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Abstract

This work advances a research agenda which has as its main aim the appli-
cation of Abstract Algebraic Logic (AAL) methods and tools to the speci-
fication and verification of software systems. It uses a generalization of the
notion of an abstract deductive system to handle multi-sorted deductive sys-
tems which differentiate visible and hidden sorts. Two main results of the
paper are obtained by generalizing properties of the Leibniz congruence —
the central notion in AAL.

In this paper we discuss a question we posed in [2] about the relationship
between the behavioral equivalences of equivalent hidden logics. We also
present a necessary and sufficient intrinsic condition for two hidden logics to
be equivalent.
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1. Introduction

Behavioral abstraction plays an important role in modern specification
theory by providing a more satisfactory way to prove correctness of a pro-
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gram with respect to a given specification. Computational systems often have
interfaces that encapsulate the local states of program objects and focus in-
stead on the operations that modify the local states and some distinguished
set of specific properties — attributes (in particular, these features are in-
herent to the object oriented (OO) paradigm). In order to implement this
approach, many programming languages use techniques that hide internal
data types, providing abstraction from unimportant details and protection
for internal data.

Like a state of a transition system, a state of an OO program can be
viewed as encapsulating all pertinent information about the abstract ma-
chine when it reaches a certain stage while executing a sequence of methods
and procedures. The information about the local state conceptually is parti-
tioned into a visible and a hidden part, with the former representing visible
data, like attributes, and the latter representing the hidden states of objects
in the OO paradigm. Methods can modify the hidden state of the object
(giving as a result a new hidden state). Hidden states (data) can only be
indirectly compared by considering the visible outputs of the same programs,
applied to this hidden data. Using this approach, software can be designed
according to a behavioral specification, the latter specifying certain visible
behavior, instead of providing detailed requirements for all internal aspects
of execution. In this respect, the above-mentioned approach turned out to
be related to the coalgebraic approach (cf. [38]).

Behaviorally, two terms are said to be equivalent if and only if they can-
not be distinguished in any visible context. This basic notion of behavioral
equivalence is due to Reichel [51]. The idea of using the satisfaction relation
on hidden terms for determining behavioral equivalence was also introduced
by Reichel in the 80’s [51] and it seems to be a useful way of defining equiva-
lence between hidden terms. In fact, in applied settings, there are some well
designed pieces of software that may fail to satisfy their requirements strictly,
but do satisfy them behaviorally, i.e., under any program executed on the
system (see [6, 3, 9]). More formally, in such approach, the standard equality
predicate is augmented by behavioral equivalence (two data elements repre-
senting states are said to be behaviorally equivalent if every function returns
the same visible value when executed on the same visible input). Behavioral
equivalence has been adopted and generalized by many researches. The most
significant contributions have been provided by Goguen, Bidoit, Bouhoula
and their associates.

Hidden algebras were introduced by Goguen in [26] and further developed
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in [25, 27], in order to generalize many-sorted algebras to give an algebraic
semantics for the object oriented paradigm. In fact, the behavioral aspects
of modern software make hidden algebras in practice more suitable than
standard algebras as abstract machine implementations. Consequently, there
has been an increasing interest in this field. Goguen and his collaborators
have been improving their theory and applying it in more general settings.
Now almost all of the results may be established for the general setting of
polyadic loose-data semantics. Polyadic loose-data semantics allow any kind
of operation symbols and, in order to have more freedom in choosing an
adequate implementation, the visible part of the algebras is no longer fixed:
it may be any sorted algebra in which the requirements (axioms) of the given
specification are valid. However, some authors are interested in applying
coalgebraic methods, and therefore they have to restrict their signatures to
the monadic fixed-data semantics. Malcolm [32] had shown that behavioral
equivalence may be formulated in the context of coalgebra (see also [31] and
[52]).

Several generalizations of the notion of behavioral equivalence have been
considered. Goguen et al. [25, 55] consider Γ-behavioral equivalence, where Γ
is a subset of the set of all operation symbols in the signature. Γ-behavioral
equivalence is defined analogously to ordinary behavioral equivalence, but
only makes use of the contexts built from the operation symbols in Γ. It can
be proven that the Γ-behavioral equivalence is the largest Γ-congruence with
the identity as the visible part. Based on this fact, the coinduction meth-
ods may still be formulated for this more general notion. Other interesting
questions concerning Γ-behavioral equivalence also arise, such as the study
of the compatibility of some operation symbols outside of Γ with respect
to Γ-behavioral equivalence. This problem has been studied by Diaconescu
et al. [19] and Bidoit et al. [4]. On the other hand, Bidoit and Hennicker
[5] generalized the notion by endowing the hidden algebras with a binary
relation, that may be partial. In particular, one can apply the algebraic ap-
proach to the behavioral setting by considering the algebras together with
the Γ-behavioral equivalence.

Various notions of behavioral logics have been considered for reasoning
about behavioral equivalence. The most relevant to the topic of this paper
are the variations developed by Goguen et al. (hidden logics [24, 25]) and
by Bidoit and Hennicker (observational logics [28, 3]). These approaches for-
malize behavioral validity (correctness) as follows: hidden logic is a variant
of the equational logic in which some part of the specification is visible and
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another is hidden. The basic syntactic structures for hidden logics are equa-
tions and the behavioral satisfaction relation is defined by interpreting the
equality symbol as the behavioral equality. Observational logics are different
from hidden logics in that respect that instead of dealing with equations and
quasi-equations, they work with first-order formulas. Accordingly, Tarski’s
satisfaction relation of first-order formulas (with equality) is reinterpreted as
a “behavioral satisfaction relation” which is determined, in a natural way, by
the family of congruence relations (partial, in general) with which each alge-
bra is provided. Thus both approaches are based on behavioral equivalence,
i.e., indistinguishability in all pertinent contexts, with differently understood
notions of contexts. There is also another kind of observational logic due to
Padawitz, called swinging types logic3, but it is similar to the observational
logic of Bidoit and Hennicker (see [46, 45]).

Several semi-automatic methods were suggested for behavioral reasoning
in hidden logics. In particular, Diaconescu and Futatsugi [18] have devel-
oped the CafeOBJ language. It implements behavioral rewriting to make
behaviorally sound reductions of terms and is based on a behavioral ver-
sion of the well-known method of rewriting for automated theorem proving4.
Goguen et al. have been developing algorithms for automated behavioral
reasoning based on their techniques of coinduction and have been making
use of cobases. Coinduction in its pure form requires human intervention in
the choice of the cobasis. A cobasis is just a set of operation symbols that
generates a relation on the set of terms which is a subset of the behavioral
equivalence. A good choice of a cobasis can simplify the proof enormously.
Those algorithms have been improved in order to be applied to more general
situations and have been implemented in BOBJ language. In [53] Goguen
and Roşu present a new technique which combines behavioral rewriting coin-
duction (see also [30] and [54]). The most recent version is CCCRW, called
conditional circular coinductive rewriting with case analysis. The authors
claim that it was in fact the most powerful automated proof technique avail-
able at that moment [22] (see also [23, 44]). Besides the fact that this new
algorithm uses conditional circular coinductive rewriting to prove behavioral
validity, it also allows case analysis. This theoretical results supports the

3http://ls1-www.cs.uni-dortmund.de/~padawitz/Swinging.html.
4See http://cafeobj.org/ for details.
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automated behavioral prover Circ based on the circularity principle5. This
principle generalizes both circular coinduction and structural induction.

Our approach to behavioral equivalence differs substantially from the
standard approach in Computer Science (CS) described above, in the sense
that it is greatly influenced by Abstract Algebraic Logic (AAL) (see [33] and
[40]). This is, in fact, the main novelty of the presented research agenda.
AAL is an area of algebraic logic that focuses on the study of the relation-
ship between logical equivalence and logical truth (see [7, 13, 21]). More
precisely, AAL is centered on the process of associating a class of algebras to
a logical system. This approach contrasts with the usual treatment given in
Algebraic Logic where the emphasis is on the study of the class of algebras
obtained in this process.

