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resumo 
 

 

Químicos ambientais, como o mercúrio (Hg), em mulheres grávidas podem 
atravessar a placenta e desencadear efeitos teratogénicos. Em Portugal, a 
exposição pré-natal continua pouco documentada. A região portuguesa de 
Aveiro enfrentou uma contaminação ambiental devido à indústria de cloro, 
localizada em Estarreja. Efluentes ricos em Hg foram libertados durante 5 
décadas na ria de Aveiro e consequentemente, os solos urbanos e agrícolas 
circundantes, os sedimentos e a biota foram negativamente afetados. Dada a 
importância do contexto regional e geográfico, esta tese teve como objectivos: 
(i) avaliar o grau de exposição a Hg em parturientes e recém-nascidos do 
distrito de Aveiro, Portugal; (ii) usar material biológico não invasivo, descartado 
após parto, para realizar um estudo de biomonitorização; (iii) melhorar o 
conhecimento acerca da distribuição e retenção de Hg ao longo da unidade 
materno-fetal-placentária; (iv) relacionar os níveis de Hg com potenciais 
factores de risco incluindo o estilo de vida materno, hábitos, dieta e 
características demográficas; e (v) investigar a distribuição dos níveis de Hg ao 
longo do distrito de Aveiro.  
Este estudo foi realizado em 50 pares mãe-recém-nascido do distrito de 
Aveiro. Uma correlação positiva foi observada entre os níveis de Hg no cabelo, 
tecidos placentários e cordão umbilical. Portanto, a viabilidade da utilização da 
placenta para avaliar a exposição intra-uterina a Hg foi confirmada, bem como 
outros marcadores não-invasivos e biológicos, como o teor em Hg no tecido do 
cordão e no cabelo do escalpe. Os nossos resultados detetaram a ocorrência 
de valores altos de Hg no cabelo materno, de acordo com a US EPA e a OMS, 
e elevados níveis de Hg nos tecidos placentários comparativamente com 
investigações anteriores de outros países Europeus. Os níveis mais elevados 
de Hg foram encontrados na membrana amniótica, a qual parece 
desempenhar um papel na eliminação de metais tóxicos do feto através da 
reabsorção do líquido amniótico. Exceptuando o grau de literacia, nenhum 
outro factor de risco foi positivamente relacionado com os níveis de Hg. 
Por último, as 50 parturientes estudadas foram agrupadas pela sua residência 
atual, sita em nove concelhos do distrito de Aveiro. Albergaria-a-Velha e 
Águeda foram os concelhos com os níveis mais elevados no cabelo e no 
cordão umbilical. Para além disso, estes resultados mostraram que a 
exposição materna pode subestimar, em alguns casos, o grau de exposição 
pré-natal a Hg. 
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abstract 

 
Environmental chemicals such as mercury (Hg), in pregnant women can cross 
the placenta and trigger teratogenic effects. In Portugal, prenatal exposure to 
Hg is still poorly documented. The Portuguese region of Aveiro faced an 
environmental Hg contamination due to the activities from chlor-alkali industry, 
located in Estarreja. Effluents rich in Hg were released during 5 decades to the 
Ria de Aveiro lagoon system and consequently the surrounding urban and 
agricultural soils, sediments, and biota were negatively affected.  
Given the importance of regional geographic context, this thesis aimed: (i) to 
assess Hg exposure in parturient and newborns from Aveiro district, Portugal; 
(ii) to use non-invasive biological material discarded after birth to perform a 
biomonitoring study; (iii) to improve the knowledge about the distribution and 
retention of Hg over the placental-fetal unit; (iv) to relate Hg levels with potential 
risk factors including maternal lifestyle, habits, diet and demographic 
characteristics; and (v) to investigate the distribution of Hg levels along the 
Aveiro district.  
This study was performed in 50 mother-newborn pairs from Aveiro district. A 
strong positive correlation was found between Hg levels in hair, placental and 
cord tissues. Therefore, the feasibility of using the placenta to assess 
intrauterine exposure to Hg was confirmed as well as other non-invasive and 
biological markers like Hg level in cord tissue and scalp hair.  
Our results detected the occurrence of high Hg levels in maternal hair 
according to US EPA and WHO, and higher Hg contents in placental tissues 
compared to previous reports from other European countries. The highest Hg 
levels were observed in amniotic membrane which seems to play a role in the 
elimination of toxic metals from the fetus by reabsorption from amniotic fluid. 
Further research should be carried out to get further knowledge on the ability of 
the amniotic membrane to retain and accumulate Hg and other metals. Apart 
from the level of education, no other risk factors were positively correlated with 
Hg levels.  
Lastly, the 50 parturient studied were grouped per their actual residence, 
located in nine different counties from Aveiro district. Albergaria-a-Velha and 
Águeda were the counties with higher Hg levels in hair and umbilical cord. In 
addition, these results showed that maternal exposure may underestimate, in 
some cases, the degree of prenatal exposure to Hg.  
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1. Introduction 

It is widely known that people are daily exposed to a number of chemicals due to 

environmental contamination, habits and lifestyle. One of those chemicals is mercury 

(Hg), which it is a naturally occurring and non-essential element. Mercury has some 

unique chemical properties that have made it useful for several purposes throughout the 

history of mankind. 

 

1.2  Mercury and its compounds  

Mercury occurs in three oxidation states (0, +1 and +2) and may be found in 

three main chemical species: elemental mercury (Hg0), mercurous ion (Hg2
2+) and the 

mercuric ion (Hg2+) [1]. When ions combine with other elements such as chlorine, sulfur 

or oxygen inorganic salts are formed (mercuric chloride, mercuric sulphide and mercuric 

oxide). Mercury can also be found in organic forms such as monoalkyl or dialkyl 

compounds (methylmercury (MeHg), dimethylmercury, ethylmercury and phenylmercury) 

[2].  

Elemental and inorgancic Hg may occur naturally in the environment: 

 mineral;  

 deposits; 

 volcanoes; 

 forest fires; 

 oceanic emission; 

 crust degassing. 

It also may be released to the environment through different anthropogenic 

activities/sources: 

 agricultural industry (fungicides, seed preservatives); 

 mining and mineral processing; 

 combustion of fossil fuels; 

 pharmaceuticals; 

 pulp and paper preservatives;  
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 skin-lightning creams; 

 catalysts in industrial processes; 

 thermometers and batteries; 

 amalgams; 

 chlorine and caustic soda production. 

Methylmercury has the capacity to bioaccumulate in organisms and to biomagnify 

through the food chain. Indeed, the diet is the main source of MeHg for humans and 

biota [2].  

 

1.3  Environmental fate of mercury 

Elemental Hg is the predominant form of Hg in the atmosphere released by 

natural and anthropogenic sources [3]. 

 

1.3.1 Soil 

In the atmosphere by reaction with ozone and OH radicals Hg is oxidized 

to Hg2+ and deposited in soils. A portion of this oxidized Hg is reduced again to 

the elemental form and returns to the atmosphere in vapor form. The remaining 

Hg2+ which is not immediately reduced and evaporated can accumulate in the 

vegetation or instead it may be incorporated into a soil Hg pool where it is slowly 

transformed and released to the atmosphere, during a process that can take 

centuries or millennia [3]. 

 

1.3.2 Aquatic systems and sediments  

In water, the main Hg chemical forms present are elemental, complexes of Hg2+ 

with inorganic and organic ligands, and organic forms, predominantly MeHg and 

dimethylmercury. In fact, MeHg is typically less than 5% in estuarine and marine waters 

but the same form can reach more than 30% in fresh water systems [4]. In the ocean 

and fresh water sediments as also in the water column Hg can be biologically methylated 

by sulphate-reducing bacteria and iron-reducing bacteria [5]. On the other hand, an 

abiotic methylation may occur when suitable methyl donors like humic matter are 
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available [6]. This process turns Hg into species more liposoluble and consequently toxic 

to living organisms including humans [7]. Methylmercury bioaccumulates and increases 

up in the aquatic food web. Therefore the highest concentrations are found in large and 

old predatory fish, such as sharks, swordfish, tuna and pike [8].  

 

1.4  Toxicokinetics  

All Hg compounds are considered toxic to humans. Their toxicity depends on the 

oxidation state, binding elements, routes of exposure, duration and level of exposure. 

The metabolism of Hg species involves an oxidation/reduction cycle [9].  

 

1.4.1 Elemental mercury 

Elemental Hg exposure from air is readily taken up through the lungs due to its 

volatility with a retention rate higher than 70% in the human body [10]. As it is highly 

lipophilic, inhaled Hg0 crosses easily the alveolar membranes into the circulatory system. 

This feature also allows Hg crossing the main barriers including the blood-brain barrier 

and the placenta. In blood Hg0 is oxidized to Hg2+ partly under the influence of catalase 

and hydrogen peroxide which influence brain uptake of Hg [11].  

 

1.4.2 Inorganic mercury compounds 

The major target to accumulation of inorganic Hg is the liver and the kidney from 

where it is excreted. Rahola et al. [12] and Hattula and Rahola [13] described the 

kinetics of Hg2+ in humans and observed that no more than 16% of the initial dose was 

absorbed with a body half-time of about 41 days. Excretion via feces also occurs in a 

less extent and it involves the formation of GSH complexes prior to secretion into bile. 

Regarding the head region, no significant deposition of Hg has been observed at least 

for 58 days. On the other hand, in an experimental study in rats it was shown that there 

was an irregular distribution of mer 

curic chloride in the nervous system. It was observed more mercuric chloride in 

the neurons compared to the glial cells, and an accumulation in lysosomes. It was also 

observed the presence of mercuric chloride in the motor neurons and their absence in 

the sensory neurons [14]. According to another study, after guinea-pigs skin topically 
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application of mercuric chloride it was observed that 8% of this compound can be 

absorbed in 5 h [15].  

In Figure 1.1 it is shown the resume of the main routes of exposure to elemental 

and inorganic Hg: inhalation, skin absorption and ingestion. Through the lungs, skin and 

gastro-intestinal (GI)-tract Hg runs into blood and is (re)distributed by functional organic 

systems. There Hg suffers detoxification processes in order to facilitate the excretion or 

instead Hg may accumulate (e.g., Central Nervous System – CNS and kidney) [16]. 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1- Routes of elemental and inorganic mercury exposure to humans & 
toxicokinetics. GI-tract, Gastrointestinal-tract; CNS, Central Nervous System. In: Elinder et 
al. [16].  



 

13 

 

1.4.3 Organic mercury  

The dialkyl (e.g. dimethylmercury) compounds are very volatile being readily 

absorbed both through the respiratory airways and intact skin, and are highly toxic even 

at very low exposure. The dialkyl mercury compounds have an effect on the 

environmental distribution of MeHg as they are highly volatile, insoluble in water and do 

not bind to sulfhydryl (SH) groups [17]. Methylmercury is absorbed by inhalation with a 

retention rate about 80% after vapor exposure. Other routes of exposure include skin 

absorption and the ingestion of contaminated food with MeHg, such as fish, where it can 

be potentially 100% absorbed at the intestine [18]. Methylmercury is accumulated to a 

large extent in erythrocytes with a retention rate higher than 90% where it is bound to the 

cysteinyl residues of hemoglobin. In humans the erythrocytes to plasma ratio is about 

20. In plasma 99% of MeHg is bound to albumin which is a free sulfhydryl group in a 

terminal cysteinyl residue [19]. After absorption into the blood the distribution to tissue is 

slow and equilibrium is reached within 30h to three days with about 5 and 10% ending 

up in blood and brain respectively [20]. The uptake into the brain is slower than for other 

organs probably due to the binding of MeHg to the erythrocytes which retards its entry 

into the brain. On the other hand the brain has a stronger affinity for MeHg and the brain 

concentration has been shown to be 3–6 times higher that found in the blood. About 

20% of the MeHg present in brain is hydrophilic and can be found mainly as MeHg–GSH 

complexes. Throughout the rest of the body, MeHg is rather consistently distributed 

although some concentration dependent effects can be seen in the liver and the kidney 

[20]. Besides MeHg is also incorporated in hair during the hair follicle formation and it is 

positively related with the concentration of MeHg in blood [21]. 

Maternal MeHg transfer to the offspring may occur in early and later stages of 

development [22]. Over the pregnancy, MeHg crosses the placenta and accumulates in 

the fetus at concentrations higher than in the mother [23]. For example, cord blood 

MeHg concentrations are higher than those found in maternal blood at delivery. This can 

be explained by the differences in hemoglobin content once it is the primary binding 

protein for MeHg in erythrocytes [23]. In postnatal period, infants are exposed to MeHg 

during the breastfeeding once it is also capable to cross the mammary gland [24].  

The exact mechanisms by which MeHg crosses the main powerful barriers are 

not fully understood. It has been hypothetised due to MeHg structural similarities to 

methionine, MeHg-L-cysteine may cross membranes via specific aminoacid transporters 

[25]. Moreover the transport across the cell membranes into cells is believed to occur by 
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MeHg complex with cysteine and the exit from cells by a glutathione complex via 

endogenous glutathione carriers [1]. Methylmercury is demethylated to Hg2+ in the 

presence of reactive oxygen species (ROS) as hydroxyl radical. This process may occur 

in liver, intestinal tract, the spleen, phagocytic cells, and kidney and slowly in the brain 

[26]. Methylmercury has a human body half-life of about 70-80 days, with about 90% 

being excreted through feces as Hg2+ [27]. Similarly, via the biliary route MeHg is 

eliminated after the conjugation with liver gluthatione-S-transferases (GST) and further 

eliminated by feces [28]. Intestinal demethylation contributes significantly to increase 

fecal excretion.  Methylmercury is partly converted by the intestinal microflora to Hg2+ 

which is not reabsorbed via enterohepatic circulation to the same degree as MeHg [29].  

