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Abstract
We present a new discretization for the Hadamard fractional derivative, that simplifies
the computations. We then apply the method to solve a fractional differential equation
and a fractional variational problem with dependence on the Hadamard fractional
derivative.
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1. Introduction
Similarly to ordinary calculus, we can find in the literature distinct definitions for fractional

derivatives and for fractional integrals, which are generalizations of the integer-order derivatives
and multiple integrals, respectively. The most common ones and consequently more studied
are the Riemann–Liouville, Caputo and Grünwald–Letnikov definitions. We deal in this paper
with the Hadamard fractional derivative, introduced in [4]. Recently, it has call the attention of
researchers and numerous results have appeared, with an extensive study of properties of such
kind of operators [1, 2, 8]. For recent results we suggest [5, 10, 11].

Due the complexity of solving equations involving fractional operators, in most cases is
impossible to determine the exact solution and so numerical methods are used to determine an
approximated solution of the problem. This is an emerging field, and we can find already in the
literature several methods to deal with these problems, at least for the most common fractional
derivative types. For the Hadamard fractional derivative, we mention the recent paper [9], where
the fractional operator is replaced by a finite sum involving only integer-order derivatives of the
function. Replacing the fractional derivative by this sum, we rewrite the initial problem in terms
of integer-order derivatives and thus we are able to apply classical known methods. In [3] another
approximation formula is obtained, using also integer-order derivatives only. The disadvantage is
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that in order to have a good approximation, we need to use higher-order derivatives, which may
not be adequate for fractional problems. In this paper we follow a different path, by discretizing
the fractional derivative, and then convert continuous problems into discrete ones.

To start, let us recall the definition of the Hadamard fractional derivative.

Definition 1.1. Let a, b be two reals with 0 < a < b, and x : [a, b]→ R be a function. For α ∈ (0, 1),
the left Hadamard fractional derivative of order α is defined by

aDαt x(t) =
t

Γ(1− α)

d

dt

∫ t

a

(
ln
t

τ

)−α
x(τ)

τ
dτ,

while the right Hadamard fractional derivative of order α by

tDαb x(t) =
−t

Γ(1− α)

d

dt

∫ b

t

(
ln
τ

t

)−α x(τ)

τ
dτ,

where Γ denotes the Gamma function.

When x is an absolutely continuous function, there exists an equivalent definition (cf. [6])

aDαt x(t) =
x(a)

Γ(1− α)

(
ln
t

a

)−α
+

1

Γ(1− α)

∫ t

a

(
ln
t

τ

)−α
ẋ(τ) dτ,

and

tDαb x(t) =
x(b)

Γ(1− α)

(
ln
b

t

)−α
− 1

Γ(1− α)

∫ b

t

(
ln
τ

t

)−α
ẋ(τ)dτ.

More properties can be found in references at the end. The paper is organized in the following
way. In Section 2 we present the main result of the paper. Starting with the definition, and with
an appropriate grid on time, we present a new discrete version for the left Hadamard fractional
derivative. To show the efficiency of the method, in Section 3 we compare the exact expression of
a fractional derivative with some numerical experiments, for different values of α and different
step sizes n. In Section 4 we appply the technique to solve a fractional differential equation and a
fractional calculus of variation problem.

2. The discretization method
The discretization method is described in the following way. Given a function x : [a, b]→ R ,

fix a positive integer n, and define the time step

4T =
ln b

a

n
.

Given N ∈ {0, 1, . . . , n}, denote the time and space grid by

tN = a exp(N4T ) = a
n

√(
b

a

)N
and xN = x(tN ).

Theorem 2.1. Let x : [a, b]→ R be a function of class C2 and n ∈ N. Denote

ψ =
(4T )1−α

a(1− exp(−4T ))Γ(2− α)
and (ωαk ) = k1−α − (k − 1)1−α.

Then, for all N ∈ {1, . . . , n},
aDαtNxN = ˜

aDαtNxN +O(4T ),

where

˜
aDαtNxN =

x(a)

Γ(1− α)

(
ln
tN
a

)−α
+ ψ

N∑
k=1

(
ωαN−k+1

) xk − xk−1
exp(k4T )

· tk, (2.1)
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and
lim
4T→0

O(4T ) = 0.

Proof.

aDαtNxN =
x(a)

Γ(1− α)

(
ln
tN
a

)−α
+

1

Γ(1− α)

∫ tN

a

(
ln
tN
τ

)−α
ẋ(τ) dτ

=
x(a)

Γ(1− α)

(
ln
tN
a

)−α
+

1

Γ(1− α)

N∑
k=1

∫ tk

tk−1

(
ln
tN
τ

)−α
1

τ
(ẋ(τ)τ) dτ

≈ x(a)

Γ(1− α)

(
ln
tN
a

)−α
+

1

Γ(1− α)

N∑
k=1

∫ tk

tk−1

(
ln
tN
τ

)−α
1

τ

(
xk − xk−1

a(1− exp(−4T )) exp(k4T )
· tk
)
dτ

=
x(a)

Γ(1− α)

(
ln
tN
a

)−α
+

1

a(1− exp(−4T ))Γ(1− α)

N∑
k=1

xk − xk−1
exp(k4T )

· tk
∫ tk

tk−1

(
ln
tN
τ

)−α
1

τ
dτ

=
x(a)

Γ(1− α)

(
ln
tN
a

)−α
+

(4T )1−α

a(1− exp(−4T ))Γ(2− α)

N∑
k=1

xk − xk−1
exp(k4T )

· tk
[
(N − k + 1)1−α − (N − k)1−α

]
.