In order to apply AAL to the theory of specification of abstract data
types, we have to look at the specification logic as a deductive system, i.e.,
as a substitution-invariant closure relation on an appropriate set of formulas,
and at the behavioral equivalence as some generalized notion of the Leibniz
congruence (cf. [7, 40]). The notion of Leibniz congruence has to be consid-
ered in the context of the dichotomy of visible vs hidden data: namely, the
formulas used in the characterization of the Leibniz congruence also have to
be restricted to an appropriate proper subset of all formulas, namely the for-
mulas (called sometimes contexts) that, when computed as algebraic terms,
give results of visible type. In addition, the traditional AAL notion of a de-
ductive system has to be generalized to situations where data is considered
to be heterogeneous, that is, the data elements may be of different sorts. For
instance, the basic data is usually split into several sorts, like integers, reals
and Booleans, whose properties are well-known and for which well-defined
and easily manipulated representations are available; and there are auxiliary
data types, of various hidden sorts, such as arrays, lists, stacks, maps, sets,
channels, sorted lists, associative arrays and so on, whose properties will be
specified by their behavior in execution runs ending with visible output, and
hence ultimately in terms of the basic data. Thus we separate the basic data
and the auxiliary data by splitting the data elements in two types: the ones
to which the user has direct access to (visible data) and those (hidden data)
that the user only has access to by observing the visible output of programs
that were applied to these data.

5http://fsl.cs.illinois.edu/index.php/Circ
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In order to specify and reason about the properties of OO systems, we
use in our approach hidden k-logics that accommodate the dichotomy hidden
vs. visible by considering hidden and visible k-terms and k-formulas. These
systems are a natural generalization of k-deductive systems which allow for
the use of tools and results from abstract algebraic logic, more specifically
the use of the central notion of Leibniz congruence.

The adequacy of using the Leibniz congruence, and consequently its prop-
erties, to deal with behavioral equivalence in the OO paradigm is expressed
in Theorem 2.1. In fact, the second-order definability principle due to Leibniz
is directly related to the behavioral equivalence concept. Moreover, both can
be characterized as the largest congruence with a concrete property: compat-
ibility with a filter, for the Leibniz congruence (cf. [33]), and having identity
on the visible part, for the behavioral equivalence [25]. Moreover, these no-
tions coincide for hidden equational logics — the Rosu’s hidden logics (cf.
[40]).

The most common notion of equivalence between specifications (cf. [29])
asserts that two specifications are semantically equivalent if they have the
same class of models. From the point of view of implementation, this defini-
tion is too restrictive. There are other ways of defining equivalence between
logics (see for instance [11]). In this paper, we discuss a notion of equivalence
that generalizes to the hidden setting the well-known concept of equivalence
between deductive systems in the field of AAL (cf. [8]). A paradigmatic
example is the equivalence of the equational logic of Boolean algebras with
classical propositional calculus.

We would like to point out that the behavioral specification theory has
also influenced AAL. Caleiro et al. discussed in [10] the new notion of be-
havioral algebraization based on the notion of behavioral equivalence. They
showed that this notion can capture some algebraic properties of well-known
logical systems.

1.1. Outline of the paper.

In Section 2 we start by presenting the basic concepts of sorted set theory
and the basic theory of hidden k-logics (for more details see [56] and [33]). In
order to show the diversity of logical systems which can be captured by this
notion, we present two examples, namely a logic for reasoning about intervals
in linearly ordered sets and another one for sorted quasi-orders. The theory of
hidden logics unifies several approaches to behavioral specification systems,
as well as many other examples, under the umbrella of a general notion of
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hidden logic that generalizes the well studied notion of a deductive system.
In Section 3, we introduce the notion of equivalence between hidden k-logics
via interpretations, based on display translations. Section 4 contains some
technical observations about interpretations and ends with the main result of
the paper, Theorem 4.6, that provides a necessary condition for two hidden
logics to be behaviorally equivalent.

2. Hidden sorted algebra

In this section we review some basic concepts of the sorted Universal
algebra in order to set our notation (for more details see [56]).

2.1. Sorted set theory

Let SORT be a nonempty set whose elements are called sorts. A SORT-
sorted set A (or simply a sorted set if SORT is clear from the context) is a
family of sets indexed by SORT, which we denote by A = 〈AS | S ∈ SORT〉.
Sometimes it is worth to consider a sorted set A as an ordinary set, namely
as
⋃
S∈SORT AS; consequently we may write a ∈ A to mean a ∈ AS for some

S ∈ SORT.
A sorted set A is called nonempty if AS 6= ∅ for every S ∈ SORT. A

is locally countably infinite (locally finite) if, for every S ∈ SORT, AS is a
countably infinite (finite) set; and A is said to be globally finite if A is locally
finite and AS is empty except for a finite number of sorts. Note that, if SORT
is finite, then “global” and “local” finiteness are equivalent.

A family of SORT-sorted sets, indexed by a set of sorts SORT′, is called
a (SORT′ − SORT)-complex sorted set and we write in this case C = 〈CR |
R ∈ SORT′〉, where CR is a SORT-sorted set for each R ∈ SORT′. In the
case of SORT′ = SORT a (SORT′ − SORT)-complex sorted set is simply
called a double SORT-sorted set. We say that C is globally finite if CR is
globally finite for every R ∈ SORT′. If sets of sorts are clear from context,
we refer to such families as a sorted set, a complex sorted set, and a double
sorted set, without explicit reference to the set of sorts. Similar notational
simplifications will be used below without further warning. For any sorted
set A and Λ ⊆ SORT, AΛ denotes the Λ-sorted set 〈AS | S ∈ Λ〉.

The standard notions of set theory extend in a natural way to multi-sorted
case. Given sorted sets A and B, A is a sorted subset of B, in symbols A ⊆ B,
if AS ⊆ BS for all S ∈ SORT. Operations, such as union, intersection, direct
product, etc, are defined componentwise.
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For each nonzero natural k, we define the sorted (cartesian) kth-power of
A, denoted Ak, as the sorted set 〈AkS | S ∈ SORT〉. By a k-element of A of
sort S we mean simply an element ā = 〈a0, . . . , ak−1〉 ∈ AkS, i.e., a k-tuple
of elements of AS. The k-elements are represented by putting bars over the
symbols, that we use to represent elements of A. A k-subset is a sorted subset
of the sorted kth-power of A.

The sorted power set of A, denoted by P(A), is the sorted set 〈B | B ⊆
A〉. We write B ⊆GF A if B is a sorted subset of A and B is globally finite.
The set of all globally finite sorted subsets of A is denoted by PGF(A), i.e.,
PGF(A) = {B | B ⊆GF A}.

A sorted function or mapping h from A to B, in symbols h : A→ B, is a
sorted set h = 〈hS | S ∈ SORT〉 of functions such that hS : AS → BS for each
S ∈ SORT. A sorted mapping is called injective, surjective or bijective if all
its components have the corresponding property. We will use the standard
set-theoretical notation without explicit use of indices.

Let us define for every unsorted mapping h : A → B and every k-
element ā = 〈a0, . . . , ak−1〉 ∈ Ak, h(ā) := 〈h(a0), . . . , h(ak−1)〉 ∈ Bk and for
any b̄ = 〈b0, . . . , bk−1〉 ∈ Bk, h−1(b̄) := {ā ∈ Ak : h(ā) = b̄}. This notation
extends naturally to sets in the following way: let F ⊆ Ak, we define the
image of F , in symbols h(F ), to be the set h(F ) =

{
〈h(a0), . . . , h(ak−1)〉 |

〈a0, . . . , ak−1〉 ∈ F
}

and we define the pre-image of G ⊆ Bk, in symbols
h−1(G), to be the set h−1(G) =

⋃
b̄∈G h

−1(b̄).
The kernel of h, denoted by ker(h), is defined by ker(h) = {〈a, b〉 ∈ A2 |

h(a) = h(b)}. For sorted maps these notions are defined componentwise,
if h : A → B is a sorted mapping, then we define the sorted image of
F ⊆ Ak, in symbols h(F ), to be the set h(F ) = 〈hS(FS) | S ∈ SORT〉 and
we define the sorted pre-image of G ⊆ Bk, in symbols h−1(G), to be the set
h−1(G) = 〈h−1

S (GS) | S ∈ SORT〉. The sorted kernel of h is the sorted set
ker(h) = 〈ker(hS) | S ∈ SORT〉.

