
Armadillo: a template-based C++ library for linear algebra

Conrad Sanderson and Ryan Curtin
Abstract

The C++ language is often used for implementing functionality that is performance and/or resource
sensitive. While the standard C++ library provides many useful algorithms (such as sorting), in its current
form it does not provide direct handling of linear algebra (matrix maths).

Armadillo is an open source linear algebra library for the C++ language, aiming towards a good balance
between speed and ease of use. Its high-level application programming interface (function syntax) is
deliberately similar to the widely used Matlab and Octave languages [4], so that mathematical operations
can be expressed in a familiar and natural manner. The library is useful for algorithm development directly
in C++, or relatively quick conversion of research code into production environments.

Armadillo provides efficient objects for vectors, matrices and cubes (third order tensors), as well as over
200 associated functions for manipulating data stored in the objects. Integer, floating point and complex
numbers are supported, as well as dense and sparse storage formats. Various matrix factorisations are
provided through integration with LAPACK [3], or one of its high performance drop-in replacements such
as Intel MKL [6] or OpenBLAS [9]. It is also possible to use Armadillo in conjunction with NVBLAS to obtain
GPU-accelerated matrix multiplication [7].

Armadillo is used as a base for other open source projects, such as MLPACK, a C++ library for machine
learning and pattern recognition [2], and RcppArmadillo, a bridge between the R language and C++ in order
to speed up computations [5]. Armadillo internally employs an expression evaluator based on template
meta-programming techniques [1], to automatically combine several operations in order to increase speed
and efficiency. An overview of the internal architecture is given in [8].

An overview of the available functionality (as of Armadillo version 7.200) is given in Tables 1 through to 8.
Table 1 briefly describes the member functions and variables of the main matrix class; Table 2 lists the main
subset of overloaded C++ operators; Table 3 outlines matrix decompositions and equation solvers; Table 4
overviews functions for generating matrices; Table 5 lists the main forms of general functions of matrices;
Table 6 lists various element-wise functions of matrices; Table 7 summarises the set of functions and classes
focused on statistics; Table 8 lists functions specific to signal and image processing.

As one of the aims of Armadillo is to facilitate conversion of code written in Matlab/Octave into C++,
Table 9 provides examples of conversion to Armadillo syntax. Figure 1 shows a simple Armadillo based
C++ program.

Armadillo can be obtained from:

• http://arma.sourceforge.net

If you use Armadillo in your research and/or software, we would appreciate a citation to this document.
Citations are useful for the continued development and maintenance of the library. Please cite as:

• Conrad Sanderson and Ryan Curtin.
Armadillo: a template-based C++ library for linear algebra.
Journal of Open Source Software, Vol. 1, pp. 26, 2016.
http://dx.doi.org/10.21105/joss.00026

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43396972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arma.sourceforge.net
http://dx.doi.org/10.21105/joss.00026

Table 1: Subset of member functions and variables of the mat class, the main matrix object in Armadillo.

