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Abstract 

 

Efforts to understand the genetic aetiology of complex traits have gained a lot of 

momentum in the last decade. Advancement of next generation sequencing and the 

ever-decreasing price of genotyping platforms have allowed us to carry out a vast 

number of genome wide association studies (GWAS). Until relatively recently, 

GWAS was guided by the common disease – common genetic variation paradigm. 

However, recent findings and developments have made us look at the bigger picture, 

including rare genetic variation. In addition, methodological developments are 

guiding the translation of GWAS findings. For instance, diverse statistical methods 

can be applied on genetically informative data to estimate the genetic correlation 

between complex diseases. The latter can have important medical implications, as 

genetically correlated diseases might be responsive to the same treatments. Also, 

approaches such as Mendelian randomization (MR) can help investigations of causal 

factors in disease when is unfeasible to carry out randomized control trials.  

 

My focus is on the application of statistical methods in complex trait genetics – I 

cover a range of phenotypes, ranging from eye disease to cancer. I begin with a 

general introduction describing the methods used along this thesis as well as the 

important concepts. I make particular emphasis of methodological approaches and 

challenges during association studies of rare variants, as well as approaches used 

for the estimation of genetic correlation and for MR. In the latter part of the 

introduction, I present an overview of the traits examined and the gaps this thesis 

covers. 

  

The second chapter displays a mapping study of exonic variants with central corneal 

thickness (CCT), an endophenotype of keratoconus. This work led to the 

identification of a missense mutation in WNT10A, associated to a 2-fold increase in 

risk of keratoconus.  

  

The following three chapters interrogate epidemiological aspects of refractive error 

(RE) and myopia through genetic approaches. Many studies have observed a strong 
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correlation between myopia, time outdoors, and education level. One hypothesis to 

explain these associations is that less time outdoors and more education translates 

into more time performing near-work activities, which may promote eye elongation 

and the development of myopia. Another hypothesis is that light induces dopamine 

release, suppressing the eye elongation. Further, some studies suggested that 

vitamin D might play a role in the development of the condition. To investigate some 

of these hypotheses I carried out gene mapping and MR approaches. Chapter 3 

introduces a GWAS study of conjunctival ultraviolet autofluorescence (CUVAF). 

CUVAF has excellent potential as a biomarker of sun exposure compared to survey 

data. Understanding the aetiology behind this biomarker is potentially helpful when 

assessing the hypotheses of sun exposure and myopia. In chapters 4 and 5, I 

present two MR studies assessing the causal relationship between RE (level of 

myopia), vitamin D and education levels. Using a sample of 37,382 individuals of 

European ancestry and 8,376 from Asian ancestry and SNPs in the DHCR7 and 

CYP2R1 genes as instrumental variables (IVs), we ruled out a causal association of 

vitamin D on RE. Chapter 5 describes the MR study of education and myopic RE. In 

this, using data from three different cohorts and an education level polygenic risk 

score derived from alleles effects from GWAS summary data, we estimated that 

approximately every 2 years of additional education result in an increase of myopia.  

 

Following to chapter 6, I performed polygenic assessments of age-related macular 

degeneration (AMD) and primary open angle glaucoma (POAG). . Using genome-

wide array data on Australian cases and controls, we estimated the array heritability 

of both diseases, and the variance explained by the genome-wide associated loci. 

Further, we assess whether there is some genetic overlap between AMD and POAG, 

beyond the signal seen at ABCA1, which at genome-wide significance level is 

associated to both. In addition, we investigated whether the difference in prevalence 

of POAG in males and females, can be due (at least in part) to genetics. Our 

analyses suggest that risk to POAG is conferred by many genetic variants of small 

effects and that the genetic overlap between POAG and AMD is not restricted to 

ABCA1. Moreover, we found evidence of genetic differences between genders in 

POAG.  
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In the last results’ chapter I show the work investigating the genetic architecture of 

epithelial ovarian carcinomas (EOC) and its subtypes. I look into the array heritability 

of each subtype and their pairwise genetic correlations. Moreover, I examine their 

genetic overlap with risk factors including obesity, smoking behaviour, diabetes, age 

at menarche and height. Overall, this work shows that EOC and its subtypes do not 

have a large array heritability and that the genetic architecture of the subtypes is 

homogenous. Finally, I show evidence of a genetic overlap of EOC with obesity and 

diabetes. 

 

In the last chapter, I discuss and propose future directions for the field of statistical 

genetics, particularly in the areas of mapping, correlation and causation. 
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Introduction 

 

1.1 Complex traits and heritability 

Complex traits and complex diseases are those that are influenced by the genetic 

makeup and the environmental exposures an individual is subjected to. In contrast to 

Mendelian traits that arise as result of specific changes in a particular position in the 

genome (hereafter referred as locus); complex traits are influenced by variations in 

several loci. These variations include single nucleotide polymorphisms (SNP), 

insertions and deletions (indel), copy number variation (CNV) and rearrangements 

[1-3]. The extent that these variations influence a complex trait is termed heritability 

(H2), and it is defined as how much variation in a population’s phenotype is due to 

the genetic variation among the members in that population[4, 5]: 

𝐻2 =  
𝑉𝐺

𝑉𝑃
 

Where 𝑉𝑃(phenotypic variance) = 𝑉𝐺(genetic variance) + 𝑉𝐸(environmental variance). 

As it can be observed in the formula, the heritability of a trait is relative and it varies 

between populations. For example, if we were estimating H2 of the tail length in a 

population of mice in a laboratory setting, where we are able to minimize 

environmental differences, then, VE would be closer to 0, and the resultant H2 would 

be closer to 1. In contrast, a scenario where we were estimating H2 of a disease in a 

human population with vast amount of variability in the environment, and low genetic 

variety between the disease status groups, H2 would tend to 0.  

Mechanisms on how the genetic component can influence a phenotype include 

additive genetic effects, dominance effects and gene-gene interactions (i.e. 

epistasis) [4]. Additive genetic effects (A), describe a fixed value contribution to a 
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quantitative trait measure per each effect allele. For example, if each allele “A” in a 

specific locus contributes 1cm to height, then, a homozygote “AA” would translate to 

a gain of 2cm in height.  Dominance effects (D) are the effects of those alleles “A” 

capable of masking the contribution of the recessive alleles “a” (i.e. the heterozygote 

“Aa” and the homozygote “AA” would exhibit the same phenotype). The gene-gene 

interactions also called epistasis (I) is where the effect of a gene depends on the 

presence of another gene. Altogether, these effects contribute to the total genetic 

variance, which we can expand as follow: 

𝑉𝐺 = 𝑉𝐴(𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) + 𝑉𝐷(𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒)

+ 𝑉𝐼(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) 

In order to estimate heritability in a population, variation of a trait must be partitioned 

into components that most of the times represent unmeasured genetic and 

environmental factors. One simple way to estimate the heritability would be to simply 

regress the children’s trait versus the mean of their parents, with whom they share 

half of their genome[6]. In an unrealistic scenario, where environmental factors are 

completely different between parents and children, the heritability would be the slope 

of this regression. However, this is not the case, and parents and offspring share a 

lot more beside half of their genome; they share a common environment (C) which 

confounds the estimate. In order to circumvent this, heritability is often estimated 

comparing the phenotypic concordance of monozygotic (MZ) twins versus dizygotic 

(DZ) twins [4, 6]. The advantage of this approach is that each of these pairs are 

expected to share all environmental factors, including those while in the womb, 

allowing to isolate the contribution of the shared genome to phenotypic 

concordance[4].  

A caveat of this approach is that although DZ twins share on average 50% of their 

genome which translates into 50% sharing of additive effects, only around 25% of 

dominance effects and possible gene-gene interactions are shared between pairs. In 

order to accurately estimate H2, we should be able to estimate the VA, VD and VI 

from the predicted covariances among twins: 
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𝐶𝑜𝑣𝑀𝑍 = (
𝐴 + 𝐷 + 𝐼 + 𝐶 + 𝐸 𝐴 + 𝐷 + 𝐼 + 𝐶

𝐴 + 𝐷 + 𝐼 + 𝐶 𝐴 + 𝐷 + 𝐼 + 𝐶 + 𝐸
) 

 

𝐶𝑜𝑣𝐷𝑍 = (
𝐴 + 𝐷 + 𝐼 + 𝐶 + 𝐸 0.5𝐴 + 0.25𝐷 + 0.25𝐼 + 𝐶

0.5𝐴 + 0.25𝐷 + 0.25𝐼 + 𝐶 𝐴 + 𝐷 + 𝐼 + 𝐶 + 𝐸
) 

 

Nonetheless, is trivial to see that given five parameters and just three different 

equations, it is not possible to estimate all the parameters. As a result of this, and 

given that dominant effects cannot be passed on through generations (i.e. requires 

sharing both chromosomes)[6],  heritability estimates are often calculated based 

solely in the additive genetic component ℎ2 =
𝑉𝐴

𝑉𝑃
. The ℎ2 estimate is termed the 

narrow-sense heritability, while 𝐻2is called the broad-sense heritability[4].  

During the last decade, where new technologies and massive reductions in costs 

have allowed us to type the genetic variation in big population samples, approaches 

that use this kind of data to estimate ℎ2have surged. These approaches are mainly 

based on the estimation of the proportion of identical-by-state (IBS) allele sharing 

between individuals using information of directly genotyped markers to compute a 

genetic relationship matrix (GRM). This GRM is then related to the phenotypic values 

by fitting the GRM as random effect in a linear-mixed model (LMM) using restricted 

maximum likelihood (REML) approach [7-9]. In order to get rid of potential 

confounding due to possible shared environment between individuals; this model 

should be fitted using unrelated individuals[8].  A caveat of this kind of approaches is 

that the GRM is not computed based on the whole genome but just typed variants, 

so the model is just able to estimate a proportion of ℎ2 which is usually called ℎ𝑔
2 (i.e. 

the phenotypic variance explained by additive effects of genotyped markers). When 

estimating ℎ𝑔
2in dichotomous traits (disease status) the estimated variance explained 

has to be transformed from the observed scale (0-1) to an unobserved continuous 

scale (liability) using a probit transformation. This is carried out so that  ℎ𝑔
2 is 

independent of the disease prevalence [7]. Moreover, as number of cases in case-

control studies is usually higher than prevalence in the population, the estimates 

must be ascertainment-corrected through a further transformation.  
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I have very briefly shown the traditional approaches to estimate the proportion of 

phenotypic variance that is due to genetics, particularly additive genetic effects. The 

following question that arises is what do we do next? How does this estimate of 

heritability can help us understand complex traits and diseases?  

This thesis focuses on answering these questions for a small number of traits. Here I 

apply a wide range of analytical approaches to interrogate parts of the genetic 

component of these traits. I take the space of this introduction to briefly describe the 

state of the approaches for this task. Further into the introduction, I describe the 

traits in question and the gaps of what is known about their genetic component and 

aetiology. 

1.2 Genetic epidemiology and statistical genetics 

Since centuries before Christ, where Hippocrates examined for the first time the 

relationship between the occurrence of disease and environmental factors[10], we 

have striven looking for patterns resulting on disease conditions. Modern 

epidemiologists collect data and design experiments in large populations in order to 

find correlations between exposures and disease, using different statistical 

approaches. In the best scenario, where the design of the experiment allows it (e.g. 

a randomized control trial (RCT)), it is possible to confirm or rule out a causal 

association between the exposure and the phenotype[11]. However, this, more than 

often, is not the case, and we can just observe the presence of a correlation, which 

at least helps us to narrow down the possible causes that trigger disease.  

As described in the previous section, the genetic makeup of an individual is just 

another part in the big complex trait / disease puzzle. Genetic epidemiology utilizes 

epidemiologic methods to address the role of genetic markers in disease aetiology 

[5]. Once that it is known the extent of the genetic component in the trait of interest, 

statistical analyses are applied to diverse types of genetic data, such as genotype 

array data or next generation sequence in the quest to find the genetic variants 

underlying ℎ2.  

The latest years have seen a fast paced development of technology, exponential 

growth of genetic data, and an ever growing knowledgebase about gene function. 

The statistical genetics field has arisen to cope with this, by focusing on the 
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development and application of statistical methods on genetics. In comparison with 

genetic epidemiology, it is a heavily data-oriented discipline which relies on the 

exploration of big data sets to explore and answer question such as what are the 

genetic markers leading to disease[12]. 

1.3 Genome wide association studies 

Genetic linkage is the propensity of alleles located physically close to each other to 

be inherited together [5, 13, 14]. This results from the fact that although 

recombination events are facilitated by chromosomal crossover during the meiosis, 

these events occur with small probability at any location along chromosome[14]. 

Moreover, the probability of recombination between two locations highly depends on 

the distance between them, and in humans is estimated to happen in about each 

100 million base pairs[3, 14]. A linkage map is a genetic map that takes advantage of 

this phenomenon in order to co-localize genetic markers; for example, a greater 

frequency of recombination between two loci means that they are further apart, and 

vice versa.  

Traditionally, this genetic map was necessary for identifying the location of genes 

that cause genetic diseases. Researchers used informative markers such as 

microsatellites from large pedigrees and assessed the probability that the co-

segregation of the marker and the disease is due to the existence of linkage or to 

chance[5]. In the case of co-segregation due to linkage, it means that the causal 

gene is in the vicinity of the microsatellite. This kind of approach and the fast paced 

technology advancement gave rise to modern gene mapping. 

In 2002 the international HapMap Project started developing a haplotype map of the 

human genome in order to describe common human genetic variation. After funding 

a large re-sequencing project to discover millions of additional SNPs to those already 

well characterized, they genotyped 269 individuals from diverse ancestry groups for 

all these SNPs[15].  

The creation of this haplotype map was an important advancement for gene mapping 

studies. As previously mentioned, there is a strong correlation between alleles of 

nearby SNPs spanning for around 1Mb [3, 14]. This is because each SNP arose 

from single point mutations, and was then passed down on the chromosome 
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surrounded by others which happened earlier. The latter, together with selection 

forces, rate of mutation, recombination, and genetic drift, have made SNPs to 

correlate with one another in segments of a chromosome at different extents. This 

non-random association between SNP alleles is called linkage disequilibrium (LD), 

which more formally is described as “the presence of statistical associations between 

alleles at different loci that are different from what would be expected if alleles were 

independently, randomly sampled based on their individual allele frequencies”[16]. 

The absence of LD is called linkage equilibrium.  

Genome-wide association studies (GWAS) are designed based on the premise that 

SNPs within a certain distance (usually <500kb) are in LD (correlated) with each 

other. This allows scanning the whole genome for associations by genotyping just a 

fraction of the total number of SNPs [17]. However, this mainly applies when the 

study aims to look for common variation. As mentioned in the previous paragraph, 

LD arises when point mutations get surrounded by earlier ones, hence, rare variants 

may not be in high LD with others as these tend to be newer.   

1.3.1 Association of common variants 

GWAS is a hypothesis free approach, as its name suggests, instead of testing the 

association between a small number of SNPs close to candidate genes (e.g. genes 

with known relevant cellular functions) and a trait, its goal is to scan the whole 

genome.  The latter causes a significant multiple testing burden, therefore, one 

should be cautious interpreting the significance of the results. Simulations and 

studies of the HapMap project have shown that even though there are tens of 

millions of SNPs in the genome, because of LD, the number of actual independent 

tests is around one million in the European population and around two million in the 

African population[18, 19]. Based on Bonferroni’s correction for multiple testing, an 

association with a p-value < 5x10-8 is deemed to be the genome-wide significance 

threshold[20].  

To date GWAS have been performed more than 1300 different traits and diseases 

and around 20,000 SNPs have been associated to them with a p-value < 5x10-8 [21]. 

During a GWAS, single SNP association are mainly carried out through by 

regressing a continuous or a dichotomous trait with each of the genotyped SNPs in 
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an additive scale (i.e. the number of minor alleles “A” 0, 1 or 2). Nonetheless, it is 

also possible to perform these regression by considering dominance effects (i.e. 

AA=Aa=1 and aa=0), or genotypic, where the homozygotes (for the major, or the 

minor alleles) and heterozygote are considered to have different effects.  

Genetic associations can be easily confounded by population stratification where 

there exists differences in allele frequency between population groups in the study 

and where the disease prevalence or trait mean differ within these population 

groups. In GWAS, population stratification is usually evaluated by computing the 

Genomic Control λ (λGC), which corresponds to the median χ2 (1 degree of freedom) 

of the association of all the SNPs, divided by the expected median χ2 under the null 

distribution[22]. In practice, it is difficult to discern whether a  λGC > 1 is due to 

population stratification or to a large signal of polygenic inheritance (i.e. many genes 

are associated to the trait). In most studies, a small λGC (e.g. < 1.05) is considered 

acceptable, suggesting no population stratification while a value above this has to be 

taken with caution[23]. However, is worth noting that λGC scales directly with sample 

size, so for bigger studies it is common practice to compute λ1000, which is an 

extrapolation of the observed λGC to the one equivalent for a study of 1000 cases 

and 1000 controls [24].  

Multiple approaches have been proposed to deal with population stratification. These 

approaches mainly differ regarding the type of stratification that they correct. In the 

simplest scenario, where population stratification is expected to arise as result of 

ancient divergence, dividing the test statistics by λGC is considered to provide enough 

correction [22, 23, 25]. Another commonly used and powerful approach to control for 

population structure is to perform principal component analysis (PCA) of the 

genotypes and use the top principal components (PCs) as covariates during the 

analyses. This approach is also capable to detect assay artefacts, which is useful 

when combining multiple data sets in the same study [22, 23, 25]. For bias arising 

due to cryptic relatedness between the individuals (e.g. families are included in the 

analysis) using PCs as covariates is not enough. A better approach in this scenario 

is to use linear mixed models (LMM) which can model family and population 

structure by fitting the SNP of interest and covariates as fixed effects and the generic 

relationship matrix (GRM) as a random effect [26].  
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To date, most GWAS findings agree that most complex traits and disease exhibit a 

large polygenic architecture, and the effect size of common SNPs are rather small 

which make them hard to detect. This has led GWAS to become a highly 

collaborative field [27] with the end of increase the number of samples by combining 

studies, then, increasing the power to detect associations. However, a problem with 

this is that it is not uncommon for the different studies to rely on different genotyping 

platforms, yielding different sets of SNPs. In order to circumvent this problem, 

genotype imputation is applied across studies. Genotype imputation is a process in 

which unobserved genotypes are inferred. This process takes advantage of the long 

range LD to infer haplotypes, and then these are compared to those haplotypes in 

reference samples such as those of HapMap or 1000 Genomes projects to fill the not 

genotyped SNPs [28]. This approach allows researchers to create a homogenous 

set of SNPs to perform meta-analyses with diverse studies as well as to narrow 

down the location of causal variants. 

1.3.2 SNP set association analyses 

1.3.2.1 Gene-based analyses 

Although investigating association of single SNPs to disease have yielded great 

insight into disease aetiology, this approach has low power detecting trait associated 

genes when the SNP effects within a defined region or gene are small and just their 

cumulative effect is associated to the trait. Because of this, aside of performing 

associations between single SNPs and phenotypes during GWAS, SNP-set analyses 

has been established as complementary post-GWAS approaches [29, 30]. A key 

issue when performing SNP-set analysis is accounting for the correlation among 

SNPs (i.e. LD). In the simplest case, one could select the top associated SNP within 

the region of interest and apply multiple testing corrections through a Bonferroni’s 

procedure to control the false positive rate[29]. However, this approach has low 

power as it does not combine the information from neighbouring SNPs which may be 

causal (although at a lesser extent). In order to analyze multiple SNPs, several 

methods have been developed. For example, if there is access to the raw phenotype 

and genotype data, it is possible to perform multivariable regressions (e.g. linear for 

quantitative traits or logistic for dichotomous) by fitting all the SNPs within a gene 

simultaneously (except for redundant SNPs). However, this may have low statistical 
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power as result of the increase in degrees of freedom (which sometimes is evaded 

by cluster analysis of SNPs or PCA [31, 32]). Another method to combine 

information of multiple SNPs, is the Fisher’s procedure to combine p-values; 

however given the unknown distribution and correlation between the SNPs, the 

significance must be estimated using permutations which are computationally 

expensive [29]. A variant of this method, which uses just the single SNP summary 

statistics and called versatile gene-based test (VEGAS), carries out the combination 

test and calculates the empirical p-value based on simulation of normal variables 

which are assigned values according to the LD structure (based on HapMap or 1000 

Genomes references) between SNPs in the gene [30, 33]. Another, the gene-based 

association test that uses the extended Simes procedure to correct for multiple 

testing (GATES) can rapidly combine the SNP p-values, using only summary 

statistics and LD information. This method does not require of simulations or 

permutations, which makes it particularly fast; still, it is valid for SNPs in LD and is 

capable of weighting the SNPs based on functional information[34].  

It is worth mentioning that although the approaches described above mainly focus on 

the integration of SNPs within a gene and flanking regions, it is possible to define 

functional or biological units in different ways. For example it is possible to perform 

these tests on fixed-width regions in the genome or focusing on regions with other 

functional annotations such as DNase I hypersensitivity sites or open chromatin.  

1.3.2.2 Pathway-based analyses 

The natural extension of these kinds of tests is pathway based analysis. A pathway 

describes a wide range of biological processes such a metabolism, cell cycle, 

development, etc. Analogous to gene-based analysis where all the SNPs within a 

gene are combined into a test statistic, here, all the gene-based statistics within a 

pathway are combined to test the relevance of a pathway in the trait of interest. 

Many different approaches have been developed for this endeavour, including 

enrichment analyses performed through rank comparison between a gene-set in the 

specified pathway and a permuted set (GenGen, MAGENTA)[35-37] or by a 

hypergeometric tests comparing significant versus non-significant genes in a 

pathway (INRICH, ALIGATOR)[38, 39]. These approaches tend to differ on their 

pathway definitions; with the vast amount of pathway databases, the most commonly 
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used pathway definitions are those in the Gene Ontology (GO) database and the 

Kyoto Encyclopedia of Genes and Genomes (KEGG), although in some software like 

MAGENTA, other databases are used (e.g. the Molecular Signature Database and 

PANTHER which focus mostly in signaling pathways)[37].  

A more recently developed approach: Data-driven Expression Prioritized Integration 

for Complex Traits (DEPICT) uses a different framework to test the association with 

a pathway. In addition to incorporate annotated gene sets (e.g. curated pathways, 

protein-protein interactions and phenotypic gene sets); it calculates for each gene a 

probability of belonging to each gene set based on expression patterns along 

thousands of microarray assays in different tissues/samples. In other words, instead 

of a binary setting where either a gene belongs or not to a pathway, each gene is 

assigned a probability of belonging to [40]. Once the gene-sets are created, DEPICT 

tests whether these are enriched for genes in the associated loci using precomputed 

GWAS on random phenotypes to estimate the background distribution [40]. 

1.3.3 The missing heritability problem 

Even though all the approaches described in the previous sections produce 

invaluable knowledge on genes and genetic variants behind complex traits and 

disease aetiology; the variance explained by these is much smaller than the 

estimated additive genetic variance by twin and family estimates. This is due to 

many reasons, including 1) limited statistical power in the studies due to the high 

multiple-testing burden 2) the limited investigation carried out in structural genetic 

variation (e.g. CNVs and indels) and rare variants (RVs) and 3) the heritability 

estimates in twin studies may be inflated due to deviation of the assumptions [41, 

42].  

There is plenty of evidence showing that part of the missing heritability is due to our 

lack of power to detect causal variants of small effects. Studies have shown that 

fitting all the genotyped SNPs by computing the GRM and fitting this in a linear 

mixed model (as summarized in section 1.1) we are able to explain a much greater 

proportion of ℎ2(termed ℎ𝑔
2) [8] of a trait than using just the genome-wide associated 

SNPs, indicating that the causal variants are there, but we just cannot discern true 
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from false signals (i.e. hidden heritability). However, even then, this estimate fell 

short compared with the twins’ estimate.  

Till few years ago, the rationale for most GWAS was based on the common disease 

– common genetic variation hypothesis. Because of this, and technical limitations, 

most genotyping platforms just tagged variants present in more than 1% of the 

population. However, advances in high-throughput DNA sequencing technologies 

have driven the change of paradigm, allowing us to explore rare variation by either 

characterizing rare variants (RVs) (MAF<1%) in the genome through whole genome 

or exome sequencing [43]. Further, sequencing projects along with the 1000 

Genomes Project identified several RVs [44] helping the creation of genotyping 

arrays tagging RVs. 

Very recently, Jian Yang and colleagues found negligible missing heritability for 

height and BMI when using both common and rare variants (imputed), accounting 

properly for their LD and their MAF [45]. This highlights out the importance of not just 

considering common variants, but also investigating RVs. 

1.3.4 Association of rare variants  

There are many reasons to believe that RVs influence the expression and 

prevalence of complex traits and disease, and that these could account for a portion 

of the missing heritability [46]. For example, variation in exonic regions such as 

nonsynonymous mutations (i.e. missense and nonsense mutations) may be 

biologically significant but because they tend to have deleterious effects their 

frequencies never exceed low levels. Also, the recent expansion of the human 

population may have resulted in a great number of segregating, functionally relevant, 

rare variants that mediate a proportion of observed phenotypic variation [46]. 

Furthermore, the realization that there may be “synthetic associations” in some 

studies, where common variants appear to be associated due to linkage 

disequilibrium with several disease-associated rare variants, suggests that the latter 

might account for an important portion of phenotypic variance.  

Although in recent years, sample sizes used in GWAS have increased dramatically, 

most studies have had a modest number of samples. This is a major problem when 
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looking into association with RVs, given that sample size requirements may be much 

greater if the effect sizes are not bigger than those of common variants.  

To date, very few studies have proven successful in the detection of associated rare 

variants to traits including insulin [47], lipids [48], blood cell counts [49] and liver 

disease [50]. Studies involving RVs present many statistical challenges ranging from 

variant calling to association testing.  Statistical tests used for common variation 

would be underpowered to detect association of SNPs with a minor allele frequency 

(MAF) <1% even in studies with large sample sizes [51]. In addition, association 

analyses of RVs are more susceptible to genetic confounders, i.e. population 

structure, which is hard to control through traditional methods such as principal 

component analysis  [52]. Moreover, independently from the technology used, 

genotype calling of rare variants is not as straightforward as is the calling of common 

variants. For example, if genotyping of RVs is carried out using a genotyping chip, 

only the common allele homozygote of the intensity cluster would be well populated, 

limiting the efficacy of calling algorithms[53]. 

1.3.4.1 Genotype calling considerations 

Although new technologies allow the detection and genotyping of RVs through 

exome and whole-genome sequencing, genotyping arrays remain a more cost-

effective way to interrogate SNPs identified in previous population studies[53]. 

However, using arrays to genotype RVs has its limitations. For example, standard 

calling algorithms like GenTrain, which uses a custom clustering algorithm to 

separate the two homozygotes and heterozygote genotypes, loses its efficacy when 

the frequency of one of the genotypes is low. Large sample sizes ease the problem 

by increasing the number of occurrences of the minor allele homozygote; however, 

this is not always feasible.  

A now commonly used method to improve the calling of RVs, zCall [53] is 

implemented as a post-processing step after a default calling algorithm has been 

applied. Specifically, this algorithm separates the three clusters with a horizontal and 

a vertical line, which are defined by the mean and variance of the homozygote 

clusters and scaled by a z-score threshold. In the case of rare variants, where the 

minor allele homozygote threshold is hard to define, this is estimated by a linear 
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regression model of common variant genotypes. To find the best z-score threshold, 

common sites are recalled using different values of z to find the best concordance. 

Finally, genotypes that were not previously called are assigned based on their 

position with respect to the horizontal and vertical lines.   

Calling genotypes of rare SNPs is not only hard when genotyping through arrays. 

With sequencing technologies, individual samples are resequenced many times, and 

the combined reads are used to evaluate how likely a polymorphism truly exists at a 

particular locus [43, 54]. For most sequencing technologies, a large number of reads 

in rare variant loci are needed in order to avoid genotype misspecification. Genotype 

quality controls of sequencing technologies are dependent on the platform used, and 

so, are beyond the focus of this thesis where no sequencing studies were involved.  

1.3.4.2 Population substructure 

As mentioned in the previous sections, GWAS usually use PCA to account for 

population stratification by fitting into the model the first few PCs. However, to 

account for population stratification in analyses involving RVs, this approach may not 

be suitable; as the estimation of the variance-covariance matrix during PCA can 

become unstable for genetic loci with lower MAF, making principal components less 

reliable to identify population substructure [52, 55-57]. An alternative would be to use 

principal components generated from common variants; however, this would be 

problematic given that common variants are typically much older, thus, not 

accounting for the population substructure generated through rare variants.  

Another approach proposed is to generate a score based on the deviation between 

the number of minor alleles in each subject and the expected number of minor 

alleles in the population across the genome [52]. The authors showed that this is a 

more sensitive approach to detect population outliers when considering just variants 

with a MAF < 5% than PCA. Moreover, an approach introduced by Epstein et al [58, 

59] involves a permutation procedure during the association analysis that repeatedly 

shuffles the phenotype of study participants in a way that generates data sets with 

the same extent of confounding (in this case genetic) found in the original data. The 

genetic confounding is calculated in two steps. In the first step, each individual 

receives a stratification score based on the effect of informative SNPs (excluding the 
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test SNP) on the phenotype. In the second step, based on its stratification score, 

each subject is assigned to a stratum where the association analysis is performed. 

The advantages of this approach, is that can be applied independently of the study 

and association test used. However, it may be computationally expensive.  

1.3.4.3a Association tests  

In the last few years, we have seen a tsunami of new approaches to circumvent the 

lack of power when analysing RVs. Most of these approaches are based on 

analysing (simultaneously) multiple SNPs (SNP-set) within a functional unit/region 

(e.g. gene), or within an annotated pathway. Independently of the definition of the 

SNP-set, the fundamental assumption of these association methods is that the 

frequency of observing at least one RV within each set is as high as observing a 

common variant, thus, improving the detection of association.  

Researchers have come up with several strategies to combine the information of the 

different RVs within the set into a test statistic. One of the simplest approaches to 

achieve this involves testing the significance of a SNP-set by summarizing the test 

statistic of each SNP into one p-value. Similar approaches involve collapsing the 

multiple rare variants into a single number and performing a single univariate test. 

This collapsing can be achieved in several ways; for example we could use a dummy 

variable with values 0 or 1 depending on whether the individual has at least one rare 

allele, followed by the application of a univariate test [60].  

Depending on the study design, several methods have been developed that involve 

collapsing of multiple rare variants. For quantitative traits, regression methods with 

collapsed variants, both assigning the same weight or a mixture of weights based on 

annotation or MAF to each RV and accounting for correlated RVs through 

permutation can be applied [60]. For case control studies, the weighted sum statistic 

[61], the cumulative minor allele test (CMAT) [62], and the combined multivariate and 

collapsing (CMC) [63] method which is an extension of the cohort allelic sum test 

(CAST) [64] can be applied.   

