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Spontaneous emission from two-level atoms interacting with a squeezed vacuum field is exam-
ined, taking account of possible different interatomic separations. It is shown that the steady-state
atomic population depends on whether the interatomic separations are comparable to or much
smaller than the resonant wavelength. For the extended system the squeezed vacuum introduces a
dependence of the atomic population on the interatomic separations. For large interatomic separa-
tions the atomic population is identical to that for the thermal field, which is the same for two in-
dependent atoms. For small interatomic separations the atomic population is higher than that for
the thermal field. This is in contrast to the small-sample model in which the interatomic separation
is ignored. In this case the final atomic population in the squeezed vacuum is the same as that for
the independent atoms in the squeezed vacuum. Moreover, this population differs from that for the
thermal field for which the atomic population is lower than that for the independent atoms. This
difference is due to the interatomic correlations whose presence depends on whether the interatomic
separation is or is not included. For the extended system the interatomic correlations are induced
by the squeezed field and vanish for the thermal field. For the small-sample model, however, the in-
teratomic correlations are induced by the thermal field and the squeezed vacuum changes these
correlations in such a way that for the minimum-uncertainty squeezed states these correlations van-
ish. We also discuss the effect of the interatomic separation on the two-photon transitions and the
normalized intensity correlation function in the two-atom system interacting with the squeezed vac-
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Spontaneous emission from two atoms interacting with a broadband squeezed vacuum

uum field.

I. INTRODUCTION

The generation of squeezed states of the radiation field
is an objective in quantum optics and provides a test for
the quantum theory of light. The attention on the gen-
eration of squeezed states stems mostly from a possiblity
of reducing quantum fluctuations, or quantum noise,
below the vacuum level. This presents obvious advan-
tages for practical applications, for example, in optical
communication and in gravitational wave detection,
where signals even below the vacuum limit are expected.

Various theoretical methods for the generation of
squeezed states have recently been proposed’ and the first
successful experiments have been reported.? With the
possibility of obtaining squeezed fields, it is quite natural
to examine the interaction of such fields with matter.
New theories of interaction of atomic systems with the
radiation field have been recently developed based on the
assumption that the atoms interact with a multimode
broadband squeezed vacuum rather than with the normal
(unsqueezed) vacuum. Some very interesting deviations
from the ordinary decay and ordinary emission and ab-
sorption spectra in a normal vacuum environment are ob-
tained under such conditions. In particular, the decay
rate of the atomic dipole is seen to depend on its phase
relative to the squeezed field. The two quadratures of the
atomic polarization are damped at different rates, one ex-
hibiting an enhanced decay rate and the other a reduced
decay rate compared with the normal radiative decay of
the atom. This opens the possibility of obtaining sub-
natural linewidths in resonance fluoresence® and in the
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weak-field atomic absorption spectrum.® Some correc-
tions to the Lamb shift in a broadband squeezed vacuum
also have been reported.’ ™’

Quite recently, cooperative effects arising from the in-
teraction of many atoms with the squeezed vacuum field
have been studied. The multiatom resonance fluores-
cence spectrum in the squeezed vacuum demonstrates
asymmetry in the off-resonance excitation by an external
coherent laser field.®*° However, for exact resonance of
the external field with the atomic frequency, the fluores-
cence spectrum is the same as for the one-atom case.'”
Palma and Knight!'! have studied spontaneous emission
from the two-atom Dicke model and have shown that the
total atomic population decays at a rate that depends on
the extent of squeezing, a feature completely absent in the
single two-level atom decay.> Moreover, the final equilib-
rium atomic state is far from being a state of thermal
equilibrium. In the Dicke model it is assumed that the
interatomic separations are much smaller than the reso-
nant wavelength, as all effects connected with the spatial
distribution of the atoms are ignored. In this model the
square of the “total spin” of the atomic system is con-
served.'? This assumption, however, may prove difficult
in experimental realizations of such a model in free space.
Hence, it seems natural to investigate, as an alternative
problem, what happens when the atoms are separated at
the distances comparable to the resonant wavelength.
This is well justified because the experiments in atomic
spectroscopy use atomic-beam methods'* or atoms fixed
in organic layers and placed near a plane dielectric
plate."* In such experiments the atomic separations are
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on the order of a resonant wavelength and spatial effects
cannot be ignored. In this case the square of the total
spin of the atomic system is not conserved;!? i.e., the ex-
tended system breaks the S? invariance.

