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Entanglement and nonclassicality: A mutual impression
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We find a sufficient condition to imprint the single-mode bosonic phase-space nonclassicality onto a bipartite
state as modal entanglement and vice versa using an arbitrary beam splitter. Surprisingly, the entanglement
produced or detected in this way depends only on the nonclassicality of the marginal input or output states,
regardless of their purity and separability. In this way, our result provides a sufficient condition for generating
entangled states of arbitrary high temperature and arbitrary large number of particles. We also study the evolution
of the entanglement within a lossy Mach-Zehnder interferometer and show that unless both modes are totally
lost, the entanglement does not diminish.
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I. INTRODUCTION

Quantum protocols outperform their classical counterparts
by taking advantage of quantum resources, the most well
known of which is quantum entanglement [1–3] used for
quantum key distribution [4], quantum dense coding [5],
quantum teleportation [6], and gravitational wave detection
[7]. Consequently, it is of great importance to have easy
approaches for entanglement generation and detection.

Arguably, the simplest way of generating entanglement is
to use a beam splitter (BS). Whether the input beams are
two rays of photons [8–11] or two rays of atoms [12], it
is of fundamental interest to ask when does a BS generate
entangled outputs. It is also well known that a BS transforms
separable Fock states into modal entangled binomial states,
while it leaves separable coherent states unentangled [13].
Such relations were first considered by Kim et al. [8] and it
was proven by Wang [14] that the ability of a BS to produce
entangled outputs is closely connected to the nonclassical
properties of the input states: the entanglement in the output
of a linear optical network implies the nonclassicality in the
phase-space representation of the inputs. This, indeed, revealed
a necessary relation between the two notions of entanglement
detection and nonclassicality, which was used to quantify the
input nonclassicality via measuring the entanglement of the
output [10]. In this direction, a nice study relating distillable
entanglement detection to photon statistics nonclassicality is
given in Ref. [15]. Further investigations led to a complete
understanding of the entanglement-nonclassicality correspon-
dence from the perspective of Gaussian states and distillable
entanglement [9,16]. Moreover, it has recently been shown that
if the Glauber-Sudarshan P functions of pure product inputs to
an N -port connected linear optical network are nonclassical,
then the output will almost always exhibit entanglement
[11]. Nonetheless, a peculiar situation exists in which the
entanglement–nonclassicality correspondence breaks down:
whenever two squeezed states with parallel squeezing axes
interact on a balanced beam splitter, they will be transformed

*hamedgholipoor1987@gmail.com
†f.shahandeh@uq.edu.au

into separable product states although they are considered to
be highly nonclassical.

To reconsider the mutual relation between entanglement
generation (detection) and nonclassicality, we need an appro-
priate criterion for entanglement detection. There are several
criteria for verification of entanglement (see, e.g., Ref. [6] and
references therein), probably the most famous one is the partial
transposition criterion [17,18]. There is another extensively
studied approach, the so-called entanglement witnessing,
which provides a necessary and sufficient condition [18–21].
The advantage of entanglement witnesses (EWs) is that they
allow us to detect entanglement without full information about
the quantum state by measuring statistics of a finite number of
quantum observables. Different types of Bell inequalities, for
instance, are EWs to test nonlocality [19]. Such observables
are relatively easy to construct in low dimensions, while
generally very hard in high-dimensional Hilbert spaces, e.g.,
for continuous variable (CV) systems. Despite that there are
efficient methods for optimization of EWs in bipartite and even
multipartite scenarios [22–24], there exist a few methods for
EW construction; see, e.g., Ref. [25]. Here, however, we use
an EW construction to be applied to our particular problem.

In this contribution, we derive a sufficient condition for the
phase-space nonclassicality of at least one of the input states
to a BS to guarantee the entanglement of the output modes,
regardless of the other input state. Remarkably, our criterion
immediately removes any assumptions about the purity or
the separability of the inputs. Such a simple entanglement
generation criterion allows one to easily design schemes
for technically difficult tasks such as high particle number
entanglement generation. For example, we prove that a single-
photon state of sufficient purity generates entanglement from
any state, e.g., an arbitrarily high-temperature thermal state,
upon incidence on any BS. We also reexamine entanglement
detection stage and show that entanglement can be imprinted
onto a single mode in the form of phase-space negativities.
In other words, detecting negativities of marginal phase-space
functions, e.g., using homodyne detection, at the output of a BS
provides a simple criterion for local entanglement verification.

