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A B S T R A C T

The goal of visual neuroscience is to explain how patterns of neural activity give rise to vi-

sual experiences. Here I use visual aftereffects to explore the computational principles un-

derlying the perception of simple, intermediate, and complex forms (orientations, shapes,

and faces). Aftereffects occur when exposure to one stimulus changes the appearance of

a subsequent stimulus. In the tilt aftereffect, for example, staring at a left-tilted line can

make a vertical line seem briefly to lean to the right. Aftereffects are thought to be caused

by neural adaptation — changes in the responsiveness of neurons after prolonged stimula-

tion.

Visual aftereffects allow us to probe sensory encoding, because adaptation within dif-

ferent encoding schemes can predict different patterns of perceptual aftereffect. I focus

on two theories of encoding prominent in the face recognition literature. According to

norm-based accounts, faces are represented in terms of how they deviate from a unique

norm, such as the average of all experienced faces. Similar proposals have been raised in

other contexts, for example to encode the aspect ratio of shapes. Norm-based encoding

can be implemented by a population in which neurons respond increasingly as a stimulus

moves further in the neuron’s preferred direction, away from a normative value in stimulus

space. Alternatively, exemplar-based accounts propose that faces are encoded in terms of

their similarity to a number of previously-experienced exemplars. Exemplar-based encod-

ing can be implemented by a population of non-monotonically tuned neurons that prefer

particular points in stimulus space, rather than directions.

Norm-based and exemplar-based accounts make distinct predictions for the pattern

of aftereffects one should experience following adaptation. Norm-based encoding is as-

sociated with renormalisation, in which the adapting stimulus appears more ’neutral’ or

’average’ after prolonged viewing, and the appearances of other stimuli are altered in the

same fashion (e.g. after adapting to a male face, all faces should look more feminine).

Exemplar-based encoding is associated with ’local repulsion,’ in which the adapting stimu-

lus appears unchanged, but differences between it and subsequent stimuli are exaggerated

(e.g. after adapting to a male face, a very masculine face should look even more masculine,

while an androgynous or female face should look more feminine).

Over the past fifteen years, norm-based theories of shape and face encoding have

gained traction, ostensibly supported by evidence from aftereffects. In Chapter 1, I review

this evidence, and relate it to an older debate concerning the role of norms in orientation

perception. I conclude that the evidence for renormalisation in form perception is under-
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whelming. In Chapter 2 I empirically address the most recent evidence for orientation

renormalisation. I show that these data likely arise from an interaction between the task

used, and observers’ uneven orientation sensitivity. I therefore conclude that orientation

aftereffects are best described as purely locally-repulsive.

In order to draw inferences about face and shape representation from aftereffects, it

is important to exclude the possibility that aftereffects between complex stimuli are caused

entirely by adaptation to lower-level image components, such as local edge orientations.

In Chapter 3 I show that shape aspect-ratio aftereffects are determined more strongly by

perceived shape than retinal shape, and therefore involve computations relatively late in the

visual processing hierarchy. In Chapter 4 I show that this higher-level component manifests

as a locally-repulsive aftereffect, consistent with an exemplar-based code for aspect ratio.

Having established that tilt and shape aftereffects are more consistent with exemplar-

based than norm-based representation, I return my attention to face aftereffects. In Chapter

5 I devise a more diagnostic test than those previously used, by substituting the common

binary-classification task for a ternary-classification task. I find that facial gender afteref-

fects are consistent with local repulsion, while facial distortion aftereffects do not neatly

match the predictions of either theory. This raises the previously unsuspected possibility

that adaptation along different facial dimensions might involve distinct patterns of percep-

tual changes.

In Chapter 6 I extend this work by devising a second task, which is more flexible

than the first and minimises potential response biases. In a series of experiments I compare

appearance between faces presented in differently-adapted retinal conditions. Data show

that both facial gender and facial identity aftereffects are consistent with local repulsion,

but not renormalisation.

Despite the recent popularity enjoyed by norm-based theories of shape and face en-

coding, I find that shape and face aftereffects manifest almost exclusively as local repulsions

away from the adapted value, consistent with adaptation within an exemplar-based code.

In Chapter 7 I discuss these results, and consider their implications for computational mod-

els of sensory encoding. The consistency of my results across simple, intermediate, and

complex stimuli suggests that the brain may use similar exemplar-based encoding strate-

gies throughout spatial vision.
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1

C H A P T E R 1 : I N T R O D U C T I O N

Visual neuroscience aims to explain how patterns of neural activity give rise to visual expe-

riences. Within this vast research programme, we can answer some questions in reasonable

detail. These include how light is transduced into neural activity, and how the spatial struc-

ture of an image on the retina begins to be encoded by the brain. We are only beginning to

understand how to answer many other questions, such as how neurons late in the visual

processing hierarchy encode an object’s identity or a face’s expression.

In experiments presented in this thesis, I will explore representations in spatial vision using

a powerful psychophysical tool: visual adaptation. An adaptation aftereffect occurs when

exposure to one stimulus changes how a subsequent stimulus looks. Figure 1a demon-

strates a simple aftereffect. If you look at the dot between the two top patches for ten

seconds, then switch your gaze to the dot between the two patches below, you might fleet-

ingly have the impression that the perfectly vertical lines in fact lean toward one another

at their tops. This is an example of a tilt aftereffect (Gibson, 1937; Gibson & Radner, 1937;

Vernon, 1934). Aftereffects are thought to be caused by neural adaptation — changes in the

responsiveness of neurons following prolonged stimulation (Barlow & Hill, 1963; Clifford

et al., 2007; Krekelberg, Boynton, & van Wezel, 2006; Solomon & Kohn, 2014; Thompson &

Burr, 2009; Wark, Lundstrom, & Fairhall, 2007).

Because encoding schemes involving different arrangements of neurons can predict differ-

ent patterns of perceptual changes after adaptation, aftereffects can provide insight into

how relevant stimulus dimensions are encoded (Clifford, Wenderoth, & Spehar, 2000; Mol-

lon, 1977; Solomon & Kohn, 2014; Webster, 2011). For instance, the study of aftereffects has

contributed much to our current knowledge of how the brain encodes colour (see Webster

(1996)), motion (see Anstis, Verstraten, and Mather (1998)), orientation (see Clifford, Wyatt,

Arnold, Smith, and Wenderoth (2001)), and spatial frequency (see Blakemore and Camp-

bell (1969) and Blakemore, Nachmias, and Sutton (1970)). The relatively recent discovery

of aftereffects between far more complex visual properties, including facial characteristics

such as expression, gender, and ethnicity (Webster, Kaping, Mizokami, & Duhamel, 2004;

Webster & Maclin, 1999) raises the exciting possibility that we might soon gain similar trac-

tion in our understanding of how complex objects are represented. Figure 1b shows an

example of a face aftereffect.

19
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(a) Tilt aftereffect

(b) Face aftereffect

Figure 1. (a) A demonstration of a tilt aftereffect. Look at the dot inbetween the upper two patches
for about ten seconds, then quickly look at the dot inbetween the lower two patches. You may perceive
the lower patches as tilted towards one another at their tops, even though they are physically vertical.
(b) A demonstration of a face aftereffect. On the upper left is shown the former prime minister of
Australia, Tony Abbott, and on the right, his predecessor Julia Gillard. The two faces at the bottom
are identical images created by morphing between the above photographs. Look at the dot inbetween
the upper pair of faces for about ten seconds, then quickly look at the dot inbetween the lower pair.
You may perceive the identical morphed faces as temporarily taking on the identities of Gillard (on the
left) and Abbott (on the right). Aftereffects can also transfer between stimuli of different complexity;
if you adapt to the upper stimuli in (a), then view the upper stimuli in (b), Tony Abbott may lean
further to the right.
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1.1 renormalisation and local repulsion : two patterns of visual after-

effect

Adaptation to different visual properties can produce qualitatively distinct patterns of per-

ceptual aftereffect, which have been linked to distinct representational schemes. I will

focus on whether aftereffects provide evidence that the brain represents simple, interme-

diate, and complex spatial patterns (lines, shapes, and faces) relative to normative values

in those domains (for example, to a vertical line, a circular shape, or to an average face).

Some aftereffects, such as those induced by tilt adaptation, seem to arise primarily from

contrastive processes, in which adaptation exaggerates differences between the adaptor

and subsequent other stimuli without changing the adaptor’s appearance (Mitchell and

Muir (1976); but see Müller, Schillinger, Do, and Leopold (2009) and Chapter 2). Other

aftereffects, such as those induced by adaptation to colour saturation, seem to arise from

renormalisation processes in which a prolonged adaptor comes to appear more ’neutral’

during exposure.

Where renormalising aftereffects are found, they are often interpreted as evidence that

neural channels explicitly encode stimuli in terms of how they deviate from a norm (Gibson,

1933; Regan & Hamstra, 1992; Rhodes et al., 2005; Webster & MacLeod, 2011). Supported

by apparent evidence for renormalisation, norm-based encoding has been proposed as a

common strategy by which shapes, objects, and faces are recognised (Leopold, O’Toole,

Vetter, & Blanz, 2001; Panis, Wagemans, & Op de Beeck, 2010; Regan & Hamstra, 1992;

Rhodes et al., 2005; Suzuki, 2005; Webster, 2011; Webster & Maclin, 1999). This conjecture

has been particularly popular in the field of face perception, where it aligns with a long-

standing proposal that the brain recognises new faces by their similarity to abstracted

prototypes such as the average of all experienced faces, rather than to particular previously

experienced exemplars (Valentine, 1991). However, it remains surprisingly unclear which

perceptual dimensions are actually subject to renormalising adaptation, and hence which

could be argued to involve explicitly norm-based representations. In the rest of this chapter

I will review evidence for renormalisation in the perception of orientation, shape, and face

perception, concentrating on the last of these.

1.2 adaptation to orientation

Prolonged exposure to a stimulus of a particular orientation has at least two effects on

perception. The first is to increase the contrast threshold at which the observer can de-

tect faint stimuli of the same orientation (Blakemore & Campbell, 1969; Boynton & Finney,

2003; Campbell & Kulikowski, 1966; Movshon & Blakemore, 1973). The second is to bias

the apparent orientation of differently-oriented test stimuli — the tilt aftereffect (Gibson
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& Radner, 1937; Vernon, 1934). The orientation bias is greatest when test stimuli differ

in orientation from the adaptor by 10-20 degrees (Campbell & Maffei, 1971; Gibson, 1937;

Mitchell & Muir, 1976; Paradiso, Shimojo, & Nakayama, 1989). Tilt aftereffects are greatest

when adapting and test stimuli are presented in the same location in the visual field (Gib-

son, 1937; Knapen, Rolfs, Wexler, & Cavanagh, 2010; Mathôt & Theeuwes, 2013; Muir &

Over, 1970) and are of the same spatial frequency (Ware & Mitchell, 1973). If the adaptor is

presented to only one eye, and the test only to the other, the inter-ocular tilt aftereffect is as

large (Campbell & Maffei, 1971) or almost as large (Gibson, 1937; Movshon, Chambers, &

Blakemore, 1972; Paradiso et al., 1989) as that measured when both stimuli are presented

to the same eye. This combination of observations suggests that tilt aftereffects are medi-

ated by a neural substrate containing orientation and spatial-frequency selective neurons,

sensitive to input from both eyes, with spatially restricted receptive fields, most likely in

primary visual cortical area V1 (Campbell & Maffei, 1971; Dragoi, Sharma, & Sur, 2000;

Hubel & Wiesel, 1962; Jin, Dragoi, Sur, & Seung, 2005).

1.2.1 The tilt aftereffect: renormalisation, or local repulsion?

The tilt aftereffect was originally interpreted by Gibson and others as evidence that ori-

entation is encoded relative to internal norms for vertical and horizontal, which are recal-

ibrated during adaptation toward the current input. In a typical experiment, observers

were instructed to adjust a test line until it appeared vertical (or horizontal) before and af-

ter viewing a prolonged adapting line (Day & Wade, 1969; Gibson, 1937; Gibson & Radner,

1937; Vernon, 1934). After adapting to a tilted line, tests adjusted to appear subjectively ver-

tical tended to be displaced toward the adapting orientation. According to Gibson’s renor-

malisation theory, this occurs because adaptors come to look more nearly cardinal during

adaptation, and lines that had seemed vertical or horizontal look tilted relative to the new

norms (Day & Wade, 1969; Gibson, 1937; Gibson & Radner, 1937; Held, 1963; Prentice &

Beardslee, 1950; Templeton, 1972). However, these observations are equally consistent with

a locally repulsive aftereffect, in which the orientation difference between adapting and test

stimuli is exaggerated, with no change in the adaptor’s apparent orientation (as noted by

Köhler and Wallach (1944)).

1.2.2 A measurement problem: aftereffects near a putative norm are uninformative

For several decades, limitations in the methods commonly used to measure tilt aftereffects

made it difficult to differentiate between renormalisation and local repulsion. It is straight-

forward to measure the orientation of the subjective cardinal axes, because ”vertical” and

”horizontal” are easily communicated to and estimated by observers. Unfortunately, this
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constrained experimenters to measuring tilt aftereffects near putative norms, where local re-

pulsion and renormalisation make identical predictions. According to the renormalisation

proposal, after adapting to a +15 degree stimulus, the subjective vertical axis is recalibrated

to lie closer to 15 degrees, and the previously-vertical axis should appear negatively tilted.

The local repulsion proposal makes the same prediction, for a different reason: after adapt-

ing to a +15 degree stimulus, all orientation differences between the adaptor and test are

exaggerated, so a previously-vertical test should appear negatively tilted. This observation

— that measuring the aftereffect at a putative norm is uninformative — will also be relevant

to the discussions of shape and face perception later in this chapter.

To differentiate renormalisation from local repulsion, one needs to measure the aftereffect at

more diagnostic test values. One diagnostic value is the adapting orientation itself. Renor-

malisation predicts that after adaptation, the adaptor will appear more ’neutral’ (vertical

or horizontal), as the perceptual norm is recalibrated to more closely approximate the cur-

rent input. Local repulsion, since it posits only an exaggeration of differences between the

adaptor and test, predicts no change in the apparent orientation of the adaptor. Another

diagnostic value to measure is one which lies further from the putative norm than the adaptor

(e.g. a 30 degree line, after adapting to a 15 degree line). According to the renormalisation

proposal, this value lies closer to the updated perceptual norm than it had to the unadapted

perceptual norm, and should therefore look less tilted. Local repulsion predicts the oppo-

site effect: since orientation differences between the adaptor and test are exaggerated after

adaptation, a line more tilted than the adaptor should look even further tilted.

Changes in perception at diagnostic test values can be measured using a spatial comparison

task, in which the observer adapts to an oriented stimulus in one part of the visual field and

then compares a reference stimulus presented at the same location to a test stimulus pre-

sented elsewhere in the visual field (e.g.Mitchell and Muir (1976)). Because tilt aftereffects

are localised to the adapted region of the retina (Gibson, 1937; Knapen et al., 2010; Mathôt

& Theeuwes, 2013; Muir & Over, 1970), an aftereffect can create systematic mismatches in

perception between an adapted and unadapted location. Any arbitrary orientation may be

used as the reference stimulus, freeing experimenters to measure the aftereffect induced

between any combination of adapting and test orientations.

By measuring the tuning of the tilt aftereffect for many combinations of adapting and test

orientations, it became clear that orientation differences between adaptor and test are exag-

gerated in both directions — a locally repulsive aftereffect (Mitchell & Muir, 1976). How-

ever, some data suggest that there might be a small renormalising component in addition

to the predominant local repulsion (Held, 1963; Müller, Schillinger, et al., 2009; Prentice

& Beardslee, 1950; Templeton, 1972; Vaitkevicius et al., 2009). In Chapter 2, I address the

most compelling recent evidence for tilt renormalisation (Müller, Schillinger, et al., 2009)

and show that it can be explained instead by an interaction between the experimental task,

and observers’ uneven discrimination sensitivity in the orientation domain.
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1.2.3 Multichannel population code models of locally repulsive aftereffects
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(a)  Multichannel code
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Figure 2. Schematic illustration of how a locally-repulsive aftereffect can arise from adaptation
to a narrow range of stimulus values in a multichannel encoding of a single sensory dimension.
(a) Blue curves depict the responsiveness of channels before adaptation; each channel is selective
for a relatively narrow range of stimulus values, and the value of zero plays no special role in
encoding. After adapting to a stimulus value of -100 (arbitrary units) indicated by a vertical dashed
line, the responsiveness of each channel is reduced in proportion to its unadapted response to the
adaptor. Post-adaptation response curves are shown in red. (b) A subsequent stage decodes the most
probable value of each input stimulus, given the channel activity it elicits, before (blue) and after
(red) adaptation. It is assumed that the decoder is ”naı̈ve” to the changes in channel responsiveness
caused by adaptation. The aftereffect (b, inset) is calculated as the post-adaptation decoded stimulus
minus the pre-adaptation decoded stimulus. The aftereffect manifests as a local repulsion of test
stimuli away from the adapted value, with no change in the appearance of the adapted value.

The tilt aftereffect is thought to be due to adaptation in neurons selective for relatively

narrow ranges of stimulus orientations (Barlow & Hill, 1963; Bednar & Miikkulainen, 2000;

Clifford et al., 2001; Coltheart, 1971; Day, 1962a), likely predominantly in V1 (Campbell &

Maffei, 1971; Dragoi et al., 2000; Jin et al., 2005). Tilt aftereffects can be predicted by models

in which perceived orientation is determined by activity distributed across a population of

orientation-selective channels, wherein each channel is suppressed after adaptation in pro-
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portion to its initial response to the adapting orientation (see Figure 2a). Locally-repulsive

biases in perceived orientation away from the adapting orientation can occur if one as-

sumes that downstream mechanisms ’decoding’ the population activity are unaware of the

adaptation-induced changes to the encoding channels’ response functions (Ma & Pouget,

2009; Schwartz, Sejnowski, & Dayan, 2009; Seriès, Stocker, & Simoncelli, 2009) — see Fig-

ure 2b. A multi-channel model of orientation perception is formalised in Chapter 2, and

locally-repulsive aftereffects arising from a similar model are demonstrated in Chapters 5

and 6 and Appendix 1.

1.3 adaptation to shape

Aftereffects occur not only after prolonged exposure to simple spatial patterns like oriented

lines, but also to more complex ones, like two-dimensional shapes. For instance, after

looking at a tall ellipse, a perfect circle can appear as a squashed ellipse, and vice versa — the

aspect ratio aftereffect (Köhler & Wallach, 1944; Regan & Hamstra, 1992). Shape aftereffects

can be observed even when adapting and test shapes are shown at widely separated sizes

or retinal locations (Regan & Hamstra, 1992; Suzuki & Cavanagh, 1998), suggesting they

cannot be explained entirely by early retinally-localised adaptation to the edges constituting

a shape. In Chapter 3, I provide further compelling evidence dissociating shape adaptation

from retinal contour adaptation by adapting to shapes seen from one viewing angle, and

testing with shapes seen from another. These data will show that shape aftereffects depend

at least in part on high-level neural substrates, after shape constancy operations have been

completed. Shape aftereffects are therefore a useful tool to probe the representation of

complex spatial properties.

1.3.1 A norm-based opponent-channel code for aspect ratio?

Regan and Hamstra (1992) proposed that aspect ratio is encoded relative to a ’neutral’

normative aspect ratio (perceptually neither tall nor squashed). They proposed a model

involving two opposing channels, which was later to become influential in models of face

representation (Burton, Jeffery, Calder, & Rhodes, 2015; McKone, Jeffery, Boeing, & Clifford,

2014; Pond et al., 2013; Rhodes et al., 2005; Robbins, McKone, & Edwards, 2007; Susilo,

McKone, & Edwards, 2010). In the model, one channel is activated by vertically elongated

shapes, the other by horizontally elongated shapes (see Figure 3a). During adaptation, the

responsiveness of each channel is suppressed in proportion to its original response to the

adapting aspect ratio, as in the multichannel model of orientation aftereffects described

above. Unlike in the multichannel model, there is a unique norm, signaled by balanced

activity across the two channels. Adapting to this shape will not change its apparent as-
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pect ratio, but adapting to any other shape will cause the adaptor to seem more nearly 1:1,

and bring about a concomitant uniform shift in the appearance of other aspect ratios (see

Figure 3b). A norm-based opponent-channel model of stimulus encoding, giving rise to

renormalising aftereffects, is formalised in Chapters 5 and 6 and Appendix 1.
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Figure 3. Schematic illustration of how a locally-repulsive aftereffect might arise from adaptation to
a narrow range of stimulus values in a norm-based opponent-channel encoding of a single sensory
dimension. (a) Blue curves depict the responsiveness of channels before adaptation; one channel
responds increasingly to negative stimulus values, and the other channel responds increasingly to
positive stimulus values. The value of zero uniquely elicits balanced activity between the channels,
and corresponds to the ’norm,’ which can be updated by adaptation. After adapting to a stimulus
value of -100 (arbitrary units) indicated by a vertical dashed line, the responsiveness of each channel
is reduced (red curves) in proportion to its unadapted response to the adaptor. (b) A subsequent stage
decodes the most probable value of each input stimulus, given the channel activity it elicits, before
(blue) and after (red) adaptation. The aftereffect (b, inset) manifests as a simple renormalisation, in
which the appearance of all test stimuli is shifted in the same direction by the same amount.
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Prior to my thesis, the prediction that aspect ratio adaptation causes a renormalising afteref-

fect had not been clearly tested. Regan and Hamstra (1992) had measured only changes in

the shape perceived as most square or circular after adaptation (i.e. a shift in the perceived

1:1 aspect ratio). As reviewed for orientation aftereffects, measuring changes in appear-

ance near the putative norm does not help dissociate renormalisation from local repulsion.

Suzuki and Rivest (1998) used a spatial comparison task to measure aftereffects for many

combinations of adapting and test shapes, but used extremely brief ’adaptation’ durations

(150ms), making it difficult to compare their data to those in the majority of the adapta-

tion literature, and have reported these data only in brief within an edited book chapter.

Badcock, Morgan, and Dickinson (2014) reported the tuning of the aspect ratio aftereffect

in a conference abstract, but used spatially-overlapping luminance-defined adapting and

test stimuli, leaving open the possibility of influence from early retinally-local adaptation.

In Chapter 4 I present a spatial comparison task using conventional adaptation durations,

and carefully controlling for retinally-local adaptation. In the resulting data, shape after-

effects manifest as a local repulsion away from the adapted aspect ratio, contrary to the

predictions of the norm-based opponent-channel model.

1.4 adaptation to faces and other complex objects

Face aftereffects were first systematically explored by Webster and Maclin (1999), who

showed that after looking at a distorted photograph of a face (e.g. where the features

have been ’pinched’ together), a subsequent undistorted facial image can seem to be oppo-

sitely distorted (e.g. ’expanded’ features). Face aftereffects can also be induced by natural

differences between faces. For example, after looking at a picture of a male face, an androg-

ynous face can appear feminine (Webster et al., 2004). Analogous effects occur between

faces of different expressions (Hsu & Young, 2010), ethnicities (Webster et al., 2004), ages

(Schweinberger et al., 2010), eye gaze directions (Jenkins, Beaver, & Calder, 2006; Seyama &

Nagayama, 2006), head directions (Fang & He, 2005), and identities (Leopold et al., 2001).

’High-level’ aftereffects are by no means unique to faces; they also reportedly occur between

distorted images of the same object (Dennett, Edwards, & McKone, 2012; Maclin & Webster,

2001); along morph continua involving arbitrary objects (Daelli, van Rijsbergen, & Treves,

2010), novel objects (Daelli, 2011), and human bodies (Rhodes, Jeffery, Boeing, & Calder,

2013); between objects with different surface material properties (Motoyoshi, 2012) or ren-

dered with different levels of photorealism (Seyama & Nagayama, 2010); and between pho-

tographs of landscapes varying along dimensions such as ruralness vs urbanness (Greene

& Oliva, 2010).
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1.4.1 Local repulsion or renormalisation in face space?

Unlike the simpler stimulus properties we have considered so far, which can be fully char-

acterised by a single dimension (orientation or aspect ratio), faces can differ from one

another in myriad difficult-to-describe ways. (Valentine, 1991) influentially noted that the

perceptual representation of faces could be conceptualised as a multidimensional similarity

space. Faces perceived as similar are close to one another in this space, and faces perceived

as dissimilar are far apart. Each individual’s psychological ’face space’ may be thought

of as comprising some high number of dimensions, selected and scaled according to per-

sonal experience in order to discriminate well amongst the sorts of faces that are most

often encountered (Lewis, 2004; Valentine, 1991; Valentine, Lewis, & Hills, 2015). With this

metaphor in mind, we could ask how a persons perceptual face space is distorted following

adaptation to a particular face. One possibility, illustrated in Figure 4a, is that face afteref-

fects manifest as a renormalisation, in which the adapted face comes to look more ’average,’

with concomitant changes to the appearance of all other faces. Another possibility is that

aftereffects manifest as a local repulsion (see Figure 4b), in which the adapted face appears

unchanged, but perceived differences between it and other faces are exaggerated.

Rhodes and colleagues (Rhodes & Jeffery, 2006; Rhodes et al., 2005) have proposed that

Regan and Hamstra (1992)’s norm-based opponent-channel model of aspect ratio encoding

could be extended to encompass multiple dimensions, and thereby provide a substrate for

encoding face space. In their proposal, each facial attribute1 is encoded by two opposing

channels: one that responds to higher-than-average values of the attribute, and another

which responds to lower-than-average values (Rhodes & Jeffery, 2006; Rhodes et al., 2005).

Each pair of channels thereby encodes the position of a face along one attribute dimension.

Combined activity across many such channel pairs could specify the location of a face

within a multi-dimensional space. The statistical average of all experienced faces would ac-

tivate all channels equally, uniquely resulting in balanced activity across all opposing pairs,

whereas any other face would elicit imbalanced activity in at least one pair of channels. A

process of continual adaptation could maintain the balance-point of the opposing channels

near the average recently-encountered face, analogous to the manner in which colour adap-

tation dynamically updates the perceived white/grey point according to the illumination

in the prevailing environment (Webster & MacLeod, 2011; Webster & Maclin, 1999). The

norm-based opponent-channel proposal thus predicts that face aftereffects will manifest as

renormalisation (see Figure 4a).

1 It is unclear what dimensions face-selective mechanisms might be sensitive to. Dimensions may correlate
with simple physical differences (e.g. eye height or interocular distance), global properties (e.g. like those
captured by a principal components analysis of facial images), or less effable attributes (see Rhodes et al.
(2005), Robbins et al. (2007), Valentine (1991), Valentine et al. (2015).
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(b) Local repulsion in face space

(a)  Renormalisation in face space

Figure 4. Schematic depiction of aftereffects within a two-dimensional slice through perceptual ’face
space.’ Faces were created by sampling from the gender (x-axis) and age (y-axis) vectors within a
model based on a principal components analysis of facial structure and texture (Basel Face Model:
Paysan, Knothe, Amberg, Romdhani, and Vetter (2009)). At the origin is the average face. After
prolonged viewing of a particular face (red circle), adaptation may cause either (a) renormalisation,
such that the adapted face appears more neutral, and all other faces change their appearance similarly
(red arrows), or (b) local repulsion, such that the differences between the adapting and subsequent
other faces appear exaggerated, while the adapting face appears unchanged.
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Alternatively, locations in face space might be encoded by multiple channels, each relatively

narrowly-tuned to a sub-region of face space, analogous to the channels thought to underlie

the perception of orientation (Giese & Leopold, 2005; Robbins et al., 2007; Ross, Deroche,

& Palmeri, 2013; Wallis, 2013; Webster & MacLeod, 2011; Zhao, Seriès, Hancock, & Bednar,

2011). According to this proposal, any dimension of facial variance is encoded by many

channels, each responding maximally to some particular value along the dimension and

less to values ’higher’ or ’lower’ than it, with the average face having no unique status.

Multichannel encoding predicts that face aftereffects will manifest as a local repulsion (see

Figure 4b).

1.4.2 Evidence from aftereffects for norm-based representation of faces

A consensus is forming that face aftereffects manifest as renormalisation, and that norm-

based opponent-channel models of face representation are therefore supported (Burton et

al., 2015; Jeffery et al., 2010, 2011; Leopold et al., 2001; Loffler, Yourganov, Wilkinson, &

Wilson, 2005; McKone et al., 2014; Pond et al., 2013; Rhodes & Jeffery, 2006; Rhodes et al.,

2005; Robbins et al., 2007; Susilo et al., 2010; Webster & Maclin, 1999). In the remainder

of the chapter, I will argue that notwithstanding this consensus, it remains unclear which

pattern best describes face aftereffects.

Most face aftereffect experiments are ill-suited to differentiating between local repulsion

and renormalisation, because they are designed to measure perceptual changes only near

a putative norm. For example, observers are presented with test faces drawn from a con-

tinuum spanning male, androgynous and female, and asked to categorise each as either

”male” or ”female,” before and after adapting to a male face (e.g. Webster et al. (2004)).

The typical finding in such an experiment is that the boundary at which the observer’s

responses switch from being predominantly ”male” to predominantly ”female” is closer

to the adapting face after adaptation than before (i.e. after adapting to a male face, they

classify more of the gender continuum as ”female”). This method tends only to be sensi-

tive to changes in the appearance of stimuli near a category boundary (e.g. androgynous

or expressionless faces). Here, faces are more neutral (closer to the origin of the artificial

face space) than the adapting face, and both local repulsion and renormalisation predict

that neutral faces should take on ’opposite’ attributes to the adaptor’s. Local repulsion

predicts that any differences between the adaptor and test will be exaggerated, so that after

viewing a male face, the relatively feminine androgynous face should look female. Renor-

malisation predicts that the perceptual norm will move closer to the adapted face during

adaptation, so that after viewing a male face, the new norm will correspond to a somewhat-

male face, and the previously androgynous face should appear female. Because shifts in

neutral category boundaries cannot discriminate between the two proposals, several alter-
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native paradigms have been suggested. I will review five key lines of evidence from these

paradigms, that have been taken as support for norm-based encoding of faces.

1.4.2.1 1. Larger shifts in category boundaries using more extreme adaptors

It has been suggested that shifts in neutral category boundaries can differentiate locally

repulsive from renormalising aftereffects if one compares the magnitudes of shifts induced

by different ’strengths’ of adaptor (Burton, Jeffery, Skinner, Benton, & Rhodes, 2013; Jeffery

et al., 2010, 2011; McKone et al., 2014; Pond et al., 2013; Skinner & Benton, 2010, 2012;

Zhao et al., 2011). A continuum of facial images morphing between different genders (for

example) can be thought of as a one-dimensional slice through an artificial face space. The

maximally-androgynous face is the norm within this dimension, and increasingly feminine

or masculine faces are increasingly high gender strengths. If gender were encoded by two

opponent channels (as depicted in Figure 3), then an extremely masculine face should in-

duce a larger renormalisation than a moderately masculine face, and therefore induce a

larger change in the appearance of previously-neutral faces, as measured via a binary clas-

sification task. Alternatively, if gender were encoded by multiple channels tuned relatively

narrowly to particular gender levels (as depicted in Figure 2), then the aftereffect measured

near neutral test faces might initially increase as an adaptor becomes more extreme, but

then diminish as the distance between adapting and test stimuli exceeds the limited range

of local repulsion.

The first studies to test these predictions used only two different levels of adaptor strength,

such as a weak and strong version of the same facial expression (Burton et al., 2013; Skinner

& Benton, 2010), configural distortion (Jeffery et al., 2010), or facial identity (Jeffery et al.,

2011). In all cases the more extreme adaptor induced a larger shift in the category boundary

between two perceived expressions, distortions, or identities than the more neutral adaptor.

This was argued to be consistent with re-normalisation and not local repulsion. However,

a locally-repulsive aftereffect also predicts a gradual increase in aftereffect as the adaptor

moves further from the test value, up to some point after which it should begin to decrease

(e.g. the tilt aftereffect increases until the adaptor and test are separated by around 15

degrees, after which larger separations decrease the aftereffect; Gibson and Radner (1937),

Mitchell and Muir (1976)). Köhler and Wallach (1944) referred to this as the ”distance

paradox.” In a multichannel encoding scheme, the peak of the aftereffect following adap-

tation is determined by how broadly tuned the underlying channels are, and how locally

or broadly adaptation affects population responses. Since these factors are unknown for

any putative facial code, larger aftereffects for neutral test stimuli after adapting to ’strong’

than ’weak’ adaptors are equally consistent with either renormalisation or a broadly-tuned

local repulsion.
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Zhao and colleagues (2011) measured the magnitude of the facial gender aftereffect after

adapting to multiple points across a wider range of stimulus values that extended beyond

the natural gender range, into caricatures of male and female faces. Analogously to the

previous findings for facial expression, distortion and identity aftereffects, they found in-

creasingly large shifts in the facial gender boundary for adaptors up to and even beyond

the average male and female faces, but found that the aftereffect reduced for caricatured

adaptors. The tuning of the facial gender aftereffect therefore appeared similar to the tun-

ing of the tilt aftereffect, if a sufficiently broad range of adaptors is considered. Several

subsequent studies have also found that facial expression (Skinner & Benton, 2010), gender

(Pond et al., 2013), and identity (McKone et al., 2014) aftereffects increase over a broad

range of adapting values. These results are inconclusive, since they are consistent with

either opponent-channel encoding, or with a scheme involving multiple broadly tuned

channels.

1.4.2.2 2. Larger shifts in category boundaries along stimulus trajectories that span an average

face

In another paradigm, identity aftereffects are compared after adapting and testing along

facial identity trajectories that pass through the centre of an artificial face space, as opposed

to trajectories that do not (Anderson & Wilson, 2005; Leopold et al., 2001; Rhodes & Jeffery,

2006). A uniform renormalisation predicts that the magnitude of an aftereffect will be

maximal if one measures changes in perception along an axis connecting the adapting face

with the average face, and smaller along any other axis passing through the adapting face.

For example, if one adapts to a male face of an average age (e.g. one lying exactly along

the positive x-axis in Figure 4a), renormalisation predicts that the adapting face, and all

others, will appear less masculine than they had initially, but unchanged in age. If one

used a binary classification task (”male” or ”female”) to measure changes in perception

along the gender axis (which connects the adapting face to the gender-neutral, age-neutral

norm), the aftereffect should be maximal. However, if one used an analogous task (”young”

or ”old”) to measure changes in perception along the age axis, which is orthogonal to

the renormalisation vector, no shift in category boundary is predicted. If one measured

the aftereffect along any intermediate axis (e.g. a diagonal axis in Figure 4a’s face space,

by asking participants to categorise faces as ”young and male” or ”old and female”), an

intermediate shift in the category boundary should be found. Local repulsion predicts

instead that a similar magnitude of aftereffect should be measured along any axis that

passes through the adapting face, since perception is biased non-selectively in all directions

away from the adapted value (see Figure 4b). In the example above, after adapting to a

male face of an average age, testing along the age axis should reveal that faces older than

the adaptor look exaggeratedly old, and those younger than the adaptor look exaggeratedly
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young. A similar pattern of changes should be found regardless of which axis one measures

perceptual changes along.

These predictions were tested by Rhodes and Jeffery (2006). An artificial face space was

constructed by morphing between and beyond eight identities and an average male face,

and participants were trained to recognise four individual faces within this space. For

each participant, a target face was chosen (say, ”Adam”). In an ”opposite” adaptation

condition, participants adapted to a face that lay diametrically opposed to Adam on the

other side of the average face (say, ”Anti-Adam”), and identified test faces drawn from a

trajectory passing from Anti-Adam, through the average face, to Adam. In a ”non-opposite”

condition, participants adapted to a second identity (say, ”Bob”) and identified test faces

drawn from a trajectory passing from Bob, through a non-average face, to Adam. Along

the appropriate trajectory, the researchers estimated the proportion of Adams face that

needed to be present in the test face in order for participants to reliably identify the face as

”Adam,” before and after adaptation. Larger shifts in this identity boundary were found

after adaptation in the ”opposite” than ”non-opposite” condition (similar results have been

found by other groups using similar designs: Anderson and Wilson (2005), Leopold et al.

