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Abstract

In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional

Laplace operator Af’ﬁ’”) = D;ia + D;iﬁ + Dif*, where (@, 3,7) €]0,1]?, and the fractional derivatives
0 0 0

Dlofl, D;}ﬁ , Di;{” are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional
Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator
Ag_a‘ﬁ ) in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler
function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental
solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the
fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions
and fundamental solutions.
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1 Introduction

In the last decades the interest in fractional calculus increased substantially. This fact is due to on the one hand
different problems can be considered in the framework of fractional derivatives like, for example, in optics and
quantum mechanics, and on the other hand fractional calculus gives us a new degree of freedom which can be
used for more complete characterization of an object or as an additional encoding parameter. For more details
about fractional partial differential equations, their applications and their numerical solutions see [8] and the
references indicated there.

The problems with the fractional Laplace attracted in the last years a lot of attention, due especially to
their large range of applications. The fractional Laplace appears e.g. in probabilistic framework as well as in
mathematical finance as infinitesimal generators of the stable Lévy processes [1]. One can find problems involving
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the fractional Laplace in mechanics and in elastostatics, for example, a Signorini obstacle problem originating
from linear elasticity [4]. The concerning fluid mechanics and hydrodynamics to the nonlocal fractional Laplace
appears, for instance, in the quasi-geostropic fractional Navier-Stokes equation [3] and in the hydrodynamic
model of the flow in some porous media [16].

The connections between fractional calculus and physics are, in some sense, relatively new but, and more
important for the community, a subject of strong interest. In [14] the author proposed a fractional Dirac equation
of order 2/3 and established the relation between the corresponding v#—matrix algebra and generalized Clifford
algebras. This approach was generalized in [19], where the author found that relativistic covariant equations
generated by taking the n—th root of the d’Alembert operator are fractional wave equations with an inherent
SU(n) symmetry. The study of the fractional Dirac operator is important due to its physical and geometrical
interpretations. Physically, this fractional differential operator is related with some aspects of fractional quantum
mechanics such as the derivation of the fractal Schrodinger type wave equation, the resolution of the gauge
hierarchy problem, and the study of super-symmetries. Geometrically, the fractional classical part of this
operator may be identified with the scalar curvature in Riemannian geometry.

Clifford analysis is a generalization of classical complex analysis in the plane to the case of an arbitrary
dimension. At the heart of the theory lies the Dirac operator D, a conformally invariant first-order differential
operator which plays the same role as the Cauchy-Riemann operator in complex analysis. In [10, 17] the authors
studied the connections between Clifford analysis and fractional calculus, however, the fractional Dirac operator
considered in these works do not coincide with the one used here.

The aim of this paper is to present an explicit expression for the family of eigenfunctions and fundamental
solutions of the three-parameter fractional Laplace operator, as well as, a family of fundamental solutions of
the fractional Dirac operator. For the sake of simplicity we restrict ourselves to the three dimensional case,
however the results can be generalized for an arbitrary dimension. The two dimensional case was studied in
[18] without considering the connections with Clifford analysis. The authors would like to point out that the
fractional Laplace operator considered in this paper is different from the fractional Laplace operator defined
via Fourier transform (see [8]). The deduction of the fundamental solution for the fractional Dirac operator
defined via Riemann-Liouville derivatives is a completely new result in the context of fractional Clifford analysis.
The fundamental solutions of the fractional Dirac operator obtained in this paper are the basis to develop an
operator calculus theory in the context of fractional Clifford analysis.

The structure of the paper reads as follows: in the Preliminaries we recall some basic facts about fractional
calculus, special functions and Clifford analysis, which are necessary for the development of this work. In
Section 3 we use operational techniques for the two dimensional Laplace transformation and its extension to
generalized functions to describe a complete family of eigenfunctions and fundamental solutions of the fractional
Laplace operator. In the same section we compute the family of fundamental solutions for the fractional Dirac
operator. In Section 4 we obtain the analogous of the results of Section 3, but via the method of separation
of variables. Particular cases of solutions can be obtained using the obtained generic formulas and considering

2 Preliminaries

2.1 Fractional calculus and special functions

Let (D%, f) (z) denote the fractional Riemann-Liouville derivative of order a > 0 (see [11])

d\" 1 Q)
Da — . = 1 . 1
200 =(5) 1o | oo e n=lal+ L o> 1)
where [a] means the integer part of . When 0 < o < 1 then (1) takes the form
d 1 Tf@)
( a+f)(m) dx F(].—Oé)/a (m—t)a dt ( )
The Riemann-Liouville fractional integral of order o > 0 is given by (see [11])
o R S A )
(Ia+f) (.’E) - F(Oﬁ) ‘/a (.T . t)l_a dt7 T > a. (3)



We denote by I, (L) the class of functions f represented by the fractional integral (3) of a summable function,
that is f = I% ¢, ¢ € Li(a,b). A description of this class of functions was given in [15].