Some strikingly different physical behaviors of the res-
onance fluorescence between SZ2-conserving and S2-
breaking systems have been reported. Walls et al.'’ have
shown that the S2-conserving system predicts a second-
order phase transitions, while the S2-breaking system
predicts a first-order phase transition. It has also been
shown!®!” that the so-called “scaling factor,”'® or the
enhancement of the integrated fluorescence by N atoms,
appears only in the S2-conserving systems. Otherwise,
for the S2-breaking system, the integrated fluorescence by
N atoms in N times that for a single-atom case.

In this paper we consider the effect of interatomic sepa-
ration on the final equilibrium atomic state in the spon-
taneous emission from two two-level atoms interacting
with a broadband squeezed vacuum field and compare
this with the case when atoms interact with a thermal
(blackbody) field at a temperature T. As we shall show
below, this model shows results substantially different
from those for the two-atom Dicke model, where the in-
teratomic separation is ignored. We start from the Ham-
iltonian for the two-atom system, interacting with the
squeezed vacuum field, and derive a master equation for
the reduced density operator p of the two-atom system.
We then apply the equation to the problem of spontane-
ous emission, and we study in detail the steady-state solu-
tions for the total atomic population, the interatomic
correlations, and two-photon correlations.

II. TWO ATOMS IN A SQUEEZED VACUUM

We consider a pair of two-level atoms, separated by a
distance r;, and interacting with the quantized mul-
timode radiation field. The Hamiltonian of the system in
the electric dipole approximation is given in the following
form:
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where o is the atomic resonance frequency, S,-T, S;, and
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S7 are pseudospin operators for the ith atom satisfying
the well-known commutation relations

[S;,S;71=287%;, [S7S;1=+S5%; . )
The coupling coefficient is given by
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where V is the normalization volume, €, the unit polar-
ization vector, and p is the transition electric dipole mo-
ment vector.

A master equation for the reduced density operator p
of the two-atom system is derived from the Hamiltonian
(1). The normal treatment of the interaction between
atoms and the quantized radiation field assumes that the
field is in the usual vacuum state. Here we assume that
the quantized radiation field is in a broadband squeezed
vacuum state with the carrier frequency in resonance
with the frequency w, of the atomic transition. The
bandwidth of the squeezing is assumed to be sufficiently
broad that the squeezed vacuum appears as §-correlated
squeezed white noise to the atoms. The correlation func-
tions for the field operators a;, and a,:r can then be written
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where ky=wy/c and py is the reduced density operator
corresponding to the radiation field; N and
M=|Ml|exp(i$¢,) are parameters characterizing the
squeezing such that |[M|2< N(N+1), where the equality
holds for a minimum-uncertainty squeezed states, and ¢,
is the phase of the squeezed vacuum. For |[M|=0, Egs.
(4) describe the thermal field*>?' (black-body field) at a
temperature 7, with N the mean occupation number of
the mode k.

Employing Egs. (1) and (4) we obtain the master equa-
tion for the reduced density operator p of the atoms in-
teracting with the squeezed vacuum in the following form
(see the Appendix):
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where y;=v; =2y =(4u’k3/3#) is the Einstein A4 coefficient for spontaneous emission, Q; and fo’ are connected
with the Lamb shift of the atomic levels. In further calculations we shall ignore the parameters Q,; and Q{;"’, which
can be shown® 7 to be negligibly small when the atoms are in resonance with the carrier frequency of the squeezed vac-
uum. For i the parameters (;; and y;, which appear in Eq. (5), describe collective properties of the two-atom sys-
tem, depending on the interatomic distance r,,, and are defined as**??
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where fi and T, are unit vectors along the transition elec-
tric dipole moment and along the vector r,=r,—r, re-
spectively. Moreover, ko =wy/c =27 /A, for A, the reso-
nant wavelength.

