  

Ano 2015 

 

Escola Superior de Saúde da Universidade 

de Aveiro 

CARLOS MORGADO AREIA 

 

ADAPTAÇÕES NEUROMUSCULARES EM 
FUTEBOLISTAS COM HISTÓRIA DE LESÃO DOS 

ISQUIOTIBIAIS 
 

 NEUROMUSCULAR ADAPTATIONS IN FOOTBALL 
ATHLETES WITH PRIOR HISTORY OF HAMSTRING 

STRAIN INJURY 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/43419498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i 
 

 

  



 
 

 

  

 Universidade de Aveiro  

Ano 2015 

 

Escola Superior de Saúde da 

Universidade de Aveiro 

CARLOS MORGADO AREIA 

 

ADAPTAÇÕES NEUROMUSCULARES EM 
FUTEBOLISTAS COM HISTÓRIA DE LESÃO DOS 

ISQUIOTIBIAIS 
 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 

requisitos necessários à obtenção do grau de Mestre em Fisioterapia, realizada 

sob a orientação científica do Professor Doutor Fernando Ribeiro, Professor 

Adjunto da Escola Superior de Saúde da Universidade de Aveiro e sob co-

orientação do Professor Doutor José Oliveira, Professor Associado com Agregação 

da Faculdade de Desporto da Universidade do Porto 

 



 
 

  



 
 

 

 

 

 

 

 

 

 

 

Dedico a presente dissertação à minha família e à minha namorada pelo apoio incondicional. 

  



 
 

  



vi 
 

 

 

 

O júri   
 

  

  

  

Presidente Prof. Dra. Anabela Gonçalves da Silva  
Professora adjunta da Escola Superior de Saúde da Universidade de Aveiro 

Arguente  Prof. Dr. Rui Manuel Tomé Torres  
Professor adjunto do Instituto Politécnico de Saúde do Norte, CESPU, CRL 

Orientador Prof. Dr. Fernando Manuel Tavares da Silva Ribeiro 
Professor adjunto da Escola Superior de Saúde da Universidade de Aveiro 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

 

 

 

 



viii 
 

Agradecimentos 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ao meu orientador, Professor Doutor Fernando Ribeiro, pela 

transmissão de conhecimento, paciência, dedicação, 

persistência e por nunca deixar de acreditar em mim. 

À minha família, pais, avós e irmã por estarem sempre 

presentes e pela ajuda ao longo deste percurso. Sem eles não 

estaria aqui nem seria metade do que sou. 

À Diana Silva por todo o apoio, persistência, amor e paciência 

em tudo. 

Ao meu co-orientador, Professor José Oliveira, pela cedência 

do laboratório da Faculdade de Desporto da Universidade do 

Porto, professor Mário e Tiago Montanha pela ajuda na 

recolha e processamento dos dados e por toda a paciência e 

tempo dedicado. 

Ao Ruben Oliveira, Luís Dias e ao meu primo Júlio Morgado por 

toda a ajuda na recolha de dados e apoio. 

À Prof. Alda Marques e prof. Rui Costa por toda a ajuda ao 

longo do meu percurso académico. 

Aos meus amigos por acreditarem em mim e pela sua 

dedicação e amizade. 

À Maria Regêncio, Sara Quina, Tiago Gamelas, Yanina Alves, 

Rosa Andias e Hugo Soares pelo companheirismo e ajuda. 

À CMDV- Clínica Médica de Viana, ao Fábio Viana, Pedro 

Figueiredo e Bruno Vaz pelo apoio, ajuda e compreensão. 

A todo os membros dirigentes e equipa Sénior do Sport Clube 

de Forjães pela compreensão, dedicação e companheirismo 

demonstrados. 

A todos os atletas que participaram no estudo, pela 

disponibilidade e esforço demonstrados, sem eles esta 

dissertação não seria exequível. 

 

  



ix 
 

  



x 
 

Palavras-chave  

Sumário

Lesão Isquiotibiais, futebolistas, adaptações neuromusculares 

Enquadramento: As lesões dos isquiotibiais são bastante comuns numa grande 

variedade de desportos que envolvem corrida, resultando num grande período de 

abstinência desportiva e competitiva. Uma das consequências mais problemáticas 

desta lesão é a sua alta taxa de recorrência que, embora tenha sido alvo de 

bastantes estudos, não tem diminuído nas últimas décadas. Estudos recentes 

encontraram também várias maladaptações em atletas com história desta lesão, 

provavelmente devido a inibição neuromuscular, sendo proposto que estas 

adaptações pós-lesão possam contribuir como factores de risco no ciclo de lesão-

recorrência, e para a elevada taxa desta. Pelo que recentemente estudos sugerem 

considerar a interacção destas adaptações e factores de risco, de modo a 

aprofundar o nosso conhecimento dos mecanismos desta complexa lesão. 

Objectivo: Determinar, analisar e correlacionar adaptações neuromusculares em 

futebolistas amadores com história de lesão dos isquiotibiais em comparação com 

atletas sem história de lesões, em condições semelhantes. 

Metodologia: Todos os participantes foram sujeitos a testes isocinéticos em modo 

concêntrico (60 e 240º.sec) e excêntricos (30 e 120º.seg¯¹) em ambos os membros, 

com análise do pico de torque, ângulo de pico de torque e rácio convencional 

isquiotibial:quadriceps (H:Q), também foi medida a actividade mioeléctrica do 

Bicípite Femoral (BF) e dos isquiotibiais mediais (MH) durante a avaliação 

isocinética excêntrica em ambas as velocidades e a percentagem de activação 

muscular foi calculada a 30, 50 e 100ms após início da contracção. Além destes, 

foram medidos e correlacionados os testes de extensão do joelho activa e passiva, 

teste de sensação de posição do joelho (JPS), triple-hop distance (THD) e testes de 

estabilidade do core (endurance dos flexores e extensores, side bridge para o lado 

direito e esquerdo). 

Resultados: Dezassete jogadores participaram neste estudo: 10 atletas com 

história de lesão dos isquiotibiais (HG) e 7 atletas sem história de lesões graves 

(CG). Foram encontradas diferenças significativas entre o lado lesado e não lesado 

do HG na actividade mioeléctrica do BF em quase todos os tempos em ambas as 

velocidades, e entre o lado lesado do HG e lado não dominante do CG aos 100ms 

durante o teste excêntrico á velocidade de 120º.seg¯¹ (p<.05). Não foram 

encontradas diferenças significativas na actividade dos MH. Quanto ao teste 

proprioceptivo foram encontradas diferenças no HG entre o membro lesado e não 

lesado no JPS quando a posição inicial era a extensão completa do joelho (p=.027). 

Não foram encontradas alterações nos outros testes. No entanto houve correlação 

significativa entre a actividade mioeléctrica do BF aos 100ms a 120º.seg¯¹ e os 

resultados do JPS com a 90º de flexão do joelho (r-.372; p=0.031) como posição 

inicial, assim como entre o rácio H:Q no teste isocinético concêntrico a 

240graus.sec e o score to THD (r=-345.; p=.045). 

Conclusão: Neste estudo foram encontradas diferenças significativas que suporta 

literatura anterior no que toda a existência de adaptações neuromusculares e 

inibição do BF após lesão dos isquiotibiais. Além disso, no nosso conhecimento, 

este foi o primeiro estudo a encontrar correlação significativa entre estas 

adaptações, pelo que pode abrir uma porta a novas perspectivas e estudos futuros.
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Background: Hamstring strain injuries (HSI) are one of the most common injuries in 

a wide variety of running-sports, resulting in a considerable loss of competition and 

training time. One of the most problematic consequences regarding HSI is the 

recurrence rate and its non-decrease over the past decades, despite increasing 

evidence. Recent studies also found several maladaptations post-HSI probably due 

to neuromuscular inhibition and it has been proposed that these adaptations post-

injury may contribute as risk factors for the injury-reinjury cycle and high 

recurrence rates. Furthermore it has been recently proposed not to disregard the 

inter-relationship between these adaptations and risk-factors post-injury in order 

to better understand the mechanisms of this complex injury. 

Objective: To determine, analyze and correlate neuromuscular adaptations in 

amateur football players with prior history of HSI per comparison to uninjured 

athletes in similar conditions. 

Methodology: Every participant was subjected to isokinetic concentric (60 and 

240deg.sec) and eccentric (30 and 120deg.sec¯¹) testing, and peak torque, angle of 

peak torque and hamstrings to quadriceps (H:Q) conventional ratios were 

measured, myoelectrical activity of Bicep Femoris (BF) and Medial Hamstrings (MH) 

were also measured during isokinetic eccentric testing at both velocities and 

muscle activation percentages were calculated at 30, 50 and 100ms after onset of 

contraction. Furthermore active and passive knee extension, knee joint position 

sense (JPS) test, triple-hop distance (THD) test and core stability (flexors and 

extensors endurance, right and left side bridge test) were used and correlated. 

Results: Seventeen players have participated in this study: 10 athletes with prior 

history of HSI, composing the Hamstring injury group (HG) and 7 athletes without 

prior severe injuries as control group (CG). We found statistical significant 

differences between HG injured and uninjured sides in the BF myoelectrical activity 

at almost all times in both velocities and between HG injured and CG non-dominant 

sides at 100ms in eccentric 120deg.sec¯¹ velocity (p<.05). We found no differences 

in MH activity. Regarding proprioception we found differences between the HG 

injured and uninjured sides (p=.027). We found no differences in the rest of used 

tests. However, significant correlation between myoelectrical activation at 100ms 

in 120deg.sec¯¹ testing and JPS with initial position at 90º (r-.372; p=0.031) was 

found, as well as between isokinetic H:Q ratio at 240deg.sec and THD score (r=-

.345; p=.045). 

Conclusion: We found significant differences that support previous research 

regarding neuromuscular adaptations and BF inhibition post-HSI. Moreover, to our 

knowledge, this was the first study that found correlation between these 

adaptations, and may open a door to new perspectives and future studies. 
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Introduction and Purpose 

Muscle strain injuries are a problem for most running based sports, and affects both 

amateur, recreational, professional and elite athletes 1–3. Hamstring strain injuries (HSIs) 

are the most common and prevalent type of muscle strain injury, resulting in a 

considerable loss of competition and training time, performance decline and resources 

and substantial financial costs to clubs and organizations 1–4. The financial costs of HSIs 

have been previously observed in some studies, and has been suggested to have cost in 

excess of £74.4 million in English football premier league among all its participating clubs 

during 1999-2000 season 5 and $AUS1.5 million in Australian football league during 2009 

season4.  