(2001)).

This appears consistent with a renormalisation interpretation of face aftereffects. However,

in this paradigm, the average face plays a special role in how the stimulus space is con-

structed, and therefore in how participants should divide that space in order to identify

individual faces. This raises the possibility that decision-level processes may interact with

adaptation-induced perceptual changes, perhaps in non-obvious ways. In a model of face

identification decisions, simulations based on both multichannel and opponent-channel

encodings of high dimensional face spaces predicted greater shifts in identity boundaries

along stimulus trajectories that span an average face than along trajectories that do not

(Ross et al., 2013). These simulations suggest that this paradigm is not diagnostic.

1.4.2.3 3. Boundary shifts in ternary classification tasks after central vs alternating adaptation

Most face aftereffect experiments involve classification judgements about faces drawn from

a single continuum traversing two categories (e.g. male-to-female), yielding a binary classi-

fication with a single category boundary. Some facial dimensions lend themselves instead

to being divided into three categories — for example, the direction of a face’s gaze can

easily be classified as being to the left of the viewer, to the right, or directly towards the

viewer. This yields a ternary classification task, with two subjective category boundaries

(between the lower and middle categories, and between the middle and upper categories),

and has the advantage of providing sensitivity to changes in the appearance of stimuli near

either of these boundaries.
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One paradigm based on a ternary classification task measures changes in both category

boundaries after adapting either to a neutral stimulus value, or after adapting to alternating

positive and negative stimulus values. For instance, participants might classify faces as

”looking left,” ”looking straight ahead,” or ”looking right,” before and after adapting either

to faces that look straight ahead, or to alternating faces that look left and right (Calder,

Jenkins, Cassel, & Clifford, 2008). A multichannel code can predict that after consistent

neutral-adaptation, the range of stimuli placed in the central category should narrow, and

that after alternating negative and positive adaptation, the range of central stimuli should

broaden. A simple opponent coding scheme predicts no change in responses after either

type of adaptation. When tested on such a task, eye gaze direction (Calder et al., 2008) and

head direction aftereffects (Lawson, Clifford, & Calder, 2011) both followed the pattern of

changes predicted by a multichannel code.

Burton and colleagues (2015) applied this paradigm to the study of facial expression after-

effects. Adapting to an expressionless face resulted in a robust narrowing of the range of

faces participants placed in the middle category, while adapting alternatingly to distinct

expressions produced a smaller but significant narrowing of the central category (Burton

et al., 2015). Because the shifts were in the same, rather than opposite, directions, this pat-

tern of results was argued to be more consistent with an opponent than multichannel code.

However, the predictions of an opponent scheme are unclear, as additional assumptions

must be made (e.g. that the response functions of adapted channels steepen or flatten) in

order to predict a change in categorisation decisions after either type of adaptation (Bur-

ton et al., 2015; Calder et al., 2008; Lawson et al., 2011). In Chapter 5 I present a novel

paradigm which tests a more definitive prediction of the renormalising account — whether

the appearance of an adapting face changes during adaptation — by measuring shifts in

each category boundary in a ternary task after observers adapt to a stimulus that lies at

one boundary.

1.4.2.4 4. No effect of adapting to an average face

A widely-cited piece of evidence for renormalisation is the claim that adapting to a neutral

face is uniquely ineffective at changing the appearance of itself or other faces. This evidence

is provided almost exclusively by a single report, from a study of facial distortion afteref-

fects (Webster & Maclin, 1999). Webster and Maclin (1999) had participants remember a

distorted face, and then adjust a test to match this remembered face after adapting either to

distorted faces or to an undistorted face. They found that adapting to an undistorted face

had no effect on participants’ matches of distorted faces. However, there is little evidence

that adapting to a neutral value of a face-specific attribute (e.g. an adrogynous or expression-

less face) does not affect the perception of subsequent non-neutral faces. Instead, adapting

to a neutral expression (Burton et al., 2015), or to direct eye gaze (Calder et al., 2008) or
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head direction (Lawson et al., 2011), appears to exaggerate the subtle differences in subse-

quent non-neutral test faces, as indicated by a reduction in ”neutral” category responses

after adaptation.

1.4.2.5 5. The adaptor and more extreme faces are rated as more neutral after adaptation

Perhaps the strongest evidence for normalisation in face aftereffects comes from experi-

ments involving geometrically distorted images. The observation is given anecdotally by

Webster and Maclin (1999) that during adaptation a distorted face comes to appear more

normal, a key feature of a renormalising aftereffect. This observation has later been sup-

ported empirically. Rhodes and colleagues (2003) showed that after adapting to distorted

photographs of faces, the adapting faces were rated as more ”normal” than they had been

before adaptation. Robbins et al. (2007) showed a similar pattern of results using faces in

which eye height had been manipulated.

Finally, O’Neil and colleagues (2014) took advantage of the naturally finely-graduated scale

of age to explore the pattern of aftereffects induced by facial age adaptation. Age estimates

for 80 test faces were collected before adaptation, and after adapting to a sequence of

young, middle-aged, or old faces. The authors argue that the aftereffect data are best

described as a uniform shift in perceived age across all test values, and therefore indicate a

renormalising aftereffect. However, the authors present and analyse only linear fits to their

data, which are well-suited to capture the predictions of renormalisation, but not local

repulsion. When I re-analysed these data (Storrs (2015b); see Appendix 2), comparing a

linear model to a bidirectional model capturing a locally-repulsive aftereffect, I found that

the locally-repulsive model explained slightly more variance in the aftereffect data. In a

response to my re-analysis, the original authors suggested that the fits of a bidirectional

model should be constrained to have the inflection point of the aftereffect fixed at the

adapted value (O’Neil, Mac, Rhodes, & Webster, 2015). When such a constraint was added,

the linear model performed as well or slightly better than the bidirectional model. However,

it is important to note that the best fit of any suggested model explains less than 2% of the

variance in aftereffect magnitude. These data therefore do not provide compelling evidence

for either local repulsion or renormalisation in age aftereffects.

1.5 the present thesis

Debates over whether spatial aftereffects involve renormalisation, and whether this there-

fore provides evidence for an explicitly norm-based representation of the underlying di-

mensions, have recurred several times in the study of spatial vision and are largely unre-

solved. In the domain of orientation perception, the consensus tips in favour of a multi-

channel representation of orientation, giving rise to a predominantly locally repulsive tilt
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aftereffect, but this remains controversial (see Müller, Schillinger, et al. (2009) and Chap-

ter 2). In the domain of shape perception, a norm-based theory of aspect ratio encoding

has been proposed (Regan & Hamstra, 1992; Suzuki, 2005), although there is little relevant

evidence from aftereffects to support or falsify this. In the domain of face perception, a

consensus has formed in favour of norm-based representation, although this might not be

well-supported by the available evidence.

I begin the empirical work of this thesis in Chapter 2, by reassessing recent evidence

for renormalisation in orientation perception, before turning to more complex stimulus

domains. Chapter 3 demonstrates that shape aftereffects can be attributed to relatively

high-level shape representations, and Chapter 4 evaluates whether these high-level shape

aftereffects manifest as a local repulsion or a renormalisation. Chapters 5 and 6 focus on

face aftereffects. Chapter 5 presents a new paradigm based on a ternary classification task,

and applies it to facial distortion and gender aftereffects. Chapter 6 presents a second

novel paradigm, involving a spatial comparison task, and applies it to facial identity and

gender aftereffects. The data presented in this thesis point to a common encoding strat-

egy throughout spatial vision, in which sensory values are signaled by distributed activity

across a population of relatively narrow non-monotonically-tuned channels.
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C H A P T E R 2 : E V I D E N C E F O R T I LT N O R M A L I S AT I O N C A N B E

E X P L A I N E D B Y A N I S O T R O P I C O R I E N TAT I O N S E N S I T I V I T Y

The order of chapters in this thesis echoes the hierarchy of feedforward processing that is

thought to occur in the brain’s ventral visual stream, from dots and edges, through shape

and texture fragments, to complex objects. It also follows the chronological discovery of

different spatial aftereffects, from tilt aftereffects (Gibson & Radner, 1937; Vernon, 1934),

through shape aftereffects (Köhler & Wallach, 1944), to face aftereffects (Webster & Maclin,

1999).

It begins, therefore, by examining the tilt aftereffect. In the domain of orientation, the

vertical and horizontal axes serve as psychological and linguistic reference points, leading

many to propose that these cardinal axes play a unique role in how orientation is encoded

neurally (Howard, 1982). Evidence for an explicitly norm-based representation of orienta-

tion comes from reports that non-cardinal stimuli ’normalise’ toward vertical or horizontal

during prolonged viewing (Day & Wade, 1969; Gibson & Radner, 1937; Held, 1963; Prentice

& Beardslee, 1950; Vaitkevicius et al., 2009).

The majority of these reports are ambiguous, as they can also be explained by a locally-

repulsive tilt aftereffect, or by misperceptions of very briefly presented stimuli (see the

Introduction of the present chapter). However, data from a new psychophysical method

devised by Müller, Schillinger, et al. (2009) appear to provide clear evidence for normali-

sation. Müller, Schillinger, et al. (2009) estimated the point of perceptual stasis for slowly-

rotating lines, and found that this estimate differed from physical stasis when the initial

line orientation was near cardinal. The authors inferred that observers were experienced

a slight ’perceptual drift’ of near-cardinal orientations toward the cardinal axes — direct

evidence for tilt normalisation. My supervisor and I wondered whether these data might

instead arise from observers having lower detection thresholds for rotational motion that

moved an oriented stimulus toward a cardinal axis than away. Such an asymmetry seemed

plausible, given the ”oblique effect” (Appelle, 1972) — greater discrimination sensitivity for

orientations near the cardinal than oblique axes. The experiments testing this hypothesis

appeared as a manuscript in the Journal of Vision (Storrs & Arnold, 2015a).

37



2.1 abstract 38

Evidence for tilt normalisation can be
explained by anisotropic orientation

sensitivity

2.1 abstract

Some data have been taken as evidence that after prolonged viewing, near-

vertical orientations ’normalise’ to appear more vertical than they had previ-

ously. After almost a century of research the existence of tilt normalisation

remains controversial. The most recent evidence for tilt normalisation comes

from data suggesting a measurable ’perceptual drift’ of near-vertical adaptors

toward vertical, which can be nulled by a slight physical rotation away from

vertical (Müller, Schillinger, et al., 2009). We argue that biases in estimates

of perceptual stasis could, however, result from the anisotropic organisation of

orientation-selective neurons in V1, with vertically-selective cells being more nar-

rowly tuned than obliquely-selective cells. We describe a neurophysiologically

plausible model that predicts greater sensitivity to orientation displacements to-

ward than away from vertical. We demonstrate the predicted asymmetric pattern

of sensitivity in human observers by determining threshold speeds for detecting

rotation direction (Experiment 1), and by determining orientation discrimina-

tion thresholds for brief static stimuli (Experiment 2). Results imply that data

suggesting a perceptual drift toward vertical instead result from greater discrim-

ination sensitivity around cardinal than oblique orientations (the oblique effect),

and thus do not constitute evidence for tilt normalisation.

2.2 introduction

Prolonged exposure to a visual stimulus can alter perception in two ways — by changing

the appearance of the stimulus itself (e.g. fading colour saturation; see Webster (1996)),

or by changing the appearance of other subsequent stimuli (e.g. the motion direction

aftereffect; see Anstis et al. (1998)). Patterns of adaptation-induced changes for a particular

perceptual dimension can give insight into how that dimension is neurally encoded (see,

e.g. Clifford et al. (2007)).
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It is well documented that after prolonged exposure to one orientation, the orientation

of subsequent stimuli can seem repelled away from the adapted orientation — the tilt

aftereffect (Gibson & Radner, 1937; Vernon, 1934). Controversially, it has also been argued

that vertical and horizontal (the cardinal orientations) constitute ’norms’ for orientation

perception (Gibson & Radner, 1937; Howard, 1982; Müller, Schillinger, et al., 2009), and

that over time near-cardinally oriented stimuli can undergo a perceptual change, being

drawn toward the nearest cardinal axis — tilt normalisation (Day & Wade, 1969; Gibson

& Radner, 1937; Held, 1963; Müller, Schillinger, et al., 2009; Prentice & Beardslee, 1950;

Vaitkevicius et al., 2009; Vernon, 1934).

Tilt aftereffects are often explained via models in which perceived orientation is deter-

mined by activity across a population of orientation-tuned neurons, and can be biased

by adaptation-induced changes in the distribution of that activity (Barlow & Hill, 1963;

Clifford et al., 2000, 2001; Day, 1962b; Girshick, Landy, & Simoncelli, 2011). However, pop-

ulation models of orientation coding do not strongly predict normalisation (and can even

predict the opposite — see below). Some have suggested there might therefore be separate

neural processes underlying tilt normalisation and tilt aftereffects (Coltheart, 1971; Morant

& Harris, 1965; Morant & Mistovich, 1960; Müller, Schillinger, et al., 2009). An alternative

possibility is that data thought to demonstrate tilt normalisation have been misinterpreted.

The earliest reports of normalisation were based on the finding that after adapting to a

tilted line, lines adjusted to appear vertical tend to be displaced toward the adapting orien-

tation (Day & Wade, 1969; Gibson & Radner, 1937; Vernon, 1934). This can be considered

as evidence only for a standard tilt aftereffect. A more direct method to measure nor-

malisation is to adapt observers for a period in one part of their visual field, then briefly

present a second stimulus elsewhere, estimating the orientation at which the second stim-

ulus appears parallel with the persistent adaptor. Data from such paradigms suggest that

a persistent near-vertical standard is seen as less tilted than a brief comparison to which

it is either physically (Prentice & Beardslee, 1950; Vaitkevicius et al., 2009) or perceptually

(Held, 1963) matched prior to adaptation (although at least one study failed to replicate

this effect — Heinemann and Marill (1954)).

The studies described above provide some evidence that persistent (adapting) and tran-

sient (test) stimuli differ in apparent orientation, but it is unclear whether this mismatch is

due to normalisation of the prolonged stimulus, or to misperception of the brief stimulus.

Andrews (1965, 1967) estimated the orientation at which a brief test appeared parallel to

a prolonged standard and found that when the standard was near vertical or horizontal,

physically matched tests were judged as more tilted. However, Andrews (1967) showed that

the magnitude of this mismatch depended on both the presentation time and spatial extent

of the comparison. Larger mismatches were found for shorter lines, and the bias reduced

by around two-thirds within the first second of comparison exposure. This dependence

on the properties of the comparison suggests the mismatch between brief and prolonged
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near-cardinal orientations might be a measurement of misperceptions in briefly-presented

stimuli rather than normalisation of prolonged stimuli (Howard (1982); for a similar argu-

ment regarding putative curvature normalisation see Coren and Festiniger (1967)). Data

from experiments in which the orientation of a persistent ’adaptor’ is compared to brief

comparators (Andrews, 1965, 1967; Heinemann & Marill, 1954; Held, 1963; Prentice &

Beardslee, 1950; Vaitkevicius et al., 2009) are therefore ambiguous.

Recently, Müller, Schillinger, et al. (2009) presented a novel method by which to measure

normalisation that eliminates the need for a comparison. They suggested that tilt normali-

sation involves a detectable ’perceptual drift’ of tilted stimuli toward vertical or horizontal,

and that this can be quantified by measuring the rate of physical rotation away from a car-

dinal axis required to null the perceptual rotation. The experimenters used an adaptive

procedure to estimate points of subjective stasis. For stimuli with an initial orientation of

0
◦, 90

◦, or ±45
◦ subjective stasis estimates coincided with physical stasis. For all other ori-

entations, subjective stasis estimates corresponded with a physical rotation away from the

nearest cardinal axis, with the ’perceptual drift rate’ peaking at ±15
◦ from cardinal axes.

The magnitude of perceptual drift measured in this manner was smaller than that of the

tilt aftereffect, followed a different pattern as a function of adapting orientation, and the

magnitudes of the two effects were not correlated across observers. These data therefore

seemed to present conclusive evidence both that normalisation occurs, and that it arises

from a different process than the tilt aftereffect. However, we propose that the measured

’drift’ can be more parsimoniously explained as an artefact arising from the oblique ef-

fect (i.e. lower detection and discrimination thresholds for orientations near cardinal than

oblique axes — Appelle (1972)).

2.3 modelling

Here we will show that a neurophysiologically plausible model of orientation coding,

which predicts the oblique effect because of anisotropies in the bandwidths of orientation-

selective neurons (Girshick et al., 2011; Li, Peterson, & Freeman, 2003; Rose & Blakemore,

1974), also predicts asymmetric just-noticeable-differences (JNDs) for orientation changes

from near-vertical and near-horizontal standard orientations. While this type of orientation

coding model is well-established, this prediction of such models has not previously been

appreciated or formally expressed.

Figure 1a shows an idealised population of 60
1 V1 orientation-selective neurons. Each

neuron’s tuning curve is represented by a von Mises distribution (Swindale, 1998) drawn

on a circular continuum spanning 0 to 180 degrees using the Circular Statistics Toolbox for

1 The values predicted by the model for discrimination thresholds (Figure 1c and d) are near-identical across a
wide range of numbers of simulated neurons (at least from 20 to 80). We chose the figure of 60 for the sake
of consistency with a similar model (Girshick et al., 2011).
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Matlab (Berens, 2009). For each tuning curve, the distribution mean indicates the preferred

orientation of the simulated neuron, and the distribution variance indicates the bandwidth

of the tuning curve (see, e.g. Clifford et al. (2000, 2001), Pouget, Dayan, and Zemel (2000)).

The value of a neuron’s tuning curve at any given orientation represents its average firing

rate (as a proportion of its maximum firing rate) when presented with that orientation.
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Figure 1. (a) The tuning curves of 60 orientation-selective neurons simulated using von Mises
distributions, with tuning bandwidths ∼1.4 times wider near the oblique than cardinal axes (two
cardinal and two oblique tuning curves are shown in bold to highlight these differences). (b) The
response to any presented orientation can be decoded by taking the average (in bold) of the vector
responses to that stimulus across the population. (c) The physical orientation difference between
two inputs required to reach an arbitrary just-noticeable-difference (JND) of 5◦ between decoded
orientations varies along the orientation continuum. This produces the oblique effect, wherein dis-
crimination sensitivity is higher for cardinal orientations and lower for oblique ones. Thresholds are
shown separately for clockwise (blue) and counter-clockwise (red) deviations from each orientation.
(d) Clockwise thresholds minus counter-clockwise thresholds. Sensitivity to clockwise and counter-
clockwise displacements is equal at the cardinal and oblique axes, but asymmetric elsewhere. In this
model, these asymmetries peak at approximately ±20◦ away from the cardinal axes, where thresholds
are lower for detecting displacements toward than away from the nearest cardinal orientation.

The bandwidth of tuning curves across the population of neurons varies as a rectified sinu-

soidal function of preferred orientation. Consistent with recorded properties of cat V1 cells

(Li et al., 2003; Orban & Kennedy, 1981), the full-width-at-half-height (FWHH) of tuning
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curves reaches a maximum of approximately 39
◦ at the oblique axes and a minimum of

28
◦ at cardinal axes. Any oriented input elicits a response from a number of neurons, some

reaching close to their maximum firing rate, others responding only slightly. Each neuron’s

activity can be described by a vector, as illustrated in Figure 1b, where the vector’s angle

represents the neuron’s preferred orientation (the orientation that it is ’voting for’), and

the vector’s length represents the neuron’s firing rate (the ’weight of evidence’ provided

by the neuron’s activity). One simple method to decode the presented orientation from the

population activity is by taking the average of all response vectors (Pouget et al., 2000).

One can calculate the model’s threshold for discriminating any two oriented stimuli by

declaring an arbitrary just noticeable difference (JND) value, by which two decoded ori-

entations must differ in order to be discriminable — say five degrees. For each input

orientation one can then estimate the amount by which a second input would need to dif-

fer in order for the population to signal one JND. Thresholds calculated in this manner

are depicted in Figure 1c for both clockwise and counter-clockwise differences from each

orientation. Because bandwidths are anisotropic across the orientation continuum, a JND

between decoded orientations will in some cases be reached when the difference between

physical inputs is less than the declared JND (e.g. rotations away from 0
◦), and in other

cases a JND will only be reached when the difference between physical inputs is greater

than the declared JND (e.g. rotations away from 45
◦). As depicted in Figure 1c, the model

predicts a clear oblique effect for discrimination thresholds, i.e. sensitivity is greater about

cardinal orientations and lower about oblique orientations.

As well as predicting the well-known oblique effect, the pattern of anisotropies captured

in this model predicts asymmetric sensitivity to clockwise vs counter-clockwise changes

from certain orientations. In Figure 1d, the discrimination thresholds for counter-clockwise

differences have been subtracted from the thresholds for clockwise differences, to reveal

orientations at which sensitivity is asymmetric. In this model, threshold asymmetries peak

at approximately ±20
◦ from cardinal orientations, with greater sensitivity predicted for

orientation changes toward the cardinal axes than away.

We believe this asymmetric sensitivity can explain data that have been taken as evidence for

tilt normalisation. Müller, Schillinger, et al. (2009) propose that tilt normalisation involves

a measurable ’perceptual drift’ of tilted stimuli toward vertical or horizontal, which can be

nulled by a slight physical rotation away from the cardinal axis. Rotation speeds required

to null this putative drift were estimated by an adaptive procedure (a single staircase, see

Cornsweet (1962)). For 0
◦, 90

◦ and ±45
◦ initial orientations, the procedure converged on

physical stasis, but for other orientations converged on a slight rotation away from the

nearest cardinal axis.

Müller, Schillinger, et al. (2009)’s method of estimating perceptual stasis assumes a single

point of stasis lying mid-point between the speeds of rotation that result in chance perfor-

mance when judging whether a stimulus is rotating clockwise or counterclockwise. Judg-
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ing direction of rotation involves two perceptual thresholds, one for detecting that stimuli

are rotating clockwise, another for detecting that stimuli are rotating counter-clockwise. If

these two thresholds are equal in magnitude, and physically static inputs are seen as static,

an adaptive procedure searching for a single estimate of perceptual stasis should converge

on a physically static stimulus. If, however, thresholds are asymmetric, with observers

being more sensitive to orientation changes toward, rather than away from, cardinal axes,

then an adaptive procedure will likely converge on a stimulus that is slowly rotating away

from a cardinal orientation, even if physically static inputs are seen as static.

In Experiment 1 we seek to replicate the effect reported by Müller, Schillinger, et al. (2009)

by measuring the apparent rotation direction of oriented stimuli, to which varying amounts

of physical rotation have been applied via adaptive staircase procedures. Unlike in the

previous report, we determine independent clockwise and counterclockwise rotation speed

thresholds for tests originating at a range of orientations.

2.4 experiment 1

2.4.1 Method

2.4.1.1 Participants

There were 12 participants, comprising the first author and 11 experienced psychophysical

observers who were naı̈ve to the hypotheses of the experiment. All experimental proce-

dures were approved by the School of Psychology’s Ethical Review Board at the University

of Queensland.

2.4.2 Stimuli and apparatus

Stimuli were presented on a gamma-corrected 19” Sony Trinitron Multiscan CPD-G520

monitor, with a resolution of 1024 x 768 pixels and a refresh rate of 120Hz. Matlab soft-

ware was used to drive a VSG 2/3 stimulus generator from Cambridge Research Systems.

Participants viewed stimuli from a distance of 52cm, with their head restrained by a chin

rest. Stimuli were viewed through a black cylindrical cardboard tube 16cm in diameter

and 52cm in length (see Figure 2a). The surface of the monitor could be viewed through

a circular aperture cut into a piece of black cardboard attached to the end of the viewing

tube, which subtended 17.5 degrees of visual angle (dva). This minimised the influence of

potential reference orientations, such as those provided by the edge of the monitor screen

or by peripheral objects in the room.

On each trial a single Gabor was presented (see Figure 2b), with a red 1-pixel fixation dot

at its centre (approximately 0.03 dva). The spatial Gaussian envelope for Gabors subtended
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Figure 2. (a) Apparatus used in Experiments 1 and 2. The participant viewed stimuli through a
black cardboard tube, with a circular aperture cut into a sheet of black cardboard covering the screen.
(b) Trial sequence in Experiment 1. After a 1 second fixation, a single Gabor appeared, rotating
for 6 seconds at a speed and direction determined by an adaptive procedure. At the end of this
period the participant reports if the stimulus had rotated clockwise or counter-clockwise. They were
subsequently given auditory feedback.

9.9 dva, with a standard deviation of 1.7 dva. The Michelson luminance contrast of Gabors

was 0.50 and they had a spatial frequency of 5 cycles/dva. The phase of the Gabor wave-

form was randomised on a trial-by-trial basis, and the display background was grey (CIE

chromaticity co-ordinates x = 0.27, y = 0.30, Y = 45). The average luminance of test stimuli

was matched to the background.

2.4.3 Procedure

On each trial the test Gabor rotated at a speed determined by an adaptive procedure for a

period of 6 seconds (see below). After the test presentation, the display was filled with static

white noise (individual elements subtended 0.03 dva x 0.03 dva), which persisted until the

participant indicated in which direction they felt the Gabor had rotated, by pressing one of

two mouse buttons. Feedback was then provided in the form of a high-pitched (correct) or

low-pitched (incorrect) beep.

Speed thresholds for detecting the direction of rotational motion were measured at 8 orien-

tations. These consisted of the two cardinal orientations (0◦ and 90
◦), the two obliques (45

◦

and 135
◦), and four orientations located ±15

◦ to either side of the cardinal orientations (i.e.

15
◦, 75

◦, 105
◦, and 165

◦). Here and throughout, orientations are labeled according to the

geometric convention, with 0
◦ indicating a horizontal line and 90

◦ a vertical line.
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Adaptive ’staircase’ procedures (Cornsweet, 1962) were used to determine speed thresh-

olds for detecting rotation direction, independently for clockwise and counter-clockwise

rotations from stimuli initialised at each of 8 test orientations. Each of the 16 staircase

procedures began by presenting a clearly rotating stimulus, at a speed of 0.8 angular de-

grees/second. Test speeds were then adjusted according to a ’two-down, one-up’ proce-

dure, to derive an estimate of the 71% threshold (i.e. if the participant got one response

wrong, speed was increased for that staircase, and if they got two successive responses

correct within a staircase procedure, speed was decreased — see Levitt (1970)). Whenever

the direction of adjustment (increasing vs. decreasing speed) differed from the direction of

the previous adjustment within a staircase, a ’reversal’ was recorded for that staircase.

As all staircases began with clearly rotating stimuli, stimulus speed was decreased by

0.16
◦/s on each trial until the first reversal was recorded within a given staircase proce-

dure (i.e. until the participant’s first incorrect response), after which speed was adjusted by

0.04
◦/s for that staircase. If such an adjustment would generate a negative speed for that

staircase, stimulus speed was set to 0
◦/s, ensuring that staircase procedures searching for

clockwise rotation thresholds did not contain any counter-clockwise rotating stimuli, and

vice versa. Each staircase terminated after 6 reversals, and the mean of the stimulus speeds

at the last 3 reversals was taken as an estimate of the threshold for identifying directional

rotation from the initial test orientation.

To prevent fatigue, the 16 staircase procedures were completed in four blocks of trials, each

taking approximately 12 minutes to complete. Within a block of trials, individual trials

were drawn randomly from one of four interleaved staircases. In block A, staircases were

conducted to determined speed thresholds for clockwise and counter-clockwise rotations

from initial test orientations of 0
◦ and 90

◦. In block B initial test orientations were 75
◦

and 165
◦, in block C initial test orientations were 45

◦ and 135
◦, and in block D initial test

orientations were 15
◦ and 105

◦. Half of the participants completed blocks in the order A, B,

C, D, and the other half completed blocks in the order D, C, A, B.

2.4.4 Results

We determined thresholds for each of the 8 test orientations, independent of rotation di-

rection, by averaging clockwise and counter-clockwise threshold estimates for each test

orientation for each participant. This revealed a clear oblique effect (see Figure 3a), with

highest thresholds for oblique test orientations (45
◦ and 135

◦) and lowest thresholds for

cardinal orientations (0◦ and 90
◦).

To estimate thresholds for test stimuli rotating toward the nearest cardinal axis we aver-

aged individual data from the 15
◦ clockwise, 75

◦ counter-clockwise, 105
◦ clockwise, and

165
◦ counter-clockwise conditions. To estimate thresholds for test stimuli rotating away
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from the nearest cardinal axis we averaged individual data from the 15
◦ counter-clockwise,

75
◦ clockwise, 105

◦ counter-clockwise, and 165
◦ clockwise conditions. Analyses revealed

that speed thresholds for detecting rotation toward the nearest cardinal axis (Mean 0.22

± SEM 0.03 degrees/second) were lower than thresholds for detecting rotation away from

the nearest cardinal axis (0.33 ±0.03; two-tailed paired t11 = -2.58, p = .026; see Figure 3b).

One interpretation of this result is that sensitivity is symmetric, but that the point of sub-

jective stasis (PSS) deviates from physical stasis. Assuming symmetric sensitivity, the PSS

could be estimated by taking the signed average of the toward- and away-from-cardinal

axis thresholds for each participant, yielding a mean PSS of a 0.05
◦/s (±0.02) away from

the nearest cardinal axis. These data are broadly consistent with Müller, Schillinger, et al.

(2009)’s key results (see their Figure 3b), which were taken as evidence for a perceptual

drift of near-cardinal orientations.
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Figure 3. Rotation speed thresholds (averaged across clockwise and counter-clockwise conditions)
for detecting rotation direction in a stimulus displayed for 6 seconds, starting at various initial test
orientations. The oblique effect is evidenced by lower thresholds for detecting rotation direction from
cardinal orientations, and higher thresholds for oblique orientations. (b) Rotation speed thresholds
for detecting rotation direction for tests with an initial orientation ±15◦ from a cardinal axis. These
data were grouped, for each participant, by whether the stimulus rotated toward or away from the
nearest cardinal axis. All data show threshold estimates averaged across participants. Error bars
show ±1 SEM.

However, we do not believe our data provide unambiguous evidence that an observer’s

PSS differs from physical stasis. Another interpretation is that subjective stasis corresponds

with physical stasis, but sensitivity is higher for toward-cardinal than away-from-cardinal

axis rotations. This is consistent with the predictions of the population model of orientation

coding outlined in the previous section. If sensitivity to rotational motion of an oriented

stimulus is limited by orientation coding sensitivity, or if observers rely on judging absolute

orientation at the end of a test presentation (as opposed to actually detecting movement),

participants would be more sensitive to rotations that change orientation toward a cardinal

axis, as opposed to rotations that change orientation toward an oblique axis. A third possi-
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bility is that asymmetric thresholds measured using a method of single stimuli result from

a systematic response bias, for example a tendency to report that stimuli are rotating away

from the nearest cardinal axis when in doubt (Morgan, Dillenburger, Raphael, & Solomon,

2012). In Experiment 2 we disambiguate these possibilities by using brief static tests, and a

bias-minimising measure of sensitivity.

2.5 experiment 2

If asymmetric thresholds for detecting rotations toward and away from cardinal orienta-

tions measured in Experiment 1 result from perceptual drift, one would expect that a

prolonged stimulus exposure would be necessary to measure this evidence. If, on the

other hand, orientation sensitivity differences due to anisotropic orientation tuning (Li et

al., 2003) are responsible for asymmetric thresholds, we should find asymmetric sensitivity

when people try to detect orientation differences among brief static tests. In Experiment 2

we tested this proposition using a bias-minimising measure of orientation sensitivity — a

three-interval forced-choice ’odd one out’ task.

2.5.1 Method

Details were as for Experiment 1, with the following exceptions.

2.5.1.1 Participants

There were 6 participants, comprising the first author and 5 experienced observers who

were naı̈ve to experimental hypotheses.

2.5.2 Stimuli and apparatus

Each trial involved three sequential presentations of static Gabors, with a spatial frequency

of 3 cycles/dva, a randomised waveform phase and a Michelson contrast of 1.0 (see Figure

4). These were shown at fixation for 300ms, each separated by 200ms intervals filled by dy-

namic noise (individual elements subtending 0.03 dva x 0.03 dva, updated at the monitor

refresh rate). Two of the Gabors were of a standard orientation, and the orientation of the

third ’odd-ball’ was varied on a trial-by-trial basis according to adaptive staircase proce-

dures (see below). Order of presentation was randomized on a trial-by-trial basis. After the

final dynamic noise sequence, a static white noise field was displayed until the participant

indicated, by pressing one of three mouse buttons, if the first, second, or third Gabor had

had a different orientation from the other two. Auditory feedback was given, and the next

trial began after 1 second.
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Figure 4. Example trial sequence in Experiment 2. Three static Gabors are shown sequentially for
300ms each, preceded and followed by 200ms bursts of dynamic white noise. Two of the Gabors had
a standard orientation, and one deviated by an amount determined by an adaptive procedure (here
the odd-ball is presented in the second interval). At the end of this sequence, participants reported
in which interval the odd-ball had appeared, followed by auditory feedback.

Orientation difference thresholds for correctly detecting the ’odd-ball’ were measured at the

same 8 orientation points tested in Experiment 1, using four separate staircase procedures

for each point. Two of the staircases sampled odd-balls tilted clockwise from standards,

one initiated at a large orientation difference (20
◦, a ’shrinking’ staircase) and another at

no orientation difference (0◦, a ’growing’ staircase). A complementary pair of staircases

sampled odd-balls tilted counter-clockwise from standards. Odd-ball orientations were

adjusted by 1
◦ within each staircase procedure until the first 6 reversals were recorded, after

which orientation was adjusted in steps of 0.5◦ for that staircase. Staircase values had a set

minima of 0
◦, ensuring that staircase procedures searching for clockwise thresholds did

not contain any counter-clockwise tilted stimuli, and vice versa. Each staircase terminated

after 12 reversals.

Orientation values corresponding to the last 6 reversals in each of the paired shrinking and

growing staircases were averaged to estimate independent orientation difference thresholds

for each participant for odd-balls tilted clockwise and counter-clockwise from each of the

8 standard orientations.

Participants completed two blocks of trials, each of which sampled tests drawn randomly

from one of 16 interleaved staircase procedures. One block of trials tested thresholds
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around cardinal and oblique orientations (i.e. four staircases centred around each of 0
◦,

45
◦, 90

◦ and 135
◦), while the other tested thresholds around near-cardinal orientations (i.e.

15
◦, 75

◦, 105
◦, and 165

◦). These groupings ensured that participants were not adapting

to an average orientation during any block of trials. Half of the participants completed

the block containing cardinal and oblique tests first, the other half completed the block

containing near-cardinal orientations first.

2.5.3 Results

Odd-ball detection thresholds, expressed as a function of standard orientation (see Figure

5a), display a clear oblique effect, with largest orientation difference thresholds for oblique

standards (45
◦ or 135

◦), and smallest for cardinal standards (0◦ or 90
◦).

Discrimination thresholds for near-cardinal standards (15
◦, 75

◦, 105
◦, and 165

◦), grouped

and averaged according to whether odd-balls were tilted toward or away from the nearest

cardinal axis, revealed that larger physical differences were required to detect a brief static

odd-ball tilted away from a cardinal axis (10.1 ±1.2◦) than toward a cardinal axis (6.3 ±0.5◦;

two-tailed paired t5 = -4.81, p = .005; see Figure 5b).
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Figure 5. (a) Mean thresholds for detecting odd-balls tilted relative to various standard orientations.
Note the oblique effect. (b) Average thresholds at near-cardinal test points, for detecting an odd-ball
tilted either toward or away from the nearest cardinal axis. Error bars show ±1 SEM.