Function/Variable Description
.n rows number of rows (read only)
.n cols number of columns (read only)
.n elem total number of elements (read only)
(i) access the i-th element, assuming a column-by-column layout
(r, c) access the element at row r and column c
[i] as per (i), but no bounds check; use only after debugging
.at(r, c) as per (r, c), but no bounds check; use only after debugging
.memptr() obtain the raw memory pointer to element data
.in range(i) test whether the i-th element can be accessed
.in range(r, c) test whether the element at row r and column c can be accessed
.reset() set the number of elements to zero
.copy size(A) set the size to be the same as matrix A
.set size(rows, cols) change size to specified dimensions, without preserving data (fast)
.reshape(rows, cols) change size to specified dimensions, with elements copied column-wise (slow)
.resize(rows, cols) change size to specified dimensions, while preserving elements & their layout (slow)
.ones(rows, cols) set all elements to one, optionally first resizing to specified dimensions
.zeros(rows, cols) as above, but set all elements to zero
.randu(rows, cols) as above, but set elements to uniformly distributed random values in [0,1] interval
.randn(rows, cols) as above, but use a Gaussian/normal distribution with µ = 0 and σ = 1
.fill(k) set all elements to be equal to k
.for each([] (double& val){...}) for each element, pass its reference to a lambda function (C++11 only)
.is empty() test whether there are no elements
.is finite() test whether all elements are finite
.is square() test whether the matrix is square
.is vec() test whether the matrix is a vector
.is sorted() test whether the matrix is sorted
.has inf() test whether any element is ±∞
.has nan() test whether any element is not-a-number
.begin() iterator pointing at the first element
.end() iterator pointing at the past-the-end element
.begin row(i) iterator pointing at first element of row i
.end row(j) iterator pointing at one element past row j
.begin col(i) iterator pointing at first element of column i
.end col(j) iterator pointing at one element past column j
.print(header) print elements to the cout stream, with an optional text header
.raw print(header) as per .print(), but do not change stream settings
.save(name, format) store matrix in the specified file, optionally specifying storage format
.load(name, format) retrieve matrix from the specified file, optionally specifying format
.diag(k) read/write access to k-th diagonal
.row(i) read/write access to row i
.col(i) read/write access to column i
.rows(a, b) read/write access to submatrix, spanning from row a to row b
.cols(c, d) read/write access to submatrix, spanning from column c to column d
.submat(span(a,b), span(c,d)) read/write access to submatrix spanning rows a to b and columns c to d
.submat(p, q, size(A)) read/write access to submatrix starting at row p and col q with size same as matrix A
.rows(vector of row indices) read/write access to rows corresponding to the specified indices
.cols(vector of col indices) read/write access to columns corresponding to the specified indices
.elem(vector of indices) read/write access to matrix elements corresponding to the specified indices
.each row() repeat a vector operation on each row (eg. A.each row() += row vector)
.each col() repeat a vector operation on each column (eg. A.each col() += col vector)
.swap rows(p, q) swap the contents of specified rows
.swap cols(p, q) swap the contents of specified columns
.insert rows(row, X) insert a copy of X at the specified row
.insert cols(col, X) insert a copy of X at the specified column
.shed rows(first row, last row) remove the specified range of rows
.shed cols(first col, last col) remove the specified range of columns
.min() return minimum value
.max() return maximum value
.index min() return index of minimum value
.index max() return index of maximum value

Table 2: Subset of matrix operations involving overloaded C++ operators.

Operation Description
A − k subtract scalar k from all elements in matrix A
k − A subtract each element in matrix A from scalar k
A + k, k + A add scalar k to all elements in matrix A
A ∗ k, k ∗ A multiply matrix A by scalar k
A + B add matrices A and B
A − B subtract matrix B from A
A ∗ B matrix multiplication of A and B
A % B element-wise multiplication of matrices A and B
A / B element-wise division of matrix A by matrix B
A == B element-wise equality evaluation between matrices A and B

[caveat: use approx equal() to test whether all corresponding elements are approximately equal]
A != B element-wise non-equality evaluation between matrices A and B
A >= B element-wise evaluation whether elements in matrix A are greater-than-or-equal to elements in B
A <= B element-wise evaluation whether elements in matrix A are less-than-or-equal to elements in B
A > B element-wise evaluation whether elements in matrix A are greater than elements in B
A < B element-wise evaluation whether elements in matrix A are less than elements in B

Table 3: Subset of functions for matrix decompositions, factorisations, inverses and equation solvers.

Function Description
chol(X) Cholesky decomposition of symmetric positive-definite matrix X
eig sym(X) eigen decomposition of a symmetric/hermitian matrix X
eig gen(X) eigen decomposition of a general (non-symmetric/non-hermitian) square matrix X
eig pair(A, B) eigen decomposition for pair of general square matrices A and B
inv(X) inverse of a square matrix X
inv sympd(X) inverse of symmetric positive definite matrix X
lu(L, U, P, X) lower-upper decomposition of X, such that PX = LU and X = P’LU
null(X) orthonormal basis of the null space of matrix X
orth(X) orthonormal basis of the range space of matrix X
pinv(X) Moore-Penrose pseudo-inverse of a non-square matrix X
qr(Q, R, X) QR decomposition of X, such that QR = X
qr econ(Q, R, X) economical QR decomposition
qz(AA, BB, Q, Z, A, B) generalised Schur decomposition for pair of general square matrices A and B
schur(X) Schur decomposition of square matrix X
solve(A, B) solve a system of linear equations AX = B, where X is unknown
svd(X) singular value decomposition of X
svd econ(X) economical singular value decomposition of X
syl(X) Sylvester equation solver

Table 4: Subset of functions for generating matrices and vectors, showing their main form.