Theorem 2.1 A function f € I% (L1),c > 0 if and only if I"7* f € AC™([a,b]), n = [o]+1 and (177 f)*)(a) =
0,k=0,...,n—1.

In Theorem 2.1 AC"([a, b]) denotes the class of functions f, which are continuously differentiable on the segment
[a,b] up to order n — 1 and f("~Y) is absolutely continuous on [a,b]. Removing the last condition in Theorem
2.1 we obtain the class of functions that admits a summable fractional derivative.

Definition 2.2 (see [15]) A function f € Ly (a,b) has a summable fractional derivative (D2, f) (z) if (I'7%) (z) €
AC™(la, b]), where n = [a] + 1.

If a function f admits a summable fractional derivative, then the composition of (1) and (3) can be written in
the form (see [15, Thm. 2.4])

(I% D% f) (@) = fl@) — ()" @), n=la]+1. (4)

We remark that if f € I% (L) then (4) reduces to (I% D% f)(z) = f(z). Nevertheless we note that
D%, I% f = f in both cases. This is a particular case of a more general property (cf. [13, (2.114)])
(L) = DI az>0. 5)

It is important to remark that the semigroup property for the composition of fractional derivatives does not
hold in general (see [13, Sect. 2.3.6]). In fact, the property

D3 (DL 1) = D51 )
holds whenever
f(j)(a+):0, 7=0,1,...,n—1, (7)

and f € AC" ([a,b]), f™ € Ly(a,b) and n = [3] + 1.
One important function used in this paper is the two-parameter Mittag-Leffler function E, ,(z) [7], which is

defined in terms of the power series by

o0 Zn

E, . (z)= — >0, veR, zeC. 8
In particular, the function E,, , () is entire of order p = i and type o0 = 1. The exponential, trigonometric and
hyperbolic functions are expressed through (8) as follows (see [7]):

Evi(z) = e, Bay (=2°) = cos(2), Es1(2%) = cosh(2),
2l (_22) = sin(z), 2E3 2 (2’2) = sinh(z).

Two important fractional integral and differential formulae involving the two-parametric Mittag-Leffler function
are the following (see [7, p.61,p.87])

I3 ((x - a)y_lEu,V (k(m - a)”)) = (z — a)a+y_1Eu,V+oc (k(x — a)u) 9)

a

D¢, ((ac — a)”_lEW, (k(x — a)“)) =(x— a)”_o‘_lEWj_a (k(z —a)*) (10)

foralla >0,u >0,y e R,keC,a>0,z > a.
The formal approach presented in Sections 3 and 4 based on the Laplace transform leads to the solution of a
linear Abel integral equation of the second kind.

Theorem 2.3 ([7, Thm. 4.2]) Let f € Li[a,b],a > 0 and A € C. Then the integral equation

= f(z A wx— a1y T € la
ua) = f@)+ s [ =0t @ sl

has a unique solution

x

u(@) = f(z) + A / (& — )" Eaa(Ma — ) £(1) dt. (11)

a



2.2 Clifford analysis

Let {e1,---,eq} be the standard basis of the Euclidean vector space in R?. The associated Clifford algebra
Ry g is the free algebra generated by R? modulo 22 = —||z||? eg, where z € R? and e is the neutral element
with respect to the multiplication operation in the Clifford algebra Ry 4. The defining relation induces the
multiplication rules

eie; +eje; = —261‘j7 (12)
where §;; denotes the Kronecker’s delta. In particular, e? = —1 for all i = 1,...,d. The standard basis vectors
thus operate as imaginary units. A vector space basis for Ry 4 is given by the set {e4 : A C {1,...,d}} with

ea=epep...e, where 1 <[y <... <[, <d,0<7r <d, ep:=ep:=1. Eacha € Ryg can be written in the
form a =3 a4 ea, with ay € R. The conjugation in the Clifford algebra Rq 4 is defined by @ = > , a4 €a,
where €4 =€, €,_,...¢,,and ¢; = —e;j for j = 1,...,d, & = eg = 1. An important subspace of the real
Clifford algebra Ry 4 is the so-called space of paravectors Rf = R R?, being the sum of scalars and vectors.
Each non-zero vector a € R{ has a multiplicative inverse given by ﬁ