In Egs. (6) and (7) we have assumed that the atomic di-
pole moments p are parallel to each other but may have
different spatial orientation with respect to the line con-
necting both atoms. In Fig. 1, Q,,/y and y,,/¥, defined
in (6) and (7), are plotted for the cases when fi is parallel
and perpendicular to T,,. These two collective parame-
ters strongly depend on the interatomic separation r,,
and on the spatial orientation of the dipole moments.
For large interatomic separations k,r,, goes to infinity,
and then y |, and (1, go to zero, i.e., there is no coupling
between the atoms. Otherwise, for very small interatom-
ic separations, k7, goes to zero, and thus ¥, reduces to

kﬁz

FIG. 1. The damping constants ¥, and frequency shifts £,
as a function of the interatomic separations r;, for dipole matrix
elements fi parallel (||) and perpendicular (1) to T,.
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v, and Q,, reduces to the static dipole-dipole interaction
potential which, for ko7, —O0, tends to infinity. For the
case when y,=v the two-atom system is referred to as
the small-sample model or Dicke model.*~'> However,
this model is valid only when k7, is close to zero. This
limit presents difficulties for the experimental realization
of such a model. The model with y,% is more accessi-
ble for observation than the small-sample model. Experi-
ments with atoms placed near a conducting metallic sur-
face have been reported,’* and a two-atom system de-
scribed by Egs. (5)-(7) is equivalent to the case of one
atom in the presence of such a surface.?>?* This model
can be also related to the experiments using an atomic-
beam method.!> However, in a gas sample the atomic di-
pole orientation with respect to the line connecting both
atoms is a random variable?® and we should average Egs.
(6) and (7) over all possible orientations of the vector dis-
tance ry,. Angular averaging of Egs. (6) and (7) leads to
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which are different from zero and for very small intera-
tomic separations the parameter v, reduces to ¥ and Q,,
tends to infinity similar to the parameters (6) and (7).
Thus Eq. (5), which is fundamental for the theory of radi-
ation of two atoms interacting with a squeezed vacuum,
can be applied to derive the radiative properties of a
two-atom gas sample as well as for fixed atoms near a me-
tallic surface. For the normal vacuum (N =|M|=0) it is
the same as those obtained by Agarwal.”’ Aside from the
parameters ¥, and €;,, which describe the collective
properties of our two-atom system, the radiation depends
on the parameters N and M describing the squeezed vacu-
um. In the following section we apply Eq. (5) to examine
the steady-state radiative properties of the two-atom sys-
tem.

III. STEADY-STATE ATOMIC POPULATION
AND CORRELATION FUNCTIONS

The total atomic population is described by the atomic
operators S{ and S3. Using the commutation relations
(2) we can express the total atomic population by the
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correlation functions {S;*S;”) as
(87)=(S:+S3)=((S{S; +5,78;)—1). (11

To obtain information about the steady-state atomic pop-
ulation we use master equation (5), which for two atoms
leads to a closed set of four equations of motion for the
vacuum expectation values of the atomic operators. We
can write this set of equations in matrix form as

4 X=4X+a, (12)
dr
where A is the real 4 X4 matrix
—n —a 0 0
—a(2n—1) —n —2|M| 4an
A=\ —4Mla  —2M|  -n  8iMla|- 13
Yn—=1 lan—=1) |Mla —2n

The column vector X has the following real components:
X,=(S{Ss; +8F87),
X,=(S}S;y +S78;7),

X;=(S;S; +57S; )cos, e
—i(S}SF —SS; )sing,) ,
X,=(S/8;s78;),
while the vector a has the components
a,=(n—1), a,=aln—1),
(15)

a;=2|Mla, a,=0.

For simplicity, in Egs. (12)-(15) we have introduced the
notation

n=1+2N, a=%. (16)

T=2yt,
By setting the left-hand side of Eq. (12) equal to zero
we obtain the steady-state solutions of this equation.
However, there are two different steady-state solutions of
X depending on whether a1 or a =1. This fact is con-
nected with S? conserving for a =1 and the reduction by
one of the number of independent variables. In this case
the determinant of the A4 matrix vanishes because of the
linear dependence of the variables. To explain it we ex-
press the square of the total spin of the two-atom system
in terms of the X vector components as

