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Abstract

We present a novel deep convolutional neural network
(DCNN) system for fine-grained image classification, called
a mixture of DCNNs (MixDCNN). The fine-grained im-
age classification problem is characterised by large intra-
class variations and small inter-class variations. To over-
come these problems our proposed MixDCNN system par-
titions images into K subsets of similar images and learns
an expert DCNN for each subset. The output from each
of the K DCNNs is combined to form a single classifica-
tion decision. In contrast to previous techniques, we pro-
vide a formulation to perform joint end-to-end training
of the K DCNNs simultaneously. Extensive experiments,
on three datasets using two network structures (AlexNet
and GoogLeNet), show that the proposed MixDCNN sys-
tem consistently outperforms other methods. It provides a
relative improvement of 12.7% and achieves state-of-the-art
results on two datasets.

1. Introduction
Fine-grained image classification consists of discrimi-

nating between classes in a sub-category of objects, for in-
stance the particular species of bird or dog [2, 5, 8, 9, 23].
This is a very challenging problem due to large intra-class
variations (due to pose and appearance changes), as well
as small inter-class variation (due to only subtle differences
in the overall appearance between classes). See Fig. 1 for
examples.

To cope with the above problems, many fine-grained
classification methods have performed parts detection [2, 5,
20, 24] in order to decrease the intra-class variation. Re-
cently, an alternative approach was introduced by Ge et
al. [13] where the images were first partitioned into K non-
overlapping sets and K expert systems were learned. By
grouping similar images, the input space is being parti-
tioned so that an expert network can better learn the subtle
differences between similar samples. Expert selection was
performed by training a dedicated gating network which as-

(a)

(b) (c)

Figure 1. Example images from the Birdsnap dataset [3] which
exhibits large intra-class variations and low inter-class variations.
Each column represents a unique class.

signs samples to the most appropriate expert network. This
approach has two downsides. Firstly, a separate gating net-
work (subset selector) needs to be trained. Secondly, the
expert networks are trained only to extract features, leaving
the final classification to be performed by a linear support
vector machine (SVM).

We propose a novel system based on a mixture of
deep convolutional neural networks (DCNNs) that pro-
vides state-of-the-art performance along with several im-
portant properties. Similar to Ge et al. [13], we partition
the data into K non-overlapping sets to learn K expert
DCNNs. However, unlike [13], the classification decision
from the each expert is weighted proportional to the confi-
dence of its decision. This allows us to define a single net-
work (MixDCNN), comprised of K sub-networks (expert
DCNNs), that can be trained to perform classification. This
is in contrast to [13], where each expert is used just for fea-
ture extraction. Our system has similarities to the gated net-
work approach proposed by Jacobs et al. [16], which utilises
a separately trained network to select the most appropriate
expert network.

The proposed MixDCNN system allows us to jointly
train the network, which has two advantages: (i) it obvi-
ates the need for a separate gating network, and (ii) samples
can be re-assigned to the most appropriate expert network
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during the training process. Empirical evaluations show that
this approach outperforms related approaches such as sub-
set feature learning [13], a gated DCNN approach similar
to [16], and an ensemble of classifiers.

The paper is continued as follows. In Section 2 we
briefly review recent advances in fine-grained classification
and overview approaches to learn multiple expert classi-
fiers, particularly within the field of neural networks. In
Section 3 we present our proposed MixDCNN approach in
detail. Section 4 is devoted to a comparative evaluation
against several recent methods on the task of fine-grained
classification. Conclusions and possible future avenues of
research are given in Section 5.

2. Prior Work
Prior work for fine-grained image classification has con-

centrated on performing parts detection [2, 5, 20, 24] in
order to decrease the intra-class variation. The part-based
one-vs-one feature system [2] is an example of this, where
parts-based features are progressively selected to improve
classification. An alternative is the deformable parts-model
which obtains a combined feature from a set of pre-defined
parts [24]. Chai et al. [6] proposed a symbiotic model where
part localisation is helped by segmentation and, conversely,
the segmentation is helped by parts detection. Zhang et
al. [24] extract pose-normalised features based on weak
semantic annotations to learn cross-component correspon-
dences of various parts.

