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Abstract 

 

Treatment options for infections caused by pathogenic Gram-negative bacteria, especially those of 

the Enterobacteriaceae family, are becoming limited with the increase of antimicrobial resistance 

(AMR). β-lactamases are a major mechanism for AMR within the Enterobacteriaeae. The most 

problematic β-lactamases are carbapenemases, which confer resistance to carbapenems, the major 

last-line antimicrobial. A recently emerged carbapenemase that has globally disseminated is the 

NDM carbapenemase, provided by blaNDM genes. These blaNDM genes (and other AMR genes) are 

able to transmit between strains when inserted on extrachromosomal self-replicating DNA 

molecules known as ‘plasmids’. AMR genes within Enterobacteriacae are frequently associated 

with specific bacterial species, clonal lineage, plasmid Incompatibility (Inc) types or transposable 

elements. The blaNDM genes however do not have this association when oberserved in the 

Enterobacteriaceae family. To address and characterise this new paradigm presented by blaNDM 

genes, this thesis presents the bioinformatic analysis of plasmids associated with the 

Enterobacteriaceae to provide insights into the acquisition and spread of the blaNDM gene and an 

epidemiological approach to assess its plasmid-mediated dissemination between genetically 

unrelated species.  

 

Specifically these aims were achieved by; firstly, the establishment of a recent account of the 

blaNDM gene from an epidemiological perspective using a novel genetic/molecular approach. This 

would identify the spread of individual plasmids carrying blaNDM across multiple species and 

patients, both within a single facility and across multiple national facilities. The approach combined 

in-depth bioinformatic analysis of blaNDM genetic contexts (NGCs) with common molecular 

epidemiology techniques. IncN2 (n=4) and IncA/C (n=3) were identified as the most common 

plasmids types carrying blaNDM across four patients within a Pakistani military hospital. These 

patients harboured between two and four NDM-1 producing Gram-negative bacilli of different 
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species coresident in their stool samples. IncFII-types (n=7) and IncX3 (n=4) were the most 

common plasmid types carrying blaNDM amongst 12 Enterobacteriaceae isolates, each from 

different patients across multiple Australian healthcare facilities. These isolates each carried one 

plasmid harbouring blaNDM but only five different blaNDM genetic contexts were identified, 

indicating five particular plasmids with a specific NGC had disseminated amongst these 12 isolates.  

 

Secondly, to investigate transposable elements involved for insertion of the blaNDM gene into 

different plasmid types, the complete sequence of four plasmids carrying blaNDM (two IncA/C2 and 

two IncFIIY) was bioinformatically analysed. These plasmids were from four different clinical 

samples of four patients, comprised of Klebsiella pneumoniae, Enterobacter cloacae, and 

Escherichia coli. Each plasmid was observed to acquire blaNDM by different mechanisms on very 

similar plasmid backbones. Transposable elements ISCR1 and either IS26 or ISCR27 were involved 

with blaNDM insertion into different locations of the antibiotic resistance island ARI-A on IncA/C2 

plasmids. Tn3-derived Inverted-repeat Transposable Elements (TIMEs) and an IS903-like element 

were identified for IncFIIY plasmids. This thesis collectively identified eight different transposable 

elements associated with blaNDM: ISCR27 and/or IS26 on type 1 IncA/C2; ISCR1 on IncN2, IncA/C2 

and IncFII2; ISCR6-like, IS903-like and TIMEs on IncFIIY; IS26 and/or IS3000 on IncX3; and an 

IS26 composite transposon on IncH1B. 

 

Thirdly, to investigate the relationship between plasmid types and bacterial species, in silico 

plasmid typing (via plasmid typing database, PlasmidFinder) and Principal Component Analysis 

(PCA) was performed to survey the plasmid content across 1683 Enterobacteriaceae isolates. These 

whole genome sequenced isolates comprised of K. pneumoniae (n=494), Shigella sonnei (n=223), 

Yersinia spp. (n=214), Shigella flexneri (n=171), E. coli (n=355), E. cloacae (n=133) and 

Salmonella enteria serovar Typhimurium (n=95). Twelve main plasmid types were identified 

distributed into three levels of occurence: common, IncF (~65% of strains); intermediate, IncHI, 
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IncI, IncR (8-10%); and rare, IncA/C, B/O/K/Z, L/M N, O, P, Q, X, and Y (0.5-3%). PCA of 

isolates and their shared plasmid content identified specific plasmid sub-types to represent possible 

routes of gene exchange between different genera. Furthermore, two primary clusters of species 

were identified based on their shared plasmid sub-type content, Group 1: K. pneumoniae and E. 

cloacae, and Group 2: E. coli, S. sonnei and S. flexneri. Species within each group were seen to be 

phyogenetically similar.  

 

Collectively the analysis presented in this thesis, proposes an underlying network of interactions 

between AMR genes, transposable elements, plasmids types and the bacterial host, where each 

interaction may involve a degree of compatibility depending on the genera of the strain. The blaNDM 

genes appear to have transmitted through this proposed network, from Acinetobacter spp. to 

disseminate amongst the Enterobacteriaceae family, following its interactions, compatibilities and 

limitations. Further surveillance of the Enterobacteriaceae family, including environment and 

community samples, will be required to define the extent plasmid-mediated AMR genes have 

spread within the Enterobacteriaceae family. The combined molecular/genetic approach and 

subsequent whole plasmid sequence analysis would be recommended for this survelliance. This 

PhD thesis provides insights into the acquisition and spread of the blaNDM gene and emphasizes the 

capability of Enterobacteriaceae to transmit plasmid-mediated AMR genes amongst themselves to 

adapt to their environment, especially where antimicrobial pressure is present.   
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Chapter 1: A new paradigm presented by the blaNDM gene 

This chapter presents a background on genes conferring antimicrobial resistance, defining the 

factors involved in their spread within the Enterobacteriaceae family. Those factors will be 

described for the blaNDM gene according to literature at the commencement of PhD 

candidature (2013), summarised in manuscript form. A thesis outline and overall aim, 

supplemented with specific chapter aims will also be presented. 

1.1 Introduction 

Gram-negative bacteria are pathogens that can cause a range of serious human infections 

including pneumonia, urinary tract, intra-abdominal, and bloodstream infections, but also 

asymptomatic colonisation in the gastro-intestinal tract. These infections are usually treated 

with antimicrobials such as β-lactams. Unfortunately, treatment options are diminishing with 

multi-drug resistant (MDR) strains frequently reported as resistant to the carbapenemes the 

major “last line” antimicrobial group (1-4). The genes responsible for an antimicrobial 

resistance (AMR) phenotype comprise of an array of genes, including different β-lactamase 

genes (bla), which produce enzymes able to hydrolyse specific β-lactam compounds. These 

β-lactamase enzymes can be divided into four different groups based on the Ambler 

molecular classification system (5, 6). This system categorises the enzyme according to their 

amino acid sequence, primarily on their active site. Classes A (Extended-spectrum β-

lactamases; ESBLs), C (AmpC) and D (OXA type β-lactamases) are serine β-lactamases and 

Class B are metallo-β-lactamases (MBL) which require a bivalent metal ion for activity, 

usually Zn+2 (7). ESBLs or AmpC β-lactamases genes such as blaCTX-M-15 and blaCMY-2, are 

able confer resistance to extended-spectrum cephalosporins, a frequently used sub-group of β-

lactams (8, 9). Pathogens producing ESBLs or AmpC are often treated with carbapenems 

(10-12). There are β-lactamase genes however, able to produce carbapenemase enzymes that 
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hydrolyse carbapenems, for example the blaNDM and blaKPC genes (1). The emergence of 

carbapenemases and their high prevalence within species of Enterobacteriaceae family e.g. 

Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae, has brought 

carbapenemase-producing-Enterobacteriaceae to the attention of those within the health-care 

and infectious disease profession (4, 13).  

A recently identified carbapenemase to disseminate globally is New-Delhi Metallo-β-

lactamase (NDM-1), which was first described in 2009, produced by a K. pneumoniae strain 

isolated from a Swedish patient who received medical treatment in New-Delhi, India (2, 14). 

This gene (blaNDM) provides resistance to all β-lactams (except aztreonam), and unlike other 

classes of β-lactamases has no commercially available inhibitors. The blaNDM gene has also 

rapidly spread to every inhabitable continent (in over 40 countries (15-17)) by 2013, with the 

Indian sub-continent described as the major reservoir for human acquisition of NDM 

producing Gram-negative bacteria (18, 19). NDM producers also frequently carry other 

antimicrobial resistance determinants, including ESBLs, AmpC cephalosporinases, other 

carbapenemases (OXA type), and those that provide resistance to aminoglycosides (16S RNA 

methylases), quinolones (qnr), rifampicin, sulfamethoxazole and chloramphenicol (20-23). 

As a consequence of strains co-harbouring these resistance determinants with blaNDM, 

antimicrobial treatment for the majority of NDM producing strains is limited to only three 

available drugs, colistin, tigecycline and fosfomycin (24). Unfortunately colistin is 

unfavourable because of its nephrotoxicity and neurotoxicity adverse effects. Tigecycline has 

a large volume of distribution resulting in a limited efficacy. For blood stream infection 

(BSI), uninary tract infections (UTI) and pneumonia treatment (25-30) this is not optimal, as 

presence of tigecycline in blood, the urinary tract, and the lung would be in low 

concentrations. Alternatively fosfomycin, which is an older antimicrobial, is being revisited 

for treatment because of its excellent clinical efficacy for UTI. However, is not as widely 
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available compared to colisin and tigecycline, and the lack of randomised control trials leaves 

fosfomycin restricted to only UTI treatment. Resistance to these antimicrobials has also been 

reported in NDM producers (31-34).  

The rapid spread of the blaNDM gene is central to this thesis and has been attributed to several 

factors including epidemiological aspects such as medical tourism, asymptomatic carriage, 

and personal travel (18, 35). Additonal factors include those linked to the Asian continent, 

such as the poor sanitation problems, polluted water sources which was highlighted during 

the first report of NDM as well as the lack of control and monitoring of over the counter 

prescriptions. Molecular epidemiology and bioinformatic investigations have made numerous 

associations with previously identified AMR genes. These include frequently observed 

genetic contexts (the structure of the DNA/sequence surrounding the AMR gene) (36, 37), 

types of plasmids (circular extrachromosomal pieces of DNA carried by strains) where the 

gene has inserted (38-40), clonal lineages (41, 42), or bacterial species (43, 44) frequently 

carrying the gene, or a combination of these. The following sections of this chapter will 

introduce and summarise these epidemiological aspects and associations with previously 

identified AMR genes. These associations will be described for the blaNDM gene, with further 

details listed in a literature review manuscript.  

1.2 Addressing the spread of MDR strains 

There are three major interventions implemented by health-care professionals in response to 

the numerous strains carrying AMR genes, primarily identified by epidemiological studies. 

These interventions were implemented to control and address major factors involved in AMR 

development and the spread MDR strains. The first is infection control, which contains the 

spread of MDR organisms from its source (e.g. infected patients) in order to prevent 

additional infections during an outbreak, especially within health-care facilities where 
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hospital-acquired (nosocomial) infection is common (45). The second is surveillance via 

screening populations for MDR organisms to inform professionals in infection control and 

rapid diagnostics of their underlying spread. This includes asymptomatic carriage, as natural 

human flora are capable of carrying AMR genes e.g. gut colonisers (46). Asymptomatic 

carriers have been recently identified as ‘vehicles’ for the spread of resistance by commuting 

internationally, for purposes of medical tourism or personal travel (47-49). The third 

intervention is antimicrobial stewardship, which aims to limit the selection and development 

of antibiotic resistance within health-care facilities and the community, as the over- or misuse 

of antimicrobials has been theorised to have led to the emergence and dissemination of 

antimicrobial resistance (50). This legislation involves monitoring and promotion of 

appropriate use of antimicrobial prescriptions. These concepts essentially are interventions 

for human-to-human transmission, and antibiotic resistance selection and development in 

MDR bacteria, which has been associated with controlling the transmission of AMR.  

1.3 Molecular epidemiology investigations of plasmid-mediated AMR genes 

Multi-drug resistant organisms have become frequently reported. In response, there have 

been studies conducted to understand the mechanisms involved in the spread of AMR 

amongst Gram-negative bacteria. Previously, public health and epidemiological 

investigations have used molecular typing to determine the basis of carbapenem resistance 

spread. This would involve a comparison of bacterial strains isolated from a cohort of 

patients to identify clonal strains and possible outbreaks sources. A standard procedure to 

identify clonal strains is determining their sequence type (ST) by analysing the DNA 

sequence of multiple conserved house keeping genes within each strain. Those with the same 

ST are considered ‘clonal’. The Multi-Locus Sequence Typing (MLST) scheme is a widely 

used typing method for these purposes (available at: http://pubmlst.org (51)). These 
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molecular epidemiology investigations would frequently associate the AMR gene with, either 

certain bacterial species where they were intrinsic such as Acinetobacter baumannii (blaOXA-

51-like; carbapenemase (52)) and, K. pneumoniae and E. coli (the chromosomal ampC gene 

(10, 43)), or commonly spread by specific clones, for example E. coli ST131 (blaCTX-M-15 

(41)), K. pneumoniae ST258 (blaKPC (53)) and A. baumannii clonal complex 92 (blaOXA-23; 

carbapenemase (54)). The blaNDM gene however is not solely associated with a specific 

species or clone (although there are some clones that are frequently observed to carry blaNDM 

e.g. E. coli ST101), reported in different species within the Enterobacteriaceae family, non-

Enterobacteriaceae genera (Acinetobacter spp. and Pseudomonas spp.), and various 

sequence types (20). A likely part of the explanation that the blaNDM gene does not follow this 

paradigm is because the gene is frequently located on plasmids. Plasmids carry genes able to 

produce enzymes for its horizontal gene transfer between two bacterial cells, in a process 

known as conjugation. Plasmid-mediated AMR genes such as the blaNDM gene are 

unfortunately unable to be properly and entirely assessed by this type of molecular 

epidemiology alone, and may need additional techniques to assess the entire situation, such as 

conjugation and/or transformation experiments. 

1.4 Investigations of plasmid-mediated AMR genes 

Plasmids are circular elements of DNA that replicate independently from the chromosome 

and do not encode genes essential for bacterial cell growth (55). Each gene on a plasmid can 

be categorised in groups/modules according to their respective function such as plasmid 

replication e.g. replicon genes, stability, transfer (for conjugation), establishment, partitioning 

and accessory/adaptive genes e.g AMR genes. Plasmids exist in a range of sizes from small 

sized plasmids e.g 1 Kbp, while others can be large for example up to 100 Kb in size. Large 

sized plasmids usually are present in low copy number while smaller plasmids have higher 
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copy numbers. Those that are associated with AMR are typically plasmids with low-copy 

number and often carry genes for conjugational transfer to other strains. Plasmids associated 

with the Enterobacteriaceae family are categorised into different Incompatibility (Inc) types 

or groups. This incompatibility was originally based on the observation that plasmid 

backbones with the same replication system cannot be co-retained within the same cell line 

(40, 56). Those plasmid backbones with the same replication system were then categorised 

within the same Inc group. Plasmids belonging to different Inc groups are able to be co-

harboured within the same strain. Typing for plasmids into their Inc groups was initially 

developed in the late 1980s, utilising DNA-DNA hybridisation between strain DNA 

immobilised on filters and purified DNA fragments/probes which are specific for each Inc 

group and labelled via nick translation to allow for colourmetric detection (57). Typing of 

plasmids was then updated in 2005 as a typing scheme based on primers after the 

identification of their major role in the spread of AMR through conjugation, reducing time 

and labor in molecular epidemiology. The plasmid-typing scheme was named ‘PCR-based 

replicon typing’ (PBRT) and used a multiplex PCR for 18 major plasmid types to identify the 

Inc type of the plasmid carrying AMR genes (58). Similar to sequence typing, PBRT targets 

conserved sequence regions representive for each plasmid type, such as the plasmid replicon 

region responsible for replication. Through this typing certain AMR genes were frequently 

identified on specific plasmid types and became highly associated, such as the IncA/C 

plasmids carrying blaCMY-2-like genes, and IncF types plasmids carrying blaCTX-M-15 within the 

E. coli ST131 clone, or carrying blaKPC in K. pneumoniae (40). The blaNDM gene however is 

not associated with a particular plasmid type unlike these prominent AMR genes. The blaNDM 

gene has been reported on numerous Enterobacteriaceae plasmid backbones/ Inc types, 

IncA/C, IncF types, IncHI types, IncL/M, IncX types, and IncN types (40, 59). Acquisition of 

a “NDM plasmid” by a strain could be considered responsible for their carbapenem resistant 
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phenotype; in a similar fashion previous AMR genes such as blaCMY-2-like genes were 

associated with acquisition of an IncA/C plasmid type. The spread of the blaNDM gene 

however, is far more complex as some plasmids carrying the blaNDM gene are genetically 

different despite being characterised as the same plasmid type. This was indicated by IncA/C 

plasmids available during commencement of PhD candidature, pNDM10469 (Accession no 

JN861072.1), pNDM102337 (Accession no. JF14412.2), and pNDM10505 (Accession no. 

JF503991.1). Typing of plasmids (Inc) and the bacterial host (ST) therefore can only partially 

explain the mechanisms of acquisition and spread of this carbapenemase gene.  

1.5 Investigations for transposition of AMR genes 

In parallel to the mentioned molecular epidemiology investigations, bioinformatic studies 

began to analyse these plasmids in high detail with the increased availability to commercial 

whole genome sequencing. These analyses would characterise another mechanism that 

contributes to the movement of AMR genes called “transposition”. Transposition events 

involve the movement of DNA from one DNA site to another within a bacterial host. These 

events are facilitated by numerous transposable element enzymes such as insertion sequence 

(IS) elements (60-62). This gene movement can occur between two sites on the chromosome, 

between chromosome and a plasmid or between different plasmids. Each transposable 

element has a specific mechanism involving recognition sites on the DNA for insertion and 

the amount of adjacent sequence upstream or downstream of the transposable element that is 

mobilised (62). Frequently encountered mechanisms will be briefly reviewed in the following 

paragraphs. 

Homologous recombination is a natural and major process in which DNA can be exchanged 

within a bacterial cell. The recombination process requires the breaking and joining of DNA 

strands at regions that have high similarity, which is dependent on the degree and length of 
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homology (60). This process can occur on the same DNA molecule or between different 

DNA molecules in the same bacterial cell. Recombination between two highly similar 

sequences on two different DNA molecules such as two plasmids can fuse the two molecules 

together. Further, a ‘double crossover’ event can occur where recombination involving two 

separate pairs of highly similar sequences that are in close proximity (60). A recombination 

event can result in the exchange of DNA segments between the two pairs. This homologous 

recombination process has the potential to transpose regions carrying antimicrobial resistance 

determinants to different sites on the chromosome and plasmids. Numerous elements such as 

Insertion Sequences (IS) or transposons (Tn) are also able to act as the high similar sequences 

during the mentioned recombination when present in multiple copies. 

 

There are multiple transposable elements involved in the transposition of antimicrobial 

resistance determinants. The major types are IS elements, composite and unit transposons, 

and integrons. ‘Classical’ insertion sequences elements are sequences bound by two short 

identical or imperfect inverted repeats (IR) that define their boundary. Between both IR are 

one or two genes that encode the transposase enzyme which facilitates movement of the IS 

element. The direction of transcription for the transposase gene(s) designates the IR, ‘IRL’ 

upstream of the gene or left end of the IS element and ‘IRR’ downstream or right end of the 

IS element. The IR are recognised by the transposase enzyme to facilitate the movement of 

the DNA sequence between the IR to a new location either using a ‘cut and paste’ and/or 

‘copy and paste’ process depending on the specific IS element (63).  The movement for the 

majority of IS elements creates 2-14 bp direct repeats (DR) flanking the IS element’s new 

location. The DR indicates and provides evidence of the occurrence of a transposition event 

when bioinformatic analysis of bacterial genomes is performed. IS elements do not carry any 

additional genes, however when two copies of the same (or similar) IS element are located in 
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close proximity to each other the transposase is able to recognize and mobilise the sequence 

between both IS elements as a ‘composite transposon’. Transposition however is not always 

simple. There are instances which IS elements such as ISEcp1, which are unlike classical IS 

elements fail to recognised their IRR and instead recognise a sequence similar to the IRR 

further downstream of the element. Tranposition would then proceed to mobilise the 

sequence between the IRL and the similar IR downstream, which can carry antimicrobial 

resistance determinants (60). 

 

Unit transposons were originally defined as larger than an IS element and in addition to their 

transposition function carried other genes such as antimicrobial resistance determinants (60). 

The Tn3 transposon family is a frequently observed unit transposon consisting of two sub-

groups, Tn3-like and Tn21-like. Both sub-groups consist of a transposase (tnpA), resolvase 

(tnpR) and a resolution site (res) and are flanked by a 38bp IR. Mobilisation involves IR 

recognition by the TnpA enzyme, generating a co-integrate intermediate consisting of the 

donor and recipient DNA molecules. The co-integrate intermediate is resolved by tnpR-

mediated site-specific recombination and generates a 5 bp DR upon transposition. The 

differences between the two sub-groups are the sequence and the organisation of the tnpA, 

tnpR and res genes. Elements of the Tn3-like subgroup have the res located between the tnpA 

and tnpR which are transcriptionally orientated in opposite directions. In contrast, Tn21-like 

sub-group members have tnpA and tnpR orientated in the same direction and the res is not 

located between both genes but downstream of tnpR i.e. 5'-tnpA|tnpR|res-3'. In addition to the 

mentioned transposable elements, there are other elements that utilise different mechanisms 

for the transposition of DNA sequences, including ISCRs, ICE and integrons. 
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Insertion sequence common regions (ISCRs) are IS91-like sequences e.g IS91, IS801 and 

IS1294 and are not flanked by terminal IRs like classical IS elements (64). ISCRs use a 

‘rolling-circle’ replication mechanism to mobilise the DNA upstream of the transposase gene, 

essentially mobilising in the reverse direction when compared to classical IS elements. In 

order to mobilise, the transposase named ‘rcr’ recognises a flanking origin (oriIS) 

downstream, and a terminus (terIS) upstream. The rcr can fail to recognise the upstream terIS 

and continue to replicate and transpose into the adjacent genetic structures until a surrogate 

terIS is recognised (65). Through this mechanism, these elements can mobilise at least 28 Kb 

of DNA in a single movement (65). Thus, they are able to transpose genes conferring 

antibiotic resistance without the usual flanking invert repeats (66).  

 

Integrative and Conjugative Elements (ICE) are self-transmissible mobile genetic elements 

which encode proteins for their own excision from a DNA molecule, conjugation to another 

bacterial cell and reintegration/insertion into the chromosome or plasmid. Prior to its first 

classification in 2002, ICE were known previously as different groups i.e. IncJ plasmids, 

conjugative tranpsosons (CTn), and constins, but they all described the same element. The 

nomenclature has been revised and such elements types are currently known as CTn or ICE 

(67). These mobile elements (similar to plasmids) are able to transmit antimicrobial 

resistance determinants between locations on the chromosome, between chromosome and 

plasmids as well as between bacterial cells. 

 

Integrons were discovered through their association with antimicrobial resistance 

determinants. The identification of other integron types such as chromosomal integrons and 

‘mobile resistance integrons’ led to the classification of the original integrons as class 1 

integrons, according to their integron-integrase (intI) sequences. Class 1 integrons are genetic 
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structures composed of a recombinase called integrase and the recombination site attI. The 

IntI1 protein facilitates the insertion or excision of circularised gene cassettes into the 

integron by catalyzing recombiniation between the attC site on the gene cassette and the 

recombination site attI of the integron (68, 69). These gene capturing integrons can also be 

mobilised due their placement into transposon structures such as the Tn402/Tn5090-like 

transposon. The most frequently encountered in terms of antimicrobials resistant 

determinants are those derived from Tn402-like transposons, sometimes referred to as the 

‘clinical’ or ‘sul1-type’ transposons. These transposons have two conserved segments (CS). 

The 5'-CS contains the IRi of the Tn402-like transposon and intI1, while the 3'-CS carries 

two ORFs (unknown function) and a truncated qacEΔ1 gene overlapped with a sul1, which 

are remnants of an integration event of sul1 into a previous Tn402-like transposon carrying 

qacEΔ1 as the final cassette. These conserved segments are frequently observed flanking 

cassette arrays that provides the opportunity for entire arrays to be exchanged between two 

‘clinical’ transposons if present within the same bacterial cell via double crossover events. 

Gene cassettes of integrons are also able to mobilise into other integrons in the same cell via 

homologous recombination between similar gene cassettes of different arrays.  

Transposition events in addition to mobilising antimicrobial resistance genes also have the 

opportunity to generate antimicrobial resistance genes via fusion of genes. The blaNDM gene 

has been described as a chimeric gene. In 2012, Toleman and colleagues, theorised that 

blaNDM-1 may be a chimeric gene, fused with a previous aminoglycoside resistant gene, 

aphA6 by alignment of several sequences containing the genetic environment around blaNDM-

1 (70). The authors first aligned genetic contexts of the blaNDM-1 gene available at the time. 

The alignment showed that the intergenetic region between ISAba125 and blaNDM-1 were 

identical. Furthermore the GC% content was found to change dramatically from below 50% 

to above 50% after the first 19 nucleotides (encoding the first 6 amino acids) into the blaNDM-1 
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gene. A second alignment was conducted between several sequences containing either 5'-

ISAba125|blaNDM-1-3' or 5'-ISAba125|aphA6-3' (both with ISAba125 upstream). This 

revealed that ISAba125 was located at the same distance upstream from both blaNDM-1 and 

aphA6, and the intergenetic regions between ISAba125 and their respective gene had a 100% 

identical sequence. The alignment of the genetic contexts of blaNDM and aphA6 interestingly 

breaks at 19bp within blaNDM-1, the same point at where the GC% content changes, thus 

suggesting that blaNDM-1 is a chimeric gene produced by in-frame fusion of aphA6 with a pre-

existing MBL gene. 

The authors proposed two theories for the events generating the chimeric blaNDM-1. The first 

theory is an in-frame deletion event between an aphA6 gene within an ISAba125 composite 

transposon upstream of a pre-existing blaMBL gene. The second theory involves the insertion 

of a previous blaMBL via an ISCR element and its rolling circle mechanism, to insert into 

aphA6 with ISAba125 upstream. The latter is more favourable as Tn125NDM also contains 

ISCR27 downstream to groEL and groES. 

 

With the above knowledge, bioinformatic analysis would frequently describe genetic contexts 

for particular AMR genes, detailing adjacent transposable elements such as IS elements, 

transposons, capture systems e.g. class 1 integrons (a common location for the insertion of 

AMR genes cassettes), and other genes in close proximity (60). These analyses would 

determine the sequences of events that genetic contexts would arise via sequence comparison 

with other strains and plasmids. Consequently certain transposable elements were associated 

with AMR genes by frequent co-observation. These associated transposable elements would 

infer the transposition mechanisms involved for insertion of the AMR gene onto the 

chromosome and plasmid. Mobilisation between two locations would be inferred by their 

comparison with other similar genetic contexts. One example of the association between 
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AMR genes and transposable elements is the blaCMY-2-like and blaCTX-M-15 genes with the 

ISEcp1 transpositional unit (60, 71). The blaNDM gene has been associated with transposon 

Tn125 (bound by two ISAba125) within Acinetobacter spp. (72, 73), however when observed 

on Enterobacteriaceae plasmids and compared to the genetic contexts such as those of 

blaCMY-2-like and blaCTX-M-15 genes (frequently observed presence in the ISEcp1 transpositional 

unit), the blaNDM gene does not have an associated and frequent genetic context apart from a 

fragmented Tn125 (ΔTn125) of different lengths. ΔTn125 would frequently encompass a 

single ΔISAba125 upstream of the blaNDM and a bleMBL gene downstream, with fluctuations 

in the presence of other Tn125-associated genes (2, 74, 75). Although not widely known by 

health-care professionals, the transposition mechanism is an important factor to understand 

the acquisition and spread of the blaNDM gene amongst various plasmid types and bacterial 

species. 

 

The above and literature during candidature commencement is summarised, presented and 

discussed further in manuscript format published in Expert Reviews of Anti-infective Therapy. 

Wailan AM, Paterson DL. 2014. The spread and acquisition of NDM-1: a multifactorial 

problem. Expert Rev. Anti. Infect. Ther.12:91-115. DOI: 10.1586/14787210.2014.856756 

 

The University of Queensland requires the presentation of the submitted or accepted article. 

The numbers of the figures, tables and references of the presented article have been amended 

to suit the structure of this thesis. The article remains in American English spelling enforced 

by journal guidelines.  
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Abstract: blaNDM is a major mechanism of resistance of gram-negative bacteria to β-lactam 

antibiotics including the carbapenems. blaNDM has been acquired by a large range of gram-

negative bacilli, especially by the Enterobacteriaceae and Acinetobacter spp. The 

combination of human factors (suboptimal antibiotic stewardship and infection control, 

movement of people between countries) plus bacterial factors (hospital adapted clones, 

environmental persistence and prolific horizontal gene transfer) has led to global spread of 

blaNDM at a rapid pace. Treatment options for NDM producers are very limited. For serious 

infections, combination therapy including a polymyxin is preferred. However, resistance to 

polymyxins is emerging. Clearly, substantial international efforts must be made to control the 

spread of NDM-producers or else many of the advances of modern medicine may be 

undermined by untreatable infections.   

Keywords: NDM-1, nosocomial, community, transmission routes, medical tourism, plasmid, 

transposition, Tn125, genetic mobilization, polymyxins 
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Gram-negative bacteria have developed resistance to many antibiotics including the last line 

β-lactams, carbapenems. This is achieved by developing or acquiring genes conferring 

antibiotic resistance. A number of mechanisms of antibiotic resistance are possible. These 

mechanisms include antibiotic modification, modification of the target site of antibiotic 

activity and membrane alteration & efflux systems (76).  For example, carbapenem resistance 

may occur due to membrane impermeability to the carbapenems (typically linked to use or 

misuse of this class of antibiotics).   

The most important mechanism of resistance to β-lactam antibiotics is the production of 

enzymes called β-lactamases.  These enzymes are encoded by the bla genes which hydrolyze 

the β-lactam ring, rendering the antibiotic inactive (77). 

Carbapenem resistance is most frequently due to carbapenemases, β-lactamases capable of 

hydrolyzing the carbapenem antibiotics. A variety of carbapenemases have emerged such as 

KPC (particularly prominent in the United States, Greece, Italy and Israel) and OXA-48 

(particularly prominent in Turkey, North Africa and the Middle East). Another such 

carbapenemase is the New Delhi metallo-β-lactamase (NDM), which is defined as a Class B 

metallo-β-lactamase using the Ambler classification of β-lactamases. The NDM-type β-

lactamase was first isolated in 2009 from a Swedish patient returning from India, who was 

infected with Klebsiella pneumoniae resistant to multiple antibiotics including all 

carbapenems (2). blaNDM has now spread to all inhabited continents and is carried by multiple 

gram negative species (78-84). This review will provide a detailed overview focusing on the 

different aspects allowing for the successful global spread of NDM including epidemiology 

and genetics. The article will conclude with a brief review of infection control and current 

treatment options available to treat infections due to NDM producers. 
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Epidemiology 

 

“Reservoirs” of NDM producers 

Since the first report of NDM produced by K. pneumoniae from Sweden, blaNDM-1 has been 

reported throughout the world (Fig. 1) (2). In the first few years following this initial case, 

NDM producing organisms have been strongly linked with the Indian subcontinent (India, 

Pakistan, Bangladesh and Nepal), through epidemiologic studies in this area and travel 

history in individuals returning to other countries with infections (16). This suggests the 

Indian sub-continent is a major/ primary reservoir for blaNDM acquisition. China is also 

known to be a reservoir country, emerging as a reservoir shortly after the Indian sub-

continent’s association with blaNDM.  At this stage it does not appear that NDM producers are 

as widely prevalent in China as in the Indian subcontinent. The Balkan states (for example, 

Serbia, Montenegro, and Bosnia-Herzegovina) may be considered as a “secondary” reservoir 

area for blaNDM acquisition since a number of cases have been reported with no travel history 

to Asia. 
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Figure 1. International dissemination of blaNDM as reported in the literature till July 2013  

Red: Initial reservoirs (Indian sub-continent and China); Dark Red: Secondary reservoirs (Balkan States); Yellow: “Expanded” Reservoirs; Light Red: 

Countries reported cases linked with international travel. 
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Expansion of Reservoirs 

The situation is, of course, quite fluid and secondary cases are occurring in many parts of the 

world. In particular, the greater Middle East (Morocco (45, 85, 86), Algeria (87), Libya, 

Egypt (88, 89), Iraq (90, 91), Kuwait (32), Oman (92), Lebanon (93), Afghanistan (94)), 

South East Asia (South Korea (95), Indonesia (96), Vietnam (81) and Thailand (85)) and 

parts of Europe (France (97), Italy (98)) may be additional reservoir areas since they have 

recently been linked with nosocomial acquisition, community acquisition or have been the 

area of origin for blaNDM in cases involving personal travel.  

Additionally, community acquired NDM producing bacteria have been reported in Russia 

(99), Guatemala (100) and Colombia (79) indicating the possibility that the number of NDM 

reservoir countries is still increasing and expanding.  

 

Travel: medical tourism and personal travel 

Travel appears to be the major means by which NDM producing bacteria have spread 

throughout the world.  Europe provided the first case in 2009 in Sweden and shortly after 

other European countries began reporting travel related NDM acquisition from the Indian 

Sub-continent or the Balkan states. These countries include Sweden, United Kingdom, Spain, 

Belgium, Norway, Switzerland, Denmark, Netherlands, Germany, Belgium, and Croatia.  The 

only European country to not have been linked via travel from reservoir areas (Balkan States 

and/or the Indian sub-continent), is Czech Republic which involved travel from Egypt.   

The countries outside of Europe that have reported NDM, initially only through travel to the 

Indian sub-continent, are the United States, Canada, Japan, Australia, New Zealand, Oman 

and Kuwait (15, 45, 101, 102). Other countries with NDM reports involving travel, are 

countries linking NDM acquisition from other potential reservoir countries previously 
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mentioned. These countries include Singapore reporting links to Vietnam and Indonesia, and 

Turkey and Lebanon reporting epidemiological links with Iraq. 

It must be noted that the reports mentioned above have included clinical information 

concerning travel history. Many reports do not state (due to its unavailability), the patient 

travel history or any possible indication of where the NDM producing organism was 

acquired. Therefore the expansion of NDM reservoir areas may be certainly underestimated. 

 

Three major routes of NDM acquisition 

In terms of international spread and countries reporting NDM, there are three major routes of 

NDM acquisition. These are nosocomial acquisition (Table1), personal travel (Table 2) and 

community acquisition (Table 3).  

The nosocomial acquisition route we define as hospital acquisition in the patient’s home 

country or abroad. The presumed most likely modes of nosocomial acquisition are inadequate 

hand hygiene and spread from a contaminated hospital environment. 

Community acquired blaNDM provides the second main route for human route of acquisition. 

We define this as acquisition in the person’s country of residence without recent international 

travel. These reports indicate reservoirs and common means by which NDM producers can be 

acquired. Community acquired blaNDM also involves the presence of NDM within the 

environment and thus this category of acquisition also includes reports of NDM producers 

retrieved from the environment, which in the most common forms include water seepage and 

tap waste (78, 103). 
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Table 1. Nosocomial acquired NDM including medical tourism 

Travel Acquired Introduced Country  Species Sample Reference 

Indian sub continent origin 

India Sweden Klebsiella pneumoniae Urine (2) 

France Salmonella  enterica subsp.  

enterica serotype Westhampton 

Urine (104) 

France Citrobacter freundii Catheter, Urine (84) 

France Klebsiella pneumoniae Faecal sample (104) 

France Escherichia coli Unknown (2) (105) 

New Zealand Klebsiella pneumoniae Rectal swab (101) 

New Zealand Escherichia coli Rectal swab (2), Urine (101) 

New Zealand Proteus mirabilis Rectal swab (101) 

Oman Klebsiella pneumoniae Wound,  Intra-adominal, sputum (92) 

Oman Klebsiella pneumoniae Urinary catheter (106) 

United Kingdom  Klebsiella pneumoniae Blood, Urine, wound swab, sputum  (16) 

United Kingdom  Escherichia coli Blood, Urine, wound swab, sputum  (16) 

United Kingdom  Enterobacter spp. Blood, Urine, wound swab, sputum  (16) 

United Kingdom  Citrobacter freundii Blood, Urine, wound swab, sputum  (16) 

United Kingdom  Morganella morgannii Blood, Urine, wound swab, sputum  (16) 

United Kingdom  Providencia spp. Blood, Urine, wound swab, sputum  (16) 

United Kingdom  Klebsiella pneumoniae Wound (107) 

United Kingdom  Escherichia coli Wound (107) 

United Kingdom  Vibro cholerae Blood culture, wound  (107) 

Italy Escherichia coli Wound (108) 

Italy Escherichia coli Urine (98) 

Norway Klebsiella pneumoniae Catheter (109) 

Norway Escherichia coli Urine, blood cultures (109) 

Spain Escherichia coli Stool sample (82) 

Spain Klebsiella pneumoniae Peritoneal fluid (110) 

Canada Escherichia coli Urine (111) 

Canada Escherichia coli Thigh tissue (112) 

Canada Klebsiella pneumoniae Thigh tissue (112) 

Germany Escherichia coli Tracheal secretions (113) 

Hong Kong Escherichia coli Rectal swab/ stool sample (114) 

Japan A. baumannii Sputum  (115) 

United States Escherichia coli Catheter Sample (116) 
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ST: Sequence type, Nosocomial cases without travel history have been reported from India 

(126-128), Bangladesh (129), Morocco (86), Oman (92), Kuwait (32), France (97), Italy (98), 

United Kingdom (128), China (81, 130), South Korea (95), Guatemala (100), Canada (112) 

and Colombia (79).  

 

Switzerland Klebsiella pneumoniae Urine (117) 

Kuwait Klebsiella pneumoniae Wound swab (32) 

Bangladesh Australia Escherichia coli Urine (75) 

Singapore Escherichia coli Blood culture (118) 

Pakistan Belgium Escherichia coli Pus (83) 

Denmark Escherichia coli Faecal sample (119) 

United States Klebsiella pneumoniae Urine,  sputum, nasal wash specimen  (102) 

Sri Lanka Czech Republic Enterobacter cloacae Rectal swab (120) 

Balkan states origin 

Serbia  Switzerland Klebsiella pneumoniae Urine (117) 

Netherlands Klebsiella pneumoniae Throat, rectal and urine (121) 

France Pseudomonas aeruginosa Urine, rectal swabs (122) 

Montenegro  Belgium Enterobacter cloacae Pus (83) 

Belgium Morganella morgannii Wound swab (83) 

Bosnia-

Herzegovina  

Croatia  Klebsiella pneumoniae Blood culture (123) 

Middle East and North Africa origin 

Iraq France Klebsiella pneumoniae Rectal swabs (90) 

Turkey Klebsiella pneumoniae Blood culture (124) 

Lebanon Klebsiella pneumoniae Blood culture, Urine (91) 

Egypt France Klebsiella pneumoniae Stool sample (88) 

Czech Republic Acinetobacter baumannii Oral cavity swab (89) 

Morocco Norway Klebsiella pneumoniae Rectal screening (85) 

Algeria Belgium Acinetobacter baumannii Rectal swab (87) 

South East Asia origin 

Thailand Norway Escherichia coli Urine (85) 

Indonesia Singapore Klebsiella pneumoniae Stool sample (96) 

Vietnam Singapore Klebsiella pneumoniae Urine (125) 
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Table 2. NDM-1 acquired through personal travel involving colonization and long-term 

carriage 

 

 

 

 

 

 

 

 

 

 

 

 

Country Acquired Introduced Country   Species Sample Reference 

India France Escherichia coli Rectal swabs (131) 

France Escherichia coli Fecal sample (88) 

Italy Escherichia coli Rectal swab (108) 

Japan Escherichia coli Blood culture (132) 

Australia Klebsiella pneumoniae Urine (133) 

Pakistan Switzerland Proteus mirabilis Rectal (117) 

Serbia (Balkan states) Switzerland Escherichia coli Rectal (117) 

Montenegro  (Balkan states) Belgium Klebsiella pneumoniae Sputum (83) 

Montenegro  (Balkan states) Belgium Escherichia coli Fecal swab (83) 

Romania  Norway Klebsiella pneumoniae Rectal screening (85) 

Libya Denmark Acinetobacter baumannii Nostrils, tonsils or perineum (134) 

Ireland  India Klebsiella pneumoniae Urine (135) 
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Table 3. Community acquired NDM-1 and NDM producing environmental isolates 

 

Country Species Sample Reference 

Community acquired 

France Klebsiella pneumoniae Urine (33) 

Klebsiella pneumoniae Urine (136) 

India Acinetobacter baumannii Donor corneal rim (137) 

Russia Klebsiella pneumoniae Urine (99) 

Afghanistan Providencia stuartii Blood (94) 

Environmental samples 

India Escherichia coli Waste seepage (78) 

Pseudomonas putida  Waste seepage (78) 

Pseudomonas pseudoalcaligenes  Waste seepage (78) 

Pseudomonas oryzihabitans Waste seepage (78) 

Pseudomonas aeruginosa Tap water (78) 

Vibrio cholerae Waste seepage (78) 

Aeromonas caviae Waste seepage (78) 

Stenotrophomonas maltophilia Waste seepage (78) 

Klebsiella pneumoniae Waste seepage (78) 

Achromobacter spp. Tap water (78) 

Achromobacter spp. Tap water (78) 

Kingella dentrificans Tap water (78) 

Shigella boydii Waste seepage (78) 

Suttonella indologenes Waste seepage (78) 

Citrobacter freundii Waste seepage (78) 

China Acinetobacter johnsonii Hospital sewage (138) 

Acinetobacter lwoffii Chicken  (103) 

Vietnam Klebsiella pneumoniae Seepage water (139) 
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Following nosocomial acquisition in the incidence of NDM cases is community acquisition 

during personal travel. We define this as international travel for purposes other than seeking 

medical care. Reports of this route have usually involved colonization of the gut by NDM 

producing organisms usually identified by rectal screening, the most common being E. coli, a 

natural component of the flora within the gut. However K. pneumoniae, Acinetobacter 

baumannii and Proteus mirabilis have also been detected in this way. 