The paper is organized as follows. We start with introducing
our EW construction approach in Sec. II together with a
detailed account of its properties. In Sec. III we derive
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our sufficient criterion for transforming nonclassicality to
entanglement and vice versa using an arbitrary BS. The
extensive discussion of the results and their implications is
given in Sec. IV. To study the effect of loss on the generation
and detection of entanglement, we study the explicit example
of a Mach-Zehnder interferometer (MZI) with lossy arms in
Sec. V. A summary and conclusions are provided in Sec. VI.

II. EW CONSTRUCTION

Let us start with introducing our EW construction proce-
dure. Consider an n-dimensional Hilbert spaceH and the linear
vector space A(H) of linear operators acting on H, endowed
with Hilbert-Schmidt inner product (Â,B̂) := TrÂ†B̂. Denote
the subset of A(H) consisting of linear operators with finite
norm as L(H) and the space of quantum states S(H) as
the subset of L(H) for which all members are positive
and normalized. Thus, we have the hierarchy of spaces as
S(H) ⊂ L(H) ⊂ A(H).

Any linear functional from L(H) to C is given by TrF̂ Â

for some F̂ ∈ L(H) for all Â ∈ L(H) via the celebrated
Riesz theorem. Suppose that the set X = {X̂ij } ⊂ A(H) (i,j =
1,2, . . . ,n) is any basis set for L(H) such that X̂

†
ij := X̂ji . We

call the set of operators X′ = {X̂′
ij } dual to X if

(X̂′
ij ,X̂kl) = TrX̂′†

ij X̂kl = δikδjl . (1)

This simple construction allows us to expand any quantum
state in either of the bases as

�̂ =
n∑

ij=1

�′
ij X̂ij with �′

ij = (X̂′
ij ,�̂) = TrX̂′†

ij �̂,

(2)

�̂ =
n∑

ij=1

�ij X̂
′
ij with �ij = (X̂ij ,�̂) = TrX̂†

ij �̂.

For two arbitrary quantum states �̂1,2∈S(H), the Cauchy-
Schwarz inequality reads as

0 � Tr�̂1�̂2 �
√

Tr�̂2
1

√
Tr�̂2

2 � 1, (3)

where we have used the facts that density operators are positive
and Tr�̂2 � 1 for any quantum state. Now, expanding �̂1 in
{X̂′

ij } basis and �̂2 in {X̂ij } basis using Eqs. (1) and (2) gives

0 � Tr�̂1�̂2 =
n∑

ij=1

�∗
1;ij �

′
2;ij � 1, (4)

where �∗
1;ij := (X̂ij ,�̂1)∗ = TrX̂ij �̂1 and �′

2;ij := (X̂′
ij ,�̂2) =

TrX̂′†
ij �̂2. In addition, suppose that 0 < G � g̃ is a bounded

positive definite superoperator defined as

G(·) =
n∑

ij=1

gij X̂ij TrX̂′†
ij (·), (5)

such that G(X̂kl) = gklX̂kl . The matrix elements of G are thus
given by Gij ;kl = TrX̂′†

ijG(X̂kl) = gij δikδjl . It is clear that the
modulus of gij is bounded by g̃. Multiplying each term of the
sum in Eq. (4) with gij preserves the inequality with the upper

bound g̃, and thus,

0 �
n∑

ij=1

gij�
∗
1;ij �

′
2;ij � g̃. (6)

Consequently, we state the following EW construction proce-
dure from arbitrary set of local operators.

(i) Choose an arbitrary basis set X = {X̂ij } (i,j =
1,2, . . . ,n) for L(H) corresponding to the set of dual operators
X′ = {X̂′

ij }.
(ii) Choose a bounded positive definite superoper-

ator (pseudometric) 0 < G � g̃ with matrix elements
TrX̂′†

ijG(X̂kl) = gij δikδjl .
(iii) Define the Hermitian witness operator to be

Ŵ :=
n∑

ij=1

gij X̂ij ⊗ X̂
′†
ij . (7)

One can simply verify that a bipartite quantum system living
in the n4-dimensional state space �̂ ∈ S(H⊗2) is entangled if

(�̂,Ŵ ) = Tr�̂Ŵ /∈ [0,g̃]. (8)

