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Abstract 

 

β-Lactam antibiotics such as penicillin G (1) account for more than 50% of the world’s 

antibiotics prescribed. These chemical agents work by disrupting bacterial cell wall 

synthesis. Over-prescription of β-lactam antibiotics has led to bacterial resistance in the 

form of β-lactamase expression. β-Lactamases, or β-lactam  degrading enzymes, can be 

divided into four classes,  A, B, C and D. The class B β-lactamases are the zinc-dependent 

enzymes, and are thus known as the metallo-β-lactamases (MBLs). Of particular concern 

are the MBLs, particularly the B1 MBLs, such as Imipenemase 1 (IMP-1), which can be 

spread by horizontal gene transfer. To date there are no known clinical inhibitors against 

MBLs.   

 

 

 

This thesis explores the optimisation of two classes of IMP-1 lead compounds, 2-amino-1-

benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (65) and (2RS, 4R)-2-phenylthiazolidine-4-

carboxylic acid (120a). 

 

 

 
 
The structure-activity-relationship (SAR) study of pyrrole 65 led to the successful 

identification of two potent IMP-1 inhibitors, 93 and 99, with a 14- to 17-fold increase in 

IMP-1 inhibitory potency as compared to pyrrole 65. However, synthetic modification of the 

3-carbonitrile group of 65, or deletion of the N-benzyl chain resulted in a significant loss of 

IMP-1 inhibitory activity. 
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The SAR study of thiazolidine 120a resulted in the discovery of the mercapto-amide-linked 

thiazolidine, 124a with a 20-fold improvement in IMP-1 inhibitory activity as compared to 

120a. The extension of this study led to the identification of a highly potent thiazolidine 

derivative, 124g with IMP-1 inhibitory potency in the sub-micromolar range. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

1.0 General introduction 

Metalloenzymes are biologically important enzymes which depend on metal ions 

(typically transition metal ions) as cofactors to facilitate catalytic activities.1,2 They make up 

about a third of the known enzymes.1,2 These enzymes are crucial for the existence and 

survival of organisms as they catalyse a vast array of physiological processes such as 

DNA, prostaglandin and collagen biosyntheses, steroid and neurotransmitter metabolism 

and the destruction of superoxide and hydrogen peroxide.1,2  

However, not all metalloenzymes are beneficial to human beings. Some of them 

even pose a serious health threat to humans. One such example is the group of zinc-

dependent metallo-β-lactamases (MBLs) which degrade a plethora of β-lactam antibiotics 

(such as penicillins), a chemical class that selectively disrupt a key biochemical step 

essential to bacterial survival (bactericidal effect), without displaying any adverse effects 

on the eukaryotic host organism (Scheme 1).3-5  

 

 

Scheme 1.1: The degradation reaction of penicillin G (1) by a metallo-β-lactamase (MBL). 

The product of the reaction is penicilloic acid (2) which has no antibacterial activity. 

 

As previously mentioned, β-lactamases hydrolytically inactivate the β-lactam 

antibiotics.6 Due to unregulated, over-prescription of β-lactam antibiotics globally and the 

rapid transfer of β-lactamase-expressing genes among related and unrelated bacterial 

species via mobile genetic elements, the issue of antibiotic resistance is now a global 

concern.7 Thus far, there are no clinically available inhibitors for the chemotherapeutic 

treatment of MBL-mediated antibiotic resistance.2  
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1.1 The origins of β-lactam antibiotics 

In 1928 Alexander Fleming first observed the antibacterial activity of the first 

chemotherapeutic β-lactam antibiotic, penicillin G (1), produced by the fungus Penicillium 

notatum on a bacterial culture contaminated with the fungus (Figure 1.1).8 It would take 

another 17 years for the structure of penicillin G (1) to be finally determined by X-ray 

crystallography.8  Within that time, mass-production of penicillin G (1) was being 

developed and made possible by fermentation technology.8,9  

 

     

Figure 1.1: The antibacterial effect of penicillin G (1) produced by Penicillium notatum 

(white colony) on a bacterial culture of Staphylococcus spp. (horizontal streaks) is shown 

as a clear semi-circle zone surrounding the Penicillium fungus (reproduced with 

permission from Christine L. Case of Skyline College, 25/11/15). 

 

The seminal discovery by Fleming in 1928 would later pave the way for the 

discovery of other structurally diverse β-lactams from natural sources.8,10-12 The 

antibacterial activity of another notable β-lactam, cephalosporin C (3), which has its origin 

in the Cephalosporium acremonium fungus, was first observed in 1945 by Giuseppe 

Brotzu (Figure 1.2).8,10 And in 1976 yet another structurally distinctive β-lactam, 

thienamycin (4) was isolated from the non-pathogenic soil bacterium Streptomyces 

cattleya (Figure 1.2).11,12 Thienamycin (4) would subsequently become the precursor for all 

clinically prescribed carbapenems, which is the most potent and versatile β-lactam sub-

class until the emergence of carbapenem degrading enzymes, or carbapenemases.11 



  

3 

 

  

 

Figure 1.2: The molecular structures of cephalosporin C (3) and thienamycin (4). 

 

1.2 β-Lactam antibiotics: chemical structure and classification 

β-Lactam antibiotics function by interrupting bacterial cell wall biosynthesis.4 The 

four-membered β-lactam ring (5) is part of the pharmacophore or molecular features (both 

steric and electronic) which is crucial for the observed antibacterial activity of these 

drugs.4,13 A detailed description of the mode of mechanism of β-lactams is presented in 

the later part of this chapter (Section 1.4). 

 

 

 

β-Lactam antibiotics can be classified into various sub-classes according to the 

following features: 

 The absence or presence of a secondary ring fused to the β-lactam ring; 

 The identity of the fused ring (if there is one) i.e. the type of atom occupying 

position 1 of the fused ring, the size of the fused ring and the absence or presence 

of a double bond in the fused ring (Figure 1.4).14  

Currently the most extensively prescribed sub-classes of β-lactam antibiotics 

include the bicyclic penams (penicillins), penems, carbapenems and cephems 

(cephalosporins). In addition, the monocyclic monobactams are also clinically 

administered, but to a lesser extent (Figure 1.5).15  
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The only clinically administered monobactam is aztreonam (9).14,15 It has a unique 

sulfonic acid functional group directly attached to its β-lactam nitrogen.16 Aztreonam (9), 

however, exhibits a narrow-spectrum antibacterial activity and is specifically employed for 

the treatment of nosocomial infections (hospital-acquired infections) such as urinary and 

respiratory tract infections implicated with pathogenic Gram-negative bacteria.14,15,17  

All three penams, penems, and cephems contain a sulfur atom at the 1-position 

while the carbapenems contain a carbon at the same position. Another structural 

distinction within the bicyclic β-lactams is the absence or presence of a double bond in the 

fused ring, with the former  having an „am‟ suffix in the name and the remaining β-lactams 

having an „em‟ suffix in the name.18 Penems and carbapenems both contain a double bond 

at the C-2 and C-3 position of the fused ring. As for the 4:6 bicyclic cephems, the double 

bond is located at the C-3 and C-4 position of the fused ring. 

In addition, carbapenems have some unique structural characteristics which are not 

present in penams and cephems (Figure 1.3).11 Firstly, the spatial arrangement of the C-5 

and C-6 hydrogen atoms are in the trans configuration and secondly, there is the presence 

of a hydroxyethyl side group at C-6.11 These unusual structural features are essential for 

the observed antibacterial potency of carbapenems and are also found in penems, which 

are purely synthetic in origin.19 The idea behind the synthesis of faropenem (6) was first 

proposed by Robert Woodard as a hybrid between penams and cephems.19  

 

 

Figure 1.3: Comparison between the molecular structures of penicillin and carbapenem. R, 

R1 and R2 are various side chains. 
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Figure 1.4 The classification of β-lactam antibiotics.14 
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Figure 1.5: The general structures and specific examples of the most commonly 

prescribed β-lactam antibiotic sub-classes, ampicillin (5), faropenem (6), imipenem (7), 

cephazolin (8) and aztreonam (9).20 R, R1 and R2 are variable chemical moieties. 
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1.3 Bacterial cell wall biosynthesis  

The bacterial cell wall is not only rigid for structural maintenance, but also 

permeable to essential nutrients.4,21,22 The main structural backbone of the bacterial cell 

wall is a three-dimensional network of glycan strands cross-linked via peptide bonds.4,21-23 

This structural composite is thus known as the peptidoglycan or „murein sacculus‟.4,21,22  

Bacteria can be classified into two separate classes: Gram-positive and Gram-

negative bacteria, based on their affinity towards the Gram stain. Gram-positive bacteria 

have a much thicker murein sacculus (15-80 nm) than Gram-negative bacteria (2 nm) 

(Figure 1.6).21 Another distinction between Gram-positive and Gram-negative is the 

presence of an outer lipid membrane in the latter which is absent in the former. This 

unique outer membrance consists of porins and lipopolysaccharides.21 More details about 

porins will be discussed in Section 1.5. 

 

 

Figure 1.6: Cartoon diagrams of a cross section of the cell wall of Gram-positive (left) and 

Gram-negative (right) bacteria containing the peptidoglycan or murein sacculus 

(reproduced with permission from Sigma-Aldrich, 24/11/15).  

 

Each glycan strand of the peptidoglycan structure consists of alternating N-

acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) units, with the former having a 
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pentapeptide stem (Figure 1.7).21-23 The common pentapeptide motive is [L-Ala-D-γ-Glu-X-

D-Ala-D-Ala], with X being L-lysine or meso-2,6-diaminopimelic acid, DAP (10) for 

Streptococcus pneumonia (Gram-positive bacteria) and Escherichia coli (Gram-negative 

bacteria), respectively.22,23 The amino group of the third residue, X is the attacking 

nucleophile for the peptidic cross-linking (Figure 1.8). 

 

 

Figure 1.7: The chemical structure of a segment of the glycan strand of the Streptococcus 

pneumonia  murein sacculus and DAP (10) which is the L-lysine analogue in Escherichia 

coli .23 

 

The final process in bacterial cell wall biosynthesis is the cross-linking of the glycan 

strands.22,24 This process is known as transpeptidation and is catalysed by the 

transpeptidase enzyme. Transpeptidation begins with an acylation step followed by a 

deacylation step. Initially, the D-Ala-D-Ala terminus of a glycan strand is acylated by an 

activated, nucleophilic serine residue to form an acyl-enzyme covalent complex and an 

expelled D-alanine unit.22,24 The acyl-enzyme complex is subsequently deacylated by an 

activated L-lysine or DAP amino group belonging to a second glycan strand, to form the 

cross-linked peptidoglycan strand and regenerated transpeptidase (Figure 1.8).22,24 It is 

this final, crucial process that is inhibited by β-lactam antibiotics.4,22,24  
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Figure 1.8: Transpeptidation of two glycan strands with transpeptidase catalysis. The 

green structure represents the first glycan strand which forms the covalent acyl-enzyme 

complex with the enzyme (E) and the red structure is the second glycan strand which 

deacylates the acyl-enzyme complex via an activated DAP amino group (adapted from 

Lee et al.).24 
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1.4 Mechanism of action of β-lactam antibiotics 

As previously mentioned, the β-lactam ring is part of the pharmacophore of β-

lactam antibiotics. A closer inspection of the 3D structure of penicillin G (1) shows that the 

N-acylamino group at C-6, the lactam group (C-7 and N-4), C-3 and the carboxylic group 

at C-3 structurally resembles the D-Ala-D-Ala terminus of the bacterial glycan strand 

involved in transpeptidation.4,22,24,25 The four-membered β-lactam ring of penicillin G (1) 

functions to lock the pharmacophore in the right spatial arrangement similar to that of the 

