
Bias-correction of Kalman filter estimators associated to1

a linear state space model with estimated parameters2

Marco Costaa,b, Magda Monteiroa,b
3

aSchool of Technology and Management of Águeda, University of Aveiro, Apartado 473,4
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This paper aims to discuss some practical problems on linear state space9

models with estimated parameters. While the existing research focuses on10

the prediction mean square error of the Kalman filter estimators, this work11
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particular, it is discussed the impact of the bias in the invariant state space14

models. The theoretical results presented in this work provide an adaptive15
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is applied to two data set: in the calibration of radar precipitation estimates18

and in the global mean land-ocean temperature index modeling.19
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1. Introduction22

State space models have been largely applied in several areas of applied23

statistics. In particular, the linear state space models have desirable proper-24

ties and they have a huge potential in time series modeling that incorporates25

latent processes.26

Once a model is placed in the linear state space form, the most usual algo-27

rithm to predict the latent process, the state, is the Kalman filter algorithm.28

This algorithm is a procedure for computing, at each time t (t = 1, 2, . . .),29

the optimal estimator of the state vector based on the available information30

until t and its success lies on the fact that is an online estimation procedure.31

The main goal of the Kalman filter algorithm is to find predictions for the32

unobservable variables based on observable variables related to each other33

through a set of equations forming the state space model. Indeed, in the34

context of linear state space models, the Kalman filter produces the best lin-35

ear unbiased estimators. When the errors and the initial state are Gaussian,36

the Kalman filter estimators are the best unbiased estimators in the sense of37

the minimum mean square error. However, the optimal properties only can38

be guaranteed when all model’s parameters are known (Harvey, 1996). If the39

model is nonlinear, it must be considered the equation of optimal filtering40

(Stratonovich, 1960; Dobrovidov et al., 2012). However, as it was proved41

in Markovich (2015), when the unobservable Markov sequence is defined by42

a linear equation with a Gaussian noise, the equation of optimal filtering43

coincides with the classical Kalman filter.44
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In practice, some or even all model’s parameters are unknown and have to45

be estimated. When the true parameters Θ of the linear state space model46

are, for instance, substituted by their maximum likelihood ML (or other)47

estimates, Θ̂, the theoretical properties of Kalman filter estimators are no48

longer valid. The usual approach in the analysis of the effects (implications)49

of applying estimates rather than using true values is to recalculate the mean50

square errors of both one-step-ahead estimator and update estimator of the51

unknown state βt, Pt|t−1 and Pt|t, respectively. This approach is discussed in52

the literature, for instance in Ansley and Kohn (1986) and Hamilton (1986)53

or more recently in Pfeffermann and Tiller (2005) and it relies on the fact54

that substituting the model parameters by their estimates in the theoretical55

mean square error (MSE) expression, that assumes known parameters values,56

results in underestimation of the true MSE.57

Indeed, denoting by β̂t|t(Θ̂) the optimal filter estimator of βt based on the58

observations up to time t substituting Θ by Θ̂, the MSE of the estimation59

error is60

MSEt|t = E

{[
β̂t|t(Θ̂)− βt

] [
β̂t|t(Θ̂)− βt

]′}
= Pt|t + E

{[
β̂t|t − β̂t|t(Θ̂)

] [
β̂t|t − β̂t|t(Θ̂)

]′}
.

The first term of the sum is the uncertainty contribution of the Kalman61

filter resulting from the estimation of state when the model parameters are62

known. The second term reflects the uncertainty due to the estimation of63
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parameters.64

Usually, the existent literature investigates methodologies to the second65

parcel, that is, the contribution to the MSEt|t resulting from ’parameters un-66

certainty’. In Hamilton (1986) it is suggested the application of Monte Carlo67

techniques combining with the ML estimation. From another perspective,68

Ansley and Kohn (1986) proposed to approximate Pt|t by Pt|t(Θ̂) and to ex-69

pand β̂t|t(Θ̂) around β̂t|t until the second term. These works were extended70

in a Bayesian approach in Quenneville and Singh (2000). Wall and Stoffer71

(2002) proposed a bootstrap procedure for evaluating conditional forecast72

errors that requires the backward representation of the model. Tsimikas and73

Ledolter (1994) presented an alternative way to build the restricted likelihood74