This is because, according to the above discussion, for
any separable state of the form σ̂ = ∑

k pkσ̂1;k ⊗ σ̂2;k with∑
k pk=1 one has 0 � Trσ̂ Ŵ � g̃.
Let us investigate the properties of the above class of

witnesses under local maps. For this purpose, suppose that the
map Îi ⊗ �̃j (i,j = 1,2 and i �= j ), where Îi is the identity
of A(Hi) and �̃j : A(Hj ) → A(Hj ), has been applied to
the set of separable states so that τ̂ = TrÎi ⊗ �̃j (σ̂ ) is an
unnormalized separable operator for any separable state σ̂ .
Thus, 0 � Trτ̂ Ŵ if and only if the map �̃j is a positive map
sending quantum states to (unnormalized) positive operators.
Now, corresponding to any map �̃ the adjoint map � is
defined such that (B̂,�̃(Â)) = (�(B̂),Â) for all Â,B̂ ∈ L(H).
Therefore, positivity of �̃ implies the positivity of the adjoint
map and vice versa. This, in turn, implies that 0 � Trσ̂ Îi ⊗
�j (Ŵ ): any positive map preserves the witnessing property of
Ŵ with respect to the lower bounded inequality.

What can we say about the upper bound g̃? Given that
Îi ⊗ �̃j (i,j = 1,2 and i �= j ) is a positive map, we have

1

N
Trτ̂ Ŵ � g̃, (9)

where N = Trτ̂ and 1
N

τ̂ is a legitimate separable quantum
state. Consequently, Trτ̂ Ŵ � g̃ if and only if TrÎi ⊗ �̃j (σ̂ ) �
1: we are allowed to apply local maps, which are trace-non-
increasing positive (TnIP), to the set of separable states. Pass-
ing to the positive adjoint map �j we have Trσ̂ Îi ⊗ �j (Ŵ ) �
g̃. In addition, �̃j must preserve the Hermiticity, which im-
poses the Kraus representation �̃j (Â) = ∑

k εjkÊjkÂÊ
†
jk with

εjk = ±1 so that the adjoint map will be given by �j (B̂) =∑
k εjkÊ

†
jkB̂Êjk [26]. Thus, the trace-non-increasing property

gives

Tr�̃j (Â) = Tr
∑

k

εjkÊ
†
jkÊjkÂ � 1 for all Â

⇔
∑

k

εjkÊ
†
jkÊjk � Î ⇔ Tr�j (Î) � Î, (10)
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that is, the adjoint map must be subunital. In summary, we
are allowed to apply local maps, which are subunital positive
(SUP) to any witness of the form (7) preserving the upper
bound in Eq. (8).

It is also worth noticing that, for both cases discussed above,
the map �j should necessarily be entanglement-non-breaking
(EnB) to preserve the witnessing capability of Ŵ . In particular,
the partial transposition operation is a trace-non-increasing
positive but not completely positive (and thus SUP) map,
which is also EnB, preserving the witnessing property of the
operators in Eq. (7).

In the following, we show another important property of
our construction; it is basis set independent and it is uniquely
determined by the pseudometric G. Consider an invertible map
� : A(H) → A(H) and its dual �′ : A(H) → A(H), which is
defined so that it preserves the duality condition (1):

Tr�′†(X′
ij )�(Xkl) = δikδjl and �′†(X′

ij ) = �′(X′†
ij ).

(11)
Hence, it can be easily verified that

(σ̂ ,Ŵ ) = Trσ̂ Ŵ = Trσ̂� ⊗ �′(Ŵ ) = Tr�̂1G(�̂2). (12)

Thus, the witness operator in Eq. (7) is � ⊗ �′ invariant for
any invertible map �. It is also clear that all basis sets for L(H)
can be transformed to each other via an invertible map �—they
are all isomorphic to each other. In other words, by choosing
a fixed metric G, the outcome of the witnessing procedure is
independent of the chosen bases. The above considerations
imply that the Hermitian operator Ŵ in Eq. (7) can be a
bipartite entanglement witness for any choice of the basis set
X. Accordingly, we may consider a typical local orthogonal
rank-one (self-dual) basis set X = {|i〉〈j |}ni,j=1 and construct

the EW Ŵ = ∑n
ij=1 |i〉〈j | ⊗ |i〉〈j | where the metric is chosen

to be the identity superoperator. Any other basis set X and its
dual set X′ can be obtained from {|i〉〈j |}ni,j=1 using two dual

invertible maps, � and �′. Moreover, we may note that Ŵ is
the Choi matrix of the identity map. Notably, all arguments
of this section equally hold for infinite-dimensional Hilbert
spaces, because both the Riesz theorem and Cauchy-Schwarz
inequality hold for any Banach space.

A relevant subtle point here is that, in the infinite or very-
high-dimensional cases, one is not able to measure an infinite
number of basis elements in practice. We close this section by
proving that our construction method can be equally applied
to a subset of bases elements.

