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Abstract 
 

A new paper-based hospital observation chart has been developed using human factors design 

principles. This novel design, compared to previous charts, yielded fewer errors and faster response 

times in chart-users’ detection of patient physiological deterioration compared to other Australian 

observation charts that were in use at the time. In recent clinical studies, the chart has also been 

associated with an 11% mortality reduction amongst intensive care unit admissions, as well as a 

45% reduction in the incidence of cardiac arrests. However, there are a number of points of 

contention as to whether this design can be regarded as best practice. First, it is unclear whether the 

chart offers performance benefits to users highly experienced with alternative chart designs. 

Second, clinicians have questioned particular features that were designed to help users detect 

abnormal vital sign observations. For example, there is a dispute as to whether blood pressure and 

heart rate graphs should be presented as separate or overlapping plots. Third, disagreement 

surrounds the optimal design layout to facilitate users’ calculation of summary scores that represent 

the physiological state of a patient. In the absence of expert consensus, this thesis sought to address 

each of these points of contention using behavioural experiments. In general, findings supported the 

design choices associated with the new observation chart. Specifically, in relation to the detection 

of abnormal observations, it was found that (1) even users experienced with alternative chart 

designs performed better with the new chart; (2) blood pressure and heart rate were better presented 

as separate graphs (even for chart-users who preferred plots that overlap); and (3) users’ 

performance with drawn-dot observations, an integrated colour-based scoring-system, and grouped 

scoring-rows was consistent with apriori human factors design principles. One design aspect of the 

new chart was not supported: users were found to be less accurate calculating patient deterioration 

summary scores when the design involved recording interim steps in the calculation. Overall, it is 

argued that these experiments demonstrate the value of using behavioural experiments to assess best 

design practice, rather than relying solely on expert opinion.  
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Preface 
 

This thesis is presented in a non-traditional format. A set of manuscripts, largely as they were 

submitted to print publication, has been directly incorporated into the thesis as Chapters 2, 3, 4 and 

5. The first page of each respective chapter outlines the submission history of the article. Each 

manuscript details an experimental study that was written up for a medical or nursing-oriented 

journal. Consequently, Chapters 2 to 5 focus on the clinical relevance of chart design and 

evaluation. These journals (as opposed to journals based in human factors, psychology or cognitive 

ergonomics) were selected so that the experimental findings and recommendations would reach a 

greater number of health professionals motivated to improve the detection of patient deterioration. 

However, as a consequence, the papers themselves contain limited detail regarding the underlying 

human factors rationales for each experiment and the links between the manuscripts are not entirely 

explicit. To better convey the human factors context of the research project, Chapter 1 provides an 

overview of the background, hypotheses and aims of the studies. Chapter 6 then discusses the broad 

implications of the findings, in addition to limitations and potential avenues for future research.  
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Chapter 1 
 

Expert decisions 
 

In domains such as healthcare, many key decisions are based on expert opinion, founded on 

what individuals know from their training, practices and experience. Expert knowledge is typically 

considered to be the best source of information, especially in unfamiliar situations where definitive 

data is not available (McBride & Burgman, 2012; Mumpower & Stewart, 1996). However, relying 

on expert opinion can be problematic. First, expertise is typically confined to a narrow field: outside 

of this, experts are subject to the same limited reasoning processes as ‘non-experts’(McBride & 

Burgman, 2012). Experts can also be susceptible to cognitive biases even when operating within 

their area of expertise. Overconfidence, for example, can lead to poor decision-making (Phua & 

Tan, 2013). An overconfident expert may not recognise the uncertainty in their knowledge about a 

variable, and could fail to account for relevant and pertinent information (McBride & Burgman, 

2012). There is a tendency for people to perceive their performance according to predetermined 

ideas about their abilities. This can limit personal insight, where individuals’ perceptions of their 

competence fail to correlate with their actual performance (Dunning, Johnson, Ehrlinger, & Kruger, 

2003). Cognitive biases such as this can be amplified in the absence of quality feedback. If 

expertise is acquired in an environment where mistakes are often not immediately costly (at least 

from the perspective of the expert) and feedback is not fast or frequent, then individuals can form 

inaccurate beliefs about their judgments (McBride & Burgman, 2012). Finally, experts do not 

always agree with one another. Although there can be many reasons for expert disagreement, it is 

often simply attributable to the different ways in which individuals think about a problem. Novel 

scenarios can facilitate varied judgments and conclusions from even the most competent and critical 

experts (Mumpower & Stewart, 1996).    

Within the healthcare domain, one important area that has traditionally been guided by expert 

opinion is the design of paper-based hospital charts. Hospital chart design has typically been based 

on the intuition and clinical experience of staff at individual institutions or health services who have 

been perceived as having some knowledge of chart design (Chatterjee, Moon, Murphy, & McCrea, 

2005; Knight, Calvesbert, Clarke, & Williamson, 2002; Preece, Hill, Horswill, & Watson, 2012b; 

Zeitz & McCutcheon, 2006). Similarly, in assessing the efficacy of individual chart designs, health 

professionals have tended to rely on their own (and their colleagues’) subjective judgments. This is 

problematic for several reasons.  

First, a clinician’s realm of expertise is often limited to their area of medical specialisation. 

Health professionals do not typically receive training in how to design or redesign hospital charts, 
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thus their input is primarily focussed on the clinical aspects of the design rather than usability. 

Second, health professionals may also be overconfident in the design process, failing to account for 

critical information that lies outside of their field of knowledge (for example, important design 

techniques from the cognitive engineering domain). This overconfidence may be reinforced by a 

common perception in healthcare that the more experienced the clinician, the more expert they are. 

This possibility is especially concerning in light of empirical evidence which suggests that, after the 

first couple of years, clinicians’ level of performance typically does not appear to improve with 

experience (Ericsson & Ward, 2007). Systematic reviews (Choudhry, Fletcher, & Soumerai, 2005) 

have demonstrated that, in many cases, performance can decline with greater experience, especially 

in the absence of continued training (Ericsson & Ward, 2007). 

Third, clinical staff are also unlikely to receive accurate feedback about the effect of their 

chart design on staff performance or clinical outcomes; especially regarding specific design 

elements. This lack of quality feedback may lead chart designers to acquire inaccurate beliefs about 

their designs, which may carry over to future iterations. Even when more formal chart design 

methodologies have been adopted, feedback has been almost entirely subjective. For example, in 

developing a paper-based chart for monitoring critical care patients in a hospital accident and 

emergency department, Knight et al. (2002) employed four nurses with varying levels of seniority. 

Based on their clinical experiences and observations, the group created a list that prioritised what 

were regarded as essential and desirable chart elements and arranged chart sections into various 

layouts to enable discussion of new ideas. In an attempt to address and resolve potential pitfalls, 

hard copies were placed in the hospital staff room for comments from health professionals at all 

levels. Without trialling the new design, either experimentally or in practice (reportedly due to 

issues involving chart printing), Knight et al.’s (2002) chart was approved and introduced into the 

department. The problem with this approach to chart design is that, without any objective evidence 

to support the efficacy of the end product, its implementation could lead to more errors and time 

delays compared to the chart that it is replacing.  

Finally, expert clinicians do not always agree on chart design decisions. Conflict can arise, for 

example, when chart designers disagree over what particular design elements can be regarded as 

best practice. This thesis focuses on major points of contention that surround the design of a 

ubiquitous and critically important paper-based hospital chart: the general observation chart. 

 

Observation charts 
 

General observation charts, which are traditionally kept at the end of a patient’s bed during 

their stay, are used primarily to document physiological vital signs (Nwulu, Westwood, Edwards, 
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Kelliher, & Coleman, 2012). Observation charts usually incorporate observations for respiratory 

rate, oxygen saturation, blood pressure, heart rate, temperature and level of consciousness 

(ACSQHC, 2010; Lockwood, Conroy-Hiller, & Page, 2004) (for the sake of brevity, this thesis will 

use the term ‘vital signs’ to also encompass other physiological parameters that typically feature on 

observation charts; for example, oxygen flow rate). These vital signs are the typical predictors of 

adverse outcomes in medical admissions (Bright, Walker, & Bion, 2004; Buist, Bernard, Nguyen, 

Moore, & Anderson, 2004; Goldhill, White, & Sumner, 1999a). 

Other clinical information can also be included on observation charts depending on the 

preferences of the institution (e.g., urine output and analysis, weight, blood sugar levels and pain 

scores) (ACSQHC, 2009). Vital sign observations are typically initiated when a patient is admitted 

to a healthcare facility to establish baseline data (ACSQHC, 2010) and are continued to monitor the 

patient’s physiological condition at a frequency prescribed by a clinician or by hospital policy. This 

data can then be used to: (a) plan and implement appropriate interventions (e.g., medications); (b) 

evaluate a patient’s response to interventions (e.g., before and after a surgical procedure); and, most 

importantly, (c) identify when a patient’s general physical condition deteriorates (Koutoukidis, 

Stainton, & Hughson, 2012). It is important that health professionals have the means to accurately 

and efficiently identify clinical deterioration, as its prevalence within hospitals is widespread and 

increasing due to the changing characteristics of patients (e.g., ageing populations and an increased 

proportion of patients having complex medical issues) and healthcare systems (e.g., shorter hospital 

stays and increased bed occupancy) (ACSQHC, 2008; Bright et al., 2004; Johnstone, Rattray, & 

Myers, 2007; Robb & Seddon, 2010). Fortunately, observable derangements in vital signs often 

precede deterioration and therefore many serious adverse events are predictable (Buist et al., 2004; 

Goldhill, Worthington, Mulcahy, Tarling, & Sumner, 1999b; Jacques, Harrison, McLaws, & 

Kilborn, 2006; Kause et al., 2004).  

For instance, in-hospital cardiorespiratory arrests have been shown to have markedly 

discernible clinical antecedents. One study that examined the observation charts of patients who 

experienced cardiorespiratory arrest in hospital found that 84% of the charts (n = 54) documented 

acute physiological deterioration within the eight hours prior to the arrest (Schein, Hazday, Pena, 

Ruben, & Sprung, 1990). Within-hospital deaths can also be associated with precursory 

derangements in vital signs. Hillman et al. (2001) found that around half of a sample of patients 

who died in hospital (whose mortality was not preceded by cardiorespiratory arrest or admission to 

an intensive care unit; n = 66) had serious vital sign abnormalities within eight hours of death, while 

one third had abnormalities within the preceding 48-hour period. Indeed, within emergency 

departments, 98% of deaths have been associated with abnormal vital signs or altered levels of 

consciousness for a significant period leading up to the point of death (Roller, Prasad, Garrison, & 
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Whitley, 1992). These studies suggest that observable derangements in vital signs can assist in the 

early recognition of patient deterioration, which may in turn minimise complications that may 

otherwise arise from delayed management and an inappropriate level of intervention.  

Despite their clinical value, particularly as potential predictors of deterioration, vital signs are 

not always adequately measured and/or recorded. Consequently, deteriorating patients can go 

unnoticed (Leuvan & Mitchell, 2008; Odell, Victor, & Oliver, 2009). Failure to recognise and act 

upon deterioration even occurs when abnormal observations are documented appropriately 

(ACSQHC, 2008). Several studies have demonstrated that abnormal physiological values are often 

charted in the hours preceding cardiorespiratory arrest, unaccompanied by appropriate clinical 

action (Endacott, Kidd, Chaboyer, & Edington, 2007; Franklin & Mathew, 1994; Goldhill et al., 

1999a). Many factors can contribute to health professionals’ failures to recognise and respond to a 

patient who deteriorates. These include: (a) a poor understanding of why vital signs are measured; 

(b) limited knowledge of the symptoms and signs that can signal deterioration; (c) failures in 

communication (including uncertainty in whether it is appropriate to seek assistance); (d) unclear 

roles and responsibilities; and (e) inadequate skills and expertise (Cioffi, Salter, Wilkes, Vonu-

Boriceanu, & Scott, 2006; Endacott et al., 2007; Robb & Seddon, 2010). However, another 

potential key contributor is often overlooked: the design of the observation chart itself. Despite an 

increased focus in the literature on physiological predictors of deterioration and the response of 

health professionals (e.g., the effect of rapid response systems), there has been little empirical 

research to investigate the tools with which deterioration is detected (ACSQHC, 2008, 2009; Odell 

et al., 2009; Preece, Hill, Horswill, Karamatic, & Watson, 2012a). As previously mentioned, 

observation chart design choices are typically based on the intuition and clinical experience of staff 

at individual institutions or health services (Chatterjee et al., 2005; Knight et al., 2002; Zeitz & 

McCutcheon, 2006). This non-standardised, unempirical and subjective approach has led to 

redundancies in effort and considerable variation in chart design (Chatterjee et al., 2005; Preece et 

al., 2013).  

In Australian hospitals, for example, observation charts can be classified into two main 

categories: those with a track-and-trigger system and those without (see Figure 1). Track-and-

trigger systems combine the routine ‘tracking’ of vital sign observations with ‘triggers’ to prompt 

chart-users to act on deterioration according to pre-determined criteria (Gao et al., 2007). Charts 

that incorporate a track-and-trigger system can be subdivided by the type of alerting system:  

(a) single parameter systems, where vital sign observations are compared with a simple set 

of criteria and a response algorithm activates when any single criterion is met (e.g., the 

calling criteria for a Medical Emergency Team) (see Figure 2);  
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(b) multiple parameter systems, where response algorithms require more than one criterion 

to be met, or differ according to the number of criteria met;  

(c) aggregate scoring systems, where weighted scores, assigned to physiological values, are 

compared with predefined trigger thresholds (see Figure 3); and  

(d) combination systems, where single or multiple parameter systems are used in 

combination with aggregate weighted scoring systems (see Figure 4) (ACSQHC, 2009; 

NICE, 2007b).  

Observation charts with a track-and-trigger system can also differ in the type of abnormality 

alert used. Some use grey shading or lines to indicate abnormal ranges or thresholds for 

abnormality. Others use different coloured areas on the chart to reflect levels of physiological 

abnormality that are linked to either weighted scores (in aggregate scoring systems) or specific 

triggers (in single or multiple parameter systems). Observation charts can also differ on a number of 

other factors including paper size, orientation, display format of vital signs, the use of colour to 

signal abnormalities, and the presentation of vital signs relative to one another (Preece et al., 2013).   
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Figure 1. An existing chart (A4 size) without a track-and-trigger system. (All identifying markings 
have been removed.) 
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Figure 2. An existing chart (A4 size) with a single parameter track-and-trigger system, where vital 
sign observations are compared with a simple set of criteria and a response algorithm activates 
when any criterion is met. (All identifying markings have been removed.)  
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Figure 3. An existing chart (A3 size) with an aggregate scoring track-and-trigger system, where 
weighted scores are compared with predefined trigger thresholds. Note that the chart has been 
rotated 90 degrees to fit the page. (All identifying markings have been removed.) 
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Figure 4. An existing chart (front page; A4 size) with a combination track-and-trigger system, 
where a multiple parameter system is used in combination with an aggregate weighted scoring 
system. (All identifying markings have been removed.) 
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The impact of design 
 

Design variability raises the possibility that some charts might be more dangerous to patients 

than others. Indeed, after observing the concurrent use of five different chart designs within a 250-

bed hospital, Chatterjee et al. (2005) hypothesised that the design of an observation chart could 

measurably influence its function. To test this, Chatterjee and colleagues evaluated the effectiveness 

of varying designs in clinical practice. Doctors and nurses (n = 63), who were presented with real 

physiological data recorded on the five existing charts, were asked to identify abnormal vital sign 

observations. After comparing detection rates across designs, the indicative results suggested 

potential benefits of particular chart design features. These objective experimental findings and the 

authors’ subjective preferences guided the design of a new observation chart. Following the 

introduction of the novel design to hospital wards, re-evaluation revealed substantial improvements 

in the recognition of deranged respiratory rate, oxygen saturation, heart rate and temperature 

observations. Chatterjee et al. (2005) concluded that poor design can significantly undermine health 

professionals’ recognition of clinical deterioration. Subsequent studies further demonstrated that 

chart redesign can significantly impact performance (Hammond et al., 2013; Kansal & Havill, 

2012; Mitchell et al., 2010; Robb & Seddon, 2010). However, these studies are limited in that they 

do not systematically compare design features between novel and existing charts. Consequently, the 

authors are unable to attribute the superior performance of their novel chart to particular design 

decisions. Arguably, these studies are also limited in that each redesign team was comprised 

exclusively of health professionals. As previously mentioned, expertise is typically confined to a 

narrow domain. Outside their specific clinical area (e.g., nursing, critical care medicine), these 

experts’ reasoning processes and judgments are subject to the same frailties as those of non-experts 

(McBride & Burgman, 2012).  

In the redesign of an interface, a more appropriate expertise may be that possessed by 

individuals trained in systems design. For instance, a group of human factors researchers recently 

undertook a multiphasic project to develop an adult observation chart that supported the recognition 

of clinical deterioration (ACSQHC, 2008; Preece, Horswill, Hill, & Watson, 2010c). The research 

team created a new observation chart by amalgamating several sources of information including: (a) 

a set of design rules that they adapted from existing software and web design usability heuristics 

(Gerhardt-Powals, 1996; Nielsen & Mack, 1994; Zhu, Vu, & Proctor, 2005); (b) the design features 

that they judged to represent best practice in a heuristic evaluation of 25 existing charts (Preece et 

al., 2013); (c) the preferences of surveyed health professionals (n = 347) (Preece et al., 2012a); and 

(d) the design elements of a paediatric chart that was under development at the time (Horswill, 

Preece, Hill, Christofidis, & Watson, 2010; Preece et al., 2013). Two versions of the Adult 
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Deterioration Detection System (ADDS) chart were designed: one that allowed a patient’s usual 

systolic blood pressure to be taken into account (see Figures 5 and 6), and one that lacked this 

facility. 
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Figure 5. The inside page of the ADDS chart (A3 size) with a systolic blood pressure table. Note 
that the chart has been rotated 90 degrees to fit the page. 
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Figure 6. The outside page of the ADDS chart (A3 size). Note that the chart has been rotated 90 
degrees to fit the page. 
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Preece et al. (2012b) assessed the performance of the ADDS chart designs in a behavioural 

experiment. Four existing observation charts, which had been identified in the heuristic evaluation 

(Preece et al., 2013), were selected for comparison. These were classified as being either reasonably 

well designed (n = 2), of average design quality (n = 1), or poorly designed (n = 1). Experienced 

health professionals (doctors and nurses; n = 45) and novices (individuals unfamiliar with 

observation charts; n = 46) each completed 48 trials, in which they were shown realistic patient data 

transcribed onto one of the charts. Each chart was used on eight trials, four times with normal data 

and four times with one abnormal vital sign observation (this could be either a derangement in 

oxygen saturation, blood pressure, heart rate or temperature). On each trial, health professionals and 

novices judged whether or not any of the vital signs were abnormal (all participants were required 

to memorise the normal physiological ranges for each vital sign prior to the task). For each of the 

six charts, two outcome measures were scored for each participant: error rate (the proportion of 

trials where the participant correctly identified a normal case or correctly indicated which vital sign 

was abnormal, as applicable) and response time (the average time taken to view the chart and make 

the judgment). The results revealed that both participant groups made significantly fewer errors and 

responded faster when using the ADDS charts versus the other designs, suggesting that observation 

chart design can significantly affect both health professionals’ and novices’ decision accuracy and 

response times in detecting deterioration. The findings also demonstrated that, in this instance, a 

chart designed by researchers with expertise in human factors performed better than several other 

charts that had been designed by teams of clinicians. A subsequent before-and-after evaluation of a 

version of the ADDS chart in a hospital setting also demonstrated a 45% reduction in the incidence 

of cardiac arrests (Drower, Mckeany, Jogia, & Jull, 2013). A later variation of the ADDS chart (the 

Q-ADDS form) was also found to reduce the severity of patient illness at admission to the intensive 

care unit as well as the average length of stay. This retrospective audit also revealed an 11% 

decrease in mortality amongst intensive care unit admissions (Joshi, Landy, Anstey, Gooch, & 

Campbell, 2014). These findings suggest that central to good observation chart design is an 

understanding of human limitations and affordances, and that this understanding is not necessarily 

intuitive.  

 
Human factors design principles behind the ADDS chart design 

 

In the design or redesign of an interface, human factors specialists can guide their processes 

using several sources of information. Some of these sources provide highly specific advice (e.g., 

data compendiums, industry standards, published empirical studies) that can be particularly 

advantageous when they are relevant to the given domain. However, in situations where relevant 
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standards or empirical findings do not exist, or for novel situations where existing standards or 

precedents are too domain-specific to solve a particular design problem, human factors experts must 

look to more abstract principles (Wickens, Lee, Liu, & Gordon Becker, 2004). The infancy of the 

human factors approach to patient chart design led the ADDS chart designers to adapt existing 

usability heuristics from the domains of software and web design: namely, those of Gerhardt-

Powals (1996), Nielsen (1993) and Zhu et al. (2005). The following sub-sections describe the way 

in which the ADDS chart designers applied these usability heuristics (for a full description of each 

ADDS chart feature and the rationale behind its use, refer to Preece et al. (2013)).  

 

Display information to match users’ tasks 

To give one example of a usability heuristic referenced by the ADDS chart designers, Nielsen 

(1993) recommended that interfaces should present pertinent information at the exact time and 

place where users need it. Matching the interface with the user’s task was argued to minimise the 

need to search for information. In line with this principle, the ADDS chart includes succinct 

instructions on how to use the chart (e.g., when to measure vital signs, how to record observations, 

and how data relates to the track-and-trigger system) positioned on the outside front page as close 

as possible to the top of the page (see Figure 7). This design decision was made so that the 

instructions are available when a user first looks at the chart (Preece et al., 2010a), as English-

reading people tend to search from top to bottom and left to right in organised visual spaces 

(Wickens et al., 2004).  

 

 
Figure 7. The ADDS chart positions general instructions near the top of the outside front page.  
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Nielsen (1993) further suggested that interface elements should be accessed in an order that 

maps on to the way in which a task will most effectively and efficiently be carried out. For 

example, to simplify a user’s task, an interface can indicate a suggested sequence (e.g., the order 

implied by the listing of elements from top to bottom). Accordingly, the ADDS chart arranges vital 

signs according to their importance (see Figure 5). The most deterioration-relevant vital signs (e.g., 

respiratory rate) are placed where users will first look as a result of English reading conventions: 

towards the top left-hand side of the page (Nielsen, 1993). In contrast, urine output and pain are 

positioned towards the bottom of the chart, as they are comparatively less important for identifying 

potential deterioration (Preece et al., 2010a). The sequencing of vital signs is also logical from a 

clinical perspective. For instance, oxygen flow rate is contiguous with respiratory rate and oxygen 

saturation because an abnormal oxygen flow rate may indicate a deteriorating respiratory system 

when oxygen saturation sits within the normal reference range (Preece, Horswill, Hill, & Watson, 

2010c). This also aligns with the next principle, to display information that will be used together 

close together.  

 

Display information that will be used together close together 

Gerhardt-Powals (1996) and Nielsen (1993) both highlighted the importance of grouping data 

meaningfully to decrease information search time. For example, information that will be used 

together (or that is contextually relevant) should be displayed close together, while contrasting 

information should be positioned with some separation. The combination track-and-trigger system 

of the ADDS chart, which comprises single and multiple parameter systems and an aggregated 

weighted scoring system (ACSQHC, 2009; NICE, 2007b) adheres to this principle in several ways. 

First, the single parameter system requires a Medical Emergency Team (MET) call when any 

individual observation is outside a given range, as indicated by purple range rows. The list of MET 

call criteria is perceptually linked to the purple range by being positioned adjacent to the vital sign 

recording area in a text box (that is also coloured purple to reinforce the perceptual link) (Preece et 

al., 2010c) (see Figure 8). 
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Figure 8. The ADDS chart positions the call criteria of the single parameter track-and-trigger 
system close to the vital sign observations. 

 

Second, users can compare observations for each vital sign with a set of colour-coded criteria 

to determine whether any vital signs have reached predefined threshold levels of abnormality. The 

key for the colour-coded criteria is positioned adjacent to the vital sign data, so that users do not 

need to memorise this information (i.e., somewhat arbitrary pairings of colours with numbers) in 

order to use the chart successfully (Preece et al., 2010c) (see Figure 9).  

 

 
Figure 9. The ADDS chart positions the colour key of the multiple parameter track-and-trigger 
system close to the vital sign observations (highlighted by the boxed areas). 

 

Third, the aggregate weighted scoring system incorporated into the chart involves assigning a 

Total ADDS Score to each set of vital sign observations. This score describes the patient’s overall 

level of derangement across multiple vital signs. In this particular system, scores for each individual 
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vital sign are grouped together underneath the vital sign recording area (rather than, for example, 

being arranged separately immediately beneath the corresponding vital sign data). This allows users 

to: (a) independently assess the observations without interference from the early-warning scores, 

and (b) sum the early-warning scores without interference from the observations. Finally, the 

ADDS chart also includes a list of staff-initiated actions if a patient shows signs of deterioration. 

Again, because users need to correlate the total summed early-warning score with the list of actions, 

these two features are positioned as close together as possible (Preece et al., 2010a) (see Figure 10). 

 

 
Figure 10. The ADDS chart groups scoring-rows together at the bottom of the page, and positions 
the row of summed early-warning scores close to the list of staff-initiated actions (highlighted by 
the boxed areas). 
 

Minimise users’ cognitive load 

Another relevant human factors principle is to design the system to minimise users’ cognitive 

load (Gerhardt-Powals, 1996; Nielsen, 1993). One strategy for achieving this is through the use of 

colour in a display to direct users’ attention to particular elements, increasing the efficiency with 

which appropriate information is identified (Karwowski, 2006). For instance, the ADDS chart 

includes coloured range rows to signal the points at which observations cross particular thresholds 

of abnormality (Preece et al., 2010a). For example, if a patient’s heart rate is 108 beats per minute, 

the recorded value will fall within the yellow reference range row, allowing users to immediately 

recognise that the observation is abnormal (rather than having to, say, recall the normal range from 

memory or look it up in a table). That is, the cognitive workload to detect an abnormality is reduced 

(Nielsen, 1993). This helps to reduce the need for mental comparisons and unnecessary thinking 

(Gerhardt-Powals, 1996). The ADDS chart’s use of drawn-dot vital sign observations also 
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eliminates a potential source of unwanted workload (e.g., by preventing automatic reading of 

written number observations and/or preventing the comparison of numerical observations with 

clinical criteria stored in memory), freeing users’ cognitive resources for higher-level tasks 

(Gerhardt-Powals, 1996) such as overall diagnostic evaluation of the patient (see Figure 11).  

 

 
Figure 11. The ADDS chart uses vital signs graphs with drawn-dot observations, where thicker 
horizontal lines separate adjoining vital sign graphs (highlighted by the boxed area). 
 

Limit data-driven tasks  

It has been proposed that data-driven tasks should be limited in time-critical environments 

with high information loads (Gerhardt-Powals, 1996). The presence of an integrated colour-based 

system and the use of drawn-dots also ensures that the task of searching for abnormal observations 

is not unnecessarily data-driven, potentially reducing the time that chart-users need to spend 

assimilating raw vital sign observations. Drawn-dots (in contrast to written-numbers) also make it 

easier to detect trends in the data, especially if consecutive data points are connected with lines (see 

Figure 11) (Wickens & Hollands, 2000), without imposing costs on focused attention (Salvendy, 

1997). 

 

Display relationships  

The relationships between elements on (in this case) a patient chart can be highlighted using 

principles of graphic structure. For example, it has been proposed that items can be seen as 

belonging together if they are closely positioned, are enclosed (e.g., with boxes or lines) or look 

similar (Nielsen, 1993). The design of the ADDS chart involves applying all of these perceptual 

grouping strategies to help users understand the structure of the chart. First, adjoining vital signs are 
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visually separated by thicker horizontal lines (Preece et al., 2010c) to ensure that unrelated elements 

do not appear to belong together (Preece et al., 2013). Second, the date row is ruled off every 24 

hours, signaling the separation of date information into days (Preece et al., 2010c) (see Figure 12). 

 

 
Figure 12. The ADDS chart rules off date rows every 24 hours (highlighted by the boxed areas). 

 

To mitigate ‘column shift’ errors, where chart-users enter or read data from the wrong time-

point column, thick vertical lines are placed after every three columns (Preece et al., 2010c). This 

was designed to facilitate easier tracking, by making adjacent columns more visually distinct (with 

either a thick line on the left, or on the right, or no thick line at all). As a result, the columns on 

either side of the column for any given time-point will appear visually dissimilar (Preece et al., 

2013) (see Figure 13). 

 

 
Figure 13. The ADDS chart uses thick vertical lines after every three time-point columns 
(highlighted by the boxed areas). 
 

Use colour appropriately 

Another human factors principle is to limit an interface to no more than 5 to 7 consistently 

applied colours (Nielsen, 1993). If colour is unrestrained within a display, it can create clutter and 
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increase visual search times (Karwowski, 2006). Accordingly, only five background colours 

(including white space) are used in the ADDS chart’s observation area (Preece et al., 2010c) to 

reduce the risk of a visually cluttered display. These background colours are light pastel shades to 

ensure that observations written into the coloured cells are easily visible under a wide range of 

lighting conditions (Preece et al., 2013). Because colour can also be used to rank order items on a 

scale (Karwowski, 2006), the ADDS chart uses an intuitive progression of colour densities that 

correlates with the level of physiological derangement (Preece et al., 2010a). This feature also 

provides a redundant cue that is of particular use to colour-blind users (Preece et al., 2013).  

 

Speak users’ language 

It has been proposed that terminology (e.g., words, abbreviations, and icons) should take into 

account users’ existing vocabulary and understanding (Nielsen, 1993). Preece et al. (2012a) 

collected quantitative data on experienced chart-users’ preferred terminology, which subsequently 

influenced the research team’s design decisions. Three hundred and forty-seven health professionals 

(approximately two thirds of whom reported using observation charts daily) responded to an online 

survey that featured questions about the design of charts, including the comprehensibility of 

common abbreviations and preferred vital sign terminology. For example, the ADDS chart 

designers adopted the label ‘O2 Flow Rate’ (over ‘O2 Delivery’) because it was preferred by more 

surveyed health professionals (Preece et al., 2010c). 

 

Maintain consistency 

To facilitate recognition, it has been proposed that consistent formatting should be used for 

similar information (Nielsen, 1993). The ADDS chart uses the same formatting for labels of the 

same level of importance (e.g., the label for each vital sign) to avoid related elements appearing as 

if they belong to different categories (Preece et al., 2013). Accordingly, different formatting is used 

for unrelated elements. For instance, graph labels are formatted differently from their corresponding 

vertical axis scales (Preece et al., 2010c). 

 

Contentious design decisions 
 
 Human factors design principles, including those of Gerhardt-Powals (1996), Nielsen (1993) 

and Zhu et al. (2005), are intended to act as guides rather than hard and fast rules (Proctor & Van 

Zandt, 2008; Wickens et al., 2004), and experienced designers are expected to carefully consider 

how to apply principles with regard to context (Nielsen, 1993; Wickens et al., 2004). However, this 

purposeful abstraction means that principles can sometimes conflict, even for skilled interface 
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designers. For example, a small display, created to minimise the effort that users exert to access 

information, can lead to a display that is less legible. Similarly, a display with redundancy, included 

to increase the chance that a message will be interpreted, can lead to a display that is visually 

cluttered (Wickens et al., 2004). In situations where human factors design principles clash (i.e., 

when certain principles support one design option, and other principles support another), there is 

often no simple resolution as to which principle(s) should take precedence. In other cases, a single 

principle can be implemented in multiple ways and guidelines to direct a decision between 

alternatives may not exist (Wickens et al., 2004). Consequently, interface designers cannot 

mechanistically apply general human factors design principles to determine good design.  

The potential conflict between principles also means that, after an interface has been 

designed, certain display features can still be contentious from a human factors perspective. For 

example, although the ADDS chart has demonstrated significant benefits within laboratory and 

clinical settings, there are several points of contention as to whether this chart can be regarded as 

best practice. Clinicians have specifically questioned whether the novel ADDS chart design: (1) 

will remain beneficial to users highly experienced with alternative chart designs; (2) should present 

blood pressure and heart rate graphs as separate plots; (3) should use drawn-dot observations, an 

integrated colour track-and-trigger system, and grouped scoring-rows to support users; and (4) 

adopts a design layout that best facilitates users’ calculation of summary scores. As with previous 

work (Chatterjee et al., 2005; Hammond et al., 2013; Kansal & Havill, 2012; Mitchell et al., 2010; 

Robb & Seddon, 2010), the study by Preece et al. (2012b) compared charts that varied on more than 

one dimension. This means that, while Preece et al.’s results support the efficacy of the ADDS 

chart’s overall design, they do not constitute evidence to support any of the specific design 

decisions employed. 

In the absence of expert consensus and objective evidence, this thesis seeks to resolve some 

of these points of contention through the use of behavioural experiments.  