function, also using mixed effects models.75

Pfeffermann and Tiller (2005) studied non-parametric and parametric76

bootstrap methods. Also, a bootstrap approach was adopted in the esti-77

mation of the mean squared prediction error of the best linear estimator of78

nonlinear functions of finitely many future observations in a stationary time79

series in Bandyopadhyay and Lahiri (2010). Rodŕıguez and Ruiz (2012) pro-80

posed two new bootstrap procedures to obtain MSE of the unobserved states81

which have better finite sample properties than both bootstraps alternatives82

and procedures based on the asymptotic approximation of the parameter83

distribution.84

In this work it is investigated the parameters bias propagation into Kalman85

filter estimators, which results allow proposing an adaptive correction algo-86
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rithm of Kalman filter estimators bias based on an initial parameters esti-87

mates. This procedure allows an improvement in modeling of two relevant88

applications: the calibration of radar precipitation estimates and in the mod-89

eling of the global mean land-ocean temperature index between 1880 and90

2013.91

2. The state space model92

Consider the linear state space model represented by the equations93

Yt = Htβt + et (1)

βt = µ+ Φ(βt−1 − µ) + εt, (2)

where Yt is a k × 1 vector time series of observable variables at time t,94

which are related with the m × 1 vector of unobservable state variables, βt,95

known as the state vector, µ is a m× 1 vector of parameters, Φ is a m×m96

transition matrix and the disturbances et and εt are k× 1 and m× 1 vectors,97

respectively, of serially uncorrelated white noise processes with zero mean98

and covariance matrices Σe = E(ete
′
t), Σε = E(εtε

′
t) and E(etε

′
s) = 0 for all t99

and s. Although the state process {βt} is not observable, it is generated by100

a first-order autoregressive process according to (2), the transition equation.101

All the k ×m matrices Ht are assumed to be known at time t− 1.102

An important class of state space models is given by Gaussian linear103

state space models when the disturbances et and εt and the initial state are104
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Gaussian. The state space model (1)-(2) does not impose any restriction on105

the stationarity of the state process {βt}. However, in many applications106

there is no reason to assume that the state process is not stationary.107

When the state process’s stationarity is suitable it can be assumed that108

the state vector βt is a stationary VAR(1) process with mean E(βt) = µ and109

transition matrix Φ with all eigenvalues inside the unit circle, i.e.,110

|λi(Φ)| < 1 for all λi such that |Φ− λiI| = 0, (3)

and with covariance matrix Σ, which is the solution of the equation Σ =111

ΦΣΦ′ + Σε.112

Usually, the linear state space models are represented considering a state113

equation as114

βt = Φβt−1 + εt

or in a simply way taking Φ = I, i.e., considering that the state process115

{βt} is a random walk. However, the state space formulation (1)-(2) is more116

general since this formulation additionally allows the state to be a nonzero117

mean stationary process. When the state process {βt} is non-stationary118

the transition equation can be rewritten as βt = C + Φβt−1 + εt, where119

C = (I − Φ)µ and the state may be non- stationary VAR(1) process.120
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2.1. The Kalman filter121

The Kalman filter provides optimal unbiased linear one-step-ahead and122

update estimators of the unobservable state βt. Briefly, the Kalman filter123

is an iterative algorithm that produces, at each time t, an estimator of the124

state vector βt which is given by the orthogonal projection of the state vector125

onto the observed variables up to that time.126

Let β̂t|t−1 denote the estimator of βt based on the observations Y1, Y2, ..., Yt−1127

and let Pt|t−1 be its covariance matrix, i.e. E[(β̂t|t−1 − βt)(β̂t|t−1 − βt)′], the128

MSE matrix. Since the orthogonal projection is a linear estimator, the fore-129

cast of the observable vector Yt is given by Ŷt|t−1 = Htβ̂t|t−1.130

When, at time t, Yt is available, the prediction error or innovation, ηt =131

Yt−Ŷt|t−1, is used to update the estimate of βt (filtering) through the equation132

β̂t|t = β̂t|t−1 +Ktηt,

where Kt is called the Kalman gain matrix and is given by133

Kt = Pt|t−1H
′
t(HtPt|t−1H

′
t + Σe)

−1.