Clifford analysis can be regarded as a higher-dimensional generalization of complex function theory in the
sense of the Riemann approach. An Ry 4—valued function f over Q C R{ has the representation f = aeafa,
with components fa : 2 — Ry 4. Properties such as continuity or differentiability have to be understood com-
ponentwise. Next, we recall the Euclidean Dirac operator D = Z?Zl e; Op;, which factorizes the d-dimensional
Euclidean Laplace, ie., D? = —A = —E;l:l 835?. An Ry 4-valued function f is called left-monogenic if it
satisfies Du = 0 on Q (resp. right-monogenic if it satisfies uD = 0 on ).

For more details about Clifford algebras and basic concepts of its associated function theory we refer the
interested reader for example to [5, 9].

3 Operational approach via Laplace transform

3.1 Eigenfunctions and fundamental solution of the fractional Laplace operator

We consider the eigenfunction problem for the fractional Laplace operator

where \ € C, (a, 8,7) €]0,1]3, (z,9,2) € Q = [z0, Xo] X [y0, Yo] X [20, Zo], Z0,¥0,20 > 0, Xo, Yy, Zo < 0o, and

143 D

u(x,y, z) admits summable fractional derivatives le’, Du ' Taking the integral operator I e from
0

both sides of (13) and taking into account (4) we get

1

0 = wu(r,y,z2)— m ( 53“) (x0,y,2) — (:E_F:(Esé;a (I;gau) (z0,y, 2)

(I1+aD1+5 ) (2,9, 2) + (Il+aDl+’Y ) (z,y,2) — A (Iigfau) (z,y, 2).

Applying the integral operator I;I # to both sides of the previous expression and using Fubini’s Theorem we
0
get

0 = (I;;%) (9%972)—% (17 5) (y,Z)—(gc_rfcoy;w_1 (I;Oiﬁfo) (y.2)

_ B _ B
(250 59~ BB (00 4) G - U (e e

+ (121D ) @y 2) = A (D01 ) (2,9, 2), 14)

Ty

where we denote the Cauchy’s fractional integral conditions by

foly.2) = (117%) (0.9, 2), fily.2) = (D2su) (20,9, 2). (15)



Finally, we apply Izlr 7 to both sides of equation (14) and we use again Fubini’s Theorem to get
0

0 = () s - ST (B0 R) o) - O (10 0) 02
(Il+a]1+“f ) (2,y,2) — w (I;:—allo-whl) (z,2) — (y_l_‘?;))ﬁl (I;g-alzlg’vh0> (z,2)
FERE ) o) - Tt (B0 D)
ST ) ) A () )

which is equivalent to

(22170 (g, 2) + (D71 0) (2, 2) + (D70 ) (2, 2) = A (L0100 ) (2, 2)
1

yo Lo

(x — o)~ N ol (x —x0) L6 1+
I v — (I v
o (17157 ) (v, DA+ Fa (1700 @)
(y — yo)? 1 T4 714y (y — yo)? 1+ 714y
+ T(B) (Ia:[;r Iz;r ho) (@,2) + I(1+p) (Iﬂco I = h ) (2,2)
(2=20)""" [ itaries (2=20)" [ 11ta 148
—_ I O‘I — (I O‘I 1
where we denote the Cauchy’s fractional integral conditions by
ho(,2) = (1170) (@,00,2), Ma(e,2) = (D2) (@30, 2). (a7)
go(e,y) = (I570) @y,z0), ai(ey) = (Dlu) (2,9, 20). (18)

We observe that the fractional integrals in (16) are Laplace-transformable functions. Therefore, we may apply

the two-dimensional Laplace transform to y and z:

[ e fw) dz

0 20

F(s1,82) = L{f}(s1,52) = /
Y
Taking into account its convolution and operational properties [6, 11] we obtain the following relations:

L {Ilfﬁflfwu} (z,81,82) = sflfﬁ 5577 Uz, 51, 82),

Yo 20
1 1+,6‘ s 7 ¢
L {I +°‘I } (x,s1,82) = M/ (x —t)* U(z, 51, $2) dt,
zo
_ B-1
L {(y F?(J;)) (Ii;“]i;'yho)} (z,81,80) = e Y051 sl_ﬂ sz_l_v (I;;a%) (2,90, 52),
_ B
e F Ry 1 T

Proceeding in a similar way we obtain the Laplace transform of the remaining terms of (16). Combining all

48 +v

the resulting terms and multiplying by s; we obtain the following second kind homogeneous integral

equation of Volterra type:

(5177 + 55" = ) /
— )¢ t dt
U(x,s1,82) + T+ ) zO(sc V¥ UL, 81, 52)

= F(z,51,52) 7" (I;Oia(slho + hl)) (2,51, 82) + € 70% (Iioia(szgo + 91)) (2,51, 52),

(19)
where
x—xo)e ! T — o)<
F(x,s1,82) = % Fy(s1,82) + (F(l—l—ocz) Fi(s1,52),
Fi(s1, 52) / / fily2) e e da dy,  i=0,1. (20)



Using (11) we have that the unique solution of (19) in the class of summable functions is
Z/l(a:, S1, 82)
= Fla,s1,80) + 7 (119 (s1ho + 1) ) (@51, 52) + €70 (11 (s290 + 91) ) (.51, )
Zo Zo
- (s?’ﬁ + 8577 - )\) / (x =) Eita,14a (— (S%—FB +85t7 )\) (z— t)Ha)

0
(F(t s1,82) e "% (Iiira(slho + hl)) (t,51,82) +e770% (Iiia(Sng + 91)) (t,s1, 82)) dt,
0 0
(21)

which involves as the kernel the two-parameter Mittag-Leffler function (see (8)). Due to the convergence of the
integrals and series that appear in (21), we can interchange them and rewrite (21) in the following way:

Uz, s1,82) = (z—a0)* " FEitaa (— (si‘w + s%+'y — )\) (x — xo)Ha) Fo(s1,82)

+(x —20)®* E1ta1+4a (— (S}Jrﬂ + séJ” — /\) (x — x0)1+0‘) Fy(s1, 82)

4 e Yos1 Z(_l)n (S%Jr,@ + S%Jr”/ _ )\) (Ig(cﬁfoz)(nJrl)(slhO + h1)> (fE,Sl,SQ)

n=0 0
- " 1 1
+ e Z(—Dn ( 7 +s 1+7 /\) (Iija)(wr )(8290 + gl)) (l‘, 51, 52).
n=0 0
In order to cancel the Laplace transform we need to take into account its distributional form in Zemanian’s
space (for more details about generalized integral transforms see [20]) and the following relations:

o1+ir1 o2+irs 1 1 1 1
lim / "( +A) g( +7) Fy(s1,82) €1Y12% dg) dsy = (DZi +ﬁ)D:§ +7)fi> (y, 2),
o 0 0

71,72 —>00 0'171‘7“1 o— Z’I‘2

o1+iry

lim S?(H_’B) e51(¥—vo) ds; = (Dnil-'_'g)(s) (y . y0)7
T1—00 o1—1r1 Yo
o2+irs 1 1
lim sg( ) gs2(m20) (g, = (DnJ(r +7)5) (z — 20),
200 0'27i7”2 ZO

where ¢ = 0,1, n € Ny, § is Dirac’s delta function, and the convergence is in D’ Therefore, applying the
multinomial theorem and after straightforward calculations we get the following family of eigenfunctions of (13)

oo

(x — x0)
ux(z,y,2) = » (=1)"
MEY nz:% T((1+a)n+ )

n(l+a)+a—1

(D1+ﬂ—|—D1+7 )\)nfo(y,z)

yo

T —1x )n(l+o¢)+o¢
+Z_:H) F((1+o(c))n+1+a) (

/ (f—t)n(Ha)Jra (D1+ﬁ +D1” )\)"
ajono F(14+a)n+1+a) \ v

DI+ DT =) fily.2)

(0"(y = yo)ho(t, 2) + 0(y — yo)ha(t, 2) + 6'(2 — 20)g0(t, y) + 3(2 — 20)g1(t,y) ) dt  (22)
where the convergence of the series is in D’. From the previous calculations we obtain the following theorem,
where we describe the eigenfunctions in an operational form using the Mittag-Leffler function (8).