An important drawback of collapsing methods is that are based on the assumption 

that every SNP within the tested unit confers an effect in the same direction, which is 

unlikely. A more probable scenario is that within the same locus, there are variants 
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with protective and deleterious effects, which in addition, can interact with each 

other. Numerous methods have been designed that are able to accommodate these 

more realistic assumptions. Probably the method that has become most popular is 

the sequence kernel association test (SKAT) [65] and SKAT-O, which combines the 

burden and SKAT tests into a single statistics [66]. SKAT assumes a linear 

relationship between the phenotype and the set of rare variants. SKAT uses a 

variance-component score test in a linear mixed model (LMM) that assumes that the 

variant effects are drawn from a distribution with mean 0 and variance wjτ; where wj 

is a user-specified weight for variant j, which usually is defined using the MAF just as 

in the weighted sum statistic and τ the variance component. The latter allows 

different variants to have different directions and magnitude effects, including no 

effects. SKAT-O realises that burden tests are more powerful when the variants 

within the defined functional unit have the same effect direction, while SKAT has a 

better performance when the variants present mixed effects; therefore, this approach 

maximizes power by adaptively using the data to combine optimally both tests [66]. 

Other approaches that combine multiple tests include the mixed effects score test 

(MiST) [67] and an approach based on Fisher’s method for combining p-values [68]. 

The approach based on Fisher’s method combines the p-values of the burden and 

variance-component test and then assess the significance through a permutation 

procedure, making it computationally intensive. MiST consists of a set of two score 

statistics, corresponding to grouping effects by variant characteristics (e.g. missense 

mutations) and effects of the individual variants. To evaluate the group effects, MiST 

include a modified version of the burden and SKAT tests in order to make these 

score statistics independent from the individual variant test score statistic under the 

null hypothesis. This modification facilitates the combination of the two score 

statistics by Fisher’s and Tippett’s methods.  

Other approaches, such as the c-alpha test proposed by Benjamin Neale et al in 

2011 [69] is equivalent to a SKAT in a case-control study where no covariates are 

included, and all wj=1. However, one main difference is that it uses permutation to 

estimate the significance and control the presence of LD, which makes it 

computationally expensive for genome wide analyses. Another related general 

approach is the Estimated REgression Coefficients (EREC) method [70]. EREC 

reflects the ideas of the previously described collapsing methods and generalize 
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them using a linear model framework; the approach combines information across the 

multiple variants within a gene by taking a weighted sum of minor alleles for each 

individual. It then relates the combined information and covariate(s) to the phenotype 

through an appropriate regression model. EREC derives optimal weights for each 

variant that theoretically would lead to the most powerful tests among all valid tests. 

EREC software also incorporates modified versions of the fixed-threshold and 

variable threshold (VT) methods [57], where the threshold is the frequency in which a 

rare variant is defined. It also includes the simplest collapsing method [64] (i.e. 

regression on number of rare mutations each subject carries) and the weighted sum 

statistic (WSS) [61].  

Another kernel based association test for case-control studies is the kernel-based 

adaptive cluster (KBAC) method [71]. KBAC weights multi-site genotypes contrasting 

their frequencies between cases and controls. The rare admixture maximum 

likelihood test (RAML) [72] is a method which provides an omnibus test for joint 

effects of multiple variants on a phenotype. The backward support vector machine 

(BSVM)-based variant selection procedure is an approach that identifies informative 

disease-associated RVs and weight them into either risk or not risk categories [73]. 

Finally, the significance of the association between the disease and the informative 

variants remaining in the model is assessed by permutation tests. 

1.3.4.3b Comparison of association tests  

The power of RVs association tests tend to be low. It is clear that a method will 

perform well under the phenotype-causal variant model for which it was developed. 

In this section, I compare the approaches summarized above. Table 1 shows a 

summary of the attributes of the methods described above.  
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Table 1.1 Features of statistical tests for association between rare variants and 

complex traits. Variant based (V-b), Data adaptive (D-a), Combined/Optimal (C). 

Analytical and permutation refers to the way the significance of the association is 

calculated. 

Method C-α BSVM EREC KBAC RAML SKAT 

SKAT-

O 

MiST Fishera  

WSS CMC 

Reference 

Year 

[22]  

2011 

[26] 

2013 

[23] 

2011 

[25] 

2010 

[28] 

2013 

[21] 

2011 

[24] 

2012 

[23483651] 

2013 

[23032573] 

2013 

[19] 

 2009 

[17] 

2008 

Type of method V-b D-a D-a D-a D-a V-b C C C D-a D-a 

Case/Control  yes yes yes yes yes yes yes yes yes yes yes 

Quantitative no no yes no yes yes yes yes yes no no 

Covariates no yes yes yes yes yes yes yes yes no no 

Effect 

Heterogeneity yes yes yes yes yes yes yes 

 

yes 

 

yes no yes 

Analytical no no no no no yes yes yes no yes yes 

Permutation yes yes yes yes yes yes yes no yes yes no 

 

In order to get a better sense of the behaviour and power of some of the most 

popular rare-variant association tests, I performed in-house simulations. I evaluated 

the approaches SKAT, SKAT-O, the weighted sum statistic (WSS), the variable (VT) 

and fixed threshold (T1 / T5) tests. I used exome genotype data from 4,000 

individuals and randomly selected 100 different genes which had at least 4 SNPs. I 

simulated the effects of each SNP as drawn from a normal distribution N(δ,δ2). δ 

varied from 0.1 to 2 in steps of 0.1, each step assigning effects to 5 different genes. 

In other words, the SNPs within the first 5 genes had effects drawn from a 

N(0.1,0.12), the SNPs of genes 6-10 had effects from a N(0.2,0.22), and so forth. I 

generated phenotypes where the SNP effects explained 40%, 60%, 85% and 100% 

of the variability of the trait. Also, scenarios of heterogeneity (het=0.5) and not 

heterogeneity (het=0) were tested (het=0.5 means that I flipped the direction of the 

effect in 50% of the SNPs). 
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A good attribute of this simulation is the use of real genotype data to simulate the 

effects and phenotype. In addition, it does not make the assumption of effects 

proportional to the minor allele frequency of each variant. 

Performance of each of the approaches tested is shown in Figure 1. In all the 

scenarios tested, SKAT-O showed the best performance. As expected, the fixed-

threshold T1 and T5 approaches were the more affected since in the simulation the 

variants with MAF<0.01 or MAF<0.05 were not necessarily causal.  

*Het (heterogeneity) describes the proportion of SNPs within a gene with different 

direction of effects. *Hsq is the variance explained by the “causal” SNPs. 

1.4 Genetic correlation and pleiotropy 

Pleiotropy has been noted for centuries; many Mendelian traits and diseases do not 

just exhibit a change in a single wild-type phenotype, but usually are accompanied 

by changes in other traits (i.e. they are syndromes, with multiple phenotypic effects). 

For example, albinism which results from the inheritance of recessive gene alleles 

results in a deficiency of skin, hair, and eye pigmentation but also causes defects in 

vision [74]. A more notable example of pleiotropy is the effect of the sex-determining 

region Y (SRY) gene that alters the expression of multiple genes that give rise to 

male-specific traits [75]. Formally, pleiotropy is defined as the phenomenon in which 

a mutation in a single locus affects at least two unrelated traits [76].  

Figure 1.1 Evaluation results of different RVs association tests in different scenarios. 
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While many times the presence of pleiotropy is evident, it is challenging to discern if 

the genetic correlation between two traits is due to a single mutation affecting both 

traits (actual pleiotropy) or due to physical linkage between nearby loci. This is 

further hindered when the causal variant of a trait is not well mapped. However, 

regardless from the source of genetic correlation, estimating the proportion of 

variance that two traits share due to the genetic component can shed light into 

important aspects of the aetiology. For example, evidence of a genetic overlap 

between disorders can have an impact on the prospects for drug repositioning [77]. 

In order to estimate the genetic correlation between traits, it is necessary to have a 

genetic informative sample. Traditionally, the genetic overlap is estimated through a 

bivariate analysis in a sample of twins where the phenotypic covariance between the 

traits is decomposed into environmental and genetic components (similar to the 

estimation of heritability as described in section 1).  The latter is achieved through a 

Cholesky decomposition of the variance components A (additive genetic effects), C 

(common environment), and E (unique environment), followed by estimation of the 

parameters through Maximum Likelihood Estimation (MLE) approach [78].  

Now that it is common to have big population samples genotyped, it is no longer 

necessary to have pedigree data to estimate the genetic correlation. As described in 

previous sections, one can infer the genetic relationship between participants in one 

study by using the genotype data. A now commonly used approach to estimate the 

genetic correlation is to use the GRM of unrelated individuals (to avoid bias due to 

possible shared environment) in a bivariate mixed linear model and estimate the 

parameters using REML [79].  

Another popular approach to investigate the genetic overlap between traits is the 

polygenic risk prediction approach. In contrast to the methods described above 

which require both traits to be measured in order to compute the genetic correlation, 

this approach can use GWAS summary results when raw data from one of the traits 

of interest is unavailable. Polygenic risk prediction involves the computation of a 

predicted trait value based on genotypes and often called “polygenic risk score” 

(PGRS). This PGRS is then used to examine its relationship with another trait [80]. It 

is computed by aggregating the estimated effects of many variants multiplied by 

observed genotypes into a single score for each individual. It is common practice to 
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compute the PGRS selecting SNPs based on different significance thresholds, and 

removing those that are redundant through LD-clumping [80]. Subsequently, the 

association between the computed PGRS and the trait of interest is tested through 

regression analyses. If the association is significant, it means that there is a genetic 

correlation between the traits. Although this approach does not directly quantify the 

genetic correlation between traits, Dudbridge [81] proposed a procedure to estimate 

it which requires the estimates of parameters such as the heritability of each of the 

traits, number of independent SNPs, p-value of the association and sample sizes.  

Since the beginning of large GWAS meta-analyses such as those from the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium where the inclusion of 

hundreds of thousands of samples yielded a λGC > 1.4, it had been hard to discern 

whether this inflation was due to population structure bias or polygenicity of the trait. 

In a recently published paper, Bulik-Sullivan and colleagues [82] realize that under 

polygenic inheritance, variants in high LD with a causal variant will show inflation in 

the test statistics (i.e. the test statistic is correlated to LD), while inflation due to 

population structure is not correlated to LD. The latter holds as far as the allele 

frequency differences between subpopulations are not under strong selection. The 

authors showed in simulated and the PGC Schizophrenia GWAS results that it is 

possible to measure the amount o genetic variation tagged by the variants (ℎ𝑔
2) and 

the level of confounding due to population structure by regressing the LD-score — 

defined as the sum of LD between the SNP and all SNPs within a region (usually 1 

centiMorgan windows), against the χ2 statistic. As heritability is a variance estimate, 

and the variance is just a special case of covariance where both random variables 

are the same, this approach can be extended to estimate genetic correlation. Bulik-

Sullivan et al proposed the cross-trait LD score regression [83] where instead of 

regressing the LD score against the χ2 statistic of a single GWAS, the regression is 

carried out against the product of the z scores from two studies. The latter gives an 

estimate of the genetic covariance (the slope of the regression) which after 

normalizing it by the ℎ𝑔
2 gives the estimates of genetic correlation estimates.  

 



- 21 - | P a g e  

 

1.5 Mendelian randomization 

1.5.1 Definition and assumptions 

Mendelian randomization (MR) has become a very popular approach in human 

genetics to try to answer questions about causality [84]. In observational studies, 

associations between an exposure and an outcome are subject to measurement 

error, confounders, reverse causation and many potential biases (e.g. recall bias, 

selection bias) that hinder distinguishing causal from non-causal relationships. 

Randomized control trials (RCTs) are often considered the gold standard in 

epidemiology to estimate causal relationships. An RCT is an experiment where the 

participants are randomly placed into the different treatment groups under study (e.g. 

placebo / not placebo). The randomization ensures that potential confounding factors 

are balanced between the groups, thus allowing unbiased estimation of the effect of 

the treatment in question. Although RCTs are evidently the ultimate means to 

estimate the causal effects of a modifiable factor on a trait, these are often not 

feasible to perform due to the high costs and long duration they involve or because 

the exposure in question can’t be applied (e.g. it would not be ethical to ask one of 

the groups to smoke or to gain weight). MR is an approach that can be applied to 

circumvent these limitations. An MR study makes use of genetic variants that are 

known to affect an exposure of interest (e.g. vitamin D levels, cholesterol, BMI, etc.) 

and thus functions as a “natural” RCT [85]. MR exploits the fact that alleles are 

segregated randomly during meiosis, thus ensuring that the genotypes are not 

related to any potential confounders. Some of the strengths of MR include that the 

use of genetic variants as proxies of exposures protect against reverse causation – 

provided that the genetic variants were adequately chosen. Also, in contrast to RCT, 

where the exposure of interest is administered during a relatively short time (i.e. 

during the trial period), MR allows to measure the long-term effects of lifetime 

exposure. 

MR is tied to the three fundamental assumptions of instrumental variable analysis 

[86]. The first one is that the genetic variant acting as a proxy (i.e. the instrumental 

variable (IV)) must be robustly associated to the exposure of interest; generally with 

an F-statistic >10 (under the assumptions of a linear relationship between the IV and 

the exposure, the relative bias is approximately 1/F-statistic, meaning that the bias of 
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the IV estimator is <10% of the bias of the observational estimator [87]). The second 

assumption states that the IV must not be associated to any of the confounders. In 

practice, this assumption is hard to test given the impossibility of gathering 

information on all the confounders. Publicly GWAS summary results can allow us to 

investigate the association of the IV in phenotypes not measured in the investigated 

sample increasing confidence that assumption 2 is met; however, is not possible to 

rule out a violation of the assumption completely. Finally, the third assumption 

stipulates that the IV is not directly associated to the outcome, but mediated by the 

exposure of interest. This assumption is also hard to prove for certain as is always 

possible that the variant affects the outcome via other pathway. In order to alleviate 

this possibility, ideally, the function of the genetic variants and genes affecting the 

exposure should be well characterized. Other strategies involve the use of multiple 

genetic variants with known effects on the exposure and fit different models [88]. In 

the case the models throw the same conclusion of causality, this will increase the 

confidence that assumption 3 is met and vice versa.  

There are many ways the three assumptions summarized above can be violated. For 

example, genetic instruments might be weak. In this case, and assuming that 

increase of sample size is not possible, effect estimates from GWAS could be used 

to compute a PGRS and use this as an IV [89], as was done in the project displayed 

in chapter 4. Although a PGRS increases power as it explains a greater proportion of 

variance of the exposure, this IV is more susceptible to violations of the MR 

assumptions, as the more genetic variants used, the more likely one of those is 

going to be associated to other biological pathways in addition to the one of interest. 

Population stratification can also bias the estimate if the allele frequency of the 

genetic instrument differs between subpopulations in which the frequency or mean of 

their outcome also differs.  In this case, just as in GWAS, restricting the analysis to a 

homogeneous populations and including the genotype-derived principal components 

can alleviate the problem.  

1.5.2 Methods 

The simplest way to estimate the causal effect of a continuous exposure on a 

continuous outcome (assuming linearity between the variables) in an MR setting is 
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done by computing the Wald-type ratio estimate 𝛽𝐼𝑉 =  
𝛽𝑧𝑦

𝛽𝑧𝑥
 [90]. Where 𝛽𝑧𝑦 is the 

regression coefficient of the outcome on the IV and 𝛽𝑧𝑥 the regression coefficient of 

the exposure on the IV [Figure 2]. The standard errors can be then approximated 

using the delta method [91]. This method is advantageous when 𝛽𝑧𝑦 and 𝛽𝑧𝑥 are 

computed in different samples and/or are extracted just from GWAS summary 

statistics.  

Figure 1.2. Graph depicting the MR assumptions. The instrument variable Z is 

associated to the outcome Y through its effects on the exposure X. Z is not affected 

by confounders U. 

 

Similarly, in scenarios where there is no access to individual level data and exists the 

possibility to combine multiple instruments, the causal estimate can be computed 

through an inverse variance weighted meta-analysis [92].  

𝛽̂𝑖𝑣𝑤 =  
∑ 𝛽̂𝑧𝑥𝛽̂𝑧𝑦𝜎𝑧𝑦

−2

∑ 𝛽̂𝑧𝑥
2 𝜎𝑧𝑦

−2
 

𝜎𝑖𝑣𝑤 = √
1

∑ 𝛽̂𝑧𝑥
2 𝜎𝑧𝑦

−2
 

A variety of methods exist to estimate the causal effect when individual data is 

available. One of the most commonly used is the two-stage least squares (2SLS) 

[90, 93]. In the first stage of this approach, an OLS regression between the IV and 

the exposure is performed followed by an OLS regression between the outcome of 

interest and the predicted values from the first stage regression. Standard errors 

from the second stage regression should then be corrected to account for the 

uncertainty of the predicted values of the exposure. Another approach that follows 

the same principle as 2SLS is the control function estimator. This method is also a 
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two-stage estimator, but in contrast to 2SLS above, this one includes the residuals 

estimated from the first-stage regression in the second regression [94]. The idea 

behind this is that the first-stage residuals may be correlated with the confounders, 

thus including them in the second-stage regression will help control some 

confounding effect on the outcome. Other estimators for IV analyses include 

structural mean models [95] estimated through maximum likelihood and the 

generalized method of moments [90] which does not make strong assumptions 

about the relationship between the exposure and outcome so is more suitable for 

binary outcomes. 

The advantages of using individual level data (i.e. when the genotypes, the exposure 

and the outcome are available) include the possibility to test more directly the three 

MR assumptions and having better precision, as the error in instrument variable 

estimate will be smaller when estimated from the same sample [96]. However, 

depending on the exposure of interest, getting sufficient individual level data may be 

problematic - MR generally requires very big sample sizes (tens of thousands) in 

light of the small fraction of variance explained by the IV. Publicly-available GWAS 

summary data from large consortia have proven to be a valuable resource to 

conduct well powered MR studies in a fast and cost-effective way [97]. In this setting, 

the causal estimate can be computed through the Wald-type ratio estimate or the 

inverse variance weighted meta-analysis as described above using the effect 

estimates and standard errors from the outcome GWAS and the known effect of the 

IV on the exposure. Although in this case the MR assumptions cannot be entirely 

tested, they can be investigated in a number of ways. These include obtaining 

information on the biology and function of the genetic variant, testing (wherever 

possible) the association of the IV with potential confounders using either individual 

level data or GWAS summary data, and ensuring that the effect on outcome and 

exposure were estimated in a population of the same ancestry (e.g. Asians, 

Europeans).  

Although sample sizes in MR studies (and genetic studies in general) keep 

increasing, the use of multiple exposure-associated variants as IVs is attractive in 

scenarios where most of the single instruments are invalid (e.g. pleiotropic, weak). A 

variety of approaches to assess violation of the MR studies when using multiple IVs 
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have been proposed. For example, a study investigating the causal relationship 

between triglycerides and risk for coronary artery disease (CAD) needed to rule out 

that the association seen was not confounded by LDL or HDL levels [98]. Doing this 

in an MR setting is not trivial in light that these factors are correlated to each other 

and many of the triglycerides-associated variants are also associated to LDL and 

HDL. In order to disentangle which was the causal exposure, they develop an 

approach which consisted on regressing the SNP-CAD effect estimates with those of 

the SNP-triglycerides, adjusting by the effect estimates of SNP-LDL and SNP-HDL. 

Doing this, they found evidence that an increase in triglycerides and LDL increases 

the risk of CAD, but a decrease of HDL is not causally related to CAD, but 

confounded by the other two factors[98]. Another related approach to assess bias in 

MR when using multiple invalid (weak) IVs is the Egger test [99]. Traditionally, this 

test is used as a tool for detecting small-study bias in meta-analysis. Given that MR 

of a single study with multiple IVs can be seen as analogous to a meta-analysis, this 

test can be applied by replacing the precision of a single study’s estimate with the 

strength of the instrument [99]. It is reported that under certain conditions (the 

variants are not correlated with each other, and the direct effect of the variants on 

the outcome is 0) this approach can give protection against bias even when all the 

genetic variants violate the standard MR assumptions.  

1.6 Aims and case studies 

The work presented in this thesis is a medley of application of statistical genetics 

methods to diverse data sets available to answer questions about aetiology of some 

ocular traits and diseases including central corneal thickness (CCT), conjunctiva 

ultra violet autofluorescence (CUVAF), refractive error, keratoconus, glaucoma and 

age related macular degeneration. In addition to these, I also include work done 

investigating the genetic architecture of epithelial ovarian cancer (EOC) and its 

subtypes.  

1.6.1 Central corneal thickness and keratoconus 

In the following chapter I present a study involving an exome (Illumina Human 

Exome array) association study of CCT. As background, the cornea is the 

transparent dome-shaped surface of the eye that covers the iris, pupil and anterior 
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chamber.  One of its main functions is to allow the refraction of the light entering the 

eye as well as serving as a protective barrier. The cornea is comprised of many 

layers and has a thickness between 500 and 600 μm in its centre and 600-800μm in 

its periphery [100]. The three primary layers are the outer layer containing the 

epithelium, the stromal layer comprising 90% of the total corneal thickness built from 

an extracellular matrix rich in collagen fibrils and keratocytes and the inner layer 

containing endothelial cells [100]. A reduction in the thickness of the cornea can lead 

to the development of keratoconus. Keratoconus is a degenerative disorder of the 

eye where structural changes within the cornea along with the thinning cause the 

cornea to change into a conical shape, causing vision distortion. Different studies 

have shown that the breakage of the collagen cross-linkage in the stroma due to 

protease activity can lead the development of keratoconus by reducing corneal 

thickness [101]. Once Keratoconus initiates, it progressively dissolves the collagen 

fibrils in the Bowman’s layer located between the stroma and epithelium layers[102].  

As a complex disease, keratoconus risk is driven by both genetic and environmental 

factors [102, 103]. Historically, genetic studies of keratoconus (e.g. GWAS) have not 

been able to identify relevant disease loci as these have been hampered by the 

complex aetiology and low prevalence of the disease (1 in 2000 individuals) limiting 

the possibility to perform powered GWAS [104]. In order to dissect the genetics of 

keratoconus, researchers turned towards the endophenotype approach.  

Endophenotype is a term borrowed from psychiatric genetics to define the separation 

of psychiatric conditions into more stable phenotypes with clearer genetic 

connection. In the case of keratoconus, CCT acts as an endophenotype given that a 

reduction on CCT can lead to the disease. Genetic studies of CCT have been highly 

successful given that can be measure in anyone and is a trait in a continuous scale, 

thus providing increased power compared to a dichotomous disease status. Studies 

report that approximately 90% of the variance of CCT can be attributed to a genetic 

component. During the last years, GWAS of CCT successfully mapped 27 loci which 

together explain 8.3% of the additive variance [105]. Among these loci, several were 

found to be associated to keratoconus.   

With the advent of the extension of paradigm in GWAS (i.e. from just investigating 

common variation to investigate also rare variation), we carried out an exome 
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association analysis of CCT, followed by investigating the associated variants in a 

case-control sample of keratoconus. Details and results of this project form the 

chapter 2 of this thesis. 

1.6.2 Conjunctival ultra violet autofluorescence  

The conjunctiva is a thin translucent mucus membrane that covers the eye ball. It 

starts at the edge of the cornea and extends behind the eye where it folds and forms 

the inside surface of the eyelids. Its main function is to protect the eye from foreign 

particles and to keep it lubricated by producing mucus and tears[106]. There is 

evidence for an association between excess of ultraviolet radiation (UVR) and a 

number of diseases of the conjunctiva. For example, pterygia which refers to an 

abnormal growth of the conjunctiva is thought to arise as result of the sun’s rays 

passing unobstructed through the lateral side of the eye causing degradation of the 

collagen fibres [107]. Pinguecula is a similar condition to pterygia also product of 

degeneration of the collagen fibres due to sun exposure and appears as a yellow-

white deposit in the conjunctiva [108]. Photokeratitis is a painful eye condition also 

arising from UVR and is characterized by sunburn of the cornea and conjunctiva 

[108]. UVR is also associated with an increased risk of squamous cell carcinoma of 

the cornea and conjunctiva [109, 110], as well as other eye diseases outside the 

conjunctiva such as cortical cataract [111], iris melanoma [112] and macular 

degeneration [113].  

Conjunctival ultra violet autofluorescence (CUVAF) has been developed as a way to 

measure the extent of UVR exposure of the eye [114]. This technique involves the 

use of black light emitted by a Wood lamp to examine the extent of actinic damage to 

the conjunctiva. Previous studies show that CUVAF can be an effective biomarker of 

the first stages of pinguecula and pterygium [115]. Also, this can be used as a 

marker of eye UV exposure. The latter is of great interest as measuring sun 

exposure accurately is challenging; this is usually carried out by questionnaires but 

these are subject to many biases and CUVAF may enable more precise estimates. 

CUVAF measures can aid the investigation of other ocular traits such as myopia. A 

considerable number of studies have shown that myopia is inversely associated to 

time spent outdoors, thus having an effective biomarker of sun exposure such as 
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CUVAF may help providing a frame to investigate what aspect of time spent 

outdoors can explain this apparent protective effect.   

The utility of CUVAF to study ophthalmohelioses (sun-related eye diseases) and its 

potential use as sun biomarker encouraged the project depicted in chapter 3 of this 

thesis. In this, I show the results of genetic analyses carried out in three independent 

Australian cohorts. We report for the first time the heritability of CUVAF and perform 

a GWAS. Through the endophenotype approach GWAS of CUVAF can be 

potentially used as way to find risk genetic variants of pterygium and pinguecula. 

Further, we show the impact of geographic latitude and longitude on UVAF.  

1.6.3 Refractive error and myopia 

Refractive error arises when the length and/or curvature of the eye does not allow 

the direct focus of light on the retina. Myopia or short-sightedness is one of the most 

common refractive errors, where a more negative refractive error indicates a higher 

degree of myopia. Myopia is a condition where light does not focus on the retina but 

instead in front causing distant objects to appear blurry. Although myopia is in most 

cases a benign condition that can be corrected through the use of lenses or 

refractive surgery, having a high degree of myopia has been associated to cataract, 

glaucoma and retinal degeneration [116]. The importance of research of this 

condition has increased in the last decades due to dramatic increases in prevalence 

around the globe. In China, 90% of teenagers are short-sighted compared to 10-20% 

60 years ago. The statistics are similar for South Korea and Singapore, and in the 

western world it is estimated that the prevalence has doubled over the same period.   

There is compelling evidence that genetic factors and environmental inputs 

contribute to the development of myopia [117, 118]. Heritability estimates of myopia 

widely differ between studies; as reviewed in [119], heritability estimates have been 

reported to be between 11% and 87%. Although previous linkage studies had limited 

success on identifying genes involved in myopia, GWAS of myopia and refractive 

error from two large studies, one from the Consortium for Refractive Error and 

Myopia (CREAM) [120] and the other from 23andMe [121], successfully identified 22 

loci associated to the trait. These genetic studies gave great insight into the biology 

of myopia by also identifying relevant pathways such as neurotransmission, retinoic 
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acid metabolism and ion transport. However, even though genetic differences 

explains some proportion of myopia cases, genetic changes do not happen as fast to 

explain the soaring rates in myopia of the last decades. This dramatic increase of 

myopia points to an environmental effect. Educational attainment and time spent 

outdoors are the two factors more consistently associated to myopia. An emblematic 

study assessing the prevalence of myopia between generations of Alaskan Eskimos 

found a dramatic increase in the younger generation where education became 

compulsory [122]. After many independent population studies corroborating this 

finding, to date, educational attainment is considered the main risk factor for myopia. 

Multiple studies [123-128], including a very recent randomized trial [129] have found 

that time spent outdoors is inversely associated with myopia development. A 

protective mechanisms that may underlie this association is that time spent outdoors 

is accompanied by less time performing near work activities such as reading books 

or staring at a screen which promote eye elongation as a compensation mechanism 

to defocus [130-132]. Another hypothesis is that exposure to bright light enhances 

dopamine release in the retina suppressing axial elongation [133, 134]. Finally, 

recently few studies proposed that increased vitamin D concentrations may be 

behind the protective effect of time spent outdoors [135-137].   

In chapters 4 and 5, I report the work where I assess the causal relationship of 

education and vitamin D on myopic refractive error. Specifically, chapter 4 displays 

the results of the application of an MR approach to assess the causal relationship of 

education on refractive error using individual level data in 3 independent cohorts. 

Chapter 5 illustrates an MR of vitamin D or refractive error using summary results of 

the large CREAM GWAS of refractive error.  

1.6.4 Primary open angle glaucoma and age-related macular degeneration 

Glaucoma comprises a group of age-related eye diseases characterized by an 

irreversible deterioration of the optic nerve resulting in visual field loss [138]. It is a 

progressive condition and one of the leading causes of blindness around the world 

[139, 140]. Primary open angle glaucoma (POAG) is the most common type of 

glaucoma in western countries [141] and can develop as a result of clogging of the 

drainage canals of the eye, resulting on an increase of intraocular pressure (IOP) 

which causes the progressive optic nerve damage [142]. POAG is relatively a rare 
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disease and happens predominantly in older individuals; the lifetime risk at age 75% 

is approximately 2% [143]. Studies have identified many risk factors, including 

genetic variants that increase the risk of developing POAG. These factors include 

estrogen deficiency, taking corticosteroids, having certain eye conditions such as 

myopia, high blood pressure, diabetes, etc. [144-148]. Genetic studies of POAG 

have also identified multiple variants such as Gln368Ter in the MYOC gene which 

accounts for ~4% of all the POAG cases [149]. In the last years, SNPs in seven 

other loci (CAV1 [150], CDKN2BAS, TMCO1[151], SIX1[152], ABCA1, GMDS and 

AFAP1[153, 154]) have been identified through GWAS of POAG and its 

endophenotypes IOP and optic disc parameters. However, the variance explained by 

these seven SNPs is relatively small and it is unclear how important other common 

genetic variants are in explaining trait variation.   

Age-related macular degeneration (AMD) is an eye disease characterized by 

damage to the macula of the retina resulting in blurred or no vision in the center of 

the visual field [155]. This disease typically occurs in older people and the lifetime 

risk at age 75 is around 2.8% [143]. The pathogenesis of this disease is not 

completely understood; however, oxidative stress, mitochondrial dysfunction and 

inflammatory mechanisms are believed to lead to the accumulation of cellular 

damage resulting in the death of photoreceptors in the central visual field [155-157]. 

Environmental and life style factors that contribute to risk of this disease include 

smoking [158], high blood pressure [159] and obesity [160]. Identification of variants 

in the CFH and ARMS2-HTRA1 which may be responsible of as much as 50% of the 

risk of AMD was the first major success of GWAS [161]. To date, subsequent 

GWASs of AMD have also been very successful and a further 33 genetic loci have 

been identified [162, 163].  