Recent work has shown the effectiveness of DCNNs for
fine-grained image classification, but again, predominantly
to perform parts detection. Region proposal methods com-
bined with a DCNN were shown to more accurately localise
object parts [23]. Lin et al. [19] showed that a DCNN can
be trained to perform both parts localisation and visibil-
ity prediction, achieving state-of-the-art results on the CUB
dataset [22]. Although the above parts-based approaches
are fully automatic at test time, they require a large num-
ber of images to be manually annotated in order to train the
model.

To remove the need for time-consuming manual anno-
tations, recent work has explored ways to perform fine-
grained classification without using part annotations. Zhang
et al. [23] and Ge et al. [12] showed that, even without part
annotations, DCNNs can provide impressive performance
for fine-grained classification tasks. Of particular interest is
the approach of Ge et al. [10] which showed that the data
can be partitioned into K non-overlapping sets and an ex-
pert feature extraction algorithm, utilising DCNNs, can be
trained for each of the K sets.

Learning algorithms which construct a set of K classi-
fiers and make decisions by taking a weighted or average of
their predictions are often referred to as ensemble methods.
A simple ensemble approach called bagging has been used

to improve the overall performance of a system [4]. Bag-
ging manipulates the training examples to generate multi-
ple hypotheses. In this case, a set of K classifiers is learned
using a randomly selected subset of the training data. We
use this bagging approach on a set of DCNNs for a baseline
method and refer to it as an Ensemble approach (Section 4).

Ensemble approaches, or learning K expert classifiers,
has been explored by several researchers within the context
of neural networks. In 1991 Jacobs et al. [16] described a
gated network structure to learn K expert neural networks
and applied it to multi-speaker vowel recognition. The un-
derlying idea is to only allocate a small region of the in-
put space to a particular expert system. This was achieved
by having K expert systems (neural networks) which were
allocated samples selected by a separate gating network.
In [16], the gating network determines the probability that a
sample is associated to one of the K expert systems.

More recently, Ge et al. [13] outlined a subset feature
learning (Subset FL) approach usingK expert DCNNs. The
data is partitioned into K non-overlapping sets and for each
set an expert DCNN is learned to extract set-specific fea-
tures. A gating network is then used to extract only the most
relevant features from these K DCNNs. Classification is
then performed by training an SVM on these features, yield-
ing impressive performance for fine-grained bird and plant
classification [11]. An issue with this work is the reliance
of an independent gating network G and the fact that fea-
ture extraction and classification are treated as independent
steps.

3. Proposed Approach
We propose a novel mixture of DCNNs (MixDCNN)

to improve fine-grained image classification by partitioning
the data into K non-overlapping sets and learning an ex-
pert classifier for each set. This approach has similarities
to the gated neural network proposed by Jacobs et al. [16],
which has never been applied to DCNNs nor to the fine-
grained classification problem. As such, we also outline a
gated DCNN (GatedDCNN). An overview of these two ap-
proaches is given in Figure 2.

The main idea behind the MixDCNN and GatedDCNN
approaches is to learn K expert networks, [S1, . . . ,SK ],
which make decisions about a subset of the data. This sim-
plifies the space that is being modelled by each component.
Key to both approaches is being able to assign a sample to
the appropriate network.

A GatedDCNN assigns samples by learning a separate
gating neural network which produces the probability, αk,
that the sample belongs to the k-th network. Learning this
gating neural network requires ground truth labels about
which sample should be assigned to a particular network,
which for our work is an open question. In contrast, a
MixDCNN assigns samples based on the confidence of the
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Figure 2. GatedDCNN structure (top) and MixDCNN structure (bottom). The term Occ. Prob. refers to occupation probability (re-
sponsibility) α. In GatedDCNN, the gating network uses the image, the same input as each component (subset networks), to estimate α.
In contrast, MixDCNN estimates α without the need for an external network.

prediction from each network, which leads us to consider
αk to be the occupation probability of the sample for the
k-th network.

Before we describe these two approaches in more detail
we define some notation. The output of a DCNN, trained for
classification, is anN -dimensional vector z of class predic-
tions, where N indicates the number of classes. These pre-
dictions then are normalised by a softmax [18, 21] to give
the probability that the sample belongs to the n-th class:

cn =
exp{zn}∑N
j=1 exp{zj}

(1)

In the approaches described below, we are most interested
in the vector of predictions z prior to applying the softmax.