Function Description
eye(rows, cols) matrix with the elements along the main diagonal set to one;

if rows = cols, an identity matrix is generated
ones(rows, cols) matrix with all elements set to one
zeros(rows, cols) matrix with all elements set to zero
randu(rows, cols) matrix with uniformly distributed random values in the [0, 1] interval
randn(rows, cols) matrix with random values from a normal distribution with µ = 0 and σ = 1
randi(rows, cols, distr param(a,b)) matrix with random integer values in the [a, b] interval
randg(rows, cols, distr param(a,b)) matrix with random values from a gamma distribution p(x) = xa-1 exp(-x/b)

baΓ(a)

linspace(start, end, n) vector with n elements, linearly spaced from start upto (and including) end
logspace(A, B, n) vector with n elements, logarithmically spaced from 10A upto (and including) 10B

regspace(start, ∆, end) vector with regularly spaced elements: [start, (start + ∆), (start + 2∆), ..., (start + M∆)],
where M = floor((end - start)/∆), so that (start + M∆) ≤ end

Table 5: Subset of general functions of matrices, showing their main form. For functions with the dim
argument, dim = 0 indicates traverse across rows (ie. operate on all elements in a column), while dim = 1
indicates traverse across columns (ie. operate on all elements in a row); by default dim = 0.

Function Description
abs(A) obtain element-wise magnitude of each element of matrix A
accu(A) accumulate (sum) all elements of matrix A into a scalar
all(A,dim) return a vector indicating whether all elements in each column or row of A are non-zero
any(A,dim) return a vector indicating whether any element in each column or row of A is non-zero
approx equal(A, B, met, tol) return a bool indicating whether all corresponding elements in A and B are approx. equal
as scalar(expression) evaluate an expression that results in a 1×1 matrix, then convert the result to a pure scalar
clamp(A, min, max) create a copy of matrix A with each element clamped to be between min and max
cond(A) condition number of matrix A (the ratio of the largest singular value to the smallest)
conj(C) complex conjugate of complex matrix C
cross(A, B) cross product of A and B, assuming they are 3 dimensional vectors
cumprod(A, dim) cumulative product of elements in each column or row of matrix A
cumsum(A, dim) cumulative sum of elements in each column or row of matrix A
det(A) determinant of square matrix A
diagmat(A, k) interpret matrix A as a diagonal matrix (elements not on k-th diagonal are treated as zero)
diagvec(A, k) extract the k-th diagonal from matrix A (default: k = 0)
diff(A, k, dim) differences between elements in each column or each row of A; k = number of recursions
dot(A,B) dot product of A and B, assuming they are vectors with equal number of elements
eps(A) distance of each element of A to next largest representable floating point number
expmat(A) matrix exponential of square matrix A
find(A) find indices of non-zero elements of A; find(A > k) finds indices of elements greater than k
fliplr(A) copy A with the order of the columns reversed
flipud(A) copy A with the order of the rows reversed
imag(C) extract the imaginary part of complex matrix C
ind2sub(size(A), index) convert a linear index (or vector of indices) to subscript notation, using the size of matrix A
inplace trans(A, method) in-place / in-situ transpose of matrix A, optionally using a low-memory method
join rows(A, B) append each row of B to its respective row of A
join cols(A, B) append each column of B to its respective column of A
kron(A, B) Kronecker tensor product of A and B
log det(x, sign, A) log determinant of square matrix A, such that the determinant is exp(x)*sign
logmat(A) complex matrix logarithm of square matrix A
min(A, dim) find the minimum in each column or row of matrix A
max(A, dim) find the maximum in each column or row of matrix A
nonzeros(A) return a column vector containing the non-zero values of matrix A
norm(A,p) p-norm of matrix A, with p = 1, 2, · · ·, or p = “-inf”, “inf”, “fro”
normalise(A, p, dim) return the normalised version of A, with each column or row normalised to unit p-norm
prod(A, dim) product of elements in each column or row of matrix A
rank(A) rank of matrix A
rcond(A) estimate the reciprocal of the condition number of square matrix A
real(C) extract the real part of complex matrix C
repmat(A, p, q) replicate matrix A in a block-like fashion, resulting in p by q blocks of matrix A
reshape(A, r, c) create matrix with r rows and c columns by copying elements from A column-wise
resize(A, r, c) create matrix with r rows and c columns by copying elements and their layout from A
shift(A, n, dim) copy matrix A with the elements shifted by n positions in each column or row
shuffle(A, dim) copy matrix A with elements shuffled in each column or row
size(A) obtain the dimensions of matrix A
sort(A, direction, dim) copy A with elements sorted (in ascending or descending direction) in each column or row
sort index(A, direction) generate a vector of indices describing the sorted order of the elements in matrix A
sqrtmat(A) complex square root of square matrix A
sum(A, dim) sum of elements in each column or row of matrix A
sub2ind(size(A), row, col) convert subscript notation (row,col) to a linear index, using the size of matrix A
symmatu(A) / symmatl(A) generate symmetric matrix from square matrix A
strans(C) simple matrix transpose of complex matrix C, without taking the conjugate
trans(A) transpose of matrix A (for complex matrices, conjugate is taken); use A.t() for shorter form
trace(A) sum of the elements on the main diagonal of matrix A
trapz(A, B, dim) trapezoidal integral of B with respect to spacing in A, in each column or row of B
trimatu(A) / trimatl(A) generate triangular matrix from square matrix A
unique(A) return the unique elements of A, sorted in ascending order
vectorise(A, dim) generate a column or row vector from matrix A