Agraﬁﬁ)

Theorem 3.1 The generalized eigenfunctions of the fractional Laplace operator are given in the oper-

ational form using the Mittag-Leffler function by:
ur(2,y,2) = (= 20)*"" Bita,a (—(3? — z)' (D;:{ﬁ + D;? - )\)) foly, =)

+ (@ = 20)" Ertai+a (—(fﬂ — o)t (D;;Iﬂ + Di;ﬁ - A)) fily, 2)

x
+/ (@ —1)° Briaita (—(x )t (D;IB + DU - )\))
- 0 %o

(0"(y = yo)ho(t, 2) +0(y — yo)ha(t, 2) +8'(2 — 20)90(t, y) + 0(2 — 20)91(t,y)) dt,  (23)
where A € C and fo, f1, ho, h1, go, g1 are Cauchy’s fractional conditions given by (15), (17), and (18).



Proof: = We give a direct proof of the theorem. It is based on the fact that Dii“(m —20)* 1 = 0 and
0
D;Ia(:r —xp)* = 0. We use also the fractional analogous formula for differentiation of integrals depending on
0

a parameter where the upper limit also depends on the same parameter (see [13, Section 2.7.4]). Applying the

operator Af’ﬁ’v) to (22) we get

)n(1+a)—2

AP uy (g, 2) = 3 (1) <Fx((_13j£a)n -1)

(D7 + D = 2)" foly. 2)

n=1
S (CL’ — xo)"(“ra)—l 148 - n
—1)" D DTy
+7;1 S V(FE Y ( i T ) fi(y, 2)
r ©0 (:L' - t)n(1+a)—1 " . "
)" = (D DY
+/“’0 nZl( ) L((1+a)n) ( i TP /\>

(8'(y = yo)ho(t, 2) + 6(y — yo)ha(t, 2) +0'(2 — 20)g0(t, y) + 0(2 — 20)91(t,y) ) dt
+ (Dliﬁ + Dlir’y) U)\(ZL', Y, Z)
Yo 20
Rearranging the terms of the series we obtain

Afvﬁﬁ)u)\(x’:% Z) = - (D;;IB + Dioj:y - A) ’U,)\(.’E, va) + (D;;IB + Dioir"/) U)\((E,y7 Z)

A ux(z,y, 2).
|

We would like to remark that the eigenfunctions constructed in [18] for the two-parameter Laplace operator have
a different structure and do not satisfy the eigenfunction equation, except when A = 0. A family of generalized
eigenfunctions for the fractional Laplace operator can be obtained considering A = 0 as the next theorem states.

Theorem 3.2 The generalized fundamental solution of the fractional Laplace operator AT’B’V) is given by:
ug(z,y, 2) = (x — x9)* ! Eitaa (—(x —x)t (D;;ﬁ + Di;”)) foly, 2)
+ (z = 20)* Fita,14a (‘(iﬂ —x0)' (D;}:B + D:ﬁ)) 1y, 2)
e B (o7 (205 20)

0

(0"(y —yo)ho(t, 2) +0(y — yo)ha(t, 2) + 6" (2 — 20)go(t,y) + 0(2 — 20) g1 (t,y) ) dt.  (24)

In a similar way, applying in (16) the two-dimensional Laplace transform with respect to x and y we obtain the
following generalized fundamental solutions

w0(@,y.2) = (U= 10)" " Breps (~(—w0)'" (D" + D1I7) ) ho(e, 2)
+ =10 Erroes (~(—30)"* (D224 D) (o, 2)
Y 1 1+
[ =07 Brpars (- 0" (D17 4 D))
Yo 0 0
(6"(x = z0) fo(t, z) + 0(z — mo) f1(t, 2) + 6" (2 — 20)go(x, t) + 6(2z — 20)g1(, 1)) dt.  (25)

Furthermore, a similar result can be obtained when we apply the two-dimensional Laplace transform with
respect to x and z.