In Figure 1.2 it is shown the resume of the main routes of exposure to organic 

Hg: inhalation, skin absorption and ingestion. Along the gastrointestinal (GI)-tract MeHg 

suffers a detoxification process namely demethylation in order to facilitate the excretion. 

Methylmercury also may accumulate mainly in CNS in adults, fetus during pregnancy 

and child during breastfeeding. Exhaled hair, epithelial cells, sweat, urine, blood, hair 

(child and adults) and feces can be used to perform biological monitoring concerning 

MeHg exposure [16]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2- Routes of methylmercury exposure to humans & toxicokinetics. GI-tract, 
Gastrointestinal-tract; CNS, Central Nervous System. Adapted from Elinder et al.[16]. 
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1.5  Mechanisms of action 

 

1.5.1 Mercury, GSH system and ROS production 

Glutathione is the major endogen antioxidant in mammals and its role as 

antioxidant is linked to enzymes that catalyze the synthesis of GSH and the interaction 

reactions of GSH with xenobiotics [30]. (GPx) uses GSH reduced to detoxify organic 

hydroperoxides which prevent the peroxidative damage in biomolecules [31]. In the 

reaction thiol-peroxidase GSH is oxidized to glutathione disulfide (GSSG) which is newly 

reduced by glutathione reductase (GR) enzyme with NADPH as cofactor [32]. 

Glutathione peroxidase and GR participate in detoxification of peroxides and in the 

reduction of GSSG.  The activity of these enzymes and the maintenance of GSH/GSSH 

ratio are essential to the cells protection against oxidative damage.  Mercury may 

interfere with cellular mechanisms and may be responsible for a variability of toxic 

effects in cells. Mercury has a great affinity to bind to proteins and non-proteins with thiol 

groups and glutathione is a tripeptide which contains cysteine [33]. The formation of Hg-

GSH complexes decrease GSH activity as antioxidant leading to an increase of ROS. 

Mercury also affects the electron transport chain by stimulating the complex IV where the 

final receptor of electrons is the molecular oxygen. This may induce an electrons 

leakage into the molecular oxygen increasing the formation of superoxide radical and 

hydrogen peroxide (H2O2) [34].  

 

1.5.2 Mercury and genotoxicity  

One of the mechanisms that induce genotoxicity after Hg exposure is oxidative 

stress due to the action of ROS increased by the metal. ROS are highly reactive 

chemical species that may cause DNA damage [35]. Firstly, direct action of these 

species on nucleic acids may generate genetic mutations [36]. Secondly, ROS may 

induce conformational changes in proteins responsible for the formation and 

preservation of DNA such as repair enzymes, DNA-polymerases, and even tubulin and 

kinesin motor proteins, responsible for mitotic spindle and chromosomal segregation [35, 

36, 37, 38]. Another mechanism of genotoxicity induced by Hg is the direct interaction 

between mercury compounds and DNA molecules. Yi et al. [39] tested several Hg 

compounds (methylmercury, ethylmercury, phenylmercury and inorganic mercury) and 

its interaction with DNA. It was observed higher affinity and interaction with DNA and a 
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fastest binding rate of formation of stable complexes especially between MeHg and 

DNA. This result was especially interesting once organometallic species have the 

capacity to easily cross nuclear membranes to reach the DNA helix. All the bases 

interacted directly with Hg species with predominance of guanine and cytosine-MeHg 

and thymine-Hg2+ bindings [39].  

 

1.6  Mercury poisoning  

Mercury poisoning is known as mercurialism (or hydrargyria) and acrodynia.  In 

the first half of the 20th century acrodynia also known as pink disease was relatively 

common among small children. It was found a pink discoloration of hands and legs with 

desquamation of the skin caused by teething powder containing mercurous chloride [40].  

Amalgam is an alloy of Hg and it is an excellent and versatile dental restorative 

material. It has been used in dentistry since 150 years ago due to its low cost, ease of 

application, strength, durability, and bacteriostatic effects. Dental amalgams are 

composed by 50% Hg0 mixed with other metals such as silver, copper and zinc. This 

operation is handmade before the amalgam is used causing exposure to the dental 

personnel (occupational exposure). In the patient the release of Hg from fillings is mainly 

determined by chewing and the temperature of food items [2, 9].  

Methylmercury is linked with two major human disasters of massive Hg 

poisoning. The first took place in Japan (1956-1968) where a chemical factory released 

Hg as byproduct of their acetaldehyde production into the Minamata Bay. About 200,000 

persons were exposed through the consumption of contaminated fish and shellfish. 

Adults developed sensory disturbances, ataxia, dysarthria, constriction of the visual field 

as well as psychiatric disorders. Besides newborns were affected during development 

from their mothers who were exposed through ingestion of contaminated food. In 

newborns disturbances in mental and motor developments were observed [41]. The 

second disaster happened in rural Iraq (1971-1972). About 40,000 people were exposed 

through homemade bread prepared from seed grain treated with MeHg as fungicide. The 

symptoms were similar to those observed in adults from Minamata Bay [27].  
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1.7  Health effects 

Factors that determine whether health effects occur from Hg exposure and 

their severity include [42]: 

 the mercury species;  

 the dose; 

 the age or developmental stage of the person exposed;  

 the duration of exposure;  

 the route of exposure (inhalation, ingestion or dermal contact). 

 

1.7.1 Neurotoxicity 

The nervous system is the most sensitive to Hg effects compared to all functional 

systems that constitute the human body. Besides no other metal can affect central 

nervous system (CNS) as Hg does [42, 43]. Elemental and organic mercury can cross 

the blood-brain barrier and accumulate in the CNS [43].  

The chronic exposure to Hg0 induces damage mainly in CNS. The first non-

specific signals include: insomnia, low memory, loss of the appetite and tremor which 

sometimes lead to wrong diagnostics, such as psychiatric disorders [44]. A further 

exposure takes to the worsening of the patient's situation characterized by a triad of 

symptoms: severe tremors, gingivitis and erethism. The last comprises a wide spectrum 

of perturbations of personality that can result in dramatic changes in individual behavior 

such as delirium, hallucinations, excessive shyness and angry outbursts [43]. The 

neurobehavioral changes caused by Hg vapor are classified in four groups: 1) disorders 

of the motor system; 2) deterioration of the intellectual capacity; 3) change in the 

emotional state; and 4) peripheral neurotoxicity [44].  

The chronic exposure to MeHg leads to different results in adult and developing 

CNS. The intoxication in adults is characterized by the existence of a latency period 

between the exposure and the development of symptoms. Paresthesia is a sensation of 

numbness or tingling and it is the first symptom to appear at the lowest dose of 

exposure. The clinical condition can after progress to cerebral ataxia, dysarthria, 

constriction of the visual field and hearing loss [1].These symptoms are caused by 

modifications in the structure and biochemical features in neurons and astrocytes [45]. 

Besides, MeHg is associated with cell loss and reduced brain size [46]. Pathological 



 

18 

 

exams in intoxicated patients by MeHg showed that the cerebral cortex was the most 

affected zone and that its granule cells were sensitive to this compound [47].  

The neurotoxic effects caused by MeHg in developing CNS drive to serious 

disturbances in mental and motor development. Later exposed children may develop 

great difficulties in chewing, swallowing, speaking, crawling or any other activity involving 

coordinated or involuntary movements [41]. In fact, damages caused by MeHg to the 

CNS of human and other species/organisms’ fetus are linked to a decrease in the 

number of neuronal cells and change in their cytoarchitecture. Both interfere with cellular 

events such as division, migration, differentiation and death that regulate the neuronal 

development [48]. 

Neurotoxicity induced by MeHg is assigned by three main mechanisms: induction 

of oxidative stress by the increase of ROS, changes in intracellular calcium levels and 

interaction with thiol groups of several molecules [47]. Methylmercury binds covalently to 

thiol groups causing the inhibition of enzymes and inactivating non-enzymatic molecules 

such as GSH. Methylmercury can induce oxidative damage by direct interaction with 

nucleophilic groups of proteins even in the absence of significant changes in GSH levels 

and GSH/GSSH ratio [46]. The complex MeHg-Cys can penetrate in CNS and there 

MeHg breaks the mitochondrial electron transport chain leading to an increase of ROS 

such as hydrogen peroxide and superoxid ion (O2
•−).  

The loss of glutamate (GLU) homeostasis in CNS is also a result in the 

neurotoxicity caused by MeHg [47]. Glutamate is the main and abundant excitatory 

neurotransmitter of the mammal CNS and its release at the synaptic cleft is the key 

event to stop the signal transmission [49]. Methylmercury inhibits the entry of GLU into 

the astrocyte increasing the release of GLU from the pre-synaptic neuron. When GLU 

occurs at high concentrations in the synaptic cleft it acts like a toxin that overactivates 

the N-methyl-D-aspartate receptors (NMDARs). This event leads to an increase of Ca2+ 

flux into the post-synaptic neurons causing the activation of cell death pathways. 

Alternatively, Ca2+ internalized by mitochondria may cause mitochondrial dysfunction 

and increase the ROS production that diminishes the entry of GLU into the astrocytes 

[47]. 

Methylmercury also may increase the release of other neurotransmitters as 

acetylcholine, dopamine, serotonin and norepinephrine [50].  

These events may be related with neurodegenerative disorders like Alzheimer, 

Parkinson, Huntington diseases, Amyotrophic lateral sclerosis [51] and autism [52]. 
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1.7.2  Nephrotoxicity 

The kidneys, considered the main excretory organs of Hg, are also the major 

target for Hg accumulation [53]. Mercury, mainly in elemental and inorganic forms, can 

induce nephrotoxicity by the increase of ROS. This increase of ROS leads to the 

interruption of protein synthesis and enzymatic inactivation, cellular membrane damage 

and transport dysfunction [54]. The exposure to Hg0 causes glomerular and tubular 

alterations as high molecular weight proteinuria and urinary enzyme excretion, 

respectively. Mercury also induces diuresis, glycosuria and albuminuria. The proximal 

tubule as a part of the nephron (cell unit) and is divided into two sections, pars convoluta 

and pars recta. The last has two segments, the cortical (S2) and the medullar (S3), are 

where Hg tends to accumulate [55]. When Hg ions get into the epithelial cell of proximal 

tube it triggers an alteration in the cell membrane permeability to the Ca2+ and 

consequent mitochondrial dysfunction. Moreover the renal failure after the Hg exposure 

may be caused by the decreased of renal reabsorption of calcium and chloride leading to 

an insufficient filtration [56]. 

 

1.7.3 Cardiotoxicity 

Hypertension, atherosclerosis, coronary arterial disease, acute myocardial 

infarction and sudden cardiac death from cardiac failure are some effects caused by Hg 

exposure. Moreover at the vascular level Hg may induce oxidative stress, inflammation, 

stroke, endothelial dysfunction, dyslipidemia and mitochondrial dysfunction [56]. The 

interaction between Hg and selenium and lipid peroxidation works as intermediate steps 

among the Hg exposure and the cardiovascular diseases. Although fish makes part of a 

healthy diet because of its rich proteins and poor saturated fats contents, high Hg levels 

in fish can delete the cardioprotective effects namely the selenium and polyunsaturated 

fatty acids (n-3 PUFAs) [57]. Different populations ingest different types and sources of 

fish therefore the risk of cardiovascular effects must be taken in consideration in terms of 

Hg levels and n-3 PUFAS. Besides it is also very important to consider that Hg binds to 

selenium decreasing its protective potential against cardiovascular effects [56, 57].  
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1.7.4 Immunotoxicity  

Mercury can affect the immune system through immunostimulation or 

immunosuppression and it depends on Hg compound [58]. Inorganic Hg induces 

immunostimulation causing the proliferation of adult T cells and stimulates autoimmunity 

[59]. Gardner et al. [60] showed that people exposed to elemental and inorganic Hg at 

work had an increase of cytokines, which are small secreted proteins released by cells 

that have a specific effect on the interactions and communications between cells, and 

antinuclear antibodies, that target “normal” proteins within the nucleus of a cell. 

Modulation of the cytokines and antibodies responses by Hg can affect the individual 

susceptibility to autoimmune diseases, allergies and infectious diseases [60]. On the 

other hand MeHg acts firstly as an immunosuppressive before its conversion into 

inorganic form [49].  

 

1.7.5 Diabetes Mellitus  

Diabetes Mellitus is known by hyperglycemia due to an insufficiency in the insulin 

secretion by pancreatic β-cells or receptor dysfunction. The β-cell is one of four major 

types of cells present in the islets of Langerhans.  When the pancreatic antioxidant 

defense is weak it turns the pancreatic β-cells susceptible to ROS, which can be 

generated by Hg exposure. These species will react within pancreatic cells destroying 

them or turn those dysfunctional [61].  