Table 6: Element-wise functions: matrix B is produced by applying a function to each element of matrix A.

Function Description
exp(A) base-e exponential: ex

exp2(A) base-2 exponential: 2x

exp10(A) base-10 exponential: 10x

trunc exp(A) base-e exponential, truncated to avoid∞
log(A) natural log: loge(x)
log2(A) base-2 log: log2(x)
log10(A) base-10 log: log10(x)
trunc log(A) natural log, truncated to avoid ±∞
pow(A, p) raise to the power of p: xp

square(A) square: x2

sqrt(A) square root:
√
x

floor(A) largest integral value that is not greater than the input value
ceil(A) smallest integral value that is not less than the input value
round(A) round to nearest integer, with halfway cases rounded away from zero
trunc(A) round to nearest integer, towards zero
erf(A) error function
erfc(A) complementary error function
lgamma(A) natural log of the gamma function
sign(A) signum function; for each element a in A, the corresponding element b in B is:

b =

{ −1 if a < 0
0 if a = 0

+1 if a > 0

trig(A) trignometric function, where trig is one of:
cos, acos, cosh, acosh, sin, asin, sinh, asinh, tan, atan, tanh, atanh

Table 7: Subset of functions for statistics, showing their main form. For functions with the dim argument,
dim = 0 indicates traverse across rows (ie. operate on all elements in a column), while dim = 1 indicates traverse
across columns (ie. operate on all elements in a row); by default dim = 0.

Function/Class Description
cor(A, B) generate matrix of correlation coefficients between variables in A and B
cov(A, B) generate matrix of covariances between variables in A and B
gmm diag class for modelling data as a multi-variate Gaussian Mixture Model (GMM)
hist(A, centers, dim) generate matrix of histogram counts for each column or row of A, using given bin centers
histc(A, edges, dim) generate matrix of histogram counts for each column or row of A, using given bin edges
kmeans(means, A, k, ...) cluster column vectors in matrix A into k disjoint sets, storing the set centers in means
princomp(A) principal component analysis of matrix A
running stat class for running statistics of a continuously sampled one dimensional signal
running stat vec class for running statistics of a continuously sampled multi-dimensional signal
mean(A, dim) find the mean in each column or row of matrix A
median(A, dim) find the median in each column or row of matrix A
stddev(A, norm type, dim) find the standard deviation in each column or row of A, using specified normalisation
var(A, norm type, dim) find the variance in each column or row of matrix A, using specified normalisation

Table 8: Subset of functions for signal and image processing, showing their main form.

Function/Class Description
conv(A, B) 1D convolution of vectors A and B
conv2(A, B) 2D convolution of matrices A and B
fft(A, n) fast Fourier transform of vector A, with transform length n
ifft(C, n) inverse fast Fourier transform of complex vector C, with transform length n
fft2(A, rows, cols) fast Fourier transform of matrix A, with transform size of rows and cols
ifft2(C, rows, cols) inverse fast Fourier transform of complex matrix C, with transform size of rows and cols
interp1(X, Y, XI, YI) given a 1D function specified in vectors X (locations) and Y (values),

generate vector YI containing interpolated values at given locations XI

Table 9: Examples of Matlab/Octave syntax and conceptually corresponding Armadillo syntax. Note that
for submatrix access the exact conversion from Matlab/Octave to Armadillo syntax will require taking into
account that indexing starts at 0.