There are two proposed types of acute HSIs, one occurring during high speed running and 

mainly involving bicep femoris long head and the second during movements leading to 

wide-ranging muscle stretching (high kicking, sagittal split, tackling) that often involve the 

proximal tendon of semimembranosus 6–8. The bicep femoris long head is the most 

commonly injured component 3,9. Historically, acute muscle strains are classified as grade 

I, II and III based on the amount of fibers disrupted. A grade I strain is characterized by 

overstretching with microscopic damaged, without perceptible fiber disruption. Grade II 

strain is a macroscopic partial muscle tear while a grade III strain is a complete disruption 

of the muscle or tendon (grade 3 injuries are quite rare) 10. Average time loss of training 

and competition in European professional football are 17±10 days for grade I, 22±11 days 

for grade II, and 73±60 days for grade III 11, but the majority of HSI in football (97%) are 

classified as grade I and II 12. 

One of the most problematic consequences of HSIs that remains unresolved is the high 

rate of reinjury, being the primary injury the principal risk factor for recurrence 13, and 

whereas this injury-reinjury cycle is acknowledge by literature, little is known about the 

role of maladaptations in HSIs, and how can it influence and sabotage rehabilitation 

programs, as well as their role after return to play. In the last years, research has been 
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focusing its attention on neural maladaptations post-HSI and associate them with injury 

recurrence 14. Although there is increasing evidence in HSI prevention and rehabilitation 

strategies, the injury and reinjury high rates over the years suggest that our current 

knowledge around HSI remains incomplete 4. 

 A recent study, in general agreement to previous ones 15–17, found that their participants 

with history of HSI demonstrated significant reductions in electromiographic muscle 

activity ratios, and pelvic and lower limb movement patterns asymmetries during high-

speed running when compared with the uninjured member, including anterior tilt, hip 

flexion and medial knee rotation on the injured side; these biomechanical adaptations are 

likely to place the bicep femoris long head under increased strain compared to the 

semitendinosus and semimembranosus, known as the medial hamstrings. The 

asymmetries occurred during the immediate precontact late swing phase of running, 

which is the time identified in literature as most riskful for the bicep femoris long head 

injury 15–17. Another recent study18 also found that during prone hip extension football 

players with HSI history had significant differences in medial hamstrings and gluteus 

maximus myoelectrical activity when compared to uninjured ones; with a decrease of 

medial hamstrings activity and an gluteus maximus activity increase, overacting as a 

medial hamstrings synergist in order to substitute and compensate their decreased 

activity. 

Decrease and deficits of the bicep femoris long head activation may have an important 

role in HSIs incidence and recurrence, because lower levels of myoelectrical activity may 

limit and sabotage the adaptative response to rehabilitation programs, and may induce 

several maladaptations 19, including chronic eccentric hamstring weakness 4,20,21, selective 

hamstring atrophy 22 and shifts in torque joint-angle relationship 19,21,23.  

Terminal swing-phase of gait cycle requires high force eccentric contractions, and as such 

high rates of torque development (∆torque/∆time) and early contractile pulse (the area 

under the time-vs-torque curve) during eccentric contractions are very important because 

the limited time for deceleration (100ms average) 14,24 prevents the development of 

maximal torque 14. Therefore, considering post HSIs impulse decrease, it is expected 

hamstrings increased effort in the terminal swing phase to reduce the leg frontal 

movement due to weak deceleration during the initial swing; and the decrease of 
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deceleration force production right after initial contraction may augment necessary 

muscle work when hamstrings are more lengthened (especially the bicep femoris long 

head); this can induce an anticipated muscle fatigue and increase the probability of 

tension induced muscular failure; furthermore it may also increase the likelihood of 

muscle overlengthening due to the decline of myoelectrical activity and hamstrings 

torque production inability in response to concurrent eccentric forces, increasing reinjury 

risk by exceeding muscle mechanical limit or gathering muscle microscopic damage 14. 

Regarding this, a recent study using functional magnetic resonance imaging evaluated the 

magnitude and distribution of the metabolic changes within the hamstring muscles after 

intense eccentric hamstring exercise, and concluded that the injury group had a lower 

exercise capacity, suggesting that HSIs in football are associated with compensatory and 

asymmetrical neuromuscular activation and recruitment patterns in heavy eccentric 

actions, leading hamstrings to a more severe and premature fatigue. During running, the 

bicep femoris, semimembranosus and semitendinosus work together as synergists, 

however during heavy eccentric loading in athletes with prior HSI the semitendinosus has 

a predominant function and elicits the highest metabolic muscle activity, and hamstrings 

show compensatory and less isolated activation patterns when compared to uninjured 

athletes, and this may predispose football athletes to a higher reinjury risk 25. 

Increased mechanical strain arise near the proximal bicep femoris myotendinous junction 

during lengthening contractions, and subjects with HSI history presented significantly 

greater muscle strain, when compared to the contralateral limb, suggesting that residual 

scar tissue at the site of the prior musculotendon injury may negatively affect local tissue 

mechanics and contribute to reinjury risk during active lengthening contractions 26. 

Interestingly, latest research suggest that early stages of rehabilitation after HSI avoid 

excessive muscle stretch, because it may exacerbate scar formation 27, and as a 

consequence the long head of hamstrings may develop significant atrophy, showing a 

reduction in in-series sarcomeres if the strain is severe (grade II/III) 21. There is a wide 

variety of literature over the past few decades regarding HSIs and re-injury risk factors 

and its prevention, therefore it is crucial to correlate various risk factors in a new 

conceptual analytical model for HSI, focusing the inter-relationship between them, 

allowing correlation and regression analysis, for instance between core stability, muscle 
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flexibility, strength and architecture, among others 28. It is important not to exclude the 

interaction between multiple risk factors in order better understanding of HSI and 

reinjury mechanisms 29.   

 

Considering all the above, the purpose of the present study was to determine, analyze 

and correlate neuromuscular adaptations in amateur football players with prior history of 

HSI and uninjured athletes in similar conditions, by measuring isokinetic concentric and 

eccentric strength, angular peak torque, muscle myoelectrical activity during early 

eccentric contractions, core stability, flexibility, proprioception and functional 

performance. 
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Review of Literature 

1- Epidemiology 

Hamstring Strain Injury (HSI) is the most common injury in a wide variety of sports, for 

instance a) football 12-14% of all injuries incidence 3,30,31; b) Australian Football, 13-15% 

incidence 2,32; c) Rugby, 15% incidence 1,33; d) American Football, 12% incidence 34 and e) 

Track and field, 26% incidence 35.  

This injury has a reported prevalence of 37% of all muscle injuries, accounting for 12% of 

all sport injuries 36. In a sport team, it is expected to occur 5 to 6 hamstrings strains per 

season, and in English and Australian football, authors found that HSI resulted in 90 days 

stoppage of practice and 15 to 21 matches missed on average 2,3. High recurrence rates 

are also one of the most problematic issues of HSI, because recurrence HSI injuries 

normally result in an increased sports nonparticipation period than the initial injury 30. 

These muscles have an higher and prolonged recurrence injury risk than other muscles 2. 

In a variety of sports the recurrence rates ranges from 12% to 41% 3,37,38. The recurrence 

is more common when the injury involves the bicep femoris 39. 

 

2- Risk Factors 

2.1- NON-MODIFIABLE RISK FACTORS 

According to literature, we can identify as non-modifiable risk factor athletes age, 

ethnicity and history of HSI. The age has been identified by several authors as a 

independent risk factor 2,40–42, with increased odds of suffering an HSI if athletes are older 

than 23 3. There are some hypothesized age-related changes that can increase risk of HSI, 

such as increased bodyweight and reduced flexibility, as well as decreased strength and 

muscle mass in older athletes 42,43 or L5/S1 nerve entrapment, among other suggested 

explanations for age-related HSI risk 4. Regarding ethnicity role in HSI risk, one study 

found that black football players have more HSI risk when compared to caucasian 

athletes, one possible explanation suggested by this study is the anterior pelvic tilt 
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commonly seen in black origin athletes that might predispose them to this injury 3. Finally, 

within the non-modifiable risk factors, the previous history of HSI has been the most 

documented risk of injury 41,43. Whether recent or old, prior HSI has been suggested to 

induce several maladaptations in the hamstrings muscles, that will be discussed further in 

this study, and considerably contribute to reinjury rate and likelihood, being HSI one of 

the most recurrent and long-lasting injuries in sports 4. 

 

2.2 – MODIFIABLE RISK FACTORS 

2.2.1- Strength imbalances 

Evidence supports that muscle weakness may predispose the muscle to a strain injury, as 

stronger muscles provide more strain protection 4. Regarding hamstrings, it has been 

demonstrated that its strength decline occurs mostly during eccentric forces; being the 

strength imbalances minimal or inexistent during concentric efforts 20,44,45. Strength 

asymmetries between limbs may predispose the weaker hamstring to higher risk of injury 

46, varying its asymmetry degree from 8% to 15%, depending on the sport practiced, to 

increase HSI risk 2,44. One recent systematic review with meta-analysis also concluded that 

although hamstrings peak torque may not be a risk factor for HSI, however an increase in 

quadriceps peak torque can be a predisposal factor 47. 

Studies indicate that an eccentric hamstrings to quadriceps force low ratio (functional H:Q 

ratio) predispose athletes to a higher risk of HSI 44,48. Croisier et al. (2008) studied 462 

football players with hamstrings strength deficits, between limb asymmetries or low H:Q 

ratio and demonstrated that they were more predisposed to HSI. In the Croisier’s  study, 

the number of athletes with concentric strength alteration was very low, being the 

majority of functional H:Q ratio differences during eccentric force 44. Comparing 

hamstring to opposite hamstring ratio, is has been suggested that eccentric asymmetries 

were predictive of HSI in football players 47. Hamstring eccentric torque comparisons are 

described in literature, comparing injured with non-injured members, and individuals 

with and without HSI history; revealing significant deficits in hamstrings with previous 

injury history 20,44,49,50. This predominant eccentric weakness is suggestive of 

neuromuscular inhibition, which is the only known mechanism that could explain this 
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selective muscle weakness 21. Regarding this and because the late swing phase during 

sprinting is responsible for most HSI injuries 16,51–53, it has been demonstrated that during 

this phase the muscle is simultaneously lengthening rapidly while performing an high 

level of eccentric force, to decelerate the lower limb for the foot strike 16. This can be a 

possible explanation why both peak musculotendon length and electromiographic 

activation of the bicep femoris long head are synchronous during late swing phase, 

exposing this muscle to high tensile force in response to eccentric loading, possibly 

contributing to HSI occurrence during high-speed running 54. 