A sorted equivalence relation on A is a sorted subset Θ of A2 such that
ΘS is an equivalence relation on AS for each S ∈ SORT. The sorted identity
equivalence relation defined for each S ∈ SORT by {〈a, a〉 | a ∈ AS} is
denoted by 4A, i.e., 4A = 〈4AS

| S ∈ SORT〉. Given a sorted equivalence
relation Θ on A, we define the sorted quotient of A by Θ, denoted by A/Θ,
as the sorted set 〈AS/ΘS | S ∈ SORT〉, where AS/ΘS = {[a]ΘS

| a ∈ AS}.
The mapping nat : A → A/Θ, defined by natS(a) = [a]ΘS

for each a ∈ AS,
is called the natural mapping.
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A hidden (sorted) signature is a triple

Σ =
〈
SORT,VIS, 〈OPτ | τ ∈ TYPE〉

〉
,

where: SORT is a nonempty, countable set whose elements are called sorts ;
VIS is a subset of SORT, called the set of visible sorts ; TYPE is a set of
nonempty sequences S0, . . . , Sn of sorts, called types and usually written as
S0, . . . , Sn−1 → Sn; and, for each τ ∈ TYPE, OPτ is a countable set. We will
denote 〈OPτ | τ ∈ TYPE〉 by OP.

The sorts in SORT \ VIS, that are not visible, are called hidden sorts.
The set of hidden sorts is denoted by HID. The elements of OPτ are called
operation symbols of type τ . Operation symbols of type → S are said to
be constants. For simplicity, we require the sets of operation symbols to be
pairwise disjoint in order to avoid overloading of names (i.e., for any distinct
τ, τ ′ ∈ TYPE, OPτ ∩OPτ ′ = ∅).

From each hidden signature Σ we obtain the associated un-hidden signa-
ture Σuh by making all sorts of Σ visible.

Two hidden signatures Σ, Σ′ are said to be algebraically indistinguish-
able (a.i., for short) if Σuh = (Σ′)uh, i.e., if they have the same un-hidden
signature.

A Σ-algebra is a pair
〈
A, 〈OA | τ ∈ TYPE, O ∈ OPτ 〉

〉
, where A is

a SORT-sorted set, such that AS 6= ∅, for all S ∈ SORT, and for any
τ ∈ TYPE and O ∈ OPτ , O

A is an operation on A of type τ (i.e., if τ =
S0, . . . , Sn−1 → Sn then OA : AS0 × · · · × ASn−1 → ASn). As usual, we use
the same symbol to denote an algebra and the carrier of the algebra.

We assume for carrier sets A of data structures that AS 6= ∅, for all
S ∈ SORT, a condition similar to the one used to define regular universal
algebras. With this assumption we exclude some data structures of practical
interest. However, the mathematics is simpler in this case and most results
of universal algebra hold in their usual form.

A (sorted) congruence on a Σ-algebra A is a sorted binary relation Θ ⊆ A2

such that: (i) for each S ∈ SORT, ΘS is an equivalence relation on AS and (ii)
Θ satisfies the congruence condition: for every operation symbol O ∈ OPτ

with τ = S0, . . . , Sn−1 → Sn, and all a0, a
′
0 ∈ AS0 , . . . , an−1, a

′
n−1 ∈ ASn−1

such that aiΘSi
a′i, O

A(a0, . . . , an−1)ΘSnO
A(a′0, . . . , a

′
n−1) holds. The set of all

congruences over A is denoted by Con(A).
The sorted notions of subalgebra, homomorphism, isomorphism, etc. are

defined in a natural way (see [41] for the formal definitions).
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For each set of sorts SORT, we fix a locally countably infinite sorted
set X = 〈XS |S ∈ SORT〉 of (propositional sorted) variables. We assume
that the components of the sorted set of variables are pairwise disjoint. The
elements in XS are called S-variables. To denote that a variable x is of sort
S (i.e., that x ∈ XS) we write x :S.

We say that a term O(t0, . . . , tn−1) has type Sn if O ∈ OPτ , with τ =
S0, . . . , Sn−1 → Sn. Given a signature Σ, we define the SORT-sorted set
TeΣ(X) of terms over the signature Σ with variables in X as usual. Note
that, since the components of the family TeΣ(X) are pairwise disjoint, a
SORT-sorted subset Γ of TeΣ(X) can be identified with the unsorted set⋃
S∈SORT ΓS. A hidden signature Σ is said to be standard if there is a ground

term (i.e., a term without variables) of every sort. We use the lower case
Greek letters ϕ, ψ, ϑ, . . . to represent terms, possibly with annotations to
indicate sorts of terms and variables. Specifically, writing ϕ in the form

ϕ(x0 :S0, . . . , xn−1 :Sn−1):S (1)

indicates that ϕ is of sort S and that the variables that actually occur in ϕ are
included in the list x0, . . . , xn−1 of variables of sorts S0, . . . , Sn−1, respectively.

We define, in the usual way, operations over TeΣ(X) to obtain the term
algebra over the signature Σ. It is well known that TeΣ(X) has the universal
mapping property over X in the sense that, for every Σ-algebra A and every
sorted map h : X → A, called an assignment, there is a unique sorted
homomorphism h∗ : TeΣ(X)→ A that extends h. In the sequel, we will not
distinguish between these two maps. If ϕ is the term (1), and ai ∈ ASi

, i <
n, we write ϕA(a0, . . . , an−1) for the image h(ϕ) under any homomorphism
h : TeΣ(X)→ A such that h(xi) = ai for all i < n. A map from X to the set
of terms, and its unique extension to an endomorphism of TeΣ(X), is called
a substitution.

To provide a context that allows us to deal simultaneously with specifi-
cation logics that are assertional (for example the ones with a Boolean sort
but no equality) and equational, we introduce the notion of a k-term for
any nonzero natural number k. In the sequel k denotes a fixed nonzero
natural number. A k-variable of sort S is a sequence of k-variables all
of the same sort S. A k-term ( k-formula in logical context) of sort S
over Σ is a sequence of k Σ-terms all of the same sort S. We indicate
k-terms by overlining, so ϕ̄(x̄):S = 〈ϕ0(x̄):S, . . . , ϕk−1(x̄):S〉. When we
do not need to make the common sort S of each term of ϕ̄ :S explicit,
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we simply write it as ϕ̄. TekΣ(X) is the sorted set of all k-terms over Σ.
Thus TekΣ(X) = 〈(TeΣ(X))kS : S ∈ SORT〉. The set of all visible k-terms
(TekΣ(X))VIS is the VIS-sorted set 〈(TeΣ(X))kV : V ∈ VIS〉.

2.2. Data structures

Let Σ be a hidden signature. A visible k-data structure (a k-data structure
for short) over Σ is a pair A = 〈A,F 〉, where A is a Σ-algebra and F ⊆ AkVIS;
A is called the underlying algebra and F the designated filter of A (see [40]
for examples in the hidden equational case).

Let 〈A,F 〉 be a k-data structure over a hidden signature Σ. A congru-
ence relation θ on A is compatible with F if, for all V ∈ VIS and for all
ā, ā′ ∈ AkV , aiθV a

′
i, for all i < k, implies: ā ∈ FV iff ā′ ∈ FV . It is not

difficult to see that the largest congruence relation on A compatible with F
always exists (see [40]). Hence, given a k-data structure 〈A,F 〉, we define
the Leibniz congruence of F on A as the largest congruence relation on A
compatible with F , which we denote by ΩA(F ), or simply Ω(F ) when A is
clear from the context. One of the main properties of the Leibniz congruence
is its preservation under inverse images of surjective homomorphisms, i.e.,
given a k-data structure A = 〈A,F 〉 over Σ, a Σ-algebra B and a surjective
homomorphism h : B → A, we have that h−1(ΩA(F )) = ΩB(h−1(F )).

A systematic study of the properties of the Leibniz congruence in the
hidden k-logics setting can be found in [33]. An interesting result that justifies
the use of the term “Leibniz congruence” is the analogy with the second order
definability principle due to Leibniz:

Theorem 2.1. Given a k-data structure A = 〈A,F 〉 and a, a′ ∈ AS, a ≡
a′ (Ω(F )S) iff, for every V ∈ VIS and every k-term

ϕ̄(z :S, u0 :Q0, . . . , um−1 :Qm−1):V

and all b0 ∈ AQ0 , . . . , bm−1 ∈ AQm−1,

ϕ̄A(a, b0, . . . , bm−1) ∈ FV iff ϕ̄A(a′, b0, . . . , bm−1) ∈ FV .