Furthermore, the MSE of the updated estimator β̂t|t, represented by Pt|t,134

verifies the relationship Pt|t = Pt|t−1 − KtHtPt|t−1. On the other hand, at135

time t, the forecast for the state vector βt+1 is given by the equation136

β̂t+1|t = µ+ Φ(β̂t|t − µ)
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and its MSE matrix is Pt+1|t = ΦPt|tΦ
′ + Σε. The Kalman filter algorithm137

is initialized with β̂1|0 and P1|0. For more details on Kalman filter algorithm138

see Harvey (1996) and Shumway and Stoffer (2006).139

When the state process is stationary, the Kalman filter algorithm can140

be initialized considering that initial state vector β0 has β̂1|0 = µ and a141

covariance matrix vec(P1|0) = [Im2 − (Φ ⊗ Φ)]−1vec(Σε), where vec and ⊗142

are the vec operator and the Kronecker product, respectively. In the non-143

stationarity case, the initialization of the Kalman filter can be incorporated144

in the estimation procedure or can be specified in terms of a diffuse or non-145

informative prior (Harvey, 1996).146

2.2. Estimation of the parameters147

In practice, the parameters Θ = (µ,Φ,Σe,Σε) are unknown and they must148

be estimated. When the disturbances et and εt are normally distributed the149

Kalman filter estimators minimizes the MSE when the expectation is taken150

over all the variables since, in this case, the orthogonal projection coincides151

with the conditional expectation,152

β̂t|t = E(βt|Yt, ...) and β̂t|t−1 = E(βt|Yt−1, ...). (4)

Thus, the conditional mean estimator is the minimum mean square es-153

timator of βt and it is unbiased in the sense that the expectation of the154

estimation error is zero (Harvey, 1996). So, it is usually assumed the errors155

normality in several applications, nevertheless, some authors studied other156
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appropriated methodologies for non-Gaussian errors.157

The parameters estimation problem in state space models with non-158

Gaussian errors was treated in more detail in Carlin et al. (1992) and Shep-159

hard and Pitt (1997), which focus on Markov chain Monte Carlo to carry160

out simulation smoothing and Bayesian posterior analysis of parameters.161

Furthermore, the works of Alpuim (1999) and Costa and Alpuim (2010)162

were based on distribution-free estimators. Ng et al. (2013) proposed non-163

parametric ML estimators of forecast distributions in a general non-Gaussian,164

non-linear state space setting.165

The theoretical properties of the Gaussian ML estimates are very desir-166

able since the distribution assumption is not being significantly violated. Un-167

der the assumption of normality, the log-likelihood of a sample (Y1, Y2, ..., Yn)168

can be written through conditional distributions, yielding169

logL(Θ;Y1, Y2, ..., Yn) = −n
2

log(2π)− 1

2

n∑
t=1

log(|Ωt|)−
1

2

n∑
t=1

η′tΩ
−1
t ηt,

where170

Ωt = HtPt|t−1H
′
t + Σe. (5)

It is possible to obtain the ML estimates maximizing the log-likelihood171

function in order to the unknown parameters using numerical algorithms,172

namely, the EM algorithm (Dempster et al., 1977) or the Newton-Raphson al-173

gorithm (Harvey, 1996). An alternative is the optimization algorithm BFGS174

used in Franco et al. (2008).175
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3. Bias of the Kalman filter estimators176

This section analyzes the bias propagation of the estimates of the model’s177

parameters into the state estimators extending the preliminary work of Mon-178

teiro and Costa (2012). The usual approaches focus in the correction of the179

estimated mean square errors of the Kalman filter estimators, while this work180

focuses on the Kalman filter estimators bias, i.e., on the point estimation of181

the Kalman filter estimates.182

The state process structure of a VAR(1) associated to the Kalman filter183

estimators implies that the bias propagation is additive in the µ estimation.184

This fact allows investigating the propagation of this bias into Kalman filter185

estimators.186

The approach presented in the following sections does not assume any187

distribution or estimation method to the parameters. These results are based188

on the linearity of the model and unbiased properties of the Kalman filter189

estimators.190

3.1. Linear propagation bias191

Consider a linear state space model (1)-(2) where it is admitted that all192

parameters are known except the vector µ that is estimated with an error,193

i.e.,194

µ̂ = µ+ λ,

where λ is the estimation error.195
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Let Ŷt|t−1(Θ̂) be the one-step-ahead forecast of Yt obtained with Θ̂ and196

similarly β̂t|t−1(Θ̂) and β̂t|t(Θ̂) for the state estimators.197

As the Kalman filter estimators are linear on µ, the estimation error λ of198

µ will influence them additively, i.e.,199

Ŷt|t−1(Θ̂) = Ŷt|t−1 + bias(Ŷt|t−1(Θ̂))

β̂t|t−1(Θ̂) = β̂t|t−1 + bias(β̂t|t−1(Θ̂))

β̂t|t(Θ̂) = β̂t|t + bias(β̂t|t(Θ̂)).