3.1. GatedDCNN

Inspired by [15, 16], we define a GatedDCNN that con-
sists of K components (DCNNs) and an additional gating
network. The overall structure of this network is shown in
Fig. 2a. In this arrangement, the k-th DCNN Sk is given
greater responsibility for learning to discriminate subtle dif-
ferences of the k-th subset of images, while the gating net-
work G is responsible for associating the image I with the
most appropriate component. The gating network G is a

fine-tuned DCNN that is learned using the cross-entropy
loss to produce a K-dimensional vector of probabilities α.
The k-th value denotes the probability that the input image
I is associated with the k-th component. We refer to this as
an occupation probability.

A fundamental difficulty with training the GatedDCNN
is how to provide the T training labels y. This label vector
is a K-dimensional label vector which indicates which of
the K subsets the sample belongs to. To deal with this issue
we consider two ways of estimating these labels. The first
approach is to initialise the labels y using the partitioning
of the training images into K subsets. The gated network G
is then trained using these labels and the K DCNNs (com-
ponents) are then trained independently so that Sk is trained
exclusively with data from the k-th subset. The second ap-
proach is to use the above gated network (and K compo-
nents) as an initialisation and to iteratively retrain by:

1. Fixing G, and then updating [S1, . . . ,SK ] using the as-
signments from G.

2. Fixing the K components [S1, . . . ,SK ] and using
these to estimate new labels y. The network G is then
updated using these new labels.

The labels y estimated in step 2 are obtained by taking



the network which is most confident about its decision. For-
mally, yt for the t-th training sample is given by:

yt = argmax
k=1...K

Ck,t (2)

where Ck,t is the best classification result for Sk using the
t-th sample:

Ck,t = max
n=1...N

zk,n,t (3)

Classification with the GatedDCNN is performed using
a weighted summation of the classification results from the
K components:

cn =
∑K

k=1
ck,nαk (4)

where ck,n is the probability of the sample belonging to the
n-th class for the k-th component, and αk is the probability
that the sample is assigned to the k-th component Sk.

An issue with the GatedDCNN system is that a separate
gating network has to be trained to assign a sample to a
particular component Sk. This provides the further compli-
cation of having to estimate the labels y in order to train the
gating network G. In this paper the first GatedDCNN train-
ing approaches provides marginally better performance. In
the experiment section, we will report results based on the
first approach.

3.2. Mixture of DCNNs (MixDCNN)

We propose a mixture of DCNNs approach where the oc-
cupation probabilitiesα are based on the classification con-
fidence from each component. An advantage of this struc-
ture is that we can jointly train theK DCNNs (components)
without having to estimate a separate label vector y or train
a separate gating network G.

For MixDCNN, the occupation probability for the k-th
component is:

αk =
exp{Ck}∑K
c=1 exp{Cc}

(5)

where Ck is given by Eq. (3). This occupation probability
gives higher weight to components that are confident about
their prediction. The overall structure of this network is
shown in Fig. 2b.

Classification is performed by multiplying the output of
the final layer from each component by the occupation prob-
ability and then summing over the K components:

zn =
∑K

k=1
zk,nαk (6)

This mixes the network outputs together and the probabil-
ity for each class is then produced by applying the softmax
function in Eq. (1). As a consequence our MixDCNN is
optimised using the cross-entropy loss1.

1Optimised in a mini-batch Stochastic Gradient Descent framework.

3.3. Differences Between MixDCNN and Ensembles

The aim of the MixDCNN approach is that each compo-
nent takes greater responsibility for a portion of the data
allowing each component to concentrate on samples (or
classes) that are more difficult to differentiate. This will
allow the MixDCNN to learn subtle differences for similar
classes. This is in contrast to an Ensemble approach which
randomly excludes a portion of the training data for each
DCNN. Therefore, the key difference between the proposed
MixDCNN approach and an ensemble of DCNNs (Ensem-
ble) is the use of the occupation probability. For training,
this means the MixDCNN approach does not randomly se-
lect the data. Instead, each sample is weighted proportional
to its relevance to each DCNN S1,...,K . For testing, the
MixDCNN approach is able to adaptively calculate the oc-
cupation probability for each sample, whereas an Ensemble
approach will use pre-defined weights or, more commonly,
equal weights.