These three routes of NDM acquisition clearly have some overlap, and exceptions to how 

these three major routes occur. For example, community acquisition may have occurred prior 

to presentation to a health care facility leading to the international transfer. Furthermore there 

are reported cases in which travel history is not stated in the published report (Table 4). 

Nevertheless, it is clear that both nosocomial and community acquisition of NDM producers 

can occur. Individuals who travel can then transfer NDM producers to new geographic 

locations. The origin and sources of NDM producers in the environment needs greater 

investigation.
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Table 4. NDM cases with no travel history and unknown travel history 

Country Species Sample Reference 

No travel history (possible nosocomial or community acquisition) 

India Klebsiella pneumoniae Endotracheal aspirate, blood culture (140) 

Klebsiella pneumoniae Sputum, tracheal aspirate (2), blood 

culture 

(127) 

Klebsiella pneumoniae Unknown (105) 

Klebsiella pneumoniae Urine (141) 

Klebsiella pneumoniae Umbilical cord tip, sputum, pus, 

urine, blood, umbilical cord, 

endotracheal tube 

(142) 

Klebsiella pneumoniae Skin, blood, respiratory tract (143) 

Klebsiella pneumoniae Intra-abdominal infection (144) 

Klebsiella pneumoniae Blood, urine (16) 

Escherichia coli Abscess (pus), tissue, blood culture (127) 

Escherichia coli Intra-abdominal infection (144) 

Escherichia coli Skin, blood (143) 

Escherichia coli Unknown (145) 

Escherichia coli Urine, catheter, pus, blood, 

endotracheal tube 

(142) 

Escherichia coli Blood, urine (16) 

Enterobacter cloacae Blood culture, Tracheal aspirate (127) 

Enterobacter cloacae Intra-abdominal infection (144) 

Enterobacter cloacae Blood (143) 

Enterobacter cloacae Blood, urine (16) 

Citrobacter freundii Wound/drainage (127) 

Citrobacter freundii Urine, tissue, pus, catheter  tip, 

endotracheal tube 

(142) 

Citrobacter freundii Blood, urine (16) 

Providencia rettgeri Intra-abdominal infection (144) 

Providencia rettgeri Blood, urine (16) 

Morganella morganii Intra-abdominal infection (144) 

Acinetobacter spp. Pus, CSF, sputum, fluid (146) 

Proteus spp. Blood, urine (16) 

Klebsiella oxytoca Blood, urine (16) 

Providencia stuartii Unknown (147) 

Stenotrophomonas 

maltophilia 

Umbilicus (126) 

Pseudomonas spp. Pus, CSF, Sputum, Fluid (146) 
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Pakistan Acinetobacter baumannii Stool samples (148) 

Enterobacter cloacae Stool samples (148) 

Klebsiella pneumoniae Stool samples (148) 

Citrobacter freundii Stool samples (148) 

Citrobacter braakii Stool samples (148) 

Escherichia coli Stool samples (148) 

Providencia rettgeri Stool samples (148) 

Aeromonas caviae Stool samples (148) 

Bangladesh Klebsiella pneumoniae Urine, endotrachael tube, wound 

swab, urine 

(129) 

Klebsiella pneumoniae Urine, Tracheal aspirate (149) 

Escherichia coli Tracheal aspirate (129) 

Citrobacter freundii Urine (129) 

Providencia rettgeri Urine (129) 

China Escherichia coli Stool sample (150) 

E. aerogenes Stool sample (150) 

Klebsiella pneumoniae Stool sample (150) 

Acinetobacter junii Blood culture (151) 

Acinetobacter lwoffii Urine (73) 

Serbia 

(Balkan 

states) 

Pseudomonas aeruginosa Urine, wound (152) 

Klebsiella pneumoniae Urine (153) 

Oman Klebsiella pneumoniae Perineal swab, cannula site (92) 

Klebsiella pneumoniae Urine (106) 

Thailand Escherichia coli Urine (154) 

Klebsiella pneumoniae Urine (154) 

Citrobacter freundii Urine (154) 

Algeria Acinetobacter baumannii Blood cathered, rectal swabs (155) 

Brazil Providencia rettgeri Soft tissue of the toe (156) 

Cameroon Escherichia coli Urine (157) 

Japan Klebsiella pneumoniae Urine (158) 

Kenya Klebsiella pneumoniae Urine, uretheral pus (80) 

Lebanon  Klebsiella pneumoniae Unknown (93) 

Mauritius Klebsiella pneumoniae Urine  (159) 

Singapore Klebsiella pneumoniae Urine (125) 

South Africa Klebsiella pneumoniae Urine (160) 

USA Klebsiella pneumoniae Urine (161) 
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Bacterial Hosts 

A variety of bacterial hosts are able to harbor blaNDM. The most predominant are those in the 

Enterobacteriaceae family. However, non-fermentative Gram negative bacteria such as 

Acinetobacter spp. are also potentially important and may even be the originators of blaNDM. 

Reports of blaNDM in Gram positive organisms are highly likely to be spurious. 

 

Klebsiella pneumoniae 

Klebsiella pneumoniae was the first bacterial host to be isolated with blaNDM and continues to 

be the most predominant pathogen producing NDM (Table 5). Multilocus sequence typing 

(MLST) has been the molecular epidemiologic tool most frequently used to evaluate the 

global epidemiology of NDM producers. Various K. pneumoniae sequence types (STs) have 

been reported to harbor blaNDM. The predominant ST types are 14 (2, 105, 106, 117, 127, 

144), 147 (90, 92, 117, 144), 11 (85, 92, 101, 127, 144), 340 (95, 99, 106, 144, 162), 15 (33, 

83, 86, 92, 121), 1043 (79), and 231 (144, 159, 162), with a small number of cases presenting 

with ST types 17 (100, 127), 37 (162), 38 (124, 127, 162), 42 (158, 162), 101 (92, 144), 149 

(162), and 625 (162). In addition to these frequently reported ST types, there are also novel 

ST types including 1 (136), 16 (112), 20 (144), 25 (123), 29 (127), 43 (162), 273 (162), 283 

(139), 307 (162), 372 (92), 391 (144), 405 (85), 483 (150), 525 (85), 571 (144), 572 (144), 

610 (162), 623 (162), 624 (162), and 924 (112). The diversity of K. pneumoniae STs 

described highlights its ability to spread via various clones. Globally, ST 14, 15 and 147 are 

the most predominant amongst K. pneumoniae. Interestingly, ST258 has been the K. 

pneumoniae most frequently associated with spread of blaKPC, which is the most common 

carbapenemase found in North America. ST258 has not been found to harbor blaNDM but 

single locus variants (ST11, 340 and 572) have been found to harbor this enzyme.  
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The ability to be acquired and spread amongst a large range of ST types, not only novel 

single ST types, but those capable of high clonal spread begins to indicate in detail how 

blaNDM was able to spread at a rapid rate. However this ST diversity of blaNDM acquisition is 

not restricted in K. pnuemoniae but continues to be mirrored within another 

Enterobacteriaceae species, E. coli. 
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Table 5. Reported cases of NDM producing Klebsiella pneumoniae 

 
ST type Country Acquired Introduced 

Country 

Sample Reference 

14 (n=20) India Sweden Urine (2) 

India  N/A Endotracheal tube (127) 

India  None Unknown (105) 

India Oman Urinary catheter (106) 

India  N/A Intra-abdominal infection (144) 

India Unknown Urine, lower respiratory tract samples (162) 

United Kingdom Unknown Urine, lower respiratory tract samples (162) 

Sweden Unknown Urine, lower respiratory tract samples (162) 

147 (n=18) India  N/A Intra-abdominal infection (144) 

India Switzerland Urine (117) 

India Australia Urine (15) 

Oman  None Wound, rectal swab, urine, supra-pubic catheter (92) 

Iraq France Rectal swabs (90) 

United Kingdom Unknown Urine, lower respiratory tract samples (162) 

11 (n=12) India Norway Catheter (109) 

India  N/A Intra-abdominal infection (144) 

India  N/A Sputum, tracheal aspirate (127) 

India New Zealand Rectal swab (101) 

None Oman Urine, Blood, Perineal swab (92) 

India Unknown Urine, lower respiratory tract samples (162) 

United Kingdom Unknown Urine, lower respiratory tract samples (162) 

Sweden Unknown Urine, lower respiratory tract samples (162) 

India Spain Peritoneal fluid (110) 

340 (n=9) Russia No travel Urine (99) 

South Korea N/A Stool, Urine (95) 

India N/A Intra-abdominal infection (144) 

Oman Unknown Urine (106) 

Sweden Unknown Urine, lower respiratory tract samples (162) 

15 (n=8) Morocco  None Urine, Blood culture, Pancreatic abscess (86) 

Serbia (Balkan States) Netherlands Throat, rectal, urine (121) 

India Oman Intra-adominal sputum (92) 
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France  None Urine (33) 

Montenegro (Balkan states) Belgium Sputum (83) 

1043 (n=6) Colombia  None Neonatal (79) 

231 (n=5) India  N/A Intra-abdominal infection (144) 

Mauritius  Unknown Urine (159) 

United Kingdom Unknown Urine, lower respiratory tract samples (162) 

17 (n=3) Guatemala Unknown Catheter, Tracheal secretions (100) 

India  N/A Blood culture (127) 

38 (n=3) India  N/A Tracheal aspirate (127) 

Iraq Turkey Blood culture (124) 

India Unknown Urine, lower respiratory tract samples (162) 

149 (n=3) India Unknown Urine, lower respiratory tract samples (162) 

625 (n=3) India Unknown Urine, lower respiratory tract samples (162) 

37 (n=2) India Unknown Urine, lower respiratory tract samples (162) 

United Kingdom Unknown Urine, lower respiratory tract samples (162) 

42 (n=2) India Japan Urine (158) 

United Kingdom Unknown Urine, lower respiratory tract samples (162) 

101 (n=2) Oman  Unknown Perineal swab, cannula site (92) 

India  N/A Intra-abdominal infection (144) 

340 (n=2) India Unknown Urine, lower respiratory tract samples (162) 

Sweden Unknown Urine, lower respiratory tract samples (162) 

1 (n=1) Europe  None Urine (136) 

16 (n=1) India Canada Rectal swab (112) 

20 (n=1) India  N/A Intra-abdominal infection (144) 

25 (n=1) Bosnia-Herzegovina  

(Balkan states) 

Croatia  

(Balkan 

states) 

Blood culture (123) 

29 (n=1) India  N/A Blood culture (127) 

43 (n=1) United Kingdom Unknown Urine, lower respiratory tract samples (162) 

273 (n=1) United Kingdom Unknown Urine, lower respiratory tract samples (162) 

283 (n=1) Vietnam  N/A Seepage water (139) 

307 (n=1) India Unknown Urine, lower respiratory tract samples (162) 

372 (n=1) India Oman Wound (92) 

391 (n=1) India  N/A Intra-abdominal infection (144) 

405 (n=1) Romania (Balkan States) Norway Rectal screening (85) 

483 (n=1) China  None Stool sample (150) 
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525 (n=1) Romania Norway Rectal screening (85) 

571 (n=1) India  N/A Intra-abdominal infection (144) 

572 (n=1) India  N/A Intra-abdominal infection (144) 

610 (n=1) Sweden Unknown Urine, lower respiratory tract samples (162) 

623 (n=1) India Unknown Urine, lower respiratory tract samples (162) 

624 (n=1) India Unknown Urine, lower respiratory tract samples (162) 

972 (n=1) India Canada Thigh tissue (112) 

ST: Sequence type, N/A: Not applicable. In the following reference, sequence type of NDM 

producers was not recorded (16, 32, 78, 80, 88, 91, 93, 96, 98, 102, 104, 107, 125, 126, 129, 

135, 140-143, 148, 149, 153, 154, 160, 161). 



 

Chapter 1: A new paradigm presented by the blaNDM gene  33 

Escherichia coli 

Escherichia coli is another predominant carrier of blaNDM and is commonly observed during 

rectal screening as it is naturally found as part of gut flora. It is also the most common cause 

of urinary tract infection (UTI). As is the case with K. pneumoniae, a broad range of E. coli 

STs may be NDM producers but a group of predominant clonal strains also exists (Table 6). 

The predominant E. coli ST types producing NDM include STs 101 (75, 83, 101, 113, 119, 

127, 143), 405 (85, 157, 163), 88 (144), 410 (109, 112, 117, 163), 648 (105, 163), 156 (82, 

163), 744 (150) and the already predominant strain responsible for the spread of blaCTX-M-15, 

ST131 (116, 131). Single ST type reports include ST2 (144), 10 (105), 38 (132), 44 (144), 88 

(144), 156 (82), 167 (143), 361 (101), 471 (144), 501 (144), 648 (105), 744 (150), 782 (83), 

2488 (101) and 2527 (92). 

It can be seen that blaNDM is found in a variety of E. coli STs, including those that are known 

for clonal pandemic spread such as E. coli ST131 (164). This particular ST has been found 

worldwide and is of major clinical importance since it confers multidrug resistance as well as 

possessing multiple virulence factors. The diversity of blaNDM amongst STs also demonstrates 

that blaNDM is not restricted to a single ST type. Furthermore, to add more diversity, blaNDM 

can also be found in various Gram-negatives including other Enterobacteriaceae species and 

Acinetobacter species. 

 

Other Enterobacteriaceae species 

After Klebsiella and Escherichia, the most common genera to be reported harboring blaNDM 

from the Enterobacteriaceae (Table 7) are Citrobacter and Enterobacter. Citrobacter 

freundii and Enterobacter cloacae are the most common species, however there have been 

single reports of Citrobacter braakii (148) and Enterobacter aerogenes. Other less 

predominant Enterobacteriaceae that have been reported include Klebsiella oxytoca (16, 
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165), Providencia rettgeri (129, 144, 153), Providencia stuartii (94, 105), Proteus mirabilis 

(103, 117), Morganella morganii (83, 144), Salmonella enterica (104) and Shigella boydii 

(78).  
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Table 6. Reports of NDM producing Escherichia coli 

ST type Country Acquired Introduced Country Sample Reference 

101 (n=16) India  N/A Abscess (pus), tissue (127) 

India New Zealand Rectal swab (101) 

India  None Skin, blood (143) 

India Germany Tracheal secretions (113) 

India Canada Urine (111) 

Pakistan Denmark Faecal sample (119) 

Pakistan Belgium Pus (83) 

Pakistan  ND Unknown (163) 

Bangladesh Australia Urine (75) 

Unknown United Kingdom Blood, Urine, Feces   (163) 

405 (n=11) India Italy Fectal swab, wound (108) 

Unknown United Kingdom Blood, Urine, Feces   (163) 

Cameroon France Rectal swab (157) 

88 (n=8) India  N/A Intra-abdominal infection (144) 

410 (n=4) Serbia  (Balkan 

states) 

Switzerland Rectal (117) 

India Norway Urine, blood cultures (109) 

India Canada Thigh tissue (112) 

Unknown United Kingdom Blood, Urine, Feces  (163) 

648 (n=4) India France Unknown (105) 

Pakistan  ND Unknown (2) (163) 

Unknown United Kingdom Blood, Urine, Feces  (163) 

131(n=2) India United States Catheter sample (116) 

India France Rectal swabs (131) 

156 (n=2) India Spain Stool sample (82) 

Unknown United Kingdom Blood, Urine, Feces   (163) 

744 (n=2) China  N/A Stool sample (150) 

2 (n=1) India  N/A Intra-abdominal infection (144) 

10 (n=1) India France Unknown (105) 

38 (n=1) India Japan Blood culture (132) 

44 (n=1) India  N/A Intra-abdominal infection (144) 

90 (n=1) India  ND Unknown (163) 

167 (n=1) India  ND Skin (143) 

361 (n=1) India New Zealand Rectal swab (101) 
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471 (n=1) India  N/A Intra-abdominal infection (144) 

501 (n=1) India  N/A Intra-abdominal infection (144) 

782 (n=1) Montenegro 

(Balkan states) 

Belgium Fecal swab (83) 

2488 (n=1) India New Zealand Urine (101) 

2527 (n=1) Oman  None Perineal swab (92) 

ST: Sequence type, ND: Not Defined, N/A: Not applicable. In the following references, 

sequence type of NDM producing was not recorded (16, 78, 88, 97, 98, 107, 114, 118, 126, 

127, 129, 142, 145, 148, 154) 
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Table 7. Reports of other New Delhi metallo-β-lactamase-producing Enterobacteriaceae 

species 

Species Country 

Acquired 

Introduced Country Sample Reference 

Enterobacter species 

E. cloacae India  N/A Intra-abdominal infection (144) 

India  N/A Blood culture, tracheal 

aspirate 

(127) 

India ND Blood, urine (16) 

Pakistan  ND Stool samples (148) 

India  None Blood (143) 

Montenegro 

(Balkan states) 

Belgium Pus (83) 

Sri Lanka Czech Republic Rectal swab (120) 

E. aerogenes China  None Stool sample (150) 

Enterobacter spp. UK India Blood, urine (16) 

Citrobacter species 

C. freundii India France Catheter  (84) 

India N/A Wound/drainage (127) 

India UK Wound (107) 

India N/A Waste seepage (78) 

India None Urine, tissue, pus, 

catheter tip, endotracheal 

tube 

(142) 

India ND Blood, urine (16) 

India France Urine (84) 

UK India Blood, urine (16) 

Thailand  ND Urine (154) 

Bangladesh  None Urine (129) 

Pakistan  ND Stool samples (148) 

C. braakii Pakistan  ND Stool samples (148) 

Providencia species 

P. rettgeri Pakistan  ND Stool samples (148) 

Bangladesh ND Urine (129) 

N/A India Intra-abdominal infection (144) 

Unknown Brazil Soft tissue of the toe (156) 

P. stuartii Afghanistan N/A Blood (94) 



 

Chapter 1: A new paradigm presented by the blaNDM gene  38 

India None Unknown (105) 

Providencia spp. UK India Blood, urine (16) 

Other Enterobacteriaceae species 

Klebsiella oxytoca India ND Blood, Urine (16) 

Morganella morganii Montenegro 

(Balkan states) 

Belgium Wound swab (83) 

N/A India Intra-abdominal infection (144) 

UK India Blood, Urine, wound 

swab, sputum 

(16) 

Proteus mirabilis India New Zealand Rectal swab (101) 

Pakistan Switzerland Rectal (117) 

Proteus spp. India Unknown Blood, urine (16) 

Salmonella enterica India France Urine (104) 

Shigella boydii N/A India Waste seepage (78) 

ST: Sequence type, ND: Not Defined, N/A: Not applicable  
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NDM producing Non-Enterobacteriaceae  

 

Acinetobacter species 

The most common genus reported carrying blaNDM outside of the Enterobacteriaceae family 

is Acinetobacter (Table 8). Acinetobacter baumannii is the most predominant bacterial 

species to harbor blaNDM, alongside K. pneumoniae and E. coli. A. baumannii has also been 

theorized to be the organism involved in the genesis of the blaNDM gene (70, 166), which will 

be discussed in the following genetic sections. The STs that have been identified for A. 

baumannii thus far are ST1 (89), ST92 (87) and ST222 (115), however many remain 

undefined by MLST. Other species of Acinetobacter which may produce NDM include A. 

johnsonii (138), A. junii (151), A. lwoffii (73), and A. pittii (130)  which have predominantly 

been reported from China within the clinical setting as well as the environment i.e. hospital 

sewage or meat producing animals (103, 138). 

 

Pseudomonas species and other unique bacterial hosts 

Pseudomonas species follows the Enterobaceriaceae family and the Acinetobacter genus in 

predominant reports of species producing NDM, being first reported in 2011 (Table 9). 

Pseudomonas aeruginosa is the most commonly reported Pseudomonas spp. to produce 

NDM and in most cases are commonly linked to Serbia within the Balkan states with one 

case reporting a NDM producing P. aeruginosa ST235 (147), the primary founder of the 

epidemic clonal complex 235 (167). There are other species of this genus known to produce 

NDM including P. putida, P. pseudoalcaligenes and P. ozyzihabitans, most of which were 

found in the environment (waste seepage and tap water) within India by Walsh and 

colleagues (78). It was also noted that the NDM gene was not stable within these hosts and 

was lost within 48 hours. Other bacterial hosts harboring blaNDM were usually found within 



 

Chapter 1: A new paradigm presented by the blaNDM gene  40 

the environment (78). These isolates include Vibrio cholerae, Aeromonas caviae, 

Stenotrophomonas maltophilia, Achromobacter spp., Kingella denitrificans and Suttonella 

indologenes. 
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Table 8. Reports of NDM producing Acinetobacter species 

Species ST type Country Acquired Introduced Country Sample Reference 

A. baumannii 222 India Japan Sputum  (115) 

92 Algeria Belgium Rectal swab (87) 

1 Egypt Czech Republic Oral cavity swab (89) 

ND China  None Sputum (2), Blood, Secretions (81) 

ND Bangladesh None Tracheal aspirate (2), Sputum (129) 

ND India  None Donor corneal rim (137) 

ND India  None Mouth (126) 

ND Algeria  Unknown Blood cathered, rectal swabs (155) 

ND Libya Denmark Nostrils, tonsils or perineum (134) 

ND Pakistan  Unknown Stool samples (148) 

A. johnsonii - China N/A Hospital sewage (138) 

A. junii - China Unknown Blood culture (151) 

A. pittii 63 China N/A ICU draw handle, groin (130) 

A. lwoffii ND China  Unknown Urine (73) 

Acinetobacter spp. ND India  Unknown Pus, CSF, sputum, fluid (146) 

ST: Sequence type, ND: Not Defined, - : No current MLST scheme  
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Table 9. Reports of other NDM producing gram negative bacteria 

Species Country Acquired Introduced Country Sample Reference 

Pseudomonas species 

P. aeruginosa Serbia (Balkan states) France Urine, rectal swabs (122, 147) 

Serbia (Balkan states) None Urine (152) 

Serbia (Balkan states) None Wound (152) 

India N/A Tap water (78) 

P. putida  India N/A Waste seepage (78) 

P. pseudoalcaligenes  India N/A Waste seepage (78) 

P. ozyzihabitans India N/A Waste seepage (78) 

Pseudomonas spp. India  Unknown Pus, CSF, sputum, fluid (146) 

Other gram negative species 

Vibrio chloerae India UK Blood culture, wound  (107) 

India  N/A Waste seepage (78) 

Aeromonas caviae India  N/A Waste seepage (78) 

Pakistan  Unknown Stool samples (148) 

Stenotrophomonas maltophilia India N/A Waste seepage (78) 

India None Umbilicus (126) 

Achromobacter spp. India N/A Tap water (78) 

Kingella dentrificans India N/A Tap water (78) 

Sutonella indologenes India N/A Waste seepage (78) 

N/A: Not applicable  

 

The role of bacterial hosts in terms of spread 

The four most predominant species within the Enterobacteriaceae family harboring blaNDM, 

K. pneumoniae, E. coli, C. freundii and E. cloacae, are faecal coliforms able to colonize the 

gut. This has allowed the gut to act as a reservoir for blaNDM which has facilitated 

colonization and asymptomatic long-term carriage leading to the spread of blaNDM. These 

hosts are also pathogens which are able to produce clinical infections such as bloodstream 

infections (BSI) and urinary tract infections (UTI).  Water-borne transmission of these 

organisms has allowed for environment reservoirs to be observed in not only waste seepage 

and tap water (generally documented within the Indian sub-continent), but also hospital 
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sewage samples (168). There are also reports of NDM producers on surfaces within the 

hospital environment (130) - mostly commonly this has been linked with the Acinetobacter 

species. 

Due to the nature of Acinetobacter species being a difficult bacterium to remove in the 

clinical setting, they are a perfect reservoir host from which other species can acquire blaNDM.  

Furthermore, as with the Enterobacteriaceae hosts, Acinetobacter species (in particular A. 

baumannii) are also opportunistic pathogens. This may raise the point that a restricting 

characteristic of blaNDM in terms of pathogenicity, is that the most common bacterial hosts 

carrying blaNDM are opportunistic and are often only clinically significant when a patient has 

presented with an altered health condition e.g. immunocompromised or prolonged 

hospitalization.  However it is only a matter of time before blaNDM is combined with a highly 

virulent pathogen or gene, as is the case with documented virulent strains of E. coli harboring 

blaNDM i.e. ST131. 

The number of STs in which NDM has been identified in K. pneumoniae, E. coli and A. 

baumannii highlights the ability of this gene to be acquired by different bacterial strains 

which are all capable of clonal spread and causing outbreaks. The diversity of NDM 

producing K. pneumoniae, E. coli and A. baumannii ST types may be underestimated because 

many have not been defined by MLST. Further to clonal diversity of NDM, is the ability to 

be acquired by a vast number of Gram negative bacterial hosts. This is because the NDM 

gene is commonly encoded genetically on circular mobile elements known as plasmids, 

capable of transmitting antibiotic resistance between bacterial hosts. Interestingly, as 

mentioned previously, V. cholerae has been reported to harbor blaNDM. V. cholerae is not 

usually treated with carbapenems and thus it may seem strange for this pathogen to harbor 

this gene. However, the genetic vehicle on which blaNDM resides upon is compatible with V. 

cholerae as a recipient and may also carry other genes providing resistance to tetracycline 
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and ciprofloxacin (commonly used to treat V. cholerae). V. cholerae is also able to reside in 

the gut and in this case would be able to transfer blaNDM to other available gut flora, 

providing carbapenem resistance. This extra evasive factor of the bacterial host acting as a 

bacterial host reservoir makes carbapenem resistant pathogens difficult to control. 

Furthermore, this demonstrates that the case of blaNDM is unlike the well known paradigms of 

resistance genes being intrinsic to certain bacterial species e.g. K. pneumoniae (blaSHV-1) A. 

baumannii (blaOXA-51) (169) or commonly spread by specific clones e.g. E. coli ST131 

(blaCTX-M-15), K. pneumoniae ST258 (blaKPC) and A. baumannii clonal complex 92 (blaOXA-23) 

(170).  



 

Chapter 1: A new paradigm presented by the blaNDM gene  45 

Genetics  

 

Plasmids harboring blaNDM-1 

 

Different plasmid backbones 

blaNDM is known to reside on mobile DNA elements known as plasmids, which are capable of 

transferring resistance genes from one bacterial cell to another through a mechanism known 

as conjugation, a type of horizontal gene transfer (HGT). Each plasmid has a backbone 

known as an Inc (Incompatibility)/replicon type. blaNDM has been known to be encoded on at 

least six different backbones with many remaining undefined by standard plasmid replicon 

typing (58). Plasmid backbones harboring blaNDM include common Inc types such as IncH 

types, IncL/M, IncF type and also the rare Inc type X3. However, the most common plasmid 

Inc type to harbor blaNDM, is IncA/C. IncA/C plasmids are vehicles that have an extremely 

broad bacterial host range which include A. baumannii, E. coli, K. pneumoniae, P. mirabilis, 

P. stuartii, S. enterica, V. cholerae and Yersinia pestis.  A combined range with the other 

plasmid backbones allows additional bacterial hosts to harbor blaNDM-1, such as Citrobacter 

freundii (IncHI1) (171), Enterobacter cloacae (IncHI2 type) (172) as well as undefined 

plasmids that can spread blaNDM to A. pittii and A. lwoffii.  Further to the acquisition of the 

carbapenemase, these plasmids harboring blaNDM-1 also co-harbor other beta-lactamases but 

also quinolone and aminoglycoside resistance genes. 

 

Co-harboring of other resistance genes with blaNDM 

The resistance genes which can be co-harbored on the same plasmid backbone encoding 

blaNDM range from ESBLs, AmpC, quinolone and aminoglycoside resistance genes (Table 

10). Common plasmids harboring  blaNDM such as IncF type, IncL/M, IncA/C, can also carry 
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other beta-lactamases such as blaTEM-1, ESBL genes such as blaCTX-M-15, AmpC genes such as 

blaCMY-6 and blaCMY-16, Oxacillinase genes such as blaOXA-1, blaOXA-9, blaOXA-10, blaOXA-21, 

aminoglycoside resistance genes such as armA, aacA4, aac(6’), aac6-1b, aadA1, aadA2, 

aac2, aacC2, rmtA, rmtC and quinolone resistance genes such as aac(6’)-lb-cr, qnrA, qnrA6, 

qnrA6-like, qnrB1. Combine this plasmid co-harborization with chromosomally encoded 

resistance genes and treatment options become seriously limited. An E. coli producing NDM 

has been reported to have acquired tigecycline resistance within 4 months (34), however it is 

unknown whether the mechanism of resistance was chromosomally or plasmid encoded. 

There are also cases of NDM producing K. pneumoniae resistant to colistin and tigecycline 

(32, 33).   

 

blaNDM as part of an accessory module 

As previously mentioned plasmids are composed of a backbone (Inc) which contains several 

genes which can be categorized into modules or groups according to their function. These 

groups include plasmid replication/partitioning, stability, transfer, establishment and 

accessory/adaptive genes. In short, plasmid replication/partitioning is required as its name 

suggests for determining plasmid replication; stability is necessary to ensure plasmids are 

retained within its bacterial host and their subsequence daughter cells; transfer is the major 

feature of plasmids providing its ability to transfer to other bacterial hosts; and establishment 

to compliment transfer genes by ensuring the plasmid is stable within its new host and is 

capable of increasing the recipient host range (170, 173, 174). The accessory/ adaptive genes 

are highly variable and usually contribute to the variation amongst plasmid backbones. These 

genes include the secretion of products which enhance growth, bacteriocins, virulence and 

antibiotic/chemical resistance genes. The jargon term “NDM plasmid” is actually a plasmid 

backbone, for example IncA/C, acquiring the blaNDM-1 gene as an accessory module. 
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Furthermore, the other co-harbored resistance genes residing on the plasmid are also genes of 

other accessory modules captured prior to blaNDM acquisition.  The common mechanism by 

which accessory modules e.g. novel antibiotic resistance, are able to traverse amongst 

different plasmid backbones and become acquired by plasmids is via transposition. 
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Table 10. Reported plasmid backbones and sequences carrying blaNDM 

Plasmid 

backbone 

(Inc type) 

Co-harboring resistance genes Isolate species 

(ST type) 

Country of 

Isolation 

Reference 

β-Lactamases 

Genes (bla) 

Quinolone 

Resistance 

Genes 

Aminoglycoside  

Resistance 

Genes 

A/C - - - P. stuartii Afghanistan (94) 

- - - K. pneumoniae 

(ST14) 

Kenya (80, 175) 

- - - E. coli  Canada Unpublished 

- - - E. coli (ST38) Japan (176, 177) 

- - - E. coli  Canada Unpublished 

blaCMY-16 

blaOXA-10 

- - E. coli (ST10) France (105) 

- - rmtA K. pneumoniae 

(ST147) 

Switzerland (117) 

blaOXA-10  

blaCMY-16 

qnrA6 - K. pneumoniae 

(ST25) 

Switzerland (117) 

blaCMY-6 - rmtC K. pneumoniae 

(ST14) 

Kenya (80) 

blaOXA-10,  

blaCMY-16 

- armA P. mirabilis Switzerland (117) 

- - - E. coli India (78) 

- - - V. cholerae India (78) 

- - - C. freundii India (78) 

- - - A. baumannii  Switzerland (178) 

blaCTX-M-15 

blaSHV-12 

aac(6′)-Ib-cr 

qnrS 

- K. pneumoniae 

(ST147) 

Canada (179, 180) 

N Unknown Unknown Unknown K. pneumoniae UK (107) 

N2 - - - E. coli Australia (75, 181) 

- - - K. pneumoniae Singapore (125) 

- - - K. pneumoniae Singapore (125) 

HI1 - - - C. freundii  India (171) 

- - - E. coli (ST156) Spain (82) 

HI1B blaTEM-1 

blaCTX-M-15 

blaSHV-12 

blaOXA-1 

- armA K. pneumoniae Oman (92) 

blaCTX-M-15 

 

- armA K. pneumoniae Oman (92) 

blaSHV-12 - armA K. pneumoniae Oman (92) 

blaCTX-M-15 

blaOXA-1 

- armA K. pneumoniae Oman (92) 

L/M - - - E. coli Hong-Kong (74) 

blaTEM-1 - - K. pneumoniae 

(ST14) 

Oman (106) 

blaTEM-1 -  K. pneumoniae Oman (92) 
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F blaTEM-1  armA E. coli  Switzerland (117) 

- - armA E. coli (ST648) India (105) 

blaTEM-1 

blaCTX-M-14 

- - E. coli Oman (92) 

FII blaOXA-1 - aacA4 

aadA2 

aac2 

E. coli (ST131) India (182) 

FIIA blaCTX-M-15 

blaSHV-12 

aac(6′)-Ib-cr - K. pneumoniae 

(ST340) 

Canada (180) 

FIIs blaTEM-1 

blaCTX-M-15 

blaOXA-1 

blaOXA-9 

- - K. pneumoniae Oman (92) 

H - - - K. pneumoniae 

(ST15) 

Morocco (86, 183) 

X3 -  - K. pneumoniae China Unpublished 

P - - - E. cloacae India (127) 

ST: Sequence type, Inc type: Plasmid backbone/incompatibility type (Inc) via Carattoli 

replicon typing; ND: Not defined; -: Not present 
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Transposition  

Transposition is the mobilization of a DNA sequence from one DNA site to another. This 

mechanism is facilitated by transposons (Tn), insertion sequence (IS) elements and the most 

recent, insertion sequence common region (ISCR). IS elements are genes encoding a 

transposase enzyme capable of copying the DNA sequence of the IS element into new DNA 

locations. Transposons on the other hand can be divided into two sub groups, composite and 

unit transposons. Composite transposons incorporate two IS elements flanking a sequence 

and the two IS element sequences work in tandem to mobilize the DNA sequence between 

the two flanking IS elements. Unit transposons work in a similar mechanism but utilize other 

enzymes on top of the transposase such as recombinases, to mobilize the sequence within the 

unit transposon. ISCR elements are transposases thought to utilize a rolling-circle mechanism 

to mobilize DNA. Amongst these elements ISCR1 are only associated with class 1 integron 

capture systems (64).  

 

Tn125 carrying blaNDM-1 

Through sequence analysis of the genetic surroundings of blaNDM, it has been theorized that 

NDM-1 was originally mobilized in transposon 125 (Tn125). Originally found in A. 

baumannii, Tn125 is flanked by two IS elements known as ISAba125. Within Tn125, there 

are several genes apart from blaNDM which are found downstream. Downstream from the 

blaNDM-1 are the following genes, bleMBL – conferring bleomycin resistance, trpF - 

phosphoribosylanthranilate isomerize, tat - twin-arginine translocation pathway signal 

sequence protein, dct - divalent cation tolerance protein, groES – cofactor of groEL, groEL – 

heat resistant chaperonin, ISCR27 – transposase, Δpac – truncated phospholipid 

acetyltransferase (Δ i.e. partial sequence) before the other flanking ISAba125. Tn125, 5’- 

ISAba125|blaNDM-1|bleMBL|trpF|tat|dct|groES|groEL|ISCR27|Δpac|ISAba125-3’ (Figure 2), is 
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the platform on which blaNDM has been theorized to be originally mobilized from 

Acinetobacter species into plasmids and then facilitating mobilization into other species such 

as those found in the Enterobacteriaceae family (113). 

 

 

Figure 2. Schematic representation of Tn125 carrying blaNDM from Acinetobacter 

baumannii (Accession no. HQ857107)  

ISAba125: IS element native in A. baumannii; Promoter Region: promoter sequences driving 

expression; bleMBL: bleomycin resistance; trpF: phosphoribosylanthranilate isomerise; tat: 

twin-arginine translocation pathway signal sequence protein; dct: divalent cation tolerance 

protein; groES: cofactor of groEL; groEL : heat resistant chaperonin; ISCR27: transposase; 

Δpac: truncated phospholipid acetyletransferase; Red arrows: IS elements; Green (Dark) 

arrow : Promoter; Blue arrow : β-lactamase; Blue (light) arrows: highly conserved gene with 

blaNDM; Orange arrows: Environmental genes; Green arrows : Heat:resistant chaperonin 

proteins; Purple arrow: IS Common Region (ISCR) element; Δ: partial sequence. 

 

Analyzing however, the NDM sequences outside of Acinetobacter species and within 

Enterobacteriaceae species, reveals that Tn125 becomes truncated both at the beginning, 

truncating the 5’ end ISAba125 (184), and at the end (3’ end) losing certain genes (Δpac, 

ISCR27, groEL etc.), leaving a range of truncated Tn125 structures of different lengths. 

However, even with the different lengths of Tn125 carrying blaNDM, certain Tn125 structures 

are still repeatedly observed in different plasmid backbones. Interestingly, various IS 

elements have been identified directly upstream of blaNDM-1 when the 5’end ISAba125 is 

truncated. These IS elements, may have been inserted close to blaNDM to provide a one-ended 

transposition mechanism to mobilize blaNDM into new plasmid backbones, however this 

remains as speculation. blaNDM residing within close proximity to a transposition mechanism 

may explain why blaNDM has been reported on various plasmid backbones therefore allowing 
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blaNDM to spread to various bacterial hosts. Essentially, transposition allows an antibiotic 

resistance gene an additional mechanism of acquisition and spread below the horizontal gene 

transfer level, a gene mobilization level. Gene mobilization allows a gene to spread between 

different plasmid backbones, which in turn increases the bacterial host range in which that 

gene can be acquired. 

 

Class one integrons 

Class one integrons are able to capture gene cassettes (a section of DNA containing multiple 

genes) and insert them into a DNA site on which the integron sequence resides. This 

mechanism is commonly associated with antibiotic resistance - however in terms of spread it 

is strictly unable to provide a mechanism to mobilize the resistance further to other sites 

(chromosome or plasmid). However mobilization of the gene cassettes to other locations in 

the chromosome and/or plasmids is still possible. If there are two integrons present within the 

cell, exchange of gene cassettes can occur between the two integrons via homologous 

recombination. Additionally, if the resistance gene or the integron itself is incorporated 

within a transposon or is in close proximity to an IS element or ISCR e.g. ISCR1, the gene or 

gene cassettes will also be able to mobilize into various plasmid backbones or the 

chromosome. Incorporating such mobilization elements increases the potential to spread to 

various species via the different host ranges of each plasmid. 

 

blaNDM-1 in Pseudomonas aeruginosa 

Most of the blaNDM and Tn125 genetic investigations reported are either from the 

Acinetobacter spp. or from the Enterobacteriaceae family, and are likely mobilized by 

transposition and plasmid mobilization i.e. conjugation. Recently, a unique genetic sequence 

(Accession no. HF546976) has been published involving the integration of two copies of 
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blaNDM-1 into the chromosome of P. aeruginosa (152) via a Class 1 integron mechanism. The 

two copies of blaNDM-1 are found in two short truncated Tn125 sequence structures 5’-

ISAba125|blaNDM|ΔbleMBL-3’ with aphA6 upstream. Integrated after the first two cassette 

arrays, were two aminoglycoside resistance genes aacA7 and aadA6. This as well as the 

chromosomally encoded blaNDM within P. aeruginosa ST235 (147) demonstrates the ability 

for blaNDM to be also acquired onto the chromosome and complexity of where blaNDM is able 

to reside and mobilize from. Interestingly, aphA6 is found upstream of both copies of 

ΔTn125. Thus the source of the Tn125 and therefore blaNDM may have been from a 

conjugation event from A. baumannii to P. aeruginosa, as aphA6 has been theorized to be 

involved in the genesis of blaNDM-1 in A.baumannii (70). 