If the state process is stationary the starting value β̂1|0(Θ̂) for the Kalman200

filter is given by the mean of the unconditional distribution of the state vector.201

So, in this case we have β̂1|0(Θ̂) = µ̂ = µ+ λ.202

If the state is not stationary we consider β̂1|0(Θ̂) = β̂1|0 + λβ̂1|0(Θ̂).203

The bias induced in forecast of Yt is given by204

Ŷt|t−1(Θ̂) = Htβ̂t|t−1(Θ̂)

= Ŷt|t−1 +Htbias(β̂t|t−1(Θ̂))

which induces a bias in the filtering stage, namely,205

β̂t|t(Θ̂) = β̂t|t−1(Θ̂) +Kt(Yt − Ŷt|t−1(Θ̂))

= β̂t|t + (I −KtHt)bias(β̂t|t−1(Θ̂)).

Additionally, the bias of the one-step-ahead forecast has the form206
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β̂t|t−1(Θ̂) = µ̂+ Φ(β̂t|t(Θ̂)− µ̂)

= β̂t|t−1 + (I − Φ)λ+ Φbias(β̂t−1|t−1(Θ̂)).

In a recursively way, we have,207

bias(β̂1|0(Θ̂)) = λ

bias(β̂t|t(Θ̂)) = (I −KtHt)bias(β̂t|t−1(Θ̂)) (6)

bias(β̂t|t−1(Θ̂)) = (I − Φ)λ+ Φbias(β̂t−1|t−1(Θ̂)) (7)

which can be written as208

bias(β̂t|t(Θ̂)) = (I −KtHt)(Im − Φ)λ

+(I −KtHt)Φbias(β̂t−1|t−1(Θ̂))

209

bias(β̂t|t−1(Θ̂)) = (I − Φ)λ+ Φ(I −Kt−1Ht−1)×

×bias(β̂t−1|t−2(Θ̂))

through the application of (7) and (6), respectively.210

These equations allow obtaining non-recursive analytical expressions for211

forecast and filter bias. These results are presented in Proposition 1 under212

the convention
∑t

k=1 uk = 0 for t < 1 and all uk.213
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Proposition 1. Consider a linear state space model (1)-(2) with bias(β̂1|0(Θ̂)) =214

λ and assume that the remaining parameters are known.215

Then, for t ≥ 2,216

bias(β̂t|t−1(Θ̂)) =

[(
I +

t−2∑
k=1

k∏
i=1

Φ (I −Kt−iHt−i)

)
×

× (I − Φ) +
t−1∏
i=1

Φ (I −Kt−iHt−i)

]
λ

and217

bias(β̂t|t(Θ̂)) = (I −KtHt)

×

{[
I +

t−2∑
k=1

k∏
i=1

Φ (I −Kt−iHt−i)

]

× (I − Φ) +
t−1∏
i=1

Φ (I −Kt−iHt−i)

}
λ.

All technical details and proofs are given in the Appendix.218

This proposition shows that, under the considered conditions, the induced219

forecast and filter bias are proportional to the vector bias whose proportion-220

ality constant is given by the expressions above. However, these expressions221

can be simplified in the invariant models, i.e., when matrices Ht = H do not222

depend on time, as follows in the next subsection.223

3.2. Invariant linear state space models with a stationary state224

Consider an invariant linear state space model with equations (1)-(2), i.e.,225

Ht = H for all t, and that the stationarity condition (3) holds. In this case,226

the Kalman filter converges to the steady-state Kalman filter rapidly.227
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Briefly, it means that the sequence {Pt|t−1} converges to a steady matrix

P which verifies the Riccati equation, and the sequence {Kt} converges to a

steady matrix K, (Harvey, 1996), that verifies the equation

K = PH(H ′PH + Σe)
−1.

The next corollary expresses the Proposition 1 for the steady state of the228

univariate state space model (m = 1). To differentiate clearly the results229

obtained for the univariate case, the following results are presented using230

lowercase letters (for example, H ≡ h, Φ ≡ φ, Σe ≡ σ2
e , etc.).231

Corollary 1. The limit of equation of the Proposition 1, when t goes to232

infinity, is given by233

lim
t→+∞

bias(β̂t|t−1(Θ̂)) =
(1− φ)

1− φ(1− kh)
λ

and234

lim
t→+∞

bias(β̂t|t(Θ̂)) =
(1− φ)

1− φ(1− kh)
(1− kh)λ.