 

1.7.6 Teratogenicity 

During pregnancy, MeHg and Hg0 are capable to cross the placental barrier and 

reach the fetus [2]. But, Hg0 is less effective in targeting the fetal brain than MeHg since 

it is first oxidized to Hg2+ in the fetal liver [9]. As a consequence, Hg levels following 

exposure to Hg vapor are lower in the brain of the fetus that in the brain of the mother 

[9]. The developing brain is sensitive to MeHg and the fetus develops symptoms when 

the mother has no manifestation of mercury poisoning [62]. Also, the lack of maturity of 

the blood-brain barrier of the fetus makes it even more susceptible to Hg [2]. The 

Minamata and Iraq epidemics revealed that after exposure to high levels of MeHg in 

utero there was a severe distortion of the fetal brain architecture which was caused by 

difficulty of neuronal migration [63]. Consequences include microcephaly, cerebral palsy, 

blindness and ataxia with most severe cases ending in fetal death before or shortly after 
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birth [62]. Although children may appear physically normal, delayed neurodevelopment 

and serious retardation may occur [2]. Since both MeHg and Hg0 are also secreted in 

breast milk, children in breastfeeding age might be exposed to harmful concentrations of 

MeHg or Hg0 [63]. Overall, in utero developing fetus and early childhood are considered 

the most vulnerable life stages concerning exposure to Hg compounds [2]. 

 

1.8  Biomarkers of Hg exposure 

Based on epidemiologic and toxicological studies, several guidance levels have 

been established to indicate levels of exposure to Hg that are related to risk in humans. 

These levels can be helpful to take decisions concerning the need for medical 

interventions or exposure reductions. Table 1.1 gives an overview of these published 

guidance levels for Hg in blood, urine and scalp hair. In Table 1.2 it is shown the range 

mean of Hg concentrations in biological samples of the European population since 2000 

according to European Food Safety Authority (EFSA) [67]. Other specimens such as 

placenta, umbilical cord tissue, human breast milk, sweat, nails and toenails are used in 

biological monitoring studies as biomarkers of Hg exposure. 

 

 

Table 1.1- Guidance levels for mercury concentrations in blood, urine and scalp hair. 

 

 
Blood 

(µg/L) 

Hair 

(µg/g) 

Urine 

(µg/L) 

Urine 

(µg/g Crea) 
Source 

Human bio-

monitoring 

threshold limits 

 

5-10 

 

1
[64]

-2
[65] 

 

- 

 

5 

US EPA, 1997  

[64] 

WHO, 2008 

[65] 

HBM II* 15 - 25 20 
Schulz et al. 

(2007) [66] 

 

 

*HBM II - The concentration above which there is increased risk of adverse health effects in susceptible 
individuals in the general population. 
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Table 1.2- Range of mean concentrations of total mercury in biological samples from the 
European population [67]. 

 

Matrix (unit) Adults and eldery Children 

Cord blood (µg/L) - 0.86-13.9 

Blood (µg/L) 0.20-4.85 0.12-0.94 

Hair (mg/Kg) 0.17-1.45 0.14-1.99 

 

1.9  Mercury in placenta as a biomarker of Hg exposure 

The choice of a specimen for monitoring pollutants affecting human health 

depends on the criteria chosen and also on the necessity of having an invasive 

procedure, like sampling blood. In context of health-related biomonitoring, placenta has 

not received as much attention as it deserves as a specimen. It is a unique specimen 

requiring non-invasive procedure and offers possibilities for real- and long-time 

monitoring. Besides, placenta can be defined as a dual purpose specimen for evaluating 

the pollutant burden exerted on the mother as well as on the fetus [68].  

 

1.9.1 Placenta 

The placenta is a remarkable discoid organ between the mother and fetus and 

plays a key role in ensuring a successful pregnancy. During its relatively short lifespan, 

the placenta undergoes rapid growth, differentiation and maturation. The placenta forms 

an interface between the mother and fetus, performing its main function of facilitating the 

exchange of gases, nutrients and metabolic wastes [69]. It produces hormones and 

growth factors which are needed for the healthy development over the pregnancy. In 

turn, these hormones and growth factors will support the balanced physiological 

condition in the uterus for the continuation of the gestation period. They also affect the 

physiological changes of the maternal body, to adapt to and sustain the pregnancy. The 

trophoblast cells are a major component in the placenta and are fetal epithelial cells that 

form an interface between mother and offspring [68]. The human trophoblast 

differentiates along two pathways [70] (Figure 1.3): the villous trophoblast pathway: the 

mononucleated cytotrophoblast fuses into multinucleated syncytiotrophoblast forming the 

syncytial layer that covers the placental villous tree. These cells are directly involved in 

the exchange of gases, nutrients and waste across the materno-fetal interface; and the 
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extravillous trophoblast pathway: cytotrophoblast from the cell column of the anchoring 

villi exit the cell cycle and shift from a proliferative phase into a migratory and invasive 

phenotype. These invasive cells are denominated extravillous cytotrophoblast and can 

be further subdivided into other types of cells with distinct functions. 
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Cytotrophoblast 

Structure: polarized 

Function: placenta stem cell 

Fusion 

Syncytiotrophoblast 

Structure: multinucleated cell 
Functions:  

 Epithelium 

 Endocrine 

 Exchange 

 Immune tolerance 

 

Proliferation 

Migration/invasion 

Anchoring Cell Column 

Structure:  

 Highly proliferative 

 Aggregate into cell column 

Functions: 

 Anchor placenta to uterus 

 Progenitor to extravillous 

cytotrophoblats (intersticial 

and endothelial extravillous 

cytotrophoblasts and giant 

cells) 

Figure 1.3- Trophoblast pathways of differentiation. Adapted from Huppertz et al. [71]. 
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1.9.2  Structure of the mature placenta and fetal membranes 

One of the most specific features of human embryonic development is the 

intimate relationship between the embryo and the mother. To survive and grow during 

intrauterine life, the embryo must keep a parasitic relationship with the body of the 

mother for acquiring oxygen and nutrients and eliminating wastes. Besides, it must avoid 

being rejected as a foreign body by the immune system of its maternal host. These 

exacting requirements are supported by the placenta and extraembryonic membranes 

that surround the embryo and work as the interface between the embryo and the mother 

[71].  

The mature placenta consists of a fetal and a maternal component. The fetal 

component is the chorionic plate and the chorionic villi arise from that part. The fetal 

membranes (chorion and amnion) also derive from fetal tissue. The maternal component 

is represented by the decidua basalis that is covered by a cytotrophoblastic layer derived 

from the fetal surface. The full-term human placenta is a circular discoid organ with a 

diameter of 15-25 cm, a central thickness of 3 cm and an average weight of 500-600 g 

(Figure 1.4).  
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Umbilical 

cord 

Chorionic 
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Cotyledon 

Decidua basalis 

removed 

Chorionic 

vessels 

A B 

Figure 1.4- Human placenta at delivery - external anatomies. (A) Fetal surface. The 
chorionic plate and umbilical cord are covered by the amnion. (B) Maternal surface 
showing the cotyledons. In: Sadler and Langman [72]. 
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Placenta 

 Chorionic plate: the side of the placenta facing the amniotic cavity is the fetal 

surface also called the chorionic plate. This surface appears shiny due to the 

avascular and intact epithelium of the amnion that covers the chorionic plate [73]. 

The amniotic mesenchyme is only weakly attached to the chorionic mesenchyme 

and can easily be removed from the delivered placenta. From the fetal surface of 

the placenta the umbilical cord connects to the fetus [71].  

 Chorionic villi: The sub-branches of the blood vessels from the umbilical cord 

form the chorionic villous trees. The chorionic villi take the fetal blood to the fetal-

maternal interface. The fetal blood flows from the umbilical arteries to the villi and 

then returns via the umbilical vein. The chorionic villi are bathed with the maternal 

blood, which flows directly into the intervillous space. The fetal-maternal interface 

of a mature human placenta is hemochorial with the mono-layered barrier of the 

syncytiotrophoblast, and the fetal endothelium separating the fetal and maternal 

blood. The declining of cytotrophoblast cells increase from minor to major villi and 

even if they remain in the major villi they do not participate in the transfer 

between fetal and maternal circulations [72].  

 Decidual basalis: also called maternal surface or basal plate is an artificial 

surface which emerged from the separation of the placenta from the uterine wall 

during the delivery. The major components of this structure are fetal extravillous 

trophoblast and all kinds of maternal cells of the uterine decidua (decidual stroma 

cells, natural killer cells, macrophages and other immune cells) [71]. It is 

composed by a system of flat grooves, which divide this part of the placenta into 

different lobes or cotyledons. Each of these cotyledons contains one or several 

chorionic villous trees, the principal functioning units of the blood circulation 

throughout the placenta [73].  
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 Umbilical cord: it contains one vein and two arteries which coil around 

the vein in a helical configuration. The role of the vein is to supply nutrient-

rich oxygenated blood to the fetus from the placenta. In turn arteries take 

the nutrient-depleted deoxygenated blood back to the placenta. The 

umbilical cord is connected to the fetus at the abdominal area which later 

becomes the umbilicus. Once inside the fetus the umbilical cord vein 

divides itself into two branches. One of them joins the hepatic portal vein 

taking the blood directly to the liver and the other directs the majority of 

blood to the fetal heart. The umbilical cord arteries split from the fetal 

internal iliac artery the main artery in the pelvic area [73]. 

 

 

 

 

Figure 1.5- Human placenta at delivery – internal anatomies. (1) Endometrial arteries 
(maternal circulation), (2) endometrial veins (maternal circulation), (3) placental septa, (4) 
intervillous space, (5) decidua basalis, (6) chorionic plate, (7) umbilical arteries (fetal 
circulation), (8) umbilical veins (fetal circulation), (9) villous tree, (10) syncytiotrophoblast, 
(11) cytotrophoblast, and (12) amniotic membrane In: Pathak et al. [74]. 
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Fetal membranes 

The fetal membranes or chorioamniotic membrane is a thin membrane that 

surrounds the developing fetus and forms the amniotic cavity. This membrane is 

composed of two layers: chorion (outer layer) and the amnion (the inner layer). Both 

chorion and amnion constitute the amniotic sac filled with amniotic fluid, providing and 

protecting the fetal environment. At delivery, the amnion is only weakly attached to the 

chorion and can easily be removed from the delivered placenta [71, 75].  

 

 Chorion: the chorion is a more opaque membrane that exists between the 

developing fetus and maternal tissue. It consists of trophoblastic chorionic 

and mesenchymal tissues [75]. 

 Amnion: the amnion or amniotic membrane is a translucent structure 

adjacent to the amniotic fluid, which provides nutrients to the amniotic 

membrane cells. It has no nerves, muscles or lymph vessels and represents 

the innermost layer of the sac that encloses the fetus. The major components 

of the amniotic membrane are cells and the extracellular matrix. Collagen and 

proteoglycan molecules are, along with elastin, fibronectin and laminin, the 

major components of the amniotic membrane extracellular matrix [76].  

 

1.9.3  The placental barrier 

Between the maternal and fetal circulations remains a physical barrier formed by 

the placental syncyotrophoblast. The syncyotrophoblast layer has two different faces: an 

apical membrane (microvillous brushborder) that faces maternal blood and a basal 

membrane that faces fetal circulation (Figure 1.6). Together they increase the selectivity 

of lipid membranes leaving only the essential components to the fetus. On the maternal 

surface the syncyotrophoblast is covered in abundant microvilli which provide a large 

surface area for substrate exchange [77].  
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1.9.4  Blood circulation 

The placental circulation (Figure 1.7) is a system of close relationships among 

fetal weight, placental and uterine size and umbilical blood flows during the pregnancy 

[79]. The exchange of substances between fetus and mother takes place at the placenta 

barrier [79] (Figure 1.6). This barrier allows water, oxygen, other nutritive substances 

and hormones to pass from mother to fetus and some of products of excretion from fetus 

to mother [81]. The oxygenated blood flows to the fetus via the single umbilical vein and 

deoxygenated blood flowing from the fetus back to the placenta via the two umbilical 

arteries [82]. Then the arterial blood flows direct to the mother lacuna into several 

cavities called sinuses. These placental sinuses contain villi. After the exchange of 

substances with maternal blood in the intervillous spaces, blood flows back through the 

villous blood vessels, which converge into the vein of the umbilical cord [71]. Then the 

blood flowing in the umbilical vein goes directly into the fetal liver and heart [83]. 

Figure 1.6- Placental barrier. CTB, cytotrophoblast; STB, syncytiotrophoblast. In: Staud 
et al. [78] 
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1.9.5 Placental transfer 

The transport of substances between the placenta and the maternal blood is 

assisted by the great surface area of the placenta, which expands from 5 m2 at 28 weeks 

to almost 11 m2 at term [84]. The transfer of gases, nutrients, waste products and toxic 

substances across the placenta is bidirectional (Figure 1.8).   
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Figure 1.7- Placental circulation. Blue represents venous blood and red corresponds to 
arterial blood. Adapted from Saunders [80]. 
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The transport of the substances through the placenta depends on the 

physiochemical and structural properties of the compound as well as the physical 

characteristics. The weight, ionization and lipid-solubility of the component determine its 

transfer rate through the placenta. Molecules with a weight up to 600 Da, non-ionized 

and lipid soluble will have a fast diffusion. On the other hand, larger, ionized and 

hydrophilic compounds will cross the placenta more slowly because the membrane limit 

their transfer. Also the transfer rate will depend on the factors that regulate maternal and 

fetal blood flows. The physical properties of the placental-fetal unit factors include the 

osmotic pressure between mother and fetal compartments, the thickness of the 

endothelio-syncytial membrane, the surface area of the exchange membrane, the 

maternal blood flow and the hydrostatic pressure in the intervillous space and the blood 

pressure in fetal capillaries [85]. There are two pathways of transference across the 

placenta: paracellular and transcellular. The first is based in the permeability of the 

placenta to inert hydrophilic solutes that do not enter in cells. But, placental barrier 

includes a layer of continuous trophoblast syncytium (syncyotrophoblast) (Figure 1.6). 