 

Characteristics of the NDM gene 

 

Genesis of blaNDM-1 

In 2012, Toleman and colleagues, by alignment of several genetic sequences containing the 

genetic environment around blaNDM-1, proposed that blaNDM-1 may be a chimeric gene within 

its origin, involving the aminoglycoside resistant gene, aphA6 (70). There are reasons to 

believe that the origin/genesis of blaNDM-1 occurred by fusion between aphA6 and a previous 

blaMBL in A. baumannii. Reasons include (1) The ISAba125 associated with blaNDM-1 is 

commonly found in A. baumannii (2) aphA6 is highly associated with A. baumannii (3) the 

first NDM-producing A. baumannii in Europe (isolated in Germany, 2007 (72)), contained 

two full ISAba125 composite transposons, one with blaNDM-1 and the other with aphA6. Thus 

it could be suggested that A. baumannii has played a large role in the origin of blaNDM-1. 
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Expression of NDM-1 provided by ISAba125 

 

It is known that IS elements commonly encode a promoter sequence to drive expression of 

downstream genes. It has also been shown that the promoters provided by ISAba125 in 

conjunction with blaNDM itself provide a high level of carbapenem resistance (imipenem MIC 

>32 μg/mL with promoters versus only 0.5 μg/mL without the promoters) (185). However, it 

is not as simple as the presence or absence of a promoter, there are other factors that 

influence the level of carabapenem resistance which have yet to be charactersised. In 2006, 

15 clinical NDM producing Enterobacteriaceae isolates were identified, most of which has 

an MIC of 8 μg/mL or less. Only three had an imipenem MIC greater than 16 μg/mL i.e. 16, 

16, 64 μg/mL (143). 

 

blaNDM-1 variants 

Hitherto, there are up to seven published different variants of blaNDM due to different point 

mutations from the original blaNDM-1 (Table 11). There are also two more variants of NDM-1 

(NDM-9 and NDM-10) assigned however remain unpublished at this time [201]. Amongst 

the seven published variants, there are several common features. Firstly, is that they were all 

isolated in E. coli with the exception of blaNDM-2 from A. baumannii. Secondly, all were 

found to have originally acquired from India, excluding blaNDM-2 (Egypt) and blaNDM-7 

(Yemen).  The E. coli ST type ST648 is the only type thus far to harbor two novel blaNDM-1 

variants, blaNDM-4 and blaNDM-5. 

All of NDM-1 variants excluding NDM-4 and NDM-8, provide high levels of resistance to 

carbapenems with an MIC of ≥32 ug/mL against imipenem and meropenem. NDM-4 and 

NDM-8 provided lower carbapenemase resistance compared to the other NDM variant 
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counterparts with MIC levels for imipenem and meropenem of 8 ug/mL and 16 ug/mL for 

NDM-4 (186), and 0.5 μg/mL and 0.25 μg/mL for NDM-8 (187), respectively.  
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Table 11. Variants of NDM-1 

NDM-1 

Variant  

Country of  

Isolation 

Country  

origin 

Sample Species  

 

ST  

type  

Point mutation  

position from NDM-1  

(Amino acid change) 

Reference 

NDM-1 Sweden India Urine K. pneumoniae  14 - (2) 

NDM-2 Germany Egypt Catheter A. baumannii  103 82 (ProAla) (188) 

NDM-3 Australia India Urine E. coli ND 95 (AspAsn) (189) 

NDM-4 India India Urine E. coli  648 154 (MetLeu) (186) 

NDM-5 United  

Kingdom 

India Perineum and 

throat 

E. coli  648 88 (ValLeu)  

154 (MetLeu) 

(190) 

NDM-6 New Zealand India Rectal swab E. coli   101 698 (CysTyr) (101) 

NDM-7 German Yemen Wounds, throat,  

rectum 

E. coli 599 388 (GlyAla) 

460 (AlaCys) 

(191) 

NDM-8 Nepal Unknown Pus E. coli  ND 130 (AspGly) 

154 (MetLeu) 

(187) 

NDM-9 China Unknown Urine K. pneumoniae ND 152 (GluLys) Unpublished 

ST: Sequence type, ND: Not defined, Amino Acids- Pro: Proline; Ala: Alanine; Asp: 

Aspartic Acid; Asn: Asparagine; Met: Methionine; Leu: Leucine; Lys: Lysine; Val: Valine; 

Tyr: Tyrosine; Gly: Glycine; Glu: Glutamic acid; Cys: Cystein 

 

A tiered model for the spread and acquisition of antibiotic resistance 

blaNDM-1 has been able to spread rapidly because of the combination of travel, its bacterial 

host (predominately gut colonizers), plasmid encoding and transposition. Thus this situation 

can be thought in the perspective of the acquisition and the ability of spread of a resistance 

gene. In terms of blaNDM, it could be defined on various tiers deeper than the three routes of 

transmission mentioned previously. These tiers include the bacterial host, horizontal gene 

transfer (HGT) and genetic mobilization and are determined upon where the gene is 

genetically encoded (Fig. 3). The bacterial host determines the three routes of acquisition as 

well as international spread, and also potential reservoirs of the resistance gene.
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Figure 3. Model of blaNDM spread and acquisition  

blaNDM is encoded on the 3 genetic tiers by mechanisms of 1. Clonal spread (bacterial host), 

2. Conjugation (horizontal gene transfer) and 3. Transposition (genetic mobilization). Each 

tier flows into and broadens the range of the tier above until the bacterial host, which 

determines how blaNDM can be acquired by a person. The bacterial host determines how the 

gene can spread to a human host and will remain in certain reservoirs until acquired, in the 

case of blaNDM is either nosocomial or within the community. In terms of human hosts, there 

are three major routes to acquire an NDM producing organism: nosocomial, personal travel 

and community acquisition. Blue box: Host/platform harboring blaNDM; Orange box: Mode of 

transmission; Bullet point: mechanism of acquisition/spread; Blue arrows: blaNDM spread; 

Red arrows: blaNDM acquisition. 
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The bacterial host essentially determines how the resistance gene can be humanly acquired 

and the reservoirs in which the gene will remain until acquired. For example, blaNDM-1 

harbored by K. pneumoniae and E. coli is essentially acquired via faecal-oral transmission 

and in terms of a reservoir will reside in the environment e.g. contaminated water, hospital 

surfaces and the GI tract. Colonization rate of species from the Enterobacteriaceae family in 

humans is variable. While E. coli is the most commensal aerobic bacterium colonized in the 

human gut (192), colonization of K. pneumoniae varies according to many factors including 

geographical region, health care facility, ward and patient group with some studies reporting 

colonization prevalence of KPC producing Enterobacteriaceae at 45.8% within metropolitan 

Chicago, USA, (193), while others report a prevalence of ESBL producing 

Enterobacteriaceae in inpatients, intensive care patients, and adults as 7.4%, 9.3% and 12% 

within Hungarian university wards and clinics (194). The GI tract as a reservoir generally 

allows for colonization and long-term asymptomatic carriage leading to the route of 

international spread. In the example of the blaNDM gene, the ability of this gene to spread 

would be amplified if the bacterial hosts (K. pneumoniae and E. coli) harboring blaNDM were 

capable of high clonal spread, i.e. highly predominant ST types. Bacterial hosts provide the 

basis for routes of transmission, reservoirs and thus international spread of an antibiotic 

resistance gene. The bacterial host range can broaden depending on where and how the 

resistance gene is encoded. 

The genetic platform on which the resistance gene is encoded (chromosome or plasmid) 

determines the bacterial host range. A resistance gene encoded on the chromosome is 

restricted to spread by only the bacterial host level, meaning only via clonal spread and 

patient acquisition is limited to that of one clone. However if the gene is encoded within an 

ICE or on a plasmid, it is capable of HGT to other bacterial hosts and thus more ST types for 

clonal spread and increasing the potential for human acquisition. The resistance gene’s 
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bacterial host range however is determined and restricted by the plasmid backbone it is 

encoded upon because each plasmid backbone (Inc types) has a different bacterial host range 

(broad and narrow). This bacterial host range can be further broadened by the presence of 

genetic mobilization mechanisms. 

Genetic mobilization provides a mechanism in which genes can traverse to different DNA 

locations including the chromosome and plasmids. A gene captured or localized in close 

proximity to a genetic element capable of genetic mobilization is able to traverse the gene 

from the chromosome to various different plasmid backbones or vice-versa, therefore further 

broadening the range of bacterial hosts able to acquire blaNDM. 

The spread of an antibiotic resistance gene is dependent on the genetic platform which 

encodes the gene. These genetic platforms can be arranged into tiers describing the genetic 

mechanism of spread and acquisition i.e. 1. Bacterial host (chromosome), 2. Horizontal gene 

transfer (plasmid or ICE) and 3. Genetic mobilization (transposons/IS elements). The further 

genetic tiers the gene is encoded and associated with, the range of the tiers above broadens 

e.g. Genetic mobilization increases the number of plasmid backbones which in turn increases 

the bacterial host range, therefore determining the routes and reservoirs for human 

acquisition. blaNDM traverses all three genetic mechanism tiers and having the correct 

combination of genetic tiers, gut colonizers (Bacterial host), broad and narrow bacterial host 

sprectrum plasmids (HGT) and Tn125/various IS elements (Genetic mobilization) has made 

an optimal platform for rapid spread. Combining these three genetic mechanism tiers of 

spread with the human-bacterial host interaction determining the three routes of human 

acquisition, begins to explain how blaNDM was able to successfully spread on a global scale.  

This leads to the issue that even with the current protocols to prevent bacterial host spread 

amongst the human population, there are further issues to address concerning reservoirs and 

more mechanisms of spread other than clonal. In addition there are also environmental issues 
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such as the poor sanitation of regions in the Asian continent and the lack prescription 

regulation that have and continue to promote the spread of the blaNDM gene. 

 

Infection Control 

Approaches to the prevention of spread of NDM producing organisms will vary depending on 

whether the setting is a reservoir country (high prevalence country) or a low prevalence 

country.  

 

Infection control in a high prevalence setting 

Given that a substantial proportion of the general population in the Indian subcontinent are 

colonized with NDM producers (195) infection control in high prevalence settings is 

challenging. Compounding this is a lack of resources for infection control in many publicly 

funded healthcare facilities. In this setting, attention to hand hygiene with inexpensive 

alcohol based products must be paramount. High levels of hand hygiene before and after 

patient care should be maintained in accordance with the World Health Organization’s Five 

Moments of Hand Hygiene. All reusable patient equipment should be cleaned before and 

after each use. Patient rooms should be cleaned, and preferably disinfected, on a daily basis. 

Basic attention to antibiotic management such as reduction in duration of antibiotic therapy 

should be reinforced. 

Additional measures to reduce cross-transmission of NDM producers should be used in 

private healthcare settings which are likely to have additional resources. Here, contact 

isolation precautions should be used with the patient accommodated in a single room with its 

own toilet facilities. The use of contact isolation precautions implies use of a gown and 

gloves for those entering the patient’s room. Unnecessary transfer of patients within the 

healthcare facility should be avoided. This applies both to patients colonized with NDM 
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producers and compromised patients (such as neutropenic patients). Antibiotic stewardship 

activities should be undertaken in order to reduce inappropriate use of cephalosporins, 

fluoroquinolones, beta-lactam/beta-lactamase inhibitor combinations, aminoglycosides, 

fosfomycin, tigecycline and polymyxins. Measurement of use of these antibiotics should be 

performed. Additionally, monitoring of antimicrobial resistance at a facility level for key 

Gram-negative organisms at significant sites of infection (for example, blood cultures) is 

essential. 

 

Infection control in a low prevalence setting 

The key measures of infection control used in high prevalence settings should still be 

undertaken in low prevalence settings. This includes high compliance with hand hygiene, use 

of contact isolation precautions, environmental cleaning and antibiotic stewardship. 

Additionally, active screening for colonization with NDM producing organisms should be 

performed on patients at high risk for this organism. This includes patients who have been 

admitted to a hospital or a residential aged care facility in a high prevalence country within 

the last 12 months. In practice, it is important to remember that there are other 

carbapenemases which cause the same antibiotic resistance phenotype as NDM. Therefore, a 

more general approach to detection of carbapenemase production should be undertaken – this 

may involve screening rectal swabs on selective media and using rapid tests (such as the 

carbaNP test) to detect carbapenemase production (196).      

In addition to screening, there may be justification to use pre-emptive contact isolation in 

patients directly transferred from an overseas hospital, patients who have been admitted to an 

overseas hospital within the last 12 months or who have previous demonstrated colonization 

or infection with NDM producers.  
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Treatment Options 

The spectrum of NDM producers ranges from asymptomatic colonization to overwhelming 

and potentially fatal sepsis. There is insufficient data to support decolonization of patients 

colonized with NDM-producing organisms. Clinical studies of simple cystitis have observed 

natural resolution in most women, albeit delayed when compared with susceptible 

antimicrobial therapy. In this setting of a highly resistant pathogen, however, withholding 

therapy must be weighed against a potential risk of upper tract UTI and subsequent sepsis 

with a difficult to treat organism. Many patients with urinary tract infection (UTI) are best 

treated with orally administered antibiotics. Most NDM producers are resistant to the orally 

administered antibiotics commonly used in the treatment of UTI (such as 

trimethoprim/sulfamethoxazole or fluoroquinolones). Fosfomycin has been used successfully 

in the therapy of cystitis of multiply resistant Gram-negative bacilli. Many NDM producers 

remain susceptible to fosfomycin (75, 111, 113, 180). Nitrofurantoin represents another 

orally administrable option for NDM producers and successful use in this setting has been 

reported (189). Chloramphenicol and tetracyclines may represent other orally administered 

options which may be active against NDM producers, but this would need to be confirmed 

with susceptibility testing. 

Upper tract UTIs and more serious infections with NDM producers (such as pneumonia and 

bloodstream infection) will require therapy with intravenously administered antibiotics. 

Options include the polymyxins and tigecycline. Both antibiotics have pharmacokinetic 

profiles that make them imperfect as antibiotic choices for serious infections. Recent 

investigations have led to greater understanding of the need for a loading dose and 

appropriate dosage modification of colistin for serious infections (197). Studies of the 

treatment of other carbapenemase producers (e.g. KPC producers) suggest that combination 

antibiotic therapy may lead to superior outcomes compared to use of colistin or tigecycline 
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alone (27-29). Combinations may include a carbapenem (such as meropenem) even though 

the treated organism is a carbapenemase producer (27-29). No randomized controlled trials 

have yet been performed on optimal treatment of NDM producers, yet such studies are 

urgently needed. This is particularly important given reports of polymyxin and tigecycline 

resistance.  

 

Expert commentary  

Carbapenem resistance in Gram-negative bacilli is of major clinical significance since it 

denotes resistance to a major class of antibiotics used in critically ill patients. Carbapenem 

resistance is usually mediated by carbapenemases, which are beta-lactamases which can 

hydrolyze the carbapenem antibiotics. NDM is an example of just such a carbapenemase. 

Significantly, the genes encoding NDM are in close proximity to genes encoding resistance to 

other antibiotic classes such as the aminoglycosides. Additionally, NDM inactivates all 

penicillins and cephalosporins (except aztreonam), and is not inhibited by currently used 

beta-lactamase inhibitors. The end result is that NDM producers are typically resistant to all 

commercially available first line antibiotics. “Reserve” antibiotics such as colistin are used to 

treat serious infections with NDM producers. Unfortunately colistin resistance has now been 

reported (198), resulting in organisms resistant to all available antibiotics. NDM producers 

therefore can pave the way to the “post-antibiotic era”.   

 

Five-year view 

Over the next five years, it is highly likely that NDM producers will become endemic in 

many countries which have only seen sporadic isolates thus far. Major mechanisms for this 

will likely include the ongoing globalization of medicine and the carriage of blaNDM by highly 

successful clones such as ST131 E. coli and ST258 K. pneumoniae. It is quite possible that 
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these strains will also be associated with colistin resistance, meaning that this major antibiotic 

used to treat NDM producers will be ineffective against many NDM producing organisms. It 

is possible that aztreonam-based regiments will be trialed in the near future. If successful, this 

may represent a treatment option for NDM producing organisms.  

 

Key Issues 

 Reservoir countries of blaNDM have expanded from the Indian sub-continent, China 

and the Balkan states to South-western Europe, the Greater Middle East and southeast 

Asia. 

  Medical tourism and personal travel are major factors that have allowed the 

globalization of the carbapenem resistance provided by NDM-1. 

 The three routes of human NDM acquisition are Nosocomial, Personal travel and 

Community acquired. 

 Predominant bacterial hosts producing NDM are K. pneumoniae, E. coli, A. 

baumannii and Pseudomonas spp. 

 blaNDM is encoded on various plasmid backbones capable of horizontal gene transfer, 

most predominant being IncA/C. 

  Genetic mobilization through transposons and IS elements, initially via Tn125 and 

ISAba125, has allowed blaNDM to traverse amongst various plasmid backbones. 

 The more genetic tiers a resistance gene is incorporated within, the broader the range 

of potential bacterial hosts, which in turn determines the routes of acquisition by a 

human host. 

 Infection control intervention to prevent spread of NDM producers include 

compliance with hand hygiene, use of contact isolation precautions, vigorous hospital 

cleaning, good antibiotic stewardship. 
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 The key antibiotic for serious infections with NDM producers is colistin. 
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1.7 Thesis Aim 

The blaNDM gene is not solely associated to a clonal lineage, plasmid type or a transposable element 

mechanism responsible for its mobilisation when observed within the Enterobacteriaceae family. 

To address the new paradigm of AMR acquisition and spread presented by the blaNDM gene, this 

thesis endeavours to provide, an insight and basic understanding of the mechanisms involved in 

blaNDM acquisition and spread, and an approach to assess its plasmid-mediated dissemination 

amongst the Enterobacteriaceae family. This will be achieved through bioinformatics analysis and 

characterisation of Enterobacteriaceae plasmids, primarily those that harbour the blaNDM gene. 

Investigations will begin by establishing a recent account of the blaNDM gene from an 

epidemiological perspective. A novel molecular/ genetic approach will be used, incorporating 

characterisation of the blaNDM genetic context (NGC) carried by strains, firstly within the context of 

a single medical institute, followed by a national level investigation of strains isolated from multiple 

health-care facilities. Secondly, NGCs will be analysed in the context of the plasmid itself by 

construction and analysis of complete plasmid sequences, to explain the transposable element 

mechanisms involved for insertion of blaNDM genes onto plasmids, leading to the NGCs observed. 

Lastly, the plasmid types harbouring blaNDM described here and within the literature will be placed 

into a greater context of overall Enterobacteriaceae plasmid types. In silico plasmid typing will be 

performed to retrospectively survey the plasmid content within a large data set of 

Enterobacteriaceae strains. Principal component analysis (PCA) of the shared plasmid context 

between genera will provide insights into the interactions between plasmid types and bacterial 

species, necessary for the spread of AMR genes. Characterisation of this paradigm would hopefully 

lead to the development of potential approaches to assess plasmid-mediated AMR spread. 
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1.8 Thesis outline and chapter aims: 

This thesis is composed of six chapters. Chapter 1 is an introductory chapter, Chapters 2 to 5 each 

address a specific aim (listed below) comprised of a chapter introduction, the study investigating 

this aim presented in manuscript form, and a chapter summary/ conclusion. Chapter 6 provides a 

discussion of Chapters 1 to 5 as a collective whole for insights of blaNDM acquisition and spread, as 

well as suggestions for future investigations and a final conclusion of the entire thesis.  

 

Chapter 2: Aim 1 – Establishing a recent account of the blaNDM gene from an epidemiological 

perspective using a novel genetic/molecular approach. The approach to assess blaNDM plasmid-

mediated dissemination within a single facility, involves characterisation of sequence type, plasmid 

types and NGCs. 

Chapter 3: Aim 2 – The combined approach to assess blaNDM plasmid-mediated dissemination will 

be applied to multiple healthcare facilities to verify if this approach is applicable at a national level, 

as well as to survey and establish an update on the mechanisms of acquisition and spread for NDM 

producing Enterobacteriaceae within Australia. 

Chapter 4: Aim 3 – To investigate the acquisition of blaNDM genes in the context of the plasmid 

backbone and understand the process which NGCs arise; through characterisation of different 

transposable element mechanisms involved in its insertion upon the same plasmid backbone/ type. 

Chapter 5: Aim 4 – To investigate the occurrence of Enterobacteriaceae plasmid types regardless of 

AMR genes through a retrospective plasmid content survey, and analyse the shared plasmid content 

between genera to provide insights into plasmid-mediated gene transmission between bacterial 

strains, possibly used in dissemination of the blaNDM gene. 



 

Chapter 2: Characterisation of plasmids carrying blaNDM within Pakistan and an approach to assess NDM plasmid 

spread within a facility  
68 

Chapter 2: Characterisation of plasmids carrying blaNDM within Pakistan and an 

approach to assess NDM plasmid spread within a facility  

2.1 Chapter Introduction 

The Indian sub-continent is a geographical reservoir for acquisition of NDM producing Gram-

negatives (Chapter 1; (20)). International travel to the Indian sub-continent for Australians is a 

common route of acquiring an NDM producer, where hospitalisation can lead to acquisition of an 

NDM producing Enterobacteriaceae, Acinetobacter spp. or Pseudomonas spp. In the perspective of 

clinical microbiology, epidemiology and infection control, the bacterial species ST type (via MLST) 

of carbapenem producers is frequently investigated for the purposes of tracing a predominant 

bacterial clone responsible for infection within a clinical setting. This typing alone has previously 

been sufficient to describe and loosely associate an antimicrobial resistance phenotype exhibited by 

a bacterial clone. Further detail however is required for plasmid-mediated AMR, especially those 

harbouring the blaNDM gene. It might also be suggested that stating the plasmid Inc type would 

provide sufficient information for the spread of antimicrobial resistance. However, as stated 

previously (Chapter 1), regions carrying genes conferring carbapenem resistance can vary between 

each plasmid and even upon the same plasmid backbone type, indicating a different capture event. 

This means that each plasmid type does not have a steady antimicrobial resistance gene profile. 

Therefore detailing ST type and plasmid type alone may be misleading for investigating plasmid-

mediated antimicrobial resistance. Combining genomic characteristics of ST type and plasmid type 

with the in-depth characterisation of the genetic context for a target resistance gene, can elucidate 

insights and clarification upon the transmission of AMR i.e. the spread of a specific plasmid 

providing carbapenem resistance. 

The study presented in this chapter, investigates a clinical setting within Pakistan where patients co-

harboured multiple NDM producers of different species within their stool. Characterisation of the 

antimicrobial gene profile, ST type, plasmid Inc type and blaNDM genetic context of each strain was 

utilised as an approach to clarify blaNDM inter-species and inter-patient transmission. 
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This investigation was summarised and presented in a manuscript format published in 

Antimicrobial Agents and Chemotherapy: 

Wailan AM, Sartor AL, Zowawi HM, Perry JD, Paterson DL, Sidjabat HE. The genetic contexts 

of blaNDM-1 in patients carrying multiple NDM producing strains. Antimicrob. Agents Chemother. 

2015 Dec;59(12):7405-10. doi: 10.1128/AAC.01319-15 

 

The University of Queensland requires the presentation of the submitted or accepted article. The 

numbers of the figures, tables and references of the presented article have been amended to suit the 

structure of this thesis. The article remains in American English spelling enforced by journal 

guidelines.  

The statement below is adopted from the journal’s policy to acknowledge copyright reuse 
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also retain the right to reuse the full article in his/her dissertation or thesis.” Statement of Authors’ 

Right can be found at: http://journals.asm.org/site/misc/ASM_Author_Statement.xhtml
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2.2. Chapter 2 – Original Article: The genetic contexts of blaNDM-1 in patients 

carrying multiple NDM producing strains. 
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Abstract 

The carbapenem resistance determinant blaNDM-1, has been found in various Gram-negative 

bacteria and upon different plasmid replicon types (Inc). Here, we present four patients 

within two hospitals in Pakistan harboring between two and four NDM-1-producing Gram-

negative bacilli of different species co-resident in their stool samples. We characterize the 

blaNDM-1 genetic context of these 11 NDM-1-producing Gram-negative bacilli in addition to 

other antimicrobial resistance mechanisms, plasmid replicon profile and sequence type (ST), 

in order to understand the underlying acquisition mechanisms of carbapenem resistance 

within these bacteria. Two common plasmid types (IncN2 and IncA/C) were identified to 

carry blaNDM-1, among the six different bacterial species isolated from the four patients. Two 

of these strains were novel Citrobacter freundii ST 20 and ST 21. The same IncN2 type 

blaNDM-1 genetic context was found in all four patients and within four different species. The 

IncA/C type blaNDM-1 genetic context was found in two different species and in two of the 

four patients. Combining genetic context characterization with other molecular epidemiology 

methods we were able to establish the molecular epidemiological links between genetically 

unrelated bacterial species by linking their acquisition of an IncN2 or IncA/C plasmid 

carrying blaNDM-1 for carbapenem resistance. By combining plasmid characterization and in-

depth genetic context assessment, this analysis highlights the importance of plasmids in 

antimicrobial resistance. It also provides a novel approach for investigating the underlying 

mechanisms of blaNDM-1 related spread between bacterial species and genera via plasmids.  
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Introduction 

Infectious pathogens have the ability to transmit from one person to another. Antimicrobial 

resistance in certain instances has been observed to follow this paradigm of transmission; 

specifically, bacterial species have been described transmitting antimicrobial resistance 

determinants. A well-known example of a successful international clone is the Escherichia 

coli Sequence Type (ST) 131 transmitting blaCTX-M-15 (41, 42). However, numerous reports in 

the last few years provide evidence that plasmids are a major factor in the transmission of 

antimicrobial resistance (40, 199). 

Since the first report (2), blaNDM has been reported to be harbored by a diverse range of 

bacterial species, the most frequent are within the Acinetobacter genus and 

Enterobacteriaceae family (20, 200) Furthermore, blaNDM has also been identified to reside 

within different plasmid replicon types (Inc) amongst the Enterobacteriaceae family, 

including IncA/C (201), IncF types (202), IncL/M (74), IncN (203), IncX (204) and IncH 

(183). In addition, the genetic structure or context in which blaNDM resides varies between 

different plasmid types, and even with the same plasmid type (205). In contrast, blaNDM 

genetic contexts within Acinetobacter spp. have been reported with less variation; since 

blaNDM can be commonly found within the 10,099 bp transposon known as Tn125, composed 

of two flanking ISAba125 (72, 138, 184, 200). These blaNDM-1 genetic contexts observed with 

Enterobacteriaceae plasmids appear to frequently involve parts of Tn125 carrying blaNDM 

as the common substrate and various mechanisms of gene acquisition used to acquire this 

substrate, including different ISCR elements (177), class one integrons (94), flanking IS 

elements (177) and singleton IS elements present in close proximity (74, 201).  

The Indian sub-continent is recognized as a major reservoir for blaNDM acquisition and has 

been hypothesized as the geographical origin of blaNDM (20, 206). In a previous study from 

our group, 66 NDM-1 producing Gram-negatives from stool samples of patients in two 
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Pakistani hospitals were reported (206). Amongst patients harboring these isolates, four 

patients were found to carry multiple NDM-1 producers of different species. Sartor and 

colleagues also identified that the species within each patient harbored different plasmid 

replicon type profiles (206). This warranted further investigation in order to elucidate the 

underlying nature of blaNDM-1 acquisition by these different species, when the bacterial hosts 

have different plasmid replicon profiles. The aim of this study was to further characterize 

these different NDM producing bacterial species co-existing in multiple patients through 

whole genome sequencing, noting their resistance mechanisms and Sequence Type (ST) with 

further focus on characterizing the blaNDM-1 genetic contexts. 

Methods 

Bacterial isolates. Eleven clinical isolates were acquired in 2010 from stool samples from 

four different patients in two hospitals in Rawalpindi, Pakistan (148).  In the study conducted 

by Perry and colleagues (148), one patient carried 4 species, 3 patients had 3 species and 5 

patients had 2 species of NDM-1-producers (data not shown). Isolates were selected based on 

the number of isolates present in the patients and the diversity of their plasmid type profile 

which was determined by PCR Based Replicon Typing (PBRT) of Enterobacteriaceae 

isolates as previously described (58, 206). The strains from each patient are as follows (Table 

1): Patient 1 - Enterobacter cloacae Pn2, Acinetobacter baumannii Pn3, Klebsiella 

pneumoniae Pn4, Citrobacter freundii Pn5; Patient 2 – Pseudocitrobacter faecalis Pn13, 

Escherichia coli Pn14; Patient 3 – P. faecalis Pn27, E. coli Pn28; Patient 4 – E. coli Pn66, C. 

freundii Pn67 and E. cloacae Pn68. 

 

Plasmid transfer experiments through conjugation. Plasmids carrying blaNDM-1 from 

clinical strains were transferred by conjugation to confirm their transferability and plasmid 

replicon type. For conjugation experiments, the eleven clinical isolates (donors) were verified 
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to be susceptible to sodium azide via agar dilution. Donor strains and sodium azide resistant 

E. coli J53 recipients were grown in LB broth at 200 rpm to logarithmic phase (207). The 

conjugation mixture consisted of donor and recipient strains in a 1:1 ratio plated onto 

MacConkey agar, and incubated at 37°C overnight (78). The conjugation mixture of 

approximately 20 μL of confluent growth on the plate was then harvested into 1 mL of saline 

and serially diluted in saline to 10-8. This serial dilution method was performed to obtain 

single colonies of both donors and transconjugants between the serial dilutions of 10-4 and 10-

6. One hundred microliters of each dilution was then inoculated onto MacConkey agar 

supplemented with meropenem (0.1 μg/mL) and sodium azide (100 μg/mL), sodium azide 

only (100 μg/mL) and a control plate without additives, incubated at 37°C for 24 h. 

Successful transconjugants were confirmed phenotypically and through PCR for blaNDM-1. 

PBRT was performed on transconjugants to identify the plasmid replicon type carrying 

blaNDM-1 (58). 

 

Sequencing and Bioinformatics. Paired-end libraries of whole genomic DNA of all 11 

clinical isolates were prepared and sequenced by the Illumina MiSeq platform (Illumina, San 

Diego, USA). All sequences were de novo assembled using CLC Genomic Workbench v7.5 

(CLC Bio, Aarhus, Denmark) with at least 50-fold coverage. pNDM-BJ01 (Genbank 

accession no. JQ001791) (208) was manually annotated and used as a reference for Tn125 

structure annotation. Sequences from the Genbank database and IS finder (https://www-

is.biotoul.fr/) were used to identify and characterize genes flanking the Tn125 region. CLC 

Genomic Workbench was used to BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), analyze 

and manually annotate the genetic context of blaNDM-1 according to the aforementioned 

reference sequences. Contigs containing blaNDM-1 were named as follows: Patient 1 - pPN2-

ECL-NDM-1 (E. cloacae Pn2), PN3-AB-NDM-1 (A. baumannii Pn3), pPN4-KP-NDM-1 (K. 

https://www-is.biotoul.fr/
https://www-is.biotoul.fr/
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pneumoniae Pn4), PN5-CF-NDM-1 (C. freundii Pn5); Patient 2 - pPN13-PCF-NDM-1 (P. 

faecalis Pn13), pPN14-EC-NDM-1 (E. coli Pn14); Patient 3 – pPN27-PCF-NDM-1 (P. 

faecalis Pn27), PN28-EC-NDM-1 (E. coli Pn28); Patient 4 – pPN66-EC-NDM-1 (E. coli 

Pn66), pPN67-CF-NDM-1 (C. freundii Pn67) and pPN68-ECL-NDM-1 (E. cloacae Pn68).  

Contigs of each clinical strain were submitted to Resfinder 2.1 (209) 

(http://cge.cbs.dtu.dk/services/ResFinder/) and Plasmidfinder 1.1 (210) databases (available 

at the Center of Genomic Epidemiology website (http://www.genomicepidemiology.org/)) to 

characterize their resistance mechanism genes and plasmid Inc types.  

 

Sequence Typing via MLST scheme. Each clinical isolate was submitted to the MLST 1.7 

database (211) (https://cge.cbs.dtu.dk/services/MLST/) for Sequence Typing via respective 

MLST schemes, except P. faecalis strains Pn13 and Pn27 as no MLST was available (212). 

Both C. freundii strains Pn5 and Pn65 were identified as novel sequence types and 

subsequently submitted to the C. freundii MLST website (http://pubmlst.org/ cfreundii/) 

(213) for assigning of new sequence type. 

 

Nucleotide sequence accession number. Each nucleotide sequence was deposited in the 

GenBank database with the following accession numbers. pPN2-ECL-NDM-1, KP770024;  

PN3-AB-NDM-1, KP770025; pPN4-KP-NDM-1, KP770033; PN5-CF-NDM-1, KP770032; 

pPN13-PCF-NDM-1, KP770031; pPN14-EC-NDM-1, KP770030; pPN27-PCF-NDM-1, 

KP770029; PN28-EC-NDM-1, KP770023; pPN66-EC-NDM-1, KP770028; pPN67-CF-

NDM-1, KP770027 and pPN68-ECL-NDM-1, KP770026. 

 

 

 

 

http://cge.cbs.dtu.dk/services/ResFinder/
https://cge.cbs.dtu.dk/services/MLST/
http://pubmlst.org/cfreundii/
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Results and Discussion 

 

 

Figure 4. Schematic representation of all blaNDM genetic context within this study and 

reference sequence pNDM-BJ01 (Genbank Accession no. JQ001791)  

blaNDM genetic contexts and their Genbank Accession number, Pn2: pPN2-ECL-NDM-1 

(KP770024), Pn3: PN3-AB-NDM-1 (KP770025), Pn4: pPN4-KP-NDM-1 (KP770033), Pn5: 

PN5-CF-NDM-1 (KP770032); Pn13: pPN13-PCF-NDM-1 (KP770031), Pn14: pPN14-EC-

NDM-1 (KP770030); Pn27: pPN27-PCF-NDM-1 (KP770029), Pn28: PN28-EC-NDM-1 

(KP770023); Pn66: pPN66-EC-NDM-1 (KP770028), Pn67: pPN67-CF-NDM-1 (KP770027) 

and Pn68: pPN68-ECL-NDM-1 (KP770026). Δ, truncated gene. Insertion Sequence (IS) 

elements are represented as block arrows.  
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The molecular and in silico analysis results of each NDM-1 producing strain are summarized 

in Table 12. These results also include for each strain, clinically significant antimicrobial 

resistance determinants found within each strain, ST type, and the replicon type (Inc) of the 

plasmid carrying blaNDM-1 (determined via PBRT of successful transconjugants). In silico 

analysis of each contig with blaNDM-1 initially identified a truncated Tn125 structure 

harboring blaNDM-1 (ΔTn125). The sizes of ΔTn125 were variable (Fig. 4). Different genes 

and IS elements were identified flanking the ΔTn125 structure (Fig. 4). The combination of 

the different ΔTn125 structure sizes and flanking contexts identified four distinct blaNDM-1 

genetic contexts.  

The most common blaNDM-1 genetic context 5’-aacA1 ΔblaOXA-10 ΔTn125-3’ (identified in 5 

of 11 strains and in all four patients) contained a 2,341 bp ΔTn125 structure with aacA1 

conferring aminoglycoside resistance and a truncated narrow-spectrum β-lactamase, blaOXA-10 

upstream, and was determined to be on IncN2 type plasmids (except in Pn28 and Pn67). This 

blaNDM-1 genetic context was found within three different bacterial species, K. pneumoniae 

Pn4 (pPN4-KP-NDM-1), P. faecalis Pn13 and Pn27 (pPN13-PCF-NDM-1, pPN27-PCF-

NDM-1), E. coli Pn14 and Pn28 (pPN14-EC-NDM-1, PN28-EC-NDM-1) and C. freundii 

Pn67 (pPN67-CF-NDM-1), and is similar to an E. coli isolated from Japan (direct submission 

with Genbank accession no. AB769140), and two IncN3 plasmids, pLK75 (Genbank 

Accession no. KJ440076) of E. coli and pLK78 (Genbank Accession no. KJ440075) of K. 

pneumoniae isolated from Taiwan (203). Transmission of blaNDM-1 may have occurred via 

conjugation of an IncN2 plasmid with this genetic context, as suggested by our successful 

conjugation experiments involving strains carrying IncN2 plasmids. These conjugation events 

would subsequently result in the different bacterial species producing NDM-1 within three of 

the four patients.  
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Table 12. Strains and their respective sequence type, antimicrobial resistance profile and Plasmid Replicon Typing results 

Patient Strain characteristics Plasmid replicon types  

via Plasmidfinder 

(Inc) 

PBRT  

(Inc) 

Antimicrobial resistance determinants via Resfinder  

Beta-lactamases 

(bla) 

Aminoglycoside  

resistance  

determinants 

Quinolones  

resistance  

determinants 

Other  

resistance 

determinants 

Strain 
Bacterial 

Species 

MLST 

(ST) 

A/C

2 
N2 HI1 HI2 F types Others 
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carrying 
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Other  
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D
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X
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A

1
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II
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h
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V
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Other 
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1
 

Other 
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ca
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1
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l1

 

su
l2

 

d
fr

A
1
4
 

d
fr

A
2
7
 

te
t(

A
) 

A
R

R
-3

 

Additional  

resistance  

determinants 

1 Pn2 Enterobacter  

cloacae 

171   FIA 

(HI1) 

HI2A 

 

  A/C2       ACT-7 

CMY-6 

         aadA4              

Pn3 Aceinteobacter  

baumannii 

113 

 

N/A N/A N/A N/A N/A N/A N/A N/A      OXA-64                        

Pn4 Klebsiella  

pneumoniae 

101     FIBK 

FII 

R N2       SHV-1          aadA5 

 

  qnrB66 

oqxA 

oqxB 

        mph(A) 

dfrA17 

Pn5 Citrobacter  

freundii 

20c    HI2A 

 

FIB  -                    qnrB34         mph(E) 

msr(E) 

 

floR 

tet(C) 

dfrA5 

2 Pn13 Pseudo- 

citrobacter  

faecalis 

N/A    HI2A 

 

FIBK 

 

 N2                               

Pn14 Escherichia  

coli 

2598    HI2A 

 

FIBK 

FIB 

FIA 

I1 

Col156 

N2 I1  

FIA  

FIB 

                             

3 Pn27 Pseudo- 

citrobacter  

faecalis 

N/A    HI2A FIBK  N2                               

Pn28 Escherichia  

coli 

1431   HI1A 

HI1B 

HI2A FII Col 

(BS512) 

- A/C 

HI1 

     CMY-4  

OXA-9 

                     msr(E) 

dfrA12 

4 Pn66 Escherichia  

coli 

10     FIBK Y A/C2 Y      CMY-6          aadA4              

Pn67 Citrobacter  

freundii  

21c     FII(pMET) 

FII(Yp) 

 FIIY       CMY-73           

  

  qnrB54         mph(A) 

 

Pn68 Enterobacter  

cloacae 

171   FIA 

(HI1) 

HI2A 

 

  A/C2       ACT-7  

CMY-6 

         aadA2 

aacA4 

             



 

Chapter 2: Characterisation of plasmids carrying blaNDM within Pakistan and an approach to assess NDM plasmid spread within a facility  79 

Note: Shaded boxes – Indicates the replicon types and genes present in each strain determined by Plasmidfinder and Resfinder, N/A - Indicates 

no positive Plasmid Replicon Typing results for Acinetobacter species and no MLST scheme for P. faecalis, a - PBRT was performed on 

transconjugants carrying the plasmid harbouring blaNDM,  b - this enzyme is responsible for aminoglycoside and quinolone resistance. c - Novel 

Citrobacter freundii Sequence Types via MLST scheme.  
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The IncN2 blaNDM-1 genetic context was also found in C. freundii Pn67 in the fourth patient; 

however, it was identified on an IncFIIY-type plasmid. This genetic context was also 

identified in E. coli Pn28, believed to be located on the chromosome or on a non-conjugative 

plasmid, as conjugation experiments were unsuccessful after multiple attempts. The blaNDM-1 

genetic contexts in Pn28 and Pn67 are highly similar to the IncN2 plasmids of our study as 

well as in the literature however were not located on IncN2 plasmids. It may be speculated 

these “IncN-like” blaNDM-1 genetic contexts of Pn28 and Pn67 may have diverged from the 

IncN2 plasmids of our study through such events as homologous recombination (60). 

Alternatively Pn28 and Pn67 could have been the source from where the IncN2 plasmids 

acquired their blaNDM-1 genetic context prior to horizontal gene transfer amongst the different 

species. Further investigation including full plasmid construction will be required to clarify 

the nature of these two isolates and the potential of blaNDM-1 cassette transfer between 

plasmid backbones, IncN2 and IncFIIY. 

 

Another blaNDM-1 genetic context observed, in 3 of the 11 isolates, involved a longer 6,332 bp 

ΔTn125 structure. In comparison to the aforementioned IncN2 ΔTn125 structure, this longer 

ΔTn125 structure was flanked by an ISKpn14 and truncated ISEcp1 upstream, and a 

truncated Type IV secretion protein rhs downstream (Fig. 4). This IncA/C blaNDM-1 genetic 

context was determined to be on IncA/C type plasmids and found in two patients, patient 1: 

E. cloacae strain Pn2 (pPN2-ECL-NDM-1) and patient 4: E. coli strain Pn66 (pPN66-EC-

NDM-1) and E. cloacae strain Pn68 (pPN68-ECL-NDM-1). Similar to the aforementioned 

IncN2 blaNDM-1 genetic contexts, the IncA/C blaNDM-1 genetic context was also observed 

within two different species within the same patient (patient 4). Further it is very similar to 

the most frequently reported IncA/C blaNDM-1 genetic context amongst the 

Enterobacteriaceae family (175, 201, 205). The combination of IncA/C blaNDM-1 genetic 
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context identification (Figure 4), the previously reported clonal spread of E. cloacae and E. 

coli within these hospitals and the identification of IncA/C plasmids as the most prevalent 

plasmid type (206), might suggest the contribution of this specific IncA/C plasmid to carry 

and transmit carbapenem resistance among Enterobacteriaceae within this clinical setting. 