2.6 discussion

Our data demonstrate greater sensitivity to changes in orientation toward than away from

a nearby cardinal axis. This was true both when changes in orientation were gradual

over time (rotation-direction detection thresholds in Experiment 1) and when changes were

between brief static stimuli (Experiment 2). An anisotropic model of orientation encoding,
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in which neurons selective for cardinal orientations have narrower tuning curves than those

selective for oblique orientations, predicts these asymmetric discrimination thresholds (see

Modelling section), in addition to the well-known oblique effect (Girshick et al., 2011; Li

et al., 2003; Rose & Blakemore, 1974). We hold that asymmetric sensitivity to changes

toward vs away from cardinal axes provides a more parsimonious explanation for Müller,

Schillinger, et al. (2009)’s data than does perceptual drift caused by tilt normalisation.

Müller, Schillinger, et al. (2009) reported that the magnitude of the perceptual drift sug-

gested by their data was smaller, by a factor of five, than the magnitude of the tilt after-

effect. They also reported that there was no correlation between the magnitudes of these

two effects. Our account explains this dissociation, as it posits that the tilt aftereffect arises

from adaptation-induced changes in the responsiveness of orientation-selective neurons,

whereas the bias measured when nulling the rotational motion of oriented stimuli results

from asymmetric sensitivity to orientation changes which is present before adaptation.

We have not yet addressed Müller, Schillinger, et al. (2009)’s curvature data, but suspect

they are amenable to a similar explanation. Greater sensitivity to decrements than to in-

crements in curvature would produce data consistent with the ’perceptual uncurling’ of

slightly curved stimuli posited by Müller, Schillinger, et al. (2009). One possible reason

for such asymmetric sensitivity is that when a slightly-curved near-vertical line segment

(as in Müller, Schillinger, et al. (2009)) is straightened, the local orientation changes are

toward vertical, whereas when the segment is further curved the local orientation changes

are toward oblique axes. Enhanced sensitivity for toward-cardinal compared to toward-

oblique changes would therefore predict enhanced sensitivity to decrements compared to

increments in curvature for such stimuli. This would explain why Müller, Schillinger, et

al. (2009)’s ’perceptual uncurling’ rate estimates are tied to the aspect ratio of the stimu-

lus rather than to absolute curvature, as the local orientations comprising a stimulus do

not change with stimulus size. If this explanation is correct, a reversed pattern of results

should ensue for obliquely-oriented curved line segments, which when straightened would

contain local orientations further from the cardinal axes.

While the predictions of our model agree qualitatively with our data both in terms of the

shape of the oblique effect (compare Figure 1c to Figures 3a and 5a), and the direction of the

near-cardinal discrimination threshold asymmetries, our model makes no firm predictions

regarding the magnitudes of these effects. The threshold values predicted by the model

depend on an arbitrarily declared average JND (5◦), and the size of any asymmetry pre-

dicted would vary substantially for different JND values. Further, we have not made any

assumptions regarding the temporal evolution or integration of neural orientation signals.

In Experiment 1 participants were able to detect a change in orientation from vertical of ap-

proximately 1.2◦ during 6-second presentations. In Experiment 2 they were able to detect

a difference in orientation of approximately 3.5◦ between successive static inputs, each pre-

sented for just 300ms. This discrepancy suggests an evolution in signal to noise, possibly
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due to reiterative processes. Since there is insufficient background information to justify

assumptions about these processes, our modelling makes no quantitative predictions for

JND values in different tasks.

2.6.1 If tilt normalisation did happen, how could it arise?

Although evidence for tilt normalisation remains underwhelming, our data do not rule it

out as a possibility. There are various ways in which normalisation could be predicted.

Vaitkevicius et al. (2009) recently proposed a population-coding model to account for both

tilt aftereffects and tilt normalisation. In their model narrowband orientation selectivity in

cortex is derived from sub-cortical mechanisms that have broad selectivity for the two car-

dinal orientations, and normalisation occurs as a flow-on effect of adaptation within these

cardinal channels. However, this model seems to fail on empirical grounds, erroneously

predicting that adaptation to 0
◦, 90

◦ and ±45
◦ should not induce a tilt aftereffect (which is

inconsistent with data in Templeton, Howard, and Easting (1965)), and that the appearance

of stimuli oriented ±22.5◦ and ±67.5◦ from vertical should not be affected by adaptation

(which is inconsistent with data, e.g. Mitchell and Muir (1976)).

Models similar to that described here could be modified to predict either normalisation or

anti-normalisation, depending on the average channel bandwidth and the degree of band-

width variance. Given that there are no firm estimates from investigations of human visual

cortex to constrain assumptions regarding these parameters, the fact that any particular

instantiation of a model might, or might not, predict normalisation cannot be regarded as

firm evidence for the existence or absence of this process. Another possibility is that tilt

normalisation happens because a population code, like that described here, is pre-adapted

to an environment containing a preponderance of cardinal, compared to oblique, orien-

tations. Arguably, this could be expected from adaptation to natural scenes (Girshick et

al., 2011; Hansen & Essock, 2004). Data pertaining to blur normalisation has been simi-

larly explained, by assuming pre-adaptation to a 1/f spatial frequency distribution (Elliott,

Georgeson, & Webster, 2011). It remains to be seen, however, if such explanations are nec-

essary to explain tilt normalisation, as it is unclear if tilt normalisation exists; our data

suggests it doesn’t.

2.6.2 A general methodological point

We believe our data highlight an important methodological issue. Sensitivity is non-uniform

along most, if not all, perceptual continua. For magnitude continua (luminance, weight,

loudness, etc), Weber’s law dictates that sensitivity to a decrement will be superior to

an increment of the same magnitude. Along other continua, sensitivity is often maximal
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around null points, such as zero binocular disparity (Stevenson, Cormack, Schor, & Tyler,

1992) a white/grey hue (Webster, 1996), or at subjective boundaries, such as those between

phonemes, colours (Goldstone & Hendrickson, 2009) and complex object categories (Beale

& Keil, 1995; Newell & Bülthoff, 2002). Most methods for establishing points of subjective

equality will systematically err in all of these circumstances. Staircase procedures converge

on the centre of a region of uncertainty, which will coincide with the point of subjective

equality only when discrimination thresholds are symmetric. Symmetric thresholds are

also assumed when fitting data with symmetric psychometric functions. If this assump-

tion is violated, the estimate of central response tendency will deviate from the point of

subjective equality. As uneven sensitivity to stimulus changes is common, procedures and

analyses should generally be preferred that avoid the assumptions of symmetric sensitivity

and or symmetric criteria placement (see Yarrow, Jahn, Durant, and Arnold (2011)).

2.6.3 Conclusion

The existence of tilt normalisation remains under question. Recent data taken as evidence

for tilt normalisation might instead result from anisotropic sensitivity to orientation differ-

ences — the oblique effect.
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C H A P T E R 3 : S H A P E A F T E R E F F E C T S R E F L E C T S H A P E C O N S TA N C Y

O P E R AT I O N S : A P P E A R A N C E M AT T E R S

The remaining chapters concern perception of increasingly complex stimulus properties,

such as the aspect ratio of a shape, or the gender of a face. A fundamental question re-

garding such aftereffects is whether they arise from adaptation within substrates explicitly

encoding complex attributes, or whether they can be explained entirely by the aggregation

of aftereffects between simpler image elements such as colour, contrast, and edge orienta-

tion (see, e.g. Dickinson, Almeida, Bell, and Badcock (2010) and Dickinson and Badcock

(2013)).

Aspect ratio aftereffects provide an interesting test case. When adapting and test shapes are

presented at the same size and retinal location, any resulting aftereffect could be attributed

either to shape adaptation, or to adaptation to the orientations of local edges constituting

the shape. Tilt aftereffects are tightly retinotopically localised (Gibson, 1937; Knapen et al.,

2010), and can therefore be mitigated by changing the size or position of stimuli between

adaptation and test. Previous work shows that shape aftereffects can survive substantial

changes in size and position between adaptation and test (Badcock et al., 2014; Köhler &

Wallach, 1944; Regan & Hamstra, 1992; Suzuki & Cavanagh, 1998), indicating a relatively

late locus of adaptation, where neurons have large receptive fields.

However, the conscious perception of shape is not determined solely by the shape of im-

ages cast on the retina, but depends on further stages of ’shape constancy’ computations.

These partially compensate for perspective foreshortening and other distortions, to more

faithfully signal the shapes of distal objects (Epstein & Park, 1963; Vishwanath, Girshick, &

Banks, 2005). We wondered whether it was possible to adapt shape representations that lay

not only after some degree of spatial invariance had been achieved, but also after shape con-

stancy calculations had been completed. The resulting manuscript appeared in the Journal

of Experimental Psychology: Human Perception and Performance (Storrs & Arnold, 2013).

53



3.1 abstract 54

Shape aftereffects reflect shape constancy
operations: appearance matters

3.1 abstract

One of the oldest known visual aftereffects is the shape aftereffect, wherein

looking at a particular shape can make subsequent shapes seem distorted in

an ’opposite’ direction. After viewing a narrow ellipse, for example, a perfect

circle can look like a broad ellipse. It is thought that shape aftereffects are de-

termined by the dimensions of successive retinal images. However, perceived

shape is invariant for large retinal image changes resulting from different view-

ing angles; current understanding suggests that shape aftereffects should not

be impacted by the operations responsible for this viewpoint invariance. By

viewing adaptors from an angle, with subsequent fronto-parallel tests, we es-

tablish that shape aftereffects are not solely determined by the dimensions of

successive retinal images. Moreover, by comparing performance with and with-

out stereo surface-slant cues, we show that shape aftereffects reflect a weighted

function of retinal image shape and surface slant information, a hallmark of

shape constancy operations. Thus our data establish that shape aftereffects can

be influenced by perceived shape, as determined by constancy operations, and

must therefore involve higher-level neural substrates than previously thought.

3.2 introduction

Sensory aftereffects are ubiquitous in human vision, and are generally attributed to neural

adaptation (Barlow & Hill, 1963; Clifford et al., 2007; Wark et al., 2007). One of the oldest

examples is the shape aftereffect, wherein exposure to a particular shape makes subsequent

shapes seem ’oppositely’ distorted (Köhler & Wallach, 1944). After exposure to a narrow

rectangle, for instance, a square can appear as a wide rectangle. Shape aftereffects have

been linked to V4 activity (Gheorghiu & Kingdom, 2007; Müller, Wilke, & Leopold, 2009;

Suzuki, 2003), wherein shape may be encoded by the position and magnitude of points of

maximal local curvature (Pasupathy & Connor, 2002). Models of shape perception based

on this information can achieve size and position invariance (Poirier & Wilson, 2006), both

established properties of the shape aftereffect (Regan & Hamstra, 1992; Suzuki & Cavanagh,
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1998). Note, however, that in such models the description of a shape depends solely on the

shape of its retinal image.

A single retinal image can, however, result in the perception of many different shapes.

Conversely, a single object can result in many different retinal images, with different local

curvatures (see Figure 1). This dissociation between retinal image shape and perceived

shape is overcome by shape constancy calculations, which enable more accurate shape

perception by discounting the retinal image changes that result from viewing objects from

different perspectives. These operations are not included in our current understanding of

shape aftereffects (Gheorghiu & Kingdom, 2007; Poirier & Wilson, 2006).

(a) (b) 

Figure 1. Shape constancy demonstration. The scene on the left (a) seems to contain many circular
shapes, although on the image surface plane and on the retina, each corresponds to a different non-
circular ellipse (b). In some cases the geometry of apparently circular shapes is inconsistent with
that of the rest of the scene (i.e. the images in the magazine — see Vishwanath, Girshick, and Banks
(2005).

For two-dimensional ellipses, distal shape cannot be recovered solely from the shape of

the retinal image, as any distal ellipse can project an infinite number of retinal ellipses,

depending on the viewer’s perspective (Pizlo, 1994). Accurate perception of an ellipse

instead depends on recovering the slant of the surface on which the image lies (Pizlo, 1994;

Thouless, 1931). Local surface slant (Slocal) can be estimated using binocular disparity and

contextual information, such as that provided by perspective and texture cues (Vishwanath

et al., 2005). One can then infer distal ellipse aspect ratio (A/B) from the retinal image ratio

(α/β):

A/B =
α/β

cos(Slocal)

Neural responses in human vision don’t exhibit full shape constancy until areas beyond

V4, a current candidate substrate for shape aftereffects Janssen, Vogels, and Orban, 1999;
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Kourtzi and Kanwisher, 2001. Here we test whether shape aftereffects reflect shape con-

stancy calculations.

3.3 experiment 1 : influence of surface slant on shape perception

First, we quantified the impact of viewing angle and stereoptic surface slant information

on perceived shape.

3.3.1 Method

3.3.1.1 Participants

There were eight participants, comprising six experienced psychophysical observers who

were naı̈ve to the hypotheses of the experiment, and the two authors.

3.3.1.2 Stimuli and apparatus

Stimuli were presented on a gamma-corrected 19” Sony Trinitron Multiscan G520 monitor

(resolution 1024 x 768 pixels and a refresh rate of 120 Hz). Matlab software was used to

drive a VSG 2/3 stimulus generator from Cambridge Research Systems. The monitor was

fixed in the centre of a circular table, with seven viewing positions marked around the

edge of the table: at viewing angles of 0
◦ (fronto-parallel), 10

◦, 20
◦, 30

◦, 40
◦, 50

◦, and 60
◦

clockwise from fronto-parallel (see Figure 2a, apparatus). Participants viewed stimuli at

each position from a distance of 77cm with their heads restrained by a chinrest in normal

(well lit) lighting conditions.

Stimuli consisted of ellipses rendered in white noise, with an element size subtending

0.11 degrees of visual angle (dva) shown against a grey background (CIE chromaticity

coordinates x = 0.27, y = 0.30, Y = 47), such that the ellipse and background had the same

average luminance. Stimuli were presented in the centre of the display, with a fixed height

subtending 6.2 dva. Stimulus width was adjusted by the participant during the trial (see

below). Two strips of white noise were added to the top and bottom of the display, each

5.7 dva in height and vertically centred 7.45 dva from fixation (see Figure 2a, display). The

presence of these textured strips, coupled with the lighting conditions, ensured that there

were ample perspective and texture cues regarding the slant of the test display relative to

the observer.

3.3.1.3 Adjustment procedure

On each trial an ellipse was presented in the centre of the screen with a randomly deter-

mined initial aspect ratio of either 0.6 (distinctly narrow) or 1.7 (distinctly wide). Partici-
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pants adjusted this shape using mouse buttons to reduce or increase its width, until they

felt it looked like a circle. Twenty such adjustments were completed from a single viewing

angle during each block of trials. Participants completed 14 blocks of trials: one from each

of 7 viewing angles, once under normal binocular viewing conditions, and once with the

participant’s right eye covered by an eye patch (monocular condition). Participants com-

pleted the blocks in a pre-determined pseudo-random order (0◦, 40
◦, 20

◦, 60
◦, 50

◦, 10
◦,

30
◦), with monocular and binocular runs conducted in separate testing sessions. Four par-

ticipants completed all binocular blocks of trials first, then all monocular blocks. This order

was reversed for the remaining four participants.

(a) 
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(b) 

Figure 2. (a) Schematic illustrations of the apparatus and stimuli. A monitor was placed in the
centre of a section of circular table, and chinrests were attached at various angles to allow oblique
viewing at a fixed distance of 77cm. In all three experiments, stimuli consisted of ellipses drawn
in white noise on a grey background, with bars of white noise at top and bottom of the screen.
(b) Average ”circle” settings from different viewing angles. Solid line shows predicted settings if
perceived shape were perfectly viewpoint invariant. Dotted line shows predicted settings if perceived
shape matched the dimensions of retinal images. Error bars show ±1 SEM.
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3.3.2 Results

As found previously Epstein and Park, 1963; Thouless, 1931; Vishwanath et al., 2005, ap-

parent shape was not given by the dimensions of retinal images, but nor was there perfect

compensation for retinal image foreshortening as viewing angle increased (see Figure 2b).

Instead, apparent shape reflected a weighted function of retinal image dimensions and sur-

face slant estimates (with a slight vertical-horizontal illusion noticeable at smaller viewing

angles, e.g. Kunnapas (1955)). Perceived shape was markedly closer to retinal shape when

viewing stimuli with one eye, rather than two, revealing a contribution of stereo cues to

surface slant estimates.

3.4 experiment 2a : adapting to retinal or physical circles

To answer our central question, observers adapted to ellipses from a viewing angle of 50
◦,

then moved to judge the aspect ratio of test shapes from directly in front.

3.4.1 Method

Details for Experiment 2a were as for Experiment 1, with the following exceptions.

3.4.1.1 Participants

There were twelve participants, including the authors and ten additional experienced psy-

chophysical observers who were naı̈ve to the experimental hypotheses. Eight of the twelve

had also participated in Experiment 1.

3.4.1.2 Stimuli

Test stimuli were ellipses consisting of static white noise, as in Experiment 1. Adapting

stimuli were ellipses consisting of white noise that was dynamically updated at a rate of

0.5Hz, in order to mitigate the build-up of retinal afterimages. Two adaptor conditions were

used to dissociate the effects of retinal from perceived adaptor shape on the appearance

of tests. In the first condition people adapted to a physical circle on the surface of the

display screen, which resembled a narrow ellipse from the adapted viewing angle (due to

a partial failure of shape constancy, see Figure 2b). In the second condition people adapted

to an ellipse that projected a circular retinal image (surface aspect ratio = 1/cos(50
◦)). To

participants, this resembled a wide ellipse during adaptation. Both adaptor conditions

were completed under both binocular and monocular viewing.



3.4 experiment 2a : adapting to retinal or physical circles 59

3.4.1.3 Procedure

Participants were instructed to fixate a small red fixation point in the centre of each adapt-

ing and test stimulus throughout its presentation. All test stimuli were viewed while seated

at 0
◦, and all adaptors were viewed from 50

◦. Each participant completed two prelimi-

nary baseline blocks of trials (one under binocular viewing and another under monocular

viewing conditions), during which tests were viewed without pre-exposure to an adapting

stimulus.

During all blocks of trials the test ellipse aspect ratio was varied according to the method

of constant stimuli, sampling ratios of 0.90, 0.95, 0.98, 0.99, 1.00, 1.01, 1.02, 1.05, and 1.10.

Each ratio was presented 12 times (during baseline blocks of trials) or 6 times (during

adaptation blocks of trials) in a pseudo-random order, yielding a total of 108 (baseline) or

54 (adaptation) individual trials. After each test presentation the participant classified the

test as being narrower or wider than a perfect circle, by pressing one of two mouse buttons.

0° 0° 

50° 

0° 0° 

1. Adapt 
6 seconds 

2. Move 
Avg = 2.7s 

3. Test 
300 ms 

4. Move 
Untimed 

0° 

5. Response 
Untimed 

50° 50° 50° 50° 

Figure 3. Trial sequence during adaptation blocks in Experiments 2a and b. (1) Observer views an
adaptor for 6 seconds from 50◦, (2) then moves to a chin rest at 0◦ and (3) triggers a 300ms test
display. (4) The observer then moves back to 50◦ and indicates if the test had been narrower or wider
than a circle (5).

During adaptation blocks of trials, participants performed the same task at 0
◦ after viewing

one of the two adaptors, for 30 seconds on the first trial or for 6 seconds on subsequent trials

(see Figure 3). The inter-stimulus interval (ISI) between adaptation and test presentations

was dictated by how long it took the participant to first move between the 50
◦ and 0

◦

viewing positions and then to indicate with a button press that he or she was ready to view

a test stimulus. This value was recorded (M = 2.74s, SEM = 0.20s).

Six participants completed the experimental conditions in the following order: binocu-

lar baseline, surface-circle adaptation, then retinal-circle adaptation in one testing session,

followed in a separate session by monocular baseline, surface-circle adaptation, and retinal-

circle adaptation. The order for the remaining six participants was: monocular baseline,

retinal-circle adaptation, and surface-circle adaptation in the first session, followed by binoc-

ular baseline, retinal-circle adaptation, and surface-circle adaptation in the second session.
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Experimental sessions were minimally separated by an hour, and often took place on sepa-

rate days.

Each block of trials provided a distribution of perceived aspect ratio as a function of phys-

ical aspect ratio. Logistic functions were fitted to upper responses (”wider than a circle”)

using the psignifit toolbox version 2.5.6 for Matlab (Wichmann & Hill, 2001), and 50% points

were taken as estimates of the ellipse aspect ratio that resembled a circle. Aftereffect mag-

nitudes were calculated by taking the difference between PSE estimates from baseline and

adaptation runs of trials. Aftereffects during monocular and binocular adaptation con-

ditions were respectively calculated relative to the participant’s monocular and binocular

baselines.

3.4.2 Results

After adaptation to a shape that formed a circle on the surface of the screen, frontally

viewed ellipses tended to look wider than they had before adaptation (binocular viewing

paired-samples t11 = -5.50, p < .001; monocular t11 = -5.14, p < 0.001, see Figure 4). It is

important to note that these aspect ratios are asymmetric about 1. For example, a shape

with an aspect ratio (width/height) of 0.5 is more horizontally stretched than a shape

with aspect ratio 1.5 is vertically stretched. These data can be made symmetric by taking

logarithmic transforms of raw aspect ratios, i.e. log10(width/height). Transforming the data

in this way does not substantively change the above result (binocular viewing t11 = -5.35, p

< .001; monocular t11 = -5.11, p < .001). Throughout the rest of the text, analyses performed

on log-transformed data are reported after those performed on raw aspect ratios.

In the ’surface circle’ condition just described, the adapting ellipse is both retinally and

subjectively narrower than a circle, so this result is consistent with the shape aftereffect

being tuned to either retinal or perceived shape, and does not speak to our primary ques-

tion. Critically, though, after adaptation to a retinal circle frontally viewed ellipses tended

to look narrower than they had prior to adaptation (binocular raw data t11 = 6.05, p < 0.001;

log transformed t11 = 6.16, p < 0.001; monocular raw data t10 = 9.47, p < 0.001; log trans-

formed t10 = 9.44, p < .001; see Figure 4). This shows that shape aftereffects cannot be

determined solely by retinal image aspect ratios, otherwise no shape aftereffect should have

ensued. Instead, shape aftereffects appear to be influenced by perceived shape, as derived

by shape constancy operations.

3.5 experiment 2b : adapting to perceived circles

Experiment 2a demonstrated that, in the absence of any retinal deviation from circularity,

a shape aftereffect still ensues, presumably driven by a contribution from perceived shape.
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Figure 4. Bar graph showing shape aftereffects after adaptation to a surface circle (surface aspect
ratio = 1.00; retinal aspect ratio approximately = 0.64), and a retinal circle (surface = 1.56; retinal =
1.00), both viewed from 50◦. Aftereffect magnitudes represent differences in the point of subjective
circularity between baseline and adaptation blocks of trials.

Experiment 2b tests whether the shape aftereffect is tuned entirely for perceived shape,

or if a retinal contribution remains. If shape aftereffects are governed predominantly, or

entirely, by perceived shape, then adapting to an apparent circle should produce little or

no aftereffect in this context.

3.5.1 Method

A subset of participants from Experiment 2a (N = 8, including the authors) also completed

Experiment 2b, which was identical except for involving two different adapting shapes.

These were determined by the average subjective ”circle” settings from Experiment 1 dur-

ing binocular and monocular viewing from 50
◦ (these had retinal aspect ratios of approxi-

mately 0.75 and 0.87). Participants adapted to each from a viewing angle of 50
◦, under both

binocular and monocular viewing conditions, and also completed binocular and monocu-

lar no-adaptation baseline blocks of trials at the beginning of the respective testing session.

This yielded eight possible orders in which the four adaptation conditions could be con-

ducted in a 2 x 2 x 2 (order of viewing condition x order of binocular adaptors x order of

monocular adaptors) permutation. Each of the eight participants was assigned a unique

order. The ISI between adaptation and test presentations was again recorded (MISI = 3.03s,

SEM = 0.12s).
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3.5.2 Results

Experimental conditions were either congruent, in that the adaptors looked circular (i.e.

binocular adaptation to aspect ratio 0.75 and monocular adaptation to aspect ratio 0.87),

or incongruent, in that adaptors did not look circular (binocular adaptation to aspect ratio

0.87 and monocular adaptation to aspect ratio 0.75).

The impact of perceived shape is again evident in the results of incongruent conditions. In

these conditions, monocular adaptation to a binocular circle made tests appear wider than

binocular adaptation to the same physical adaptor (raw data paired-samples t7 = 2.83, p =

.026; log transformed t7 = -2.80, p = .027; see Figure 5). Note that the retinal adaptor shapes

were identical in these two conditions, but the adaptor was perceived as wider when stereo

slant cues were available during binocular adaptation. Similarly, binocular adaptation to

a monocular circle made test ellipses appear narrower than monocular adaptation to the

same retinal image shape (raw data t7 = 2.72, p = .030; log-transformed t7 = 2.72, p =

.030). Stereo surface slant cues, which contribute to shape constancy operations, can thus

modulate shape aftereffects.

For the congruent conditions, there was no significant difference between aftereffects in-

duced by binocular (aspect ratio 0.75) and monocular (aspect ratio 0.87) adaptation (paired-

samples t7 = 0.61, p = 0.56; log transformed t7 = 0.62, p = 0.55). We therefore collapsed

these data into an average aftereffect estimate for each participant, by taking the mean of

the two congruent aftereffects for each participant. Analysis of these data revealed a slight

tendency for test ellipses to appear wider after adapting to a subjective circle (MPSE shift -

0.007 ±SEM 0.003; raw data one-sample t7 = 2.28, p = .056; log transformed t7 = 2.30, p =

.055) These data suggest that adapting to images that look circular (but project narrowed

retinal images) can still produce a small aftereffect when judging tests that both look circu-

lar and have circular retinal images. Hence these data, in conjunction with the results of

Experiment 2a, show that shape aftereffects involve contributions from both retinal image

shape and perceived shape.

It is important to note that there were no significant differences between ISIs (which re-

flect how long it took to move between adapting and test positions) during binocular and

monocular viewing conditions; binocularly viewed ’binocular circle’ MISI = 2.97 ±SEM 0.38

seconds; monocularly MISI = 3.04 ±0.29s (paired t11 = 0.31, p = .77), binocularly viewed

’monocular circle’ MISI = 2.97 ±0.34s; monocularly MISI = 3.13 ±0.28 (paired t11 = 0.78, p

= .46). Hence, differences between aftereffect magnitudes under monocular and binocular

viewing cannot be attributed to a different length of time having elapsed between adapta-

tion and test.

Finally, we also examined sensitivity changes induced by shape adaptation by comparing

just noticeable differences (calculated as the difference between the 80% and 50% points

on individual psychometric functions) before and after adaptation during Experiments 2a
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Figure 5. Aftereffects induced by binocular and monocular adaptation to ellipses that looked circular
when viewed binocularly (surface aspect ratio = 1.35; retinal = 0.87) or monocularly (surface =
1.17; retinal = 0.75). Inset: Same data expressed as aftereffect magnitudes after adapting to ellipses
that looked circular (congruent) or non-circular (incongruent), illustrating the interaction between
adaptor shape and stereoptic cues. All error bars show ±1 SEM.

and 2b. Overall, thresholds were lower after adaptation than they were before (change in

discriminant threshold between baseline and adaptation blocks in both experiments com-

bined Msensitivity = -0.003 ±SEM 0.001, one-sample t11 = 2.77, p = .018). This improvement

in sensitivity was not, however, well tuned for either retinal image shape or perceived

shape, because a 2 x 4 repeated measures ANOVA revealed no main effects or interaction

of viewing condition or adaptor shape. This suggests that a functional benefit, in terms of

sensitivity to differences in shape, ensued from all adaptation conditions, and any variance

in the magnitude of this effect across our adaptation conditions was too subtle to detect.

3.6 discussion

The shape aftereffect is known to be somewhat tolerant to changes in size (Regan & Ham-

stra, 1992) and translations across a fronto-parallel surface between adaptation and test

(Suzuki & Cavanagh, 1998). However, these transformations both preserve1 the relative

aspect ratios and local curvatures of retinal images, and so provide no information about

1 Or almost preserve them, within the range of translations tested. The maximum local surface slant relative
to observers in Suzuki and Cavanagh (1998) was slight, at approximately 6

◦.
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the interplay between shape aftereffects and shape constancy operations. Our data reveal

that shape aftereffects can be influenced by perceived shape, as well as by retinal image

shape, and thus that shape aftereffects reflect the weighted calculations necessary for (par-

tial) viewpoint invariance.

Precautions taken to minimize the impact of retinotopic adaptation, and associated after-

images, might have been critical to our discovery of a view-invariant contribution to shape

aftereffects. In most circumstances perceptual aftereffects, even those for supposedly com-

plex stimuli (such as shapes and faces), will at least partially reflect the effects of adaptation

to low-level image properties (Dennett et al., 2012; Dickinson et al., 2010; Xu, Dayan, Lipkin,

& Qian, 2008). We minimized such contributions by using dynamic, texture-defined white

noise as an adaptor. The time-averaged luminance of these adaptors was equal to that of

the grey background, thereby minimizing the impact of adaptation to localized luminance

changes. If we had used static, luminance-defined stimuli, viewpoint invariant contribu-

tions might have been obscured by a greater contribution from retinotopic aftereffects.

Several previous studies have indicated that high-level visual aftereffects are broadly retino-

topic, rather than viewpoint invariant. For example, face aftereffects can transfer between

adaptors and tests depicting three-dimensional faces viewed from different perspectives,

but they diminish with increasing angular distance (Fang & He, 2005; Jeffery, Rhodes, &

Busey, 2007). Similarly, the facial gender aftereffect is greatest when adapting and test im-

ages are presented in the same retinal, rather than the same physical, coordinates (Afraz

& Cavanagh, 2009). However, these investigations are not directly comparable to ours, as

there is no analogous dissociation between (for example) ’perceived facial gender’ and ’reti-

nal facial gender’ at different viewing angles, as there is with perceived and retinal aspect

ratio.

We are only aware of one previous attempt to examine the impact of perceived shape

on shape aftereffects. Bell, Dickinson, and Badcock (2008) showed that radial frequency

aftereffects can transfer partially between adaptors and tests with different horizontal com-

pressions, consistent with a transfer between shapes viewed from different perspectives.

Critically, the aftereffect induced by a horizontally compressed adaptor was larger when

disparity cues were added (via stereo goggles), resulting in an adapting image that was

consistent with viewing an uncompressed shape from an angle (Bell et al., 2008). This

result is consistent with our data, although the studies are only weakly analogous. The

previous experiment quantified aftereffects by contrast threshold elevation, rather than by

shape appearance, and was exploratory, including only two observers, and only found an

effect of stereo cues at the most extreme of four horizontal compressions (Bell et al., 2008).

There are, however, complementary observations concerning the primacy of apparent prop-

erties over retinal image properties from other contexts. For instance, size and spatial

frequency aftereffects can reflect perceived, rather than physical, properties (Bennett &

Cortese, 1996; Burbeck, 1987; Parker, 1981; Sutherland, 1961), and illusory size changes can
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influence tilt aftereffects and sensitivity to orientation changes (Arnold, Birt, & Wallis, 2008;

Schindel & Arnold, 2010).

Until now, our knowledge of shape aftereffects had been consistent with a neural substrate

in which shapes are represented by the magnitudes and positions of points of maximal

local curvature in the retinal image, indicating V4 as a plausible substrate (Bell et al., 2008;

Gheorghiu & Kingdom, 2007; Pasupathy & Connor, 2002; Poirier & Wilson, 2006; Suzuki,

2003). The influence of shape constancy operations are not, however, evident until later

stages in the visual hierarchy (Janssen et al., 1999; Kourtzi & Kanwisher, 2001; Tanaka, 1996,

2003). Our data imply that these higher-level substrates contribute to the determination

of shape aftereffects, consistent with Suzuki and Cavanagh, 1998’s suggestion that shape

representations in inferotemporal cortex (and / or in the superior temporal sulcus) might

be involved in generating shape aftereffects. At this point we cannot specify the precise

nature of this contribution. It is possible that the contribution is toward recalibrating a

sensory code. Equally, it is possible that the contribution has more to do with re-setting

decisional criteria. Teasing apart these possibilities will be the focus of future research in

our lab.



4

C H A P T E R 4 : S H A P E A D A P TAT I O N E X A G G E R AT E S S H A P E

D I F F E R E N C E S

The results in the previous chapter suggest that shape aftereffects involve shape representa-

tions relatively late in the visual processing hierarchy. We can now ask whether these rep-

resentations are likely to involve a norm-based representation of aspect ratio, as has been

proposed (Regan & Hamstra, 1992; Suzuki, 2005). In the present chapter I test whether

adaptation to a particular aspect ratio induces renormalisation or local repulsion within

the aspect ratio domain.

In order to differentiate renormalisation from local repulsion, I used a spatial compari-

son method, with a bias-minimising forced-choice task, similar to that used in Chapter 6

(chronologically, the experiments reported in the present chapter were the last conducted

during my candidature). The pattern of perceptual changes associated with the adaptation

of late-stage shape representations was isolated by using a spatially-jittering adaptation

protocol. At the time of writing, the resulting manuscript is in press at the Journal of Exper-

imental Psychology: Human Perception and Performance (Storrs & Arnold, 2016).

66
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Shape adaptation exaggerates shape
differences

4.1 abstract

Adaptation to different visual properties can produce distinct patterns of percep-

tual aftereffect. Some, like those following adaptation to colour, seem to arise

from recalibrative processes. These are associated with a re-appraisal of which

physical input constitutes a normative value in the environment — in this case

what appears ’colourless’, and what ’colourful’. Recalibrative aftereffects can

arise from coding schemes in which inputs are referenced against malleable

norm values. Other aftereffects seem to arise from contrastive processes. These

exaggerate differences between the adaptor and other inputs, without changing

the adaptor’s appearance. There has been conjecture over which process best

describes adaptation-induced distortions of spatial vision, such as of apparent

shape or facial identity. In three experiments, we determined whether recali-

brative or contrastive processes underlie the shape aspect ratio aftereffect. We

found that adapting to a moderately elongated shape compressed the appear-

ance of narrower shapes and further elongated the appearance of more elon-

gated shapes (Experiment 1). Adaptation did not change the perceived aspect

ratio of the adaptor itself (Experiment 2), and adapting to a circle induced sim-

ilar bidirectional aftereffects on shapes narrower or wider than circular (Exper-

iment 3). Results could not be explained by adaptation to retinotopically local

edge orientation, or single linear dimensions of shapes. We conclude that as-

pect ratio aftereffects are determined by contrastive processes that can exagger-

ate differences between successive inputs, inconsistent with a norm-referenced

representation of aspect ratio. Adaptation might enhance the salience of novel

stimuli, rather than recalibrate our sense of what constitutes a ’normal’ shape.

4.2 introduction

Visual aftereffects along different sensory dimensions might involve qualitatively distinct

processes. Some appear to arise from recalibrative processes that reference the appearance

of inputs relative to malleable normative values (Anstis et al., 1998; Webster, 2011; Webster
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& Leonard, 2008). For instance, one might have the impression that a particular hue and

saturation is a neutral grey, and that all other combinations of hue and saturation are

colourful. One might then update one’s impression of what appears grey, thereby changing

the apparent colour of all points in colour space (Webster, 1996).