There were multiple aims for the work presented in chapter 6. First, there were many 

unknowns about the genetic architecture of POAG. The contribution of common 

(genome-wide) and rare variants (exome) to risk of POAG (i.e. POAG heritability) 

was still unknown. Further, epidemiological studies indicate that higher estrogen 

levels may help prevent POAG [164-166] and that the prevalence of POAG differs 

between sexes (the prevalence in men is higher than in women). Therefore, using 

genotype data of Australian cases and controls, we investigate the contribution of 
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common and rare variants to POAG and we assess whether there are differences 

between POAG sexes (generated by genetic variants acting in men but not women, 

or vice versa). To date, at the genome-wide significance level, only the ABCA1 locus 

is associated to both AMD and POAG. In the second part of chapter 6 I report the 

genetic correlation between these age-related eye diseases.  

1.6.5 Epithelial ovarian cancer 

Ovarian cancer is the leading gynaecological malignancy in developed countries. 

Approximately 90% of ovarian cancer tumours are of epithelial origin. Epithelial 

ovarian cancer (EOC) is a heterogeneous disease and can be divided into various 

histological subtypes based on different morphological, molecular and genetic 

features. High-grade serous carcinomas are the most common subtype of EOC 

followed by endometrioid, mucinous, clear cell, Brenner and other minor types [167, 

168]. So far epidemiological and genetic studies have identified many lifestyle, 

environmental and genetic factors associated to an increase in risk of EOC. Among 

these, smoking [169, 170], obesity [171-173], and type 2 diabetes [174, 175] are 

associated with an increased risk, while [later] age at menarche appears to confer 

some protection [176]. Studies have identified multiple subtype specific and non-

specific genetic variants (e.g. mutations in KRAS increase risk of mucinous EOC 

[177] while somatic mutations in TP53 are present in most tumours [178]) that 

increase the risk of EOC.   

Although genetic studies have shown evidence of overlap between specific genetic 

variants underlying risk to the different EOC subtypes, the extent of genetic 

correlation beyond the known risk markers has not been examined. Also, it is not 

known the proportion of heritability these known loci explain. Therefore, in chapter 7, 

using genotype data from the Ovarian Cancer Association Consortium, I examine the 

genetic architecture of EOC and its subtypes. I report the array heritability, 

contribution of the known loci to the heritability and the genetic correlation between 

the different EOC subtypes. I continue the chapter investigating the genetic overlap 

between EOC (and subtypes) and risk factors where summary GWAS statistics are 

available, namely BMI, height, obesity, diabetes type 2, age at Menarche and 

smoking.  
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Abstract 

Keratoconus is a degenerative eye condition which results from thinning of the 

cornea and causes vision distortion. Treatments such as ultraviolet (UV) cross-

linking have proved effective for management of keratoconus when performed in 

early stages of the disease. The central corneal thickness (CCT) is a highly heritable 

endophenotype of keratoconus, and it is estimated that up to 95% of its phenotypic 

variance is due to genetics. Genome-wide association efforts of CCT have identified 

common variants (i.e. minor allele frequency (MAF) >5%). However, these studies 

typically ignore the large set of exonic variants whose MAF is usually low. In this 

study, we performed a CCT exome-wide association analysis in a sample of 1029 

individuals from a population-based study in Western Australia. We identified a 

genome-wide significant exonic variant rs121908120 (P = 6.63 × 10(-10)) 

in WNT10A. This gene is 437 kb from a gene previously associated with CCT 

(USP37). We showed in a conditional analysis that theWNT10A variant completely 

accounts for the signal previously seen at USP37. We replicated our finding in 

independent samples from the Brisbane Adolescent Twin Study, Twin Eye Study in 

Tasmania and the Rotterdam Study. Further, we genotyped rs121908120 in 621 
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keratoconus cases and compared the frequency to a sample of 1680 unscreened 

controls from the Queensland Twin Registry. We found that rs121908120 increases 

the risk of keratoconus two times (odds ratio 2.03, P = 5.41 × 10(-5)). 

Introduction 

Keratoconus is a degenerative eye disease with an incidence of around 1 in 2000 in 

the general population[179]. It is characterized by thinning and weakening of the 

cornea, and its symptoms range from mild astigmatism and myopia to severe vision 

distortion. Corneal collagen ultraviolet (UV) cross-linking is a minimally invasive and 

effective option for management of keratoconus at early stages[180] achieving 

biomechanical stabilization of the cornea and reducing (or in some cases halting) the 

disease progression rate. However, it is not uncommon for patients with mild or early 

stages of keratoconus to be misdiagnosed as cases of astigmatism or myopia and 

undiagnosed keratoconus can lead to corneal ectasia following laser refractive 

surgery (LASIK) [181].This makes it particularly important to find biomarkers that can 

point to keratoconus in its earliest stage. 

Previous work has shown that keratoconus risk is affected by both genetic and 

environmental factors[102, 103]. Several strategies have been pursued to identify 

the genetic risk factors of keratoconus; however, given the low prevalence of the 

disease, it has been difficult to perform well powered genomic studies[104]. In 

contrast, genome-wide association studies (GWAS) of central corneal thickness 

(CCT), a highly heritable biometric trait which functions as endophenotype of 

keratoconus, have successfully identified 27 associated loci[105]. Lu et al[105] found 

that several of these CCT loci were also associated with keratoconus in a case-

control analysis. 

 

The identified CCT variants only explain around 8% of the variability of the trait[105]. 

CCT is highly heritable (~90%)[182] and hence there is substantial missing 

heritability. One possible component of the missing heritability is low frequency 

variants. The published CCT GWASs to date focused primarily on common variants 

(i.e. minor allele frequency (MAF) > 5%). This approach ignores a large number of 

coding exome variants, where the MAF is usually lower. Therefore, to determine the 

role of low-frequency coding variants in CCT, we evaluated putative functional 
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coding variants from the Illumina Human Exome array. We performed the 

association using genotype data from 1029 individuals from the Raine cohort[183]. 

We replicated our results in two independent samples from i) the Rotterdam 

Study[184] and ii) Brisbane Adolescent Twin Study[185, 186]. Further, we 

investigated the significant associations with CCT in a sample of 621 Australian 

keratoconus cases and 1680 unscreened controls. 

Results 

We performed an exome-wide association analysis of CCT using data from the 

Western Australian Pregnancy (Raine) Cohort[183]. A sample of 1029 unrelated 

individuals of European descent and with CCT measures were used to test the 

association of the 43,435 exonic variants with a MAF>0.25% passing quality control. 

Sample characteristics are summarized in Table 1. We performed the association 

analysis of each variant through linear regression analysis adjusting for sex, age and 

the first 3 genetic principal components (PCs).The genomic inflation factor (λ) with 

respect to the median of χ2-statistics was 1.006 suggesting no inflation in the test 

statistics due to population structure[187] (Figure 1a.). 

Figure 2 shows the results of the analysis. One single nucleotide polymorphism 

(SNP) reached the threshold of genome wide significance (P = 5.0x10-8): 

rs121908120 in WNT10 on chromosome 2 (β=-23.84 ± 3.92,P = 6.63x10-10). 

WNT10A is expressed in all the ocular tissues reported in the ocular tissue 

database[188]. The SNP rs121908120 causes a missense mutation in WNT10A 

which results in a change in the amino acid 228 from phenylalanine to Isoleucine. 

According to SIFT[189] and PolyPhen[190], this missense mutation is deleterious 

(score 0) and probably damaging (score 0.994), respectively. This variant is 437kb 

upstream of rs10189064 (P = 3.11x10-4) in the USP37 gene, which was previously 

associated with CCT[105]. These two variants are in moderate linkage disequilibrium 

(R2 = 0.369). In order to assess the extent of independent effect of these two SNPs, 

we performed conditional analysis (i.e. using one as covariate and testing the other 

and vice versa). The results are summarized in Table 2. Our results show that 

conditioning rs121908120 by rs10189064 does not reduce the effect (β=-23.75 ± 

5.33) of the SNP; however the p-value goes down to 9.28x10-6  probably due to a 

reduction in sample size, as just 938 individuals had information on the SNP 
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rs10189064. On the other hand, conditioning rs10189064 on the variant in WNT10A 

removes the effect completely - the effect changes fromβ=-14.57 ± 4.02 (P = 

3.11x10-4) to β=0.44 ± 5.21 (P = 0.93). This suggests that the previously identified 

associated SNP in USP37 is likely due to linkage disequilibrium (LD) confounding 

with the variant in WNT10A.  

 

We replicated these results using data from the Rotterdam Study[184] (Table 2). The 

total sample size of this replication cohort was n=4,479. Although the effects were 

moderately smaller in these samples, the association signal for rs121908120 was 

clearly replicated (β = -12.68 ± 2.75, P = 3.87x10-6). The results remained similar 

after conditioning on rs10189064 (β = -10.92 ± 3.7, P = 3.21x10-3). In addition, we 

used available exome data from 147 participants from the Brisbane adolescent twin 

study (BATS) and Twin Eye Study from Tasmania (TEST)[185, 186]. However, this 

sample only had rs121908120 genotyped. We found that the effect in this sample 

replicates our finding (β = -28.73 ± 14.05, P = 0.04). 

 

Although rs121908120 is the strongest candidate SNP in the region, we used the 

online tool LocusTrack [191] to look for additional SNPs in high LD with 

rs121908120, based on the1000 Genomes phase 3 European ancestry reference 

set. The only variant (rs146199923) with r2=1 was 100kb downstream of 

rs121908120,close to the FEV gene (Supplementary Figure 3).  Examining, 

GeneCards[192] and dbSNP, rs146199923 is not a strong candidate SNP as lies in 

an intergenic region outside conserved transcription factor binding sites and DNaseI 

hotspots.  

 

We also investigated the effects of exome variants in previous associated loci[105]. 

Figure 1a displays the p-value distribution of SNPs within CCT known genes along 

with the distribution of all SNPs assessed in this study. We did not find any evidence 

of associated exome variants in these genes. 

 

In addition to per SNP testing, gene-based analysis was done using the optimal 

unified approach SKAT-O[193]. However, the approach did not alter our conclusions, 

as WNT10A (P = 1.65x10-10) was the only significant association after correction for 
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multiple testing [Figure 1b]. The top 10 results for the gene-based test are 

summarized in Table 3. WNT10A was not associated in the gene-based analysis if 

rs121908120 was omitted (P=0.29). Following a similar approach, we performed 

pathway analysis. However, in order to avoid capturing the same signal as previous 

experiments we removed all SNPs within the WNT10A gene before the analysis. 

Although no pathways passed the significance threshold, interestingly, the top 

pathway (GO:2000096, P = 2.57x10-4) was the one described as the positive 

regulation of the Wnt receptor signaling pathway [Table 4]. Analyses from Lu et al 

indicated that extracellular matrix and collagen pathways are associated with 

CCT[105]. Analogous to inspecting variants within known associated genes, we 

examined the distribution of p-values in the collagen and extracellular matrix 

pathways and found an enrichment of small p-values for the extracellular matrix 

(λ=2.14) and collagen pathways (λ=2.32) [Figure 1c]. 

 

Further, we genotyped rs121908120 in 621 keratoconus cases and used data from 

1680 individuals from the Queensland twin registry, genotyped on the Illumina 

HumanCoreExome array, as unscreened controls. The rs121908120 MAF in 

keratoconus cases was 0.05 while in controls it was 0.024 translating to a 2.03 fold 

increase in risk (Fisher exact test p-value = 5.41x10-5). 

Discussion 

Our study identified a missense mutation (rs121908120) in WNT10A associated with 

CCT and keratoconus. Previous GWAS of CCT identified rs10189064 in the USP37 

gene[105], which is in moderate LD with this newly found variant rs121908120. 

However, the SNP in WNT10A has a bigger effect on CCT, and completely accounts 

for the signal previously seen at USP37 in the analyzed samples. 

 

Aside from the USP37/WNT10A region, we did not detect association of exonic 

variants in or near CCT associated loci from a previous study focusing on common 

variation[105]. This indicates that the tagged SNPs are not in LD with the previously 

identified common variants in those genes, or the sample size is too small to detect 

any association. 
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WNT10A belongs to the WNT gene family. This family consists of structurally related 

genes encoding secreted signaling molecules that have been implicated in 

oncogenesis and in several developmental processes, including regulation of cell 

fate and patterning during embryogenesis[194, 195].Studies have shown that 

corneal endothelial cell fate is maintained by the hedgehog and WNT pathways[196, 

197]. The corneal endothelium is responsible for maintaining the transport of fluids 

and solutes to the corneal stroma (which accounts for up to 90% of the total corneal 

thickness). A reduced endothelial cell density can have an impact on this fluid 

regulation leading to stromal swelling and scarring due to excess fluid[198, 199], 

which has also been described as a complication of keratoconus[200]. 

 

A handful of studies have described structural changes in the corneal epithelium in 

keratoconic eyes [201-203]. The corneal epithelium is an extremely thin layer 

composed of epithelial tissue covering the front of the cornea. Cornea epithelial cells 

renew continuously from limbal stem cells (LSCs) in order to maintain transparency 

for light transmission. A deficiency in LSCs can lead the cornea into a non-

transparent or keratinized skin like epithelium[204]. Molecular analysis of the Wnt 

signaling pathway in limbal stem cells have shown that WNT2, WNT6, WNT11, 

WNT16B are over-expressed in the limbal region, while the expression of WNT3, 

WNT7A, WNT7B and WNT10A is upregulated in the central cornea (mature corneal 

epithelium)[194]. Based on this, we examined the p-value distribution of WNT genes 

and SNPs within them. We observed that in aggregate these genes tend to have 

small p-values, although non-significant (Figure 1a, Figure 1b and Table 5). The 

latter suggests that might be a matter of power or fine mapping of causal variants to 

see significant associations within these genes. 

 

The strong association of WNT10A found in keratoconus adds evidence to its 

possible role in cornea stability. In addition, studies indicate that mutations in 

WNT10A are also a risk factor for ectodermal dysplasia including odonto-onycho-

dermal dysplasia[205, 206]. This syndrome is associated with abnormalities of skin 

as well as epidermally derived structures including, hair, teeth, nails, tongue, and 

sweat glands. Hair including eyelashes is typically thin and sparse. Ocular features 

include chronic tearing, photophobia, and keratitis[207]. 
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Other diseases that show corneal thinning as clinical feature include connective 

tissue disorders and osteogenesis imperfecta[208, 209]. Wnt signalling is essential 

for maintaining bone density and the homeostasis in connective tissue[210-212]. Our 

finding adds evidence on the link of these disorders to corneal thinning. 

Pathway analyses performed by Lu et al[105] associated collagen and extracellular 

matrix pathways to CCT. Collagen fibrils are a major component of the cornea’s 

extracellular matrix  [213] and are the building blocks of the corneal stroma and 

Bowman’s layer[214, 215].Our study was underpowered to detect significant 

pathway associations. However, we observed smaller p-value in these pathways 

than the expected from a uniform distribution. 

 

In conclusion, our findings indicate that WNT10A plays a role in the corneal 

thickness homeostasis and that the mutation rs121908120 is a risk factor for 

keratoconus. Also, this finding adds evidence to the association of WNT10A to 

odonto-onycho-dermal dysplasia and the link of connective tissue disorders with 

corneal thinning. Furthermore, suggestive results on the association of WNT genes, 

and the fact that they are expressed in the different ocular tissues, indicate that may 

be a matter of extending the sample size or a finer mapping of variants to detect their 

association. 

Methods 

Our study consisted of two phases: in the first phase, we performed exome-wide 

association with CCT using the Raine study sample as discovery and the Rotterdam 

Study, the Brisbane adolescent twin study (BATS) and Twin Eye Study of Tasmania 

(TEST) for replication. In the second phase, we investigated the associated variant in 

Australian keratoconus patients and unscreened controls from the Queensland Twin 

Registry (QTwin). 

Raine 

Sample 

Recruitment of the Western Australian Pregnancy (Raine) cohort has previously 

been described elsewhere in detail[216]. In brief, between 1989 and 1991 2,900 

pregnant women were recruited prior to 18-weeks gestation into a randomized 
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controlled trial to evaluate the effects of repeated ultrasound in pregnancy. Children 

have been comprehensively phenotyped from birth to 21 years of age (average ages 

of one, two, three, six, eight, ten, fourteen, seventeen and twenty-one) by trained 

members in the Raine research team. Most of the children are of Caucasian 

ethnicity. Data collection included questionnaires completed by the child’s primary 

carer and by the adolescent from age 14, physical assessments by trained 

assessors at all follow up years, DNA collection from year 14 follow-up. The study 

was conducted with appropriate institutional ethics approval, and written informed 

consent was obtained from all mothers.  

 

Phenotypes 

At age 21, participants were invited for an eye study. CCT was obtained from the 

Pupil Center Pachymetry readout obtained by anterior segment tomography of each 

dilated eye taken with an Oculus Pentacam (Optikgerate GmbH, Wetzlar, 

Germany)[183].  

 

Exome array  

A total of 1825 participants were genotyped using the Illumina HumanExome-

12v1_A array includes 247,870 markers. Approximately 90% of the markers are 

coding variants selected from >12,000 exome and genome sequences representing 

multiple ethnicities and complex traits. The remaining 10% comprises variants that 

have been associated with complex traits in previous Genome Wide Association 

Studies (GWAS), ancestry-informative markers, markers for identity-by-descent 

estimation, random synonymous SNPs and HLA tags[47]. Genotype calling was 

carried out in two steps. First, we called genotypes using Illumina GenomeStudio 

GenTrain clustering algorithm, together with the Illumina HumanExome-12v1_A 

product files. Quality control in the initial genotypes was done by excluding samples 

with a calling rate below 95%, and variants with a GeneTrain score <0.15, calling 

rate <0.95 or heterogeneity excess <-0.3 or >0.2.We performed principal component 

(PC) analysis, and excluded samples that were above 6s.d from the centroid of the 

1000 Genomes[44] European population (GBR+CEU+FIN) PC1 and PC2. In the 

second step we used zCall[53] with the default parameters to improve calling of rare 

variants on the remaining samples. We excluded variants with calling rate < 99%, or 
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which deviate from Hardy-Weinberg equilibrium (HWE) P < 10−6, resulting in 

235,619 variants and 1563 individuals passing quality control (QC). 

 

Statistical analysis:  

Among the genotyped individuals passing QC, 1029 unrelated individuals (proportion 

of identity by descent <0.2) counted with CCT phenotype data. To ensure that the 

variants tested had at least 5 copies of the minor allele, we restricted the analyses to 

just those variants with a MAF > 0.25% (i.e. 43,435 SNPs). Single SNP based 

analysis was carried out using linear regression in plink[217, 218]and adjusting by 

sex, age and the first 3 PCs. The genotype cluster plot for the top associated variant 

rs121908120 is displayed in Supplementary Figure 1.  

 

Gene and pathway based association analyses were performed using SKAT-O[193], 

which  performs association test of SNP sets and optimally combines the burden test 

and the nonburden sequence kernel association test (SKAT).Gene-based SNP sets 

were created using the SNP-gene annotation file from the Illumina Human-Exome 

bead-chip. Pathways were based on the Gene Ontology database[219]. Pathway-

based SNP sets were composed by the SNPs within the genes involved in each 

particular pathway. 

 

We performed conditional analysis of rs10189064 and rs121908120 using 

Plink[217]. Given that the Illumina HumanExome-12v1_A does not contain 

rs10189064 among the tagged SNPs, we extracted the rs10189064 genotype from 

938 individuals that were also genotyped in the Human660W-Quad bead chip for 

previous experiments. Genotyping and quality control details for the Human660W-

Quad bead chip in the Raine sample are described elsewhere[105]. In brief 1593 

individuals were genotyped in 2009 using the Human660W-Quad bead chip, as part 

of quality control (QC), the data were filtered by single nucleotide polymorphism 

(SNP) call rate <0.95, a Hardy-Weinberg equilibrium (HWE) p-value< 10−6 and a 

minor allele frequency (MAF) > 1%.To exclude population outliers, a principal 

component analysis (PCA) was carried out using SNPs with genotyping rate >0.98. 
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The Rotterdam Study 

Samples 

The Rotterdam Study is a population-based study held in Rotterdam, the 

Netherlands[184]. It consists of three cohorts. The original cohort, RS-I, started in 

1990 and includes 7,983 subjects aged 55 years and older. The second cohort, RS-

II, was added in 2000 and includes 3,011 subjects aged 55 years and older. The last 

cohort, RS-III, includes 3,932 subjects of 45 years of age and older and started in 

2006. The Rotterdam Study has been approved by the Medical Ethics Committee of 

the Erasmus MC and by the Ministry of Health, Welfare and Sport of the 

Netherlands, implementing the “Wet Bevolkingsonderzoek: ERGO (Population 

Studies Act: Rotterdam Study)”. All participants provided written informed consent to 

participate in the study and to obtain information from their treating physicians. 

 

Phenotype 

CCT was measured using ultrasound pachymetry (Allergan Humphrey 850, Carl 

Zeiss Meditec, Dublin, CA, USA; subset of RS-I), and using a non-contact biometer 

(Lenstar LS900, Haag-Streit, Köniz, Switzerland; subset of RS-I, RS-II, and RS-III). 

 

Genotyping and association 

Genotyping of SNPs was performed using the Illumina Infinium II HumanHap550 

array (RS-I), the Illumina Infinium HumanHap 550-Duo array (RS-I, RS-II), and the 

Illumina Infinium Human 610-Quad array (RS-I, RS-III). Samples with low call rate 

(<97.5%), with excess autosomal heterozygosity (>0.336), or with sex-mismatch 

were excluded, as were outliers identified by the identity-by-state clustering analysis 

(outliers were defined as being >3 s.d. from population mean or having identity-by-

state probabilities >97%). A set of genotyped input SNPs with call rate >98%, MAF 

>0. 1% and Hardy-Weinberg P-value >10-6 was used for imputation. The Markov 

Chain Haplotyping (MACH) package version 1.0 software [220](Rotterdam, The 

Netherlands; imputed to plus strand of NCBI build 37, 1000 Genomes phase I 

version 3) and minimac version 2012.8.6 was used for the imputation. Number of 

samples remained for RS are summarized in Table 1. Imputation quality (r2) for 

rs121908120 was RSI=0.61, RSII=0.57 and RSIII=0.63 and for rs10189064 r2 was 

above 0.99 in the three studies. Association analyses of rs121908120 and 
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rs10189064 variants with CCT were performed using the ProbABEL package[221] 

using age, sex, the first 5 PCs and the technique of measurement (the latter only for 

RS-I) as covariates. 

Brisbane adolescent twin study and twin eye study in Tasmania 

Samples 

Methodologies and recruitment of participants from the Brisbane adolescent twin 

study (BATS) and twin eye study in Tasmania (TEST) are described elsewhere[185, 

186]. 

  

Phenotype 

CCT was measured in this cohort using ultrasound pachymetry and recorded for 

both eyes. Measurements were performed using a Tomey SP 2000 (Tomey Corp., 

Nagoya, Japan). 

 

Genotyping and association  

Genotyping of 147 individuals from BATS and TEST with eye phenotype was 

performed using the Illumina HumanCoreExome array. Samples and SNPs with low 

call rate (<98%) were excluded, as well as variants with MAF <0.1% and Hardy-

Weinberg P-value >10-6. Association was performed using Merlin which effectively 

accounts for family structure[222]. Age, sex and the first 3 principal components 

were used as covariates. 

Queensland twin registry 

Samples 

Methodologies and recruitment of the Queensland Twin registry are described 

elsewhere (REF above). The unscreened controls for the keratoconus samples were 

a subset of the BATS and TEST projects. These controls were family members from 

BATS and TEST projects, selected to be unrelated to the 147 BATS and TEST 

individuals included in the CCT scan. The unscreened controls from were pruned to 

remove related individuals (typically both parents of a twin pair were used as 

controls). 

Genotyping 
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Genotyping was carried out as described for the BATS and TEST CCT samples. 

Keratoconus cases 

Sample 

 

Australian participants with keratoconus (n=621) were ascertained through the 

Department of Ophthalmology of Flinders Medical Centre, Adelaide, Australia; 

private optometry practices in Adelaide and Melbourne, Australia; the Royal Victorian 

Eye and Ear Hospital, Melbourne, Australia; and by Australia-wide mail out to 

members of Keratoconus Australia, a community-based support group for patients.  

 

Phenotypes 

The diagnosis of keratoconus was based on clinical examination and 

videokeratography pattern analysis. Clinical examination included slit lamp 

biomicroscopy, cycloplegic retinoscopy, and fundus evaluations. Slit lamp 

biomicroscopy was used to identify stromal corneal thinning, Vogt’s striae, or a 

Fleischer ring. A retinoscopic examination was performed with a fully dilated pupil to 

determine the presence or absence of retroillumination signs of keratoconus, such 

as the oil droplet sign and scissoring of the red reflex. Videokeratography evaluation 

was performed on each eye by topographic modeling. Patients were considered as 

having keratoconus if they had at least one clinical sign of the disease and by 

confirmatory videokeratography map with an asymmetric bowtie pattern with skewed 

radial axis above and below the horizontal meridian (AB/SRAX). A history of 

penetrating keratoplasty performed because of keratoconus was also sufficient for 

inclusion. 

 

Genotyping 

Genotyping of rs121908120 in 621 individuals was completed using a pre-designed 

Taqman assay (Life Technologies), amplified in SensiFAST Probe No-ROX master 

mix (Bioline) on a LightCycler480 Real-time PCR Machine (Roche), according to 

manufacturer’s protocol. The genotyping cluster plot for rs121908120 genotyping is 

displayed in Supplementary Figure 2. 
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Figure 2.1. Quantile-Quantile plots of single SNP association (a), gene-based 

association (b) and pathway-based (c) results in the discovery cohort (Raine study). 

Each dot represents an observed statistic (-log10P) versus the corresponding 

expected statistic. The black line corresponds to the null distribution. Dotted lines 

show the significance threshold based on a Bonferroni correction for multiple testing. 
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Figure 2.2. Manhattan plot of association results for central corneal thickness in the 

discovery cohort (Raine study). The plot shows -log10 –transformed p-values for all 

single nucleotide polymorphisms. The dotted horizontal line represents the threshold 

of genome-wide significance (p-value < 5.0 x 10-8). 
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Table 2.1. Descriptive statistics of the samples. 

 
 
 
 
 
 
 
 

Abbreviations: CCT: Central corneal thickness; BATS/TEST: Brisbane Adolescent Twin Study / Twin 

Eye Study in Tasmania; RS-I, RS-II, RS-III: Rotterdam Study cohorts; SD = standard deviation. 

 

 

 

 

 

  

 N CCT (SD) (µm) Age (SD) (years) Males (%) 

Raine 1,029 538.2 (32.3) 20.1 (0.4) 48% 

BATS/TEST 147 554.5 (33.8) 22.6 (12.2) 54% 

RS-I 873 544.4 (33.9) 76.3 (6.7) 48% 

RS-II 1,215 547.7 (34.2) 72.6 (5.3) 47% 

RS-III 2,391 550.3 (33.9) 62.3 (5.8) 43% 



47 | P a g e  

 

Table 2.2. The results of the genome-wide association study with central corneal thickness (CCT) as outcome. Only the genome-

wide significant single nucleotide polymorphism (SNP) is showed (rs121908120), together with a previously known associated SNP 

with CCT (rs10189064). Both SNPs were conditioned for the other SNP. Beta = effect size on central corneal thickness (µm) based 

on the minor allele. 

SNP Minor / Major allele Discovery Replication 

Raine BATS/TEST RS-I RS-II RS-III RS-Meta 

  Beta ± 

s.e 

P-value MAF Beta ± s.e P-value MAF Beta ± s.e MAF Beta ± s.e MAF Beta ± s.e MAF Beta ± s.e P-value 

rs121908120 A/T -23.8 ± 

3.9 

6.63E-

10 

0.030  -28.73 ± 

14.1 

4.10E-

02 

0.02 -8.76 ± 5.8 0.031 -18.46 ± 6.1 0.025 -12.18 ± 

3.6 

0.028 -12.68 ± 

2.8 

3.87E-06 

rs10189064 A/G -14.6 ± 

4.0 

3.11E-

04 

0.033 -- -- -- -4.04 ± 4.3 0.035 -12.8 ± 4.2 0.031 -6.71 ± 2.7 0.032 -7.52 ± 2.0 1.94E-04 

rs121908120 a.f. 

rs10189064 

-23.8 ± 

5.3 

9.28E-

06 

-- -- -- -- -9.27 ± 7.8 --  -11.27 ± 

7.8 

-- -11.46 ± 

5.0 

-- -10.92 ± 

3.7 

3.21E-03 

rs10189064 a.f. 

rs121908120 

0.44 ± 5.2 9.31E-

02 

-- -- -- -- 0.56 ± 5.8 --  -7.99 ± 5.4 -- -0.78 ± 3.8 -- -2.34 ± 2.7 3.89E-01 

Abreviations: a.f.. = adjusted for; BATS/TEST: Brisbane Adolescent Twin Study / Twin Eye Study in Tasmania; MAF = minor allele 

frequency; RS-I, RS-II, RS-III: Rotterdam Study cohorts; RS-Meta: Meta-analysed estimates from the 3 Rotterdam Study cohorts; 

s.e. = standard error of the beta.
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Table 2.3. Top 10 results from the gene-based association with central corneal 

thickness (CCT) performed using the SKAT-O approach in the Raine cohort. 

 

 

 

 

 

 

 

 

 

 

 

 

#SNP = number of single nucleotide polymorphisms used for the gene-based test. 

 

 

 

  

Gene P-value #SNP 

WNT10A 1.65E-10 3 

SH3BGR 4.07E-05 4 

ANKRD6 4.94E-05 6 

STEAP1B 1.38E-04 1 

ATPBD4 2.28E-04 1 

TAF11 2.78E-04 1 

EFCAB7 4.10E-04 6 

PRRG2 4.32E-04 3 

CROCC 5.56E-04 1 

C6orf1 5.88E-04 1 
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Table 2.4. Top 10 results from the pathway-based association with central corneal 

thickness (CCT) performed using the SKAT-O approach in the Raine cohort. 

#SNP = number of single nucleotide polymorphisms used for the pathway-based 

test. 

 

 

 

  

Pathway P-value #SN

P 

Definition 

GO:200009

6 

2.57E-

04 

11 Positive regulation of Wnt receptor signaling pathway 

GO:003014

5 

2.68E-

04 

76 Manganese ion binding     

GO:003818

0 

2.84E-

04 

19 Nerve growth factor signaling pathway    

GO:199009

0 

4.39E-

04 

18 Cellular response to nerve growth factor 

stimulus 

   

GO:003524

9 

5.18E-

04 

46 Synaptic transmission, glutamatergic    

GO:004840

6 

6.45E-

04 

16 Nerve growth factor binding     

GO:000760

8 

7.25E-

04 

175 Sensory perception of smell     

GO:000373

0 

7.36E-

04 

20 mRNA 3'-UTR binding     

GO:000752

0 

8.15E-

04 

53 Myoblast fusion      

GO:004817

2 

8.41E-

04 

17 Regulation of short-term neuronal synaptic plasticity   
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Table 2.5. Results of WNT* genes available from the gene-based association with 

central corneal thickness (CCT) performed using the SKAT-O approach in the Raine 

cohort. 