Remark 3.3 It is possible to obtain from (24) the fundamental solution for the Fuclidean Laplace operator
when a = = v = 1. Since the fundamental solution of the Euclidean Laplace operator in R? is given by

1
(= 20)? + (y — yo)® + (2 — 20)%) 2, which corresponds to the following power series

> (-1 < " ) S — (26)
n=0 n (y—90)? + (2 — 20)2)" "2




defined for ’% < 1, we have to consider in (24) o = =~ =1, f1, h1, g1, ho, and go the null

functions, and fy such that

30" st = (") Gm) )

((y — y0)? + (= — 20)2)" "2

The function fo(y,z) = ((y — y0)* + (z — 20)?) 3 satisfies (27). To see this we recall that the p-dimensional

Euclidean Laplace satisfies (see [2, Ch.1])
220 (5 +1)T (552)
F(g—n—&-l)f‘(m—n)

with r = ||z||,x € RP, n € N. Therefore, for p=2 and k = —1 we obtain

n -1 2" —1-2n r (n + %) 2n)! |, ( n—3 ) —1-2n
At = —————r =2/ ‘5 = 2 1 @2n)r (28)
TG G "

2

k—2n

A"k = T

N

which leads immediately to (27) for fo(y,z) = ((y — y0)* + (z — 20)?)

3.2 Fundamental solution of the fractional Dirac operator

In this section we compute the fundamental solution for the three dimensional fractional Dirac operator defined
by

(o,B,7) 1ta 148 14y 3
DIV i=e1 D +eo Dyf +es D 2, (o, B,7) €]0,1]°. (29)
0 0 0

This operator factorizes the fractional Laplace operator Af’ﬂ ") for Clifford valued functions f given by
f(x,y,z) = ZA €AfA(33,y,Z), where e € {1761,62763,6162,6163762637616263}7 fa € ACZ(Q) and fa(zo,y,2) =
falz,yo,2) = falz,y, 2z0) = 0. In fact, for such functions we can apply the semigroup property (6) to obtain
148 1+8 14+

1ta 1ta 148 148 1ty 14y
D (D" fa) =D, D (Df fA> =Dfa D (D7 fa) =D (30)
x Zo Zo Yo Yo Yo zg 2 zg

0 0

We remark that in the case of our fractional Dirac operator, condition (7) reduces to fa(zo,y,2) = fa(z,y0,2) =
falx,y,20) = 0 for every component fa. If f € AC?(£2) doesn’t satisfy this last property it is always possible

to define g(z,y,2) = > ea (falz,y,2) — fa(zo,y,2) — fa(z,y0,2) — fal(z,y,20)) such that ga(zo,y,z) =

ga(z,yo,2) = galz,y, zo) = 0 for every component g4, and therefore, (30) still holds. Moreover, for the mixed
1+5
fractional derivatives D D fA>, due to the Leibniz’s rule for the differentiation under integral sign,

Fubini’s Theorem and Schwarz S Theorem7 we have

Lo (148 9 1 - 1 8 1 fA(w t, 2)
Do (Dyo* f“‘) or | T (552) /m (z —w)3® (12 )/ T
0 1 vf w,t,z)
7 e / / fa i dt dw
r(52) 1 (52) Ja wo (y -

1 v 1 T falw,t, 2)
T — dw dt
F(PJ)F (1;) /yo (y—t)Tﬂ zo (x—w) 2 }

9
ox

_ 9 1 /y 1 9 1 / fA (w,t,z) dw gt
o\ 1 (52) w0 F 08 | T oy (o)™
1+8 lta
= D (D7 fa). (31)
Yo o
In a similar way we conclude that
lta 1ty 1ty lfa 1+8 1ty 1ty 1+8
D (D fa) =D (D5 fa) and Dz(foA)—Df<szA). (32)
Zo %0 20 Lo Yo 20 20 Yo



From (30), (31), (32), and the multiplication rules (12) of the Clifford algebra, we finally get
Dsraﬁﬁ) (Dsra,ﬁy’y)f) _ _AS:!ﬁKY)f? (33)

i.e., the fractional Dirac operator factorizes the fractional Laplace operator. We remark that the factorization
property (33) also holds for functions which are continuous on (g, Xo] and integrable on any subinterval of
[0, Xo] since the semigroup property (6) remains valid in this case (see [12]).

Dia’ﬁﬂ)

In order to get the fundamental solution of we apply this operator to the fundamental solution (24).

1ta
In the following theorem, to compute D ? uwe make use of the fractional analogous formula for differentiation
0
of integrals depending on a parameter where the upper limit also depends on the same parameter (see [13,
Section 2.7.4)).