4. Experiments
4.1. Datasets

We present results on three fine-grained image classi-
fication datasets using two network structures. The three
datasets are the Caltech-UCSD-2011 (CUB200-2011) [22],
Birdsnap [3], and PlantCLEF 2015 [14]. Example images
are shown in Figures 1 and 3.

CUB200-2011 is a fine-grained bird classification task
with 11,788 images from 200 bird species in North Amer-
ica. This dataset has become a de facto standard for the
bird classification task. Each species has approximately
30 images for training and 30 for testing. Birdsnap is a
much larger bird dataset consisting of 49,829 images from
500 bird species with 47,386 images used for training and
2,443 images used for testing. PlantCLEF 2015 is a large
plant classification dataset that has seven content types. To
demonstrate the capabilities of the proposed MixDCNN ap-

CUB200-2011

PlantCLEF Flower

Figure 3. Examples from CUB-200-2011 and PlantCLEF Flower.



proach for the task of fine-grained classification, we analyse
its effectiveness on one content type, Flower. This portion
of the dataset consists of 28,705 images from 967 species.
We split this data into training and test sets. The training set
consists of 25,025 images from 967 species, while the test
set has 3,200 images from 801 species.

Both CUB200-2011 and Birdsnap have bounding box
annotations around the object of interest. We use this in-
formation to extract just the object of interest from the im-
age. PlantCLEF 2015 does not come with bounding box
information making it a more challenging dataset.

Prior work [13, 23] has shown the importance of transfer
learning for the fine-grained image classification problem.
Results have shown that training a DCNN from scratch for
either the fine-grained CUB200-2011 or Birdsnap dataset
leads to overfitting on the training samples. As such, for
all the of our experiments we use pre-trained networks
from ImageNet [7] to provide a good initialisation for each
DCNN and then perform transfer learning. We consider this
to be our baseline and refer to it as DCNN-tl. All of our
networks are trained using Caffe [17] and partitioning was
performed using the Bob toolkit [1].

4.2. Comparative Evaluation
We compare the proposed MixDCNN approach against

four other related methods: (1) the baseline DCNN-tl, (2) an
ensemble of K DCNNs, (3) an implementation of Gated-
DCNN, and (4) Subset FL [13]. Two network structures
considered are the well known AlexNet [18] and the Large
Scale Visual Recognition Challenge (ILSVRC) 2014 win-
ner GoogLeNet [21]. AlexNet is a deep network consisting
of 8 layers, while ILSVRC has 22 layers2. We follow the
same procedure as Ge et. al [13] to cluster the data. For
the AlexNet structure we use the output of the first fully
connected layer as features for clustering. For GoogLeNet
we use the output of the last layer, prior to classification, as
features. In both cases linear discriminant analysis (LDA)
is applied to reduce the dimensionality to D = 128. In
our initial experiments, we varied D and results showed no
impact of that.

The results in Table 1 show that the proposed MixDCNN
approach provides consistent improvement regardless of
network structure or dataset. MixDCNN provides the best
performance for all of the network and dataset combina-
tions, with the exception of the MixDCNN model using the
GoogLeNet structure on CUB. It provides an average rela-
tive performance improvement of 12.7% over the baseline
DCNN-tl approach, excluding CUB.

For the CUB dataset, using multiple expert networks
provides limited performance improvement. This is true
for all of the methods examined. We attribute this to the

2To prevent GoogLeNet from over-fitting we use a higher dropout rate
equal to 0.5 for the final loss layer, as opposed to the original setting of 0.4.

fact that CUB200-2011 is a small dataset consisting of
just 5,994 training images. This is an order of magnitude
fewer samples than other datasets such as Birdsnap. Fur-
thermore, applying transfer learning to GoogLeNet already
provides exceptional performance and so minimises the im-
provement introduced by the MixDCNN framework, or any
multi-expert approach.

The proposed MixDCNN method achieves state-of-the-
art results on the challenging Birdsnap and PlantCLEF-
Flower datasets. For Birdsnap the previous state-of-the-art
performance was 48.8% [3]. Applying transfer learning to
GoogLeNet already outperforms this prior art with an ac-
curacy of 67.4%. MixDCNN provides a further relative
performance improvement of 9.9%. For the PlantCLEF-
Flower dataset the baseline performance of DCNN-tl (using
GoogLeNet) is 48.7%. MixDCNN provides state-of-the-art
performance with a relative performance improvement of
7.0%.