 

2.2.2- Reduced Flexibility 

There is some controversy around flexibility role as a HSI risk factor, as there are authors 

who defend that lower prolonged flexibility increase HSI risk 27,55,56, while some 

prospective studies did not find any association between hamstring flexibility and HSI 

incidence 13,42. Additionally one study reported an association between diminished hip 

flexors flexibility and HSI risk 42, also other studies demonstrated that contralateral psoas 

muscle had great influence in the hamstring leg 53 and its peak elongation of the stance 

limb is synchronous with the peak elongation of the hamstring on the swing leg in running 

57. Furthermore, it has been also demonstrated the negative effects of a football match in 

hip flexibility 58. 

 

2.2.3- Fatigue 

Normal muscles absorb more energy than fatigued or with activation deficits muscles, 

therefore weak hamstrings may absorb insufficient energy during the terminal swing 

phase of running 17,59; and a fatigued muscle has increased likelihood of suffering a strain 

injury because of its incapacity in resist the overlengthening muscle during this running 

phase 4. Hamstrings fatigue may lead to increased knee extension during the late swing 

phase, which will predispose the muscle to an higher strain 51,60. One recent study was 

also focused in understanding the bicep femoris myoelectrical activity alterations during 

an eccentric hamstrings contraction after repeated sprint running in recreational athletes 

61 because: (i) running displacement sports (such as European and American football) 
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require concurrent and high-speed sprints during matches; and (ii) previous studies 

conducted in European football teams, found that prolonged intermittent running may 

have a negative impact in eccentric hamstrings strength 62,63, and predispose the bicep 

femoris long head to a strain injury 44,48, as has been previously studied and showed that 

there is a tendency of suffering an HSI in the end of each half in football 3 and in rugby 64. 

Regarding this Timmins and colleagues evaluated isokinetic eccentric strength before and 

after repeated running, and found that the decline in eccentric strength may be explained 

by the decline of bicep femoris myoelectrical muscle activation in consecutive sprinting 61. 

Also Marshall and colaborators evaluated 8 athletes, during a simulated soccer match 

with 90 minutes duration, every 15 minutes of each half and found centrally mediated 

reductions in rate of torque development and maximal torque, and this decline specially 

occurred in the end of each half, in association with the simultaneous decrease of bicep 

femoris maximal activity. Furthermore, rate of torque development decline occurred only 

15 minutes after the beginning of the 1st half and further decrease was found until the 

end of the 2nd half 65. 

 

2.2.4- Musculotendon architecture 

Muscle tendon architecture may be a factor in development of HSI as authors have 

suggested that the aponeurosis morphology of the bicep femoris long head may have a 

significant role in muscle stretch distributions 66. A recent study also found that individual 

musculotendon dimensions also contribute to strain likelihood, as larger muscles and 

confined proximal aponeurosis increase the injury risk, by increasing peak local tissue 

strain; which might explain the athletes interindividual differences in susceptibility to HSI 

when exposed to same conditions 67. Hamstrings architecture variation may be one of the 

factors involved in HSI and reinjury. Indeed the bicep femoris long head has shorter 

fascicles and bigger muscle area compared to its short head 68 and this explains why the 

long head is more susceptible to injury, because longer fascicles allows greater stretching 

of the muscle, avoiding eccentric overlengthening 23,69. Additionally, it is during the 

terminal swing phase of running that peak elongation occurs and that this muscle is 

required to exert most eccentric force, predisposing it to injury 16,51,53,70,71. Many authors 
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defend that muscle strain injuries are associated with high-force eccentric contractions, 

where the muscle lengthening demands exceed its mechanical limits 6,8,13,20,53,70. 

Hamstring strain injuries are typically a result of simultaneous hip flexion and knee 

extension 10, more frequently during running and sprinting 3,8,64, but also during other 

actions such as kicking or tackling 3,7,8,37,64. Because hamstrings are a biarticular muscle, it 

allows significant muscle lengthening during simultaneous hip flexion and knee extension, 

as observed during running; which may predispose hamstrings to a strain injury, by 

exceeding muscle mechanical limits 16 or microscopical damage 23. Most of running-

related HSI affect the bicep femoris long head, because this muscle reaches longer 

lengths than the semitendinosus and semimembranosus during terminal swing phase of 

running 51. 

 

2.2.5- Core stability 

In recent studies, HSI has been associated with core stability 53,59,72,73. One study found 

that athletes who performed a core stability program had significantly less hamstring 

reinjuries compared to conventional stretching and strength rehabilitation 74. Also a study 

shown reduced hamstrings stiffness after lumbopelvic stability exercises 75. Nevertheless 

association between core stability and HSI risk requires further investigation 28. 

 

2.2.6- Other risk factors described in literature 

There are more HSI risk factors described in literature, however there are very few 

studies supporting these. One is lumbar disorders, as there are studies that found 

increased activity and decreased flexibility in the hamstrings of individuals with low back 

pain, that can increase tension and result in muscle damage; on the other hand studies 

found a significant increase in lumbar lordosis in athletes with HSI 29. Other is neural 

tension, which is proposed as a possible risk factor for HSI recurrence, because branches 

of the sciatic can create increased neural tension and local damage to hamstring muscles 

76. Furthermore, another possible risk factor is the muscle fiber composition as evidence 

hypothesized that since the hamstrings have relatively high percentage of type I fibers 

(slow), may be prone to HSI 29,77,78. 
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3- Hamstring Strain Injury recurrence and return to play  

3.1- RETURN TO PLAY 

After HSI, there are a number of factors suggested as indicators of return to play; as for 

instance, the distance of injury to ischial tuberosity. Several studies suggest that a longer 

time to return to play is correlated with a closer distance to ischial tuberosity 8,79,80. Also, 

a recent review evaluated the relationship between the size of HSI on magnetic 

resonance imaging and the time to return to play, concluding that there was no strong 

evidence that supports professionals decision for return to play prediction or risk of 

reinjury based on magnetic resonance imaging 80, despite its excessive reliance in decision 

to return to play prognosis in a sports and teams settings, sometimes conditioning 

athletes rehabilitation times 81. 

Even after rehabilitation and returned to play, football players returning from a recent 

HSI, when compared to uninjured athletes, had lower high-speed running performance 

19,82. Additionally, other study also found that some of the included football players with 

HSI history, had one or more isokinetic deficit of more than 10% after clinical discharge 

and return to sport practice, despite the correlation between isokinetic deficits and the 

increase of recurrence risk remains inconclusive in literature 83. 

 

3.2- HAMSTRING STRAIN INJURY RECURRENCE 

This injury, in addition to high rates of incidence, also exhibits very high rates of 

recurrence 1–3,12,33,64 in all the aforementioned sports a) football, 16% reinjury rate 30; b) 

Australian Football, 27% 2; c) Rugby, 21% 64 and d) American Football, 32% 4. There is 

increasing evidence that supports that hamstrings eccentric weakness may be a factor for 

high recurrence rates of HSI 20,49,83–86. However, other studies found no correlation, 

assuming that the primary risk factor for recurrence is the history of prior HSI 18,23,45,87. 
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4- Neuromuscular inhibition 

Previous HSI has been shown to be a nonmodifiable risk factor for reinjury, however there 

are several functional deficits post HSI identified in literature. One study 88 gathered 

recent evidence and reported that these neuromuscular adaptations include lower knee 

flexor eccentric strength (10%-24%) 23,45, lower voluntary myoelectrical activity during 

knee flexors maximal eccentric contraction (18%-20%) 14,49,85, lower knee flexor eccentric 

rate of torque development (39%-40%) 14, lower voluntary myoelectrical activity during 

early eccentric contraction (19%-25%) 14, and lower functional H:Q ratio (19%) 45. 

Previously injured hamstrings also generate their peak torque at shorter muscle lengths 

when compared to their contralateral limb and uninjured individuals during knee flexor 

eccentric isokinetic dynamometry testing 23,89. This higher optimal angular peak torque 

observed on the injured member results in increasing work of these muscles, 

predisposing them to greater microscopic damage and anticipated fatigue as 

consequence of the powerful active lengthening during sprinting 23,89. After accumulation 

of such skeletal muscle damage after consecutive trainings involving high-speed running, 

there are studies proposing that this may result in macroscopic muscle strain 20,23,89.  

Studies suggest eccentric weakness post-HSI to be long-lasting (from months to years), 

even athletes have fully returned to competition 20,90. Interestingly Opar et al. (2015) in 

their recent study demonstrated that athletes with unilateral HSI history displayed less 

improvement in eccentric hamstring strength during the Australian football preseason 

not only in the injured limb but also in the contralateral uninjured one, when compared 

to control uninjured players. Reinforcing the neuromuscular inhibition after unilateral HSI 

may be mediated by central mechanisms, and these can affect both injured and uninjured 

limb 91. Not only eccentric weakness, but also altered angular peak torque has been 

demonstrated to persist months to years after HSI 20,23, exhibiting optimal peak torque at 

shorter muscle lengths in the previously injured knee flexors 23,92. Furthermore Opar et al. 

(2012) have previously studied the influence of prior HSI in the rate of torque 

development and contractile impulse, and found lower values on the injured limb, when 

compared with the contralateral member. Simultaneously they have found reduced 

myoelectrical activity was only restricted to the previously injured bicep femoris long 

head muscle, and not medial hamstrings 14. Furthermore, the intention to perform an 
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eccentric action has been shown to provoke greater movement-related cortical potential 

when compared to concentric movements, suggesting that the modulation of motor 

activity depends on contraction type 93. 