D-Ala-D-Ala terminus (Figure 1.9).25 This idea was first proposed by Tipper and Strominger 

in 1965 and it has since been accepted as the basis of β-lactam mechanism of 

action.4,22,24,26  

 

 

 

Figure 1.9: The structural resemblance of penicillin G (1) (highlighted in blue) with the D-

Ala-D-Ala terminus of a bacterial glycan strand. R‟ is the remaining pentapeptide stem 

(adapted from Vella).18 

 

Despite discrepancies between the above-mentioned structures, such as the 

absence of a methyl group at C-3 and a different absolute configuration at the same 

carbon atom, penicillin G (1) and β-lactams, collectively are still structurally recognised by 

bacterial transpeptidase.25 Upon binding to the transpeptidase, β-lactams form a highly 

stable, irreversible acyl-enzyme covalent complex (Scheme 1.2).4,22,24,25,27 This is evident 

from x-ray crystallography structures of β-lactams covalently bound to transpeptidases in 

the literature.24,27 The acyl-bound enzyme is incapacitated to further catalyse the 

transpeptidation reaction and this subsequently results in loss of bacterial cell wall integrity 

and concomitant bacterial fatality (bactericidal effect).4,28 The transpeptidases have thus 

come to be known as the penicillin binding proteins (PBPs) with β-lactam antibiotics acting 

as pseudo-substrates to these enzymes.4,22,25 
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Scheme 1.2: Comparison between the reactions of bacterial transpeptidase, Enz-OH with 

N-Acyl-D-Ala-D-Ala, the actual substrate, and penicillin, the pseudo-substrate, penicillin. R 

and R‟ refers to the first and second glycan strands, respectively (adapted from Buynak).22 

 

1.5 Bacterial resistance against β-lactam antibiotics and the development of β-

lactam antibiotics 

β-Lactam antibiotics account for approximately 50% of the world‟s prescribed 

antibiotics.2,4,29 As previously mentioned, the widespread administration of β-lactam 

antibiotics in both veterinary and human health has resulted in the spread of resistant 

genes which confer bacteria the ability to engage in a „biochemical warfare‟ with the 

antibiotics.4,29,30  

Resistance against penicillin G (1) was first observed within 3 years of its 

introduction in 1943.30 The cause of the resistance was found to be a penicillin degrading 

enzyme, or penicillinase, which is a member of the β-lactamase family of enzymes.6  
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In addition to β-lactamase expression, there are three other strategies by which 

bacteria circumvent the antibacterial activity of β-lactams: 

 Structural alteration and or over-expression of PBPs (prevalent in pathogenic, 

Gram-positive bacteria, such as Enterococcus faecium and Staphylococcus 

aureus)4,5 

 Cell membrane impermeability towards β-lactams, specifically carbapenems, due 

to the omission or modification of Gram-negative bacteria porins or outer 

membrane proteins (OMPs) (Figure 1.6)4,5 (porins are hydrophilic, non-specific 

pores which are permeable to carbepenems with charged side groups)4,11,19,31 

 Expression of efflux pumps which expel β-lactams from the bacterial cells.4 This 

phenomenon is prevalent among the Gram-negative bacteria Pseudomonas 

aeruginosa and Acinetobacter spp.4,6,11,31 

The issue of β-lactamases, which is pervasive among pathogenic Gram-negative 

bacteria, is of a major concern as the genes responsible for the expression of these 

enzymes are being spread by mobile genetic elements among related and unrelated 

bacterial genera.4,5,32 The subject of β-lactamases will be covered in the next few sections 

of this chapter (Sections 1.7 and 1.8).  

One of mankind‟s solutions towards β-lactam resistance is the development of 

existing and novel β-lactam antibiotics.4-6,30 Semi-synthetic penicillins with various N-acyl 

side groups were successfully derived from the naturally-sourced 6-aminopenicillanic acid, 

6-APA (11) in the 1960s and 1970s (Figure 1.10).33 One such important derivative is 

methicillin (12) which has activity against penicillin resistant strains of S. aureus.8,33-35 The 

bulky di-ortho methoxy groups play a role in diminishing the affinity of methicillin (12) 

towards penicillinase.33-35  

Cloxacillin (13), which has improved antibacterial potency and oral bioavailability 

compared to methicillin (12), was developed later.33,34 In addition, carbenicillin (14), the 

first P. aeruginosa-susceptible penam was also developed within the same time frame.33,34  
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Figure 1.10: The development of semi-synthetic penams from the naturally isolated 6-APA 

(11).33 

 

However, within a year of its introduction, resistance against methicillin (12) was 

detected in a particular bacterial strain of Staphylococcus aureus. This resistant strain was 

later recognised as „methicillin-resistant S. aureus‟ (MRSA).4,30 MRSA resistance was 

found to be implicated by a structurally-altered PBP with significantly decreased affinity 

towards methicillin (12).4 However, newer generation cephalosporins, such as ceftobiprole 

(16) and ceftatroline (17), were developed in response to MRSA resistance (Figure 

1.11).5,15 
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Figure 1.11: Newer-generation cephalosporins with antibacterial activity against MRSA.5 

 

Parallel to the development of semi-synthetic penams, synthetic cephalosporins 

were developed from 7-aminocephalosporinic acid, 7-ACA (18) – first obtained from the 

mild acid hydrolysis of cephalosporin C (Figure 1.12).8,10,33 The development of 

cephalosporins has been spurred by three waves of innovation in response to bacterial 

resistance: the first  is the narrow antibacterial spectrum of the first-generation 

cephalosporins; the second is the emergence of β-lactamases, particularly the extended-

spectrum β-lactamases (ESBLs), which initially degraded the third-generation 

cephalosporins but have now also degraded the fifth-generation cephalosporins; and 

finally,  the re-emergence of MRSA, as mentioned in the preceding text.6,10,15,34  

With the ever increasing onslaught of ESBLs, carbapenems were later administered 

as the next line of β-lactams after penicillins and cephalosporins, until the emergence of β-

lactamases.7,11,36 The introduction of another novel β-lactam antibiotic is yet again met with 

bacterial resistance.30, 29 Therefore, there is not only a pressing need for novel β-lactam 

antibiotics, but also β-lactamase inhibitors to tackle the issue of antibiotic resistance.15,30 
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Figure 1.12: The synthetic development of cephalosporins from 7-ACA (18) (adapted from 

Walsh and Wencewicz).30 
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1.6 An overview and classification of β-lactamases 

There are two ways to classify β-lactamases: the Ambler classification (classes A to 

D) which is based on amino acid sequence, specifically the conserved and distinct amino 

acid residues and the Bush-Jacoby classification which is based on substrate selectivity 

and inhibitor profile (Table 1.1).6,37 The broader and more commonly-used Ambler scheme 

will be employed in this thesis. 

In the Ambler classification of β-lactamases, classes A, C and D are the serine β-

lactamases (SBLs), which utilise a serine nucleophilic residue for hydrolytic activity, 

whereas class B are the zinc-dependent metallo-β-lactamases.4,6,32,37 Clavulanic acid (23), 

together with the penicillin sulfones sulbactam (24) and tazobactam (25) are known clinical 

inhibitors of the serine β-lactamases, whereas ethylenediaminetetraacetic acid, EDTA (26) 

is a known, generic metal ion chelator (Figure 1.13).4,37 These inhibitors are used as part 

of the identification process of β-lactamases.37 The metallo-β-lactamases will be the main 

focus of this thesis. 

Figure 1.13: The clinical serine β-lactamase inhibitors 23, 24 and 25 together with the 

generic metal ion chelator, EDTA (26) used in the identification of β-lactamases. 

 

The class A SBLs constitute the largest class of the β-lactamases, and is growing 

due to the increasing identification of ESBLs.4,37 Members of this class of β-lactamase 

mostly hydrolyse penicillins (or penams) and are inhibited by clavulanic acid (23), 

tazobactam (25) and to a lesser extent sulbactam (24).6,37 The class C SBLs are the 

cephalosporin degrading enzymes, which are not inhibited by the usual SBL inhibitors.6,37  

The class D SBLs preferably hydrolyse oxacillins such as cloxallin. Most, but not all of the 

Class D SBLs are inhibited by clavulanic acid (23) or the penicillin sulfones.6,37 
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Table 1.1: Classification of β-lactamases according to the Ambler and Bush-Jacoby 

schemes. 6,37 

Ambler class Bush-

Jacoby 

class 

Preferred 

substrates 

Inhibited by Enzyme 

examples CA or 

TZB 

EDTA 

A (serine 

penicillinases) 

2a Penicillins Y N PC1 

2b Penicillins and first-

generation 

cephalosporins 

Y N TEM-1, 

TEM-2, 

SHV-1 

2be 

(ESBLs) 

Penicillins, first and 

newer-generation 

cephalosporins and 

aztreonam 

Y N TEM-3, 

SHV-2, 

CTX-M-15 

2br Same as 2b N N TEM-30, 

SHV-10 

2c Carbenicillin  Y N PSE-1 

2e Newer-generation 

cephalosporins 

Y N CepA 

2f Penicillins, 

Carbapenems 

V N KPC-2, 

SME-1 

B (Metallo-β-

lactamases) 

3 Most β-lactams, 

especially  

carbapenems, 

excluding 

aztreonam 

N Y IMP-1, 

VIM-1 

(B1); 

CphA 

(B2); L1 

(B3) 

C 

(Cephalosporinases) 

1 Cephalosporins N N AmpC, 

GC1 

D (Oxacillinases) 2d Cloxacillin V N OXA-1, 

OXA-10 

“Y”, “N” and “V” denotes inhibited, not inhibited and variably inhibited, respectively. CA and 

TZB denotes clavulanic acid and tazobactam, respectively. 
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1.7 Mechanism of the SBLs with class A β-lactamase as an example 

SBLs hydrolyse β-lactams in two steps: an acylation step employing a serine 

nucleophile followed by a deacylation step with an activated water molecule (Figure 

1.14).4,6 Before the acylation step, the enzyme forms a Michaelis complex with the β-

lactam substrate via two types of interactions: an ionic interaction (salt bridge) between the 

carboxylate group of the substrate with Lys234; and hydrogen bond interactions between 

the β-lactam carbonyl oxygen with the backbone amide nitrogens of Ser70 and residue 

237 (oxyanion hole).4,6,36 The purpose of the Michaelis complex is to activate the β-lactam 

carbonyl towards the nucleophilic attack.4 The amino acid residues Ser70 and Lys234 are 

highly conserved among Class A SBLs.4,6 

Upon formation of the Michaelis complex, the β-lactamase serine nucleophile 

(Ser70) attacks the carbonyl carbon of the β-lactam substrate to give a high-energy 

tetrahedral intermediate.6 The tetrahedral intermediate then collapses by scission of the C-

N bond and protonation of the β-lactam nitrogen to give a covalent acyl-enzyme 

complex.4,6  Nucleophilic attack of the complex by an activated water molecule leads to a 

second tetrahedral intermediate which finally collapses to the deactivated β-lactam product 

and regenerated β-lactamase enzyme.6 Ser70 and the water molecule need to be 

activated by a general base (Glu166) prior to the acylation and deacylation steps, 

respectively.6 The activated water molecule required for the deacylation step is also known 

as the acyl acceptor.4 

 In short, the above-mentioned reaction can be summarised in the following scheme 

(Scheme 1.3).6 S, E, E:S, E-S and P denotes the substrate, the enzyme, the Michaelis 

complex, the acyl-enzyme complex and the deactivated β-lactam product, respectively. 

The association and dissociation rate constants for the Michaelis complex are k1 and k-1, 

respectively; and the acylation and deacylation rate constants is k2 and k3, respectively. 