The transcellular route consists in transtrophoblastic channels. From them molecules 

pass through the plasma membranes of the cells that constitute the barrier. This 

Figure 1.8- Exchange of substances across the placental barrier between the fetal 

and maternal circulation.  In: Carlson [84]. 
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pathway is available for substances such as lipophilic molecules, very small hydrophilic 

molecules and membrane carriers and channels [86]. 

The transfer of compounds can occur by five kinds of mechanisms [84, 87]: 

(i) Passive diffusion. This process is a transfer without the use of energy. It 

depends on the compound characteristics and protein binding capacities. 

Oxygen, gases, urea and free fatty acids are some examples; 

(ii) Facilitated diffusion. This process occurs mediated down a concentration 

gradient without energy-costs. The transmembrane proteins embedded in the 

plasma membrane facilitate the rate of transport. Glucose, hormones and 

nucleosides are some examples;  

(iii) Active transport. This process consists in the movement of a substance 

against a chemical or electrical gradient with energy costs. Competition 

between related compounds may occur. Amino acids are an example; 

(iv) Pinocytosis. In this process the compound is invaginated into the cell 

membrane being after transferred to the opposite site as a vesicle. The 

transfer of drugs is an example; 

(v) Aquaporins. Several aquaporins (AQPs) are expressed in placenta and fetal 

membranes (AQP1, 3, 8, and 9). Water is transferred through both the 

paracellular and transcellular routes, and its transfer may be facilitated by 

integral membrane water channel proteins (ie, AQPs) [85]. 

 

1.9.6  Transport of mercury across the placenta 

Placenta cells have proteins which are involved in transport, retaining and 

detoxification of toxicants. However, accidental exposures of pregnant women have 

made evident that placenta cannot prevent the passage of teratogens such as mercury 

as it was described along this chapter. The chemical form of Hg determines its cellular 

uptake. Mechanisms of Hg transport through the placenta are not fully understood [86]. 

However, it is believed that Hg is transported and accumulated in the placenta by 

molecular and ionic mimicry. The mechanisms that mediate placental uptake of Hg are 

also poorly understood. However, after an extent review, Bridges and Zalups [87] 

proposed mechanisms by which Hg targets many type of cells including placenta cells. 

Inorganic Hg (Hg2+) enters and accumulates in the placenta at low concentrations. 
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Inorganic Hg (Hg2+) as a thiol-conjugate may mimic a structurally similar amino acid and 

perhaps utilized as a substrate by one or more amino acid transporters. Methylmercury 

crosses the placenta readily and accumulates in the fetus and placenta. The uptake of 

MeHg seems to be mediated by the system L in a conjugate form (CH3Hg-S-Cys). 

System L is a sodium-independent transporter, which mediate the transport of neutral 

amino acids and it has been identified in the placenta. Besides it is an important 

participant in the transfer of nutrients from the maternal to the fetal circulation. Also other 

protein carriers have been identified in the placenta such as multidrug resistance-

associated proteins (MRPs), organic anion-transporting polypeptides (OATPs), organic 

anion transporters (OATs), organic cation transporters (OCTs) and zinc transporters. 

One or more of them may play a role in the uptake and/or efflux of MeHg complexes. 

MRPs are known to participate in the detoxification suggesting these carriers may be 

responsible by the efflux of MeHg from the fetal circulation back to maternal circulation 

[87] Lastly, it is believed that Hg0 may be transported by passive diffusion [96].  

 

1.9.7  European mercury levels in human placenta, umbilical 

cord and fetal membranes  

Several studies have been focused on the study and importance of the placental 

transfer of essential and nonessential metals. Esteban-Vasallo et al. [88] discussed in 

their review the use of human placenta to evaluate biomarkers of exposure to toxic 

metals. They have concluded that the use of placental tissue specimens to assess toxic 

metal exposure is not fully explored [88]. Table 1.3 resumes some European studies 

that used biologic material such as the placenta, umbilical cord and maternal hair 

regarding maternal-fetal transfer of Hg. To our knowledge, biomonitoring studies 

concerning Hg exposure during pregnancy have not been performed in Portugal. 
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Table 1.3- Total mercury levels in biological material related with pregnancy in Europe 
(1978 to 2013). Data are expressed in ng/g wet weight. 

 

 

1.10 Aveiro region, Portugal 

1.10.1 Pollution in the Ria de Aveiro 

The Ria de Aveiro is a coastal lagoon on the NW coast of Portugal connected to 

the sea by a single channel. It generates a complex system characterized by narrow 

channels and extensive intertidal zones. This lagoon has been of several pollutants 

namely through agricultural activities, households-waste waters and industry [98, 99]. 

During approximately five decades (1950-1994), Ria de Aveiro received 

continuous discharges of Hg, mainly from a chlor-alkali plant, located in a chemical-

complex industry nearby Estarreja. These Hg rich effluents dispersed in the system, 

mainly in the Estarreja Channel and in the Laranjo Bay due to its semi enclosed 

characteristics [99]. Consequently the surrounding urban and agricultural soils, 

sediments and biota (macrophytes, macrofauna and fish) were negatively affected. The 

Ria is regularly used by fishermen to catch fish both for their own consumption and for 

Country 
Biologic 
material 

Mean±SD Min-Máx Ref. 
 

 Belgium  Placenta 15.3±14.1 1.1-103.2 Roels et al. (1978) [89] 

Italy  Placenta 12.7±9.0 
 

Capelli et al. (1986) 
[90]  

Czech Republic  Placenta 2.2±1.0 
 

Truska et al. (1989) 
[91] 

Spain  Placenta 5.4±3.1 2.3-14.3 Soria et al. (1992) [92] 

 
Maternal hair 2.9±3.4 (µg/g) 0.15-20.0 

  

Germany  Placenta 13 (median) 
 

Scaal et al. (1998) 
[93]   

Ukrain Placenta <2.2 2.2-45.8 
Zadorozhnaja et al. 
(2000) [94]  

Austria  Placenta 1.9 (median) 0.1-11.7 
Gundacker et al. (2010) 
[95] 

 
Maternal hair 

184 (median) 
(µg/g) 

53-773 
 

Denmark (Faroe 
Islands) 

Placenta 87 (median) 
 

Needham et al. 
(2011) [96]   

 
Umbilical cord 85 (median) 

  

Poland Placenta - 4-104  
  

 

Umbilical cord - 3-64 
Kozikowska et al. 
(2013) [97] 
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selling in local markets. Since Hg can easily accumulate and biomagnify in aquatic biota 

and enter the food web [53], Ria and its surroundings have been considered a case-

study in different abiotic and biotic compartments [99]. Pereira et al. [99] made a review 

that describes Hg levels in these compartments in the Aveiro region until 2008. These 

studies included the water column, sediments, primary producers, fish (muscle), 

mollusks and crustaceans (Table 1.4 – fish, mollusks and crustaceans used for human 

consumption). According to the EU legislation the maximum amount of Hg that can be 

found in fish for human consumption is 0.5 µg/g for non-predatory fish, crustaceans and 

mollusks and at 1 µg/g for predatory species (e.g. shark, swordfish, tuna and black-

scabbard fish) [101]. 

 

Table 1.4- Mercury concentrations in fish, mollusks and crustaceans for human 

consumption in Ria de Aveiro and its surroundings (until 2008). (Mean±SD µg/g wet 
weight) 

 

Laranjo Ria Ria nearshore REF. 

Fish  
Dicentrarchus labrax  

0.03-1.7 occasionally > 0.5 -  

[99] Trigla lucerna  - - 0.043±0.01 

Dicologoglossa cuneata  - - 0.12±0.04 

Liza aurata  <0.4 <0.1 - [100] 

Mollusks   

[99] 

Scobicularia plana  0.37±0.26 0.03±0.01                      - 

Donax vittatus - -                       0.085±0.0006 

Spisula solida  -                         0.014±0.005 

Crustaceans   
 

Carcinus maenas 0.33±0.17 0.09±0.01 - 

 

 

Other food sources may have a little contribution for the total body burden in 

MeHg. In some particular polluted areas, vegetables and cereals such as rice can 

accumulate considerable amounts of mercury in the eatable part [67, 102, 103]. In 2009, 

human hair samples from Aveiro’s residents had been collected and analyzed by 

gender. Women represented the group with the highest Hg concentrations ranging from 

0.090 to 4.2 µg/g [103]. But in general, it was concluded that the Hg levels found in local 

population (mean: 0.5 µg/g) were considered within normal limits according to WHO 

guidelines. In the same study different species of fish from those represented in Table 

1.5 and also for human consumption were purchased in market, fisherman and local 
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supermarkets. These species included Chelon labrosus, Platichthys flesus, 

Scophthalmus rhombus, Solea solea, Trachurus trachurus, Sparus aurata, Scomber 

scombrus, Trisopterus luscus and Alosa fallax. Fish from Ria de Aveiro showed a Hg 

mean concentration of 0.12±0.13 µg/g dry weight, higher than oceanic fish (0.080±0.063 

µg/g dry weight). Regarding vegetables purchased in farmer's market and collected 

directly from agricultural fields, the species Spinacia oleracea (spinach), Latuca sativa 

(lettuce), Nasturtium officinale (watercress), Brassica napus (rapeseed) and Brassica 

oleracea acephala (collards) were analysed. Products from market had Hg levels of 

0.069±0.039 µg/g dry weight while vegetables collected direct from the field showed the 

highest concentrations ranging from 0.020 to 0.25 (0.10±0.078 µg/g dry weight) [103]. 

According to the safety guidelines, authors concluded that food was not contaminated by 

Hg and should not was responsible for major human exposure to the metal despite it still 

remain in the environment. However, in September 2011 [104], soils were collected 

again in the Aveiro region and showed Hg levels ranging from 0.03–13.65 µg/g and a 

mean of 0.15 µg/g, which is higher than European reference values (0.037 µg/g dry 

weight) [105]. At this time, scalp hair was not collected, which could transposed 

exposure to bioaccumulation. 

 

1.11 Motivation, objectives and thesis layout 

The health authorities have been concerned about the risk associated with Hg 

exposure, mainly due to its teratogenic effects and ability to cause irreversible 

neurological damage in humans. Besides, several studies have been focused on 

exposure assessment regarding potential risk factors and safety of local public health. In 

Portugal there is a lack of information about Hg exposure mainly during pregnancy and 

its effects during this critical window of development. Aveiro, more specifically the Ria de 

Aveiro, faced a severe Hg contamination due to industrial activities. Since that, a 

focused research has been made in order to assess to Hg levels that remain in lagoon 

and its surroundings as well as the occurrence of adverse effects in soils, water and 

biota. 

Nowadays, Hg does not seem to represent a risk for Aveiro’s residents taking into 

account the Hg levels assessed previously in scalp hair. But, it is important to remember 

that humans are not only exposed to Hg by fish, vegetables and/or fruit. Lifestyle, 

occupational exposure as well as other food sources, may contribute to the increase of 

Hg levels in human body [65, 67].  
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According to our knowledge, prenatal exposure to this metal has been not 

assessed in Aveiro region so far. As it was described along this chapter, Hg has the 

capability to cross the placental barrier and to reach the fetus. Another research gap is 

the distribution and retention of Hg over the maternofetal-placental unit. Placenta, which 

is considered a non-invasive matrix, is constituted by different compartments that are the 

anatomophysiological bases which support bidirectional exchange of compounds 

between mother and fetus.   

In this context, this dissertation includes two additional chapters:   

 Chapter II entitled “Mercury levels in parturient and newborns from Aveiro region, 

Portugal” has four goals: (i) to assess Hg exposure in parturient and newborns 

from Aveiro district, Portugal; (ii) to use non-invasive biological material discarded 

after birth to perform a biomonitoring study; (iii) to improve the knowledge about 

the distribution and retention of Hg over the placental-fetal unit; and (iv) to relate 

Hg levels with potential risk factors including maternal lifestyle, habits, diet and 

demographic characteristics. To achieve this, and with the approval of the Ethic 

Committee of the Hospital Infante D. Pedro (HIDP, Aveiro, Portugal) (see Annex 

I), a cross-sectional study was performed in a total of 50 mothers hospitalized for 

delivery at HIDP. After signing an informed consent (Annex II), mothers were 

asked to fill a questionnaire regarding socio-demographic factors, lifestyle and 

diet habits (Annex III) and samples of biological material were collected and 

preserved for further analysis of Hg. Thus, this chapter presents the main results 

of this study and it is structured as a scientific paper to be submitted to an 

international peer review journal. 