Other aftereffects appear to arise from contrastive processes that exaggerate differences

between adapting and other inputs. The tilt aftereffect (Gibson, 1937; Vernon, 1934), for

instance, is induced by prolonged exposure to a stimulus of a particular orientation. Af-

terwards, differences between this and other similar orientations tend to be exaggerated,

but the apparent orientation of the adaptor itself seems unchanged (Mitchell & Muir, 1976).

Similar ’locally repulsive’ aftereffects are found following adaptation to spatial frequency

(Blakemore & Sutton, 1969) or to a particular direction of motion (Clifford, 2002; Mather,

1980).

It has been suggested that shapes, faces, and other complex spatial stimuli are encoded

relative to perceptual norms (Freiwald, Tsao, & Livingstone, 2009; Kayaert, Biederman, Op

de Beeck, & Vogels, 2005; Leopold, Bondar, & Giese, 2006, 2001; Loffler et al., 2005; Panis

et al., 2010; Rhodes et al., 2005; Webster & Maclin, 1999). According to these proposals,

the appearance of complex forms can be distorted via adaptation-induced re-appraisals of

what constitutes a normative input (McKone et al., 2014; O’Neil, Mac, Rhodes, & Webster,

2014; Pond et al., 2013; Susilo et al., 2010; Webster & MacLeod, 2011; Webster & Maclin,

1999). For example, after adapting to an unusual face, ones impression of what constitutes

a normal face might be updated to more closely resemble the unusual face. This would

impact on the appearance of all faces. Both the adapting face and more ’extreme’ versions

of it, for instance, would appear more normal after adaptation (e.g. Susilo et al. (2010)).

While facial appearance is popularly thought to be subject to recalibrative perceptual after-

effects, there is some contention on this point, with some suggesting that these perceptual

distortions are better explained as contrastive aftereffects (Ross et al., 2013; Storrs, 2015b;

Storrs & Arnold, 2012, 2015b; Zhao et al., 2011). From a conceptual perspective, this would

mean that adaptation-induced distortions of complex form, such as facial appearance, are

qualitatively similar to distortions of attributes often described as low-level, such as spatial

frequency and orientation (Blakemore & Sutton, 1969; Mitchell & Muir, 1976). We therefore

felt it would be interesting to closely examine an intermediately-complex spatial attribute

— the aspect ratio of a two-dimensional shape.

The apparent aspect ratio of a shape can be distorted via adaptation. A circle can appear

vertically elongated after adapting to a horizontally-elongated ellipse, and can appear hori-

zontally elongated after adapting to a vertically-elongated ellipse (Köhler & Wallach, 1944;

Regan & Hamstra, 1992; Suzuki & Cavanagh, 1998). These changes in what looks ’circu-

lar’ could be explained by a recalibrative aftereffect, which updates one’s impression of

what constitutes a normal circular shape (Regan & Hamstra, 1992; Suzuki, 2005). They
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could be equally well explained by a contrastive aftereffect, which exaggerates aspect ratio

differences between the adapted and other shapes (Badcock et al. (2014); see Figure 1b-c).

Aspect ratio is an interesting case in which to test for recalibrative vs contrastive aftereffects,

for several reasons. First, the human visual system appears to have dedicated mechanisms

for encoding aspect ratio (Badcock et al., 2014; Nachmias, 2011; Regan & Hamstra, 1992;

Stankiewicz, 2002). Second, aspect ratio aftereffects likely arise from adaptation at a reason-

ably late stage of processing, as they reflect perceived differences between the adapted and

test values, as opposed to differences in the physical aspect ratios of retinal images (see

Chapter 3). Finally, several groups have proposed that aspect ratio mechanisms encode

shapes relative to a ’neutral’ norm corresponding to an apparent 1:1 aspect ratio Kayaert

et al., 2005; Regan and Hamstra, 1992; Suzuki, 2003, 2005; Suzuki and Rivest, 1998.

As adaptation to spatial patterns likely occurs at multiple levels of visual processing (Dhruv

& Carandini, 2014; Dickinson et al., 2010, 2012; Xu et al., 2008), and we wanted to investi-

gate shape-specific adaptation, it was important to mitigate, as far as possible, the effects

of adaptation in mechanisms encoding local contrast or orientation. For example, when

adapting and test shapes overlap, any observed effect could be strongly impacted by con-

tour repulsion or tilt aftereffects, likely produced in primary visual cortex rather than later

shape-specific stages of processing (Dragoi et al., 2000; Jin et al., 2005). To overcome this

we used an adapting stimulus that was intermittently re-positioned about the physical test

location, such that the external contours of the adaptor traced a symmetrical outline about

the test location (see Figure 3c). Moreover, we diminished the influence of pre-cortical

adaptation by adapting and testing with shapes rendered in dynamic white noise, which

had the same average luminance over time as the grey display background. With these

two precautions, adapting stimuli had no persistent luminance-defined contour that could

induce adaptation at the initial tightly-retinotopic stages of processing.

To distinguish between the possibilities that shape aspect-ratio aftereffects involve recalibra-

tive or contrastive processes we had observers adapt to moderately horizontally-elongated

ellipses, and examined the effect this had on the appearance of both more horizontally-

elongated shapes, and less elongated shapes (circles). If shape aftereffects involve the

recalibration of a norm for aspect ratio, both types of test should look less horizontally

elongated, and more vertically elongated, after adaptation. If shape aftereffects involve a

contrastive process, circular tests should look less horizontally elongated (i.e. vertically

elongated) whereas the horizontal elongation of more elongated tests should be further

exaggerated — that is, we should find opposite distortions for the two types of tests (see

Figure 1).
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Adaptor = 2:1

Elongated standard = 4:1

Circular standard = 1:1

(a) Stimuli in Experiment 1
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Figure 1. (a) Aspect ratios of adapting and standard test shapes used in the experiment. (b)
Schematic predictions for how the perceived aspect ratio of each Standard test should change after
adaptation, in a contrastive aspect ratio aftereffect, and (c) in a recalibrative aspect ratio aftereffect.

4.3 experiment 1 : aspect ratio adaptation

4.3.1 Method

4.3.1.1 Participants

Ten observers participated, comprising the two authors and eight additional experienced

psychophysical observers naı̈ve to the research hypotheses. Experiment 1 was approved by

the School of Psychology Ethics Committee at the University of Queensland.

4.3.1.2 Stimuli and apparatus

Stimuli were presented on either a 19” Samsung SyncMaster 950SL, a 19” Samsung Sync-

Master 950p+, or a 19” Dell Trinitron monitor, all set to a 1280 x 1024 pixel resolution and

a refresh rate of 75Hz. Stimuli were generated using the Psychophysics Toolbox for Matlab

(Brainard, 1997; Pelli, 1997). Participants viewed stimuli from a distance of 57cm, using a

chinrest to stabilise their heads.
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Stimuli were elliptical patches of dynamic white noise updated every 10ms, rendered on a

grey background. By defining stimuli using dynamic noise textures we minimise adapta-

tion in pre-cortical sites, and in those V1 neurons that act as linear luminance filters (Baker

& Mareschal, 2001). In runs of trials involving adaptation, the adapting stimulus had an

aspect ratio of 2 (i.e. a 2:1 width-to-height ratio). Two standard test stimuli were used: a

”Circular Standard” with an aspect ratio of 1, and an ”Elongated Standard” with an aspect

ratio of 4 (see Figure 1a). The area of adapting and test shapes was held constant at 14,400

pixels2 — approximately 7.8 square degrees of visual angle (dva). The Circular Standard

therefore subtended 2.8 (width) x 2.8 (height) dva, the Elongated Standard subtended 5.6 x

1.4 dva, and the Adaptor subtended 4.0 by 2.0 dva. Adapting and test stimuli were centred

4.6 dva above or below a central fixation cross, which subtended 0.5dva (see Figure 2).

Trial structure

+

Jittering adaptor 
(0 or 4 seconds)

+

ISI (300ms)

+

Standard test
interval (100ms)

+

ISI (300ms)

+

Jittering adaptor 
(0 or 4 seconds)

+

ISI (300ms)

Variable test 
interval (100ms)

+

“Was the non-identical pair
 presented in the first 
or second interval?”

Figure 2. Example trial structure. Adapting stimuli ’jittered,’ appearing at a different location every
100ms (see Figure 3 and main text for details), while test stimuli appeared in a fixed location. Both
adapting and test stimuli were rendered in white noise that updated every 10ms. The interval in
which the variable test stimulus appeared was randomly chosen on each trial.

The spatial location of the adapting stimulus jittered randomly within an allowable region

(see Figure 3). By ensuring no systematic retinotopic overlap between the contours of adapt-

ing and test shapes, location jitter minimises contributions from ’contour repulsion’ and tilt

adaptation, both of which can be driven by channels sensitive to second-order stimuli such
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as ours (Whitaker, McGraw, and Levi (1997) and Larsson, Landy, and Heeger (2006), respec-

tively). The spatial jitter was implemented by randomly selecting a new adaptor location

every 100ms, from within a vertically elongated ellipse with an aspect ratio (1:2) opposite

to that of the adaptor. The allowable adaptor region was equal in size to the adaptor, and

was centred on the test location (see Figure 3a). This resulted in the contours of adapting

stimuli tracing an approximately circular region across a block of trials, which importantly

had a 1:1 aspect ratio (with a width and height of 5.93 dva; see Figure 3c). Adaptors were

presented above fixation for five participants and below fixation for the other five.

(a) (b) (c)

5.9dva

5.6dva

5.9dva

1.6dva

1.4dva

2.8

Figure 3. Illustration of how adaptor positions were jittered. (a) Every 100ms during adaptation
the location of the centre of the adapting shape was resampled from within a vertically elongated
ellipse region (aspect ratio 1:2) centred on the test location. Dots depict a random sample of 200
possible adaptor locations. Locations were uniformly sampled in polar coordinates, with the result
that locations near the test location occurred more frequently than locations further away. (b) White
ellipses show the contours of a random sample of 40 adaptor locations, representative of the range
of adaptor locations seen by an observer during a four-second adaptation period (note that in the
experiment adaptors were rendered in dynamic white noise). (c) Using this sampling method, the
region within which adaptor edges could appear approximated a circular shape with a 1:1 aspect ratio
(shown as a solid white region). For reference, the outlines of the Circular (green) and Elongated
(blue) Standard test shapes are also shown. The sizes of each test shape, and the size and distance
from fixation of the adapted region, are indicated in degrees of visual angle (dva).

4.3.1.3 Procedure

Each participant completed one run of trials without adaptation, followed immediately by

a run of trials with adaptation. During adaptation runs the adapting shape was displayed

for four seconds at the start of each trial. Test stimuli were presented using a dual-pair task

(Kaplan, Macmillan, & Creelman, 1978; Rousseau & Ennis, 2001), in which four test stimuli

were presented in two sequential pairs (see Figure 2). On each trial three of the four stimuli

were of a standard test aspect ratio (either Circular or Elongated, selected pseudo-randomly

on each trial), while the fourth varied according to a method of constant stimuli (described

below). Each test pair was presented for 100ms. The variable test was always presented in
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the unadapted location, in an interval chosen randomly on each trial. There was a blank

inter-stimulus interval (ISI) of 300ms between each test pair, and between the adaptor and

tests.

The observer’s task was to indicate via a keypress whether the non-identical pair (i.e. the

pair containing the variable test) had appeared first or second. Observers were instructed

to pick the interval containing the larger difference, if both intervals appeared to contain

non-identical shapes. This is expected to be the case in many trials after adaptation, unless

the variable test shape exactly matches the adaptation-induced distortion of the standard

test shape. The point of subjective equality (PSE) between adapted and unadapted locations

occurs at the value for which the adaptation-induced distortion of the variable test compen-

sates for its physical difference from the Standard. Near this value, the adaptation-induced

difference between the physically identical standards appears larger than that between the

variable test and standard, and observers should respond systematically incorrectly. The

peak in the proportion of incorrect responses can therefore be taken as an estimate of the

observer’s PSE.

On each trial the standard test was pseudo-randomly selected to be of either the Circular

or Elongated Standard. The variable test was selected pseudo-randomly according to a

method of constant stimuli from one of seven aspect ratios, centred logarithmically about

the respective standard stimulus. For trials involving Circular Standards (aspect ratio 1),

variable tests were selected from aspect ratios of 0.59, 0.71, 0.84, 1.00, 1.19, 1.41, or 1.68. For

trials involving Elongated Standards (aspect ratio 4) tests were selected from aspect ratios

of 2.38, 2.83, 3.36, 4.00, 4.76, 5.66, or 6.73. Variable tests had the same area as standard tests

and the adaptor. Within a run of trials eight samples of each variable test aspect ratio were

presented for each of the two types of standard test, yielding a total of 112 trials.

4.3.2 Results

Trials involving Circular and Elongated Standard test stimuli were analysed separately. For

each, data were expressed as the proportion of trials on which the observer had incorrectly

reported on the order of the variable test interval. A Gaussian function was fitted to the

proportion of incorrect responses as a function of variable test aspect ratios. The peak of the

fitted function was taken as an estimate of the point of subjective equality (PSE) in terms of

aspect ratio between the adapted and unadapted locations. A proportional aftereffect score

was calculated by dividing the log(PSE estimate derived from adaptation runs of trials) by

the log(PSE estimate derived from baseline runs of trials).

After adapting to an aspect ratio of 2, Circular Standard stimuli were matched to more con-

tracted ellipses relative to baseline trials (mean proportional aftereffect -0.12 ±Standard Er-

ror of the Mean (SEM) 0.001; t9 = -9.08, p < .001; see Figure 4a). An oppositely-directioned
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aftereffect was observed for tests more elongated than the adaptor (0.12 ±0.03; t9 = 4.75, p

= .001). This bi-directional pattern of perceptual changes was found for each observer (see

Figure 4b).
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(b) Experiment 1: individual PSE shifts(a) Experiment 1: results
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Figure 4. (a) Mean proportional aftereffect on trials involving Circular (aspect ratio 1:1) and Elon-
gated (aspect ratio 4:1) Standard test stimuli. Error bars indicate ±1 standard error of the mean
(SEM). (b) The same data displayed as individual PSE shifts for each participant for each stan-
dard stimulus. The tail of each arrow indicates the baseline PSE estimated during trials involving
Circular (green) or Elongated (blue) Standard tests, and arrowheads indicate the corresponding post-
adaptation PSE estimate. The aspect ratio of the adapting stimulus is indicated by a red arrow. Note
that the abscissa is in log units. Authors’ data are indicated by asterisks.

These results demonstrate that the aspect ratio aftereffect manifests predominantly as a

contrast between successive shapes. If it is entirely mediated by contrastive mechanisms,

two additional results are predicted: first, when the test shape is identical to the adapting

shape, there should be no change in the appearance of the test. Alternatively, a contribution

from recalibrative processes predicts that the adapted aspect ratio will appear closer to

circular after adaptation (’renormalisation’). Experiment 2 tests this prediction. Second, in a

contrastive aftereffect, adapting to a 1:1 aspect ratio should induce bi-directional aftereffects

on test aspect ratios smaller or larger than 1:1. Recalibration predicts that adapting to a 1:1

shape should be uniquely ineffective in inducing aftereffects, since it is the norm for aspect

ratio perception under this hypothesis. Experiment 3 tests this prediction.

4.4 experiment 2 : testing for renormalisation of the adapted shape

4.4.1 Method

Details were as for Experiment 1, with the following exceptions.
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4.4.1.1 Participants

Ten observers participated, comprising the first author, four experienced psychophysical

observers naı̈ve to hypotheses, and five inexperienced observers recruited from the MRC

Cognition and Brain Sciences Unit volunteer panel, who were compensated with £9 for

their time. Experiments 2 and 3 were approved by the Cambridge Psychology Research

Ethics Committee.

4.4.1.2 Stimuli and apparatus

Stimuli were presented on a 17” Dell P791, set to a 1024x768 pixel resolution and a refresh

rate of 75Hz. In runs of trials involving adaptation, the adapting stimulus had an aspect

ratio of 2. Three standard test stimuli were used: a ”Narrower Standard” with an aspect

ratio of 1.5, an ”Identical Standard” with aspect ratio 2, and a ”Wider Standard” with

aspect ratio 2.67. Stimuli were centred 6.8 dva above or below a central fixation cross,

which subtended 0.7 dva. The area of adapting and test shapes was held constant at

28,800 pixels2 — approximately 33.3 dva2. The Narrower Standard therefore subtended

approximately 7.1 x 4.7 dva, the Identical Standard / Adaptor subtended 8.2 x 4.1 dva, and

the Wider Standard subtended 9.4 x 3.5 dva. Each pair of test stimuli was presented for

200ms.

4.4.1.3 Procedure

On each trial a standard test was pseudo-randomly selected from among the Narrower,

Identical, and Wider aspect ratios. The variable test was selected pseudo-randomly accord-

ing to a method of constant stimuli from one of seven aspect ratios, centred logarithmically

about the respective standard stimulus. For trials involving Narrower Standards, variable

tests were selected from aspect ratios of 1.06, 1.26, 1.40, 1.50, 1.61, 1.78, and 2.12. For trials

involving Identical Standards tests were selected from aspect ratios of 1.41, 1.68, 1.87, 2.00,

2.14, 2.38, and 2.83, and for trials involving Wider Standards tests were selected from aspect

ratios of 1.89, 2.42, 2.49, 2.67, 2.89, 3.17, and 3.77. Eight samples of each variable test aspect

ratio were presented for each Standard test within a run of trials, yielding a total of 168

trials. On runs of trials involving adaptation, the adapting stimulus was presented above

fixation for five participants and below fixation for the other five.

4.4.2 Results

Trials involving each of the three Standard test stimuli were analysed separately. After

adapting to an aspect ratio of 2, Narrower Standard stimuli were matched to more con-

tracted ellipses relative to baseline trials (proportional aftereffect -0.03 ±0.01, t9 = -3.64, p
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Figure 5. Mean proportional aftereffects in Experiment 2, following adaptation to an ellipse with
aspect ratio 2:1, for trials involving Standard test stimuli of a narrower (1.5:1), identical, or wider
(2.67:1) aspect ratio. Error bars indicate ±1 standard error of the mean (SEM).

= .005; see Figure 5). After adaptation, Wider Standards were matched to more elongated

ellipses relative to baseline (0.04 ±0.01, t9 = 3.47, p = .007). In the critical condition, in which

standard stimuli had the same aspect ratio as the adaptor, adaptation had no significant

effect on aspect ratio perception (-0.01 ±0.005, t9 = -1.43, p = .19).

Results suggest that aspect ratio aftereffects can be characterised as contrastive, exaggerat-

ing differences between adapting and test aspect ratios without changing the appearance

of the adapted aspect ratio. In Experiment 3, we test a final point of difference between

the contrastive and recalibrative hypotheses: whether adaptation to the putative norm (a

1:1 aspect ratio) induces aftereffects. In addition, we introduce a size change between the

adapting and test stimuli, to assess the possibility that observers are adapting to width or

height alone, rather than aspect ratio.

4.5 experiment 3 : effect of adapting to a 1 :1 aspect ratio

4.5.1 Method

Details were as for Experiment 2, with the following exceptions.

4.5.1.1 Participants

Fifteen observers participated, comprising the first author, two experienced psychophysical

observers naı̈ve to hypotheses, and twelve inexperienced paid observers.
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4.5.1.2 Stimuli and apparatus

Adapting shapes had an area of 14,400 pixels2 — approximately 16.6 dva2. Stimuli were

centred 6.8 dva above or below a central fixation cross, which subtended 0.7 dva. In runs

of trials involving adaptation, the adapting stimulus had an aspect ratio of 1 (i.e. circular),

and subtended 4.1 x 4.1 dva. Four standard test stimuli were used: ”small” and ”large”

narrower standards, with an aspect ratio of 0.8, and ”small” and ”large” wider standards,

with an aspect ratio of 1.25. The square root of the area of ”small” test stimuli was set

to 3
4 the square root area of the adaptor, and the square root area of ”large” test stimuli

was set to 4
3 the square root area of the adaptor (see Figure 6a). The spatial location

of the adapting stimulus jittered randomly within a circular region, such that, across a

block of trials, its contours inscribed a circle subtending 8.7 x 8.7 dva. Standard stimuli

subtended 2.7 x 3.4 dva (Small Narrower Standard), 3.4 x 2.7 dva (Small Wider Standard),

4.9 x 6.1 (Large Narrower Standard), or 6.1 x 4.9 dva (Large Wider Standard). Importantly,

small test stimuli were smaller in both width and height than adapting stimuli, while

large test stimuli were larger in both width and height than adaptors. Any aftereffect

induced by adaptation to uni-dimensional width or height should therefore distort the

aspect ratio of both Narrower and Wider standards in the same direction (within a size

condition), contrary to the predictions of a locally-repulsive aspect ratio aftereffect. For

example, if adapting to width, both narrower and wider Large Test stimuli should appear

more elongated in aspect ratio, since both have a larger width than the adaptor. Adaptors

were presented above fixation for eight participants and below fixation for the other seven.

4.5.1.3 Procedure

On each trial the variable test was presented with the same area as the Standard stimulus

selected for that trial. For trials involving Narrower Standards (aspect ratio 0.8), variable

tests were chosen from aspect ratios of 0.57, 0.67, 0.75, 0.80, 0.86, 0.95, or 1.13. For trials

involving Wider Standards (aspect ratio 1.25) tests were chosen from aspect ratios of 0.88,

1.05, 1.17, 1.25, 1.34, 1.49, or 1.77. A run of trials consisted of 224 trials.

4.5.1.4 Results

Trials involving each of the four Standard test stimuli were analysed separately. For large

test stimuli, after adapting to a circle, Narrower Standard stimuli were matched to more

contracted ellipses relative to baseline trials (proportional aftereffect -0.02 ±0.01, t14 = -2.38,

p = .032; see Figure 5b), and Wider Standards were matched to more elongated ellipses

relative to baseline (0.01 ±0.01, t14 = 2.93, p = .011). For small test stimuli, Narrower

Standards were matched to narrower ellipses than during baseline trials (-0.01 ±0.01, t14 =

-2.80, p = .014). Wider Standard stimuli were matched to slightly wider shapes than during

baseline, but this difference was not significant (0.01 ±0.01; t14 = 1.05, p = .313).
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Figure 6. (a) Left: aspect ratios of adapting and standard test shapes used in Experiment 2. Middle
and Right: schematic illustrations of stimulus displays, showing the relative sizes of adapting and
test stimuli in Small and Large test conditions in Experiment 2, respectively. The red circle indicates
the size of the adaptor, while the white disc indicates the region within which it could appear. Out-
lines of the Narrower (green) and Wider (blue) Standard tests are also shown. (b) Mean proportional
aftereffects in Experiment 2. Error bars indicate ±1 SEM.

4.6 general discussion

Our data imply that aspect ratio aftereffects arise from a contrastive process, which per-

ceptually exaggerates differences between adapting and test shapes. We are confident

that these data reflect a perceptual effect, as we have used a signal detection task (a two-

alternative forced-choice task, in which observers pick the interval containing non-identical

tests) in order to minimise the potential impact of decisional response bias. We are also con-

fident that these data cannot be accounted for by positional repulsion between contours, tilt

adaptation to local edges, or by adaptation to a single shape dimension (width or height).

We used stimuli rendered in dynamic white noise to minimise the contribution of process-

ing in pre-cortical and some V1 mechanisms (Baker & Mareschal, 2001), which adapt well
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to luminance-defined stimuli, but not dynamic white noise. Moreover, we minimised the

influence of tightly-retinotopic visual processes by using a novel ”jittering adaptor” display

(inspired by Baker and Meese (2012)), in which the adaptor’s external contours did not sys-

tematically overlap with those of the test stimuli. In Experiment 3 we also introduced a

size change, so that both the width and height of test stimuli were smaller or larger than

those of the adaptor. If observers adapted only to the width or height of the adaptor, both

narrower and wider test stimuli should be distorted in the same direction, within a size

condition. Instead, we found opposite aftereffects for narrower vs wider test shapes in the

Large Test condition (aftereffects in the Small Test condition did not reach significance).

Our observations are inconsistent with a norm-based representation of aspect ratio, in

which adaptation recalibrates the putative norm (Regan & Hamstra, 1992; Suzuki, 2003,

2005; Suzuki & Rivest, 1998). Norm-based aspect ratio coding predicts uni-directional re-

calibration after adapting to a non-normative aspect ratio, rather than the bi-directional

contrastive aftereffects we observed in Experiment 1. Additionally, it predicts perceptual

renormalisation of an adapted shape toward a neutral aspect ratio, which we did not ob-

serve in Experiment 2. Finally, norm-based aspect ratio encoding predicts no aftereffect

following adaptation to a 1:1 aspect ratio (the putative norm), whereas we found in Exper-

iment 3 that adapting to a circle exaggerates the aspect ratios of tests away from circular.

The present results suggest the existence of multiple aspect ratio channels, each tuned to a

different aspect ratio, which signal shape via the distribution of activity across the popula-

tion of channels (Badcock et al., 2014; Storrs & Arnold, 2012, 2015b; Webster & MacLeod,

2011). Similar encoding schemes underlie the perception of orientation and spatial fre-

quency (Blakemore & Campbell, 1969; Clifford et al., 2001; Goris, Putzeys, Wagemans, &

Wichmann, 2013; Pouget et al., 2000). Channels encoding aspect ratio are likely retino-

topically localised, as we were able to induce and measure spatially-contingent aftereffects.

However, the relevant channels must have broad spatial receptive fields, since a shape

jittering over approximately 6 degrees of visual angle was an effective adaptor.

Because our method measured differences in perceived aspect ratio between an adapted

an unadapted location, it would be insensitive to any retinotopically-global adaptation. It

therefore remains possible that there exists a location-tolerate stage of aspect ratio that

conforms to recalibration, although deconfounding such non-localised adaptation from

decisional bias is problematic (see e.g. Morgan (2014)).

4.6.1 Previous attempts to characterise the tuning of shape aftereffects

Regan and Hamstra (1992) were the first to propose a norm-based encoding of aspect ratio,

based on the observation that discrimination sensitivity is highest near a 1:1 aspect ratio

(the putative norm). They presented a model comprising two channels oppositely tuned
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to high and low aspect ratios. The responsiveness of both channels as a function of input

aspect ratio changed most steeply around an aspect ratio of 1:1, and thereby predicted

enhanced discrimination sensitivity about this value. This observation is, however, also

compatible with a multiple-channel code with an uneven distribution of channels along

the dimension of aspect ratio. Channels tuned to neutral aspect ratios might be more

numerous, and/or more narrowly tuned, than those preferring more extreme aspect ratios.

This would be analogous to the anisotropies found in orientation-tuned channels, that

are thought to underlie our superior discrimination ability about vertical and horizontal

relative to oblique orientations (Girshick et al., 2011; Li et al., 2003; Mannion, McDonald, &

Clifford, 2010; Storrs & Arnold, 2015a).

Badcock et al. (2014) recently communicated via a conference abstract that they had mea-

sured spatially-contingent aspect ratio aftereffects, and also concluded that aspect ratio

adaptation involves a local repulsion. They tested the influence of a range of adapting

shapes on a test stimulus with a fixed aspect ratio of 2:1, and found a classic locally-

repulsive aftereffect tuning with a minimum when adapting and test aspect ratios were

identical. However, in these experiments stimuli were defined by first-order luminance

information and the spatial overlap of adapting and test shapes was consistent. This left

open the possibility that the data in question reflected adaptation to local contours rather

than to shape aspect ratio. Our data show that locally-repulsive aftereffect tuning for shape

aspect ratio persists when this possibility is eliminated.

The only other previous attempt to assess the tuning of aspect ratio aftereffects, communi-

cated via an edited book chapter and a conference abstract (Suzuki, 2005; Suzuki & Rivest,

1998), found evidence of recalibration. However, those authors used extremely brief adap-

tation (150ms) and test (60ms) periods, making the results difficult to compare to those of

the present experiments.

4.6.2 What computations underlie global shape perception?

The precise nature of computations underlying global shape perception are, as yet, un-

clear. It is, however, entirely possible that these will involve the activity of channels with

retinally localised receptive fields that are attuned to different curvatures (Badcock et al.,

2014). Related experiments have revealed aftereffects induced by the curvature of shapes

which cannot be explained entirely by local tilt adaptation (Gheorghiu & Kingdom, 2007,

2008). These manifest as contrastive aftereffects, rather than as a recalibration of curvature

perception (Gheorghiu & Kingdom, 2007, 2008), and they have been successfully modelled

by adaptation within a multichannel code (Gheorghiu, Kingdom, Bell, & Gurnsey, 2011).

Our results might be mediated by the influence that sequential adaptation of such chan-

nels has on computations underlying global shape perception. Alternatively, the locus of
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adaptation might be more directly within channels that encode shape from broader reti-

nal expanses. In either case, our data suggest that the product of shape adaptation is a

contrastive aftereffect, rather than a renormalisation of shape perception.

4.6.3 Adaptation may enhance the salience of novel stimuli

Both multiple-channel and norm-based encoding schemes can predict improved discrimi-

nation sensitivity about adapted test values post adaptation, but these have not been found

reliably. For instance, after adaptation to spatial patterns, Clifford et al. (2001), Regan

and Beverley (1985) and Oruç and Barton (2011) reported enhanced performance in psy-

chophysical spatial discrimination tasks, whereas Barlow, Macleod, and Van Meeteren

(1976), Rhodes, Maloney, Turner, and Ewing (2007) and Westheimer and Gee (2002) re-

ported no such advantage.

An intriguing recent suggestion is that perceptual distortions created by contrastive after-

effects might be behaviourally useful even in the absence of improved discrimination in

a psychophysical task. According to this hypothesis, the perceptual distortions enhance

the salience of novel inputs (McDermott, Malkoc, Mulligan, & Webster, 2010; Ranganath

& Rainer, 2003). By perceptually exaggerating differences between the adapted environ-

ment and subsequent inputs, adaptation might ensure that scenes and objects that are

statistically unusual in the context of the recent past capture attention. Adaptation might

therefore rapidly and implicitly update our knowledge of which stimuli are typical in the

current context (e.g. Kayaert, Op de Beeck, and Wagemans (2011)), and provide a host of

behavioural advantages for atypical stimuli, such as faster and more accurate detection in

cluttered environments (Kompaniez-Dunigan, Abbey, Boone, & Webster, 2015; McDermott

et al., 2010; Wissig, Patterson, & Kohn, 2013). Our demonstration of a contrastive shape

aftereffect is entirely consistent with this conjecture.

4.6.4 Norms might not be the norm in spatial vision

The theory that the brain represents spatial patterns relative to perceptual norms has gained

traction over the past couple of decades (Freiwald et al., 2009; Kayaert et al., 2005; Leopold

et al., 2006, 2001; Loffler et al., 2005; Panis et al., 2010; Rhodes et al., 2005; Webster &

Maclin, 1999). Norm-based opponent-channel coding proposals have been particularly

prevalent in the face perception literature (Giese & Leopold, 2005; Leopold et al., 2001;

McKone et al., 2014; O’Neil et al., 2014; Pond et al., 2013; Rhodes et al., 2005; Susilo et

al., 2010; Webster & MacLeod, 2011; Webster & Maclin, 1999). There is, however, mount-

ing evidence questioning accounts of facial aftereffects that rely on norm-based encoding.

Specifically, several studies have found that facial aftereffect patterns are not well-described
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by opponent-channel based hypotheses, but can be better explained by multiple-channel

models (Ross et al., 2013; Storrs, 2015a; Storrs & Arnold, 2012, 2015b; Zhao et al., 2011).

The present data, and other recent results (Badcock et al., 2014), similarly suggest that a

norm-based opponent-channel hypothesis does not well explain shape aspect ratio after-

effects. Instead, our data suggest a continuity in spatial vision, such that adaptation to a

moderately complex spatial property (aspect ratio) creates a classical contrastive aftereffect

similar to those found for simpler spatial properties, such as spatial frequency (Blakemore

& Sutton, 1969), orientation (Mitchell & Muir, 1976), and curvature (Gheorghiu & Kingdom,

2008). This complements findings suggesting that adaptation to still more complicated spa-

tial properties, such as facial gender and identity (Ross et al., 2013; Storrs, 2015a; Storrs

& Arnold, 2012, 2015b; Zhao et al., 2011) also produce contrastive aftereffects. It would

seem, therefore, that local repulsion, rather than re-normalisation, might be the norm for

aftereffects in spatial vision. In all contexts aftereffects might serve to enhance the salience

of changes to the spatial properties of the environment, whether those properties signal

changes in objects, scenes or faces.
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C H A P T E R 5 : N O T A L L FA C E A F T E R E F F E C T S A R E E Q U A L

Having established that shape aftereffects are consistent with a multi-channel representa-

tion of aspect ratio in mid-level vision, I turn my attention in the last two chapters to the

neural representation of a far more complex class of stimuli — faces. As reviewed in Chap-

ter 1, several lines of evidence suggest that face aftereffects manifest as a renormalisation

within a perceptual ’face space,’ consistent with a norm-based representation of facial at-

tributes (Burton et al., 2015; Jeffery et al., 2010, 2011; Leopold et al., 2001; Loffler et al.,

2005; McKone et al., 2014; Pond et al., 2013; Rhodes & Jeffery, 2006; Rhodes et al., 2005;

Robbins et al., 2007; Susilo et al., 2010; Webster & Maclin, 1999). However, as was also

reviewed, there is some contention over the strength this evidence, and the discovery of

more conclusive data has been hindered by a reliance on binary classification tasks.

I therefore wanted to devise a new experimental paradigm that could more decisively test

whether face aftereffects manifest as a renormalisation or a local repulsion along partic-

ular facial attribute dimensions. In this chapter we show that a simple extension of the

standard binary-classification task to a ternary-classification task, combined with adapta-

tion to one of the category boundaries, generates qualitatively distinct predictions for the

two proposals. The new paradigm is validated using colour saturation aftereffects, before

being applied to facial distortion and facial gender aftereffects. The resulting manuscript

appeared in Vision Research (Storrs & Arnold, 2012).

The introduction to this chapter necessarily covers some of the same material as the Intro-

duction to the thesis in Chapter 1.

83
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Not all face aftereffects are equal

5.1 abstract

After prolonged exposure to a female face, faces that had previously seemed

androgynous are more likely to be judged as male. Similarly, after prolonged

exposure to a face with expanded features, faces that had previously seemed

normal are more likely to be judged as having contracted features. These facial

aftereffects have both been attributed to the impact of adaptation upon a norm-

based opponent code, akin to low-level analyses of colour. While a good deal of

evidence is consistent with this, some recent data are contradictory, motivating

a more rigorous test. In behaviourally matched tasks we compared the char-

acteristics of aftereffects generated by adapting to colour, to expanded or con-

tracted faces, and to male or female faces. In our experiments opponent coding

predicted that the appearance of the adapting image should change and that

adaptation should induce symmetric shifts of two category boundaries. This

combination of predictions was firmly supported for colour adaptation, some-

what supported for facial distortion aftereffects, but not supported for facial

gender aftereffects. Interestingly, the two face aftereffects we tested generated

different patterns of response shifts. Our data suggest that superficially similar

aftereffects can ensue from mechanisms that differ qualitatively, and therefore

that not all high-level categorical face aftereffects can be attributed to a common

coding strategy.

5.2 introduction

Just as judgements regarding simple visual attributes like orientation (Gibson & Radner,

1937) or motion (Adams, 1834) can be changed by prior exposure to an ’adapting’ stimulus,

our experience of more complex images can depend on what we have recently seen. High-

level categorical aftereffects were first reported for facial images that had been subjected to

a configural distortion. Exposure to a face with contracted features, for instance, tended

to make subsequent faces seem to have more expanded features (Webster & Maclin, 1999).