 

Out of the 11 isolates, two unique genetic contexts for blaNDM-1 were found in PN3-AB-

NDM-1 (A. baumannii Pn3) and PN5-CF-NDM-1 (C. freundii Pn5) in patient 1. PN3-AB-

NDM-1 carried a context composed of the longest Tn125 structure (7,962 bp), which is very 

similar to the Tn125 lengths frequently described within the Acinetobacter genus i.e. 

composed of a full Tn125 structure extending from the left hand ISAba125 to the right hand 

ISAba125 (184, 200, 214, 215). PN5-CF-NDM-1 contained a 7,288 bp ΔTn125 structure 

flanked by two IS3000 (truncated left-hand ISAba125 to truncated ISCR27) with plasmid 

backbone elements in close proximity such as traA. This context has not been previously 

reported. Both blaNDM-1 genetic contexts, PN3-AB-NDM-1 and PN5-CF-NDM-1, may 

potentially be located on a non-conjugative plasmid or the chromosome as suggested by 

unsuccessful transfers in conjugation experiments. To note, both PN3-AB-NDM-1 and PN5-

CF-NDM-1 were found in patient 1 which carried four different NDM-1 producing species, 

i.e. E. cloacae, A. baumannii, K. pneumoniae and C. freundii, each with a different blaNDM-1 

genetic context (Fig. 4). 

 

The characterized blaNDM-1 genetic contexts of 11 clinical isolates retrospectively may 

suggest interspecies transmission of antimicrobial resistance at an in vivo level via plasmids. 

This has been previously described with blaKPC (216). Initial characterization of our isolates 

identified different plasmid replicon profiles with multiple species within the same patient. 

Genetic characterization in combination with other molecular typing methods has described, 
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clarified and provided an insight into the spread and acquisition of blaNDM-1. Apart from the 

non-conjugative blaNDM-1 found on Pn3, Pn5 and Pn28, and the single IncFIIY plasmid in 

Pn67, the remaining strains have become carbapenem resistant by acquiring IncN2 and 

IncA/C type plasmids with the specific aforementioned blaNDM-1 genetic contexts.  

 

It must be noted however, that due to the nature of PBRT as an assay that targets specific 

regions of a plasmid type (e.g. replicons), information that can influence plasmid transfer 

such as the number of plasmids within each clinical strain cannot be determined. Many 

plasmids can carry multiple replicons but also can form co-integrates with other plasmids to 

assist with conjugation. Transconjugants may also contain more than one plasmid. PFGE 

with S1 nuclease and southern blotting would have to be applied to both donors and 

respective transconjugants to determine the number of plasmids present. 

 

The prevalence of highly similar blaNDM-1 genetic contexts within different species and 

amongst different patients highlights the possible role plasmids are able to provide in inter-

species transmission of carbapenem resistance. We suggest that genetic characterization of 

plasmids for blaNDM-1 could be considered as a tool similar to the Multi-Locus Sequencing 

Typing (MLST) approach to investigate the clonal epidemiology of antibiotic resistant 

bacteria, which utilizes the typing of conserved regions within the genome for comparison 

(42, 217, 218). By considering genetic context characterization in combination with standard 

molecular methods (bacterial species identification, resistance mechanism profiling and 

clonality via MLST) during epidemiological studies, sophisticated epidemiological links 

between patients and genetically unrelated bacterial species can be clarified in the case of 

blaNDM-1 and potentially other plasmid mediated antimicrobial resistance determinants that 

have genetic context variation, such as blaCTX-M-type (219, 220) or blaCMY-type (221). Such 
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investigation will assist in clarifying whether or not within a specific geographical region and 

facility, antimicrobial resistance acquisition by species has occurred via a particular plasmid 

with a specific genetic context. 

Here we have characterized the genetic nature in which blaNDM-1 resides in different NDM-1 

producing bacterial species co-existing in multiple patients, while identifying IncA/C and 

IncN2 plasmids as the platform providing carbapenem resistance to otherwise diverse and 

unrelated species of Enterobacteriaceae within this clinical setting of two Pakistan hospitals. 

The combination of genetic plasmid characterization and epidemiological molecular 

investigation methods presented here not only highlights the ability of plasmids to transmit 

and provide antimicrobial resistance determinants to various bacterial species and genera, but 

also has provided a novel approach for investigating the underlying mechanisms of blaNDM-1 

related spread associated with hospitalized patients. 
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2.3 Chapter summaries and conclusions.  

This chapter demonstrated a combined molecular/genetic approach able to assess and provide 

a recent account of the basic mechanisms involved in strain acquisition of plasmid-mediated 

blaNDM. In this case, multiple species of Enterobacteriaceae became carbapenem resistant by 

the acquisition of two plasmid types (IncA/C and IncN2) harbouring the blaNDM gene. This 

analysis also describes possible inter-genera and inter-patient spread of blaNDM. That is, the 

possibility of intera-genera spread with the conjugation of an IncA/C plasmid between E. coli 

and E. cloacae within a single patient (Patient 4). The inter-patient transmission between two 

patients may also be possible as both patients (Patients 1 and 4) carried an E. cloacae ST171 

harbouring an IncA/C plasmid with the same NGC. Inter-genera and inter-patient spread was 

also possible with an IncN2 plasmid. Highly similar NGCs were observed on the IncN2 

plasmids, and an IncFIIY plasmid carried by C. freundii Pn67; indicating a potential for gene 

exchange between plasmid backbones (IncN2 and IncFIIY). This chapter provided a recent 

account of the primary mechanisms (IncA/C and IncN2 plasmid types), and their underlying 

interplay involved for blaNDM to spread between different genera and patients within a single 

healthcare facility.  
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Chapter 3: Characterisation of NDM plasmids within Enterobacteriaceae in 

Australia 

3.1 Chapter Introduction 

The combined molecular/genetic approach presented in Chapter 2 and the account of blaNDM 

dissemination via IncA/C and IncN2 presented, was restricted by small sample size but also 

restricted to a local geographical region and health-care facility. Characterisation of NDM-

producing Enterobacteriaceae on a national level is sequentially required to understand if this 

approach is applicable to assess and provide a recent account of plasmid-mediated blaNDM 

transmission nation-wide. This chapter investigates 12 NDM producing Enterobacteriaceae 

referred to the reference laboratory at University of Queensland Centre of Clinical Research 

between 2012 and 2014. The patients who carried these strains, were admitted by Australian 

hospitals in different states, and had a mixture between those without travel history and with 

international travel history. One strain had its whole genome announced as the first uropathogenic 

E. coli carrying the NDM-5 variant in Australia (Appendix A (21)).  
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This investigation was summarised and presented in a manuscript format published in 

Antimicrobial Agents and Chemotherapy: 

Wailan AM, Paterson DL, Kennedy K, Ingram PR, Bursle E, Sidjabat, HE. Genomic 

characteristics of NDM-producing Enterobacteriaceae in Australia and their blaNDM genetic 

contexts. Antimicrob. Agents Chemother. 2015 Oct 19;60(1):136-41. doi: 10.1128/AAC.01243-15 

 

The University of Queensland requires the presentation of the submitted or accepted article. The 

numbers of the figures, tables and references of the presented article have been amended to suit the 

structure of this thesis. The article remains in American English spelling enforced by journal 

guidelines.  

The statement below is adopted from the journal’s policy to acknowledge copyright reuse 

permission:  

“Authors in ASM journals retain the right to republish discrete portions of his/her article in any 

other publication (including print, CD-ROM, and other electronic formats) of which he or she is 

author or editor, provided that proper credit is given to the original ASM publication. ASM authors 

also retain the right to reuse the full article in his/her dissertation or thesis.” Statement of Authors’ 

Right can be found at: http://journals.asm.org/site/misc/ASM_Author_Statement.xh



 

Chapter 3: Characterisation of NDM plasmids within Enterobacteriaceae in Australia  87 

3.2 Chapter 3 – Original article: Genomic characteristics of NDM-producing 
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Abstract 

blaNDM has been reported in different Enterobacteriaceae species and on numerous plasmid 

replicon types (Inc). Plasmid replicon typing in combination with genomic characteristics of 

the bacterial host (e.g. sequence typing) is used to infer the spread of antimicrobial resistant 

determinants between genetically unrelated bacterial hosts. The genetic context of blaNDM is 

heterogeneous. In this study, we genomically characterized twelve NDM-producing 

Enterobacteriaceae isolated in Australia between 2012 and 2014: Escherichia coli (n=6), 

Klebsiella pneumoniae (n=3), Enterobacter cloacae (n=2) and Providencia rettgeri (n=1). 

We describe their blaNDM genetic context within Tn125 providing insights into the acquisition 

of blaNDM into Enterobacteriaceae. IncFII type (n=7) and IncX3 (n=4) plasmids were the 

most common plasmid type found. IncHI1B (n=1) plasmid was also identified. Five different 

blaNDM genetic contexts were identified, indicating five particular plasmids with specific 

blaNDM genetic contexts (NGCs), three of which were IncFII plasmids (FII A to C). Of note, 

the blaNDM genetic context of P. rettgeri was not conjugative to sodium azide-resistant E. coli 

J53Azir. Epidemiological links between our NDM producing Enterobacteriaceae were 

established by their acquisition of these five particular plasmids. The combination of different 

molecular and genetic characterization methods, allowed us to provide an insight into the 

spread of plasmids transmitting blaNDM. 
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Introduction 

Plasmids have received increased attention in the last decade due to their ability to acquire 

genes conferring antibiotic resistance and transfer them between different bacterial hosts. 

Plasmids of the Enterobacteriaceae family have been categorized into replicon (Inc) types 

via PCR-based replicon typing (PBRT) (58, 222, 223). PBRT in combination with other 

characteristics of the bacterial host, such as serotype, sequence type via Multi-locus sequence 

typing (MLST) and resistance gene profiles are used to demonstrate the spread of 

antimicrobial resistance determinants between genetically unrelated bacterial hosts (40).  

 

New Delhi Metallo-β-lactamase gene or blaNDM-harboring plasmids have been extensively 

characterized. Genetic variations in the accessory regions of plasmids have contributed to the 

complexity that underlies the spread of antimicrobial resistant determinants between bacterial 

hosts. Since its first report (2), blaNDM has been reported on various plasmid Inc types (20), 

including IncA/C (175, 201), IncF types (202), IncL/M (74), IncH (183), IncN types (125, 

203, 224), IncX types (204) and IncHI1 types (171) of the Enterobacteriaceae family. 

However, it may be misleading to assume that each plasmid of the same replicon type is 

identical, especially amongst the IncA/C (94, 175, 177, 205) and IncFII plasmids (182, 202). 

For Enterobacteriaceae plasmids harboring blaNDM, the variation in the genetic context of 

blaNDM generally involves two features. Firstly, blaNDM is frequently observed in the 10,099 

bp transposon Tn125 (with two flanking ISAba125 elements) within NDM producing species 

of the Acinetobacter genus (72, 73, 138, 200, 205). The blaNDM gene was hypothesized to 

originate in the Acinetobacter genus (70). In Enterobacteriaceae, the Tn125 structure 

carrying blaNDM is frequently truncated (ΔTn125) at various lengths (205). Secondly, the 

sequence flanking the ΔTn125 structure involves various mechanisms of gene acquisition 

including different ISCR elements (177), Class one integrons (94), flanking insertion 
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sequence (IS) elements (177), Miniature Inverted-Repeat Transposable Element (MITEs) 

(225) and singleton IS elements, present in close proximity (74, 201). The variations 

observed concerning these two features have contributed to the different blaNDM genetic 

contexts reported, even on the same plasmid type. 

 

The blaNDM genetic context of NDM-producers from Singapore, Japan, Hong Kong, Thailand 

and Taiwan has been described (74, 125, 177, 203, 224). Additionally, NDM-producing 

Enterobacteriaceae have been reported in Australia (42, 226). Limited studies have described 

the plasmid features and genetic contexts of NDM-producers from Australia (22, 75, 227). 

Here, we analyze the blaNDM genetic contexts of 12 NDM-producing Enterobacteriaceae 

isolated from Australia between 2012 and 2014, for providing insights into their likely 

acquisition.  

 

METHODS 

Isolates  

Twelve clinical or screening isolates producing NDM in this study were referred to 

University of Queensland Centre for Clinical Research for detailed molecular 

characterization from Queensland, Australian Capital Territory and Western Australia 

between 2012 and 2014. These isolates included Escherichia coli (n=6), Klebsiella 

pneumoniae (n=3), Enterobacter cloacae (n=2) and Providencia rettgeri (n=1) (Table 1).  

 

Antimicrobial susceptibility testing 

Antimicrobial susceptibility and minimum inhibitory concentration (MIC) characterization 

was performed by E-test® (bioMerieux Marcy l’Etoile, France). Antimicrobial agents tested 

were: ceftazidime, cefotaxime, ceftriaxone, ceftazidime, cefepime, aztreonam, amikacin, 
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doripenem, ertapenem, meropenem, imipenem and tetracycline. Susceptibility results were 

interpreted according to 2015 EUCAST clinical breakpoint guidelines (228).  

 

Plasmid experiments 

Plasmid transfer experiment by conjugation and transformation was performed on all NDM-

producers using previously described technique (23). Sodium azide-resistant E. coli J53 and 

E. coli Top10 were used as the recipients for conjugation and transformation experiments, 

respectively. The transconjugants and transformants acquiring blaNDM-harbouring plasmids 

were examined phenotypically and confirmed by PCR for blaNDM. PBRT was used to identify 

the plasmid Inc type carrying blaNDM as previously described (58, 222, 223). 

 

Whole genome sequencing 

Paired-end libraries of whole genomic DNA of all 12 isolates were prepared and sequenced 

by Illumina HiSeq2000 (Illumina, San Diego, USA). All sequences were de novo assembled 

using CLC Genomic Workbench v7.5 (CLC Bio, Aarhus, Denmark). Re-annotated sequences 

from the Genbank database were used as a reference for manual annotation, which included 

pNDM-BJ01 (Genbank accession no. JQ001791) (73). CLC Genomic Workbench was 

further used to BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), analyze and manually 

annotate the blaNDM-1 genetic context according to the aforementioned reference sequences. 

IS element identification within each context was achieved via IS finder (https://www-

is.biotoul.fr/). Contigs containing blaNDM from each isolate were named as follows: pCR7-

EC-NDM-1 (E. coli CR7), pCR15-EC-NDM-4 (E. coli CR15), pCR16-ECL-NDM-1 (E. 

cloacae CR16), pCR37-ECL-NDM-7 (E. cloacae CR37), pCR38-KP-NDM-1 (K. 

pneumoniae CR38), pCR53-EC-NDM-4 (E. coli CR53), pCR58-PR-NDM-1 (P. rettgeri 

CR58), pCR63-KP-NDM-1 (K. pneumoniae CR63), pWA1-EC-NDM-4 (E. coli WA1), 

https://www-is.biotoul.fr/
https://www-is.biotoul.fr/
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pWA2-KP-NDM-7 (K. pneumoniae WA2), and pACT1-EC-NDM-1 (E. coli ACT1). 

pCR694-EC-NDM-5 (E. coli CR694) had previously been submitted to Genbank database 

(Genbank accession no. KP178355) (22). Contigs of the entire genome were submitted to the 

Center of Genomic Epidemiology (http://www.genomicepidemiology.org/) to identify the 

plasmid replicons, resistance genes of each clinical isolate as well as their ST via available 

MLST scheme. Specifically to databases, Plasmid finder 1.2 (210), Resfinder 2.1 (209) and 

MLST 1.7 (211) were used, respectively. 

 

Nucleotide sequence accession number. 

Contigs containing blaNDM from each isolate where annotated and deposited into the Genbank 

database with the following accession number: pCR7-EC-NDM-1: KP826713, pCR15-EC-

NDM-4: KP826709, pCR16-ECL-NDM-1: KP826704, pCR37-ECL-NDM-7: KP826705, 

pCR38-KP-NDM-1: KP826710, pCR53-EC-NDM-4: KP826711, pCR58-PR-NDM-1: 

KP826706, pCR63-KP-NDM-1: KP826712, pWA1-EC-NDM-4: KP826707, pWA2-KP-

NDM-7: KP826708 and pACT1-EC-NDM-1: KP826702. 

 

RESULTS AND DISCUSSION 

In comparison to other geographical regions such as the UK, China and the Indian 

subcontinent (16, 200, 229-231), there are relatively few reports of NDM producing 

Enterobacteriaceae from Australia. In the majority of the cases preceding 2014, patients had 

a travel history to high incidence countries (Table 13). Investigations of plasmid-mediated 

blaNDM involving the description of carbapenem resistant species within Australia have rarely 

included genetic context characterization. By utilizing genetic context characterization in our 

study, we provide insights into the acquisition of blaNDM, through five groups of plasmid each 

carrying a specific NGC type.  
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Table 13. Specimens, sequence type, resistance determinants and plasmid types of Enterobacteriaceae strains which acquired plasmids 

harboring blaNDM 

Plasmid 
Group 

Number 

blaNDM associated Bacterial and host characterstics Plasmid types determined via Plasmidfinder (Inc) 

Antimicrobial resistance gene determinants via ResFinder 

Beta-lactamases (bla) 
Aminoglycoside & quinolone resistance 

determinants 
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type 
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pneumoniae 

U 

M (30) 
15        

   

L/M      

O
X

A
-4

8
 

      

a
a
c-

II
a
 

      

d
fr

A
3
0
 

te
t(

A
) 

   

4 X3-A 

NDM-
4 

X3 
CR15  
(232) 

E. coli 
S 

M (85) 
101        

   

R 
I1 

                   

d
fr

B
4
 

 

m
p

h
(A

) 

 

ca
tA

1
 

q
ep

A
 

NDM-

7 
X3 

CR37  

(232) 
E. cloacae 

B 

F (64) 
127        

   

      

A
C

T
-1

6
 

      

a
a
c-

II
a
 

      

d
fr

A
8
 

    

NDM-

7 
X3 WA22 

K. 

pneumoniae 

R 

F (30) 
15        

   

R            

a
a
d

A
1
 

a
a
c-

II
a
 

a
p
h

-I
a
 

      

te
t(

A
) 

m
p

h
(A

) 

  

NDM-
5 

X3 
CR694 
(233) 

E. coli 
U 

F (55) 
147        

   

I1                    

d
fr

A
1
7
 

 

m
p

h
(A

) 

 

er
m

(B
) 

5 
HI1B-

A 
NDM-

1 
HI1B CR582 P. rettgeri 

U 
M (51) 

N/A        

  HI1B 

              

a
p
h

-I
a
 

a
p
h

-V
ia

 

     

d
fr

A
1
2
 

 

m
p

h
(A

) 

m
p

h
(E

) 

  

1 Isolates from this study; 2 Strains were firstly described in this study; 3 Abbreviations of the patient genders and specimens: M = male, F = 

female, R = rectal swab, U = urine, B = blood, S = swab; 4 ST: Sequence Type, determined by available MLST schemes, N/A = not available; 5 

Responsible for aminoglycoside and quinolone resistance. 
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Phenotypic characterization of the NDM-producing Enterobacteriaceae 

All isolates were non-susceptible to all tested carbapenems with MICs to meropenem, 

ertapenem, imipenem and doripenem of >32 μg/mL. All isolates were resistant to the 3rd and 

4th generations of cephalosporins with MICs of >32 μg/mL to cefotaxime and ceftriaxone, 

and >256 μg/mL to ceftazidime and cefepime. Interestingly, MICs to aztreonam were 

generally >256 μg/mL, except in NDM-5-producing E. coli with MIC of 24 μg/mL.  

Variability of the MICs to amikacin was observed and correlated with the presence or 

absence of 16S rRNA methylase. The MICs to amikacin of NDM-producing 

Enterobacteriaceae possessing 16S rRNA methylase genes were >256 μg/mL. In contrast, 

isolates without 16S rRNA methylase genes had amikacin MICs between 1 and 2 μg/mL. 

 

Genotypic characterization of the NDM-producing Enterobacteriaceae 

In silico analysis of the molecular characteristics of the isolates, STs, antibiotic resistance 

determinant genes, plasmid replicons and blaNDM genetic context were tabulated in Table 1. 

The ST of CR58 as there was no available MLST scheme for P. rettgeri. Common 

antimicrobial resistance determinants identified amongst these isolates included the 

following: four blaNDM variants were described here, i.e. blaNDM-1 in 6 strains, blaNDM-4 in 3 

strains, blaNDM-5 in 1 strain (21) and blaNDM-7 in 2 strains (Table 13). Each clinical isolate 

carried blaCTX-M-15 except CR53, CR58 and CR694, and at least one aminoglycoside 

resistance genes including 16S rRNA methylase genes, rmtB, rmtC, aac(6’)Ib-cr or armA. 

CR38 also co-harbored the carbapenemase gene, blaOXA-48. There was no correlation between 

the blaNDM variants and the replicon types. Among NDM-producers with FII plasmids, two 

variants of blaNDM-1 and -4 were identified. Four variants, blaNDM-1, -4, -5 and -7 were identified 

on replicon type X3 blaNDM-harbouring plasmids. Comparisons of plasmid replicon types and 
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their blaNDM genetic contexts enabled us to identify links between genetically unrelated 

bacterial species, regardless of their STs and resistance determinant profile.  

 

Characterization of plasmids harboring blaNDM 

Six blaNDM-harbouring-plasmids which underwent plasmid transfer experiment by 

transformation were successfully transferred into E. coli TOP10. These blaNDM plasmids of 

CR15, CR16, CR37, CR694, WA1 and WA2 were transferred successfully. Multiple attempts 

to transfer blaNDM-harbouring plasmids by transformation to the rest of NDM-producing 

Enterobacteriaceae were not successful. In conjugation experiment, of the 12 NDM-

producing Enterobacteriaceae, 10 blaNDM-harbouring plasmids were transferred. Of note, the 

conjugation experiment of K. pneumoniae CR38 resulted in the transfer of blaOXA-48-

harboring plasmid into E. coli J53, but not blaNDM-harboring plasmid. The blaNDM of P. 

rettgeri CR58 was not transferred by conjugation and transformation. This may indicate the 

potential location of blaNDM on a non-conjugative plasmid or potential chromosomal location 

of blaNDM. The replicons of plasmids harboring blaNDM extracted from transformed E. coli 

TOP10 and E. coli J53 transconjugants acquiring blaNDM-harbouring plasmids were listed on 

Table 13.  

 

Utilizing the WGS data, blaNDM genetic context characterization of each strain identified a 

truncated Tn125 (ΔTn125) structure carrying blaNDM. pNDM-BJ01 was used as the reference 

sequence (234). The left hand ISAba125 of ΔTn125 was truncated and the ΔTn125 sequence 

ends in various lengths downstream of blaNDM (Fig. 5). The sizes of the ΔTn125 ranged from 

1,769 bp to 8,046 bp. Characterizing the flanking regions of each ΔTn125 structure identified 

two recurrent genetic contexts repeated in two clinical isolates and three distinct genetic 

contexts each found in a separate clinical isolate. Five different types or groups of blaNDM 
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genetic contexts (NGC) were determined. Each isolate was categorized into one of five 

different blaNDM-harbouring plasmid type groups, according to the NGC the plasmid carried. 

There are three types of NGC within FII type plasmids (FII-A to C). The other two types 

were types X3-A, and HI1B-A (Fig. 5). The strains, NDM plasmid type and the NGC type of 

each group are described as follows. 
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Figure 5. Schematic representation of all blaNDM genetic context (NGC) within this study and reference sequence pNDM-BJ01 (Genbank 

Accession no. JQ001791)  
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blaNDM genetic contexts and their Genbank Accession number, for IncFII plasmids with NGC type FII-A include pCR53-EC-NDM-4 

(KP826711), pWA1-EC-NDM-4 (KP826707), pACT1-EC-NDM-1 (KP826702),  pCR7-EC-NDM-1 (KP826713); with NGC type FII-B include 

pCR16-ECL-NDM-1 (KP826704), pCR63-KP-NDM-1 (KP826712); and with NGC type FII-C pCR38-KP-NDM-1 (KP826710), IncX3 

plasmids with NGC type X3-A include pCR37-ECL-NDM-7 (KP826705); pWA2-KP-NDM-7 (KP826708), pCR15-EC-NDM-4 (KP826709), 

IncHI1B plasmids with NGC type HI1B-A include pCR58-PR-NDM-1 (KP826706). Δ – truncated gene. Insertion Sequence (IS) elements are 

represented as a block arrow. Black down arrows indicate insertion of IS element. Bolded names are reference sequence from Genbank for each 

genetic context, pGUE-NDM (Genbank Accession no. NC_019089), pECL3-NDM-1 (Genbank Accession no. KC887917), pKOX-NDM-1 

(Genbank Accession no. JQ314407), pNDM_MGR194 (Genbank Accession no. KF220657), pTR3 (Genbank Accession no. JQ349086) and 

PittNDM01 (Genbank Accession no. CP006799). Gray box highlights blaNDM in each genetic context. 



 

Chapter 3: Characterisation of NDM plasmids within Enterobacteriaceae in Australia  100 

Strains harboring FII-type plasmids 

IncFII type was the most frequent Inc type identified in 7 of the 12 plasmids harboring 

blaNDM (Table 13). Three of the five plasmid groups were NGC FII-type. The strains 

harboring IncFII types were categorized into three different FII groups according to the three 

different FII blaNDM genetic contexts (NGC type FII-A to C). The strains, their FII plasmid 

sub-type and corresponding NGC type were identified and described as follows: Those that 

carried a FII sub–type plasmid harboring NGC type FII-A were four E. coli strains CR7, 

CR53, WA1 and ACT1. The NGC type FII-A had a 3,328 bp ΔTn125, flanked upstream by a 

truncated ISEcp1 and the right end of IS26 and downstream by an ISCR1 element and is very 

similar the blaNDM genetic context on IncFII pGUE-NDM (Genbank Accession no. 

NC_019089) of an E. coli ST131 isolated in France (182) and IncFII pMC-NDM (Genbank 

Accession no HG003695) of an E. coli ST410 isolated in Poland (235).  

 

The second plasmid group had strains with a FIIY plasmid with NGC type FII-B. Two strains 

E. cloacae ST265 strain CR16 and K. pneumoniae ST45 strain CR63 were included in this 

group. NGC type FII-B involved a 7,977 bp ΔTn125 structure with IS903B and IS1-family 

element upstream and was very similar to pECL3-NDM-1 (Direct submission Genbank 

accession no. KC887917) of E. cloacae ECL3 isolated in Australia.   

 

The third group carried a FIIY plasmid with NGC type FII-C with K. pneumoniae ST15 strain 

CR38. NGC FII-C type is a 5,947 bp ΔTn125 structure, flanked by two identical 256 bp 

miniature inverted-repeat transposable elements (MITEs). The aminoglycoside resistance 

determinant rmtC was also identified upstream of the ΔTn125 structure of NGC type FII-C 

and is very similar to IncFII pKOX_NDM1 (Genbank Accession no. JQ314407) of Klebsiella 

oxytoca isolated from Taiwan (225).  
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Strains harboring IncX3 and IncHI1B 

Similar to the analysis of IncFII blaNDM plasmids, blaNDM genetic context groups were 

established with the remaining clinical strains which harbored IncX3 and IncHI1B plasmids. 

The fourth plasmid group composed of strains carrying an IncX3 plasmid with the NGC type 

X3-A. The four clinical isolates in this group are E. cloacae ST127 strain CR37, E. coli 

ST101 strain CR15, E. coli ST648 strain CR694 and K. pneumoniae ST15 strain WA2. NGC 

type X3-A involved a 3,167 bp ΔTn125, flanked by an IS5 upstream and an IS26 downstream 

and was similar to the IncX3 plasmid pNDM-MGR194 (Accession no. KF220657) of K. 

pneumoniae isolated from India (236).  

 

The last remaining plasmid group carried an IncHI1B plasmid with NGC type HI1B 

containing P. rettgeri strain CR58. NGC type HI1B-A consists of a 8,046 bp ΔTn125 

sequence with a partial sequence of ISEc33 upstream and identical to IncHI1B pPKPN1 of K. 

pneumoniae strain PittNDM01 ST14 (Genbank accession no. CP006799) isolated in 

Pittsburgh, US (237).  

 

Although this study had a small sample size, it could indicate further potential wide 

dissemination of blaNDM by IncFII type and IncX3 plasmids in Australia. Geographical 

specific dissemination of blaNDM by a certain group of plasmid types has been previously 

reported with five identical IncN2 plasmids harboring blaNDM was described in four K. 

pneumoniae and one E. coli ST131 in two countries in South East Asia (125, 224). The 

characterization presented here would indeed help to track the horizontal movement of 

blaNDM among the Enterobacteriaceae family.  
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While the mechanism and factors of how these genetic contexts originated and the nature 

(including the source and environment) in which these strains have acquired these plasmids 

remains unknown, the five groups of plasmids carrying these specific blaNDM genetic contexts 

within different bacterial species highlights the role of plasmids to transmit mechanisms of 

carbapenem resistance. Genetic context characterization was a method allowing us to refine 

an epidemiological links between strains, established by the acquisition of plasmids carrying 

a specific blaNDM genetic context. We suggest genetic context characterization as an 

additional tool in combination with other molecular methods such plasmids replicon typing 

and sequencing typing via MLST when conducting epidemiology studies involving NDM 

producers of the Enterobacteriaceae family and possibly other similar promiscuous 

antimicrobial resistant determinants. 

 

In conclusion, we have identified five particular plasmids with specific blaNDM genetic 

contexts conferring carbapenem resistance in the Enterobacteriaceae family through genetic 

context characterization in combination with other epidemiological molecular methods. 

IncFII-type and IncX3 plasmids were the most frequent plasmids carrying blaNDM within our 

study, with three different blaNDM genetic contexts identified amongst the IncFII-type 

plasmids. By combining different molecular and genetic characterization methods, 

epidemiological investigations can provide a better insight into the spread of plasmids 

transmitting blaNDM and possibility of other similar promiscuous resistance mechanisms to 

genetically unrelated bacterial species. 
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3.3 Chapter summaries and conclusions 

 

The combined molecular/genetic approach was able to assess the dissemination of plasmid-

mediated blaNDM with strains isolated nation-wide. For these strains to confer carbapenem 

resistance, this approach clarified the acquisition of plasmids carrying specific NGCs, primarily 

IncFII type and IncX3. The spread of plasmid-mediated blaNDM is able to be assessed both at local 

and national-wide geographical ranges through this approach. The characterisation of different 

NGCs and specific plasmid types spreading the blaNDM gene, IncA/C and IncN2 plasmid types in 

Pakistan (Chapter 2) and the IncFII type and IncX3 plasmid in Australia, implies a complicated 

combination of mechanisms involved for insertion of the blaNDM gene into a plasmid (inferred by 

the blaNDM different NGCs), plasmid type transfer between genera, and strain transfer between 

patients. Additionally, there appears to be gene exchange between plasmid types, with observations 

of highly similar NGCs on different plasmid types IncN2 and IncFIIY (Fig. 4; Chapter 2 (23)) and 

on the same plasmid type with IncFIIY carrying three different NGCs, C. freundii Pn67 harboured 

the first NGC (Fig. 4; (23)), E. cloacae CR16 and K. pneumoniae CR63 harboured a second NGC 

(Fig. 5; (22)) and K. pneumoniae CR38 harboured a third different NGC. The mechanisms 

identified in this chapter (observation of plasmid types harbouring additional NGCs) compliment 

and add to the mechanisms of acquisition and spread identified in Chapter 2. Collectively these 

suggest a complex combination of mechanisms involved for antimicrobial resistance acquisition 

and spread. 
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Chapter 4: Complete NDM plasmid backbone analysis and mechanisms for 

blaNDM capture  

4.1 Chapter Introduction 

Thus far, mechanisms of inter-genera transfer of the blaNDM gene and possible strain transfer 

between patients has been investigated. In the previous chapters, we observed various combinations 

of different NGCs and plasmid types, including the same NGC across different plasmid types and 

the same Inc type carrying three different NGCs. Plasmids can be considered important vehicles for 

capture and accumulation of AMR genes, in addition to their role in AMR gene spread. The initial 

gene insertion onto a plasmid allows the possibility for a gene to mobilise and spread to multiple 

genera, patients and health-care facilities, similar to situations described in Chapters 2 and 3. 

Numerous transposable elements facilitate gene insertion, to give rise to the NGCs previously 

described, and to facilitate the gene transfer between plasmid types. These are important concepts to 

acknowledge if insights into acquisition and spread of blaNDM genes is to be achieved.  

This chapter constructed and analysed the full sequence of four plasmids harbouring a blaNDM gene  

(two IncA/C2 and two IncFIIY). The mechanisms leading to insertion of blaNDM into different parts 

of highly similar plasmid backbones were investigated. Comparison of these four plasmids with 

complete plasmids described in the literature was included to define and characterise mechanisms 

known at the time of analysis. 

This investigation was summarised and presented in a manuscript format which has been accepted 

with minor review at Antimicrobial Agents and Chemotherapy. The numbers of the figures, tables 

and references of the presented article have been amended to suit the structure of this thesis. 
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4.2 Chapter 4 – Original article: Mechanisms involved in acquisition of blaNDM 

genes by IncA/C2 and IncFIIY plasmids 
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ABSTRACT 

blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids 

belonging to different incompatibility (Inc) groups. Here we present the complete sequences 

of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1 and 

pEC4-NDM-6, from four clinical samples originating from four different patients. Different 

plasmids carry segments that align to different parts of the blaNDM region found on 

Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and 

Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost 

identical backbones. Different regions carrying blaNDM are inserted in different locations in 

the antibiotic resistance island known as ARI-A and ISCR1 may have been involved in 

acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from 

Enterobacter cloaceae and E. coli, respectively, have similar IncFIIY backbones but different 

regions carrying blaNDM are found in different locations. Tn3-derived Inverted-repeat 

Transposable Elements (TIME) appear to have been involved in acquisition of blaNDM-6 by 

pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterisation 

of these plasmids further demonstrates that even very closely related plasmids may have 

acquired blaNDM genes by different mechanisms. These findings also illustrate the complex 

relationships between antimicrobial resistance genes, transposable elements and plasmids and 

provide insights into the possible routes for transmission of blaNDM genes amongst species of 

the Enterobacteriaceae family. 
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In Gram-negative bacteria, especially the Enterobacteriaceae family, β-lactamases are a 

major mechanism of resistance against β-lactams. A group of β-lactamases known as 

carbapenemases are becoming the most troublesome for antimicrobial therapy, as they can 

confer resistance to the carbapenems, the major last-line antimicrobial. The NDM 

carbapenemase was first reported in 2009, produced by a Klebsiella pneumoniae isolated 

from a Swedish patient recently returned from India (2). There are currently 16 known NDM 

variants (http://www.lahey.org/Studies/other.asp#table1, accessed February 2016) and blaNDM 

genes have now been reported in strains sourced from every inhabitable continent and in 

multiple species of Enterobacteriaceae, including Escherichia coli, K. pneumoniae and 

Enterobacter cloacae (20).  

Plasmids are important vehicles for the capture, accumulation and spread of various 

antimicrobial resistance determinants. Several different types of plasmids associated with the 

Enterobacteriaceae family have been reported to harbor blaNDM genes including IncA/C, 

IncFII sub-types, IncH types, IncL/M, IncN (20, 40, 205), and IncX (238). Some of these 

plasmids co-harbour additional antimicrobial resistance genes, including the 16S rRNA 

methylase genes armA and rmtC (conferring high-level aminoglycoside resistance), 

quinolone resistance genes (qnrB1 and qnrS1) and/or other β-lactamase genes (such as 

blaCMY-2 and variants, blaCTX-M-15) (239).  

The original source of blaNDM is not known, but Acinetobacter spp. may have acted as an 

intermediate between this organism and the Enterobacteriacae family (70, 240, 241). In 

Acinetobacter spp. blaNDM genes have often been observed within the composite transposon 

Tn125, a 10,099 bp region bounded by two copies of ISAba125 (70, 72, 184, 242). The 

blaNDM gene starts 93 bp downstream of the right-hand end (IRR) of ISAba125, which 

provides the -35 region of a promoter (103, 185), and is followed by several genes, including 

bleMBL (bleomycin resistance), trpF (involved in tryptophan biosynthesis), and the mobile 
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element ISCR27. In several Acintetobacter spp. plasmids (e.g. pNDM-BJ01; GenBank 

accession no. JQ001791 (73)), ISAba14 and the aphA6 gene (amikacin resistance) are present 

upstream of the ISAba125 adjacent to blaNDM-1 (Fig. 6A). In plasmids from the 

Enterobacteriaceae, blaNDM genes are generally found in the same immediate genetic 

context, with at least a fragment of ISAba125 containing the -35 region present upstream, 

within different length fragments matching Acinetobacter plasmids and associated with 

different mobile elements (22, 23, 74, 205, 225, 243, 244).  

We previously reported locally-identified K. pneumoniae (15) and E. cloacae (189) clinical 

isolates carrying blaNDM-1, E. coli carrying blaNDM-3 (G283A, Asp95Asn) (189) and E. coli 

carrying blaNDM-6 (C698T, Ala233Val) (101). The blaNDM gene could be transferred from all 

four isolates by transformation and/or conjugation, indicating a plasmid location in each case, 

but replicon types were not determined (15, 101, 189). In this study, we present the complete 

sequences of these four plasmids and a comparison of the genetic contexts of blaNDM with 

those in closely related plasmids. 

MATERIALS AND METHODS 

Bacterial isolates and plasmids. K. pneumoniae KP1 (15) and E. cloacae ECL3 carrying 

blaNDM-1 (189) were isolated in Australia, as was E. coli EC2 carrying blaNDM-3 (189) while E. 

coli EC4 carrying blaNDM-6 (previously designated ARL10/167 (101)) was isolated in New 

Zealand. All isolates were from patients recently returned from India. Transconjugants in 

sodium-azide resistant E. coli J53Azir were available and/or were obtained as previously 

described (23).  

DNA preparation and sequencing. Genomic DNA (gDNA) was extracted from KP1, ECL3 

and EC4 using the UltraClean Microbial DNA Isolation kit (Mo Bio Laboratories, Inc., 

Carlsbad, California, USA) and sequenced by Illumina HiSeq 2000 technology (Illumina, San 

Diego, USA). Illumina sequences were de novo assembled using CLC genomic workbench 



 

Chapter 4: Complete NDM plasmid backbone analysis and mechanisms for blaNDM capture  111 

v8.0 (CLC Bio, Aarhus, Denmark). Initial annotation of contigs was performed using RAST 

(245). IS finder (https://www-is.biotoul.fr/) and the Repository of Antibiotic-resistance 

Cassettes (RAC; http://rac.aihi.mq.edu.au/rac/) were used to identify IS and integron 

components, respectively. BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) searches were 

used to identify related plasmids carrying blaNDM to guide PCR-based gap closure and Sanger 

sequencing (Macrogen, Korea) to assemble contigs into complete plasmids.  

gDNA from EC2 was sheared using a g-TUBE (Covaris®) into fragment sizes targeted at 20 

Kb. Following purification, SMRTbell template libraries were prepared using the commercial 

Template Preparation kit (Pacific Biosciences Inc., Menlo Park, California, USA) and 

sequenced on a Pacific Biosciences (PacBio) RSII instrument (University of Queensland 

Centre for Clinical Genomics; UQCCG) using the P6 polymerase and C4 sequencing 

chemistry. The raw PacBio sequence data were assembled de novo using the hierarchical 

genome assembly process (HGAP version 2) and Quiver (246) from the SMRT Analysis 

software suite (version 2.3.0; http://www.pacb.com/devnet/) with default parameters and a 

seed read cut-off of 17,000 bp. Following assembly, contigs were examined for overlapping 

5' and 3' ends (a characteristic feature of the HGAP assembly process) using Contiguity 

(https://peerj.com/preprints/1037/) and were manually trimmed to generate circular contigs. 

Raw sequence reads were then mapped back onto the assembled circular plasmid contig 

(BLASR (247) and Quiver) to validate the assembly and resolve any remaining errors.  

RAST, IS finder, RAC, CLC genomic workbench v8.0, Geneious R9 (Biomatters Ltd, New 

Zealand, including Mauve (248)) and BLAST were used for manual annotation, alignment, 

SNP detection, and other analysis and comparisons of complete plasmid sequences.  

Nucleotide sequence accession numbers. Existing GenBank entries for partial sequences of 

all four plasmids were updated to include the complete sequences, as follows: pKP1-NDM-1, 
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KF992018; pEC2-NDM-3, KC999035; pECL3-NDM-1, KC887917; pEC4-NDM-6, 

KC887916. 