Chromosome Position Gene P-value #SNP 

2    219745254    WNT10A 1.65E-10 3 

10    102222811    WNT8B 0.06 1 

11    75897369    WNT11 0.13 1 

7    120969089    WNT16 0.2 2 

7    116916685    WNT2 0.2 3 

1    228109164    WNT9A 0.24 1 

17    44928967    WNT9B 0.48 1 

17    44839871    WNT3 0. 54 1 

12    49359122    WNT10B 0.85 1 

#SNP = number of single nucleotide polymorphisms used for the gene-based test. 
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Supplementary Material: 

WNT10A exonic variant increases the risk of 

keratoconus by decreasing corneal thickness 

  

Figure 2.3 Supplementary Figure 1. Genotype cluster plot of rs121908120 

(exome chip id: exm266718) in the discovery cohort (Raine). Black dots indicate 

not calling; blue and red indicate the homozygotes; purple indicates the 

heterozygotes. 
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Figure 2.4 Supplementary Figure 2. Genotype cluster from a Taqman assay 

for rs121908120 (exome chip id: exm266718) in the Keratoconus cases. NTC 

refers to the no template control (i.e. no DNA added). 



53 | P a g e  

 

 

  

Figure 2.5 Supplementary Figure 3. LocusTrack plot displaying variants within the 

rs121908120 region (±400Kb). Left axis displays the extent of LD (r2) of each variant with 

rs121908120. Dotted lines represent the region of the bottom panel. Bottom panel show 

SNPs in high LD with the same color code as the upper panel; Genes show the genes 

transcribed regions; wgEncodeBroadHMM track displays the chromatin state segmentation 

for Human Stem cells; tfbsConsSites show regions with a conserved transcription factor 

binding site. 
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JAMA ophthalmology, 133, 406-412. 

 

ABSTRACT 

 

Importance: Conjunctival ultraviolet autofluorescence (CUVAF) has excellent 

potential as an objective biomarker of sun exposure. However, much variation in 

CUVAF is observed and the relative contribution of genes and environment to this 

variation has not yet been identified.  

 

Objective: CUVAF photography was developed to detect and characterise pre-

clinical sunlight-induced ocular damage. Ocular sun exposure has been related to 

cases of pterygia and also recently negatively correlated with myopia. We 

investigated sources of variation in CUVAF in relation to its potential clinical 

relevance. 

 

Design: Cross-sectional analysis of three population-based cohort studies: Twins 

Eye Study in Tasmania, Brisbane Adolescent Twin Study and Western Australian 

Pregnancy Cohort (Raine) Study. 

 

Setting: General community. 
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Participants: 295 Australian families from the Tasmanian and Brisbane twin studies 

and 661 participants from the 20-year follow-up of the Raine Study. Only individuals 

with available genotype data were included. 

 

Methods: We compared the CUVAF levels in three cohorts and performed a 

classical twin study to partition variation in CUVAF. We also conducted a genome-

wide association analysis to identify specific genetic variants associated with 

CUVAF. 

 

Main Outcome Measure(s): The total area of CUVAF, heritability of CUVAF and 

single nucleotide polymorphisms (SNPs) associated with CUVAF from genome-wide 

association study.  

 

Results: Within twin cohorts, individuals living closer to the equator (27.47° S) had 

higher levels of CUVAF compared to individuals from southern regions (42.88° S) 

(median of 45.2vs 28.7 mm2) (p<0.001). The additive genetic component explained 

37% (95% confidence interval [CI], 22%-50%) of the variation in CUVAF while 50% 

(95%CI; 29%-71%) was due to the common environment. The SNP rs1060043 

located approximately 800bp away from the SLC1A5 gene, a member of the solute 

carrier family 1, had a genome-wide significant association with a p-value of 3.2 x 10-

8. Gene-based analysis did not improve our power to detect association with other 

genes. 

 

Conclusion: Our findings confirm that while there is a large environmental 

component to CUVAF (= sun exposure), genes also play a significant role. We 

identified a SNP (rs1060043) as being significantly associated with CUVAF; 

replication of this finding in future studies is warranted. 
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Introduction 

Excessive sun exposure particularly ultraviolet-light (UV) increases the risk of many 

ocular diseases including pterygium [111], cortical cataract [107], ocular surface 

squamous neoplasia [109], climatic droplet keratopathy[223] and eyelid 

malignancy[110]. Despite early work suggesting sun exposure has a role in the 

pathogenesis of age-related macular degeneration [113] and ocular melanoma [112], 

these associations remain inconclusive. In recent years, a considerable number of 

epidemiological studies have reported that increased time spent outdoors is 

associated with lower rates of myopia in children, suggesting that sunlight brightness 

or UV-light may have a beneficial effect [128]. These conflicting reports on effects of 

sun exposure require a better understanding of mechanisms underlying ocular sun 

damage and related eye diseases.  

 

A challenge of studying ophthalmohelioses [224] (sun-related ocular diseases) is the 

difficulty of assessing sun exposure. The usual method of determining an individual’s 

sun exposure is byself-reported questionnaire which is subject to recall errors. Often 

questions are designed to assess whole-body sun exposure rather than ocular sun 

exposure, thus accuracy of these measures in ocular diseases is arbitrary. 

Conjunctival ultraviolet autofluorescence (CUVAF) photography was developed to 

detect precursors of ocular sun damage using a technique similar to UV 

fluorescence in the detection of UV exposure-related dermatologic diseases [225]. 

Previous studies have reported an association of CUVAF with the presence of 

pterygia[226] and shown increasing total area of CUVAF is associated with 

increasing prevalence of pterygium[227]. Time spent outdoors correlates highly with 

the level of CUVAF [128]. This suggests CUVAF could be regarded as an objective 

measure of sun damage corresponding to amount of time spent outdoors and could 

help characterize local sun exposure. 

Multiple biological mechanisms have been proposed to explain the cause of detected 

CUVAF in other tissues. These include alterations of collagen cross-linking or 

changes in cell metabolites such as reduced nicotinamide adenine dinucleotide 

(NADH) or derivatives of amino acids like tryptophan[228].  
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CUVAF can be an ideal biomarker of ophthalmohelioses once its characteristics are 

defined better.  In this current study, our main aim was to determine whether there is 

a genetic predisposition to variation in CUVAF identified in the three Australian 

cohorts. However, given that sun exposure is highly dependent on geographical 

location, the effect of latitudinal differences on CUVAF distribution was investigated. 

Following this analysis the contribution of genes to CUVAF variation was explored 

through a classical twin study and a genome-wide association study (GWAS). 

 

Methodology 

Participants 

This study included two twin and one singleton cohorts each with Northern European 

ancestry from Australia. Twin pairs were identified from two existing cohorts, the 

Twin Eye Study in Tasmania (TEST) and the Brisbane Adolescent Twin Study 

(BATS). Methodologies of these studies were described in detail previously [186]. In 

brief, a total of 487 twin pairs (200 monozygotic [MZ], 287 dizygotic [DZ]) were 

recruited in the TEST through several overlapping methods, including utilization of 

national twin registry and existing state-wide studies. A total of 2443 individuals who 

were enrolled into BATS were invited to participate into the twin eye study. Among 

the 1199 individuals agreed to participate, there were 185 MZ and 278 DZ twin pairs. 

The Western Australian Pregnancy (Raine) Cohort is an ongoing longitudinal birth 

cohort of 2868 individuals whose mothers were initially recruited to evaluate prenatal 

ultrasound [216, 229]. Their offspring were subsequently assessed in detail during 

childhood (1, 2,3,5,8 and 10 years) and adolescence (14 and 17 years). At the 20-

year cohort follow-up, 1344 participants underwent an ocular examination [183]. 

Comparison between the individuals who did and did not participate in the 20-year 

follow-up has been presented previously [135].  

 

Ethics Approval 

This study was conducted in accordance with the Declaration of Helsinki and 

informed consent was obtained from all adult participants and parents of minors. 

Approval for this study was obtained from the Human Research Ethics Committees 

of the University of Tasmania, Royal Victorian Eye and Ear Hospital, QIMR 
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Berghofer Medical Research Institute, Princess Margaret Hospital and the University 

of Western Australia. 

 

Quantitative analysis of CUVAF 

A camera system developed by Coroneo and colleagues [226, 230] was used to take 

CUVAF images for each participant. The camera system included a height 

adjustable table equipped with subject head-rest, camera positioning assembly, 

digital single-lens reflex camera (Nikon D100 (Nikon, Melville, New York, USA)), 105 

mm f/2.8 Micro Nikkor (Nikkor, Melville, New York, USA) lens, and filtered electronic 

flash. Both nasal and temporal regions of both eyes were photographed at 0.94 

magnification in total darkness. All images were saved in RGB format at the D100 

settings of JPEG Fine (1:4 compression) and large resolution (3,000 2,000 pixels). 

The area of fluorescence in millimetres squared (mm2) for each photograph was 

determined using Adobe Photoshop CS4 Extend (Adobe Systems Inc., San Jose, 

California, USA). Reliability of CUVAF as a biomarker of sunlight exposure has been 

validated previously [231].  

 

Questionnaire 

As part of the Raine Study 20-year examination, participants were asked to complete 

questionnaires regarding their socio-economic status, medical history and sun 

exposure. In relation to sun exposure, participants were asked to estimate time spent 

outdoors, with four possible responses to the question “In the summer, when not 

working at your job or at school, what part of the day do you spend outside?” 

Responses were ‘none’, ‘< ¼ of the day, approximately half of the day’ and ‘> ¾ of 

the day’. ‘None’ and ‘< ¼ of the day’ groups were combined due to low numbers in 

the ‘none’ category. Only socio-economic status and medical history questionnaires 

were available for TEST and BATS cohorts.  

 

Study analysis was divided into three main components. These included: (1) 

comparison of CUVAF levels between TEST and BATS cohorts to identify effect of 

latitude; (2) a classical twin study using TEST and BATS cohorts to estimate 

heritability of CUVAF; (3) a meta GWAS study of CUVAF to identify common 

variants associated with this measurement by pooling data from all three cohorts. 
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Analytical Approach for Classical Twin Study 

The classical twin model based on the multivariable linear structural equation was 

applied using OpenMx package in the statistical software R version 2.15.1 (R 

Foundation for Statistical Computing; http://www.r-project.org/). This model assumes 

the phenotypic variation observed between the MZ and DZ twins are due to variation 

in additive genetic (A), common environmental (C), and unique environmental (E) 

effects. 

 

To determine the heritability of CUVAF, deterioration in the model fit was assessed 

by dropping each component in a hierarchical order from the full model. Each of the 

nested sub-models was then compared to the full model by chi-squared tests. The 

Akaike information criterion (AIC) was used to determine the best fitting model in 

which variation was explained by as a few parameters as possible. Before model 

fitting analyses, CUVAF was adjusted for age and gender. 

 

Genotyping and quality control 

TEST and BATS participants were genotyped using the Illumina Human 660W-Quad 

bead chip. A total of 1903 individuals from the Raine Study (some did not participate 

in the eye study) were genotyped in two different batches: 1593 individuals were 

genotyped in 2009 using the Human 660W-Quad bead chip and a further 310 

individuals were genotyped in 2012 using the Illumina Human-OmniExpress bead 

chip.  

 

As part of quality control (QC), the data were filtered by single nucleotide 

polymorphism (SNP) call rate <0.95, a Hardy-Weinberg equilibrium (HWE) p-value< 

10−6 and a minor allele frequency (MAF) >0.01. To exclude population outliers, a 

principal component analysis (PCA) was carried out using SNPs with genotyping 

rate >0.98. Identical SNPs with the 1000 Genome panel were identified for the PCA 

analysis. All the samples beyond six standard deviations from PC1 and PC2 of 1000 

Genomes British population were excluded. Individuals with identity-by-descent 

(IBD) estimate > 0.24 with another participants were also removed from the analysis.  

Genotype imputation. 



60 | P a g e  

 

TEST and BATS cohorts were imputed against the August 4, 2010 version of the 

publicly released 1000 Genomes Project European genotyping using MACH [220]. 

Likewise, Raine Study was imputed against the November 23, 2010 version of the 

1000 Genome Project European genotyping using MACH. We applied a minimum 

passing threshold of 0.3 on the Rsq metric for each SNP as the recommended 

practice with MACH and a MAF>0.01. 

 

Genome-wide Association (GWA) Studies of CUVAF 

GWAS of twin cohorts and the Raine Study were conducted separately. 7,773,124 

SNPs (439,454 genotyped) associations of 295 families from the TEST and BATS 

cohorts were carried out using MERLIN [222] with addition of age, sex and latitude 

as covariates in a linear model. For the Raine Study, a linear regression model in R 

with a PLINK interface [217] was used to determine associations between 9,131,795 

SNPs (561,216 genotyped) and CUVAF. In this cohort, reported time spent outdoors 

had a correlation with CUVAF (r=0.19 p<0.001). Hence, it was included as a 

covariate along with age and gender for 661 individuals who remained in the 

analysis. Inverse variance weighted meta-analysis with common SNPs imputed in 

both cohorts (n = 5,003,381) was conducted using METAL [232]. Gene-based 

analysis was performed using Versatile Gene-based Association Study (VEGAS) 

[30] with the combined SNP p-values of the RAINE and TEST/BATS analyses as 

input along and the default parameters.  

Results 

After QC, 590 participants of 295 families from TEST/BATS and a total of 661 

unrelated participants from the Raine Study had complete data available and were 

included in this current study. Characteristics of these three groups are displayed in 

Table 1. The age range varied between the cohorts, with the mean (range) age 

being 12 (5-51), 19 (13-28) and 20 (18-22) years in the TEST, BATS and Raine 

Study respectively. While there were more female (55% and 57%) participants in the 

TEST and BATS, more male participants (52%) participated in the Raine Study. 

Gender and age were correlated to CUVAF, correlation coefficient (r) being -0.09 

(p=0.001) and 0.07(p=0.013) respectively in the pool of three cohorts.   
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Effect of latitude in distribution of CUVAF 

CUVAF levels of two twin cohorts were compared based on their geographical 

locations.  Of the 590 individuals, 146 were from Tasmania (Hobart latitude =42.88° 

S) and 444 from Queensland (Brisbane latitude = 27.47° S). The median CUVAF 

was higher in individuals from Queensland (45.41 mm2, interquartile range [IQR]: 

26.77, 68.50) compared to individuals from Tasmania (28.74mm2, IQR: 15.01, 

42.34)(p<0.001). To ensure that this difference was not present due to confounding 

effect of a difference in age and gender distribution within the two twin cohorts, we 

adjusted CUVAF for age and gender prior to comparison. The difference remained, 

with median CUVAF being 43.36 mm2 (IQR: 26.54, 66.69) in individuals from 

Queensland and 30.90 mm2 (IQR: 18.96, 47.31) in individuals from Tasmania 

(p<0.001). Moreover, a similar difference was present when the analysis restricted to 

younger twin pairs (10-20 years old) (BATS: 47.43 mm2 [IQR: 27.92, 66.4] vs TEST: 

37.53 mm2 [IQR: 23.64, 48.53]; p=0.006). 

 

CUVAF heritability 

Of the 295 twins pairs included in the analysis, 150 (50.8%) were MZ twins. The 

pairwise correlation coefficient of CUVAF was 0.88 for MZ twins and 0.70 for DZ 

twins. The slightly higher correlation of MZ twins suggests a stronger common 

environmental contribution for the phenotype variance, compared with the genetic 

contribution under a classical twin model. This observation was confirmed by 

univariate model fitting. The best-fit model was an additive genetic, common 

environment and unique environment (ACE) model adjusted by age and gender. 

With this model, we estimated the variation explained by the additive genetic 

component to be 0.37 (95% confidence interval [CI], 0.22-0.56) while the common 

environment component explained 0.5 (95%CI, 0.29-0.71) of the variability of the 

trait. 

 

Genome-wide association (GWA) 

A genome-wide significant locus rs1060043 at (p=3.193x10-8) and suggestive loci 

are shown in Figure 1 and summarized in Table 2. The effect size of the CUVAF 

increasing allele was 11.34 mm2 per copy. Figure 2 shows the region around the 

rs1060043 locus. The top ten CUVAF-associated genes obtained from the gene-
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based test using VEGAS and SNP meta-analysed p-value estimates are displayed in 

Table 3. 

Discussion 

A strong relationship between CUVAF and sun-related ocular damage has been 

reported previously [227, 231] suggesting that it could serve as a useful biomarker of 

ophthalmohelioses. In this study, we investigated the genetic characteristics of 

CUVAF. Given the possible confounding effect of geographical location of CUVAF, 

we initially explored the levels of CUVAF over two geographical regions defined by 

latitude in two ethnically homogeneous, European ancestry twin cohorts and 

identified lower amounts of CUVAF in individuals from lower ambient UVR region 

(Tasmania). Although previous studies report individuals from a higher ambient UVR 

region (Brisbane) spent less time outdoors compared to other regions of Australia 

including Tasmania, it must be noted that the intensity of UV exposure in Tasmania 

is lower [233]. The finding of higher CUVAF levels in Brisbane is consistent with 

previous work by Wlodarczyk et al. who reported Queensland as having double the 

pterygium surgical rate per 100,000 when compared to Tasmania [234]. Thus, 

pterygium may well be a sensitive indicator of UV exposure, since the cornea 

focuses peripheral incident light approximately twenty fold onto the usual limbal 

location of pterygia [224].  

 

We assessed heritability of CUVAF and have shown additive genetic effect is 

responsible for up to 37% of the variance of detected CUVAF amounts indicating 

genes are a significant contributor to variation in CUVAF. This present finding 

corroborates earlier evidence showing that the tendency to develop pterygium may 

be inherited [235-237]. Interestingly, Hecht [235] identified eleven early onset 

pterygium cases in two generations resident mainly in the Midwestern USA, without 

known extreme environmental insult, and suggested a genetic-environmental model 

for pterygium two decades ago. There is also increased susceptibility to pterygium 

development in genetic conditions in which there are abnormal DNA repair 

mechanisms [238] such as xeroderma pigmentosum [239], porphyria cutanea tarda 

[240], polymorphous light eruption and possibly Cockayne syndrome [241]. 
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To further understand the genetic contribution to development of CUVAF, we 

conducted a GWAS in both twin cohorts and the Raine Study. The meta-analysis of 

GWAS allowed the identification of a significant association of rs1060043, which is 

located 800bp upstream of the solute carrier Family 1 (Neutral Amino Acid 

Transporter), Member 5 (SLC1A5) gene on 19q13. SLC1A5 is a peptide transporter 

gene expressed in retinal Muller cells and also serves as an effluxer of D-serine 

agonist in NMDA receptor sites [242]. Many of the genes that belong to SLC1 gene 

family and SLC families have been detected in human cornea, rabbit cornea and 

corneal epithelium cells (SLC1A4, SLC6A14, SLC7A5) [243-245]. Variants in 

SLC45A2 and SLC24A4 influence pigmentation traits including iris color [246]. The 

particular SNP identified in this study gives rise to a synonymous codon that is highly 

conserved in zebrafish and among multiple mammalian species including rhesus 

monkeys, chimpanzees, cattle and dogs suggesting that this gene has a critical 

function in mammals. The only locus in the best VEGAS pathway result was 

C3orf58. This gene and none of the other genes identified in the gene-based 

analysis had an ocular function.  

 

The present study was designed to investigate whether genetic and environmental 

factors play a role in the development of CUVAF. This investigation had three 

important results. Firstly, individuals living in areas with higher UV radiation are more 

likely to have increased CUVAF. Secondly, although CUVAF was primarily caused 

by environmental factors, genetic factors also play a role in its development. Finally, 

a susceptibility locus related to CUVAF was detected. Although the study 

successfully demonstrated these findings, certain limitations in terms of its design 

and sample size must be acknowledged. For example, the environment of older 

twins varies, possibly due to relocation, compared to young twin pairs growing up 

together. Therefore inclusion of older adult twin pairs may have caused a selection 

bias when comparing the role of environment in presentation of CUVAF. On the 

other hand, when the analysis was restricted to younger twins, the effect of latitude 

on CUVAF remained the same. Thus this indicated that the effect of older individuals 

was minimal on representation of the young twin pairs in the current study. 

Moreover, a common limitation of single GWASs is being underpowered. Both our 

twins and singleton discovery cohorts were very limited in sample size that resulted 
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in detection of inconsistent signals in individual cohort analysis. This issue was 

overcome by performing a meta-analysis which resulted more reliable outcomes. 

Overall, the current findings add to a growing body of literature contributing tothe 

understanding of CUVAF development. Further research investigating the role of 

genetics and the environment would assist in identifying individuals who are 

predisposed to ocular sun damage to recommend personalised health messages.  
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Figure 3.1. Manhattan plot of the meta-analysis association p-values for conjunctival 

UV autofluorescence (CUVAF). SNPs based on chromosomal position vs logarithm 

of the p-values. Red line denotes the genome-wide significance (p<5x10-8). SNPs 

above the blue line represent the suggestive loci. 
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Figure 3.2. Association of variants at the SLC1A5 locus. P values (-log10) of SNP 

association with conjunctival UV autofluoresnce in the meta-analysis are plotted 

against their positions at the SLC1A5 locus.SNPs are colored to display their linkage 

disequilibrium (LD) with rs1060043. 
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Table 3.1. Demographic characteristics of Conjunctival UV autofluorescence (CUVAF) study participants. 

 TEST BATS Raine Study 

Number of participants 146 444 661 

Number of families 73 222 661 

Mean age in years 

(range) 

12 (5-51) 19 (13-28) 20 (18-22) 

Number of MZ vs DZ 

twins 

26/47 124/98 - 

Gender (%females) 55% 57% 48% 

Median CUVAF (IQR) 28.7 (15.0,42.3) 45.4 (26.7,68.5) 44.2 (20.3,69.8) 
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Table 3.2. Top five loci associated with conjunctival UV autofluorescence (CUVAF). 

    TEST/BATS Raine Study Meta-analysis 

SNP CH

R 

Closest 

Locus 

A1/A2 Effect SE p-value Effect SE p-value Effect SE p-value 

rs1060043 19 SLC1A5 A/G 7.32 2.70 0.006 16.71 3.13 1.37x10-7 11.34 2.05 3.19x10-8 

rs1558253 17 SPAG9/NME1 T/G -20.89 3.89 8.47x10-8 -8.92 5.38 0.097 -16.78 3.16 1.09x10-7 

rs990320 3 C3orf58 T/C -6.97 2.02 0.00058 -7.13 1.90 0.00019 -7.06 1.39 3.64x10-7 

rs7309814 12 HDAC7 C/G 16.89 4.56 0.00021 12.91 3.54 0.00062 13.97 2.80 6.19x10-7 

rs1213 9 MSANTD3 T/C -34.68 10.91 0.0014 -35.53 9.27 0.00014 -35.18 7.07 6.51x10-7 
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Table 3.3. VEGAS pathway analysis results for the ten most significant genes associated with conjunctival UV autofluorescence 

(CUVAF). 

Chromosome Gene Numbe

r of 

SNPs 

Start 

Position 

Stop 

Position 

Test 

Statistic 

p-value Best-SNP SNP p-value 

3 IQCF3 32 51837608 51839916 260.975 7.80x10-5 rs9836804 6.77x10-6 

8 PXMP3 110 78055048 78075079 518.863 7.90x10-5 rs7008266 8.26x10-6 

10 ARMETL

1 

81 14901256 14919989 354.384 1.37x10-4 rs2688849 1.02x10-5 

14 TRMT5 62 60507919 60517535 285.471 1.77x10-4 rs1012995

2 

5.68x10-3 

9 FANCC 152 96901156 97119812 943.041 1.78x10-4 rs4647558 3.57x10-5 

10 HSPA14 73 14920266 14953746 339.968 1.79x10-4 rs2688849 1.02x10-5 

3 C3orf58 105 14517360

2 

14519389

5 

1003.223 2.18x10-4 rs1075113 3.37x10-6 

16 SNX20 72 49264386 49272667 455.891 2.60x10-4 rs6500327 4.40x10-5 

10 SLIT1 277 98747784 98935673 1073.202 2.65x10-4 rs2636813 1.13x10-5 

1 CD1A 63 15649055

0 

15649468

2 

433.266 4.28x10-4 rs614164 2.91x10-4 
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Abstract 

The prevalence of myopia has reached alarming levels. Numerous studies have 

shown a strong association between less time spent outdoors and incidence of 

myopia. Recently, some studies showed a negative association between vitamin D 

(25(OH)D) levels and myopia. However, correlation does not imply causation. In this 

work we assess the causal role of 25(OH)D levels on the degree of myopia. To this 

end, we performed a Mendelian Randomization (MR) analysis using results from a 

meta-analysis of refractive error (RE) genome-wide association study (GWAS) that 

included 37,382 and 8,376 adult participants of European and Asian ancestry 

respectively, published by the CREAM consortium. Individual level data were 

available from the TwinsUK study (N=484). We used four single nucleotide 

polymorphisms (SNPs) in the DHCR7 and CYP2R1 genes with known effects on 

25(OH)D concentration as instrument variables (IV). We estimated the causal effect 

of 25(OH)D on myopia level using a Wald-type ratio estimator based on the effect 

estimates from the CREAM GWAS. The estimated combined effect attributed to the 

4 SNPs was 0.02 (95% CI: -0.06, 0.1) diopters (D) per 10 nmol/L increase in 

25(OH)D concentration in Caucasians and -0.1 (95% CI: -0.26, 0.05) D per 10 

nmol/L increase in Asians. The IVs were associated with 25(OH)D but not with the 

potential confounders, education, socio economic status, smoking and body mass 

index (P>0.05) in TwinsUK. Our study adds evidence that vitamin D is not directly 

involved with myopic refractive error as individuals genetically predisposed to lower 

25(OH)D levels were not more myopic than expected. 
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Introduction 

Myopia is the most common type of refractive error (RE). Its prevalence has notably 

increased worldwide in the past two decades, particularly in East Asian populations 

[247, 248].   

 

Despite many international efforts, because of its complex nature the causes of 

myopia are not yet well understood [117, 118]. Numerous studies [123-129] have 

found that time spent outdoors is inversely associated with myopia development and 

a number of mechanisms have been proposed to explain this potential protective 

effect. One hypothesis is that time spent outdoors translates into less time 

performing near work activities, which may promote eye elongation as a 

compensatory mechanism to accommodation-induced defocus [130-132]. However, 

some studies have shown that the effect of time outdoors in the development of 

myopia is independent of the effect of near work activities [249-251]. Another 

hypothesis suggests that bright light enhances retinal dopamine release, which may 

suppress axial elongation [133, 134]. More recently, a few studies have proposed 

that higher vitamin D level (measured as the concentration of 25(OH)D) in serum or 

plasma reduces the risk of myopia [135-137]. However, a recent study from the 

British Avon Longitudinal Study of Parents and Children (ALSPAC) cohort found no 

evidence that 25(OH)D levels at age 10 years mediated the association between 

less time spent outdoors and higher incidence of myopia, and that the previously 

documented association between serum 25(OH)D and myopia was potentially 

confounded by time spent outdoors and the degree of sun exposure [134, 252].   

 

In this work we aimed to clarify the role of 25(OH)D levels on myopia development. 

To this end, we carried out a Mendelian Randomization (MR) analysis. MR is an 

approach used to test and estimate the causal effect between an exposure and an 

outcome[253]. It uses an instrumental variable (IV) built from genetic variants with 

known effect on the risk factor, to make a causal inference. This approach is 

considered equivalent to a “natural” randomized controlled trial (RCT), as genotypes 

are segregated randomly from parent to offspring. Because of this random 

transmission of alleles, the genotypes are not related to any of the confounders (e.g. 

sex, age, or environmental factors such as time outdoors), which usually confound 
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traditional epidemiological studies[93].  Here, we used genetic variants that are 

known to affect 25(OH)D concentrations as an IV to estimate the causal effect of 

25(OH)D on RE.   

Methods 

Instrument variables 

As IVs we used SNPs in DHCR7 (rs7944926 and rs11234027) and CYP2R1 

(rs10741657 and rs12794714) which have been consistently reported to influence 

25(OH)D levels[254-257]. Afzal et al. reported precise effect estimates (i.e. with low 

standard errors) for these 4 variants on 25(OH)D concentration in a sample of 

35,334 individuals. We used these variants in preference to others in the same 

genes (e.g. DHCR7: rs3829251, rs12785878 and CYP2R1: rs10766197, rs1562902, 

rs2060793) [257, 258] since the latter are in linkage disequilibrium (LD) with our 

chosen variants and their effects were estimated in samples of lower size. We did 

not include variants in the GC gene, which encodes a vitamin D binding protein that 

affects 25(OH)D bioavailability though not synthesis, since its effects on 25(OH)D 

are reportedly unpredictable[259, 260]. Nevertheless, in Supplementary Table 1 we 

show the association between RE and genotype for SNPs in all 3 genes (DHCR7, 

CYP2R1 and GC). 

 

Beta coefficients and standard errors quantifying the association between RE and 

genotype for the SNPs rs7944926, rs10741657, rs12794714 and rs11234027 were 

obtained from a published genome-wide association study (GWAS) meta-analysis 

from the Consortium for Refractive Error and Myopia (CREAM). Full details of this 

meta-analysis are described elsewhere [120]. In brief, the meta-analysis included 

37,382 participants from 27 studies of European ancestry and 8,376 from 5 Asian 

studies. All participants were aged 25 or older; mean age and RE (measured as 

spherical equivalent) in the European ancestry population were 55.7 (s.d.=12.3) and 

-0.1 (s.d.=0.76) respectively. Individuals of Asian ancestry had mean age of 55.8 

(s.d.=5.54) and a mean RE of -0.34 (s.d.=1.52). Descriptions of each study cohort 

included in the CREAM GWAS are in Supplementary Table 2.  Analysis of 

associations between whole genome imputed SNPs based on the HapMap 2 

reference and RE was performed using age, sex and principal components as 
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covariates (number of principal components included varied between studies). Each 

of the relevant SNPs was present in 25 or more of the European ancestry studies 

and in all the Asian studies.  

 

Due to hyperopic shifts in adults above 50 years old, and to be able to compare 

more fairly our results to those from Yazar et al, we also performed this analysis 

using data from three younger cohorts: the Brisbane Adolescent Twin Study (BATS), 

the Twin Eye Study in Tasmania (TEST) and ALSPAC. We included 3,732 

individuals from the BATS and TEST cohorts (mean age=16.90) and 3791 

individuals from ALSPAC whose RE were measured at age 15. Details of the 

genotyping and phenotyping procedures are detailed elsewhere for ALSPAC[134, 

261], BATS[185] and TEST[186].  

 

The TwinsUK adult twin registry, based at St. Thomas' Hospital in London, 

compromises over 12,000 predominantly female European ancestry twins, from 

throughout the United Kingdom [262]. Twins who volunteered were largely unaware 

of the eye studies at the time of enrolment and gave fully informed consent under a 

protocol reviewed by the local research ethics committee (EC04/015), in accordance 

with the Helsinki Declaration. RE was measured using non-cycloplegic. Spherical 

equivalent was calculated for both eyes and the mean of the two eyes was 

considered. Other phenotypes were not necessarily measured at the same time as 

spherical equivalent. The concentration of 25(OH)D was measured in serum 

(units=nanomoles/litre). Smoking status (never=0, ex-smoker=1, current smoker=2), 

years of education, and vitamin D supplementation were assessed through 

questionnaire. Body mass index (BMI) was measured during clinical assessment. 