A large literature has subsequently developed on face aftereffects, demonstrating that they

not only impact apparent facial configuration, but also the apparent race (Webster et al.,
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2004), age (Schweinberger et al., 2010), gender (Rhodes et al., 2004), emotional expression

(Hsu & Young, 2010), gaze direction (Seyama & Nagayama, 2006), head direction (Fang &

He, 2005), and identity (Leopold et al., 2001) of a face.

Face aftereffects have often been attributed to the impact of adaptation upon a two-channel

norm-based opponent code (Anderson & Wilson, 2005; Leopold et al., 2001; Rhodes & Jef-

fery, 2006; Rhodes & Leopold, 2011; Rhodes et al., 2005; Susilo et al., 2010; Tsao & Freiwald,

2006). In a hypothetical two-channel opponent code, pools of neurons are arranged in com-

plementary pairs, with each pool responding maximally to stimuli at one extreme of the

encoded dimension, similar to the red-green and blue-yellow channels that exist at early

stages of colour coding (Derrington, Krauskopf, & Lennie, 1984; Hurvich & Jameson, 1957).

When both pools of opponent neurons are equally activated, the presence of a perceptual

mid-point can be signalled. For opponent colour coding this may correspond to an ’achro-

matic’ white or grey stimulus, which lies at the midpoints of both the blue-yellow and

red-green axes (Hurvich & Jameson, 1957; Webster, 1996). After prolonged exposure to a

stimulus coloured along one of these axes, one of the two opposing pools (the one that

was more responsive to the stimulus initially) can become less responsive1. Consequently

a more saturated colour along that axis will be needed induce an equivalent level of acti-

vation across the two pools of neurons. For example, after prolonged exposure to a red

stimulus, a stimulus that had previously looked grey can seem to have a greenish hue, and

one that had previously seemed reddish can seem grey.

It is thought that faces might be subject to a similar coding scheme, with facial appear-

ance being signalled by ratios of activity across multiple opponent mechanisms (Giese &

Leopold, 2005; Rhodes & Jeffery, 2006; Rhodes et al., 2005; Webster & MacLeod, 2011).

Adaptation to an individual face would disproportionately reduce activity in those chan-

nels that it most stimulated, causing faces that had previously seemed ’average’ to take

on an appearance ’opposite’ to that of the adaptor (see Figure 1a for an illustration of

adaptation in an opponent code).

An alternative strategy is to encode a stimulus property by the pattern of responses across

a population consisting of multiple channels. In a multichannel coding scheme, each chan-

nel is tuned to a different stimulus value, as in the case of the relatively narrowly-tuned

orientation-selective cells found in primary visual cortex (Hubel & Wiesel, 1962). When a

given channel is active it can be thought of as ’voting’ for the stimulus value for which it is

tuned. Perception might be determined by the average value signalled by active channels,

with the averaging process weighted by how active each channel is (Barlow & Hill, 1963;

Georgopoulos, Schwartz, & Kettner, 1986; Pouget et al., 2000).

1 Note that the neural adaptation that results in reduced responsiveness need not occur at the level of the
opponent mechanism, but rather within a preliminary cell. Colour adaptation occurs primarily within pho-
toreceptor cells, before information is passed to an opponent coding mechanism (Webster & MacLeod, 2011).
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In both coding schemes, it is proposed that adaptation reduces the responsiveness of a

subset of channels (e.g. Webster (2011)). In a multichannel code, this effect is maximal for

the channel(s) most responsive to the adapting stimulus, with progressively lesser effects

for channels tuned to progressively dissimilar stimulus values. Perceptual aftereffects can

then occur because the reduced responsiveness of channels tuned to values near the adaptor

can bias the population average toward values signalled by now disproportionately active

channels (see Figure 1b for an illustration of adaptation in a multichannel code).

5.2.1 Evidence for two-channel norm-based opponent coding

Since face aftereffects were first reported, much work has been done to evaluate which

coding scheme best accounts for the observations. Substantial evidence in favour of a

two-channel norm-based opponent scheme has been amassed. The first test of opponent

coding predictions was conducted in the initial report, using faces with different configural

distortions (Webster & Maclin, 1999). In an opponent code, unlike multichannel coding

schemes, there is a unique stimulus value at the equilibrium point between the two oppos-

ing channels, adaptation to which should not induce any aftereffect (Webster, 2011; Webster

& Leonard, 2008). Exposure to this stimulus value adapts both of the opposing channels

equally, and so does not result in a perceptual shift, which only ensues when the propor-

tional influence of the two channels for a given input is changed by adaptation. For example,

in colour perception there exists a unique hue and saturation, corresponding roughly to a

subjective ”white” or ”grey,” to which adaptation creates no perceptual aftereffect (Web-

ster, 1996; Webster & Leonard, 2008). Analogously, Webster and Maclin (1999) showed

that although adapting to various strengths of facial distortion all yielded an aftereffect,

no measurable perceptual changes ensued from adapting to a normal-looking undistorted

face.

Another crucial prediction of norm-based opponent coding is that aftereffects will tend to

bias appearance in a consistent direction along a stimulus dimension (given by a vector

that points from the adaptor to the unadapted norm value in the perceptual space), rather

than indiscriminately exaggerating any differences between successive stimuli (Benton &

Burgess, 2008; Leopold et al., 2001; Rhodes et al., 2005). Consistent with this prediction,

Leopold et al. (2001) showed that facial aftereffects were greater when tested along a dimen-

sion linking faces that could be described as computational opposites (in that they differed

from the average face in geometrically opposite ways), relative to a dimension linking

non-opposite faces. However, the non-opposite faces in that experiment were perceptually

more similar than the opposite faces, so smaller aftereffects might simply have reflected a

smaller contrast effect (Anderson & Wilson, 2005; Rhodes & Jeffery, 2006). Rhodes and Jef-

fery (2006) therefore performed a conceptually similar experiment, using test dimensions
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matched in terms of perceptual similarity, and still found that testing along a dimension

linking non-opposite pairs resulted in weaker aftereffects.

Further evidence for the opponent coding account of face aftereffects comes from changes

in the perceived normality or attractiveness of adapting faces (Rhodes, Jeffery, Watson,

Clifford, & Nakayama, 2003; Robbins et al., 2007; Webster & Maclin, 1999). In an opponent

code, adaptation shifts the equilibrium point (at which responses of the opposing channels

are in balance) toward the adapting stimulus. Because a balanced response signals the

presence of the perceptual mid-point along a given stimulus dimension, after prolonged

exposure a distorted face should look more normal than it did previously. Likewise, a

happy face should seem to have a more neutral expression, a male face should seem more

androgynous, and so on. Evidence for this has been found after adapting to configural

facial distortions, both for faces with expanded or contracted features (Maclin & Webster,

2001; Watson & Clifford, 2003; Webster & Maclin, 1999) and for faces with high- or low-set

eyes (Robbins et al., 2007).

5.2.2 Reasons to question the norm-based opponent coding account of face aftereffects

Although there are several observations that support an opponent coding explanation for

high-level categorical face aftereffects, there are also some observations that encourage

further investigation.

First, while a norm-based opponent coding scheme is thought to provide a good account

for facial identity aftereffects, including facial gender aftereffects, it is not considered a

general explanation for all aftereffects that involve faces (Susilo et al., 2010). Aftereffects

induced by the direction of eye gaze (Seyama & Nagayama, 2006) and head viewpoint

(Fang & He, 2005), for instance, seem to be better accounted for by a multichannel coding

scheme Calder et al., 2008; Lawson et al., 2011.

Recent measurements of aftereffect magnitude as a function of adaptor value have been

interpreted as inconsistent with opponent facial coding (Zhao et al., 2011). In an oppo-

nent code, provided that adapting and test stimuli lie along and within the confines of an

encoded dimension, aftereffect magnitudes will tend to scale with the difference between

the adapting image and the centre of the encoded dimension, and should not become mit-

igated for extreme differences (Jeffery et al., 2010, 2011; Robbins et al., 2007; Susilo et al.,

2010; Zhao et al., 2011).2 Multichannel coding schemes, however, predict that aftereffect

magnitudes should increase over a certain range of distances between adaptor and test,

and then decrease for larger distances. Facial configuration aftereffects have been reported

to increase monotonically for increasingly extreme adaptors (Robbins et al., 2007; Susilo

2 Note, however, that this suggestion is contingent on the two opponent channels either being maximally
responsive to inputs lying at the extremities of an encoded dimension, or having saturating responses that
do not diminish for extreme values.
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et al., 2010), consistent with the predictions of an opponent code. More recently, however,

it has been reported that facial gender aftereffects increase in magnitude up to a certain

point, and then decrease, consistent with the predictions of a multichannel code (Zhao et

al., 2011).

Finally, it is worth noting the recent proliferation of studies reporting high-level categorical

aftereffects for diverse non-face stimuli. Categorical aftereffects have been reported for

images depicting more and less cluttered landscapes (Greene & Oliva, 2010), for test arrays

linking images of disparate objects (such as a mushroom and a lightbulb, see Daelli et al.

(2010)), and for test arrays linking images of unnatural three-dimensional shapes (Daelli,

2011). While each of these aftereffects has been attributed to the influence of a norm-

based opponent coding scheme (Daelli, 2011; Daelli et al., 2010; Greene & Oliva, 2010), the

fact that such a diversity of aftereffects exists, coupled with the observation that not all

face aftereffects are well accounted for by an opponent coding scheme Calder et al., 2008;

Lawson et al., 2011; Zhao et al., 2011, suggests that there could be a diversity of causal

mechanisms underlying high-level categorical aftereffects.

5.2.3 A discriminant test for two-channel opponent vs multi-channel coding

Here we will propose a new protocol to test if a given categorical aftereffect primarily

reflects renormalisation within a two-channel opponent coding scheme, or a contrastive

aftereffect arising from a multichannel code. Schematic models of an opponent code and

a multichannel code are shown in Figure 1. The top left panel (a) depicts two unadapted

opponent channels, intersecting at the subjective neutral stimulus value (here a value of

zero). The top right panel (b) depicts an unadapted multichannel code consisting of mul-

tiple equally responsive channels each tuned to a different stimulus value. In both coding

schemes adaptation reduces channel responsiveness, as shown in the middle panels. Here

we have depicted the response profiles of (a) an opponent and (b) a multichannel code

before (pale dashed lines) and after (bold solid lines) adapting to a stimulus value slightly

offset from neutral (an arbitrary value of +20 units). Response profiles represent the mag-

nitude of expected channel responses (e.g. average firing rate) upon exposure to different

stimulus values. The reduction in responsiveness post-adaptation has been calculated as a

divisive change in response amplitude, proportional to the initial response of each channel

to the adapting stimulus value.

There are several types of perceptual judgement an observer can make about a stimulus.

For instance, an observer can be asked to perform a binary classification task, such as judg-

ing if a face looks male or female. This example could involve a single criterion separating

two categories — the point at which facial images look androgynous. Note, however, that a

criterion need not be placed in the middle of a stimulus range, nor be restricted to dividing
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(i) Neural code before adaptation 

(ii) Neural code after adaptation 

(iii) Ternary judgements after adaptation 

Figure 1. Graphic depiction of adaptation in (a) an opponent code, and (b) a multichannel code. The
top row (i) shows channel activity to different stimulus values before adaptation. The dark curves
in the second row (ii) show channel activity after adapting to a stimulus value of +20 (units are
arbitrary), as indicated by the red arrow. The faded, dashed curves show unadapted responses for
comparison. The bottom row shows perceptual judgements predicted by the neural codes above for
a three-category classification task, assuming a fixed set of decisional criteria. The dark curves in
row (iii) show the predicted likelihood of classifying each stimulus value as belonging to the lower
category (blue), as being neutral (black), or as belonging to the upper category (magenta) after
adapting to the stimulus value indicated by the red arrow. The faded, dashed curves represent the
same probabilities before adaptation. Note first that the upper and lower category boundaries (i.e.
their intersections with the middle curve) shift equally and symmetrically in an opponent code but
not a multichannel code. Note second that the classification of the adapting stimulus itself (at the
site of the red arrow) changes in an opponent but not a multichannel code.

the continuum into only two categories. In a ternary classification task, an observer could

decide if a facial image appears female, androgynous, or male. These judgments reflect

at least two criteria (see Allan (1975) and Ulrich (1987)): one for deciding that faces are

sufficiently feminine to be classified ”female,” and another for deciding that faces are suffi-

ciently masculine to be classified ”male”. ”Androgynous” judgments would indicate that

neither criterion had been met. While binary and ternary classification tasks differ in terms

of the number of categories participants are allowed to use, the two tasks may tap the same

number of subjective criteria. In a binary classification task, for instance, participants might

perform the task by deciding if a given face is sufficiently female-looking to be judged as

female, sufficiently male-looking to be judged as male, and if neither criterion is met (such

as when a face looks perfectly androgynous), they might simply guess at random.
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A binary classification task limits the experimenter to measuring shifts in a single category

boundary, centred on a neutral putative ’norm’ value (e.g. androgyny), while a ternary

tasks allows one to measure shifts in two category boundaries, neither centred on the

putative norm. Crucially, a norm-based opponent code predicts that adaptation to any non-

normative value will cause that stimulus to appear more neutral after adaptation, while a

multichannel code predicts that, for any adaptor value, the appearance of the adaptor

itself will not be changed during adaptation. To use orientation as an example: if an

observer adapts to a line of an arbitrary orientation and subsequently matches standard

lines to tests presented in an unadapted retinal location, a ’repulsive’ tilt aftereffect will

be observed for standards to either side of the adaptor, but there will be no change in

the apparent orientation of standards matched to the adaptor’s orientation (Mitchell &

Muir, 1976). This is not the case in an opponent code, where there is only one stimulus

value along a perceptual dimension which will remain unchanged after adaptation. For

example any adapted colour, other than grey or white, will tend to look less saturated after

adaptation (e.g. Webster and Mollon (1995)). Here, using ternary classification tasks, we

will develop a behaviourally matched protocol to test whether facial configuration, facial

gender and coloured aftereffects reflect similar computational processes.

5.2.4 Model predictions for ternary classifications

The bottom left panel in Figure 1 shows response probabilities for a range of inputs in

a ternary classification task, predicted from activity in an opponent code shown in the

panel above. The placement of the boundaries between the three categories will depend

on criteria. If the observer is unwilling to classify a colour as ”colourless,” or a face as

”androgynous,” there would be no separation of the upper and lower category boundaries.

Any willingness to classify inputs in the mid category will result in a lateral separation of

the lower and upper category boundaries. We have modelled this for opponent coding by

differentially weighting the upper and lower opponent channels when calculating response

probability curves, to reflect a critical ratio of activity which must be exceeded before an

upper or lower category response is made. This results in a lateral shift of the response

probability curves, here by ±20 (arbitrary units). We can then estimate a distribution for

mid-category classifications by taking the summed probability of lower and upper category

classifications at each stimulus value from 1 (solid black / dashed grey lines). The lower

and upper category boundaries are given by the intersection of the mid-category functions

and the lower (blue) and upper (pink) category classification functions. Note that this

scheme predicts a symmetric rightward shift of the lower and upper category boundaries

post-adaptation (solid bold lines compared to dashed pale lines), and a matched shift of

the perceptual midpoint (here given by the peak of the black/grey mid-category function).
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Note that because the adapting value is not at the equilibrium point, the appearance of the

adaptor itself will also change. After adaptation the adaptor is more likely to be placed in

the middle category than it was prior to adaptation.

We have also depicted response probabilities for a ternary classification task based on a

multichannel code (Figure 1, bottom right). Here the probability of making an upper cate-

gory response at each stimulus value is calculated as the total sum of activity in channels

tuned for stimulus values greater than +20, divided by activity summed across all active

channels (pink lines). The probability of a lower category response is given by the summed

response of active channels tuned to values less than -20, again divided by activity summed

across all active channels (blue lines). Mid-category responses are predicted by taking the

summed responses of the lower and upper category functions at each stimulus value from

1 (black/grey lines) and category boundaries are given by the intersection of this and the

other category functions. Note that this scheme also predicts a rightward shift of the per-

ceptual midpoint post-adaptation, but whereas the lower category boundary is similarly

shifted, the upper category boundary is unaffected. This is because the upper category

boundary lies at the adapted value, and within a multichannel code the appearance of the

adaptor itself is unchanged (Mitchell & Muir, 1976; Webster, 2011).

We have thus derived qualitatively different predictions for how ternary classifications

should be affected by adaptation based on a two-channel opponent code, compared to

a multichannel coding scheme. When adapting to a value corresponding to an upper cat-

egory boundary, adaptation within an opponent code should result in (a) altered adaptor

appearance, and (b) symmetrical shifts of the upper and lower category boundaries. In

contrast, adaptation within a multichannel code should result in (a) unchanged adaptor ap-

pearance, and (b) asymmetrical upper and lower categorical boundary shifts (with upper

category boundary shifts being minimal or non-existent). These predictions, and the con-

ceptual models upon which they are based, are in line with existing accounts of high-level

categorical aftereffects (e.g. (Calder et al., 2008; Lawson et al., 2011; Rhodes et al., 2005;

Robbins et al., 2007; Susilo et al., 2010; Webster & MacLeod, 2011). Different predictions

could be derived given different assumptions regarding the number, distribution and / or

structure of underlying channels, so the following experiments should be regarded as a

test of the validity of these specific proposals.

To test our predictions we had participants make ternary classifications for colour, facial

distortion, and facial gender. Participants judged stimuli as either belonging to a lower

category (cyan hue / contracted face / female face), to an upper category (magenta hue /

expanded face / male face), or as belonging to a mid-category (grey / undistorted face /

androgynous face). To ensure these conditions were behaviourally matched our protocol

involved a crucial initial procedure to identify unadapted category boundaries and percep-

tual midpoints. We then conducted targeted baselines, during which participants adapted

to the image at their perceptual midpoint, and finally had people adapt to an image near
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their upper category boundary. We measured the impact this had on (a) the appearance of

the adaptor, and (b) the placement of their two category boundaries.

5.3 method

5.3.1 Participants

There were six participants in each condition, comprising two of the authors and four

experienced psychophysical observers who were naı̈ve to the hypotheses of the experiment.

All participants conducted one run of baseline trials and one run of adaptation trials per

condition, except for the authors, who conducted two runs of baseline trials and two runs

of adaptation trials.

5.3.2 Stimuli

Stimuli were presented on a gamma-corrected 21” Samsung SyncMaster 1100p+ or on a 19”

Sony Trinitron Multiscan G420 monitor (resolution 1024 x 768 pixels and a refresh rate of

120Hz). Matlab software was used to drive ViSaGe stimulus generators from Cambridge

Research Systems. The white points for colour space calculations were set at CIE chromatic-

ity coordinates of x = 0.28, y = 0.29, Y = 60 cd/m2 and at x = 0.29, y = 0.34, Y = 66 cd/m2

respectively for the two monitors.

Example stimuli are shown in Figure 2a. In the colour condition we generated square

coloured patches of 100 different hues ranging from cyan, through grey, to magenta, from

which we selected a subset of 7 test stimuli (see below for details). For the facial gender con-

dition, we used Abrosoft FantaMorph software to create an array of 200 images, morphing

between a male and a female face. For the facial configuration condition, we applied the

spherize distortion filter in Adobe Photoshop (following Rhodes et al. (2003)) to a neutral-

expression female face to generate an array of 80 images, each with a different filter level

between -40 and +40. In all conditions the most extreme points in the test ranges were as-

signed values of -100% (cyan, expanded face, female face) or +100% (magenta, pinched face,

male face). These values corresponded to a position within each array, such that a value of

0% demarked the mid-point between the two categories (a grey patch, an undistorted face,

an androgynous face).

Except for the colour patches, all images were greyscale and equated for luminance using

the SHINE toolbox for Matlab (Willenbockel et al., 2010). Stimuli were presented with a

mean luminance of 66cd/m2 and shown against a black background. In order to reduce

the contribution of low-level aftereffects, test images were presented at a different size to

the adapting images. Adapting images subtended 2.94 degrees of visual angle (dva), and
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(a) 

(b) 

ADAPTOR  
5 seconds 

ISI  
500ms 

TEST  
500ms 

Response: 
Pinched, Normal, or 

Expanded? 

Figure 2. Stimuli and trial sequence. From top to bottom, (a) shows an example of a possible
test range in the colour, facial gender, and face configuration conditions. Images with black borders
indicate those closest to the peak of a Gaussian fitted to ”neutral” responses in each image range,
during a pre-test calibration run of trials (see main text for details). These then served as adaptors
during baseline runs of trials. Images with magenta borders indicate those close to the upper category
boundary, identified during the pre-test calibration. These served as adaptors during the adaptation
runs of trials. (b) Graphic depiction of a trial sequence.

test images subtended 2.1 dva, except for colour patches, which were all presented at the

smaller size. Participants viewed the images from a distance of 114cm with their head

restrained by a chinrest.

5.3.3 Pre-test procedure

Critical to our protocol was the use of ranges of test stimuli that were equated for each

participant, on each stimulus dimension, in terms of their subjective discriminability. Each

participant therefore conducted a pre-test calibration run of trials to estimate their sub-

jective neutral point and category boundaries within each stimulus range. These values

were used to create a tailored range of test images for that participant, along that stimulus

dimension, in the following manner.

For the colour condition, we first determined each participant’s equiluminant LM (red-

green) colour axis using a minimum motion technique (Anstis & Cavanagh, 1983). Based
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on this procedure, 9 colour levels spanning -50% to +50% of the range between the par-

ticipant’s subjectively isoluminant cyan and magenta values were selected as test stimuli

for the pre-test run of trials, and sampled 8 times each. In the face image conditions, 21

stimulus levels spanning -100% to +100% of the image ranges were sampled 6 times each.

In each trial, a pseudo-randomly selected image was displayed for 500ms, after which it

was replaced by a fixation cross until the participant responded, at which point the next

trial began. Participants were instructed to classify each stimulus as belonging to either

the upper category, the lower category, or the mid category. For example, in the colour

condition participants were asked to press the left mouse button if the square looked cyan,

the right if it looked magenta, and the middle button if it looked grey or white.

A Gaussian function was then fitted to the participant’s ”neutral” responses and, based

on the mean and spread of this function, seven images were selected from the full image

range to be used during subsequent experimental runs of trials. Specifically, the seven test

images were determined as those most closely matched to values for the mean, the mean

±0.4 x the full-width-at-half-height (FWHH) of the fitted function, the mean ±2.4 x FWHH,

and the mean ±4.4 x FWHH. Thus, although we did not attempt to physically equate the

varied range of test images across different experimental conditions, stimuli were carefully

equated in terms of their subjective discriminability.

5.3.4 Test procedure

The test procedure consisted of a baseline run of trials, during which participants adapted

to the middle image in their 7-image test range (their subjective neutral point), and an

adaptation run of trials during which they adapted to the fifth image in their range (mean

+ 0.4 x FWHH). Each trial commenced with an adapting image presentation, for 30 seconds

on the first trial and for 5 seconds on subsequent trials. Participants were instructed to

fixate the centre of adapting images throughout their presentation. After the adaptation

period there was a 500ms inter-stimulus-interval, during which a central fixation point was

presented, followed by a test image presentation of 500ms. Participants then completed a

ternary classification task. During a run of trials each of 7 test images was presented 20

times in a pseudo-random order according to the method of constant stimuli, yielding a

total of 140 individual trials.

Each run of trials provided a distribution of apparent image identity as a function of test

image value. Logistic functions were fitted to ”lower” and ”upper” category responses

using psignifit toolbox version 2.5.6 for Matlab (Wichmann & Hill, 2001), and 50% points

were taken as estimates of the two category boundaries, at which an image was equally

likely to be classified as belonging to that category, or to the mid category. A point of

subjective equality (PSE), which can be regarded as an estimate of the perceptual midpoint
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for the tested dimension, was estimated by taking the midpoint between the two category

boundaries. Aftereffect magnitudes were calculated by taking the difference between PSE

estimates from targeted baseline and adaptation runs of trials. Raw response data for each

participant in each condition are shown in Figure 3, along with fitted logistic and Gaussian

functions.

5.4 results

5.4.1 Aftereffects

As depicted in Figure 4, each of our experimental conditions generated a perceptual after-

effect, as indicated by differences in PSEs from targeted baseline and adaptation runs of

trials. In all cases average PSE values after adapting to a magenta coloured patch, to a

pinched face, or to a male face were shifted toward the adapted value relative to baseline

(Colour paired t5 = -7.00, p = .001; Facial distortion t5 = -5.27, p = .003; Facial gender t5 =

-3.11, p = .026).

5.4.2 Appearance of the adaptor

Grey bars in Figure 5 show the change in the proportion of trials that the adapting image

was judged as being in the mid-category after adaptation, relative to baseline. In the colour

condition the adaptor was rated as neutral more often after adaptation than before (mean

proportion of ”grey” responses pre-adaptation = 0.23, ±SEM 0.10; post-adaptation = 0.68

±0.09, paired t5 = -4.56, p = .006). This was also the case in the configural facial distortion

condition (mean proportion of ”undistorted” responses pre-adaptation = 0.40, ±0.12; post-

adaptation = 0.69 ±0.11, t5 = -9.10, p < .0001). However, facial gender adaptation did not

result in the adaptor being rated as androgynous more often relative to baseline (mean

proportion of ”androgynous” responses pre-adaptation = 0.16 ±0.07; post-adaptation =

0.13 ±0.05, t5 = 1.89, p = .118).

5.4.3 Category boundary shifts

Coloured bars in Figure 5 show shift estimates for lower (blue) and upper (magenta) cat-

egory boundaries. For colour, shifts in the upper and lower category boundaries were

matched in magnitude (repeated measures t5 = -0.58, p = .586). This was not the case for ei-

ther of the face conditions. For configural face adaptation the shift of the lower ”expanded”

face category boundary was smaller than the shift of the upper ”pinched” category bound-

ary (repeated measures t5 = -2.62, p = .047). In contrast, for facial gender adaptation, the
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(c) Face distortion 
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(b) Face gender 

Figure 3. Logistic and Gaussian curves fitted to the lower category (blue), neutral category (black)
and upper category (magenta) responses for each participant in the (a) colour, (b) facial gender, and
(c) facial distortion adaptation conditions. Dashed lines indicate responses before adaptation, and
solid lines indicate responses after adapting to stimulus 5 in the 7-stimulus test range. Authors’ data
are indicated by an asterisk. Summary plots at the bottom of each panel show aggregate responses,
with error bars showing ±1 SEM between individual responses, and grey columns indicating the
position of the adaptor.

shift of the lower ”female” category boundary was greater than the shift of the upper ”male”

category boundary (repeated measures t5 = 3.24, p = .023). Thus while category boundary
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Figure 4. Bar graph showing aftereffects in each condition. Aftereffect magnitudes are given by
taking the shift in PSE between baseline and adaptation conditions as a proportion of the total image
range. Error bars show ±1 SEM between individual PSE shift estimates in each condition.

shifts after colour adaptation were symmetrical, boundary shifts after face adaptation were

asymmetric.

5.5 discussion

We have used behaviourally matched tasks to compare perceptual aftereffects resulting

from colour adaptation, from exposure to expanded or contracted faces, and from expo-

sure to male or female faces. In our protocol adaptation within a two-channel opponent

coding scheme predicted that the adapting image should appear more neutral after adap-

tation, and that shifts of the lower and upper category boundaries should be equal. This

combination of predictions was confirmed for colour adaptation, and was broadly consis-

tent with the impact of adaptation on distorted facial images. However, results for facial

gender adaptation were qualitatively different, in that there was no change in the appear-

ance of the adaptor, and shifts of the two category boundaries were asymmetric. In our

protocol, this pattern of results matched the predictions for an aftereffect mediated via a

multichannel coding strategy (see Figure 1b for a graphic depiction).

Results from adapting to distorted facial images were broadly consistent with opponent

coding predictions, in that the adapting image was more often rated as ’normal’ after adap-

tation, and although shifts of the upper and lower category boundaries were asymmetric,

both shifted in the direction predicted by opponent coding. It is interesting to note that the

’normalisation’ effect evident in these data, (i.e. a change in the appearance of the adapted
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(a) Colour 

(b) Face gender 

(c) Face distortion 

 * 

 * 

Figure 5. Three panels showing the proportional shift in lower (blue vertically striped bars) and
upper (magenta horizontally striped bars) category boundaries, as well as the change in the propor-
tion of adaptor images which were classified as ’neutral’ after adaptation, relative to during baseline
(grey solid bars), for (a) colour, (b) facial gender, (c) and facial configuration. Error bars show ±1
SEM between individual measurements.

image) has only previously been reported after adaptation to configurally distorted facial

images (Rhodes et al., 2003; Robbins et al., 2007; Webster & Maclin, 1999). Our data thus

replicate these previous findings, but suggest that the same normalisation effect does not

happen after adaptation to facial gender.
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One potential concern is that the diversity of results we have obtained was caused not

by a diversity of underlying mechanisms, but by a failure to adequately match stimuli

either in terms of their subjective discriminability, or in terms of adaptation magnitude. An

inspection of individual and summary data plots in Figures 3 and 4 reveals that our stimuli

were in fact well matched in terms of discriminability. For instance, in all three conditions

the adaptor (stimulus 5, highlighted with a grey shaded column) was somewhat ambiguous

during baseline trials, ensuring that our protocol was sensitive to even slight changes in

the adaptor’s appearance and avoided ceiling effects. Other test values along baseline

discriminant functions were similarly well matched across different stimulus conditions.

Our protocol does not equate the magnitudes of adaptation that might occur in different

contexts, but this does not pose a problem for our paradigm. The strength of our protocol

is that it predicts different patterns of aftereffect, rather than different magnitudes. Note that

in all conditions a robust aftereffect was generated by the adapting stimulus (see Figure 4).

In two conditions this was accompanied by shifts in each of the two category boundaries, as

predicted by our opponent coding model. For colour these shifts were symmetric, precisely

as predicted by opponent coding, whereas for facial configuration they were asymmetric

(see following paragraph for further discussion of this result). For facial gender there was

a shift of the lower category boundary, but not of the upper — just as predicted by our

multichannel code. Larger aftereffect magnitudes should only exaggerate these qualitative

differences, whereas smaller aftereffects could eliminate them. This does not appear to be a

problem in our experiments, as measurable aftereffects occurred in all conditions, indexed

by a shift in the stimulus that appeared most neutral in all three conditions. One could

argue that all aftereffects were in fact driven by an opponent code, and that any asymmetry

was due to measurement error. We think this is unlikely, due to the marked asymmetry

between the lower and upper category boundary shifts for facial gender (see Figure 5b).

5.5.1 Adaptation of a sensory code, or decisional criterion shifts?

The predictions we derived for a two-channel opponent coding strategy, and for a multi-

channel code, assume a direct mapping between a sensory code and perceptual decisions

(see Figure 1, also see Calder et al. (2008), Leopold et al. (2001), Rhodes et al. (2005), Susilo

et al. (2010)). Perceptual aftereffects predicted on this basis are presumed to have been

caused by changes to a sensory code (Seriès et al., 2009). However, subjectively similar

perceptual experiences, and consequent datasets, could ensue from an unchanged sensory

code if decisional criteria were modified instead.

In order to classify an image, an observer must apply decisional criteria. For example, in

our facial distortion condition participants had to apply criteria to decide wither facial im-

ages should be classified as expanded, contracted, or undistorted. If the sensory evidence
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exceeded the ”expanded” criterion threshold, the stimulus would be classified as expanded.

Alternatively, if sensory evidence exceeded the ”contracted” threshold, the opposite classi-

fication would be made. The placement of these two criteria need not be bound; one could

be altered independent of the other. Yarrow et al. (2011) recently made a similar point with

respect to timing judgments, suggesting that repeated exposure to particular temporal re-

lationships might independently alter the placement of multiple threshold criteria. Thus

even if the sensory information available for decision making is unchanged, a perceptual

aftereffect could ensue from either selectively, or disproportionately, changing just one of

two decision-making criteria (Yarrow et al., 2011). In this case, after prolonged exposure to

a slightly contracted face the criterion for judging subsequent faces as contracted might be

relaxed, resulting in slightly contracted faces being classified as more normal than they had

been prior to adaptation. The criterion for judging faces as expanded, however, might be

relatively unchanged. This would result in the shifted and expanded distribution of ”undis-

torted” judgments post-adaptation which we observed, rather than the simple lateral shift

predicted by opponent coding.

We would like to emphasise that shifts in decisional criteria could not be differentiated

from adaptation of a sensory code on the basis of subjective experience. Criteria must

underlie perceptual decision processes at all stages of coding. Many of these processes are

likely to be rapid and unconscious, meaning that changes to the sensory code would be

subjectively indistinguishable from changes to decisional criteria. At this point we think it

is somewhat ambiguous as to what extent face aftereffects reflect sensory coding changes,

or altered decisional criteria.

5.5.2 Adaptation of a sensory code, or a perceptual contrast effect?

A final point we would like to make is that although we have found that facial gender af-

tereffects can successfully be predicted by a multichannel population based coding scheme,

this does not dictate that these effects necessarily ensue from sensory adaptation. The

tuning of the tilt aftereffect can successfully be modelled on the basis of a similar coding

strategy, but so too can the tilt illusion (Clifford et al., 2000; Schwartz et al., 2009). The tilt

illusion can occur when a central vertical test is surrounded by an annulus containing an

oblique orientation. The central stimulus typically appears tilted away from the orientation

of the annulus (Gibson & Radner, 1937). The tilt illusion is better conceptualised as a con-

trast effect, as opposed to an adaptation effect, as it occurs for simultaneously presented

tests and annuli. Moreover, it can happen for very briefly presented stimuli (Westheimer,

1990).

The general implication of the preceding point is that competitive interactions between

clearly distinct inputs can both shape perception and be well described by the dynamics of
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a multichannel coding scheme (Clifford et al., 2000; Webster, 2011). The specific implication

for high-level categorical aftereffects is that some of these might ensue due to a contrast

effect between successive images, as opposed to an renormalisation process that recalibrates

a neural code. The fact that some aftereffects can ensue after very brief ’adaptation’ periods

(of just 1 second: see Leopold, Rhodes, Muller, and Jeffery (2005) and Rhodes, Jeffery,

Clifford, and Leopold (2007)) encourages us to entertain this possibility.

5.5.3 Conclusion

We have presented a novel psychophysical protocol, and demonstrated that it is capable

of revealing qualitative differences between apparently similar visual aftereffects. While

colour aftereffects met the predictions of a two-channel opponent code, face gender af-

tereffects were better predicted by a multichannel coding strategy and facial distortion

aftereffects could only be said to be broadly consistent with opponent coding. These data

suggest that high-level categorical aftereffects are diverse in nature and may be caused by

computational processes that differ qualitatively.
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C H A P T E R 6 : FA C E A F T E R E F F E C T S I N V O LV E L O C A L R E P U L S I O N ,

N O T R E N O R M A L I S AT I O N

The previous chapter presented a novel ternary-classification paradigm that makes distinct

predictions for renormalising vs locally repulsive aftereffects, unlike the more commonly-

used binary classification task. Resulting data suggested that facial gender aftereffects

are better described as locally repulsive perceptual aftereffects, whereas facial distortion

aftereffects may be better described as renormalising ones. However, this interpretation

assumes that changes in classification behaviour between baseline and adaptation trials

arise from changes to perceptual encoding, rather than changes to decision-level criteria.

This is not unique to our paradigm, but is a general weakness of method-of-single-stimulus

classification tasks (Gescheider, Herman, & Phillips, 1970; Green & Swets, 1966; Morgan,

Melmoth, & Solomon, 2013; Morgan et al., 2012; Storrs, 2015a; Yarrow et al., 2011).