 

 

Scheme 1.3: The summary of the hydrolysis of a β-lactam substrate, S catalysed by a 

class A SBL enzyme, E to give the deactivated β-lactam product, P.6  

 



  

19 

 

 



  

20 

 

Figure 1.14: The proposed mechanism for the hydrolysis of a generic β-lactam by a class 

A SBL. The dashed lines represent hydrogen bonds and also ionic interaction (adapted 

from Drawz and Bonomo).6  

  

 Even though SBLs and PBPs are distinct classes of bacterial enzymes, yet there 

are some similarities between the two classes (Table 1.2).4 The mechanism machinery of 

SBLs and PBPs involve similar steps, i.e. the formation of an acyl-enzyme complex with 

the requirement of an activated serine residue, followed by a deacylation step.4 Principally, 

PBPs  and SBLs share the same substrates which is β-lactam antibiotics.4 These 

similarities suggest the idea of SBLs having been evolved from PBPs.4 

 

Table 1.2: Comparison between the catalytic mechanism of PBPs and SBLs in terms of 

substrate, the attacking nucleophile, acyl acceptor and reaction product. 

Bacterial 

enzyme 

Substrate Nucleophile 

for the 

acylation step 

Acyl acceptor 

for the 

deacylation 

step 

Reaction 

product 

PBP 

(transpeptidase) 

Acetylmuramyl-

pentapeptide 

and 

β-lactam 

antibiotics  

Activated 

serine residue 

Activated L-

lysine (S. 

pneumonia), or 

DAP (E. coli) 

Cross-linked 

peptidoglycan 

strands 

SBL (e.g. class 

A β-lactamase) 

β-lactam 

antibiotics  

Activated 

serine residue 

Activated water Deactivated β-

lactam 

 

 

1.8 Overcoming the action of SBLs: SBL inhibitors and combination therapy. 

Another approach undertaken by mankind in overcoming β-lactam resistance is the 

search and development of β-lactamase inhibitors.5,6 This approach has thus far proved 

successful as demonstrated by the development of clavulanic acid (23) as a clinical SBL 

inhibitor. Clavulanic acid (23) was first discovered from the non-pathogenic soil bacterium 
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Streptomyces clavuligerus in 1977.6 It does show any notable antibacterial activity on its 

own. However, when combined with amoxicillin (15), the inhibitor-drug combination shows 

enhanced antibacterial potency against pathogenic Gram-positive and negative bacteria.6 

The synthetic development of other SBL inhibitors, such as the penicillin sulfones 

sulbactam (24) and tazobactam (25) subsequently followed suit (Figure 1.13).6 

The molecular structures of all of the clinical SBL inhibitors 23, 24 and 25 resemble 

that of penicillins, albeit with some differences, such as the absence of an amide side 

chain at C6 found in penicillins and the presence of a leaving group at C1 (Figure 1.15).6,36 

This leaving group, which is an enol ether oxygen group for clavulanic acid (23) and a 

sulfone group for both sulbactam (24) and tazobactam (25) plays a critical role in the SBL 

inhibitory mechanism by allowing multiple branch reactions to take place after the 

formation of the acyl-enzyme complex (E-I) (Scheme 1.4).6 Some of these pathways could 

eventually lead to irreversible modification and inactivation of the enzyme (Figure 1.16).6 

Results from several studies suggested that the clavulanic acid (23) acyl-enzyme complex 

(E-I) could undergo secondary ring opening to give a transient enzyme-imine intermediate 

(E-T). This transient intermediate could cross link with another serine residue to give a 

cross-linked enzyme complex or hydrolyse to an aldehyde complex, both of which are 

permanently deactivated enzyme species (E-I*). Additionally, tautomerisation of the imine 

intermediate could occur to give other transient intermediates, such as the trans-enamine 

intermediate which could then lead to a highly stable decarboxylated enzyme complex 

(Figure 1.16).6,36 Clavulanic acid (23), sulbactam (24) and tazobactam (25) are therefore 

known as mechanism-based, or suicide inhibitors.5,6  

 

 

Figure 1.15: Comparison between the molecular structure of penicillin G (1) and clavulanic 

acid (23). 
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Scheme 1.4: The possible pathways of an SBL inhibitor, I reacting with an SBL enzyme, E; 

with E:I, E-I, E-I*, E-T and P denoting the Michaelis complex, the acyl-enzyme complex, 

the permanent acyl-enzyme complex, the acyl-enzyme tautomer and the hydrolysed 

product, respectively (adapted from Drawz and Bonomo).6  
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Figure 1.16: The proposed products (expressed in Daltons) of the different possible pathways of class A SBL enzyme inhibition by 

clavulanic acid (23) as empirically observed by mass spectrommetry (adapted from Drawz and Bonomo).6 „Δ‟ refers to the molecular 

weight of the enzyme.
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The cornerstone of antibacterial chemotherapy, since the introduction of penicillin G 

(1) in the 1940s has been monotherapy, i.e. the administration of a single type of 

antibiotic.30 This, however, changed with the co-administration of amoxicillin (15) and 

clavulanic acid (23) (tradename: Augmentin), in the early 1980s.6,36 The move from 

monotherapy to combination therapy was another revolution in antibiotic chemotherapy, 

since the discovery of penicillin G in 1928.3,30 The recent decline in the incidence of ESBLs 

among pathogenic Gram-negative bacteria in the UK has been credited to the co-

administration of β-lactam antibiotics with SBL inhibitors.7 Combination therapy is therefore 

a viable option in preserving the lifetime of existing β-lactam antibiotics as mankind‟s 

chemotherapeutic armamentarium against bacteria.3,15,38  

 

1.9 Classification and structural features of metallo-β-lactamases (MBLs) 

MBLs are divided into three subclasses, namely B1, B2 and B3. Division is based 

on substrate selectivity, amino acid sequence, particularly the amino acid residues that 

chelate the Zn2+ ions and Zn2+ ion requirement for catalysis (Table 1.3).16,32,39-41 All MBLs 

exists as monomers, except for the B3 MBL L1, which exists as a tetramer.32,39,41 

Both B1 and B3 MBLs hydrolyse a broad range of β-lactams: penicillins, early- and 

latter-generation cephalosporins and carbapenems; whereas B2 MBLs selectively 

hydrolyse carbapenems (Table 1.4).16,32,39,41 In general, MBLs are ineffective in 

hydrolysing the monobactam aztreonam (9). This may be due to unsuccessful binding 

interactions between the β-lactam and the enzymes.4,39  

As mentioned previously, the clinically-administered SBL inhibitors, such as 

clavulanic acid (23), sulbactam (24) or tazobactam (25) do not exhibit any inhibitory activity 

on MBLs. Instead, these β-lactams pose as poor substrates for the metalloenzymes.39 
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Table 1.3: Classification of MBLs based on substrate profile, amino acid residues  

chelating the Zn2+ ions and Zn2+ ion requirement for catalysis (adapted from Gupta,41 

Herzberg and Fitzgerald40). 

Sub-

class 
Examples 

Substrate 

profile 

Amino acid residuesa Involvement 

of Zn2+ ions 

for catalytic 

activity 

Zn 1 Zn 2 

B1 

BcII, IMP-

1, CcrA, 

VIM, NDM-

1 

Broad 

spectrum, 

except 

aztreonam 

His116, 

His118, 

His196 

Asp120, 

Cys221, 

His263 

Di-zinc (BcII is 

active with 

either one or 

two Zn2+ ions) 

B2 
CphA, 

ImiS 

Only 

carbapenems 

Asn116, 

His118, 

His196 

Asp120, 

Cys221, 

His263 

Mono-zinc (Zn 

2 site)  

B3 

L1 

(tetramer), 

AIM-1 

Broad 

spectrum, 

except 

aztreonam 

His/Gln116, 

His118, 

His196 

Asp120, 

His121, 

His263 

Di-zinc 

aNumbering is based on a standard, consensual numbering scheme, known as the BBL 

numbering.39-41  

 

Table 1.4 presents the kinetic parameters of MBLs in the hydrolysis of common β-

lactam substrates. The turnover number, kcat is the number of moles of substrate 

molecules hydrolysed per mole enzyme per unit time; a bigger value of kcat is indicative  of 

faster product formation.18,42 The Michaelis constant, Km of an enzyme-catalysed reaction 

is the substrate concentration at half the limiting rate of the reaction.42 It is a measure of an 

enzyme„s affinity for a particular substrate; substrates with smaller Km values are 

interpreted as possessing greater affinities for the enzyme.18  The kcat/Km ratio is a 

measure of the degree of selectivity of an enzyme for a particular substrate; a larger value 

of the ratio translates to a greater efficiency of the enzyme in catalysing the reaction of the 

said substrate.18,42  
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Table 1.4 Kinetic constants of representative MBLs in the hydrolytic reaction of common β-lactams. 

β-Lactam 

substrate 

IMP-1 (B1)a CphA (B2)b AIM-1 (B3)c 

kcat (s
-1) Km (µM) kcat/Km 

(M-1s-1) 
kcat (s

-1) Km (µM) kcat/Km 
(M-1s-1) 

kcat (s
-1) Km (µM) kcat/Km 

(M-1s-1) 

Penicillin G 320 ± 30 520 ± 30 6.2 x 105 0.03 ± 
0.003 

870 ± 70 35 778 31 2.6 x 107 

Ampicillin 950 ± 50 200 ± 25 4.8 x 106 <0.01 2500* <4 594 41 1.4 x 106 

Carbenicillin ND ND 2.0 x 104 10 500 2.0 x 104 NR NR NR 

Cephalothin 48 ± 4 21 ± 2 2.4 x 106 NR NR NR 529 38 1.4 x 107 

Nitrocefin 

(cephalothin 

analogue) 

63 ± 10 27 ± 3 2.3 x 106 0.0028 ± 
0.0001 

1200 ± 
200 

2.5 NR NR NR 

Ceftazidime 8 ± 1 44 ± 3 1.8 x 105 NR NR NR 7 148 4.9 x 104 

Imipenem 46 ± 3 39 ± 4 1.2 x 106 1200 ± 70 340 ± 30 3.5 x 106 1700 97 1.7 x 107 

Meropenem  50 ± 5 10 ± 2 1.2 x 105 3100 ± 
200 

1340 ± 
200 

2.3 x 106 1000 163 6.8 x 106 

Aztreonam >0.01 >1000 <1.0 x102 NR NR NR ND ND ND 

Sulbactam NR NR NR 0.12 37 ± 4 3.24 x 103 NR NR NR 

ND and NR denotes not detectable and not reported, respectively. *Measured as an inhibition constant value. 

aValues taken from Laraki et al.43 

bThe values for penicillin G, nitrocefin, imipenem and meropenem were taken from Vanhove et al.44 The values for ampicillin, carbenicillin 

and sulbactam were taken from Bebrone et al.45, Segatore et al.46 and Felici et al.47, respectively. 

cValues taken from Yong et al.48 The standard deviation ranged from 3-8.5%
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In 1995, the first X-ray crystallography structure of an MBL was reported to be that 

of the BcII enzyme, in its mono-zinc form, by Carfi and co-workers.49 This structure, 

together with the X-ray crystallography structures of other MBLs revealed a distinct αββα 

quaternary structural fold, with the central ββ-sheets flanked by five solvent-exposed α-

helices; two α-helices on each side of the ββ-sheets and the fifth helix bridging the sheets 

(Figure 1.17).16,39,40,49-51 This characteristic structural fold, which is not present in other 

classes of β-lactamase, but is present in other metalloenzymes with various biochemical 

functions, suggests that MBLs are part of an ancient, superfamily of 

metalloenzymes.2,4,16,32,39-41,50 

Another structural insight obtained from the three dimensional (3D) structures of 

MBLs is the position of the Zn2+ ion(s) containing active site, which is located in a shallow 

channel at the interface of the two αβ domains (Figure 1.17).16,39,50  

There are also other noteworthy structural features, such as a mobile β-hairpin loop 

in some MBLs that contributes towards substrate binding.16,39,50,52 The B1 MBLs contain a 

flexible β-hairpin loop (residues 60-66) in close proximity to the active site of the enzyme 

(Figure 1.17).39,50,53 Binding of a substrate or inhibitor to the enzyme‟s active site causes 

the loop to close and further interact with the hydrophobic pharmacophore of the substrate 

or inhibitor.16,39,51 The B3 L1 MBL has an analogous loop (residues 156-166) which 

functions in a similar way as that in the B1 MBLs (Figure 1.7.16,39,54 More details about the 

flexible loop of B1 MBLs interacting with inhibitors will be discussed in Section 1.11. 