DS»a.ﬂﬁ)

Theorem 3.4 A family of fundamental solutions for the fractional Dirac operator s given by

U0($7y72) =€ U1($7y72) + €2 UQ(fE,y,Z) + €3 US(‘,Evwa)v (34)

where

14+a
Ul(xail/,Z) = (-Draf UO) (xayﬂz)

a—3
= (;[; — (EO) 2 E1+Q7QTA (—(l‘ — .’170)1+Oé (D;'}_B + Dig’r_’y)) fO(y7 Z)
a—1
+ (x —mg) 2 El*“vHTa (—(33 — 330)1+a (D;gﬁ + Dig:y)) f1(y, 2)

x
+ / (z =) By g 1i0 (—(x — )Lt (D;;{ﬁ + Di;ﬁ))

Zo

(0"(y = yo)ho(t, 2) + 6(y — yo) (£, 2) + 6" (2 — 20)g0(t,y) + (2 — 20)g1(t, y)) dt  (35)

148

Us(z,y,2) = (Dyof Uo) (z,9,2)
— (o — p)a—1 (o \lta (P18 14y
— (2 — o) (EHW( (z — o) (Dy; +D] ))D
s
+ (2= 20)° (EHQ,HQ (=@ —zo)*e (D1P+ D7) D ¢ ) f(9.2)
Yo 20 0

@ 148
[ @0 (Busnsa (~ -0 (D74 D27)) D))
T 0]

0

(6"(y = yo)ho(t, 2) + 8(y — yo)ha (£, 2) + 0" (2 = 20)g0(t,y) + 6(2 — 20)g1(t, y)) dt  (36)

1+8

UB(xa Y, Z) = (Dyf U()) (1’7 Y, Z)
— (2 —20)* ! (EHOW (—(x ) He (D;:{’B + D;ﬁ)) D
e (B (e 2075 (02774 ) D) 9
* o _ _ 1+ 1+p5 14+~ T’Y
+ /zo (z —t) (EHQ,HO, ( (- t) (Dyo+ + D ) D )
(0"(y = yo)ho(t, 2) +(y — yo)ha(t, 2) + &'(2 — 20)90(t, y) + 0(2 — 20)g1(t,y)) dt.  (37)

The functions fo, f1, 90, 91, ho, h1 are Cauchy’s fractional conditions given by (15), (17), and (18).

Remark 3.5 [t is possible to obtain from (34) the fundamental solution for the Fuclidean Dirac operator when
a = =v=1. Indeed, since the fundamental solution of the Euclidean Dirac operator in R> is given up to a
constant by
_(z—w0) e1+(y —yo) e2+ (2 —20) €3 (39)
(2 —0)2 + (¥ — %0)* + (2 — 20)?)

3
2



which corresponds to the following vector power series

o) . n+ % (m _ x0)2n+1 )
_ -1 €1
(Z:o( ) ( " ) (4= 90)%+ (2 —20))""
. w [ n+3 ( — 560) n(y Y0) )
_ _1 3 e
(S () )
) )

—<i<—m (M;) <w—xo> "z = 20
n ((
we have to consider in (34) f1, h1, g1, ho, and go the null functions, and fo such that

n=0 Y —y0)? + (2 — 20)?)
(2n + 1)! (”25 >
(Dz—i—Dg)"HfO(y,z) =

((y — y0)? + (= — 20)2)""?

(20)! ( e )(yy0>
Dy (D +D2)" foly.2) = -

Nl

n+

M)

3

(y—yo)2 + (2 —20)2)" "2

n—l—% )(z—zo)

n

(2n) (
Dz D;—FD? nf( 7Z):_ 3
( ) oty (5 —10)2 + (2 — 20)2)""

The function fy that satisfies the three conditions in (39) is the same function as in case of the Laplace. In

act, from 1t 18 not difficult to see that the function fo(y,z) = ((y — yo)* + (2 — 20 % satisfies conditions
fact, fi 28 difficul hat the fi f 2 )2

(39).

Remark 3.6 As a final remark we would like to point out that if in the beginning of this section we con-

(39)

sider u(x,y, z) admitting a summable fractional derivative (D;Oio‘u)(x,y,z) by x and belonging to I;;B(Ll) and

I;_”(Ll) by y and z, then in expressions (22), (24), (35), (36), and (37), the last term will not appear due
0
to Theorem 2.1. In this case the expressions obtained can be considered classical eigenfunctions and classical

fundamental solutions.