In this final chapter, I present a second novel paradigm, which leverages the spatial-contingency

of face aftereffects to compare appearance between standard and test faces presented in two

differently-adapted retinal locations. By interleaving multiple standard stimuli in a forced-

choice task we are able to measure perceptual aftereffects with as little influence from

decision-level biases as is reasonable in psychophysics. The method has the additional ad-

vantage that by selecting any standard stimulus, the aftereffect can be measured at any test

point in which the experimenter is interested. The resulting manuscript appeared in the

Journal of Vision (Storrs & Arnold, 2015b).

This chapter again necessarily covers some of the same material as the preceding Chapter

5, and the Introduction to the thesis in Chapter 1 — I apologise for the repetition.

102



6.1 abstract 103

Face aftereffects involve local repulsion,
not renormalisation

6.1 abstract

After looking at a photograph of someone for a protracted period (adaptation),

a previously neutral-looking face can take on an ’opposite’ appearance in terms

of gender, identity, and other attributes — but what happens to the appearance

of other faces? Face aftereffects have repeatedly been ascribed to perceptual

re-normalisation. Renormalisation predicts that the adapting face and more ex-

treme versions of it should appear more neutral after adaptation (e.g. if the

adaptor was male, it and hyper-masculine faces should look more feminine).

Other aftereffects, such as tilt and spatial frequency, are locally-repulsive, exag-

gerating differences between adapting and test stimuli. This predicts that the

adapting face should be little-changed in appearance after adaptation, while

more extreme versions of it should look even more extreme (e.g. if the adap-

tor was male, it should look unchanged, while hyper-masculine faces should

look even more masculine). Existing reports do not provide clear evidence for

either pattern. We overcame this by using a spatial comparison task to mea-

sure the appearance of stimuli presented in differently-adapted retinal locations.

In behaviourally-matched experiments we compared aftereffect patterns after

adapting to tilt, facial identity, and facial gender. In all three experiments data

matched the predictions of a locally-repulsive, but not a renormalising, afteref-

fect. These data are consistent with the existence of similar encoding strategies

for tilt, facial identity, and facial gender.

6.2 introduction

After looking at a photograph of someone, a previously neutral-looking face can take on an

’opposite’ appearance in terms of its gender (Rhodes et al., 2004; Webster et al., 2004), iden-

tity (Leopold et al., 2001), emotional expression (Hsu & Young, 2010), ethnicity (Webster et

al., 2004), age (Schweinberger et al., 2010), eye gaze and head direction (Calder et al., 2008;

Fang & He, 2005; Lawson et al., 2011). It is less clear how non-neutral faces are affected.
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For example, does the appearance of the adapting face change during adaptation? Would

a caricatured version of the original identity look more or less caricatured after adaptation?

The answer to these questions may yield insights into how faces are represented neurally.

Face aftereffects have repeatedly been attributed to a form of perceptual re-normalisation

(Burton et al., 2015; Jeffery et al., 2010, 2011; Leopold et al., 2001; McKone et al., 2014;

Pond et al., 2013; Rhodes & Jeffery, 2006; Rhodes et al., 2005; Robbins et al., 2007; Susilo

et al., 2010; Webster & Maclin, 1999). According to this account, faces are represented

in terms of how they differ from a perceptual norm. The perceptual norm is constantly

updated according to recent experience to minimise differences between the norm and the

prevailing average stimulus in the environment (Rhodes & Jeffery, 2006; Rhodes et al., 2005;

Webster et al., 2004). This process can change the appearance of a given face by increasing

or decreasing its distance from the norm, explaining the face aftereffect.

The perceptual renormalisation hypothesis predicts that as the norm is updated to lie closer

to the adaptor, the adapting face should appear more ’neutral’. More ’extreme’ versions

of the adaptor should also look more neutral after adaptation, as the distance between

these and the updated norm, relative to the unadapted norm, is also decreased. Previ-

ously neutral-looking faces should take on an appearance ’opposite’ to the adaptor, as the

distance between these and the updated norm will be increased relative to the unadapted

norm (Robbins et al., 2007; Webster & MacLeod, 2011; Webster & Maclin, 1999). This pat-

tern constitutes a uni-directional aftereffect, in which the appearance of all stimuli is shifted

in the same direction to re-centre around an updated norm (see Figure 1b).

Adaptation to simple spatial patterns, like lines and shapes, instead results in a bi-directional

’locally-repulsive’ pattern of aftereffects (see Figure 1c). In the tilt aftereffect (Gibson & Rad-

ner, 1937; Vernon, 1934) adaptation to any oriented stimulus can exaggerate differences in

orientation between adapting and test stimuli in both directions (Mitchell & Muir, 1976),

with little change in the appearance of the adapted orientation itself (Köhler & Wallach,

1944; Mitchell & Muir, 1976; Storrs & Arnold, 2015a). Locally-repulsive aftereffects have

also been reported following adaptation to spatial frequency (Blakemore et al., 1970) and

aspect-ratio (Badcock et al., 2014). If face aftereffects follow a similar locally-repulsive

pattern, the appearance of the adapting face should be unchanged by adaptation, while

differences between the adaptor and subsequent test faces should be exaggerated. Taking

facial gender as an example, a locally-repulsive aftereffect uniquely predicts that adapting

to a masculine face should make less masculine faces seem more feminine and more mas-

culine faces seem more masculine (Robbins et al., 2007; Storrs & Arnold, 2012; Webster,

2011; Zhao & Chubb, 2001). As yet, it is unclear whether face aftereffects follow the pattern

predicted by renormalisation, or that predicted by local-repulsion.



6.2 introduction 105

Re-normalisation:

Local repulsion:

feminine facesmasculine faces average face

Adapt to male face

Perceived gender before adaptation:

Aftereffect (change in perceived gender at each test face):

Perceived gender after adaptation:

(a)

(b)

(c)

Figure 1. A depiction of how a re-normalising and a locally-repulsive aftereffect might manifest along
a dimension of facial gender. (a) A physical stimulus continuum, which ranges from caricatured
male faces, through the gender-average face, to caricatured female faces. Prior to adaptation, the
observer perceives a different strength of masculinity (blue) or femininity (red) in each face. (b)
According to the re-normalisation account, facial gender is represented in terms of how each face
differs from a perceptually gender-neutral norm (indicated by white circle). After adapting to a
male face, the gender-neutral norm is recalibrated to lie closer to the adapting face, and all other
faces in the encoded range change in appearance in the same direction. (c) If the facial gender
aftereffect follows a locally-repulsive pattern, then after adapting to a male face, there should be no
change in the appearance of the adapting face, but the differences between adapting and test faces
should be exaggerated. Faces that had previously appeared more masculine than the adaptor should
be exaggerated in their masculinity, while faces that had appeared less masculine than the adaptor
should appear more neutral or feminine than they had previously. Note that the two proposals
predict similar perceptual changes for faces more neutral than the adapting face, but make different
predictions for the adapting face itself and for more extreme versions of the adapting face.

6.2.1 Evidence that face aftereffects result from renormalisation is ambiguous

The method most often used to quantify face aftereffects a single stimulus binary-classification

task, has limitations that make it difficult to determine what precise pattern a given after-

effect follows. On each trial in such an experiment, a participant is shown a single test

stimulus, usually selected from a continuum (e.g. a morph of facial genders, from mascu-

line to feminine). The participant is then asked to classify the test as belonging to one of

two categories (e.g. ”male” or ”female”). An estimate of the point along the continuum at

which classifications switch from being predominantly of one category to predominantly
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the other is taken as an estimate of the observer’s category boundary. A shift in this bound-

ary after adaptation is taken as a measure of the perceptual aftereffect.

This method has two weaknesses. The first is that a shift in the category boundary is

equally consistent with either a change in the appearance of stimuli, or with a change in

criteria used to apply category labels (Gescheider et al., 1970; Green & Swets, 1966; Morgan,

2014; Morgan et al., 2013; Morgan et al., 2012; Storrs, 2015a; Yarrow et al., 2011). A second

weakness is that binary classifications tend only to be sensitive to changes in the appearance

of stimuli near a category boundary. Here, a small change in appearance can produce a

large change in categorisation behaviour. For stimuli far away from the boundary, however,

even a large perceptual change might be insufficient to change how stimuli are categorised.

A very masculine-looking face, for instance, might be made to look less masculine, but still

look sufficiently male to be so categorised.

Unfortunately the subjective appearance of stimuli near a category boundary, as measured

in a standard binary-classification task, is usually unhelpful in differentiating renormalising

from locally-repulsive aftereffects. After adapting to a non-neutral stimulus, both proposals

predict a shift in the appearance of neutral stimuli away from the adapted value (see Figure

1). Also problematic is that after adapting to a neutral stimulus neither proposal predicts a

shift in the appearance of that stimulus.

It has been suggested that renormalising and locally-repulsive aftereffects can be disso-

ciated by determining aftereffect magnitudes at the category boundary as a function of

increasingly non-neutral adapting stimuli (Jeffery et al., 2010, 2011; McKone et al., 2014;

Pond et al., 2013; Zhao et al., 2011). The rationale is that, if an aftereffect entails a local re-

pulsion, then the aftereffect for stimuli near the category boundary might initially increase,

but should then diminish as the distance between adapting and test stimuli exceeds the

limited range of the local repulsion. On the other hand, if an aftereffect involves renor-

malisation of the whole perceptual dimension toward the adapting stimulus, the extent of

recalibration should only increase for more extreme adaptors. There is, however, an impor-

tant caveat that prevents this protocol from being diagnostic. Facial dimensions are thought

to be finite, so increasingly non-neutral stimuli will eventually escape the confines of the

dimension, and begin to look unnatural. An increasingly male-looking face, for instance,

might begin to look non-human — ogre-ish. A gradual increase, and eventual reduction,

in aftereffect magnitude for increasingly non-neutral adaptors (now repeatedly reported,

see McKone et al. (2014), Zhao et al. (2011)), is therefore equally consistent with either a

locally repulsive aftereffect, or with a renormalisation process that is not strongly activated

by unrealistic faces (Pond et al., 2013).
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6.2.2 A novel spatial-comparison task

To test the renormalisation and local-repulsion hypotheses, one needs a task for which

these aftereffect patterns make distinct predictions. In a previous report (Storrs & Arnold,

2012), we showed that by using a three-category classification task (e.g. ”male, androgy-

nous, or female?”), and adapting to one of the two category boundaries, one can measure an

aftereffect at a particularly diagnostic point: the adapted value itself. A renormalising after-

effect will result in a previously non-neutral adaptor looking more neutral after adaptation,

while a locally-repulsive aftereffect predicts no change in the adaptor’s appearance. For

facial gender adaptation, we found no change in how the adapted value was categorised,

consistent with a locally-repulsive aftereffect. After adapting to a configurally distorted

face, however, there was an increased tendency to place the adaptor in the ”undistorted”

category, consistent with renormalisation. While this suggested multiple facial encoding

strategies, caution must be exercised when interpreting these data, due to the subjective na-

ture of the categorical tasks on which the protocol depended. In the following experiments

we adopt another protocol that allows one to measure aftereffects at any point along a test

continuum, and to avoid relying on subjective categorical decisions.

Our protocol makes use of two characteristics of face aftereffects. First, face aftereffects

are strongest when adapting and test stimuli are matched in retinal position (Afraz & Ca-

vanagh, 2009; Afraz & Cavanagh, 2008) although some tolerance is displayed to positional

variance, (Yamashita, Hardy, De Valois, & Webster, 2005; Zhao & Chubb, 2001). Second,

when different adaptors are shown simultaneously in different retinal locations, distinct

spatially-contingent aftereffects can ensue (Afraz & Cavanagh, 2008). This allows for a

powerful psychophysical method: a spatial comparison task. One can present a standard

test stimulus in one location, and find which stimulus value in a second location appears

to match it (Elliott et al., 2011; Farell & Pelli, 1999; Jakel & Wichmann, 2006; Kompaniez,

Abbey, Boone, & Webster, 2013). At baseline, perceptually-matched stimuli are likely also

to be physically matched (for an exception, see Afraz, Pashkam, and Cavanagh (2010)).

If adaptation impacts perception, a standard stimulus presented in an adapted location

should appear to match a physically different stimulus presented in an unadapted location.

Aftereffect magnitudes can therefore be calculated as the difference between matches to the

same standard stimulus pre- and post-adaptation.

In the experiments reported here, we use a forced-choice ’double-pair task’ (Kaplan et al.,

1978; Rousseau & Ennis, 2001). Two pairs of peripheral stimuli are shown at test. One

contains an identical pair of standard stimuli, whereas the other contains one standard and

a test that differs from the standard by a variable amount. Participants are asked to indicate

which interval contains the identical pair. If the proportion of times that a participant selects

the incorrect interval is plotted as a function of the test value, one should find a bell-shaped
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distribution peaking at the value that perceptually matches the standard. The magnitude

of any aftereffect is signalled by the shift of this peak, from pre- to post-adaptation.

Rather than compare appearance between an adapted and an unadapted location, we in-

stead adopt a double-adaptor paradigm, comparing appearance between two differently

adapted locations. We do this for two reasons. First, previous research suggests adapta-

tion to a single peripheral facial image can affect classifications of spatially distant tests,

so it may be difficult to find a measurable difference between ’adapted’ and ’unadapted’

locations (Afraz & Cavanagh, 2008). In the same study, however, spatially-contingent after-

effects were induced when multiple adaptors were presented, highlighting the possibility

of differentially adapting different locations. Second, using two adaptors minimises the

potential that asymmetric spatial attention might bias subsequent perceptual decisions. If

there were just one adaptor, people might attend more to stimuli in that location (attention

has been shown to modulate face aftereffects measured via a binary classification task —

Rhodes, Jeffery, Evangelista, Ewing, and Peters (2011)), or be tempted to compare stimuli

to the single adaptor. With two adaptors, spatial attention is more likely balanced, and it

becomes harder to compare the four test images to the two different adaptors.

If face aftereffects reflect a renormalisation of all stimuli about a new neutral point (Rhodes

et al., 2005; Webster & Maclin, 1999), aftereffects measured at different positions along a

test continuum will tend to be constant (see Figure 2d-f). As we will be measuring the

relative aftereffect induced between two differently-adapted locations at different standard

test values, re-normalisation predicts a constant magnitude of relative aftereffect for all test

values, equal to the difference between the aftereffects induced in each location. If, on

the other hand, face aftereffects involve local repulsion, we should find that the relative

aftereffect is largest for standard test values midway between the two adaptors (see Figure

2a-c). Such tests should be ’pushed’ in opposite directions by opposite local repulsions,

whereas aftereffects measured at either of the adapted values should be smaller, as they

will reflect the influence of just one adaptor.

In the experiments that follow, we test these predictions for tilt adaptation (Experiment

1; to validate our protocol in a context repeatedly linked to locally-repulsive aftereffects),

for facial identity adaptation (Experiment 2) and for facial gender adaptation (Experiment

3). We find that data in all three contexts are consistent with locally-repulsive, but not

renormalising, patterns of aftereffect.
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Figure 2. Patterns of results predicted by a locally-repulsive (left), and a re-normalising aftereffect
(right) in our spatial-comparison task. (a) After adapting in two different retinal locations to stim-
ulus values of -200 (left; arbitrary units) and -50 (right), an aftereffect is induced in each location
which manifests (b) as a local repulsion of nearby values away from the adapted value, with no
change in the appearance of the adapted value. (c) The predicted mismatch in appearance between
stimuli presented at the two differently-adapted locations is given by the difference between the two
aftereffect functions (black). The shape of the difference function varies depending on the shape and
separation of the aftereffects in each location, but the qualitative pattern remains constant across a
wide range of possible values: maximal aftereffects are predicted for test values inbetween the two
adaptors, and lesser aftereffects are predicted for tests at either of the two adapted values. (d) If, after
adapting to these same stimulus values, aftereffects manifest as (e) a uniform renormalisation of all
stimulus values, then the difference in appearance between two differently-adapted locations (f) will
also be uniform across all encoded test values.

6.3 experiment 1 : tilt aftereffects

6.3.1 Method

6.3.1.1 Participants

Ten observers participated in Experiment 1, including the first author, three experienced

psychophysical observers naı̈ve to the research hypotheses, and six inexperienced observers

recruited from the University College London (UCL) psychology participation pool, who
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were compensated with £6 for their time. The Experimental Psychology Ethics Committee

at UCL approved all experiments.

6.3.1.2 Stimuli and apparatus

Stimuli were presented on a 22” Mitsubishi Diamond Plus 230SB monitor (resolution 1280

x 1024 pixels; refresh rate 85Hz; not Gamma corrected), using the Psychophysics Toolbox for

Matlab (Brainard, 1997; Pelli, 1997). Participants viewed stimuli from a distance of 57cm

using a chinrest. During both a preliminary sensitivity measure and the main experimental

task, pairs of stimuli were presented simultaneously, centred 4.5 degrees of visual angle

(dva) to either side of a central white fixation point (which had a diameter subtending

0.24 dva). Participants were instructed to fixate the central fixation point throughout all

experiments.

Test and adapting stimuli were pairs of Gabors with a Michelson contrast of 1 and a spatial

frequency of 2.5 cycles/dva, presented within Gaussian spatial envelopes with standard

deviations subtending 1.1 dva. The phase of each Gabor waveform was randomised on a

trial-by-trial basis. The display background was grey, and matched the average luminance

of test stimuli.

6.3.1.3 Procedure

In the main experiment, we measured the relative aftereffect between two differently-

adapted retinal locations, at three different Standard test values. The three Standard test

values were determined independently for all participants via a preliminary procedure that

measured orientation discrimination sensitivity.

Preliminary procedure

Stimuli were presented in a dual-pair task (Rousseau & Ennis, 2001), also known as a ’4-

interval AX’ task (Kaplan et al., 1978) — see Figure 3. Two pairs of static Gabors were

presented sequentially for 300ms, separated by a 300ms blank inter-stimulus interval (ISI).

On each trial, three of the test stimuli were set to a Standard value of -45
◦ (which will serve

as the Central of the three Standard test values in the main experiment). The orientation

of the fourth varied via an adaptive procedure described below. The interval and position

(left or right of fixation) of the variable test was randomised on a trial-by-trial basis. The

participant indicated which of the two intervals had contained identical stimuli by clicking

one of two mouse buttons. Feedback was given, with the fixation dot turning green for

correct decisions and red for incorrect decisions, for 500ms prior to the next trial.

The orientation difference between the variable test and the Standard test value was varied

on a trial-by-trial basis according to adaptive ’staircase’ procedures (Cornsweet, 1962). Four
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pair of tests identical?”
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Figure 3. Trial structure for Experiment 1. Two pairs of test stimuli were shown for 300ms each,
sequentially with a 300ms inter-stimulus-interval. Three of the four tests were set to an identical
standard test value (-45◦), while the orientation of the fourth was varied according to an adaptive
procedure (see main text for description). Tests were either shown in isolation (during the prelim-
inary sensitivity measure, and during baseline trials of the main experiment) or after exposure to
a pair of adapting stimuli for 5 seconds. Participants were asked to indicate which of the two test
intervals had contained identical stimuli.

staircases were interleaved, with two sampling values rotated counter-clockwise from the

Standard and two sampling values rotated clockwise from the Standard. For both counter-

clockwise and clockwise sampling procedures, one of the two staircases was initiated at an

orientation difference of 0
◦ (i.e. an initial orientation of -45

◦), and the other was initiated

at an orientation difference of 10
◦ (i.e. initial orientations of -55

◦ for clockwise-sampling

staircases, and -35
◦ for counter-clockwise-sampling staircases).

Test orientation differences were adjusted according to a ’three-down, one-up’ decision

rule, wherein three consecutive correct responses resulted in a decrease in the magnitude of

orientation differences, and any incorrect response resulted in an increase in orientation dif-

ference magnitude. This decision rule converges on 79% correct performance (Levitt, 1970).

For each staircase, a ’reversal’ was recorded when the direction of adjustment (increasing

vs decreasing the orientation difference between the -45
◦ Standard and the variable test) dif-

fered from the direction of the last adjustment for that staircase. Test orientation differences

were adjusted in steps of 2
◦ until the first 3 reversals for that staircase, after which adjust-

ments were made in steps of 0.5◦. Minimum orientation differences of 0
◦ were enforced,
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by repeatedly sampling this value if repeated correct judgments made this necessary. Each

staircase terminated after 6 reversals. Orientation difference values corresponding with the

last 3 reversals in each staircase were averaged across the four staircases to produce a single

just-noticeable difference (JND) estimate from the Standard test value. The average JND

was 9.8◦ (minimum = 6.1◦, maximum = 14.7◦).

Main experimental procedure

The Central Standard value for the main experiment was set to -45
◦ for all participants, and

Lower and Upper Standard test values were set to multiples of the participant’s JND from

the Central Standard (see Figure 4a). Lower Standard test values were -45
◦ minus two JNDs,

and Upper Standard test values were -45
◦ plus two JNDs. In adaptation trials, the adaptor

shown to the left of fixation was of the Lower Standard value, and the adaptor shown to

the right of fixation was of the Upper Standard value. The average Lower Standard test

value was -64.5◦ (±2.0◦ standard error of the mean (SEM)) and the average Upper Standard

test value was -25.5◦ (±2.0◦).

All participants first completed a baseline run of trials, during which they viewed sequen-

tial tests in the absence of adaptation. They then completed an adaptation run of trials,

in which they viewed sequential tests after either 30 (first trial) or 5 (all subsequent trials)

seconds of exposure to the adapting stimuli (see Figure 3).

On each trial, during both baseline and adaptation runs of trials, three of the four test stim-

uli were set to a Standard test value, pseudo-randomly selected on each trial from either the

Lower, Central or Upper Standard test values. The value of the fourth, variable, test stimu-

lus was determined according to an adaptive procedure described below. The test stimulus

was always shown on the right hand side of fixation, in a random interval. Observers indi-

cated which of the two intervals had contained identical stimuli. No performance feedback

was given.

The value of the variable test stimulus was determined on each trial by a Pólya urn adaptive

sampling procedure (Rosenberger & Grill, 1997; Yarrow, Sverdrup-Stueland, Roseboom, &

Arnold, 2013). The range of possible test values was -135
◦ to +45

◦, sampled in increments

of 0.25
◦ (i.e. 360 possible test values). Three independent sampling procedures were main-

tained, one for each of the three Standard test values.

On each trial, a Standard test value was pseudo-randomly selected, and a variable test

value was selected according to the relevant sampling procedure. The initial probability

distribution for each of the three sampling procedures was uniform, with a nominal sam-

pling probability value of 1 assigned to each test value falling within a range ±3 JNDs from

the relevant Standard, and zero to values falling outside this range. The actual probability

of sampling any given test value on a trial was the current nominal probability of sampling

that test value, divided by the sum of the current nominal probability values across all test
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Figure 4. Selection of Standard test stimuli for (a) tilt, (b) facial identity, and (c, d) facial gender
experiments. The selection procedure was identical in all cases. A Central Standard test value was
chosen (-45◦ for tilt adaptation; image 66 for facial identity adaptation; image 300 for female-centred
facial gender adaptation, and image 200 for male-centred facial gender adaptation). Estimates of the
participant’s just-noticeable-difference (JND) from Central Standard test values were determined in
a preliminary sensitivity measure (see main text for details). Lower and Upper Standard test values
were then set respectively to -2 JNDs and to +2 JNDs from Central Standard test values. Arrows
indicate approximate average Lower, Central and Upper Standard test values in each experiment.

values. On each trial, a particular value was chosen for the variable test via the genera-

tion of a random number used to index ordered sampling probability values. Whenever a
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participant incorrectly selected the interval containing the variable test as having contained

identical stimuli, nominal sampling probability values associated with test values +/-0.5◦

and ±2
◦ from the test were increased by 2 and 1 respectively. These adaptive procedures

ensured disproportionate sampling of tests perceptually similar to each Standard stimulus.

Each of the three adaptive procedures was sampled for 50 trials, yielding a total run of

150 trials (taking approximately 10 minutes in baseline runs of trials, and 20 minutes in

adaptation runs of trials).

6.3.2 Results

A run of trials provided three distributions, one for each Standard stimulus, describing the

proportion of times each variable test value had been presented on which it was mistaken

as being identical to the relevant Standard stimulus (see Figure 5a). Gaussian distributions

were fit to these data, using a least-squares regression weighted by the number of observa-

tions at each variable test value. Peaks of the fitted Gaussians were taken as estimates of the

participant’s point of subjective equality (PSE) between tests presented in the right retinal

location and each Standard stimulus presented in the left retinal location. Relative afteref-

fects between the two differently-adapted locations were calculated as the post-adaptation

PSE for a given Standard minus the corresponding baseline PSE.

Re-normalisation predicts that the magnitude and direction of relative aftereffects should

be constant for our three Standards (see Figure 2f). Local repulsion predicts that relative

aftereffects will be greater for the Central Standard than for Lower and Upper Standards

(see Figure 2c). We confirmed that our pattern of results conformed to the latter prediction

by conducting a repeated-measures ANOVA. This revealed a significant quadratic trend

for data relating to our three Standards (F1,9 = 10.16, p = .011), with the greatest aftereffect

magnitude at the Central Standard — as predicted by a locally-repulsive aftereffect (see

Figure 5b).

6.4 experiment 2 : facial identity aftereffects

Having validated our protocol for tilt adaptation, we then applied it to facial identity adap-

tation. Details were as for Experiment 1, with the following exceptions.
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Figure 5. (a) Example data from one participant in the tilt adaptation experiment. Open blue dots
represent the proportion of incorrect responses for each variable test value during baseline trials
on which the Upper (top panel), Central (middle) or Lower (bottom) Standard test stimulus was
shown; closed red dots represent the same during adaptation trials. Data are binned into 5◦ bins for
illustration purposes. Dotted grey lines indicate the physical value of each of the three Standard test
stimuli. Curves show Gaussians fit to response data before (blue) and after (red) adaptation. The
peaks of the fitted Gaussians indicate the participant’s PSE between the two retinal locations for each
Standard stimulus. The relative aftereffect between the two locations is calculated independently for
each Standard stimulus by subtracting the baseline PSE from the post-adaptation PSE. (b) Relative
aftereffects at each of the three Standard test values in the tilt adaptation experiment. Error bars
indicate ±1 standard error of the mean (SEM) between individual estimates.

6.4.1 Methods

6.4.1.1 Participants

Fifteen observers participated in the facial identity experiment, including the first author,

three experienced psychophysical observers who were naı̈ve to the experimental hypothe-

ses, and 11 naı̈ve paid volunteers.

6.4.1.2 Stimuli and apparatus

Test and adapting stimuli were pairs of face images. Test images subtended 5.8 dva in

width and 7.7 dva in height whereas adaptors subtended 7.3 by 9.6 dva. The size differ-

ence between adaptors and tests was intended to mitigate local retinotopic adaptation, a

precaution widely used in face aftereffect research (see Zhao and Chubb (2001)).

Face stimuli were colour images generated from the Basel Face Model (BFM1; Paysan,

Knothe, Amberg, Romdhani, and Vetter (2009)), a generative model created by perform-

ing principal components analysis (PCA) on the three-dimensional head scans of 100 male

1 Available from http://faces.cs.unibas.ch/bfm/
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and 100 female, predominantly-Caucasian, individuals. Images generated by the model are

cropped around the ears, necks, and forehead to remove hair (see Figure 4b).

In the BFM two sets of 199 principal components have been derived, independently for

facial structure and facial texture (capturing variations due to skin colour, eye colour, light-

ing, etc). This allowed us to minimise colour and luminance artefacts by generating faces

that varied structurally but not texturally. Data accompanying the BFM specify directions

in face-structure and face-texture spaces along which variance is greatest for individuals

of different genders, heights, weights, and ages. This allows these attributes to be manipu-

lated in a naturalistic manner.

We generated a unique continuum of face images for each participant, to ensure our data

were not dependent on idiosyncrasies of any single stimulus set. Each continuum consisted

of 201 images drawn from a trajectory in face-structure space linking two different same-

gender identities, centred on an average male or female face (7 male continua, 8 female).

For each continuum, image 1 was a novel male (or female) identity chosen by adding a

random proportion and direction of the height, weight, and age vectors to an average male

(or female) face, along with a small random amount of each principal component. Image

101 was the average male (or female) face, and image 201 was an ’anti-identity’ face, that

differed from the male (or female) average in an opposite manner relative to image 1. Other

images were then generated from the BFM, traversing in equal steps the distance between

images 1 and 201. Selected images from one stimulus continuum are shown in Figure 4b,

and from all 15 continua in Appendix 3.

6.4.1.3 Procedure

Preliminary procedure

Sequential pairs of face images were presented for 500ms each, separated by 300ms ISIs.

The Central Standard test value was set to image 66 of each individual face continuum.

Four independent, randomly interleaved staircase procedures were used to estimate each

participant’s JND from the Central Standard face. Two procedures sampled test faces with

lower image numbers than the Central Standard, and two sampled higher image numbers.

Within each pair of sampling procedures, one staircase was initiated at an image number

difference of 0 (i.e. image number 66), while the other was initiated at either image number

26 (for procedures sampling lower image numbers) or 106 (for procedures sampling higher

image numbers). The average JND estimate was 26 image units (minimum = 14, maximum

= 36).

Main experimental procedure
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Two participants had JNDs that would have led to the Lower Standard (Central Standard

minus 2 JNDs) being outside the range of available test faces (JNDs = 34 and 36). For these

observers, an arbitrary JND of 32 was used to select Standard test images.

Whenever a participant incorrectly selected the test interval as having contained identical

faces, nominal sampling probability values associated with test images numbered ±10 and

±20 from the test were increased by 2 and 1 respectively.

6.4.2 Results

Analyses of data were as for Experiment 1, unless specified.

To assess whether aftereffects were greatest for the Central Standard, relative to Lower and

Upper Standards, we conducted a repeated-measures ANOVA. This revealed a significant

quadratic trend for data relating to our three Standards (F1,14 = 7.14, p = .018; see Figure 6),

with a maximal aftereffect for the Central Standard — as predicted by a locally-repulsive

aftereffect.

Experiment 2: Facial identity
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Figure 6. Relative aftereffect at each of the three standard test values in the facial identity aftereffect
experiment. Details as for Figure 5.



6.5 experiment 3 : facial gender aftereffects 118

6.5 experiment 3 : facial gender aftereffects

Details for Experiment 3 were as for Experiment 2, with the following exceptions.

6.5.1 Method

6.5.1.1 Participants

Fifteen observers participated in Experiments 3a (male-face-centred experiment), includ-

ing the first author, five experienced psychophysical observers naı̈ve to the experimental

hypotheses, and nine naı̈ve paid volunteers. In Experiment 3b (female-face-centred exper-

iment), participants included the first author, six experienced observers, and eight paid

volunteers. Note that some people participated in both experiments, with a total of 19

unique observers (five male, fourteen female). When the same person participated in both

experiments, these were conducted on separate days.

6.5.1.2 Stimuli and apparatus

Test images subtended 5.9 dva in width and 6.5 dva in height. Adaptors subtended 7.8 by

8.7 dva.

Face stimuli were 500 colour images2 previously used in Zhao et al. (2011) and Pond et

al. (2013). These were generated by morphing between and beyond an average male face (-

100% gender; image number 200) and an average female face (+100% gender; image 300), to

create a continuum spanning from a masculine caricature (-500% gender; image 1) through

androgynous (0% gender; image 250) to a feminine caricature (+500% gender; image 500.

For further details see those describing the ’twenty’ continuum in Zhao et al. (2011). Face

images were presented against a grey background, inside a grey oval frame of the same

luminance, which occluded the ears and side of the head. All participants saw the same

stimulus continuum.

6.5.1.3 Procedure

Experiment 3a had a Central Standard stimulus of 200, Experiment 3b a Central Standard

stimulus of 300.

Preliminary procedure

In both Experiments, four staircase procedures were used to locate each participant’s JND

for differences from the Central Standard, two sampling lower image numbers and two

2 Available from http://homepages.inf.ed.ac.uk/jbednar/stimuli/
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sampling higher image numbers. Within each pair of staircase procedures, one was ini-

tiated at an image number difference of 0 (i.e. initiated at image numbers 200 and 300

respectively for Experiments 3a and 3b), while the other was initiated at an image number

difference of 100 (i.e. lower-sampling procedures were initiated at image 100 in Experiment

3a and 200 in Experiment 3b; higher-sampling procedures were initiated at image 300 in

Experiment 3a and 400 in Experiment 3b). Average JNDs were 54 image units (minimum

= 28, maximum = 92) in Experiment 3a, and 57 image units (minimum = 35, maximum =

97) in Experiment 3b.

Main experimental procedure

In Experiment 3a, variable test stimuli were shown on the right hand side of fixation, in

the same location as the Upper adaptor, as in the previous experiments. In Experiment 3b,

variable test stimuli were shown to the left of fixation, in the same location as the Lower

adaptor. This meant that aftereffects should predominantly manifest as participants match-

ing standard stimuli to lower variable test values after adaptation, rather than higher values

as in the previous experiments. We took this precaution to avoid a possible ceiling effect

when estimating the aftereffect at the Upper Standard, which was for some participants

near the end of the image continuum (see Figure 4c).

In both Experiments, whenever a participant incorrectly selected the test interval as having

contained identical faces, nominal sampling probability values associated with test images

numbered ±10, ±25 and ±50 from the variable test value were increased by 3, 2 and 1

respectively.

6.5.2 Results

For both experiments, data for each Standard were grouped into 10-image bins, then ex-

pressed in terms of the proportion of times, for variable test values within each bin, that the

participant had responded incorrectly. Gaussian functions were fit to these data, and their

peaks were taken as PSE estimates for each Standard stimulus, before and after adaptation.

To assess whether aftereffects were greater for Central Standards than Lower and Upper

Standards, we conducted two repeated-measures ANOVAs. For Experiment 3b, this re-

vealed a significant quadratic trend for data relating to our three Standards (F1,14 = 6.33,

p = .025; see Figure 7), with a maximal aftereffect at the Central Standard — as predicted

by a locally-repulsive aftereffect. In Experiment 3a, aftereffects were evident (a two-tailed

one-sample t-test performed on the average aftereffect across all three Standards for each

participant revealed a mean relative aftereffect of 42 image units, t14 = 4.67, p < .001), but

there was no significant quadratic trend between data relating to the three Standards (F1,14
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= 1.82, p = .200). The reader should note, however, that the pattern of results in this Experi-

ment conformed with the pattern of results in all other experiments we have reported here,

in that the largest aftereffect observed was for the Central standard, whereas aftereffects for

the Lower and Upper Standards were smaller, albeit not statistically different in this case.

Experiment 3: Facial gender

3a. Centred around male 3b. Centred around female
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Figure 7. Relative aftereffect at each of the three standard test values in (left) the male-face-centred
and (right) the female-face-centred facial gender adaptation experiments. Because the variable test
was shown in the same location as the Lower adaptor for Experiment 3b (but that of the Upper
adaptor for other Experiments), the aftereffects manifested as a negative rather than a positive shift,
relative to baseline. For ease of comparison, aftereffects are shown here with their sign flipped. Other
details as for Figures 5 and 6.

6.6 discussion

We measured aftereffects following tilt, facial identity, and facial gender adaptation, and

found strikingly similar patterns of results, which were in excellent agreement with the

predictions of a locally-repulsive aftereffect. These data were, however, inconsistent with

the predictions of a re-normalising aftereffect.

Locally-repulsive aftereffects provide evidence for multichannel encoding Perceptual after-

effects are often thought to result from neural adaptation — changes in the responsiveness

of neurons after prolonged stimulation (Clifford et al., 2007; Wark et al., 2007; Webster,

2011). Two broad classes of encoding scheme have been proposed. Locally-repulsive af-

tereffect patterns have been associated with encoding schemes in which multiple channels

are narrowly tuned for different input values, with no particular stimulus playing a special

role (Blakemore et al., 1970; Clifford et al., 2000; Pouget et al., 2000; Seriès et al., 2009). In
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Figure 8a we illustrate a simulated multichannel code before adaptation (blue curves), con-

sisting of Gaussian channels with peaks uniformly spaced along the stimulus dimension

(see Appendix 1 for details of this model).