Since in the steady-state235

kh =
ph2

ph2 + σ2
e

,

we have 0 < kh < 1. So, it can be concluded that the bias of Kalman filter236

update estimator are smaller than the one-step ahead bias. When h is large,237

kh is approximately equal to 1, thus, in this case, the update and forecast238

bias are approximately zero and λ(1 − φ), respectively. If h is small, then239
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kh is approximately zero and, in this case, both update and forecast bias240

are equal to λ. Since bias of the one-step ahead and update estimators are241

related with bias λ, it is important to find an estimator for it.242

4. The bias-correction procedure243

In this section it is proposed a procedure which combines the estimation244

of the bias λ through the Kalman filter recursions with the bias propagation245

equations obtained in the Proposition 1.246

The Kalman filter estimators bias obtained in Proposition 1 can be writ-247

ten as248

bias(β̂t|t−1(Θ̂)) = At−1(Θ̂)λ

and249

bias(β̂t|t(Θ̂)) = Bt(Θ̂)λ,

where At−1(Θ̂) and Bt(Θ̂) are functions of Θ̂ at time t−1 and t, respectively.250

Thus,251

β̂t|t−1(Θ̂)− β̂t|t(Θ̂) = β̂t|t−1 − β̂t|t + bias(β̂t|t−1(Θ̂))−

−bias(β̂t|t(Θ̂))
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by that,252

E[β̂t|t−1(Θ̂)− β̂t|t(Θ̂)] = E[β̂t|t−1 − β̂t|t]

+[At−1(Θ̂)−Bt(Θ̂)]λ.

As the Kalman filter estimators are unbiased in the sense that the expec-253

tation of the estimation error is zero, follows that254

E(β̂t|t−1 − βt) = E(β̂t|t − βt) = 0,

so,255

E[β̂t|t−1(Θ̂)− β̂t|t(Θ̂)] = [At−1(Θ̂)−Bt(Θ̂)]λ.

On the one hand, the factor [At−1(Θ̂)−Bt(Θ̂)] depends solely on the vector256

of parameters estimates. On the other hand, we can drop the expectation257

operator in E[β̂t|t−1 − β̂t|t] which is asymptotically equivalent (Harvey 1996,258

pp 142), i.e.,259

E[β̂t|t−1(Θ̂)− β̂t|t(Θ̂)] ≈ β̂t|t−1(Θ̂)− β̂t|t(Θ̂).

An estimator λ̂ can be obtained through the least squares method, i.e.,260

λ̂ =

{
n∑
t=1

[At−1(Θ̂)−Bt(Θ̂)]′[At−1(Θ̂))−Bt(Θ̂)]

}−1

×
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n∑
t=1

[At−1(Θ̂)−Bt(Θ̂)]′(β̂t|t−1(Θ̂)− β̂t|t(Θ̂)). (8)

On the one hand, the one-step-ahead forecast and the update estimate of261

the state have different uncertainties as estimators of βt. If the state process262

variability is prevalent over the observation equation variance there are a263

significant disparity between β̂t|t−1(Θ̂) and β̂t|t(Θ̂). On the other hand, if the264

sample size is not significantly large, the approximation of the expectation265

to the difference on the state estimates is not a good option. In both cases266

it is suggested to take the median as a robust measure, i.e.,267

λ̂i =
median{β̂t|t−1(Θ̂)− β̂t|t(Θ̂)}i
median{At−1(Θ̂)−Bt(Θ̂)}i

, (9)

where the quotient is defined as element by element of vectors when the268

state process {βt} is multivariate. This approach is recommended having269

into account its robustness to outliers existence.270

When the state process {βt} is stationary it can be performed a recur-271

sive procedure combining the parameter estimation method and state bias272

correction until a convergence criteria be satisfied. This procedure allows to273

correct the remaining parameters simultaneously with the mean bias. How-274

ever, when the state is a non-stationary process the parameters estimation275

method indicates µ̂ = 0 since the global mean of {βt} does not exist. In276

this case, the recursive scheme does not make sense and the procedure for277

correcting the bias is performed a single time.278
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The proposed procedure of bias correction is implemented by the next279

algorithm.280

Algorithm. Let (y1, y2, ..., yn) be a time series generated by the model (1)-(2)281

and a small positive value δ.282

1. Estimate the parameters by an estimation method and take these esti-283

mates as284

Θ̂(1) = (µ̂(1), Φ̂(1), Σ̂
(1)
e , Σ̂

(1)
ε );285

2. Let Θ̂(i) be the vector of parameters in the iteration i:286

(a) Compute the Kalman filter estimates, β̂t|t−1 and β̂t|t, by the Kalman287

filter algorithm with Θ̂(i);288

(b) Compute the functions A(Θ̂(i)) and B(Θ̂(i)) according to (6) and289

(7);290

(c) Estimate the bias λ according to the estimator (8) or the estimator291

(9);292

(d) Re-estimate the vector

µ̂(i+1) = µ̂(i) + λ̂;