Socioeconomic status was graded from 1 to 5 using the Index of Multiple Deprivation 

score, which is based on the individual’s place of residence in the UK. Genotyping 

was carried out using two genotyping platforms: the HumanHap300k-Duo for part of 

the TwinsUK Cohort and the HumanHap610‐Quad for the rest of the TwinsUK 

Cohort. Imputation was conducted with reference to HapMap 2 CEU population 

using IMPUTE2.  
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Statistical analysis  

A recent study showed that each of the two SNPs in DHCR7 reduced 25(OH)D 

concentrations by 2 nmol/L per allele [254]. Similarly, the variant rs10741657 and 

rs12794714 in CYP2R1 reduced 25(OH)D concentrations by 2.5 nmol/L and 3 

nmol/L respectively (Table 1) [254]. Each of the variants explained between 0.3% 

and 0.6% of the total variance in 25(OH)D concentrations[254]. The former study 

also showed that an allele score computed by summing each of the lowering alleles 

across the 4 genotypes explained 1% of the variance and that carrying the 8 

lowering alleles resulted in a reduction of around 8nmol/L of 25(OH)D. This number 

is smaller than summing the effect of each allele given that the SNPs are not entirely 

independent from each other. Based on these effect parameters and those from the 

myopia GWAS meta-analysis, we estimated the causal effect of 25(OH)D on RE 

using the Wald-type ratio estimator:𝛽̂𝑖𝑣 = 𝛽̂𝑧𝑦/𝛽̂𝑧𝑥,[93] where 𝛽̂𝑖𝑣 is the causal effect 

of vitamin D on RE, 𝛽̂𝑧𝑦 refers to the effect of the IV z (the SNP) on the outcome y 

(RE) and 𝛽̂𝑧𝑥 is the effect of the IV z on the exposure x (25(OH)D concentration). The 

standard error from this ratio estimate was approximated using the delta method[91] 

𝜎𝑧𝑦/𝛽̂𝑧𝑥. We also estimated the causal effect combining the ratio estimates of each 

variant using an inverse variance weighted model as described by Burgess et al.[92].  

 

𝛽̂𝑖𝑣𝑤 =  
∑ 𝛽̂𝑧𝑥𝛽̂𝑧𝑦𝜎𝑧𝑦

−2

∑ 𝛽̂𝑧𝑥
2 𝜎𝑧𝑦

−2
 

𝜎𝑖𝑣𝑤 = √
1

∑ 𝛽̂𝑧𝑥
2 𝜎𝑧𝑦

−2
 

 

In the TwinsUK data we had genotype data as well as sex, age, RE, 25(OH)D levels, 

BMI, smoking, vitamin D supplementation and socioeconomic status for 484 

individuals (rather than relying on summary data from the larger CREAM data set). 

We tested the three fundamental MR assumptions to ensure the validity of the IV 

[93, 253]: 1) the IV must be strongly associated with the exposure variable; 2) the IV 

is not associated with potential confounders; 3) the IV is only associated with  the 

outcome variable (RE) via the exposure (25(OH)D levels) [Figure 1]. For assumption 

1, there is very strong evidence that the 4 SNPs we selected are robustly associated 
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with 25(OH)D levels [254-256]. Additionally, in the TwinsUK Study, we showed a 

clearer association between an allele score containing these 4 SNPs and the 

25(OH)D level. To test assumption 2, we performed a series of linear regressions 

between the aggregated allele score and smoking, BMI, education and 

socioeconomic status.  Assumption 3 is difficult to test directly – however, the SNPs 

chosen play clear roles in vitamin D synthesis in the skin and metabolism in the liver 

and are unlikely to influence RE through other mechanisms.  

Results 

Using an MR approach, we investigated the causal association between 25(OH)D 

concentrations and RE, where a more negative RE indicates a higher degree of 

myopia.  

 

We first computed the causal estimate using the RE GWAS summary results (N= 

37,382 for Europeans and N= 8,376 from Asians) from CREAM [120] for the SNPs of 

interest. Based on the effects of these SNPs on 25(OH)D concentrations reported by 

Afzal et al.[254] and those reported in the RE GWAS, we estimated the causal effect 

of 25(OH)D concentration on RE to be not significantly different from 0 (i.e. the 

causal estimates βzy varied from -0.7 to 0.6 diopters (D) per 10 nmol/L increase of 

25(OH)D  depending on the IV and the 95% CI overlapped with 0) [Table 1]. The 

causal estimates in three younger cohorts of European descent (TEST, BATS and 

ALSPAC (N= 7,523)) ranged from -0.12 to 0.19 with wider standard errors [Table 1]. 

 

Given that each of the SNPs in DHCR7 and CYP2R1 explain just a small fraction of 

25(OH)D levels (0.3%-0.6%)[254], we investigated if their aggregated effect (which is 

reported to explain ~1% of the variance) had an effect on RE. We computed an 

inverse-variance weighted estimate of the causal effect combining the ratio estimate 

of each variant in a fixed-effect meta-analysis model [92]. As the SNPs within each 

gene are not independent of each other, we first computed the causal effect by 

combining the strongest SNP in each of the genes (i.e. rs7944926 and rs12794714) 

which yielded an estimate of 𝛽̂𝑖𝑣𝑤=0.05 ± 0.05 (P>0.05) for Europeans, 𝛽̂𝑖𝑣𝑤=-0.05 ± 

0.06 (P > 0.05) for the young Europeans, and 𝛽̂𝑖𝑣𝑤=-0.06 ± 0.12 (P>0.05) for Asians. 

By combining all SNPs, the estimate was again not statistically different from 0 in 
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either Europeans (𝛽̂𝑖𝑣𝑤=0.02 ± 0.04; P > 0.05), young Europeans (𝛽̂𝑖𝑣𝑤=-0.06 ± 0.05; 

P>0.05) or Asians (𝛽̂𝑖𝑣𝑤=-0.1 ± 0.08; P>0.05).  

 

The effect estimate for young Europeans (𝑒. 𝑔. 𝛽̂𝑖𝑣𝑤=-0.06 ± 0.05 D per 10nmol/L) 

was not significantly different from 0; however, it was different from the previously 

reported in Australian young adults by Yazar et al. (β=0.06 ± 0.02 D per 

10nmol/L)[135], (Pdiff=0.033 for the test of the null hypothesis of no difference 

between MR and observational estimates). Similarly, our estimates in Asians (𝛽̂𝑖𝑣𝑤=-

0.1 ± 0.08) rule out the large effects reported in observational studies in Koreans by 

Choi et al. (β=0.12 ± 0.06)[136] (Pdiff=0.035) and in Asian ancestry Australians 

reported by Yazar et al. (β=0.35 ± 0.11), (Pdiff=0.001). 

 

Finally, using individual level data from the TwinsUK study (N=484) (individual level 

data were not available within the wider CREAM study) we tested the MR 

assumptions [Figure 1]. Table 2 shows the effect estimates and partial correlations 

between the relevant SNPs and 25(OH)D level, using age, sex, vitamin D 

supplementation, smoking, BMI, education and socioeconomic status as covariates. 

Overall, the SNPs were clearly associated with 25(OH)D concentrations; the 

weakest association was observed for rs7944962 (R2=0.37%; P=0.18) and greatest 

for rs10741657 (R2=2.13%; P=1.2x10-3). The aggregated allele score was strongly 

associated with 25(OH)D levels (R2=2.38%; P=6.2x10-4). The SNPs and allele score 

were not associated with any of the potential confounders (P>0.05). Multivariable 

linear regression showed no significant association between 25(OH)D levels 

(βvitD=0.03 ± 0.03; P=0.35) and RE – however, this estimate was not significantly 

different from Yazar et al. (Pdiff=0.28). As expected, education was negatively 

associated with RE (P=0.001). Neither smoking nor BMI was associated with RE.  

Discussion 

Some observational studies have reported that individuals with lower 25(OH)D levels 

are more myopic (i.e. have a more negative RE)[135-137]. However, whether this 

association is causal or not is unclear. Here, we hypothesized that this relationship is 

not causal and is more likely to be due to the confounding effects of increased time 

outdoors. In order to test this, we used an instrumental variable approach in an MR 
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analysis, by using SNPs as an IV for 25(OH)D levels. Our results showed no 

evidence of a causal association between 25(OH)D levels and degree of RE. 

However, as it is difficult to prove that an exposure has no effect at all (e.g. the effect 

is very small to be detected), we show that if it exists it should be in the range of 

𝛽̂𝑖𝑣𝑤=0.02 (95% CI:-0.06, 0.1) diopters (D) per 10 nmol/L increase in 25(OH)D 

concentrations in Europeans,  𝛽̂𝑖𝑣𝑤=-0.06 (95% CI:-0.15, 0.04) in younger Europeans 

and 𝛽̂𝑖𝑣𝑤=-0.1 (95% CI:-0.26, 0.05) D per 10 nmol/L increase in Asians. 

 

A study from Choi et al[136] involving 2038 adolescents from South Korea showed a 

significant association between 25(OH)D concentrations and RE; however, time 

spent outdoors was not entirely accounted for (i.e. physical exercise and area of 

residence were investigated but not outdoor time). A following study[135] involving 

young adults from Western Australia also reported that participants with low 

25(OH)D3 levels were more likely to be myopic even after accounting for the effect of 

time spent outdoors and conjunctival UV autofluorescence[135]; nonetheless, 

25(OH)D3 concentration is particularly affected by the amount of sun exposure, and 

given that time outdoors is hard to measure accurately it is possible that there was 

residual confounding. Further, a study from The Avon Longitudinal Study of Parents 

and Children (ALSPAC)[134, 252] investigated the association between 25(OH)D2 

and 25(OH)D3 concentrations and myopia risk in 3677 participants. After an 

extensive analysis, they showed that 25(OH)D concentrations at age 10 years did 

not mediate the association between time spent outdoors and myopia measured at 

8-9 years and at various time points between 7 and 15 years, respectively. 

 

Whether 25(OH)D3 concentrations cause myopia could be investigated via a RCT. 

However, this is costly and not always feasible. Instead, here we use MR, which is 

considered as a natural “RCT” in 34,000 individuals to test whether vitamin D has a 

causal role on RE. A strength of MR is that it allow us to measure differences in life-

time exposure, while an RCT just describes the effect during the time of the study. 

Since we demonstrate no causal relationship over the lifetime, it is unlikely that an 

RCT over a shorter period would draw different conclusions (for this to happen, an 

unlikely series of events is required e.g. the effect of vitamin D increases cause X 

units increase in myopia for ages 5-9, followed by the effect of vitamin D increases 
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causing exactly X units decrease in myopia for some later time period, such that over 

the lifetime any causal events exactly cancel out). 

 

One of the strengths of our study is that the genetic variants we used are a robust 

proxy for 25(OH)D levels and have well understood roles in the vitamin D synthesis 

and metabolic pathway. Although these SNPs have a small effect on 25(OH)D levels 

(~8nmol/L), the underlying principle with instrumental variable analysis is that one 

intentionally carves out a small component of the overall trait variation that is not 

affected by confounding.  Here, we found no evidence for these variants being 

associated with measured confounding variables. Instrumental variable estimates in 

our first analysis took advantage of the large samples sizes (37,382 Europeans and 

8,376 Asians) of the CREAM GWAS meta-analyses and an extra sample of 7,523 

young Europeans allowing us to estimate causal effect sizes with tight confidence 

intervals. These confidence intervals are evidence that our study is well powered to 

detect very small effects[263]. Also, to the extent possible, we have tested the MR 

assumptions using data from the TwinsUK study and followed the MR reporting 

checklist [264]. In the unlikely event there is confounding due to 25(OH)D associated 

SNPs being associated with an unmeasured confounding variable (MR assumption 

2), for us to reach the conclusion we did (zero causal effect), there would have to be 

a true causal effect of 25(OH)D levels on RE which was exactly cancelled out by a 

confounding variable acting in the opposite direction and of the same magnitude 

[265]. Nevertheless, a number of limitations must be acknowledged. In the first part 

of our analysis, we did not have the actual effect estimates of the relevant genetic 

variants on the 25(OH)D levels of CREAM participants. Instead, the causal effects 

were computed using an approximation based on the effects estimated by Afzal et al 

[254] in a sample of 30,792 individuals. It must be noted any inaccuracy in estimates 

of the effect of each SNP may have caused a variation in the magnitude of our MR 

estimates. However our conclusions regarding the significance of the causal effect 

remain valid providing that the SNPs for 25(OH)D level constitute a strong 

instrument (i.e. if the SNPs are unambiguously associated with 25(OH)D level).  

 

Although the estimates of the effect size for each of our SNPs on 25(OH)D levels 

vary across different published studies (across different ancestries), the SNPs are 
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clearly significantly associated with 25(OH)D level, with the main determinant of the 

variation in effect size estimates being the small sample size in most studies 

(compared to the highly precise estimates from the 30,792 individuals in Afzal et al 

[254]). Another limitation is that it is not possible to completely rule out a very small 

but genuine effect of 25(OH)D level on myopia, particularly in Asian ancestry group.  

In summary, previous studies have shown that 25(OH)D level is a good biomarker 

for sun exposure[135, 136]. Careful analyses of 25(OH)D2 and 25(OH)D3 

concentrations in the ALSPAC study suggested that the association seen between 

myopia and 25(OH)D levels is likely to reflect an association with sun exposure 

and/or time outdoors. Our study adds evidence that vitamin D is not directly involved 

with myopic RE as individuals genetically predisposed to lower 25(OH)D levels were 

not more myopic than expected.  
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Table 4.1. Effect estimates (β) and standard errors (SE) of the instrumental variables (SNPs) on 25(OH)D concentrations based on 

[254] and refractive error based on the RE GWAS meta-analysis from CREAM [120]. βzx and βzy refers to the effect of the SNP on 

the exposure and outcome respectively and βiv shows the causal effect estimates (diopters (D) per 10 nmol/L 25(OH)D increase). 

  Vitamin D* RE Europeans N=37,382a RE Europeans < 50 years N=7,523b RE Asians N=8,376a 

SNP (IV) βzx SEzx R2 βzy SEzy βiv σiv βzy SEzy βiv σiv βzy SEzy βiv SEiv 

rs11234027 A/G -0.2 0.021 0.30% 0.014 0.022 -0.07 0.11 -0.024 0.030 0.12 0.15 0.040 0.036 -0.2 -0.18 

rs7944926 A/G -0.2 0.019 0.40% -0.011 0.018 0.06 0.09 -0.038 0.025 0.19 0.13 0.020 0.042 -0.1 -0.21 

rs10741657 G/A -0.25 0.015 0.50% 0.007 0.017 -0.03 0.07 0.034 0.021 -0.14 0.08 0.024 0.05 -0.1 -0.20 

rs12794714 A/G -0.3 0.022 0.60% -0.015 0.016 0.05 0.05 0.036 0.021 -0.12 0.07 0.015 0.042 -0.05 -0.14 

rs7944926+rs12794714 - - 1% - - 0.05 0.05 - - -0.05 0.06 - - -0.06 0.12 

All combined - - 1% - - 0.02 0.04 - - -0.06 0.05 - - -0.1 0.08 

 

*Effect estimates were extracted from Azfal et al[254] 

a Effect estimates are based on those from the large RE GWAS meta-analysis from CREAM[120]. 

b Effect estimates were computed using data from individuals below 50 year old from the TEST, BATS and ALSPAC cohorts.
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Table 4.2. Association between the IVs and 25(OH)D concentrations after adjusting 

for potential confounders*. 

  TwinsUK (N=484) 25(OH)D 

SNP (IV) βzx SEzx R2 

rs11234027 A/G -6.35 3.46 0.70% 

rs7944926 A/G -3.81 2.85 0.40% 

rs10741657 G/A -8.47 2.59 2.10% 

rs12794714 A/G -5.4 2.49 0.90% 

Allele score -2.8 0.81 2.40% 

* Vitamin D supplementation, sex, age, smoking, BMI, education and socioeconomic status.  
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Figure 4.1. Mendelian randomization assumptions. 1) SNPs (instrumental variable) 

are robustly associated with 25(OH)D concentrations (exposure variable); 2) SNPs 

are not correlated with the confounders; 3) The SNPs are associated to refractive 

error (outcome variable) through their effect on 25(OH)D concentrations. 
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Supplementary Material: No evidence of a causal effect of vitamin D on myopic 

refractive error: a Mendelian randomization study. 

 

Table 4.3. Supplementary Table 1. Association between vitamin D SNPs and refractive error obtained from the genome-wide 

association study (GWAS) meta-analysis carried out by the Consortium for Refractive Error and Myopia (CREAM) [120]. 

 European Descent Asian Descent 

SNP Gene Reference 

Allele 

Other Allele Beta s.e. P-value Number 

of studies 

Beta s.e. P-value Number of 

studies 

rs10741657 CYP2R1 G A 0.007 0.017 0.691 25 0.024 0.050 0.626 5 

rs10766197 CYP2R1 A G -0.005 0.016 0.734 27 0.019 0.037 0.605 4 

rs12794714 CYP2R1 G A 0.015 0.016 0.365 26 -0.015 0.042 0.717 5 

rs1562902 CYP2R1 T C -0.011 0.016 0.480 27 -0.008 0.034 0.804 5 

rs2060793 CYP2R1 G A 0.008 0.016 0.643 27 0.023 0.050 0.638 5 

rs2282679 GC T G -0.022 0.018 0.217 28 0.039 0.039 0.324 5 

rs7041 GC C A -0.009 0.017 0.591 29 -0.007 0.035 0.840 5 

rs705117 GC T C 0.027 0.028 0.350 28 -0.051 0.036 0.158 5 

rs7944926 DHCR7 G A 0.011 0.018 0.537 27 -0.020 0.042 0.630 5 

rs11234027 DHCR7 G A -0.014 0.022 0.513 25 -0.040 0.036 0.260 5 

rs12785878 DHCR7 T G 0.010 0.019 0.600 25 -0.025 0.042 0.554 5 

rs3829251 DHCR7 G A -0.012 0.022 0.589 27 -0.037 0.036 0.296 5 
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Table 4.4. Supplementary Table 2. Description of cohorts included in the GWAS 

meta-analysis carried out by CREAM [119]. 

European Cohorts 

Study N Mean age age 

s.d. 

Mean 

SPHEQ 

SPHEQ 

s.d. 

1985 British Birth Cohort 1658 42 0 -0.96 2 

ALSPAC (Mothers) 1865 45 4.5 -0.76 2.16 

ANZRAG 402 79.9 12 -0.26 2.36 

AREDS1a1b 485 73.4 24.2 0.73 1.9 

AREDS1c 1877 67.9 4.7 0.56 2.15 

BMES 1550 73.8 7.76 0.62 2.12 

CROATIA Korcula 822 56.3 13.3 -0.15 1.6 

CROATIA Split 344 51.2 13 -1.68 1.61 

CROATIA Vis 527 56.3 13.3 -0.13 1.75 

DCCT 791 31.4 4.1 -1.47 1.8 

EGCUT 782 57.2 17.8 0.48 3.18 

ERF 2028 48.5 14.3 0.08 2.14 

FECD 412 71.5 9.2 0.14 2.49 

FITSA 98 68.1 3.7 1.54 1.7 

Framingham 1497 55.6 8.9 0.03 2.41 

Gutenberg Health Study 1 2750 55.6 10.8 -0.38 2.44 

Gutenberg Health Study 2 1143 54.8 10.8 -0.41 2.58 

KORA 1860 55.6 11.8 -0.82 7.33 

OGP Talana 627 52.6 16.3 -0.2 2.04 

ORCADES 504 57.6 13.5 0.03 2.08 

RS1 5328 68.5 8.6 0.86 2.44 

RS2 2009 64.2 7.4 0.48 2.51 

RS3 1970 60.8 5.5 -0.35 2.62 

TEST/BATS 403 38.7 13.7 -0.28 1.05 

TwinsUK 3865 53.8 11 -0.4 2.73 

WESDR 306 34.7 8.2 -1.5 2.02 

Young Finns Study 1479 41.9 5 -1.04 2.01 

Asian Cohorts 

Beijing Eye Study 578 62.1 8.8 2.45 15.73 

SCES 1723 57.5 9 -0.77 2.65 

SIMES 2273 58 10.8 -0.05 1.86 

SINDI 2108 55.8 8.8 0.01 2.14 

SP2 1694 47.7 10.8 -1.66 2.93 



- 89 - 

 

  

Assessing the Genetic Predisposition of Education 

on Myopia: a Mendelian Randomization Study 

This chapter is published as: 

 

Cuellar-Partida, G., Lu, Y., Kho, P.F., Hewitt, A.W., Wichmann, H.E., Yazar, S., 

Stambolian, D., Bailey-Wilson, J.E., Wojciechowski, R., Wang, J.J. et al. (2016) 

Assessing the Genetic Predisposition of Education on Myopia: A Mendelian 

Randomization Study. Genetic epidemiology, 40 (1), 66-72. 

 

Abstract 

Myopia is the largest cause of uncorrected visual impairments globally and its recent 

dramatic increase in the population has made it a major public health problem. In 

observational studies, educational attainment has been consistently reported to be 

correlated to myopia. Nonetheless, correlation does not imply causation. 

Observational studies do not tell us if education causes myopia or if instead there 

are confounding factors underlying the association. In this work, we use a two-step 

least squares instrumental-variable (IV) approach to estimate the causal effect of 

education on refractive error, specifically myopia. We used the results from the 

educational attainment GWAS from the Social Science Genetic Association 

Consortium to define a polygenic risk score (PGRS) in three cohorts of late middle 

age and elderly Caucasian individuals (N=5,649). In a meta-analysis of the three 

cohorts, using the PGRS as an IV, we estimated that each z-score increase in 

education (approximately 2 years of education) results in a reduction of 0.92 ± 0.29 

diopters (P=1.04x10-3). Our estimate of the effect of education on myopia was higher 

(P=0.01) than the observed estimate (0.25 ± 0.03 diopters reduction per education z-

score [~2 years] increase). This suggests that observational studies may actually 

underestimate the true effect. Our Mendelian Randomization (MR) analysis provides 

new evidence for a causal role of educational attainment on refractive error. 
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Introduction 

The global prevalence of individuals with visual impairment in 2010 was estimated to 

be 285 million, of which 15% suffer blindness and 85% low vision [266].  Uncorrected 

refractive errors accounts for 43% of the 285 million visually impaired [266]. Myopia 

is the most common refractive error and occurs when the eye cannot clearly focus 

distant objects. More severe myopia has been associated with an increased risk of 

sight-threatening conditions including retinal detachment, subretinal 

neovascularization, macular haemorrhage, dense cataract, and glaucoma [267].   

 

Myopia can often be corrected with optical aids such as spectacles, contact lenses, 

and, more recently, surgical intervention such as refractive surgery [267-270]. 

However, the high prevalence of myopia and cost of refractive care make this 

condition a significant public health concern worldwide [271].  The global economic 

cost in productivity loss from visual impairment due to uncorrected refractive errors is 

calculated to be USD$91.3 billion [272]. Also, it has been estimated that the money  

needed to educate personnel, establish and maintain refractive care facilities is 

around USD$20 billion globally [271]. 

 

Despite extensive international efforts, the causes of myopia are not yet well 

understood [117, 118]. Environmental factors related to socioeconomic status, time 

spent outdoors, near work activities and education have been consistently reported 

as being associated with myopia [117, 267, 273, 274]. Also, a growing body of 

evidence on the biological mechanisms underlying myopia suggests it results from 

complex interactions between the genetic makeup of an individual and the 

environmental exposures [268, 275-277]. 

 

Educational attainment is the most consistent environmental risk factor for myopia 

[274, 277]. Onset of myopia usually occurs during childhood, particularly during 

school years [247]. People with university-level education are 4x more likely to 

develop myopia than people with just primary education [247]. From the perspective 

of myopia epidemiology, level of education has been widely considered as a proxy 

measure for near work activity during the first three decades of life [117]. Near work 

activities, such as spending long hours in front of a computer, reading and writing, 
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are considered important environmental risk factors for the development of myopia 

[130]. Performing near work activities requires the eye to generate extra optical 

power to focus the image on the retina, causing retinal defocus and degradation, 

which could then promote eye elongation as a compensatory mechanism [130, 131]. 

An alternate hypothesis suggests that individuals with higher education spend less 

time outdoors and this is the reason for an elevated risk of myopia [267, 278, 279].  

Additional studies have found conflicting evidence regarding the near work 

hypothesis depending on the unit used to measure near work [249, 280, 281]. 

 

Recent studies have reported a gene-environment interaction between myopia 

genes and education [277, 282, 283]. It also has been proposed that a part of the 

association between education and myopia is due to pleiotropic effects (genes 

affecting both education and myopia, possibly as a result of education affecting 

subsequent myopia) [284]. A bivariate twin study has shown some evidence for a 

proportion of genetic factors influencing educational attainment and refractive error 

[274]. A large genome-wide association study (GWAS) meta-analysis estimated that 

genetic factors contribute to 40% of the variance in educational attainment [285]. The 

heritability of refractive error has been estimated to be as high as 90%  [286]. 

 

In this report we investigate the effects of the genetic predisposition of education on 

refractive error (where a more negative refractive error indicates more myopia) in 

three independent cohorts of European descent. We hypothesize that the genetic 

correlation between refractive error and level of education is due to a causal 

association. We apply a Mendelian randomization (MR) approach using polygenic 

risk scores (PGRS) of educational attainment as an instrumental variable to establish 

the causal effect of education on refractive error. MR is considered to be equivalent 

to a randomized trial in which randomization is achieved with respect to predisposing 

genotypes. As genotypes are passed-on randomly from parental to offspring 

generations, they are immune to the confounding factors frequently present in 

observational studies [287].  
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Methods 

Data 

We analysed data from three different cohorts. Samples descriptors are summarized 

in Table I. 

 

KORA 

KORA ("Kooperative Gesundheitsforschung in der Region Augsburg" which 

translates as “Cooperative Health Research in the Region of Augsburg”) was 

accessed through dbGaP (dbGaP Study Accession: phs000303.v1.p1). The 

phenotyping and genotyping information are described in more detail elsewhere 

[288-291]. In brief, between 1984 and 2001, adults from 430,000 inhabitants living in 

Augsburg and 16 surrounding counties in Germany were randomly selected and 

separated in 4 different groups (S1-S4). One of the groups (S3/F3) was utilized for 

this study as was the only group with refractive error measured as spherical 

equivalent (SPHEQ). This study includes 1,981 subjects without medical conditions 

predisposing myopia, with education and genotype data along with refractive error 

measurements. 

For each subject, eyeglass prescriptions were measured in addition to an evaluation 

by the Nikon Retinomax. Educational attainment was recorded as number of years of 

education (range 8 to 17, table I).  Genotyping was done using the Illumina 2.5M 

chip or the Illumina Omni Express chip. Samples and SNPs were excluded if they 

had a low a genotype rate (<0.98). In addition, SNPs were removed if they had low 

minor allele frequency (<0.01) or Hardy-Weinberg P-value < 10−6. The study was 

approved by the local ethics committee. Written informed consent was obtained from 

all participants before enrolment in accordance with the Declaration of Helsinki. 

 

AREDS 

The Age-Related Eye Disease Study (AREDS) was accessed through dbGaP 

(dbGaP Study Accession: phs000429.v1.p1). Detailed description of genotyping and 

phenotyping can be found elsewhere [292, 293]. In brief, AREDS participants were 

55 to 80 years of age at enrolment and had to be free of any illness or condition that 

would make long-term follow-up or compliance with study medications unlikely or 

difficult. Based on ophthalmologic evaluations, 4,757 participants were enrolled in 
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one of several categories, including a control group (AREDS 1c).  Individuals 

included in this GWAS study are all Caucasians, who do not have age-related 

macular degeneration (AMD) and were further screened to also exclude individuals 

with cataracts, retinitis pigmentosa or other retinal degenerations, colour blindness, 

other congenital eye problems, LASIK, artificial lenses, and other eye surgery. For 

this work, we included 1842 participants from the control group (AREDS 1c), with 

refractive error measurements, education survey and genotype data. Refractive error 

was measured as SPHEQ, plus baseline measures of axis, sphere and cylinder are 

available for each eye. Educational attainment was recorded on a five point scale 

(table I). Genotyping was performed using the Illumina 2.5M chip. We applied the 

same quality control for samples and SNPs as for the KORA cohort. Written 

informed consent was obtained from all participants before enrollment in accordance 

with the Declaration of Helsinki. 

 

BMES 

The Blue Mountains Eye Study (BMES) is a population-based eye disease survey in 

individuals living in the Blue Mountains region, west of Sydney, Australia. 

Genotyping and phenotyping information is found elsewhere [294, 295]. In brief, 

3,654 permanent residents aged 49 years or older participated (participation rate of 

82.4%). During 1997‐99 (BMES II A), 2,335 participants (75.1% of survivors) 

returned for examinations after 5 years. During 1999‐2000, 1,174 (85.2%) new 

participants took part in an Extension Study of the BMES (BMES IIB). BMES cross‐

section II thus includes BMES IIA (66.5%) and BMES IIB (33.5%) participants 

(n=3,509). Participants underwent an eye examination including best-corrected 

visual acuity, objective and subjective refraction, slit-lamp examination. A Humphrey 

autorefractor was used to obtain an objective refraction. SPHEQ was calculated 

using the standard formula: SPHEQ = sphere + (cylinder/2). Educational attainment 

was recorded on a six point scale (table I). From the BMES cross section II who had 

blood samples collected, DNA was extracted for 3,189 (90.1 %) participants. 

Genotyping was performed on the Illumina Infinium platform using the Human660W-

Quad, a WTCCC2 designed custom chip containing Human550 probes with 60,000 

additional probes to capture common CNVs from the Structural Variation 

Consortium[296]. We applied the same QC for the SNPs as for the other two 



- 94 - 

 

cohorts. Samples with call rate less than 95% were excluded from analysis. After 

initial QC, 2412 individuals had genotype and SPHEQ data; however, from these, 

just 1209 had education recorded. All BMES examinations were approved by the 

Human Ethics Committees of the Western Sydney Area Health Service and 

University of Sydney. 

 

Genotype data from the remaining samples in the 3 cohorts were merged to perform 

relatedness filtering so that no pair of individuals had a probability of sharing an 

identity by descent allele (IBD) of more than 20% (~ first cousins). Further, principal 

component analysis was performed together with genotype data from the 1000 

Genomes project. We removed all individuals that lay beyond >6 standard deviations 

from the 1000 Genomes northern European ancestry PC1 and PC2 centroid. The 

plot for the first two principal components after individuals removed is displayed in 

Supplementary Figure 1. Table 1 summarizes the sample sizes of each cohort after 

QC. Finally, we performed identity by state (IBS) clustering using PLINK –cluster 

which produced a single cluster, suggesting a homogeneous sample. We forced 

PLINK to generate 6 clusters but these were correlated to PC1 and adding the 

clusters as covariates did not alter our conclusions.  