This result also points out the adequacy of using the Leibniz congruence to
present the behavioral equivalence in the OO paradigm (cf. [33]). Moreover,
it can be seen as a generalization of the corresponding well-known result in
Hidden Algebra (cf. [25]).
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2.3. Hidden k-logic

For each nonzero natural number k, a hidden k-logic is considered to be a
consequence relation on the set of visible k-terms of some hidden signature,
independently of any specific choice of axioms and rules of inference. More
precisely, it is defined as a substitution invariant consequence relation on the
set of visible k-terms.

Definition 2.1. A hidden k-logical system6 (hidden k-logic for short) is a
pair L = 〈Σ,`L〉, where Σ is a hidden signature with VIS as its set of visible
sorts, and `L⊆ P((TekΣ(X))VIS)× (TekΣ(X))VIS is an (unsorted) relation that
satisfies for all Γ ∪∆ ∪ {γ̄, ϕ̄} ⊆ (TekΣ(X))VIS the following conditions:

(i) Γ `L γ̄ for each γ̄ ∈ Γ;

(ii) if Γ `L ϕ̄, and ∆ `L γ̄ for each γ̄ ∈ Γ, then ∆ `L ϕ̄;

(iii) if Γ `L ϕ̄, then σ(Γ) `L σ(ϕ̄) for every substitution σ.

Note that, being unsorted, `L can relate premises and consequences of
different visible sorts.

A hidden k-logic is specifiable if `L is finitary (or compact), i.e., if Γ `L ϕ̄
implies ∆ `L ϕ̄ for some globally finite subset ∆ of Γ. The relation `L is
called the consequence relation of L; when L is clear from the context we
simply write `. A hidden k-logic with VIS = SORT will be called a visible
k-logic, or simply a k-logic.

As common in a sentential logic framework, we treat formulas (k-formulas)
as synonymous to terms (k-terms, respectively). Moreover, for a given hid-
den k-logic L = 〈Σ,`L〉 we denote TekΣ(X) and (TekΣ(X))VIS by Fm(L) and
FmVIS(L), respectively.

Hidden k-logics were introduced by Martins and Pigozzi (cf. [40]) in the
context of the algebraic specification and verification of software systems.
The basic theory of hidden k-logics was presented in [33]. The class of hid-
den k-logics includes such well-known logical systems as the 2-dimensional

6We use the term “hidden” for our notion of a logical system since, as an equational
hidden logic, it uses the dichotomy hidden vs. visible. A similar notion of a general logic,
defined as a closure relation as well, is due to Meseguer [42]. This system is called an
entailment system and combines the closure relation with the notion of institution (see
also [20] for a related notion of π-institutions). In the context of hidden paradigm, in [54],
Roşu and Lucanu introduced the notion of a contextual entailment system.
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hidden and standard equational logics, as well as the Boolean logic (for more
examples see [33]).

Every consequence relation ` has a natural extension to a relation, also
denoted by `, between sets of visible k-terms; it is defined by Γ ` ∆ if
Γ ` ϕ̄ for each ϕ̄ ∈ ∆. We define the relation of interderivability between
sorted sets in the following way: Γ a` ∆ if, Γ ` ∆ and ∆ ` Γ. We will
abbreviate {ψ̄} ` ϕ̄, Γ ∪ {ϕ̄0, . . . , ϕ̄n−1} ` ϕ̄ and Γ0 ∪ · · · ∪ Γn−1 ` ϕ̄ by
ψ̄ ` ϕ̄, Γ, ϕ̄0, . . . , ϕ̄n−1 ` ϕ̄ and Γ0, . . . ,Γn−1 ` ϕ̄, respectively.

Let L be a (not necessarily specifiable) hidden k-logic. By a theorem of
L we mean a visible k-term ϕ̄ such that `L ϕ̄, i.e., ∅ `L ϕ̄. The set of all
theorems is denoted by Thm(L). A rule such as

ϕ̄0 :V0, . . . , ϕ̄n−1 :Vn−1

ϕ̄n :Vn
, (2)

where ϕ̄0, . . . , ϕ̄n are all visible k-terms, is said to be a derivable rule of
L if {ϕ̄0, . . . , ϕ̄n−1} `L ϕ̄n. A set of visible k-terms T closed under the
consequence relation, i.e., T `L ϕ̄ implies ϕ̄ ∈ T , is called a theory of L or
L-theory. The set of all theories is denoted by Th(L); it forms a complete
lattice under set-theoretic inclusion, which is algebraic if L is specifiable. Let
Ti ∈ Th(L), for i ∈ I. Their meet is

⋂
i∈I Ti and their join is the intersection

of all theories that contain each Ti, i.e.,
∨L
i∈I Ti =

⋂
{T ∈ Th(L) : Ti ⊆

T for all i ∈ I}. Given any set Γ of visible k-terms, the set CnL(Γ) is the
smallest L-theory containing Γ. It is easy to see that CnL(Γ) = { ϕ̄ ∈
(TekΣ(X))VIS : Γ `L ϕ̄}, i.e. is the set of all consequences of Γ.

Very often, a specifiable hidden k-logic is presented in the so-called Hilbert
style, i.e., by a set of axioms (visible k-terms) and inference rules of the
general form (2). We say that a visible k-term ψ̄ is directly derivable from
a set Γ of visible k-terms by a rule such as (2) if there is a substitution
h : X → TeΣ(X) such that h(ϕ̄n) = ψ̄ and h(ϕ̄0), . . . , h(ϕ̄n−1) ∈ Γ.

Given a set AX of visible k-terms and a set IR of inference rules, we
say that ψ̄ is derivable from Γ by the set AX and the set IR, in symbols
Γ `AX,IR ψ̄, if there is a finite sequence of k-terms, ψ̄0, . . . , ψ̄n−1 such that
ψ̄n−1 = ψ̄, and for each i < n one of the following conditions hold:

(a) ψ̄i ∈ Γ,

(b) ψ̄i is a substitution instance of a k-term in AX

(c) ψ̄i is directly derivable from {ψ̄j}j<i by one of the inference rules in IR.
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It is clear that 〈Σ,`AX,IR〉 is a specifiable hidden k-logic. Moreover, a
hidden k-logic L is specifiable iff there exist (possibly infinite) sets AX and
IR, of axioms and inference rules, respectively, such that, for any visible k-
terms ψ̄ and any set Γ of visible k-terms, Γ `L ψ̄ iff Γ `AX,IR ψ̄. The pair
〈AX, IR〉 is called a presentation of L by axioms and inference rules. Hence
we can present our examples of specifiable logics by exhibiting their sets of
axioms and of inference rules. If L = 〈Σ,`AX,IR〉, for some AX and IR with
|AX ∪ IR| < ω, we say that L is finitely axiomatizable.

2.3.1. Semantics.

Let A = 〈A,F 〉 be a k-data structure. A visible k-term ϕ̄ :V is said
to be a semantic consequence of a set of visible k-terms Γ in A, in symbols
Γ |=A ϕ̄, if, for every assignment h : X → A, h(ϕ̄) ∈ FV whenever h(ψ̄) ∈ FW
for every ψ̄ :W ∈ Γ. A visible k-term ϕ̄ is a validity of A, and conversely
A is a model of ϕ̄, if ∅ |=A ϕ̄. A rule such as (2) is a validity, or a valid
rule, of A, and conversely A is a model of the rule, if {ϕ̄0, . . . , ϕ̄n−1} |=A ϕ̄n.
A visible formula ϕ̄ is a semantic consequence of a set of visible k-terms Γ
for an arbitrary class M of k-data structures over Σ, in symbols Γ |=M ϕ̄,
if Γ |=A ϕ̄ for each A ∈ M. It can be proved that |=M is always a logic,
however it may not be specifiable. A visible k-term or rule as (2) is a validity
of M if it is a validity of each member of M.