Lemma. Any operator of the form (7), constructed from any
subset of the basis set, {Ŷij } ⊆ {X̂ij }, satisfies the necessary
condition of the entanglement witness Eq. (8) provided that it
spans a subset of the state space M(H) ⊆ S(H).

Proof. Without loss of generality, we assume a finite-
dimensional Hilbert space. The set M(H) is convex and
endowed with a set of rank-one projection generators {P̂ m

i }
in a one to-one correspondence with {Ŷij },{P̂ m

i } ∼= {Ŷij }. Let
us call Mc(H) the state space generated by the span of the
basis set {Ẑij } = {X̂ij }\{Ŷij }. In the same way, Mc(H) is the
convex hull of rank-one projections {P̂ c

i } ∼= {Ẑij }. The whole
convex set S(H) is generated by {X̂ij } = {Ŷij }

⋃{Ẑij } ∼=
{P̂ m

i } ⋃{P̂ c
i }. It is also clear that Mc(H) ⊥ M(H). Therefore,

there exists a decomposition �̂ = α�̂m + (1 − α)�̂c with α ∈

[0,1],�̂m ∈ M(H) and �̂c ∈ Mc(H) for all �̂ ∈ S(H). We
conclude the proof with noticing that the projection of any
state �̂ ∈ S(H) onto M(H) is the legitimate density operator
�̂m, and the proof for the conditions of witness operator (7)
holds for it. That is, given the witness Ŵm = ∑

ij gij Ŷij ⊗ Ŷ
′†
ij

and for any product state σ̂ = σ̂1 ⊗ σ̂2 where σ̂i = αiσ̂
m
i +

(1 − αi)σ̂ c
i with αi ∈ [0,1],σ̂ m

i ∈ M(H) and σ̂ c
i ∈ Mc(H) for

i = 1,2, one has

0 � (σ̂ ,Ŵm) = Trσ̂ Ŵm = α1α2Trσ̂ m
1 σ̂ m

2 � g̃, (13)

The generalization to σ̂ = ∑
k pkσ̂1;k ⊗ σ̂2;k with

∑
k pk=1 is

straightforward. �

III. SUFFICIENT CRITERION

In what follows, as the main result of this paper, we
construct an EW and apply it to the output of a BS to obtain a
sufficient criterion for entanglement generation and detection.

A useful witness operator of type (7) can be con-
structed from s-ordered displacement operator D̂(α,s) =
D̂(α) exp(s|α|2/2) with α ∈ C and s ∈ [−1,1]. The parameter
values s = −1,0,1 correspond to antinormal, Weyl-Wigner
and normal orderings, respectively [27]. The s-parametrized
characteristic function of the state �̂ is given by χ (α,s) =
Tr�̂D̂(α,s). We also have the duality relation

TrD̂†(α,−s)D̂(β,s) = πδ(2)(β − α), (14)

and thus the dual operator to D̂(α,s) is D̂†(α,−s) =
D̂(−α,−s). Therefore, we may replace the sum in Eq. (7)
by integration over the whole complex plane and construct the
following s-parameterized witness operator,

Ŵ (s) =
∫

d2α

π
D̂1(α,s) ⊗ D̂2(−α,−s). (15)

Here, the corresponding pseudometric G is chosen to be
the identity, and D̂1(α,s) and D̂2(α,s) act on H1 and H2,
respectively.

To find a sufficient criterion for entanglement generation by
a BS, we apply a specially modified version of the witness (15)
to the output of a BS. Then, using a retrodictive calculation
we investigate the violation of the witness inequality in terms
of the input sates; cf. Fig. 1(a). First, we consider the witness
operator (15) for s = 1. Next, we apply the positive map

(T ◦ �)(D̂(α,−1)) := t2

r2
D̂

(
− t

r
α,−1

)
with

t

r
� 1

(16)
to the second mode of Ŵ (1) where T is the transposition map
acting as α → −α and, without loss of generality, we assume
that t,r ∈ R and t2 + r2 = 1; c.f. Appendix A for the proof of
positivity of the map (16). Notice that, as we will be testing the
lower bounded witnessing inequality, positivity of the map �

is sufficient for the upcoming analysis. This gives the modified
witness

V̂ = t2

r2

∫
d2α

π
D̂1(α,1) ⊗ D̂2

(
t

r
α,−1

)
. (17)