(e) Obtain the new estimates Φ̂(i+1), Σ̂
(i+1)
e and Σ̂

(i+1)
ε using the adopted293

estimation method;294

(f) Take Θ̂(i+1) = {µ̂(i+1), Φ̂(i+1), Σ̂
(i+1)
e , Σ̂

(i+1)
ε };295

(g) If Θ̂(i+1) verifies a convergence condition, for instance

||Θ̂(i+1) − Θ̂(i)|| < δ,

18



then Θ̂∗ = Θ̂(i+1), else return to 2. a).296

3. Run the Kalman filter algorithm and obtain the corrected Kalman filter297

estimates β̂∗t|t−1 and β̂∗t|t taking into account the parameters Θ̂∗.298

5. Applications299

The aim of this section is to present and discuss two applications of the300

proposed methodology in order to show practical improvements in state space301

modeling through the bias-correction procedure. The first discusses the case302

of a state space model with a stationary state and the second explores the303

non-stationary case.304

5.1. Calibration of radar measurements via rain gauge data305

Rainfall is a difficult phenomenon to model and predict due to strong306

spatial and temporal heterogeneity (Bruno et al., 2014). Hourly rainfall307

data may be provided by both weather radar and rain gauges. However,308

rain gauges are sparsely distributed on the ground and they provide local309

measurements whereas radar data are available on a fine grid of pixels (for310

instance cells with size 2Km×2Km) allowing a spatial estimation of the rain-311

fall. Nevertheless, radar measurements are less accurate then rain gauges312

estimates. Thus, it is very usual to combined both measurements in order313

to obtain accurate mean area estimates of the rainfall. One of the most314

popular approach to combined both estimates is to relate them using state315

space models. There are many state space formulations used in the litera-316

ture (Chumchean et al., 2006; Costa and Alpuim, 2011; Leö et al., 2013).317
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The main idea is to consider that radar measurements (or their transforma-318

tion) can be calibrated through a state space model based on the rain gauges319

measurements by a stochastic relation.320

Consider Gt and Rt the rain gauges and the radar estimates, respectively,321

with t = 1, 2, ..., n. The radar estimate Rt is the mean area rainfall of the322

cell where the rain gauge is located. These estimates are related through the323

state space model324

Gt = Rtβt + et

βt = µ+ Φ(βt−1 − µ) + εt,

where the radar estimate Rt is known and the state βt, at time t, is a stochas-325

tic calibration factor in the sense that it corrects the estimate Rt given the326

rain gauge’s estimate. On the one hand, the observation equation’s error et327

can be seen as an error associated to both the rain gauge device and the328

measurement reading process. On the other hand, the state equation error329

εt is associated to the calibration process variability.330

The data analyzed correspond to 24 hours of a storm occurred at April331

28, 2000 in the Alenquer River basin in Portugal located around 40Km north332

of Lisbon. This area has several rain gauges and is under the radar umbrella333

installed in Cruz do Leão. It is considered the rainfall estimates of both the334

rain gauge located in Olhalvo location and the respectively radar estimates335

associated to the cell 2Km×2Km where this rain gauge is situated.336
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Table 1: Parameters estimates in the iterative procedure.

iteration µ̂ φ̂ σ̂2
ε σ̂2

e × 10−4

1 1.62448 0.24429 0.69714 3.3881
2 1.19880 0.39074 0.79139 2.4127
3 1.21813 0.38034 0.78542 2.4234
4 1.21437 0.38235 0.78658 2.4211
5 1.21508 0.38197 0.78636 2.4215
6 1.21494 0.38204 0.78640 2.4214
7 1.21497 0.38204 0.78640 2.4214
8 1.21497 0.38204 0.78640 2.4214

Table 2: Estimate of the mean bias and the convergence criterion in the iterative procedure.

iteration λ̂ ||Θ̂(i) − Θ̂(i−1)||

2 4.26×10−1 4.60×10−1

3 -1.93×10−2 2.27×10−2

4 3.76×10−3 4.42×10−3

5 -7.15×10−4 8.41×10−4

6 1.37×10−4 1.61×10−4

7 -2.63×10−5 2.63×10−5

8 1.80×10−8 1.80×10−8

Due to small sample dimension, Table 1 presents the parameters esti-337

mates obtained in the iteration procedure considered the estimator (9). The338

adopted parameter estimation method was the ML considering Gaussian dis-339

turbances. The estimation method fitted a stationary AR(1) to the calibra-340

tion factor, as in other works in this scope (Brown et al., 2001). However,341

the first bias estimate was 0.426, approximately 26% of the initial estimate342

of µ. After eight iterations the norm ||Θ̂(i) − Θ̂(i−1)|| is less then 10−7 and343

the bias estimate is close to 10−8 (see Table 2).344
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Table 3: Mean square errors of radar calibrate estimates using both forecast and filtered
calibration factors.