S?=2—X,+X,+2X,, (1
and, in accordance with Egs. (12) — (14), we have that

4 = (1—a)(n—D—(2n—1)X,

dr

+nX,+2|M|X;+4nX,]. (18

This means that S? is conserved in the system for a =1
only; otherwise it decays on a time scale ~[2(1—a)y] ™.
If a is very close to 1, however, this decay time is much
longer than (2y)~! and we can ignore this decay for

times of order (2y)”!, assuming that S? is conserved.
This is consistent with the small-sample assumption be-
cause ¥, tends to y as the interatomic separation r, be-
comes small compared to the light wavelength. Howev-
er, for interatomic separations r;, comparable to the res-
onant wavelength, y,, differs considerably from y (see
Fig. 1) and we can no longer ignore the S? decay. This is
the S? conservation breaking case. The physical interpre-
tation of this difference in the steady-state solutions of
Eq. (12) is straightforward: The Hamiltonian (1) can be
diagonalized giving collective states'>'? [0)=|[1),]1),,
energies E,=0, E, =#(wytQ,), and E,=2%w, where
®, is the transition frequency between the ground state
[1); and the excited state |2); of the ith atom (i =1,2).
In this representation, the two-atom system is equivalent
to a single four-level system with one upper state |2), one
ground state |0), and two intermediate states |+ ). The
decay constants?® to and from the superradiant state |+ )
are ¥ +7,, and to and from the subradiant state | — ) are
¥ —v12- For the small sample model (y,,=y) the subra-
diant state is not populated!"?%?® and the two-atom sys-
tem is equivalent to the three-level cascade system. For
the extended system, however, ¥, differs from y and the
subradiant state | — ) is populated and radiation from this
state cannot be ignored.

The steady-state solution of Eq. (12), irrespective of the
initial atomic population, for the S? breaking system, i.e.,
for a#1, leads to the following expression for the total
atomic population:

1 4a?|M|?
(§)=——|1— ) (19)
n n*+4|M|*a?—n?)

For an S’-conserving system, i.e., for a=1, when the
subradiant state is not populated, the steady-state solu-
tion for the total atomic population is

(nt—a|M|?)
n(3n?+1—12|M|%) -~

The above steady-state solutions, apart from the parame-
ter N, also include the absolute value of the parameter M,
which means that the squeezed vacuum changes the
steady-state atomic population. For the normal vacuum
(N=|M|=0) in both cases the steady-state atomic popu-
lation is equal to —1. In this case both atoms are in their
ground states. When the atoms interact with the thermal
field at the temperature T, N#0, |M|=0, and the
steady-state atomic population (19) for the S2-breaking
system is

(§7)=—4

(20

(sty=—1 1)
n

whereas for the S2-conserving system (see also Ref. 11)

4n

(§)=——F7 .
(3n2+1)

(22)

It is now possible to see in detail the strong difference be-
tween the steady-state atomic population for S2-
conserving and S%-breaking systems. In both cases the
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steady-state atomic population is different from that for
the ground states. This is due to the presence of the
nonzero intensity thermal field.?*?! For the S2-breaking
system [Eq. (21)] the steady-state population is indepen-
dent of the atomic interactions and identical with that for
the independent atoms.> For the S?-conserving system
[Eq. (22)], however, the steady-state atomic population
differs significantly from that for the S2-breaking system
and is lower than that for the independent atoms.

If the atoms interact with the squeezed vacuum, N#0,
|M |50, and the steady-state atomic population is given
by Egs. (19) and (20). In this case the steady-state atomic
population differs from that for the thermal field. For the
S2-breaking system [Eq. (19)] the squeezed vacuum intro-
duces a dependence of the atomic population on the in-
teratomic separation, a feature completely absent in the
normal vacuum as well as for the thermal field. For the
independent atoms a =0, and the steady-state population
is the same as for the thermal field. Inversely, for small
interatomic separations a =1, and the atomic population
is higher than that for the thermal field. The situation is
quite different for the S*-conserving system. From Eq.
(20) and for the minimum-uncertainty squeezed states,
ie., for [M|*=1(n?—1) we have that the atomic popula-
tion is the same as that for two independent atoms.
Despite this, the atomic population differs from that for
the thermal field [see Eq. (22)]. This means that for the
S2-conserving system the squeezed vacuum destroys
internal atomic correlations which are induced by the
thermal field and lead to an atomic population different
from that for the independent atoms. It is the inverse of
the S2-breaking system where the squeezed vacuum in-
duces internal atomic correlations which are absent for
the thermal field. In order to show this, we find from Eq.
(12) the steady-state solution of the X, component of the
vector X which describes internal atomic correlations.
For the S2-breaking system, the steady-state solution for
the X, component has the form

—4a|M|?
n*+4|M|Ha%—n?
It is evident from the above equation that the interatomic
correlations are different from zero only when the atoms
interact with the squeezed vacuum. Thus the squeezed
vacuum induces interatomic correlations which lead to
changes in the steady-state atomic population.