 The B2 MBLs have an exceptionally elongated, kinked α-3 helix, which forms part 

of a hydrophobic wall that defines the active site pocket (Figure 1.17).39,55,56 This well-

defined pocket is specific to the binding of carbapenems, which explains the narrow 

substrate profile of B2 MBLs.39,55 
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Figure 1.17: The cartoon diagrams of 3D structures of representative MBLs. The Zn2+ ions 

are shown as cyan spheres. (a) The IMP-1 B1 MBL with the flexible loop in orange (PDB 

no.: 1JJT).57 (b) The CphA B2 MBL with the elongated α3 helix in green (PDB no.: 

1X8G).55 (c) The L1 B3 MBL with the mobile loop in green (PDB no.: 2AIO).54 Figures were 

drawn with Maestro.96 

 

Within the MBL active site, there are two potential zinc binding sites, known as Zn1 

and Zn2. In the di-zinc B1 and B3 MBLs, Zn1 and Zn2 are separated by a distance of 3.4-

4.4 Å, with a bridging hydroxide ion (W1) asymmetrically positioned to the two metal 

centres; the bridging hydroxide ion is closer to the Zn1 site than the Zn 2 site (Figure 1.18 

and Table 1.5).32,39,40,50,58-60 The Zn1 site of the B1 and B3 MBLs are co-ordinated by three 

histidine residues (His116, His118 and His196) and the bridging hydroxide ion in a 

tetrahedral geometry.39,40,58-61 It is also referred to as the histidine, or 3H site.16,32,39,61 In 

some B3 MBLs, His116 is found to be replaced with a glutamine residue (Gln116).16,32,40  

On the other hand, the Zn2 site of the B1 MBLs is co-ordinated by Asp120, Cys221, 

His263, the bridging hydroxide and another water molecule in a distorted trigonal 
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bipyramidal arrangement (Figure 1.18a).39,40,58-61 This metal centre is hence known as the 

cysteine, or DCH site.16,32,39,61 The Asp120 residue and a second water molecule (W2) are 

positioned at opposing, apical positions of the trigonal bipyramidal geometry.40,58-60 

Besides the two metal centres, the bridging hydroxide also has an additional electrostatic 

contact with Asp120, through a shared proton.58,60 The cysteine residue Cys221, which is 

in direct contact with Zn2, exists in the thiolate form and has the propensity to be oxidised 

to a sulfonic group.50,53,58,61 As for the B3 MBLs, it is observed that another histidine 

residue (His121) is in lieu of Cys221 at the Zn2 site (Figure 1.18b).16,32,39,40,59,60 This 

difference causes the spatial arrangement of the ligands surrounding the Zn2 site of B3 

MBLs to be shifted by 76° relative to that of the B1 MBLs.50,59 Moreover, the 221 position 

in B3 MBLs is instead replaced by a serine residue (Ser221), which is oriented towards the 

apical water (W2).40,59,60  

 

 

Figure 1.18: The amino acid residues and water molecules chelating the Zn2+ ions in the 

active sites of (a) the B1 CcrA MBL (PDB no.: 1ZNB)58 and (b) the B3 MBL AIM-1 (PDP 

no.: 4AWY).60 Zn2+ ions and water molecules are represented as cyan and red spheres, 
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respectively. Dashed lines represent co-ordination bonds. Atom colours: carbon in gray, 

nitrogen in blue, oxygen in red and sulfur in gold. Figures were drawn with Maestro.96 

 

Table 1.5: Notable interatomic distances of Zn1, Zn2, the bridging hydroxide (W1) and the 

apical water (W2) in a selection of native, wild-type B1 and B3 MBLs. 

Enzyme Sub-

class 

PDB no. Distances to Zn1 

(Å) 

Distances to Zn2 (Å) 

W1 Zn2 W1 W2 

CcrA B1 1ZNB58 1.88 3.47 2.06 2.27 

VIM-2 B1 1KO353 2.10 4.20 2.52 2.93 (W2 

replaced by a 

chloride ion) 

L1 B3 1SML59 1.86 3.46 2.07 2.40 

AIM-1 B3 4-AWY60 1.94 3.48 1.98 2.27 

 

Positive cooperative binding, which is the increased zinc binding affinity for the 

second site upon zinc binding at the first site, is observed in most B1 MBLs, but isn‟t 

observed in the B2 MBLs.16,61 Instead, the B2 MBLs are functionally mono-zinc, in the 

sense that only one of the Zn2+ ions is utilised for catalytic activity- the Zn2 site.32,39,50,61 

Binding of the other Zn2+ ion (Zn1 site) inhibits the enzyme.32,39,61  

In the mono-zinc form, the catalytic Zn2 site of B2 MBLs is co-ordinated by Asp120, 

Cys221, His263 and a water molecule (W1) in a tetrahedral co-ordination shell, whereas 

the Zn1 site is occupied by a second water molecule (W2), which has direct contacts with 

His118 and His196 (Figure 1.19a).56 In some crystal structures of B2 MBLs, W1 is 

replaced by a carbonate or a sulfate ion.55,61 Asn116, which is the His116 equivalent in B1 

and B3 MBLs, is indirectly bound to W2 through His196.55,56  

In 2009, the 3D structure of the di-zinc form of the CphA B2 MBL was published 

(Figure 1.19b).61 The structure reveals that the position of W2 is occupied by a Zn2+ ion 

(Zn1 site) which is directly co-ordinated by His118 and His196 residues, including a 

bridged sulfate ion and a water molecule in a tetrahedral geometry (Figure 1.19b).61 Again, 

Asn116 was shown to have no direct interaction with Zn1.61 This may possibly explain why 

binding of Zn1 inhibits the B2 MBLs, as W2 which is activated by His118, is the hydrolytic 
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nucleophile. Furthermore, His196 is suggested to play a role in the mechanism of B2 

MBLs, by interacting with the carbonyl oxygen of the β-lactam. The binding of Zn1 hinders 

W2, His118 and His196 from carrying out their catalytic roles. More information about B2 

MBL mechanism is presented in the next section. 

 

 

Figure 1.19: The active site of (a) the monozinc form of Sfh-1 (PDB no.: 3SD9)56 and (b) 

the di-zinc form of CphA (PDB no.: 3F90).61 Both of the enzymes belong to the B2 

subclass.  Zn2+ ions and water molecules are represented as cyan and red spheres, 

respectively. Dashed lines represent co-ordination bonds. Atom colours: carbon in gray, 

nitrogen in blue, oxygen in red and sulfur in gold. Figures were drawn with Maestro.96 

 

1.10 The Proposed Catalytic Mechanism for MBLs 

The mechanism of SBLs and MBLs follow the same order of events: initial 

formation of a Michaelis complex by the enzyme and β-lactam substrate, followed by 
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nucleophilic attack on the carbonyl carbon of the substrate, which leads to a short-lived 

tetrahedral intermediate that finally collapses to the deactivated, ring-opened product. 

However, there are a few differences between the two mechanisms. The SBL mechanism 

requires two attacking nucleophiles at separate stages: an activated serine residue, 

followed by an activated water molecule, whereas the MBLs only utilise a polarised water 

species for the same purpose. Consequently, a covalent acyl-enzyme complex, which is 

one of the key intermediates in the SBL mechanism, is not formed in the MBL mechanism. 

Furthermore, the Lewis acid disposition of Zn2+ ions allows the Zn centre(s) in MBLs to 

make interactions with the carbonyl oxygen and or the C-3 or C-4 carboxylate group of the 

β-lactam substrate.32,40,55 These interactions aid in the polarisation or positioning of the 

substrate carbonyl carbon towards nucleophilic attack.32,55 

Based on spectroscopic, kinetic and X-ray crystallography studies, several distinct 

mechanisms have been proposed for the di-zinc B1 and B3 MBLs as well as the mono-

zinc B2 MBLs.16,32,50,51,55 The specific mechanistic details for each MBL varies and are 

dependent on the particular enzyme and substrate.16,51  

For the di-zinc MBLs, the nucleophile is thought to be the bridging hydroxide, which 

is specifically orientated by the metal ions and Asp120 for attack on the carbonyl carbon of 

the β-lactam substrate (Figure 1.20).16,32,40,50 The β-lactam carbonyl carbon is activated 

towards nucleophilic addition by direct interactions between the carbonyl oxygen and Zn1 

as well as an oxyanion hole made up of Asn233 (B1 MBLs) or Tyr228 (B3 MBLs) (Figure 

1.20).16,40,50 Ionic or hydrogen bond interaction(s) between the C-3 or C-4 carboxylate 

group of the substrate and Lys224 (B1 MBLs) or Ser221 and Ser223 (B3 MBLs) also 

contribute towards the formation of the Michaelis complex (Figures 1.20 and 1.21).16,50,51,54  

It is also observed in some MBL-hydrolysed-β-lactam co-crystal structures that the C-3 or 

C-4 carboxylate group has direct interaction with Zn2; which results in the displacement of 

the apical water from Zn2.16,50,51,54 

After nucleophilic attack, the tetrahedral intermediate collapses by C-N bond 

scission, followed by protonation of the β-lactam nitrogen (Figure 1.20).32,40 The proton 

donor for the protonation step is proposed to be the apical water which is bound to Zn2 

(Figure 1.20).32,40 However, there is another alternative proposal for di-zinc B1 and B3 

MBLs, that C-N bond fission occurs without concerted protonation of the β-lactam 

nitrogen, which results in an accumulated anionic nitrogen intermediate that is stabilised 

by direct, ionic interaction with Zn2 (Figures 1.21 and 1.22). The latter proposed 
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mechanism is frequently observed with cephems and oxacephems that have a conjugated 

C-3 side chain, such as the non-therapeutic, chromogenic nitrocefin cephem (27) and 

moxalactam (28).16,32,50 Recently, Zhang and Hao suggested that protonation of the 

anionic nitrogen intermediate formed from the hydrolysis of ampicillin (5) by the B1 NDM-1 

MBL occurs through the participation of the newly formed C-7 carboxylate group which 

acts as the proton donor (Figure 1.22).16,51  

 

 

 

 

Figure 1.20: The mechanism of di-zinc MBLs as proposed by Herzberg and Fitzgerald40, 

as well as Page and Badarau.32 R represents the N-acyl moiety of penicillin. 
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Figure 1.21: The mechanism of moxalactam (28) hydrolysis by the B3 L1 MBL as 

proposed by Spencer et al.54 R represents the N-acyl side chain of moxalactam (28). The 

attacking nucleophile is suggested to be a terminally positioned, Zn1- bound hydroxide 

ion. 