Thus, we get the desired approximation formula. Now, let us determine an upper bound for the
error when we use formula (2.1). The error is given by

E =
1

Γ(1− α)

N∑
k=1

∫ tk

tk−1

(
ln
tN
τ

)−α
1

τ

∣∣∣∣ẋ(τ)τ − xk − xk−1
tk − tk−1

· tk
∣∣∣∣ dτ.

Let
Mi = max

τ∈[a,b]

∣∣∣x(i)(τ)
∣∣∣ , i = 1, 2.

Then, using Taylor’s Theorem, we get that, for all k ∈ {1, . . . , N} and for all τ ∈ [tk−1, tk],∣∣∣∣ẋ(τ)τ − xk − xk−1
tk − tk−1

· tk
∣∣∣∣

=

∣∣∣∣ẋ(τ)τ −
(
ẋ(tk−1) + ẍ(ξ1)

tk − tk−1
2

)
· tk
∣∣∣∣

≤ |ẋ(τ)τ − ẋ(tk−1)tk|+M2
tk − tk−1

2
· tk

= |(ẋ(tk−1) + ẍ(ξ2)(τ − tk−1)) τ − ẋ(tk−1)tk|+M2
tk − tk−1

2
· tk

≤M1(tk − τ) +M2(τ − tk−1)τ +M2
tk − tk−1

2
· tk

≤ (tk − tk−1)

[
M1 +

3

2
M2b

]
.

Therefore, the error is bounded by

E ≤ 1

Γ(1− α)

N∑
k=1

∫ tk

tk−1

(
ln
tN
τ

)−α
1

τ
(tk − tk−1)

[
M1 +

3

2
M2b

]
dτ

=
M1 + 3

2M2b

Γ(1− α)

N∑
k=1

(tk − tk−1)

∫ tk

tk−1

(
ln
tN
τ

)−α
1

τ
dτ.
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Having into consideration that, for all k ∈ {1, . . . , N} and for all τ ∈ [tk−1, tk),

0 ≤
(

ln
tN
τ

)−α
≤
(

ln
tk
τ

)−α
,

we have that

0 ≤
∫ tk

tk−1

(
ln
tN
τ

)−α
1

τ
dτ ≤ (4T )1−α

1− α .

Also, since

tk − tk−1 = a(1− exp(−4T )) exp(k4T ),

then

E ≤ M1 + 3
2M2b

Γ(2− α)
a(1− exp(−4T ))(4T )1−α

N∑
k=1

exp(k4T )

=
M1 + 3

2M2b

Γ(2− α)
a(4T )1−α(exp(N4T )− 1)

≤ M1 + 3
2M2b

Γ(2− α)
a(4T )1−α(

b

a
− 1).

In conclusion, we obtain the upper bound formula for our approximation (2.1):

E ≤ M1 + 3
2M2b

Γ(2− α)
(b− a)(4T )1−α (2.2)

which converges to zero as4T → 0.

In opposite to the classical case, where the concept of derivative is local, a fractional derivative
contains memory, and thus to compute the approximation obtained in Eq. (2.1) at a point tN , we
need to know the values of x(tn) from the beginning until de end-point, i.e., from n = 0 to n = N.

For the right Hadamard fractional derivative, we have in a similar way the following approxi-
mation formula:

tNDαb xN ≈
x(b)

Γ(1− α)

(
ln

b

tN

)−α
− ψ

n∑
k=N+1

(
ωαk−N

) xk − xk−1
exp(k4T )

· tk.

3. Example

Let x(t) = ln t, for t ∈ [1, 2]. Then (see [7])

1Dαt x(t) =
(ln t)1−α

Γ(2− α)
.

In Figure 1 we show the accuracy of the procedure, for different values of α ∈ {0.2, 0.5, 0.7, 0.9}
and for different values of n ∈ {10, 30, 50}. The error of the numerical experiments is measured
using the norm

d(x, y) =

∑n
k=1 |xk − yk|

n
. (3.1)

We can see that, for a greater value of n, the error decreases as expected.
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Figure 1. Analytic vs. numerical approximation.

4. Applications

Example 4.1. Consider a fractional differential equation with dependence on the left Hadamard
fractional derivative: {

f (t, x(t), aDαt x(t)) = 0, t ∈ [a, b]
x(a) = xa.