MSEt|t−1 MSEt|t

ML 0.6394 2.012×10−5

with correction 0.5550 8.997×10−6

variation -13.21% -55.28%

The assessment of the methodology’s performance can be done, in each345

context, through various appropriate indicators. In this case, model’s ad-346

justment is assessed by the ability to calibrate the radar observations by the347

one-step-ahead forecasts β̂t|t−1(Θ̂) or by the update estimates β̂t|t(Θ̂). Thus,348

we considered the following measures349

MSEt|t−1 =
1

n

n∑
t=1

(Gt −Rtβ̂t|t−1)2 (10)

and350

MSEt|t =
1

n

n∑
t=1

(Gt −Rtβ̂t|t)
2. (11)

Table 3 shows the model’s performance measures with the ML estimates351

and after the bias-correction procedure. The proposed approach allows a re-352

duction of the 13.21% and 55.28% of the MSEt|t−1 and MSEt|t, respectively.353

The correction procedure had more impact proportionally in the reduction354

of the mean square errors associated with de radar calibration when the up-355

date estimates are used. Figure 1 presents the accumulated precipitation356
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Figure 1: Accumulated precipitation during the storm (AP – based on rain gauge data;
AP ML – estimated with the Gaussian ML; AP corr– estimated with the corrected pa-
rameters).

during the storm considering both non-corrected and corrected parameters357

estimates. The results show that the corrected parameters produce an accu-358

mulated precipitation up to each hour closest to the rain gauge data, which359

are assumed more accurate. However, as indicated by Corollary 1, in absolute360

value the correction is greater in the one-step-ahead forecasts.361

5.2. Modeling the global mean land-ocean temperature index362

The proposed methodology was applied to the global mean land-ocean363

temperature index, 1880 to 2013, with the base period 1951-1980. Data set364

is available in the Surface Temperature Analysis (GISTEMP) in the site of365

the NASA Goddard Institute for Space Studies (GISS). The available data on366

the global surface temperature are the combination of various data sources367
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Figure 2: Anomalies, one-step-ahead forecasts and the respective empirical confidence
levels at 95% for the bias-corrected case.

(data over land, satellite measurements of sea surface temperature (SST)368

since 1982, and a ship-based analysis for earlier years). Error sources include369

incomplete station coverage, quantified by sampling a model-generated data370

set with realistic variability at actual station locations, and partly subjective371

estimates of data quality problems (Hansen et al., 2006). The temporal372

correlation is a relevant feature of the environmental data and it has real373

impact on data modeling (Alpuim and El-Shaarawi, 2009).374

Let Yt be the global mean temperature anomaly (◦C) in the year t =375

1880, ..., 2013 which is modeled by the equations:376

Yt = βt + et

βt = µ+ φ(βt−1 − µ) + εt.
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Table 4: Parameters estimation.

µ̂ φ̂ σ̂2
ε × 10−3 σ̂2

e × 10−3

ML 0 1.00296 1.763 4.878
corrected -3.390 — — —

The model’s adjustment confirms the empirical analysis from Figure 2377

that the anomaly is a non-stationary process. In fact, the Gaussian ML378

estimation produces an estimate for φ greater then one. Thus, the correction379

procedure was applied only one time because, in this case, the method will380

not converge considering a stationary representation. In practice, it implies381

that the correction process focuses only in the bias of the state estimates382

keeping the other parameters unchanged.383

Table 4 presents the ML estimates of the parameters and the bias-correction384

according to the algorithm and the application of the equation (9) once385

data are non-stationary. The ML estimates induce the state equation βt =386

φβt−1 +εt and the bias-correction procedure indicates the introduction of the387

constant µ̂(1− φ̂) = 0.010028◦C in the model. So, the correction procedure388

suggests that the state equation error has a non-zero mean of 0.010028.389

Although the state process is not stationary, the Kalman filter enters in390

a steady state very quickly since in the Kalman filter pt|t−1 → p̄ and kt → k̄.391

Therefore, the limits of Corollary 1 were achieved. The limit forecast bias is392

0.0224◦C and the limit filtered bias is 0.01239◦C in each year.393

Thus, this procedure allows estimating these three types of bias: the394

bias µ̂(1 − φ̂) suggests that this constant can be viewed as the mean of395
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Table 5: Mean square errors of both one-step-ahead estimates and update estimates of
the anomalies considering the Gaussian ML estimators and with the bias correction.