Additionally, Sole et al. (2011) showed that previous injured hamstrings were less 

activated during maximal eccentric actions at longer muscle lengths when compared to 

uninjured athletes 85. Again one possible explanation for this reduced ability to activate 

previously injured hamstrings may be the neural defense mechanism response and 

sustained neuromuscular inhibition, limiting muscle adaptation to its optimal state 21, 

resulting in reduced activation during eccentric actions at longer muscle lengths limiting 

muscle hypertrophy during eccentric actions 15,21,85,87. Hamstring recovery may be 

impaired by the limited exposure to eccentric stimulus in longer muscle lengths during 

rehabilitation due to chronic pain-driven neuromuscular inhibition on the lengthened 

muscle 21. 

Other neuromuscular adaptations have been reported. For instance one study 53 

highlighted the potential influence of lumbopelvic musculature on bicep femoris strain. 

Chumanov et collaborators53 found a relative increase in ipsilateral gluteus maximus and 

external oblique muscle activity, accompanied with a decrease of bicep femoris activity; 

the investigators hypothesized that this activity can be “protective” towards reducing 

bicep femoris strain during terminal swing phase in running as well as contralateral rectus 

femoris and ipsilateral erector spinae muscular activity increase was also noted 53. These 

alterations in muscle activity can be a maladaptive process, a failure to adapt to the bicep 

femoris specific dysfunction or post-injury neuromuscular inhibition 21. 
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Methodology 

 

1- Participants 

Seventeen amateur level male football players volunteered to participate in the study. 

Recruitment occurred through verbal advertisement and research posts.  All participants 

play on a synthetic based field. To be included in the study, participants had to be senior 

team player, with age between 18-35 years old and training frequency more than 3 times 

per week. To be included in the hamstring injury group (HG), players had to have 

sustained at least one grade I or II HSI within the past 2 seasons (season 2013/2014 and 

2014/2015). As inclusion criteria participants had to confirm the HSI through 

ultrasonography or medical report, or if not possible to report hamstring strain injury as 

sudden onset of non-traumatic posterior thigh pain during a training or match that 

prevented them from returning to play at least 4 weeks and needed intervention from a 

healthcare professional, and when this was the case, the injury severity was confirmed 

with the Physiotherapist or Sports Medicine Doctor responsible for the athlete at the time 

injury occurred.  Hamstring injury group exclusion criteria were: not fully recovered from 

the HSI for more than 6 months, any other serious injury to his lower limbs (for instance, 

anterior cruciate ligament or meniscal tear), being on medications. To constitute the 

control group, football players from the same teams without a history of hamstrings or 

any other severe lumbopelvic, hip, thigh and knee injuries were recruited; when a player 

from the same team was not available, another player in a team with same competition 

level and resources was recruited. 

Limb dominance was defined as the preferred kicking leg. Each subject completed all data 

collection in one session. The participants were familiarized with the experimental 

protocol and apparatus. The assessment was conducted 48 hours after a game or 

practice, to avoid the effects of intense exercise on the outcomes. All participants 

provided written informed consent, and all procedures were conducted according to the 

Declaration of Helsinki.  
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2- Procedures 

The participants reported to the laboratory once for assessment of muscle concentric and 

eccentric strength, bilateral muscle activity of hamstrings (medial hamstrings and biceps 

femoris) during maximal eccentric contractions, proprioception, flexibility, core stability 

and functional performance. 

Before the data collection, all participants were informed about the study procedures and 

thereafter were asked to sign the written informed consent (annex 1). Afterwards, 

participants completed a questionnaire, with anthropometric, demographic, sport-related 

(athlete field position; type of field, type of field surface) and injury related questions 

(time that he had primary and recurrent injuries, how much time was he absent from 

competition, time of rehabilitation, injury mechanism and rehabilitation time), among 

others (Annex 2 for Hamstring group, Annex 3 for Control Group). Height and weight 

were measured using a standard scale and stadiometer (Seca 285, Seca, Birmingham, 

United Kingdom). 

 

2.1 - ASSESSMENT OF MUSCLE STRENGTH AND ELECTROMIOGRAPHIC ACTIVITY 

The assessment of knee muscles strength was performed on both limbs on a Biodex 3 

dynamometer (Biodex Medical Systems, Shirley, New York). Athletes were seated on a 

custom pillow, placed on top of the dynamometer seat, which had two holes at the level 

of the posterior mid-thigh in order to minimize movement artifacts from the surface 

electromyography (sEMG) electrodes on the seat during isokinetic assessment. The hips 

were flexed at 85º from neutral with the lateral epicondyle of the femur aligned with the 

dynamometer fulcrum, then the tested leg was attached to the lever of the dynamometer 

with a Velcro strap and padded restraints were fastened across the hips and trunk, as well 

as the mid-thigh of the tested leg to isolate movement to the knee joint. Range of motion 

was set at 0º to 90º of knee flexion (0º=full extension; 90º=start position). 
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Before the protocol, the participants performed a warm-up consisting 5 min of cycling in a 

mechanically braked cycle ergometer with a fixed load of 50 watts, and also performed 

submaximal contractions of the knee extensors and flexors and one maximal contraction 

at the test speed on the isokinetic dynamometer in order to familiarize with the isokinetic 

device. 

Isokinetic testing protocol consisted in four tests for each limb (Table 1) in order to assess 

concentric and eccentric muscle strength at different velocities. The order of tests and 

limb testing was randomized through participants. Maximum effort was requested with 

verbal stimulus to participant in every test. Each test was interspersed with 30 seconds 

rest period. Participants were also instructed to remain relaxed before each set to allow a 

stable baseline measurement of muscle activity. To confirm muscle activity, athletes were 

asked to voluntarily bend their knee and push their heel back, towards their gluteus as 

quickly as possible when given the signal to contract. 

 

Table 1 – Bilateral Isokinetic Dynamometry Testing Protocol 

Test Speed Sets Repetitions 

Concentric knee extensors/flexors 
60 deg.s¯¹ 2  

(1st set warm-up) 

3  

Concentric knee extensors/flexors 240 deg.s¯¹ 2  

(1st set warm-up) 

5  

Eccentric knee flexors 
30 deg.s¯¹ 2  

(1st set warm-up) 

3  

Eccentric knee flexors 
120 deg.s¯¹ 2  

(1st set warm-up) 

4  

 

Myoelectrical activity as measured during the isokinetic eccentric contractions via sEMG 

from bicep femoris and medial hamstrings through the use an EMG system (BTS 

FREEEMG 300, BTS Bioengineering, Milan, Italy) and disposable circular silver surface 

electrodes (Covidien Kendall, Minneapolis, USA) with a diameter of 24 mm.  Before the 
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electrodes application the athletes skin was prepared by shaving the area, cleaning and 

rubbing it with alcohol; and, it was given a 5-min rest time to reduce skin impedance. The 

electrodes were placed on the posterior thigh halfway between the tibial epicondyles and 

the ischial tuberosity, according to Surface Electromyography for the Non-Invasive 

Assessment of Muscle (SENIAM) guidelines 94. Muscle bellies were identified by palpation 

during isometric knee flexion, and correct placement was confirmed by observing sEMG 

activity in the computer during internal and external rotation of the flexed knee. All 

isokinetic test repetitions were video-recorded for analysis and synchronization of 

isokinetic testing and electromiographic data. 

Biodex isokinetic dynamometer torque and angle position data were transferred to 

computer and peak torque was defined as the mean of all repetitions in each velocity and 

limb. Peak torque and respective angle were stored for further analysis. Surface EMG was 

recorded and synchronized with the isokinetic testing; a videotape was recorded to 

synchronize the isokinetic eccentric contractions and the sEMG recordings manually. EMG 

muscle activity was recorded during the eccentric tests with surface electrodes and 

sampled at 1000 Hz using a wireless EMG system. Data were analyzed with 

AcqKnowledge, version 3.9.0 (Biopac System, Goleta, CA, USA). The raw EMG signals were 

digitally filtered with a IIR band-pass (20-500 Hz) filter, full wave rectified, and the root-

mean square of the signal was derived. In each eccentric test, every muscle activation 

onset was pre-determined to each contraction 49. Onset and offset of muscle activity was 

determined by using a 10% threshold of the maximum amplitude of the muscle 

contractions selected for analysis and visually confirmed by synchronized video recording 

at the selected time-frame 60. Similarly to Opar et al. (2013), myoelectrical activation was 

measured in all the eccentric tests repetitions, from onset of contraction until 30, 50 and 

100 milliseconds of the contraction 14. In each contraction, maximal peak activation of 

bicep femoris and medial hamstrings was noted and percentage of the 30, 50 and 100 

milliseconds activation value was calculated for both muscles. 
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2.2- ASSESSMENT OF PROPRIOCEPTION 

The knee joint position sense test was performed on athlete’s lower members in an open 

kinetic chain and with active positioning of a previously determined passive position. The 

participants had to be wearing shorts. The technique was performed in the ipsilateral 

limb and without visual input. Prior to the test, four reflective markers were placed with 

red-color tape in the a) great trochanter, b) illiotibial tract, at the knee posterior crease 

level (with 80º knee flexion), c) peroneus head, d) lateral malleoli prominence. Each pair 

of markers (a-b, c-d) represented the axis of the thigh and the leg.  

To record participants positioning, it was used video recording for later analysis. The 

camera was aligned with the knee subject to test, and then manually focusing on the field 

of view (sagittal plane). To evaluate the knee joint position sense, participants were 

seated in a treatment bed with their lower limbs without touching the floor, and were 

blindfolded in order to remove visual input. Furthermore every test was made individually 

in a quiet place to avoid external stimuli 95. 

We analyzed two joint positions between 40º and 60º of knee flexion; for one position 

the movement was from flexion to extension (initial position in 90º knee flexion), and for 

the other was from extension to flexion (initial position was complete knee extension, 0º). 