 

Will the novel design benefit users highly experienced with alternative 
chart designs? 

 

The first point of contention relates to whether the ADDS chart remains beneficial to users 

highly experienced with alternative chart designs. When designing or redesigning an interface, the 

end-user is of paramount importance. Particular attention should be paid to their individual 

characteristics, such as age, work experience, education level and familiarly with existing systems 

(Drews & Kramer, 2012; Kalyuga, Ayres, Chandler, & Sweller, 2003). This is especially germane 

to hospital settings, which are inhabited by large and diverse groups of health professionals. 
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Observation charts, for example, can be used by the full spectrum of healthcare staff, from enrolled 

nurses on their first ward rotation to senior specialists.  

 

Novice users 

Essential to chart design is consideration of the novice user. Every year, cohorts of graduate 

nurses and doctors enter the healthcare system where they use general observation charts for the 

first time. It has been proposed that one way in which novices differ from more experienced 

individuals is that they lack task-relevant schemas (Kalyuga et al., 2003); in the case of this thesis, 

newly qualified health professionals do not have schemas associated with chart-related tasks. 

Schemas, which are mental constructs that can reduce cognitive load, permit the organisation of 

multiple sub-elements of information as a single entity in working memory. Without relevant 

schemas, novices are more limited by the capacity of working memory, which can only handle a 

few elements of information at a time. When a system fails to provide guidance for dealing with 

new units of information, novices can experience cognitive overload. Cognitive overload can be 

defined as when the requirements for a particular cognitive task exceed the capacity of an 

individual’s working memory (Kalyuga, 2007; Kalyuga & Renkl, 2010; Oksa, Kalyuga, & 

Chandler, 2010; Salden, Aleven, Schwonke, & Renkl, 2010; Schnotz, 2010; van Gog, Ericsson, 

Rikers, & Paas, 2005).   

To illustrate this point, consider how a novice user might detect deterioration using a chart 

(without a track-and-trigger system) where observations are recorded as written numbers within a 

table (i.e., where each column represents a different vital sign and each row corresponds to a time-

point) (see Figure 14). This type of design, used in some Australian hospitals (Preece et al., 2013), 

requires domain-specific knowledge such as the normal and abnormal reference ranges for each 

vital sign, the clinical relevance of the degrees of abnormality, as well as the significance of trends 

in the data (which hinges on the ability to decipher the trends). Each of these tasks necessitates 

substantial conscious effort that could potentially overload users’ working memory. For instance, to 

assess the (largely interdependent) relationship between blood pressure and heart rate (columns 

‘BP’ and ‘P’ in Figure 14, respectively), a novice chart-user would need to: (a) find the appropriate 

recorded heart rate observation; (b) determine if the given heart rate observation fell out of the 

normal reference range by retrieving it from memory and comparing; (c) hold this judgment in 

working memory; (d) find the corresponding blood pressure observation (i.e., recorded at the same 

time-point as the heart rate observation); (e) decide if the blood pressure observation was out of 

range, again by retrieving the normal physiological reference range from memory and comparing; 

and (f) assess the relationship between heart rate and blood pressure in the clinical context of the 

patient’s condition. If the relationship required continuous monitoring, the novice would need to 
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hold each consecutive comparison in memory as they worked through the time-points, 

progressively increasing the load on working memory. Tabular displays may also require chart-

users to mentally visualise recorded observations in a graphical format to detect trends in the data 

(Preece et al., 2013). These kinds of cognitive demands can lead to error, as can improper 

simplifications that may result from a lack of experience (Proctor & Van Zandt, 2008).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. An extract of an existing chart with a tabular display of data. 
 

The ADDS chart was designed with the explicit aim of facilitating chart-users’ detection of 

patient deterioration in a user-friendly way (Preece et al., 2012b). For example, as previously 

discussed: (a) chart instructions are situated towards the top of the outside front page so that they 

are available when a user first looks at the chart; (b) the most important vital signs are positioned 

towards the top left-hand side of the chart, where users are likely to first look; (c) components of the 

combination track-and-trigger system are displayed close together so that users do not need to 

search extraneously for information; (d) colour-coded reference range rows allow users to recognise 

abnormal observations, rather than having to remember the normal reference ranges for each vital 

sign; and (e) drawn-dot observations prevent users from automatically reading the numbers and/or 

comparing them with clinical criteria stored in memory. Although these design features were 

utilised to assist all chart-users, they may particularly help inexperienced users by acting as a 

substitute for novices’ missing schemas. Indeed, these design techniques may have contributed to 

the superior performance of the ADDS chart among novice chart-users in the empirical study by 

Preece et al. (2012b). In contrast, the poorest performing charts may have led novices to engage in 

cognitively inefficient problem-solving strategies that imposed a heavy working memory load. 
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Experienced users 

Unlike novices, experienced chart-users are able bring acquired schemas, held in long-term 

memory, to a task. The idea is that implementing a schema requires substantially less working 

memory capacity than individually implementing the many lower-level elements that it 

incorporates, thus mitigating the processing of overwhelming amounts of information. Although 

conscious effort is required to control the use of schemas, after enough practice they can operate 

more automatically. Consequently, experienced users are able to circumvent the limitations of 

working memory capacity (Kalyuga et al., 2003). Acquired schemas brought to a task (in this case, 

the task of detecting deterioration) may facilitate higher-level strategies by experienced chart-users, 

relative to novices’ piecemeal approach (Gerhardt-Powals, 1996). Returning to the example of the 

tabular chart (see Figure 14), it could be the case that highly experienced users can access the 

memorised normal ranges required to detect deterioration with sufficient ease that they can perform 

to the same level with these charts as with the ADDS chart (that is, it is possible that they would 

gain little advantage from the load-reducing strategies employed by the ADDS chart). For instance, 

with a tabular chart (Figure 14), experienced users may be able to visualise the ebb and flow of 

observations down each vital sign column while concurrently noting observations that are of 

clinical concern. Even across time-point rows, experienced users may be able to assess a patient’s 

condition in a broader sense (i.e., consider the relationship between all vital signs at a particular 

time). Indicative findings support the idea that there might be some distinction between novice and 

experienced chart-users. Preece et al. (2012b) found that health professionals detected deterioration 

significantly faster than novices using designs without track-and-trigger systems (i.e., where 

participants had to rely on their memory of normal vital sign ranges).  

The potential for performance differences between novice and experienced users became a 

point of contention during the development of the ADDS chart. Some clinicians expressed concerns 

that, although the design may advantage novices, it might be problematic for experienced clinicians 

who are accustomed to other chart formats. This anecdotal concern may be consistent with findings 

within the human factors literature; specifically, the ‘expertise reversal effect’ where instructional 

approaches found to be ideal for novices are sometimes counterproductive for more experienced 

users. For novices, guidance provides users with information that explains the concepts and 

procedures that they need to learn, while using strategies that are compatible with their cognitive 

abilities and limitations (e.g., working memory capacity) (Kalyuga, Chandler, & Sweller, 1998; 

Kirschner, Sweller, & Clark, 2006). Thus, instructional guidance can act as a substitute for missing 

schemas. If effective, this guidance can even help to construct schemas (Kalyuga et al., 2003).  
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Although instructional design principles typically succeed at reducing novice users’ 

extraneous cognitive load (Rey & Buchwald, 2011), the same principles may not be as helpful for 

experienced users. As previously mentioned, individuals with experience are able bring acquired 

schemas, held in long-term memory, to a task. If these users are unable to avoid attending to an 

interface’s instructional information (which is often difficult to ignore), both schema-based and 

instruction-based guidance are available for dealing with the same material. Overlap ensues if users 

try to relate the corresponding components, which can lead to the recruitment of additional working 

memory resources and, potentially, cognitive overload (Kalyuga et al., 2003). Thus, a system high 

in instructional guidance may hinder experts’ processing of information, relative to instruction that 

relies more on pre-existing schemas for direction. 

The expertise reversal effect, extensively described within the instructional learning literature, 

has been observed across several domains and experimental conditions (Brunstein, Betts, & 

Anderson, 2009; Kalyuga, Chandler, Tuovinen, & Sweller, 2001; Kalyuga & Sweller, 2004; Kyun, 

Kalyuga, & Sweller, 2013; Nückles, Hübner, Dümer, & Renkl, 2010; Reisslein, Atkinson, Seeling, 

& Reisslein, 2006; Tuovinen & Sweller, 1999). For example, in a two-stage experiment, 

inexperienced trainees in electronics (n = 15) were found to perform significantly better using 

diagrams of electrical circuits that integrated textual explanations (where they were unable to 

understand the diagrams without the text). More experienced electronics trainees (n = 15), on the 

other hand, were found to benefit more from diagrams without explanation. These participants also 

reported expending less mental effort with the diagram-only format. This finding suggested that for 

the more expert trainees, the additional text was a redundancy that should be eliminated from the 

diagram (Kalyuga et al., 1998). Although interpreting an observation chart is not directly 

comparable to learning something through instruction, it may be possible that the same 

psychological processes operate. That is, a chart designed for novices (i.e., the ADDS chart) may 

not be ideal for experienced users who bring incongruent expectations and understandings to the 

novel chart.  

 

Hypotheses and behavioural experiment (Christofidis, Hill, Horswill, & Watson, 2013) 

Two competing hypotheses related to user experience are presented. First, it is proposed that 

user-friendly design will outweigh prior experience, such that chart-users will make fewer errors 

and respond more quickly when using the ADDS chart, compared to chart designs with which they 

are highly experienced. Alternatively, it can be proposed that chart-users will perform better when 

presented with the chart that they regularly use in their occupational role, demonstrating that prior 

experience outweighs design. Chapter 2 aims to resolve this contentious issue. Although the results 

of Preece et al. (2012b) already revealed that doctors and nurses (in addition to the aforementioned 
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novices) performed significantly better using the ADDS chart designs, almost all of these 

participants were experienced in using multiple charts of different design with varying levels of 

instructional guidance and, as a result, may have developed flexible and adaptive schemas. 

Arguably, it is more crucial to discern if the ADDS chart will disadvantage staff who are more 

likely to be subject to the expertise reversal effect: those with rigid and repetitive schemas that have 

resulted from extensive experience with a single chart design. To assess this, we recruited two 

groups of health professionals who were experienced with either a multiple parameter track-and-

trigger chart or a graphical chart without a track-and-trigger system.  

 

Should the novel design present blood pressure and heart rate 
observations as separate plots? 
 

The second point of contention involves a particular aspect of the ADDS chart design: 

namely, whether blood pressure and heart rate observations should be presented as separate plots 

(as in the ADDS chart), or overlapping plots on the same axes (as is the case in many existing 

charts). As previously mentioned, human factors design principles are not concrete rules (Proctor & 

Van Zandt, 2008; Wickens et al., 2004). Conflict can arise when one principle can be applied in 

several ways and there are no guidelines to direct a decision between alternatives. In this instance, 

the principle of ‘proximity compatibility’ can be implemented in multiple ways and the existing 

literature does not allow a conclusion to be reached as to which application results in better 

performance in detecting patient deterioration.  

 

Integrative processing 

The widely documented proximity compatibility principle (Wickens & Carswell, 1995) 

proposes a relationship between two dimensions: processing proximity (the extent to which two 

information sources are used within the same task, e.g., compared or integrated) and display 

proximity (how close two display components are in a user’s perceptual space) (Wickens & 

Hollands, 2000). The principle suggests that close processing proximity benefits from close display 

proximity. It is reasoned that when two sources of information are presented close together in space, 

their integration and comparison can be made easier with a reduction in visual search cost (i.e., the 

time users spend moving their attention from one source to the other) (Wickens & Carswell, 1995). 

When separated, users must retain the information relevant to one source (often by rehearsal), move 

their attention to access the second source, and then compare or combine the information. The time 

it takes to access the second source can degrade a user’s memory for the first source: even more so 

if the second source is found within a cluttered field (Lee, Kirlik, & Dainoff, 2013; Wickens & 



	
   44 

McCarley, 2007).  

Of specific relevance to this thesis is the application of the proximity compatibility principle 

to graphical displays. Wickens et al. (2004) suggested that graphs which require the integration or 

comparison of components can benefit from being constructed close together in space because 

excessive visual search effort can hinder graph interpretation. The authors suggested that it can be 

advantageous, for example, to keep two graph lines on the same panel (rather than separate panels) 

if they require comparison. With regard to blood pressure and heart rate observations, a clinical 

rationale for plotting these two vital signs together in close proximity (i.e., on the same axes) (see 

Figure 15) relates to their interrelationship, where a decrease in blood pressure can lead to a reflex 

increase in heart rate (and vice versa). This relationship is sphygmoidal in nature: a small change in 

blood pressure can cause a large change in heart rate, within the responsive range of the 

physiological baroreceptor reflex (i.e., the steep portion of the curve) (Smith & Fernhall, 2011). 

This association, recorded on observation charts with overlapping blood pressure and heart rate 

graphs, may assist chart-users to detect deterioration faster and with less cognitive demand. For 

instance, a systolic blood pressure observation on the lower end of the normal reference range may 

signal users to examine this time-point more carefully, where they may in turn notice an abnormal 

heart rate observation. Overlapping graphs of blood pressure and heart rate is a design feature that 

was ubiquitous across Australasian hospitals at the time when the ADDS chart was developed and 

was preferred by health professionals (Preece, Horswill, Hill, Karamatic, & Watson, 2010b).  

 

Emergent features 

Close display proximity can yield another usability advantage. When multiple elements of a 

display are grouped together, a new feature can emerge that is not inherent in any of the elements 

themselves. Emergent features can benefit task performance because their salience facilitates more 

direct perception, allowing users to inspect a display globally rather than focussing on the 

individual parts. This can reduce the cognitive effort and attentional demands needed for a multi-

element display (Lee et al., 2013; Proctor & Vu, 2006; Wickens & Carswell, 1995). The 

observation chart ‘Seagull Sign’, a visual cue that can occur when systolic blood pressure and heart 

rate are graphed as overlapping plots on the same axes (Darby, Mitchell, Van Leuvan, Kingbury, & 

McKay, 2012), can be conceptualised as an emergent feature in a display of close proximity. The 

Seagull Sign highlights a likely physiological abnormality when a patient’s heart rate is plotted 

above their systolic blood pressure at the same time-point (Darby et al., 2012) (see Figure 15). 

Arguably, when these two vital signs are graphed as overlapping plots on the same axes, the 

occurrence of a heart rate observation plotted above a systolic blood pressure observation (at the 

same time-point) is visually salient. The Seagull Sign may allow chart-users to engage in a more 
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efficient parallel visual search process, compared to a slower serial search where each individual 

element (i.e., observation) is inspected for a target (i.e., derangement) (Drews & Kramer, 2012). 

 

  

Figure 15. An extract of an existing chart with overlapping blood pressure and heart rate plots 
illustrating an example of the Seagull Sign (highlighted by the boxed area). 
 

The emergence of the Seagull Sign may be attributable to what is known as gestalt grouping. 

Gestalt principles suggest that when similar objects are perceived as a group, a dissimilar object 

(the ‘anomaly’) becomes a focal point (Drews & Kramer, 2012; Zheng & Xue, 2009). On an 

observation chart with overlapping vital sign axes, the relationship between systolic blood pressure 

and heart rate is usually relatively stable: that is, blood pressure observations (typically marked by a 

‘v’) are consistently plotted above heart rate observations (marked by a dot). From a gestalt 

perspective, consecutive occurrences of this consistent relationship (i.e., a ‘v’ above a dot) may be 

perceived as a group. If this were the case, an anomalous occurrence of a heart rate observation 

plotted above a systolic blood pressure observation would become particularly salient to the user.  

 
Independent processing 

The principle of proximity compatibility also proposed that display elements should be 

separated if independent processing is preferable (e.g., tasks that require two or more variables to be 

processed independently, or a variable that requires focused attention) (Wickens & Carswell, 1995). 

In the ADDS chart, blood pressure and heart rate are plotted on separate graphs. The rationale 

behind this design decision was that health professionals need to independently process both vital 

signs to determine which observation(s) are abnormal (see Figure 16). (Even in the presence of a 

Seagull Sign, users need to discern whether one or both vital signs are deranged; for example, a 

patient with normal blood pressure, but an abnormally high heart rate.) 
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Figure 16. The ADDS chart plots blood pressure and heart rate on separate graphs (this case is 
equivalent to the case in Figure 15). 
 

Considering the potential drawbacks of close processing proximity, Preece et al. (2013) also 

questioned clinicians’ preferences for overlapping plots. Although this arrangement facilitates use 

of the Seagull Sign, potentially mitigating the need for slower serial search processes, emergent 

features can come at a cost (particularly if they are highly salient). The emergent feature can distract 

users from paying attention to other components of the display. This is especially problematic if 

other elements require analysis (Wickens & Carswell, 1995).  

Cases of extreme spatial proximity can also result in visual clutter (Lee et al., 2013). When 

parts of a display overlap or are within a degree or so of visual angle from each other, the presence 

of one part can negatively impact the independent processing of the other. Additional processing 

demands are imposed when both are relevant to the task because it can be be difficult for users to 

perceptually parse each component from one another. Excess clutter can consequently slow the time 

it takes for users to search for, find and read items within a display (Wickens et al., 2004). This 

issue is well documented in the research literature on head-up displays, where air navigational 

information is projected onto a transparent screen between the pilot and windshield (FAA, 2008; 

Wickens & Hollands, 2000). Although this superimposition can help pilots concurrently compare 

head-up display information with the outside world (e.g., aligning the guidance with the true 

runway during a landing), the overlapping clutter can reduce the readability of the information and 

the ability to see unanticipated outside elements (e.g., a vehicle parked on the runway). 

Analogously, overlapping plots on a patient observation chart may lead to cluttered graphing, where 

deranged observations for one vital sign may be difficult to separate perceptually from observations 

for the other vital sign. Decreased discriminability of components, through contiguous or 

overlapping displays, is especially evident when extreme spatial proximity is used to emphasise 
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emergent features (Wickens & Carswell, 1995). Thus, although the Seagull Sign may attract users’ 

attention to a particular time-point, the close proximity of the blood pressure and heart rate 

observations may make it more difficult and time-consuming for users to accurately identify which 

observation(s) are abnormal. 

Another important cost/benefit consideration relates to the use of colour. Although colour can 

be valuable in a display because it can direct users’ attention to particular elements, if its use is 

unrestrained, it can create clutter and increase visual search times (Karwowski, 2006). This risk is 

especially pertinent to the aforementioned overlapping blood pressure and heart rate plots. For 

example, there is one Australian observation chart that includes overlapping blood pressure and 

heart plots (see Figure 4) as well as a coloured track-and-trigger system. On this chart, the coloured 

ranges on the heart rate/blood pressure graph refer only to heart rate and the user must refer 

elsewhere for blood pressure ranges. This might result in increased cognitive load for the user.  

 

Hypotheses and behavioural experiment (Christofidis, Hill, Horswill, & Watson, 2014) 

In line with the ADDS chart design, the prediction was made that charts-users will perform 

significantly worse using charts with overlapping (vs. separate) plots, especially in the presence of 

an integrated colour-based track-and-trigger system. It was also hypothesised that the Seagull Sign 

will confer no advantage: that is, chart-users who are trained to use the Seagull Sign will not 

perform faster nor make fewer errors when using charts with overlapping (vs. separate) plots. The 

aim of the study reported in Chapter 3 is to test these hypotheses and hence resolve the contention 

surrounding whether the ADDS chart should present blood pressure and heart rate as separate plots. 

The experiment specifically examines whether experienced and novice chart-users can better 

recognise abnormal observations on separate or overlapping graphs and if the emerging feature of 

the Seagull Sign assists users to detect patient deterioration when plots do overlap. 

 

Should the novel design use drawn dot observations, an integrated 
colour track-and-trigger system, and grouped scoring-rows to support 
users? 
 

The third point of contention pertains to three related ADDS chart design features: (1) the use 

of drawn-dot observations, (2) the use of an integrated colour track-and-trigger system, and (3) the 

use of grouped vital sign scoring-rows. Arguably, it is possible that these three features could 

actually be hindering the usability of the ADDS design (i.e., where the chart demonstrates efficacy 

in spite of the above design decisions, and not because of them).  
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Data-recording format 

The ADDS chart designers elected to use drawn-dot observations in light of several apriori 

human factors design principles within the literature (Gerhardt-Powals, 1996; Nielsen & Mack, 

1994; Zhu et al., 2005). As described earlier, Preece et al. (2012b) reasoned that drawn-dot (vs. 

written number) vital sign observations would minimise cognitive load (Gerhardt-Powals, 1996; 

Nielsen, 1993) by precluding the possibility of users automatically reading the numerical values 

and/or comparing them to their memory of clinical criteria. Preventing this automatic reading was 

also reasoned to minimise unwanted data-driven searches (Gerhardt-Powals, 1996) for abnormal 

vital sign observations. Drawn-dots were also adopted because the alternative, written-number 

observations, may mislead chart-users. Vital sign measurements can vary due to: (a) natural steady-

state variability; (b) transient perturbations (e.g., pain, anxiety); and (c) health professionals’ 

technique (Reisner, Chen, & Reifman, 2012). This can lead to ‘micro trends’ in the physiological 

data that are simply aberrations of measurement error. However, human factors arguments can also 

be made for written-number observations, which feature on many other paper-based charts (see 

Figure 4 for an example of an existing chart). Written-number observations add redundancy due to 

the direct repetition of content in a different format. This may increase the chance that information 

will be noticed (Wickens et al., 2004). Where numbers are recorded in ‘quasi-graphs’, a deranged 

observation may be more noticeable in written-number form (vs. drawn-dot) because of its position 

within an abnormal reference range row and its abnormally high or low value. Also, in cases where 

an observation is recorded within the wrong reference range row, the written-number provides 

chart-users with an opportunity to correctly interpret the observation (as compared to a drawn-dot 

recorded in an incorrect range row). This practice is arguably in line with Gerhardt-Powals’s (1996) 

recommendation to practice judicious redundancy. Including more information than may be needed 

at a given time (Gerhardt-Powals, 1996) can be a simple and effective method to increase the 

likelihood of a user detecting errors and correcting them (Salvendy, 1997). 

 

Scoring-system integration 

Again in line with apriori principles (Gerhardt-Powals, 1996; Nielsen & Mack, 1994; Zhu et 

al., 2005), the ADDS chart uses an integrated colour-based track-and-trigger system. Similar to 

drawn-dot observations, Preece et al. (2012b) reasoned that a colour-based system would minimise 

users’ cognitive load and reduce data-driven aspects of the deterioration detection task (Gerhardt-

Powals, 1996; Nielsen, 1993). The coloured range rows mean that users do not have to remember or 

look up (e.g., in a reference table) normal vital sign ranges. Thus, when an observation crosses a 

particular threshold of abnormality the user simply has to notice that the observation is recorded 
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against a coloured background, hence making the task of detection more automated and less data-

driven. However, many other observation charts use a non-integrated tabular system (see Figure 3 

for an example of such a chart) for which alternative human factors arguments can be made as to 

why this design decision might be superior. For example, Nielsen (1993) and Gerhardt-Powals 

(1996) recommend a ‘less is more’ approach to displays, where only information that is needed by 

the user is included. Both authors suggest that interfaces should be simplified as much as possible, 

arguing that every extra item within a display is an additional piece of information to learn, search 

through and possibly misunderstand. Extraneous information can slow down expert users, but more 

critically, can confuse novices (Nielsen & Mack, 1994). A non-integrated tabular system may 

simplify the chart display such that users (especially those who are experienced and have the vital 

sign reference ranges implicit in memory) can search for deranged observations without 

interference from the coloured range rows.  

 

Scoring-row placement  

Finally, the ADDS chart groups scoring-rows together at the bottom of the page, as Gerhardt-

Powals (1996) and Nielsen (1993) both emphasise the effect that meaningfully grouped data can 

have on the speed with which information is accessed. The authors propose that closely positioned 

information will be beneficial when information needs to be used together. The scoring-rows are 

grouped together so that chart-users can first allocate an ADDS score to each vital sign observation, 

and then sum the recorded scores together to form a total score. In contrast to other observation 

charts that present the rows separately (i.e., directly underneath the corresponding vital sign data; 

e.g., see Figure 4), it was reasoned that the ADDS chart layout would save users from potential 

visual interference. That is, grouped scoring-rows for individual vital signs would allow users to 

search for abnormal observations without interference from individual vital sign scores (and also to 

assess individual vital sign scores without interference from vital sign observations). 

Nevertheless, the use of separate scoring-rows can also be supported using a human factors 

rationale. Early-warning scores (if recorded accurately) can act as redundant cues in the detection of 

deterioration. For instance, if a nurse reviews a patient’s earlier observations and fails to notice an 

abnormal vital sign recording, they may still detect the corresponding early-warning score. In this 

context, charts with separate rows provide immediate redundancy, as users presumably assess a set 

of observations and then consult the corresponding scoring-row immediately below (i.e., 

positioning the score close the corresponding observation will reduce users’ search time, which 

again adheres to the suggestions of Gerhardt-Powals (1996) and Nielsen (1993) to group data in a 

consistently meaningful way). Charts with grouped rows provide comparatively delayed 

redundancy, as users are more likely to assess each set of vital sign observations consecutively and 
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then consult the early-warning score rows together as a separate task. This example highlights the 

aforementioned difficulties in applying human factors design principles. In this case, the purposeful 

abstraction of the principle to ‘display information that will be used together close together’, means 

that a single principle can be implemented in multiple ways and guidelines to direct a decision 

between alternatives do not exist (Wickens et al., 2004).  

 

Hypotheses and behavioural experiment (Christofidis, Hill, Horswill, & Watson, in press) 

It was hypothesised that the design features of the ADDS chart will benefit users. That is, 

participants’ performances are proposed to be consistent with the apriori human factor principles 

that Preece et al. (2012b) adapted from the web and software domains (Gerhardt-Powals, 1996; 

Nielsen, 1993; Zhu et al., 2005). As such, it is predicted that chart designs with drawn-dot 

observations, an integrated colour-based scoring-system and grouped scoring-rows will yield the 

fastest and most accurate responses. Chapter 4 describes an experiment designed to test these 

hypotheses with a view to resolving the debate surrounding the effect of these specific chart 

features on users’ recognition of patient deterioration.  

 

Does the layout of the novel design best facilitate the calculation of 
summary scores? 
 

The final point of contention relates to whether the design layout of the ADDS chart best 

facilitates users’ calculations of patient deterioration summary scores. The ADDS chart uses a 

combination scoring system in which chart-users determine early-warning scores that summarise 

the physiological state of a patient and trigger appropriate clinical action (Mohammed, Hayton, 

Clements, Smith, & Prytherch, 2009; Prytherch et al., 2006). The multi-step process involved in 

determining an early-warning score suggests that chart designs with combination (and aggregate) 

scoring systems may be more susceptible to error, particularly because the accuracy of a given step 

depends on the accuracy of the preceding step. For instance, a correct early-warning score depends 

on accurate individual vital sign scores (where the ADDS chart, for example, includes eight vital 

signs). Individual scores depend on appropriately recorded observations, which are contingent on 

carefully collected vital sign measurements. A correct early-warning score also depends on the 

accurate summation of individual vital sign scores. This step is of particular interest from a human 

factors perspective. Although tasks that involve mathematical calculations (and their verification) 

are commonplace for health professionals, they are inherently prone to error (Sela & Auerbach-

Shpak, 2014). Empirical evidence has demonstrated poor mathematical ability amongst qualified 

and student nurses, where simple arithmetical mistakes constitute one of the major sources of 
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mathematical error. For example, a sample of Australian second-year undergraduate nursing 

students scored an average of 56.1% in a test of basic mathematical and drug calculations, where 

over a third of total errors were arithmetical (Eastwood, Boyle, Williams, & Fairhall, 2011).  

 

Grouped scoring-rows 

As previously mentioned, Preece et al. (2012b) used the principles of Gerhardt-Powals (1996) 

and Nielsen (1993) to hypothesise that the use of grouped scoring-rows would remove the potential 

interference of individual vital sign scores when users search for abnormal observations (and 

similarly, remove the possible interference of recorded observations when assessing individual 

scores). However, given that human factors design principles are not hard and fast rules (Proctor & 

Van Zandt, 2008; Wickens et al., 2004), it cannot be assumed that one design decision will apply to 

all situations. Thus, a novel task demands a reconsideration of the principles. In this instance, we 

need to consider the ways in which data can be meaningfully grouped to assist chart-users to 

determine both individual vital sign scores and early-warning scores. Once again, the abstract 

nature of the principle facilitates more than one reasonable application. First, grouped scoring-rows 

may help users sum individual early-warning scores into a total score, because their attention can 

remain focused on one part of the chart. This was the rationale of the ADDS chart designers (Preece 

et al., 2012b). However, some health professionals have argued that this layout will impair the 

recording of individual vital sign scores. These clinicians have highlighted the potential for error 

when chart-users determine an individual score on one part of the chart (i.e., where the observation 

is recorded) and then switch their attention to another part of the chart to record the score (i.e., 

beneath all of the vital sign data). It is possible that the mental effort involved in reorienting their 

attention to a new visual space after a large visual switch will lead chart-users to make mistakes 

when recording individual vital sign scores. 

 

Separate scoring-rows 

Some of these health professionals prefer observation charts to incorporate separate scoring-

rows to support users’ recording of individual vital sign scores (e.g., see Figure 4). In line with the 

principle that meaningfully grouped data can improve the search for information (Gerhardt-Powals, 

1996; Nielsen, 1993), the close proximity of each row to the corresponding vital sign data could 

arguably facilitate faster and more accurate determinations of individual scores. However, the 

ADDS chart designers reasoned that when summing separated scores (which on the ADDS chart, 

covers almost the whole height of an A3 page), the in-between observations may interfere with a 

user’s visual search down the time-point column such that they may read the wrong score(s) (e.g., 

in an adjacent column) or skip a score (or scores) entirely. 
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No scoring-rows 

Another variation of the ADDS chart, developed more recently by an Australian state health 

department, excludes individual vital sign scoring-rows altogether (see Figure 17). On this chart, 

users need to concurrently determine each individual vital sign score while holding a running total 

in mind. This design would almost certainly yield faster response times compared to those charts 

with scoring-rows, as it precludes users from recording 144 extra scores for every complete chart. 

However, this potential design solution is not without risk. Without rows to record individual 

scores, chart-users rely on an internal representation of the calculation process which may be 

compromised by the limitations of working memory (Wickens & Hollands, 2000). Working 

memory plays an important role in the computation of arithmetical answers, as it temporarily holds 

the initially presented operand(s) and the intermediate value(s) computed during the solution. 

However, working memory is limited in that only a small amount of information can be ‘worked 

on’ by other cognitive transformations. If a manipulation prolongs the period in which information 

is stored, a heavier load is placed on working memory and error can result (Campbell, 1992; 

Wickens et al., 2004). Thus, in summing individual early-warning scores, manipulations that 

prolong the storage of the initially presented operand (i.e., a determined individual vital sign score) 

or the intermediate computed values (i.e., the progressively summed scores) may increase the risk 

of arithmetical errors.  

Chart designs without scoring-rows (vs. those with rows) may be more susceptible to these 

working memory limitations. The storage period for holding intermediate values will be 

comparatively prolonged because users need to simultaneously determine successive individual 

vital sign scores. (Note that the need to cross-reference to the systolic blood pressure table on the 

ADDS chart may further prolong this storage period.) This is an example of retroactive 

interference, where the retrieval of material-to-be-remembered is disrupted by subsequent activity. 

The risk of interference during the retention interval tends to increase if the material is impeded by 

other material of the same type (Wickens & Hollands, 2000). As such, chart-users’ storage of 

intermediate scores during the summation process (i.e., digits that range from 0 to 8) may be made 

worse by the determination of subsequent individual vital sign scores (i.e., digits that range from 0 

to 5).  
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Figure 17. An existing chart (A3 size) with no individual vital sign scoring-rows. (Note that the 
chart has been rotated 90 degrees to fit the page.) 
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Excluding scoring-rows may be especially problematic in clinical environments where 

disruptions are commonplace. For example, if a health professional is interrupted part-way through 

their calculation of an early-warning score, they will either attempt to remember the intermediate 

score they were up to (which may be susceptible to error) or start the process over again (which will 

prolong task duration).  

Indeed, interface designers in Israel recently suggested that paper-based charts provide an 

external representation of users’ calculation processes (e.g., where data are presented in a table or 

formula). In their redesign of a radiotherapy chart, Sela and Auerbach-Shpak (2014) aimed to 

reduce errors associated with the calculation of radiation doses (where under-dosing can lead to 

ineffective cancer treatment, and overdosing can injure the exposed body area). After an initial 

assessment, the authors established that their institution’s existing chart did not assist staff to 

perform calculations or integrate information. For example, to determine the total dose of a 

patient’s radiation, users had to refer to constituent doses that were spread across different (and 

disorganised) areas of the chart. According to Sela and Auerbach-Shpak (2014), this segmentation 

unnecessarily complicated what should have been a simple calculation process. To reduce the risk 

of dose errors, radiation data was presented within a single table where the calculations to-be-

performed were arranged in sequence. From a human factors perspective, the authors argued that 

this external representation would organise the calculation process, reduce users’ memory loads, 

and facilitate easy checking. The potential benefits associated with an externally represented 

calculation process may be an argument for including individual vital sign scoring-rows (regardless 

of whether they are grouped or separate) on observation charts with combination and aggregate 

weighted scoring systems.  