  The work presented in chapter II was performed in 50 mother-newborn pairs, 

randomly selected, from 9 different counties that belong to the Aveiro district: 

Aveiro, Águeda, Ílhavo, Oliveira do Bairro, Estarreja, Murtosa, Vagos, Ovar and 

Albergaria-a-Velha. Since it is known that Estarreja and surroundings were the 

areas more affected by Hg release due to the chlor-alkali industry, Hg analyses in 

biological media used in chapter II were also used to compare Hg exposure both 

in mothers and newborns from each county. Therefore, chapter III entitled 

“General remarks” beyond to describe the major conclusions of the entire work, it 

also includes these results which are presented in two representative graphs 

without resorting to statistical analysis. 
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Overall, both chapters support a better knowledge about Hg levels in Portuguese 

women and their newborns including comparisons with similar European reports. 
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Abstract. Mercury is a well-known teratogen since the outbreak of methylmercury 

poisoning in Japan and Iraq. The Portuguese region of Aveiro faced some decades ago 

an environmental Hg contamination due to the activities from a chlor-alkali plant, and so 

far there are no research concerning prenatal exposure to Hg in this area. The first 

objective of this study was to assess maternal and fetal exposure to Hg in the Aveiro 

region using non-invasive biological material. Total Hg (THg) measurements were 

performed by atomic absorption spectrometry after thermal decomposition of sample. 

Maternal hair had THg levels with a mean value of 0.90 µg g-1, close to the U.S EPA limit 

but lower than the WHO limits. Mean values of THg levels in decidua basalis, chorionic 

plate and umbilical cord were similar. Amniotic membrane had the highest THg levels 

with a median value 33.65 ng g-1, reaching a maximum value of 134.10 ng g-1. The 

results of Hg found in our study were lower compared with values of previous European 

reports. A strong positive relationship was observed between THg levels in all matrices 

analyzed (p<0.001). Besides, no significant associations were found between Hg levels 

and anthropometric data of newborns. The second objective was to investigate the 

potential influence variables that contributed to Hg exposure during pregnancy. The 

consumption of fish rich in selenium and bottled water were negatively related to Hg 

levels. Finally, the third objective was to improve the knowledge about the Hg retention 

over the maternal-fetal-placental unit. In this study it was observed that Hg is capable to 

cross placenta but it also can accumulate in placental tissues. Amniotic membrane 

seemed to play a role in the Hg detoxification but further research is needed in order to 

explore this process/mechanism on metals retention capabilities. 

 

Keywords: pregnancy, mercury, hair, umbilical cord, decidua basalis, chorionic plate, 
amniotic membrane 
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 Introduction 2.1

 

Mercury (Hg) is ubiquitous and has been considered by World Health Organization 

(WHO) as one of the ten chemicals of major public health concern [1]. Environmental 

contamination by Hg is caused mainly by anthropogenic activities such as industrial, 

pharmaceutical and agricultural activities [2]. This metal exists in three forms: elemental, 

inorganic and organic. Humans can be exposed to elemental and inorganic Hg mainly 

due to dental amalgams and skin-lightening creams, respectively [3]. Fish and seafood 

consumption has been classified as the major sources of exposure to organic Hg in 

humans due to its capacity to bioaccumulate and biomagnify along the food chain [4].  

Exposure to Hg can result in several toxic effects depending on its chemical form and 

route of exposure. Each chemical form acts according to its specific toxicological profile. 

For example, inorganic Hg salts can cause kidney damage while organic Hg compounds 

can cross the blood-brain barrier and produce neurological damage. On the other hand 

elemental Hg represents a threat for both renal and nervous systems [3, 5].  

Mercury is also a well-known teratogen [6].  Placenta was early considered one of the 

most powerful barriers avoiding the transfer of harmful substances to the offspring. 

However, during the outbreak of methylmercury (MeHg) poisoning in Japan and Iraq, it 

was proven the contrary [7, 8, 9]. Further, prenatal exposure to others forms of Hg were 

observed in mammals. Elemental Hg seems to be able to penetrate the placental barrier 

and accumulate in the fetus similarly to MeHg [10]. In turn inorganic Hg tended to be 

retained in placenta [10]. Since then several biomonitoring studies have been made 

worldwide concerning both maternal and fetal exposure to Hg [reviewed in 11]. Mercury 

has been linked to miscarriage, spontaneous abortions, stillbirth, and low birth weights 

[10]. Prenatal exposure to Hg can inhibit fetal brain development leading to a delayed 

growth, neural tube defects and craniofacial malformations. In the latter stages of 

development, children may develop cerebral palsy and psychomotor retardation [10, 12, 

13].  

Placenta is a temporary organ that makes the physical and functional connection 

between the mother and the developing embryo/fetus. The main functions of placenta 

are: (i) to provide oxygen, water and nutrients that are essential to the fetus; (ii) to 

remove carbon dioxide and other waste products; (iii) to metabolize several chemical 

substances; (iv) to release metabolic products into maternal and/or fetal circulations; (v) 
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to protect the fetus against xenobiotics, infections and maternal diseases; and (vi) to 

release hormones from both the maternal and fetal circulations, ensuring a well succeed 

gestation [14]. Placenta is remarkably capable to perform these functions without mixing 

maternal and fetal blood [14, 15]. The full-term human placenta is constituted by a 

decidua basalis which is the maternal surface; a chorionic plate that corresponds to a 

fetal surface; and lastly by an amniotic membrane.  

Biological markers (biomarkers) of exposure have been defined as an exogenous 

substance or its metabolite that can be measured in human cells, tissues or fluids. In 

human health studies, while questionnaires offer an historical description of the 

exposure, biomarkers of exposure estimate the internal dose of the exposure [16]. 

Taking into account its complex structure, placenta can be considered as a dual purpose 

specimen for monitoring both fetal and maternal exposure to potentially harmful agents 

like Hg [15, 17]. Mercury level in cord tissue is also a well validated biomarker of 

exposure [18]. It has been well correlated with Hg concentrations in cord blood when 

expressed in dry weight of tissue. Since the Hg disaster in Minamata, the level of Hg in 

this tissue has been used as a fetal biomarker of exposure to Hg showing better results 

than those obtained with maternal hair [19, 20]. On the other hand, very little is known 

about the capacity of amniotic membrane to retain Hg. In 1967, Suzuki and colleagues 

[21] injected three different Hg compounds in pregnant mice and used the placenta and 

amniotic membrane as biological matrices. Interestingly, they found higher Hg content in 

amniotic membrane when compared with placenta. They proposed that water solubility 

of the mercury compound present may play an important role to determine the extent of 

retention [21]. It is important to refer that amniotic membrane is in permanent contact 

with amniotic fluid, which provides and receives fetal substances.  

Scalp hair is also classified as a valuable matrix to assess Hg exposure [18]. It has 

the capacity to incorporate circulating Hg, preferably MeHg, through the follicle during 

growth [22]. In humans, the rate of hair growth is approximately one centimeter per 

month which allows hair to capture temporal exposure history [23]. Several studies have 

evaluated Hg level in scalp hair of pregnant women making the linkage to fish 

consumption [22, 24, 25, 26, 27]. The reference dose (RfD) of U.S. Environmental 

Protection Agency (USEPA) for Hg corresponds to 1.0 µg g−1 for people who have low 

fish consumption [28] while WHO adopted 2.0 µg g−1 as normal Hg levels in scalp hair 

[29].  

The Portuguese region of Aveiro faced an environmental Hg contamination due to 

the activities from a chlor-alkali plant. Effluents rich in Hg were released from 1950 till 
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1994 to the Ria de Aveiro lagoon system and consequently the surrounding urban and 

agricultural soils, sediments, and biota were negatively affected [30]. High Hg levels 

have been thereafter detected in fish, shellfish and vegetables used in the diet of local 

population [30, 31, 32, 33]. In 2009, more than one decade after the cessation of Hg 

releases, scalp hair was collected from women and men, with an age mean of 41, near 

to the chemical plant. Women had the higher Hg values compared to men. In the total 

studied population, including both women and men, 42% presented Hg concentrations 

between 1–2 µg g−1 and 22% exceeded 2 µg g−1 [33]. However, according to our 

knowledge there are no studies regarding maternal and prenatal exposure to Hg in this 

region.  

Therefore, the objectives of this study were (i) to assess maternal and fetal 

exposure to Hg in Aveiro region using standard (hair and dried cord tissue) and potential 

(placenta and fetal membranes) non-invasive biological material; (ii) to investigate the 

potential influence variables (sociodemographic factors, food habits and lifestyle) that 

contribute to maternal and fetal exposure to Hg during pregnancy in the Aveiro district; 

and (iii) to improve the knowledge about the Hg retention over the maternal-fetal-

placental unit.  

 

 Materials and methods  2.2

 

2.2.1 Study population 

A cross-sectional study was performed in eligible women hospitalized for delivery at 

Infante D. Pedro Hospital located in Aveiro, between October 2014 and April 2015. 

Inclusion/exclusion criteria were set to limit the presence of confounding variables within 

the study population. Thus, an entry criterion for inclusion of pregnant women in the 

study was to be resident in the Aveiro district (central—north Atlantic coast of Portugal) 

whereas multigestational pregnancies were excluded. In total, 50 women agreed to 

participate in the study by signing an informed consent form. This study was previously 

approved by the Ethic Committee of the Hospital.  

 

2.2.2 Data collection 

Sociodemographic, diet and lifestyle information during pregnancy was gathered on 

participants from face-to-face interview by hospital staff (medical doctors) within the first 
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24h after delivery. A detailed questionnaire was filled including: maternal age (years), 

time of residence (years), place of residence (rural or urban), maternal education 

(university; secondary; primary), parity (0; +1), prenatal care (dental filling (yes; no); 

vitamin supplements (yes; no); medication (yes; no); vaccination (yes; no)); occupational 

exposure (work status (unemployed; employed); exposure to chemicals (yes; no)); 

cosmetics usage (never; less than 1 time per week; more than 1 time per week; daily); 

hair dye (yes; no); eating habits: vegetables, fruits, fish and shellfish (never; 1 to 3 times 

per month; 1 to 3 times per week; 4 to 6 times per week; daily); water consumption: 

drinking at and outside home and for cooking  (municipal; private well; bottled). Clinical 

information of newborns (head circumference; birth length; birth weight) was also 

obtained by review of medical records.  

 

2.2.3 Sampling 

A total of 50 placental-cord tissues were collected and coded. After collection all 

samples were immediately kept in saline solution 0.9% and maintained at 4ºC. Within 12 

hours maximum the samples were transported from the hospital to the University of 

Aveiro facilities (500 meters distance) for further processing. Each placental tissue was 

partitioned in three different parts: decidua basalis (from the maternal surface), chorionic 

plate (from the fetal surface) and amniotic membrane. Small tissue pieces (minimum 6) 

were randomly collected from maternal and fetal surfaces of placenta while amniotic 

membrane was just easily detached from the chorion and cut into small sections. Each 

umbilical cord was also cut into small parts.   

All replicates were weighted, coded and stored at -20ºC. All the cutting and weighting 

procedures were performed by using clean stainless steel scissors and tweezers. All the 

samples were then freeze-dried during 72 h. Decidua basalis and chorionic plate dried 

tissues were homogenized and transformed into powder with mortars and pestles. Cord 

and amniotic membrane dried tissues were cut into very small pieces. Lastly, samples 

were stored at room temperature in a desiccator with silica, protected from light, until Hg 

analysis.  

Maternal hair samples were cut from the scalp at the occipital region using clean 

stainless steel scissors. Segments of 3.5-4 cm were collected since they give 

information related to the Hg exposure during the third trimester of pregnancy. 

However, because the hair follicle grows out of the skin surface after about 3 

weeks, Hg concentrations will only reflect the Hg exposure from 3 weeks before 
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[23]. Samples were then kept in clean microtubes of 2 ml and identified appropriately. In 

the laboratory, each hair sample was cut into small pieces and washed according to the 

standard procedure recommended by the International Atomic Energy Agency: wash in 

acetone, three times in water, and once more in acetone [34]. The samples were then 

dried overnight at 35°C and stored at room temperature.  

  

2.2.4 Determination of total mercury levels  

Total Hg (THg) measurements were performed by atomic absorption spectrometry 

after thermal decomposition of the sample using the Advanced Mercury Analyser (AMA-

254, LECO). This technique of quantification is based on a pyrolysis process of the 

sample using a combustion tube heated at 750 °C under an oxygen atmosphere. 

Volatilized mercury Hg(0) is trapped in a gold amalgamator and subsequently detected 

and quantified by atomic absorption spectrometry at 254 nm. The detection limit 

established was 0.01 ng Hg [35]. The number of technical replicates differed due to the 

homogenization processes of the samples. Total Hg levels were measured in decidua 

basalis and chorionic plate in three technical replicates while in cord and amniotic 

tissues a larger number (between 6 and 9) were used.  

Whenever the hair mass was insufficient to achieve three technical replicates, 

duplicates were made. Analytical quality of the procedure was controlled using reference 

material ERM-BB184 (Bovine muscle) and ERM-DB001 (Human hair) (European 

Reference Materials, European Commission - Joint Research Centre, Institute for 

Reference Materials and Measurements) containing 0.0018±0.0010 µg g-1 (indicative 

value) and 0.365±0.028 µg g-1 (certified value) of THg respectively; and TORT-2 

(Lobster Hepatopancreas Reference Material for Trace Metals, National Research 

Council of Canada) containing 0.27±0.06 μg g−1 of THg. 