The examiner slowly (at approximately 10º/second) moved the testing leg from initial 

position to a knee angle between 40º and 60º flexion, and asked the athlete to maintain 

this position for 5 seconds to memorize it. After the participant was instructed to actively 

return to initial position and immediately place the knee to previously passive placed 

position, reporting “target” to the examiner and hold that position for 5 seconds, and on 

the command “return”, the subject returned to initial position and repeated the 

repositioning twice. This test was repeated 3 times for each limb and it was then 

performed again, being the initial position full knee extension (0º). After data gathering 

knee angles were determined by computer analysis of the videotaped images of the knee 

joint using a computer software (SAPO- Software para Avaliação Postural) 96. Knee joint 

position sense is reported as the absolute angular error, defined as the absolute 

difference between test position and the position reproduced by the athlete, which 

represents accuracy without directional bias 95. This absolute difference was taken by the 
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mean of 5 frames (one in each second of the participant active hold positioning) analysis 

of each position. 

 

2.3- ASSESSMENT OF FLEXIBILITY 

Flexibility was assessed through two tests: active and passive knee extension. 

To assess active knee extension, the athlete was laying supine in the testing surface. The 

tested leg was then positioned at 90º hip flexion and contralateral leg fully extended and 

in neutral rotation positioned by a second examiner; with the foot in neutral position and 

the knee in 90º flexion. In this position and without any prior warm up, the participant 

was instructed to extend the knee until strong resistance and hold this position for 3 

seconds, allowing evaluation. The result corresponds to the range of motion in degrees, 

starting in the initial position (knee at 90º flexion, corresponding to 0º goniometer). After 

evaluation, the tested member was positioned in a neutral rest position for 60 seconds, 

and then proceeding to a second evaluation. After second testing, contralateral member 

was tested 97. The video recording procedures and the same software (SAPO) were used 

to withdraw the test degrees and best of the two measures for each test was noted. 

The protocol for assessing passive knee extension was similar to the aforementioned with 

the difference that the examiner extended the knee until it reached maximum hamstrings 

stretching tolerated by the participant. This is a protocol adapted from 98, switching the 

goniometer with video analysis by the use of the referred software. 

 

2.4- ASSESSMENT OF LUMBOPELVIC STABILITY 

Lumbopelvic stability was assessed with three different tests: the extensors endurance 

test, the flexors endurance test, and the side bridge test. 

The extensors endurance test is a test modified from the Biering-Sorensen test 99, which 

has been shown as a consistent and reliable measure of back extensor muscle endurance. 

Participants laid prone with the lower body fixed to the test bed (positioned 

approximately 25 centimeters above the floor) at the ankles, knees, hips and the upper 

body extended over the edge of the bed (aligning anterior superior iliac spines with the 

border of the bed). They were then instructed to rest their trunk on the floor before test. 
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When it started, upper limbs cross at chest level with both hands in the opposite 

shoulders and the upper body was lift from the floor until it was horizontally aligned with 

this. The participants were then instructed to maintain this horizontal position for as 

longer as possible. The endurance time was manually and video recorded in seconds, 

since the time the participant achieved horizontal positioning until the moment the upper 

body touched the ground 100. 

During flexors endurance test, participants were seated on the physiotherapy test bed 

and supported their upper body against the bed support positioned in a 60º angle from 

the remaining bed. Both knees and hips were flexed to 90º and arms folded across the 

chest and both hands placed on the opposite shoulders, and toes placed under toes 

straps. Athletes were then asked to maintain this position while the support was pulled 

back approximately 10cm to begin the test. The endurance time was manually and video 

recorded in seconds which ended when participants upper body felt below the 60º 100. 

The side bridge test consisted of athletes laying on an exercise mat, on one side with legs 

fully extended. The top foot was positioned in front of the lower foot for support and 

participants were instructed to support themselves lifting their hips of the mat and to 

maintain a straight aligned position over their body, supported only on one elbow and 

their feet for as long as possible. The uninvolved arm was held across the chest with hand 

on the opposite shoulder. The endurance time was manually and video recorded in 

seconds from the time they straighten their hip from the mat until the hips touched the 

exercise mat again 100. 

During all endurance tests (only one repetition for each test, with 5 minutes interval 

between test), subjects were reminded to maintain the positions for as long as possible 

and only the participant and the examiner were present in the testing room. Athletes 

were not provided with any clues to their scores until the conclusion of all the endurance 

testing protocol. 

 

2.5- ASSESSMENT OF FUNCTIONAL PERFORMANCE OF LOWER LIMB 

In the triple hop test, it was fixed tape straps on the ground, perpendicular to the starting 

line, with 1-meter distance. Athletes then stood on the testing leg, with the tip of the 
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hallux on the starting line. They were then instructed to perform 3 consecutive maximal 

hops forward on the same limb. Arm swinging was allowed. The examiner measured the 

distance hopped from the starting line to the point where the heel struck the ground on 

the last (3rd) hop. All athletes were allowed one to 3 practice trials (self-selected) on each 

leg and then completed 3 test trials. Practice trials were provided to allow athletes to 

familiarize with the triple hop test protocol but were limited to 3 practice tests on each 

leg to avoid the effects of fatigue. A test trial was repeated if the participant was unable 

to complete a triple hop without losing balance and/or contacting the ground with the 

opposite leg. Mean distance of the 3 trials was recorded in centimeters and used for 

analysis. Athletes were using self-selected footwear 101. 

 

3- Statistical Analysis 

Data was analyzed using IBM SPSS statistics 21.0 (IBM Corporation, Chicago, IL, USA).  The 

normality of data distribution was tested with the Shapiro-Wilk test and analysis of 

histograms. For group comparison (age, height, weight, flexors endurance, extensors 

endurance, right and left side bridge) independent samples t-test were used. For 

comparisons of dependent variables between injured, uninjured (HG), dominant and non-

dominant (CG) limbs we used an analysis of variance (one-way ANOVA) test; post hoc 

comparisons were made using Bonferroni tests. For between group comparisons in core 

stability and H:Q ratio between groups, independent T-tests were used. To test the 

association between muscle strength, muscle activity, proprioception, flexibility, 

functional performance and lumbopelvic stability, Pearson correlation coefficient was 

used. P ≤ 0.05 was considered indicative of statistical significance. 
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Results 

1- Participants characteristics 

Twenty players have volunteered and been included in the study. However, three of the 

ten participants in the control group were excluded from analysis due to EMG software 

technical problems or due to athlete unavailability to attend isokinetic evaluation, being 

the final sample included for analysis 17 football players included: 10 athletes with HSI 

history (HG) and 7 control athletes (CG) (Figure 1). 

 

 

Figure 1 – Flow Chart describing Football players recruitment and inclusion for analysis 

 

No significant differences were observed between groups for age (Hamstring Group: 

24.40 ± 3.41 years; Control Group: 23.86 ± 3.44 years), height (HG: 1.79 ± 0.06 meters; 

CG: 1.78 ± 0.08 meters) and weight (HG: 78.02 ± 4.66 kilograms; CG: 73.6 ± 6.73 

kilograms) (Table 2). Inside Hamstring injury group, athletes have returned to play after 
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last injury for a 12 months median average (ranged between 6 and 16 months), after an 

average rehabilitation and time away from competitions after HSI of 4.5 weeks (ranging 

from 3 to 8 weeks). Only 3 of the 10 included participants in HG group had reported 

hamstring reinjury (being for 2 athletes the second injury and for one the third injury, all 

in the same limb). All injuries occurred during high-speed running and only one of the 

athletes had reported eccentric strength conditioning as part of his rehabilitation 

program. Regarding player positions, inside the HG group we had 3 defensive, 3 midfield 

and 4 offensive players; and in the CG we had 2 defensive, 2 midfield and 3 offensive 

players.  

 

Table 2- Samples characteristics 

Variable  HG (n=10) CG (n=7) p-value 

Age (years) 24.40 ± 3.41 23.86 ± 3.44 0.752 

Height (meters) 1.79 ± 0.06 1.78 ± 0.08 0.772 

Weight (kilograms) 78.02 ± 4.66 73.60 ± 6.73 0.129 

BMI 24.36 ± 1.23 23.24 ± 1.87 0.156 

Legend: BMI- Body Mass Index, CG- Control Group, HG- Hamstrings Group. Values are 
expressed in mean ± SD 

 

 

2- Isokinetic Strength and eccentric peak torque angle  

The isokinetic concentric and eccentric peak torque and the comparisons between groups 

and limbs can be observed in table 3. We found differences between groups in 

hamstrings concentric peak torque at 60deg.sec as seen on table 3, however post hoc 

analysis found no statistical significant differences (p>0.05). Furthermore we found no 

significant differences between groups regarding eccentric hamstrings strength and the 

rest of concentric quadriceps and hamstrings strength between HG injured and uninjured 
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side when compared between them and with CG dominant and non-dominant side 

(p>0.05).  

 
 

Table 3 - Peak Torque (mean ± SD) at different velocities in Control (CG) and Hamstring Injury 
group (HG) 

 

Variable  HG injured side HG uninjured 
side 

CG non-
dominant side 

CG dominant 
side 

P value* 

Quadriceps peak torque at 
concentric 60deg.s¯¹ 

215.35 ± 35.11 214.07 ± 49.46 193.4 ± 44.58 203.71 ± 48.69 0.735 

Hamstrings peak torque at 
concentric 60deg.s¯¹ 

128.98 ± 19.71 131.74 ± 21.96 112.80 ± 19.72 106.37 ± 16.05 0.031 

Quadriceps peak torque at 
concentric 240deg.s¯¹ 

123.39 ± 29.24 123.28 ± 31.51 124.47 ± 25.48 124.13 ± 22.73 0.998 

Hamstrings peak torque at 
concentric 240deg.s¯¹ 

83.91 ± 24.74 82.90 ± 18.45 74.81 ± 16.80 84.80 ± 17.34 0.767 

Hamstrings peak torque at eccentric 
30 deg.sec¯¹ 

202.7 ± 51.67 217.65 ± 46.14 177.93 ± 25.48 184.81 ± 28.98 0.220 

Hamstrings peak torque at eccentric 
120 deg.sec¯¹ 

195.91 ± 51.68 213.65 ± 53.35 190.14 ± 31.36 196.23 ± 49.13 0.753 

* P value for one-way Anova 

 

In H:Q ratio comparison between legs no statistical significance was also found between 

all limb comparisons, in concentric at 60deg.s¯¹ (p=0.422) and 240deg.s¯¹ (p=0.901), as 

seen on Figure 2.  
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Figure 2- H:Q ratio during isokinetic concentric testing at 60deg.s¯¹ and 240deg.s¯¹ velocity for 

Hamstring Injury Group (HG) and Control Group (CG) sides 

 

Regarding the angle of peak torque during eccentric testing, no statistical significance was 

also found at 30deg.sec¯¹ (p=0.433) and  240deg.sec¯¹ (p=0.243) (Figure 3). 