 

Hypotheses and behavioural experiment (Christofidis, Hill, Horswill, & Watson, 2015)  

As described earlier, separate scoring-rows may help chart-users determine individual vital 

sign scores, while grouped rows may be of greater benefit when users add these scores. However, in 

anticipation of significantly more adding errors than scoring errors, it is hypothesised that users will 

determine total early-warning scores more accurately when scoring-rows are grouped. It is also 

hypothesised that, in the absence of scoring rows for individual vital signs, determining individual 

scores will prolong the storage period for intermediate values, increasing the rate of errors. 

However, it is anticipated that the absence of these scoring rows may yield a speed-accuracy trade-

off in which users determine early-warning scores faster than when using charts with rows. Chapter 

5 presents an experiment designed to test these hypotheses and hence resolve this contentious 

design problem. Although Chapter 4 already addresses the placement of scoring-rows in the context 

of identifying abnormal observations, the usability of this design feature may be more critical when 
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users engage with the scoring system itself (e.g., calculating and summing individual vital sign 

scores), rather than when simply detecting deterioration on charts where scores have already been 

computed. 

 

Approach of the thesis 
 

In the absence of expert consensus, this thesis proposes that we must turn to scientific 

experimentation to resolve controversies in patient observation chart design and evaluate best 

practice. Chapters 2 to 5 describe four behavioural experiments that address each aforementioned 

point of contention in turn. Chapter 6 discusses the implications of the empirical findings and the 

limitations of the project, as well as presenting suggestions for future research. Two dependent 

variables, error rate and response time, were used as the performance measures across each 

experiment for two key reasons. First, accuracy and efficiency are critical in the real-world task of 

recording and monitoring vital signs. From a usability perspective, observation charts should yield 

low errors rates from health professionals as well as efficient engagement for optimal productivity. 

Second, the reciprocity that can occur between errors and time mean that speed-accuracy trade-offs 

have the potential to explain certain findings. Sometimes, the speed-accuracy trade-off between 

systems differ because one design may induce more careful but slower behaviour, and the other 

faster but less precise behaviour (Wickens et al., 2004). 
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Chapter 2  
 

Christofidis, M.J., Hill, A., Horswill, M.S., & Watson, M.O. (2013). A human factors approach to 

observation chart design can trump health professionals’ prior chart experience. Resuscitation, 

84(5), 657-665.   

 

Table 1. Manuscript revision history for “A human factors approach to observation chart design 
can trump health professionals’ prior chart experience” 
 
Date Detail 
29 June 2012 
31 August 2012 
19 September 2012 
7 May 2013 

Submitted to Resuscitation 
Article revised 
Article accepted for publication 
Published in print 

 

Hypotheses  

Chart-users will make fewer errors and respond more quickly when using the ADDS chart, 

compared to chart designs with which they are highly experienced. Or alternatively, chart-users will 

perform better when presented with the chart that they regularly use in their occupational role.  

 

  



	
   57 

1. Introduction 

 

Paper-based observation charts are typically designed at individual institutions, or at the 

level of the individual area health service, by clinical staff perceived as having some knowledge or 

experience of chart design.1,2 This results in considerable variation in the design of charts between, 

and even within, hospitals.2 Consequently, the type of chart designs that health professionals are 

experienced in using to record and monitor physiological variables can vary dramatically. Across 

Australia, for example, chart design can vary according to (a) the selection, order and display 

format (e.g., numerical vs. graphical) of vital signs that can be monitored; (b) whether or not track-

and-trigger systems or emergency call criteria are used; (c) the orientation of data series and pages 

(i.e., landscape vs. portrait); and (d) the use of abbreviated terminology.3 

In the context of this lack of standardization, health professionals have tended to rely on 

their own subjective judgments, and those of their peers, to assess the efficacy of individual chart 

designs.1,2 Recently, however, there have been several efforts to guide the design of observation 

charts using evidence-based approaches.1,2,4 For instance, Horswill et al.,5 in consultation with 

clinicians, designed two versions of a chart (the Adult Deterioration Detection System, or ADDS, 

chart), which were developed from a human factors perspective to facilitate the detection of patient 

deterioration in a user-friendly manner.  In a subsequent experimental study by Preece et al.,1 

experienced health professionals and novices were shown realistic patient data presented on the two 

ADDS charts and four pre-existing chart designs, and judged whether or not any of the vital signs 

were abnormal. Both groups made fewer errors and responded more quickly when using the user-

friendly ADDS charts compared with the other designs, suggesting that variability in chart design 

quality can have a considerable effect on the performance of both experienced and novice 

observation chart users. 

One limitation of the study, however, was that previous experience with particular chart 

designs was not controlled for.1 On average, the health professionals, who were recruited from a 

tertiary referral teaching hospital,6 reported having previously used two of the charts presented 

during the experiment (or very similar chart designs; see Table 1).1 Given recent Australian 

government initiatives to develop an evidence-based general adult observation chart7 with the 

potential for state- or nation-wide standardisation, and the possibility that other governments will 

follow suit, it is also crucial to assess whether health professionals’ prior chart experience affects 

their ability to detect patient deterioration on the new, user-friendly designs. Although a widely 

used standardised chart could plausibly lead to efficiency gains for staff working in multiple 

facilities (either concurrently or over time), there are also several reasons why its initial 

implementation could potentially be problematic.  
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One possibility is that, if chart users have extensive experience with one particular chart, 

then this familiarity might result in superior performance using that chart as opposed to a better-

designed replacement. This may be the case even if the replacement chart has been designed from a 

human factors perspective and can be demonstrated to be a superior choice for novice users or 

clinicians with experience using a variety of other charts (as with the ADDS1). Hence, it is not a 

foregone conclusion that the best-designed chart will immediately yield the best performance in all 

user-groups, irrespective of their prior experience. In addition, health professionals who are highly 

experienced in using a particular chart may be more resistant to the implementation of an alternative 

design, as familiarity and perceived satisfaction can strongly influence users’ preference for a 

specific system.8 Post implementation, health professionals may be less likely to comply with chart-

related protocols if they falsely believe that a poorly designed chart that they are experienced in 

using is not problematic (and that a new best-practice chart is).9 

Given these usability risks, the present study empirically evaluated the effect of observation 

chart design on the ability of health professionals, highly familiar with and experienced in using a 

specific chart favoured by their institution, to recognise abnormal vital sign observations on a range 

of chart designs. The six designs selected for comparison, and the patient cases recorded on them, 

were those used in Preece et al.’s study1 (i.e., both versions of the ADDS Chart, and four pre-

existing Australian designs). Two groups of participants were selected for their extensive 

experience with one or other of the pre-existing charts (or a very similar design). They were asked 

to judge whether observations recorded on the charts were physiologically abnormal or normal.  

 

Table 1 
Number and percentage of health professionals in Preece et al’s study, and each experience group in 
the present study, who reported having experience with charts very similar to those used in the 
experiment (participants could select more than one chart).  
 
Chart used in the experiments Health professional group 

Preece et al. 
1 

(n = 45) 

The present study 
Multiple 
parameter 
track-and-
trigger chart 
experienced  
(n = 64) 

No track-and-
trigger graphical 
chart experienced  
(n = 37) 

No track-and-trigger numerical  23 (51.11%)  3 (4.69%) - 
No track-and-trigger graphical  19 (42.22%) 1 (1.56%)  37 (100.00%) 
Single parameter track-and-trigger  23 (51.11%) 1 (1.56%)  - 
Multiple parameter track-and-trigger  8 (17.78%) 64 (100.00%) - 
ADDS chart with systolic blood pressure 
table 

8 (17.78%) - - 

ADDS chart without systolic blood 
pressure table 

8 (17.78%) - - 
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Two competing hypotheses were proposed. Hypothesis 1: Prior experience will outweigh 

design, such that chart users will be most accurate and fastest when presented with the chart that 

they regularly use in their occupational role (or a very similar chart). Hypothesis 2: Alternatively, 

user-friendly design will outweigh prior experience, such that each experience group will make 

fewer errors and respond more quickly when using the two charts developed from a human factors 

perspective, compared with the pre-existing charts (including the design with which they are highly 

experienced).  

 

2. Methods 

 

2.1. Participants 

 

 Participants were two groups of doctors and nurses recruited and tested between September 

2010 and April 2011. Participants experienced in using the multiple parameter track-and-trigger 

chart that was included in the study materials (n = 64) were recruited from The Canberra Hospital 

(Garran, Australian Capital Territory, Australia). Participants experienced with a no track-and-

trigger graphical chart similar to the one included in the study materials (n = 37), were recruited 

from Mt Isa Base Hospital (Mt Isa, Queensland, Australia) and Logan Hospital (Meadowbrook, 

Queensland, Australia). An additional four health professionals participated in the study but were 

excluded from the analyses: one participant from The Canberra Hospital who reported not having 

used the multiple parameter track-and-trigger chart in their occupational role, and three from Mt Isa 

Base Hospital and Logan Hospital who reported not having used a no track-and-trigger graphical 

chart. All participants gave informed consent and were compensated AUD100 for their time. Each 

hospital’s ethics committee approved the study. 

 

2.2. Patient data  

 

 The forty-eight cases of genuine de-identified patient data used in the study by Preece et al.1 

were re-used in this study. Spanning 13 consecutive time-points, each case included data for the 

nine vital signs that were common to all six observation chart designs: respiratory rate, oxygen 

delivery, oxygen saturation, systolic and diastolic blood pressure, heart rate, temperature, 

consciousness and pain.  

Twenty-four of the cases included an abnormal observation (i.e., a vital sign observation 

outside of the defined set of normal ranges provided by three of the observation charts used in this 

study; see Table 2 for the vital sign normal ranges), whilst the remaining twenty-four cases 
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contained only normal observations. The abnormal cases included derangements in oxygen 

saturation (6 hypoxic cases), systolic blood pressure (3 hypotensive and 3 hypertensive cases), heart 

rate (3 bradycardic and 3 tachycardic cases) and temperature (3 hypothermic and 3 febrile cases). 

Each set of patient data had been carefully hand-plotted onto each of the six chart designs tested in 

the study (48 cases × 6 charts = 288 charts). For additional details on these materials, see Preece et 

al.1 

 

Table 2 
Vital sign normal ranges used in the experiment (table reproduced from Preece et al.1).  
 
Vital sign Normal range 
Respiratory rate  Between 9 – 20 breaths per minute  
Oxygen delivery  Patient is receiving oxygen at ≤ 1 litre per minute  
Oxygen saturation  Between 93 – 100%  
Systolic blood pressure  Between 100 – 160 mmHg  
Heart rate Between 50 – 100 beats per minute  
Temperature  Between 36.1 – 37.9 Celsius  
Consciousness  Patient is classified as being alert  
Pain  Patient is in no pain  
 

2.3. Observation charts 

 

 Two versions of the Adult Deterioration Detection System (ADDS) chart were included in 

the study. These were developed from a human factors perspective in response to an evaluation of 

usability problems affecting 25 existing Australian and New Zealand observation charts.3 Also 

included were charts that had been classified in that review as being either: (1) reasonably well-

designed (i.e., the single and multiple parameter track-and-trigger charts); (2) of average design 

quality (i.e., the no track-and-trigger graphical chart); or (3) poorly designed (i.e., the no track-and-

trigger numerical chart).  

Table 3 outlines the key design characteristics of the six charts used in the study. For 

comparison, it also includes details of the chart habitually used by the no track-and-trigger graphical 

chart experience group. Figure 1 presents images of the two charts relevant to the experience groups 

(and Hypothesis 1), and the two charts developed from a human factors perspective (and relevant to 

Hypothesis 2).  
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Table 3 
Key design characteristics of the six charts used in the study, and the chart habitually used by the no 
track-and-trigger graphical chart experience group. (Note that the table has been rotated 90 degrees 
to fit the page.) 
 

 
 

 

K
ey

 d
es

ig
n 

ch
ar

ac
te

ri
st

ic
s 

A
du

lt 
D

et
er

io
ra

tio
n 

D
et

ec
tio

n 
Sy

st
em

 
w

ith
 s

ys
to

lic
 b

lo
od

 
pr

es
su

re
 ta

bl
e 

A
du

lt 
D

et
er

io
ra

tio
n 

D
et

ec
tio

n 
Sy

st
em

 
w

ith
ou

t s
ys

to
lic

 
bl

oo
d 

pr
es

su
re

 
ta

bl
e 

M
ul

tip
le

 p
ar

am
et

er
 

tr
ac

k-
an

d-
 tr

ig
ge

r 
ch

ar
t 

Si
ng

le
 p

ar
am

et
er

 
tr

ac
k-

an
d-

 
tr

ig
ge

r 
ch

ar
t 

N
o 

tr
ac

k-
an

d-
 

tr
ig

ge
r 

gr
ap

hi
ca

l 
ch

ar
t 

N
o 

tr
ac

k-
an

d-
 

tr
ig

ge
r 

nu
m

er
ic

al
 c

ha
rt

 

C
ha

rt
 u

se
d 

by
 th

e 
no

 tr
ac

k-
an

d-
tr

ig
ge

r 
gr

ap
hi

ca
l c

ha
rt

 
ex

pe
ri

en
ce

 g
ro

up
 

Pa
pe

r 
si

ze
 a

nd
 

si
de

dn
es

s 
A

3,
 d

ou
bl

e-
si

de
d.

 
A

3,
 d

ou
bl

e-
si

de
d.

 
A

4,
 d

ou
bl

e-
si

de
d.

 
A

3,
 d

ou
bl

e-
si

de
d.

 
A

3,
 d

ou
bl

e-
si

de
d.

 
A

4,
 s

in
gl

e-
si

de
d.

 
A

4,
 d

ou
bl

e-
si

de
d.

 

Pa
ge

 o
ri

en
ta

tio
n 

La
nd

sc
ap

e.
 

La
nd

sc
ap

e.
 

Po
rtr

ai
t. 

 
La

nd
sc

ap
e.

 
La

nd
sc

ap
e.

 
Po

rtr
ai

t. 
Po

rtr
ai

t. 
D

is
pl

ay
 fo

rm
at

 
of

 v
ita

l s
ig

ns
  

A
ll 

ob
se

rv
at

io
ns

 a
re

 
re

co
rd

ed
 

gr
ap

hi
ca

lly
, e

xc
ep

t 
pa

in
. 

A
ll 

ob
se

rv
at

io
ns

 a
re

 
re

co
rd

ed
 

gr
ap

hi
ca

lly
, e

xc
ep

t 
pa

in
. 

A
ll 

ob
se

rv
at

io
ns

 a
re

 
re

co
rd

ed
 g

ra
ph

ic
al

ly
, 

ex
ce

pt
 o

xy
ge

n 
de

liv
er

y 
an

d 
pa

in
. 

A
ll 

ob
se

rv
at

io
ns

 
ar

e 
re

co
rd

ed
 

gr
ap

hi
ca

lly
 e

xc
ep

t 
ox

yg
en

 d
el

iv
er

y 
an

d 
pa

in
. 

Te
m

pe
ra

tu
re

, b
lo

od
 

pr
es

su
re

 a
nd

 h
ea

rt 
ra

te
 a

re
 re

co
rd

ed
 

gr
ap

hi
ca

lly
 (a

ll 
ot

he
r 

vi
ta

l s
ig

ns
 a

re
 

ta
bu

la
te

d)
. 

A
ll 

ob
se

rv
at

io
ns

 
ar

e 
ta

bu
la

te
d.

 
Te

m
pe

ra
tu

re
, b

lo
od

 
pr

es
su

re
, h

ea
rt 

ra
te

 
an

d 
re

sp
ira

tio
ns

 a
re

 
re

co
rd

ed
 g

ra
ph

ic
al

ly
. 

U
se

 o
f t

ra
ck

- 
an

d-
tr

ig
ge

r 
sy

st
em

s 

Si
ng

le
 a

nd
 m

ul
tip

le
 

pa
ra

m
et

er
 tr

ac
k-

an
d-

tri
gg

er
 s

ys
te

m
s 

in
te

gr
at

ed
 in

to
 th

e 
ob

se
rv

at
io

ns
 a

re
a.

 

Si
ng

le
 a

nd
 m

ul
tip

le
 

pa
ra

m
et

er
 tr

ac
k-

an
d-

tri
gg

er
 s

ys
te

m
s 

in
te

gr
at

ed
 in

to
 th

e 
ob

se
rv

at
io

ns
 a

re
a.

 

M
ul

tip
le

 p
ar

am
et

er
 

tra
ck

-a
nd

-tr
ig

ge
r 

sy
st

em
 in

te
gr

at
ed

 in
to

 
th

e 
ob

se
rv

at
io

ns
 a

re
a.

 
W

rit
te

n 
em

er
ge

nc
y 

ca
ll 

cr
ite

ria
. 

Si
ng

le
 p

ar
am

et
er

 
tra

ck
-a

nd
-tr

ig
ge

r 
sy

st
em

 in
te

gr
at

ed
 

in
to

 th
e 

ob
se

rv
at

io
ns

 a
re

a.
 

N
o 

in
te

gr
at

ed
 tr

ac
k-

an
d-

tri
gg

er
 s

ys
te

m
. 

W
rit

te
n 

em
er

ge
nc

y 
ca

ll 
cr

ite
ria

. 
 

N
o 

in
te

gr
at

ed
 

tra
ck

-a
nd

-tr
ig

ge
r 

sy
st

em
 o

r w
rit

te
n 

em
er

ge
nc

y 
ca

ll 
cr

ite
ria

. 

N
o 

in
te

gr
at

ed
 tr

ac
k-

an
d-

tri
gg

er
 s

ys
te

m
 o

r 
w

rit
te

n 
em

er
ge

nc
y 

ca
ll 

cr
ite

ria
. 

 

U
se

 o
f c

ol
ou

r 
to

 
si

gn
al

 
ab

no
rm

al
iti

es
 

D
iff

er
en

t b
an

di
ng

s 
of

 c
ol

ou
r (

ba
se

d 
on

 
th

e 
se

ve
rit

y 
of

 
ab

no
rm

al
ity

) a
re

 
us

ed
 to

 s
co

re
 v

ita
l 

si
gn

s.
 P

ur
pl

e 
ba

nd
s 

ar
e 

us
ed

 in
di

ca
te

 
th

at
 a

n 
em

er
ge

nc
y 

ca
ll 

sh
ou

ld
 b

e 
pl

ac
ed

 im
m

ed
ia

te
ly

. 

D
iff

er
en

t b
an

di
ng

s 
of

 c
ol

ou
r (

ba
se

d 
on

 
th

e 
se

ve
rit

y 
of

 
ab

no
rm

al
ity

) a
re

 
us

ed
 to

 s
co

re
 v

ita
l 

si
gn

s.
 

Pu
rp

le
 b

an
ds

 a
re

 
us

ed
 in

di
ca

te
 th

at
 

an
 e

m
er

ge
nc

y 
ca

ll 
sh

ou
ld

 b
e 

pl
ac

ed
 

im
m

ed
ia

te
ly

. 

D
iff

er
en

t b
an

di
ng

s 
of

 
co

lo
ur

 (b
as

ed
 o

n 
th

e 
se

ve
rit

y 
of

 
ab

no
rm

al
ity

) a
re

 u
se

d 
to

 s
co

re
 v

ita
l s

ig
ns

.  

Tw
o 

ba
nd

in
gs

 o
f 

co
lo

ur
 (y

el
lo

w
 

an
d 

re
d)

 d
en

ot
e 

di
ff

er
en

t l
ev

el
s 

of
 

ab
no

rm
al

ity
, 

in
di

ca
tin

g 
w

ha
t 

ac
tio

n 
sh

ou
ld

 b
e 

ta
ke

n.
 

C
ol

ou
r i

s 
no

t u
se

d 
to

 
si

gn
al

 a
bn

or
m

al
iti

es
. 

C
ol

ou
r i

s 
no

t u
se

d 
to

 s
ig

na
l 

ab
no

rm
al

iti
es

. 

C
ol

ou
r i

s 
no

t u
se

d 
to

 
si

gn
al

 a
bn

or
m

al
iti

es
. 

Pr
es

en
ta

tio
n 

of
 

bl
oo

d 
pr

es
su

re
 

an
d 

he
ar

t r
at

e 

Pr
es

en
te

d 
as

 
se

pa
ra

te
 p

lo
ts

 o
n 

se
pa

ra
te

 g
ra

ph
s.

  

Pr
es

en
te

d 
as

 
se

pa
ra

te
 p

lo
ts

 o
n 

se
pa

ra
te

 g
ra

ph
s.

 

Pr
es

en
te

d 
as

 
ov

er
la

pp
in

g 
pl

ot
s 

on
 

th
e 

sa
m

e 
gr

ap
h 

us
in

g 
th

e 
sa

m
e 

ax
es

. 

Pr
es

en
te

d 
as

 
se

pa
ra

te
 p

lo
ts

 o
n 

se
pa

ra
te

 g
ra

ph
s.

 

Pr
es

en
te

d 
as

 
ov

er
la

pp
in

g 
pl

ot
s 

on
 

th
e 

sa
m

e 
gr

ap
h 

us
in

g 
th

e 
sa

m
e 

ax
es

. 

Pr
es

en
te

d 
as

 
se

pa
ra

te
 p

lo
ts

 o
n 

se
pa

ra
te

 g
ra

ph
s.

 

Pr
es

en
te

d 
as

 
ov

er
la

pp
in

g 
pl

ot
s 

on
 

th
e 

sa
m

e 
gr

ap
h 

us
in

g 
th

e 
sa

m
e 

ax
es

. 
Sc

or
in

g 
of

 b
lo

od
 

pr
es

su
re

 r
el

at
iv

e 
to

 th
e 

pa
tie

nt
’s

 
us

ua
l s

ys
to

lic
 

bl
oo

d 
pr

es
su

re
 

Sy
st

ol
ic

 b
lo

od
 

pr
es

su
re

 s
co

rin
g 

ta
bl

e 
lo

ca
te

d 
ad

ja
ce

nt
 to

 th
e 

gr
ap

h 
of

 b
lo

od
 

pr
es

su
re

 
ob

se
rv

at
io

ns
. 

N
o 

in
di

vi
du

al
is

ed
 

sc
or

in
g 

of
 th

e 
pa

tie
nt

’s
 s

ys
to

lic
 

bl
oo

d 
pr

es
su

re
. 

Sy
st

ol
ic

 b
lo

od
 

pr
es

su
re

 s
co

rin
g 

ta
bl

e 
lo

ca
te

d 
on

 th
e 

re
ve

rs
e 

of
 th

e 
pa

ge
. 

N
o 

in
di

vi
du

al
is

ed
 

sc
or

in
g 

of
 th

e 
pa

tie
nt

’s
 s

ys
to

lic
 

bl
oo

d 
pr

es
su

re
. 

 

N
o 

in
di

vi
du

al
is

ed
 

sc
or

in
g 

of
 th

e 
pa

tie
nt

’s
 s

ys
to

lic
 

bl
oo

d 
pr

es
su

re
. 

 

N
o 

in
di

vi
du

al
is

ed
 

sc
or

in
g 

of
 th

e 
pa

tie
nt

’s
 s

ys
to

lic
 

bl
oo

d 
pr

es
su

re
. 

N
o 

in
di

vi
du

al
is

ed
 

sc
or

in
g 

of
 th

e 
pa

tie
nt

’s
 s

ys
to

lic
 

bl
oo

d 
pr

es
su

re
. 

!



	
   62 

Fig. 1. Charts relevant to the hypotheses: the multiple parameter track-and-trigger chart (front and 
back; de-identified) (A); the no track-and-trigger graphical chart (inside pages only; de-identified) 
(B); the ADDS chart with systolic blood pressure table (inside pages only) (C); and the ADDS chart 
without systolic blood pressure (inside pages only) (D). See the web version of the article for colour 
images.  
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Fig. 1. Charts relevant to the hypotheses: the ADDS chart with systolic blood pressure table (inside pages only) (A); the ADDS chart without systolic blood pressure table
(inside  pages only) (B); the multiple parameter track-and-trigger chart (front and back; de-identified) (C); and the no track-and-trigger graphical chart (inside pages only;
de-identified) (D).
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Fig. 1. (continued.
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2.4. Design and procedure 

 

The study used a mixed design, with chart experience group (between-subjects: multiple 

parameter track-and-trigger chart experience vs. no track-and-trigger graphical chart experience) 

and chart type (within-subjects) as the independent variables.  

Health professionals initially completed a questionnaire that assessed their demographic and 

clinical background. Participants then watched a training video that described: (a) the normal ranges 

for each of the nine vital signs; (b) track-and-trigger systems; and (c) how to use each observation 

chart (presented in a different random order for each participant). Next, participants’ knowledge of 

the key information and normal ranges was tested with a 10-item multiple-choice examination (if an 

item was answered incorrectly, participants were required to study the normal ranges and retake the 

examination until they answered all items correctly). The experimental protocol was then described 

in a final video presentation. 

 Across 48 trials, each participant viewed each set of patient data once. The six charts were 

each used on eight trials, four times with abnormal data and four times with normal data. For each 

participant, cases of patient data were randomly assigned to chart designs with the constraint that, 

for each chart, derangements included oxygen saturation, systolic blood pressure, heart rate, and 

temperature. Trials were presented in a different random order for each participant to prevent order 

effects.  

In each trial, the participant was presented with a chart and was asked to judge whether any 

of the observations were abnormal (and, if so, to specify which), or whether all of the observations 

were normal. Participants’ responses and response times were recorded using a customized 

computer program.  

 Following the experiment, participants completed a questionnaire that assessed their prior 

chart experience. 

 

2.5. Statistical Analyses 

 

 For each trial, a response was coded as ‘correct’ if the participant correctly singled-out an 

abnormal vital sign, or correctly identified a normal case as normal. Each participant’s error rate 

(i.e., percentage of incorrect responses) and average response time were calculated for each chart as 

the outcome measures. Statistical analyses were performed using SPSS 20.0 (SPSS Inc, Chicago, 

Ill, USA). Statistical significance was set at α = 0.05. Separate mixed-design (chart type x 

experience group) analyses of variance were conducted on error rates and response times, 

respectively. Because Mauchly’s W was significant (indicating violation of the sphericity 
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assumption) for both analyses, the Greenhouse-Geisser correction was applied to the within-

participants effects. For each significant omnibus test, η2 was calculated as the measure of effect 

size.10  Significant observation chart × experience group interactions were followed-up with 

pairwise comparisons between observation charts within each experience group. For these analyses, 

the Bonferroni-Holm correction for multiple comparisons was used to ensure that the familywise 

error rate did not exceed p < .05.11 We also conducted simple effects tests to compare the 

experience groups’ performance on each chart, using Cohen’s d to quantify effect size.12 

 

3. Results 

 

3.1. Participant characteristics 

 

 Over 80% of participants reported using observation charts more than once a day as part of 

their current role (see Table 1 for participants’ prior experience with each chart presented in the 

study). Table 4 presents detailed participant characteristics for both chart experience groups.  
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Table 4 
Participant characteristics. Values are mean (SD) or percentage (n).  
 
Variable Experience group 

Multiple parameter 
track-and-trigger 
chart experienced 

participants 
(n = 64) 

No track-and-
trigger graphical 
chart experienced 

participants 
(n = 37) 

Age in years 40.17 (12.21) 37.35 (9.98) 
Gender  Female 82.8% (53) 86.5% (32) 

 Male 17.2% (11) 13.5% (5) 
Years registered 15.37 (12.21) 13.46 (10.25) 
Occupation Doctor 1.6% (1) 5.4% (2) 

 Nurse 98.4% (63) 94.6% (35) 
Work area Ward 59.4% (38) 40.5% (15) 

 Emergency 4.7% (3) 13.5% (5) 
 Theatre 3.1% (2) - 
 ICU 14.1% (9) 16.2% (6) 
 Multiple areas 7.8% (5) 5.4% (2) 
 Other 10.9% (7) 24.3% (9) 

Frequency of 
observation chart use 

More than once a day  
Once a day  

82.8% (53) 
3.1% (2) 

75.7% (28) 
13.5% (5) 

 More than once a week, 
but less than once a day  
More than once a month, 
but less than once a week  

 
10.9% (7) 

- 

 
5.4% (2) 
2.7% (1) 

 Less than once a month  3.1% (2) 2.7% (1) 
Frequency of recording 
information in 
observation charts 

More than once a day  
Once a day  
More than once a week, 
but less than once a day  

75.0% (48) 
6.3% (4) 

 
4.7% (3) 

78.4% (29) 
- 
 

2.7% (1) 
 Once a week  

More than once a month, 
but less than once a week  

3.1% (2) 
 
- 

2.7% (1) 
 

5.4% (2) 
 Less than once a month  4.7% (3) 5.4% (2) 
 Not applicable  6.3% (4) 5.4% (2) 

Training received in 
observation chart use † 

None 
Read the instructions 
Informal (e.g., by co-
worker) 

- 
25% (16) 

34.4% (22) 
 

16.2% (6) 
24.3% (9) 
62.2% (23) 

 Formal (e.g., in-service or 
workshop) 

89.1% (57) 
 

29.7% (11) 

 Other 1.6% (1) - 
† For this question, participants could select more than one form of training 
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3.2. Error rate 

 

Analysis of the error rate data revealed a significant main effect of chart type, F(3.96, 

391.81) = 63.16, p < 0.001, η2 = 0.390, no significant main effect of experience group, F(1, 99) = 

1.78, p = 0.186, and a significant interaction between chart type and chart experience group, F(3.96, 

391.81) = 3.40, p = 0.010, η2 = 0.030 (see Figure 2 and online supplementary material for pairwise 

comparisons between charts). Simple effects tests revealed two significant differences between the 

experience groups. The multiple parameter track-and-trigger chart experienced participants made 

fewer errors than the no track-and-trigger graphical chart experienced participants on both their own 

chart, t(99) = -2.63, p = 0.010, Cohen’s d = -0.55, and the no track-and-trigger graphical chart, t(99) 

= -2.09, p = 0.040, Cohen’s d = -0.43.  

 

3.3. Response time 

 

For the response time data, there was a significant main effect of chart type, F(2.83, 279.82) 

= 37.17, p < 0.001, η2 = 0.270, no significant effect of experience group, F(1, 99) = 0.13, p = 0.723, 

and a significant interaction between chart type and chart experience group, F(2.83, 279.82) = 6.42, 

p < 0.001, η2 = 0.060 (see Figure 2 and online supplementary material for pairwise comparisons 

between charts). Simple effects tests revealed one significant difference between the groups. The 

multiple parameter track-and-trigger chart experienced participants responded faster than the no 

track-and-trigger graphical chart experienced participants on their own chart, t(99) = -2.16, p = 

0.033, Cohen’s d = -0.45.  
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Fig. 2. Error rates (A) and response times (B) for detecting abnormal observations on the six charts, 
arranged by experience group. Error bars indicate 95% confidence intervals. Within each group, 
different letters indicate significant differences at the 5% level using the Bonferroni-Holm 
correction. 
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Fig. 2. Error rates (A) and response times (B) for detecting abnormal observations on the six charts, arranged by experience group. Error bars indicate 95% confidence intervals.
Within each group, different letters indicate significant differences at the 5% level using the Bonferroni-Holm correction.
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4. Discussion  

 

In line with the prediction that human factors design would outweigh health professionals’ 

prior experience with a particular observation chart (Hypothesis 2), both chart experience groups 

made fewer errors and responded more quickly when using the ADDS rather than the other designs, 

including the charts that they were highly experienced in using. Since the ADDS out-performed all 

other charts on both metrics, a speed-accuracy trade-off cannot account for its success on either 

measure. Compared with the best-performing ADDS chart, the multiple parameter track-and-trigger 

chart yielded around 1.6 times as many errors by experienced users. Likewise, the no track-and-

trigger graphical chart yielded around 5.4 times as many errors by participants experienced with a 

similar chart. These are large effects that, in practice, would be likely to influence the appropriate 

and timely detection of patient deterioration.  