Finally, given a BS of transitivity t and reflectivity r—in short
a (t : r) BS, we apply the witness V̂ to its output. One finds the
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FIG. 1. (a) Application of the EW of Eq. (17) to the output of a BS. The witness operator V̂ is designed in such a way that it results in
the identity operator for mode one after a retrodictive calculation of the BS operation. (b) The local detection of entanglement by detection of
marginal nonclassicality. Note that, after the first (t : r) BS the marginal QPDs of the intermediate state are positive for s � −|2|t |2 − 1|. The
second (t ′ : r ′) BS is chosen such that the maximum negativity is retrieved for one of the marginal output QPDs.

expectation value of the witness operator for any input state
to be

Tr�̂outV̂ = TrÛt :r �̂inÛ
†
t :r V̂

= t2Tr�̂inÎ1 ⊗ T̂2(0,1 − 2t2)

= πt2W(2)
in (0,1−2t2), (18)

where we have used the beam splitter transforma-
tion Û

†
t :r (â,b̂)Ût :r = (t â + rb̂,−râ + t b̂) together with the

definition

T̂ (β,s) =
∫

d2α

π
eβα∗−β∗αD̂(α,s)

for the s-parametrized Wigner operator such that Tr�̂T̂ (β,s) =
πW�̂(β,s) is the s-parametrized quasiprobability distribution
(QPD) of the state �̂ [27]. As a result, W(2)

in (0,1 − 2t2) < 0 if
and only if Tr�̂outV̂ < 0. Moreover, if W(2)

in (β,1 − 2t2) < 0 at
some phase-space point β, we may shift the witness operator
using an appropriate local displacement operation to the point
β,V̂ (β), and obtain a negative value for Tr�̂outV̂ (β) without
changing the entanglement content of the state. To obtain the
similar condition on the marginal QPDs of the first input,
we only need to apply the map � of Eq. (16) (without the
transposition T) to the first mode of Ŵ (−1) to get the modified
witness V̂ ′. A retrodictive evaluation at the input thus gives

Tr�̂outV̂
′ = πt2W(1)

in (0,1 − 2t2),

implying that W(1)
in (0,1 − 2t2) < 0 if and only if Tr�̂outV̂

′ < 0,
which can be further generalized to any phase-space point β.

For the case of t/r < 1, although the map � of Eq. (16)
is no longer positive, we can alternatively apply the legitimate
map

�(D̂(α,−1)) := r2

t2
D̂

(
r

t
α,−1

)
with

r

t
> 1 (19)

to the second mode of Ŵ (1) to get a third witness V̂ ′′. This
gives the counterpart of Eq. (18) as

Tr�̂outV̂
′′ = πr2W(1)

in (0,1 − 2r2), (20)

and thus, negativity of (1 − 2r2)-parametrized marginal of the
first input implies the entanglement of the output. To obtain a
similar condition on the second input mode in this case, one
should apply (T ◦ �)(D̂(α,−1)) to the first mode of Ŵ (−1) to
get the appropriate witness.

Taking into account the possibility of a complex valued
transitivity, we can combine all the conditions above into
one negativity condition: W(1,2)

in (α,−|2|t |2 − 1|) < 0. In short,
negativities of at least one of the marginal s-parametrized
QPDs for s = −|2|t |2 − 1| at the input (output) to a (t : r)
BS implies the entanglement of the output (input).

IV. DISCUSSION OF THE RESULTS

There are several interesting implications by the results in
previous section, which we will discuss one by one. The first
important thing to notice is that our condition is a sufficient
one. That is, for instance, a negative marginal Wigner function
at the input to a balanced BS guarantees the entanglement of
the output modes, nevertheless, it is not necessary for inputs to
possess nonclassical Wigner functions to produce entangled
outputs. The second important message is that, concerning
the properties of the input state, one can see that there is no
need to inject pure, product, or separable states into the BS.
The input can even be entangled, and if one of the marginal
QPDs satisfies the above condition the entanglement will be
preserved by the BS. More interestingly, it is sufficient that
the criterion is satisfied by only one of the input modes,
regardless of what quantum state is being injected into the
other port of the BS. The conclusion from this fact is that a
pure single photon will generate entanglement upon mixing
with any quantum state on any BS, because, except its Q
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function corresponding to a fully transitive or reflective BS,
all of its QPDs possess negativities. In particular, in an optical
arrangement, high photon number entangled states are of
special interest because their large number of photons make
them efficient for interactions. A way for obtaining such states
is by mixing a single photon with a coherent state on a BS
[28]. Surprisingly, using our criterion, it turns out that the input
state to the other port of the BS can be any state, e.g., a bright
thermal state of arbitrarily high temperature. In this scenario,
the high number of photons from the thermal state split into
two classically distinguishable rays while getting entangled
due to the negativity of the injected single photon. This is just
like nonclassicality being imprinted onto the output modes as
entanglement.