 

Statistical analysis 

Given that educational attainment was coded differently in the three cohorts, it was 

transformed to z scores. Spearman correlations between educational attainment and 

refractive error were performed adjusting by sex and age.  

 

MR is a method that permits the testing of a causal effect from observational data in 

the presence of confounding factors by using genetic information with a known effect 

on the exposure as an instrumental variable (IV) [93]. There are three fundamental 

assumptions to ensure the validity of the IV estimate in MR studies [93, 253]: 1) the 

IV must be strongly associated with the exposure variable (generally an F statistic > 

10 is sufficient to ensure the validity of the IV); 2) the IV is not associated with 

potential confounders; 3) the IV is only associated with  refractive error (outcome 

variable) via educational attainment (exposure variable) Figure 1.  
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Regression coefficients summarizing the results from Genome-wide association 

studies (GWAS) are an important source of data for MR studies. Multiple variants 

from these GWAS can be combined to create a powerful IV [92]. Here, we computed 

polygenic risk scores (PGRS) of education per individual based on the educational 

attainment GWAS summary results from the Social Science Genetic Association 

Consortium (SSGAC) [285]. These GWAS summary results were recomputed from 

the original SSGAC results [285] to exclude the KORA sample which was also 

involved in that study. The PGRS [80, 297] were estimated by summing each allele’s 

estimated effect size multiplied by the number of risk alleles carried by each 

participant. We used SNPs across 12 different P-value thresholds (i.e. <1e-7, <1e-5, 

<1e-3, <1e-2, <5e-2, <1e-1, <2e-1, <3e-1, <4e-1, <5e-1), using the –score option in 

PLINK 1.9 [217]. Also, the PGRS were computed using the remaining SNPs after 

clumping for high linkage disequilibrium (clumping threshold: LD r2=0.2 at a distance 

of <1Mb from the index SNP). In order to choose the PGRS with the best fit to the 

recorded educational attainment, we performed Spearman correlation after adjusting 

education by sex, age and the first 3 principal components (derived from the 

genome-wide genotypes) through linear regression (Figure 2).  

 

We carried out the MR using a two-stage least squares (TSLS) approach with the 

ivreg function of the AER R package. In the first-stage, we predict education from the 

PGRS. In the second stage, we use the predicted values of education in a linear 

model with SPHEQ (refractive error). The ivreg function adjusts the second stage 

with the estimated residuals from the first stage to correctly account for the 

uncertainty of the predicted values of educational attainment. Age and sex were 

used as covariates. We used the Wu-Hausman test to test whether the TSLS 

estimates differed from the estimates obtained from a conventional linear regression 

between education and SPHEQ. A rejection of the null hypothesis (estimates do not 

differ) may indicate some inconsistency between conventional linear regression (i.e. 

the conventional observational study) and the TSLS which could be due to 

confounding or measurement errors. All the analyses were performed adjusting by 

sex, age and 3 principal components. Meta-analyses were performed using a 

weighted fixed-effect meta-analysis using the RMETA R package.   
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A study investigating genetic correlations showed a significant negative genetic 

correlation between attending college, obesity and smoking behavior, and a 

suggestive positive correlation with height [298]. Also, epidemiological studies have 

shown association between refractive error and anthropometric traits and smoking 

[136, 299]. In order to investigate potential pleiotropic effects, we performed a series 

of regressions between the educational attainment PGRS and BMI, height and 

smoking in the BMES cohort.  

Results 

Descriptions of the cohorts are displayed in Table I. Phenotypic correlation between 

educational attainment and refractive error (measured as the mean spherical 

equivalent, SPHEQ) for the AREDS, BMES and KORA cohorts after correcting by 

sex and age are summarized in Table II. Consistent with epidemiological studies, a 

strong negative correlation was observed in the three cohorts (ρ=-0.15 in AREDS; 

ρ=-0.06 in BMES; ρ=-0.10 in KORA) demonstrated by increased education resulting 

in more myopia. 

 

We used data from the educational attainment GWAS from SSGAC to compute 

multiple PGRS of educational attainment based on different p-value thresholds of the 

genetic association between candidate SNPs and education. Correlation estimates 

between the PGRS and educational attainment are displayed in Figure 2. The PGRS 

computed from the top 10% SNPs (17,749 SNPs) of the educational attainment 

GWAS showed the most consistent and best fit to education in the three cohorts 

(F=35.5 in AREDS, F=9.1 in BMES and F=26.8 in KORA) and hence was used as IV 

for the MR analysis (formally, the 10% of SNPs PGRS was a strong instrument, 

clearly satisfying the first MR assumption). Further, we inspected the association 

between the PGRS and SPHEQ. The PGRS was significantly associated to SPHEQ 

in the AREDS (R=-0.09; P=1.4x10-3) and BMES (R=-0.05; P=2.5x10-2) cohorts, but 

not in KORA, where we observed a smaller effect size (R=-0.03; P=0.16) (Table 3). 

 

We proceeded to perform a two-stage least squares IV analysis for the MR estimate. 

We found that each standard deviation from the mean of educational attainment 

(equals a 1 unit increase since we are working on a standardized scale, and 
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corresponds to approximately 2 years of education) decreases SPHEQ by 0.64 – 

1.33 diopters (Table IV). The IV estimates were statistically significant for the 

AREDS, but not for KORA and BMES cohorts. This is probably due to the smaller 

effect sizes seen for these cohorts and the fact that in BMES just 1209 out of 2344 

participants had education measures. Further, in order to derive the most precise 

estimate, we meta-analysed the estimates of the three cohorts to yield the more 

precise estimate of 0.92 ±0.29 diopters reduction for approximately 2 years of 

education. 

 

We observed that the causal effect estimate for AREDS was significantly higher than 

that estimated through standard observational methods (Pdiff=7.3x10-3). Provided the 

assumptions of the MR are satisfied, the MR estimate should reflect the true (i.e., 

unconfounded) effect of education on myopia. The fact that the observation study 

estimates are lower may be attributed to confounding (e.g. education in 

observational studies may be correlated with many other traits which modify myopia 

risk). Alternatively education SNPs (or SNPs in LD) may be associated with other 

traits underlying the association with refractive error. To test the latter, we 

investigated potential confounding effects using the BMES cohort where we had 

available data on smoking, height and BMI. We found no significant association 

between the PGRS or SPHEQ with height or BMI (P>0.05) (Supplementary Table 1). 

Smoking was nominally associated to the PGRS (P=0.039) but not to SPHEQ 

(P=0.129), thus it is unlikely that smoking mediates the association between the 

PGRS and SPHEQ. Further, the fact that educational attainment is difficult to assess 

accurately across studies may also have impacted results.  

Discussion 

In this Mendelian randomization study, we have estimated the causal effect of 

education on refractive error (measured as spherical equivalent) by using the genetic 

predisposition to education as an instrumental variable. As reported in 

epidemiological (observational) studies, we found a strong negative correlation 

between educational attainment and refractive error in three different cohorts. We 

also found that a genetic predictor of higher education was associated with refractive 

error. We assumed that any effect of education-associated genetic variants on other 
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traits (e.g. obesity) was only via their effect on education (IV assumption 3). We also 

assumed that the genetic risk score for education was not associated with other 

traits that may confound the association between education and myopia (MR 

assumption 2). Our MR analysis showed a significant estimate of the causal effect of 

education on SPHEQ. Nevertheless, the observed MR estimate was significantly 

higher than the ones in the phenotypic (observational) association, suggesting some 

bias in either the instrumental variable or observational analysis (or both). We used 

principal components derived from genome-wide genotypes to control for potential 

population bias in all the analyses. Also, IBS clustering did not show evidence of 

population stratification. We believe that the observed bias may be result of an 

inaccurate or noisy measure of educational attainment or confounding in the 

observational studies. It is also possible that education SNPs (or SNPs in LD) may 

be associated with other traits (pleiotropic effects) underlying the association with 

refractive error. A recent paper from Bulik Sullivan et al [298], showed a polygenic 

risk score for attending college (yes/no) was correlated with the genetic risk score for 

a range of other traits: Alzheimer’s disease, bipolar disorder, obesity, smoking and 

serum triglyceride levels. In the case of, say Alzheimer’s, it is unlikely that 

Alzheimer’s acts as a relevant mediator in the relationship between education-

associated genes and refractive errors. For smoking, there was a nominal 

association between the PGRS and smoking although since we found no association 

between smoking and refractive error, it is unlikely that our results here are 

confounded via effects on smoking. Two other variables that are possible mediators 

[299], obesity and height, were not associated to the education PGRS Also, we note 

that genetic correlations between education and the other traits described in the 

Bulik Sullivan paper are weak [298], hence are unlikely to cause a meaningful 

violation of assumption 2 (although this is difficult to test). Bulik Sullivan use college 

yes/no, which is similar to the years of education variable we use here.  

 

A possible source of bias in our estimates is the potential existence of an actual 

(unknown and/or unmeasured) pleiotropic effect of education-associated markers 

which cause myopia via pathways other than education. For this to violate MR 

assumption 3, any pleiotropic effects must not simply exist due to genetic effects 

influencing refractive error via their effect on education. One scenario would be a 
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gene (or genes) with effects on both brain size and axial length, with bigger brain 

size being associated with a greater intelligence [300, 301] and higher education, 

leading to myopia. However, this scenario is unlikely given the propagation rate of 

genetic variants and the recent dramatic increase in myopia prevalence around the 

globe. Another scenario could be that education-associated genes could be inversely 

associated with e.g., athletic prowess, which, in turn, would be associated with 

increased outdoor exposure and a reduced risk of myopia. Future research should 

account for outdoor exposure.  

 

A strength of our study is that it includes cohorts from Europe, Australia and the 

United States. However, due to modest individual sample size our results are 

strongest when combining the estimates. Our samples were all of European 

ancestry, as were the data used by the Social Science Genetic Association 

Consortium to derive the estimated SNP effects for educational attainment. 

However, as the current myopia epidemic is most marked in East Asian populations, 

it would be interesting in the future to perform this study in samples of Asian 

ancestry. Since our results indicate that observational studies may underestimate the 

true effect of education on myopia, for future studies of myopia where a correction 

for education is desired, it may be feasible to correct for a genetically derived 

education variable (particularly in scenarios where the education variable is missing 

or poorly measured). A practical limitation of this would that currently the education 

PGRS only explains 2% of the variance in the trait.  

In conclusion we have shown that the genetic predisposition of higher education is 

negatively associated with refractive error. The results of our MR analysis are 

amongst the strongest to date in support of the notion that educational attainment is 

causally related to refractive error.  Moreover, in the European ancestry samples 

studied here, the true causal effect of education on refractive error may be larger 

than predicted from the observational studies conducted to date. 
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Table 5.1. Characteristics of the cohorts. AREDS and BMES educational attainment 

is coded as the higher level awarded. KORA education level is showed as education 

years completed. Mean and standard deviation is shown for Age and spherical 

equivalent (SPHEQ). 

  AREDS BMES KORA 

N 1459 2344 1846 

Age (s.d.) 68.15 (4.80) 66.73 (8.96) 55.58 (11.77) 

Male / 

Females 

588 / 871 1327 / 1017 934 / 312 

SPHEQ (s.d) 0.51 (2.13) 0.57 (2.02) -0.28 (2.25) 

Height (s.d) - M=1.72 (0.06) F=1.59 

(0.07) 

- 

BMI (s.d) - M=27 (4), F=28 (5) - 

Smoking* - Yes=217; No=2040 - 

   Years of 

education: 

 

 

Educational* 

attainment 

1. Grade 11: 83; 1. Certificate-other: 134; 8: 168; 

2. High school: 

344; 

2. Certificate-trade: 219; 10: 789; 

3. College: 472; 3. Diploma: 596; 11: 246; 

4. Bachelors :248; 4. Bachelors: 191; 12: 146; 

5. Postgraduate: 

312; 

5. Graduate diploma: 

31; 

13: 223; 

  6. Higher degree: 38; 15: 12; 

    17: 262; 

* Numbers may not add-up due to missing data. 
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Table 5.2. Phenotypic association (i.e. observational study estimates) of education 

with spherical equivalent after adjusting by sex and age.  B+K+A represents the 

estimate of a weighted fixed-effect meta-analysis between the three cohorts. 

  N Education level ρ (s.e)  P-value Education level β (s.e) 

AREDS 1459 -0.15 (0.013) 1.9x10-9 -0.29 (0.06) 

BMES 1209 -0.06 (0.028) 1.9x10-2 -0.10 (0.06) 

KORA 1846 -0.10 (0.023) 2.1x10-6 -0.32 (0.05) 

B+K+A  -0.11 (0.012) <2.2x10-16 -0.25 (0.03) 

Abreviations: K+B+A: KORA + BMES + AREDS meta-analysis. 
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Table 5.3. Association of PGRS of education with spherical equivalent after 

adjusting by sex and age.  B+K+A represents the estimate of a weighted fixed-effect 

meta-analysis between the three cohorts. 

  N PGRS R (s.e). P-value 

AREDS 1459 -0.09 (0.015) 4.1x10-4 

BMES(all) 2344* -0.05 (0.020) 2.5x10-2 

KORA 1846 -0.03 (0.022) 1.6x10-1 

B+K+A  -0.05 (0.013) 1.4x10-4 

*Data available with genotype and spherical equivalent. 

Abreviations: K+B+A: KORA + BMES + AREDS meta-analysis. 

 

 

 

 

Table 5.4. Effect estimates from the two-stage least squares analyses using PGRS 

as an instrumental variable for education and spherical equivalent as outcome. P-

value is for the test of whether beta is significantly different from zero. P-valuediff 

corresponds to the significance of the endogeneity test (Wu-Hausman test), a 

rejection of the null hypothesis means that the beta effect estimates here are 

different from the observed (phenotypic) estimates in table II. B+K+A represents the 

estimate of a weighted fixed-effect meta-analysis between the three cohorts. 

  N  β (s.e) P-value P-valuediff 

AREDS 1459 -1.33 (0.42) 1.41x10-3 7.3x10-3 

BMES 1209* -0.87 (0.71) 2.21x10-1 2.1x10-1 

KORA 1846 -0.64 (0.45) 1.58x10-1 2.2x10-1 

B+K+A   -0.92 (0.29) 1.04x10-3 1.0x10-2 

*Data available with genotype, spherical equivalent and observed education. 

Abreviations: K+B+A: KORA + BMES + AREDS meta-analysis. 
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Figure 5.1. Mendelian Randomization assumptions. 1) Educational attainment 

polygenic risk score (instrumental variable) is robustly associated with educational 

attainment (exposure variable); 2) IV is only associated with refractive error 

(outcome variable) via educational attainment (exposure variable); 3) IV is not 

associated to the confounders. 

 

 

Figure 5.2. Polygenic risk scores (PGRS) of education predict educational 

attainment. Each bar represents the p-value threshold used to compute the PGRS of 

education. The upper panel shows the significance level of the association between 

PGRS of education and educational attainment; red dotted line represents –log10 

(0.05). Lower panel indicates the Spearman correlation estimate. 
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Supplementary Material: 

Assessing the Genetic Predisposition of Education 

on Myopia: a Mendelian Randomization Study 

 

Figure 5.3. Supplementary Figure 1. Principal Component Analysis plot of the 

BMES, KORA and AREDS together with 1000 Genomes populations.  
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Table 5.5. Supplementary Table 1. Examination of potential confounders: Height, 

Smoking and BMI in the BMES cohort. All the estimate are based on linear 

regressions except for Smoking where we apply a logistic regression. 

Formula: SPHEQ ~ Sex + Age + Height + Smoking + BMI + PGRS + PC1 + PC2 + PC3 

 Estimate s.e. Pr(>|t|) 

Sex -0.10 0.12 4.43E-01 

Age 0.04 0.01 1.04E-12 

Height -0.57 0.69 4.12E-01 

Smoking 0.21 0.15 1.57E-01 

BMI 0.00 0.01 8.44E-01 

PGRS -3727.00 1529.00 1.49E-02 

PC1 2.27 13.40 8.65E-01 

PC2 0.51 4.09 9.00E-01 

PC3 -5.88 5.22 2.60E-01 

Formula: SPHEQ ~ Sex + Age + Height + Smoking + BMI 

Sex -0.09 0.12 4.94E-01 

Age 0.04 0.01 2.68E-12 

Height -0.63 0.69 3.61E-01 

Smoking 0.22 0.14 1.29E-01 

BMI 0.00 0.01 7.98E-01 

Formula: Smoking ~ Sex + Age + PGRS + PC1 + PC2 + PC3 

Sex 0.39 0.14 5.85E-03 

Age -0.05 0.01 6.85E-09 

PGRS -5322.00 2585.00 3.95E-02 

PC1 -9.02 9.28 3.31E-01 

PC2 -5.24 6.39 4.12E-01 

PC3 5.41 7.42 4.66E-01 

Formula: Height ~ Sex + Age + PGRS + PC1 + PC2 + PC3 

Sex 0.13 0.00 2.00E-16 

Age 0.00 0.00 2.00E-16 
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PGRS 84.21 47.80 7.83E-02 

PC1 -1.20 0.42 4.36E-03 

PC2 0.06 0.13 6.15E-01 

PC3 0.29 0.16 8.06E-02 

Formula: BMI ~ Sex + Age + PGRS + PC1 + PC2 + PC3 

Sex -0.25 0.20 2.25E-01 

Age -0.07 0.01 1.26E-10 

PGRS -3725.00 3640.00 3.06E-01 

PC1 23.39 31.93 4.64E-01 

PC2 -2.57 9.80 7.93E-01 

PC3 2.21 12.50 8.60E-01 
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Abstract 

Primary open-angle glaucoma (POAG) and age-related macular degeneration (AMD) 

are leading causes of irreversible blindness. Several loci have been mapped using 

genome-wide association studies. Until very recently, there was no recognized 

overlap in the genetic contribution to AMD and POAG. At genome-wide significance 

level, only ABCA1 harbors associations to both diseases. Here, we investigated the 

genetic architecture of POAG and AMD using genome-wide array data. We 

estimated the heritability for POAG (h2g= 0.42±0.09) and AMD (h2g= 0.71±0.08). 

Removing known loci for POAG and AMD decreased the h2g estimates to 0.36 and 

0.24 respectively. There was evidence for a positive genetic correlation between 

POAG and AMD (rg= 0.47±0.25) which remained after removing known loci (rg = 

0.64±0.31). We also found that the genetic correlation between sexes for POAG was 

likely to be less than 1 (rg= 0.33±0.24), suggesting that differences of prevalence 

among genders may be partly due to heritable factors.  

Introduction 

Primary open angle glaucoma (POAG) and age related macular degeneration (AMD) 

both show strong familial aggregation [302, 303]. AMD is a progressive disease 

characterized by retinal neovascularisation or atrophic degeneration in the macular 

and accounts for more than half of all blindness worldwide [303]. POAG is the most 

common type of glaucoma in populations of European ancestry, [141] and is 

characterized by a progressive destruction of the optic nerve leading to permanent 

visual loss. Genome-wide association studies (GWAS) meta-analyses have 

identified 35 genetic loci associated to AMD [162, 302, 304, 305] that explain a major 

part of the heritability of AMD [305]. In contrast, 7 loci of relatively small effect have 

been implicated in POAG [150-154]. At genome-wide significant level only the ATP-

binding cassette transporter ABCA1 is associated with both diseases [154, 305].  

 

Quantification of the genetic contribution to disease can be estimated through the 

heritability (h2), defined as the proportion of total phenotypic variation due to additive 

genetic factors. Traditionally this was performed using known family history 

(pedigree data). With a pedigree-based method, phenotypic similarity is related to 

the expected allele sharing across the genome among family members. An 
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alternative way of measuring the genetic variance explained in ‘unrelated’ individuals 

(array heritability, h2
g) is to use information from genetic markers typed on arrays 

instead of ‘expected sharing’ among family members [8]. Estimating h2
g in ‘unrelated’ 

individuals by including all single nucleotide polymorphisms (SNPs) with even a 

small effect on disease risk can give insight into the genetic architecture of a 

disease. Yang, et al. showed one can estimate the realized genetic relationship 

between distantly related individuals from genotype data [8].  

 

In this work we estimate the proportion of variation explained, h2
g, by all markers for 

POAG and AMD in a case-control setting using a restricted maximum likelihood 

(REML) approach implemented in GCTA [306] software. We also investigated 

whether POAG and AMD share a common genetic background beyond their overlap 

with the ABCA1 locus using two methods. In the first, the genetic correlation is 

estimated from unrelated individuals without sample overlap, through a bivariate 

mixed-effects linear model [79, 306]; the second method, the cross-trait LD score 

regression, uses solely GWAS summary statistics and permits sample overlap [82, 

83]. Furthermore, using these approaches, we also investigated whether there are 

significant genetic differences between genders in POAG and AMD. Even after 

accounting for confounders such as age, men are more likely to develop POAG than 

women [141, 143]. AMD has similar prevalence in each sex although prevalence is 

higher at later ages, due at least in part to differences in life expectancy. We try to 

address whether these differences can be attributed in part to genetic factors.  

Results 

 

Using genome-wide array data of 1382 AMD and 1105 POAG cases, and 1150 

screened controls, we found that both AMD and POAG have a statistically significant 

‘polygenic’ component underlying disease risk, h2
g = 0.71 ± 0.08 and h2

g = 0.42 ± 

0.09 respectively. Autosomal h2
g estimates for the traits are shown in Table 1. After 

removing the effect of the known associated loci, the estimates of residual h2
g 

decreased from 0.42 to 0.36 for POAG. For POAG this implies the existence of many 

more common variants of small effect that collectively make a large contribution to 

genetic risk of POAG. In contrast, the h2
g explained by SNPs in AMD greatly 
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decreased from 0.71 to 0.24 after removing the known loci. We found no evidence 

for genetic contribution of rare variants (MAF < 0.01) and X-chromosome (data not 

shown). 

 

The bivariate linear mixed-model analysis showed a positive but non-significant 

genetic correlation between POAG and AMD rg = 0.17 ± 0.19 [Table 2]. However, 

using the cross-trait LD score regression approach (which allows the inclusion on 

more control individuals in the analysis), we observed a suggestive genetic 

correlation between both diseases rg = 0.47 ± 0.25 and a significant overlap between 

AMD and advanced POAG rg = 0.58 ± 0.30 [Table 3]. The genetic overlap became 

more apparent once we removed the known loci rg = 0.63 ± 0.31 for all POAG vs 

AMD and rg = 0.80 ± 0.33 for advanced POAG vs AMD.  

 

Interestingly, we found that the genetic correlation between female and male POAG 

using the bivariate linear mixed model analysis was significantly lower than 1 (rg = 

0.33 ± 0.24), indicating a significant difference between genetic architecture [Table 

2]. In contrast there was not a significant difference in the genetic background 

between female and male AMD (rg = 0.71 ± 0.23) implying little or no sex specific 

genetic effects [Table 2]. Previous studies of POAG have shown that the effect sizes 

at some of the known loci are larger for advanced cases than for non-advanced 

cases. Here we found that h2
g was larger for advanced than for non-advanced POAG 

although the increase was not significant and the estimated genetic correlation was 1 

[Table 2 and Table 3].  

Discussion 

 

The estimated array heritabilities reported here differ from those of twin studies in 

two ways. First, when ‘expected sharing’ is used among (close) family members, 

both common and rare genetic variants contribute to the estimate of h2. In contrast, 

estimating the genetic relationship between ‘unrelated’ individuals only uses 

information on the portion of the genome tagged by SNPs present on the array 

used[7]. This means h2
g is a lower bound for h2. Second, twin studies typically 

sample from the general population and hence provide heritability estimates for the 
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disease up to the age at which the twins were ascertained. Twin studies generally 

ascertain individuals who are <75 years of age. In contrast, here we assume lifetime 

risk (up to age 75) to be of primary interest in our h2
g calculations.  

 

Given that rare variants are not highly correlated with common ones, their 

contribution to the GRM is limited. Because of this, we investigated the variance 

explained by creating the GRM using just rare variants on the array (MAF<0.01). The 

estimates were around 0, albeit with large standard errors. This suggests that the 

aggregate effects of the exonic variants on the arrays are not large.  

 

The bivariate linear-mixed model allows the estimation of the SNP-correlation rg 

between two traits. This correlation reflects the mean genetic correlation, meaning 

that small estimates can be the result of positive and negative correlations in 

different loci. The rg estimate between POAG and AMD was positive but non-

significant using the bivariate model, possibly due to sample size, as in this approach 

we had to randomly split the controls. However, using the cross-trait LD score 

regression approach where we could use all the controls for both diseases, we 

showed a significant genetic overlap between the diseases which extends beyond 

the known ABCA1 locus. The overlap observed between AMD and POAG was even 

greater with advanced cases; however, this could be product of our limited sample 

size of non-advanced cases. We were unable to estimate reliable genetic 

correlations using the LD-score for non-advanced POAG (due to small sample size).  

 

A potential mechanism mediating the correlation between AMD and POAG could be 

through heritable inflammatory mechanisms. Inflammatory events have been 

implicated in the development of AMD[307-310] and could affect IOP; elevated IOP 

is a major risk factor for POAG[311-313]. Our findings suggest that the observed 

overlap between POAG and AMD genetic associations at ABCA1 represents just the 

tip of the iceberg in terms of genetic overlap. Larger studies of both diseases are 

likely to uncover more polygenes, with a subset of these polygenes expected to be 

common. Characterization of these common loci may offer new insights into 

molecular pathogenesis of both diseases. 
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The difference in genetic architecture between genders in POAG suggests a role of 

hormonal mechanisms in the patho-etiology of the disease. Several studies have 

reported that estrogen plays a protective role[147, 166, 314]. In addition, our results 

come in line with a recent study in a sample from the United States in which they 

found that SNPs in the estrogen pathway were associated to POAG in women but 

not in men[164].  

 

Our findings regarding gender differences should be confirmed in subsequent 

studies as our analyses could have been hampered by our limited sample size once 

we stratified by sex. Also, although most of the test carried out in this study are 

highly correlated, some degree of multiple testing has to be acknowledged. This may 

impact our conclusions for the genders differences. 

 

In summary, we have shown for the first time the important role of common variant 

polygenes in POAG risk. We also reveal a hitherto unappreciated genetic overlap 

between AMD and POAG. These results suggest that AMD GWAS could be used to 

prioritize POAG findings below the standard genome-wide significant threshold. We 

did not find significant differences between non-advanced and advanced POAG or 

between genders in AMD. Our results showing significant genetic differences 

between the POAG male and POAG female samples could explain the difference in 

prevalence between male and female POAG. Future work on the genetics of POAG 

should contemplate sex-stratified approaches. 

 

Methods 

Data 

 

AMD cases were drawn from patients presenting to ophthalmology clinics across 

Australia (in particular the Lions Eye Institute, Western Australia; the Launceston 

Eye Institute, Tasmania; and the Flinders Medical Centre, South Australia) as well as 

from the population-based Blue Mountains Eye Study (BMES) [305, 315]. Advanced 

AMD was defined as geographic atrophy and/or choroidal neovascularisation in at 

least one eye and age at first diagnosis ≥ 50 years, and intermediate AMD was 
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defined as pigmentary changes in the retinal pigmented epithelium or more than five 

macular drusen greater than 63μm and age at first diagnosis ≥ 50 years[305]. 

 

POAG cases were drawn from the Australia and New Zealand Registry of Advanced 

Glaucoma (ANZRAG) as previously described [316]. Advanced POAG was defined 

as a reliable 24-2 Humphrey visual field visual with a mean deviation of worse than -

22dB or at least 2 out of 4 central fixation squares affected with a Pattern Standard 

Deviation of <0.5% and a cup:disc ratio of >0.95. Non-advanced POAG was defined 

as POAG related visual field loss with a corresponding optic disc appearance and 

cup:disc ratio of >0.7. Worst recorded intraocular pressure (IOP) was noted, but was 

not part of the inclusion criteria.   

 

Controls for both diseases comprised 204 healthy controls from Flinders University, 

Australia and 955 healthy individuals from the BMES. The BMES is a population-

based cohort study investigating the etiology of common ocular diseases among 

suburban residents aged 49 years or older, living in the Blue Mountains region, west 

of Sydney, Australia, during one of four surveys between 1992 and 2004[317]. All 

controls underwent a thorough ophthalmic evaluation and were confirmed to have no 

clinical signs of AMD or POAG.  

 

All individuals were genotyped on the AMD consortium custom genotyping 

array[305]. This array includes 569,645 SNPs, approximately half of which tag 

common variation across the genome whilst the remainder are primarily non-

synonymous coding SNPs (similar to those on the Illumina Exome arrays). 

 

Approval for this work was obtained from the relevant Human Research Ethics 

Committees of the University of Sydney, the Royal Victorian Eye and Ear Hospital, 

the University of Tasmania, the University of Western Australia, as well as from the 

Southern Adelaide Clinical Human Research Ethics Committee. The study was 

carried out in accordance to the Declaration of Helsinki and informed consent was 

obtained from all participants. 
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Individuals were excluded to ensure that no pairs had an estimated genetic 

relationship > 0.05 (approximately a first cousin relationship). These individuals were 

excluded to minimize the chance that the phenotypic resemblance between close 

relatives could be because of non-genetic effects (for example, shared environment). 

We also excluded individuals who were beyond 6 s.d. from the genotype principal 

components (PCs) 1 and 2 from the 1000 Genomes[44] European population centroid.  

 

Statistical analysis 

 

Estimates of variance explained by all SNPs can be biased by genotyping errors and 

we therefore applied a stricter quality control than for typical GWAS analyses (99% 

calling rate, deviation from Hardy Weinberg Equilibrium (P<1e-5) and MAF>0.0025). 

Variance explained for the X-chromosome was estimated separately from the 

autosomes. Ten PCs were calculated using GCTA –pca flag and included as 

covariates to capture variance due to population stratification.  

 

We used GCTA to calculate genetic relationship matrices (GRM): one for all variants 

in autosomes with a MAF > 0.01 (272,807 SNPs), another for all autosomes and 

variants MAF < 0.01 (32,299 SNPs) and one for the X-chromosome (6,902 SNPs). 

Both diseases were coded as binary traits (case-control status). The estimated 

variance explained was transformed from the observed scale to an unobserved 

continuous “liability” scale using a probit transformation[79]. The continuous scale is 

independent of the incidence of each category, enabling comparisons across traits or 

populations[7]. Phenotypes were modeled as a linear function of the sum of the 

additive effects due to all SNPs associated with trait-associated variants and residual 

effects. Variance components were estimated using residual maximum likelihood. For 

tests for whether a variance component is zero or not, the test is one-sided and under 

the null hypothesis the test statistic follows a 50:50 mixture of a point mass at zero 

and the χ1 distribution. One-sided tests were performed for the significance of the 

autosomal and the sex chromosome specific variance explained (h2
g) estimates. 
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Case-control studies usually have a much larger proportion of cases than do general 

populations and we hence correct for disease prevalence/lifetime risk. For late onset 

diseases such as POAG and AMD, lifetime risk increases as a person ages. To 

estimate variance explained we therefore need to specify the age which we are 

interested in. Here we assume lifetime risk to age 75 is of interest, resulting in lifetime 

risk estimates of 0.02[143] for POAG and 0.028 for AMD[143]. If older ages are of 

interest then prevalence in both cases is higher (e.g. for AMD lifetime risk to age 80 is 

0.056), resulting in higher estimates of h2
g. Similarly, if younger ages are of interest 

then the resultant h2
g are lower. 