A k-data structure A is a model of a hidden k-logic L if every consequence
of L is a semantic consequence of A, i.e., Γ `L ϕ̄ always implies Γ |=A ϕ̄,
for every Γ ∪ {ϕ̄} ⊆ (TekΣ(X))VIS. When A is a model of L, the designated
filter of A is called an L-filter over A. The set of all L-filters over an algebra
A is denoted by FiL(A). The special models whose underlying algebra is
the formula algebra, i.e., of the form 〈TeΣ(X), T 〉, with T ∈ Th(L), are
called Lindenbaum-Tarski models. The class of all models of L is denoted
by Mod(L). If L is a specifiable hidden k-logic, then A is a model of L iff
every axiom and rule of inference is a validity of A. The class of all reduced
models of L, i.e., all models 〈A,F 〉 such that Ω(F ) = idA, is denoted by
Mod∗(L). A class of k-data structures M is a data structure semantics for
L if `L = |=M. The Completeness Theorem holds for hidden k-logics (cf.
[40]), i.e., for every Γ ∪ {ϕ̄} ⊆ (TekΣ(X))VIS,

Γ `L ϕ̄ iff Γ |=Mod(L) ϕ̄ iff Γ |=Mod∗(L) ϕ̄.

Note that the mentioned notion of completeness is not the one concerning
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complexity theory, it is rather the notion of semantic completeness, namely a
logic is complete with respect to some semantics if any semantic consequence
is a syntactic consequence.

An important class of hidden 2-logics is the class of hidden equational
logics, where the notion of equality is only considered for visible data. It is
defined (using the reflexivity, symmetry, transitivity and congruence rules)
as a sorted equational logic, restricted to the visible part (cf. [40]).

In an equational framework, a pair of terms of the same sort 〈s, t〉 is called
an equation and it is denoted by s ≈ t.

Definition 2.2 (Free hidden equational logic, cf. [33]). Let Σ be a hidden
signature and VIS its set of visible sorts.

1. The free hidden equational logic over Σ (free HELΣ for short) is the
specifiable hidden 2-logic presented as follows:

Axioms: for all V ∈ VIS
x :V ≈ x :V

Inference rules: for each V,W ∈ VIS,

(IR1)
x :V ≈ y :V

y :V ≈ x :V
;

(IR2)
x :V ≈ y :V, y :V ≈ z :V

x :V ≈ z :V
;

(IR3)
ϕ :V ≈ ψ :V

ϑ(x/ϕ):W ≈ ϑ(x/ψ):W
for each ϑ ∈ TeW and each x ∈ XV .

2. The free un-hidden equational logic over Σ (free UHELΣ, for short)
contains an equality predicate for each sort, visible and hidden. The
axioms and inference rules are the same as those of the free HELΣ,
except that V and W are now allowed to range over all sorts. Thus
UHELΣ = HELΣuh .

An applied hidden equational logic over Σ (or simply a HELΣ) is any
hidden 2-logic L over Σ that satisfies all axioms and rules of inference of the
free HELΣ. An applied un-hidden equational logic over Σ (UHELΣ) is defined
similarly; the subscript Σ may be omitted if it is clear from the context. The
basic notions and results about hidden k-logics, as well as many examples of
HELs may be found in [33] and [40]. In addition, the authors in [40] discussed
in more detail this application of AAL tools, namely its advantages in the
special case of HELs in comparison with the theory developed by Goguen
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and his collaborators on behaviorally reasoning over behavioral conditional
equations.

2.4. More examples

Example 2.1 (Nested intervals, [40]). As illustration we now give an ex-
ample of a hidden 3-logic that formalizes some algebraic properties of the
non-empty closed nested intervals of an abstract linearly ordered set. The
3-formula 〈x, y, z〉 represents the ternary ordering relation x ≤ y ≤ z, al-
though there is no formal representation of the binary relation ≤. A set s
is an interval [n,m] = {x : n ≤ x ≤ m } of elements in the linear ordering,
where n,m are respectively the lower bound (lb(s)), and the upper bound
(ub(s)) of the interval.

The set of sorts SORT = {set , num}, where num is the only visible sort.

Operations.

lub, glb :num, num → num,

ub, lb :set → num,

elt-of :set → num,

∪,&:set , set → set .

Axioms.

〈x, x, x〉,
〈glb(x, y), x, lub(x, y)〉,
〈glb(x, y), y, lub(x, y)〉,
〈lb(s), elt-of(s), ub(s)〉,
〈glb(lb(s), lb(t)), elt-of(∪(s, t)), lub(ub(s), ub(t)〉,
〈lub(lb(s), lb(t)), elt-of(&(s, t)), glb(ub(s), ub(t)〉.

Rules of Inference.
〈x, y, w〉, 〈y, z, w′〉

〈x, y, z〉
,

〈w, x, y〉, 〈w′, y, z〉
〈x, y, z〉

,

〈x, z, x′〉, 〈y, z, y′〉
〈lub(x, y), z, glb(x′, y′)〉

. ♦

In the following example we consider a sorted version of a deductive sys-
tem with quasi-ordering (for the extensive treatment of non-sorted logics see
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[47, 50]). We assume that the signatures are endowed with a function that
gives, for each operation and each argument position, its polarity. Formally,
a polarity for a signature Σ is a TYPE-sorted map ρ such that for each type
τ = S0, . . . , Sn ∈ TYPE, ρτ : OPτ → {+,−}n−1. Also a pair of terms of the
same sort 〈s, t〉 will be denoted by s � t.

Example 2.2 (Sorted quasi-ordering logic). Let Σ be a sorted hidden sig-
nature with VIS = SORT. The (sorted) quasi-ordering logic over Σ (QOLΣ

for short) is the specifiable 2-logic presented as follows:

Axioms: for all S ∈ SORT
x :S � x :S

Inference rules: For each S, Si ∈ SORT, i = 0, . . . n− 1,

(IR1)
x :S � y :S, y :S � z :S

x :S � z :S
.

(IR2+) For each σ(. . . , xi : Si, . . . ) ∈ OPτ and ρτ (σ)i = + and i < n

ϕ :Si � ψ :Si
σ(x0, . . . , xi−1, ϕ, xi+1, . . . , xn−1):S � σ(x0, . . . , xi−1, ψ, xi+1, . . . , xn−1):S

.

(IR2−) For each σ(. . . , xi : Si, . . . ) ∈ OPτ and ρτ (σ)i = − and i < n

ϕ :Si � ψ :Si
σ(x0, . . . , xi−1, ψ, xi+1, . . . , xn−1):S � σ(x0, . . . , xi−1, ϕ, xi+1, . . . , xn−1):S

.

Let Σ be a signature with polarity ρ and A be a Σ-algebra. The models
of the (sorted) quasi-ordering logic are pairs 〈A,F 〉 where A is a Σ-algebra
and F is a quasi-ordering in A compatible with the polarity of Σ. We can
use infix notation a �F b instead of (a, b) ∈ F .

For QOLΣ the following holds:

Lemma 2.2. Let 〈A,F 〉 be a model of a quasi-ordering logic. Then a con-
gruence θ is compatible with F iff θ ⊆ F .

Proof. Suppose that θ is compatible with F . Let aθa′. Since a �F a and
aθa, then we have by compatibility a �F a′.

Conversely, let a, a′, b, b′ ∈ A such that aθb, a′θb′ and a �F a′. Since
θ ⊆ F and θ is symmetric, we have b �F a, a �F a′, a′ �F b′. Therefore, by
(IR1), b �F b′.

Theorem 2.3. Let 〈A,F 〉 be a model of a quasi-ordering logic. Then the
Leibniz congruence of F is exactly F ∩ F−1.

17



Proof. F ∩ F−1 is a congruence on A, since it is reflexive, symmetric and
closed under the rules (IR1), (IR2+), (IR2−). Moreover, by the previous
lemma, it is compatible with F .

Suppose now that θ is another congruence compatible with F . Let aθb.
Since a �F a and aθa, by compatibility we have that 〈b, a〉 ∈ F , so 〈a, b〉 ∈
F−1. Since θ is symmetric, bθa, which by a similar argument implies that
〈a, b〉 ∈ F . Hence 〈a, b〉 ∈ F ∩ F−1.

Therefore F ∩ F−1 is the largest congruence compatible with F .

It can be shown that QOLΣ is equivalential in the sense that there are
2-formulas (x � y and y � x) that define the Leibniz congruence for each
model. We also would like to emphasize that there is no equality symbol in
the language. ♦

3. Equivalent Hidden k-Logics

In this section we discuss a notion of equivalence between hidden logics
(not necessarily of the same dimension). There are many ways of defining
equivalence between logics (see for instance [11]). Our notion is syntactic, in
the sense that it does not involve models of logics. It generalizes to the hidden
setting the well-known concept of equivalence between deductive systems in
the field of AAL (cf. [8]).