RESULTS AND DISCUSSION 

General features of plasmids carrying blaNDM. Isolates KP1, EC2, ECL3, EC4 each 

transferred a plasmid carrying blaNDM to E. coli J53Azir by conjugation. Plasmids carrying 

blaNDM assembled from whole genome sequences (at least 50 fold coverage) were designated 

pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1 and pEC4-NDM-6, respectively. pKP1-

NDM-1 (137,552 bp) and pEC2-NDM-3 (160,989 bp) were identified as type 1 IncA/C2 

(Table 14). The backbones of pKP1-NDM-1 and pEC2-NDM-3 are very closely related to 

those of several other type 1 IncA/C2 plasmids (Appendix B; Table S1) and include 

characteristic IncA/C2 core regions, such as the conjugative transfer (tra) region and parA-

parB required for plasmid partitioning (249). They have identical replication regions, with a 

repA gene and fourteen 19 bp direct repeat sequences (iterons), which are binding sites for 

the RepA protein (249). pKP1-NDM-1 and pEC2-NDM-3 both have the same ISEcp1 

transposition unit carrying a blaCMY-2 variant, in this case blaCMY-6, inserted in the same 

location as in many other type 1 IncA/C2 plasmids, between traA and traC, flanked by 5 bp 

direct repeats (DR). Neither carries Tn6170 present in some type 1 IncA/C2 plasmids (250). 

pECL3-NDM-1 (99,435 bp) and pEC4-NDM-6 (110,786 bp) are both IncFIIY type plasmids 

(Table 14) carrying two replicons, classified as Y4 (repA) and FIB36 (repB) by the replicon 

sequence typing (RST) scheme (223). The backbones of both plasmids are closely related to 

those of other IncFIIY plasmids carrying blaNDM (Table S2), which have not been well studied 

but include a conjugation (tra) region and stability (psi, parAB) and maintenance (ccdAB) 

genes (225, 243).  
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Table 14. General features of IncA/C2 and IncFIIY plasmids studied here and close relatives 

Plasmida NDM Size (bp) Species STb Countryc Yearb Sourceb 
GenBank 

accession no. 
Reference 

A/C2          

pKP1-NDM-1 1 137,552 K. pneumoniae 147 India/Australia 2010 Human KF992018.2 This study 

pEC2-NDM-3 3 160,989 E. coli 443 IndiaAustralia 2010 Human KC999035.2 This study 

pNDM-EcoGN568  1 166,750 E. coli 1289 India/Canada na Human KJ802404.1 (251) 

pNDM-PstGN576 1 147,886 P. stuartii N/A India/Canada na Human KJ802405.1 (251) 

pNDM102337 1 165,974 E. coli na Canada na na NC_019045.2 - 

pNDM10505 1 166,744 E. coli na Canada na na NC_019069.1 - 

pNDM10469 1 137,813 K. pneumoniae na Canada na na NC_019158.1 - 

pNDM-KN 1 162,746 K. pneumoniae 14 Kenya 2009 Human JN157804.1 (80, 175) 

pNDM-US 1 140,825 K. pneumoniae 11 India/USA 2010 Human CP006661.1 (201) 

pNDM-US-2 1 140,821 K. pneumoniaed na -d - - KJ588779.1 - 

FIIY          

pECL3-NDM-1 1 99,435 E. cloacae 265 India/Australia 2011 Human KC887917.2 This study 

pEC4-NDM-6 6 110,786 E. coli 101 India/New Zealand 2010 Human KC887916.2 This study 

pKOX_NDM1 1 110,781 K. oxytoca na China/Taiwan 2010 Human NC_021501.1 (225) 

pNDM1_EC14653 1 109,353 E. cloacae 177 China 2014 Human KP868647.1 (252) 

pNDM-EclGN574 1 110,786 E. cloacae na India/Canada na Human KJ812998.1 (251) 

pP10164-NDM 1 99,276 L. adecarboxylata N/A China 2012 Human KP900016.1 (243) 

pRJF866 1 110,786 K. pneumoniae 11 China 2011 Human NC_025184.1 (253) 

pYDC644 1 106,844 K. pneumoniae na Iran na na KR351290.1 - 
 

a Plasmids with names in  bold typeface were sequenced in this study.  
b na, not available. 

c Travel history is given if available e.g. India/Australia indicates isolation in Australia from a patient recently returned from India.  
d GenBank accession no. KJ588779 implies that pNDM-US-2 was extracted in China from the same strain, ATCC BAA-2146, as pNDM-US. 
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Figure 6. ARI-A of type 1 IncA/C2 plasmids carrying blaNDM, and potential routes for blaNDM insertion  

IS are shown as block arrows labelled with their name or number. DR are represented by flags of the same colour. Triangles indicate the insertion sites of 

IS elements flanked by DR. Vertical black bars represent the transposon IR of ARI-A and IRi of class 1 In/Tn. Horizontal green and black lines represent 

Acinetobacter and IncA/C2 plasmid backbones, respectively. Vertical dotted lines indicate boundaries of closely related sequences. Vertical black arrows 
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and diagonal dotted lines indicate possible deletion and insertion events. (A) Tn125 in Acinetobacter lwoffii plasmid pNDM-BJ01. (B) ARI-A of type 1 

IncA/C2 plasmids closely related to pKP1-NDM-1 and pEC2-NDM-3. (C) Possible derivation of the circular molecule inserted in pEC2-NDM-3. (D) 

Insertion of circular molecular carrying blaNDM into pEC2-NDM-3 and a P. mirabilis genomic island. The sequences used to draw these diagrams are 

from GenBank accession numbers listed in Table 14, plus: pNDM-BJ01, NC_019268; pSAL-1, AJ237702; pKP048, NC_014312 ; SGI1-V, HQ888851; 

PGI1-PmPEL, KF856624 
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Both IncA/C2 plasmids carry blaNDM in antibiotic resistance island ARI-A. In both 

IncA/C2 plasmids sequenced here the blaNDM gene is located within an antibiotic resistance 

island known as ARI-A that is common to type 1 IncA/C2 plasmids. The prototype ARI-A, 

found in pRMH760, is a complex hybrid transposon structure bounded by 38 bp inverted 

repeats (IR) interrupted by IS4321 and is inserted upstream of the rhs gene (unknown 

function) flanked by 5 bp DR (TTGTA) (250, 254). ARI-A in pRMH760 carries a class 1 

In/Tn with IS26-aphA1-IS26 interrupting the Tn402 tni region. Various other resistance 

genes and islands carrying blaNDM appear to be derived from this structure (205). In 

pNDM102337 (Table 14; Fig. 6B) nucleotides 1-1,616 of the 3′-CS of the class 1 integron are 

followed by a 3,562 bp region carrying a type III restriction-modification system and the 

rmtC 16S rRNA methylase gene, then 224 bp of the IRR end of ISEcp1. ISEcp1 is truncated 

by ISKpn14, which is followed by a 198 bp fragment of ISAba14, then a region found on a 

number of different plasmids that contains the aac(3)-IId (gentamicin resistance) gene and 

ISCfr1 (60). The adjacent fragment of the Tn402 tni region has the same boundary with IS26 

as in ARI-A of pRMH760, but only 217 bp of IS26 is present. This is followed by an 8,913 

bp region matching Acinetobacter plasmids such as pNDM-BJ01, which includes 662 bp of 

the right end of ISAba14, aphA6, one copy of ISAba125, blaNDM-1 and a fragment of ISCR27.  

pNDM10505, pNDM-PstGN576 and pNDM-EcoGN568 (Table 14) have a variant of the 

pNDM102337 ARI-A with a second ISKpn14 inserted 130 bp upstream of the left end of 

ISAba125 (Fig. 1B). ISKpn14-mediated deletion may have been responsible for creating the 

ARI-A variant present in the other closely-related type 1 IncA/C2 plasmids pNDM-US, 

pNDM-US-2, pNDM-KN and pNDM10469, which lack the aac(3)-IId region (Table 14; Fig. 

6B) (205). pKP1-NDM-1 sequenced here has an almost identical ARI-A except that only 89 

bp of ISAba125 are present adjacent to ISKpn14 upstream of blaNDM. This difference was 

confirmed, has been seen in other partial sequences (23, 255) and ISKpn14, which is ~89% 
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identical to IS1, known to cause adjacent deletions (60). All of these type 1 IncA/C2 plasmids 

except pNDM-KN have the same cassette array, consisting of single fused cassette comprised 

of the first 87 bp of the blaOXA-30 cassette and position 17 to the end of the aacA4 cassette, 

overlapping by a single A (61). The mechanism(s) responsible for insertion of the blaNDM 

region into the proposed pNDM102337-like progenitor plasmid are unclear, but it is possible 

that they involved ISCR27 and/or IS26 and subsequent deletion(s). 

The backbone of pEC2-NDM-3 is almost identical to the pNDM102337-like plasmids 

described above (Appendix B; Table S1) but ISEc23 is inserted 222 bp upstream of ARI-A, 

flanked by 8 bp DR characteristic of this element. ARI-A of pEC2-NDM-3 includes the same 

rmtC region as described above except that IS3000 is inserted upstream of rmtC, flanked by 

characteristic 5 bp DR. The region containing blaNDM, however, is different from the one in 

the other IncA/C2 plasmids and is inserted between ISKpn14 and the aac(3)-IId/ISCfr1/tni402 

region. The region matching pNDM-BJ01 encompasses 198 bp of ISAba14, aphA6, one copy 

of ISAba125, blaNDM, bleMBL and trpF. ISKpn25, carrying a restriction-modification system, 

is inserted in ISAba125 upstream of the -35 promoter region, flanked by characteristic 8 bp 

DR (Fig. 6B). The blaNDM gene has the single nucleotide change giving blaNDM-3 rather than 

blaNDM-1 and trpF is followed by a truncated blaDHA gene and the associated ampR gene, 

nucleotides 180-1,313 of the 3'-CS and ISCR1. This region is separated from a complete 

ISAba14 by 934 bp matching the region upstream of ISAba14 in pNDM-BJ01. ARI-A in 

pEC2-NDM-3 ends with the aac(3)-IId/ISCfr1/tni402 region but a complete copy of IS26 

truncates the rhs gene in the IncA/C2 backbone. The only other known location of the blaNDM-

3 variant is on an IncFII plasmid (256) associated with ISCR1 but not with the truncated 

blaDHA/ampR region present in pEC2-NDM-3.  

This context in pEC2-NDM-3 suggests insertion of blaNDM from a circular molecule mediated 

by ISCR1. ISCR1 is proposed to transpose by a rolling-circle mechanism, similar to the 
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related IS91 family elements (64), in which replication proceeds from the oriIS end, located 

downstream of rcr (rolling circle replicase gene), towards the terIS upstream and can 

continue into and capture an adjacent region. ISCR1 has generally been found associated with 

class 1 integrons, after position 1,313 of the 3′-CS, suggesting integration of circular 

molecules by recombination in either the 3′-CS or an existing ISCR1 (64). ISCR1 has 

previously been suggested to be associated with movement of blaNDM (257) and was recently 

shown to be responsible for mobilising a region containing blaNDM and part of the 3′-CS, but 

without the blaDHAΔ/ampR region, between plasmids (244). 

ISCR1 appears to have been responsible for capturing the blaDHAΔ/ampR region from the 

Morganella morganii chromosome and inserting it into a class 1 integron (258) (Fig. 6C). 

Generation of a circular molecule by recombination between the two flanking 3′-CS and 

reintegration at ISCR1 could create the arrangement seen in e.g. pKP048 (GenBank accession 

no. NC_014312), with ISCR1 downstream of the blaDHAΔ/ampR region and the 3'-CS, and 

the usual 3'-CS/ISCR1 boundary (Fig. 6C). ISCR1 may then have mobilised this 3'-CS 

segment and the blaDHAΔ/ampR region and inserted them downstream of blaNDM, before 

picking up the blaNDM region as part of a circular molecule (Fig. 6C).  

The complete ISAba14 in pEC2-NDM-3 has the same boundary with the aac(3)-IId region as 

the ISAba14 fragment in pNDM102337, suggesting that homologous recombination between 

the complete and partial copies of ISAba14 could have been responsible for the insertion of 

this circular molecule into pEC2-NDM-3 (Fig. 6D). The same circular molecule carrying 

blaNDM also appears to have inserted in a P. mirabilis genomic island to create PGI-PmPEL 

(257) but in this case by recombination in ISCR1 (Fig. 6D), supporting the proposed 

mechanism of ISCR1-mediated capture of blaNDM. Regions containing the same ISCR1, 3'-

CS, blaDHAΔ/ampR region, but adjacent to shorter fragments of the blaNDM region, are found 

in the original blaNDM-1 plasmid pKpANDM-1 (FN396876.1) (2) and in plasmids of other Inc 



 

Chapter 4: Complete NDM plasmid backbone analysis and mechanisms for blaNDM capture  119 

types (205) (e.g. the IncL/M plasmid pNDM-HK) (74)), suggesting capture of shorter blaNDM 

regions and/or subsequent deletions. 
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Figure 7. Contexts of blaNDM on IncFIIY plasmids  

Features are generally shown as in Fig. 6. Solid black lines represent IncFIIY 
plasmid backbone. Grey shaded areas indicate matching plasmid backbone regions, 

with their sizes given. (A) Tn125 in Acinetobacter lwoffii plasmid pNDM-BJ01. (B) Comparison of IncFIIY 
plasmids. (C) Comparison of rmtC contexts in IncFIIY, 

plasmids, IncA/C2 
ARI-A and Proteus mirabilis. The sequence shown is the spacer between rmtC and the associated transposable element. The pink triangle 

indicates the insertion site of the TIME. The sequences used to draw these diagrams are from GenBank accession numbers listed in Table 14 plus: pNDM-BJ01, 

NC_019268; pNDM-BJ02, NC_019281.1; ISEcp1 transposition unit in P. mirabilis, AB194779. 
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IncFIIY plasmids carry blaNDM flanked by TIMEs. Several very closely related IncFIIY 

plasmids carrying a blaNDM gene have now been identified (Table 14). They all have almost 

identical backbones with the same insertions of multiple IS elements in the same places and 

minor sequence differences (Appendix B; Table S2), although pYDC644 alone appears to 

have a deletion adjacent to one copy of IS1 (Fig. 7B). In all of these plasmids blaNDM lies 

within a 5,945 bp region matching Tn125 that includes 101 bp of ISAba125 and a fragment 

of ISCR27. This region is flanked by two copies of a 256 bp Tn3-derived Inverted-repeat 

Transposable Element (TIME), each bounded by inversely oriented 38 bp IRs (259). These 

TIMEs, previously described as MITEs (Miniature Inverted-repeat Transposable Element), 

may have been responsible for capturing the blaNDM region from a pNDM-BJ01-like plasmid 

(225, 243, 252). pEC4-NDM-6 is very closely related to these plasmids (Appendix B; Table 

S2) but has the single nucleotide change giving blaNDM-6 (260) rather than blaNDM-1, 

suggesting mutation in this context. 

In most of these IncFIIY plasmids carrying blaNDM, an 11,029 bp region that includes the 

rmtC gene and an ISCR6-like element separates the TIME upstream of blaNDM-1 from a third 

copy of this TIME. TIME create 5-6 bp DR on transposition like the Tn3 transposons from 

which they appear to be derived (259). In these plasmids the 5 bp sequences adjacent to the 

"inside" of each TIME flanking the rmtC region are identical (TATAA). This configuration 

could be explained by insertion of a circular molecule, consisting of this region plus one copy 

of the TIME (flanked by these 5 bp sequences as DR), into the TIME upstream of blaNDM-1 

(Fig. 7B). Gain and loss of the rmtC region in this way is supported by the sequences of the 

IncFIIY plasmids pP10164-NDM and pNDM-EC14653 (Table 14; Fig. 7B), which lack the 

rmtC region. Removing the TIME and one DR of this circular molecule also gives a region 

that matches the rmtC region found in ARI-A of the IncA/C2 plasmids, also supporting this 

hypothesis. rmtC was originally identified in a transposition unit flanked by DR with a 
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complete copy of ISEcp1 that also matches part of this structure (Fig. 7C) (261). The same 30 

bp separate rmtC from this complete ISEcp1 and the ISEcp1 fragment in IncA/C2 plasmids, 

while an additional 10 bp are present between ISCR6 and rmtC. While these contexts are 

clearly related, without additional examples of rmtC contexts it is difficult to say exactly how 

each arose.  

pECL3-NDM-1 carries the same rmtC region as the other IncFIIY plasmids but its backbone 

has a number of confirmed nucleotide differences (Appendix B; Table S2) and a different 

region carrying blaNDM-1 has been inserted in a different location (Fig. 7B). This region 

matches pNDM-BJ02, which lacks the copy of ISAba125 downstream of blaNDM (205), rather 

than pNDM-BJ01, and also includes 1,369 bp of pNDM-BJ02 backbone. An IS903-like 

element truncates ISAba125, leaving 83 bp upstream of blaNDM-1. This 10,411 bp region 

replaces a 15,560 bp region present in the other IncFIIY plasmids and it is possible that the 

IS903-like element was involved in the insertion of this blaNDM region into pECL3-NDM-1.  

Conclusions. In summary, the analysis presented in this study supplements and complements 

the catalogue of previously characterised IncA/C2 and IncFIIY plasmids carrying blaNDM. All 

four plasmids studied here carried segments that align to different parts of the blaNDM regions 

found on Acinetobacter plasmids. Different mechanisms appear to have been responsible for 

independently transferring different segments of Tn125 into ARI-A in the same IncA/C2 

plasmid backbone (giving pKP1-NDM-1-type plasmids or pEC2-NDM-3). Other less 

closely-related type 1 IncA/C2 plasmids e.g. pNDM-1_Dok01 from E. coli (177) and 

pMR0211 from Providencia stuartii (94), also carry segments matching different parts of 

Tn125 and adjacent Acinetobacter plasmid backbone in ARI-A, illustrating further variation 

in the ways in which blaNDM genes appear to have been acquired by similar plasmids. 

Different mechanisms also appear to have transferred different segments matching blaNDM 
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contexts found in A. baumannii to slightly different IncFIIY backbones (giving pEC4-NDM-

1-type plasmids or pECL3-NDM-1). 

At least theoretically, transfer of blaNDM segments between Acinetobacter and 

Enterobacteriaceae plasmids could have occurred in either the Acinetobacter or in one or 

more of the Enterobacteriaceae. Transfer of Acinetobacter plasmids carrying blaNDM into E. 

coli J53 by conjugation has been demonstrated (103, 242) and recently a pNDM-BJ01-like 

plasmid (p3SP-NDM) was found in an Enterobacter aerogenes isolate (234). IncA/C 

plasmids have also been reported in a few A. baumannii clinical isolates on the basis of PCR 

(262). While independent transfer from Acinetobacter plasmids to different types of plasmids 

found in the Enterobacteriaceae is possible, it may be more likely that blaNDM regions have 

subsequently moved between these plasmids in the Enterobacteriaceae. 

The four plasmids in this study were carried by clinical isolates from Australia or New 

Zealand, from different patients recently returning from India. We have also recently reported 

partial sequences of blaNDM contexts matching pKP1-NDM-1 (with the 89 bp ISAba125 

fragment) in IncA/C plasmids harboured by isolates from a hospital in Pakistan (23) and 

those matching pECL3-NDM-1 or pEC4-NDM-6 in IncFIIY plasmids in isolates from 

multiple Australian healthcare facilities (22). The other related IncA/C2 and IncFIIY plasmids 

harbouring blaNDM genes discussed here were also isolated in several different countries 

(Table 14). This distribution illustrates the geographical spread of blaNDM genes on these 

particular plasmid types.  

There appears to be an underlying complex network of interactions between blaNDM, different 

mobile elements and different plasmids, but without access to the sequences of additional 

intermediate and progenitor plasmids it is difficult to fully understand the contributions that 

different factors have to the transmission of blaNDM genes. The different mechanisms 

observed here to capture relevant genes onto different plasmid types emphasizes the 
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capability of Enterobacteriaceae to adapt to their environment, especially where 

antimicrobial pressure is present.   
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4.3 Chapter summaries and conclusions 

This chapter described the different transposition mechanisms involved for insertion of the blaNDM 

gene into plasmids of the same Inc type. Mechanisms identified were IS26 and/or ISCR27 and 

ISCR1 (rolling-circle mechanism (64)) for blaNDM insertion into ARI-A on type 1 IncA/C2 plasmids 

and TIMEs and IS903-like elements into IncFIIY plasmids. These mechanisms involved the 

insertion of blaNDM into plasmids described in Chapter 2 (IncA/C of strains Pn2, Pn66 Pn68; (23)) 

and Chapter 3 (IncFIIY of strains CR16, CR38 and CR63; (22)) which had highly similar NGCs. 

Identical regions carrying an AMR gene were also observed on two different plasmid types, rmtC 

region in IncA/C2 and IncFIIY (Similar to Chapter 2; NGC on IncN2 and IncFIIY). Suggesting gene 

exchange between plasmid types or alternatively acquisition by both plasmid types from a common 

source. Also noted and discussed were the different fragment lengths matching the Tn125 region 

found on Acinetobacter spp. plasmids, which may be remnants of blaNDM transfer from 

Acinetobacter plasmids and those in the Enterobacteriaceae. Theoretically, the transfer of these 

blaNDM segments between Acinetobacter and Enterobacteriaceae plasmids could occur either in 

Acinetobacter or in one or more Enterobacteriaceae. Discussion of these observations has provided 

an insight into mechanisms of blaNDM acquisition and spread suggesting a complex relationship 

between antimicrobial resistance genes, transposable elements and plasmids. 
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Chapter 5: The prevalence of plasmids within the Enterobacteriaceae family 

5.1 Chapter Introduction 

Previous chapters have described numerous NGCs, the transposable element mechanisms involved 

for insertion of blaNDM genes into backbones of different plasmid types, and the gene exchange of 

regions between plasmid types, as well as between Enterobacteriaceae and Acinetobacter plasmids. 

This collectively suggested complex interactions between the blaNDM gene, transposable elements 

and plasmids types. The blaNDM gene and other additional AMR genes have the potential to be 

acquired by and transferred between each plasmid type. The interaction between plasmid types and 

different genera regardless of AMR gene carriage is investigated to complement these discussions, 

and place the plasmid types carrying blaNDM into a greater context of AMR acquisition and spread. 

This interaction has implications that could affect the direct transfer of blaNDM between different 

genera.  

 

This chapter describes the plasmid content (via in silico plasmid typing) of 1683 

Enterobacteriaceae isolated from 53 countries across seven continents, involving both clinical and 

environmental samples, starting from early 1980s until 2013. PCA of the shared plasmid sub-types 

harboured across different species was also conducted to describe specific routes of gene 

transmission between species and genera, facilitated by plasmids. 

 

This investigation was summarised and presented in a manuscript format submitted to Microbial 

Genomics. The numbers of the figures, tables and references of the article have been amended to 

suit the structure of this thesis. 
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Abstract 

Treatment options for infections caused by members of the bacterial family the 

Enterobacteriaceae are increasingly becoming more limited due to the increase in 

antimicrobial resistance. This increase in resistance is partly facilitated by the rapid 

horizontal spread of genes carried on mobile genetic elements that confer resistance to 

therapeutic antimicrobials. Bacteria can acquire AMR genes from other bacteria via 

plasmids which are self-replicating extrachromosomal DNA molecules. Plasmids can 

be typed into different Incompatibility (Inc) groups and some of which have been 

associated with the dissemination of different AMR genes. However, the general 

distribution of AMR-specific plasmids remains largely undefined. Here, we assay the 

plasmid content of a broad, avaliable collection of Enterobacteriaceae isolate 

genomes, ranging from Klebsiella spp. to Shigella spp., by assessing the plasmid 

content of 1683 isolates using an in silico plasmid replicon typing method. Twelve 

major plasmid types were identified and allocated into three levels of occurence: 

Common, IncF (~65% of strains); Intermediate, IncHI, IncI, IncR (8-10%); and Rare, 

IncA/C, B/O/K/Z, L/M N, O, P, Q, X, and Y (0.5-3%). PCA identified specific 

plasmid sub-types to represent possible routes of gene exchange between different 

species/genera, with species clustering into two primary groups according to their 

shared plasmid content. Our findings provide insights into the distribution of 

enterobacterial plasmid types and an underlying network of transmission between 

bacterial species and genera.  
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Introduction 

Bacterial pathogens from the Enterobacteriaceae family cause a number of serious infections 

including pneumonia, urinary tract, intra-abdominal and blood stream infections, as well as 

asymptomatic colonisation (263, 264). Treatment options for these infections are diminishing 

with isolates frequently reported as resistant to major last-line antimicrobials, such as 

carbapenems and colistin (22, 23). The genes conferring resistance to major classes of 

antimicrobials are often carried on extrachromosomal DNA elements, known as plasmids, 

which can act to disseminate these genes amongst the broader bacterial population (2, 39, 40, 

198). Plasmids are widespread amongst members of the Enterobacteriaceae and have 

significantly contributed to the global dissemination of antimicrobial resistance (AMR) 

genes, acting as a vehicle to capture, accumulate and transmit AMR genes between different 

strains, species and genera (1, 2, 20, 198). A recent example of this is the plasmid-mediated 

AMR gene, mcr-1 (confers resistance to colistin), identified in Escherichia coli isolated from 

food and food-producing animals in China (198). The plasmid carrying mcr-1 was shown to 

be transferable to and maintained by other Gram-negatives, Klebsiella spp. and Pseudomonas 

spp. This initial description was followed by reports of mcr-1 found in Asia, the Netherlands, 

France, parts of Africa and South America. Since then other plasmids harbouring mcr-1 in 

Salmonella enterica serovar Typhimurium have been reported (265-267).  

In the 1970s, plasmids associated with the Enterobacteriaceae family were categorised into 

different incompatibility (Inc) groups, based on the finding that certain plasmid combinations 

are unable to stably propagate and coexist within the bacterial same cell, hence two plasmids 

were considered to be “incompatible”. Later, this phenomenon was clarified as the inability 

for two plasmids with the same replication system to be co-retained within the same cell line 

(40, 56). Incompatibility (Inc) groupings were translated into a molecular Inc typing scheme 

in 2005 known as PCR-based replicon typing (PBRT) (58). PBRT used multiplex primer sets 
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specific for 18 major plasmid types which allowed plasmids to be categorized into sequence 

groups belonging to known Inc families. This typing scheme was based on the premise that 

the backbone of each plasmid has regions responsible for core functions that are highly 

conserved within Inc groups such as replication (known as the replicon) and/or partitioning. 

Identification of these regions would therefore represent the backbone for a plasmid type. 

Regions containing additional, non-core functions such as multi-drug resistance regions and 

transposable elements inserted into the plasmid backbone can be considered as accessory 

regions. These regions can be transferred between plasmid Inc types as well as act as a target 

point for additional AMR gene insertion (60), highlighting the potential for each plasmid type 

to acquire AMR genes. Recently, as whole genome sequencing (WGS) data has become more 

readily available, investigations have used in silico BLAST more routinely to characterise the 

plasmid type using sequence identity matching against typed plasmids in public sequence 

databases (210).  

 

The distribution of enterobacterial plasmid Inc groups has been briefly investigated during 

the development of the PlasmidFinder database, used for in silico Inc typing, which 

categorised 559 finished plasmid sequences from the NCBI database (210). Published 

plasmid types carrying AMR genes have also been reviewed via literature compilation (39, 

40). The presented study aims to gain an initial estimation of the Inc group distribution within 

Enterobacteriaceae using, for the first time, a large set of WGS short-read sequence data. 

Here, we perform an investigation of 1683 isolates of different species within the 

Enterobacteriaceae using an opportunistic and non-selective approach of existing sequencing 

data from several global and regional studies (268-274). Three studies were designed to 

capture the global diversity of Klebsiella pneumoniae (271), the Yersinia genus (273), and 

Enterotoxigenic E. coli (ETEC) (274) were included, as well as five regional studies looking 
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at S. Typhimurium in Africa (272), Shigella flexneri outbreak in the U.K. (268), Shigella 

sonnei movement in Vietnam(270), Klebsiella pneumoniae associated septicemia in Nepal 

(269), and AMR pattern diversity amongst K. pneumoniae and Enterobacter cloacae in an 

U.K hospital. A survey of the plasmid content from this broad collective of samples, will 

provide a generalised snapshot of Enterobacteriaceae plasmid types and also insights into 

their transmission between different species and genera. 

 

Methods 

Isolates. Isolates included in this study involve various species of the Enterobacteriaceae 

collected for eight different studies (268-274). Each study lies within a ‘global’ or 

‘geographical/region specific’ scope according to the list of countries covered by their strain 

collection (Appendix C; Table S3). Global studies include a ‘Global Klebsiella pneumoniae’ 

(271), ‘Yersinia spp. study’ (273) and ‘Enterotoxigenic E. coli (ETEC) study’ (274), 

spanning a minimum of four continents. ‘Global K. pneumoniae’ investigated the diversity of 

animal and human K. pneumoniae isolates (n=247) from four continents. The ‘Yersinia spp. 

study’ investigated the evolution of pathogenicity in pathogenic and non-pathogenic Yersinia 

spp. collected from environmental, animal and human sources (n=214) from countries across 

each continent. ‘ETEC study’ investigated the phylogeny and evolution of ETEC by analysis 

of 353 ETEC isolates collected across 20 different countries from Africa, Asia North, Central 

and South America.  

Geographically narrow/regional studies where isolates were collected from less than 3 

countries, included ‘Nepal K. pneumoniae’ (269), ‘U.K. K. pneumoniae Enterobacter 

cloacae’ (Ellington M., Unpublished), ‘MSM Shigella flexneri’ (268), ‘Vietnam Shigella 

sonnei’ (270) and ‘Africa/UK Salmonella Tyhimurium’ (272). ‘Nepal K. pneumoniae’ 

characterised a hospital K. pneumoniae outbreak in Nepal through the WGS of 87 isolates. 
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‘U.K. K. pneumoniae E. cloacae’ analysed 160 K. pneumoniae and 133 E. cloacae routinely 

collected clinical isolates to describe the genetic diversity causing human infection within the 

region. All isolates of ‘Nepal K. pneumoniae’ and ‘U.K. K. pneumoniae E. cloacae’ were 

included in our analysis. The ‘MSM Shigella flexneri’ study investigated 171 S. flexneri 

isolates to characterise factors driving the shigellosis U.K. outbreak in men who have sex 

with men (MSM). ‘Vietnam S. sonnei’ investigated the evolution of S. sonnei in Vietnam 

over a 15-year period. 223 S. sonnei isolates were included in our study. ‘Africa/U.K. 

Salmonella Typhimurium’ investigated the population structure of 215 S. Typhimurium in 

Africa with comparison to global S. Typhimurium populations, compared the population 

structure of 73 African S. Typhimurium strains with 22 U.K. S. Typhimurium strains.  

 

The isolates from each study included in our analysis were composed of Illumina data 

sequenced at the WTSI and were previously published in the European Nucleotide Archive. 

Contigs from each isolate were obtained as previously described (268-274). A collective total 

of 1683 isolates passed QC based on total alignment length and number of contigs. 

Assemblies that were not of expected genome size for that species, indicative of multiple 

genomes (2x) were excluded as well as assemblies with more than 1000 contigs. Plasmid Inc 

types present in each strain were identified by comparing all contigs against the 

PlasmidFinder 1.3 database (accessed: April 14 2015) using the map_resistome script as 

described previously (275). >95% identity and >98% length match filter parameters were 

applied to reduce redundant positives and false positives.  

 

Plasmid Inc sub-typing. The PlasmidFinder database is comprised of sequence probes 

targeting replicon loci specific. However, the plasmid incompatibility type and sub-type in 

which these probes belong was not available. To report the Inc sub-type of the plasmids 
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carried by isolates, each sequence probe of the PlasmidFinder database was revised with their 

correct plasmid Inc sub-type (Appendix C; Table S3). To achieve this, each sequence of the 

PlasmidFinder database was submissed to the an online database pMLST 

(http://pubmlst.org/) for plasmid Multi-Locus Sequence Typing (MLST) (213), and literature 

reviewed (223). Sequence probes which could not be sub-typed were noted as ‘not defined’. 

 

PCA plot analysis. Principal component analysis (PCA) was performed on samples to 

identify and visualize specific patterns of plasmid carriage. Plasmid sub-types were used for 

this analysis instead of the major plasmid families identified, because analysis of the major 

plasmid groups would only describe an ancestral linkage between species that existed prior to 

the divergence of plasmid sub-types. IBM® SPSS® Statistics 20.0 was used to perform to 

perform this analysis.  

 

Results 

General features of the combined enterobacterial data set. A total of 1683 whole genome 

sequences were gathered from three focused studies looking at global diversity of K. 

pneumoniae, the Yersinia genus, and ETEC, and two regional studies looking at S. 

Typhimurium in Africa and the movement of S. sonnei in within specific human populations 

in Vietnam (Appendix C; Table S3). Isolates from a studies characterising, the emergence 

and flux of multidrug resistant Klebsiella associated septicemia in Nepal, the genetic 

diversity of K. pnuaemoniae and E. cloaceae causing human infection within a single U.K. 

hospital, and the U.K. S. flexneri outbreak in men who have sex with men (MSM), were also 

included (see Chatper 5.2 Methods for more details; Appendix C; Table S3). All isolate 

genomes were screened for their plasmid content using in silico PBRT (see Chapter 5.2 

Methods; Appendix C; Table S4). In total from all collections, our dataset comprised of K. 
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pneumoniae (n=494), S. sonnei (n=223), Yersinia spp. (n=214), S. flexneri (n=171), E. coli 

(n=353), E. cloacae (n=133) and S. Typhimurium (n=95). Isolates were collected from a 

range of sources including different animal hosts from the environment, human clinical 

samples, the community and the environment. Human clinical samples included blood, urine 

and stool samples while environmental samples were mainly isolated from water. 

Geographically isolates were originally collected from 53 countries. None of the seven 

studies used plasmid content as a selection criterion although the U.K. K. pneumoniae E. 

cloacae study aimed to understand the diversity of AMR patterns seen over time in this 

hospital. 

 

To report the Inc type of the plasmids detected, each replicon sequence probe of the 

PlasmidFinder database was revised to provide an plasmid Inc type and sub-type (refer to 

Chapter 5.2 methods; Appendix C; Table S4). Using this revised PlasmidFinder database we 

were able to detect the presence of at least one plasmid in 75.1% (1267/1683) of all isolates 

included in this study. Our total collection of plasmid replicons identified by the 

PlasmidFinder database were identified to reside within 12 major Inc groups, included A/C, 

B/O/K/Z, F, HI, I, L/M, N, P, Q, R, X, Y. These Inc groups described 99.63% of all plasmids 

detected. Although a further 10 plasmid replicons were detected, these replicons have not 

been assigned to an Inc group, so were denoted ‘novel Inc groups’ (Appendix C; Table S2). 

Over a quarter of all isolates (26.6%; 448/1683) showed the presence of multiple Inc groups 

with only 406/1683 isolates lacking any known Inc-type. The distribution of the Inc types 

across all species in our collection is summarised in Table 15. The ‘general 

Enterobacteriaceae plasmid type distribution’ of the 12 plasmid types could be categorised 

into three main levels of occurence according to the percentage of isolates carrying the 

plasmid type: Common, the IncF plasmid group at 64.6%; Intermediate, IncHI, IncI and IncR 
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at ~9-11%; and Rare, the remaining plasmid types harboured by approximately 0.5-3% of 

isolates (Fig. 8).  

Since these isolates were not sequenced for this study and to understand if the bacterium or 

the study was more important to the distribution of the Inc types, we performed a PCA 

analysis of all isolates and revealed that the major determinant for the carriage of specific 

plasmid types was the species of the isolate (Appendix C; Fig. S1), not the study itself, 

suggesting that study variables such as isolation technique did not confound our analysis and 

allows for comparison across studies.  
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Table 15. Number of detected plasmid types across bacterial species of this study  

 

* Plasmid Incompatibility (Inc) type determined by in silico plasmid typing using the PlasmidFinder database (see methods). 

Species No. 

isolates 

Plasmid type (Inc)* 

F HI I IR A/C B/O/K/Z L/M N P Q X Y Novel 

Klebsiella pneumoniae 494 323 129 3 139 15 1 7 23 4 13 10 0 1 

Enterobacter cloaceae 133 45 36 0 14 4 0 1 1 1 0 1 0 0 

Shigella flexneri 171 169 0 0 0 0 0 0 0 0 0 0 0 0 

Salmonella enterica serovar Typhimurium 95 89 6 4 0 0 0 1 0 1 28 0 0 0 

Yersinia spp. 214 60 0 0 0 0 0 0 5 0 1 2 0 6 

Shigella sonnei 223 91 0 85 0 1 0 0 0 0 0 0 0 0 

Escherichia coli 353 310 8 56 4 0 15 0 4 30 8 19 9 3 
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Three levels of occurence represent the general Enterobacteriaceae plasmid type 

distribution.  

 

Figure 8. Distribution of the 12 major plasmid Inc groups and novel plasmids across 

1683 isolates.  

Distribution is represented as percentage of strains harbouring each plasmid Incompatibility 

(Inc) type. Common, intermediate and rare occurence plasmid types are represented by green, 

yellow and red respectively. 

 

Common Inc types  

The IncF group (FIA, FIB, FII) were the most frequently identified in our collection, 

harboured by 64.6% of all isolates tested (1087/1683) (Fig. 8). IncF plasmids can carry one to 

three replicons FIA, FIB and FII, and can be termed “multireplicon”. IncFII plasmid 

(primarily carrying the FII replicon; varies in co-harbouring FIA and FIB replicons) was the 

most frequent type amongst IncF plasmids, harboured by over half of all isolates (54.9%; 

925/1683). IncF plasmids in several instances have become restricted to different genera and 

maintained by most members of that genera. The plasmids of this type usually also carry 

genes essentially for virulence of lifestyle and are referred to as ‘virulence plasmids’. The 
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IncF virulence plasmids in our collection include the IncFIIK for Klebsiella spp., IncFIIS for 

Salmonella spp. and IncFIIY for Yersinia spp. (223). The FII ‘virulence’ sub-type plasmids 

for Salmonella spp., and Yersinia spp. were only observed in their native species. IncFIIS was 

observed in 93.7% of S. Typhimurium (89/95), and IncFIIY was observed in 24.8% of 

Yersinia spp. (53/214). IncFIIK was observed in 38.5% of its native species, K. pneumoniae 

(190/494), however were observed in 8/133 E. cloacae isolates. The remaining IncFII 

plasmids are not associated with any one genera and are disseminated across multiple 

different genera (39, 40, 223). The FII replicon of the IncFII2 plasmid sub-type was the most 

frequently acquired plasmid replicon, identified in 30.6% of plasmid carriers (388/1267) and 

harboured by K. pneumoniae, E. coli, S. flexneri, S. sonnei species but not in E. cloacae, S. 

Typhimurium and Yersinia spp. 

 

IncHI, IncI and IncR represent the Intermediate occurrence Inc types. Intermediate 

occurance Inc types included IncHI, IncR and IncI types which were detected in between 8-

10% of isolates (Fig. 8). The IncHI group is split into subtypes IncHI1 and IncHI2 both 

associated with emerging resistance genes due to their large plasmid backbone enabling 

ample space for gene integration (276). The multireplicon IncHI plasmids are detected using 

the replicons, HI1A and HI1B with a non-essential FIA replicon (276), and HI2 (for IncHI2s 

only). The IncHI plasmid group was observed in 10.6% of strains (179/1683) including S. 

Typhimurium, K. pneumoniae, E. cloacae and E. coli. IncR was detected in 9.3% (157/1683) 

of isolates being found most commonly in K. pneumoniae, E. cloacae but seldom in E. coli. 

IncI types were observed in 8.8% (148/1683) of isolates, but largely in E. coli and Shigella 

spp. but were also in K. pneumoniae, S. Typhimurium and Yersinia spp. in isolated cases 

(Table 15). 
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Rare Inc types are widely distributed. Plasmids Inc types A/C, B/O/K/Z, L/M, Q, N, P, X, 

Y, and plasmids within the novel group were detected in 0.5-3.1% of isolates (Fig. 8). K. 

pneumoniae harboured all of the rare Inc types except IncY (only found in E. coli). IncX was 

the highest shared plasmid type harboured by K. pneumoniae, E. cloacae, Shigella spp., E. 

coli and Yersinia spp. but these were in isolated cases (Table 15). Plasmids Inc types A/C, 

B/O/K/Z, N, X, Y were not detected in S. Typhimurium.  

 

Certain “portal” plasmid sub-types act as a connection between genera. Each major Inc 

type was observed across multiple genera. Principal component analysis outlined a network 

of bacterial species/genera linked by specific Inc-types we called these promiscuous Inc-

types. These promiscuous Inc-types likely represent "portal" plasmids, offering possible 

routes of gene exchange between genera facilitated by plasmid transfer (Appendix C; Fig. 9). 

These promiscuous Inc-types were defined as being present in more than 1% of a particular 

genus as well as at least two other bacterial genera. The plasmid sub-type network details a 

comparatively simple and recent account of possible exchange events between species. 