Let us also discuss the inverse case, where entanglement
of the input state imposes the marginal nonclassicality on the
outputs. The main problem in applying EWs to CV systems is
the extreme difficulty of coincidence measurements due to the
high number of dimensions. Nevertheless, there are entangled
states for which one does not need coincidence measurements
to verify their entanglement when the verification is done
locally. It suffices to interact the two rays on an arbitrary BS,
perform homodyne measurements separately on both outputs,
and check the negativity of the reduced QPDs, which is much
easier; cf. Fig. 1(b). That is, we may reverse the generation
process and verify the entanglement of the input. In practice,
there is even no need for a full state reconstruction to verify
nonclassicality of QPDs, as they can also be detected using
appropriate witnesses much more simply than entanglement
[29]. Operationally speaking, this technique contains no
measurement of correlated events between the two modes.
Another lesson we learn from this fact is that no matter how
much nonclassicality has been separably injected into the
BS, the output will always exhibit classical s-parametrized
marginal QPDs for s � −|2|t |2 − 1|. In this way, negativities
of the QPDs can be considered as information carriers about
the entanglement of the source.

V. EVOLUTION OF THE ENTANGLEMENT

As a final word, we consider the evolution and verification
of the entanglement generated via satisfying our nonclassical-
ity criterion when the state traverses through a lossy Mach-
Zehnder interferometer (MZI) [see, e.g., Fig. 1(b)]. Suppose
that we inject a state with nonclassical Wigner function into the
first port of a balanced BS to generate entanglement and expect
to receive it at the first port of the output (t : r) BS. It is known
that a lossy channel will transform antinormally ordered
displacement operators as �η(D̂(α,−1)) = D̂(α/η,−1)/η2

where 0 � η � 1 quantifies the loss.1 At the other end of
the MZI, we are interested in parameters for the output BS
such that most of the effect from the state in the second
input port is canceled. We have shown in detail in the
Appendix B that the best choice of the output BS parameters,

1η = 0 represents a completely lossy channel while η = 1 is used
for a perfectly lossless channel.

t and r , are

t = η2√
η2

1 + η2
2

and r = η1√
η2

1 + η2
2

, (21)

where η1 and η2 are the losses of the first and second arms,
respectively. Consequently, the detected marginal output is

�̂1;out = Tr2�̂out =
∫

d2α

π
χ (1)

in

⎛
⎝−

√
2η1η2√

η2
1 + η2

2

α

⎞
⎠

× exp

{
− (η1 − η2)2

2
(
η2

1 + η2
2

) |α|2
}

D̂1(α),

(22)

where χ (1)
in (α) = Tr�̂inD̂1(α). Equation (22) clearly represents

a Gaussian degrading of the output to a QPD of s = −(η1 −
η2)2/(η2

1 + η2
2). The very interesting situation would then

occur if the loss is symmetric in both arms (η1 = η2 = η)
for which using Eq. (21) the output BS should be balanced,
there will be no Gaussian smoothing effect, and we get

W
(1)
out(α) = 1

η2
W(1)

in

(
α

η

)
. (23)

This represents the regime in which the negativity degrades
quadratically with loss as η goes to zero (total loss in both
arms). In fact, as long as there is not 100% loss in both
channels, any negativity at the input will ultimately survive and
can be detected at the output, although it can be very small. The
effect shown here is a generalization of the similar phenomena
for single-photon and Gaussian entanglement where very large
losses in each mode makes the entanglement vanishingly
small, but do not destroy it until the mode is completely
blocked. The example of a lossy single-photon entangled state
is given in Appendix C.