 

2.2.5 Statistical analysis  

Shapiro-Wilk test was used to determine data normality. Data obtained from Hg 

analyses and medical records did not fit a normal distribution and therefore non-

parametric tests were performed. Spearman correlation analysis were conducted 

between [THg] in maternal hair, decidua basalis, chorionic plate, umbilical cord and 

amniotic membrane. Anthropometric data of newborns was also correlated with [THg] in 

biological tissues by Spearman correlation analysis. A Mann Whitney U test was applied 

to calculate the differences of [THg] in matrices according to the newborn gender (male 
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and female). All the statistical analysis were performed using SPSS software version 

22.0 for Windows (version 22.0. Amonk, NY. IBM Corp). A p-value <0.05 was set as the 

level of statistical significance.  

To determine which factors related to the [THg] found in biological samples, the 

relationship between [THg] and potential influence factors included in questionnaires 

were investigated using Redundancy Analysis (RDA). Forward selection was used in 

RDA to select the subset of variables that provided the highest explanatory model. The 

significance of each variable was calculated by 499 permutations in Monte Carlo test 

and variables with p<0.05 were included in the constrained ordination model. These 

analyses were performed using the CANOCO 4.5 software. 

 

 

 Results 2.3

In this study, 50 mother-newborn pairs were evaluated. Demographic and clinical 

characteristics are described in Table 2.1.  Mean age (±standard deviation) of the 50 

parturient was 30.6 (±5.9) years and 50% had a secondary education. They lived in the 

same area of residence in average 17.8 years: 40% in urban dwellings and 36% in rural 

places. Parity results were almost equally distributed (48% and 52%, respectively). 

Anthropometric data of newborns (birth length, birth weight and head circumference) 

were similar for both boys (N=26) and girls (N=24).  
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Table 2.1- Demographic and clinical characteristics of 50 mother-newborn pairs from 
Aveiro region. 

 
Mean±SD or % N 

Maternal demographic characteristics   
Age (years) 30.6±5.9 50 
Education level (%) 

 
 

Primary incomplete 4 2 
Primary complete 10 5 

Secondary 50 25 
University 36 18 

Time of residence (years) 17.8±12.4  
Place of residence (%)   

Urban 40 20 
Rural 36 18 

Intermediate 24 12 
Parity (%)   

0 48 24 
+1 52 26 

Birth outcomes    
Gender (%)   

Male 52 26 
Female 48 24 

Birth length (cm)   
Male 49.31±1.61 26 

Female 49.48±1.34 24 
Birth weight (g)   

Male 3261.69±412.51 26 
Female 3201.56±317.48 24 

Head circumference (cm)   
Male 34.56±1.13 26 

Female 34.29±0.76 24 

  

  

 

Maternal hair [THg] ranged from 0.13 to 3.56 µg g-1 with a mean value of 0.90 µg g-1 

(Table 2.2). According to the RfD established by US EPA, 32% of all individuals 

analyzed were above 1.0 µg g-1 and 6% were higher than normal Hg levels considered 

by WHO (2.0 µg g-1) (Figure 1).  

Median values of [THg] in decidua basalis, chorionic plate and umbilical cord were 

similar (27.55, 26.80 and 27.30 ng g-1, respectively). Amniotic membrane had the 

highest [THg] with a median value 33.65 ng g-1 and a maximum range of 134.10 ng g-1 

(Table 2.2).  
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Table 2.2 – Total mercury levels in maternal hair, decidua basalis, chorionic plate, 
umbilical cord and amniotic membrane.  

 
Mean Median SD Minimum Maximum 

Maternal hair
1*

  0.90 0.72 0.64 0.13 3.56 

Decidual basalis
2 

32.84 27.55 18.34 3.0 84.10 

Chorionic plate
2 

30.18 26.80 16.81 2.7 84.10 

Amniotic membrane
2 

42.35 33.65 29.07 6.0 134.10 

Umbilical cord
2* 

30.67 27.30 16.67 3.6 76.3 
1
 units expressed by µg g

-1
 fresh weight; relative to the third trimester of pregnancy 

2 
units expressed by ng g

-1 
dry weight 

*standard biomarkers of Hg exposure [18] 
SD: standard deviation 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 2.1- Total mercury concentration distribution among hair of 50 mothers from 
Aveiro region. Two lines were set according to US EPA (1 µg g-1) and WHO (2 µg 
g-1) Hg reference levels [26, 27]. 
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A strong positive relationship was observed between [THg] in all matrices analyzed with 

a p value <0.001 (Table 2.3). Decidua basalis and chorionic plate showed a spearman 

correlation coefficient close to 1 (0.965). However, the relationships found between 

maternal hair, cord and placental tissues were lower compared with those found among 

placental and cord tissues. 

 

 

Table 2.3 – Spearman correlation coefficients between total mercury content in maternal 
hair, decidua basalis, chorionic plate, amniotic membrane and umbilical cord. 

 Maternal 
Hair 

Decidua 
basalis 

Chorionic 
plate 

Amniotic 
membrane 

Umbilical 
cord 

Maternal hair
 

1.000 0.656 0.698 0.592 0.669 

Decidua basalis  1.000 0.965 0.837 0.908 

Chorionic plate   1.000 0.823 0.912 

Amniotic membrane    1.000 0.839 

Umbilical cord     1.000 

p<0.001 

 

 
Table 2.4 describes the characteristics of mothers regarding prenatal care, lifestyle, 

and work status; diet and water consumption during the gestation period. The highlights 

of prenatal care were medication (86% yes) and vitamin supplements intake (74% yes).  

Hair dye was not a habit over the pregnancy (58% with no application) in opposite to 

cosmetics usage (70% with application).  

Over half of the women studied were employed (N=28) and 26% of these working 

mothers were exposed to chemicals during the labor time.  

Dairy products, fresh vegetables and fruit were also part of the maternal daily diet. In 

general, cod, sole and hake were the fish mostly consumed by mothers (1 to 3 times per 

week) followed by sardines, mackerel, salmon, mullet and canned fish (1 to 3 times per 

month). Mothers preferred to drink bottled water during pregnancy and use municipal 

water for cooking. 

 

 

 

 

 

 



 

65 

 

Table 2.4 – Lifestyle, diet and water consumption characteristics of mothers during 
pregnancy. 

Prenatal care & lifestyle % N 

 
Dental filling  

 

 

 Yes 30 15 

No 70 35 

Medication 
 

 

Yes 86 43 

No 14 7 

Vitamin supplements 
 

 

Yes 74 37 

No 13 13 

Vaccination 
 

 

Yes 28 14 

No 72 36 

Cosmetics usage 
 

 

Daily 26 13 

> 1 time per week 20 10 

< 1 time per week 24 12 

Never 30 15 

Hair dye  
 

 

Yes 42 21 

No 58 29 

Working status 
 

 

Working 56 28 

Unemployed 38 19 

Student 6 3 

Exposure to chemicals at work 
 

 

Yes 26 7 

No 74 21 

Living near to industrial activities 
 

 

Yes 30 15 

No 70 35 

Diet  mode  

   

Fresh vegetables  Daily 27 

Canned vegetables  1 to 3 times per week  18 

Fresh fruit  Daily 35 

Canned fruit  1 to 3 times per month  16 

Organic food or own crops  Never 16 

Vegetarian food  Never 43 

Poultry 1 to 3 times per week  29 

Meat (beef, pork, lamb, ham, bacon, hamburger)  1 to 3 times per week  28 

White fish (cod, sole, hake)  1 to 3 times per week  22 

Swordfish and/or tuna  Never 20 

Other fish (sardines, mackerel, salmon, mullet) 1 to 3 times per month  19 

Canned fish (sardines. tuna, mackerel, roes, anchovies)  1 to 3 times per month  23 

Shellfish  Never 28 

Water consumption  mode  

   

Drinking water at home  Bottled 37 

Cooking water at home  Municipal 41 

Drinking water outside home  Bottled 43 
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 According to the Redundancy Analysis, three variables were correlated with THg 

levels founded in matrices: education, bottled water and other fish (Table 2.5). The first 

RDA axis, representing 99.9% of media-potential influence factors variance, was 

positively related to Education’s level, and negatively related with other fish (sardines, 

mackerel, salmon, mullet) intake and drinking bottled water outside home (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.2- Biplots based on Redundancy Analysis (RDA) representing the correlation 
between biological data and significant potential influence variables: other fish 
(sardines, mackerel, salmon, mullet), education’s level and drinking water outside 
home (bottled). 
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Table 2.5 - Significance of potential influence variables (maternal demographic 
characteristics, lifestyle, eating habits and water consumption) included in the 
Redundancy Analysis (RDA) model. Variables are shown by order of importance. 

 

 
 No significant correlations (p>0.05) were found between [THg] in placental, cord 

tissues, maternal hair and data on anthropometric parameters (head circumference, birth 

length and birth weight) of newborns (Table 2.6). However, birth weight and head 

circumference showed a negative relation with [THg] both in placental and cord tissues.  

  Total Hg content in placental and cord tissues was not dependent (p>0.05) on 

newborn gender (Figure 2.3).  

 
Table 2.6 – Spearman correlation coefficients between total mercury content in placental 
and cord tissues and neonatal anthropometric data. Correlation coefficients (p value). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Discussion 2.4

Variable F p-value 

Other fish (sardines, mackerel, salmon, mullet) 8.002 0.006 

Education’s level 7.721 0.020 

Drinking water outside home (Bottled) 4.503 0.046 

  

Maternal 
Hair  

Decidua 
 basalis 

Chorionic  
plate 

Amniotic 
membrane 

Cord tissue 

Head 
circumference  

0.107(0.46) -0.129(0.37) -0.090(0.53) -0.053(0.71) -0.04(0.77) 

Birth length  0.129(0.37) -0.022(0.88) -0.059(0.68) 0.000(0.99) 0.026(0.86) 

Birth weight  0.042(0.77)  -0.210(0.14) -0.223(0.12) -0.123(0.38) -0.206(0.15) 

Figure 2.3- Mean concentration ± standard deviation of THg in placental and 
cord tissues by gender of newborns. Mann Whitney U test; p>0.05. 
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2.4.1 Mercury in maternal hair 

 
In this study performed in 50 parturient and their newborns from Aveiro region 

(Portugal), Hg was detected in all hair, cord and placental samples. Maternal hair is 

considered an important biological matrix for reflecting Hg exposure, especially MeHg 

[18]. Fish intake is highly required throughout pregnancy because of its content in 

omega-3 fatty acid (omega-3). This essential nutrient is necessary to maintain maternal 

reserves which are used in physiological processes; and it is critical for fetal 

synaptogenesis and development of photoreceptors during the third trimester [36, 37]. 

Predatory fish such as swordfish and tuna, as well as shellfish, have been considered 

food items to be avoided by pregnant women due to their MeHg content [38]. But, as it 

was described in Table 2.4, the modal frequency for this kind of fish food consumption 

was “never”. Besides, any category of fish considered in questionnaires was positively 

related with THg levels found not only in the hair, but in all tissues (Figure 2.2 and Table 

2.5). In this study, maternal hair had a THg average of 0.90 µg g-1, which is very close to 

the limit established by U.S EPA (1 µg g-1) [27]. In addition, a total of 38% of the studied 

volunteers had THg concentrations in hair above this safe limit of which 6% were above 

of normal limit considered by WHO (2 µg g-1) [28]. Our results are in accordance with a 

recent study performed also in the central—south of Portugal [39], where Hg 

concentrations in maternal scalp hair from pregnant woman ranged from 0.07 to 5.3 µg 

g-1 and 7% had values above 2 µg g-1. Even so, according to WHO and UNEP (2008) 

[18], Hg concentration in maternal hair associated with teratogenic effects in the fetus is 

10 µg g-1 which is considerably higher than the ones obtained in the present study. On 

the other hand, Schoeman and colleagues set the concentration 0.3 µg g-1 as the Lowest 

Observable Adverse Effect Hair Concentrations (LOAEHC), looking at adverse effects 

on fetal brain development, related to Hg in maternal hair [40]. Regarding this, 50% of 

the parturient studied were recorded above this value.  

 

 

2.4.2 Mercury in placental umbilical cord tissues 

 

Our results showed a strong relationship between the Hg levels obtained in maternal 

hair, cord and placental tissues (decidua basalis, chorionic plate and amniotic 

membrane) (p<0.001) (Table 2.3). Therefore, the correlations support the use of all 
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specimens included in the present study. Besides, Hg was detected in all umbilical cord 

samples which proves its usefulness as a specimen to assess to fetal exposure to Hg 

[41].  

 

Table 2.7 – Total mercury levels in placenta collected in different epidemiological studies 
performed in Europe (from 1978 to 2013). Data are expressed in ng/g wet weight. 

 

 

Table 2.7 describes European results since 1978, recording THg levels (expressed 

in wet weight) in placenta without amniotic membrane or specifying which surface 

(maternal or fetal) was measured. In order to compare them with the results obtained in 

this work, which was expressed in dry weight, we divided Hg levels found in decidua 

basalis and chorionic plate (Table 2.2) by 6.0 according to an extent review made by 

Esteban-Vasallo et al. [11] in mammals. Thus, decidua basalis and chorionic plate had a 

mean (median) value of 5.47(4.59) and 5.03(4.47) ng g-1 wet weight, respectively. In 

view of this, our results were lower than placental Hg levels found in Belgium, Italy, 

Germany and Denmark; and higher than for the Czech Republic. On the other hand, 

Spain reported a mean value very similar to those found at the present work (5.4 ng g-1 

wet weight – Table 2.7).  