Nevertheless, the study also yielded some evidence of the benefits of experience with a 

particular chart. When using the multiple parameter track-and-trigger chart, participants with prior 

experience were both faster and more accurate than their counterparts in the no track-and-trigger 

graphical chart group. Unexpectedly, they were also more accurate in their ability to recognise 

abnormal patient observations on the no track-and-trigger graphical chart. It is hypothesised that 

this performance advantage may stem from The Canberra Hospital’s interdisciplinary staff 

education program, which explicitly aims to enhance understanding of patient deterioration and the 

significance of abnormal observations.13 Over 89% of participants experienced with the multiple-

parameter track-and-trigger chart reported receiving this training which, in concert with the re-

design of their observation chart (into its current form) and the implementation of a medical 

response system, appears to have improved the process of recognising clinical deterioration in their 

hospital.4 In comparison, only 29% of no track-and-trigger graphical chart experienced participants 

reported receiving any type of formal chart training. However, future studies examining the effects 

of chart training on user performance would be required to test our hypothesis directly.  

One limitation of the current study is that the design of the no track-and-trigger graphical 

chart differed slightly from that of the chart routinely used by participants from the Mt Isa Base and 

Logan hospitals. However, it was reasoned that the design differences between the two charts (e.g., 

paper size, presentation of respiratory rate, inclusion of written emergency call criteria on the 

reverse; see Table 3) were not substantial enough to significantly disadvantage these participants, 

and were trivial in comparison to the design differences between either chart and the ADDS charts. 

The results of the current study suggest that the performance benefits associated with human 

factors designed observation charts can outweigh the potential negative effects of abandoning and 

replacing a chart that is highly familiar to health professionals in an institution. Rather than 
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disadvantage staff, the findings of Preece et al.1 and the current study suggest that implementation 

of the Adult Deterioration Detection System charts may actually lead to performance 

improvements, even in health professionals whose prior chart experience is with a reasonably well-

designed chart3 (such as the multiple parameter track-and-trigger chart used in these studies). This 

finding is timely considering recent government initiatives to develop and implement evidence-

based general adult observation charts.7 When a new best-practice chart is introduced, one critical 

factor is whether it is accepted by the clinicians involved. If clinicians believe (even falsely so) that 

the new chart is inferior to the chart it is replacing, then this may lead to resistance to its use 

(resulting in problems with compliance, or even a failure to adopt the new chart at all). One 

potential driver of such resistance could be the assumption that staff will perform worse (at least, 

initially) on the new chart because of their extensive experience with the pre-existing chart. Given 

that the results of the present study suggest that this assumption may be unfounded (at least in the 

contexts tested), one solution might be to find a way of effectively communicating these findings to 

clinicians. For example, this information could be embedded in training materials accompanying 

the introduction of the new chart.9 

Although this study demonstrates that careful consideration of observation chart design can 

improve user performance, it is not yet known which specific design elements are responsible for 

this benefit (because the charts examined in this study varied in a number of ways). Though 

indicative findings suggest that (1) integrated track-and-trigger systems, (2) graphical observations 

(especially on charts without track-and-trigger systems), and (3) grouped early warning scores may 

all be beneficial,1,2,4 an objective and systematic evaluation of specific chart features is required to 

determine the unique contribution of these and other chart characteristics to performance.  

 

5. Conclusion 

 

In this study, health professionals performed better on novel well-designed charts, 

developed using human factors principles, than on the chart that they were experienced in using. 

Although there was some evidence that experience with a particular chart design can improve 

performance, the results also suggest that such performance increments do not adequately 

compensate for performance deficits attributable to chart designers’ failure to effectively apply 

human factors principles to their designs. At least in the contexts examined, superior observation 

chart design appears to trump familiarity. Hence, hospitals motivated to improve the detection of 

patient deterioration should implement charts that have been designed from a human factors 

perspective and empirically evaluated through behavioural experimentation or alternative 

techniques that yield objective evidence.9  
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Chapter 3 
 
Christofidis, M.J., Hill, A., Horswill, M.S., & Watson, M.O. (2014). Observation charts with 

overlapping blood pressure and heart rate graphs do not yield the performance advantage that health 

professionals assume: an experimental study. Journal of Advanced Nursing, 70(3), 610-624.   

 

Table 2. Manuscript revision history for “Observation charts with overlapping blood pressure and 
heart rate graphs do not yield the performance advantage that health professionals assume: an 
experimental study” 
 
Date Detail 
26 January 2013 
20 April 2013 
6 July 2013 
24 January 2014 

Submitted to Journal of Advanced Nursing 
Article revised 
Article accepted for publication 
Published in print 

 

Hypotheses 

Charts-users will perform significantly worse using charts with overlapping (vs. separate) plots, 

especially in the presence of an integrated colour-based track-and-trigger system. Chart-users who 

are trained to use the Seagull Sign will not perform faster nor make fewer errors when using charts 

with overlapping (vs. separate) plots.  
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INTRODUCTION 

 

 Vital sign observations can assist nurses in the detection of patient deterioration, since 

physiologically deranged observations may be present up to two days before an adverse event 

occurs (Franklin & Mathew 1994, Goldhill et al. 1999, Hillman et al. 2001, Endacott et al. 2007). 

Timely detection of abnormal vital signs is critical, as missed or delayed recognition of the 

deteriorating patient can lead to cardiac or respiratory arrest, emergency admission to the Intensive 

Care Unit, or unexpected death (Franklin & Mathew 1994; Goldhill et al. 1999; Hillman et al. 

2001). In recent years, efforts have been made to improve the early detection of patient 

deterioration through observation chart design (Chatterjee et al. 2005, Preece et al. 2012a, 

Christofidis et al. 2013). However, some design-related issues remain contentious, none more so 

than the question of how blood pressure and heart rate observations should be arranged on the page 

(ACSQHC 2009). In Australia, for example, the most widely-endorsed observation charts can be 

divided into (a) those that include a separate graph for each of these vital signs (e.g., Horswill et al. 

2010), and (b) those in which blood pressure and heart rate are plotted together on the same axes 

(e.g., Mitchell et al. 2010, ACT Health 2011a). In recent experimental studies, both clinicians and 

novice chart-users were consistently faster and more accurate at detecting abnormal observations on 

charts where these vital signs were graphed separately (Preece et al. 2012a, Christofidis et al. 

2013). However, the charts also differed in other design features that are likely to have contributed 

to the overall performance differences. To date, no empirical study has directly assessed whether 

deranged blood pressure and heart rate observations can be detected more easily on separate or 

overlapping graphs. 

 

Background 

 

 Until very recently, the vast majority of patient observation chart designs used in 

Australasian hospitals incorporated overlapping blood pressure and heart rate graphs (Preece et al. 

2013). This being the case, it is perhaps unsurprising that Australian doctors and nurses whose 

opinions were surveyed in 2009 reported that they (a) preferred blood pressure and heart rate to be 

plotted together on the same axes, and (b) found it easier to detect patient deterioration when these 

vital signs were graphed together rather than separately (Preece et al. 2010). However, such 

subjective evidence is of limited practical value given that familiarity can lead people to prefer 

systems that actually hinder their performance (Andre & Wickens, 1995). In addition to familiarity, 

another key reason for this preference (Preece et al. 2010) may be that overlapping plots facilitate 

the use of a visual cue known as the ‘Seagull Sign’ (aka the ‘Portsmouth Sign’; Caballero et al. 
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2012, Morrice & Simpson 2007). 

The Seagull Sign, which is widely used and endorsed by clinicians in several countries, 

including the United Kingdom and Australia (Darby et al. 2012), can only occur when systolic 

blood pressure and heart rate are graphed as overlapping plots on the same axes. Specifically, if a 

patient’s heart rate (represented by a dot) is plotted higher than their systolic blood pressure (usually 

represented by a ‘v’ or an ‘inverted v’, according to local practice) at the same time-point, then this 

indicates a likely abnormality (Darby et al. 2012; see Figure 1A). Early detection of such vital sign 

derangements can lead to the initiation of appropriate clinical review and treatment, potentially 

reducing the risk of organ dysfunction and death (Darby et al. 2012). Physiologically, the Seagull 

Sign equates to a shock index score (i.e., heart rate ÷ systolic blood pressure; Rady et al. 1994, 

Cannon et al. 2009) of greater than one. There is evidence from both emergency (Rady et al. 1994, 

Cannon et al. 2009) and non-emergency settings (Kirkland et al. 2012, Sankaran et al. 2012) of a 

statistical relationship between shock index values (whether expressed as raw scores or the presence 

vs. absence of the Seagull Sign) and subsequent clinical deterioration (Darby et al. 2012). However, 

two recent studies found that: (a) compared with the Seagull Sign, modified early warning scores 

were a better predictor of unplanned ICU admissions (Ramrakha et al. 2012); and (b) modified 

shock index scores (i.e., heart rate ÷ mean arterial pressure), which have no consistent Seagull Sign 

equivalent, predicted emergency patient mortality in circumstances where standard shock index 

scores did not (Liu et al. 2012). Furthermore, there is no empirical evidence that the Seagull Sign 

itself – as a visual cue – actually assists nurses to detect deranged vital signs in practice. Rather, 

clinicians have merely assumed and asserted that the visual cue is quick and easy to identify (Darby 

et al. 2012), without ever testing this fundamental assumption.   

Health professionals’ perception of the Seagull Sign as a practically useful tool (Darby et al. 

2012) may be partially explained by the memorable nature of the metaphor (Ortony 1993) that it 

represents; that is, just as it is abnormal for a patient’s heart rate to be plotted above their systolic 

blood pressure, it is abnormal for a seagull (represented by the ‘v’ or ‘inverted v’) to defy gravity by 

defecating (represented by the dot) upwards. The role of metaphor in education is somewhat 

controversial. One the one hand, a metaphor can enable the transfer of understanding from 

something that is well-known to something less well-known in a vivid and memorable way, thereby 

enhancing efficient and effective learning. On the other hand, metaphors are not essential to a 

cognitive understanding of what is being taught and learned, and may encourage sloppy and misled 

thought (Petrie & Oshlag 1993). Nevertheless, the metaphor’s utility as a teaching aid arguably 

contributes to some clinicians’ assumption that the Seagull Sign is a readily identifiable visual cue, 

especially for novice chart-users (Darby et al. 2012). 

Indeed, from a Gestalt psychology perspective (Zheng & Xue 2009), the isolated occurrence 
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of a heart rate observation plotted above a systolic blood pressure observation may be salient to 

chart-users because it appears visually dissimilar to the surrounding data (i.e., a series of heart rate 

observations plotted below corresponding systolic blood pressure observations). However, from a 

human factors perspective, a potentially more significant problem with the Seagull Sign is that the 

use of overlapping plots may lead to a visually cluttered display in which observations for one vital 

sign are difficult to separate perceptually from observations for the other (Wickens & Carswell 

1995). Further, the associated processing demands may increase (Wickens & Carswell 1995) with 

the inclusion of an integrated colour-based alerting (or ‘track-and-trigger’) system, used in many 

observation charts to help chart-users recognise patient deterioration and respond appropriately 

(Preece et al. 2013). Therefore, the practical utility of the Seagull Sign – and the overlapping plots 

that it necessitates – cannot be assumed.  

In light of recent government initiatives to develop and implement standardised evidence-

based general adult observation charts (ACSCHC 2009), there is a pressing need to assess the 

efficacy of chart-related practices (Oliver et al. 2010, De Meester et al. 2012) because anecdotal 

information, despite its low ranking in the evidence hierarchy, can greatly influence clinical 

behaviour (Enkin & Jadad 1998). For instance, until recently, patient observation charts were 

typically designed by health professionals relying on their own experiences and subjective 

judgments – and those of their peers – to gauge the efficacy of their designs (Chatterjee et al. 2005, 

Preece et al. 2012a). Furthermore, some of the reaction to a recent effort to improve paper-based 

observation charts using evidence-based approaches (ACSQHC 2009) suggests that clinicians can 

become highly wedded to culturally-supported chart-related beliefs (Preece et al. 2012b). 

Consequently, they may resist changes to their favoured chart designs (a) without empirical support 

for their arguments and, more critically, (b) in the face of mounting evidence to the contrary. 

 

THE STUDY 

 

Aims 

 

The present study aimed to provide the first direct empirical test of whether deranged blood 

pressure and heart rate observations can be detected more easily on separate or overlapping graphs. 

A secondary aim was to evaluate the practical utility of the Seagull Sign as a visual cue to assist in 

the detection of these observations. To address these aims, we tested the ability of chart-users – 

both ‘Seagull-trained’ and untrained – to recognise abnormal systolic blood pressure and heart rate 

observations on patient charts of varying design. A set of four chart design extracts was used in the 

experiment, which varied systematically in two ways: (1) the blood pressure and heart rate graphs 
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were either separate or overlapping; and (2) an integrated colour-based track-and-trigger system 

was either present or absent. We included both experienced nurse and novice groups in the sample 

to assess the generality of the results, since it is a practical necessity that observation charts and 

related practices should be effective for users with diverse levels of clinical expertise.   

The study tested two hypotheses based on the human factors considerations outlined above. 

First, we predicted that overlapping blood pressure and heart rate plots would impede the detection 

of abnormal observations, such that chart users would take longer and make more errors when using 

charts with overlapping (vs. separate) plots, especially on charts with an integrated colour-based 

track-and-trigger system (Hypothesis 1). Second, we predicted that, even when viewing patient data 

that would yield the Seagull Sign if presented on overlapping plots, participants trained to use the 

Seagull Sign would perform no better when using charts with overlapping (vs. separate) plots 

(Hypothesis 2).  

 

Design 

 

The study comprised a 3x2x2 mixed factorial design experiment, with participant group 

(between-participants), graph format (separate vs. overlapping graphs, within-participants) and 

alerting system (integrated colour-based track-and-trigger system present vs. absent, within-

participants) as the independent variables. We chose to vary both of the manipulated independent 

variables within-participants to maximize statistical power and to ensure that these factors could not 

be confounded by individual differences (e.g., level of expertise). The dependent measures were 

error rate and response time. 

 

Patient data  

 

Sixty-four cases of genuine de-identified patient data, collected from several Australian 

hospitals, were used in this study. Each case spanned 13 consecutive time-points and included data 

for the three vital signs relevant to the Seagull Sign: systolic blood pressure, diastolic blood 

pressure and heart rate. Half of these cases contained only normal observations (where the normal 

ranges were defined as systolic blood pressure from 90 to 139 mmHg, and heart rate from 50 to 99 

beats per minute; ACT Health 2011b). The remainder comprised 16 hypotensive and 16 tachycardic 

cases, each containing one abnormal observation. 

Two versions of each abnormal case were used in the study: (1) the original version, which 

would not yield a Seagull Sign on any chart; and (2) a slightly modified ‘Seagull Sign available’ 

version, which would yield a Seagull Sign when recorded on overlapping plots. This approach 



	
   77 

ensured that cases with and without Seagull Signs were as comparable as possible. To create each 

modified case, one blood pressure and/or heart rate observation from the original case was shifted 

into one of the two adjacent range rows (see Figure 1). A Senior Medical Specialist reviewed each 

modified case and determined that all data were physiologically plausible. As detailed below, each 

participant saw only one version of each case in the experiment.  

  

Fig. 1. An example of a tachichardic case with a Seagull Sign (A), and the equivalent case without a 
Seagull Sign (B), both plotted on an overlapping blood pressure and heart rate graph with no track-
and-trigger system (see the Patient data section for details). Boxed areas highlight the Seagull Sign 
and the corresponding non-Seagull Sign data. 
 

 
 

Observation chart designs 

 

Four chart design extracts, based on observation chart designs currently used in Australia 

(Preece et al. 2013, Mitchell et al. 2010, Preece et al. 2012a), were created for use in this study (see 

Figure 2). Two incorporated an integrated colour-based track-and-trigger system, with either 

overlapping blood pressure/heart rate graphs (where the Seagull Sign could occur; Figure 2A), or 

separate blood pressure and heart rate graphs (Figure 2B). The others had no track-and-trigger 

system, and also featured either overlapping blood pressure/heart rate graphs (where the Seagull 

Sign could occur; Figure 2C), or separate graphs (Figure 2D). 
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Fig. 2. Chart design extracts used in the study: overlapping blood pressure and heart rate graphs 
with a track-and-trigger system (A); separate blood pressure and heart rate graphs with a track-and-
trigger system (B); overlapping blood pressure and heart rate graphs with no track-and-trigger 
system (C); and separate blood pressure and heart rate graphs with no track-and-trigger system (D). 
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The chart design extracts with track-and-trigger systems included a systolic blood pressure 

scoring table designed to allow the patient’s usual systolic blood pressure to be considered when 

deciding whether systolic blood pressure observations were normal or abnormal (Mitchell et al. 

2010, ACT Health 2011a, Preece et al. 2012a). However, in the experiment, the patient’s usual 

systolic blood pressure was always between 90 and 99 mmHg, which corresponded to the 90 to 139 

mmHg normal range (ACT Health 2011b; see Figure 2A, 2B). This arrangement allowed colour-

coding to be used for both blood pressure and heart rate observations, irrespective of whether their 

plots overlapped, eliminating a potential confound.  

The four chart design extracts were created, and each set of patient data plotted onto each 

design, using Adobe InDesign CS5.5 (Adobe Systems Incorporated 2011).  

 

Participants 

 

A purposive sample of nurses (n = 41), who were compensated AUD75 for their time, were 

recruited from a tertiary hospital (ACT, Australia) via flyer advertisements. In this institution, the 

general observation chart incorporates overlapping blood pressure and heart rate graphs (Mitchell et 

al. 2010, ACT Health 2011a), and use of the ‘Seagull Sign’ in conjunction with the chart is 

encouraged by senior clinicians and taught as part of an interdisciplinary education program on the 

detection of patient deterioration available to all nursing staff (ACT Health 2011a).  

Novice chart-users (n = 113) were a convenience sample of undergraduate psychology 

students from a Brisbane university (QLD, Australia), who received course credit for participating. 

The initial exclusion criterion for novices was any prior experience with a hospital observation 

chart. We deliberately chose to use a naïve sample for this group to ensure that particular design 

features could not be advantaged by participants’ prior chart-related experiences or preferences. We 

also noted that in our previous observation chart experiments (Preece et al. 2012a, Christofidis et al. 

2013), samples of health professionals and participants recruited via the psychology research 

participation scheme demonstrated the same (or very similar) patterns of results across charts. 

Hence, we reasoned that there would be no additional value in including a non-naïve novice group 

(e.g., nursing students or recent graduates).  

In previous work using similar methods (Preece et al. 2012, Christofidis et al. 2013), a 

minimum sample size of approximately 40 participants per group was sufficient to yield statistically 

significant pairwise performance differences between alternative chart designs in every instance 

where the performance difference was deemed substantial enough to be of practical importance. In 

the present study, we therefore continued recruiting and testing until the number of participants in 

each group who were eligible for inclusion in the final sample exceeded this number. 
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Some participants were excluded from the analyses because either: (a) they scored less than 

100% in the post-experiment multiple-choice examination, suggesting failure to retain some of the 

key background information; (b) they reported not using the Seagull Sign during the experiment 

despite having received ‘Seagull training’; or, (c) their overall error rate exceeded 50% suggesting a 

lack of motivation for, or understanding of, the experimental task (see Figure 3). Excluding these 

participants ensured that, in the final sample, each group was comprised exclusively of individuals 

who understood their training, retained the key information, and complied with the task 

instructions. However, when the statistical analyses described below were repeated with these 

participants included, the overall patterns of results remained unchanged.  

 

Data collection 

 

 All experimental participants were recruited and tested between January and May 2011 and 

gave informed consent; however, they were not informed of the study’s hypotheses or 

manipulations prior to participating. Each participant was trained and tested individually in a quiet 

room (i.e., a hospital training room or university laboratory). First, they completed a demographic 

questionnaire. Next, they watched training videos that explained: (a) systolic blood pressure and 

heart rate, and their normal ranges; (b) track-and-trigger systems; and (c) how to use each chart 

design (explained in a different random order for each participant). Novices were assigned to one of 

two conditions: ‘Seagull-trained’, or untrained (see Figure 3). Assignment was automated via an 

Excel spreadsheet (Microsoft Corporation 2010), created by the first author, which allocated each 

novice participant in turn to a training condition entirely at random. For ‘Seagull-trained’ novices 

and all nurses, the training video also explained: (d) the Seagull Sign; and (e) how to find it on 

charts with overlapping blood pressure/heart rate graphs.   

Subsequently, a 5-item multiple-choice examination tested participants’ mastery of the key 

background information required to participate in the study, including the normal ranges for systolic 

blood pressure (Q1) and heart rate (Q2), and the definitions of: cut-off scores (Q3); early warning 

scores (Q4); and either the Seagull Sign (for ‘Seagull-trained’ novices and nurses only), or 

observation charts (for untrained novices only) (Q5). If any item was answered incorrectly, the 

participant was required to study the background information from a summary sheet and retake the 

test until they scored 100%. Next, participants viewed a video that explained the experimental task.  

Over the 64 experimental trials, each chart design appeared 16 times. For each participant, 

patient cases were randomly assigned to chart designs so that each case appeared only once. 

Constraints on randomisation ensured that, for each design, there were eight normal cases, four 

hypotensive cases (including two ‘Seagull Sign available’ cases), and four tachycardic cases 
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(including two ‘Seagull Sign available’ cases). Trials were presented in a different random order for 

each participant to prevent order effects. 

 

Fig. 3. Flow diagram illustrating the enrollment and allocation of participants, the within-
participants experimental manipulations, and the exclusions made prior to analysis. 
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Figure 3 Flow diagram illustrating the enrolment and allocation of participants, the within-participants experimental manipulations and

the exclusions made prior to analysis.
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In each trial, the participant was presented with a chart design on a computer monitor, and 

responded by clicking on one of three buttons on the screen (see Figure 4): a green ‘normal’ button 

(to indicate that all observations were normal), or a red systolic blood pressure or heart rate button 

(to indicate an abnormality). For each trial, SuperLab experimental software (Cedrus Corporation 

2007) was used to automate the process of presenting the images, and recording responses and 

response times (in milliseconds).  

Following the experiment, participants re-sat the multiple-choice examination, so that 

individuals who had not retained the key background information could be excluded from the 

sample. This procedure ensured that failure to retain this information could not provide an 

alternative explanation for errors made in the experiment. In addition, ‘Seagull-trained’ novices and 

nurses reported how frequently they had utilised the Seagull Sign during the experiment. 

 

Fig. 4. An example screen-shot from the experimental software as seen by participants, showing a 
chart design extract and the three response buttons.  
 

 
 

Ethical considerations 

 

This study was granted ethical approval in accordance with the review processes of the 

relevant hospital and university ethics committees. 

 

Data Analysis 

 

 For each trial, a response was coded as ‘correct’ if the participant clicked on the appropriate 
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button. For each chart design, each participant’s average response time and error rate (i.e., 

percentage incorrect) were calculated as the outcome measures, both overall and separately for 

‘Seagull Sign available’ cases only.  

Statistical analyses were performed using IBM SPSS 20.0 (IBM Corp., Armonk, NY: USA) 

with alpha set at 0.05. To test Hypothesis 1, separate mixed-design (participant group × graph 

format × alerting system) analyses of variance (ANOVAs) were conducted on overall response 

times and error rates, and η2 was calculated for each significant omnibus test as the measure of 

effect size (η2 indicates the proportion of within- or between-groups variance explained; Howell 

1997).  Significant interactions were followed up with simple effects tests, with Cohen’s d as the 

effect size measure (Cohen’s d is the difference between means in units of pooled standard 

deviation; Rosnow & Rosenthal 1996). To test Hypothesis 2, this process was repeated for each 

dependent measure in analyses confined to ‘Seagull Sign available’ cases and ‘Seagull trained’ 

nurses and novices.  

 

RESULTS 

 

Participant characteristics 

 

Of the ‘Seagull-trained’ nurse participants in the final sample, 80.5% reported using the 

Seagull Sign in their current clinical role, and 92.7% had completed their institution’s formal chart 

training program (which also included instruction on the use of the Seagull Sign). Table 1 presents 

detailed participant characteristics for the final sample, arranged by group. 
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Table 1 
Participant characteristics. Except where ranges are specified, values are mean (SD) or percentage 
(n). 
 
Variable Participant group 

‘Seagull-
trained’ 
nurses 

(n = 41) 

‘Seagull-
trained’ 
novices 
(n = 65) 

Untrained 
novices 
(n = 48) 

Age in years 
Age range in years 

39.41 (12.50) 
23 - 66 

19.91 (3.84) 
17 - 33 

18.71 (2.16) 
17 - 28 

Gender Female 78.0% (32/41) 73.8% (48/65) 79.2% (38/48) 
 Male 22.0% (9/41) 26.2% (17/65) 20.8% (10/48) 
Frequency of 
Seagull Sign use 
during 
experiment 

All of the time  43.9% (18/41) 41.5% (27/65) - 
Most of the time 34.1% (14/41) 38.5% (25/65) - 
Some of the time 22.0% (9/41) 20.0% (13/65) - 
None of the time 0.0% (0/41) 0.0% (0/65)  

Frequency of 
Seagull Sign use 
in occupational 
role 

All of the time  43.9% (18/41) - - 
Most of the time 26.8% (11/41) - - 
Some of the time 9.8% (4/41) - - 
None of the time 19.5% (8/41) - - 

Years registered 14.05 (11.06) - - 
Work area Ward 53.7% (22/41) - - 

Emergency 2.4% (1/41) - - 
Theatre 2.4% (1/41) - - 
ICU 24.4% (10/41) - - 
Other 17.1% (7/41) - - 

Frequency of 
observation chart 
use in current 
role 

More than once a day  87.8% (36/41) - - 
Once a day  2.4% (1/41) - - 
More than once a week, 
but less than once a day 

4.9% (2/41) - - 

More than once a 
month, but less than 
once a week 

2.4% (1/41) - - 

Less than once a month 2.4% (1/41) - - 
Frequency of 
recording 
information in 
observation 
charts in current 
role 

More than once a day  87.8% (36/41) - - 
Once a day  2.4% (1/41) - - 
Less than once a month 4.9% (2/41) - - 
Not applicable 4.9% (2/41) - - 

Prior training 
received in 
observation chart 
use † 

None 2.4% (1/41) - - 
Read the instructions 24.4% (10/41) - - 
Informal (e.g., trained 
by co-worker) 

34.1% (14/41) - - 

Formal (e.g., in-service 
or workshop) 

92.7% (38/41) - - 

† For this question, participants could select more than one form of training. 
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Response time 

 

The ANOVA on response time data for all cases revealed no significant main or interactive 

effect of participant group (all p’s > 0.10; see online supplementary materials for individual group 

means). However, there were significant main effects of graph format, F(1, 153) = 55.26, p < 0.001, 

η2 = 0.27, and alerting system, F(1, 153) = 6.73, p = 0.01, η2 = 0.05, qualified by a significant graph 

format × alerting system interaction, F(1, 153) = 9.91, p = 0.002, η2 = 0.05 [see Figure 5A(i)]. 

Simple effects tests revealed that participants responded faster using separate (vs. overlapping) 

graphs both on charts with a track-and-trigger system, t(1, 153) = 7.10, p < 0.001, Cohen’s d = 0.57, 

and without, t(1, 153) = 4.15, p < 0.001, Cohen’s d = 0.33. Separate graphs also yielded faster 

responses in the presence (vs. absence) of a track-and-trigger system, t(1, 153) = -4.32, p < 0.001, 

Cohen’s d = -0.35.  

A second ANOVA, confined to ‘Seagull Sign available’ cases and ‘Seagull-trained’ nurses 

and novices, yielded a similar pattern of results. There were no significant main or interactive 

effects of participant group (all p’s > 0.70; see online supplementary materials for individual group 

means). However, there were significant main effects of graph format, F(1, 105) = 4.74, p = 0.03, 

η2 = 0.04,  and alerting system, F(1, 105) = 25.41, p < 0.001, η2 = 0.19, qualified by a significant 

graph format × alerting system interaction, F(1, 105) = 5.80, p = 0.02, η2 = 0.05 [see Figure 5A(ii)]. 

When a track-and-trigger system was present, participants responded faster using separate (vs. 

overlapping) graphs, t(1, 105) = 3.25, p = 0.002, Cohen’s d = 0.32. For separate graphs, participants 

also responded faster using designs with (vs. without) a track-and-trigger system, t(1, 105) = -5.66, 

p < 0.001, Cohen’s d = -0.55 (see Figure 5A). 

 

Error rate 

 

The ANOVA on error rate data for all cases revealed no significant main or interactive 

effect of participant group (all p’s > 0.10; see online supplementary materials for individual group 

means). However, there were significant main effects of graph format, F(1, 153) = 60.50, p < 0.001, 

η2 = 0.26, and alerting system, F(1, 153) = 7.20, p = 0.008, η2 = 0.04, qualified by a significant 

graph format × alerting system interaction, F(1, 153) = 11.37, p = 0.001, η2 = 0.06 [see Figure 

5B(i)]. Simple effects tests revealed that participants made fewer errors using separate (vs. 

overlapping) graphs, both on charts with a track-and-trigger system t(1, 153) = 6.78, p < 0.001, 

Cohen’s d = 0.55, and without, F(1, 153) = 4.05, p < 0.001, Cohen’s d = 0.33. Separate graphs also 

yielded fewer errors in the presence (vs. absence) of a track-and-trigger system, t(1, 153) = -5.12, p 

< 0.001, Cohen’s d = -0.41. 
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Another ANOVA, restricted to ‘Seagull Sign available’ cases and ‘Seagull-trained’ novices 

and nurses, yielded one significant result (all other p’s > 0.05): a graph format × alerting system 

interaction, F(1, 105) = 4.15, p = 0.04, η2 = 0.04 [see Figure 5B(ii)]. Specifically, when a track-and-

trigger system was present, participants made fewer errors using separate (vs. overlapping) graphs, 

t(1, 105) = 1.99, p = 0.049, Cohen’s d = 0.19. Again, separate graphs also yielded fewer errors on 

designs with (vs. without) a track-and-trigger system, t(1, 105) = -2.10, p = 0.04, Cohen’s d = -0.20.   
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Fig. 5. Response times (A) and error rates (B) for detecting abnormal systolic blood pressure and 
heart rate observations, arranged by track-and-trigger system and graph format: for all cases and 
participants (i); and for ‘Seagull Sign available’ cases and ‘Seagull-trained’ participants only (ii). 
Error bars indicate 95% confidence intervals. 
 

 
  

A

B

0 

5 

10 

15 

20 

25 

30 

Integrated colour 
track-and-trigger 

system 

No track-and-
trigger system 

Integrated colour 
track-and-trigger 

system 

No track-and-
trigger system 

Pe
rc

en
ta

ge
 e

rr
or

s 

Overlapping blood pressure and heart rate graphs (Seagull Sign could occur) 

Separate blood pressure and heart rate graphs 

(i) All cases and participants  (ii) 'Seagull Sign available' cases  
and 'Seagull-trained' participants only  

0 

2 

4 

6 

8 

10 

12 

14 

Integrated colour 
track-and-trigger 

system 

No track-and-
trigger system 

Integrated colour 
track-and-trigger 

system 

No track-and-
trigger system 

R
es

po
ns

e 
tim

e 
(s

ec
on

ds
) 

Overlapping blood pressure and heart rate graphs (Seagull Sign could occur) 

Separate blood pressure and heart rate graphs 

(ii) 'Seagull Sign available' cases  
and 'Seagull-trained' participants only 

(i) All cases and participants  



	
   88 

DISCUSSION 

 

Empirical evidence from this carefully-controlled human performance experiment suggests 

that, irrespective of their level of clinical experience, chart users detect abnormal blood pressure 

and heart rate observations more accurately and efficiently when they are plotted on separate (rather 

than overlapping) graphs, especially on chart designs that incorporate an integrated colour-based 

track-and-trigger system. The results also conflict with a culturally-supported belief shared by many 

health professionals, namely the assumption that the observation chart ‘Seagull Sign’ is an easily 

identifiable visual cue that improves chart-users’ practical ability to detect patient deterioration 

(Darby et al. 2012). Some clinicians have used the potential availability of the Seagull Sign as 

justification for endorsing chart designs that incorporate overlapping blood pressure and heart rate 

graphs (Darby et al. 2012). However, in the present sample, both novices (whether ‘Seagull-trained’ 

or not) and ‘Seagull-trained’ nurses responded faster and made fewer errors in identifying abnormal 

observations when vital signs were presented on separate graphs, performing best of all when a 

track-and-trigger system was also present. Even when only (a) participants who had received 

Seagull Sign training and (b) patient cases that could actually yield a Seagull Sign were considered, 

no advantage of overlapping plots was found. Rather, participants still performed best (in terms of 

both response time and accuracy) when the patient data appeared on separate graphs with a track-

and-trigger system.  

These findings suggest that the Seagull Sign does not yield the performance advantage that 

some health professionals assume (Darby et al. 2012), even under optimal conditions in which 

chart-users: (a) are familiar with the Seagull Sign; (b) are provided with specific Seagull Sign 

training immediately prior to testing; (c) are alerted to the Seagull Sign’s likely presence during the 

experiment; (d) report having actively searched for the Seagull Sign during the experiment; and (e), 

in relation to the nurses: (i) are experienced in using an observation chart with overlapping blood 

pressure and heart rate graphs; (ii) work in an institution where use of the Seagull Sign has strong 

cultural support, and (iii), in 92.7% of cases, have previously completed a substantial formal chart 

education program that incorporated additional Seagull Sign training (ACT Health 2011a).  