 

 

Figure 1.22: The mechanism of ampicillin (5) hydrolysis by the B1 NDM-1 MBL as 

proposed by Zhang and Hao. 51 R represents the N-acyl side chain of ampicillin (5). 
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  On the contrary, the attacking nucleophile involved in the hydrolysis of 

carbapenems by B2 MBLs is a water molecule activated by His118 and Asp120 (Figure 

1.23).32,56 The Zn2+ ion plays a role in substrate binding of the C-3 carboxylate oxygen and 

stabilising the nitrogen anionic intermediate formed from the nucleophilic attack of the 

activated water molecule on the carbapenem carbonyl carbonyl.16,32,55,56 Additionally, the 

anionic intermediate is also stabilised by electron delocalisation into the C2=C3 double 

bond of the carbapenem five-membered ring.56 Interestingly, this resonance effect allows 

an intramolecular arrangement involving the C-8 hydroxyethyl group as the nucleophile, to 

take place, resulting in a bicyclic intermediate.32,55,56 Lys224 and Asn233, which are both 

involved in substrate binding in B1 MBLs are also conserved among B2 MBLs.16,55,56,61 

 

 

 Figure 1.23: The proposed mechanism of mono-zinc CphA catalysed hydrolysis of 

carbapenem. The carbapenem substrate is highlighted in red and the zinc centre is in 

green. Rotation about the C5-C6 bond of intermediate (b) gives intermediate (c) and 

reforms the hydrolytic water molecule (figure adapted from Garau et al.).55 
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1.11 General classification of inhibitors and reported reversible inhibitors of MBLs 

 The design of a clinically useful, versatile or broad-spectrum MBL inhibitor remains 

a formidable challenge due to differences in the amino acid sequence, particularly active 

side amino acid residues, requirement of Zn2+ ions in catalysis, hydrolytic mechanism and  

structural features close to the active site such as flexible loops or an elongated α-helix 

among MBLs.6,52,62-64 Despite these complexities, there have been numerous inhibitors of 

MBLs reported in the literature.2,52,62 These inhibitors can be classified according to their 

respective pharmacophores.52   

The potency of an inhibitor is expressed in terms of its IC50 or Ki value. The half 

maximal inhibitory concentration (IC50) is the inhibitor concentration required to reduce the 

enzyme activity by half at a particular substrate concentration, whereas Ki is the inhibition 

constant for the equilibrium between the bound and unbound forms of the inhibitor with the 

enzyme (Scheme 1.5).65,66 The lower the IC50 or Ki value, the more potent the inhibitor is 

against the enzyme.  

 

 

 i   
 E  

[E]   
  

Scheme 1.5: The expression of inhibition constant, Ki in terms of enzyme-inhibitor complex 

concentration, [EI]; enzyme concentration, [E] and inhibitor concentration, [I].   

 

 Inhibitors can be generally divided into two categories - irreversible and reversible 

inhibitors, with the former forming stable covalent bonds with the enzyme and thus 

decreasing the active enzyme concentration, while the latter doesn‟t form any stable 

covalent bonds with the enzyme.42  

 Reversible inhibitors can be further classified into three types: competitive, non-

competitive or uncompetitive inhibitors, on the basis of the inhibitor‟s effect on the kinetic 

profile of the enzyme-catalysed reaction (Table 1.6).42 The rest of this section is a 

documentation of selected reversible MBL inhibitors found in the literature. 
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Table 1.6: Classification of reversible inhibitors on the basis of its kinetic effect and mplication on enzyme inhibition.  

Inhibitor type Kinetic effecta42 Implication42 Equationb66  

Competitive Km is increased but Vmax is 

unaffected 

The inhibitor competes with the substrate 

at the same binding site. Inhibition can be 

surmounted by increasing substrate 

concentration. 
 

Non-competitive Vmax is decreased but Km is 

unaffected 

Inhibitor binds at a site which is distinct 

from that of the substrate binding site. 

Inhibitor binding and substrate binding 

are independent events. Therefore 

inhibition is not affected by substrate 

concentration. 

 

Uncompetitive Both Km and Vmax are 

decreased 

Inhibitor binding can only take place upon 

binding of the substrate to the enzyme. 

The enzyme-substrate specificity ratio, 

kcat/Km is unchanged. 
 

aVmax is the limiting reaction rate of the enzyme-catalysed reaction at a specific enzyme concentration, whereby all of the active sites of 

the enzyme molecules are occupied by the substrate molecules. bE, S, I and P denotes enzyme, substrate, inhibitor and product, 

respectively.  
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1.11 a) Generic metal chelators 

As mentioned previously, MBLs are inhibited by common metal chelators such as 

EDTA (26) and dipicolinic acid (29) (Figure 1.24).67,68 EDTA (26) in tandem with other 

small molecular weight thiol compounds (30-32), are routinely used in biochemical assays 

in the identification of MBL-expressing bacteria (Figures 1.24 and 1.25).40,41,69 However, 

EDTA (26) and other non-specific metal chelators are not clinically useful inhibitors as 

there is a high probability that these chelators might interfere with the activity of existing, 

endogenous metalloenzymes in the human body.6,15,62,69   

 

 

Figure 1.24: Generic metal chelators and small molecular weight thiol inhibitors of MBLs 

used in biochemical assays to identify MBL-producing bacteria (aIC50
 values were taken 

from Roll et al.67 and Chen et al.68, while bKi values were taken from Goto et al.).70 
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Figure 1.25: An Etest® MBL testing strip on a Serratia marcescens expressing IMP-1 

culture plate. IP and IPI denotes “solely imipenem” and “imipenem plus EDTA”, 

respectively. The numbers on the strip represent the varying concentration of imipenem in 

µg mL-1 and the quantity of EDTA in the IPI portion of the strip is set at a constant, final 

concentration of 320 µg mL-1. The MIC* of imipenem against the particular strain of S. 

marcescens decreased from 16 to ≤ 1.0 µgmL-1 when exposed to 320 µgmL-1 of EDTA 

(reproduced with permission from American Society for Microbiology, 27/11/15).71  

*The minimum inhibitory concentration (MIC) is the lowest concentration of an 

antimicrobial agent that inhibits the visible growth of a microorganism after overnight 

incubation.72 

 

1.11 b) Trifluoromethyl alcohol and ketone inhibitors 

Walter et al. was the first to report synthetic MBL inhibitors in 1996.2,73 They 

designed and assayed some α-amido trifluoromethyl alcohols and ketones against B1, B2 

and B3 MBLs (Figure 1.26).73 The idea behind the design of these compounds was that 

trifluoromethyl ketones are tetrahedral intermediate analogues of serine proteases and 

inhibitors of the mono-zinc carboxypeptidase A metalloenzyme.73 The synthesis of the 

inhibitors was accomplished using Ruppert‟s Reagent (TMS-CF3) on corresponding 

oxazolidin-5-ones which were derived from L- and D-amino acids (Scheme 1.6).73 The 

inhibitors are moderately potent against CphA and LI but not potent against the B1 MBLs 

tested (Table 1.7).73  
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Figure 1.26: A selection of trifluoromethyl alcohol and ketone inhibitors from Walter et al.73 

 

 

Scheme 1.6: The synthesis of 35a by addition of Rupert‟s reagent (TMS-CF3) on the 

corresponding oxazolidin-5-one 37a.73 

 

Table 1.7: The competitive inhibition constants, Kic (μM) of the trifluoromethyl alcohol and 

ketone inhibitors, 33-36 against the tested B1, B2 and B3 MBLs.73 

Inhibitor Kic (μM) 

B1* B2 B3 

IMP-1 BcII CphA L1 

33 400 700 217 ± 2 35 ± 2 

34a 900 1000 19 ± 1 > 5000 

34b 60 30 20 ± 1 >5000 

35a 300 300 44 ± 2 1.5 ± 0.01 

35b 500 700 11 ± 0.5 3.0 ± 0.4 

36 530 500 6 ± 0.4 15 ± 1 

*Errors were not reported. 
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1.11 c) Biphenyl tetrazole inhibitors 

 In 1998, Toney and colleagues identified a series of biphenyl tetrazoles as potent 

inhibitors of a mutant B1 CcrA MBL from a screening campaign of the Merck chemical 

collection and molecular docking study (Table 1.8).38 The inhibitors were also shown to 

exhibit low activity (IC50 values of 120 μM to >1 mM) against mammalian 

dehydropeptidase-1 (DHP-1), an endogenous renal metalloenzyme which hydrolyses 

imipenem (7).11,38 The results imply that the biphenyl tetrazole inhibitors are to a certain 

extent specific towards the tested MBL.62   

 

Table 1.8: The IC50 (μM) data of a series of biphenyl tetrazoles, 38a-m against a variant of 

the B1 CcrA MBL.38 

Inhibitor 

38 

Substituent R IC50 

(μM) 

Inhibitor 

38 

Substituent R IC50 (μM) 

a H 860±60 h 

 

1.9±0.2 

b CH3 160±20 i 

 

42±7 

c 

 

110±9 j 

 

6±1 

d 

 

4±1 k 

 

0.30±0.02 

e 

 

42±10 l 

 

0.4±0.1 
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f 

 

3.5±0.4 m 

 

7±3 

g 

 

1.8±0.4    

 

 The IC50 data showed that biphenyl tetrazole 38k was the most potent inhibitor 

against the MBL assayed.38 However, 38k was also the most active inhibitor against 

mammalian DHP-1.38 Biphenyl tetrazoles 38f, h and l were later found to be potent, 

competitive inhibitors against the same MBL tested, with Ki values ranging from 0.59-1.6 

μM.38  

Biphenyl tetrazole 38h was later selected for co-crystallisation with the same MBL 

(Figure 1.27).38 The 3D structure shows that the tetrazole N-1 of 38h binds to Zn2 in a way 

that displaces the apical water bound to the said metal centre. In addition, the biphenyl 

moiety of 38h has favourable hydrophobic interactions with the flexible loop that is 

positioned above the active site.38 This flexible β-hairpin loop is common among most B1 

MBLs, and is also known as the L3 loop (Section 1.9).51,62  
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Figure 1.27: The X-ray structure of biphenyl tetrazole 38h (ball and stick diagram) co-

crystallised with a variant of the B1 CcrA MBL (atom-atom distance: N1-Zn2, 2.36 Å) (PDB 

no. 1A8T).38 Atom colours: carbon on inhibitor 38h and enzyme is green and grey, 

respectively; nitrogen in dark blue; oxygen in red, sulfur in gold and the L3 loop is in 

orange. The Zn centres are depicted as cyan spheres (figure drawn with Maestro).96  

 

 Toney et al. later expanded the work by assaying a series of synthetic biphenyl 

tetrazoles on the CcrA and IMP-1 B1 MBLs.74 Synthetic biphenyl tetrazole 39 was found to 

exhibit moderate inhibitory potency against both of the B1 MBLs tested.74 
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 1.11 d) Mercaptocarboxylate inhibitors  

The high potency and broad spectrum inhibitory activity demonstrated by some 

mercaptocarboxylates against MBLs have made this class of inhibitors the most studied of 

all MBL inhibitors.2,64 As noted before, low-molecular-weight mercaptocarboxylate 

inhibitors are being employed in the identification of MBL-expressing bacteria (Section 

1.11 a). Some representative mercaptocarboxylate inhibitors, together with the collated 

inhibition data of the inhibitors are shown in Figure 1.28 and Table 1.9, respectively.  