To our knowledge, there are no studies so far that included the simultaneous 

quantification of Hg in maternal hair, decidua basalis, chorionic plate, amniotic 

membrane and cord tissue. However, Soria et al. have already reported in 1992 [45] a 

Country  Mean±SD Min-Máx Ref.  
  

Belgium  15.3±14.1 1.1-103.2 Roels et al. (1978) [42] 

Italy  12.7±9.0 
 

Capelli et al. (1986) [43] 
 

Czech Republic  2.2±1.0 
 

Truska et al. (1989) [44] 

Spain  5.4±3.1 2.3-14.3 Soria et al. (1992) [45] 

Germany  13 (median) 
 

Scaal et al. (1998) [46] 
 

Ukrain - 2.2-45.8 
Zadorozhnaja et al. 
(2000) [47] 

  
Austria  1.9 (median) 0.1-11.7 

Gundacker et al. (2010) 
[48] 

  
Denmark (Faroe 
Islands) 87 (median) 

 
Needham et al. (2011) [49] 

Poland - 4-104 
 
Kozikowska et al. (2013) [50] 
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strong correlation between Hg in maternal hair and decidua basalis (cotyledons) and 

Neddham et al. in 2011 [49] observed the same between Hg levels found in maternal 

hair, cord tissue and chorionic plate. These results are in line with the correlation 

coefficients obtained in the present study, where the Hg levels in the different placental 

tissues analyzed presented a strong correlation with maternal hair levels.  

 

2.4.3 Mercury in amniotic membrane 

 

The major finding in the present study was the Hg levels found in the amniotic 

membrane. To our knowledge only three studies were made using metal level in 

amniotic membrane as biological marker of metal exposure. The first was carried out in 

pregnant mice [21], where rats were injected with inorganic Hg and two different organic 

Hg compounds at the 14th day of gestation. Four days after, the placentas, amniotic 

membranes, amniotic fluids, livers, kidneys and uteri were harvested. They found 

different patterns of accumulation and retention of Hg according to the chemistry of 

compound. Inorganic Hg showed a major tendency to accumulate in placenta and 

amniotic membrane while MeHg was found preferably in fetal liver. Suzuki and 

colleagues suggested the water solubility of Hg compounds as explanation to their 

findings [21]. Once amniotic fluid is mostly constituted by water and receives waste 

products from fetus [51], excreted inorganic Hg may be catch and retained by amniotic 

membrane.    

Afterwards, Yoshida [10] reconfirmed results achieved by Suzuki et al. [22] about 

the different Hg capabilities to be retained or transferred across placenta. A second 

study was performed in humans, concerning prenatal exposure to cadmium (Cd) and 

lead (Pb), where a higher accumulation of metals was found in the amniotic membrane 

followed by the amniotic fluid [52]. Their results lead to the hypothesis that fetal 

membranes may participate in the elimination of toxic metals from the fetus by 

reabsorption from amniotic fluid [52]. A third study, also performed in humans, 

contradicted these findings as higher Hg and Pb contents were found in placenta 

compared to those in the amniotic membrane [53]. In the present study, although our 

results are in agreement with Suzuki et al. [21], we have no information about what Hg 

species/form was present in amniotic membrane and no data was collected on Hg 

concentrations in amniotic fluid. Further research is needed in order to explore the role of 

amniotic membrane in Hg detoxification. Larger size samples and Hg speciation 

analyses may be helpful to confirm or reject previous findings [10, 21, 53].     
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It is known that in early stages of pregnancy, amniotic fluid derives from maternal 

plasma and passes through the fetal membranes as amnion. Throughout the gestation, 

when placental and vessels develop, water and solute from maternal plasma are 

transported across the placenta to the fetus and then to the amniotic fluid [54]. It is also 

known that placenta has two pathways of transference that are permeable to both inert 

hydrophilic and lipophilic solutes. Water, the major component of amniotic fluid, is 

transported by both ways. This transport may be facilitated by aquaporins (AQPs) which 

exist not only in placenta but also in amniotic membrane, chorion, decidua parietalis, 

ovary and uterus [51, 55]. One of those aquaporins is the type 1 that contains a reactive 

cysteine residue and is one of the major AQPs both in the placenta and fetal membranes 

[55, 56]. In 2010, Hirano et al. described the molecular mechanisms of how mercury 

inhibits water permeation through AQP-1 and concluded that when Hg binds to cysteine 

residue in Cys-SHg+ form, it decreases water permeability [56]. Therefore, it seems 

plausible the proposals launched by Suzuki, T et al. [21] and Korpela, H. et al. [52] as 

amniotic membrane may have a role in metals detoxification. Recently, glutathione S-

transferases (GSTs) were identified in amniotic membrane [57]. One of them was 

GSTP1 and its function is the conjugation of reduced glutathione to a wide number of 

exogenous and endogenous hydrophobic electrophiles [57]. Mercury is usually 

eliminated as glutathione (GSH) conjugates due to highly affinity with thiol groups [51]. 

On one hand this function may be related to the presence of GSTP1 and, on the other 

hand Hg may be retained by AQP1. However, caution must be taken looking at this 

second hypothesis involving AQP1, once the retention of Hg may lead to a decrease of 

amniotic fluid volume that can be harmful to fetal development [54].  

In the present work, the levels of THg found in amniotic membrane from placenta 

supporting female newborns were higher than those from males. Although these 

differences were not statistically significant, this trend observed is in accordance with the 

findings of Zadrozna et al. [53]. 

 

2.4.4 Factors associated with Hg levels  

 

According to the multivariate analysis (Figure 2.2, Table 2.5) drinking bottled water 

and fish intake such as sardines, mackerel, salmon and mullet were negatively related 

with Hg levels found in all matrices. On one hand, this type of fish is considered low in 

Hg by EFSA [38] compared with predatory fish like swordfish and tuna. On the other 

hand, these species are not only rich in omega-3 fatty acids, but also in selenium (Se). 
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Mercury’s binding affinity to Se is a million times higher than for sulfur, so Se may act as 

a detoxification pathway in human body. Besides, this element may also protect against 

toxic effects of Hg due to antioxidant effects of selenoprotein systems [58]. Determine 

the speciation of Hg may be useful to better discriminate which risk factors contributed to 

Hg levels found in matrices. Regarding the research carried out by Yoshida [10] and 

Suzuki et al. [21] and results described in Table 2.2, Hg possibly occurred in different 

forms/species in the analyzed tissues.  

 

2.4.5 Newborns anthropometry and Hg levels 

 

The relation of Hg levels quantified in the different biological matrices and the 

newborns anthropometry presented in the present study (Table 2.1) is similar to those 

obtained with infants from Austria [48] and Poland [49]. As in the present study, no 

significant relationships were found in these studies between Hg levels in placenta and 

infant’s measurements, despite the occurrence of a negative tendency between birth 

weight and Hg content both in placenta and cord tissue [49].  

 

  Conclusions 2.5

For the first time, a cross-sectional study concerning Hg exposure was performed in 

the Aveiro region (North central Portugal), two decades after the Hg leakage into the Ria 

de Aveiro. Our results detected the occurrence of high Hg levels in maternal hair 

according to US EPA and WHO, and higher Hg contents in placental tissues compared 

to previous reports from other European countries. However, these concentrations were 

not related with fish intake or other risk factors described throughout the literature. 

Moreover, newborns anthropometry did not appear to be influenced by Hg levels. In this 

study it was also demonstrated a higher Hg retention in human amniotic membrane. In 

order to understand the role of the amniotic membrane in the placental-fetal 

accumulation of Hg, further research should be done with a larger sample size and Hg 

compound specification. The feasibility of using the placenta to assess intrauterine 

exposure to Hg was confirmed as well as other non-invasive and biological markers like 

Hg level in cord tissue and scalp hair.  So far, only two cross-sectional studies were 

carried out in mainland Portuguese populations concerning prenatal exposure to toxic 

metals [39, 59]. Therefore, further assessments to metals exposure are required in 

Portugal in order to prevent possible adverse effects in offspring. 
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3. General Remarks 
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Human biomonitoring studies are important to assess exposure to existing and 

emerging environmental substances, and the results can help make informed decisions 

on health protection [1]. One of the goals of this study was to assess mercury (Hg) 

exposure in parturient and their newborns from Aveiro region (Portugal). This goal was 

well succeed. In general, Hg levels found in maternal hair (mean Hg level: 0.90 µg g-1) 

were lower but close to safe limits established by health organizations. Besides, no 

significant associations were found between Hg levels in biological media and 

anthropometry of newborns. 

 

Biomarkers have shown to be essential tools to study the relationship between 

health and environmental exposure [3]. Maternal hair and cord tissue were two of the 

biological matrices used in this work. They were chosen as matrices to assess  Hg 

exposure for two reasons: firstly, they are recommended for that purpose [2] and both 

fitted in another aim of the study– to use non-invasive material. Secondly, in addition to 

the existence of standard protocols about hair collection and laboratory proceedings, 

WHO and U.S. EPA have set Hg reference levels for scalp hair, which gave us the 

capacity to determine the degree of exposure for this population.  

 

Placenta was other matrix used in this study in order to evaluate the retention 

and distribution of Hg over the maternal-fetal-placental unit. We found a very strong 

association between all placental tissues and umbilical cord. These findings are very 

interesting because placenta (and amniotic membrane attached), is a temporary organ 

that is usually discarded after birth which favors major ethical issues. Moreover, this non-

invasive matrix not only can tell us about the Hg transfer from mother to fetus as it can 

also provide different biologic markers of Hg exposure. Decidua basalis containing 

maternal blood [4] may represent parental exposure and chorionic plate containing fetal 

blood [4] may report the fetal exposure. Between these compartments there is a barrier 

– placental barrier, that avoid the mixture of both maternal and fetal blood [4] and 

through which Hg targets fetal blood for the first time (Figure 3.1, equation 1).   In turn, 

while umbilical cord may well represent Hg transfer towards to fetal tissues (Figure 3.1, 

equation 2), amniotic membrane may function as the final Hg target after fetal excretion 

into amniotic fluid (Figure 3.1, equation 3).  
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Further research should be carried out about the ability of the amniotic 

membrane to retain and accumulate Hg and other metals. Several authors pointed out 

this tissue as a protection to the fetus [5, 6]. But since it is known that Hg inhibits 

aquaporins functions [7] and amniotic fluid is refilled from fetal membranes in early 

stages of pregnancy [8], some knowledge gaps should be filled in. Understand how 

amniotic membrane deals with Hg exposure in the different stages of pregnancy, should 

therefore be considered.  Besides, aquaporins also exist in the placental barrier, and 

later amniotic fluid is refilled from there [8]. Taking into account this, further investigation 

should be also conducted aiming to make the linkage between these occurrences and 

possible adverse effects during pregnancy that may affect the fetal development. 

 

Another objective of this research was to investigate how Hg levels were 

distributed along the Aveiro district. This work was performed in 50 mother-newborn 

pairs, randomly selected, from 9 different counties that belong to the Aveiro region: Ovar, 

Murtosa, Estarreja, Aveiro, Albergaria-a-Velha, Ilhavo, Vagos, Oliveira do Bairro and 

Agueda (Figure 3.2).  

 

 

Figure 3.1- Tiered approach of Hg pathways across maternal-fetal-placental unit.    
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Looking at individual Hg analysis among volunteers, we found Hg levels above 2 

µg g-1 (set value by WHO) [10] in three hair samples and thirteen were above 1 µg g-1 

(set value by U.S. EPA) [11]. Together, they made up a total of 32% of mothers that 

represented the Aveiro region in this study. According to previous studies, we know that 

Estarreja and surroundings were the places more contaminated by Hg during (1950-

1994) and even after the continuous release of this metal from a chlor-alkali plant [12].  

But it seems there are other counties which may deserve attention as it is shown 

in Figure 3.3. Oliveira do Bairro, Águeda, Albergaria-a-Velha and Vagos were the 

locations where higher Hg levels in maternal hair were found (>1 µg g-1).  

 

Figure 3.2 – Arrangement of the 9 counties along Aveiro distrcit that represented 
this study. Adapted from [9].  
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Figure 3.3 - Mercury levels in the maternal hair by county of residence in the Aveiro 

district of the 50 parturients sampled in this study. Bars represent mean and standard 

deviation. Vagos data is only represented by the mean value and no standard. deviation 

was included due to the low n (n=2). 

 

 

In Figure 3.4 it is presented the distribution of Hg levels found in the umbilical 

cord tissue of the 50 newborns by county of residence of the mothers. Once again, we 

found Oliveira do Bairro, Águeda and Albergaria-a-Velha as the counties with highest Hg 

values. Besides, in what concerns to biomarkers of transplacental Hg transfer, Estarreja 

and Murtosa joined this group of counties presenting the highest Hg levels.  

 

Maternal Hair 
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Figure 3.4 - Mercury levels in the umbilical cord of the 50 newborns by county of 

residence (Aveiro district) of the mother.  Bars represent mean and standard deviation. 