The results described above are consistent with our predictions that overlapping blood 

pressure and heart rate plots would hinder users’ performance by producing a visually cluttered 

display in which observations for one vital sign were obscured by observations for the other 

(Hypothesis 1), and that use of the Seagull Sign would not countermand this disadvantage 

(Hypothesis 2). From a human factors perspective, it may have been difficult for chart-users to 

perceptually parse the systolic blood pressure and heart rate observations from one another 

(Wickens & Carswell 1995).  
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This is the first study to evaluate the effect of graph format and the Seagull Sign on the 

ability of nurses and novice chart-users to recognise derangements in systolic blood pressure and 

heart rate observations. The study had a number of significant methodological strengths. First, we 

used a standardised experimental paradigm that: (a) can be replicated precisely; (b) involves careful 

manipulation of key independent variables, allowing conclusions to be drawn about cause-and-

effect; and (c) produces relatively clean data uncontaminated by extraneous factors that may also 

influence the detection of patient deterioration in the ward (e.g., distractions and interruptions). 

Second, we used genuine patient data to ensure that the results were as generalisable as possible 

given the laboratory-based nature of the testing. Third, we employed a range of careful 

experimental controls, including random assignment of novices to training groups, and the use of 

‘Seagull Sign available’ and standard cases that were as equivalent to one another as possible. 

Finally, we measured both accuracy and response time, allowing us to check for trade-offs that 

could potentially have complicated interpretation of the results.  

With regard to chart design, some health professionals have argued that blood pressure and 

heart rate should be recorded on the same axes because the Seagull Sign: (a) is quick and easy to 

detect, (b) does not require recall of trigger values, and (c) does not require mental calculations 

(e.g., summation of early warning scores) (Darby et al. 2012). However, our findings suggest that 

blood pressure and heart rate observations should be plotted separately, precluding the use of the 

Seagull Sign despite any predictive power it may have in a strictly statistical sense (e.g., Rady et al. 

1994, Cannon et al. 2009, Darby et al. 2012). Further, we suggest that any ability of the Seagull 

Sign to alert users to deterioration is made redundant by the implementation of an effective early 

warning scoring system, such as a well-designed integrated colour-based track-and-trigger system. 

This is because the physiological values that yield a Seagull Sign would also activate the track-and-

trigger system in almost all clinical scenarios. To illustrate this point, consider Figure 2B, which 

was based on one of the Adult Deterioration Detection System, or ADDS, charts developed by 

Horswill et al. 2010 for the Australian Commission on Safety and Quality in Healthcare, for nation-

wide implementation. On this chart, the only exception would be a patient with a low usual systolic 

blood pressure of 80-89 mmHg, who presents with a heart rate of 90-99 beats per minute and a 

systolic blood pressure of 80-89 mmHg. Indeed, the Adult Deterioration Detection System charts, 

which adhere to both of our usability recommendations, have been shown to facilitate fast and 

accurate detection of patient deterioration among both novice chart-users and health professionals 

(Preece et al. 2012a), regardless of their prior chart experience (Christofidis et al. 2013). An 

additional advantage of early warning scoring systems is that they have been shown to empower 

nurses by giving them an unambiguous and concise means of communicating deterioration 

(Andrews & Waterman 2005). 
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Limitations 
 

A limitation of the study is that we have not directly demonstrated that the results generalise 

to genuine clinical environments by, for example, conducting a multi-site clinical trial of alternative 

chart designs in conjunction with a randomised controlled trial of a Seagull Sign training 

intervention. However, given that the real-world conditions would almost certainly be less optimal 

for use of the Seagull Sign than those of the present study, it is arguably unlikely that overlapping 

blood pressure and heart rate plots would be demonstrably beneficial, even for those with Seagull 

Sign training.  

Another limitation relates to the representativeness of our purposive nursing sample. If most 

of the individuals who volunteered to participate were especially motivated by an interest in patient 

deterioration, then the sample may have been above average in knowledge and diligence compared 

with the Australian nursing workforce in general (Preece et al. 2010). In contrast, if the novice 

participants were motivated primarily by the incentive offered, then they may have been less 

attentive on average than the nurses during the experimental task. However, given that (a) the graph 

format and alerting system variables were varied within-participants, and (b) the same patterns of 

results were obtained for nurses and novices (as in previous similar studies, e.g., Preece et al. 

2012a), it is unlikely that sampling issues had a meaningful impact on our findings. 

We also acknowledge that the findings of the present study may only apply to static 

domains, such as paper-based observation charts. Future studies would be required to evaluate the 

efficacy of the Seagull Sign in a dynamic display (e.g., an electronic vital sign monitor that 

presented blood pressure and heart rate data graphically), where overlapping plots could be 

potentially be made more discriminable by source differences such as distinct colours or differential 

motion (Wickens & Carswell 1995). Nevertheless, although hospitals will inevitably shift towards 

using electronic displays, paper-based observation charts are still likely to: (a) have a substantial 

shelf-life in developing countries; and (b) be retained as back-up for computer-based systems. In the 

latter case, it will become even more critical for paper-based charts to incorporate design features 

that support novice users in detecting and responding to physiological deterioration (e.g., in the 

context of this study, separate blood pressure and heart rate graphs). This is because, eventually, 

even highly experienced health professionals will not have had extensive practice using paper-based 

charts.   

 

CONCLUSION 

 

Like other recent work (Chatterjee et al. 2005, Preece et al. 2012a, Christofidis et al. 2013), 
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this study demonstrates that an evidence-based approach to chart design can improve the detection 

of patient deterioration. More generally, the results also illustrate the need for health professionals 

to assess the efficacy of chart-based practices through empirical evaluation, rather than relying on 

anecdotal information (Enkin & Jadad 1998).  
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Hypotheses  

Chart-users will make fewer errors and respond more quickly when using chart designs with drawn-

dot observations, an integrated colour-based scoring-system and grouped scoring-rows, consistent 

with the apriori human factor principles that were adapted from the web and software domains. 
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INTRODUCTION 

  

 Inevitably, some patients will experience physiological deterioration while in hospital. Early 

recognition of the deteriorating patient is essential because delayed or missed recognition can result 

in adverse events including respiratory or cardiac arrest, unplanned admission to intensive care, and 

even unexpected death (Franklin & Mathew 1994, Goldhill et al. 1999, Hillman et al. 2001). Since 

deranged vital signs can signal deterioration as early as 48 hours before an adverse event (Franklin 

& Mathew 1994, Goldhill et al. 1999, Hillman et al. 2001, Endacott et al. 2007), one promising 

avenue for improving early recognition is to develop patient charts specifically designed to make 

abnormal observations easier for chart-users (including the least experienced nurses and doctors) to 

detect.  

 In recent years, clinicians and researchers in Australia and the UK have created new charts 

with this precise objective in mind, and have employed several techniques to examine the effects of 

chart design on the detection of patient deterioration, including: prospective before-and-after 

controlled intervention trials (Mitchell et al. 2010); comparative clinical evaluations (Chatterjee et 

al. 2005; Elliott et al. 2014); and behavioural experiments (Preece et al. 2012a, Christofidis et al. 

2013; Fung et al. 2014). In each of these studies, the performance of chart-users (including nurses) 

was compared across two or more charts, and, in almost all cases, designs that included early-

warning scoring-systems yielded the best results. On charts of this type, each value in a set of 

observations can be scored according to its degree of deviation from the normal range, and these 

scores totalled to obtain an “early-warning score” that summarizes the patient’s overall physical 

condition and can be used to trigger appropriate clinical actions (Prytherch et al. 2005, Lawson & 

Peate 2009). 

 In experimental studies that compared multiple charts with early-warning scoring-systems, 

two designs consistently yielded the fastest and most accurate identification of abnormal 

observations (Preece et al. 2012a, Christofidis et al. 2013), and both were versions of Horswill et 

al.’s (2010) Adult Deterioration Detection System (or ADDS) chart. This chart was designed by a 

multi-disciplinary team of human factors specialists and clinicians who took into account a wide 

range of usability considerations (Horswill et al. 2010, Preece et al. 2013). However, the precise 

reasons for its superior performance (and potential avenues for further improvement) remain 

unclear, because several design features varied unsystematically between it and the charts with 

which it was compared. For example, unlike some other charts with early-warning scoring-systems, 

the ADDS incorporates separate (vs. overlapping) blood pressure and heart rate graphs, drawn-dot 

observations (vs. written numbers), an integrated colour-based scoring-system (vs. a non-integrated 

tabular system), and scoring rows grouped together at the bottom of the page (vs. presented 
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separately, immediately below the corresponding vital sign data). A more recent experimental study 

has demonstrated that abnormal blood pressure and heart rate observations can be detected more 

quickly and accurately when these two vital signs are plotted separately, especially on charts with 

an integrated colour-based early-warning scoring-system (Christofidis et al. 2014). However, no 

empirical study to date has directly assessed the effects of other individual observation chart design 

features on the detection of patient deterioration.  

 

Background 

  

Before supplying a new medical device to the market, manufacturers must obtain empirical 

data to support their claims about its safety and performance (TGA 2011). However, when paper-

based observation charts are designed (or re-designed), this level of evidence-based accountability 

is seldom demanded despite comparable potential risks to patient safety. Instead, the efficacy of 

patient charts is typically assessed only via subjective judgements made by the health professionals 

who designed them, and their colleagues (Chatterjee et al. 2005, Preece et al. 2012a). 

Consequently, observation chart designs (Preece et al. 2013), and health professionals’ perceptions 

of good design (Preece et al. 2012b), can vary considerably between locations. In the absence of 

objective evidence, however, there is no way to ascertain which design options represent best 

practice (Preece et al. 2012b).  

The traditional subjective approach to chart development is inherently risky, as mounting 

research evidence suggests that health professionals’ preferences for particular chart features are not 

always consistent with objective performance data (Preece et al. 2012b). For instance, in a recent 

survey study, most health professionals reported that they preferred, and found it easier to detect 

patient deterioration, when blood pressure and heart rate were plotted together on the same graph 

(Preece et al. 2010). However, these opinions are at odds with more recent objective data. In 

Christofidis et al.’s (2014) experiment, overlapping blood pressure and heart rate plots actually 

impeded recognition of abnormal vital signs by experienced nurses and novice chart-users alike, 

slowing them down and increasing their error rates. It has been suggested that performance-

preference dissociations like this arise due to the inordinate influence of extraneous factors, such as 

familiarity and aestheics, on people’s judgements and preferences (Andre & Wickens 1995). Given 

that such dissociations occur, it is possible that charts designed and endorsed on the basis of 

subjective judgements have contributed to documented failures (Franklin & Mathew 1994, Goldhill 

et al. 1999, Endacott et al. 2007) by hospital staff to record observations correctly and to detect or 

anticipate deterioration.  

Indeed, the results of another two experimental studies suggest that poor design decisions 
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may have potentially catastrophic consequences (Preece et al. 2012b, Christofidis et al. 2013). In 

these studies, participants were asked to detect abnormalities among vital sign observations 

presented on six observation charts of varying design quality, including four charts used in 

Australian hospitals and two versions of the ADDS chart, which had been designed as a more ‘user 

friendly’ alternative (Horswill et al. 2010, Preece et al. 2013). Both novice chart-users (Preece et al. 

2012a) and health professionals (Preece et al. 2012a, Christofidis et al. 2013) made the least errors 

and responded fastest when using ADDS charts. These effects even held for clinicians who had 

prior clinical experience with one of the other charts used in the experiment, or a similar design 

(Christofidis et al. 2013). In fact, compared with the ADDS charts, the worst-performing design 

yielded up to 5.4 times as many errors by nurses and doctors who were experienced with a similar 

chart (Christofidis et al. 2013). As well as illustrating the dangers of poor design, these findings 

suggest that clinical experience alone may not be enough to overcome design deficiencies.  

Given that improved observation charts could potentially deliver substantial patient safety 

gains, it is crucial that we develop a clear and thorough understanding of how precisely their design 

can be optimized. However, in past studies comparing the detection of deterioration across two or 

more charts (e.g. Chatterjee et al. 2005, Mitchell et al. 2010, Preece et al. 2012a, Christofidis et al. 

2013), the unique contributions of specific design features to the outcomes were unclear, because 

the charts varied unsystematically on more than one dimension. For instance, we cannot infer that 

every design feature included in the ADDS chart positively contributed to its superior performance 

(Preece et al. 2012a, Christofidis et al. 2013). Rather, there may be room for further improvement 

and, in some cases, health professionals’ subjective preferences might still lead to better detection 

of patient deterioration. After all, even human-factors based chart design involves opinion-based 

compromises between competing design considerations (Preece et al. 2013). Hence, without 

systematic and objective comparisons, the efficacy of individual design features cannot be 

determined.  

 

THE STUDY 

 

Aims 

This study aimed to systematically evaluate three design features that vary across 

Australasian charts with early-warning scoring-systems (Preece et al. 2013). Specifically, we 

manipulated data-recording format (drawn dots vs. written numbers), scoring-system integration 

(integrated colour-based system vs. non-integrated tabular system) and scoring-row placement 

(grouped vs. separate). For each of these design features, the first listed alternative had been 

incorporated into the ADDS chart (Horswill et al. 2010, Preece et al. 2013), which was designed as 
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part of a national initiative to develop a standardised adult general observation form (ACSQHC 

2009). Using a similar methodology to prior experimental studies (Preece et al. 2012a, Christofidis 

et al. 2013, Christofidis et al. 2014), we evaluated each feature by testing charts-users’ ability to 

recognise abnormal observations on eight chart designs representing a factorial combination of 

these alternatives. In line with recent indicative findings (Chatterjee et al. 2005, Mitchell et al. 

2010, Preece et al. 2012a, Christofidis et al. 2013; Fung et al. 2014) and the human-factors-based 

design choices made in the development of the ADDS chart (Horswill et al. 2010, Preece et al. 

2013), we predicted that chart-users would be faster and more accurate when using chart designs 

with: drawn-dot observations (Hypothesis 1); an integrated colour-based scoring-system 

(Hypothesis 2); and grouped scoring-rows (Hypothesis 3).  

 

Design 

 

The study employed a 2x2x2x2 mixed factorial design with data-recording format, scoring-

system integration, and scoring-row placement varied within-participants. In addition, the presence 

vs. absence of scores (i.e. overall early-warning scores, and the scores for individual vital signs 

from which they are derived) was varied between-participants (see Scores for details and rationale). 

The dependent measures were response time and error rate.  

 

Patient data  

 

To ensure content validity, sixty-four cases of genuine de-identified patient data, each 

spanning 13 consecutive time-points, were used in the study. The cases, which were collected from 

several Australian hospitals, included data for the ten parameters included in the ADDS chart 

(Horswill et al. 2010): respiratory rate, oxygen delivery, oxygen saturation, systolic and diastolic 

blood pressure, heart rate, temperature, four hour urine output, consciousness and pain. Half of the 

cases contained only normal observations (see Table 1 for normal ranges: ACT Health 2011), and 

the others each included one abnormal observation: a derangement in oxygen saturation (8 hypoxic 

cases), systolic blood pressure (4 hypotensive and 4 hypertensive cases), heart rate (4 bradycardic 

and 4 tachycardic cases) or temperature (4 hypothermic and 4 febrile cases).  

The original data were only modified if either: (a) a vital sign remained abnormal for more 

than one time-point (excess abnormal data-points were shifted into the normal range); or (b) a data-

point was missing (a plausible value was extrapolated or interpolated). Most of the cases (75%) had 

been used in prior studies employing a similar experimental paradigm (Preece et al. 2012a, 

Christofidis et al. 2013). 
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Table 1 
Vital sign normal ranges used in the experiment (table adapted from Preece et al. 2012a).  
 
Vital sign Normal range 
Respiratory rate  9 – 20 breaths per minute  
Oxygen delivery  Patient is receiving oxygen at ≤ 1 litre per minute  
Oxygen saturation  93 – 100%  
Systolic blood pressure  100 – 160 mmHg  
Heart rate 50 – 100 beats per minute  
Temperature  36.1 – 37.9 Celsius  
Four hour urine output 120 – 799 mL 
Consciousness  Patient is classified as being alert  
Pain  Patient is in no pain  
 

Observation chart designs 

 

The eight observation charts created for this study, which were based on a version of the 

ADDS chart (Horswill et al. 2010), represented a factorial combination of two options for each of 

three design features, namely: (1) data-recording format (drawn dots vs. written numbers); (2) 

scoring-system integration (integrated colour-based system vs. non-integrated tabular system); and 

(3) scoring-row placement (grouped vs. separate) (Figure 1). Apart from these manipulations, the 

charts were identical. The designs were created, and each set of patient data plotted onto each 

design, using Adobe InDesign CS5.5 (Adobe Systems Incorporated, 2011). 
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Fig. 1. Four examples of chart designs used in the study, with: (a) an integrated colour-based 
scoring-system and grouped scoring-rows; (b) an integrated colour-based scoring-system and 
separate scoring-rows; (c) a non-integrated tabular scoring-system and grouped scoring-rows; and 
(d) a non-integrated tabular scoring-system and separate scoring-rows. Each example includes 
either drawn-dot (a and d) or written-number (b and c) observations. The remaining four designs 
were identical, except that each used the alternative data-recording format option.  
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Scores 

 

In real-world clinical situations, chart-users interpret observation charts that are in different 

states of completion. Sometimes, all vital sign data, individual vital sign scores, and early-warning 

scores to date will already be present before a particular clinician picks up the chart. In other cases, 

some or all of the scores will be missing, either because compliance with the scoring-system is less 

than 100% (Odell et al. 2009), or because the nurse is in the process of recording the vital signs and 

has yet to complete the scoring. It is not necessarily the case that the same design options would be 

beneficial in all circumstances. Therefore, to obtain results generalizable to a broader range of real-

world clinical situations, we manipulated whether or not scores were provided to participants. 

Prior to testing, participants were assigned to one of two conditions using a random 

sequence generated by Microsoft Excel 2011: (1) scores present, where all charts had real scores 

recorded on them (n = 102); or (2) scores absent, where all charts contained uninformative fillers 

(the letter ‘U’) in place of the real scores (n = 103) (Figure 2). These fillers prevented the presence 

vs. absence of scores from being confounded with the absence vs. presence of blank scoring-rows. 

To account for this manipulation, the task instructions (see below) informed participants in the 

scores absent condition that ‘U’ was an abbreviation for ‘unrecorded’.  

 

Participants 

 

Given that initial decisions about deteriorating patients are often made by relatively 

inexperienced nurses and doctors (Endacott et al. 2010), the present study focussed on novice 

performance. Power analysis (G*Power 3.1.9.2: Faul et al., 2007) indicated that a minimum sample 

of 180 participants was necessary to detect medium-sized effects with 95% power and alpha set at 

0.05. A convenience sample of 205 novice chart-users, recruited from a Brisbane university (QLD, 

Australia), received psychology course credit for participating. Only individuals with no prior 

hospital chart experience were eligible, to ensure that no particular design option could be 

advantaged by participants’ previous chart-related preferences or experiences. In our prior 

experiments addressing observation chart design (Preece et al. 2012a, Christofidis et al. 2013, 

Christofidis et al. 2014), samples of naïve participants (recruited through the psychology research 

participation scheme) and health professionals consistently yielded very similar patterns of results 

across charts. Therefore, we reasoned that there would be no additional value in including a group 

of non-naïve novices, such as medical or nursing students.  

After participating in the experiment, participants were excluded if they answered one or 

more items incorrectly in the post-experiment multiple-choice examination (see Data collection) or 
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their overall error rate exceeded 50% (Figure 2). This was to ensure that, in the final sample, failure 

to understand the training instructions or retain the key information could not provide an alternative 

explanation for the results. Nevertheless, the overall patterns of results reported below remained 

unchanged when statistical analyses were re-run with these participants included. 

 

Fig. 2. Flow diagram illustrating the enrollment, allocation and analysis of participants.  
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Data collection 

 

Participants were recruited and tested between March 2011 – March 2014. Each participant 

was trained and tested individually in a quiet room. After completing a demographic questionnaire, 

participants watched a series of training videos that explained: (a) the ten vital signs included in the 

chart and their normal ranges; (b) track-and-trigger systems; and (c) how to use each chart design 

(presented in a different random order for each participant).  

Next, the key concepts and vital sign normal ranges were tested with a 10-item multiple-

choice examination. Participants scoring below 100% studied a summary and retook the 

examination until they answered everything correctly. A final video explained the experiment, and 

indicated that responses and response times would be recorded.  

Using a similar methodology to previous studies (Preece et al. 2012a, Christofidis et al. 

2013), participants completed 64 experimental trials where they were presented with a patient chart 

containing a different case of patient data. For each participant, cases were randomly assigned to 

charts with the constraint that each design was assigned four normal and four abnormal cases 

(comprising derangements in oxygen saturation, systolic blood pressure, heart rate, and 

temperature). To prevent order effects, trials were presented in a different random order for each 

participant. 

In each trial, a chart appeared on a computer monitor, and the participant responded by 

clicking on a green ‘normal’ button at the bottom of the screen (to indicate that all observations 

were normal) or on the appropriate vital sign graphing area (to indicate an abnormality). SuperLab 

experimental software (Cedrus Corporation, 2007) was used to present the images, and to record the 

responses and response times (in milliseconds) for each trial. After completing all 64 trials, 

participants re-sat the multiple-choice examination.  

 

Ethical considerations 

 

This study was granted ethical approval in accordance with the review processes of the 

university ethics committees. 

 

Data Analysis 

 

 For each trial, the response was coded as ‘correct’ if the participant clicked on the 

appropriate area of the screen, identifying an abnormal vital sign or classifying a normal case as 

normal. Each participant’s average response time and error rate (i.e. percentage of incorrect 



	
   107 

responses) were calculated for each design. Statistical analyses were performed using IBM SPSS 

21.0 (IBM Corp., Armonk, NY: USA) with statistical significance set at α = 0.05. Separate mixed-

design (data-recording format × scoring-system integration × scoring-row placement × scores) 

analyses of variance (ANOVAs) were conducted on response times and error rates, with η2 as the 

measure of effect size (Howell 1997). T-tests were used to follow-up significant interactions, with 

Cohen’s d as the effect size measure (Cohen 1992).  

 

RESULTS 

 

Participant characteristics 

 

 Table 2 presents participant characteristics for the final sample of 188. 

 

Table 2 
Participant characteristics, including p-values for comparisons between conditions on age (t-test) 
and gender (chi-squared test). Values are mean (SD) or percentage (n). 
 
Variable  Experimental condition p-value 

  Real early-
warning scores  

(N = 93) 

Filler early-warning scores 
(N = 95)  

 

Age in years  20.03 (5.39) 19.48 (4.54) 0.409 
Gender Female 69.89% (65) 63.16% (60) 0.328 
 Male 30.11% (28) 36.84% (35) 0.328 
 

Response time 

 

Analysis of the response time data revealed a significant main effect of data-recording 

format, F(1, 186) = 82.05, p < 0.001, η2 = 0.27, qualified by a significant data-recording format × 

scores interaction, F(1, 186) = 38.56, p < 0.001, η2 = 0.13 (Figure 3a). Participants for whom scores 

were absent responded 2.24 seconds faster (CI 1.76-2.72) using drawn-dot (vs. written-number) 

observations, t(1,94) = -9.21, p < 0.001, Cohen’s d = -0.55, and participants with access to scores 

responded 0.42 seconds faster (CI 0.10-0.74), t(1, 92) = -2.58, p < 0.05, Cohen’s d = -0.13. 

We also found a significant main effect of scoring-system integration, F(1, 186) = 195.83, p 

< 0.001, η2 = 0.41, qualified by a significant interaction with scores, F(1, 186) = 96.90, p < 0.001, 

η2 = 0.20 (Figure 3b). Participants for whom scores were absent responded 3.94 seconds faster (CI 

3.40-4.48) using an integrated colour-based (vs. tabular) system, t(1, 94) = -14.52, p < 0.001, 

Cohen’s d = -0.95, and participants with access to scores responded 0.69 seconds faster (CI 0.32-

1.06), t(1, 92) = -3.68, p < 0.001, Cohen’s d = -0.22. 
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Although there was no significant main effect of scoring-row placement, F(1, 186) = 0.01, p 

= 0.941, there was a significant interaction with scores, F(1, 186) = 13.60, p < 0.001, η2 = 0.07 

(Figure 3c). Participants for whom scores were absent responded 0.62 seconds faster (CI 0.14-1.09) 

using grouped (vs. separate) scoring rows, t(1, 94) = -2.58, p < 0.05, Cohen’s d = -0.15. However, 

participants with access to scores responded 0.59 seconds faster (CI 0.15-1.04) using separate (vs. 

grouped) scoring-rows, t(1, 92) = 2.64, p < 0.05, Cohen’s d = 0.18.  

Further, there was a significant scoring-system integration × scoring-row placement 

interaction, F(1, 186) = 16.82, p < 0.001, η2 = 0.08 (Figure 3d). Participants responded 2.89 seconds 

faster (CI 2.38-3.39) using an integrated colour-based (vs. tabular) system when scoring-rows were 

grouped t(1, 187) = -11.23, p < 0.001, Cohen’s d = -0.55, and 1.78 seconds faster (CI 1.32-2.23) 

when scoring-rows were separate , t(1, 187) = -7.70, p < 0.001, Cohen’s d = -0.32.  

Additionally, there was a main effect of scores, indicating that participants for whom scores 

were present (vs. absent) responded faster overall, F(1, 186) = 194.80, p < 0.001, η2 = 0.52. 

However, this effect was also qualified by the interactions with data-recording format, scoring-

system integration, and scoring-row placement outlined above.  
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Fig. 3. Response times for detecting abnormal observations, arranged by: (a) data-recording format 
and scores; (b) scoring-system integration and scores; (c) scoring-row placement and scores; and (d) 
scoring-system integration and scoring-row placement. Error bars indicate standard errors. 
Significant differences between adjacent bars are marked with an asterisk.  
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Error rate 

 

The ANOVA on error rate data revealed a significant main effect of data-recording format, 

F(1, 186) = 14.88, p < 0.001, η2 = 0.07, again qualified by a significant data-recording format × 

scores interaction, F(1, 186) = 6.36, p < 0.05, η2 = 0.03 (Figure 4a). Participants for whom scores 

were absent made 2.57% fewer errors (CI 1.19-3.94) using drawn dots (vs. written numbers), t(1, 

94) = -3.70 p = < 0.001, Cohen’s d = -0.27. However, for participants with access to scores, there 

was no effect of data-recording format (p > 0.05). 

Once again, there was a significant main effect of scoring-system integration, F(1, 186) = 

7.66, p < 0.05, η2 = 0.04, qualified by a significant interaction with scores, F(1, 186) = 6.02, p < 

0.05, η2 = 0.03 (Figure 4b). Participants for whom scores were absent made 2.24% fewer errors (CI 

0.75-3.73) using an integrated colour-based (vs. tabular) system, t(1, 94) = -2.98, p < 0.05, Cohen’s 

d = -0.23. However, this effect was not significant for participants with access to scores (p > 0.05).  

For error rate, scoring-row placement yielded no significant main effect or interaction with 

scores (p’s > .05; Figure 4c). However, as with response time, there was a significant scoring-

system integration × scoring-row placement interaction, F(1, 186) = 5.29, p < 0.05, η2 = 0.03 

(Figure 4d). Participants made 2.13% fewer errors (CI 1.01-3.25) using an integrated colour-based 

(vs. tabular) system when scoring-rows were grouped, t(1, 187) = -3.75, p < 0.001, Cohen’s d = -

0.22. However, this effect was not significant when scoring-rows were separate (p > 0.05).  

Again, there was a main effect of scores: participants for whom scores were present (vs. 

absent) made fewer errors overall, F(1, 186) = 51.99, p < 0.001, η2 = 0.22. However, this effect was 

also qualified by the interactions with data-recording format and scoring-system integration 

reported above.  
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Fig. 4. Error rates for detecting abnormal observations, arranged by: (a) data-recording format and 
scores; (b) scoring-system integration and scores; (c) scoring-row placement and scores; and (d) 
scoring-system integration and scoring-row placement. Error bars indicate standard errors. 
Significant differences between adjacent bars are marked with an asterisk.  
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DISCUSSION 

 

This is the first study to systematically evaluate several observation chart design features to 

assess their contributions to the detection of patient deterioration. In support of Hypothesis 1, 

participants responded significantly faster (whether scores were present or absent on their charts) 

and made significantly fewer errors (if scores were absent) using drawn-dot (vs. written-number) 

observations. This suggests that, in a range of real-world clinical contexts, drawn-dot observations 

may yield faster detection of abnormal vital signs, and they may also prevent errors in some 

circumstances. In contrast, we found no evidence of any advantage for written-number 

observations, supporting existing indicative findings (Chatterjee et al. 2005; Fung et al. 2014). 

Considering this pattern of results, we argue that paper-based observation charts should utilise 

drawn-dot observations.  

Our findings are consistent with the proposal that drawn-dot vital sign observations 

eliminated a potential source of unwanted workload, and therefore freed chart-users’ cognitive 

resources for higher-level tasks (Gerhardt-Powals 1996), by preventing the mental processing that 

numerical observations might have triggered (e.g. automatically reading the numbers and/or 

comparing them with clinical criteria stored in memory). In so doing, the use of drawn-dots also 

ensured that the task of searching for abnormal observations was not unnecessarily data-driven, 

potentially reducing the time that chart-users spent assimilating raw vital sign data (Gerhardt-

Powals 1996). This interpretation is even more compelling when one considers that, just like the 

drawn-dot observations, the written numbers used in the experiment were presented graphically (as 

‘quasi-graphs’; Preece et al. 2009). Hence, participants did not need to read the numbers to 

determine whether or not any particular observation was normal or abnormal, or to observe trends 

in the data. This contrasts with the many charts in clinical use that present observations as numbers 
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written in a single row or column for each vital sign (Preece et al. 2009), forcing users to mentally 

visualise them in a graph-like format to interpret trends (Preece et al. 2013). Indeed, charts 

featuring tabulated observations have yielded markedly slower response times and higher error rates 

(by both experienced clinicians and novice chart-users) in similar experimental studies (Preece et 

al. 2012a, Christofidis et al. 2013). Further, written-number observations are arguably even more 

redundant when one considers that measurement error and transient variability (due to 

perturbations, natural steady-state variability, or clinicians’ technique; Reisner et al. 2012) can 

cause vital signs to fluctuate substantially over time.  

Consistent with Hypothesis 2, participants were significantly faster (whether scores were 

present or absent) and significantly more accurate (absent scores only) when using an integrated 

colour-based (vs. non-integrated tabular) scoring-system. This finding has practical implications for 

chart-users’ efficiency: regardless of whether scores are recorded or not, an integrated colour-based 

system should lead to faster recognition of patient deterioration and, in some circumstances, fewer 

errors. Further, the study yielded no evidence of any circumstance where a non-integrated system 

would be advantageous. Given these results, we suggest that charts should also utilise colour-based, 

rather than tabular, scoring-systems. We propose that the presence of an integrated colour-based 

scoring-system automated chart-users’ unwanted workload by reducing the need for mental 

comparisons and unnecessary thinking (Gerhardt-Powals 1996). That is, participants did not need to 

consider normal ranges listed in a look-up table or held in memory. Instead, they could use the 

colour cues embedded in the graphs to identify criterion breaches rapidly; hence, the system also 

eliminated any need for the detection of abnormal observations to be a time-consuming, data-driven 

task (Gerhardt-Powals 1996).  

The results relating to Hypothesis 3 were more mixed. The effect of scoring-row placement 

was confined to the response time data, and differed in direction depending on whether scores were 

present or absent. Participants without access to scores were significantly faster using charts that 

had scoring-rows grouped together at the bottom of the page rather than separate scoring-rows, as 

predicted. However, when scores were present, charts with separate scoring-rows outperformed 

those with grouped rows. These findings should be read in conjunction with the results of a recent 

experimental study which found that participants were faster at determining and recording early-

warning scores when the scoring-rows were separate, rather than grouped (Christofidis et al. 2015). 

If chart-related protocols are adhered to and all observations are scored, then the results of the 

present study also suggest, contrary to Hypothesis 3, that separate scoring rows may be preferable. 

Hence, the optimal arrangement of scoring-rows may depend on the clinical context and 

compliance culture, and we can make no overarching recommendation.  

 Interestingly, there was a significant interaction between scoring-system integration and 
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scoring-row placement for both response time and error rate. Deconstruction of these interactions 

indicated that, irrespective of whether the chart design featured grouped or separate scoring rows, 

participants performed better (either in terms of response time, or both accuracy and response time) 

when the chart incorporated an integrated colour-based scoring-system. These results suggest that 

the benefits of integrated colour-based scoring-systems are relatively robust to alternative scoring-

row placements.  