VI. SUMMARY AND CONCLUSIONS

In conclusion, we found a sufficient nonclassicality con-
dition for an arbitrary beam splitter (BS) to generate entan-
glement. We also found a sufficient nonclassicality condition
for the marginal outputs of a BS to ensure entanglement of
the input state. To achieve this goal, first, we introduced a
proper entanglement witness (EW) construction method from
arbitrary local basis sets of operators. We have extensively
discussed the properties of our construction scheme under
basis transformations and used them to improve EWs. Next,
we defined a continuous variable EW capable of detecting
the negativities of the marginal quasiprobability distributions
input to an arbitrary BS. We have proven that negativity of at
least one of the s-parametrized marginal quasiprobabilities for
s = −|2|t |2 − 1| at the input (output) of a BS with transitivity
t implies the entanglement of the output (input) state. In
particular, we showed that a single photon of sufficient purity
can transform any input state into a bipartite entangled state
upon interaction on an arbitrary BS. We also showed that
this entanglement can be imprinted on the marginal output
quasiprobabilities of a second BS in the form of negativities to
certify the entanglement of the input modes. In other words,
our sufficient criterion provides an easy way for the generation
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and detection of entangled states with arbitrary high number
of photons. Using general arguments, we studied the evolution
of the entanglement generated and detected by our criterion
in a lossy Mach-Zehnder interferometer and extended the
important fact that the entanglement does not diminish as long
as both modes are not completely blocked (lost). Last but not
least, our results hold true for other bosonic systems such as
quantum optomechanics and spin ensembles as well.
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APPENDIX A: POSITIVE MAP �

To show that the map in Eq. (16) is positive, let us consider
the general case of a map

�(D̂(α,−1)) := κ2D̂(κα,−1). (A1)

It is known that [27]

T̂ (β,−1) =
∫

d2α

π
eβα∗−β∗αD̂(α,−1) = |β〉〈β|, (A2)

where |β〉 is the coherent state. Applying the map � to
Eq. (A2), we get

�(|β〉〈β|) = �(T̂ (β,−1)) = κ2
∫

d2α

π
eβα∗−β∗αD̂(κα,−1)

=
∫

d2γ

π
e( β

κ
)γ ∗−( β

κ
)∗γ D̂(γ,−1)

=
∣∣∣∣βκ

〉〈
β

κ

∣∣∣∣. (A3)

Clearly, the map � acts as the attenuation channel and it is
physically legitimate and thus positive if and only if κ � 1. It is
also important to note that the (partial) transposition operation
T in Eq. (16) is also positive, and that the composition of two
positive maps is also positive.

APPENDIX B: STATE EVOLUTION IN A LOSSY MZI

Suppose that we are injecting two separable states into our
balanced beam splitter (BS) to generate entanglement. Thus,
from our theorem, we need a negative Wigner function at least
in one of the input ports. Assume that the negative input is in-
jected into port one. Then, the state exiting the input BS will be

�̂int =
∫

d2αd2β

π2
χ (1)

in (−α,1)χ (2)
in (−β,1)D̂1

(
α + β√

2
,−1

)

⊗ D̂2

(−α + β√
2

,−1

)
, (B1)

in which D̂i(α,s) = D̂i(α)e
s
2 |α|2 is the s-ordered displacement

operator, and χ (i)(α,s) = Tr�̂D̂i(α,s) is the s-parameterized
characteristic function of the ith mode for i = 1,2. Using

the effect of a lossy channel on the antinormally ordered
displacement operators as described in Appendix A,

�η(D̂(α,−1)) = 1

η2
D̂

(
α

η
,−1

)
, 0 � η � 1, (B2)

after losses in both channels we get

�̂int = 1

η2
1η

2
2

∫
d2αd2β

π2
χ (1)

in (−α,1)χ (2)
in (−β,1)D̂1

(
α + β√

2η1

,−1

)

⊗ D̂2

(−α + β√
2η2

,−1

)
. (B3)

Now, we want to retrieve the negativity on the detection
site. We put the beams on a BS of transitivity t . The state after
the output BS is

�̂out = 1

η2
1η

2
2

∫
d2αd2β

π2
χ (1)

in (−α,1)χ (2)
in (−β,1)

× D̂1

([
t

η1
+ r

η2

]
α√
2

+
[

t

η1
− r

η2

]
β√
2
,−1

)

⊗ D̂2

([
r

η1
− t

η2

]
α√
2

+
[

r

η1
+ t

η2

]
β√
2
,−1

)
.

(B4)

We are only interested in the reduced quasiprobabilities of
the output modes. Also, by our choice of phases of the beam
splitters, we know that the negativity should appear in the
output mode one. So, we trace out the second mode:

�̂1;out =Tr2�̂out

= 1

η2
1η

2
2

∫
d2αd2β

π
χ (1)

in (−α,1)χ (2)
in (−β,1)

× D̂1

([
t

η1
+ r

η2

]
α√
2

+
[

t

η1
− r

η2

]
β√
2
,−1

)

× δ(2)

([
r

η1
+ t

η2

]
β√
2

−
[

t

η2
− r

η1

]
α√
2

)

= 2

(tη1 + rη2)2

∫
d2αd2γ

π
χ (1)

in (−α,1)

× χ (2)
in

(
−

√
2γ[

r
η1

+ t
η2

] ,1

)

× D̂1

([
t

η1
+ r

η2

]
α√
2

+ tη2 − rη1

tη1 + rη2
γ,−1

)

× δ(2)

(
γ −

[
t

η2
− r

η1

]
α√
2

)

= 2

(tη1 + rη2)2

∫
d2α

π
χ (1)

in (−α,1)

× χ (2)
in

(
− tη1 − rη2

tη1 + rη2
α,1

)
D̂1

( √
2

tη1 + rη2
α,−1

)
.