MSEt|t−1 MSEt|t

ML 8.757×10−3 2.679×10−3

ML corrected 8.660×10−3 2.646×10−3

variation (%) -1.114% -1.208%

the state equation error and it is induced directly by the uncertainty of the396

parameter estimation; the value in the middle is the update estimate bias397

which accommodates both parameters uncertainty and the state uncertainty398

when Yt is known; the greatest bias, as expected, is the forecast prediction399

bias since it is based on the observation Yt−1 and incorporates the observation400

equation uncertainty.401

The model’s adjustment performance was assessed by both measures (10)402

and (11), which results are presented in Table 5. On the one hand, perfor-403

mance measures show that the bias correction procedure allows a reduction404

of the MSE in both performance measures. On the other hand, the models405

performance can be assessed by empirical confidence intervals of the one-406

step-ahead forecasts at 95%, i.e.,407

Ŷt|t−1 ± 1.96

√
Ω̂t,

where Ω̂t is the MSE of Ŷt|t−1 obtained in the Kalman filter recursions (5).408

Considering the Gaussian ML estimates with no correction four observations409

are outside the respective empirical confidence interval (in the years 1914,410
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1964, 1977 and 1998). With the bias correction only two observations are411

outside of the respective empirical confidence interval (in the years of 1964412

e 1998). The most relevant in this comparison is that the performance’s413

improvement of empirical confidence intervals is due solely to the bias cor-414

rection procedure since the amplitude of these intervals remained unchanged.415

Figure 2 shows the anomalies, one-step-ahead forecasts and their respective416

empirical confidence levels at 95% for the bias corrected case.417

6. Discussion418

This work proposed a bias-correction procedure of the Kalman filter es-419

timators associated to a state space model with estimated parameters. The420

analysis of the bias propagation of the constant term of the state equation421

allows determining analytical expressions to both Kalman filter estimators.422

These results were obtained for a general state space model and particularly423

analyzed in the invariant models and in the stationary process case. Theoret-424

ical results allowed to design a procedure that corrects the initial parameters425

estimates in order to improve the Kalman filter estimates accuracy. Applica-426

tions showed that this approach can improve the adjustment of state space427

models and to enhance analyses of interest in data application’s context.428
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Appendix434

Proof of the Proposition 1435

The proof is given by the mathematical induction method. It can be seen436

that bias(β̂2|1) verifies the expression of Proposition 1 through the application437

of (8) and the convention adopted, i.e.438

bias(β̂2|1(Θ̂)) = (I − Φ)λ+ Φ(I −K1H1)bias(β̂1|0(Θ̂))

= (I − Φ)λ+ Φ(I −K1H1)λ

=

[(
I +

0∑
k=1

k∏
i=1

Φ (I −Kt−iHt−i)

)
(I − Φ)

+
1∏
i=1

Φ (I −Kt−iHt−i)

]
λ.

Consider now that the expression is valid for all instants up to time t.439

Therefore, at time t+ 1, applying (8) we have440

bias(β̂t+1|t(Θ̂)) = (I − Φ)λ+ Φ(I −KtHt)bias(β̂t|t−1(Θ̂)).

Under the induction hypothesis it becomes441

bias(β̂t+1|t(Θ̂)) = (I − Φ)λ+ Φ(I −KtHt)×
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×

[(
I +

t−2∑
k=1

k∏
i=1

Φ (I −Kt−iHt−i)

)
(I − Φ)

+
t−1∏
i=1

Φ (I −Kt−iHt−i)

]
λ

bias(β̂t+1|t(Θ̂)) =

= (I − Φ)λ+

[(
Φ(I −KtHt) +

t−2∑
k=1

k∏
i=0

Φ (I −Kt−iHt−i)

)
×

× (I − Φ) +
t−1∏
i=0

Φ (I −Kt−iHt−i)

]
λ

=

[
I +

(
t−2∑
k=0

k∏
i=0

Φ (I −Kt−iHt−i)

)
(I − Φ)

+
t−1∏
i=0

Φ (I −Kt−iHt−i)

]
λ.

The final result is obtained through a change of variable in the summation442

and product operators.443

The proof of the result to bias(β̂t|t(Θ̂)) follows applying (6) and the result444

to bias(β̂t|t−1(Θ̂)).445
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