Unsurprisingly, participants were also faster and more accurate overall when early-warning 

scores were present (rather than absent), suggesting that they do assist chart-users to recognise 

deterioration. However, it should be noted that all of the scores recorded on charts in the present 

study were accurate, which will not always be the case in real clinical contexts (Christofidis et al. 

2015).  

The superior performance of the drawn-dot observations and integrated colour-based 

scoring-system validates several recommendations, based on cognitive engineering principles 

(Gerhardt-Powals 1996, Horswill et al. 2010), made in a systematic evaluation of Australasian 

observation charts (Preece et al. 2013). These recommendations also guided the design of the 

ADDS chart (Horswill et al. 2010), which has consistently out-performed other Australian 

observation charts in user-performance experiments similar to the present study (Preece et al. 

2012a, Christofidis et al. 2014).  

The results of the present experiment also have implications for the interpretation of 

previous research comparing the efficacy of observation chart designs. For example, Mitchell et al. 

(2010) re-designed an observation chart to include several potentially user-friendly features (e.g. 

quasi-graphs and a colour-coded aggregate weighted scoring-system), and conducted a prospective 

before-and-after intervention trial where the revised chart out-performed its predecessor on several 

clinical outcome measures (e.g. fewer unexpected ICU admissions and deaths). However, the 

contribution of specific design elements cannot be assumed because the study compared charts that 

varied on multiple dimensions, and implementation of the re-designed chart was accompanied by 

changes in vital sign monitoring policy and substantial education (Mitchell et al. 2010). Indeed, in 

subsequent empirical studies, Mitchell et al.’s design yielded more errors and slower response times 

compared to the ADDS chart, among both novice chart-users (Preece et al. 2012a) and health 

professionals (Preece et al. 2012a, Christofidis et al. 2013), including those trained and experienced 

in its use (Christofidis et al. 2013). The present findings suggest that this may be partially 

attributable to Mitchell et al.’s use of written-number observations (rather than drawn dots) for most 

vital signs, while the results of another recent experimental study suggest that plotting blood 

pressure and heart rate together on the same axes may also have compromised usability 

(Christofidis et al. 2014).  
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Limitations 

 

As with our previous behavioural experiments (Preece et al. 2012a, Christofidis et al. 2013, 

Christofidis et al. 2014), we have not directly demonstrated that the results generalize to real-world 

settings. However, given that participants were not subject to the external pressures and distractions 

experienced by doctors and nurses in practice, it is plausible that the between-charts differences in 

response times and error rates would be larger in genuine clinical environments, where the impact 

of poor design on cognitive load would be more crucial (Preece et al. 2012a).  

To maximise experimental control, we only recruited naïve participants. Consequently, we 

cannot, strictly speaking, generalize our results to experienced chart-users. However, these findings 

will still almost certainly apply to health professionals because: (a) samples of novices, nurses and 

doctors have consistently produced similar patterns of results across charts in our previous 

experimental studies (Horswill et al. 2010, Preece et al. 2012, Christofidis et al. 2014); and (b) the 

effects of improved chart design on the detection of abnormal observations have been shown to 

outweigh health professionals’ prior chart experience (Christofidis et al. 2013). Given that initial 

decisions about deteriorating patients are often made by inexperienced doctors and nurses (Endacott 

et al. 2010), the inclusion of novices was important from a pragmatic perspective: observation 

charts must provide effective support for health professionals of all levels, especially the least 

experienced. Furthermore, in the future, all clinicians will effectively be novices in relation to 

paper-based charts once they are used exclusively as the back-up for electronic systems 

(Christofidis et al. 2014).  
 

CONCLUSION 

 

Our findings suggest that chart design features have a substantial impact on chart-users’ 

ability to recognise patient deterioration. More importantly, they further illustrate the need to 

objectively evaluate the efficacy of observation chart designs. In sum, we suggest that, rather than 

relying on chart designers’ subjective judgements, or clinical trials with limited experimental 

control, new designs should also be evaluated objectively, through behavioural experimentation or 

alternative techniques that yield unbiased evidence (Preece et al. 2012a, Preece et al. 2012b, 

Christofidis et al. 2013, Christofidis et al. 2014). Subsequent clinical studies can then focus on 

broader issues, such as chart utility post-implementation (e.g., Chatterjee et al. 2005; Mitchell et al. 

2010; Elliott et al. 2011; Bunkenborg et al. 2014; Elliott et al. 2014; Kyriacos et al. 2015) and 

subjective user experiences (e.g., Elliott et al. 2015). Like manufacturers of medical devices (TGA 

2011), chart designers should also be required to provide objective data to support their claims.  
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Hypotheses  

Chart-users will determine total early-warning scores more accurately when individual vital sign 

scoring-rows are grouped. Chart-users will make more errors in the absence of scoring-rows, 

despite determining early-warning scores faster.  
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INTRODUCTION 

 

Many paper-based observation charts used in hospitals incorporate physiological ‘track-and-

trigger’ systems to aid nurses and doctors in the early detection of patient deterioration (Prytherch et 

al. 2005, Subbe et al. 2007, Mohammed et al. 2009). These systems fall into three broad categories: 

(a) single- and multiple-parameter systems (where vital sign observations are compared with a set 

of criteria to determine whether one or more parameters have reached predefined thresholds); (b) 

aggregate weighted scoring systems (which allocate a weight or ‘individual vital sign score’ to each 

observation as a function of its level of derangement from a predetermined normal range); and (c) 

combination systems (which combine an aggregate weighted scoring system with a single- or 

multiple-parameter system) (Prytherch et al. 2005, Gao et al. 2007, Subbe et al. 2007, Smith et al. 

2008, ACSQHC 2009). In the latter two system-types, individual vital sign scores are summed to 

provide a single score (sometimes called an ‘early-warning score’) that summarizes the patient’s 

overall physiological condition (Prytherch et al. 2005, Mohammed et al. 2009). As well as assisting 

health professionals to recognize deterioration, these scores can be used by nurses to trigger 

appropriate actions, from increasing the frequency of observations through to calling for emergency 

assistance, depending on the magnitude of the score (Prytherch et al. 2005, Lawson & Peate 2009, 

Mohammed et al. 2009). 

Indeed, early-warning scores have been shown to be an effective decision-making tool to 

help nurses assess at-risk patients (Andrews & Waterman 2005). They also empower nurses by 

providing objective evidence of patient deterioration and a concise and unambiguous means of 

communicating it to doctors (Andrews & Waterman 2005). However, these advantages are 

dependent on accurate scoring.  

 

Background 

 

Despite the relatively widespread adoption of early-warning scoring systems, the accuracy 

with which chart-users can determine patients’ early-warning scores has received only minimal 

research attention (Prytherch et al. 2005, Smith et al. 2008, Mohammed et al. 2009). Past studies 

have established that errors occur frequently, both via simulations (Prytherch et al. 2005, 

Mohammed et al. 2009) and retrospective case-note analysis (Smith et al. 2008). However, further 

research is required to better understand their causes and potential remedies, given that every step in 

the process of determining a patient’s early-warning score is susceptible to human error (Prytherch 

et al. 2005, Smith et al. 2008, Mohammed et al. 2009). These steps typically include: (a) collecting 

and recording raw vital sign data (where measurement and transcription errors may occur); (b) 
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scoring each observation (which may lead to ‘scoring errors’); and (c) for each set of observations, 

summing the individual vital sign scores (where ‘adding errors’ may occur). Any of these errors can 

influence the overall score and, consequently, the appropriateness of the clinical response 

(Prytherch et al. 2005). For instance, under-scoring may delay the detection of deterioration, 

increasing the risk of an adverse outcome for the patient; and over-scoring may cause medical staff 

to be called unnecessarily, placing additional strain on finite hospital resources (Prytherch et al. 

2005). 

It has been suggested that these errors may be reduced by using a computer-based system 

that automates parts of the process (Prytherch et al. 2005, Mohammed et al. 2009). Nevertheless, 

there remains a compelling need for research on paper-based systems. Not only are they still 

globally ubiquitous (Preece et al. 2012a) but their use is likely to continue for many years to come, 

especially in developing countries; and they will have an even longer life as the back-up for 

electronic systems (Christofidis et al. 2014).  

Several recent empirical studies have shown that improvements to observation chart design 

can assist both experienced and novice chart-users to detect abnormal observations more quickly 

and accurately (Christofidis et al. 2012, Preece et al. 2012b, Christofidis et al. 2013, Christofidis et 

al. 2014). However, no published study has assessed the impact of chart design on the 

determination of early-warning scores.  

 

THE STUDY 

 

Aims 

 

The present study aimed to examine the effect of scoring-system design on the 

determination of early-warning scores, by systematically evaluating three alternative layouts for a 

colour-based early-warning scoring system. The layouts mirrored those of three general observation 

charts widely used in Australia, where there is unresolved debate as to which design solution is best 

(Horswill et al. 2010, Mitchell et al. 2010, Queensland Health 2012). The charts used in the 

experiment varied only in relation to the arrangement of the rows for recording individual vital sign 

scores. These scoring-rows were either: (a) grouped together beneath all of the vital sign data 

(‘grouped rows’); (b) separated, with each row presented immediately below the corresponding 

vital sign data (‘separate rows’); or (c) excluded altogether (‘no rows’). All three chart designs 

included a row for recording overall early-warning scores at the bottom of the page.  

We predicted that grouped rows (Figure 1A) would facilitate the most accurate 

determination of overall early-warning scores. This was the solution that we chose for the original 
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Adult Deterioration Detection System (ADDS) Chart (Horswill et al. 2010, ACSQHC 2013), which 

was designed by an interdisciplinary team of human factors specialists and clinicians. The chart was 

developed as part of a national project for the Australian Commission on Safety and Quality in 

Health Care and was designed with the specific aim of improving the recognition of patient 

deterioration. Using human factors principles (Horswill et al. 2010, ACSQHC 2013), we reasoned 

that the close proximity of the grouped rows to one another would allow users to sum scores 

without having to switch their attention (Rashid et al. 2012) to another part of the chart, reducing 

the likelihood of adding errors.  

Prior to the ADDS chart, a team of experienced health professionals developed a territory-

wide observation chart featuring separate rows (see Figure 1B for an illustration of this strategy) 

(Mitchell et al. 2010). Despite clinical improvements post-implementation (e.g., fewer unplanned 

ICU admissions) (Mitchell et al. 2010), we predicted that separate rows would yield more adding 

errors than grouped rows. To determine the overall score, separate scoring-rows require users to 

visually align the column of individual scores down the entire page. The interference from data 

recorded between the scores may cause users to accidentally skip a score or read from the wrong 

column. 

Despite these two (albeit competing) design recommendations, an Australian state health 

department recently released an alternative ADDS chart design (Queensland Health 2012) that 

excludes individual vital sign scoring-rows altogether. Although this no rows strategy (see Figure 

1C for an illustration) may lead to efficiency gains – by eliminating the need to record an additional 

144 scores per chart (Horswill et al. 2010, ACSQHC 2013) – we predicted that the concurrent tasks 

of determining the individual vital sign scores and holding a running total in mind would induce 

greater cognitive load and, as a result, yield additional errors.  

 

Design 

 

The study used a within-subjects experimental design, with scoring-system design (grouped 

rows vs. separate rows vs. no rows) as the independent variable and participants’ response times 

and error rates as the main outcome measures.  

 

Observation chart designs 

 

The three observation chart designs used in this study were based on the ADDS chart 

(Horswill et al. 2010, ACSQHC 2013). The ADDS was regarded as the most appropriate starting 

point for this study because of its superior outcomes in previous carefully-controlled human-
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performance experiments. In these studies, participants were faster and more accurate at detecting 

deranged vital signs on ADDS charts, compared with other widely-used chart designs (Preece et al. 

2012b, Christofidis et al. 2013). However, for the present experiment, the placement of individual 

vital sign scoring-rows was modified in two versions of the chart to mirror alternative designs used 

in Australian hopitals (as discussed above). Hence, the three charts used in the study had either: (a) 

grouped rows (as per the original ADDS design) (Horswill et al. 2010, ACSQHC 2013); (b) 

separate rows (as per Mitchell et al. 2010); or (c) no rows (as per Queensland Health, 2012) (Figure 

1). Adobe InDesign CS5.5 (Adobe Systems Incorporated, 2011) was used to create the three 

designs and to plot each set of patient data (see below) on to each design. The finished charts were 

then colour-printed.  

 
Fig. 1. Examples of the three chart designs used in the study, which varied according to their 
placement of individual vital sign scoring-rows: grouped rows (A); separate rows (B); and no rows 
(C).  
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Patient data  

 

The study used nine different cases of patient data, each spanning 18 consecutive time-

points, which included observations for ten vital signs: respiratory rate, oxygen delivery, oxygen 

saturation, systolic and diastolic blood pressure, heart rate, temperature, four hour urine output, 

consciousness and pain. Each case contained two sets of observations that would yield each overall 

early-warning score from 0 to 8 if scored and added correctly (i.e., across the nine cases, each of 

these ‘target’ scores occurred 18 times). This range was chosen to maximize content validity by 

reflecting the clinically-relevant values prescribed by the ADDS chart (Horswill et al. 2010, 

ACSQHC 2013). Across cases, every possible combination of individual vital sign scores that 

would yield each ‘target’ overall score was included at least once (Table 1).  

To meet these criteria while maximising representativeness, each case was carefully selected 

from a large pool of genuine de-identified patient data collected from several Australian hospitals. 

The cases were only modified if a data-point was missing (where a plausible value was extrapolated 

or interpolated), or if the sets of observations did not meet the strict constraints of the experimental 

design (where some systolic blood pressure and/or oxygen delivery observations were adjusted 

slightly to alter their scoring range-rows). In addition, cases where one or more observations fell 

within a purple range-row were excluded because such observations trigger an immediate Medical 

Emergency Team (MET) call on ADDS charts (Figure 1), eliminating the need to determine the 

overall score (Horswill et al. 2010, ACSQHC 2013).  
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Table 1 
Combinations of non-zero individual vital sign scores that can sum to each ‘target’ overall early-
warning score from 0 to 8. Across the 162 overall early-warning scores that participants were 
required to determine (9 cases × 18 time-points), each of these ‘target’ scores occurred 18 times and 
each possible combination of individual vital sign scores listed below was used at least once. These 
scores were based on the Adult Deterioration Detection System, where 8 individual vital signs are 
scored (Horswill et al. 2010, ACSQHC 2013).  
 
‘Target’ 
overall 
early-
warning 
score 

0 1 2 3 4 5 6 7 8 

1 non-zero 
digit 

- 1 2 3 4 5 † † † 

2 non-zero 
digits 
 

- - 1 1 2 1 
 

3 1 
2 2 

4 1 
3 2 

5 1 
4 2 

5 2 
4 3 

5 3* 
 

3 non-zero 
digits 
 
 

- - - 1 1 1 
 

2 1 1 
 

3 1 1 
2 2 1 
 

3 2 1 
2 2 2 
 

5 1 1 
4 2 1 
3 2 2 
 

5 2 1 
4 3 1 
4 2 2 
3 3 2 

4 non-zero 
digits 
 

- - - - 1 1 1 1 2 1 1 1 
 

3 1 1 1 
2 2 1 1 
 

3 2 1 1 
2 2 2 1 
 

5 1 1 1 
4 2 1 1 
3 3 1 1 
3 2 2 1 
2 2 2 2 

5 non-zero 
digits 
 

- - - - - 1 1 1 1 1 2 1 1 1 1 
 

2 2 1 1 1 
 

4 1 1 1 1 
3 2 1 1 1 
2 2 2 1 1 

6 non-zero 
digits 
 

- - - - - - 1 1 1 1 1 1 2 1 1 1 1 1 
 

3 1 1 1 1 1 
2 2 1 1 1 1 

7 non-zero 
digits 

- - - - - - - 1 1 1 1 1 1 1 2 1 1 1 1 1 1 

8 non-zero 
digits 

- - - - - - - - 1 1 1 1 1 1 1 1 

† Individual vital sign scores cannot be greater than five (Horswill et al. 2010, ACSQHC 2013).    
* Only systolic blood pressure can yield individual vital sign scores of 4 or 5 (Horswill et al. 2010, 
ACSQHC 2013), thus the combination 4 4 cannot occur within a single time-point. 
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Participants 

 

We recruited 47 novice chart-users (32 females and 15 males; mean age 21.49 years, SD 6.01) 

from a pool of undergraduate psychology students at The University of Queensland (St Lucia, 

Queensland, Australia). A naïve sample was deliberately selected to preclude the possibility that 

participants’ prior chart-related preferences or experiences could advantage particular design 

features. It is also worth noting that, in our previous experimental studies comparing chart designs, 

samples of health professionals and chart novices (recruited via the psychology research participation 

scheme) consistently yielded very similar patterns of results across designs (Horswill et al. 2010, 

Preece et al. 2012b; Christofidis et al. 2014). Thus, we reasoned that including a group of non-naïve 

novices (e.g., nursing students) would have been unlikely to add additional value.  

A minimum sample size of approximately 40 participants was sufficient to yield statistically 

significant pairwise performance differences between alternative chart designs in our previous work 

using similar methods (Preece et al. 2012b, Christofidis et al. 2013) where the differences were also 

deemed substantial enough to be of practical importance. Thus, we continued to recruit and test 

participants in the present study until the final sample exceeded this number. No participants were 

excluded from the analyses (Figure 2).  

Fig. 2. Flow diagram illustrating the enrollment of participants, the within-participants experimental 
manipulation and the exclusions made prior to analysis.  
 

 

effect size (Howell 1997). In addition, t-tests were used to

compare the frequency of under-scoring vs. over-scoring,

the size of under-scoring vs. over-scoring discrepancies and

(for chart designs with individual vital sign scoring-rows)

the percentage of time-points affected by scoring vs. adding

errors, with Cohen’s d as the effect size measure (Cohen

1992). We also examined correlations between the size of

the ‘target’ early warning scores and the response time and

error rate data for all three charts.

Results

Response time

Analysis of the response time data revealed a significant

main effect of scoring-row placement, F(2, 92) = 306!99,
P < 0!001, g2 = 0!870 (Figure 3a). When there were no

rows for scoring individual vital signs, participants

responded 6!35 seconds faster (CI 5!83–6!87) than when

there were separate rows (P < 0!001) and 7!69 seconds

faster (CI 7!17–8!20) than when there were grouped rows

(P < 0!001). Participants were 1!34 seconds faster (CI

0!82–1!86) with separate vs. grouped rows (p < 0!001). In
addition, for each chart, response times were positively

correlated with ‘target’ early-warning scores (grouped

rows, r = 0!98, P < 0!001; separate rows, r = 0!95,
P < 0!001; no rows, r = 0!94, P < 0!001), indicating that

the more at risk the patient, the slower responses were

likely to be.

Error rate

Analysis of the error rate data for the overall early-warning

scores also yielded a significant main effect of individual

vital sign score placement, F(2, 92) = 5!57, P = 0!005,
g2 = 0!108 (Figure 3b). Participants made 2!48% fewer

errors (CI 0!86–4!11) when there were no rows for scoring

individual vital signs, rather than separate rows (P = 0!008)
and 2!76% fewer errors (CI 1!01–4!50) when there were no

rows than when there were grouped rows (P = 0!007).
However, there was no significant difference between the

separate and grouped rows conditions (P = 1!00).
Compared with over-scoring, under-scoring of overall

early-warning scores occurred more frequently for the no

rows design (t(46) = "3!11, P = 0!003, d = 0!65), affecting
1!70% more scores (CI 0!60–2!79) and for the separate

rows design (t(46) = "4!69, P < 0!001, d = 0!85), affecting
3!20% more scores (CI 1!82–4!56) (Table 2). However, for

the grouped rows design, there was no significant difference

between the frequencies of under- and over-scoring

(P = 0!874).
For the design with grouped rows, errors were 0!47 units

(CI 0!06–0!88) bigger when participants over-scored com-

pared with when they under-scored (t(46) = "2!28,

Enrollment
Assessed for eligibility (n = 47)

Excluded (n = 0)

Experimental task

1. Grouped rows
2. Separate rows
3. No rows

Analysis

Excluded from analysis (n = 0)

Analysed (n = 47)

Independent variable: Scoring-system design (varied within-participants)

Figure 2 Flow diagram illustrating the

enrolment of participants, the within-

participants experimental manipulation

and the exclusions made prior to analysis.

1580 © 2015 John Wiley & Sons Ltd

M.J. Christofidis et al.
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Data collection 

 

Participants were recruited and tested between December 2012 - January 2013 and received 

course credit. All participants gave informed consent; however, we did not inform them of the 

experimental hypotheses prior to participating.  

Participants were tested individually in a quiet room and began by completing a demographic 

questionnaire. Next, they watched training videos that explained important background information, 

including: (a) the ten vital signs and their normal ranges (Horswill et al. 2010, ACSQHC 2013); (b) 

track-and-trigger systems; and (c) how to use each chart design (explained in a different random 

order for each participant). Participants’ knowledge of key points from these videos was then tested 

with a 10-item multiple-choice examination. Participants who did not score 100% were required to 

study this information from a summary sheet and retake the examination until they did. A final 

training video explained the experimental protocol.  

In the experiment, each participant completed nine blocks of experimental trials (one block 

per patient case), while standing next to a simulated patient (i.e., a mannequin in a hospital bed) to 

increase representativeness. In each block of trials, the participant was handed a chart attached to an 

open clipboard and then scored each set of observations (18 sets per block), working consecutively 

from the first time-point to the last. Each set of observations constituted one experimental trial and 

each participant completed 162 trials in total. Every time the participant recorded an overall early-

warning score, they were also required to speak it aloud. This allowed the experimenter to record the 

response time for each set of observations using a software stopwatch. Responses were also audio 

recorded for verification purposes.  

Each chart design was used on three blocks of trials (i.e., 54 trials per design) and the nine 

cases were randomly assigned to the three chart designs for each participant. To prevent order 

effects, the blocks were presented in a different random order for each participant.  

 

Ethical considerations 

 

This study was granted ethical approval in accordance with the review processes of the 

university ethics committees. 

 

Data Analysis 

 

 For each set of observations, the overall early warning-score recorded by the participant was 

coded as correct or incorrect. For each (a) design and (b) combination of design and ‘target’ early-
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warning score (i.e., 0-8), we calculated each participant’s average response time (the mean number of 

seconds to record an early-warning score) and error rate (the number of incorrect early-warning 

scores as a percentage of all relevant early-warning scores).  

For each participant, we also calculated the frequency of overall early-warning scores that 

were under- or over-scored on each chart design (expressed as percentages). In addition, we 

determined the magnitude of this under- and over-scoring for each design (i.e., each participant’s 

mean deviation in each direction from the correct score).  

For designs with individual vital sign scoring-rows, two specific error-types were coded, 

summed and expressed as percentages. A ‘scoring error’ occurred when a participant recorded an 

incorrect score for an individual vital sign. An ‘adding error’ occurred when a participant recorded an 

overall early-warning score that was not the sum of the individual scores recorded.  

Statistical analyses were performed using IBM SPSS 21.0 (IBM Corp., Armonk, NY: USA) 

with statistical significance set at α = 0.05. To compare chart designs, repeated-measures analyses of 

variance were conducted on response times and error rates, with η2 calculated as the measure of 

effect size (Howell 1997). In addition, t-tests were used to compare the frequency of under-scoring 

vs. over-scoring, the size of under-scoring vs. over-scoring discrepancies and (for chart designs with 

individual vital sign scoring-rows) the percentage of time-points affected by scoring vs. adding 

errors, with Cohen’s d as the effect size measure (Cohen 1992). We also examined correlations 

between the size of the ‘target’ early warning scores and the response time and error rate data for all 

three charts.  

 

RESULTS 

 

Response time 

 

Analysis of the response time data revealed a significant main effect of scoring-row 

placement, F(2, 92) = 306.99, p < 0.001, η2 = 0.870 (Figure 3A). When there were no rows for 

scoring individual vital signs, participants responded 6.35 seconds faster (CI 5.83-6.87) than when 

there were separate rows (p < 0.001) and 7.69 seconds faster (CI 7.17-8.20) than when there were 

grouped rows (p < 0.001). Participants were 1.34 seconds faster (CI 0.82-1.86) with separate versus 

grouped rows (p < 0.001). In addition, for each chart, response times were positively correlated with 

‘target’ early-warning scores (grouped rows, r = 0.98, p < 0.001; separate rows, r = 0.95, p < 0.001; 

no rows, r = 0.94, p < 0.001), indicating that the more at risk the patient, the slower responses were 

likely to be. 
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Error rate 

 

Analysis of the error rate data for the overall early-warning scores also yielded a significant 

main effect of individual vital sign score placement, F(2, 92) = 5.57, p = 0.005, η2 = 0.108 (Figure 

3B). Participants made 2.48% fewer errors (CI 0.86-4.11) when there were no rows for scoring 

individual vital signs, rather than separate rows (p = 0.008) and 2.76 % fewer errors (CI 1.01-4.50) 

when there were no rows than when there were grouped rows (p = 0.007). However, there was no 

significant difference between the separate and grouped rows conditions (p = 1.00).  

Compared with over-scoring, under-scoring of overall early-warning scores occurred more 

frequently for the no rows design (t(46) = -3.11, p = 0.003, d = 0.65), affecting 1.70% more scores 

(CI 0.60-2.79) and for the separate rows design (t(46) = -4.69, p < 0.001, d = 0.85), affecting 3.20% 

more scores (CI 1.82-4.56) (Table 2). However, for the grouped rows design, there was no significant 

difference between the frequencies of under- and over-scoring (p = 0.874).  

For the design with grouped rows, errors were 0.47 units (CI 0.06-0.88) bigger when 

participants over-scored compared with when they under-scored (t(46) = -2.28, p < 0.05, d = 0.48; 

Table 2). However, for the no rows design, errors were 0.38 units (CI 0.06-0.71) smaller when 

participants over-scored (no rows, t(46) = 2.35, p < 0.05, d = 0.51). For the design with separate 

rows, the size of the errors did not vary between under-scored and over-scored observations (p = 

0.537). 
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Fig. 3. Response times (A) and error rates (expressed as percentages) (B) for recording overall early-
warning scores, arranged by chart design (where only the placement of scoring-rows varied between 
the designs). Error bars indicate 95% confidence intervals and asterisks indicate significant 
differences between charts (p < .01).  
 

 
 
  



	
   132 

Table 2 
Frequency of under-scoring and over-scoring in overall early-warning scores and mean discrepancy 
sizes, averaged across participants for each chart design. 
 
Direction of 
discrepancy 

Measure Scoring-system design 
Grouped 
rows  

Separate 
rows 

No rows 

Under-scored Percentage of overall 
early-warning scores 
under-scored (SD)  

3.47% 
(3.13) 

4.85% (4.82) 2.88% 
(3.27) 

 Mean size of under-
scoring discrepancy (SD) 

1.00 (0.69) 0.77 (0.51) 0.87 (0.84) 

Over-scored Percentage of overall 
early-warning scores over-
scored (SD)  

3.35% 
(4.19) 

1.65% (2.29) 1.18% 
(1.70)  

 Mean size of over-scoring 
discrepancy (SD) 

1.47 (1.20) 0.69 (0.97) 0.49 (0.66) 

 

For both designs with individual vital sign scoring-rows (where scoring errors could be 

distinguished from adding errors), scoring errors affected significantly more time-points than adding 

errors. Specifically, scoring errors affected 3.35% more time-points (CI 1.87-4.83) on designs with 

grouped rows (t(46) = -4.57, p < 0.001, d = 0.88) and 2.56% more time-points (CI 1.03-4.09) on 

designs with separate rows (t(46) = -3.37, p = 0.002, d = 0.63) (Table 3). However, there was no 

significant difference between the two designs in the number of time-points affected by scoring 

errors (p = 0.581), or by adding errors (p = 0.516). Finally, for each chart, error rates were positively 

correlated with ‘target’ early-warning scores (grouped rows, r = 0.87, p < 0.01; separate rows, r = 

0.84, p < 0.01; no rows, r = 0.94, p < 0.001), indicating that the worse state the patient was in, the 

greater the chance of error. 

 
Table 3  
Frequency of scoring and adding errors, averaged across participants for each chart design.  
 
Error Measure Scoring-system design 

Grouped 
rows  

Separate rows No 
rows 

Scoring  Percentage of individual vital sign 
scores affected by scoring errors 
(SD) 

0.65% (0.62) 0.58% (0.63) - 

 Percentage of time-points 
affected by (one or more) scoring 
errors (SD) 

5.16% (4.99) 4.61% (5.05) - 

Adding  Percentage of time-points 
affected by adding errors (SD) 

1.81% (1.99) 2.05% (2.74) - 

Both 
scoring and 
adding 

Percentage of time-points 
affected by both scoring and 
adding errors (SD) 

0.20% (0.69) 0.16% (0.52) - 
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DISCUSSION 

 

The results of the present study suggest that, in the case of integrated colour-based early-

warning scoring systems, less is more. Contrary to hypotheses, preventing chart-users from recording 

individual vital sign scores yielded more efficient and accurate determination of overall scores, 

cutting both response times and error rates by around 40%. A potential explanation is that removing 

the individual vital sign scoring-rows eliminated the need for the additional visual switches (Rashid 

et al. 2012) demanded by the other two designs: between the observations and the scoring-rows at the 

bottom of the page (grouped rows), or from one scoring-row to the next (separate rows) (Figure 4). 

The data suggest that these switches may have impeded performance to an unexpected degree, 

whereas the concurrent tasks of determining each individual vital sign score and holding a running 

total in mind did not appear to compromise the low-level mental arithmetic required to derive an 

overall score on the no rows chart. Further, the absence of rows made this design comparatively less 

visually cluttered, which may have also facilitated more efficient and accurate engagement with the 

chart (Christofidis et al. 2012). 

Although the two designs with individual vital sign scoring-rows did not differ in the 

frequency of either scoring or adding errors, participants determined the overall scores faster using 

separate, rather than grouped, rows. This could be due to the larger visual switches demanded by the 

grouped rows design (Figure 4). Because the scoring-rows are not adjacent to the corresponding vital 

sign data on the grouped rows chart, chart-users need to reorient themselves within a new visual 

space after each transition, exerting additional mental effort (Horswill et al 2010). 

Interestingly, under-scoring of overall early-warning scores was more frequent than over-

scoring for the separate rows and no rows charts (whereas they occurred at equal rates for the 

grouped rows chart). To calculate an overall score on the separate rows chart, users must visually 

align the column of individual scores down the entire page, switching from one vital sign to the next 

(Horswill et al. 2010; Figure 4). Hence, it is possible that interference from data recorded in-between 

the scores sometimes caused users to skip a score entirely. When completing a no scores chart, users 

need to remember not only the running total, but also which vital signs they have already scored. 

Even when working down the page from top-to-bottom, it is possible to accidentally skip over a vital 

sign when making visual switches between the observations and other parts of the chart (such as the 

scoring key).  

Clinically, the implications of this study are critical. On the worst-performing chart design, 

incorrect overall early-warning scores were under-scored or over-scored by an average of 1.0 or 1.5 

units, respectively. For some patients, this will be enough to trigger an inappropriately low (if under-

scored) or high (if over-scored) response. For example, a one-unit under-score can be the difference 
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between a nurse being prompted to consider a MET call or merely to request a registrar review 

within 30 minutes (Horswill et al. 2010, ACSQHC 2013). This finding is even more alarming when 

we consider that, for all three chart designs, there were very strong positive correlations between 

‘target’ early warning scores and both of the main outcome measures – response time and error rate. 

This suggests that, the more at risk the patient, the slower and more innaccurate responses are likely 

to be.   

Some Australian hospitals have recently removed individual vital sign scoring-rows from 

their integrated colour-based early-warning scoring systems (Queensland Health 2012). Although we 

initially questioned this design decision and predicted that it would increase errors, the results of the 

current study support it.  
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Fig. 4. An illustration of the order in which a chart-user might typically attend to vital sign 
observation rows and scoring-rows when determining scores on each of the three chart designs: 
grouped rows (A); separate rows (B); and no rows (C). Red numerals indicate the potential order for 
the third column of vital sign data. Asterisks indicate that, at this step, all three charts also require the 
user to consult a blood pressure look-up table to the right (not pictured; Figure 1). 
 



Limitations 

 

The main limitation of this study is that we have not demonstrated directly that the results 

will generalize to real clinical settings (e.g., via a multi-site clinical trial of the three scoring system 

designs). Arguably, response times and error rates for all of the chart designs are likely to be greater 

under real-world conditions, where chart-users are faced with various external pressures and 

distractions. However, there are substantial costs associated with conducting clinical trials. Hence 

we argue that, in the chart development and validation process, it is typically more prudent to first 

conduct a series of lower-cost, more highly-controlled usability studies as a means of gathering 

preliminary evidence to inform or evaluate the major design decisions (e.g., Preece et al. 2012b, 

Christofidis et al. 2014). In this context, the present study serves as a template for usability studies 

focused on scoring system design and, to our knowledge, is the first of its kind.  