 

 
 

Figure 3- Angle of peak torque during isokinetic eccentric testing at 30deg.s¯¹ and 120deg.s¯¹ 

velocity for Hamstring Injury Group (HG) and Control Group (CG) sides 
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3- Electromiographic muscle activity 

Values for EMG activity, in percentage of maximal activation, during isokinetic eccentric 

testing at 30deg.s¯¹ can be found in table 4 and testing at 240deg.s¯¹ in table 5.  

Statistical significant differences groups/limbs were found between bicep femoris activity 

at 30ms (p=0.042) and 50ms (p=0.032), no differences were found at 100ms. Post hoc 

comparisons revealed that during eccentric at 30deg.s¯¹ there is a significant higher 

activation of the uninjured in comparison to the injured at 30ms (p=0.05) and 50ms 

(p=0.028). No significant differences were observed in medial hamstrings activation at the 

3 assessment times (p>0.05) (table 4).  

 

Table 4 - Electromiographic activity percentage during isokinetic eccentric testing at 30deg.s¯¹ 

Variable HG injured side HG uninjured 
side 

CG non-
dominant side 

CG dominant 
side 

P value 

BF activation during Eccentric at 
30deg.s¯¹ - 30ms (%) 

10.04 ± 4.06* 15.57 ± 5.26 11.37 ± 3.87 14.04 ± 3.88 0.042444 

BF activation during Eccentric at 
30deg.s¯¹ - 50ms (%) 

13.17 ± 4.42* 23.36 ± 11.37 15.58 ± 4.82 18.16 ± 5.71 0.032142 

BF activation during Eccentric at 
30deg.s¯¹ - 100ms (%) 

16.92 ± 6.84 27.03 ± 7.24 24.93 ± 10.28 27.70 ± 8.65 0.027 

MH activation during Eccentric at 
30deg.s¯¹ - 30ms (%) 

20.21 ± 10.16 16.66 ± 7.47 15.35 ± 8.98 17.35 ± 6.66 0.673 

MH activation during Eccentric at 
30deg.s¯¹ - 50ms (%) 

22.65 ± 7.48 23.12 ± 12.71 16.38 ± 7.63 18.50 ± 12.21 0.496 

MH activation during Eccentric at 
30deg.s¯¹ - 100ms (%) 

29.75 ± 10.68 25.01 ± 11.31 24.93 ± 16.66 21.88 ± 9.97 0.608 

Legend: BF, Bicep Femoris; CG, Control Group; HG, Hamstring injury group; MH, Medial Hamstrings. Values are 
expressed in mean ± SD 
* significantly different from uninjured side, p<0.05 

 

Statistical significant differences were observed in bicep femoris sEMG activity between 

groups/limbs at 30ms (p=0.025), 50ms (p=0.001) and 100ms (p=0.01). Post hoc 

comparisons revealed that there was statistical difference between HG injured leg and 

the uninjured leg at 30ms (p=0.04), 50ms (p=0.002) and 100ms (p=0.012). Furthermore, 

at 100ms there were also significant differences between HG injured leg and CG non-
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dominant (p=0.05), but not with the dominant limb. There were no significant differences 

between groups and limbs regarding medial hamstrings sEMG activity (table 5).  

 

Table 5 - Electromiographic activity during isokinetic eccentric testing at 120deg.s¯¹ 

Variable HG injured side HG uninjured 
side 

CG non-
dominant side 

CG dominant 
side 

P value 

BF activation during Eccentric at 
120deg.s¯¹ - 30ms (%) 

14.34 ± 5.02* 21.39 ± 5.25 14.34 ± 4.25 17.63 ± 7.02 0.025 

BF activation during Eccentric at 
120deg.s¯¹ - 50ms (%) 

16.93 ± 4.41* 27.42 ± 6.95 19.05 ± 4.84 24.38 ± 6.30 0.001 

BF activation during Eccentric at 
120deg.s¯¹ - 100ms (%) 

22.50 ± 9.53*# 34.69 ± 6.58 33.71 ± 8.71 30.97 ± 6.81 0.010 

MH activation during Eccentric at 
120deg.s¯¹ - 30ms (%) 

24.06 ± 10.83 22.50 ± 7.71 15.96 ± 5.02 16.37 ± 9.18 0.149 

MH activation during Eccentric at 
120deg.s¯¹ - 50ms (%) 

24.87 ± 12.37 27.03 ± 10.79 17.58 ± 8.57 25.18 ± 7.59 0.313 

MH activation during Eccentric at 
120deg.s¯¹ - 100ms (%) 

31.95 ± 11.53 31.71 ± 10.75 21.76 ± 7.48 27.52 ± 11.66 0.210 

Legend: BF, Bicep Femoris; CG, Control Group; HG, Hamstring injury group; MH, Medial Hamstrings. Values are 
expressed in mean ± SD 
* significantly different from uninjured side, p<0.05; # significantly different from CG non-dominant side, p<0.05;  

  

4- Proprioception 

When the starting position was 90º knee flexion we found no significant differences 

between groups / limbs (p>0.05) (Table 6). However, we found significant differences 

between groups in the joint position sense when the starting position was full knee 

extension as the initial position (p=0.027), more concretely differences between the HG 

injured side when compared to the uninjured leg (p=0.023).  

Table 6 - Mean absolute error values for both groups 

Variable HG injured 
side 

HG uninjured 
side 

CG non-
dominant side 

CG dominant 
side 

P value 

Absolute Error (initial position = 90°) 4.73 ± 2.78º 2.96 ± 1.10º 2.71 ± 2.26º 2.11 ± 1.31º 0.058 

Absolute Error (initial position = 0°) 4.60 ± 2.01º 1.94 ± 1.08º 2.81 ± 1.65º 2.64 ± 2.73º 0.027 

Legend: Hamstring injury group; MH, Medial Hamstrings. Values are expressed in mean ± SD 
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5- Core stability, flexibility and functional performance 

No significant differences between groups / limbs were observed in flexibility (active and 

passive knee extension), triple-hop test, core stability (flexors and extensors endurance, 

left and right side bridge tests) (table 7). 

 

Table 7 - Core Stability, flexibility and functional performance values 

Variable Hamstring injury group Control group  P value 

Flexors Endurance (s) 216.7 ± 68.76 231.29 ± 58.33 0.681 

Extensors Endurance (s) 109.6 ± 19.95 106.43 ± 29.88 0.796 

Side Bridge Right (s) 68.70 ± 15.49 70.29 ± 22.61 0.865 

Side Bridge Left (s) 66.10 ± 13.02 73.86 ± 27.99 0.452 

 HG injured side HG uninjured 
side 

CG non-
dominant side 

CG dominant 
side 

 

Passive Knee Extension (º) 5.91 ± 4.67 5.22 ± 4.18 5.42 ± 4.15 4.67 ± 2.52 0.939 

Active Knee Extension (º) 8.55 ± 4.48 7.38 ± 4.19 8.12 ± 5.90 8.864 ± 5.55 0.928 

Triple Hop Test (cm) 568.30 ± 23.94 579.00 ± 20.60 560.43 ± 38.97 565.86 ± 34.54 0.603 

 

6- Correlations 

EMG activity and proprioception  

We found a correlation between bicep femoris activation at 100ms during eccentric 

contractions at 120deg.s¯¹ and joint position sense with using 90° flexion (r-.372; p=0.031) 

as initial position. 

Isokinetic Strength and Triple Hop Test 

We found statistical significant correlation between Isokinetic H:Q ratio at concentric 

240deg.s¯¹ and triple-hop scores (r=-.345; p=0.045). 
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Discussion 

It is crucial not to ignore risk-factors inter-relationship in order to better understand the 

complexity of hamstring strain injury-reinjury cycle 28,29. Based on this premise, this study was 

designed to analyze several possible neuromuscular adaptations in amateur football players with 

HSI history and compare with healthy athletes. Furthermore we tried to correlate findings and 

explore their relationship. To our knowledge this was the first study exploring the interactions 

between isokinetic concentric and eccentric peak torque, eccentric angular peak torque, 

electromiographic activity of bicep femoris and medial hamstrings after 30, 50 and 

100milliseconds after onset of eccentric contraction at low and high velocities, knee joint position 

sense, active and passive knee extension, triple-hop functional performance test, trunk flexors 

and extensors endurance tests and bilateral side-bridges. 

The present study found differences in the bicep femoris electromiographic activity in almost all 

times during eccentric testing at 30deg.s¯¹ (significant differences between HG injured and 

uninjured side at 30 and 50ms) and 120deg.s¯¹ (significant differences between HG injured and 

uninjured leg at 30, 50 and 100ms, and between HG injured side and CG non-dominant limb at 

100ms), we also found significant differences regarding proprioception, in the knee joint position 

sense test using 0°  (full extension) as initial position (significant differences between HG injured 

and uninjured sides). There were no statistical significant differences in the rest of evaluated 

variables (isokinetic concentric and eccentric peak torque, conventional H:Q ratios, angle of peak 

torque during eccentric testing, active and passive knee extension, flexors and extensors 

endurance, right and left side bridges test and triple-hop distance test. However we found 

significant correlation between bicep femoris myoelectrical activity at 100ms during 120deg.sec¯¹ 

with the knee joint position sense test at 90º flexion as initial position; we also found correlation 

between isokinetic H:Q conventional ratio and the triple-hop distance test score. 

Hamstring strain injury is the most prevalent muscle injury in running-based sports, frequently 

occurring during high-speed running 3,4,8,16,17,29,33,47,61,64,87, being the bicep femoris long head the 

principal injured muscle in running-related HSIs 6–8,14,49. During the past few years there has been 

increasing attention around HSIs, and more and better studies regarding its prevention, treatment 

and rehabilitation, risk factors for injury and reinjury, return to play criteria, among many other 

components associated with this complex injury 4,19,21,29,102. Hamstring strain injury incidence and 

recurrence rates have not lowered in the last years 4,27,31,36,64,89,103, and there are several post-HSI 
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maladaptations documented in current literature, for instance peak torque angle 92, rate of 

torque development and impulse 14, bicep femoris electromiographic decrease not only in the 

beginning of isokinetic eccentric strength14,85, but also in the end, when the bicep femoris was 

more lengthened during eccentric contractions, as well as medial hamstrings 85. It has been 

hypothesized that these alterations may be due to centrally mediated mechanisms resulting in 

maladaptations of the injured muscles, and the role of pain-driven neuro-inhibition sabotaging 

athletes rehabilitation, and as a consequence prolonged maladaptations months to years after 

return to play 19,21.  