Racemic thiomandelic acid (40) was the first reported mercaptocarboxylate-type 

broad spectrum MBL inhibitor in 2001.75  

L-Captopril (42) is a commercially available antihypertensive drug which functions 

by inhibiting the mono-zinc angiotensin-converting enzyme (ACE).76,77 Its diastereomer, D-

captopril (41) is only accessible by synthesis from D-proline.78 Both D- and L-captopril (41 

and 42) have been studied as broad spectrum inhibitors of MBLs with the D-isomer 

exhibiting more potent inhibitory activity than the L-isomer against the MBLs tested.77-80  

Thus far, the most potent broad spectrum mercaptocarboxylate inhibitors have 

been identified by Liénard et al. to be 43 and 45a-c, including a simple α-ketothiol 44  

(2008).64 All five inhibitors are highly potent against all three MBL subclasses with some 

Kic values in the nM range.64 
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Figure 1.28: A selection of mercaptocarboxylate inhibitors, together with an α-ketothiol 44 

reported in the literature. 

 

Table 1.9: Collated inhibition data of the mercaptocarboxylate inhibitors, 40-43 and 45a-c, 

including   α-ketothiol 44 against the tested B1, B2 and B3 MBLs.64,75,77-80 

Inhibitor B1 B2 B3 

IMP-1a 

(μM) 

BcIIa 

(μM) 

NDM-1b 

(μM) 

CphAa 

(μM) 

L1a (μM) FEZ-1a 

(μM) 

Rac-

Thiomandelic 

acid (40) 

0.029c 0.34c - 144c 0.081c 0.27c 

D-Captopril (41) - 45 ± 5 7.9b 72 ± 6 20 - 

L-Captopril (42) 12.5 ± 

2.4 

63 ± 5 202b 950 ± 80 - - 

43 0.36 ± 

0.01 

0.97 ± 

0.2 

- 0.09 ± 

0.004 

0.21 ± 

0.01 

0.3b 

44 0.67 ± 

0.09 

2.7 ± 0.2 - 0.05 ± 

0.02 

0.24 ± 

0.01 

1b 

45a 0.019 ± 

0.002 

7.7 ± 0.7 - 5.7 ± 2.0 1.8 ± 0.4 - 

45b 0.088 ± 

0.010 

0.85 ± 

0.08 

- 15.0 ± 

5.0 

0.96 ± 

0.08 

- 

45c 0.063 ± 

0.009 

0.32 ± 

0.01 

- 3.6 ± 0.3 0.082 ± 

0.002 

- 

a Kic values. bIC50 values. cStandard deviation less than 20%. “-“denotes not determined. 

 

The noteworthy inhibitory properties of mercaptocarboxylates are attributed to two 

important types of interaction: the thiolate functional group which binds strongly to the Zn2+ 

ions and the carboxylate functional group which forms a salt bridge with the conserved 

Lys224 residue in B1 MBLs, or a hydrogen bond with the serine equivalent (Ser225) in B3 

MBLs.52,62,64,77,81 Intercalation between the thiolate functional group and the Zn2+ ions in di-

zinc MBLs results in the displacement of the bridging hydroxide ion, which is essentially 
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required for catalysis.6,52,64,77,81-83 This typical thiolate-Zn2+ binding mode is explicitly 

illustrated in the 3D structure of B1 BlaB MBL in complex with D-captopril (41) (Figure 

1.29a).64,82 

The 3D structure of the mono-zinc CphA-D-captopril complex, however, shows that 

D-captopril (41) binds to the Zn2+ centre of CphA through its carboxylate functional group 

rather than the expected thiolate group (Figure 1.29b).64 Unexpectedly, the thiol group of 

D-captopril was shown to interact with non-polar amino acid residues, such as Phe156, 

and Asn233.64 This fascinating observation shows that the same mercaptocarboxylate 

inhibitor can adopt different binding modes to di-zinc and mono-zinc MBLs, while still 

retaining its inhibitory activity.64  
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Figure 1.29: Active site view from the crystal structure of (a) BlaB-D-captopril complex  

(atom-atom distance: S-Zn1, 2.32 Å; S-Zn2, 2.30 Å) (PDB no.: 1M2X)82; (b) CphA-D-

captopril complex (O2-Zn distance is 2.1 Å) (PDB no.: 2QDS).64 Atom colours: carbon on 

D-captopril (41) and enzyme in green and gray, respectively; nitrogen in blue; oxygen in 

red and sulfur in gold. The Zn2+ ion(s) are shown as cyan spheres (figures drawn with 

Maestro).96  

 

1.11 e) Mercaptophosphonate inhibitors 

Lassaux et al. were the first group to design and test mercaptophosphonates as 

potent, broad-spectrum inhibitors of MBLs.63 Based on the pharmacophore of thiomandelic 

acid (40), Lassaux and colleagues introduced the phosphonate group as a bioisostere of 

the carboxylate group.63,84 The molecular structure of the mercaptophosphonate inhibitors, 

including the competitive inhibition constant, Kic data of the inhibitors are displayed in 

Figure 1.30 and Table 1.10, respectively. 

In order to study the metal chelating strength of the mercaptophosphonate 

inhibitors, Lassaux et al. performed the inhibition assays of the di-zinc VIM-4 and L1 MBLs 

at two different concentrations of Zn2+ (0.4 μM and 50 μM).63 An example of the results 

interpretation is as such: the substantial increase in Kic values for 47b in the presence of 

excess Zn2+ for both the di-zinc MBLs shows that 47b is a significantly strong metal 

chelator. This is because, in the presence of a much higher concentration of Zn2+, 47b 

binds to the excess zinc ions, leaving most of the enzyme unbound, which in turn 

increases the Kic values significantly.63  

Inhibitors 46b, 47a, 49a and 49b were identified by Lassaux and colleagues as 

significantly potent MBL inhibitors, with Kic values ranging from 0.25-32 μM. In addition, 

inhibitor 51, which is the di-chloro analogue of 49b showed improved potency against all 

the MBLs tested, in comparison to the non-substituted inhibitor, 49b.63 
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Figure 1.30: Mercaptophosphonate inhibitors studied by Lassaux et al.63 

 

Table 1.10: The Kic data (μM) of mercaptophosphonate inhibitors, 46a-55 against MBLs.63 

Inhibitor Kic (μM) 

VIM-4 (B1) CphA (B2), 

>0.4 μM of 

Zn2+ 

L1 (B3) 

50 μM of 

Zn2+ 

>0.4 μM of 

Zn2+ 

50 μM of 

Zn2+ 

>0.4 μM of 

Zn2+ 

46a >250 >250 >250 >250 >250 

46b 4 2 7 12 9 

47a 12 3 2 14 3 

47b >400 1 0.5 >50 2 

48a >20 >20 2 >40 >40 

48b 6 11 15 >40 >80 

49a 8 3 0.25 16 20 

49b 3 2.5 11 32 >100 

50 13 2.5 >40 4 40 

51 4 1 5 0.40 0.40 

52 4 2 15 4 9 

53 13.5 5.5 13 1.7 8.4 

54 10 6.7 24 0.7 3.8 

55 11 16 1 18 >20 
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Interestingly, the 3D structures of 47a and 51 co-crystallised with mono-zinc B2 

CphA MBL illustrate that mercaptophosphonate ester and mercaptophosphonic acid 

exhibit distinct binding modes with the enzyme (Figure 1.31).63 In the CphA-47a complex, 

the thiolate functional group is responsible for binding to the Zn2+ ion (Figure 1.31a).63 

Molecular docking suggested that the two bulky isopropyl groups of 47a may have blocked 

the phosphonate oxygen of the inhibitor from binding to the Zn2+ ion.63 

On the other hand, inhibitor 51 binds to the Zn2+ ion via two of its phosphonate 

oxygen atoms (O11 and O12) (Figure 1.31b).63  The thiol group of inhibitor 51 instead, 

interacts with a water molecule (W347, 3.06 Å) and the backbone nitrogen of Asn233 

(3.45 Å), which is part of the Gly232-Asn233 loop that closes upon inhibitor binding.63 In 

addition, O12 of inhibitor 51 also has an interaction with Lys224, via a hydrogen bond 

(2.72Å).63  

 

 

 

(a) 
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Figure 1.31: Active site view from the crystal structure of (a) CphA in complex with 47a (S-

Zn distance is 2.31 Å) (PDB no.: 3IOF);63 (b) CphA in complex with 51 (atom-atom 

distance: O11-Zn, 1.98 Å; O12-Zn, 3.38 Å) (PDB no.: 3IOG).63 Atom colours: carbon on 

inhibitor and enzyme in light green and grey, respectively; chlorine in dark green; nitrogen 

in blue; oxygen in red; phosphorus in magenta and sulfur in gold. Water molecules and the 

Zn2+ ion are shown as red and cyan spheres, respectively. Protein-ligand interactions are 

depicted as dashed lines (figures were drawn with Maestro).96 

 

 In summary, the X-ray crystal structures of marcaptocarboxylate inhibitors and 

mercaptophosphonate inhibitors bound to MBLs reveal that in the di-zinc MBLs, the 

thiolate group binds to the zinc ions, whereas in the mono-zinc MBLs, the carboxylate or 

phosphonate group has the propensity to bind to the mono-zinc centre.63,64,77,81 

 

1.11 f) Dicarboxylic acid and other MBL inhibitors 

Toney et al. made yet another fruitful discovery from the screening of the Merck 

compound library, when the authors successfully identified a few succinic acid derivatives, 

56a-c as highly potent inhibitors of the di-zinc IMP-1 MBL, with nanomolar potency (Figure 

(b) 
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1.32 and Table 1.11).57 The presence of the bulky, aromatic side chains in tandem with 

carboxylate groups at the 2S, 3S position are vital for the observed potency of inhibitors 

56a-c.57  

The X-ray crystal structure of 56a-IMP-1 revealed that both of the carboxylate 

groups of 56a bind to the Zn2+ ions, with one of the 2S carboxylate oxygens intercalating 

both of the Zn2+ centres and the 3S carboxylate oxygen in direct contact with Zn2 (Figure 

1.33).85 The result of these Zn-carboxylate oxygen interactions is the displacement of both 

the bridging hydroxide ion and apical water molecule, which were originally in the native 

enzyme.57 The remaining 2S and 3S carboxylate oxygen atoms of 56a have hydrogen 

bond interactions with the conserved Asn233 and Lys224 residues, respectively.57 In 

addition, the aromatic side chains of 56a are shown to make favourable hydrophobic 

interactions with the adjacent, flexible L3 loop, which is defined by Val61, Trp64 and 

Val67.57 The L3 loop is stabilised and closes the active site upon binding to the inhibitor or 

β-lactam substrate.51,81  

In silico, or computational screening of the Available Chemicals Database (ACD) 

based on the 3D structures of inhibitors 56a and 59 bound to IMP-1 (Figures 1.33 and 

1.34, respectively), led to the identification of 57 and 58, as the two most potent inhibitors 

out of thirteen hits assayed (Figure 1.32 and Table 1.11).85 However, in comparison with 

other reported MBL inhibitors, dicarboxylic acids 57 and 58 are only moderately potent 

MBL inhibitors, with IC50 values in the range of 10-100 µM.85  

 

 

Figure 1.32: Dicarboxylic acid inhibitors,56a-c, 57 and 58, as reported by Toney et al.57 

and Olsen et al.85 
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Table 1.11: The IC50 data (μM) of dicarboxylic acid inhibitors, 56a-c, 57 and 58 against the 

B1 and B3 MBLs tested.57,85 

Inhibitor IC50 (μM)* 

B1 B3 

IMP-1 BcII L1 

56a 0.009 - - 

56b 0.0027 - - 

56c 0.0037 - - 

57 - 14 150 

58 - 7 30 

“-“denotes not determined. *Errors were not reported. 