In addition, we acknowledge that chart audits are required to determine whether the absence 

of scoring-rows impacts compliance with monitoring. That is, it is possible that the presence of 

scoring-rows encourages more accurate and comprehensive recording of observations. On charts 

with scoring rows, it is immediately evident whether all vital signs have been attended to. Hence, 

scoring rows may increase nurses’ accountability and help them to detect their own accidental 

omissions.  

A system without scoring-rows also relies more on trust. For example, nurses and doctors 

must trust that the last health professional who documented a patient’s vital signs scored each 

observation correctly and summed the individual vital sign scores accurately. Trust is an important 

element in improving patient care in dynamic health care environments (Johns, 1996). If an 

observation chart design’s lack of transparency leads nurses and doctors to distrust it, then they may 

resist its introduction, refuse to use it, or fail to comply properly with chart-related protocols 

(Preece et al., 2012a). 

As with our previous behavioural experiments (Preece et al. 2012a, Christofidis et al. 2013, 

Christofidis et al. 2014), this study is also limited in that the findings may only apply to static 

paper-based domains, whereas hospitals will inevitably shift towards using electronic systems to 

record and display patient data. Indeed, compared with pen-and-paper methods, hand-held 

computers have already been found to help improve the accuracy and efficiency of early-warning 

score calculations in acute hospital care (Prytherch et al. 2006, Mohammed et al. 2009). However, 

we argue that paper-based observation charts are still globally ubiquitous and are likely to have a 

substantial shelf life, particularly in developing countries.  

The recruitment of novice chart-users as participants also means that our findings, strictly 

speaking, cannot be generalized to experienced chart-users. Although controlling for past chart 
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experience was important in terms of maximising experimental control, we argue that the findings 

will still almost certainly apply to nurses and doctors for several reasons. First, the mechanical task 

of scoring invidividual vital signs and determining the total early-warning score does not rely on 

clinical knowledge or expertise (as opposed to the overall task of detecting deteriorating patients, 

where clinical judgement can be critical). Rather, it involves basic human capacities, such as visual 

perception, working memory and low-level addition.  Second, in our previous experimental studies 

comparing observation chart designs, samples of chart novices and health professionals have 

consistently produced similar patterns of results across charts (Horswill et al. 2010, Preece et al. 

2012b; Christofidis et al. 2014). Third, recent evidence has demonstrated that the effects of 

improved chart design on response times and error rates for detecting abnormal observations can 

outweigh health professionals’ prior chart experience (Christofidis et al. 2013). In addition, the use 

of naïve participants was important because it is critical that observation charts provide effective 

support for clinical staff of all levels (including the least experienced), especially given that initial 

decisions about deteriorating patients are often made by newly-qualified nurses and doctors 

(Endacott et al. 2010). Again, the inevitable shift towards using electronic systems also means that, 

in the future, when it is likely that paper-based charts will be used exclusively as the back-up for 

electronic systems, all chart-users will effectively be novices (Christofidis et al. 2014). 

Nevertheless, it must also be emphasized that, although a well-designed observation chart can assist 

even the least experienced chart-user to recognize and respond to deteriorating patients, it is merely 

a decision-support tool and not a substitute for nurses’ and doctors’ good clinical judgment and 

training (McDonnell et al. 2013).  

 

CONCLUSION 

 

The results of this study suggest that integrated colour-based track-and-trigger systems may 

benefit from the exclusion of individual vital sign scoring-rows, potentially improving the 

effectiveness of the system and, ultimately, clinical responses. More broadly, the results 

demonstrate that even multi-disciplinary teams of clinicians and human factors specialists can make 

sub-optimal design choices and therefore that iterative empirical evaluations of clinical chart 

designs are essential. Because the processes involved in vital sign charting (whether computerized 

or paper-based) can be complex (Subbe et al. 2007), there remains enormous scope for further 

empirical usability research.   
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Chapter 6 

 

The primary purpose of this thesis was to resolve contentious hospital observation chart 

design decisions using a behavioural experimental approach. Observation charts are essential 

cognitive artifacts that represent the past actions and shared intentions of the hospital ward team, in 

addition to the current state of the patient (Norman, 1992; Rogers, Patterson, & Render, 2012; Sela 

& Auerbach-Shpak, 2014). However, these charts have traditionally been developed without direct 

reference to how users process information (Gerhardt-Powals, 1996). Without an understanding of 

human-system interactions, these designers risk: (a) developing ineffective and inefficient chart 

interfaces; (b) missing opportunities for novel designs; and (c) alienating their users (Gerhardt-

Powals, 1996; Gillan & Schvaneveldt, 1999). This laissez-faire approach to design may be due, in 

part, to clinicians’ perceptions of chart-related tasks. Rather than viewing the tasks as potentially 

crucial for patient survival, staff tend to perceive the measuring and recording of observations as a 

simple low-priority activity (Boulanger & Toghill, 2009; Mitchell et al., 2010; NICE, 2007a). As 

such, chart tasks tend to be left to the most junior clinical staff (Mitchell, 2012). 

Effective document design is important to many different domains, and hence has been the 

focus of research for many years (Carliner, Verckens, & de Waele, 2006; Ganier, 2004; Hoeken & 

Korzilius, 2003). This research has tended to be multi-disciplinary, involving fields such as 

psychology, linguistics, graphic design, education, and technical communication, and hence 

research strategies have been correspondingly diverse (Carliner et al., 2006; Spyridakis & Wenger, 

1992). Nonetheless, the general strategy of adopting a systematic research-based approach, in which 

effectiveness is formally evaluated against some performance criterion (Schriver, 1993), has been 

found to be able to yield effective outcomes. To give one example, researchers from the flight 

industry employed task observations, interviews and survey data to redevelop work cards that 

control aircraft inspection and maintenance tasks, finding significant improvements among wing 

inspectors following pre- and post- usability tests (Drury, Sarac, & Driscoll, 1997; Patel, Drury, & 

Lofgren, 1994).  

The developers of the ADDS chart also followed a systematic research-based approach to 

design their form, where a criterion-based outcome was used to test design effectiveness. As with 

the aviation example above, they started with observations of the tasks involving patient charts, as 

well as informal interviews with users. They then conducted a heuristic evaluation of existing charts 

to guide design, adapting usability principles from computer-based design to fit the chart context. 

The criterion-based performance of the resulting chart was evaluated by, for example, determining 

whether it yielded lower users’ error rates and judgement times than alternative chart designs. 
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Discussion of findings with respect to human factors design principles 
 

Although the ADDS chart was designed to account for users’ psychological processes (Preece 

et al., 2010c), some clinicians have questioned whether several of its design features represent best 

practice and have argued in favour of pre-existing chart designs. The designers of the ADDS chart 

lacked objective evidence to appropriately respond to these claims, as their original supporting 

study compared the chart to alternative designs that differed on multiple dimensions (Preece et al., 

2012b). They were also unable to make definitive human factors arguments in favour of their 

design decisions. This is because the abstract nature of human factors design principles means that 

while one principle might support one particular design option, another principle (or in some cases, 

even the same principle) can support a different design option, including the alternatives that some 

clinicians preferred. The aim of this thesis was to attempt to resolve these issues by conducting a 

series of behavioural experiments that directly addressed each of the points of contention regarding 

best practice observation chart design. 

Chapter 2 reported a study designed to address clinicians’ concerns that the ADDS chart 

might be problematic for health professionals who were accustomed to alternative chart designs 

(Christofidis et al., 2013). When we considered this argument from a human factors perspective, we 

explored the possibility of ‘expertise reversal’, a well-known effect within the instructional learning 

literature. We speculated that the psychological processes involved in learning through instruction 

might be comparable to those involved in interpreting an observation chart. As such, we considered 

the possibility that the ADDS chart design might be counterproductive for experienced chart-users 

with acquired expectations (Kalyuga et al., 1998; Kirschner et al., 2006). It was critical to address 

this possibility because systems designed without attention to the end-user can put stress on 

individuals’ capabilities (Wickens et al., 2004).  

We found that participants were more accurate and faster at detecting abnormal observations 

when using the ADDS chart compared to several existing chart designs; even those that they were 

highly experienced with in their occupational role. Despite potentially bringing acquired knowledge 

schemas to the task, the instructional schemas of the ADDS chart did not appear to cognitively 

overload users’ working memory resources (Kalyuga et al., 2003). That is, compared to instruction 

that relied more on pre-existing schemas for direction (i.e., the chart that users were familiar with), 

a system high in instructional guidance (i.e., the ADDS chart) did not compromise performance. 

Arguably, this is attributable to the user-friendly design of the ADDS chart, which was specifically 

developed to minimise users’ cognitive load (Gerhardt-Powals, 1996; Nielsen, 1993). As described 

in Chapter 1, the ADDS chart designers sought to minimise cognitive load by adopting coloured 

range rows to signal observations that have crossed particular thresholds of abnormality. 
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Presumably, this design feature reduced users’ need to mentally compare the observations to 

remembered normal ranges or to a look-up table. Like the ADDS chart, the existing chart that one 

of the highly experienced participant groups were trained in also used an integrated colour-based 

scoring system (see Chapter 2, Figure 1c). However, it differed from the ADDS chart in its use of 

written-number (vs. drawn-dot) observations. Once again, we attribute the performance differences 

between the designs (in part) to a comparatively reduced cognitive load: the drawn-dots may have 

prevented users from automatically reading the numerical observations and/or comparing them with 

clinical criteria stored in memory. Our findings may benefit future chart designs. We demonstrated 

that it is possible to design a chart that can advantage both chart novices (Preece et al., 2012b) and 

health professionals (Christofidis et al., 2013), in spite of the incongruent expectations and 

understandings that experienced users may bring. In this instance, trade-off design decisions based 

on the end-user were unnecessary. That is, novice users’ needs were not at odds with the needs of 

experienced users (and vice versa). The results also suggest that old technologies need not constrain 

new ones (Thomas & Schneider, 1984). This supports the idea that, rather than preserve the status 

quo in fear of poor performance with change, work systems (like hospital charts) might benefit 

from a process of continuous improvement (Salvendy, 1997).  

Chapter 3 described a study designed to address clinicians’ arguments that the ADDS chart’s 

use of separate blood pressure and heart rate plots would make the detection of deterioration more 

difficult, compared to charts that overlap these vital signs (because separate plots preclude the use 

of the ‘Seagull Sign’) (Christofidis et al., 2014). When we addressed this view from a human 

factors perspective, we explained the conflict that can arise when one principle (in this case, 

‘proximity compatibility’) can be applied in more than one way. We considered that the best 

application of this principle might depend on which type of cognitive processing best advantages 

users’ detection of deterioration. We speculated that if integrative processing benefits users during 

this task, then overlapping graphs might be beneficial.  

We found that participants were more accurate and faster when using separate vital sign 

graphs, compared to when graphs overlapped. This result demonstrates the advantage of distant 

display proximity, suggesting that the task of detecting deterioration using vital sign data may 

benefit from independent processing (Wickens & Carswell, 1995), where users can separately 

assess each vital sign for deranged observations. Accordingly, integrative processing appears to 

have disadvantaged users. Although we speculated that close display proximity could exploit the 

physiological interrelationship between blood pressure and heart rate (e.g., where a borderline 

observation of one vital sign could cue users to notice an abnormal observation of the other), in line 

with Chapter 3’s hypotheses, overlapping plots yielded no performance advantage. The visual 

clutter created by the overlapping plots may have made observations more difficult for users to 
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perceptually separate from one another. Our results also suggest that an integrated colour-based 

track-and-trigger system should adopt separate, rather than overlapping, vital sign graphs. It is  

probable that participants have confused heart rate’s colour-coding for that of blood pressure on 

overlapping plots (where one colour-code system is assigned to heart rate and another to systolic 

blood pressure in the look-up table). We also found that the availability of the Seagull Sign failed to 

improve users’ performance. This could be due to the extreme spatial proximity that the visual cue 

demands. Although the Seagull Sign may attract users’ attention to a particular time-point, having 

to then discriminate between the two observations may have made it more difficult for users to 

actually identify the abnormality. Another possibility is that the Seagull Sign is not visually salient 

enough to direct users’ attention to a given time-point in the first place.  

Chapter 4 involved a study that focused on addressing clinicians’ concerns that the ADDS 

chart’s use of drawn-dot observations, an integrated colour track-and-trigger system and grouped 

scoring-rows might not support users’ detection of abnormal vital signs (Christofidis et al., 2016). 

Indeed, from a human factors perspective, we were able to make several arguments in favour of 

alternative design options. For example, compared to drawn-dots, written-numbers might add 

redundancy (i.e., an abnormal observation recorded as a high or low value may be more noticeable). 

Compared to an integrated colour-based system, a non-integrated tabular track-and-trigger system 

might represent a more simplistic display that only includes information that users need. Finally, 

compared to grouped scoring-rows, separate rows might provide more immediate redundancy 

because of the increased proximity between the data for each vital sign and its corresponding score 

(Gerhardt-Powals, 1996; Nielsen, 1993; Wickens et al., 2004). 

We found that participants were more accurate and faster using drawn-dot observations (vs. 

written numbers) and an integrated colour-based scoring system (vs. a non-integrated tabular 

system). Our results are consistent with the proposal that these two ADDS chart features minimised 

cognitive load and data-driven searches, two design principles that Preece et al. applied from the 

software and web design domains (see Chapter 1), by avoiding the need for users to have to read 

numerical observations and remember (or refer to) normal vital sign references ranges (Gerhardt-

Powals, 1996; Nielsen, 1993). We also found that when participants had access to scores, they were 

faster using separate (rather than grouped) rows. On these charts, users may have been more likely 

to consult each scoring-row immediately after they assessed the observations of a particular vital 

sign. Thus, when participants noticed an abnormal score, the distance in which they moved their 

attention from the score to the corresponding observation would have been much shorter than on 

charts with grouped rows. In other words, charts with separate rows may provide users with more 

immediate redundant cues, leading to significantly faster recognition of deterioration. This finding 

demonstrates the challenge of applying human factors design principles. In Chapter 1, we described 
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the various ways in which the ADDS chart groups information that will be used together to 

decrease users’ search time. Although we used this principle to argue in favour of the ADDS chart’s 

use of grouped rows, in retrospect, it may better explain the human factors rationale for utilising 

separate rows. That is, it may be more advantageous to closely position an observation with its 

corresponding individual vital sign score than it is to position scores close to one another (Gerhardt-

Powals, 1996; Nielsen, 1993; Wickens et al., 2004).  

The study reported in Chapter 5 addressed clinicians’ views that the ADDS chart’s use of 

grouped scoring-rows might impair users’ recording of individual vital sign scores (Christofidis et 

al., 2015). In addressing this concern, we theorised that when users determine an individual score 

and then move their attention to another section of the chart to record the score, the mental effort 

required to reorient their attention to the new visual space after a large visual switch might lead to 

recording errors. Thus, we raised the possibility that charts with grouped rows may actually impair 

users’ recording of individual scores. Unexpectedly, we found that participants were more accurate 

and faster at calculating overall scores when they were prevented from recording individual vital 

sign scores altogether. Although we hypothesised that simultaneously determining each score while 

holding a running total in mind would hinder users’ mental arithmetical calculations, our results 

suggest that the load on working memory was substantially less than we anticipated. For each 

progressively determined early-warning score, participants only had to remember to one digit (i.e., 

the intermediate score after each addition). Further, the retroactive interference in determining each 

individual vital sign score may not have been enough to prolong the storage period in which 

intermediate scores were held (Wickens & Hollands, 2000). At most, this is a two-step operation 

where users: (a) assess the colour of the range row that the observation lies in, and (b) cross-

reference to the scoring key to determine the appropriate individual vital sign score. (Alternatively, 

users may remember which scores correspond to which colours, in which case, the task only 

involves the first step.) The cognitive loads associated with these tasks are substantially less than 

more typical illustrations of retroactive interference (e.g., forgetting a phone number before dialing 

because someone asked a question during the retention interval) (Wickens & Hollands, 2000).   

The performance benefits associated with excluding scoring-rows may be partly explained 

by another human factors design principle: ‘to minimise information access cost’ (Wickens et al., 

2004). When users choose information from a display, a certain amount of selective attention is 

required (Czaja & Sharit, 2012). If this selective attention has to ‘move’ from one display location 

to another to access information, there is typically a cost in time or effort (Wickens et al., 2004). To 

minimise this access cost, Wickens et al. (2004) proposed that frequently retrieved display elements 

should be positioned in a way where the cost of travelling between them is small. Arguably, the 

chart design without individual vital sign scoring rows adheres most to this principle. Of the charts 
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examined, this design requires the least amount of travelling between display elements. Rather than 

switching their attention back-and-forth (i.e., from the observations to the scoring-rows), users only 

need to move their attention progressively down the chart from one observation to the next. Per 

time-point, this involves 16 fewer visual switches than on either of the charts with scoring-rows 

(Rashid, Nacenta, & Quigley, 2012). From a practical perspective, removing individual vital sign 

scoring-rows may also resolve the potential design conflict highlighted in Chapter 4, where 

participants detected abnormal observations faster using separate (vs. grouped) rows when scores 

were recorded, but grouped rows when scores were absent (however, future studies should examine 

whether the performance advantage associated with excluding scoring-rows also holds for other 

chart-based tasks, e.g., detecting abnormal vital sign observations). The principle of minimising 

information access cost may also account for why separate rows yielded faster response times than 

grouped rows. As mentioned in Chapter 5, although both charts required the same overall number 

of visual switches (i.e., 25), arguably, the time cost of travelling from an observation to the 

corresponding individual vital sign scoring-row (and then to the next observation) would be greater 

when rows are grouped because the distances between these display elements are greater.  

We also found, contrary to our predictions, that scoring errors affected more time-points 

than adding errors (for charts with scoring-rows): on the worst performing chart, only 1.81% of 

time-points were affected by adding errors, compared to the 5.16% that were affected by (one or 

more) scoring errors. The discrepancy between our hypotheses and our findings could be because, 

once again, we overestimated the cognitive demands of the task. Compared to other arithmetical 

tasks in nursing (e.g., dosage calculations that can involve the use of fractions, percentages, 

decimals and ratios) (Aschenbrenner & Venable, 2009), the addition of single digit individual 

scores is much less taxing. This finding suggests that if individual vital sign scores are to be 

included on an observation chart, then preference should be given to designs that facilitate the most 

accurate scoring.  

This thesis demonstrates the utility of a human factors approach to chart design that is 

moderated by empirical testing. In Chapters 2, 3 and 4 we found that the ADDS chart design (or 

particular design features that it incorporates), which was developed by human factors researchers, 

performed significantly better than existing charts that were designed and supported by clinicians. 

Interestingly, in almost all of our findings, participants were faster using chart designs that they also 

made fewer errors with (suggesting the absence of speed-accuracy trade-offs). 

Human factors design, which accounts for users’ information-processing capabilities and 

limitations (Gerhardt-Powals, 1996; Proctor & Van Zandt, 2008; Rebelo & Soares, 2014), has been 

emphasised in the patient safety arena in recent years. This is fortunate for paper-based hospital 

charts which have traditionally been developed by clinicians who (a) have not received design 
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training, and (b) may be subject to cognitive biases that stem from overconfidence and lack of 

feedback. This approach has led to the widespread implementation of potentially dangerous chart 

designs. Chapter 2, for example, illustrated the substantial error rates associated with two existing 

Australian charts without track-and-trigger systems. For one group who were experienced in using 

observation charts, mean error rates reached 37.2% for the numerical chart, and 38.4% for the 

graphical chart. The traditional approach of relying on clinicians’ opinions has also lead to strong 

cultural support for certain chart designs. In Chapter 3, we described clinicians’ justification for the 

use of overlapping blood pressure and heart rate graphs based on the potential availability of the 

Seagull Sign. Despite any empirical evidence that the visual cue assisted chart-users to detect 

deterioration, it had been widely endorsed by health care staff in Australia and the United Kingdom. 

Our finding that the overlapping blood pressure and heart rate plots required to use the Seagull Sign 

can actually impair performance demonstrates the danger of cultural beliefs in health care. 

Pervasive false beliefs are somewhat unsurprising given that peoples’ notions about how well they 

perform often fail to correlate with objective performance (Dunning et al., 2003). 

 

The value of empirically-based evaluation approaches to chart design 
 

The development of the ADDS chart also illustrates the importance of adopting a human 

factors approach at the beginning of the process of designing a system, so that higher-level 

decisions flow on to affect more detailed decisions (Proctor & Van Zandt, 2008). Too often, human 

factors experts are consulted only after a system has already been designed. Given the time and 

money that has already been invested, designers are likely to resist responding to the criticisms and 

suggested changes made by human factors experts. This can lead to an unsafe system that fails to 

support both user performance and satisfaction (Wickens et al., 2004). This has been the case for 

several paper-based medical charts designed in Australia. Early human factors input can not only 

make the design more effective and user-friendly (Rebelo & Soares, 2014), but can also reduce the 

costs involved in development (Sela & Auerbach-Shpak, 2014). In some circumstances, financial 

constraints may compromise the redesign of a system following a human factors analysis late in the 

design cycle (Wickens & Hollands, 2000).  

This thesis also highlights the need to empirically evaluate design. Although evaluation is 

critical for all systems (Salvendy, 1997), the ADDS chart is a particularly good candidate given the 

complexity that surrounds the application of human factors design principles. These principles are 

intended to act as guides so that they can be applied to a variety of systems across many different 

industries. However, sometimes designers can be forced to choose between multiple conflicting 

design principles when attempting to solve particular design problems. To complicate the matter, 
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sometimes a single principle can be applied in more than one way. As discussed in Chapter 1, in 

instances where designers cannot rely on guidelines for unambiguous direction, there is often no 

simple resolution to the design issue (Proctor & Van Zandt, 2008; Wickens et al., 2004). The 

successful application of these design principles can be so unintuitive that even human factors 

specialists can make decisions that are less than optimal. For instance, in Chapter 5, we found the 

ADDS chart’s use of grouped scoring-rows led users to make more errors and take longer to record 

overall vital sign scores, compared to alternative design options that Preece et al. (2010c) rejected. 

Although experienced designers may be tempted to trust their own intuition when faced with 

competing design considerations, their decisions are still grounded in opinion. Designers 

experienced in human factors can also be affected by their conceptual knowledge of a system’s 

design. This can result in interfaces that are comprehensible to designers but unintelligible to users 

(Nielsen, 1993). 

Our approach to evaluation demonstrates the value of laboratory-based behavioural trials. 

Laboratory experiments allow designers to manipulate the variables that they anticipate will affect 

user performance, while holding other variables constant (Wickens & Hollands, 2000). In our 

highly controlled usability studies (described in Chapters 3, 4 and 5), we were able to select 

individual chart elements of interest and control all other aspects of design. These trials are also 

relatively inexpensive to run, in the context of the cost of patient harm. If this experimental 

approach is adopted by future chart designers, evaluation should: (a) begin early in the development 

process so that preliminary evidence can inform major design decisions; (b) occur at a number of 

points during the development process to facilitate continuous iterative improvement; and (c) 

involve human factors specialists (Proctor & Van Zandt, 2008; Salvendy, 1997; Wickens & 

Hollands, 2000). That is, evaluation should not be regarded as separate from the design process: it 

should be regarded as an integral part of it. 

Finally, this thesis highlights the importance of clinical context when design features from 

one chart type are applied to another. With limited empirical evidence surrounding chart design, 

there is a risk that future designers will apply features of the ADDS chart (including those 

supported by this thesis) to alternative charts. Because designers may not understand the human 

factors rationale behind the feature, they might apply it in an inappropriate way. For instance, after 

the development of the ADDS chart, we sought to improve the design of a state-wide blood glucose 

and insulin chart (Christofidis et al., 2012). Analogous to vital signs, clinicians aim to maintain 

hospitalised patients’ blood glucose levels within a physiological reference range to prevent 

clinically significant hyper- and hypoglycemic events. In light of this thesis’s findings, we 

suggested the use of an integrated colour-based track-and trigger system to facilitate the faster 

detection of abnormal blood glucose levels. However, because insulin charts are fundamentally 
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different from general observation charts, if blood glucose levels were recorded with drawn-dots (as 

per the ADDS chart design), usability could be compromised. First, time increments between blood 

glucose level readings can vary greatly. If the time-axis is not carefully examined, a busy clinician 

could interpret and act on a trend line of five blood glucose level readings taken at two hour 

intervals (i.e., over a 10 hour period) in the same way as a trend line of five readings taken at 15-

minute intervals (i.e., over a 75 minute period). Second, straight trend lines that would invariably be 

drawn to connect one recording to the next may encourage users to incorrectly infer direct linear 

increases and decreases in blood glucose levels between adjacent recordings. Instead, we 

recommended the use of written-numbers which we hypothesised would encourage closer 

examination of the relationship between blood glucose level readings and the time-axis and 

discourage the assumption of linearity (Christofidis et al., 2012). Although this potential solution 

appears intuitive, defining the real world factors that are likely to affect the use of a system can be 

difficult (Proctor & Van Zandt, 2008). 

 

Experimental limitations and their implications for future research 
 

The four experiments presented in this thesis are adaptations of a similar paradigm to that 

used by Preece et al. (2012b). In laboratory-based settings, we measured the accuracy and 

efficiency with which participants performed realistic clinical tasks using different observation 

chart designs. Consequently, several experimental limitations apply to all the studies in the thesis.  

 

Representative design 

 

The first limitation involves the representativeness of the study. Representativeness refers to 

the extent to which the conditions encountered in the experiment map onto conditions beyond the 

experiment (which, in this case, might include nurses working with patients on hospital wards). 

That is, the representativeness of the experiments may have implications for the extent to which the 

findings of the experiments can be generalized (Araújo, Davids, & Passos, 2007; Hammond, 1998). 

(See Hammond (1998) and Araújo et al. (2007) for discussions of representative design in 

psychological research.) Although the results of Joshi et al. (2014) demonstrate the clinical efficacy 

of the ADDS design (e.g., reduced illness severity at intensive care unit admission), it is possible 

that some of our laboratory results may not directly transfer to other clinical environments because 

of factors not accounted for by our experiments. Given the need to extend research findings to real-

world systems, generalisability is a critical goal in human factors (Salvendy, 1997; Wickens & 

Hollands, 2000). In this section, we will consider several aspects of representativeness including the 
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experimental environment, the generation and presentation of stimuli, and real-world performance 

factors.   

 

Experimental environment 

Rather than evaluate chart designs in actual clinical settings (e.g., hospital wards), we elected 

to test participants in a quiet room (clinicians in hospital training rooms, and novice chart-users in a 

university laboratory). Despite the advantages of laboratory-based behavioural experiments 

previously discussed, it is possible that the findings obtained in these highly-regulated environments 

may not completely generalise to real-world conditions (Wickens & Hollands, 2000). That is, there 

could be an incongruence between the test (laboratory) and target (real world) situation that may 

affect the interpretation of outcomes (Salvendy, 1997). For example, compared to the quiet test 

settings, hospital ward environments involve chart-users being exposed to noise (e.g., alarms), 

distractions (e.g., background conversation) and interruptions (e.g., questions from patients). Chart-

users are also likely to be more stressed because of health professionals’ high workload under time-

pressure (Carayon, 2012). Arguably, information processing and clinical decision-making will be 

less optimal in these circumstances, such that users are likely to make more errors and take longer 

than our results suggest (for all of the chart designs examined).  

The disparity between the test and real-world environments could also substantially limit the 

generalisability of specific findings. For example, in Chapter 5, contrary to our predictions, 

participants determined overall early-warning scores more accurately and efficiently using chart 

designs without individual vital sign scoring-rows (vs. with rows). However, it is possible that in 

real clinical settings, chart-users might be comparatively more susceptible to the aforementioned 

external influences when using this design. As described in Chapter 1, if chart-users are interrupted 

while they calculate an early warning-score, they may try to recall where they were up to in the 

calculation process, increasing the risk of a mistake. Alternatively, users may simply start the 

calculation from scratch, increasing the time it takes to perform the task. That is, the benefits of 

writing down individual vital sign scores may only become apparent in more challenging settings.  

 

Stimulus generation 

It is also important to consider the extent to which experimental stimuli map onto real-world 

stimuli (Salkind, 2010). The plotted vital sign observations used in this thesis reflect real 

physiological data, collected from large patient cohorts across several Australian hospitals. The 

observations were entered into an Excel spreadsheet (Microsoft Corporation 2011) from which 

patient cases were extracted according to pre-defined time-points. For example, in Chapter 3, a 

single case was taken from the dataset after every 13 consecutive time-points. Although authentic, 
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our use of patient data was highly controlled. For example, to standardise the amount of 

deterioration, each ‘abnormal’ patient case presented to participants in Chapters 2, 3 and 4 only 

included one abnormal observation from one vital sign. Although these cases were taken from real 

patient data, an isolated physiological derangement only reflects a small percentage of the hospital 

patient population. For example, in one cross-sectional survey, there was an average of 4.4 

abnormal vital sign observations for each general ward admission (where on average, 1.2 vital signs 

were abnormal) (Harrison, Jacques, Kilborn, & McLaws, 2005). Also, the patient data presented to 

participants was recorded completely and accurately. Although this was essential from an 

experimental perspective, in practice, vital signs are not always recorded appropriately (e.g., in one 

reported case, 25% of observational data were missing) (Endacott et al., 2007; Leuvan & Mitchell, 

2008). 

 

Stimulus presentation  

The presentation of test stimuli may also impact representativeness. In Chapter 2 and 5, we 

presented participants with real paper observation charts. For each trial, participants opened a 

closed chart, at which time the experimenter started an electronic stopwatch (using a computer 

program that was specifically designed for the studies). The experimenter then stopped the watch 

when participants made a verbal response (‘normal’ or ‘abnormal’ in Chapter 2; the overall early-

warning score in Chapter 5). To reduce the risk of inter-individual differences, the same 

experimenter measured all participants’ responses and response times. Participants’ verbal 

responses were also audio recorded in case a trial needed verifying (e.g., if the response time for a 

given trial went unrecorded, the experimenter could later listen to the audio recording and re-time 

that trial). Although paper charts were used to simulate a realistic interaction between the user and 

the tool, this approach relied on the experimenter’s own accuracy and reaction time to record 

participants’ responses. Chapter 2 is also somewhat limited in that the experimenter stopped the 

watch when participants responded ‘normal’ or ‘abnormal’. It was only after the watch was stopped 

that participants were required to specify which vital sign was abnormal. Although we do not 

anticipate that this would significantly impact the overall results, a more robust experimental 

strategy could have been to ask participants to instead say aloud the abnormal vital sign from the 

outset. 

In Chapters 3 and 4 we presented chart designs on computer monitors, using a software 

package called SuperLab (Cedrus Corporation, 2007), rather than paper. Participants responded by 

clicking on the appropriate area of the screen (these areas included onscreen buttons in Chapter 3 

and relevant vital sign graphing areas in Chapter 4). The software recorded participants’ responses 

and response times for each trial, avoiding the human limitations of the experimenter noted 
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previously. This method was used to improve measurement accuracy and also to allow for more 

trials to be included in each study, as it facilitated the presentation of a large number of charts in 

rapid succession. This was especially advantageous in Chapter 4’s factorial design experiment 

where multiple design elements were compared (indeed, over a thousand stimulus items were used 

in this experiment alone). Although this was not completely ideal from a fidelity perspective, we 

argue that this approach was still likely to map onto the same psychological processes (Salvendy, 

1997) involved in the detection of abnormal vital signs. This methodology is also novel. To our 

knowledge, it the marks the first experimental use of computer software to present observation 

charts to participants (and then record their task responses). 

Finally, it could be argued that some of the percentages were calculated from a relatively 

small number of repetitions (for example, each data point in Chapter 2 was calculated from 8 trials). 

The number of trials was limited by the session length, where adding more trials would risk 

introducing participant fatigue effects and testing participants over multiple sessions would risk 

participant attrition. However, a counterargument is that if the number of trials was inappropriately 

small then we would predict that these would introduce noise into the data as a result of under-

sampling participants’ behaviour. This in turn would be predicted to increase the chances of non-

significant results (i.e. a Type II error, due to insufficient psychometric reliability in our 

measurements). However, given that all of our studies did yield statistically reliable results, then 

this could be argued to indicate that our measurements did have an appropriate level of reliability. 

 

Real-world performance factors 

The laboratory experiments presented in this thesis are also limited in that they do not 

examine the effect of chart design on many real-world performance factors. This is, in part, because 

the general observation chart serves multiple purposes in clinical practice. Addressing the effect of 

design on performance can become complex when a document seeks to achieve several purposes 

and communicative effects (Lentz & Pander Maat, 2004). Although the ADDS chart was designed 

to improve health professionals’ detection of deterioration, it also serves many other roles. Indeed, 

differences in how health professionals engage with observation charts elucidate several roles that 

are not captured by this thesis. Informal observations across various hospital wards have revealed 

that nurses tend to engage in a prescribed sequence of actions. For instance, every few hours (the 

exact interval depends on the clinical state of the patient and/or local hospital protocols), a ward 

nurse will typically measure a patient’s vital signs; document the corresponding values on the 

observation chart; calculate the early warning score (as per the chart design); review the recorded 

observations for abnormalities; and when necessary, escalate the clinical response (i.e., contact the 

treating doctor or make a Medical Emergency Team call). Our experiments, however, have only 
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captured two of these roles: that is, detecting abnormal vital sign observations (Chapter 2, 3 and 4) 

and determining early warning scores (Chapter 5).  