(B5)

In the second line of Eq. (B5), we have used γ := [ r
η1

+ t
η2

] β√
2
.

We want to cancel the effect of the second input mode, so we
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choose

tη1 − rη2 = 0 ⇒ t = η2√
η2

1 + η2
2

and

r = η1√
η2

1 + η2
2

, (t2 + r2 = 1), (B6)

tη1 + rη2 = 2η1η2√
η2

1 + η2
2

, (B7)

and thus,

�̂1;out = η2
1 + η2

2

2η2
1η

2
2

∫
d2α

π
χ (1)

in (−α,1)D̂1

⎛
⎝

√
η2

1 + η2
2√

2η1η2

α,−1

⎞
⎠.

(B8)

Multiplying both sides of Eq. (B8) by D̂1(−β,1) gives

χ
(1)
out(−β,1) = χ (1)

in

⎛
⎝−

√
2η1η2√

η2
1 + η2

2

β,1

⎞
⎠, (B9)

⇒χ
(1)
out(β) = χ (1)

in

⎛
⎝ √

2η1η2√
η2

1 + η2
2

β

⎞
⎠ exp

{
− (η1 − η2)2

2
(
η2

1 + η2
2

) |β|2
}
.

(B10)

This represents the fact that, in the first output, we get a Wigner
function, which is smoothed by the parameter

s = − (η1 − η2)2

η2
1 + η2

2

. (B11)

If the loss is symmetric in both arms (η1 = η2 = η), there will
be no smoothing effect and we get

χ
(1)
out(β) = χ (1)

in (ηβ). (B12)

Equivalently, in Fourier space

W
(1)
det(β) = 1

η2
W(1)

in

(
β

η

)
. (B13)

APPENDIX C: EFFECT OF LOSS ON THE
SINGLE-PHOTON ENTANGLED STATE

The result of Sec. IV is an extension of the following simple
example: a single photon splitting on a balanced BS. In this
case, where the other input to the BS is just the vacuum state,
the state after the losses in each channel can be calculated
easily. The output of the BS is simply the Bell state |φ+〉 =
(|10〉1,2 + |01〉1,2)/

√
2. Each mode suffers from a loss of η1 =

η2 = η (0 � η � 1), which can be modeled by two BSs of
transitivity η and two ancillary modes. The overall state will
thus be given by

|ψ(η)〉 = 1√
2

(|φ+(η)〉13|00〉24 + |00〉13|φ+(η)〉24), (C1)

where the modes 3 and 4 are the ancillae and |φ+(η)〉ij =
η|10〉ij +

√
1 − η2|01〉ij . Now, tracing out the ancillae modes

gives

�̂12(η) = (1 − η2)|00〉〈00| + η2

2
|10〉〈10| + η2

2
|01〉〈01|

+ η2

2
|01〉〈10| + η2

2
|10〉〈01|. (C2)

Now, we can apply the partial transposition (PT) criterion
in which the partially transposed state can be represented in
matrix form as

�̂�
12(η) =

⎛
⎜⎜⎜⎝

1 − η2 0 0 η2

2

0 η2

2 0 0

0 0 η2

2 0
η2

2 0 0 0

⎞
⎟⎟⎟⎠, (C3)

where the partial transposition � is taken with respect to mode
two. Note that for two-qubit states (2 × 2 quantum systems)
PT criterion is both necessary and sufficient to verify the
entanglement. The eigenvalues of �̂�

12(η) are given by

λ1,2 = η2

2
(twofold degenerate),

λ3 = 1

2
(1 − η2 +

√
2η4 − 2η2 + 1), (C4)

λ4 = 1

2
(1 − η2 −

√
2η4 − 2η2 + 1).

The eigenvalue λ4 takes on negative values for any η > 0,
since 2η4 − 2η2 + 1 � (1 − η2)2. This means that for any
value of loss below 100%, the lossy output state �̂12(η) is
NPT entangled and thus distillable.
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