For the S2-conserving system, however, the steady-
state solution for the X, component is quite different
from that for the S2-breaking system and has the form

X,=(S{S; +8/8; )=

(23)

Q) (n*(n—=12—4|M|*[(n —1)?—a?]}[n*+4|M|Xa?—n?)]

n’—1—4|M|?
3n+1—-12|M2

In this case non-negligible interatomic correlations are
induced by the thermal field. The squeezed vacuum,
however, changes these correlations in such a way that
for the minimum uncertainty squeezed states, i.e., for
|M|*=1(n?—1), these correlations vanish. Thus, for the
S2-conserving system the squeezed vacuum destroys the
interatomic correlations, which leads to the steady-state
atomic population identical with those for two indepen-
dent atoms.

From Eq. (12) it is also possible to calculate the
changes of the atomic population by two-photon absorp-
tion or emission. These changes are described by the X,
component of the vector X. It is not difficult to verify
from Eq. (12) that for the S2-breaking system the steady-
state solution for the X; component is

2na|M|

X,=(5;S; +8;8; )= (24)

= , (25)
3 n*+4|M|*a*—n?)
whereas for the S2-conserving system
1M | 26)

SoalBni+1—-12IM7]

It is evident from the above equations that the correlation
functions describing changes of the atomic population by
two-photon absorption or emission are different from
zero only when atoms interact with the squeezed vacuum.
Moreover, these correlation functions are different from
zero independent of whether the system is or is not S
conserving. This is in contrast to the one-photon atomic
correlations functions (23) and (24) where these correla-
tions functions strongly depend on whether the system is
or is not S?-conserving.

Equations (12) for atomic correlation functions gives us
a good starting point to also calculate the second-order
correlations of the emitted photons. These correlations
are described by the normalized intensity correlation
function,?”2® which in the notation of the components of
the vector X has the form

4x,
(X, +X,)?

(2) =

g (27)

A straightforward but lengthy algebraic manipulation
of Egs. (12) and (27) for the S%-breaking system leads to
the steady-state intensity correlation function

g

whereas for the S?-conserving system

2 nBn*+1—=12|M|})[n(n —1)*—4|M|*(n —2)]
4n—1)2(n2—a|M|2)? '

g
(29)

{n}n—1—4|M’[n(n—1)+a(1—a)]}?

) (28)

[

For the thermal field (|M|=0) Eq. (28) gives the value 1
irrespective of N and interatomic interactions. This im-
plies that for the S*-breaking system the emitted photons
are uncorrelated. For the S%-conserving system, howev-
er, the normalized intensity correlation function can be
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different from 1. According to Eq. (29) the S2-conserving
system in the thermal field has the intensity correlation
function

3n’+1
g=3n"11

o (30)
n

Since n 2 1, this function is always smaller than 1. This
implies that for this system the emitted photons are an-
ticorrelated.

The results are quite different when the atoms interact
with the squeezed vacuum field. It is not difficult to veri-
fy from Eq. (28) that for the S%-breaking system and for
highly squeezed (N >>1) minimum-uncertainty states we
have g'¥’~1, whereas for weakly squeezed (N <<1)
minimum-uncertainty states.

(2) a’
& S N(-2a+2a27 oy
It is readily seen that now the intensity correlation func-
tion is greater than 1. This reflects the high correlation
of the emitted photons for the S2-breaking system. How-
ever, this applies only in the limit of a weak squeezing.
Otherwise, for the strong-squeezing case the photons are
weakly correlated.
For the S%-conserving system and for the minimum-
uncertainty squeezed states from (29) we get

(2)__2n
n—1"~

(32)

which is always greater than 1. Thus we obtain for this
system that the emitted photons are highly correlated for
all values of N. These high correlations are due to the
fact that the squeezed field contains strong internal corre-
lations,'® which are transferred to the atomic system, and
they generate strong correlations between the emitted
photons.