 

To estimate the proportion of h2
g that is explained by the SNPs already identified at 

genome-wide significance levels, we re-computed the GRM with the SNPs close to 

the genome-wide significant SNPs (+/- 1 megabase either side) removed. Since 

linkage disequilibrium very rarely extends beyond this, the resultant corrected h2
g will 

not include the effect of the established risk loci. For POAG, 7 of the known loci in 

European ancestry populations (CAV1[150], CDKN2BAS[151], TMCO1[151], 

SIX1[152], ABCA1[153, 154], GMDS[154], AFAP1[154]) were removed. For AMD, we 

removed loci from 35 loci summarized in Fritsche et al.[305]. 

 

Genetic correlation measures the proportion of genetic variance that two traits share. 

To minimize confounding by shared environmental factors, we estimated the genetic 

correlation (rg) between traits of unrelated individuals using a bivariate mixed-effect 

linear model implemented in GCTA[79]. The genetic correlation is the estimated 

additive genetic covariance between traits, normalized by the geometric mean of the 

individual trait genetic variances (yielding values from -1 to +1). The additive genetic 

covariance was estimated by relating trait covariances between ‘unrelated’ individuals 

to genetic relationship estimates from genotype data. That is, information comes from 

the covariance between individuals from different sample sets (here POAG and AMD 

cases which although genotyped together, are independently ascertained samples). 

Increased covariance between traits with high genetic relationship values implies a 

positive genetic correlation between traits. To ensure no bias due to shared controls 

in the per disease analysis, controls were divided evenly and randomly (ensuring no 

overlap) between diseases.  
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We also estimated the genetic correlations using the recently developed cross-trait LD 

score regression approach[83] which requires only GWAS summary statistics and is 

not affected by sample overlap (e.g. overlap of controls). To this end, we first ran the 

genome-wide association analyses using the same samples as when computing h2
g 

per each phenotype (i.e. we make use of all the controls for each phenotype) with 

SNPs with MAF >0.01, using the 10 first PCs as covariates. Genomic inflation factor 

for these GWAS ranged from 0.99 to 1.01. We used the LD-scores estimated by Bulik-

Sullivan, et al.[82, 83] available at http://www.broadinstitute.org/~bulik/eur_ldscores/ 

that are based on the 1000 Genomes European population and estimated by 1-cM 

windows.  We then estimated the genetic correlation using the software available at 

https://github.com/bulik/ldsc with the default parameters.  

 

To investigate differences between sexes in variance of liability captured by SNPs, we 

also estimated genetic correlation between sex where male cases and male controls 

were used as the first trait, female cases and female controls as the second trait. 

Finally, in the same manner, we investigated whether there was any difference in the 

genetic component between advanced and non-advanced POAG cases.  
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Table 6.1. Estimates of proportion of variation due to common genetic variants for 

POAG and AMD. 

*Variance explained due to common genetic variance once we removed known 

associated loci for POAG[150-154] and AMD[305]. 

 

 

 

 

  

Trait NCases / 

NControls 

K 

(%) 

h2
g (s.e.) P h2

g* (s.e.) P 

AMD 1382 / 1150 2.8 0.71 (0.08) 2.20E-16 0.24 (0.09) 2.49E-03 

POAG 1105 / 1150 2.0 0.42 (0.09) 2.27E-06 0.36 (0.09) 4.04E-05 

Advanced 

POAG 

703 / 1150 2.0 0.42 (0.12) 1.35E-04 0.36 (0.12) 8.21E-04 

Non-adv. POAG 402 / 1150 2.0 0.35 (0.18) 2.52E-02 0.29 (0.18) 5.03E-02 

Female POAG 589 / 622 2.0 0.52 (0.16) 4.27E-04 0.49 (0.16) 1.00E-03 

Male POAG 516 / 528 2.0 0.66 (0.19) 1.31E-04 0.62 (0.19) 4.82E-04 

Male AMD 547 / 528 2.8 0.72 (0.20) 2.45E-05 0.34 (0.21) 4.50E-02 

Female AMD 835 / 622 2.8 0.73 (0.15)  7.24E-11 0.42 (0.15) 2.11E-03 
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Table 6.2. Estimates of genetic correlations using a bivariate restricted maximum 

likelihood approach (REML) implemented in GCTA [78]. Controls were split evenly 

and randomly between sets in order to avoid bias in the estimate. 

Set 1 Set 2 rg (s.e.) P rg
a (s.e) P 

AMD POAG 0.17 (0.19) 1.79E-01 0.16 (0.30) 2.94E-01 

AMD Adv. POAG 0.20 (0.21) 1.62E-01 0.32 (0.36) 1.78E-01 

AMD Not Adv. POAG 0.12 (0.25) 3.17E-01 -0.08 (0.41) 4.25E-01 

Not Adv. POAG Adv. POAG 1.00 (0.46) 5.00E-01b 1.00 (0.54) 5.00E-01 b 

POAG male POAG female 0.33 (0.24) 4.72E-02 b 0.25 (0.25) 9.97E-03 b 

AMD male AMD female 0.71 (0.23) 5.00E-01 b 0.14 (0.35) 5.13E-02 b 

a Estimated genetic correlation after removing known loci. For experiments involving 

only AMD or POAG only AMD or POAG loci were removed. For experiments 

involving POAG and AMD, both POAG and AMD loci were removed. 

b Significance estimate on whether rg is different from 1 (H0=1). 
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Table 6.3. Estimates of genetic correlations using cross-trait LD-score regression 

[82].  Controls for each set were the same as in Table 1, as this approach is not 

biased due to overlapping samples. 

 Set 1 Set 2  rg P rg
a  P 

AMD POAG 0.47  (0.25) 6.20E-02 0.64 (0.31) 3.90E-02 

AMD Adv. POAG 0.58  (0.30) 5.00E-02 0.80  (0.33) 1.60E-02 

AMD Non-adv. POAG 0.39  (0.46) 3.96E-01 NA NA 

Non-adv. POAG Adv. POAG NA NA NA NA 

POAG male POAG female 0.40  (0.36) 9.80E-02 b 0.58  (0.98) 5.00E-01 b 

AMD male AMD female 0.86  (1.08) 5.00E-01 b NA NA 

a Estimated genetic correlation after removing known loci. For experiments involving 

only AMD or POAG only AMD or POAG loci were removed. For experiments 

involving POAG and AMD, both POAG and AMD loci were removed. 

b Significance estimate on whether rg is different from 1 (H0=1). 
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Abstract 

Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five 

most common types of disease are high-grade and low-grade serous, endometrioid, 

mucinous and clear–cell carcinoma. Each of these subtypes presents distinct 

molecular pathogeneses and sensitivities to treatments. Recent studies show that 

certain genetic variants confer susceptibility to all subtypes whilst other variants are 

subtype-specific. Here we perform an extensive analysis of the genetic architecture 

of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 

21,233 controls from the Ovarian Cancer Association Consortium genotyped in the 

iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to 

variants tagged on arrays) of each subtype and their genetic correlations. We also 

look for genetic overlaps with factors such as obesity, smoking behaviours, diabetes, 

age at menarche, and height. We estimated the array heritabilities of high-grade 

serous disease (h2
g= 8.8 ± 1.1%), endometrioid (h2

g= 3.2 ± 1.6%), clear-cell (h2
g = 

6.7 ± 3.3%) and all EOC (h2
g= 5.6 ± 0.6%). Known associated loci contributed 

approximately 40% of the total array heritability for each subtype. The contribution of 

each chromosome to the total heritability was not proportional to chromosome size. 

Through bivariate and cross-trait LD score regression, we found evidence of shared 

genetic backgrounds between the three high-grade subtypes: serous, endometrioid 

and undifferentiated. Finally, we found significant genetic correlations of all EOC with 

diabetes and obesity using a polygenic prediction approach. 
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Introduction 

 

In developed countries, epithelial ovarian cancer (EOC) is the leading gynaecological 

malignancy with an estimated annual incidence rate of 12 per 100,000 and a poor 5 

year survival between 20% and 50% [168, 318, 319]. About 90% of invasive tumours 

in the ovary are of epithelial origin [320]. These tumours are divided into various 

histological subtypes that include: serous, mucinous, endometrioid, clear cell, 

Brenner, other minor types, as well as undifferentiated, mixed and unclassified 

carcinomas [167, 168]. Serous carcinomas can be subdivided into high-grade (90%) 

and low-grade disease (10%) [321-323].  

Each epithelial ovarian cancer histologic subtype exhibits a distinct etiologic and 

molecular pathogenesis and sensitivity to treatment (e.g., chemotherapeutic agents) 

[322, 324-327]. It has been suggested that serous carcinomas arise from the 

epithelial mucosal lining of the fallopian tube fimbriae or from endosalpingiotic 

deposits on the ovarian or peritoneal surfaces.  Clear-cell and endometrioid subtypes 

may arise from endometriotic lesions [320, 328], while mucinous tumours do not yet 

have a clear origin, though metaplastic transformation of the epithelial lining of 

ovarian inclusion cysts has been suggested. Serous carcinoma is by far the most 

deadly type of EOC, with 5-year survival of less than 20% for patients suffering from 

high-grade disease and 50% for those with low-grade disease [323]. In contrast, 

women with mucinous, endometrioid or clear-cell carcinomas tend to have better 

prognosis, with estimated 5-year survivals of 50%-60% [323, 329]. These differences 

in survival are due at least in part to the fact that high-grade serous carcinomas are 

usually detected at advanced stages of disease but the other subtypes at earlier 

stages [323, 329, 330]. 

Genetic studies have shown that around 20% of patients with high-grade serous 

cancers carry germ-line and somatic mutations in BRCA1 or BRCA2 [331, 332] 

along with somatic mutations in TP53 that are present in most tumours [178].  

Alterations in KRAS and BRAF but not TP53 have been associated with low-grade 

serous carcinomas [325, 333, 334]. Mucinous carcinomas also frequently have 

somatic mutations in KRAS [177] in addition to mutations in HER2 [324]. 

Endometrioid and clear cell carcinomas often carry somatic mutations in AR1D1A 
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and PIK3CA [335]. In addition, genome-wide association studies (GWAS) have 

found 20 common polymorphisms associated with risk of EOC [336-341]. 

Specific germ-line SNPs are commonly found in the different EOC subtypes. 

However, these variants explain only a fraction of the cases, thus it is not known 

whether or not other genetic components are shared among the subtypes. One of 

our previous studies [342] estimated the array heritability (i.e., heritability explained 

by about 200,000 genotyped SNPs but not all the genome) of all EOC to be 5.6%, 

and 8.8% for the most common EOC subtype, high-grade serous. 

Beside genetic factors predisposing to these diseases, some environmental factors 

such as smoking [169, 170] and obesity [171-173] may be associated with increases 

in risk of some subtypes of EOC. In addition, traits including achieved height [171, 

343] and diabetes mellitus [174, 175] have been positively associated to EOC. In 

contrast, some studies have shown that age at menarche [176] is inversely 

associated with risk of EOC. Evidence suggests that all these traits have heritable 

components. Genetic variation may explain as much as 80% of the total variance of 

height [8] or even 40% for smoking behaviour [344, 345]. It is possible that part of 

the heritability of EOC may be explained by the heritability of these traits, if they are 

associated with EOC risk. 

In this work, we investigate three aspects of the genetic architecture of EOC and its 

subtypes: (i) the total genetic contribution of all array-genotyped SNPs (genome-

wide, per chromosome and after accounting for known EOC associated loci); (ii) the 

genetic correlations between EOC subtypes; and (iii) the genetic correlations 

between EOC subtypes and risk factors such as obesity and smoking. To this end, 

we use genotype and risk-factor data from studies participating in the Ovarian 

Cancer Association Consortium (OCAC). We quantify genetic contributions to 

disease using genome-wide complex trait analysis (GCTA) [7, 8, 306]. Then, we 

evaluate shared genetic backgrounds between EOC subtypes and candidate risk 

factors using complementary approaches: bivariate linear mixed models [79], cross-

trait LD score regression [83] and polygenic risk prediction [297]. 

 

Methods 
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Data 

We used data from the Ovarian Cancer Association Consortium (OCAC). This 

dataset consists of custom Illumina iCOGS array genotyping of 47,630 cases and 

controls in 43 OCAC studies. Detailed description of the content of the array can be 

found elsewhere [339]. In brief, the array consists of 211,155 variants within breast, 

ovarian and prostate cancer susceptibility loci as well as candidate SNPs, SNPs 

associated with other cancers and SNPs associated with relevant quantitative traits 

such as body mass index (BMI) and the onset of menarche. 

 

We applied standard quality control (QC) for the genotype data. First, we selected 

only samples from European ancestry studies and that were within 6 s.d. from the 

genotype-derived PC1 and PC2 from the 1000 Genomes European population 

[Supplementary Figure 1]. We excluded individuals with missing genotypes in 5% or 

more of the SNPs. Likewise, we removed SNPs with call rates below 99%, minor 

allele frequencies (MAF) below 1% and SNPs that deviated from Hardy-Weinberg 

equilibrium at P<0.0001 [346]. Further, given that our analytic methods are sensitive 

to relatedness (e.g., results may be biased by common environmental factors in 

relatives) we removed individuals such that no sample pairs had identity by descent 

(IBD) > 10% (i.e., less than second cousins), giving more priority to keeping cases 

than controls. In concordance with one of our previous work [342], we focused only 

on those with invasive EOC tumours. In total, 10,014 EOC cases and 21,233 

controls met these criteria and were genotyped for 195,183 SNPs. The number of 

cases according to histologic subtype are displayed in Table 1. The numbers of initial 

cases and controls per study are summarized in Supplementary Table 1. 

 

Analysis  

We estimated the variance explained by all SNPs in the array (h2
g) [7], the variance 

after removing known loci, and the variance explained by each chromosome for each 

of the EOC subtypes. We used GCTA to calculate one genetic relationship matrix 

(GRM) for all autosomes.  

The estimated variance explained was transformed from the observed scale to an 

unobserved continuous “liability” scale using a probit transformation [7] taking into 
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account the disease prevalence. The lifetime risk of the various EOC subtypes were 

calculated as the lifetime risk of ovarian cancer (~1% according to the Surveillance, 

Epidemiology and End Results (SEER),   http://seer.cancer.gov/statfacts) multiplied 

by the relative proportion of each subtype according to SEER program DevCan 

database (http://surveillance.cancer.gov/devcan/canques.html) in all ovarian cancer. 

Given that around 90% of ovarian cancers are of epithelial origin, we used 0.9% as 

the prevalence for all EOC. As h2
g, is derived solely from the SNPs tagged on the 

genotyping array instead of the whole genome, it provides a lower bound on 

heritability estimates [346]. Phenotypes were modeled as a linear function of the sum 

of the additive effects due to all SNPs associated with trait-associated variants and 

residual effects. Variance components were estimated using residual maximum 

likelihood (REML) [8]. For tests of whether a variance component is zero or not, the 

test is one-sided and under the null hypothesis that the test statistic follows a 50:50 

mixture of a point mass at zero and the χ1 distribution [8, 306]. One sided p-values 

were calculated to estimate statistical significance. Likewise, To estimate the 

proportion of h2
g that is explained by the known loci (WNT4, RSPO1, SYNPO2, 

GPX6, ABO, ATAD5, C19orf62, CMYC, TIPARP, BNC2, ARHGAP27, TERT, 

RAD51B/C/D, BRIP1, BARD1, PALB2, NDN, CHMP4C, MLLT10, HNF1B, BRCA1, 

BRCA2, KRAS, TP53, HER2, AR1D1A and PIK3CA [336-341]), we re-computed the 

GRM with the SNPs (6,391 SNPs) close to the known loci SNPs (+/- 1 megabase 

either side) removed. 

 

Similarly, in order to investigate the genetic contributions within of each of the 

chromosomes, we computed one GRM per chromosome and performed analyses 

using REML fitting the 22 genetic variance components in the model as implemented 

in GCTA with the flag –mgrm (multiple GRMs) [347]. Given that loading 22 GRMs 

with the 21,051 controls and the cases of the various histotypes was computationally 

intractable, we assigned to each case just one control of the same study, yielding 

smaller GRMs (e.g., for high-grade Serous cancer there were 3,705 cases and 3,705 

controls). We then normalized the contribution of each chromosome by the number 

of independent SNPs (percentage) in the iCOGs array per chromosome. This 

number of independent SNPs was estimated through LD pruning using the PLINK 

command –indep 50 5 1.2, where 50 is the window size (#SNPs), 5 is the number of 

http://seer.cancer.gov/statfacts
http://surveillance.cancer.gov/devcan/canques.html
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SNPs the window can shift, and 1.2 is 1/(1-R2), where R2 is the multiple correlation 

coefficient for a SNP regressed on all other SNPs simultaneously [348]. In order to 

approximate the s.e. of the variance explained by each chromosome, we performed 

a jackknifing procedure up to 1000 times, taking 80% of the cases and 80% of the 

controls each time. Given the complexity of the sample, around 20% of the 

jackknifing repetitions did not converge within 1000 iterations so the standard errors 

were computed from just the 800 successful jackknifings. 

 

To investigate the genetic correlations between the subtypes, in order to remove 

potential biases from overlapping control samples from the different studies, we 

matched each case to 1 control of the same study, and distributed controls in such a 

way that each EOC subtype had separate sets of controls. For example, all of the 

controls for mucinous EOC were different from the endometrioid EOC controls. 

 

Genetic correlation (rg) represents the proportion of the total genetic variance that 

two traits share. In order to investigate the rg between EOC subtypes, we used two 

distinct approaches that can be applied to population-based samples. We first used 

the GRM in a bivariate mixed-effects linear model implemented in GCTA [349] to 

compute the genetic correlations between the various EOC subtypes. The estimated 

genetic correlation is the additive genetic covariance between traits, normalized by 

the geometric mean of the individual trait genetic variances (producing values from -

1 to +1). The additive genetic covariance was estimated by relating trait covariances 

between unrelated individuals to genetic relationship estimates from marker data. 

Increased covariance between traits with high genetic relationship values implies a 

positive genetic correlation between traits. In order to control for any potential effects 

of population stratification, all the analyses were performed using the first 10 

principal components (PCs) of the genotypes as covariates. Estimates are reported 

as genetic correlation ± standard error. 

 

We also used cross-trait LD score regression [83], a recently developed approach 

that is able to estimate genetic correlations using solely GWAS summary statistics 

and is not affected by sample overlap. We first ran genome-wide association 

analyses using the same samples as when computing h2
g per each EOC subtype 
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(i.e., we repeatedly made use of all of the controls for analysis of each subtype) and 

with the 10 first PCs and study site as covariates. Genomic inflation factors for these 

GWAS analyses ranged from 0.99 for mucinous cancer to 1.07 for all EOC. We used 

the LD-scores estimated by Bulik-Sullivan, et al.[82, 83] available at 

http://www.broadinstitute.org/~bulik/eur_ldscores/ which are based on the 1000 

Genomes European population and estimated within 1-cM windows.  We then 

estimated the genetic correlation using software available at 

https://github.com/bulik/ldsc with the default parameters. 

 

Genetic correlations between EOC subtypes and risk factors 

Using cross-trait LD score regression, we estimated genetic correlations between 

risk factors and EOC histotypes. To this end, we used publicly available GWAS 

summary results from the latest GWAS meta-analyses of BMI and height from the 

Genetic Investigation of Anthropometric Traits (GIANT) consortium. These analyses 

included 339,225 [350] and 253,288 [351] individuals, respectively. We also 

estimated genetic correlations using the GIANT extreme anthropometric traits GWAS 

which used obesity class 1 (BMI>30), class 2 (BMI>35) and class 3 (BMI>40) groups 

as cases, and individuals with BMI<=25 as controls, in a sample of 263,407 

individuals [352]. Genetic overlaps with age at menarche was carried out based on 

the GWAS of the Reproductive Genetics Consortium which involved 182,416 women 

[353]. Smoking behaviour genetic predisposition was approximated based on the 

Tobacco and Genetics Consortium GWAS which involved 74,053 participants [354]. 

Finally, for diabetes, we used the summary results for type 2 diabetes GWAS of the 

DIAGRAM (DIAbetes Genetics Replication And Meta-analysis) consortium, which 

involved 34,840 cases and 114,981 controls [355]. 

 

We also carried out a polygenic risk-prediction approach. This method involves the 

computation of polygenic risk scores (PGRS) of each of the risk factors and uses 

these scores to predict disease status [297]. The PGRS describes a predicted 

phenotypic value based on the genetic component and is computed by aggregating 

the magnitude of associations of many variants. These associations are estimated 

using a discovery set of subjects (e.g., for height or BMI) to identify relevant SNPs 

https://github.com/bulik/ldsc
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and estimate the magnitude of association of each, and these magnitudes or the 

number of “high-risk” alleles in each SNP are then summed to create a score. 

Subsequently, we examine the association of this score within a target subject set 

(e.g., EOC cases and controls). If the score association is significant, it implies a 

genetic correlation between the two traits. In this study, we selected variants to 

compute the PGRS based on 11 p-value thresholds (<0.00001, 0.001, 0.01, 0.05, 

0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1). Given the nature of the iCOGS array in which many 

loci have high densities of tagged SNPs, we performed linkage disequilibrium (LD) 

clumping in order to remove correlated variants (r2>0.2) within 500kb windows for 

each component of the PGRS. The computations for PGRS and LD clumping were 

performed with PLINK [348]. Finally, we standardized each of the PGRS to have 

mean 0 and variance 1 and examined their associations with the various EOC 

subtypes through logistic regression, adjusted for the first 10 PCs. 

 

Multiple testing correction 

The polygenic risk prediction approach carries a high multiple testing burden, as 

does consideration of the various histologic groups and risk factors. However, given 

that we computed 11 PGRS for each trait based on sequential p-value thresholds, 

our statistics are not independent. In order to estimate the real number of 

independent hypotheses, we computed the correlation matrix of all the PGRS used 

in this study and fed this into a Matrix Spectral Decomposition (matSpD) algorithm 

[356], to estimate the number of independent variables. This algorithm provides an 

equivalent number of independent variables in a correlation matrix, by examining the 

ratio of the observed eigenvalue variance to its theoretical maximum. We estimated 

the number of independent PGRS to be 35 out of the 88 PGRS. As we examined 

these 35 independent PGRS in five separate EOC subtypes (high-grade serous, 

endometrioid, clear cell, mucinous and unknown), our significance threshold for the 

polygenic risk prediction analyses was 0.05/(35*5)=.00029. 

 

Results 
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Genetic contribution of each chromosome and known loci 

Fitting a GRM computed after removing known EOC-associated loci in univariate 

mixed-effect linear models implemented in GCTA [8, 306], we found that the known 

loci contributed about 40% of the total heritability of EOC and each of the subtypes 

[Table 1]. The estimated heritability of all EOC dropped from 5.6% to 3.6% once we 

removed known EOC-associated loci from the GRM. We observed a similar 

reduction of variance explained by the polygenic component for the EOC subtypes 

high-grade serous (8.8% to 4.7%), endometrioid (3.2% to 2.0%) and clear cell (6.7% 

to 4.6%) [Table 1]. Interestingly, in contrast to grade 1 and grade 2 (G1/G2) 

endometrioid where the heritability did not drop substantially (4.4% to 3.7%), grade 3 

(G3) endometrioid h2
g dropped from 4.9% to 0.9%. As shown previously [342], the 

heritability of mucinous cancer was not detectably different from 0. We were unable 

to perform any analyses for low-grade serous cancer given the small sample size 

(Ncases=350). We also had a set of cases with unknown EOC subtype classification; 

we expect that a high portion of these are individuals with undifferentiated high-grade 

serous, endometrioid or mixed serous EOC subtypes. For these, the heritability 

dropped from 7.0% to 4.1% after removing known loci. 

 

In order to inspect the contributions of heritability per chromosome, we computed 

one GRM per chromosome, and fitted the multiple genetic variance components into 

linear mixed models as above. We found that the chromosomal contributions were 

not proportional to the number of independent SNPs in each of the chromosomes 

[Figure 1]. For example, the contribution of chromosomes 9, 11, 17 and 19 to high-

grade serous EOC were larger than expected the 95% confidence interval 

(approximated through jackknifing 1000 times) did not overlap with 1. In contrast 

chromosomes 4, 10, 12, 14, 18 and 20 contributed less than expected. 

 

Genetic correlation between EOC subtypes 

We used the GRM as a random effect in a bivariate mixed-effects linear model 

implemented in GCTA to assess genetic heterogeneity across EOC histologic 

subtypes. Table 2 summarizes the genetic correlations between the various EOC 

subtypes. We found significant genetic overlap between high-grade serous EOC and 
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endometrioid EOC (rg = 0.63 ± 0.27 ; P=.0029). Given that high-grade serous 

disease is not infrequently misclassified as endometrioid EOC [357], we also 

estimated the genetic correlations separating (G1/G2) endometrioid disease from 

(G3). Here we found that the genetic correlation between high-grade serous and 

G1/G2 endometrioid cancer was lower (rg = 0.33 ± 0.23; P=.062) than between G3 

endometrioid and high-grade serous cancer (rg = 1.00 ± 0.83; P=.00078), suggesting 

that potential misclassification may have inflated the genetic correlation estimate 

when using all endometrioid EOC. Interestingly, we observed an appreciable but 

non-significant genetic overlap of about rg = 0.5 between low-grade endometrioid 

and clear-cell EOC. We also found that the genetic correlations between 

“unknown/unclassified” EOC and high-grade serous and high-grade endometrioid 

disease were significant and essentially 1 (rg = 1.0 ± 0.30; P=10−7 and rg = 1.0 ± 0.96 

P=.0049, respectively). The REML bivariate analyses involving Mucinous did not 

converge so did not yield any meaningful estimates. Further, removing known 

associated loci from the analyses affected the genetic correlation between 

endometrioid EOC (high and low grade) in a way that this was no longer significant 

[Table 2].  

 

Given that splitting the controls during the bivariate analyses to avoid sample overlap 

could have resulted in decreased power to detect genetic correlations; we 

complemented the genetic correlation analysis with the cross-trait LD score 

regression method, which is not biased by overlapping samples. In line with our 

results above, we found a statistically significant genetic correlation between high-

grade serous EOC and endometrioid EOC (rg =0.67 ± 0.25; P=7.4E-03), high-grade 

serous EOC and unknown EOC (rg = 0.63 ± 0.25; P=.013) and endometrioid EOC 

and unknown EOC (rg =1.00 ± 0.30; P=5.7E-04) [Table 3].  

 

Genetic overlap of EOC subtypes and associated environmental factors 

In order to investigate the genetic overlap between all EOC and age at menarche, 

BMI, obesity, smoking, height and diabetes we used the cross-trait LD score 

regression method as well as a polygenic risk-prediction approach. We did not detect 

any significant genetic correlations using cross-trait LD score regression [Table 4]. 
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However, through the polygenic risk prediction approach, we found significant 

genetic overlap (at Bonferroni P-value threshold = .00029) of all EOC with obesity 

and with diabetes [Table 5]. The genetic overlap with diabetes appeared mainly in 

association with mucinous EOC. Overall, the directions of association are consistent 

with what has been reported in observational studies [170-173], although most of 

these associations are not significant. 

 

Discussion  

 

In this work, we have investigated the genetic architecture of EOC and its different 

subtypes. Our univariate analyses show an extent of hidden heritability inherent in 

the iCOGS array, with known associated loci accounting for about 40% of the total 

array heritability for most EOC histotypes, except for high-grade endometrioid, where 

they account for most of hg
2. Is important to note that to reach these estimates we 

removed 2Mb per locus, which was done to ensure that no effect of these loci 

remained; however, this could also have inflated the estimates. We also showed that 

the hidden heritability is not spread proportionally across the chromosomes, with 

some contributing very little to the array heritability and others up to 5 times more 

than expected given their iCOGS SNP compositions. A limitation in our univariate 

experiments was that it was underpowered to compute meaningful estimates for low-

grade serous and mucinous EOC. Although we had a bigger sample size for 

mucinous EOC than clear cell EOC, the analyses could have been affected by how 

each individual study deal with mucin-producing peritoneal tumours. 

 

Using bivariate linear mixed-model and cross-trait LD score-regression approaches, 

we investigated genetic correlations between the various EOC subtypes. The 

bivariate linear mixed model provides unbiased estimates of genetic correlation and 

it requires individual genotype data in order to compute the GRM. Cross-trait LD 

score regression only requires summary results from the discovery set, and in 

contrast to the bivariate mixed-model approach, it allows sample overlap (in this 

case, overlapping controls) [83]. Whilst studies have shown shared germ-line risk 

mutations across the various EOC subtypes, these account for only a small fraction 
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of general heritability [336-341]. We found a very high genetic correlation between 

high-grade serous EOC and poorly differentiated (G3, high-grade) endometrioid 

disease, and with unknown/unclassified EOC, which represents undifferentiated 

epithelial carcinoma. These correlations seem entirely reasonable, because high-

grade endometrioid disease is sometimes misdiagnosed as high-grade serous, or 

may constitute a version of high-grade serous with slightly different differentiation. 

Undifferentiated ovarian carcinoma clinically resembles high-grade serous in 

response to treatment and in mortality. Low-grade serous, low-grade endometrioid 

and clear-cell carcinoma (which is relatively low grade) are heritability-distinct from 

the high-grade diseases and behave that way. Mucinous ovarian cancer seems to be 

a largely separate disease and has its own set of risk factors [327]. It does not 

appear to be related heritably to the other ovarian cancer histotypes. 

 

We also considered whether the heritability of EOC and its subtypes could be 

explained (at least partly) via factors such as obesity, height, diabetes, smoking and 

age at menarche. As these factors have genetic components, it is plausible that the 

heritability of EOC could reflect the heritability of a causal factor. Using cross-trait LD 

score regression, we had insufficient power to detect genetic correlations, as this 

approach is greatly affected by small numbers of SNPs and by small sample sizes. 

However, through a polygenic risk prediction approach – which, although it does not 

directly quantify genetic overlap, is powerful for detecting genetic correlations 

between traits when the discovery and target sets are well powered [81], we found a 

significant positive genetic overlap between diabetes, obesity and all EOC. This 

genetic overlap appeared to be concentrated within mucinous disease and may not 

reflect other EOC histotypes. Genetic correlation in this analysis is estimated based 

on a large number of SNPs, so it is possible that the correlations seen between 

diabetes and obesity and EOC may be mediated by an upstream phenotype (e.g. 

hormonal changes). Genetic overlap analyses between EOC and the other risk 

factors did not reveal any other significant associations. Potential reasons for this 

include small sample sizes for some of the EOC subtypes, and incomplete mapping 

of relevant variants of the risk factors (i.e., variants in the iCOGS array explain only a 

limited amount of variance of the risk factors). 
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Is important to note that our results were derived from SNPs tagged in the iCOGS 

array. Hence the numbers of SNPs included in the analyses (195,183 SNPs) are 

smaller than in a typical GWAS array. Additional analyses could be performed on 

imputed genotypes from the iCOGS data; however, the iCOGS array is not designed 

to tag the whole genome, so imputation would likely still be limited to the existing 

tagged regions. Nevertheless, this array, which included several SNPs associated 

with other cancer types as well as with relevant quantitative traits such as BMI and 

the onset of menarche [339], allowed us to establish reasonably accurate estimates 

where the target sample sizes were well powered (e.g., high-grade serous, 

endometrioid, unknown/undifferentiated, and all EOC). 