The MixDCNN approach consistently outperforms the
Ensemble, GatedDCNN and Subset FL approaches. Inter-
estingly, it provides a considerable improvement over the
closely related GatedDCNN approach, with an average rel-
ative performance improvement of 9.1%. We attribute this
to the ability of the MixDCNN approach to adaptively re-
assign samples to the most appropriate expert network, in
spite of the original partitioning.

In our experiments, component sizes greater than K = 6
were not considered as we could not store these in mem-
ory on a single GPU3. This highlights one of the limitations
with this technique as it currently requires all of the net-
works to be stored on a single GPU; future work should con-
sider how to extend the architecture across multiple GPUs.

5. Conclusion
We have proposed a novel mixture of deep neural net-

works, termed MixDCNN, which achieves state-of-the-art
performance for fine-grained classification. It provides an
average relative performance improvement of 12.7% and
has been shown to consistently outperform several related
methods: subset feature learning, GatedDCNN, and an en-
semble of classifiers.

The key advantage of our proposed approach is the use
of an occupation probability that weights each sample pro-
portional to its relevance to each DCNN S1,...,K . This ap-
proach obviates the need for a separate gating function and
highlights the importance of being able to adaptively weight
samples based on their relevance to a component (DCNN).

Future work will explore alternative methods for initial-
ising the clustering and its impact upon performance. For
instance, the impact of grouping images together in terms

3The GPU used in all our experiments was an Nvidia K40 Tesla with
12 Gb of memory.



Table 1. Comparison of the proposed MixDCNN approach against DCNN-tl, Ensemble, GatedDCNN and Subset FL on three datasets:
CUB, BirdSnap and PlantCLEF-Flower. Two network structures are used: AlexNet and GoogLeNet.

DCNN-tl Ensemble GatedDCNN Subset FL MixDCNN

AlexNet
CUB 68.3% 71.2% 69.2% 72.0% 73.4%

BirdSnap 55.7% 57.2% 57.4% 59.3% 63.2%
PlantCLEF-Flower 29.1% 30.2% 30.2% 31.1% 35.0%

GoogLeNet
CUB 80.0% 80.9% 81.0% 81.2% 81.1%

BirdSnap 67.4% 71.4% 70.1% 72.8% 74.1%
PlantCLEF-Flower 48.7% 50.2% 49.7% 51.7% 52.1%

of their pose rather than similar visual appearance. Further-
more, we will examine the role of the occupation probabil-
ity in two ways: (i) whether the responsibility for a sample
is shared between components, and (ii) deeper analysis of
how this occupation probability changes during the train-
ing process. Additionally, we intend on exploring different
methods for computing the occupational probability via al-
ternative aggregation techniques.
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D. Barthélémy, and N. Boujemaa. Lifeclef plant identifica-
tion task 2014. In Working Notes for CLEF 2014 Conference,
pages 598–615. CEUR-WS, 2014.

[15] J. B. Hampshire II and A. Waibel. The meta-pi net-
work: Building distributed knowledge representations for ro-
bust multisource pattern recognition. PAMI, 14(7):751–769,
1992.

[16] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hin-
ton. Adaptive mixtures of local experts. Neural Computa-
tion, 3(1):79–87, 1991.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM Interna-
tional Conference on Multimedia, pages 675–678, 2014.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012.

[19] D. Lin, X. Shen, C. Lu, and J. Jia. Deep LAC: Deep local-
ization, alignment and classification for fine-grained recog-
nition. In CVPR, pages 1666–1674, 2015.

[20] J. Liu, A. Kanazawa, D. Jacobs, and P. Belhumeur. Dog
breed classification using part localization. In ECCV. 2012.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CVPR, 2014.

[22] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. In Computa-
tion & Neural Systems Technical Report, California Institute
of Technology, number CNS-TR-2011-001, 2011.

[23] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-
based R-CNNs for fine-grained category detection. In
ECCV, pages 834–849. 2014.

[24] N. Zhang, R. Farrell, F. Iandola, and T. Darrell. Deformable
part descriptors for fine-grained recognition and attribute
prediction. In ICCV, 2013.