Divided according to the general Inc type distribution, IncF replicons in addition to being the 

most abundant were detected in all six genera we included in this study: IncFII2 were found 

in E. coli, S. sonnei and S. flexneri and IncFII20 in E. coli and S. flexneri. Of the intermediate 

and low occurrence Inc types:  IncHI1 sub-type were detected in: E. coli, S. Typhimurium, E. 

cloacae and K. pneumoniae. IncR and IncA/C2 were detected in K. pneumoniae and E. 

cloacae, while both IncI1 and IncI2 were present in E. coli and S. sonnei. IncQ were found in 

E. coli, S. Typhimurium, and K. pneumoniae. Yersinia spp. had comparatively fewer Inc 

types shared with other genera, with only one plasmid type (IncN1) present outside of the 

Yersinia, also found in K. pneumoniae. This may be expected considering Yersinia spp. is the 
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most genetically diverse species amongst this data set (Appendix C; Fig. S2). Yersinia spp. 

mostly harboured its own genera-specific plasmid type IncFIIY.  

 

 

Figure 9. A network of bacterial species connected by plasmid sub-types.  

Principal component analysis identified ‘portal’ plasmid Incompatibility (Inc) sub-types 

representing potential gene transmission routes between bacterial species. Species clustering 

according to shared plasmid content identified two groups. Group 1: Enterobacter cloacae 

and Klebsiella pneumoniae; Group 2: Escherchia coli, Shigella sonnei and Shigella flexneri. 

 

The clustering of species into two primary groups based on their shared plasmid sub-type 

content was observed by PCA (Fig. 9; Appendix C Fig. S1). These groups were Group 1: K. 

pneumoniae and E. cloacae, encompassed plasmid sub-types A/C2, FIIK, HI1, N1, R and an 

undefined IncF plasmid; and Group 2: E. coli, S. sonnei and S. flexneri with plasmid sub-

types FIIC, FII1, FII2, FII15, FII33, FII20, I1, I2 and P. Species clustered together were also 

observed to be phylogenetically related (Appendix C; Fig. S2) (277, 278). 
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Plasmid types reside across multiple countries and their general distribution remains 

the same in both a global scale and local regions. IncF plasmids types were observed in 41 

countries (out of total of 53; Appendix C; Fig. S3). The intermediate Inc types IncHI, IncI 

and IncR were found in 15, 17 and 12 countries, respectively. Although infrequently detected 

the Rare Inc types were detected in between five and thirteen countries. The eight studies in 

which isolates were originally collected were categorised according to them having a ‘global’ 

or ‘regional’ scope (Appendix C; Table S3). 87.1% of isolates from the global studies were 

plasmid carriers and 34.8% carried more than one type. 66.6% of isolates collected within a 

regional studies carried at least one plasmid and 20.9% carrying more than one type. The 

plasmid type distribution of both types of study was similar to the general Inc type 

distribution. For the global and regional studies, 77.0% and 55.9% isolates carried IncF types, 

followed by ~8-14% and ~9-10% for intermediate IncHI, IncI and IncR plasmids types. Less 

than 4% of isolates in either the global or regional studies carried a low prevalence plasmid. 

 

Discussion 

This study using existing published genome sequence data sets to bench mark the relative 

abundance of different plasmid Inc types carried as part of their hosts genomes. Plasmid Inc 

types are used as a proxy for different plasmid backbones, and so unlike most studies which 

focus on the cargo genes carried by plasmids, for example antimicrobial resistance genes, we 

have provided insight into one of the most important vehicles of the spread of antimicrobial 

resistance in Enterobacteriaceae. We showed there were three major levels of abundance 

with IncF being highly abundant, IncH, IncI and IncR showing intermediate abundance and ; 

Inc types A/C, B/O/K/Z, L/M Q, N, O, P, X, Y and some novel Inc types, being rare in our 

collection (Fig. 8).  
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IncF replicons were the most abundant Inc types amongst the Enterobacteriaceae included in 

this study (39, 40, 210). This in consistent with previous work on IncF plasmids which can 

carry multiple replicons FIA, FIB and FII. This is thought to represent an advantage, 

compared to single replicon plasmids, because it avoids plasmid incompatibility with other 

plasmids replicating in the same cell, by having alternative replicons (223). The multireplicon 

status is also associated with a higher level of sequence divergence in the FII replicon 

through functional redundancy (279, 280) and a broader host range. Intermediate plasmid 

type IncHI also carry multiple replicons. No multi-replicon plasmids were described as rare 

Inc types. Geographically, all plasmid types were observed in bacterial isolates collected 

from multiple countries (except IncY) and present in at least three different genera. The latter 

are likely to define important plasmid sub-types able to shuttle genes across various species 

and genera (Fig. 9). This is consistant with the different genera described to carry these 

plasmid sub-types (22, 39, 40, 125, 249, 276). 

 

It is also clear that the relative abundance of Inc types observed in this study are somewhat 

consistent with previous studies looking at plasmids associated with AMR (39, 40). For 

example the common Inc type, IncF, and rare plasmids type IncB/O, IncK and IncT have 

been previously described as most prevalent and rare, repectively, when associated with 

AMR (39, 40). In constrast, intermediate level IncHI types and IncI are described as the one 

of the most prevalent plasmid families (http://pubmlst.org/plasmid/; (39, 40)). The IncR 

plasmids described here at intermediate levels, are seldomly reported carrying AMR genes 

until recently where they have emerged (circa 2010) as a prominent resistance plasmid type 

carrying various genes conferring resistance to the front line therapeutic antimicrobial 

carbapenem (39, 40, 210, 281-284). IncA/C, IncL/M, and IncN plasmid types also described 

at most prevalent when associated with AMR (20, 39, 40, 210), are found here at a low 
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abundance across our collection. These data give the first glimpses into the relative flux in 

the plasmid population and that an understanding of this flux may be important for 

identifying the barriers and the facilitators affecting the dissemination of genes associated 

with AMR which warrants further investigation. 

As stated, this study highlights the value of reanalysis of existing sequencing data, to answer 

broader scientific questions. However, the nature of Illumina data, the PlasmidFinder 

database and the variability of non-standardised metadata collection, limits several aspects of 

this study. For example the PlasmidFinder database used in this study will inherently miss 

new plasmid types, and we could not directly associate Inc types to a comparable AMR gene 

or phenotype profile. To provide a comprehensive overview of the plasmid prevalence within 

the Enterobacteriaceae family requires samples with even distribution across countries, 

genera and species, including those within environmental and animal samples (especially 

within agriculture and farming), standardised meta data, full plasmid assembly as well as a 

complete plasmid replicon typing scheme including sub-typing of all plasmid Inc types. 

Many replicons have been identified but have yet to be assigned to an Inc group or sub-

group, many of which remain undefined and noted as ‘novel’ (Appendix C; Table S4).  

In summary, we provide an insight into the general distribution of plasmid Inc types across 

members of the Enterobacteriaceae, observed in three levels of abundance where IncF 

plasmid were most common followed by IncHI, IncI and IncR (intermediate). A handful of  

sub-types were identified with the potential to facilitate gene exchange between genera. 

There may be a limiting degree of compatibility between plasmid type and species 

influencing these interactions. These data show a complex network of interactions between 

the bacterial hosts, and the geographic and temporal distribution of plasmid Inc types. These 

data also highlights the need for a more detailed understanding of the factors that affect this 

flux and the need for a more systematic and detailed understanding of the drivers which 
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affect their relative distribution inorder for us to fully understand the dissemination of AMR 

genes globally.  
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5.3 Chapter summaries and conclusions. 

The investigation of Chapter 5 observed 12 major plasmid types at three levels of occurence: 

Common, IncF; Intermediate, IncHI, IncI, IncR; and Rare, IncA/C, B/O/K/Z, L/M N, O, P, Q, X, 

and Y. Those that are frequently associated with AMR genes such as IncF, IncHI and IncA/C (39, 

40), were observed at each level of occurence within this population, High: IncF; Int: IncHI; Low: 

IncA/C. ‘Portal’ plasmid sub-types e.g. IncHI types, were also identified to represent possible route 

of gene transmission between different genera. In retrospect, this is not unexpected considering 

there appears to be a degree of compatibility that was identified between plasmid sub-type and the 

species/genera of the strain. Two primary groups were identified according to their shared plasmid 

sub-type content, E. cloacae with K. pneumoniae, and E. coli with S. flexneri and S. sonnei (Fig. 9). 

Species of these groups were also observed to be phylogenetically similar (Appendix C; Fig. S2). 

This possible plasmid type/genera compatibility would indeed be a large factor with the inter-

genera transmission of AMR genes. Conjugation would have to involve a plasmid type that 

complements the recipient strain based on their genera or possibly species, in order for the strain to 

retain the plasmid and particular plasmid-mediated AMR genes. Consequently this would suggest a 

requirement for an exchange of AMR genes between plasmid types.  
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Chapter 6: General Discussion: The blaNDM gene may have transferred through 

a network of AMR gene acqusition and spread 

6.1. Overview 

Plasmids have been identified to be present prior to the emergence of AMR genes (Appendix D; 

(285)). It is clear that investigations into the acquisition and spread of the blaNDM gene indicate an 

underlying network of interactions between antimicrobial resistance determinants, transposable 

elements, plasmid types and bacterial genera. This possible network of AMR gene acquisition and 

spread may have been existent prior to the transfer of the blaNDM genes from Acinetobacter spp. into 

Enterobacteriaceae plasmids (241). The blaNDM gene would transfer along this network following 

its interactions and limitations, leading to its association with numerous transposable elements, 

genetic contexts, different Enterobacteriaceae plasmids types and consequently the spread into the 

various species of the Enterobacteriaceae family (Chapter 1-4; (20, 22, 23)). The components of 

the proposed network and their interactions, have in part been previously characterised for other 

AMR genes (39, 40, 60, 62, 64, 286, 287), however, they will not be discussed in full here.  The 

insights into plasmid-mediated blaNDM acquisition and spread described in this thesis raise many 

scientific questions and unknown avenues for further investigation. The following chapter will 

discuss the proposed network, its components, their interactions and compatibilities to explain and 

place into context, the mechanisms of blaNDM gene acquisition and spread observed within this 

thesis. 

6.2  Interactions of Antimicrobial Resistance Determinants 

Dissemination of AMR genes also transfers the immediate sequence flanking the target gene during 

their interaction with transposable elements. Regions frequently co-transferred with AMR genes, 

include regulatory genes, promoters and passenger genes that lie in close proximity. Regulatory 

genes can mediate AMR gene expression, for example the ampR gene, a negative regulator of 

expression for blaDHA gene (288). Promoters are small regions able to enhance the expression of the 
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AMR gene by promoting transcription initiation (289), and can be provided by an IS element 

upstream of an AMR gene. The ISAba125 upstream of blaNDM provided the -35 promoter region 

(185, 290) and ISEcp1 provided the overexpression of blaCTX-M-55 (291) and blaCMY-2-like (37) genes. 

Passenger genes are co-transferred depending on the mechanism of the transposable element. The 

trpF, dct, groEL, groES genes appear to be co-transferred with blaNDM by the mechanism of Tn125 

transposon within Acinetobacter spp. These genes are also observed on occasion within 

Enterobacteriaceae plasmids carrying blaNDM genes (21-23, 205). 

6.3 Interactions of Transposable Elements 

Establishment of a transposable element in close proximity to an AMR gene provides an 

opportunity for dissemination to other plasmid types and chromosomal locations. Mobilisation of a 

region via transposable elements is dependent on multiple factors including separate recognizable 

start and stop sequences in its vicinity (60). The transposition of genes adjacent to a transposable 

element for example occurs when the enzyme of the IS element (e.g. transposase) recognises a 

sequence downstream, with a high similarity with its IRR. The enzyme would recognized the IRL 

and highly similar IRR and mobilise the sequence between these two points, essentially between 

skipping its own IRR. A well-known example of this mechanism is the one-ended mobilisation of 

blaCMY-2 by ISEcp1 (60, 71). Another example of a transposition mechanism is the rolling circle 

mechanism via ISCR1 mobilising large regions upstream (64). Numerous IS elements are 

associated with mobilisation of blaNDM genes within the Enterobacteriaceae. Comparison between 

Tn125 on Acinetobacter plasmids e.g. pNDM-BJ01 (Genbank accession no. JQ001791; (73)) and 

the ΔTn125 segments on Enterobacteriaceae plasmids was able to identify co-transferred regions, 

but also able to identify possible associated mechanisms, inferred from the elements truncating 

Tn125 or the ISAba125 upstream of blaNDM. Transposition mechanisms that mobilise large 

segments encompassing Tn125, such as ISCR1, were inferred with the co-presence of ISCR1, 

Acinetobacter plasmid backbone and Tn125 on the Enterobacteriaceae plasmid (Chapter 4). This 

however has yet to be proven. This thesis identified eight different IS elements associated with 
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blaNDM, inferring its mobilisation mechanisms. The transposable elements and their respective 

plasmid types are, ISCR27 and/or IS26 on type 1 IncA/C2, ISCR1 on IncN2 (23), IncA/C2 (Chapter 

4) and IncFII2 (22), ISCR-6-like (Chapter 4), IS903-like (22), and TIMEs on IncFIIY (22), IS26 

and/or IS3000 on IncX3 (22), and IS26 composite transposon on IncH1B (22). Alternatively, 

homologous recombination of the Tn125 fragment into Enterobacteriaceae plasmids may also be a 

possible transfer mechanism, especially when DRs cannot be identified flanking the Tn125 

fragment.   

To contrast, the other major AMR genes (identified prior to blaNDM) are associated with the 

mechanisms of specific IS elements or transpositional units for mobilisation and insertion, because 

of their frequently observed genetic contexts and importantly new direct repeats of the target site 

found at either end of the transposable unit. The blaCMY-2 (37), blaCTX-M types (292), and blaOXA-181 

(293) genes are frequently associated with the one-ended transposition of ISEcp1. The blaCTX-M 

types are also associated with ISCR1 and their insertion into class 1 integrons (294, 295). blaIMP, 

blaKPC and blaOXA-48 (296) frequently lie within a cassette of a class 1 integron, a Tn3-based 

transposon Tn4401 (297) and its variants, and Tn1999 bound by two IS1999, respectively. These 

associated transposable elements are significant for dissemination of AMR genes as they facilitate 

their transfer and insertion into different plasmid types (297-299). Examples of possible gene 

exchange between plasmids types via ISCR rolling-circle mechanism was also described during 

studies of this thesis; in Chapter 2 with a blaNDM-1 genetic context of 3′-aacA1|ΔblaOXA-10| ΔTn125-

5′ on both IncN2 and IncFIIY plasmid types (23), and in Chapter 4 with the same rmtC segment on 

both type 1 IncA/C2 and IncFIIY plasmid types. 

 

An additional factor for AMR gene insertion can also depend on whether the transposable element 

is able to recognise a suitable sequence for insertion. Common insertion sites lie within intergenetic 

regions, other transposable elements, class 1 integrons or antimicrobial resistance islands. These 
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insertion sites are catalogued in databases such as the IS finder database (https://www-

is.biotoul.fr/).  

6.4 Interactions of Plasmid Types 

Plasmids facilitate the exchange of AMR genes between bacterial hosts but also interact with the 

transposable elements within the bacterial host itself. Each plasmid type has the potential to acquire 

an AMR gene. A common feature of those plasmid types is the establishment of a ‘founder 

element’. That is the insertion of a mobile element into a location with no deleterious effect, which 

can act as a target for further insertions (60, 300). These have been described as an exceptionally 

rare event but the structures which derive from these are able to widely disseminate (60). An 

example of this is the antibiotic island ARI-A of IncA/C2 plasmids (249), which has accumulated a 

range of different AMR genes (refer to Chapter 4). These islands will be more than likely continue 

to accumulate additional insertions of AMR genes via transposable elements. Other plasmid types 

such as IncX and IncFIIY that have recently become associated with AMR genes tend to have less 

complicated AMR regions (225, 238, 243, 252), suggesting relatively recent establishment of their 

founder element. Within this thesis, IncX and IncFIIY plasmid backbone was observed either side of 

the blaNDM genetic context (22), suggesting insertion of the blaNDM gene was either involved in the 

initial insertion of the founder element (e.g. TIMEs/MITEs, IS903B for IncFIIY) or inserted 

sequentially afterwards.  

6.5 Interactions of a Bacterial Host 

The exchange of AMR genes between species and genera is primarily provided by plasmids. This 

interaction is partly dependent on various genes of a plasmid type such as those responsible for 

conjugation and replication. The interactions between plasmids, transposable elements, and AMR 

genes (including the genes within the genetic context) may potentially be governed and influenced 

by the bacterial strain, based on genus. The components of the network model may have an 

underlying degree of compatibility (as discussed in Chapter 5) on the interactions between bacterial 
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strain and plasmid type, and bacterial strain with transposable elements located on the plasmid. 

Those that are not compatible may be replaced by another compatible transposable elements or 

plasmid types. 

6.5.1 Interaction and compatibility between Bacterial Strain and Plasmids Types 

The genus of a strain was observed as a major determinant for carriage of specifc Inc type (Chapter 

5), which may indicate a compatibility between the strain and plasmid type. This would have 

implications on plasmid-mediated gene exchange between different genera, where only certain 

plasmid sub-types are frequently shared between phylogenetic-related genera. Chapter 5 identified 

the clustering of two primary groups according to their shared plasmid content, Group 1: E. cloacae 

and K. pneumoniae and Group 2: E. coli, S. sonnei and S. flexneri. Group 1 encompassed plasmid 

sub-types A/C2, FIIK, HI1, N1, R and an undefined IncF plasmid; Group 2 encompassed plasmid 

sub-types FIIC, FII1, FII2, FII15, FII33, FII20, I1, I2 and P. Although it must be noted there may be 

missing information in this in silico study, as it is dependant on the available species carrying 

certain plasmid types and detection of plasmid types. Nevertheless, species within each group were 

also observed to be phylogenetically related (Appendix C, Figure S2). The IncF ‘virulence’ sub-

types in constrast were frequently carried by their native genera (223), K. penumoniae (IncFIIK), 

Salmonella spp. (IncFIIS), and Yersinia spp. (IncFIIY) (Chapter 5). An exception was the IncFIIK 

sub-type plasmids carried by E. cloaceae isolates, which was seen in the same cluster group as K. 

pneumoniae (Group 1). Compatibility between plasmid types and genera would limit the direct 

exchange of blaNDM or any other AMR gene between genera that are phylogenetically different.  

Gene exchange events between plasmid types would be a mechanism to avert the plasmid 

types/genera compatibility. This event would possibly occur after a strain received a plasmid type 

that cannot be retained, where the AMR gene and any adjacent sequence would be transferred from 

said incompatible plasmid onto a plasmid type already co-resident and established within the strain. 

Such events would result in the observation of the same genetic context on two different plasmid 
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types, such as the blaNDM genetic context on IncN2 and IncFIIY (Fig. 4; Chapter 2), and rmtC 

genetic context on IncA/C2 and IncFIIY (Fig. 7C; Chapter 4). Gene exchange between plasmid types 

may have been a mechanism involved to overcome the plasmid type/genera compatibility during 

transfer of blaNDM from its progenitor via Acinetobacter spp. as an intermediate species, into the 

Enterobacteriaceae family (241). The source of blaNDM would be a transferred Acinetobacter 

plasmid into an Enterobacteriaceae strain, such as the Acinetobacter pBJ01-NDM-1-like plasmid, 

p3SP-NDM, observed in Enterobacter aerogenes (234). Another possibility may include transfer 

into E. coli, as there are examples where plasmids carrying blaNDM have been transferred from 

Acinetobacter spp. to E. coli (72, 301, 302). Those strains that could not retain the Acinetobacter 

plasmid, would hypothetically transfer blaNDM into a stable Enterobacteriaceae plasmid via 

available transposable elements.  

6.5.2 Interactions between Bacterial Host and Transposable Elements 

Analysis of Enterobacteriaceae plasmids has highlighted numerous transposable elements can be 

involved in the transposition a single AMR gene. ISAba125 and ISAba14 native to Acinetobacter 

spp. (303, 304) are frequently truncated by insertion of another IS element on Enterobacteriaceae 

plasmids (21-23, 205), by numerous IS elements including IS903B, ISKpn14, IS5, and IS26. The 

blaNDM genes reported in Acinetobacter spp. to constrast, are frequently observed within Tn125 

(184, 200, 241). It may be speculated that transposable elements have a degree of compatibility 

within a strain depending on their genera. Truncation of an IS element sequence for example could 

respresent the inability of that genera to transcribe the DNA sequence of that transposable element. 

The DNA sequence of these incompatible elements may be regarded as foreign DNA, available for 

insertion of a compatible transposable element when transfer of DNA regions is required. 

Additionally, if transposable elements have an influence on the length of the target sequence to be 

transferred, for example the recognition of a similar IRR other than their own (similar to the 

mechanism of ISEcp1), this may partially explain the different lengths of truncated Tn125 structure 

observed on Enterobacteriaceae plasmids.  
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6.6 Interactions and compatibilities for other AMR genes  

The acquisition and spread of other AMR genes such as the blaKPC genes appears to follow the 

discussed network, and the interactions and limitations described. The blaKPC genes are associated 

but not limited to K. pneumoniae ST258 and the transposable element/genetic context of Tn3-based 

transposon Tn4401 and other slight variants/isoforms (a, b, c, d and e) (305-308). blaKPC genes 

(within the Tn4401 isoform) are frequently carried on IncFIIK plasmids as well as other plasmid 

types to a lesser extent IncI2, IncA/C2, IncR, IncL/M, IncN, and IncX (309-311). Plasmid types 

reported to carry a Tn4401 isoform in K. pneumoniae are, IncFIIK (the most frequent), IncI2, IncN, 

and IncX (311, 312), and in E. cloacae are, IncHI2 and IncN plasmids types. In context of the 

proposed network, this indicates IncFIIK, IncI2, IncN, IncL/M and IncX can be retained by K. 

pneumoniae, and Tn4401 is a compatible transposable element within K. pneumoniae and other 

Enterobacteriaceae such as E. cloacae. The network components associated with acquisition and 

spread of the blaKPC genes and other prominent AMR genes have less variability than the blaNDM 

genes, where the plasmid types are the most variable component for blaKPC genes. This distinction 

between the blaNDM genes and other prominent AMR genes e.g blaKPC, may be due to the 

compatibility described, and also the difference in their progenitors. 

The degree of variation in associated genetic contexts, transposable elements and plasmid types for 

the blaNDM gene is not observed for other prominent AMR genes within the Enterobacteriaceae. 

These AMR genes have constant genetic contexts only with slight variations, ISEcp1 

transpositional unit (blaCMY-2-like and blaCTX-M-15 as well as many other antimicrobial resistant 

determinants) and Tn1999 (blaOXA-48-like). Their progenitors have been identified within the 

Enterobacteriaceae, Citrobacter freundii (blaCMY-2-like (313)), Kluyvera ascorbata (blaCTX-M-15 

(314)) and Shewanella spp. (blaOXA-48 (315) and blaOXA-181 (316)). This would suggest these 

transposable elements were involved during their early mobilisation from their chromosomal 
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location onto Enterobacteriaceae plasmids and were not required to change, as well as indicating a 

compatibility within the Enterobacteriaceae. The progenitor for the blaKPC genes has yet to be 

identified, however its constant genetic context Tn4401 was determined as likely to be at the origin 

of blaKPC mobilisation (299). AMR genes highly associated with plasmid types, e.g. blaCMY-2-like 

carriage on IncA/C plasmids, are usually upon plasmid types that are compatible with the genera of 

the strain and would not require gene exchange between plasmid types. Observations of plasmid-

mediated AMR genes and their associated transposable elements, genetic contexts, plasmid types 

and species provide pieces of information that if collectively placed together can form this proposed 

underlying network of AMR acquisition and spread. 

6.7 Antimicrobial Pressure on the Network Model and other Factors 

There are numerous factors that are outside of the proposed network and cannot be identified 

specifically for each AMR gene capture event. These factors however are important to characterise 

in future investigations to clarify several discrepancies identified during this thesis. Two examples 

include plasmids types IncFIIY and IncA/C. The IncFIIY plasmid sub-type was observed in different 

species (C. freundii (Chapter 2 (23)), E. cloacae and K. pneumoniae (Chapter 3 (22)), Yersinia spp. 

(Chapter 5) and has acquired blaNDM in different locations in its backbone via separate events 

(Chapter 3 and 4). The IncFIIY plasmid sub-type was observed and reported as highly prevalent 

amongst Yersinia spp. (Chapter 5) (223). This plasmid sub-type was carried by species outside of 

the Yersinia genus only when the plasmid type harboured the blaNDM gene (225, 243, 251-253). In 

contrast, the IncA/C plasmid type is highly associated with many AMR genes (39) and has acquired 

blaNDM via different mechanisms (Chapter 4) (205). However, like many AMR associated plasmid 

types, it was observed as a low prevalent plasmid type (1%) amongst 1683 strains (Chapter 5). 

These discrepancies cannot be explained here, however candidates for influencing factors such as 

antimicrobial pressure may be suggested. The presence of antimicrobials has been observed to 

induce the SOS response and affect the rate of transposition and conjugation (317). There are 

limited studies investigating the influence of antimicrobial presence on transposition of blaNDM or 
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its associated transposable elements. Plasmids carrying blaNDM however, have been observed to 

conjugate at a rate ~40 fold higher (from 9.1 x 10-4 to 3.9 x 10-2 transconjugants per recipient) in the 

presence of sub-MIC concentrations of ciprofloxacin (Wailan 2012, Unpublished data, Appendix J). 

The presence of antimicrobials may have played a role in the transmission of plasmid types or the 

transposition of AMR genes, or even both. International travel including medical tourism, 

community acquisition and stool colonisation are also factors involved in the international 

dissemination of AMR genes, facilitating the spread of strains carrying plasmids as discussed in 

Chapter 1 (20, 46, 49).  

6.8 Future directions 

6.8.1 Approaches to access the network 

The bioinformatic analysis of Enterobacteriaceae plasmids presented in this thesis is retrospective 

and has limited sample size. It does not necessarily reflect how widespread the blaNDM genes, other 

AMR genes and plasmid types have disseminated. A survey of samples of the environment and 

community/general public would be recommended as reports for plasmid types, AMR genes and 

blaNDM are generally limited to medical health care facilities and outbreaks, representing the tip of 

the iceberg and not the underlying dissemination of these genes via the proposed network. In order 

to evaluate the complex dissemination of plasmid-mediated AMR genes for epidemiological 

purposes, the combined molecular/genetic approach demonstrated in Chapters 2 and 3, at this 

present time should be incorporated as a screening method. That is, combining the information of 

clonal molecular characterisation that includes bacterial species identification, Sequence Typing via 

MLST, PCR-based plasmid typing and resistance determinant characterisation with the WGS 

characterisation of the target antimicrobial resistance determinant. Through this approach, the 

plasmid types providing blaNDM-related carbapenem resistance and perhaps other plasmid-mediated 

AMR genes can be surveyed and traced across a population, in multiple medical facilities (Chapters 

2, 3) and potentially within community and environmental reservoirs. Sequentially, as WGS 
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becomes increasingly cost effective, construction of complete plasmid sequences and their 

comparative analysis as demonstrated in Chapter 4, would compliment and provide further 

resolution of the network used for AMR genes to be acquired and spread throughout a bacterial 

population. 

6.8.2 Additional investigations 

The insights presented here for acquisition and spread of the blaNDM genes, provide other avenues 

for further investigation. The interactions between AMR genes, transposable elements, plasmid 

types and bacterial species/genera require further definition. This includes the factors that influence 

them, such as the degree of compatibility between them and the presence of antimicrobials. Also S1 

nuclease PFGE should be implemented to complete molecular plasmid analysis for description of 

plasmids replicon numbers and sizes. The combination of detailed surveillance, molecular typing, 

whole genome sequencing and in-depth bioinformatics analysis of Enterobacteriaceae and other 

Gram-negatives with a standardised meta-data, would complement and build upon those 

components characterised within this thesis and the literature. Also as novel plasmid types, 

resistance determinants and even transposition elements are described and updated in databases, it is 

important for investigators to also reassess previously published isolate collections to also provide 

the most comprehensive description available for novel resistance determinants, plasmid types and 

transposition element. This is important as investigators have to be aware that databases such as 

resfinder and plasmidfinder which are reasonable for strain and plasmid characterisation, always 

have a chance in not identifying novel plasmids types and resistance determinants. Further, a 

database of the components of the network encompassing AMR genes, transposable elements, 

plasmid types and bacterial strains (including environmental, community and clinical samples), 

detailing their mechanisms, interactions and the factors which affect these interactions will begin to 

clarify the details of this proposed network. A network which blaNDM and other AMR genes have 

passed through to be acquired by various Enterobacteriaceae.  



 

6.9 Thesis conclusion  158 

6.9 Thesis conclusion 

The detailed bioinformatic analysis of Enterobacteriaceae plasmids provided insights into the 

acquisition and spread of blaNDM genes amongst the Enterobacteriaceae. This thesis characterised 

numerous combinations of species, plasmid type, genetic context and transposable elements 

associated with the blaNDM gene, as well as an indication of compatibility between plasmid types 

and the bacterial host, based on genus. The insights provided by these investigations, collectively 

identified an underlying network encompassing interactions between AMR genes, transposable 

elements, plasmid types and the bacterial host. The blaNDM gene appears to have transferred along 

this network following its interactions, compatibilities and limitations, resulting in numerous 

species of Enterobacteriaceae carrying their blaNDM gene in different plasmid types, NGCs and 

associated with numerous transposable elements. A database listing the network’s components and 

their interactions is required for proper definition of the proposed network. Surveillance of 

Enterobacteriaceae strains with the combined genetic/ molecular approach and subsequently full 

plasmid construction and analysis demonstrated in this thesis are recommended as approaches to 

continue compilation for this database and define this complex network. A complex network that 

may have been used for the rapid spread of carbapenems resistance amongst the Enterobacteriaceae 

family. 
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Appendices 

Appendix A: Supplementary Original Manuscript related to Chapter 3 

 

The following appendix, published manuscript, has been provided to supplement Chapter 3. This 

manuscript described the genome of an NDM-5 producing E. coli isolated in Australia.  

Wailan AM, Paterson DL, Caffery M, Sowden D, Sidjabat HE. Draft Genome Sequence of NDM-

5-Producing Escherichia coli Sequence Type 648 and Genetic Context of blaNDM-5 in Australia. 

Genome Announc. 2015 Apr 9;3(2). PMID: 25858833 

 

The University of Queensland requires the presentation of the submitted or accepted article. The 

presented article remains in American English spelling enforced by journal guidelines.  

The statement below is adopted from the journal’s policy to acknowledge copyright reuse 

permission:  

 

“Authors in ASM journals retain the right to republish discrete portions of his/her article in any 

other publication (including print, CD-ROM, and other electronic formats) of which he or she is 

author or editor, provided that proper credit is given to the original ASM publication. ASM authors 

also retain the right to reuse the full article in his/her dissertation or thesis.” Statement of Authors’ 

Right can be found at: http://journals.asm.org/site/misc/ASM_Author_Statement.xhtml 
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ABSTRACT  

We report the draft genome of uropathogenic E. coli ST648 possessing blaNDM-5 from a 55-year-old 

female in Australia with travel history to India. The plasmid-mediated blaNDM-5 was in a genetic 

context nearly identical to the GenBank entry of IncX3 blaNDM-5 plasmid previously reported from 

India (K. pneumoniae MGR-K194).  
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MANUSCRIPT 

The Indian sub-continent has been reported as a geographical reservoir for acquisition of NDM-

producing Enterobacteriaceae (1). A 55-year-old female with chronic diarrhoea had a carbapenem-

resistant Escherichia coli isolated from her urine in January 2014. She travelled to India in late 

2013 and developed diarrhoea without admission to medical facility. Upon her return to Australia, 

ongoing diarrhoea prompted multiple hospital admissions. She was diagnosed with Crohn’s 

Disease. During admission, a mid-stream urine sample was collected wherein the carbapenem-

resistant E. coli CR694 was identified.  

 

Whole genomic DNA of E. coli CR694 was prepared using the Nextera XT DNA sample 

preparation kit (Illumina, USA) and sequenced using the Illumina HiSeq 2000 (Illumina) at the 

Australian Genome Research Facility. De novo assembly was performed using CLC genomic 

workbench version 7.5 (CLC Bio, Denmark). The draft genome consisted of 5,523,407 base pairs. 

Contigs were initially annotated using RAST (http://rast.nmpdr.org/). BLAST analysis and manual 

annotation utilized previously re-annotated reference sequences and IS finder (http://www-

is.biotoulfr). Databases MLST, ResFinder and PlasmidFinder 

(http://www.genomicepidemiology.org/) were used to characterize Sequence Typing (ST), 

antibiotic resistance mechanisms and plasmid Inc types of E. coli CR694, respectively. ST 648, 

plasmid Inc types of IncFII, IncFIB, IncX3, IncI1 and IncX4 and blaNDM-5, blaCMY-42, aac-6-Ib-cr, 

aadA5, erm(B) and mph(A), sul1,  tet(B) and dfrA17 were identified. 

 

Additionally, the annotation through RAST identified type 1 fimbriae fimA-H, virulence 

determinants relevant for urinary tract adhesion (2). Further, five other types of fimbriae identified 

as a membrane transport type VII protein secretion system, namely (i) htrE fimbriae cluster, (ii) stf 

fimbriae cluster, (iii) alpha-fimbriae, (iv) colonization factor antigen I fimbriae (CFA/I fimbriae) 

and (v) sfm fimbrial cluster. Cluster responsible for Curli production or type VIII secretion was 
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identified. Siderophore enterobactin, aerobactin and other hemin transport systems for iron 

acquisition were identified. In addition, type IV pilus and IncF conjugal transfer system were 

identified. Gene for serum survival (iss) was also identified. The identified virulence determinants 

may have contributed to the infection and or colonization in the urinary tract of CR694 (2).   

 

The contig pCR694-EC-NDM-5 carried the blaNDM-5 genetic context. blaNDM has been reported to 

reside within a 10,099bp transposon known as Tn125 (3). blaNDM-5 on pCR694-EC-NDM-5 was 

located within a truncated 3,167bp Tn125 structure, flanked by an IS5 upstream and an IS26 

downstream. pCR694-EC-NDM-5 was identical to an NDM-5 IncX3 plasmid, pNDM-MGR194 (as 

direct submission with GenBank accession no. KF220657). Both blaNDM-5 genetic contexts did not 

possess Tn125 genes groES, groEL and ISCR27. Both pCR694-EC-NDM-5 and pNDM-MGR194 

were also highly similar to NDM-1 IncX plasmid, pKPN5047 (GenBank accession no. 

NC_020811), containing a longer Tn125 structure where groES, groEL and ISCR27 were present. 

 

The blaNDM-5 genetic context of pCR694-EC-NDM-5 has not been reported within E. coli and 

within Australia. NDM-5-producing Enterobacteriaceae have been reported in Japan, Algeria, 

United Kingdom and India, of which an E. coli ST648 harbored blaNDM-5 in both aforementioned 

United Kingdom and Japan reports (4-7). This case of a NDM-5-producing typical uropathogenic E. 

coli highlights further inter-continental acquisition of carbapenemase-producing Enterobacteriaceae 

through travel to geographical reservoirs.  

 

Nucleotide sequence accession numbers. This project is registered as BioProject PRJNA268254 

and BioSample SAMN03217331. The blaNDM-5 genetic context, pCR694-EC-NDM-5 was 

submitted to the GenBank database and assigned the following accession number KP178355. The 

draft genome of NDM-5-producing E. coli ST648 GenBank accession number is JTGI00000000. 
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Appendix B: Supplementary Material related to Chapter 4 

 

The following supplementary material is complementary information for the manuscript presented 

in Chapter 4. This material lists the differences between sequences of IncA/C2 (Table S1) and 

IncFIIY (Table S2) plasmids harbouring blaNDM.  
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TABLE S1 Differences between closely-related IncA/C type 1 plasmids carrying blaNDM
a 

Positionb Locationc 
pNDM 

10505 

pNDM- 

PstGN574 

pNDM- 

EcoGN568 

pNDM 

102337 

pNDM 

-US 

pNDM- 

US-2 
pKP1- 

NDM-1d 

pNDM 

10469 

pNDM-

KN 
pEC2-

NDM-3d 

Method  not stated Illumina Illumina not stated mixede not stated Illumina not stated Illumina PacBio 

955-7 HP 3xC 3xC 2xC 3xC 3xC 3xC 3xC 3xC 3xC 3xC 

3898-905 HP 8xT 8xT 8xT 8xT 8xT 8xT 8xT 8xT 7xT 8xT 

8746 peptidase C C C C C C C C C T 

9613 HP T T T T T T T T T C 

19333 - C T T C C C C C C C 

38111 HP C C C C T T C C C C 

52042-8 - 7xT 7xT 7xT 7xT 7xT 7xT 7xT 7xT 6xT 7xT 

57990-1 ISEcp1 IRR 2xG 2xG 2xG 2xG 2xG 2xG 2xG 2xG 3xG 2xG 

60543-4 blaCMY-6 TU - - - - - - - - ISEc23 - 

94439-40 HP - - - - - - - - - ISEc23 

95218-96931 IS4321-Tn1696 - - - - - ~88% identity - - - - 

95959 IS4321 A A A A A G A A A G 

97817-23 Tn1696  

tnpA 

2xGCGT

AGCG 

2xGCGTAG

CG 

2xGCGTA

GCG 

2xGCGTA

GCG 

1xGCGTA

GCG 

1xGCGTA 

GCG 

2xGCGTA 

GCG 

2xGCGTA

GCG 

2xGCGTA

GCG 

2xGCGTAG

CG 

100771 Pc TGN G G G G G G G G C G 

102934 sul1 T T T T T T T T A T 

103029-30 3′-CS 2xC 2xC 2xC 2xC 2xC 2xC 2xC 2xC 3xC 2xC 

104316-7 dcm - - - - - - - +217 bp - - 

104534-5 dcm 2xC 2xC 2xC 2xC 2xC 1xC 2xC 2xC 2xC  

105989-90 - - - - - - - - - - IS3000 

107113-4 ISKpn14 IR 2xG 2xG 2xG 2xG 2xG 2xG 2xG 2xG 3xG 2xG 

107881-117385 aac(3)-II region - 6 indels - - not present not present not present not present not present - 

117386-118153 ISKpn14 ISKpn14 ISKpn14 ISKpn14 not present not present not present  not present not present not present not present 

118154-118383 ISAba125 130 bp 130 bp 130 bp 130 bp 130 bp 130 bp 89 bp 124 bp 129 bp 83 bp 

128810 - T T T T T T T T T A 

128916-147793 Tn6170+5 bp DR Tn6170 - Tn6170 Tn6170 - - - - Tn6170 - 

150874 - A A A A A A A A A C 

152608-9 - 2xATTA 

TCGTA 

2xATTA 

TCGTA 

2xATTA 

TCGTA 

2xATTA 

TCGTA 

2xATTA 

TCGTA 

2xATTA 

TCGTA 

2xATTA 

TCGTA 

3xATTA 

TCGTA 

2xATTA 

TCGTA 

- 

152560-1 - - - - - IS3000 IS3000 - - - - 

161161 traG G G G A G G G G G G 

162413-4 - 2xC 2xC 2xC 2xC 1xC 1xC 2xC 2xC 2xC 2xC 
a Accession numbers and references are given in Table 1 in the main manuscript..  

b Position in pNDM10505. Differences from pNDM10505 are highlighted in red and at least some (e.g. different numbers of bases in homopolymer regions) may be errors. There are no differences between any parts 

of the ΔISAba14-aphA6-ΔISAba125-bleMBL-trpF-tat dct groESL-ISCR27Δ region found in different plasmids, except for the G to A change giving blaNDM-3 in pEC2-NDM-3. 

c HP, hypothetical protein; -, intergenic region. 
d Any differences in plasmids sequenced here (names in bold) have been confirmed by checking the raw sequence data. 
e Combination of Illumina and PacBio. 
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TABLE S2 Differences between IncFIIY plasmids carrying blaNDM
a 

Positionb Locationc pEC4-NDM-6d pKOX-NDM-1 pRJF866 pNDM-EclGN574 pYDC644 pP10164-NDM pNDM1_EC14653 pECL3-NDM-1d 

Method  Illumina 454 ABI Sanger Illumina 454 Illumina Illumina Illumina 

2834 ISSen4 T T T T T T C T 

2905 ISSen4 G G G G G G A G 

3621 ISSen4 A A A A A A G A 

4398 IS5 A A A A A G A A 

5211-5390 ygbN - - - - - 180 bp Δ - - 

6833-8441 ccd - - - - 55% identity - - - 

8329-8332 - 4xG 4xG 4xG 4xG 4xG 4xG 4xG 3xG 

8976-8977 IS1 2xC 2xC 2xC 2xC 2xC 2xC 3xC 2xC 

8992 IS1 T T T T T C T T 

13572-8 - 7xT 7xT 7xT 7xT 7xT 6xT 7xT not present 

15042-17318 kpsSC - - - - - 94% identity - not present 

18607-23459 IS1 & adjacent - - - 99% identity 4085 bp Δ 95% identity 98% identity not present 

20412-20418 HP 7xT 6xT 7xT 7xT not present 7xT 7xT not present 

22951-22957 HP 7xT 6xT 7xT 7xT not present 8xT 7xT not present 

23541-24596 IS903 - - - - not present 97.8% - not present 

25447-25452 - 6xT 6xT 6xT 6xT 6xT 7xT 6xT 6xT 

29072-3 umuC - - - - - - +9,851 bp  - 

31950 HP C C C C C C T C 

36032-8 HP 7xG 7xG 7xG 7xG 6xG 7xG 7xG 7xG 

42178-42648 HP - - - - - - - 96% identity 

43033-9 HP 7xA 6xA 7xA 7xA 7xA 7xA 7xA 7xA 

48476 traL T G G T T G G T 

51147-8 traB 2xG 2xG 2xG 2xG 2xG 1xG 2xG 2xG 

57087 traU T T T T G T T T 

62964-6 traH 3xG 3xG 3xG 3xG 3xG 2xG 3xG 3xG 

64048-54 traH 7xG 7xG 7xG 7xG 6xG 7xG 7xG 7xG 

67148-54 traS 7xT 6xT 7xT 7xT 7xT 7xT 7xT 7xT 

70081-70188 traD 12x9 bp 12x9 bp 12x9 bp 12x9 bp 12x9 bp 7x9 bp 12x9 bp 12x9 bp 

77281-5 dsbA 5xG 5xG 5xG 5xG 4xG 5xG 5xG 5xG 

78081-4 - 4xC 4xC 4xC 4xC 3xC 4xC 4xC 4xC 

80852-85111 - - - - - - - - 18 differences 

91483-91488 copG 6xC 6xC 6xC 6xC 5xC not present not present 6xC 

93095 sul1 C C C C A not present not present C 

107822-9016 IS5 - 1 difference - - - 7 differences 7 differences 2 differences 

110735-40 - 6xG 6xG 6xG 6xG 5xG 6xG 6xG 6xG 
a Accession numbers and references given in Table 1 in main manuscript.  
b Position in pEC4-NDM-6. Differences from pEC4-NDM-6 are highlighted in red and at least some (e.g. different numbers of bases in homopolymer regions) may be errors. There are no differences in the 

ΔISAba125-bleMBL-trpF-tat dct groESL-ISCR27Δ region common to all IncFIIY plasmids listed, except for the C to T change giving blaNDM-6 in pECL3-NDM-1. 
c HP, hypothetical protein; -, intergenic region. 
d Any differences in plasmids sequenced here (names in bold) have been confirmed by checking the raw sequence data. 
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Appendix C: Supplementary Material related to Chapter 5 

 

The following supplementary material is complementary information for the manuscript 

presented in Chapter 5. This material lists the PCA identifying species clustering between 

species according to plasmid content (Fig. S1), phylogenetic tree of the Enterobacteriaceae 

strains (Fig. S2), number of countries the 12 major plasmid types were isolated from (Fig. 