 

 

 

 

Figure 1.33: Active site view of the crystal structure of 56a co-crystallised with IMP-1 

(atom-atom distance: 2S carboxylate O-Zn1, 2.06 Å; 2S carboxylate O-Zn2, 2.13 Å; 3S 
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carboxylate O-Zn2, 2.43 Å) (PDB no: 1JJT).57 Atom colours: carbon on inhibitor in gray, 

carbon on IMP-1 in grey, nitrogen in blue, oxygen in red and the L3 loop is in orange. The 

Zn2+ ions are represented as gray spheres (figure drawn with Maestro).96  

 

 

 

 

Figure 1.34: Active site view of the crystal structure of 59 co-crystallised with IMP-1 (atom-

atom distance: S-Zn1, 2.24 Å; S-Zn2, 2.40 Å) (PDB no: 1DD6).81 Atom colours: carbon on 

inhibitor in green, carbon on IMP-1 in grey, nitrogen in blue, oxygen in red and sulfur in 

gold. The Zn2+ ions are represented as gray spheres (figure drawn with Maestro).96  
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Recently, Feng and colleagues synthessied and assayed N-heterocyclic 

dicarboxylic acids 60a-c, pyridylmercaptothiadiazoles, 61a-b and  

pyridylmercaptotriazoles, 62a-b against representative MBLs from all three subclasses 

(Figure 1.35, Table 1.12).86 Part of their study was also to examine the M C of β–lactam 

antibiotics against the MBL-plasmid borne E. coli strains in the presence of the inhibitors.86  

The authors concluded that dicarboxylic 60b was the only broad-spectrum MBL 

inhibitor, out of the seven heterocyclic compounds assayed.86 Pyridylmercaptothiadiazoles 

61a-b, were only active in inhibiting the B1 and B2 MBLs tested, in an uncompetitive 

mode.86 The authors speculated that both the thiadiazoles may have reduced the sulfide 

bridge in the B3 L1 MBL and thus were unable to bind in the active site of the enzyme.86 

The sulfide bridge, which is made up of residues Cys256-Cys290, is conserved among B3 

MBLs.60,87 On the other hand, pyridylmercaptotriazoles 62a-b, didn‟t exhibit any inhibitory 

activity against the MBLs tested.86 This similar observation was also observed by the 

McGeary and Schenk group, in which the authors found that mercaptotriazole 63 was 

inactive in inhibiting the B1 IMP-1 MBL, even at a concentration of 1 mM.28 

 

 

 

Overall, the MBL inhibitory potency of the inhibitors against the free, isolated 

enzyme is well correlated to the synergistic antibacterial activity of the inhibitor-antibiotic 

combination (Table 1.12).86 An example of the interpretation of the two sets of data is as 

such: dicarboxylic acid 60b, which is the only inhibitor that showed activity against the 

ImiS B2 MBL, recorded the lowest imipenem MIC against the ImiS-plasmid borne E. coli 

when assayed in tandem with the said antibiotic. 
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Figure 1.35: The inhibitors, 60a-c, 61a-b and 62a-b, which were studied by Feng et al.86 

 

Table 1.12: The Ki data (μM) of inhibitors, 60a-c, 61a-b and 62a-b, against the B1, B2 and 

B3 MBLs tested juxtaposed with the MIC data (μgml-1) of the β-lactam in the inhibitor-

antibiotic combinations against MBL- plasmid borne E. coli strains.86  

Inhibitor Kic (μM) MIC (μgml-1) 

CcrA (B1) ImiS (B2) L1 (B3) E. coli-

CcrAa 

E. coli-

ImiSb 

E. coli-L1a 

No 

inhibitor 

NA NA NA 2 4 2 

60a 1.1 ± 0.1C NI 1.9 ± 0.2C 1 4 1 

60b 0.64 ± 

0.09C 

7.1 ± 0.7C 1.8 ± 0.2C 1 0.5 1 

60c 0.73 ± 

0.06C 

NI 0.69 ± 

0.03C 

0.25 4 0.125 

61a 5.4 ± 

0.3NC 

3.5 ± 

0.2NC 

NI 1 2 2 

61b 5.9 ± 

0.3NC 

6.8 ± 

0.4NC 

NI 1 2 2 

62a NI NI NI 2 4 2 

62b NI NI NI 2 4 2 

NI denotes no inhibition. NA denotes not applicable. The antibiotic used was acefazolin 

and bimipenem, respectively. C and NC denotes competitive and non-competitive inhibition, 

repectively. 
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1.11 g) Pyrrole-containing inhibitors 

The McGeary and Schenk group were the first group to report IMP-1 inhibitors with 

a pyrrole scaffold.88,89 A selection of the most potent, competitive pyrrole-type inhibitors, 

together with the Kic data of the inhibitors are displayed in Figure 1.36 and Table 1.13, 

respectively. 

 

 

Figure 1.36: A selection of potent, competitive pyrrole-type inhibitors, 63-65 as discovered 

by the McGeary and Schenk group.88,89  

 

Computational modelling of inhibitor 65 bound into the active site of IMP-1 shows 

that the amino proton donor group of 65 interacts with the nitrogen atom on the imidazole 

ring of His197 (His263), which is one of the amino acid ligands of Zn2 (Figure 1.37). In 

addition, hydrophobic interactions between the two phenyl side chains of 65 and the 

hydrophobic amino residues Val67 (Val31) and Phe87 (Phe51) of the flexible L3 loop are 

also observed in the in silico model  .89 In general, the computational model is inconclusive 

and a crystal structure of inhibitor 65 bound to IMP-1 is needed to ascertain the actual 

binding interactions between the inhibitor and enzyme.  
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Figure 1.37: Surface view of the active site of pyrrole 65 docked into IMP-1. Atom colours: 

carbon on inhibitor in green, carbon on IMP-1 in white, nitrogen in blue and oxygen in red. 

The Zn2+ ions are depicted as magenta spheres (reproduced with permission from John 

Wiley and Sons, license number 3756770325531, 26/11/15).89 

 

 A list of the MBLs mentioned in this chapter, including the bacterial strain in which 

the enzymes were isolated from, year of discovery and protein data bank (PDB) accession 

numbers of reported X-ray crystal structures of the enzymes are collated in Table 1.14. 
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Table 1.13: A list of MBLs from sub-classes B1, B2 and B3, covered in this chapter.16,39 

Subclass MBL Bacterial strain(s) Discovery 

year 

PDB 

number(s) 

Description of crystal structure(s) 

B1 BcII Bacillus cereus 1966 1BMC,49 

1BME90 

1BMC: Mono-zinc, native form 

1BME: Di-zinc, native form 

CcrA Bacteroides fragilis 1990 1ZNB,58 

1A8T,38 

1A7T91 

1ZNB: Native form 

1A7T: CcrA bound with a sulfonic acid buffer 

(MES) 

1A8T: CcrA mutant co-crystallised with biphenyl 

tetrazole inhibitor 38h 

IMP-1 Serratia marcescens, 

Pseudomonas aeruginosa 

1994 1DDK,81 

1DD6,81 

1JJT57, 

3WXC92 

1DDK: Native form 

1DD6: IMP-1 co-crystallised with 

mercaptocarboxylate inhibitor  59 

1JJT: IMP-1 co-crystallised with succinic acid 

derivative 56a 

3WXC: IMP-1 co-crystallised with a phthalic acid-

type inhibitor 

BlaB Chryseobacterium 

meningoseptica 

1998 1M2X82 1MX2: BlaB co-crystallised with D-captopril (41) 

VIM-2 Pseudomonas aeruginosa, 

Acinetobacter baumanii 

2000 2YZ3,93 

1KO353 

2YZ3: VIM-2 co-crystallised with a 

mercaptocarboxylate inhibitor 

1KO3: Di-zinc, native form 
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VIM-4 Pseudomonas aeruginosa, 

Acinetobacter baumanii 

2003 2WHG94 2WHG: Native form 

NDM-1 Klebsiella pneumonia, 

Escherichia coli 

2008 3Q6X,51 

4EXS95 

3Q6X: Hydrolysed ampicillin bound to NDM-1 

4EXS: NDM-1 co-crystallised with L-captopril (42) 

B2 CphA Aeromona shydrophila 1991 1X8G,55 

1X8I,55 

3F90,61 

2QDS,64 

3IOF,63 

3IOG63 

1X8G: Mono-zinc, native form 

1X8I: Mono-zinc enzyme bound with hydrolysed 

biapenem 

3F90: Di-zinc, native form 

2QDS: Mono-zinc enzyme co-crystallised with D-

captopril (41) 

3IOF: Mono-zinc enzyme co-crystallised with 

mercaptophosphonate inhibitor 47a 

3IOG: Mono-zinc enzyme co-crystallised with 

mercaptophosphonic acid inhibitor 51 

ImiS Aeromonas veronii 1996 - - 

Sfh-1 Serratia fonticola 2003 3SD956 3SD9: Mono-zinc, native form 

B3 L1 Stenotrophomonas maltophilia 1991 1SML,59 

2AIO,54 

2FU877 

1SML: Native form 

2AIO: Hydrolysed moxalactam bound to L1 

2FU8: L1 co-crystallised with D-captopril (41) 

FEZ-1 Legionella gormannii 2000 1K07,87 

1JT187 

1K07: Native form 

1JT1: FEZ-1 co-crystallised with D-captopril (41) 

AIM-1 Pseudomonas aeruginosa 2002 4AWY60 4AWY: Native form 
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1.12 Research aims 

In view of all the literature available regarding MBL-mediated resistance, potent and 

specific inhibitors against this class of β-lactamase are urgently needed to resolve this 

global issue (Figure 1.38).39,51 Of immediate, particular concern is the B1 sub-class of 

MBLs. Members from this sub-class are clinically relevant, due to the fact that the genetic 

materials involved in the expression of the said enzymes are horizontally transferable on 

mobile genetic elements, like plasmids and integrons, between unrelated bacterial 

species. In addition, B1 MBLs display broad-spectrum β-lactam substrate profile and are 

uninhibited by clinically available serine-β-lactamase inhibitors, such as clavulanic acid 

(23).6,39,69 

 

 

Figure 1.38: The world-wide dissemination of genetically-acquired MBLs (reproduced with 

permission from Elsevier, license number 3756880120346, 27/11/15).39 
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Based on this premise, it was decided that new inhibitors of the imipenemase 1 

(IMP-1) B1 MBL should be explored, so as to provide a starting point for the discovery and 

development of potent, broad-spectrum and specific inhibitors of MBLs. Thus far, there is 

sufficient kinetic, structural and inhibition information available in the literature for IMP-

1.43,57,81 Furthermore, the enzyme is also well-studied in the McGeary and Schenk 

group.28,80,88,89 

Therefore, the specific aims of this research are as follows. 

 To design and synthesis new inhibitors of IMP-1 based on existing inhibitor 

scaffolds of MBLs;  

 To express and purify wild-type IMP-1 based on known protocol; 

 To kinetically evaluate the IMP-1 inhibitory activities of the newly synthesised 

potential inhibitors; 

 To predict the binding interaction of the new potential inhibitors with IMP-1 by 

computational modeling, based on available 3D structures of IMP-1 co-crystallised 

with known inhibitors; 

 To co-crystallise the new inhibitors with MBL. 
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CHAPTER 2: SYNTHESIS AND EVALUATION OF N-ACYLPYRROLE-3-CARBONITRILE 

DERIVATIVES AS IMP-1 INHIBITORS 

 

2.1 General introduction 

Natural and synthetic vicinal diaryl-substituted pyrroles have been reported to display 

various significant biological properties, such as anti-tumour, anti-viral, anti-bacterial and anti-

hyperlipidemic activities.1 An example of such a pyrrole is atorvastatin calcium (66), a statin 

drug approved in 1996 by the Food and Drug Administration.2 Atorvastatin (66) is a 

competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, a key 

enzyme involved in the biosynthesis of cholesterol.2  

 

 

 

Since the discovery of MBL inhibitors, a lot of attention has been directed towards 

inhibitors with mercaptocarboxylate and dicarboxylate pharmacophores.3 This leaves room for 

the development of inhibitors with various molecular scaffolds and pharmacophores, such as 

pyrrole 65 - a solely competitive IMP-1 inhibitor to be developed as potent MBL inhibitors.4  
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Pyrrole 65 contains various functionalities, such as an amino group, a cyano group, 

vicinal diphenyl side chains and an N-benzyl group. The individual roles of each of these 

functional groups in contributing to the overall IMP-1 inhibitiory activity of 65 could be further 

explored.4  This chapter will focus on the optimisation of pyrrole 65 as an IMP-1 inhibitor by 

the synthetic modification of the 2-amino group of the lead compound. 