Matlab & Octave Armadillo Notes
A(1, 1) A(0, 0) indexing in Armadillo starts at 0, following C++ convention
A(k, k) A(k-1, k-1)
size(A,1) A.n rows member variables are read only
size(A,2) A.n cols
size(Q,3) Q.n slices Q is a cube (3D array)
numel(A) A.n elem .n elem indicates the total number of elements
A(:, k) A.col(k) read/write access to a specific column
A(k, :) A.row(k) read/write access to a specific row
A(:, p:q) A.cols(p, q) read/write access to a submatrix spanning the specified cols
A(p:q, :) A.rows(p, q) read/write access to a submatrix spanning the specified rows
A(p:q, r:s) A(span(p, q), span(r, s)) A(span(first row, last row), span(first col, last col))
Q(:, :, k) Q.slice(k) Q is a cube (3D array)
Q(:, :, t:u) Q.slices(t, u)
A ′ A.t() or trans(A) transpose (for complex matrices the conjugate is taken)
A .′ A.st() or strans(A) simple transpose (for complex matrices the conjugate is not taken)
A = zeros(size(A)) A.zeros() set all elements to zero
A = ones(size(A)) A.ones() set all elements to one
A = zeros(k) A = zeros(k,k) create a matrix with elements set to zero
A = ones(k) A = ones(k,k) create a matrix with elements set to one

C = complex(A,B) cx mat C = cx mat(A,B) construct a complex matrix out of two real matrices

A ∗ B A ∗ B
A .∗ B A % B % indicates element-wise multiplication
A ./ B A / B / indicates element-wise division
A \ B solve(A,B) solve a system of linear equations
A = A + 1 A++
A = A − 1 A−−
A = [1 2; A = { { 1, 2 }, requires C++11 compiler

3 4;] { 3, 4 } }
X = [A B] X = join rows(A,B)
X = [A; B] X = join cols(A,B)

A
A.print(“A:”)

print the contents of a matrix to the standard outputor
cout << A << endl

save -ascii ‘A.dat’ A A.save(“A.dat”, raw ascii) Matlab/Octave matrices saved as ascii text are readable
load -ascii ‘A.dat’ A.load(“A.dat”, raw ascii) by Armadillo (and vice-versa)
A = rand(2,3); mat A = randu(2,3); randu generates uniformly distributed random numbers
B = randn(4,5); mat B = randn(4,5);
F = { A; B }; field<mat> F(2,1); the field class can store multiple varying size matrices

F(0,0) = A; F(1,2) = B;

#include <iostream>
#include <armadillo>

using namespace std;
using namespace arma;

int main(int argc, char** argv)
{
mat A(4, 5, fill::randu);
mat B(4, 5, fill::randu);

cout << A * B.t() << endl;

return 0;
}

Figure 1: A simple Armadillo based C++ program.

Acknowledgements

Conrad Sanderson is with Data61, CSIRO, and NICTA, Australia. Contact details: http://conradsanderson.id.au
Ryan Curtin is with Symantec Corporation, USA. Contact details: http://ratml.org

NICTA is funded by the Australian Government via the Department of Communications, and the Australian
Research Council via the ICT Centre of Excellence program.

References

[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts, Tools, and Techniques from Boost
and Beyond. Addison-Wesley Professional, 2004.

[2] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A. Mehta, and A. G. Gray.
MLPACK: a scalable C++ machine learning library. Journal of Machine Learning Research, 14(Mar):801–805,
2013. http://jmlr.org/papers/v14/curtin13a.html.

[3] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[4] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave version 4.0.0 manual: a high-level

interactive language for numerical computations. 2015. http://www.gnu.org/software/octave/.
[5] D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating R with high-performance

C++ linear algebra. Computational Statistics & Data Analysis, 71:1054–1063, 2014.
http://dx.doi.org/10.1016/j.csda.2013.02.005.

[6] Intel. Math Kernel Library (MKL), 2016. http://software.intel.com/en-us/intel-mkl/.
[7] NVIDIA. NVBLAS Library, 2015. http://docs.nvidia.com/cuda/nvblas/.
[8] C. Sanderson. Armadillo: An open source C++ linear algebra library for fast prototyping and

computationally intensive experiments. Technical report, NICTA, 2010.
[9] Z. Xianyi, W. Qian, and W. Saar. OpenBLAS: An optimized BLAS library, 2016. http://www.openblas.net/.

http://conradsanderson.id.au
http://ratml.org
http://jmlr.org/papers/v14/curtin13a.html
http://www.gnu.org/software/octave/
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://software.intel.com/en-us/intel-mkl/
http://docs.nvidia.com/cuda/nvblas/
http://www.openblas.net/