4 Method of separation of variables

4.1 Eigenfunctions and fundamental solution of the fractional Laplace operator

Let us consider again equation (13)

and assume that u(z,y, 2) = u1(x) us(y) us(z). Substituting in (16) and taking into account the initial conditions
(15), (17), and (18) we obtain

w1 () (I;;BUQ(y) IZI(?VUp)(z)) + ua(y) (I;}'O‘ul(:v) I:¥WU3(Z))
+us(2) (Iioio‘ul(x) I;;ﬁuQ(y)) (x,y,2) — A (Iioiaul) (2) (I;OiﬂuQ) (y) (Izlofyu;g) (2)

x—xg)e ! 1 1 T —x9)" (1 1
= al(l"(éS (Iy;BUQ(y) IZ;’YU3(Z)> + a2(1—‘(1+061) ([yjﬁug(y) I _?_L'VU:;( ))

_ B-1 _
# 0 I (1) 1)+ b S (1) 1 0(2)

INQE 0 (14 p8) \ =
TR (L) 1) + apg (1) 17 ),

(40)

10



where a; = f;,b; = h;,¢; = g; € C, i = 1,2, are constants defined by the initial conditions (15), (17), and (18).
Supposing that (IHO‘ ) (x) (I Thu ) (y) (Ilfyu?,> () #0, for (z,y, z) € Q, we can divide (40) by this factor.
Separating the variables we get the following three Abel’s type second kind integral equations:

ui(z) — p (I;;am) () = a1 (@ _F?COV;Q +az (liv(l_—foci) ) (41)
1 L w=w) (- w)’

wsly) +v (17702) () = b by (42)

uz(2) + (p—A—v) (Ili”ug) (2) = a (2 _F?f;gy +c2 (Fz(l_ji;v (43)

where A, pu, v € C are constants. We observe that the equality
(1ow) @) (1 u2) () (£77us) (2) = 0,

for at least one point (&,7,0) agrees with (40), (41), (42), and (43). Solving the latter equations using
(11) in Theorem 2.3 and after straightforward computations we obtain the following family of eigenfunctions

Un 0 (T, Y, 2) = ur () uz(y) us(z),

w(@) = a1z — 20)*" Erpa (0@ — 20)*®) + as(@ — 20)* Ervatta (1 — 20)'), (44)
us(y) = b1y — yO) - E1+ﬁ,ﬁ (*V(y — y0)1+ﬂ) +bo(y — yo)ﬁ Eiipits (*V(y _ y0)1+ﬂ) , (45)
us(2) = e1(2 = 20) ™ Fryy (0= A=)z = 20)'"7)

+ea(z — 20)7 Eigyaiy (0= X —v)(z — 20)"17). (46)
Remark 4.1 In the special case of o = =~ =1 the functions ui, us and us take the form

ui(z) = a1 cosh(\/u (& —x0)) + % sinh (/i (z — o)),
usly) = b cos (VP (5~ 30)) + 2 sin (V7 (5~ o))

NI
us(z) = ¢ cosh (\/m (z — zo)) + % sinh (\/m (z — zo))

which are the components of the fundamental solution of the Laplace operator in R? obtained by the method of

separation of variables.

4.2 Fundamental solution of the fractional Dirac operator

Following the procedure presented in Section 3.2, the fundamental solution for the fractional Dirac operator

D(f’ﬁm via separation of variables is given by

U(z,y,z) = e1 ua(y) ug(z) (D?ul) () + e2 u1(z) us(z) (D;;EUQ) (y)

+ o5 (@) way) (D, 7 us) (2), (47)

where wuy, us, usg are given respectively by (44), (45), (46) and

a—1

1do a—3
(sz u1> (x)=a1 (x —x0) 2 B oo (@ — 20)'™*) +az (x —wo) 2 B o 15 (1(@ — 20)' ™) (48)

B—1

"8 B3
(D ; U2> W) =01 (y—w0) = Erygo (~v(y—90)"") +b2 (y—90) 7 Epppres (—v(y—w)'7) (49)

+ep (2 —20)7 7 Bl 1ta (—p+A+v)(z—20)"17) (50)
Remark 4.2 In the special case of « = = =1, expressions (48), (49), and (50) take the form
(Dgu1) () = a1/p sinh (/i (= 20)) + ag sinh (/i (z — o)),
(Dyuz) (y) = biv/v sin (Vv (y —yo)) + ba cos (Vv (¥ — o)) »
(Dzus) (2) = ery/=p+ A+ v simh (Vie— A= v (2 = 20)) + ezsinh (V= A= v (2 = 20)),

11



which are the components of the fundamental solution of the Dirac operator in R3 obtained by the method of

separation of variables.
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