Isokinetic strength testing has been widely used in literature not only for screening of strength 

asymmetries as a risk factor for HSI and other strain injuries 20,44,45, but also for study differences 

in isokinetic strength post-HSI 49,83,87; in this study we found no significant differences in peak 

torque, H:Q ratio and angle of peak torque between HG injured and uninjured leg or with CG 

dominant and non-dominant leg at both concentric or eccentric tests at low and high velocities. 

Our results are contrasting with previous studies reporting post-HSI isokinetic deficits 20,49,83,104,105. 

One recent study has reported isokinetic deficits in 67% of their participants with HSI history 83. 

Similarly, Lee et al. (2009) found eccentric weakness in the injured limb per comparison to 

uninjured limb. Nonetheless, our results are consistent with some studies that have also found no 

significant differences in isokinetic strength 23,85,87,106. Sole et al. (2011) in their study found no 

differences between peak torque in all contractions when comparing HG injured and uninjured 

sides to CG bilateral average; however in eccentric testing the HG injured limb torque was 

statistically significant lower when the muscle was most lengthened (approximately between 25º 

and 5º). Silder et al. (2010) also found no between sides differences, however they only included 

concentric strength evaluation in their testing protocol. Our finding discrepancy from literature 

may be because we used the maximum peak torque and not the average peak torque value as 

Opar et al. (2013), or in the HG group we included both grade I and grade II HSI and Opar and 

colleagues in their study only evaluated athletes that suffered a grade II injury 49, similar to Lee et 

al. (2009) that only included athletes with grade II or minimal grade III HSI history. 

Furthermore, likewise Silder et al. (2010) we found no bilateral or group differences in H:Q 

concentric ratio at both velocities; interestingly H:Q conventional or/and functional ratios 

(conventional is the concentric hamstring to concentric quadriceps ratio; the functional ratio is 

eccentric hamstring to concentric quadriceps ratio) causes controversy in current literature, as 

some authors defend this measure as a risk factor for HSI incidence 4,12,44, and consequently 

recurrence. Similarly, we found no differences in eccentric angle of peak torque within and 

between groups. Interestingly the angular peak torque is another isokinetic variable that is 
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creating controversy among HSI related literature, which has become popular as an outcome 

measure post-HSI rehabilitation, recurrence prevention and return to play measure, disregarding 

its limited supporting literature 52,92,107. One recent study critically analyzed the use of peak of 

torque angle in predicting HSI injury and/or reinjury and as a measure of return to play and 

concluded that this measure has yet to be more studied and developed to become a reliable 

outcome, nevertheless we should not disregard joint-torque angle when dealing with HSI, despite 

the use of this measure alone is unreliable 92. 

Regarding electromiographic muscle activity, there has been literature supporting that muscle 

activation is feed forwarded mediated by the central nervous system (CNS) before the movement 

initiation, including approximately the first 100ms following movement initiation 86. Running-

related HSIs have been shown commonly affect the bicep femoris long head due to instantaneous 

exposure to elevated tensile force in the terminal swing phase of running, time when bicep 

femoris long peak activity synchronous with peak musculotendon length 54. In our HG all 

participants had history of at least one running-related HSI and we have reported similar finds as 

Opar et al. (2012)14, that to our knowledge was the only previous study to ours evaluating 

hamstrings electromiographic activity during eccentric isokinetic testing at 30, 50 and 100ms after 

contraction onset. In their study they found significant differences in the HG injured vs uninjured 

leg in 100ms at both velocities. Our findings were similar, however we have found HG significant 

side differences at almost all times in both velocities. Probably due to the use of percentages 

instead of normalized integrated EMG values or selected sample differences (sport, general 

characteristics, among others). Similarly to Opar and colleagues study we found no statistical 

significant alterations in medial hamstrings myoelectrical activity in all times and tests 14. This 

study hopefully gives more relevance to bicep femoris early eccentric lower myoelectrical activity 

consequences for reinjury risk and clinical practice, as lower EMG values indicate bicep femoris 

inability in minimizing risk of hamstrings overlengthening, and this early eccentric weakness may 

be responsible for the increased hamstrings work in the late swing phase of running as reported 

in previous studies 14,21,25,54. Studies have also reported that this early bicep femoris EMG limited 

activation associated with decreased activation also when the muscle is in a more lengthened 

position 14,85,86. Opar et al. (2012) suggests that this may increase recurrence risk associated with 

early induced muscle fatigue of the bicep femoris, which is the main knee flexor at longer lengths, 

and since there is not effective muscle activation, the bicep femoris allows its overlengthening 14. 

Moreover this lack of activation has been hypothesized to be the responsible for the bicep 

femoris post-HSI atrophy 22. This selective muscle activation explanation is hypothesized in 
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literature by chronic pain-driven maladaptations and neurophysiological inhibitory mechanisms 

21,108, which are believed to be more frequently activated during eccentric efforts 49,85,109. 

Active and passive knee extension test have been shown to have a good intertester reliability 110 

and some authors used these tests as a clinical grading prognosis in HSI, as there is correlation 

between test score and the actual duration of recovery after hamstring strain. Additionally, the 

range of motion deficit measured with active knee extension test was significantly correlated with 

rehabilitation time 55,98,111. However, poor hamstring flexibility assessed by these tests have been 

shown not to influence the risk of HSI 13,110,112. In Reurink et al.98 study, the researchers found that 

hamstring flexibility was reduced in the injured limb and was limited by pain and discomfort, 

being measures taken within 5 days of hamstring injury occurrence 98. Maybe because our study 

was conducted when athletes have returned to play by at least 6 months, we found no flexibility 

differences and to our knowledge there are no studies evaluating active and passive knee 

extension after 6 months post-HSI. Despite Askling et al. 113 evaluated athletes after a mean of 2 

months after injury and reported significant differences between injured and the uninjured leg in 

passive, but not active knee flexibility (using different flexibility tests).  

Core stability has a controversial role as an HSI risk factor and the use of core strengthening as its 

prevention 114,115, however most of the known studies correlating HSI and core stability only 

evaluate this variable prior to injury and as a risk factor to its event. In this study we tried to 

evaluate core strength and resistance by using trunk endurance isometric exercises. We found no 

statistical differences between HG and CG in the score of all 4 tests, and there are no known 

studies available to compare our results. Further studies should focus core stability post-HSI to 

evaluate its role in HSI treatment and reinjury prevention. 

Hop tests have been increasingly used by literature as a functional measure, because they require 

muscular strength, as well as joint stability and coordination of lower limbs. They are also 

commonly used in sport settings as a clinical evaluator, because they allow to functionally 

compare one injured limb with the uninjured one quickly, and without requiring equipment, and 

are often used as a return to play predictor after injury. Single hop tests have been used in 

literature to predict and evaluate the HSI risk 116. One study suggests that triple-hop distance 

(THD) tests improve clinical usefulness and reliability in detecting deficits and imbalances, as well 

as rehabilitation progression after injury 101. Regarding these we have used the triple hop test 

protocol in our study, however we found no statistical significant differences in the triple-hop test 

scores between HG injured and uninjured side or/and CG dominant and non-dominant side. 

Proprioception contributes to movement, postural and motor control, as well as joint stability and 

general balance; as the result of afferent input to the central nervous system from 
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mechanoreceptors; joint position sense is a form of proprioception, defined as the awareness of 

the studied joint position, by the capacity of correctly reposition a pre-determined angle after 

another movement of the limb. The lack of this capacity, along with other proprioceptive deficits 

may be a risk factor to joint and muscle injuries 95,117, and evidence also suggests that following 

injury, there are alterations in proprioception 102. Furthermore increasing evidence supports the 

use of proprioceptive exercises in sports rehabilitation 117. In our study, significant differences 

were found only when full knee extension was used as initial position; to our knowledge this is the 

first study evaluating both knee proprioception in amateur football players with history of HSI for 

more than 6 months, however there are studies that indicate that may be alterations in 

proprioception after previous injury 102 and further studies should be conducted in order to 

understand its role in HSI prevention and rehabilitation, and what alterations may occur in 

proprioception after suffering a HSI 47. 

Evidence suggests that studies should not disregard multiple risk factors and their inter-

relationship in HSI injury-reinjury cycle 28,29. Taking this into our objectives, this study tried to find 

correlation between strength, myoelectrical bicep femoris activity and medial hamstrings activity, 

proprioception, flexibility, core stability and functional performance. To our knowledge this is the 

first study correlating several neuromuscular factors after HSI history. After correlation analysis 

we found that there was a statistical significant correlation between bicep femoris muscle 

activation during high velocity eccentric strength testing at 100ms after onset of contraction and 

knee joint position sense using 90° knee flexion as initial position, although between groups 

statistical differences was found only using full knee extension as initial position, however there 

seems to be interaction between bicep femoris myoelectrical activity and proprioception, since 

correlation was found between these two variables. There is also lack of evidence in this field, 

being previously studied only the interaction between fatigue and knee joint position sense test, 

as studies found correlation in basketball 118, soccer 95 and volleyball players 119 but without HSI 

history. Furthermore statistical significance interaction was found between H:Q conventional ratio 

at 240ºdeg.s¯¹ isokinetic concentric testing and triple-hop distance test score in the HG. Previous 

studies have found high correlation between high velocity isokinetic testing and triple-hop 

distance scores in healthy football players, and concluded that the triple-hop distance is a valid 

predictor of lower limb strength and power 101,120, used often as return to play criteria 38. Despite 

in our study there wasn’t significant differences between injured and uninjured sides, the 

interaction between isokinetic conventional H:Q ratio and triple-hop distance test score should 

not be disregarded as previous studies found differences in H:Q ratios in athletes with HSI history 

44,48, especially in functional ratios, which was not used in the present study. However future 
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research should focus its correlation to hop tests, as these are considered valid predictors of 

lower limb strength and power 101. This test is also reliable and easy to use, without requiring 

much material, and should be incorporated in return to play criteria after hamstring injury since 

isokinetic strength testing seems not to be required for completion of a football-specific field test 

and still creates controversy among literature 83. 