The limited scope of this thesis restricts our conclusions about the usability of the ADDS 

chart in-practice, especially the effect of design on clinical decision-making. The incorporation of 

escalation protocols (i.e., recommended response actions based on the degree of physiological 

deterioration) illustrates how one design feature can affect the ways in which a chart is actually 

used. In a focus group study with clinical ward staff, Elliot et al. (2015) found that escalation 

protocols empowered nurses with less clinical experience. This subset of nurses reported that the 

inclusion of such protocols ‘permitted’ them to call for assistance, mitigating the riskier wait-and-

see approach that can exist in hospitals. For these health professionals, decision-making was made 

more straightforward. However, more experienced nurses reported that the very same design feature 

compromised their professional autonomy. In clinical instances where professional judgment failed 

to align with protocol, nursing staff resented that they were not allowed to amend the calling criteria 

or escalate the response to a level they deemed more appropriate (e.g., to have a patient reviewed by 

a doctor instead of a senior nurse) (Elliott et al., 2015). This attitude can impact on clinical practice. 

Nurses admitted to falsifying abnormal vital signs (when they judged that a given observation was 

acceptable for the patient, despite falling out of the reference range) rather than accurately recording 

the observation, precluding the need to follow the appropriate recommendations or justify their 

omission (Elliott et al., 2015). 

This thesis also fails to capture many doctor roles. Doctors typically refer to a patient’s 

observation chart to answer clinical questions, monitor physiological trends, and guide treatment 

decisions (Elliott et al., 2015). For example, if a patient was admitted to the Emergency Department 

with right-sided abdominal pain and vomiting, the treating doctor may inspect the documented 

temperature observations to assess for fever (clinical features suggestive of appendicitis). The 

presence or absence of febrile observations would influence the doctor’s differential diagnoses and 

subsequent management plan (e.g., calling for an urgent surgical consultation vs. ordering an 

abdominal CT scan). Similarly, if a cardiac patient was being treated with anti-hypertensive 

medications, the doctor may refer to the chart to assess the patient’s blood pressure observations 

over a number of days. The physiological trend in the data would then help the doctor decide 

whether the dose should be adjusted. These aspects of chart-use and clinical decision-making are 

critical to examine given the potential influence of design. For example, despite our experimental 

evidence in support of drawn-dot observations (vs. written-number), Elliot et al.’s (2015) focus 

groups reported that the use of vital sign ranges, rather than exact numbers, hindered inter-

professional communication. In clinical reviews, for instance, doctors reportedly insisted that nurses 

provide them with exact values. Consequently, nurses had to re-measure patient vital signs, creating 
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redundancies in workload. Once again, nurses admitted to violating proper chart protocols. Some 

staff reported purposely documenting observations in written-number format, despite being aware 

that observations should be recorded as drawn-dots.  

Chapter 4 also flagged the possibility that particular design features may affect real-world 

compliance with a chart. We speculated that including, rather than excluding, individual vital sign 

scoring-rows might encourage health professionals to document observations more accurately and 

comprehensively. We consider a scenario where a nurse has failed to record a particular vital sign 

observation. Respiratory rate observations, for example, are often neglected (in one reported case, 

75% of the time) because they are one of the few vital signs that are measured without a manual 

instrument or electronic machine (Chatterjee et al., 2005; Leuvan & Mitchell, 2008). When users 

sum individual vital sign scores to calculate an overall score, they may be less likely to purposely 

exclude the score of a missing vital sign if scoring-rows are included, because a blank row would 

provide clear evidence of the user’s omission (e.g., to other staff members). On charts without rows, 

however, neglecting a particular vital sign might be less noticeable. If the missing vital sign 

observation goes unnoticed by other staff, there are no other cueing features. The presence of a 

blank row might also help users to notice their accidental omissions in measuring and/or recording 

vital sign observations. It is critical to assess the social and organisational variables that might 

influence chart-use (Proctor & Van Zandt, 2008) as research has demonstrated that some nurses are 

more diligent in their recording of vital signs than others (Endacott et al., 2007). However, we do 

acknowledge that some compliance issues may be beyond the scope of design and may require 

other strategies such as education. For instance, when respiratory rate is documented, it is 

frequently recorded as 20 breaths per minute, a number that might suggest overgenerous rounding 

or even data fabrication (Chatterjee et al., 2005). 

 

Future research 

To address the above limitations, future research could evaluate the effect of chart design in 

real clinical environments with a random cross-section of genuine chart-users. For example, clinical 

trials could compare the effect of varying chart designs on health professionals’ abilities (e.g., to 

detect deterioration or calculate overall warning scores) across multiple hospital sites. To date, 

clinical evaluations of (modified) ADDS charts have only evaluated the effect of newly 

implemented early-warning scoring systems in terms of cardiac arrest rates (Drower et al., 2013) 

and clinical user experiences (Elliott et al., 2014). However, future studies need to carefully 

consider the financial costs involved in clinical trials, as well as the potential ethical issues 

surrounding the comparison of chart designs using real patients’ clinical deterioration as the 

dependent variable (e.g., where the effects of an inferior design, allocated to one hospital ward, are 
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compared to that of a superior design, allocated to another hospital ward). Future studies, laboratory 

or hospital-based, could also explore the effect of chart design on those aspects of chart-use that are 

yet to be examined. This could include the above-mentioned tasks, either in isolation or 

combination for a more complete picture. Additional studies could also go on to explore some of 

the real-world performance factors that may be affected by chart design (e.g., the actual incidence 

of nurses falsifying patient observations to avoid escalating a response when subjectively deemed 

unnecessary).  

Chart audits could also be valuable. Retrospective chart audits are a common way for 

hospitals to identify user errors and adverse events (Fitzpatrick & Kazer, 2011). However, audits 

can also evaluate improvements. For example, a recent retrospective audit of the Q-ADDS chart in 

an Intensive Care Unit revealed a reduction in patients’ illness severity at admission and their length 

of stay (Joshi et al., 2014). Future chart audits could also inform the results of this thesis. For 

example, a post-implementation audit of the chart designs in Chapter 5 (i.e., grouped vs. separate 

vs. no scoring-rows) could be used to examine the effect of scoring-rows on health professionals’ 

compliance with vital sign measurements 

 

Representativeness of participants 

 

Another generalisability issue relates to the representativeness of the participants. In Chapters 

2 and 3, we recruited purposive samples of doctors and nurses who volunteered in response to flyers 

advertising a study that aimed to improve the identification of patient deterioration. Although the 

samples were drawn from the population of interest (Salvendy, 1997), this recruitment method ran 

the risk of only including health professionals who were particularly interested in improving patient 

safety. In light of the abovementioned differences in nurses’ levels of diligence (Endacott et al., 

2007), it is possible that our samples of health professionals would perform better than a random 

sample of doctors and nurses. In human factors research, it is necessary to evaluate a ‘generalised’ 

user’s interaction with a system, rather than just one particular type of user. In this way, designers 

can be more confident that the design will be appropriate for a broad class of system users (Wickens 

& Hollands, 2000). In Chapters 4 and 5, we only employed convenience samples of novices. By 

relying on undergraduate psychology students as the novice chart-user group, we need to be 

cautious when generalising the results of these two chapters to health professionals (especially those 

who are not novices). Although it was important to assess novices, user testing with real clinical 

staff is still fundamental in human factors design because it provides direct information about how 

these end-users interact with the interface (Nielsen, 1993). However, as detailed in the preceding 

chapters, we argue that the overall pattern of results are still very likely to apply to health 
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professionals (see Chapters 4 and 5 for details), given, for example, the strong similarities between 

the performance outcomes of health professionals and psychology students found in previous 

experiments. 

 

Sample size 

 

It is also important to consider the recruitment of doctors and nurses in Chapters 2 and 3. In 

both experiments, there are marked differences between the numbers of novice chart-users vs. 

health professionals. In Chapter 2, the difference between the chart experience groups is especially 

pronounced. This is largely attributable to the types of hospitals from which participants were 

recruited. Health professionals experienced with the multiple parameter track-and-trigger chart (n = 

64) were recruited from a large major metropolitan hospital, while those experienced with a no 

track-and-trigger graphical chart (n = 37) were sourced from significantly smaller, more regional 

hospitals with less staff members. Similarly, in Chapter 3, there is a substantial difference between 

the number of Seagull Sign trained nurses (n = 41) and novices (n = 65). This reflects the relative 

difficulty of recruiting health professionals compared to first-year undergraduate students. Because 

we employed mixed-design ANOVAs in both chapters, where chart experience group (between-

groups) and chart type (within-groups) comprise the independent and repeated factors respectively, 

the differences in sample sizes between the independent groups do not compromise the overall 

results. However, it is important to consider the statistical power of the individual groups. For each 

chapter, a power analysis was performed using G*Power 3.1.9.2 (Faul, Erdfelder, Lang, & Buchner, 

2007) to calculate the sample size necessary to detect a medium effect size (partial η2 = 0.06) for 

the least sensitive effect (Cohen, 1988), with alpha set at 0.05 and 80% power (see Table 5). We 

conservatively estimated a correlation among repeated measures of .85, based on the results of 

Preece et al. (2012b). 

 
Table 5. For each chapter, the minimum sample size according to the power analysis and the actual 
sample size included in the final statistical analysis 
 Minimum sample size 

according to power analysis 
Sample size included in final 
analysis 

Chapter 2 110 101 
Chapter 3 135 186 
Chapter 4 108 205 
Chapter 5 10 47 
 

Given the aforementioned difficulties in recruiting health professionals, the sample size 

included in the final analyses of Chapter 2 is just short of the minimum prescribed by the power 

analysis. We recruited and tested until we reached approximately 40 participants per group, as this 
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sample size yielded significant pairwise performance differences (deemed substantial enough to be 

of practice importance) between alternative chart designs in Preece et al. (2012b). Nonetheless, it 

should be noted that, in spite of this, we obtained statistically significant results, indicating that 

inadequate power was unlikely to be a problem in this study. 

 

Sensitivity and response bias 
 

In the preceding chapters, we did not address a critical element of chart-users’ responses. 

When participants gave an incorrect response, were they more likely to mistake a normal patient 

case for an abnormal case? Alternatively, were they more likely to mistake an abnormal case for a 

normal case? The latter possibility represents a failure to detect physiological deterioration that, as 

highlighted in Chapter 1, can result in delayed or missed intervention. It would be especially 

concerning if chart-users were more likely to miss abnormal observations when using particular 

chart designs. For example, although the ADDS chart designs yielded low overall error rates, it is 

possible that when chart-users do make errors using the novel designs, they are frequently missing 

deterioration (that is, more often than they are mistaking a normal case as abnormal).  

To evaluate this, we redefined the dependent variables in Chapter 2, 3 and 4 in Signal 

Detection Theory terms: a ‘hit’ occurred when a participant (correctly) detected an abnormal 

observation when one was present, and a ‘false alarm’ occurred when a participant (incorrectly) 

detected an abnormal observation when one was not present (i.e., when all observations were 

normal). For each participant and chart design, we calculated the hit rate (the number of hits divided 

by the number of abnormal trials) and false alarm rate (the number of false alarms divided by the 

number of normal trials). These rates were converted into measures of sensitivity (d’), where a high 

sensitivity index indicates a more accurate distinction between signal and noise. We also calculated 

response bias (β) to account for participants’ potential response strategies. That is, in cases of 

uncertainty, participants may be more likely to give a positive response (i.e., employing a liberal 

strategy, indicated by β indices less than 1) or negative response (i.e., using a more conservative 

strategy, denoted by β indices greater than 1) (Stanislaw & Todorov, 1999). 

To compare chart designs, repeated-measures analyses of variance were conducted on d’ and 

β using IBM SPSS 21.0 (IBM Corp., Armonk, NY: USA) with statistical significance set at α = 

0.05. The measure of effect size was calculated using η2 (Howell 1997). Figures 18, 19 and 20 

illustrate: (A) the mean sensitivity values for each chart design, where 0 indicates an inability to 

distinguish abnormal cases from normal cases (where the greater the value above 0, the better 

participants were at distinguishing abnormal from normal cases); and (B) the mean response bias 

values for each chart design, where a response bias of 1 indicates that participants favour neither the 
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‘abnormal’ nor ‘normal’ response, values less than 1 signify a bias towards responding ‘abnormal’, 

and values greater than 1 denote a bias towards the ‘normal’ response.  

 

Chapter 2 

 

Analysis of the sensitivity index revealed a significant main effect of chart design, F(4.33, 

359.05) = 38.66, p < 0.001, η2 = 0.94 (see Figure 18A for pairwise comparisons between chart 

designs). Participants were significantly more accurate at differentiating between normal and 

abnormal patient cases using the ADDS chart designs, compared to the four alternative charts. 

Response bias indices less than 1 (see Figure 18B) demonstrate that, across all charts, participants 

responded liberally (i.e., in cases of uncertainty, participants deemed a patient case abnormal rather 

than normal). Analysis of the response bias index also revealed a significant main effect of chart 

design, F(4.31, 358.01) = 13.49, p < 0.001, η2 = 0.56 (see Figure 18B). Participants favoured a 

liberal response significantly more when detecting deterioration on the ADDS chart designs (as well 

as the multiple parameter track-and-trigger system chart), compared to the single parameter track-

and-trigger system chart, no track-and-trigger graphical chart and no track-and-trigger numerical 

chart. This finding suggests that on these chart designs, participants who were uncertain were more 

likely to judge a case as abnormal, erring on the side of caution. 
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Figure 18. Measures of sensitivity (A) and response bias (B) for detecting abnormal observations 
on the six chart designs in Chapter 2. Error bars indicate 95% confidence intervals. Within each 
group, different letters indicate significant differences at the 5% level.   
 
Table 6. Mean (SD) hit and false alarm rates on the six chart designs in Chapter 2 
 Hit rate Miss rate False 

alarm rate 
Correct 
rejection 
rate 

ADDS chart with systolic blood pressure 
table 

0.97 (0.09) 0.03 (0.09) 0.09 (0.14) 0.91 (0.14) 

ADDS chart without systolic blood pressure 
table 

0.97 (0.11) 0.03 (0.11) 0.08 (0.16) 0.92 (0.16) 

Multiple parameter track-and-trigger system 0.89 (0.19) 0.11 (0.19) 0.14 (0.18) 0.86 (0.18) 
Single parameter track-and-trigger system 0.93 (0.15) 0.07 (0.15) 0.23 (0.19) 0.77 (0.19) 
No track-and-trigger graphical chart 0.86 (0.20) 0.14 (0.20) 0.30 (0.16) 0.70 (0.16) 
No track-and-trigger numerical chart 0.87 (0.21) 0.13 (0.21) 0.31 (0.15) 0.69 (0.15) 

 

Chapter 3 

 

Analysis of the sensitivity index revealed a significant main effect of chart design, F(2.67, 

408.64) = 23.94, p < 0.001, η2 = 0.87 (see Figure 19A for pairwise comparisons). Participants were 

significantly more accurate at differentiating between normal and abnormal patient cases using the 

ADDS chart style design (i.e., separate blood pressure and heart rate graphs with a track-and-trigger 

system), compared to the three alternative chart extracts. Once again, response bias indices less than 

1 (see Figure 19B) demonstrate that across all designs, participants responded liberally (i.e., when 

uncertain, participants were more likely to judge a case as abnormal over normal). Analysis of the 

response bias index also revealed a significant main effect of chart design, F(2.64, 403.24) = 2.96, p 

< 0.05, η2 = 0.44 (see Figure 19B). Compared to the extract with overlapping graphs and no track-
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and-trigger system, participants favoured the ‘abnormal’ response significantly less when detecting 

deterioration on the ADDS chart style design. (There was no significant difference between the 

ADDS chart style design and the other two extracts.) The comparatively high miss rates for the 

extract with overlapping graphs and no track-and-trigger system (see Table 7) suggests that 

participants may have found it difficult to differentiate between abnormal heart rate and blood 

pressure observations using this design.  

 

 
 
Figure 19. Measures of sensitivity (A) and response bias (B) for detecting abnormal observations 
on the four chart extracts. Error bars indicate 95% confidence intervals. Within each group, 
different letters indicate significant differences at the 5% level. 
 
 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

Separate graphs with a 
track-and-trigger 

system 

Separate graphs with no 
track-and-trigger 

system 

Overlapping graphs 
with a track-and-trigger 

system 

Overlapping graphs 
with no track-and-

trigger system 

Se
ns

iti
vi

ty
 (d

') 

     a 

b 

c   c  

A

-0.6 

-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

Separate graphs with a 
track-and-trigger 

system 

Separate graphs with 
no track-and-trigger 

system 

Overlapping graphs 
with a track-and-trigger 

system 

Overlapping graphs 
with no track-and-

trigger system 

R
es

po
ns

e 
bi

as
 (β

 ) 

a 

    abc 

    ac 

   b 

B



	
   160	
  

Table 7. Mean (SD) hit and false alarm rates on the four chart extracts in Chapter 3 
 Hit rate Miss rate False 

alarm rate 
Correct 
rejection 
rate 

Separate graphs with a track-and-trigger 
system 

0.85 (0.20) 0.15 (0.20) 0.04 (0.09) 0.96 (0.09) 

Separate graphs with no track-and-trigger 
system 

0.78 (0.23) 0.22 (0.23) 0.06 (0.14) 0.94 (0.14) 

Overlapping graphs with a track-and-trigger 
system 

0.78 (0.22) 0.22 (0.22) 0.12 (0.23) 0.88 (0.23) 

Overlapping graphs with no track-and-
trigger system 

0.74 (0.23) 0.26 (0.23) 0.08 (0.15) 0.92 (0.15) 

 

Chapter 4 

 

Analysis of the sensitivity index revealed a significant main effect of chart design, F(6.55, 

1225.07) = 3.529, p < 0.05, η2 = 0.96 (see Figure 20A for pairwise comparisons). Once again, 

participants were significantly more accurate at differentiating between normal and abnormal 

patient cases using the ADDS chart style design (i.e., an integrated colour track-and-trigger system 

with grouped scoring-rows and drawn-dot observations) compared to the alternative chart designs. 

However, analysis of the response bias index revealed no significant main effect of chart design, 

F(6.56, 1227.09) = 1.55, p = 0.152, η2 = 0.47. 
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Figure 20. Measures of sensitivity for detecting abnormal observations on the eight chart designs. 
Error bars indicate 95% confidence intervals. Within each group, different letters indicate 
significant differences at the 5% level. 
 
Table 8. Mean (SD) hit and false alarm rates on the eight chart designs in Chapter 4 
 Hit rate Miss rate False alarm 

rate 
Correct 
rejection 
rate 

Integrated colour-based scoring-system, 
grouped scoring-rows, drawn-dot 
observations 

0.92 (0.15) 0.08 (0.15) 0.01 (0.05) 0.99 (0.05) 

Integrated colour-based scoring-system, 
separate scoring-rows, drawn-dot 
observations 

0.90 (0.17) 0.10 (0.17) 0.02 (0.07) 0.98 (0.07) 

Integrated colour-based scoring-system, 
grouped scoring-rows, written-number 
observations 

0.89 (0.20) 0.11 (0.20) 0.02 (0.07) 0.98 (0.07) 

Integrated colour-based scoring-system, 
separate scoring-rows, written-number 
observations 

0.87 (0.18) 0.13 (0.18) 0.02 (0.10) 0.98 (0.10) 

Non-integrated tabular scoring-system, 
grouped scoring-rows, drawn-dot 
observations 

0.89 (0.19) 0.11 (0.19) 0.03 (0.09) 0.97 (0.09) 

Non-integrated tabular scoring-system, 
separate scoring-rows, drawn-dot 
observations 

0.88 (0.18) 0.12 (0.18) 0.02 (0.07) 0.98 (0.07) 

Non-integrated tabular scoring-system, 0.88 (0.20) 0.12 (0.20) 0.04 (0.10) 0.96 (0.10) 
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grouped scoring-rows, written-number 
observations 
Non-integrated tabular scoring-system, 
separate scoring-rows, written-number 
observations 

0.88 (0.20) 0.12 (0.20) 0.03 (0.10) 0.97 (0.10) 

 

These findings suggest that the superior performance of the ADDS chart designs were not 

compromised by high rates of missed deterioration. Across Chapter 2, 3 and 4, we found that 

participants were more accurate at differentiating between normal and abnormal patient cases using 

the ADDS chart style designs and were likely to favour a conservative, safer response. This 

provides further evidence that the ADDS chart designs support chart-users’ detection of 

deterioration. 

 

Application of the results 
 

This thesis is also limited in that the results may only apply to paper-based domains. In a field 

where the use of information and computer technologies is continually expanding and updating 

(Dekker, 2011), paper-based systems are becoming increasingly obsolete (Proctor & Van Zandt, 

2008). Hospital observation charts are no exception: it is inevitable that computerised forms will 

eventually replace paper charts. Already, a number of electronic systems have been developed in 

Australia and overseas to assist health professionals to collect vital sign observations, detect 

deterioration and escalate levels of care. Empirical evidence has supported the transition to 

computerised vital sign monitoring systems. Positive clinical outcomes have been reported in the 

literature, including improvements in clinical attendance to deteriorating patients, patient mortality 

and length of stay in hospital, as well as the time staff spend recording vital signs (Bellomo et al., 

2012; Jones et al., 2011). Computerised systems have also been shown to be very well accepted by 

clinical staff (Wood & Finkelstein, 2013). In one study, nurses perceived the computer-based 

system as more accurate, fast, simple and convenient than pen-and-paper methods (Prytherch et al., 

2006). Although these findings are promising, the human-system interaction is almost always 

complex regardless of the medium (Prytherch et al., 2006). Consequently, computerised systems 

also require careful consideration from a human factors perspective. For example, it is currently 

unknown which empirically-supported features of the ADDS chart could be used successfully in an 

equivalent computerised system. One electronic automated advisory vital signs monitoring system, 

which has been clinically evaluated in recent years (Bellomo et al., 2012), displays observations 

(for a given time-point) on-screen as a set of numerical values. Although our findings support the 

use of drawn-dot observations, an important empirical question is whether, in the context of an 

electronic system, there are clinical and human factors advantages to presenting observations in 
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numerical form. At present, it is also unclear which of the elements that are necessary on paper 

should be retained by computerised systems. For example, the above-mentioned vital signs monitor 

presents early-warning scores in small text adjacent to each corresponding vital sign observation. 

However, the system also provides staff with automated messages to signal what action to take 

when scores reach a particular threshold (Bellomo et al., 2012). Arguably, the score becomes 

unnecessary in this case and may actually increase the visual clutter on the monitor. Future 

investigations are necessary to assess which paper-based chart design features do and do not 

successfully translate to computerised systems. 

Also pertinent to this question is the role and effectiveness of automation; that is, when 

mechanical or computer components assume the tasks that were otherwise performed by a user 

(Dekker, 2011; Wickens & Hollands, 2000; Wickens et al., 2004). For example, the previously 

mentioned electronic vital signs monitoring system: (a) transfers and displays patient vital sign data 

electronically via a direct physical link with monitoring devices; (b) uses this data to calculate 

early-warning scores (displayed using colour densities that aim to correlate with the level of 

severity); and (c) alerts users to necessary actions based on the early-warning score (e.g., to increase 

the frequency of observations). The system also reminds users of when to measure vital signs, 

stores data for review, and displays vital sign trends on request (Bellomo et al., 2012). Although 

automated systems have improved the accuracy and efficiency of tasks across various industries, 

many unanticipated issues have arisen (Salvendy, 1997). Because these systems still involve human 

users, many of their shortcomings are grounded in the limitations of attention, perception and 

cognition (Wickens et al., 2004). 

First, automated systems can be more complicated than their manual counterparts. Because of 

their complex algorithms, automated systems may complete tasks in very different ways to human 

users. If a system’s logic is poorly understood, users can sometimes perceive the system to be 

acting incorrectly (Salvendy, 1997; Wickens & Hollands, 2000; Wickens et al., 2004), especially if 

they are busy and distracted with other tasks (Dekker, 2011). These ‘automation induced surprises’ 

can become problematic if the user assumes that the system has failed and inappropriately 

intervenes (Wickens & Hollands, 2000). For example, health professionals (particularly those 

without exposure to paper-based early-warning systems) may not fully understand the way in which 

an automated vital sign monitor translates a patient’s physiological data into an early-warning 

score. If users then fail to attend to the patient appropriately (e.g., by deciding not to phone the on-

call clinician) because they perceive the automated message as incorrect based on the monitor’s 

early-warning score, then the patient is may deteriorate further.  

Conversely, automated systems can also be overly trusted. If users perceive a system as being 

highly reliable, they can become complacent and neglect to monitor its operation (Wickens & 
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Hollands, 2000). If the automated system then fails, complacent users will be slower to detect the 

failure and subsequently less likely to respond appropriately (Wickens & Hollands, 2000; Wickens 

et al., 2004). This is a critical possibility for automated vital sign monitors. Unlike paper charts, 

hardware can break, software can crash, and electricity can disconnect. If health professionals 

become too complacent with the automated system, they may fail to notice that their patients have 

been unmonitored for hours. If information communication technology fails in hospitals, then staff 

may have to return to using paper-based charts without notice. This is not a hypothetical possibility. 

In 2002, the network at Boston’s Beth Israel Deaconess Medical Centre repeatedly crashed. Over a 

four-day period, hospital staff had to revert to paper-based systems (e.g., medical records, 

prescription forms, lab request forms) that had not been used for years. Critically, many newer 

members of staff (e.g., interns) had no prior experience with the paper forms (Berinato, 2003). 

Similarly, in 2015, staff at London’s Hillingdon and Mount Vernon hospitals had to transfer to 

paper-based manual processes for several days following a problem with the network infrastructure 

(Flinders, 2015).  

Automated systems may also lead to the de-skilling of staff. When an automated system 

assumes responsibility for a task, users’ skills can gradually degrade if those skills are not used. 

Over time, de-skilling can increase users’ reliance on the automation as well as the likelihood that 

users will inappropriately respond to a failing system (Wickens & Hollands, 2000; Wickens et al., 

2004). De-skilling as a result of the introduction of automated vital sign monitoring is a real 

possibility. In the above scenarios, where vital sign monitors fail, health professionals may be ill 

equipped to monitor patients using traditional manual techniques. For example, manual blood 

pressure measurements are highly dependent on correct user handling (Tholl, Forstner, & Anlauf, 

2004). Staff may also end up lacking practice at documenting vital sign observations by hand and 

calculating early-warning scores. There are reports that nurses have already expressed fears about 

de-skilling after the introduction of paper-based early-warning systems (Elliott et al., 2014). 

Following the implementation of a suite of track-and-trigger charts (modified versions of the ADDS 

chart), experienced nursing staff were reportedly concerned that the new systems would de-skill 

staff and replace clinical judgment (Elliott et al., 2014). While this does not necessarily mean that 

these fears are justified in this context, it does suggest that the possibility needs to be considered. 

Future research could explore ways to address these potential issues. Subsequent studies examining 

computerised vital sign monitoring systems could assess which functions would be better allocated 

to the user and which functions would be better allocated to the automation, based on the relative 

capabilities of each (Wickens et al., 2004). 

The transition to computer-based vital sign monitoring marks a significant juncture in the 

effort to improve the detection of deteriorating hospitalised patients. Instead of design being guided 
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by clinicians’ opinions (as paper-based chart design has been for decades), computerised systems 

could be developed using a structured human factors approach from the very beginning of the 

design process. As discussed earlier, the design of the ADDS chart is already associated with an 

11% reduction in mortality amongst intensive care unit admissions (Joshi et al., 2014) as well as a 

45% reduction in the incidence of cardiac arrests (Drower et al., 2013). These findings suggest that 

a human factors approach to design and iterative empirical evaluations can significantly improve 

health professionals’ clinical monitoring of hospitalised patients and their recognition of 

physiological deterioration. Despite these promising possibilities, we need to acknowledge that 

chart design, whether paper or electronic, only represents one piece of the puzzle, because a 

comprehensive human factors approach encompasses a user’s interaction with all components of a 

system (Salvendy, 1997). This suggests that future research should also consider the design of the 

physical equipment with which health professionals work, the nature of each task that they do, the 

environment that surrounds them, and the training that they receive (Wickens et al., 2004). 

Interactions between these components are likely and need to be understood.  

 

Investigated human factors principles 
 

Although this thesis represents the first systematic examination of observation chart design 

features, our experiments are primarily centered on a single design, which again limits the 

generalisability of our findings. Although a number of different approaches could have been used to 

resolve contentious hospital observation chart design decisions, we chose to center our 

investigations on the tool that represented best practice. At the inception of this project, the ADDS 

chart was the most empirically supported chart design reported in the literature (Preece et al., 

2012b). In addition, the general observation chart only represents one type of medical chart. 

Attention also needs to be paid to mission-critical charts that have been identified as contributing to 

adverse events. For instance, in 2011, we sought to improve the design of hospital insulin charts 

given the potential for patient harm (Christofidis et al., 2012): in a country where the prevalence of 

diabetes among hospitalised patients is estimated at 24.7% (Bach et al., 2014), and poor glycemic 

control has been associated with acute cardiovascular events, disability and death (Montori, 

Bistrian, & McMahon, 2002). Future research is needed to identify which critical medical charts 

need immediate review using human factors principles and empirical assessment with behavioural 

and clinical studies. 

We also acknowledge that several design principles used in the development of the ADDS 

chart were not investigated. The previously discussed principles of limiting data-driven tasks, 

minimising users’ cognitive load, and displaying information that will be used together close 
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together (Gerhardt-Powals, 1996; Nielsen, 1993) only represent a sub-set of those outlined in 

Chapter 1. Still unknown are the specific effects of: (a) displaying relationships between interface 

elements (e.g., thicker horizontal lines between adjoining vital signs, ruled off-date rows, thicker 

vertical lines after every three time columns); (b) constraining the use of colour (to minimise visual 

clutter); (c) maintaining consistency (e.g., using the same formatting for related labels); (d) 

speaking users’ language (e.g., using common abbreviations and terminology); and (e) displaying 

information to match users’ tasks (Nielsen, 1993). For example, Preece and colleagues applied the 

principle of displaying information to match users’ tasks by positioning the ADDS chart 

instructions towards the top of the outside front page so that they are immediately available when a 

user first looks at the chart. However, in our experiments, participants watched a training video that 

explained how to use the chart, precluding the need to read the instructions. Further, although this 

principle led the ADDS chart designers to order the vital signs according to their importance, the 

potential effects of this ordering by priority were not captured by the experimental task. 

It is also important to consider that, in terms of human factors design principles, the design of 

the ADDS chart is influenced largely by the work of Gerhardt-Powals (1996), Nielsen (1993) and 

Zhu et al. (2005). Although the design principles expounded by these authors are well established in 

the wider literature, it is possible that alternative principles could be better applied to the ADDS 

chart design. Indeed, in Chapter 5, we employed a principle that had not been considered in the 

design of the ADDS chart (i.e., to minimise information access cost) to rationalise the performance 

benefits associated with excluding scoring-rows (Wickens et al., 2004). Given that the application 

of the above human factors design principles may not be optimising the ADDS chart’s usability, it 

is critical that future studies explore their effect. We also recommend that future researchers apply 

and test validated design principles from other domains (e.g., aviation, military and other areas of 

health care) to develop a stronger evidence-base for the recent human factors approach to chart 

design, especially those design principles that can be implemented in multiple ways or those that 

conflict with other principles.  

 

Conclusion 
 

The novel ADDS chart, designed using human factors design principles, supports chart-users’ 

detection of patient deterioration. Despite clinicians’ arguments that specific aspects of the design 

cannot be regarded as best practice, we found that: (1) even health professionals experienced with 

alternative chart designs can perform better with the ADDS chart; (2) blood pressure and heart rate 

are better presented as plots that are separated (even for health professionals who prefer overlapping 

graphs); and (3) chart-users’ performance with drawn-dot observations, an integrated colour-based 
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scoring-system, and grouped scoring-rows corresponds to apriori predictions based on human 

factors design principles. Although the ADDS chart’s use of individual vital sign scoring-rows was 

not supported, this finding does demonstrate that behavioural experiments should inform best 

design practice, rather expert opinion. Despite continuous innovations in the health care industry, 

too often there is a gap between evidence and practice (Grol & Grimshaw, 2003). Therefore, we 

would argue that it is critical to patient safety that individual hospitals and health services only 

implement observation chart designs that are supported by empirical evidence.   
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