S3), and meta data tables of the Enterobacteriaceae strains (Table S3) and plasmid sub-types 

(Table S4) included in the study. 
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Figure S1. PCA plot analysis on the plasmid content of all Enterobacteriaceae species 

included in this study. PC1 (17%) and PC2 (15%), represented on the x- and y-axis 

respectively, highlight the existence of two groups of species which have a very high inter-

species plasmid transmission.  Group 1, which consists out of Klebsiella pneumoniae and 

Enterobacter cloacae, in depicted by the blue oval on the right and group 2, which consists 

out of Escherichia coli, Shigella sonnei and Shigella flexneri, is depicted by the green oval on 

the left. An orange oval on the bottom depicts those strains which either do not contain any 

plasmids, or which only contain rare plasmids, or which only contain plasmids which are 

very species specific such as is often the case when describing Yersinia spp. and (to a lesser 

degree) Salmonella typhimurium isolates. Plasmid exchange is however clearly not limited 

within these two groups as is depicted by the “hybrid” isolates in the upper right. These 

hybrid isolates are bacteria that have at least 2 plasmids; they have (a) plasmid(s) that is/are 
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commonly found within their own group but they also have a plasmid which common to the 

other group. Similarly of interest are the isolates belonging to species from group 1 but found 

in the circle of group 2, or vice versa. These represent samples that do not contain any 

plasmids common to their “own” group but instead carry 1 or more plasmids from the “other” 

group. 
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Figure S2. Phylogenetic tree of strains of the Enterobacteriaceae family based on rpoB. 

Gene sequences corresponding to rpoB were extracted from the assembled genomes, and if 

necessary complemented with data from mapping to a Klebsiella pneumoniae isolate. The 

phylogeny was estimated using RAxML. Species are highlighted in different colours, and 

important groups are labelled.  
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Figure S3. Number of countries each major plasmid Inc group originated. IncF type 

plasmid types were wide spread across 41 countries. Intermediate and low occurrence 

plamids types were observed within 5-17 countries. High, intermediate and low occurrence 

plasmid types are represented by green, yellow and red respectively. 
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Table S3 – Studies in which strains were originally collected. 

Scope Study name 
WGS Strains 

Species Countriesa Ref. 
Publication Analysis 

Global Global  

K. pneumoniae 

288 247 Klebsiella pneumoniae Australia 

Loas  

Indonesia 

Singapore  

U.S. 

Vietnam 

(271) 

Yersinia study 241 214 Yersinia  

 aldovae 

 aleksiciae 

 bercovieri 

 enterocolitica 

 entomophaga 

 frederiksenii 

 kristensenii 

 intermedia  

 nurmii 

 massiliensis 

 mollaretii  

 pekkanenii 

 pestis 

 pseudo-

tuberculosis 

 rohdei 

 ruckeri 

 similis 

Argentina 

Australia 

Belgium 

Brasil 

Canada 

China 

Czechoslovakia  

England 

Finland 

France  

Germany 

Greece 

Russia 

Ireland 

Italy  

Japan 

Korea 

New Zealand  

Norway  

South Africa 

Spain 

Switzerland  

U.K. 

U.S. 

Poland 

(273) 

Entero-

toxigenic  

E. coli (ETEC) 

362 355 Escherchia coli Argentina 

Bangladesh  

China 

Egypt 

Guatemala 

Indonesia  

Kenya 

Mexico 

(274) 

Regional Nepal  90 87 K. pneumoniae Nepal  (269) 
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K. pneumoniae 

U.K.  

K. pneumoniae  

E. cloaceae 

N.P. 294 K. pneumoniae  

Enterobacter cloacae 

U.K.  N.P. 

MSM Shigella 

flexneri 

207 171 Shigella flexneri U.K. 

Oceania 

 (268) 

Vietnam 

Shigella sonnei 

263 223 Shigella sonnei Vietnam  (270) 

Africa/UK 

Salmonella  

Tyhimurium 

129 95 Salmonella enterica  

serovar Typhimurium 

Africa 

U.K. 

 (272) 

N.P., not published;a designates countries where strains included in analysis were isolated.
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Table S4 - Sub-typing of the PlasmidFinder database.  

Replicon
a
 

Assigned Inc 

sub-type 

Replicon 

size 
Target sequence 

IncA/C_1__FJ705807 A/C1 417 GAGAACCAAAGACAAAGACCTGGAGAAACTCGACGTTATCAAAGACTCAC 

IncA/C2_1__JN157804 A/C2 417 GAGAACCAAAGACAAAGACCTGGAGAAACTCGACGTAATCAAAGACTCAC 

IncB/O/K/Z_1__CU928147 B/O/K/Z1 151 TCCGGAAAGTCAGAAAACGGCAGGATGCGCCATAAGGCATTCAGGATGTA 

IncB/O/K/Z_2_GU256641 B/O/K/Z2 160 GCGGTCCGGAAAGCCAGAAAACGGCAGAATGCGCCATAAGGCATTCAGGA 

IncB/O/K/Z_3_GQ259888 B/O/K/Z3 152 TCCGGGAAGTCAGAAAATGGCAGGATGCGCCATAAGGCATTCAGGACGTA 

IncB/O/K/Z_4_FN868832 B/O/K/Z4 149 TCCGGGAAGTCAGAAAACGGCAGGATGCGCCATAAGGCATTCAGGACGTA 

IncFIA_1__AP001918 FIIC1 388 TGTCTGTGACAAATTGCCCTTAACCCTGTGACAAATTGCCCTCAGAAGAA 

IncFIA(HI1)_1_HI1_AF250878 HI1 ST5 388 CTTTCTGTGACAAGTTGCCCTTAACCCTGTGACAAATTGCCCTCAGGAAG 

IncFIB(AP001918)_1__AP001918 FIIC1 682 CTGTTTATTCTTTTACTGTCCACAGGCAGAAGGCTTTCTGGAAAACGAAA 

IncFIB(K)_1_Kpn3_JN233704 FIIK1 560 GTTTGGGGTTGCGATAATGCACGCTGAAATAGGTGGCTCGGCCACGTTTA 

IncFIB(Mar)_1_pNDM-Mar_JN420336 H 439 TATCAAGAGCCTTAAGGCGAAGATAAACCTTATAGTCAATCTGATAGAGC 

IncFIB(pB171)_1_pB171_AB024946 ND 643 GGACAAGGACAATCTGGACATAAAAAAGCTGTTTGAAGAGGTGGATAAAT 

IncFIB(pCTU1)_1_pCTU1_FN543094 ND 809 CCGGCGAGGTGGTCACGCTGGTTCCCAACCGTAACAACACGGTGCAGCCG 

IncFIB(pCTU3)_1_pCTU3_FN543096 ND 693 TCATGGAGACATACAACGTACCGGCAGGCATACTTTCGAAATAGACATAA 

IncFIB(pECLA)_1_pECLA_CP001919 ND 560 GTTTCGGATTACGGTAATGCACGCTGAAGTAGGTGGCCCGGCCGCGTTTG 

IncFIB(pENTAS01)_1_pENTAS01_CP003027 ND 560 GTTTTGAATTACGATAATGCACACTGAAGTATGTGGAGCGGCCACGCTTG 

IncFIB(pENTE01)_1_pENTE01_CP000654 ND 560 GAATGAGAATCTAACCTCAGTCCACTGGTCAAACCTGCCTGCAGATGAGC 

IncFIB(pHCM2)_1_pHCM2_AL513384 ND 875 CAAATGGTCTCTATGGACGCCTCTGCTGAACTCAAACAGCTGTCTCTGGC 

IncFIB(pKPHS1)_1_pKPHS1_CP003223 ND 560 ATGCTGTCAGCGGTAAACGATATGCTGTCAGCGGTACGGTATATGCTGCC 

IncFIB(pLF82)_1_pLF82_CU638872 ND 560 CAAATGGTCTCTATGGATGCCTCTGCTGAACTCAAACAGCTGTCTCTGGC 

IncFIB(pQil)_1_pQil_JN233705 FIIK2 740 GAAGGTTATACAGACATCCGTATTACCGGCCCACGACTTTCGATGGAGAC 

IncFIB(S)_1__FN432031 FIIS1 643 GGACAAGGACAATCTGGACATAAAAAAGTTGTTTGTAGAGGTGGATAAAT 

IncFIC(FII)_1__AP001918 FIIC1 499 CACACCATCCTGCACTTACAATGCACAGAAGGAGTGAGCACAGAAAGAAG 

IncFII_1__AY458016 FII2 261 CACACCATCCTGCACTTACAATGCGCAGAAGGAGCGAGCACAGAAAGAAG 

IncFII_1_pKP91_CP000966 FIIK4 230 TTTTGGTGTGCCACGCCGTAAGGTGGCAGGGAGCTGGTTTTGTGGATGTT 

IncFII_1_pSFO_AF401292 FII3 258 CTGATCGTTTAAGGAATTTTGTGGCTGGCCACGCCATAAGGTGGCAGGGA 

IncFII(29)_1_pUTI89_CP003035 FII29 259 CACACCATCCTGCACTTACAATGCGCAGAAGGAGCGAGCACAGAAAGAAG 

IncFII(K)_1__CP000648 FIIK1 148 TCTTCTTCAATCTTGGCGGAAGGAAAAGATTAACGGGGCCTTCATAAACT 
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IncFII(p14)_1_p14_JQ418538 closest FIIY3 262 TTTGAAGAATTCTGATGGCTGGCCACGCCGTAAGGTGGCAGGGAACTGGT 

IncFII(p96A)_1_p96A_JQ418521 closest FIIS3 534 GTGACTGATGTTACACATTACCTACAGGTCAAAAATCCTAACCCTCAGTT 

IncFII(pCoo)_1_pCoo_CR942285 FII15 262 CACACCATCCTGCACTTACAATGCGCAGAAGGAGTGTGCACAGAAAGAAG 

IncFII(pCRY)_1_pCRY_NC_005814 ND 593 TCAGGCAAAGGTTGGGGAGTAGTATTCCTGTTTGCGCTGGCGAGCTGCGT 

IncFII(pCTU2)_1_pCTU2_FN543095 ND 577 GAGTAGTATTCCTTTTTGCGTTCACGAGCTGCCTGGCGCTTGGCTTGCAT 

IncFII(pECLA)_1_pECLA_CP001919 ND 747 GAATGACAATCAGATTTCTGTTCACTGGTCAGATCTACCGAAAGATGAGC 

IncFII(pENTA)_1_pENTA_CP003027 ND 560 GAGTGACATTCCATTATCCGTCCACTGGTCTGAACTGCCGGAAGATGAAC 

IncFII(pHN7A8)_1_pHN7A8_JN232517 FII33 260 CACACCATCCTGCACTTATGTTGCACAGAAGGAGTGAGCACAGAAAGAAG 

IncFII(pKPX1)_AP012055 closest FIIY4 577 GAGAAATATTCCCGTTTACGCTGGCGAGCTACGTCGCGCTTAGCTTTCAT 

IncFII(pMET)_1_pMET1_EU383016 ND 577 GAGTAGTATTCCTGTTTACGCTGGCGAGCTACTTCACGCTTCGCCTTCAT 

IncFII(pRSB107)_1_pRSB107_AJ851089 FII1 261 CACACCATCCTGCACTTATGTTGCACAGAAGGAGTGAGCACAGAAAGAAG 

IncFII(pSE11)_1_pSE11_AP009242 FII20 264 CACACCATCCTGCACTTACAATGCGCAGAAGGAGTGAGCACAGAAAGAAG 

IncFII(pseudo)_1_pseudo_NC_011759 ND 390 GGGGGTTTTTGCATTCAAGGCCCGCTGTTCTGGTACCTTTTCCCTTGAGC 

IncFII(pYVa12790)_1_pYVa12790_AY150843 ND 674 AAAACTGAAAAGAAAAGAACGCTTCGGAAACGGGGTGAACACTCAACTGA 

IncFII(S)_1__CP000858 FIIS1 262 CTAAAGAATTTTGATGGCTGGCCACGCCGTAAGGTGGCAGGGAACTGGTT 

IncFII(SARC14)_1_SARC14_JQ418540 closest FIIY5 445 GTGCATATGCGCACGAATGCTGGCCGTGAGCGCGATTTCCGACAGGAATT 

IncFII(Serratia)_1_Serratia_NC_009829 closest FIIK11 278 GGGGTTTTGCTTTTGTATCTCCCGGCTAACTGCGCCGAAAGTCCCTAAAT 

IncFII(Y)_1_ps_CP001049 FIIY1 227 TGGCAGGGAACTGGTTCTGCTAAGGTGTTTACTTGGAACCAGAAAAGCAA 

IncFII(Yp)_1_Yersenia_CP000670 FIIY3 230 TGGTAGGGAACTGGTTCTGATGAGGTGTCTACCCGGGACCAGAAAAGCAA 

IncHI1A_1__AF250878 ND 420 CGGATCACTGGTCTTAAGCTTTCGATGTCAACCGATTTTAAGTGTTGGCT 

IncHI1A(CIT)_1_pNDM-CIT_JX182975 HI1 ST12 420 CGGATCACTGGCCTTAAGCTTTCGATGTCCACGGACTTCAAGTGTTGGCT 

IncHI1B_1_pNDM-MAR_JN420336 

HI1 ST 1 or 

ST2 570 CTGATTCTTTTCGAGACAGGGTCTTCAATATTTTTAAGTAAAGTCGGGTC 

IncHI1B(CIT)_1_pNDM-CIT_JX182975 HI1 ST12 538 ATTCCAGAAAACCGATCTCTTTAAGCTGGCCCAGCGCCTTTTTAACTGTG 

IncHI1B(R27)_1_R27_AF250878 HI1 ST5 540 ATTCCAGAAAACCGATCTCTTTAAGCTGGCCCAGCGCCTTTTTAACCGTG 

IncHI2_1__BX664015 HI2 ST1 327 TTTCTCCTGAGTCACCTGTTAACACCCGGTTTCTACGCTTTACTTCATTG 

IncHI2A_1__BX664015 HI2 ST1 630 AGATCGGAGGGTTATGACGACATCAAGATAACTGGTGTCAAACTATCTAT 

IncI1_1_Alpha_AP005147 I1 ST13 142 CGAAAGCCGGACGGCAGAATGCGCCATAAGGCATTCAGGAGAGATGGCAT 

IncI2_1_Delta_AP002527 I2 316 CAGGCTTGAACATCGTTGATCGATTGCGCCCATGCTGCTAAATTTGCAGG 

IncL/M_1__AF550415 M2 664 CCGCCGAATATGGCGGGTTTTTTGTGTATACTCAAGTGGTTATAGTCGTA 

IncL/M(pMU407)_1_pMU407_U27345 L/M 739 GGATGAAAACTATCAGCATCTGAAGAGTAAACTGACAGACGCTGGATGGT 

IncL/M(pOXA-48)_1_pOXA-48_JN626286 L 661 CCGCCTGAAAAGGCGGTTTTTTCATGTATACTCAGGTGGTTATAGTCGTA 
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IncN_1__AY046276 N1 514 GTCTAACGAGCTTACCGAAGCTGCTTACTACCTCTCGCTAAAAGCAAAGC 

IncN2_1__JF785549 N2 477 GGGTGAAGATATGGCATTCACCCACTCCATTCTGTGCCAGGTCGGTTTGC 

IncN3_1__EF219134 N3 477 TTATAATAGCCTTCGGACAGGGTGAGTGTTCCCGGCCATAGCGTGAGCTG 

IncP_1_alpha_L27758 Pα 534 CTATGGCCCTGCAAACGCGCCAGAAACGCCGTCGAAGCCGTGTGCGAGAC 

IncP(6)_1__JF785550 P6 806 TGTGAAACAGGCTGATAAGCGTGTCGTTCTTGGGCGTGTAGAGCGGCGCA 

IncP(Beta)_1_Beta_U67194 P-1β 582 CCGATTCGAGCCGGCCGATGCGTTGGGATGAGAACTGCATGGCCGACGCC 

IncQ1_1__HE654726 Q1 450 GTCATGCTCGACAGGTAGGACTGCCAGCGGATGTTATCGACCAGTACCGA 

IncQ2_1__FJ696404 Q3 450 GTCATCTTGGCGACGAAGCCGCACCAGCGGGCGTTGTCGATCAGTGCCGA 

IncR_1__DQ449578 R 251 TCGCTTCATTCCTGCTTCAGCCAGCCACGGACGTTTAACTTCTTCAAACT 

IncT_1__AP004237 T 749 TTGGCCTGTTTGTGCCTAAACCATCAAGGTCATCTGACTACAGCCCGATG 

IncU_1__DQ401103 U 565 TCACGACACAAGCGCAAGGGGCTTTTTCTCGCTCCTGGTGCAATGGCCAA 

IncW_1__EF633507 W 243 CCTAAGAACAACAAAGCCCCCGGCCATCGTATCAACGAGATCATCAAGAC 

IncX1_1__EU370913 X1 374 ATGGCTAAAATCTATCAATTCCCTCAGGGGGAAGAACGTGCTAAATTCAG 

IncX1_2__CP003417 X1 348 GCTAAAATCTTCAATTCCCTCAGGGGAAAACGTGCTAATTCAGGAAGAAT 

IncX1_3__CP001123 X1 373 ATGGCTAAAATCTATCAATTCCCTCATGGGAAGAACGCGGGAAATTCAGG 

IncX1_4__JN935898 X1 377 ATGGCTAAAATCTATCAATTCCCCCAGGGGGACGAACGCGGTAAATTCAG 

IncX2_1__JQ269335 X2 374 ATGAGACTCAAGGTCATGATGGACGTGAACAAAAAAACGAAAATTCGCCA 

IncX3_1__JN247852 X3 374 ATGCGGTTGTTGCTATCTTTAGATATGAAGATCCTCAGATCTTCATATCT 

IncX3(pEC14)_1_pEC14_JN935899 ND 374 ATGAGACTTAAAGTTATGATGGATGTGAATAAAAAAACAAAGATTCGTCA 

IncX4_1__CP002895 X4 374 ATGAGAATGACGACAAATAAGACTTCCCTTTCTCGCTTAACAAAAGTGAG 

IncX4_2__FN543504 ND 712 ATGGTCTTAAAGAATAATAAAAATAGCGACTGTAATGATGTTCAAAGTTT 

IncX5_1__NC_015054 X5 374 ATGTTCATCTACAGTGTATAAATTAAGTTCTTCTTTTAATTCATCGATAG 

IncX6_1__AM942760 X6 374 ATGAGAGTAACGATGAATAAAAAATCACTATCTCGGTTAACTAAAGTCAG 

IncY_1__K02380 Y 765 AATTCAAACAACACTGTGCAGCCTGTAGCGTTGATGCGCTTGGGGGTATT 

p0111_1__AP010962 ND 885 ATGCTGGAAGAAAATAAAGGCTTCCTTAGCGTTGAAGAAGTTGCAGGAAA 

pADAP_1__AF135182 ND 540 TTACTGGTCTATTTTTCGACGTTGAGCCCGAAGTTTGATGGCTTCCAGCG 

pEC4115_1__NC_011351 ND 706 ATGTTGCCAGTAGAGGTGAATACGCGAGAGGGGGAGTTAATATTTCAATC 

pENTAS02_1__CP003028 ND 979 TTGAGTCACCGCAGTGGTGGTTAAACCGCCTGCGCCGTATCCATGCCCGG 

pESA2_1__CP000784 ND 750 ATGCTTATTCATGACGTAACGGAAAGAAAAAAAGCGTCAGCAAGTAAAAT 

pIP31758(p153)_1_p153_CP000719 ND 909 GTTTACATCGCTATGTTGAAAATCGATAGCAAAGTTAAATTAGAGAATGG 

pIP31758(p59)_1_p59_CP000718 ND 918 CCACCTCTGGTATGCAGTTTCATACGGTGTTAAAGATGCTTTCTTTATTT 

pIP32953_1__BX936400 ND 927 AACATATCTCGCGATGAGATTCGTTTTCTATTCCTGGCATTAACTAAAAT 



 

Appendix C: Supplementary Material related to Chapter 5 199 

pJARS36_1__NC_015068 ND 534 ATGAGGATTCCGAAGAGAAGGAAACTTGGTTGCCAGCCAGTAAGAAAAAT 

pSL483_1__CP001137 ND 995 TAACACAAGGCAATCAGCTTATTGAAGGTAGTTACGATATTAACCTGGCT 

pSM22_1__NC_015972 ND 623 ACCACCCAGCGCCGGATCTTTTTCAGTCGGTTCTTCAGCGAGTGCTTGCG 

pXuzhou21_1__CP001927 ND 720 TAACACAAGGCAATCAGCTTATTGAAGGTAGTTACGATATTAACCTGGCG 

pYE854_1__AM905950 ND 979 TTGATGCTCTTGGCGGCTTAACACCTTCCCAATACTGCCGATGGTTGTGG 

ND, Not defined; a designates the replicon name in the ResFinder Database. 
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Appendix D: Supplementary Orginal Manscript related to Chapter 6 

 

The following appendix, published manuscript, has been provided to supplement discussion of this 

thesis. Part of this manuscript observed a number of plasmid types present prior to the emergence of 

AMR genes.  

Baker KS, Burnett E, McGregor H, Deheer-Graham A, Boinett C, Langridge G, Wailan AM, Cain 

A, Thomson NR, Russel J, Parkhill J. The Murray collection of pre antibiotic era 

Enterobacteriaceae: A unique research resource. Genome Med. 2015 Sep 28;7(1):97. doi: 

10.1186/s13073-015-0222-7. 

 

The University of Queensland requires the presentation of the submitted or accepted article. The 

statement below is adopted from the journal’s policy to acknowledge copyright reuse permission:  

“The re-use rights enshrined in our license agreement include the right for anyone to produce 

printed copies themselves, without formal permission or payment of permission fees. As a courtesy, 

however, anyone wishing to reproduce large quantities of an open access article (250+) should 

inform the copyright holder and we suggest a contribution in support of open access publication 

(see suggested contributions).” Statement of Authors’ Right can be found at: 

https://www.biomedcentral.com/about/policies/reprints-and-permissions

http://www.biomedcentral.com/new-content-item-1-/733946
http://www.biomedcentral.com/about/policies/reprints-and-permissions/suggested-contributions
http://www.biomedcentral.com/about/policies/reprints-and-permissions/suggested-contributions
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Abstract  

 

Studies of historical isolates inform on the evolution and emergence of important pathogens 

and phenotypes, including antimicrobial resistance. Crucial to studying antimicrobial 

resistance are isolates that predate the widespread clinical use of antimicrobials. The Murray 

collection of several hundred bacterial strains of pre-antibiotic era Enterobacteriaceae is an 

invaluable resource of historical strains from important pathogen groups. Studies performed 

on the Collection to date merely exemplify its potential, which will only be realised through 

the continued effort of many scientific groups. To enable that aim, we announce the public 

availability of the Murray collection through the National Collection of Type Cultures, and 

present associated metadata with whole genome sequence data for over half of the strains. 

Using this information we verify the metadata for the collection with regard to subgroup 

designations, equivalence groupings and plasmid content. We also present genomic analyses 

of population structure and determinants of mobilisable antimicrobial resistance to aid strain 

selection in future studies. This represents an invaluable public resource for the study of these 

important pathogen groups and the emergence and evolution of antimicrobial resistance. 
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Background 

 

Antimicrobial resistance (AMR) in bacteria represents a global public health crisis, and AMR 

in Enterobacteriaceae is a particularly recognised threat [1, 2]. This bacterial family includes 

pathogenic genera (e.g. Salmonella, Shigella, Escherichia, Klebsiella) that are responsible for 

a significant proportion of the global diarrhoeal disease burden [3] as well as systemic and 

nosocomial infections, often associated with heightened virulence or AMR [4, 5]. To manage 

these pathogens, it is critical that we understand the emergence and the evolution of clinically 

relevant phenotypes. Pivotal to understanding pathogen emergence and evolution is the 

context in which it occurred, and historical isolates have greatly informed theories regarding 

the emergence, disappearance and primary reservoir hosts of the pathogens that cause plague, 

leprosy and tuberculosis [6-8]. More recently, isolates of Vibrio cholerae and Shigella 

flexneri sampled from before the widespread clinical use (and consequent evolutionary 

pressure) of antimicrobials, i.e. the ‘pre-antibiotic’ era, were used to examine the evolution of 

virulence and AMR in these pathogens [9, 10]. To expand these studies in our continued 

efforts to understand the emergence and persistence of AMR, historical isolates must be 

studied alongside their contemporary counterparts.  

 

The Murray collection (the ‘Collection’) comprises several hundred bacterial strains (mostly 

Enterobacteriaceae) collected from diverse geographic locations largely in the pre-antibiotic 

era (between 1917 and 1954) [11]. The Collection was amassed by the late eminent 

microbiologist Professor Everitt George Dunne Murray over the course of his career [12], 

and was stored on Douglas digest agar slopes [13]. On E.G. D. Murray’s death in 1964, the 

collection was passed on to his son, Robert Everitt George Murray, who was also an eminent 

microbiologist. In the early 1980s, R.E.G. Murray in collaboration with British 
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microbiologists, lyophilised and transferred subcultures of the Collection from The 

University of Western Ontario, Canada, to the National Collection of Type Cultures (NCTC) 

at Public Health England, where they are held today.   

 

Use of the Collection to provide historical context has already yielded important insights 

regarding the state-of-play of enteric pathogens in the first half of the 20th century, and 

phenotypic shifts that have occurred since those times. Seminal work by scientists who 

coordinated the international transfer of the Collection showed that the machinery for the 

accumulation and plasmid-borne transfer of AMR (e.g. Incompatibility group types) [11, 14], 

were qualitatively similar to those of modern isolates, and this was also demonstrated for 

mercury resistance and Salmonella virulence determinants [15-17]. Other studies have 

demonstrated significant phenotypic shifts, including increased virulence and resistance to 

antimicrobials and antiseptics in Klebsiella sp. [18], and an increase in the magnitude and 

incidence of AMR in modern Escherichia isolates [19]. These studies however, merely 

exemplify the potential of the Collection. For example, its use to inform pathogen evolution 

through dating analyses remains entirely untapped, and enormous scope exists to further 

study the emergence and evolution of the pathogens, and their AMR and other traits.  

 

In fact, the scale of the remaining work requires the coordinated expertise and effort of 

multiple microbiological research groups. Here, to serve that purpose, we announce the 

public release of the Murray collection isolates through formal accession of the 683 strains 

into the NCTC and provide the associated metadata. In addition to facilitating access to the 

physical strains, we verify the metadata by bacterial subtyping and analysis of whole genome 

sequencing data (also released here) generated for 370 of the strains. Finally, we present 
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preliminary phylogenetic and gene content analyses that will aid strain selection for future 

scientific studies. 

 

Results and discussion 

 

Collection composition and associated metadata  

 

The Murray collection (as held by the NCTC) comprises 683 bacterial strains belonging to 

447 equivalence groups (Table 1). Equivalence groups (Additional file 1: Table S1) included 

strains that were related in one of the following three ways: duplicate strains in the original 

collection with the same name and original date; colony variants detected during subculture 

in Canada before transfer to the UK; or derivatives (colony variants detected during receipt of 

strains at NCTC). The isolates were primarily Salmonella, Escherichia and Shigella (which 

are combined here), Klebsiella and Proteus (Table 1), and fell into variably diverse subgroups 

e.g. subspecies, serotypes beyond those designations (see Additional file 1: Table S2, 

Additional file 2: Figures S1, Additional file 3: Figures S2. Additional file 4: Figures S3, and 

Additional file 5: Figures S4). Bacteria outside of these four main genera (see Other, Table 1) 

were originally poorly designated e.g. coliform, Enterobacteriaceae, and were subsequently 

determined (see ‘Confirming the collection’ below) to belong to the main genera, or the 

following: Morganella, Rauotella, Aeromonas and Enterobacter (Tables 2, Additional file 1: 

Table S2).  
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Table 1. Summary of the collection contents by genus and time  

 

 Collection   Sequenced  

 

Total 

strains 

Unique inc. 

equivalence 

groups 

Years of 

isolation 

 

Total 

strains 

Unique inc. 

equivalence 

groups 

Years of 

isolation 

Salmonella  361 222 1917 - 1952 

 

174 127 1917 - 1946 

E. coli/ 

Shigella  256 174 1917 - 1954 

 

140 121 1917 - 1954 

Klebsiella  42 30 1920 - 1949 

 

35 26 1920 - 1949 

Proteus  18 16 1919 - 1940 

 

14 12 1919 - 1940 

Other sp.  6 6 1920 - 1940 

 

7 6 1935 - 1940 

Total  683 447 * 
 

 

370 291 * 
 

* These totals affected by an equivalence group containing both Klebsiella (M45) and 

Escherchia/Shigella (M162) 
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Table 2. Assembly characteristics of the sequenced Murray collection isolates  

 

  Assembly characteristics [mean (range)] 

Genus No.  

GC 

content  Total length  (bp) Contigs  N50 (bp) 

Salmonella 

 

174 

 

52  

(51 - 52)  

4739744  

(4450735 - 5136048) 

44  

(15 - 126) 

316870  

(70209 - 992086)  

Escherichia/ 

Shigella 

140 

 

50  

(50 - 51)  

4679816  

(3820214 - 5434207) 

258  

(63 - 567)  

64933  

(14204 - 369379) 

Klebsiella 35 

56  

(55 -57)  

5287110  

(4980231 - 5582843) 

172 

 (24 - 286) 

117718  

(58784 - 465957) 

Proteus  14 

39  

(38 - 39)  

3935672  

(3823752 - 3991064) 

35  

(18 - 58)  

313856  

(201904 - 763476) 

Morganella 3 

51  

(NA)  

3842744  

(3744830 - 3948322)  

23  

(19 - 29) 

557210  

(403231 - 664661) 

Enterobacter 2 

54  

(NA)  

5364204  

(5291805 - 5436603 ) 

58  

(52 - 64)  

341570  

(341563 - 341 576) 

Aeromonas 1 59 4494408 39 166907 

Raoultella 1 55 5488300 33 336936 

  

 

The demographic features (e.g. place, person, time) and clinical details of pathogen 

infection are often crucial in the interpretation of genotypic and phenotypic analyses 

on the isolated pathogen. Although many of these details are available for the 

Collection strains, this metadata is incomplete and somewhat imperfect. The diverse 

geographical origins of the collection “including Europe, Malta, the Middle East, 

northern Russia, India and North America” has been reported [11], but were not 

available for individual strains. Metadata held at the NCTC showed the strains 

originated from diverse clinical specimens, e.g. stool, urine, blood, antral washes, 

cerebrospinal fluid, but the clinical syndrome, e.g. meningitis, pneumonia, hepatitis 

and cholecystitis, or patient/supplier name were also alternatively recorded 

(Additional file 1: Table S2). This ‘Origin’ information was only available for 

approximately one quarter (n=150) of the strains. Contrastingly however, the large 

majority (92%, 628 of 683) of strains had a date or year noted on the original vial 

(Additional file 1: Table S2). When these dates were stratified by genus, a unique 
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time signature emerged, perhaps reflecting E.G.D. Murray’s changing research 

interests over time (Figure 1a). Notably, these dates were presumed to be the date of 

isolation for the strains, but could also represent date of strain receipt, or some other 

event. Overall however, the novel analyses presented in this study largely support the 

original metadata demonstrating that it is, if imperfect, robust.  

 

In addition to the published studies on conjugative plasmids that highlighted the 

importance of the collection for studying mobilisable-AMR [11, 14], efforts to 

comprehensively determine the full plasmid content of the collection were made in 

the late 1980s [20]. Using traditional plasmid preparation and gel electrophoresis 

techniques, this work determined the number and approximate sizes of plasmids 

contained in each of 489 Collection strain subcultures (from [14]). The findings 

showed that the strains contained between zero and seven plasmids each, and that 

certain genera contained more plasmids than others (Figure 1b, full results reproduced 

in Additional file 1: Table S2). Plasmids ranged in estimated molecular weight from 1 

to 500 Md (though estimates ≥ 150Md were noted as likely to be inaccurate). 

Attempts to verify this plasmid content metadata among 271 strains that  were made 

(see Additional file 6: Supplementary Material). 

 

Confirming the collection  

In order to confirm the genus designations in the Collection, modern laboratory and in 

silico tools were applied to a subset of strains. The subset included all ACPD Hazard 

Group 2 (HG2) organisms and excluded most known HG3 organisms (23 HG3 

organisms were included), thereby excluding known Shigella dysenteriae and 

Salmonella enterica where the serovar was unknown (see Additional file 1: Table S2). 
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Of the total 683 isolates, 359 underwent MALDI-TOF analysis (of which 354 also 

underwent characterisation by 16s rRNA sequencing). Outside of the ‘Other’ genera 

discussed above (and see Table 1), the MALDI-TOF results were generally 

concordant, with the exception of three isolates (M108, M162, M144) originally 

designated as Klebsiella that were determined to be Escherichia/Shigella sp., and the 

misidentification of a Salmonella isolate (M179) as an Escherichia by 16s rRNA 

sequencing (Additional file 1: Table S2). Of the isolates that underwent MALDI-TOF 

analysis, 334 progressed to whole genome sequencing, alongside an additional 36 

isolates not characterised by MALDI-TOF. Those revived isolates originally 

designated to be shigellae also underwent serotyping, and were largely confirmed (for 

66 of 72 strains) to be either S. flexneri or S. sonnei as originally designated 

(Additional file 1: Table S2). Genus identification and in silico multi-locus sequence 

typing on whole genome sequencing data (Additional file 1: Table S2 and Additional 

file 7: Table S3) confirmed the MALDI-TOF designation, or the original genus 

designation in all cases.   

 

Genomic analysis of the Murray collection 

To verify the robustness of the Collection, as well as add value, provide further 

metadata, and facilitate the development of selection criteria for ongoing studies, 370 

strains (representing 291 equivalence groups), mostly representative of the collection 

(Tables 1, ,2,2, Additional file 1: Table S2 and Additional file 7: Table S3) were 

whole genome sequenced. Some analyses of these genomes are briefly reported here, 

and more detail is given in the Additional file 6: Supplementary Material. 
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De novo assemblies created to facilitate core genome identification exemplified the 

unique genomic characteristics of each bacterial genus (Table 2, see Additional file 7: 

Table S3 for full results), which were similarly reflected in features of the core 

genomes including the discovery rate and final number and size of the core genome 

(Table 3, Fig. 2). For example, the Proteushad a lower GC content than the other 

genera (Table 2) and Salmonella strains had a larger core genome (Table 3) than 

Escherichia/Shigella, which had a larger accessory genome (Fig. 2). 

 

Table 3. Core genome size for the main genera in the Collection 

 

 Salmonella 

Escherichia/

Shigella Klebsiella Proteus 

Total isolates (inc. refs) 185 185 37 14 

Core genes (≥ 95% 

isolates)  3002 1983 3296 2870 

Core genes (100% 

isolates)  2159 1255 2966 2813 

Core genome (CG) 

length (bp)  2195115 1381269 2881098 2775840 

CG variant sites (bp)  136888 114723 64138 47079 

 

To provide enhanced subgrouping information, core genome phylogenies were 

constructed from the variant sites in core genes for the main genera (Additional file 2: 

Figure S1; Additional file 3: Figure S2; Additional file 4: Figure S3 and Additional 

file 5: Figure S4). In addition to providing context for future strain selection, core 

genome phylogenies were used to verify the designation of equivalence groups within 

the Collection. 

 

Antimicrobial resistance 

Although no phenotypic studies of AMR were done here, AMR has been reported in 

the pre-antibiotic era Murray Collection strains, including tetracycline resistance in 

Proteus sp., ampicillin resistance in the Klebsiella and both ampicillin and kanamycin 
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resistance in Escherichia sp. [11, 18, 19]. To aid the future selection of isolates based 

on the potential presence and absence of AMR, the presence of antimicrobial 

resistance genes among the strains was determined (Table 4). This revealed many 

resistance genes (often known to be chromosomally encoded) that were present across 

all members of a genus, particularly across Salmonella, Escherichia/Shigella and 

Klebsiella whose profiles differed greatly, though unsurprisingly, from the more 

phylogenetically remote Proteus. Some genes however were differentially present 

among the genera with differing degrees of correlation to population structure (Table 

4, Figure S3). For example, the tetC gene was present in nearly all Klebsiella isolates, 

but only a fraction of Escherichia/Shigella and Salmonella isolates, highlighting the 

potential of the Collection for studying the early horizontal transmission of AMR 

among Enterobacteriaceae.  

 

Summary 

This study comprehensively describes a large collection of diverse bacteria (primarily 

Enterobacteriaceae) from the pre-antibiotic era, now publicly available from the 

NCTC, and thus represents an invaluable resource for studying the evolution and 

emergence of AMR and Enterobacteriaceae. We also created a significant genomic 

resource for the scientific community in the form of freely available whole genome 

sequencing data for over half of the strains in the Collection. Using this data, we 

verified much of the metadata of the Collection including species identification, 

plasmid content and the existence of equivalence groups among the strains. Finally, 

we presented additional analyses to guide future scientific studies; defining the 

phylogenetic subgroups and genetic determinants of mobilisable AMR present in the 

Collection. The availability of these live isolates, associated sequencing data and 
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preliminary analysis to the scientific community will surely spark a spate of studies 

into the evolution and epidemiology of these pathogens and their antimicrobial 

resistances.  

 

Availability of supporting data 

The strains in the collection are available at the NCTC under the Murray Collection 

Identifiers, and accession numbers shown in Table S1. The whole genome sequencing 

data is available at the European Nucleotide Archive at 

(http://www.ebi.ac.uk/ena/data/view/PRJEB3255), according to the strain-specific 

accession numbers shown in Table S2.  
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Legends 

 

Figure 1. Metadata available for the Collection strains by genus, including year on 

original vial (A) and number of plasmids (B).  
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Figure 2. Rarefaction curves for pan- (above) and core- (below) genome sizes by 

genus. 
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Figure 3. Presence (red) and absence (blue) of variably present antimicrobial 

resistance genes among the Collections strains overlaid adjacent to core genome 

phylogenies (as presented in Figures 2 – 5). The presence of genes in reference 

isolates was not determined (black).  
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Additional files 

Additional file 1: Table S2. Original Collection metadata and laboratory 

determination of plasmid content and species.  
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Additional file 2: Figure S1. Core genome phylogenetic tree for Salmonella sp. 