Now we introduce a notion of translation between hidden k-logics that
may possibly differ on the sets of visible sorts. Let Σ and Σ′ be two alge-
braically indistinguishable signatures with sets of visible sorts VIS and VIS′

respectively. A (k, l)-translation from Σ to Σ′ is a (VIS−VIS′)-complex sorted
set τ = 〈τR(x̄ :R) | R ∈ VIS〉, where τR(x̄ :R) = 〈τ̄R,V (x̄ :R) | V ∈ VIS′〉 is a
VIS′-sorted set of visible terms, with τ̄R,V (x̄ :R) a finite set of l-terms over
Σ′ of sort V and whose variables range among x̄ = 〈x0 :R, . . . , xk−1 :R〉. If
VIS′ = SORT, τ is called a display (k, l)-translation of Σ. If, in addition,
l = 2 then τ is called an equational display k-translation of Σ.

For each ϕ̄ ∈ (TekΣ(X))R, we will write τR(ϕ̄) to denote the VIS′-sorted
set 〈τ̄R,V (ϕ̄) |V ∈ VIS′〉. Given a set Γ of visible k-terms and τ a translation,
τ(Γ) is the VIS′-sorted set

⋃
{τS(ϕ̄) | ϕ̄ ∈ ΓS, S ∈ VIS}. When Γ is a

singleton, say Γ = {γ̄}, we write τ(γ̄) instead of τ({γ̄}).
We say that the translation τ is an interpretation from L to L′, over

hidden signatures Σ and Σ′, respectively, if

Γ `L ϕ̄ iff τ(Γ) `L′ τ(ϕ̄).
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This notion of interpretation has been successfully used in the abstract
development of software systems (by providing a broad concept of refinement
that accommodates several crucial transformation approaches in software
development (see [37, 38, 39])), as well as in a variety of other contexts (see
for example [43, 12]).

The following notion of equivalence is defined using translations and ex-
tends the notion of equivalence defined in [8] for one-sorted logics, used to
study the algebraic counterparts of deductive systems.

Definition 3.1 (Equivalence of hidden logics). Let Σ and Σ′ be two a.i.
hidden signatures, L a hidden k-logic over Σ, and L′ a hidden l-logic over Σ′.
We say that L is (syntactically) equivalent to L′ if there are globally finite
interpretations τ and ρ, from L to L′ and from L′ to L, respectively, which
are inverse to one another, i.e.,

x̄ :V a`L ρ(τ(x̄ :V )) and ȳ :V ′ a`L′ τ(ρ(ȳ :V ′)),

where x̄ :V and ȳ :V ′ are a k-variable and an l-variable respectively, for all
V ∈ VIS and V ′ ∈ VIS′.

It is straightforward to show that equivalence of logics is an equivalence
relation. It can also be proved that a presentation of a hidden logic L can
be automatically transformed into a presentation of any system L′ equiva-
lent to L (see [8] for the one-sorted case). Moreover, if L admits a finite
presentation by axioms and inference rules, so does L′. There are also some
other interesting properties that are preserved under such equivalence. In
particular, the Craig interpolation property and the deduction-detachment
theorem were previously discussed in [2].

Example 3.1 (One-sorted case). It is well known that the classical proposi-
tional calculus (CPC) is equivalent to the equational logic of Boolean algebras
by the translations τ(p) = 〈p,>〉 and ρ(〈p, q〉) = {p↔ q} (see [8]). ♦

Example 3.2 (One-sorted case). Semilattices can be viewed both as an al-
gebraic and as a relational structure, namely as a partially ordered structure.
This duality can be expressed by means of an equivalence witnessed by the
translations τ(〈p, q〉) = {〈p, p ∧ q〉} and ρ(〈p, q〉) = {〈p, q〉, 〈q, p〉} (see [8]).♦

The following example of Flags relies on a well-known encoding of pred-
icates as functions to Boolean (e.g. [16]). In programming, flag refers to a
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binary value that has an assigned meaning, like, e.g., “Has a previous op-
eration resulted in overflow or not?”. Accordingly, a flag value can be set
directly to two values, say up and down, the values can be reversed, and
there is a way to retrieve the information about the state of the flag through
a request up?.

Example 3.3 (Flags). We present two different, but equivalent specifications
of flags. The first is an 1-logic and the second is a HEL.

Flags as a Boolean 1-logic. Consider the hidden signature Σflag :
SORT = {flag , bool}, with “bool” the unique visible sort, and the follow-

ing operation symbols:

up : flag → flag ; rev : flag → flag ;
dn : flag → flag ; up? : flag → bool ,

and the operation symbols for the Boolean part: ¬,∧,∨, true, false. The
Boolean biconditonal ϕ↔ ψ is an abbreviation for the compound operation
(¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ).

The Boolean logic of flags, Lbflag , is the 1-logic with the following axioms:

up?(up(x)) up?(rev(x))↔ ¬(up?(x))
¬up?(dn(x))

and includes the usual logical axioms for the classical propositional logic.
There are no extra-logical rules of inference.

Flags as a HEL. Consider now the Flags logic as a HEL. The signature
is the same as above. The equational logic of flags, Leflag , is the HELΣflag

with the following extra-logical axioms:

up?(up(x)) ≈ true up?(rev(x)) ≈ ¬(up?(x))
up?(dn(x)) ≈ false

and includes the usual logical axioms for Boolean algebra. There are no
extra-logical rules of inference.

We claim that Lbflag and Leflag are equivalent. In fact, it is easy to see
that

ϕ0 ↔ ϕ′0, · · · , ϕn−1 ↔ ϕ′n−1

ψ ↔ ψ′
is a derived rule of Lbflag

iff

ϕ0 ≈ ϕ′0, · · · , ϕn−1 ≈ ϕ′n−1

ψ ≈ ψ′
is a derived rule of Leflag .
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That is, Lbflag and Leflag are equivalent with ρ(x, y) = {x ↔ y} and
τ(x) = {〈x, true〉} the associated translations. ♦

4. Behavioral equivalence of Hidden logics

The results presented in this section involve some notions from lattice
theory. So we start by recalling some concepts that will be needed in the
sequel.

A lattice is a partially ordered set (poset) L in which any pair of ele-
ments has an infimum and a supremum. It is complete if an infimum and a
supremum exist for any subset of L. An element a ∈ L is compact if for all
A ⊆ L, a ≤

∨
A implies that there is a finite B ⊆ A such that a ≤

∨
B. A

lattice L is algebraic if it is complete and every element in L is a supremum
of compact elements.

A map α : L1 → L2 between two lattices L1 and L2 is an isomorphism
if it is a bijection such that α and α−1 are monotonic with respect to the
underlying lattice orders.

Given a hidden logic L, the set of theories over L and the set of L-
filters over an appropriate algebra with the sorted set inclusion are complete
lattices; moreover, they are algebraic if the logic is finitary. The compact
elements are the finitely generated theories, that is, the theories of the form
CnL(Γ), with Γ a globally finite sorted set.

Let FiL(A) be the lattice of L-filters over A. For G ⊆ Ak, FgAL(G) denotes
the L-filter generated by G. Note that since FiL(A) is a complete lattice,
FgAL(G) always exists and equals to

⋂
{F ∈ FiL(A) : G ⊆ F}.

Let τ be a (k, l)-translation from Σ to Σ′. We define the map τ̃A :
FiL(A) → FiL′(A) by τ̃A(F ) = FgAL′(τ

A(F )). When A is the term alge-
bra we will omit explicit reference to it. In that case (G ⊆ FmVIS(L)),

Fg
FmVIS(L)
L (G) = CnL(G) — the L-theory generated by G.
Let Σ and Σ′ be two algebraically indistinguishable hidden signatures

and L and L′ be two hidden logics over Σ and Σ′, respectively. A map
α : Th(L) → Th(L′) is said to commute with substitutions if, for every
substitution σ and every T ∈ Th(L)

CnL′(σ(α(T ))) = α(CnL(σ(T ))).