The procedure to solve numerically the system is described next. Fix n ∈ N and for N ∈ {1, . . . , n},
define

tN = a exp(N4T ), xN = x(tN ) with 4T =
ln b

a

n
.

Replacing the fractional operator by the approximation given in Eq. (2.1), we obtain a classical
difference equation with n unknown points x1, . . . , xn,{

f
(
tN , xN , ˜

aDαtNxN
)

= 0, N ∈ {1, . . . , n}
x0 = xa.

For example, consider the system 1Dαt x(t) + x(t) =
(ln t)1−α

Γ(2− α)
+ ln t, t ∈ [1, 2]

x(1) = 0.
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The obvious solution is x(t) = ln t. Applying the discussed method, we obtain ψ

N∑
k=1

(
ωαN−k+1

) xk − xk−1
exp(k4T )

· tk + xN =
(ln tN )1−α

Γ(2− α)
+ ln tN , N ∈ {1, . . . , n}

x0 = 0,

with

4T =
ln 2

n
, tN = exp(N4T ), ψ =

(4T )1−α

(1− exp(−4T ))Γ(2− α)
and ωk = k1−α − (k − 1)1−α.

In Figure 2 we show the numerical results, for different values of α ∈ {0.2, 0.5, 0.7, 0.9} and for
different values of n ∈ {5, 15, 30}.
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Figure 2. Analytic and approximated solutions for problem of Example 4.1.

Example 4.2. For our next application, we show how to solve fractional variational problems with
the Lagrangian depending on the Hadamard fractional derivative. Consider the functional

J(x) =

∫ b

a

L (t, x(t), aDαt x(t)) dt,

on the set on functions that satisfy the boundary conditions

x(a) = xa and x(b) = xb,
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where xa, xb are two fixed reals. The procedure how to find a numerical approximation is explained
next. First, divide the interval [a, b] into n subintervals [tN−1, tN ] for N ∈ {1, . . . , n}, where

tN = a exp(N4T ) and 4T =
ln b

a

n
.

Denoting xN = x(tN ), applying the trapezoidal rule and taking into consideration Eq. (2.1), the
variational integral is approximated as

J(x) =

n∑
N=1

∫ tN

tN−1

f (t, x(t), aDαt x(t)) dt

≈ f
(
t0, x0, aDαt0x0

)
(t1 − t0) + f

(
tn, xn, aDαtnxn

)
(tn − tn−1)

2

+
n−1∑
N=1

f
(
tN , xN , aDαtNxN

)
2

(tN+1 − tN−1)

≈
f
(
a, xa, ˜

aDαt1x1
)

(t1 − t0) + f
(
tn, xn, ˜

aDαtnxn
)

(tn − tn−1)

2

+

n−1∑
N=1

f
(
tN , xN , ˜

aDαtNxN
)

2
(tN+1 − tN−1).

Observe that we used here the approximation

aDαaxa ≈ ˜
aDαt1x1.

We can regard this sum as a function of n − 1 unknown variables Ψ(x1, . . . , xn−1), and then to
find the optimal solution one needs to solve the system

∂Ψ

∂xN
= 0, for N ∈ {1, . . . , n− 1},

and with this we track the desired values (x1, . . . , xn−1). Observe that, in opposite to the classical
case, ∂Ψ/∂xN depends on the points xN , xN+1, . . . , xn−1.

For example, we want the global minimizer for

J(x) =

∫ 2

1

(
1Dαt x(t)− (ln t)1−α

Γ(2− α)

)2

dt,

with the restrictions
x(1) = 0 and x(2) = ln 2.

The optimal solution is x(t) = ln t since the functional takes only non-negative values and vanishes
when evaluated at x.

In Figure 3 we show the solution of the problem, for different values of α ∈ {0.2, 0.5, 0.7, 0.9}
and for different values of n ∈ {5, 15, 30}.

5. Conclusions
For all numerical experiments presented above we used MatLab to obtain the results. In

Examples 4.1 and 4.2, when we take a small number of mesh points (n = 5) we get a not so good
solution. However, increasing the value of n, the error decreases and the numerical solution
approaches the analytic solution, converging to it. From the numerical results we also notice that,
for the same values of n, as α increases the error also increases, which makes sense taking into
account formula (2.2). We fix all parameters except α, it is easy to check that the maximum for
error value increases as we increase the value of α.
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Figure 3. Analytic and approximated solutions for problem of Example 4.2.

α n E n E n E

Example 4.1

0.2 5 0.013201 15 0.0044804 30 0.0022501
0.5 5 0.015074 15 0.005199 30 0.002621
0.7 5 0.016174 15 0.0056458 30 0.0028553
0.9 5 0.017093 15 0.0060434 30 0.003068

Example 4.2

0.2 5 0.018783 15 0.0081261 30 0.0041641
0.5 5 0.026079 15 0.013255 30 0.0066303
0.7 5 0.037751 15 0.021007 30 0.01066
0.9 5 0.058731 15 0.031629 30 0.016684

Table 1. Number of mesh points, n, with corresponding error, E from formula (3.1).
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