 

In summary, our results show that the major important EOC subtypes are genetically 

very homogeneous, and likely arise from a combination of known risk factors plus 

genetic contributions (beyond the known genetic predisposition mutations). This 

commonality highlights that high-grade disease could be considered a single clinical 

entity, with perhaps only minor variation between the serous, endometrioid and 

undifferentiated types. Low-grade histotypes, as well as mucinous ovarian cancer, 

likely represent more distinct pathologic variation. We also found that a great 

proportion of heritability is “missing”. Our analyses will be complemented once data 

of individuals genotyped in the OncoArray, which integrates a GWAS backbone, 

becomes available. 
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Table 7.1. Array heritabilities (h2
g) and standard errors (s.e.) for invasive EOC according to histological subtype. Results for all 

iCOGS SNPs and after removing known associated loci. Disease prevalence of EOC subtypes is calculated as the lifetime risk of 

ovarian cancer multiplied by the relative proportion of the corresponding EOC subtype. See Methods section. Bolded estimates are 

statistically significantly different from 0. 

*Loci removed: WNT4, RSPO1, SYNPO2, GPX6, ABO, ATAD5, C19orf62, CMYC, TIPARP, BNC2, ARHGAP27, TERT, 

RAD51B/C/D, BRIP1, BARD1, PALB2, NDN, CHMP4C, MLLT10, HNF1B, BRCA1, BRCA2, KRAS, TP53, HER2, AR1D1A and 

PIK3CA. 

 

 

 

 

Subtype Cases Controls Life-time 

risk 

All SNPs Removing Known Loci* 

h2
g s.e. P-value h2

g s.e. P-value 

High-grade Serous 4098 21233 0.0055 0.088 0.010 2.2E-16 0.047 0.009 1.83E-09 

Clear cell 620 21233 0.0005 0.067 0.033 0.017 0.046 0.029 0.058 

Endometrioid (all) 1342 21233 0.001 0.032 0.016 0.016 0.020 0.014 0.077 

Endometrioid G1/G2 906 21233 0.001 0.044 0.024 0.025 0.037 0.021 0.037 

Endometrioid G3 436 21233 0.001 0.049 0.046 0.127 0.009 0.041 0.417 

Mucinous 658 21233 0.0005 0.000 0.028 0.5 0.000 0.025 0.5 

Unknown 2934 21233 0.009 0.070 0.015 1.1E-10 0.041 0.012 1.1E-04 

All 10014 21233 0.009 0.056 0.006 2.2E-16 0.036 0.005 2.2E-16 
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Table 7.2. Genetic correlations between major EOC subtypes as estimated from 

iCOGS array. Lower triangular matrix shows the genetic correlation using all the 

SNPs in the iCOGS array, while the upper triangular matrix shows the genetic 

correlation after removing known associated loci. For these calculations, each case 

was matched to one control in a way that none of the subtypes share any controls. 

Analyses for mucinous and low-grade serous EOC subtypes were underpowered to 

yield reliable estimates. 

Bolded estimates are significantly different from 0. 

* Significance (P-value) where the null hypothesis rG=1. 

 

 

 

 

  

Subtype  High-grade 

Serous  

Endometri

oid (all) 

Endometri

oid G1/G2 

Endometri

oid G3 

Clear Cell Unknown 

High-grade 

Serous 

- 0.48 (0.35) 

P=0.072 

0.24 (0.30) 

P=0.21 

1.0 (2.66) 

P=0.5 

0.29 (0.42) 

P=0.24 

1.0 (0.510) 

P=5.1E-04 

Endometrioid 

(all) 

0.63 (0.27) 

P=0.0029 

- - - 0.73 (0.64) 

P=0.088 

0.50 (0.47) 

P=0.12 

Endometrioid 

G1/G2 

0.33 (0.23) 

P=0.062 

- - 0.36 (1.25) 

P=0.30* 

0.42 (0.53) 

P=0.20 

0.37 (0.41) 

P=0.18 

Endometrioid 

G3 

1.0 (0.83) 

P=7.8E-04 

- 0.42 (0.56) 

P=0.2* 

- 1.00 (1.68) 

P=0.5 

1.0 (4.44) 

P=0.5 

Clear Cell 0.28 (0.33) 

P=0.18 

0.69 (0.56) 

P=0.074 

0.52 (0.54) 

P=0.14 

0.99 (0.87) 

P=0.073 

- 0.09 (0.55) 

P=0.43 

Unknown 1.0 (0.30) 

P=1.0E-07 

0.68 (0.33) 

P=0.0082 

0.42 (0.29) 

P=0.057 

1.0 (0.96) 

P=0.0049 

0.15 (0.39) 

P=3.5E-01 

- 
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Table 7.3. Cross-trait LD score regression between EOC subtypes. Analyses for 

mucinous and low-grade serous EOC subtypes were underpowered to yield reliable 

estimates. 

  HG 

Serous 

Endometrioid Endometrioid 

G1/G2 

Endometrioid 

G3 

Clear Cell Unknown 

HG Serous - 0.82 (0.49) 

P=0.095 

0.35 (0.41) 

P=0.41 

1.0 (1.17) 

P=0.20 

- 0.46 (0.46) 

P=0.31 

Endometrioid 0.67 (0.25) 

P=0.0074 

- - - - 1.0 (0.41) 

P=0.01 

Endometrioid 

G1/G2 

0.35 (0.25) 

P=0.15 

- - 0.49 (0.70) 

P=0.47* 

- 0.85 (0.40) 

P=0.035 

Endometrioid 

G3 

1.0 (0.79) 

P=0.15 

- 0.53 (0.67) 

P=0.48* 

- - 1.0 (0.73) 

P=0.15 

Clear Cell 0.53 (0.57) 

P=0.35 

0.91 (0.80) 

P=0.26 

0.71 (0.59) 

P=0.23 

1.00 (1.06) 

P=0.29 

- - 

 

Unknown 0.63 (0.25) 

P=1.3E-02 

1.0 (0.30) 

P=5.7E-04 

0.77 (0.33) 

P=0.02 

1.00 (0.79) 

P=0.14 

0.38 

(0.53) 

P=0.47 

- 

Bolded estimates are significantly different from 0. 
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Table 7.4. Genetic correlation between risk factors and EOC subtypes using cross-

trait LD score regression. Analyses for mucinous and low-grade serous EOC 

subtypes were underpowered to yield reliable estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Reference group was individuals with BMI <=25  

 

  

  All HG Serous Endometrioid Clear Cell Unknown 

BMI 0.045 (0.07) 

P=0.52 

-0.04 (0.08) 

P=0.63 

0.18 (0.11) 

P=0.10 

-0.01 (0.16) 

P=0.96 

0.07 (0.08) 

P=0.38 

Smoking -0.34 (0.29) 

P=0.23 

-0.43 (0.33) 

P=0.20 

-0.37 (0.43) 

P=0.39 

-0.44 (0.66) 

P=0.51 

-0.17 (0.31) 

P=0.58 

Height 0.081 (0.062) 

P=0.19 

0.13 (0.09) 

P=0.15 

0.03 (0.09) 

P=0.69 

0.24 (0.17) 

P=0.17 

0.00 (0.08) 

P=0.98 

Menarche -0.07 (0.08) 

P=0.38 

-0.23 (0.13) 

P=0.06 

-0.04 (0.12) 

P=0.75 

0.32 (0.36) 

P=0.36 

0.05 (0.09) 

P=0.59 

Obesity* 

>30 BMI 

0.05 (0.09) 

P=0.58 

-0.02 (0.09) 

P=0.86 

0.26 (0.17) 

P=0.13 

-0.18 (0.26) 

P=0.50 

0.12 (0.11) 

P=0.27 

Obesity* 

>35 BMI 

0.019 (0.087) 

P=0.83 

-0.03 (0.11) 

P=0.80 

0.02 (0.18) 

P=0.90 

-0.23 (0.37) 

P=0.54 

0.17 (0.12) 

P=0.17 

Obesity* 

>40 BMI  

 

-0.02 (0.15) 

P=0.88 

-0.02 (0.17) 

P=0.92 

-0.06 (0.30) 

P=0.84 

NA 0.03 (0.19) 

P=0.89 

Diabetes 0.04 (0.12) 

P=0.75 

-0.04 (0.14) 

P=0.74 

0.04 (0.19) 

P=0.84 

-0.29 (0.38) 

P=0.45 

0.21 (0.14) 

P=0.15 
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Table 7.5. Odds Ratios corresponding to 1 standard deviation increase in the PGRS 

and significance estimates (P-values) from the polygenic risk prediction approach 

between “environmental factors” PGRS and EOC subtypes. The displayed numbers 

correspond to the best association p-value out of the 11 different PGRS which were 

derived using different p-value thresholds. In this part we used the total set of 

controls with each of the EOC subtypes. 

Bolded estimates are statistically significant (Bonferroni P-value threshold 2.9x10-4). 

*Reference group was individuals with BMI <=25  

 

  

 HG Serous  Mucinous Clear Cell Endometrioid Unknown  ALL 

Menarche 0.99 (0.54) 1.09 (0.036) 1.05 (0.2) 1.04 (0.12) 1.04 

(0.086) 

1.02 (0.17) 

BMI 1.04 (0.028) 1.05 (0.26) 1.06 (0.17) 1.07 (0.011) 1.04 

(0.068) 

1.04 (0.003) 

Smoking 1.03 (0.11) 0.93 (0.067) 0.92 (0.049) 1.04 (0.18) 0.95 

(0.0071) 

0.97 (0.019) 

Height 1.03 (0.14) 1.1 (0.015) 1.1 (0.025) 1.04 (0.17) 0.96 

(0.06) 

1.03 (0.022) 

Diabetes 1.04 (0.021) 1.18 (1.1e-

05) 

1.08 (0.067) 1.07 (0.011) 1.04 

(0.034) 

1.05 (4.1e-

04) 

Obesity 

>30BMI 

1.05 

(0.0051) 

1.06 (0.15) 1.06 (0.14) 1.04 (0.19) 1.04 

(0.032) 

1.05 (2.6e-

04) 

Obesity 

>35BMI 

1.03 (0.08) 1.05 (0.21) 0.9 (0.012) 1.02 (0.42) 1.05 

(0.028) 

1.04 (0.0053) 

Obesity 

>40BMI 

1.03 (0.15) 1.06 (0.14) 0.87 

(0.0015) 

0.96 (0.13) 1.03 

(0.19) 

0.98 (0.21) 
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Figure 7.1. Contribution to the heritability by chromosome versus expected. Black 

vertical lines show the 95% confidence intervals approximated through jackknifing up 

to 1000 times. These are only shown for those instances that do not overlap with 1 to 

facilitate visualization.  
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Supplementary Material: Assessing the Genetic 

Architecture of Epithelial Ovarian Cancer 

Histological Subtypes. 

 

 

 

Figure 7.2. Supplementary Figure 1. Genotype principal component analysis of 

OCAC samples and 1000 Genomes. X and Y axes display the number of standard 

deviations from 1000 Genomes EUR populations. Dotted lines enclose the samples 

used in this study.
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Table 7.6. Supplementary Table 1. Description of individual OCAC studies and 

case‐control sample size. *Numbers differ from Table 1 in main manuscript, as these 

ones reflect the total number before Identity by descent (IBD) <0.10 filtering. 

Study Name Count

ry 

 

Co

de 

Cont

rols 

Ser

ous 

Muci

nous 

Endome

trioid 

Cle

ar 

Cell 

HG 

Ser

ous 

Oth

er 

All 

inva

sive 

Australian Cancer Study  Austr

alia 

AC

S 

175 104 7 22 9 89 32 166 

Australian Ovarian Cancer Sutidy Austral

ia 

AO

C 

802 448 35 84 43 409 118 714 

Bavarian Ovarian Cancer Cases and 

Controls 

Germa

ny 

BA

V 

142 56 8 13 6 42 10 93 

Belgium Ovarian Cancer Study Belgiu

m 

BE

L 

1348 194 23 22 23 182 17 274 

Diseases of the Ovary and their 

Evaluation 

USA D

OV 

1119 293 18 84 29 235 136 515 

Diseases of the Ovary and their 

Evaluation       

USA DV

E 

368 233 8 64 36 200 78 389 

Germany Ovarian Cancer Study Germa

ny 

GE

R 

413 95 21 21 6 68 59 189 

Hawaii Ovarian Cancer Study USA HA

W 

156 38 3 12 5 36 2 60 

Hannover-Jena Ovarian Cancer 

Study 

Germa

ny 

HJ

O 

273 140 9 26 4 107 116 266 

Hannover-Minsk Ovarian Cancer 

Study 

Germa

ny 

H

M

O 

138 50 7 12 1 1 121 142 

Helsinki Ovarian Cancer Study Finlan

d 

H

O

C 

447 113 45 28 13 0 135 221 

Hormones and Ovarian Cancer 

Prediction 

USA H

OP 

1464 377 30 84 42 333 145 654 

Danish Malignant Ovarian Tumor 

Study 

Denm

ark 

M

AL 

828 272 42 54 33 183 53 440 

Mayo Clinic Ovarian Cancer Case 

Control Study 

USA M

AY 

10 9 0 1 0 9 0 10 

Melbourne Collaborative Cohort 

Study 

Austral

ia 

M

CC 

65 34 7 7 6 19 21 63 

MD Anderson Ovarian Cancer Study USA M

DA 

384 190 27 28 4 135 179 373 

Memorial Sloan Kettering Cancer 

Center 

USA M

SK 

593 382 0 20 18 343 73 467 

North Carolina Ovarian Cancer Study USA NC

O 

172 147 18 35 24 132 50 269 

New England Case-Control Study USA NE

C 

979 371 41 140 33 331 60 634 
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Nurses' Health Study I and II USA NH

S 

425 68 7 14 6 0 100 127 

New Jersey Ovarian Cancer Study USA NJ

O 

180 100 7 27 20 80 27 169 

University of Bergen, Haukeland 

University Hospital, Norway 

Norwa

y 

N

O

R 

370 135 15 27 11 85 87 237 

Nijmegen Ovarian Cancer Study Nether

lands 

NT

H 

323 116 33 64 20 64 52 255 

Ovarian Cancer in Alberta and 

British Columbia 

Canad

a 

OV

A 

748 344 26 103 57 0 445 631 

Polish Ovarian Cancer Study Poland PO

C 

417 199 33 39 9 0 341 422 

Polish Ovarian cancer Case Control 

Study (NCI) 

Poland PO

L 

186 21 4 10 2 15 11 42 

UK Studies of Epidemiology and 

Risk Factors in Cancer Heredity 

(SEARCH) Ovarian Cancer Study 

UK SE

A 

1196 162 38 24 28 104 71 271 

UK Studies of Epidemiology and 

Risk Factors in Cancer Heredity 

(SEARCH) Ovarian Cancer Study 

UK SE

B 

4826 11 5 5 0 4 15 29 

Southampton Ovarian Cancer Study UK SO

C 

0 102 33 62 11 72 79 267 

Family Registry for Ovarian Cancer 

AND Genetic Epidemiology of 

Ovarian Cancer 

USA ST

A 

313 154 16 32 20 135 35 251 

Familial Ovarian Tumor Study Canad

a 

TO

R 

74 8 1 7 2 0 11 21 

UC Irvine Ovarian Cancer Study USA UC

I 

367 166 19 48 23 143 32 277 

UK Ovarian Cancer Population Study UK UK

O 

1103 117 24 32 25 93 51 236 

Los Angeles County Case-Control 

Studies of Ovarian Cancer 

USA US

C 

1047 447 44 79 35 341 161 689 

Warsaw Ovarian Cancer Study Poland W

O

C 

203 132 8 20 17 131 25 202 

 Total*    2165

4 

582

8 

662 1350 621 412

1 

294

8 

100

65 
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Discussion 

8.1 General discussion 

The series of studies that comprise this thesis are examples of how examination of 

germ-line variation can produce important insights into the biology of complex traits 

and diseases. For each specific study presented, the summary of the findings, their 

meaning, study limitation and future directions were discussed in their respective 

chapters. Therefore, I take the space of this section to discuss the strengths, general 

limitations and future directions of the approaches illustrated in this thesis.  

8.2 Gene mapping studies 

The first GWAS of age-related macular degeneration in 2005 marked the first 

milestone in the GWAS era by successfully identifying two variants using only 96 

cases and 50 healthy controls [358]. Since then, progress in this area has been 

marked by advances in sequencing and genotyping technologies leading to faster, 

bigger and cheaper acquisition of genotype data. To date some of the biggest 

GWAS such as those for anthropometric traits (e.g. height and BMI) carried out by 

the GIANT consortium have included hundreds of thousands of samples, thus 

securing very precise estimates for common variants. These big studies, although 

well powered for lower frequency variants, still focus only in common variation given 

that they are tied to a genotype imputation procedure using (generally) 1000 

Genomes Project reference panels.  

 

The exome-chip association study of CCT described in chapter 2 served as an 

example of one of the limitations of the current imputation reference panels. In this 

project, we showed that an exonic variant in the gene WNT10A with a MAF of 

around 3% effectively accounted for all the variance previously seen in USP37 in a 

big CCT GWAS meta-analysis. Although our analyses couldn’t definitely prove that 

the missense variant in WNT10A is the causal variant, it is interesting to note that we 

were able to detect this variant using significantly less samples than the big CCT 

GWAS meta-analysis carried out by the IGGC [105]. One of the reasons for this, 
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beside chance or the samples used, could be that the variant tagged is or is closer to 

the causal variant and that imputation for it is difficult. This points out that in addition 

to increase sample sizes in GWAS studies, it is imperative to improve and widen the 

imputation reference panels. In this direction, very recently, the haplotype reference 

consortium (HRC) has made available its first release which includes close to 65,000 

haplotypes and around 40 million SNPs, all with a minor allele count of at least 5 

(MAF > ~0.01%). This new reference panel guarantees an improved and broader 

imputation, particularly in the lower end of the MAF spectrum. 

 

As to whether imputation using these large reference panels will be comparable (or 

better) to the use of current rare variants rare variants genotyping arrays (e.g. 

Illumina Human-Exome) is yet to be seen. As mentioned earlier in the introduction 

there have not been many successful studies using the Human-Exome array, 

possibly because (contrary from what was believed) these variants have modest-to-

weak effect sizes or the array-tagged variants are not good proxies of causal 

variants. The Illumina Human-Exome array was designed to tag rare variants 

believed to have important effects (e.g. missense and nonsense mutations); however 

the overwhelming majority of variants in the genome are rare and numerous studies 

have shown that variants in regulatory regions are the major contributors to the 

heritability [359-361]. The latter suggests that using genotyping arrays to capture 

rare variation may not be cost effective as the arrays would require tagging many 

more variants than what they currently do (e.g. Human-Exome includes ~250,000 

SNPs, with each rare variant typically only tagging a relatively small number of 

nearby SNPs). This reality argues that it may be better to stick to imputation when 

the study aim is to scan rare variants genome-wide. The latest imputation tests using 

the HRC and the UK10k reference panel report accurate imputation of variants with 

MAF >0.1% [362, 363]. Given current sample sizes, most GWAS would be 

underpowered to detect variants below that MAF anyway. In studies where the goal 

is inspecting rarer variants, different experimental designs may be useful such as 

selecting extreme phenotypes for sequencing.  

 

With the advent of studies with massive sample sizes such as the forthcoming ones 

using the UK biobank data resource with up to 500,000 genotyped (currently 
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150,000) and phenotyped individuals, those from large consortiums such as GIANT 

or those performed by direct to consumer genetic testing company 23andMe with up 

to a million genotyped individuals with diverse surveyed phenotypes, an interesting 

question is “when should GWAS stop?”. It is clear that we will reach a point where 

we are able to discern between not associated variants and variants with very tiny 

effects for some traits (certainly, this may not be true for rare diseases). Whether the 

variants with tiny effects would be somehow meaningful depends on the application. 

One possible answer is that we should stop doing GWAS once we stop detecting 

new pathways involved in the phenotype, as I heard said by Professor Matthew 

Brown during a seminar when this same question was raised. Although I agree with 

this, I believe that it just applies if the goal is to understand the biology of the trait 

(also, probably the catalogue of pathways to date is not complete). However, there 

are other applications of GWAS besides understanding the biology. For example, 

having accurate estimates of many variants with tiny effects is likely to aid the 

prediction of phenotypic values (e.g. through the computation of allelic scores). 

Nevertheless, in this direction, a limitation that should be acknowledged is that in 

contrast to Mendelian conditions, there will always be some degree of uncertainty 

when predicting complex traits, particularly in diseases with low heritability (e.g. 

epithelial ovarian cancer). In addition, although predicting differences in prevalence 

of a complex disease at a population level can greatly benefit from big GWAS of 

common variants, at the individual level looking for rare variants with high 

penetrance such as mutations in MYOC for glaucoma or BRCA1/2 for breast cancer 

so far has higher relevance for clinical applications. Another application of big GWAS 

is its use as a means to estimate genetic correlations through (for example) cross-

trait LD score regression or the possibility to assess causal relations through MR.  

8.2 Mendelian randomization studies 

Although it is undisputable that GWAS discoveries have produced invaluable insights 

into the biology of many complex traits and diseases, translation of GWAS findings is 

happening slowly. To date performing a PubMed query of “GWAS” retrieve about 

22700 different studies that have either performed GWAS or benefitted from the 

insights these have provided. Until the end of 2014, the GWAS catalogue [21] 

reports 14844 variants associated to 610 different traits.  Although these numbers 
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are likely to keep increasing, is interesting to note that we might have already passed 

the peak of GWAS studies. Investigating trends of studies in a very crude way, such 

as partitioning the number of publications with the term “GWAS or Genome-wide 

association study” by year, we can see that the proportion of studies has not 

increased meaningfully in the last 5 years [Figure 1]. In contrast, the term “Mendelian 

Randomization” has experience a steady increase in the same period. The latter is 

expected as Mendelian randomization may be one of the most simple and effective 

ways to reap what GWAS has sown in the last decade. Doing a quick inspection in 

the GWAS catalogue, there are 74 traits with the word “levels” on them (e.g. calcium 

levels, estradiol levels, folate levels, etc.) and presumably with at least one 

associated variant at the genome-wide significance level. Assuming that these 

variants are robust to the MR assumptions, these potentially could be used to assess 

the causality of these factors on many traits and diseases in studies where sample 

size allows.  

 

Figure 8.1. Trends of research topics in the last 10 years approximated by PubMed 

queries. 

 

 

Although MR can be vastly applied to many traits, so far, approximately only 607 

studies with the term are reported in the literature. As detailed in the introduction 

chapter, MR studies are hindered by many requirements such as big samples and 

hard to test (at least completely) assumptions, which make these kind of studies 

challenging to carry out. In chapters 4 and 5 of this thesis, I presented MR studies to 
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test the causal relationship of education and vitamin D levels on myopic refractive 

error. The MR of vitamin D levels detailed in chapter 4 made use of GWAS summary 

statistics of refractive error from the CREAM consortium. The greatest limitation of 

this study was the impossibility to test the MR assumptions in the complete CREAM 

sample, thus these tests were performed in a smaller sample. In this study, I found 

no support for the hypothesis that vitamin D levels have a causal relationship with 

refractive error. Although a negative result (no support of a causal relationship) is 

also subject to all the potential biases arising from violations in the assumption as 

positive results, the biases were probably very small; any real biases would have 

had to align perfectly in a way to move the effect estimate towards 0 (if there is really 

a true effect). The null association and narrow confidence intervals obtained in our 

study using SNPs with precise effects in vitamin D levels arguably provide robust 

evidence of no or very small effect of vitamin D on refractive error. 

 

The MR of education level on refractive error required to build an allelic score using 

the top 10% independent variants in order to increase the variance explained of 

education level, with the goal of increasing power for the study. The latter increased 

the probability of the instrument being related to the confounders or directly 

associated to refractive error, thus violating the MR assumptions. Although in this 

study we assessed the MR assumptions to the extent possible by examining the 

association of the allele score with potential confounders, namely smoking, BMI and 

height, the estimated causal effect appeared to be higher than the observed. After 

conditioning on education level, the allelic score remained significantly associated to 

refractive error thus raising questions on whether it was operating through education 

or other pathways. However, is worth noting that the mediator being evaluated was 

education level measured as degree attained or years of education. These measures 

do not capture all aspects of education (e.g. does not give information on actual 

amount of time spent in school, reading, etc.) that may be affecting refractive error 

hence the results presented in chapter 5 are still consistent with the possibility that 

education if taken as a whole mediates the association of the allelic score.  

 

The above is an example of how potentially inaccurate measurements of the 

exposure of interest can hamper the interpretation of MR studies. This indicates that, 
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in addition to assess the fundamental assumptions for MR, it is important to examine 

whether the exposure used accurately captures the phenotype that may mediate the 

association between the genetic variant(s) and the outcome. A similar problem can 

arise when the exposure varies with time (e.g. carrying out an MR using estrogen 

levels in elderly women as exposure, or growth hormone in adults), making it difficult 

for the genotype-exposure relationship to be captured entirely.  

 

The authors in [265] suggest that whenever the exposure measurement is unsuitable 

for an MR study, it may be better to just evaluate the association between the 

genetic variant and the outcome as once proposed in a letter by Katan [364]. Not 

pursuing defining the magnitude of effect by including the “faulty” exposure variable 

may defeat part of the purpose of MR; however, in order to obtain valid estimates, 

the MR assumptions must hold for the measured exposure available which many 

times is not completely characterized, like education level in our study.  

8.2 Genetic correlation studies 

In the forthcoming years, MR studies will keep producing valuable information about 

disease aetiology with good prospects of direct translation into the clinic. However, 

its reach has to be acknowledged. There are countless of modifiable traits for which 

suitable instruments are hard to find, and diseases which prevalence is so low that 

gathering enough data to perform a powerful MR study may not be possible. In these 

cases a possible way forward is to estimate the genetic correlation between traits.  

 

In order for two traits to present genetic correlation the direction of SNP effects must 

be consistently aligned. Multiple mechanisms can give rise to genetic correlations. 

For example, the existence of a causal relationship between the traits. Although a 

genetic correlation is not per se prove of causality, the presence of it can certainly 

give some support to such a relation. Assuming a causal relationship between a 

heritable exposure and outcome, part of the heritability of the outcome will be 

mediated through the exposure. However, without prior knowledge, this value does 

not tell anything about direction or magnitude of effect, thus in many cases the 

conservative interpretation is that the same SNPs consistently affect in the same 

(positive genetic correlation) or opposite (negative) direction both traits. Another 
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mechanism is that common genes control diverse pathways and that these have 

consistent effects in both traits.  In some extreme instances, a genetic correlation 

could be present through a parent-offspring relation. For example, a genetic 

correlation seen between cognition and height (beside metabolic processes and 

nutrients intake mechanisms) can represent the situation where parents with a 

higher IQ have a better income and thus are able to provide more nutrients to their 

children, translating into them being taller. Given that parents and offspring share 

half of their genotype, estimating the genetic correlation between height and IQ will 

be confounded.  

 

The common theme running through chapters 6 and 7 was the use of approaches to 

estimate the genetic correlation in diverse diseases. In particular, in chapter 6 we 

interrogate aspects of the genetic architecture of two age-related eye diseases, 

namely age-related macular degeneration (AMD) and primary open angle glaucoma 

(POAG). Our results suggest that variation in these diseases is partly underpinned 

by shared genetic factors. Although there is no comorbidity reported between these 

two diseases and their pathophysiology is different, there are diverse mechanisms 

that could be driving the observed genetic overlap. For example, diverse studies 

have reported that oxidative stress, inflammation and mitochondrial dysfunction are 

risk factors for both diseases [365-370]. These mechanisms are partly driven by 

genetics so it is possible to think that the observed genetic correlation can be 

mediated by them. Another interesting result in this study was the one supporting 

genetic differences between female and male POAG. Research has shown evidence 

that estrogen has protective effects against POAG potentially by promoting higher 

production of collagen fibers that increase flexibility of the eye, thus reducing IOP 

[164-166]. This could explain our findings given that genetic variation in the estrogen 

pathways may have a higher impact in women than in men.  

 

In chapter 7 I made use of the diverse approaches available to estimate the genetic 

correlation between epithelial ovarian cancer, its subtypes and potential risk factors 

(associations from observational studies). The aim of this study was to add support 

(or not) for causality of some of the risk factors and to examine whether the different 

EOC subtypes were or not genetically homogeneous. For the EOC subtypes where 
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power was enough to detect meaningful genetic correlations (high-grade serous, 

endometrioid and undifferentiated) we found that the subtypes were genetically 

highly homogenous. The estimation of genetic correlations between EOC and 

potential risk factors was consistent with causal roles for type 2 diabetes and obesity. 

Again, although the latter is not definitive, research shows that people with diabetes 

or obesity are more prone to develop EOC (among other types of cancer) but not the 

other way around, so reverse causality is improbable. However, we still cannot rule 

out the possibility of an upstream pathway affecting these conditions in the same 

direction. 

 

So overall, these studies serve as good examples of how estimating the genetic 

correlation can lead to the development of hypotheses about the risk factors involved 

in the development of disease. I believe that one of the most important strengths of 

genetic correlation analyses is that (depending on the approach used) they do not 

require both phenotypes to be measured in the same sample. In the last years many 

studies have made publicly available their GWAS summary statistics, allowing us to 

check correlation of all these with our trait or disease of interest without the need to 

measure them. Arguably, these correlations are often more meaningful than direct 

phenotypic correlations as they are susceptible to less confounders. Increasing the 

number of publicly available GWAS summary results may allow us at some point to 

connect the dots of ‘what triggers what’ and causes disease. Among the interesting 

insights provided in these two chapters, I found the significant genetic differences 

between POAG genders an important one. Not much because of the finding, as is 

been long since the association between estrogen and IOP/POAG is believed to 

mediate the differences of prevalence between sexes, but because it suggests that 

would be a good idea to perform this kind of analysis for other traits and diseases 

where it is believe that hormones play a role.  

 

To conclude, I have investigated aspects of different traits and diseases using 

genotype data and cutting edge statistical genetics approaches. Although the 

insights gained during the make of this thesis are far from translation into the clinic, 

they are an important contribution to the literature by adding or removing support to 

current hypotheses for the multiple traits and diseases investigated. The studies 
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reported here also serve as background for future research featuring mapping, 

correlation and causation in these phenotypes.  
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