IV. CONCLUSION

We have considered here the problem of spontaneous
emission from two two-level atoms separated by the arbi-
trary distances rj,, and interacting with the squeezed
vacuum field. We have been especially concerned with
the steady-state solution for the total atomic population
when the interatomic separations r;, are comparable to
the resonant wavelength (the S? conservation breaking
case) as well as when are much smaller than the resonant
wavelength (the S2-conserving system).

We have found that the steady-state atomic population
is different depending on whether the system is or is not
S? conserving. For the S%-breaking system the squeezed
vacuum induces dependence of the atomic population on
the interatomic separation, a feature completely absent in

_

zp—p(0 +Mz 7;(’”4-19(+

the normal vacuum as well as in the thermal field. The
final atomic population differs from that for the thermal
field for which the atomic population is the same as that
for noninteracting atoms. This is in contrast to the S2-
conserving system!! for which the final atomic population
in the squeezed vacuum is the same as that for the nonin-
teracting atoms, but differs from that for the thermal field
for which the atomic population is lower than that for
the noninteracting atoms. This difference between these
two systems is induced by the atomic correlations. For
the S%-breaking system the interatomic correlations are
different from zero only when atoms interact with the
squeezed vacuum, and vanish in the thermal field. For
the S 2—conserving system, however, the interatomic
correlations are different from zero when the atoms in-
teract with the thermal field and vanish for the minimum
uncertainty squeezed field.

We have also shown that for the S2-breaking system
interacting with the thermal field the emitted photons are
uncorrelated, whereas for the S2-conserving system the
emitted photons are anticorrelated. The photon correla-
tions are quite different when the atoms interact with the
squeezed field. For the minimum-uncertainty squeezed
states the S2-conserving system emits highly correlated
photons. The S%-breaking system, however, emits highly
correlated photons only in the limit of weak squeezing.
For strong squeezing the emitted photons are weakly
correlated.

The present analysis of spontaneous emission from two
atoms show that this effect is sensitive to the interatomic
separations. However, the role of the interatomic separa-
tions cannot be unambiguously declared as ‘“‘destructive”
or ‘“‘constructive.” We hope our paper may contribute
towards the clarification of this situation and may prove
useful in designing future experiments.
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APPENDIX: DERIVATION OF EQ. (5)

We derive the master equation (5) applying the method
used by Agarwal®® to obtain the master equations for the
reduced density operator p with the quantized radiation
field in the vacuum state. Here we assume that the quan-
tized radiation field is in a broadband squeezed vacuum
state with the correlations functions for the field opera-
tors q;, and ak given by Eq. (4). The Laplace transform
of Agarwal’s? equation (6.28) with Eq. (4) takes the fol-
lowing form:

([S;.pS; 1+[S, p, S, ]+M*2(n‘+’—zn'+’ (S pS; 14187 p,S7 ]

+3 [ N+1>y,.;’+Ny£-,“](pS,‘s,. +S;7S p—28" pS; )+ N+ Dy, + Ny UpS S, +S,"S, p—28pS,")
L)

+i2N+1)3 Q,[S

1,

f+Si7,P]+i 2 Qij[Si+ (AD)

S;yP]:O ’
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where
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k
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and z is the complex Laplace transform parameter.

In deriving Eq. (A1), we have made the rotating-wave
approximation;*® i.e., we neglected rapidly oscillating
terms with frequency 2w, (the so-called counterrotating
terms). In Eq. (A1) we have also assumed that the carrier
frequency of the squeezed vacuum is in resonance with

the frequency o, of the atomic transition.

We will now consider all modes of the radiation field
available for spontaneous emission and go over to the
free-space continuum limit ¥V — oo, so that

vV 2
RN dk
% (2m)} f 2

s=1

(A3)

where s represents the polarization of the mode k. Furth-
ermore, we employ the Markov approximation, i.e., we
ignore the retardation effects’! by assuming that the time
At required for the light signal to traverse the system is
small comparable to the atomic lifetime, i.e.,

max(r;;/c)<<cAt . (A4)

In this case we can replace v\, i}, @i, and Q,; by
their limiting values as z—0". With these approxima-

tions and for a sufficiently long time, i.e.,

t>>(1/wg), t>>max(r;/c), (AS)

the inverse Laplace transform of Eq. (A1) leads to Eq. (5)
with the coefficients y;; and Q,; given in Egs. (6) and (7).

*On leave from Institute of Physics, Adam Mickiewicz Univer-
sity, Poznan, Poland.
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