Strains noted to be in equivalence groups are similarly coloured.  

 

Additional file 3: Figure S2. Core genome phylogenetic tree for 

Escherichia/Shigella sp. Strains noted to be in equivalence groups are similarly 

coloured. 
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Additional file 4: Figure S3. Core genome phylogenetic tree for Klebsiella sp. 

Strains noted to be in equivalence groups are similarly coloured. 
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Additional file 5: Figure S4. Core genome phylogenetic tree for Proteus sp. Strains 

noted to be in equivalence groups are similarly coloured. 
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Additional file 6: Supplementary Material. Figure S5. Number of plasmids 

detected in 271 Collection strains by laboratory and in silico approaches. Marker size 

is scaled by the number of strains and the trendline represents the overall correlation. 

 

 

 

Additional file 7: Table S3. Sequencing, assembly and gene content analyses for 

strains sequenced for this study.  
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Additional file 8: Table S1. Antimicrobial resistance genes in sequenced strains 

by genus 

 

 

 

 

Proportion of isolates containing gene 

Antibiotic 

Resistance 

Gene Salmonella 

Escherichia/Shigel

la Klebsiella 

Proteus 

(inc. P. 

vulgaris) 

bl3_cpha 0.00 0.00 0.00 0.00 

catA2 0.00 0.00 0.00 0.00 

bl2e_fpm 0.00 0.00 0.00 0.14 

tetJ 0.00 0.00 0.00 0.21 

catA4 0.00 0.00 0.00 0.86 

fosA 0.03 0.00 0.00 0.00 

ermD* 0.25 0.00 0.00 0.00 

pbp2 1.00 0.00 0.00 0.00 

mexB* 0.00 0.00 0.03 0.00 

bl2be_shv2 0.00 0.00 0.37 0.00 

tetC 0.02 0.07 0.86 0.00 

mdtM 1.00 0.44 0.00 0.00 

emrE* 0.00 0.87 0.00 0.00 

mdtN 0.00 0.96 0.00 0.00 

mdtO 0.00 0.96 0.00 0.00 

mdtP 0.01 0.96 0.00 0.00 

mdfA 0.99 0.99 1.00 0.00 

bl1_ec 0.00 1.00 0.00 0.00 

mdtE 0.00 1.00 0.00 0.00 

mdtF 0.00 1.00 0.00 0.00 

mdtL 0.83 1.00 0.00 0.00 

arnA 0.99 1.00 0.77 0.00 

mdtG 0.97 1.00 1.00 0.00 

acrA 1.00 1.00 1.00 0.00 

acrB 1.00 1.00 1.00 0.00 

bacA 1.00 1.00 1.00 0.00 

bcr 1.00 1.00 1.00 0.00 

ksgA 1.00 1.00 1.00 0.00 

macB 1.00 1.00 1.00 0.00 

mdtH 1.00 1.00 1.00 0.00 

mdtK 1.00 1.00 1.00 0.00 

tolC 1.00 1.00 1.00 0.00 

Total 

isolates 

(number) 174 140 35 14 

* dependencies not met  
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Appendix E: Supplementary Conference Presentation related to Chapter 2 

 

The following appendix, conference poster presentation, was published and presented during 

candidature. 

The genetic analysis of various NDM-producing Gram-negatives to investigate the inter-species and 

inter-patient transmission of blaNDM within a clinical setting. Wailan AM, Sartor AL, Paterson DL, 

Perry JD, Sidjabat HE. 25th European Congress of Clinical Microbiology and Infectious Diseases, 

Copenhagen, Denmark, April 2015 

Abstract 

Objectives 

First reported in 2008, blaNDM is a highly transmissible gene that provides Gram-negative bacteria 

resistance to virtually all beta-lactams including carbapenems. It is theorised to have originated 

from Acinetobacter species through the mobilisation of Tn125. This investigation analysed the 

genetic context of blaNDM within two sets of clinical isolates in order to describe and provide an 

insight into the interspecies and inter-patient clinical transmission of blaNDM.   

Methods 

Clinical isolates were obtained from stool samples of three patients from two military hospitals in 

Pakistan. Plasmid Replicon typing was performed to identify plasmid Inc types. The first set (S1) 

included 4 NDM producing species isolated from one patient: Enterobacter cloacae (PN2 – 

IncA/C), Acinetobacter baumannii (PN3), Klebsiella pneumoniae (PN4 - IncN) Citrobacter 

freundii (PN5 - IncA/C). The second set (S2) included isolates from two different patients: First 

patient – Pseudocitrobacter faecalis (PN13 – IncN) and Escherichia coli (IncI1, IncN, Inc FIA, 

IncFIB) and second patient P. faecalis (IncN) and E. coli (IncHI1, IncA/C). Whole Genome 

Sequencing of these isolates was prepared by paired-end libraries and sequenced through the 
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Illumina MiSeq platform. CLC Genomics Workbench was used to de novo assembly the Illumina 

reads into contigs. PCR-gap closure was performed and contigs were analysed via BLAST and IS 

finder and manually annotated. 

Results 

Analysis of the genetic surroundings provided different contexts of blaNDM all of which contained a 

truncated Tn125. Within S1, PN2 had a NDM IncA/C genetic context similar to pNDM-US, PN3’s 

NDM genetic context was the only structure with full ISAba125 and was similar to published 

Acinetobacter spp. sequences, pAbNDM-1 and pNDM-BJ01, PN4’s NDM genetic context 

indicated a plasmid Class one integron capture and PN5’s NDM genetic context had a 7, 288bp 

Tn125 structure including Acinteobacter backbone (5’-ISAba14|aphA6-3’) similar to pNDM-BJ01. 

All S2 isolates (PN13, PN14, PN27, PN28) had identical genetic contexts involving a Class one 

integron/ ISCR1 capture. This indicated a conjugation event amongst these isolates possibly with an 

IncN type plasmid. Further, all S2 isolates had genetic contexts identical to PN4 from S1, indicating 

an inter-species and inter-patient transmission of blaNDM. 

Conclusion 

blaNDM is a highly transmissible gene that provides resistance to virtually all beta-lactams including 

carbapenems. The diversity of plasmid types and bacterial species harbouring blaNDM within one 

patient (S1) highlights the ability of blaNDM to be acquired and retained upon various plasmid 

backbones and chromosomes within different bacterial hosts. Furthermore, the ability for blaNDM to 

be acquired on various plasmids facilitates the potential for rapid transmission of carbapenem 

resistance to other species and patients, as observed with the IncN plasmid of this study. 
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Appendix F: Supplementary Conference Presentation related to Chapter 3 

 

The following appendix, conference oral presentation, was published and presented during the 

candidature. 

The prevalence plasmids types carrying blaNDM and genetic context of blaNDM providing 

carbapenem resistance to the Enterobacteraceae family in Australia. Wailan AM, Paterson DL, 

Nimmo GR, Karina K, Ingram PR, Sidjabat HE. Australian Society for Antimicrobials, 16th Annual 

Scientific Meeting – Antimicrobials 2015, Brisbane, Australia February 2015 

Abstract 

Background: New Delhi metallo-beta-lactamase gene (blaNDM) is a worldwide concern as this gene 

provides carbapenem resistance to the Enterobacteraiceae family. While blaNDM is reported to 

transmit amongst Acinetobacter species within the transposon Tn125, blaNDM has been reported on 

different plasmid types within the Enterobacteracae with highly variable blaNDM genetic contexts, 

even on the same plasmid type. In recent years, there have been a number of reports of NDM 

producing Enterobacteraceae within Australia. This study aimed to characterise the blaNDM genetic 

context of NDM producing Enterobacteraiceae isolated within Australia to evaluate if there is a 

prevalent plasmid providing Enterobacteraiceae carbapenem resistance. 

 

Methods:  

10 NDM producing Enterobacteriaceae isolated between 2012 and 2014 were available for 

analysis. Each isolate was sequenced via the Illumina Hiseq2000 and de novo assembled via CLC 

Genomics Workbench. Isolates and their respective contig containing blaNDM were named as 

follows: pCR539-KP-NDM-1 (Klebsiella pneumoniae CR539), pCR77-ECL-NDM-1 (Enterobacter 

cloacae CR77), pCR774-EC-NDM-4 (Escherichia coli CR774), pCR121-EC-NDM-4 (E. coli 
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CR121), pCR473-ECL-NDM-7 (E. cloacae CR473), pSingWA-EC-NDM-4 (E. coli SingWA), 

pCR1113-KP-NDM-1 (K. pneumoniae CR1113), pCR1013-EC-NDM-1 (E. coli CR1013), pSDW-

KP-NDM-7 (K. pneumoniae SDW), pKEC-EC-NDM-1 (E. coli KEC) and pCR1036-PR-NDM-1 

(Providencia rettgeri CR1036).  

 

Results: Each contig of the 10 isolates had a truncated Tn125 structure carrying its blaNDM. Two 

common plasmid types were identified, IncX types (3/10) and IncFII (5/10). The Tn125 structure of 

each IncX type blaNDM context was flanked by IS5 and IS26. There were three different blaNDM 

genetic contexts amongst the IncFII type plasmids, each with different IS elements flanking Tn125. 

pCR1036-PR-NDM-1 had an IncH1B-like blaNDM context and pCR539-KP-NDM-1 had an IncN2-

like context. 

 

Conclusion: Genetic characterisation of NDM producing Enterobacterciaeae has identified IncX 

type and IncFII as prevalent plasmids within Australia. Here we highlight the possibility for 

different plasmid types to acquire blaNDM and different blaNDM genetic context to exist in different 

Enterobacteriaceae species.  
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The following appendix, conference poster presentation, was published and presented during 

candidature presented in this thesis. 

The mechanisms of plasmid acquisition of blaNDM in Enterobacteriaceae 

Wailan AM, Sidjabat HE and Paterson DL Australasian Society for Infectious Diseases, Gram 

Negative ‘Superbugs’ Meeting, Gold Coast, Australia August 2013 

Abstract 

Genetic integrity of Tn125 carrying blaNDM in Enterobacteriaceae from Australia and New Zealand 

 

blaNDM is a gene encoding resistance to all β-lactam including the last line carbapenems and is 

known to be encoded on plasmids. It has been theorised that blaNDM originated in Acinetobacter 

baumanni and initially mobilised into plasmids by a transposon (Tn125) flanked by two insertion 

sequence (IS) elements, ISAba125. The structure of Tn125 comprises of multiple genes including 

blaNDM i.e. 5’-ISAba125- blaNDM-bleMBL-trpF-tat-dct-groES-groEL-ISCR27-Δpac-ISAba125-3’. 

This study aimed to observe the genetic structure of the Tn125 structure within Enterobacteriaceae 

isolated in Australia and New Zealand.  

NDM producing Enterobacteriaceae species included Australian Klebsiella pneumoniae (KP1), 

Escherichia coli (EC2) and Enterobacter cloacae (ECL3) and New Zealand E. coli (EC4). Analysis 

involved replicon typing, full genome sequencing, plasmid de novo assembly and annotation on 

CLC Genomics Workbench platform.  

The plasmid backbones carrying blaNDM from were identified as IncA/C (KP1 and EC2) and IncFII 

(ECL3 and EC4). The Tn125 structure of KP1, ECL3 and EC4 were similar 5’-ΔISAba125-blaNDM-

bleMBL-trpF-tat-dct-groES-groEL-ΔISCR27-3’ with variation at the 3’ end. EC2 had a variant 
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Tn125 structure of 5’-ΔISAba125- blaNDM-bleMBL-ΔtrpF-3’. All 5’ end ISAba125 were partial, 

interrupted by an upstream IS element thus blaNDM was associated to this novel IS element. 

Associated IS elements were ISKpn14 (KP1), IS903-like (ECL3) while EC2 and EC4 had unknown 

IS elements. The similarities between the generalised structure of Tn125 amongst these different 

isolates may indicate a mechanism blaNDM is able to traverse between different plasmid backbones, 

thus broadening the bacterial host range that can acquire blaNDM via plasmid transfer to become 

carbapenem resistant. 



 

Appendix G: Supplementary Conference Presentation related to Chapter 4 234 



 

Appendix H: Supplementary Conference Presentation related to Chapter 4 235 

Appendix H: Supplementary Conference Presentation related to Chapter 4 

The following appendix, conference poster presentation, was published and presented during 

candidature presented in this thesis. 

Complete Plasmid Sequence of IncA/C pKP1-NDM-1 from South East Queensland 

Yam WK, Wailan AW, Alikhan N-F, Paterson DL, Petty N, Beatson SA, Schembri MA, Sidjabat 

HE Australasian Society for Infectious Diseases, Gram Negative ‘Superbugs’ Meeting, Gold Coast, 

Australia August 2013 

Abstract 

Background: New Delhi Metallo-β-lactamase (NDM-1) which confers resistance to carbapenems 

and third-generation cephalosporins has been reported to be mainly plasmid mediated with diverse 

plasmid replicon types, suggesting its mobility is due to mobile genetic elements (MGEs). The 

objective of this study was to characterise plasmid pKP1-NDM-1 recovered from Klebsiella 

pneumoniae sequence type (ST) 147 from South-East Queensland. 

Methods: Complete DNA sequencing of pKP1-NDM-1 was obtained using HiSeq 2000 (Illumina). 

NDM-1 genetic environment was determined by plasmid cloning and sequenced by Sanger. 

Annotation was completed using Artemis and Pairwise alignment performed by a BLASTN and 

BLASTP homology search. PCR was performed to determine antimicrobial resistance genes and 

plasmid replicon type. 

Results: pKP1-NDM-1 was ~170kb long and encoded ~151 predicted proteins. It harboured 

resistances genes encoding NDM-1 and RmtC within close proximity as well as CMY-6 and 

ACC(6’)-1b. Additionally several MGEs have been identified: class 1 integron, IS26 and IS1. It 

belongs to replicon type IncA/C broad host range plasmid family with 9 out of 12 common region 

similarities. BLAST analysis showed 80% and 81% query with 100% identical with IncA/C 

pNDM-KN from K. pneumoniae from Kenya and IncA/C pNDM10469 from Escherichia coli from 
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Canada, respectively. 

Conclusion: We described a broad host range multidrug resistance plasmid. pKP1-NDM-1 have 

close similarity to four other previously described IncA/C NDM-1 carrying plasmids with rmtC and 

blaCMY-6  from other countries suggesting its affinity to this IncA/C type of plasmid. Whole plasmid 

sequencing provides information on the co-resistance carried by a broad host range plasmid. 
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The following appendix, conference poster presentation, was published and presented during 

candidature.  

Sequence comparison of plasmids carrying blaNDM from Australian and New Zealand 

Enterobacteriaceae, Wailan AM, Petty NK, Sidjabat HE, Beatson SA, Schembri MA, Williamson 

DA and Paterson DL, Australian Infectious Diseases, Lorne Infection & Immunity Conference 

2014, Lorne, Australia February 2014. 

Abstract 

New Delhi metallo-β-lactamase-1 (NDM-1), a carbapenemase represents a significant global public 

health threat and theorised to have originated from Acinetobacter species through the mobilisation 

of a Tn125. This study investigated the genetic mechanisms of blaNDM spread from Acinetobacter 

species to the Enterobacteriaceae through the complete sequencing of plasmids carrying blaNDM 

from Australian clinical Enterobacteriaceae species, including Klebsiella pneumoniae, Escherichia 

coli and Enterobacer cloacae to theorise. The blaNDM genetic surrounding as well as plasmid 

structure was evaluated in order to describe blaNDM acquisition by IncA/C and IncFII plasmid as 

well as other genetic mobilisation of resistance mechanisms. This was achieved via next generation 

sequencing and bioinformatic analysis through both the Illumina platform and CLC Genomics 

workbench. The blaNDM genetic context in all isolates consisted of a truncated Tn125 structure 

carrying blaNDM with a native IS element upstream e.g. ISKpn14, regardless of blaNDM variant, 

plasmid backbone type and bacterial species. This may infer that plasmids capable of high 

conjugation rates have acquired blaNDM via transposition of a truncated Tn125, which could have 

provided the initial platform for blaNDM’s rapid dissemination to multiple bacterial species within 

the Enterobacteriaceae family. 
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The following appendix, conference oral presentation, was presented and published during 

candidature. This presentation is provided to supplement discussion of this thesis and observed the 

increase in conjugation rate of plasmids harbouring blaNDM genes in the presence of antimicrobials. 

Conjugation Rates of the NDM Plasmid Conferring Carbapenem Resistance in Enterobacteriaceae 

Wailan A, Paterson D, A Silvey, Williamson D, Sidjabat H Australian Society for Antimicrobials, 

13rd Annual Scientific Meeting – Antimicrobials 2012, Brisbane, Australia February 2012 

Abstract 

Objectives: The recent emergence of carbapenem resistance, New Delhi β-lactamase-1 (NDM-1), 

represents a significant threat and is found in numerous Enterobacteriaceae species, including 

nosocomial pathogens and human intestinal flora (E. coli). The blaNDM gene can spread rapidly by 

residing in plasmids capable of a horizontal gene transfer process called conjugation. This study 

investigated the conjugation rate of NDM plasmids to E. coli, resembling blaNDM gene acquisition 

by normal human flora in the gastrointestinal tract. 

Methods: Five NDM producing Enterobacteriaceae, 2 K. pneumoniae, 2 E. coli and 1 E. cloacae, 

isolates were used as donor strains; and the recipient was sodium azide resistant E. coli J53. 

Conjugation was performed overnight on MacConkey agar with a 1:1 donor to recipient ratio. 

Transconjugants were analysed for plasmid acquisition through phenotypic and genotypic tests 

including S1 nuclease digestion. IncA/C plasmid conjugative machinery was determined pre- and 

post-conjugation. 

Results: The replicon type of the NDM plasmid from each K.pneumoniae and E.coli was IncA/C, 

and the E. cloacae was IncFII. All but one (K. pneumoniae) of the NDM plasmids from the five 
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donor strains was transferable via conjugation. Conjugation rates of NDM plasmids from K. 

pneumoniae and E. coli were 9.0 x 10-4 and 1.4 x10-4 transconjugants per recipient, respectively. A 

synergistic effect of meropenem and ceftazidime in combination with sodium azide mitigated 

blaNDM transconjugant growth. Sub-MIC ciprofloxacin inclusion into the environment in vitro 

enhanced the NDM plasmid conjugation rate by ~40 fold. Conjugation can alter the tra operon 

which may lead to defective conjugation machinery within transconjugants. 

Conclusions: The spread of the NDM plasmid can occur at an astounding rate through conjugation. 

This process can be enhanced by ciprofloxacin introduction into the environment before 

conjugation, to either stimulate plasmid transfer or increase the frequency. However before a 

plasmid is able to transfer, it must encode genes known as the tra (transfer) genes to be able to 

initiate transfer from donor to recipient cells. Furthermore, the plasmid can become modified during 

the conjugation process to generate an alternative sized plasmid or multiple plasmids which can 

potentially enhance the spread of the blaNDM gene. 
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Appendix K: Other Supplementary Manuscripts during Candidature 

 

The following manuscripts were published and/or prepared during candidature, however do not 

form part of this thesis. The manuscripts that have been published are provided below. 

 

Zowawi HM, Ibrahim E, Syrmis MW, Wailan AM, AbdulWahab A, Paterson DL. PME-1 

Producing Pseudomonas aeruginosa in Qatar. Antimicrob. Agents Chemother. 2015 

Jun;59(6):3692-3. doi: 10.1128/AAC.00424-15.  

 

Toh B, Paterson D, Witchuda Kamolvit W, Zowawi H, Kvaskoff D, Sidjabat H, Wailan AM, Peleg 

A and Huber C. Species identification within the Acinetobacter calcoaceticus - baumannii complex 

using MALDI - TOF MS. J. Microbiol. Methods. 2015 Nov;118:128-32. doi: 

10.1016/j.mimet.2015.09.006. 

 

Toh B, Paterson DL, Pfluege V, Kvaskoff D, Wailan AM, Riley T, Harper J, Flohr G, Huber C. 

Relationships between whole genome sequencing, PCR ribotyping and MALDI - TOF MS in the 

subtyping of Clostridium difficile. Submitted to Diagn. Microbiol. Infect. Dis, 2015. 
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Zowawi HM, Ibrahim E, Syrmis MW, Wailan AM, AbdulWahab A, Paterson DL. PME-1 
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Abstract 

The newly discovered extended-spectrum β-lactamase, PME-1 was identified in a Pseudomonas 

aeruginosa isolated from pulmonary secretions of a 3 year old Qatari child, receiving prolonged 

ventilation in Doha. The patient had past hospitalizations in Saudi Arabia and the United Kingdom. 

Using whole genome sequencing, the isolate was found as sequence type (ST 654) and carrying 

multiple antibiotic resistance determinates beside  blaPME-1 such as blaGES-5, strA, aph(3')-Via, 

aph(3')-IIb, strB, fosA, catB7, sul1, tet(A) and tet(G).  
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Main body  

The novel extended-spectrum beta-lactamase (ESBL), PME-1 was first described in 2010 from a 

Pseudomonas aeruginosa strain obtained from blood, surgical wound, and urine specimens from a 

single patient admitted to University of Pittsburgh Medical Center in 2008. The patient had 

prolonged hospitalization (6-months) in Dubai, United Arab Emirates, immediately before being 

transferred to the United States (1). We describe here the first case of P. aeruginosa carrying 

blaPME-1 isolated from Qatar and the second report to the date of this enzyme. 

A 3 year old Qatari child developed pneumonia due to P. aeruginosa and Serratia marcescens. Her 

past history included tetralogy of Fallot for which she had undergone cardiac surgery in Saudi 

Arabia at the age of four months. Post-operatively she had a cardiac arrest and developed hypoxic 

ischemic encephalopathy. After seeking further medical care in the United Kingdom she became 

ventilator dependent. She was subsequently accommodated in a Paediatric Long Term Ventilation 

unit in Qatar, where she underwent mechanical ventilation via a tracheostomy. During this period 

she developed purulent pulmonary secretions and new infiltrate on her chest radiographs. These 

pulmonary secretions grew P. aeruginosa and S. marcescens. Treatment with 

piperacillin/tazobactam was successfully administered for ten days, but she remained chronically 

ventilated. 

The P. aeruginosa HZ-QTR-51 isolate was sent to the reference laboratory at The University of 

Queensland, Centre for Clinical Research (UQCCR) as part of a region-wide collaborative study on 

multidrug resistant Gram-negative bacilli (2, 3). P. aeruginosa HZ-QTR-51 isolate underwent 

antibiotic susceptibility testing using E-test to measure the minimal inhibitory concentration of 

several antimicrobial compounds as listed in table 1. 

The bacterial genomic DNA was extracted using the UltraClean Microbial DNA Isolation kit (MO 

BIO Laboratories) as recommended by the manufacturer. Species identification was performed 

using PAduplex assay that targets ecfX and gyrB genes, as previously described (4). Paired-end 
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libraries of whole genomic DNA of HZ-QTR-51 was prepared via Nextera XT DNA Sample 

Preparation Kit (Illumina, San Diego, USA) and sequenced by Illumina HiSeq platform (Illumina, 

San Diego, USA). The 100bp pair-end reads were de novo assembled using CLC Genomic 

Workbench v.7.5.1 (CLC Bio, Aarhus, Denmark) with a minimum contig length of 200bp. 167 

contigs were assembled with a depth coverage of ca. 100x. 

The identities of the P. aeruginosa HZ-QTR-51 sequence type (ST) strain was confirmed by in 

silico multilocus sequence typing (MLST) (https://cge.cbs.dtu.dk/services/MLST/) using the P. 

aeruginosa MLST 1.7 database targeting seven potential loci (acs, aro, gua, mut, nuo, pps, and trp) 

(5) and defined as sequence type 654 (ST 654). ResFinder 2.1 platform 

(http://cge.cbs.dtu.dk/services/ResFinder/) (6) was also used to characterize acquired antimicrobial 

resistance mechanism genes among draft genomes. We found that the isolate encoded blaPME-1 

besides blaOXA-50, blaGES-5 and blaPAO contributing to β-lactam resistance; and strA, aph(3')-

Via, aph(3')-IIb, and strB for aminoglycoside resistance. The isolate also carried fosA for 

fosfomycin resistance, catB7 for phenicol resistance, sul1 for sulphonamide resistance; and tet(A) 

and tet(G) for tetracycline resistance. 

For further confirmation, blaPME specific primers were designed and PCR was carried out using 

GoTaq® Green Master Mix and the following primers; PME-F (5’- 

CGCATTGCTGCTGTTTATGC-3’) and PME-R (5’-GTGGGCATCGGATTCGTA-3’), yielding 

an 849-bp product. The run conditions used for this reaction started with denaturation at 95oC for 3 

min; followed by 34 cycles at 95oC for 30 s, 55oC for 30 s, 72oC for 60 s; and a final extension at 

72oC for 5 min. The sample was also PCR screened for other major groups that confer clinically 

relevant resistance to carbapenems, blaVIM-type (7), blaIMP-types (8), and blaNDM-type, 

blaKPC-type in a duplex reaction (2), but no positive PCR result was observed. 

P. aeruginosa HZ-QTR-51 was phenotypically resistant to all tested antibiotics and was on the 

breakpoint border for amikacin (Table 1). The initial PME-1 producing P. aeuginosa GB771 
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identified in Pittsburgh was resistant to all β-lactams, all aminoglycosides except amikacin, and all 

fluoroquinolones. Although PME is not a carbapenemase, this might be due to the other antibiotic 

resistance mechanism that P. aeruginosa known to carry such as chromosomally encoded AmpC 

cephalosporins, modified outer membrane porin OprD, and multidrug efflux pumps.(9) 

P. aeruginosa ST 654 is noteworthy for several reasons. VIM-2 producing P. aeruginosa ST 654 has 

been isolated from a patient in Sweden following hospitalization in Tunisia (10). ST 654 was also 

associated with KPC producing P. aeruginosa from Argentina (11). More recently, VIM-2 

producing P. aeruginosa ST 654 was identified among the international ‘high-risk clones’ in the 

United Kingdom (12). 

In conclusion, this study shows the first description of PME-1 producing P. aeruginosa in Qatar and 

the second in the world (13). Although our patient has a history of medical travel to United 

Kingdom and Saudi Arabia, she has not received any medical management in Dubai, where the first 

blaPME-1 producing P. aeruginosa is believed to have originated from. This might highlight the 

possibility that PME-1 producing P. aeruginosa are disseminated in the Gulf region. The currently 

described P. aeruginosa isolate belongs to the successful international clone ST 654, which might 

contribute to the global spread of blaPME-1. Hence, we suggest active surveillance for multidrug 

resistant P. aeruginosa to assess the dissemination and prevalence of PME mediated antibiotic 

resistance. 
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Table 1: MICs of PME-1 producing P. aeruginosa HZ-QTR-51. 

Antimicrobial Category Antimicrobial Agent MIC 

(mg/L) 

EUCAST 

Interpretation 

Aminoglycosides Gentamicin  >256 R 

Amikacin 16  NS 

Netilmicin >8  R  

Antipseudomonal Penicillins and 

Beta-lactamase Inhibitors  

Ticarcillin/Clavulanate  >256 R 

Piperacillin/Tazobactam  >32  R  

Carbapenems  Imipenem >32  R  

Meropenem >32  R 

Doripenem >32  R 

Extended Spectrum Cephalosporins Ceftazidime 32  R  

 Cefepime 16  R  

Fluoroquinolones  Ciprofloxacin >32 R 

Monobactams  Aztreonam 128  R 

MIC. Minimum inhibitory concentration; R, resistant, NS, non susceptible 
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Abstract 

Acinetobacter baumannii, one of the more clinically relevant species in the Acinetobacter genus is 

well known to be multi-drug resistant and associated with bacteremia, urinary tract infection, 
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pneumonia, wound infection and meningitis. However, it cannot be differentiated from closely 

related species such as A. calcoaceticus, A. pittii and A. nosocomialis by most phenotypic tests and 

can only be differentiated by specific, time consuming genotypic tests with very limited use in 

clinical microbiological laboratories. As a result, these species are grouped into the A. calcoaceticus 

– A. baumannii (Acb) complex. Herein we investigated the mass spectra of 73 Acinetobacter spp., 

representing ten different species, using an AB SCIEX 5800 MALDI – TOF MS to differentiate 

members of the Acinetobacter genus, including the species of the Acb complex. RpoB gene 

sequencing, 16S rRNA sequencing, and gyrB multiplex PCR were also evaluated as orthogonal 

methods to identify the organisms used in this study. We found that whilst 16S rRNA and rpoB 

gene sequencing could not differentiate A. pittii or A. calcoaceticus, they can be differentiated using 

gyrB multiplex PCR and MALDI – TOF MS. All ten Acinetobacter species investigated could be 

differentiated by their MALDI – TOF mass spectra.  
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1. Introduction 

Acinetobacter baumannii is an opportunistic, aerobic, Gram-negative nosocomial pathogen that has 

become one of the six most important multi-drug resistant microorganisms worldwide (Antunes et 

al., 2014). A. baumannii is commonly known to cause difficult to treat pneumonia, bacteremia, 

urinary tract infection, wound infection and meningitis (Maragakis and Perl, 2008).  

Accurate identification of A. baumannii and its closely related species A. pittii, A. nosocomialis and 

A. calcoaceticus is important as each of these species may display different characteristics in 

regards to antimicrobial susceptibilities, pathogenicity and clinical outcomes (Chuang et al., 2011; 

Sedo et al., 2013). The environmental strain A. calcoaceticus has not been reported to cause 

infection in humans whilst the other organisms are all of clinical significance (Peleg et al., 2008; 

Peleg et al., 2012). A recent paper has described increased severity and mortality in bacteraemia 

patients infected with A. baumannii compared with those infected with A. pitii and A. nosocomialis, 

emphasising the need for accurate differentiation (Fitzpatrick et al., 2015).  

However, these four species which together make up the A. calcoaceticus – A. baumannii (Acb) 

complex are indistinguishable by phenotypic based tests (Peleg et al., 2008; Wang et al., 2013; Lee 

et al., 2014).  

Molecular methods such as 16S rRNA and rpoB gene sequencing and have shown to be useful in 

differentiating members of the Acinetobacter genus (La Scola et al., 2006; Zarrilli et al., 2009; 

Wang et al., 2014). However, neither method is sufficient   to differentiate species such as A. pittii 

and A. calcoaceticus (Higgins et al., 2010), and other molecular methods such as PCR amplification 

of intrinsic resistance genes or gyrB are used. However, these methods are mainly applied in 

research settings and have very limited use in clinical laboratories (La Scola et al., 2006; Higgins et 

al., 2010; Kamolvit et al., 2014). 

Matrix assisted laser desorption ionisation – time of flight mass spectrometry (MALDI – TOF MS) 

has been shown to be a rapid and highly discriminatory method for the identification of bacteria 

(Kliem, 2010; Welker et al., 2011; Sedo et al., 2013). MALDI – TOF instruments that are 
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commonly used in clinical settings for bacterial identification rely on the use of proprietary 

identification software and spectral databases (Martiny et al., 2012).  

In this study, we evaluated the use of a research-use-only (RUO) 5800 MALDI – TOF MS (AB 

SCIEX, Concord, ON, Canada) to differentiate and identify various species in the Acb complex, as 

well as other Acinetobacter spp. using only the standard instrument software and freely available 

open-source software for the acquisition, processing and interpretation of spectra. 

2. Materials and Methods 

2. 1. Bacterial isolates and reference strains 

The strains investigated in our study included thirty two multilocus sequence typed (MLST typed) 

A. baumannii isolates, six Acinetobacter reference strains and thirty five additional Acinetobacter 

isolates as described below: 

The MLST typed A. baumanni isolates included sixteen isolates of sequence type (ST)110, four 

isolates of ST92 and three isolates of ST109 (Huber et al., 2014). In addition to this, four isolates of 

from the Arabian peninsula were added to the study, including one isolate from Saudi Arabia of the 

ST195 and one of ST436, respectively, plus one isolate of ST208 from Kuwait and one of ST229 

from Qatar (Zowawi et al., 2015).  

Two additional isolates of ST208 were of Japanese origin, and one isolate of ST208 was from 

Thailand, and two Singaporian strains were of ST491 (Kamolvit et al., unpublished data). The 

isolates from Japan, Thailand and Singapore were collected between 2008 and 2010, and the MLST 

typing was performed in silico. The Kenyan strains and the strains from the Arabian peninsula were 

collected and MLST typed as previously described (Huber et al., 2014; Zowawi et al., 2015). MLST 

typing has been performed according to the Oxford scheme for all isolates 

(http://pubmlst.org/abaumannii/). 
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The following reference strains and previously published isolates and were added to the study;     A. 

baumannii ATCC 19606, A. calcoaceticus  ATCC 14987, A. lwoffi ATCC 15309 and ATCC 

17986, A. johnsonii ATCC 17909, A. junii ATCC 17908, A. baylyi (n=1), A. calcoaceticus (n=1), 

A. pitii (n=1) (Peleg et al., 2012) and A. nosocomialis (n=2) (Peleg et al., 2012; Carruthers et al., 

2013).  

Various additional Acinetobacter spp. from Kenya (n=4, provided by the AGA KHAN University 

hospital in Nairobi, Kenya and collected between 2010-2011), Japan (n=12, provided by the Toho 

University in Tokyo, Japan and collected in 2010 ), Australia (n=2, collected at the Royal Brisbane 

and Women’s hospital in Brisbane, Australia in 2004 and 2006 respectively), Thailand (n=7, 

provided by the Siriaj Hospital in Bangkok), Singapore (n=5, collected in 2008 and provided by the 

National University of Singapore). All isolates were grown on Mueller Hinton agar and incubated 

for 24 hours in a 37oC incubator, and identification and confirmation of species was performed as 

described in chapter 2. 2. 

 

2. 2. 16S rRNA identification 

All Acinetobacter spp. isolates were initially identified by the sequencing of the 16S rRNA gene as 

previously described (Misbah et al., 2005). Sequencing was performed by Macrogen Inc, Seoul, 

Korea, and sequences were blasted on NCBI using the megablast function against the 16S 

ribosomal RNA sequences database with maximum target sequences being set at 100. If 16S rRNA 

sequencing was unable to identify an isolate using the highest percentage identity, score and an E-

value of 0 resulting in a  sequence that matches two species with identical lengths, rpoB gene 

sequencing of zone 1 and 2 was performed as previously described (La Scola et al., 2006). A 

previously described gyrB multiplex PCR (Higgins et al., 2010) was used to differentiate A. 

calcoaceticus and A. pittii. 

 

2. 3. MALDI - TOF MS 
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MALDI – TOF MS analyses were conducted on a 5800 TOF/TOF set in linear positive mode 

running the TOF/TOF Series Explorer acquisition software (AB SCIEX, Framingham, 

Massachusetts) at a laser frequency of 100 Hz with a set mass range of 3,000 to 20,000 Da. A 

continuous stage motion set in a random pattern at 600 μm/sec was used for sampling. 

An in-house sinapinic acid matrix consisting of 10mg of sinapinic acid (>99.0% for MALDI-MS, 

Fluka 85429) in 500 µL acetonitrile, 475 µL distilled water and 25 µL 80% trifluoroacetic acid 

(TFA, LC-MS grade, Fluka 40967) was adapted from a previously published protocol (Freiwald 

and Sauer, 2009). Calibration was performed using calibration mixture 2 (AB SCIEX, Framingham, 

Massachusetts) which contained Angiotensin I, ACTH (1-17 clip), ACTH (18-39 clip), ACTH (7-

38 clip) and insulin (bovine) to ensure mass accuracy within 5 ppm. 

2. 4. Acquisition of mass spectra  

A small amount of bacteria (approximately 106 – 108 cfu) was transferred from a 24 hour culture 

by spreading a thin layer onto a sample spot on an Opti-TOF 384 MALDI plate insert (AB SCIEX, 

Framingham, Massachusetts) and overlaid with 1 µL of sinapinic acid matrix. Each isolate was 

spotted in quadruplicate and each replicate scanned once. Laser intensity was set at 4322 units and 

at a pulse rate of 100 Hz with a total of 1000 spectra accumulated for each sample. A mass range of 

m/z 3,000 to m/z 20,000 and a continuous stage motion set in a random pattern at 600 µm/sec was 

used for sampling. The TOF/TOF Series Explorer acquisition software (AB SCIEX, Framingham, 

Massachusetts) was used to acquire mass spectra. 

2. 5. Processing of spectra 

Mass spectra files were non-manipulatively converted from t2d files to mzXML files using a t2d 

converter (http://www.pepchem.org) and processed using mMass version 5.50 (Strohalm et al., 

2008) (http://www.mmass.org/). Processing of raw spectra was conducted in mMass 5.5 (Martin 

Strolham) with a peak picking algorithm that used baseline correction, Savitzky-Golay smoothing 

and a signal to noise ratio of 3. Replicates of the same isolates were averaged to form a consensus 

spectrum.  
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3. Results 

3. 1. Bacterial identification  

Using 16S rRNA identification, we confirmed the following Acinetobacter spp. in our collection; A. 

baumannii (n=37), A. nosocomialis (n=15), Acinetobacter junii (n=3), Acinetobacter lwoffii (n=2), 

Acinetobacter johnsonii (n=1), Acinetobacter baylyi (n=1), Acinetobacter soli (n=1) and 

Acinetobacter bereziniae (n=1).  

Using rpoB gene sequencing and gyrB multiplex PCR we determined the remaining fourteen strains 

to be A. pittii (n=12) and A. calcoaceticus (n=2). The results are as summarized in Table 1. 

3. 2. MALDI – TOF MS based characterisation 

All ten Acinetobacter species investigated in our study had sufficient differences in their mass 

spectra to be characterised and differentiated using MALDI – TOF MS. In all of the A. baumannii 

strains investigated (n = 35) we observed the presence of a characteristic, high intensity mass of m/z 

5743.05, as well as two other specific masses of m/z 8583.00 and m/z 8715.00 that could be used to 

distinguish A. baumannii from other Acinetobacter spp. (Figure 1). Additionally, all the species that 

were not part of the Acb complex could also be characterised and differentiated (Summarised in 

Table 1).  

Nine of the twelve A. pittii isolates studied had a representative high intensity mass of m/z 5780.03 

and two other specific masses of m/z 8620.00 and m/z 8822.00. In addition, three of the twelve 

isolates were also characterized by a mass at m/z 5743.05, with similar intensity to that of the one in 

A. baumannii. However, the mass at m/z 5780.03 was absent (Figure 1).  

In A. nosocomialis we observed a representative mass at m/z 8134.00 in all isolates, and another 

mass at m/z 8542.00 in fourteen of fifteen isolates (Figure 2). In A. calcoaceticus, we observed a 

representative prominent peak at m/z 5829.00 that occurred in both isolates of this species (Figure 

2).  
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4. Discussion 

Retrospective studies found that A. baumannii was associated with higher mortality rates, greater 

antimicrobial resistance and different clinical characteristics than the ones of A. nosocomialis and 

A. pittii (Chuang et al., 2011; Lee et al., 2011; Yang et al., 2013). This raises the importance of 

being able to differentiate the organisms within the Acb complex to allow for treatment to be 

optimised for specific organisms. 

A. calcoaceticus – A. baumannii complex organisms are hard to differentiate because of high 

phenotypic similarities (Gerner-Smidt et al., 1991). Molecular methods such as 16S rDNA and 

rpoB sequencing as well as gyrB PCR amplification are possible methods to discriminate between 

these strains. We observed that 16S rRNA sequencing or rpoB gene sequencing were not sufficient 

to differentiate A. pittii and A. calcoaceticus, and that the identification of these two organisms 

required gyrB multiplex PCR. However, in our investigation these species showed MALDI-TOF 

mass spectra that are clearly distinct from each other.  

MALDI is a soft desorption ionization method which may result in the formation of ions without 

significantly breaking chemical bonds, which is particularly useful in protein analysis. MALDI 

instruments commonly used for bacterial identification use licenced software packages that are 

incompatible with instruments of other brands. Such instruments are usually single TOF mass 

analysers that do not allow for efficient structure and sequence investigation of analytes. The 

ABSciex 5800 instrument in our laboratory is a TOF/TOF instrument which can overcome the 

limitations of a single TOF mass analyser by linking two TOF mass analysers in series, making it a 

much more powerful tool in protein research (Ng et al., 2014). However, due to the lack of a 

database, bacterial identification is not readily performed with this instrument. 

 

The use of freeware to augment the abilities of RUO instruments such as the 5800 TOF/ TOF 

greatly increase the functionality and availability of these instruments for bacterial identification.  

The ability to differentiate species without using automated systems may be a step back from the 
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automated systems that the VITEK – MS and the Biotyper offer, but it validates the ability of 

MALDI – TOF instruments to visualise spectral differences for greater discrimination between 

closely related species.  

As we have seen in our study, MALDI – TOF was able to differentiate closely related species such 

as A. pittii and A. calcoaceticus. It appears that MALDI – TOF may also differentiate various 

Acinetobacter spp. from each other, as well as organisms that fall within the Acb complex. 

Automated processes would be required if this method is to be used as part of a diagnostic 

procedure.  
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