Adaptation to a given stimulus is proposed to cause a temporary reduction in the excitabil-

ity of a subset of channels, in proportion to their response to the adaptor (red curves in Fig-

ure 8a). Perceptual experience is presumably determined by the pattern of activity across

the population of channels. When this ’decoding’ process is simulated, via a technique

such as maximum-likelihood estimation (MLE), systematic differences can arise between

estimates based on pre- and post-adaptation activity (Ma & Pouget, 2009; Pouget et al.,

2000). These take the form of a locally-repulsive pattern of biases (red curve, and inset,

in Figure 8b), in which the decoded value of the adaptor is unchanged, but differences in

decoded values between the adaptor and nearby stimuli are exaggerated. Crucially, a mul-

tichannel encoding scheme accurately predicts the patterns of perceptual bias seen after

adapting to orientation or spatial frequency (Blakemore et al., 1970; Clifford et al., 2000;

Goris et al., 2013).

Renormalising aftereffect patterns have been associated with opponent-channel encoding

schemes, in which two channels respond increasingly as stimulus values deviate from a

perceptual norm; one preferring low values along the encoded dimension and the other

high values (Giese & Leopold, 2005; Regan & Hamstra, 1992; Rhodes et al., 2005; Susilo

et al., 2010). In Figure 8d we illustrate a one-dimensional simulation of such an encoding

scheme, in which two monotonic channels intersect at stimulus value zero (blue curves)

(see Appendix 1 for details). The stimulus corresponding to the ’norm’ value (here, zero)

activates both channels equally, while any other stimulus elicits an imbalanced response

from the two channels. Again, the perceived stimulus is determined by the particular

combination of channel activities.

As in the multichannel scheme, adaptation is thought to bring about a temporary reduction

in the excitability of one or both channels, in proportion to their response to the adaptor

(red curves, Figure 8d). When one channel is disproportionately suppressed, the input

that elicits a balanced response across the two channels shifts toward the adapted value,

thereby updating the ’norm’ to more closely resemble recent experience. This recalibration

can produce systematic changes in the perception of the same physical stimulus before and

after adaptation. The opponent-channel code predicts a uniform re-normalisation, in which

the adaptor appears more neutral after adaptation, and the appearance of all other stimuli

is altered in the same direction by the same amount (red line, and inset, in Figure 8e).

The magnitude and direction of this constant shift depends on the adapting value, with

adaptors further from neutral producing larger shifts, and adaptation to zero uniquely

producing no aftereffect.

A uniform shift in appearance of all test stimuli is perhaps the simplest possible predic-

tion that can be derived from an opponent-channel code. One can also plausibly predict
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Figure 8. Simulations of channel structure and adaptation in (left) a multichannel, and (right) an
opponent code. (a) The response of each channel in a multichannel code to each stimulus value, before
(blue) and after (red) adapting to a stimulus value of -100 (arbitrary units), shown by vertical dashed
red line. Maximum-likelihood estimation (MLE) can be used to decode (b) the most probable value
of each stimulus, given the channel activity it elicits, before (blue) and after (red) adaptation. The
aftereffect (b, inset) is calculated as the post-adaptation decoded stimulus minus the pre-adaptation
decoded stimulus. The aftereffect manifests as a local repulsion of test stimuli away from the adapted
value, with no change in the appearance of the adapted value. (c) The relative aftereffect (black)
predicted at each test value is given by the difference between the two location-specific aftereffects
(green curve minus orange curve). (d) Channel responses in an opponent code before and after
adaptation. (e) MLE performed on the upper and lower channel activity veridically decodes stimulus
values before adaptation (blue), and predicts a constant bias at all test values after adaptation (red).
(e, inset) The aftereffect manifests as a uniform renormalisation, in which the appearance of all test
stimuli is biased in the same direction by the same amount. (f) The predicted relative aftereffect
between two differently-adapted locations (black) is also uniform across a wide range of test values.

non-uniform changes, with reduced aftereffects for extreme test values near the limits of

the encoded range (see Appendix 1 for an example of a model which predicts this pattern

of non-uniform renormalisation). We do not think this possibility could account for our

findings for two reasons. First, Upper and Lower Standard values were not more ’extreme’
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than Central Standards in our experiments. In both the facial identity and gender experi-

ments, adapting and test stimuli were centred about a point offset from the computational

average along the stimulus dimension. In the facial identity experiment, the Upper Stan-

dard stimulus was closest to the computational average, yet aftereffects were smaller for

this standard than for the Central Standard (see Figure 4b).

Second, in our two facial gender experiments we centred adapting and test stimuli about

two different points along the same stimulus continuum, neither of which was the compu-

tationally average androgynous face (see Figure 4c and 4d). In both cases we found that

aftereffects were greatest for the test value lying midway between the two adapted values

(although this pattern only produced a significant quadratic trend for female-face-centred

data). This suggests that aftereffect magnitudes were tied to the positions of test stimuli

relative to adapting stimuli, rather than being determined by the absolute positioning of

test stimuli along the stimulus dimension. This is more consistent with a locally-repulsive

aftereffect than with a renormalising aftereffect that is reduced for extreme test stimuli.

The locally-repulsive pattern of aftereffects we observe is consistent with a model in which

face aftereffects arise from local interactions, such as those that govern the tilt aftereffect

(Dickinson et al., 2010; Dickinson & Badcock, 2013; Dickinson et al., 2012). However, as yet

it is unclear how this model can account for the transfer of aftereffects between differently-

sized adapting and test stimuli. An alternate possibility is that our data are driven by

adaptation within a multi-channel-structured representation of facial attributes.

Rather than committing to a particular instantiation of a neural encoding scheme (any form

of which would almost certainly be an oversimplification), the key message of our data is

that facial identity and gender aftereffects are better described as locally-repulsive than as

renormalising aftereffects. If face adaptation involves a re-centring of all stimuli around a

new neutral point, as has often been proposed (Burton et al., 2015; Jeffery et al., 2010, 2011;

Leopold et al., 2001; McKone et al., 2014; Pond et al., 2013; Rhodes & Jeffery, 2006; Rhodes et

al., 2005; Robbins et al., 2007; Susilo et al., 2010; Webster & Maclin, 1999), then an aftereffect

measured over a wide range of test values should be uni-directional and approximately

equal in magnitude. If this were the case, we should have found approximately equal

relative aftereffects for different Standard test values in our spatial-comparison task. This

is not what we found. Instead, aftereffects were greatest when tests differed from, and

therefore could be influenced by, both adaptors. Aftereffects were smaller when tests were

identical to one of the two adaptors and, according to the local repulsion hypothesis, should

therefore not be affected by that adaptor.
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6.6.1 Isn’t there lots of other evidence in favour of opponent coding?

Although there are several lines of evidence hinting that face aftereffects involve renormal-

isation, all of these are currently equivocal. In the Introduction, we described the ’adaptor

strength’ paradigm (Jeffery et al., 2010, 2011; McKone et al., 2014; Pond et al., 2013; Zhao

et al., 2011), and explained why the results of this paradigm are inconclusive. We also

described a paradigm previously proposed by us (Storrs & Arnold, 2012), in which par-

ticipants classify a range of stimuli in a three-category classification task. When tested in

this paradigm, the facial gender aftereffect matched the predictions of a locally-repulsive

aftereffect, as in the present report. Facial distortion aftereffects, however, better matched a

re-normalising pattern (see below for further discussion).

Two other paradigms designed to dissociate locally-repulsive from renormalising afteref-

fects deserve mention. In the first, identity aftereffects are compared after adapting and

testing along facial identity trajectories that pass through the centre of a hypothetical face

space, as compared to facial identity trajectories that do not (Anderson & Wilson, 2005;

Leopold et al., 2001; Rhodes & Jeffery, 2006). Aftereffects were found to be larger along the

former than the latter type of trajectory, which was thought to demonstrate that the norm

plays a special role in facial encoding. However, there is some recent evidence that both

multichannel and norm-based models may predict this pattern of results (Ross et al., 2013).

In a second paradigm, changes in a three-category classification task are compared after

adapting either to a neutral stimulus value, or to alternating positive and negative stimulus

values. For instance, participants might classify faces as ”looking left,” ”looking straight

ahead,” or ”looking right” before and after adapting either to faces that look straight ahead,

or to alternating faces that look left and right (Calder et al., 2008). A multichannel code

can predict that, after consistent neutral-adaptation, the range of stimuli placed in the cen-

tral category should narrow, and that after alternating negative and positive adaptation,

the range of central stimuli should broaden. A simple opponent-channel scheme predicts

no change in response pattern. Eye gaze direction (Calder et al., 2008) and head direc-

tion aftereffects (Lawson et al., 2011) both followed the pattern of changes predicted by a

multichannel code when tested in this paradigm. Facial expression aftereffects, however,

produced a narrowing of the central range in both conditions (Burton et al., 2015), which

was argued to be more consistent with an opponent than multichannel code.

There are important caveats to conclusions based on data from the above paradigm. First,

the predictions of an opponent-channel scheme are unclear, as additional assumptions must

be made (e.g. that the response functions of adapted channels steepen or flatten) in order

to predict a change in categorisation decisions after either neutral or alternating adaptation

(Burton et al., 2015; Calder et al., 2008; Lawson et al., 2011). Second, repeated exposures to

an ’adapting’ stimulus might alter the range of stimuli placed in the middle category, not

because such exposure has changed the appearance of test stimuli, but because participants
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adopt the repeatedly-seen adaptors as exemplars against which other inputs can be judged

when applying the middle category label. Both factors combine to dictate that any result

from this paradigm cannot be regarded as conclusive evidence either of multichannel or

opponent-channel encoding.

Perhaps the strongest evidence for renormalisation in face aftereffects comes from exper-

iments involving geometrically distorted images. Webster and Maclin (1999) had partici-

pants remember a distorted face, and then adjust a test to match this remembered face after

adapting to either a distorted or to an undistorted face. They found that adapting to an

undistorted face had no effect on participants’ matches to distorted faces. They inferred

from this that the undistorted face played a special role in perception. In general support

of this conclusion is the observation, given anecdotally by Webster and Maclin (1999) and

quantified by us and others since (Rhodes et al., 2003; Robbins et al., 2007; Storrs & Arnold,

2012), that during adaptation a distorted face may come to appear more normal. We, how-

ever, found that this did not generalise to facial gender adaptation (Storrs & Arnold, 2012).

One possible interpretation of this is that distortion adaptation does not tap facial mecha-

nisms specifically, but instead is akin to adapting to a geometric distortion, such as during

prism adaptation (Redding, Rossetti, & Wallace, 2005; von Helmholtz, 1909).

6.6.2 Caveats

While our data speak to the computational processes underlying face adaptation, they do

not provide insight into where these computations might take place.

It is worth emphasising that our spatial-comparison paradigm measures differences in per-

ception between two differently-adapted regions. It would therefore be insensitive to any

adaptation that uniformly affected all locations in the visual field. Unfortunately psy-

chophysics lacks methods to measure global biases that do not confound perceptual with

decision-level effects (Morgan, 2014; Morgan et al., 2013; Storrs, 2015a). On the basis of

our data, we cannot therefore preclude the possibility that there is a retinally global face

adaptation effect that impacts all face perceptions equally, no matter where in the visual

field a face might be presented. However, since facial identity and gender aftereffects as

measured by a standard binary-classification task are retinotopically localised (Afraz & Ca-

vanagh, 2009; Afraz & Cavanagh, 2008), we believe our data speak to the same effects as

reported in previous face adaptation studies, and that our data and these previous reports

are driven by a common computational process.

We would like to stress one final caveat in relation to our testing paradigm. Stimuli pre-

sented in the first test interval might have induced adaptation, affecting the appearance of

stimuli presented in the second, as facial aftereffects can be induced by ’adapting’ for as

little as 200ms (Fang & He, 2005). This influence should, however, be smaller than that
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induced by our more prolonged adaptors, as facial identity aftereffects reportedly increase

logarithmically with adaptation duration (Leopold et al., 2005). Moreover, any interactions

between sequential test stimuli would also have been present during baseline trials, and

so would not systematically impact our aftereffect data. In future, variance arising due to

interactions between test stimuli could be mitigated by introducing a second adaptation

period on each trial in-between the two test intervals.

6.6.3 Conclusion

Our data add to the growing body of evidence (Ross et al., 2013; Storrs & Arnold, 2012;

Zhao et al., 2011) that an opponent-channel model predicting renormalising aftereffects

does not well describe the perceptual shifts following face adaptation. Instead, facial iden-

tity and gender aftereffects are better described as locally-repulsive aftereffects, in which

differences between adapting and test stimuli are exaggerated in all directions, with little

or no change in the appearance of the adaptor. This is consistent with an encoding model

in which multiple channels are tuned for preferred values, with no value having a special

role. Face aftereffects therefore behave similarly to other figural aftereffects (Badcock et al.,

2014; Blakemore et al., 1970; Köhler & Wallach, 1944; Mitchell & Muir, 1976), perhaps sug-

gesting common processes underlie the encoding of spatial patterns throughout the visual

hierarchy.
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C H A P T E R 7 : D I S C U S S I O N A N D C O N C L U S I O N S

Experiments presented in the preceding chapters used visual aftereffects to explore how

the brain represents simple, intermediate, and complex spatial forms — edges, shapes, and

faces. In each of these domains, I tested the proposal that spatial forms are represented

relative to normative values by evaluating whether adaptation induces perceptual renor-

malisation. In Chapter 2, I replicated previous evidence for renormalisation in orientation

perception, but showed that the same pattern of data is also found for very brief ’adaptation’

durations, and is more parsimoniously explained by well-known anisotropies in orientation

discrimination sensitivity. In Chapter 3 I established that shape aspect ratio aftereffects in-

volve relatively late-stage shape representations, after shape constancy calculations have

been completed. In Chapter 4 I went on to show that this high-level aspect ratio adaptation

exaggerates differences between adapting and test aspect ratios, rather than re-centering

perception around a new normative aspect ratio. Using two novel psychophysical proto-

cols, Chapters 5 and 6 showed that facial gender and identity aftereffects follow a similar

pattern, exaggerating differences between successive faces, and are therefore not consistent

with a norm-based encoding of these attributes.

Taken together, these results suggest a preponderance of locally-repulsive adaptation after-

effects in spatial vision. I found no evidence for renormalisation except in the case of facial

distortion (Chapter 6; discussed further in Section 2.3.1 below). This is surprising, given

the long history and growing popularity of theories favouring norm-based representation

in spatial vision (Gibson, 1933; Leopold et al., 2006, 2001; Regan & Hamstra, 1992; Rhodes

et al., 2005; Webster & Maclin, 1999). In this final chapter I review the theoretical implica-

tions and methodological contributions of work in this thesis, before highlighting some of

the outstanding questions regarding spatial form representation and adaptation.

127
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7.1 theoretical implications of the present work

7.1.1 Aftereffects provide little evidence for norm-based representations in spatial vision

The idea that aftereffects in spatial vision arise from the recalibration of neutral normative

values, relative to which the brain represents current input, dates back at least to Gibson

(1933). Norm-based representations have been proposed to underlie the perception of ori-

entations (Gibson & Radner, 1937; Regan & Beverley, 1985; Vaitkevicius et al., 2009), curva-

tures (Gibson, 1933; Poirier & Wilson, 2006), shapes (Kayaert et al., 2005; Regan & Hamstra,

1992; Suzuki, 2005), and faces (Anderson & Wilson, 2005; Leopold et al., 2001; McKone et

al., 2014; Pond et al., 2013; Rhodes et al., 2005; Susilo et al., 2010; Valentine, 1991; Webster

& Maclin, 1999). Such proposals have sometimes been formalised by encoding models in

which opposing pairs of channels respond monotonically to increasingly non-neutral stim-

ulus values (Giese & Leopold, 2005; Regan & Hamstra, 1992; Rhodes et al., 2005; Susilo et

al., 2010). A key prediction of opponent-channel schemes is that adaptation should cause

the adapted value to appear more neutral after adaptation, with approximately uniform

concomitant shifts of other stimulus values (see Webster and MacLeod (2011), and mod-

elling in Appendix 1). Data in this thesis demonstrate that this prediction is not supported

in the domains of orientation, shape or face perception, and that norm-based opponent-

channel encoding is therefore unlikely to represent a predominant encoding strategy in

spatial vision.

Locally-repulsive aftereffects measured in this thesis for shape aspect ratio, facial gender,

and facial identity were consistent with these domains being encoded by multiple channels

relatively narrowly-tuned for specific instances within relevant sensory domains. Sensory

cells in many domains are found to exhibit bandpass tunings for particular preferred values.

Bandpass tuning has been reported in channels encoding orientation and spatial frequency

(reviewed in De Valois and De Valois (1980)), motion speed (Lagae, Raiguel, & Orban,

1993), motion direction (Georgopoulos et al., 1986), auditory frequency (Phillips & Irvine,

1981) and odour (Mori, Nagao, & Yoshihara, 1999). It is therefore reasonable to expect that

complex feature detectors might also exhibit relatively narrow non-monotonic tunings over

their input spaces (Riesenhuber & Poggio, 2002), as is suggested by data in this thesis.

Previous evidence for renormalisation underlying spatial aftereffects has been inconclusive.

In the case of orientation perception, a long history of research has led to an understanding

of the tilt aftereffect as predominantly a local repulsion away from the adapted orientations

(Clifford et al., 2000; Howard, 1982; Mitchell & Muir, 1976), perhaps with a small renormal-

ising component (Held, 1963; Prentice & Beardslee, 1950; Templeton, 1972). In Chapter 2,

the most compelling recent evidence for renormalisation (Müller, Schillinger, et al., 2009)

was re-interpreted as arising from a methodological artifact involving the oblique effect,

leading to the conclusion that there is at present little reason to think that the tilt aftereffect
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involves any renormalising. Experiments in curvature perception have likewise concluded

that curvature aftereffects involve local repulsion rather than renormalisation (Gheorghiu &

Kingdom, 2007, 2008). For more complex shape properties, such as aspect ratio, the predic-

tion of renormalisation has been tested only twice, and both studies have so far only been

reported via conference abstracts. The first study (Suzuki & Rivest, 1998) found evidence

for renormalisation, but used extremely brief ’adaptation’ durations (150ms). The second

used more conventional adaptation times and found evidence supporting local repulsion

of aspect ratio (Badcock et al., 2014), consistent with the results of Chapter 4. The weight

of evidence across orientation, curvature, and aspect ratio is therefore in favour of locally

repulsive aftereffects with no evidence for any influence of renormalisation.

Evidence for renormalisation of face perception is more substantial, and has been reviewed

in the Introduction, and in Chapters 5 and 6. There I argued that even this evidence is in-

conclusive. In the face aftereffect literature, spatial comparison tasks have not been widely

used, presumably because face aftereffects are not tightly retinotopically localised (Afraz

& Cavanagh, 2008; Zhao & Chubb, 2001). This is unfortunate, since spatial comparison

methods allow the experimenter to measure aftereffects for diagnostic test values, includ-

ing the adaptor and putatively more ’extreme’ values. Instead, several alternate methods

have been used to try differentiate local repulsion from renormalisation using method-of-

single-stimulus classification tasks. For several of these paradigms, renormalisation and

local repulsion predict qualitatively similar data. These include methods in which after-

effect magnitudes are compared following adaptation to increasingly ’extreme’ adaptors

(Jeffery et al., 2010, 2011; McKone et al., 2014; Pond et al., 2013), or to faces drawn from

trajectories that pass through a putative norm vs trajectories that do not (see Ross et al.

(2013)). A ternary-classification method, in which changes in category boundaries are com-

pared after adapting to a neutral value vs adapting to alternating opposite extreme values,

has provided evidence for local repulsion of facial viewpoint (Lawson et al., 2011) and gaze

direction (Calder et al., 2008). Data from facial expression adaptation (Burton et al., 2015)

did not clearly fit predictions of either proposal. Data in this thesis suggest facial gender

and identity aftereffects are predominantly locally repulsive in nature.

Perhaps the most compelling evidence for renormalisation comes from experiments using

multiple-point rating scales to probe observers about the appearance of test faces, before

and after adaptation (O’Neil et al., 2014; Rhodes et al., 2003; Robbins et al., 2007). Multi-

point rating scales afford higher resolution than more common binary classification tasks,

and are therefore potentially sensitive to changes in the appearance of any test value in

which the experimenter is interested. Upon reanalysis, data from O’Neil et al. (2014) ap-

pear to lend slightly more support to a locally-repulsive model of facial age aftereffects

than a renormalising model (see Appendix 2), although this depends on how one chooses

to constrain the model parameters (O’Neil et al., 2015). Neither model explains more than

a couple of percent of the aftereffect variance in this particular dataset. However, studies
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of facial distortion adaptation have provided evidence for renormalisation. After adapting

to a face in which eye height (Robbins et al., 2007) or overall configuration (Rhodes et al.,

2003) has been manipulated, the adapting faces (as well as more extremely distorted ver-

sions) were rated as appearing less distorted than when viewed before adaptation. This

is particularly interesting in light of the mixed results in Chapter 5, wherein facial gender

aftereffects appeared to involve local repulsion while facial distortion aftereffects were con-

sistent with an influence of renormalisation. The possibility that different facial attribute

dimensions might be encoded by different strategies is considered below in Section 7.3.1.

7.1.2 Face aftereffects support exemplar-based theories of facial representation

A key theoretical debate in the face perception literature over the past few decades is be-

tween exemplar-based and norm-based models of facial recognition (Burton & Vokey, 1998;

Byatt & Rhodes, 1998; Jiang, Blanz, & O’Toole, 2006; Lewis, 2004; Loffler et al., 2005; Macke

& Wichmann, 2010; Valentine, 1991; Wallis, Siebeck, Swann, Blanz, & Bulthoff, 2008). In

the norm-based proposal, units underlying facial representation are conceptualised as vec-

tors, pointing away from the origin of a perceptual face space, encoding the ways in which

any given input differs from a norm (Valentine, 1991; Valentine et al., 2015). The norm is

the central tendency of all faces in face space, and corresponds to the average experienced

face. The perceived identity of a face is determined by the vector’s direction, while its

magnitude gives the strength of evidence for that identity (Lewis, 2004; Rhodes, Brennan,

& Carey, 1987; Valentine, 1991). In the exemplar-based alternative, units underlying facial

representation are thought of as fuzzy templates, encoding the similarity of any input rela-

tive to multiple points within face space — with the multiple points regarded as ’exemplar’

faces (Lewis, 2004; Valentine, 1991). The perceived identity of an input is determined by

the best-matching exemplar (various definitions of ’best match’ have been suggested; see

Lewis (2004) and Wallis (2013)).

Exemplar-based and norm-based theories of facial representation have their roots in an

ongoing debate in the categorisation and memory literature, between those who propose

that new instances (of a potential category member, for example) are compared against in-

dividual previously-experienced instances (Medin & Schaffer, 1978; Nosofsky, 1986, 1988),

and those who propose that new instances are compared against prototypes abstracted

from many individual experiences (Goldstein & Chance, 1980; Hintzman, 1986; Knowlton

& Squire, 1993; Palmer, 1975; Reed, 1972). The norm-based model of facial representation

is inspired by prototype models, in that all faces are represented in terms of their deviation

from an abstracted facial prototype. It differs from classical prototype models in that not

only the magnitude, but also the direction, by which the input differs from the prototype is

encoded (Valentine, 1991).
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Many findings that were presented as evidence for a norm-based representation of faces

were later identified as also being consistent with exemplar-based theories. In the cari-

cature effect, exaggerating the distinctive features of a familiar face can render that face

easier to recognise (Perkins (1975) and Benson and Perrett (1991); although see Kaufmann

and Schweinberger (2008) for a failure to replicate this effect). The caricature effect follows

intuitively from the norm-based theory, because exaggerating a face’s distinctive features

is equivalent to increasing the length of the identity vector, and therefore the evidence for

that identity. However, computational simulations (Lewis, 2004; Wallis, 2013) have shown

that an exemplar-based model can also predict recognition advantages for caricatures, be-

cause these exist in more sparsely-occupied regions of exemplar space and are therefore

less easily confused with other identities. The other-ethnicity effect (Shepherd, Deregowski,

& Ellis, 1974) refers to the greater discrimination sensitivity people tend to have for faces

drawn from their own ethnic group than from another group. The other-ethnicity effect is

intuitively consistent with norm-based representation, in which all faces of an unfamiliar

identity differ from the own-ethnicity norm in similar ways, making them difficult to differ-

entiate (Valentine, 1991). However, the effect is also consistent with exemplar-based repre-

sentations, in which discrimination sensitivity is related to the density of stored exemplars

within a region of face space, and faces of unfamiliar ethnicities occupy a sparsely-sampled

region (Wallis, 2013).

In recent years the debate between norm- and exemplar-based theories of facial representa-

tion has been re-invigorated by evidence from face aftereffects (Leopold et al., 2001; Rhodes

et al., 2005; Valentine et al., 2015; Webster & MacLeod, 2011). By reframing the theories in

terms of opponent-channel and multi-channel neural population codes, researchers have

hoped to gain traction on the understanding of how faces are represented (McKone et al.,

2014; Pond et al., 2013; Rhodes et al., 2005; Susilo et al., 2010; Webster & MacLeod, 2011).

The models I have used to generate experimental predictions (see modelling Appendix 1)

follow those described in this recent incarnation of norm- and exemplar-based theories. To

the extent that face aftereffects reflect adaptation within face-selective channels (see Section

2.3.3 below), data in this thesis support exemplar-based theories of facial representation.

As well as theoretical implications, the present findings are relevant to the use of face after-

effects to study developmental and clinical questions. Reduced face aftereffects in children

with autism spectrum disorder have been taken as evidence for deficiencies in norm-based

face encoding in such groups (Ewing, Leach, Pellicano, Jeffery, & Rhodes, 2013; Pellicano,

Jeffery, Burr, & Rhodes, 2007; Rhodes, Jeffery, Taylor, & Ewing, 2013; Rhodes, Maloney,

et al., 2007; Walsh, Maurer, Vida, Rhodes, & Jeffery, 2015). Similarly, the early development

of face aftereffects in children has been taken as evidence for the early maturation of norm-

based facial encoding (Burton et al., 2013; Jeffery et al., 2010, 2011; Nishimura, Maurer,

Jeffery, Pellicano, & Rhodes, 2008; Pimperton, Pellicano, Jeffery, & Rhodes, 2009). If face
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aftereffects do not arise from an inherently norm-based representational system, but from

an exemplar-based representation, these findings will need to be re-interpreted.

7.2 methodological contributions of the present work

7.2.1 New psychophysical methods to differentiate renormalisation from local repulsion

Face aftereffect experiments have predominantly used tasks in which a single stimulus is

classified as belonging to one of two categories, before and after adaptation. This method

has two problems, the first and primary one being that it is sensitive only to changes in per-

ception near a neutral category boundary, where local repulsion and renormalisation make

qualitatively identical predictions. I have proposed two widely applicable psychophysical

protocols to test for local repulsion vs renormalisation. In Chapter 5, I developed a novel

ternary classification task, combined with adaptation to one of the category boundaries, to

measure changes in the appearance of the adaptor. In Chapter 4 I used a standard spatial

comparison task to compare perceived aspect ratio between adapted and unadapted loca-

tions. In Chapter 6 I modified the spatial comparison task to accommodate the weaker spa-

tial localisation of face aftereffects, by comparing perception between two differently-adapted

locations. All three methods facilitated measuring perception at diagnostic test values: the

adaptor itself (Chapters 5 and 6) and at points putatively more ’extreme’ than the adaptor

(Chapters 4 and 6), thereby deriving qualitatively distinct predictions from renormalisation

and local repulsion.

Such methods will be instrumental in evaluating the evidence for norm-based representa-

tion in many domains not considered in this thesis. In recent reports, aftereffects have been

proposed as evidence for norm-based representation of natural scenes (Greene & Oliva,

2010), body identity (Rhodes, Jeffery, Boeing, & Calder, 2013), and, in audition, vocal gen-

der (Latinus, McAleer, Bestelmeyer, & Belin, 2013). These aftereffects have so far been

demonstrated only as biases in the perception of putatively ’neutral’ stimuli, and so do not

yet provide evidence for either renormalisation or local repulsion. Before a conclusion can

be drawn in this regard, it will be necessary to apply more diagnostic tests such as those

demonstrated in the preceding chapters.

7.2.2 Bias-minimising methods applied to high-level aftereffects

A second problem with methods involving classification of a single stimulus is that the

location of the category boundary is determined both by the participant’s sensory evidence

and by their criteria for applying each of the response labels to that evidence (Farell & Pelli,

1999; Green & Swets, 1966; Kingdom & Prins, 2010). A change in perception and a change



7.2 methodological contributions of the present work 133

in decision criterion can produce exactly the same pattern of response shifts, which has led

many psychophysicists to discourage the use of method-of-single-stimulus classification

tasks (Gescheider et al., 1970; Green & Swets, 1966; Morgan et al., 2013; Morgan et al.,

2012; Storrs, 2015a; Yarrow et al., 2011). This is an important and under-addressed issue:

if high-level aftereffects are decisional biases rather than perceptual biases, they may all

have a similar origin within amodal cognitive processes and tell us little about the initial

encoding of any particular stimulus dimension. This concern applies also to experiments

presented in Chapter 3 (which employed a binary classification task to measure perceived

shape aspect ratio) and Chapter 5 (which employed ternary classification tasks to measure

perceived colour, facial gender, and facial distortion).

One way to dissociate response biases from perceptual biases is to use a two-alternative

forced-choice (2AFC) task, provided there exists an unadapted or differently adapted loca-

tion in the visual field. Isolating perceptual bias is still not straightforward. For example, if

one were to show two shapes with identical aspect ratios in adapted and unadapted retinal

locations, and ask ”which is more elongated?” (a simple 2AFC), a strategy of picking the

stimulus in the adapted location if unsure could masquerade as a perceptual bias (Jogan

& Stocker, 2014; Morgan, 2014; Morgan et al., 2013; Schneider & Komlos, 2008). Such

problems can be alleviated by elaborations to the forced-choice task, such as varying the

standard stimulus from trial to trial so that a perceptual bias predicts different PSE shifts

for different standard stimuli (Morgan, 2014; Morgan et al., 2013), or by presenting two

standard stimuli, both in unadapted locations, from which the participant selects the one

most similar to a test shown in the adapted location (Jogan & Stocker, 2014).

The 2AFC task elaboration adopted in Chapters 4 and 6 was to use a forced-choice double-

pair task (e.g. ”in which interval was the identical pair of shapes presented?”). Because

stimuli are presented in both spatial locations in both intervals, the observer can no longer

favour stimuli on the basis of spatial location. This double-pair task has the additional

advantage that the dimensions along which stimuli are varied need not be easily expressed

in language. For example, in the facial identity experiment in Chapter 6, participants

could identify which interval contained more similar faces, without having to first learn the

identities of particular faces to answer a question like ”which interval contained the face

most like Bob’s?”

Although an ’objective’ measure of subjective appearance is impossible, the forced-choice

double-pair tasks with multiple interleaved standard stimuli in Chapters 4 and 6 de-confounding

changes in appearance from irrelevant response biases, such as choosing stimuli in the

adapted location if in doubt. One obvious downside of these methods is that they are con-

strained to measuring spatially-localised adaptation. They would therefore fail to detect

any global component of a perceptual aftereffect. Although we have no reason to believe

the facial gender and identity aftereffects reported in Chapter 6 differ qualitatively from

those measured by other methods, it remains possible that there is an additional global com-



7.3 outstanding questions 134

ponent that went undetected in this experiment. The method proposed in Chapter 5 is not

limited to measuring spatially localised components, and could be applied to measuring

cross-modal or non-visual aftereffects. However, as with other method-of-single-stimulus

approaches, caution must be taken in interpreting data, as shifts in category boundaries

due to perceptual biases cannot be differentiated from those involving criterion shifts.

7.3 outstanding questions

7.3.1 Are different facial dimensions encoded in different ways?

It is important to note that this thesis did not reveal unanimous evidence for locally-

repulsive aftereffects. The exception was facial distortion adaptation (Chapter 5) which,

when measured via a ternary classification task, appeared more consistent with renormali-

sation than local repulsion. Interestingly, some of the strongest previous evidence for facial

renormalisation also comes from distortion adaptation (Rhodes et al., 2003; Robbins et al.,

2007; Webster & Maclin, 1999). These data are therefore consistent with the visual system

using different schemes to encode different properties, but are these properties necessarily

facial?

Distortion adaptation might not tap facial mechanisms specifically, but rather be akin to a

global visual geometric distortion, as experienced during prism adaptation (Redding et al.,

2005; von Helmholtz, 1909). The distortions used in Chapter 5 and by Rhodes et al. (2003)

and by Webster and Maclin (1999) mimic the effect of viewing an image through a concave

or convex lenses. Distortion aftereffects are not specific to faces, but can also be induced

between differently-distorted photographs of various natural scenes and textures (Maclin

& Webster, 2001). The ability of the visual system to compensate for certain geometric

distortions might involve a form of renormalisation, a possibility that warrants further

exploration.

A second possibility is that there is an interaction between low-level properties of adapting

and test images. Adaptation to a globally distorted image can be thought of as adaptation

to a systematically biased orientation field (Dickinson et al., 2010, 2012). If the adaptor and

test were presented at the same size and retinal location, one would expect this field of tilt

aftereffects to manifest as a local repulsion along the facial-distortion dimension (Webster

& MacLeod, 2011). As tests were smaller than adaptors in the relevant experiments, interac-

tions between orientations in the two images would have manifested in a more complicated

fashion.

Finally, facial distortion dimensions might be more susceptible to criterion shifts than di-

mensions involving face-specific properties, such as gender or identity. Evidence for renor-

malisation following distortion adaptation so far comes only from paradigms in which
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changes in perception and shifts in criteria can both contribute to the measured aftereffect

(i.e. the ternary classification task in Chapter 5, and the multi-point rating scales in Rob-

bins et al. (2007) and Rhodes et al. (2003)). After repeated exposure to a slightly distorted

face, participants might change their initial criterion for what they are willing to classify as

’normal.’ To test this possibility, it would be fruitful to apply the bias-minimising spatial-

comparison methods of Chapters 4 and 6 to facial distortion aftereffects.

7.3.2 Would renormalisation occur under different experimental circumstances?

The experiments presented here were intended to test the prediction that prolonged expo-

sure to a single non-neutral value would induce renormalisation of the relevant perceptual

dimension. This prediction is made by theories in which encoding mechanisms explic-

itly signal the manner in which an input deviates from a normative value (McKone et al.,

2014; Pond et al., 2013; Regan & Hamstra, 1992; Rhodes et al., 2005; Susilo et al., 2010;

Webster & MacLeod, 2011; Zhao et al., 2011). Our results do not preclude the possibility

that spatial vision might involve ’norms’ in a less explicit fashion, and that these values

might update during natural experience. For example, vertical and horizontal orientations

have unique psychological and linguistic salience, unique behavioural meaning (due to

gravity), and are accompanied by uniquely fine perceptual sensitivity (Appelle, 1972). The

over-representation of the cardinal axes might well be learned from the statistics of our

environments (Girshick et al., 2011), and alter under a different environment.

Many more complex dimensions also contain values that appear psychologically unique

and can be thought of as non-explicit norms. When viewing photographs, there is a par-

ticular distribution of spatial frequencies that renders the image ”in focus” to an observer.