Let τ = 〈τR(x̄ :R) | R ∈ VIS〉 be a (k, l)-translation and A be a Σ-algebra.
For any sorted set G ⊆ A, τA(G) stands for the VIS′-sorted set defined
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for each V ∈ VIS′ by τA(G)V =
⋃
{τ̄AR,V (ā) : R ∈ VIS, ā ∈ GR}, where

τ̄AR,V (ā) = {δ̄A(ā) : δ̄ ∈ τ̄R,V }.

Lemma 4.1. Let L, L′ be a k- and an l-hidden logic, respectively, which are
equivalent under the interpretations τ : L → L′ and ρ : L′ → L and let A be
an appropriate algebra. Then, for every G ⊆ AkVIS, we have

FgAL(ρA(τA(G))) = FgAL(G) (3)

Proof. From the definition of equivalence, (3) holds for singleton sets.
Let now G be any sorted subset of AkVIS. Then we have

FgAL(G) =
∨L{FgAL({ā}) : ā ∈ G}

=
∨L{FgAL(ρA(τA({ā}))) : ā ∈ G}

= FgAL(
⋃
{ρA(τA({ā})) : ā ∈ G})

= FgAL(ρA(τA(G))),

as needed.

As a consequence we have that FgAL(ρA(τA(F ))) = F whenever F ∈
FiL(A). Symmetrically, for all H ∈ FiL′(A): FgAL′(τ

A(ρA(H))) = H. When
instantiated for the term algebra, these results can be stated as:

� CnL(Γ) = CnL(ρ(τ(Γ))) for any Γ ⊆ FmVIS(L) and

� CnL′(Γ
′) = CnL′(τ(ρ(Γ′))) for any Γ′ ⊆ FmVIS′(L′).

The next two theorems can be formulated for the general case of Σ-
algebras, however we just formulate and prove them for the special case of
the formula algebra.

Lemma 4.2. Let L be a k-hidden logic. For every substitution σ and any
Γ ⊆ FmVIS(L), we have

CnL(σ(CnL(Γ))) = CnL(σ(Γ)).

Proof. Clearly Γ ⊆ σ−1(CnL(σ(Γ)). Since Th(L) is closed under inverse
substitutions7, σ−1(CnL(σ(Γ))) ∈ Th(L), hence CnL(Γ) ⊆ σ−1(CnL(σ(Γ))),
i.e., σ(CnL(Γ)) ⊆ CnL(σ(Γ)). Therefore CnL(σ(CnL(Γ))) ⊆ CnL(σ(Γ)).

7Let T ∈ Th(L). Suppose that σ−1(T ) ` ϕ̄ . Since σ(σ−1(T )) ⊆ T , T ` σ(ϕ̄). Thus
σ(ϕ̄) ∈ T , i.e., ϕ̄ ∈ σ−1(T ).
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Conversely, σ(Γ) ⊆ σ(CnL(Γ)) ⊆ CnL(σ(CnL(Γ))). Thus CnL(σ(Γ)) ⊆
CnL(σ(CnL(Γ))).

Lemma 4.3. Let L and L′ be a k- and an l-hidden logic, respectively, such
that L is specifiable. For every interpretation τ from L to L′ and any Γ ⊆
FmVIS(L), we have

CnL′(τ(CnL(Γ))) = CnL′(τ(Γ)).

Proof. For R ∈ VIS, let TR = τ−1
R (CnL′(τ(Γ))) := {ϕ̄ ∈ FmVIS(L)R : τR(ϕ̄) ⊆

CnL′(τ(Γ))}.
Claim. T = 〈TR : R ∈ VIS〉 ∈ Th(L).

Proof of the claim: Let T ` ϕ̄. Since L is specifiable,
there are ψ̄0, . . . , ψ̄n−1 ∈ T such that ψ̄0, . . . , ψ̄n−1 ` ϕ̄. But
τ is an interpretation, thus τ(ψ̄0), . . . , τ(ψ̄n−1) ` τ(ϕ̄). As
τ(ψ̄i) ⊆ CnL′(τ(Γ)), i = 0, . . . , n − 1, τ(ϕ̄) ⊆ CnL′(τ(Γ)).
Hence, ϕ̄ ∈ T .

Moreover, it is clear that Γ ⊆ T . Then, from the claim, CnL(Γ) ⊆ T , and
thus τ(CnL(Γ)) ⊆ CnL′(τ(Γ)). Therefore CnL′(τ(CnL(Γ))) ⊆ CnL′(τ(Γ)).

To see the converse inclusion, note that

τ(Γ) ⊆ τ(CnL(Γ)) ⊆ CnL′(τ(CnL(Γ))).

Therefore CnL′(τ(Γ)) ⊆ CnL′(τ(CnL(Γ))).

As a corollary we have:

Corollary 4.4. For any subset {Ti : i ∈ I} ⊆ Th(L), τ̃(
∨L
i∈I Ti) =

∨L′
i∈I τ̃(Ti).

Next we will present the main theorem of the paper. The one-sorted
variant of it, for k-deductive systems, was proved in [8]. In the multi-sorted
setting, the implication from (ii) to (i) requires more attention when we need
to define a substitution and for that we have to impose the extra condition
that the logics have to be standard.

Theorem 4.5. Let L and L′ be a k- and an l-hidden standard, specifiable
logic over algebraically indistinquishable hidden signatures Σ and Σ′, respec-
tively. The following conditions are equivalent:

(i) L and L′ are equivalent;
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(ii) there is an isomorphism from Th(L) to Th(L′) that commutes
with substitutions.

Proof. Let L, L′ be a k- and an l-hidden logic, respectively, which are equiv-
alent under the interpretations τ : L → L′ and ρ : L′ → L. Recall that, by
definition,

τ̃(T ) = CnL′(τ(T )), ρ̃(T ) = CnL(ρ(T )).

Claim. τ̃ : Th(L) → Th(L′) and ρ̃ : Th(L′) → Th(L) both commute
with substitutions.

Proof of the claim: We give the proof for τ̃ , for the other map it is
completely similar.

Let σ be a substitution. Then for each R ∈ VIS and any V ∈ VIS′

τR,V (σ(x̄ :R)) = τR,V (〈σ(x0 :R), . . . , σ(xk−1 :R)〉)
= {δ(σ(x0 :R), . . . , σ(xk−1 :R)) : δ ∈ τR,V (x̄)}
= {σ(δ(x0 :R, . . . , xk−1 :R)) : δ ∈ τR,V (x̄)}
= σ(τR,V (x̄)).

Thus τR(σ(x̄ : R)) = σ(τR(x̄)).

For a T ∈ Th(L) we have

τ̃(CnL(σ(T ))) = CnL′(τ(CnL(σ(T ))))

= CnL′(τ(σ(T ))) by Lemma 4.3

= CnL′(σ(τ(T )))

= CnL′(σ(CnL′(τ(T )))) by Lemma 4.2

= CnL′(σ(τ̃(T )))

Finally we show that τ̃ and ρ̃ are mutually inverse lattice isomorphisms.
On the one hand, from Corollary 4.4, τ̃ and ρ̃ are joint-semilattice homo-

morphisms. On the other hand, as it was pointed out after Lemma 4.1, we
have

• CnL(Γ) = CnL(ρ(τ(Γ)) for any Γ ⊆ FmVIS(L) and
• CnL′(Γ

′) = CnL′(τ(ρ(Γ′)) for any Γ′ ⊆ FmVIS′(L′)
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These two equalities can be used to show that the two maps are inverses
of each other. Actually, we have, for all T ∈ Th(L),

ρ̃(τ̃(T )) = ρ̃(CnL′(τ(T ))
= CnL(ρ(τ(T )) by Lemma 4.3
= CnL(T ) by Lemma 4.1
= T.

Similarly, we can show that τ̃(ρ̃(T )) = T , for all T ∈ Th(L′).

To prove the implication from (ii) to (i), let f : Th(L) → Th(L′) be a
lattice isomorphism that commutes with substitutions.