Latest research has given relative importance to the role of neuro-inhibitory mechanisms 

underpinning post-HSI maladaptations and our study results seems strengthen some of previous 

research hypothesis and findings. Bicep femoris myoelectrical activity has been previously studied 

whether in early 14 and late 85 times of eccentric contractions, our EMG evaluation of HG injured 

side also resulted in lesser myoelectrical bicep femoris activity after early onset of eccentric 

contractions, presenting several differences to HG uninjured side in almost all times and at both 

eccentric velocities, ranging from 5% to 12%. This can have several implications in HSI reinjury due 

to muscle inability to produce early eccentric force and decelerate the hip during running, 

positioning the bicep femoris long head at longer muscle length and increasing its work during 

terminal swing phase, prematurely fatiguing the hamstrings and increasing the likelihood of the 

bicep femoris long head to exceed its mechanical limits and re-suffer a new HSI 4,14,50,59,73,85,87. 

However we found no differences in isokinetic eccentric torque production or peak torque angle, 

suggesting that the injured hamstring may have compensation of other muscles, such as 

ipsilateral gluteus maximus and ipsilateral external oblique 15,53 or mechanisms not examined in 

this study, such as decrease of the peak hip flexion during running, as a subconscious mechanism 

to reduce hamstring terminal swing phase overlengthening 20. Furthermore, a recent study has 

reported that hamstring and injured side may also have maladaptive muscle activity ratios and 

asymmetries in pelvic and lower limb patterns during sprint, especially in the terminal swing 

phase; such as an increase in the contralateral rectus femoris and ipsilateral erector spinae 

muscle activity can increase bicep femoris strain 15. Another clinical relevance of these study 

results is that a decrease of bicep femoris myoelectrical activity may contribute to the sabotage of 

rehabilitation programs as previously described in literature 21, due to its inability to quickly 

produce torque at early onset of eccentric contractions and when the muscle is more lengthened, 

during late rehabilitation, because of its neuromuscular inhibition, the bicep femoris hypertrophy 

is limited, even when using eccentric training, known as a great stimuli for muscle growth 21. This 

is a possible explanation to our EMG results, as all HG participants have fully returned to play for 

at least 6 months and still present a significant decline in the bicep femoris activity in eccentric 

loadings, probably due to its persistent atrophy 22. To our knowledge this is the first study to 

correlate post-HSI bicep femoris myoelectrical deficit on onset of eccentric contraction and 
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proprioceptive testing, however neuromuscular inhibition can be also a possible explanation for 

this correlation, as alterations may be also present in central processing of afferent 

mechanoreceptors information; moreover there is no literature around proprioceptive deficits 

after HSI, but this interaction should not be disregarded as deficits in both myoelectrical activity 

and proprioception may increase the likelihood of reinjury, as lesser myoelectrical activity may 

allow muscle overlengthening during sprint and proprioceptive deficits can alter individuals 

perception of joint positioning during running, even more when fatigue is associated 121 leading to 

the perception that the hamstrings are working on a normal range of motion and muscle length 

when in reality repeated overlengthening is occurring, and hamstrings are repeatedly exceeding 

its mechanical limits without perceptions due to proprioceptive decline 121. 

Therefore, it is crucial to develop specific return to play criteria after HSI, focusing risk factors for 

reinjury and their inter-relationship; for instance Askling and colleagues have developed an active 

hamstring flexibility test as a complement to clinical evaluating before return to play that has 

been found reliable and valid 113, similar to these, one study also found clinical parameters of self-

predicted time to return to play and passive straight leg raise decline were correlated to time to 

return to play 122, or perhaps the use of the single leg bridge test may be also useful for return to 

play, being that this test seems to have some level of HSI prediction 123; therefore other functional 

tests should be studied and implemented in post-HSI return to play criteria, in order to decrease 

athletes neuromuscular maladaptations after months of return to play, as seen on the present 

study as well as others previously conducted, increasing the likelihood of reinjury 14,20,83–85,88,102. 

A recent systematic review with meta-analysis 124 gathered recent conservative treatments of HSI 

and concluded that interventions adding lengthening exercises reduce the return to play time 

when compared to conventional rehabilitation programs, however they had no effect on re-injury 

incidence; curiously this meta-analysis also demonstrated that platelet-rich plasma injections not 

to be effective in HSI rehabilitation, despite increasing evidence around it 19,124–127. Lengthening 

exercises have been previously studied and found effective in HSI rehabilitation 72,128, even more 

after a recent cohort study found that rehabilitation after HSI using eccentric strengthening 

exercises at longer muscle lengths resulted in no reported long-term reinjuries in athletes that 

complied to rehabilitation (n=42) 129,130; compliance is crucial regarding eccentric training 

regarding HSIs130, as Timmins and colleagues have recently demonstrated that short-term 

resistance eccentric training may produce changes of bicep femoris long head fascicle length and 

other architectural adaptations, however they also found that these alterations were reversed 

following 28 day without eccentric training 131. Hopefully this study strengthen the assumption 

that risk factors and neuromuscular adaptations seems to persist several months after HSI 
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occurrence and long after RTP 21, and the inter-relationship between neuromuscular alterations 

should not be disregarded in future studies, as it may give us a better insight of neuromuscular 

inhibition and their role in HSI prevention, this study also strengthen Fyfe et al. (2013) conceptual 

framework of the role of neuromuscular inhibition following HSI in the development of 

maladaptations that could lead to recurrence 21. this to our knowledge is the first study that 

follows this new proposed conceptual frameworks, and reinforces the need for a more non-

reductionist view regarding HSI 28; showing that myoelectrical activity can influence hamstrings 

proprioception and vice-versa and hypothesizing in what ways can this influence HSI rehabilitation 

and recurrence. Therefore it is important that future studies focus this inter-relationship of risk-

factors and neuromuscular adaptations post and prior HSI occurrence, and focus in what ways 

they can influence injury occurrence, rehabilitation programs and recurrence prevention.  
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Limitations and future studies 

In this study there are some limitations that should be considered. First the small sample size 

could possibly hide some differences between the dependent variables studied, as well as their 

possible interactions, it is possible that future studies with larger samples can detect further 

correlations within these variables. Regarding electromyography analysis in this study we used 

the peak activation of each contraction to calculate the percentage of activation of the bicep 

femoris and medial hamstrings in that same contraction, most studies often the myoelectrical 

values in millivolts and not in activation percentage 14,49,85,86. Few data from EMG analysis may be 

withdrawn erroneously due to, during eccentric testing, some participants kept contracting the 

hamstrings between the end of the eccentric movement and the beginning of another repetition, 

consequently having higher onset activity than if the muscles were resting prior to effort, as well 

as higher values during 30, 50 and 100ms in that repetition, however we should not disregard this 

limitation. During isokinetic and EMG recording two athletes of the hamstring injured group 

reported pain and/or discomfort, and although they were fully recovered from HSI and returned 

to sport for at least 6 months, this could influence our study results. Furthermore despite 

evidence supports that self-report of injury location is reliable within one year of suffering the 

injury 132, participants had to confirm their injury severity by ultrasound, or, when not possible, 

confirm with the Physiotherapist responsible for his rehabilitation; also it is important to mention 

that only one HG participant Physiotherapist has reported eccentric strengthening as part of its 

rehabilitation program. Moreover, this study only had 3 participants with recurrent HSI, being 

most of participants the first time they had suffered a serious injury in their lower limb; future 

studies should examine if our findings are more related to recurrent injuries. Isokinetic eccentric 

testing was also limited to 30deg.sec¯¹ and 120deg.sec¯¹ velocity, which do not reproduce all the 

hamstrings functional efforts during running 14, and future studies should consider testing at 

higher velocities. Another limitation is that during the knee joint position sense testing the patient 

was in a seated position; however future studies should evaluate joint position sense with the 

participant in prone, to increase gravitational effort, consequently increasing hamstring eccentric 

effort during the repositioning phase.  
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Conclusion 

In the present study, we found significant decrease in the injured bicep femoris myoelectrical 

activity after onset of contraction during eccentric testing and proprioceptive deficits in the when 

compared to uninjured side and uninjured athletes, as well as significant correlation between 

these two variables.  

This was the first study, to our knowledge, that supports possible interactions in neuromuscular 

adaptations after return to play for several months in football athletes that sustained a HSI. 

Furthermore this study strengthens current literature hypothesis of neuromuscular inhibition 

after hamstring strain injury and the inter-relationship between neuromuscular maladaptations 

and risk factors post injury, that may contribute for a better understanding of running-related 

hamstring strain injury rehabilitation and recurrence prevention. 
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Annex 1 – Participants informed consent  
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Consentimento Informado 

Título do projecto: “Adaptações neuromusculares em atletas com 

história de lesão dos Isquiotibiais”  

 

A presente declaração serve como consentimento informado do estudo 

realizado no âmbito de Mestrado em Fisioterapia. Ao assinar a mesma o 

atleta declara que tomou conhecimento dos seguintes pontos: 

 

1. Recebeu informação suficiente e detalhada do estudo e da avaliação a realizar 

2.Compreendeu o que o estudo implica e o que lhe irá ser pedido 

3.Foi-lhe permitido fazer perguntas relativas ao estudo/avaliação e que todas as dúvidas foram 

esclarecidas 

4.Compreende que pode abandonar o estudo, em qualquer altura, sem necessidade de dar 

qualquer tipo de explicação e sem consequência de penalização 

5.Concorda participar voluntariamente neste estudo que consiste apenas numa avaliação 

 

Nome do Participante: _____________________________________________  

Assinatura do Participante: _________________________________________  

 

Nome do Investigador: _____________________________________________  

Assinatura do Investigador: _________________________________________  

 

 

Data: ____/____/______ 
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Annex 2 – Hamstring group Questionnaire  
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Annex 3 – Control Group Questionnaire  



j 
 

 

  



k 
 

 

 