After viewing images with distributions that deviate from this, renormalisation can oc-

cur, such that the adapted image appears better-focused than it had initially (Elliott et al.,

2011). Adaptation to a single spatial frequency, on the other hand, tends to induce a locally-

repulsive aftereffect on single-frequency tests (e.g. Blakemore et al. (1970)). Elliott and

colleagues (2011) showed that a standard multichannel model of spatial-frequency encod-

ing can account for both results. They proposed that after adapting to natural images, the

gains in spatial frequency channels adjust so that a natural image elicits approximately

equal activation across frequency-tuned channels. This balanced activation corresponds to

a subjectively ”in focus” image. Adaptation to an image with a different frequency dis-

tribution readjusts the gains of channels so that the adapted image elicits more balanced

activation after adaptation than it had initially. Multichannel codes can therefore predict

locally repulsive aftereffects after narrowband adaptation, and ’recalibration’ after broad-

band adaptation. Perception of an ”average” face might correspond to a learned pattern of

activation across face-selective channels, which can be updated by experience.
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7.3.3 How does adaptation in multiple substrates contribute to ’high-level’ aftereffects?

An image of a shape or face is a complex spatial pattern, and adaptation to the component

local contrasts, spatial frequencies, and orientations likely contributes to changes in how the

shape or face is perceived. Direct evidence for the inheritance of adaptation across the vi-

sual hierarchy comes from electrophysiology (Dhruv & Carandini, 2014) and from demon-

strations that adapting to simple stimuli can alter the appearance of more complex stimuli.

For example, adapting to an upwards-curved line can make a neutrally-expressioned face

appear sad (Xu et al., 2008); adapting to a ”T” shape with a long stem can cause partici-

pants to judge the height of the eyes on a face to be unusually low (Susilo et al., 2010); and

adapting to a field of oriented lines can alter the apparent emotional expression of a face

(Dickinson et al., 2012).

Nevertheless, ’high level’ aftereffects cannot be attributed solely to low-level adaptation.

Whereas tilt aftereffects are tightly retinotopically localised (Gibson, 1937; Knapen et al.,

2010), shape aftereffects can survive retinal location differences of several degrees of vi-

sual angle between adapting and test stimuli, as illustrated in Chapter 4 where spatially-

jittering adaptors induced robust aspect ratio adaptation (see also Regan and Hamstra

(1992), Suzuki (2005) and He, Kersten, and Fang (2012)). Results in Chapter 3 demonstrate

that the shape aspect ratio aftereffect is tuned not simply for the retinal shape, but is also

affected by perceived shape after the completion of shape constancy operations, suggesting

a reasonably late locus of adaptation. Face aftereffects can survive substantial differences

between adapting and test images, not only in terms of position (Afraz & Cavanagh, 2008),

but also in terms of size (Leopold et al., 2001; Webster et al., 2004; Yamashita et al., 2005;

Zhao & Chubb, 2001), orientation (Watson & Clifford, 2003), facial expression (Fox, Oruc,

& Barton, 2008) and identity (Fox & Barton, 2007; Lai, Oruç, & Barton, 2011; Walton, 2012).

In experiments in Chapters 5 and 6, retinotopically-local adaptation was mitigated by in-

troducing a size change between adapting and test stimuli. This is a standard precaution

in the face aftereffect literature, although it is worth noting that it by no means isolates

face-specific adaptation effects. Local adaptation to colour, contrast, orientation and spatial

frequency might have complex systematic effects on a differently-sized or -positioned test

(Blakemore & Over, 1974; Dickinson et al., 2010). Further, rescaling does not eliminate

translation-tolerant aftereffects, including those induced by adaptation to curvature (Ghe-

orghiu & Kingdom, 2008), shape (Regan & Hamstra, 1992), and texture (Motoyoshi, 2012).

Stricter controls are therefore required in order to evaluate to what extent ’face’ aftereffects

measure face-specific adaptation.

A re-examination of this question is particularly warranted given findings in this thesis.

The claim that face aftereffects manifest as renormalisation, rather than local repulsion,

has previously been cited as evidence that face aftereffects cannot be explained entirely

by adaptation to simpler image components (Webster & MacLeod, 2011). For example,
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adaptation to the edge energy in the adapting image will induce a collection of orientation

and spatial frequency aftereffects, which are known to be predominantly locally-repulsive.

If a test face is presented at the same size and in the same location, then this accumulation

of locally-repulsive local aftereffects should serve simply to exaggerate image differences

between the adapting and test faces. This would manifest as a local repulsion within

whatever face dimension the experimenter used. The vast majority of data in this thesis,

spanning various forms of spatial adaptation, followed a locally repulsive pattern (as do

tilt and shape aftereffects). This undermines one of the arguments against face aftereffects

being explicable by an aggregation of local aftereffects.

7.3.4 What function, if any, does adaptation serve in high-level vision?

The data collected here do not speak to what, if any, function is served by high-level adap-

tation. Face adaptation has been described as ”fitting the mind to the world” via renor-

malisation (Rhodes et al., 2005). Hypothetically this could ensure a person is best able to

differentiate faces typical of recent perceptual history, akin to the function light adaptation

serves by bringing the dynamic ranges of photoreceptors into useful bounds for the prevail-

ing environment (Rieke & Rudd, 2009; Shapley & Enroth-Cugell, 1984; Webster, Werner, &

Field, 2005).

The functional role of locally repulsive aftereffects is less apparent. Indeed, such perceptual

biases might seem maladaptive, perhaps arising when an upstream decoder is ’unaware’

of adaptation-induced changes at sensory encoding stages a phenomenon referred to as

a ”coding catastrophe” (Schwartz, Hsu, & Dayan, 2007; Seriès et al., 2009). One function

of locally repulsive aftereffects might be to sharpen discrimination sensitivity about the

adapted value. Improved discrimination have been reported in some studies (Clifford et

al., 2001; Oruç & Barton, 2011; Regan & Beverley, 1985) but not others (Barlow et al.,

1976; Rhodes, Maloney, et al., 2007; Westheimer & Gee, 2002). Another interesting and non-

exclusive possibility is that locally repulsive aftereffects, by temporarily warping perceptual

similarity, might facilitate attentional capture by novel scenes, objects, faces, and facial

expressions (McDermott et al., 2010; Ranganath & Rainer, 2003). The functional role of

adaptation in high-level vision remains an open question.

7.3.5 How should the present findings be reconciled with evidence for norm-based coding from

neuroimaging and electrophysiology?

Functional magnetic resonance imaging (fMRI) and single-unit electrophysiological data

are also cited as evidence for a norm-based encoding of faces. Loffler et al. (2005) presented

schematic faces drawn from a multidimensional artificial face space, while using fMRI to



7.3 outstanding questions 138

record blood oxygenation level dependent (BOLD) signal in the fusiform face area (FFA).

The BOLD signal was lowest for faces near the centre of the artificial space, and scaled

with facial distinctiveness. This is consistent with a norm-based representation of faces, in

which neurons in FFA are minimally activated by an average face, and can be increasingly

activated by faces that deviate from average.

There is complementary single-unit electrophysiological data. Leopold et al. (2006) pre-

sented macaques with images of realistic computer-generated human faces drawn from

an artificial face space. Face-selective neurons tended to respond minimally to the face at

the centre of the space, and increasingly as the face moved toward one or more distinctive

identities. In simulations, these data could be more closely fit by a norm-based population

model than by an exemplar-based model (Giese & Leopold, 2005). Freiwald et al. (2009)

created a space of cartoon faces with nineteen independent feature dimensions (eye height,

hair length, etc), and presented thousands of faces drawn from this space while recording

from the macaque middle face patch. Cells that were sensitive to variations along indi-

vidual feature dimensions tended to respond monotonically to increasing or decreasing

values of that feature, rather than responding maximally to an average or intermediate fea-

ture value. These results again appear consistent with cells being tuned to deviations from

a normative face.

Analogous results have been reported in the domain of shape perception. Neurons in mon-

key inferior temporal cortex have been reported that fire at an increasing rate as simple

geometric shapes become increasingly tapered or curved (Kayaert et al., 2005), or as novel

two-dimensional shapes move further from the average shape within a stimulus set (De

Baene, Premereur, & Vogels, 2007). The evidence is equivocal, though, as other investi-

gations have found relatively narrow tuning for particular preferred shapes (Pasupathy &

Connor, 2002; Tanaka, 2003) or for particular facial view and gaze directions (see Barra-

clough and Perrett (2011)).

Intuitively, monotonic tuning for non-average values suggests a norm-based encoding

scheme. However, there are complexities that render many of these results difficult to

interpret. Short-term adaptation presents a potential confound in both fMRI and electro-

physiology studies (Davidenko, Remus, & Grill-Spector, 2011; Jiang, Rosen, et al., 2006;

Kahn & Aguirre, 2012). In fMRI (Grill-Spector & Malach, 2001) and single-unit recording

experiments (e.g. Barlow and Hill (1963) and Miller, Gochin, and Gross (1991)), repeated

presentation of a stimulus tends to elicit a response smaller than the initial presentation.

Adaptation effects can therefore predict the pattern of responses reported — little response

to average stimuli, which have the highest overlap of features with preceding other stimuli,

but maintained responses to extreme stimuli, which have the lowest feature overlap with

other stimuli. A compelling demonstration of this confound was provided by Davidenko

et al. (2011), in an fMRI experiment using face silhouette images drawn from an artificial

face space. When faces of a fixed distinctiveness level were randomly selected within each
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experimental block, blocks containing more distinctive faces elicited greater activation. But

when faces of a fixed distinctiveness level were selected in a way that controlled the amount

of image variability within each block, highest activation was instead found for the most

prototypical faces. It is not yet clear to what extent neuroimaging and electrophysiologi-

cal evidence for norm-based neural tuning will survive careful controlling for adaptation

confounds (Kahn & Aguirre, 2012).

7.4 toward a fully-explicit model of high-level representation and adap-

tation

Throughout this thesis, I have derived experimental predictions from neural population

code models. To their credit, these models formalise ideas about encoding, adaptation, and

decoding. For the sake of simplicity (and consistency with the descriptions of models in

the literature), the models have elided many of the details required of a full model of spa-

tial form representation and adaptation. I have concentrated on single dimensions within

perceptual shape or face spaces, and have assumed these map monotonically onto con-

structed stimulus dimensions. I have also ignored the hierarchy of adaptable mechanisms

intervening between the retinal image and the representation of complex attributes, such

as ’gender.’ Throughout, I have simulated adaptation as a simple fatigue, although there

is good evidence for more complex effects on tuning curves and population interactions

(Clifford et al., 2007, 2000; Kohn & Movshon, 2004; Solomon & Kohn, 2014).

To begin to fully understand spatial representations, and how they adapt with experience,

we will need to move beyond these simplifications. A complete model of face perception,

for example, should fully explicate successive processing stages intervening between im-

age encoding and response behaviour (such as categorising the gender of the face). It

should be flexible, in that the encoding stage admits the substitution of several different

decoding stages corresponding to different behavioural tasks. Such a model should predict

psychophysical aftereffect patterns for arbitrary combinations of adaptor and test images,

as well as predicting other aspects of face perception — such as detection and classifica-

tion speed and accuracy, discrimination sensitivity, and the various quirks of human face

perception such as inversion effects (Yin, 1969), configural effects (Rossion, 2013; Young,

Hellawell, & Hay, 1987) and other-ethnicity effects (Shepherd et al., 1974).

Image-computable hierarchical models of some aspects of face perception already exist

(Farzmahdi, Rajaei, Ghodrati, Ebrahimpour, & Khaligh-Razavi, 2015; Hu et al., 2015; Jiang,

Rosen, et al., 2006; Wallis, 2013), and are likely to advance rapidly in coming years. Ob-

ject recognition by artificial systems has proven difficult, but in the past three years deep

neural networks have been built which rival human performance in constrained object cat-

egorisation tasks (Krizhevsky, Sutskever, & Hinton, 2012; Russakovsky et al., 2014). These
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models are engineering solutions, although comparisons of representations within deep

neural networks and human and monkey high-level visual cortex suggest some overlap of

computational strategies (Cadieu et al., 2014; Guçlu & van Gerven, 2015; Khaligh-Razavi &

Kriegeskorte, 2014; Yamins et al., 2014). Some neural network models (i.e. radial basis func-

tion networks such as HMAX; Riesenhuber and Poggio (1999)) correspond mathematically

to exemplar-based models in psychology (Jäkel, Schölkopf, & Wichmann, 2009). Others,

such as those that are state-of-the-art in machine vision (Krizhevsky et al., 2012; Ren, He,

Girshick, & Sun, 2015), do not correspond precisely to exemplar-based theory, but follow

similar principles of detecting similarity to stored features, rather than deviation from an

abstracted norm. Simulating adaptation and probing representations within such fully-

explicit models might grant a clearer understanding of computations in biological visual

systems.

7.5 conclusions

Over the past century, the idea that the visual system represents spatial properties relative

to normative values has recurred in various domains, including orientation (Gibson, 1937;

Gibson & Radner, 1937), curvature (Gibson, 1933; Poirier & Wilson, 2006), aspect ratio (Re-

gan & Hamstra, 1992) and face perception (Rhodes et al., 2005; Webster & Maclin, 1999).

In each of these domains, ’opposite’ aftereffects, such as the rightward tilt of a vertical line

after viewing a left-tilted adaptor, have been taken as evidence of an inherent opponency

underlying relevant neural representations. However, such distortions are equally consis-

tent with repulsive aftereffects that exaggerate differences between successive stimuli, and

which can arise in exemplar-based models with no explicit norm. More diagnostic tests,

such as measures of how the adaptor and more putatively ’extreme’ stimuli appear after

adaptation, are therefore needed, but this has been under-appreciated.

This thesis addressed these issues by evaluating evidence for renormalisation of orienta-

tion, aspect ratio, and facial attributes, using diagnostic psychophysical methods, inspired

by hypotheses based on neural population code modeling. In all domains (except facial

distortion), I found evidence for local repulsion, rather than renormalisation. These data

support models of encoding in which channels are relatively narrowly tuned to sub-regions

within the domains they encode. A great deal remains to be understood about how spatial

forms are represented in the brain, but it is encouraging to think similar computational

principles might operate throughout spatial vision.
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1.1 encoding and adaptation

1.1.1 Multichannel model

Noise-free neural populations were simulated in Matlab corresponding to simple versions

of the multichannel and opponent-channel hypotheses. The multichannel model comprised

20 simulated channels, with each channel’s response profile described by a Gaussian func-

tion:

fi(s) =
G0

σ
√

2π
e
−(s−µi)

2

2σ2 (1)

The peaks of each Gaussian, µi, were uniformly spaced along the interval −500 to +500

(arbitrary units). All channels had a standard deviation σ = 60, and an initial gain G0 =

σ/2.5, which produced a maximum response of 1 when a channel was presented with a

stimulus matching its peak tuning. The value of fi(s) can therefore be thought of as the

normalised average activity elicited in channel i by stimulus s.

After adaptation, each channel followed the same response function, but with its maximum

response reduced proportional to its baseline response to the adapted stimulus. The max-

imum response of each channel post-adaptation, Gi(adapt) was determined by the equation

(McKone et al., 2014; Seriès et al., 2009; Zhao et al., 2011):

Gi(adapt) = G0

(
1− αe

−(µi−sadapt)
2

2σ2
adapt

)
(2)

Here, α determines the strength of the maximum suppression after adaptation (set to 0.6

of the unadapted response), sadapt indicates the stimulus value of the adaptor, and σadapt

161



1.2 decoding 162

determines how broadly or narrowly adaptation affects channels selective for neighbouring

stimulus values (set to 60). Pre- and post-adaptation channel responses are shown in Figure

8a of Chapter 6.

1.1.2 Opponent-channel model

The opponent-channel model comprised two monotonic channels intersecting at stimulus

value zero, each described by a logistic function:

fi(s) =
1

1 + eks (3)

The single free parameter, k, controls the slope of the sigmoid, and was set to 0.01 for the

lower channel and −0.01 for the upper channel. After adaptation, each channel was sup-

pressed proportional to its baseline response to the adapting stimulus, so that the adapted

response function fi(adapt)(s) is given by:

fi(adapt)(s) = fi(s)× (1− α fi(sadapt)) (4)

where α was again set to 0.6. Pre- and post-adaptation channel responses are shown in

Figure 8d of Chapter 6.

1.2 decoding

Several methods can be used to estimate, from a pattern of neural activity, which stimulus

value was presented (see Ma and Pouget (2009)). Some of these methods ignore the overall

shape of each channel’s response profile, and simply consider the activity in a channel to

be a ’vote’ for the stimulus at the peak of the channel’s response function, with the strength

of activity determining the strength of the vote (in a winner-take-all or weighted-average

fashion). Such methods are not ideal for decoding the activity in opponent channels. First,

they produce biased estimates when channels do not uniformly tile the stimulus dimension,

and second, they are ill-defined for channels which do not have a single peak ’preferred

stimulus’. Instead, I opted to use maximum-likelihood estimation (MLE), which estimates

the stimulus most likely to have produced a given pattern of activity across channels, based

on full knowledge of the response function of each channel (assuming that all stimuli are
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equally likely a priori; Pouget et al. (2000)). MLE is the optimal decoding method for many

encoding schemes, in the senses that it recovers an unbiased estimate of the presented

stimulus, and when neural responses are noisy, its estimates have the smallest variance

(Pouget et al., 2000).

If the ith channel in a population of n channels has a response fi(x) in response to some

unknown stimulus x, then the log-likelihood of each possible stimulus s is (Jazayeri &

Movshon, 2006):

log(L(s)) =
n

∑
i=1

fi(x)log( fi(s))−
n

∑
i=1

fi(s) (5)

The best guess as to the presented stimulus, x̂, is the stimulus value for which the log-

likelihood is highest:

x̂ = argmaxs(log(L(s))) (6)

In both models, it was assumed that aftereffects occur because the decoding mechanism

is ’unaware’ of the changes in the channels’ response functions that occur after adaptation

(Seriès et al., 2009). After adaptation, the presented stimulus value was therefore estimated

by taking:

x̂ = argmaxs

( n

∑
i=1

fi(adapt)(x)log( fi(s))−
n

∑
i=1

fi(s)
)

(7)

where fi(adapt) is the ith channel’s post-adaptation response function and fi is its unadapted

response function.

1.2.1 Multichannel model

The predicted aftereffect at each test stimulus value was calculated as the decoded value

of that stimulus before adaptation, subtracted from its decoded value after adaptation (see

Chapter 6, Figure 8b inset). The multichannel model predicts a classic locally-repulsive

aftereffect, in which the adapting stimulus is decoded veridically both before and after

adaptation, but the values of nearby stimuli are ’repelled’ away from the adapted value
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after adaptation. The same pattern of aftereffects is produced following adaptation to any

value within the encoded range.

1.2.2 Opponent-channel model

The opponent-channel model predicts a uniform ’renormalisation,’ in which the adaptor

appears more neutral after adaptation, and the appearance of all other stimuli is altered in

the same direction by the same amount (see Chapter 6, Figure 8e inset). The magnitude and

direction of this uniform shift depends on the adapting value, with adaptors further from

the norm (zero) producing larger shifts, and adaptation to the norm uniquely producing

no aftereffect.

I also considered a ratio-based version of the opponent-channel model, as it has been pro-

posed that ’opponency’ may arise because a readout mechanism takes the ratio between an

upper and a lower response channel (Robbins et al., 2007; Susilo et al., 2010). For the ratio-

based model, the value of the upper
lower response functions was taken, and used as the input

to an MLE decoding stage. This produced identical results to performing MLE directly on

the channel responses and so is not further considered.

1.3 relative aftereffects between two differently-adapted locations

To derive predictions for the relative aftereffect induced between two differently-adapted

locations, it was assumed that stimuli in each of two locations are encoded by identical,

independent populations. This is likely not realistic; receptive field sizes of face-selective

cells are highly variable, but some are likely large enough to include both stimulus loca-

tions in our experiments (Rolls, 2011). However, it is an acceptable simplification, because

adaptation in neurons equally responsive to both adapting locations should affect both test

stimuli equally, and so any differences in adapted state between the two locations must be

due to neurons solely or disproportionally responsive to one location.

First, the value of each test stimulus was separately decoded in two identical but indepen-

dent location-specific populations, one before and after adapting to a stimulus value of

−200 (arbitrary units) and the other before and after adapting to a value of −50. Then, the

relative aftereffect was calculated as the aftereffect in the −200-adapted population minus

that in the −50-adapted population, for each possible test stimulus value.

In the multichannel model, the relative aftereffect has an undulating pattern, being great-

est for test values midway between the two adapted locations on the stimulus dimension,

becoming smaller or opposite in direction at and just beyond the two adaptors, and dimin-

ishing to zero far from the adapted values (black curve in Figure 8c of Chapter 6). The

magnitude and shape of the relative aftereffect varies depending on the width of the un-
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derlying channels, the spread of adaptation through the channels, and the position of the

two adaptors, but across a wide range of simulations, these qualitative properties remained

true. The opponent-channel model predicted a qualitatively different pattern of results, in

which the relative aftereffect is of the same magnitude and direction for all test stimuli

(black line in Figure 8f of Chapter 6).

1.4 robustness of model predictions

1.4.1 Effect of using a weighted-average decoder instead of MLE

Maximum-likelihood estimation determines the stimulus that was most likely presented,

given full knowledge about the unadapted response functions of each channel, and pro-

vides an unbiased readout of both models before adaptation. Other decoding methods

may predict different post-adaptation perceptual biases. To consider the impact of decoder

choice, I repeated the simulations above using a weighted-average decoder, as used in pre-

vious models of face adaptation presented in McKone et al. (2014) and Chapter 5 of the

present thesis (Georgopoulos et al. (1986); also called a population-vector decoder when

applied to circular dimensions).

The weighted average decoder considers activity in each channel as a ’vote’ for its pre-

ferred stimulus (weighted by the strength of that activity), and so is ill-defined for models

in which some or all channels increase monotonically, with no single preferred stimulus.

Following McKone et al. (2014), a ’dummy’ preference was assigned to each opponent

channel, of µ = −300 for the lower channel, and µ = +300 for the upper channel. These

values led to the smallest decoding errors over the visualised range (±300); other values

predicted qualitatively similar patterns of aftereffects, but created larger biases in the un-

adapted readout. For each presented stimulus, x, the decoded value, x̂, was given by the

weighted ’votes’ of all channels:

x̂ =

n
∑

i=1
fi(x)µi

n
∑

i=1
fi(x)

(8)

For the multichannel model, this decoding method produces a veridical readout before

adaptation (see Figure 1b; biases occur only near the ends of the channels, outside of the

visualised region). The pattern of aftereffects after adapting to a single stimulus value

(see Figure 1c, red and green curves) and the pattern of relative aftereffects between two
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differently-adapted locations (Figure 1c, black curve) are identical to those predicted using

MLE decoding (compare to Figure 8c in Chapter 6).

(a)

(b)

(c)

(d)

(e)

(f)

Multichannel code Norm-based opponent code

Weighted average decoderWeighted average decoder

Figure 1. Adaptation simulations based on weighted-average decoding rather than MLE. (a) Re-
sponse functions of each channel in a multichannel code, and (d) in an opponent-channel code,
before (blue) and after (red) adapting to a stimulus at -50 (arbitrary units). (b) A weighted-average
readout of each stimulus before (blue) and after (red) adaptation in a multichannel code, and (e) an
opponent-channel code; dashed black line shows the veridical value. (c) Predicted aftereffect (post-
adaptation decoded value minus unadapted decoded value) after adapting to -200 (green) and -50
(red) in a multichannel code, and (f) in an opponent code. Black curves show the predicted relative
aftereffect (i.e. green curve minus red curve).

For the opponent-channel model, the weighted average method produces decoding errors

— note that in Figure 1e the unadapted readout (blue curve) deviates from the veridi-

cal value (dashed black line). Predicted aftereffects are somewhat different from those

predicted using an MLE decoder. A weighted-average readout predicts a non-uniform re-
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normalisation, in which the renormalisation is greatest around previously neutral stimuli,

regardless of the adapted value (Figure 1f, red and green curves). The relative aftereffect

follows the same pattern (Figure 1f, black curve). This could in principle produce the un-

dulating relative aftereffect pattern evident in our data, if adaptors were far apart on the

encoded dimension, and symmetrically spanned the neutral stimulus. However, we do not

think this provides a good account of our results, for two reasons. First, our adapting stim-

uli lay predominantly to one side of the central stimulus along each continuum, rather than

spanning the most identity- or gender-neutral face. Second, in the facial gender experiment,

a similar pattern of aftereffects ensued when adaptors and tests were centred either around

a male or around a female face, suggesting that aftereffect magnitudes were determined by

the position of test faces relative to adapting faces, rather than by their absolute position

along the stimulus dimension (this point is further considered in the Discussion of Chapter

6).

1.4.2 Effect of different adapted locations on the relative aftereffect

Finally, I explored the robustness of the predicted relative aftereffect pattern for different

combinations of adapted values. The relative aftereffect was simulated after adaptation

to all combinations of two adaptors selected from the set {-300, -200, -100, 0, +100, +200,

+300}. I used MLE decoding, and the parameters described above, for both models. The

qualitative pattern of relative aftereffects was identical within each encoding scheme for all

combinations of adapted values. In the multichannel code, relative aftereffects were largest

for a test point midway between the two adapted values, and in the opponent-channel code,

relative aftereffects were of equal magnitude at all test points.
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A version of this appendix originally appeared as:

Storrs, K. R. (2015b). Facial age aftereffects provide some evidence for local repulsion (but

none for re-normalisation). i-Perception, 6(2), 100–103.

2.1 abstract

Face aftereffects can help adjudicate between theories of how facial attributes

are encoded. O’Neil et al. (2014) compared age estimates for faces before and

after adapting to young, middle-aged, or old faces. They concluded that age

aftereffects are best described as a simple renormalisation — e.g. after adapting

to old faces, all faces look younger than they did initially. Here I argue that

this conclusion is not substantiated by the reported data. The authors fit only

a linear regression model, which captures the predictions of renormalisation,

but not alternative hypotheses such as local repulsion away from the adapted

age. A second concern is that the authors analysed absolute age estimates af-

ter adaptation, as a function of baseline estimates, so goodness-of-fit measures

primarily reflect the physical ages of test faces, rather than the impact of adapta-

tion. When data are re-expressed as aftereffects and fit with a nonlinear ’locally

repulsive’ model, this model performs equal to or better than a linear model

in all adaptation conditions. Data in O’Neil et al. (2014) do not provide strong

evidence for either renormalisation or local repulsion in facial age aftereffects,

but are more consistent with local repulsion (and exemplar-based encoding of

facial age), contrary to the original report.
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2.2 facial age aftereffects provide some evidence for local repulsion

(but none for renormalisation)

The properties of a face can seem to change depending on what other faces you have seen

recently. For example, after looking at an old face, participants tend to rate middle-aged

faces as being younger than they had initially (Schweinberger et al., 2010). Face afteref-

fects may result from neural adaptation of channels encoding facial attributes and, if so,

studying the patterns of biases induced by adaptation might help reveal the number and

selectivity of such channels (Webster & MacLeod, 2011). There are two prominent theo-

ries concerning how facial attributes are encoded. According to exemplar-based proposals,

multiple channels encode each attribute, with each channel selective for a particular value

of that attribute, and no value playing a special role (Lewis, 2004; Valentine, 1991). Accord-

ing to norm-based proposals, channels are selective for the ways in which a face differs

from a perceptual ’norm’ (e.g. the average face), which is constantly updated according to

recent experience (Rhodes et al., 2005; Valentine, 1991). In simulations, these two encod-

ing schemes predict markedly different patterns of adaptation-induced aftereffect (Storrs &

Arnold, 2012, 2015b; Webster & MacLeod, 2011). Exemplar-based encoding can predict a

locally-repulsive pattern of biases after adaptation (see Figure 1, left), like that found after

adapting to simple spatial properties such as orientation and spatial frequency (Blakemore

et al., 1970; Mitchell & Muir, 1976; Nemes, Whitaker, Heron, & McKeefry, 2011; Seriès et al.,

2009). Norm-based encoding can instead predict renormalisation, involving a uniform bias

at all points along the test continuum (see Figure 1, right).

Despite the qualitative differences between local repulsion and renormalisation, it is not

clear which best describes face aftereffects. The two proposals can only be clearly dissoci-

ated by measuring changes in perception at the adapting face and for more ’extreme’ test

faces, and this is difficult to do using common methods such as binary classification tasks

(see Chapters 5 and 6). In a recent paper, O’Neil et al. (2014) attempted to overcome this

problem by measuring aftereffect patterns along a natural facial dimension for which peo-

ple can easily report the appearance of any test face, using a reasonably precise and reliable

numerical value: age. In O’Neil et al. (2014), age estimates for 80 test faces were collected

before adaptation, and again after adapting to a sequence of young, middle-aged, or old

faces. This provides a rich dataset, from which the perceptual change induced at any point

along the age continuum, after each type of adaptation, can in principle be measured. The

authors argued that the changes in age ratings after adaptation were best described as a

uniform shift in perceived age across all test faces, and therefore that these data support

norm-based theories of facial encoding.

However, there are two issues relating to this conclusion. First, and most importantly, the

authors presented and analysed fits to their data from a regression model containing only

a linear term. This straight-line model well captures the predictions of a uniform renor-
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Figure 1. A schematic illustration of the predicted changes in perceived age after adapting to a mod-
erately old face, if facial age aftereffects follow (left) a locally-repulsive or (right) a renormalising
pattern. Before adaptation (blue curves) perceived age may match physical age. After adaptation
(red curves), local repulsion predicts that the apparent age of the adapting face will not change, but
younger faces will look exaggeratedly young, and older faces will look exaggeratedly old. Renormal-
isation predicts that the adapting face and all other faces will appear younger by approximately the
same amount.

malisation (a shift in the intercept with no change in slope), but it doesn’t well capture the

predictions of a local repulsion. The authors proposed that local repulsion should manifest

as a change in both the intercept and the slope of the best fitting line after adaptation, rel-

ative to baseline. This might reasonably describe shifts predicted by a very broadly-tuned

local repulsion, but since the tuning of any hypothetical local repulsion as a function of

physical age is unknown, a linear model cannot comprehensively capture the local repul-

sion hypothesis. The authors note that including higher-order terms in the linear regression

model accounted for negligible additional variance. However, models with such terms (e.g.

quadratic or cubic functions) also fail to neatly capture the local-repulsion hypothesis. Be-

low I compare the linear fits in the original report to an alternative model — a first deriva-

tive of a Gaussian function — which well describes the locally repulsive aftereffect pattern

found following adaptation to simpler spatial patterns, such as tilt and spatial frequency

(Blakemore et al., 1970; Mitchell & Muir, 1976; Nemes et al., 2011; Seriès et al., 2009).

Second, it is unclear in the original report how well model fits capture aftereffect patterns, as

the authors performed regression on absolute age estimates for each test face after adapta-

tion, as a function of absolute age estimates for each test face before adaptation. Unsurpris-

ingly, post-adaptation age ratings were highly correlated with pre-adaptation ratings. The

authors specify that physical age accounts for ∼94% of the variance in all regressions in-

volving post-adaptation age ratings, so only minimal variance was left to be accounted for

via the effects of adaptation. The linear model reported in O’Neil et al. (2014) explains ∼98-
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99% of the variance in post-adaptation age ratings, but it is important also to know how

well the model explains the relatively minor shifts in age ratings induced by adaptation.

Since we are interested in the aftereffect pattern, it is more appropriate to analyse differences

in estimated age for each test face before vs after adaptation. In Figure 1 I have re-expressed

these data (available in the Supplementary data file of O’Neil et al. (2014)) in terms of the

shift in average age estimate for each test face, as a function of the pre-adaptation average

age estimate for that face. I fit each dataset independently with a linear model (blue lines)

and with a nonlinear Gaussian-derivative model (red curves), in Matlab.

Across all three datasets, neither model provided a good fit to aftereffect data (see Figure

2). For aftereffects induced by adapting to Young faces, linear regression R2 = 0.008, ex-

plaining less than 1% of the variance in aftereffect data. Root mean squared error (RMSE)

of both the linear and nonlinear models1 = 2.16 years. For Middle-Aged adaptation, model

fits are again poor and similar: linear model R2 = 0.019 (RMSE = 2.92 years) and nonlin-

ear model RMSE = 2.86 years. For Old adaptation, linear model R2 = 0.005 (RMSE = 2.82

years) and nonlinear model RMSE = 2.55 years. Since the two models are not nested, it is

not appropriate to compare them on the basis of an F-ratio. An alternative metric is the

Bayesian Information Criterion (BIC) which provides unbiased estimates of goodness-of-

fit for nonlinear models (Spiess & Neumeyer, 2010) and contains a term to penalise more

complex models. The lowest BIC value indicates the model that fits the data best with the

fewest parameters, and the magnitude of the difference in BIC values between two models

indicates the strength of evidence in favour of one over the other. For the Young adaptation

data, linear model BIC = 355 and nonlinear model BIC = 357. According to the conventions

suggested by Raftery (1995) a difference in BIC of 2 or less should not be considered evi-

dence in favour of either model. For Middle-Aged adaptation, linear model BIC = 403 and

nonlinear model = 402 (again a neglible difference). For Old adaptation, linear model BIC

= 398, and nonlinear model BIC = 384. A BIC difference of >10 constitutes ”very strong”

evidence (Raftery, 1995), here in favour of the nonlinear local-repulsion model.

This new analysis makes two points. First and foremost, the shifts in age ratings for each

test face are highly variable, and neither model provides a good fit to the data. The best

linear fit explains less than 2% of the variance in aftereffect data for each test face. Second,

if we were to attempt to compare the two models, two of the three datasets provide no

evidence in favour of either model, and in the third, a Gaussian-derivative model (capturing

a locally-repulsive pattern of biases) provides a better fit to the aftereffect data than does

a linear model (and is judged as superior using a metric which penalises this model for

having one more parameter than the linear model).

The source of the variability in the age aftereffect across test faces is unknown. One pos-

sibility is that different test faces interacted differently with the series of adapting faces;

for example because some test faces share many features with members of the adapting

1 R2 does not have a clear interpretation for nonlinear models (see Spiess and Neumeyer (2010)).
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Figure 2. Average shift in estimated age for each test face, relative to its estimated age at baseline,
after (a) adapting to young faces, (b) middle-aged faces, or (c) old faces. Aftereffect data were fitted
with a linear model (blue lines) and a first derivative of a Gaussian function (red curves). Root mean
squared error (RMSE) is shown for each fit, and additional details are provided in the main text.
All graphs and analyses are based on mean age ratings as given in the Supplementary data file of
O’Neil, Mac, Rhodes, and Webster (2014).

series while other test faces share few features with the adaptors. Aftereffects along one

facial dimension are known to be largest when test and adapting stimuli are similar along

other dimensions (Little, DeBruine, Jones, & Waitt, 2008). Such exemplar-specific effects

may arise either from interactions between local properties of the adapting and test im-

ages (Dickinson et al., 2010, 2012), or from the overlap between test and adapting faces in

higher-level representations.

In conclusion, the pattern of perceptual changes induced by age adaptation is far from clear

in these data. Where there is evidence for either hypothesis, they more strongly support

the local-repulsion hypothesis (and exemplar-based encoding), than renormalisation (and

norm-based encoding), contrary to the title claim of O’Neil et al. (2014).
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3.1 supplementary figure

Figure 1 (following page). Selected face images from each of the stimulus sets used in the facial

identity experiment. Each depicts a continuum between two different same-gender identities; letters

to the right of each row indicate whether the face continuum was centred on a male or female average

face (shown as face 101). Each of the 15 participants saw a different stimulus set. For all participants,

the Central Standard was face image 66.
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C O L O P H O N

This thesis was typset in LATEX.
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