Vagos data is only represented by the mean value and no standard. deviation was 

included due to the low n (n=2). 

 

Taking into account these results, further longitudinal studies concerning Hg 

exposure are required and a larger sample size should be considered. Women with 

higher Hg levels in hair may be sporadic cases or instead, they may represent a case 

study in future research in this area; other aspect is the use of hair as unique biomarker 

in studies regarding Hg exposure during pregnancy. Since 80% of Hg found in hair is 

methylmercury [13], care must be taken specially, when the intention is to express 

results in total Hg levels. The extrapolation of this results relating with outcomes during 

pregnancy, may be underestimated. The quantification of Hg in the umbilical cord might 

give more assertive information regarding direct fetal exposure during pregnancy and 

might complement the information given by maternal hair levels.  

For the first time in Portugal, a biomonitoring study was performed concerning 

prenatal exposure to Hg using also the placenta as a biomarker for dual purpose of 

exposure assessment. Nonetheless, Portugal still has limited information about 

intrauterine exposure to environmental contaminants. Further research should be done, 

either longitudinal or cross-sectional, in order to prevent negative outcomes in 

Portuguese populations and offspring.  
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I. Approval of the Ethic Committee of 

the Hospital Infante D. Pedro (HIDP, 

Aveiro, Portugal 
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II. Informed consent  

 

CONSENTIMENTO INFORMADO, ESCLARECIDO E LIVRE PARA PARTICIPAÇÃO EM 
ESTUDOS DE INVESTIGAÇÃO NOS TERMOS DA NORMA Nº 015/2013 DA Direção-Geral da 
Saúde (de acordo com a Declaração de Helsínquia e a Convenção de Oviedo) 
 
Título do estudo: Estudo sobre os hábitos tabágicos e stressores ambientais em parturientes e 
recém-nascidos. 
 
Enquadramento: Estudo integrado entre a Universidade de Aveiro e o Instituto Nacional de 
Saúde Doutor Ricardo Jorge, e envolverá o estudo de mestrado da aluna Ana Catarina Alves 
“Avaliação da exposição a mercúrio e recém-nascidos da região de Aveiro”, no âmbito do 
mestrado em Toxicologia e Ecotoxicologia.  
 
Condições e financiamento: carácter voluntário da participação e ausência de prejuízos, 
assistenciais ou outros, caso não queira participar; o estudo mereceu Parecer favorável da 
Comissão de Ética do Centro Hospitalar do Baixo Vouga.  
 
Confidencialidade e anonimato: este estudo é confidencial e de uso exclusivo dos dados 
recolhidos para o presente estudo; não serão registados dados de identificação. 
 
Contacto da investigadora responsável – Susana Loureiro, Investigadora da Universidade 
de Aveiro, Departamento de Biologia. Email: sloureiro@ua.pt; tel.234370779 
 
Contacto do médico responsável-_____________________________________ 
 
Por favor, leia com atenção a seguinte informação. Se achar que algo está incorrecto ou 
que não está claro, não hesite em solicitar mais informações. Se concorda com a proposta 
que lhe foi feita, queira assinar este documento.  
 
Assinatura/s/ e número/s de cédula profissional de quem pede consentimento: 
……………………………………………………………………………………………… 
 
Declaro ter lido e compreendido este documento, bem como as informações verbais qye 
me foram fornecidas pela/s pessoa/s que assina/m. Foi-me garantida a possibilidade de, 
em qualquer altura, recusar participar neste estudo sem qualquer tipo de consequências. 
Desta forma, aceito participar neste estudo e permito a utilização dos dados que de forma 
voluntária, forneço, confiando em que apenas serão utilizados para esta investigação e 
nas garantias de confidencialidade e anonimato que me são dadas pela investigadora e 
equipa médica.  
 
Nome: …………………………………………………………………………………….. 
 
Assinatura: ……………………………………………………………………………….. 
 
Data: ……/ …… / ……. 
 
 
ESTE DOCUMENTO É COMPOSTO DE 2 PÁGINAS E FEITO EM DUPLICADO: UMA VIA 
PARA OS INVESTIGADORES, OUTRA PARA A PESSOA QUE CONSENTE. 
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III. Questionnaire 

 

 

 

 

 

 

 

QUESTIONÁRIO N.º |_____|         

 

 

 

 

 

 
 

FICHA DE PRÉ-INCLUSÃO 

 

Entrevistador: |_______________________|        Data da entrevista: |____________| 

 
DADOS PESSOAIS DE IDENTIFICAÇÃO  
 
Data de nascimento: |__________| 
 
Naturalidade: |__________________|    Nacionalidade: |______________________| 
 
 
Assinou a Declaração de Consentimento de Participação Informado? 
 
|__| Sim             |__| Não 
 
 
RESIDÊNCIA ACTUAL  
 
Distrito: |___________________|   Concelho: |________________________| 
 
Freguesia: |_________________________________________| 
 
DADOS SÓCIO-DEMOGRÁFICOS 
 
Q1. Há quantos anos vive no seu município/concelho atual? |___| anos  
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Q4. Em que zona do município/concelho vive? 
 
        Zona urbana       Zona rural 
 
        Zona intermédia                                          NS/NR 
 
Q5. Que nível de estudos finalizou?  
 
        Não sabe ler nem escrever                                                          Estudos secundários 
 
        Sem estudos ou estudos primários incompletos                     Estudos Universitários 
 
        Estudos primários                                                                          Outros  
 
Q6. Altura: |____| cm 
 
Q7. Peso antes da gravidez: |_____| kg 
 
Q8. Peso no final da gravidez: |_____| kg 
 
Q9. Comprimento do recém-nascido: |_____| cm  
 
Q10. Peso do recém-nascido: |_____| kg  
 
Q11. Sexo do recém-nascido         F         M 
 
Q12. Data do parto: |____________| 
 
 

QUESTIONÁRIO DE GINECOLOGIA E OBSTETRÍCIA 
 
 
Q13. Que idade tinha quando teve a sua primeira menstruação? |____| anos  
 
Q14. Usou algum tipo de contracetivo? 
 
      Sim                     Não (passar à questão 12) 
 
Q14.1. Que tipo de contracetivo usou? 
 
       Hormonal (pílula ou DIU hormonal)               Não hormonal  
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Q14.2. Durante quanto tempo os utilizou? (incluindo o tempo em que houve 
interrupções) 
 
      < 1 ano                                                     6 a 10 anos  
 
      1 a 2 anos                                                11 a 15 anos  
 
      2 a 5 anos                                                 > 15 anos  
 
Q15. Durante a gravidez, realizou alguma restauração dental? 
 
       Sim                                   Não   (passar à questão 14) 
 
Q15.1. Se sim, que tipo de enchimento dental foi utilizado? 
 
)      Massa                              Metálico    
          
Q15.2. Se sim, durante que semana de gestação foi realizado o procedimento? 
 
       Semana 0 a 13                           Semana 14 a 26                   Semana 27 a 42  
 
Q16. Durante a gravidez tomou alguma medicação?  
  
      Sim                                   Não    
 
Q16.1. Nessa medicação, estavam incluídos suplementos vitamínicos? 
 
      Sim                                   Não    
 
Q17. Durante a gravidez, realizou algum tipo de vacinação?  
 
      Sim                                   Não    
 
Se sim, qual? ___________________ Em que semana de gravidez?_______________ 
 
Q18. Recebeu alguma transfusão de sangue durante a gravidez? 
 
      Sim                                   Não    
 
 
 
 
 
 
 



 

98 

 

Q19. Já tinha engravidado anteriormente? 
 
      Sim                                   Não    
 
N.º Duração da 

gravidez 
(semanas) 

 
Sexo 

 
Peso 
(g) 

 
Comprimento 

(cm) 

 
Problemas/ 
Patologias 

 
Aborto 

 
Malformação 

Neonatal 

Gravidez 
extra-

uterina 

1         

2         

3         

4         

5         

 

 
 

QUESTIONÁRIO DE EXPOSIÇÃO AMBIENTAL 
 
 
Q20. Qual a sua ocupação atual? |___________________________________| 
 
Q21. Onde desempenha a sua ocupação atual? |____________________________| 
 
Q22. Há quanto tempo tem a sua ocupação atual? |______________________| anos 
 
Q23. Qual era a sua ocupação anterior? |__________________________________| 
 
Q24. Durante quanto tempo desempenhou a sua ocupação anterior? |______| anos 
 
Q25. Alguma vez esteve exposta, com o seu consentimento, a produtos químicos no 
seu trabalho?  
 
      Sim                                   Não    
 
Q26. Por favor indique se esteve pessoalmente em contacto com algum dos seguintes 
produtos no trabalho: 
 

Produtos  Nº de horas por 
semana 

Pesticidas  

Tintas e pigmentos   

Produtos de limpeza incluindo desinfetantes  

Sprays para o cabelo (lacas)  

Fumos de tubos de escape (diesel, gasolina)  

Fumos de fábricas  

Fumo de tabaco  
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Q27. Qual a idade da sua casa: 
 
      < 5 anos                                                   > 29 anos  
 
      5 a 14 anos                                   NS/NR           
 
      15 a 19 anos                                      
 
Q28. Como descreveria a sua casa? 
 
     Vivenda unifamiliar afastada de outras casas        Apartamento  
 
     Vivenda unifamiliar junto a uma ou mais casas        Outro  
                                         
Q29. Com que frequência passam carros na rua da sua casa? 
 
        Continuamente       Pouco 
 
        Com muita frequência                                 Praticamente nada 
 
Q30. Com que frequência passam veículos pesados na rua da sua casa, à exceção da 
recolha de lixo? 
 
        Continuamente       Pouco 
 
        Com muita frequência                                 Praticamente nada 
 
Q31. Fez obras na sua casa nos últimos 6 meses? 
 
      Sim                                   Não    
 
Q32. Utiliza inseticidas ou outros produtos para afugentar mosquitos, baratas, 
moscas, formigas, etc, na sua casa? 
 
      Sim                                   Não    
 
Q33. A sua casa fica perto de atividades industriais? (garagens, oficinas, fábricas, etc.) 
 
      Sim                                   Não   
 
 
 
 
 



 

100 

 

QUESTIONÁRIO DE HÁBITOS DE CONSUMO E ESTILO DE VIDA 
 

COSMÉTICOS E OUTROS 
 

Q34. Usou algum cosmético, maquilhagem, durante a gravidez? (rímel, contorno de 
olhos, base, cremes, loções, pomadas, etc.) 
 
      Sim                                   Não    
 
Q34.1. Se sim, com que frequência?  
 
      Diariamente                 > 1 vez por semana              < 1 vez por semana  
 
Q35. Durante a gravidez, tingiu, pintou ou fez madeixas no cabelo? 
 
      Sim                                   Não    
 
 
CONSUMO DE ÁGUA  
 
Q36. Qual a principal origem da água que bebeu em sua casa, durante a gravidez?  
 
        Água municipal      Água engarrafada 
 
        Poço privado                                                 Outra; Qual: |_____________________| 
 
 
Q37. Qual a principal origem da água que utilizou para cozinhar, durante a gravidez?  
 
        Água municipal      Água engarrafada 
 
        Poço privado                                                 Outra; Qual: |_____________________| 
 
Q38. Qual a principal origem da água que consumiu fora de casa, durante a gravidez?  
 
        Água municipal      Água engarrafada 
        Poço privado                                                 Outra; Qual: |_____________________| 
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HÁBITOS ALIMENTARES 
 
Q39. Com que frequência ingeriu algum dos seguintes alimentos durante a gravidez? 
 

  
Nunca 

1 a 3 
vezes por 

mês 

1 a 3 vezes 
por semana 

4 a 6 vezes 
por semana 

Todos 
os dias 

Lacticínios       
Chá      
Café      
Queijos frescos      
Queijos envelhecidos      
Ovos      
Vegetais verdes frescos (alface, tomate, 
feijão verde, bróculos, espinafres, agriões, 
couves, courgetes, abóbora, cenouras, 
etc) 

     

Vegetais em conserva (polpa de tomate, 
pimentos, etc) 

     

Fruta fresca ou sumos naturais       
Frutas em conserva (pêssegos, ananás, 
manga) ou sumos de fruta em embalagens 
tetra pack tipo néctar)  

     

Iced-teas, refrigerantes, etc      
Alimentos biológicos ou de colheita 
própria  

     

Tofu, miso, soja (ex: hambúrgueres, 
salsichas vegetarianas) 

     

Aves (frango, pato, perú)      
Carne (vaca, porco, borrego, presunto, 
bacon, hambúrguer) 

     

Fígado, paté de fígado, rim, coração, 
salsichas (lata) 

     

Peixe branco fresco ou congelado 
(bacalhau, linguado, pescada) 

     

Peixe espada (branco ou preto) e/ou atum      
Outro peixe fresco ou congelado 
(sardinha, cavalas, salmão, salmonete) 

     

Peixe em conserva (sardinhas, atum, 
cavalas, ovas, biqueirões) 

     

Marisco fresco ou congelado       

 
 
PERCEPÇÃO SOBRE O MEIO-AMBIENTE 
 
Q40. Quais os problemas ambientais de relevo no local onde vive: 
 
|_____________________________________________________________________|



 

 

 

 

 

 

 