For each visible sort V ∈ VIS, let x̄ = 〈x0 :V, . . . , xk−1 :V 〉 be a fixed
k-variable of a visible sort V , with xi’s distinct variables. Let T ′ be the
image of the theory generated by x̄, i.e, T ′ = f(CnL({x̄})). Since CnL({x̄})
is finitely generated, it is compact in Th(L). Thus T ′ is compact in Th(L′).
Therefore there is a finite number of formulas

ηi(x0 :V, . . . , xk−1 :V, y0 :Q0, . . . , ym−1 :Qm−1):Ri,

where i = 0, . . . , n− 1 and Ri ∈ VIS′, such that

T ′ = CnL′{ηi(x0 :V, . . . , xk−1 :V, y0 :Q0, . . . , ym−1 :Qm−1) : i < n},

where y0 :Q0, . . . , ym−1 :Qm−1 is the list of all variables, distinct from the
xi :V , that occur in at least one of the ηi. Let σ be any substitution such
that σ(xi) = xi and σ(yj) = tj, where tj is a ground term of sort Qj, for all
i < k and j < m (note that such tj exists since L′ is standard). Then

T ′= f(CnL{σ(x̄)}) σ(x̄) = x̄

= f(CnL(σ(CnL{x̄})) by Lemma 4.2

= CnL′(σ(f(CnL{x̄}))) f commutes with substitutions

= CnL′(σ((CnL′{ηi(x0 :V, . . . , xk−1 :V, y0 :Q0, . . . , ym−1 :Qm−1):i < n})))
= CnL′(σ({ηi(x0 :V, . . . , xk−1 :V, y0 :Q0, . . . , ym−1 :Qm−1) : i < n}))

by Lemma 4.2

= CnL′{ηi(x0 :V, . . . , xk−1 :V, t0 :Q0, . . . , tm−1 :Qm−1) : i < n}.
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Let τ i = ηi(x0 :V, . . . , xk−1 :V, t0 :Q0, . . . , tm−1 :Qm−1):Ri, i < n. Let us
define τV,Ri

(x̄ :V ) = {τ i(x̄ :V ) : i < n} and τV,R(x̄ :V ) = ∅, for R 6= Ri.
Finally, we define τ = 〈τV (x̄ :V ) : V ∈ VIS〉.

Let ϕ̄ :V ∈ Fmk
VIS(L) and σ′ be a substitution such that σ′(x̄) = ϕ̄.

f(CnL({ϕ̄})) = f(CnL(σ′(x̄)) since σ′(x̄) = ϕ̄

= f(CnL(σ′(CnL{x̄})) by Lemma 4.2

= CnL′σ
′(f(CnL{x̄})) f commutes with substitutions

= CnL′σ
′({τ i(x̄) : i < n})

= CnL′{τ i(ϕ̄) : i < n} by Lemma 4.2

= CnL′(τ(ϕ̄)).

This can be extended to sets of formulas. Let Γ ⊆ FmVIS(L),

f(CnL(Γ)) = f(
∨L{CnL({ϕ̄}) : ϕ̄ ∈ Γ})

=
∨L′{f(CnL({ϕ̄})) : ϕ̄ ∈ Γ}

=
∨L′{CnL′(τ(ϕ̄)) : ϕ̄ ∈ Γ}

= CnL′(τ(Γ)).

Now, we claim that τ is an interpretation from L to L′. Indeed, for any
Γ ∪ {ϕ̄} ⊆ Fmk

VIS(L), we have

Γ `L ϕ̄ ⇐⇒ CnL{ϕ̄} ⊆ CnL(Γ)
⇐⇒ f(CnL{ϕ̄}) ⊆ f(CnL(Γ))
⇐⇒ CnL′(τ(ϕ̄)) ⊆ CnL′(τ(Γ))
⇐⇒ τ(Γ) `L′ τ(ϕ̄)

Similarly we can show that there is an interpretation ρ from L′ to L such
that CnL(ρ(Γ′)) = f−1(CnL′(Γ

′)), for all Γ′ ⊆ FmVIS′(L′).
Finally, we show that τ and ρ are inverses of each other. Let x̄ be

a k-variable of sort V ∈ VIS. Then CnL′(τ(ρ(x̄))) = f(CnL(ρ(x̄))) =
f(f−1(CnL′(x̄))) = CnL′(x̄), i.e., ȳ :V ′ a`L′ τ(ρ(ȳ :V ′)). Similarly, we can
show that x̄ :V a`L ρ(τ(x̄ :V )).

Similar to condition (i) of this theorem, a semantic necessary and suf-
ficient condition for two hidden logics to be behaviorally equivalent can be
formulated. Instead of lattice of theories, it uses the lattice of logical filters of
an arbitrary algebra over the underlying signature (see [8] for the one-sorted
case).
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The Leibniz operator over L is the map ΩLA : FiL(A) → Con(A) defined
by ΩLA(F ) = ΩA(F ) (explicit reference to the hidden k-logic L is usually
omitted, and if the algebra A is clear from the context we simply denote the
Leibniz operator by Ω).

The following theorem provides a necessary condition for the equivalence
of two hidden logics. The version for k-deductive systems can be found in
[8].

Theorem 4.6. Let L, L′ be a k- and an l-hidden logic, respectively, which
are equivalent under the interpretations τ : L → L′ and ρ : L′ → L. Then,
for any k-data structure 〈A,F 〉 ∈ Mod(L), we have

Ω(F ) = Ω(FgAL′(τ
A(F ))). (4)

Proof. First we show that for every F ∈ FiL(A) and ā ∈ AlV ,

ā ∈ FgAL′(τ
A(F ))V iff ρA({ā}) ⊆ F (5)

Indeed, let ā ∈ FgAL′(τ
A(F ))V , then ρA({ā}) ⊆ ρA(FgAL′(τ

A(F ))) ⊆ F . The
last inclusion holds since, similarly to Lemma 4.3, FgAL(ρA(FgAL′(τ

A(F )))) =
FgAL(ρA(τA(F ))) = F .

The reverse implication is a consequence of Lemma 4.1. Suppose that
ρA({ā}) ⊆ F . Hence τA(ρA({ā})) ⊆ τA(F ) ⊆ FgAL′(τ

A(F )). Finally by
Lemma 4.1, (5) holds.

Furthermore, we have:

Claim. For any θ ∈ Con(A) and any F ⊆ A, θ is compatible with F iff
θ is compatible with FgAL′(τ

A(F )).

Indeed, let ā ∈ FgAL′(τ
A(F ))V and b̄ ∈ AlV such that aiθV bi , i = 1, . . . , l,

for some V ∈ VIS′. Then

ā ∈ FgAL′(τ
A(F ))V

⇐⇒ ρA({ā}) ⊆ F
⇐⇒ (ρ̄i)A(ā) ∈ FR, for all R ∈ VIS, ρ̄i ∈ ρV,R
⇐⇒ (ρ̄i)A(b̄) ∈ FR, for all R ∈ VIS, ρ̄i ∈ ρV,R
⇐⇒ ρA(b̄) ⊆ F
⇐⇒ b̄ ∈ FgAL′(τ

A(F ))V ,

For the reverse implication, the argument is similar.
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Conclusion

This work is part of a wider approach of applying abstract algebraic logic
methods and tools to the study of the specification and semantics of object-
oriented software systems [33, 40, 34, 35, 36, 2]. The general idea consists
in considering a generalization of the concept of deductive system to spec-
ify heterogeneous computer systems and to supply a meaningful and useful
behavioral equivalence relation in this new framework. This generalization
combines the multi-sorted setting with the dichotomy visible vs. hidden data
types. It is achieved by means of the central notion of Leibniz congruence
taken from Abstract Algebraic Logic. As a side benefit, we obtain a matrix
semantics as a well behaved semantics for OO systems.

In this paper we discuss a new relation of equivalence between specifi-
cations, introduced in [2]. Besides some illustrative examples, we discuss
the relationship between the behavior of equivalent hidden logics. This new
approach opens some interesting questions, such as: Is it possible to char-
acterize the logics that are equivalent to applied equational logics, which in
the context of ordinary deductive systems are called algebraizable logics.

We have also presented two sorted calculi in order to show the diversity of
situations that can be captured by this notion. In fact, although our theory
unifies several approaches to behavioral specification systems, many other
examples outside of the CS can be studied in the context of a general notion
of hidden logic with the tools that are based on properties of the Leibniz
congruence. The example concerning quasi-orderings can be of interest in
CS. It seems that it can be modified to specify state transition machines,
with structure on states, in the same lines as Diaconescu did in [17]. More
specifically, we may split the set of sorts in two: one for data elements and
the other for transitions.
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