 

2.2 Research plan 

Preliminary computational modelling based on a known 3D structure of an inhibitor co-

crystallised with IMP-1 can be used as a predictive tool in the design of new IMP-1 inhibitors.5 

The crystal structure of the succinic acid derivative 56a co-crystallised with IMP-1 (PDB no.: 

1JJT, Figure 1.32) was selected based on two reasons: 1) the inhibitor is the most potent 

IMP-1 inhibitor thus far, with an IC50 value of 9 nM, and 2) the 3D structure is one of the most 

well-resolved MBL crystal structure, with a resolution of 1.3 Å.6  

Nevertheless, the amino acid residues of the 1JJT crystal structure are not numbered 

according to the standard BBL Ambler numbering system. In this chapter, the BBL numbering 

will be included in parenthesis next to the 1JJT numbering.7 
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Computational programs such as Molegro Virtual Docker (MVD) can be used to model 

the binding modes of new inhibitors bound in the active site of IMP-1. MVD incorporates a 

cavity prediction algorithm that enables the efficient and accurate detection of possible 

inhibitor-enzyme binding modes.8 Furthermore, computational modelling results obtained from 

MVD can be compared with those obtained from other programs, such as Glide (Glide 

modelling was carried out by Ajit Kandale, a PhD student with the McGeary group).9  

MVD computational modelling of pyrrole 65 bound in the active site of IMP-1 

suggested that both of the phenyl rings of the inhibitor make favourable contacts with the 

mobile L3 loop via residues Val25 (61), Trp28 (64) and Val31 (67) (Figure 2.1). Binding of the 

mobile loop closes the active site of the enzyme.10 The in silico model also predicted that the 

3-cyano group of 65 binds to the terminal amino group of Lys161 (224) through a hydrogen 

bond interaction (N-N distance 3.10 Å). Lys161 (224) is conserved among B1 MBLs and is 

known to form ionic interactions with the C3 or C-4 carboxylate group of β-lactam 

antibiotics.11 In addition, one of the 2-amino hydrogen atoms of 65 was predicted by the 

model to have a hydrogen bond contact with the imidazole nitrogen of His139 (196), which is 

a Zn1 ligand (N-N distance 3.03 Å). This similar interaction was also suggested by Hussein et 

al., although the histidine residue proposed by the authors was His197 (263), which is a Zn2 

ligand (Section 1.11 g).4 Based on this computational prediction, it was proposed that the 2-

amino group of pyrrole 65 may play a role in the binding of the inhibitor to the active site of 

IMP-1. 

Nevertheless, the in silico model didn’t predict any interactions between pyrrole 65 and 

the zinc centres in the active site of IMP-1 (Figure 2.1). 
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Figure 2.1: The computational model of pyrrole 65 docked into IMP-1 as predicted by MVD. 

Atom colours: carbon on ligand in olive green, carbon on IMP-1 in grey, nitrogen in blue, 

oxygen in red and hydrogen in white. The Zn2+ ions are shown as red spheres. The dashed, 

green lines represent hydrogen bonds. 

 

Synthetic modification of the 2-amino group of pyrrole 65 can be achieved by acylation 

of the functional group with various aliphatic acyl chlorides 67 of various aliphatic chain 

lengths or aryl groups to yield N-acylated derivatives of pyrrole 65 (Scheme 2.1). Both p-nitro- 

and 4-benzoyl aryl-subtituents have been reported to be potent IMP-1 inhibitor fragments.12  

Pyrrole 65, which is the starting material for this synthetic exercise, can be prepared 

from the condensation of benzoin (69), benzylamine (70) and malononitrile (72) in two 

synthetic steps according to known procedure (Scheme 2.2).13,14 Trichloroacetic acid, TCA 

can be used as the acid catalyst in the condensation reaction of benzoin (69) with 

benzylamine (70).13 
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Scheme 2.1: The proposed synthetic modification of the 2-amino functional group of pyrrole 

65. 

 

 

Scheme 2.2: The reported synthetic preparation of pyrrole 65.13,14 

 

MVD molecular docking of a sample of N-acyl amide derivatives 77, 79 and 84 bound 

to IMP-1 predicted considerably similar interactions with that of the lead compound 65 (Figure 

2.2). All three in silico models suggested a hydrogen bond interaction between the nitrogen 

atom of the 3-cyano group of the derivatives and the terminal amino group of Lys161 (224), in 

addition to hydrophobic interactions between the vicinal diphenyl rings of the derivatives and 

the flexible loop, as previously described for that of pyrrole 65.  
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(a) 

(b) 
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Figure 2.2: The in silico models of (a) N-acetamide 77, (b) N-benzamide 79 and (c) N-

butyramide 84 derivatives of pyrrole 65 docked into IMP-1 as predicted by MVD. Atom 

colours: carbon on ligand in blue for 77, dark grey for 79 and lime green for 84, carbon on 

IMP-1 in grey, nitrogen in blue, oxygen in red and hydrogen in white. The Zn2+ ions are shown 

as red spheres. The dashed, green lines represent hydrogen bonds. 

  

The IMP-1 inhibitory activity of the N-acylated pyrrole derivatives can be evaluated by 

a kinetic assay which measures the residual activity of IMP-1 in the presence of an inhibitor.15 

The difference between the residual activity and the activity of the uninhibited enzyme is 

taken as the percentage inhibition of the particular inhibitor.15,16 The percentage inhibition of 

the lead compound, pyrrole 65 can be used as a reference for comparing the inhibitory 

potency of the synthetic derivatives. Derivatives that show greater percentage inhibition than 

the reference compound 65 can be further evaluated to determine the inhibition constant and 

mode of inhibition of the particular derivative.  

The substrate used in the kinetic assay is CENTA (73), a chromogenic derivative of 

cephalothin (19) (Scheme 2.3).17,18 CENTA (73) has been successfully used by the McGeary 

and Schenk group in the screening and kinetic inhibition studies of various types of IMP-1 

inhibitors.4,12,15,19  

(c) 
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Scheme 2.3: The derivatisation of CENTA (73) from cephalothin (19).17,18 

 

The activity of IMP-1 in the presence or absence of an inhibitor can be measured as 

the hydrolytic rate of CENTA (73), which is determined spectrophotometrically by monitoring 

the rate of formation of 2-nitro-5-sulfidobenzoate (74b) at 405 nm (ε = 6400 M-1 cm-1) 

(Scheme 2.4).4,19 The Km and kcat parameter for the hydrolysis of CENTA by IMP-1 is 200 μM 

and 400 s-1, respectively.17 

 

 

Scheme 2.4: Hydrolysis of CENTA (73) by IMP-1 as a measurement of IMP-1 activity. 
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2.3 Results and discussion 

2.3 a) Synthetic work – first series 

It was anticipated that the acylation of 2-aminopyrrole-3-carbonitrile 65 would require 

relatively harsh conditions, as the 2-amino group of the pyrrole is not a reactive nucleophile 

due to the delocalisation of the non-bonding electrons of the nitrogen into the aromatic pyrrole 

ring.20 However, acetylation of pyrrole 65 with excess acetic anhydride (42.0 eq.) under 

refluxing condition afforded N,N-diacetyl imide 76 as the sole product and not the N-

acetamide 77 product as reported by Fathallah.21 This observation was also recorded by 

Bayomi et al. in the acetylation of 2-amino-3-carbonitrilepyrrole 65a which gave imide 76a 

with excess equivalents of acetic anhydride at refluxing condition (Scheme 2.6).22 Amide 77 

was later obtained from the partial deacylation of imide 76 with slightly basic methanol  

(Scheme 2.5).23  

 

 

Scheme 2.5: The acetylation of pyrrole 65 with excess acetic anhydride and partial 

deacylation of N,N-diacetyl imide 73 with potassium carbonate.21,23    

 

 

Scheme 2.6: The acetylation of pyrrole 65a with both 2.9 equivalents and excess acetic 

anhydride which gave amide 77a and imide 76a, respectively.22 
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A second attempt of the acetylation reaction was carried out with fewer molar 

equivalents of acetic anhydride (1.8 eq.) at room temperature. Interestingly, the reaction 

afforded amide 77and imide 76 as the major and minor product, respectively (Scheme 2.7). 

 

Scheme 2.7: The mild acetylation of pyrrole 65 which results in a mixture of imide 76 and 

amide 77 products. 

 

Similarly N,N-dibenzoyl imide 78 was obtained as the only product from the reaction of 

pyrrole 65 with benzoyl chloride (4.0 eq.) under refluxing condition. Triethylamine (6.0 eq.) 

was employed as the base in the reaction. Again, partial deacylation of imide 78 with 

potassium carbonate afforded N-benzamide 79 as the final product (Scheme 2.8). 

 

 

Scheme 2.8: The benzoylation of pyrrole 65 with benzoyl chloride and the partial deacylation 

of imide 78 with potassium carbonate. 

 

 A second attempt at the benzoylation reaction was carried out at 0 °C for 1 h with 1.0 

eq. of benzoyl chloride and 2.0 eq. of pyridine, according to Müller et al.24 The reaction 
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afforded the expected amide 79 as the sole product, albeit in low yield (37%). Moreover, 52% 

of the pyrrole 65 starting material was recovered from the reaction mixture (Scheme 2.9). In 

contrast, Müller and colleagues reported yields of 51% or 53% for the mild benzoylation of a 

similar 2-aminopyrrole-3-carbonitrile 80 which primarily gave N-benzamides 81a or 81b as the 

sole reaction product with no report of un-reacted starting material (Scheme 2.10). 

 

 

Scheme 2.9: The mild benzoylation of pyrrole 65 according to the procedure by Müller et al.24 

 

 

Scheme 2.10: The mild benzoylation of pyrrole 80 according to the procedure by Müller et 

al.24 

 

 It was subsequently decided that the acylation of pyrrole 65 with other aliphatic acyl 

chloride derivatives would proceed by initial conversion of pyrrole 65 to the N,N-diacyl imide 

intermediate followed by partial deacylation of the corresponding imide with slightly basic 

methanol to the desired amide. This method is not only synthetically more efficient but is also 

advantageous to the aim of the research, as it provides additional imide derivatives for IMP-1 
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inhibition study. Scheme 2.11 shows two other N,N-diacyl imide derivatives (82, 83) and the 

desired amide derivatives (84, 85) synthesised in this manner. 

 

 

Scheme 2.11: The syntheses of imides (82, 83) and amides (84, 85) from pyrrole 65. 

 

However, the observed low yield of N-heptanamide 86 was due to heptanoyl chloride 

(88), which was lost during high-vacuum drying before the amide coupling step with pyrrole 

65 (Scheme 2.12). The drying step was introduced to remove trace amounts of thionyl 

chloride from the acyl chloride reagent. As a result, most of the pyrrole starting material 65 

was recovered from the reaction mixture (80%). Nevertheless, N-heptanamide 86 was 

obtained as the sole reaction product. Therefore, this observation demonstrates that even at 

refluxing condition, the N-amide is the only product obtained when limiting amounts of the 

acyl chloride reagent is used. Moreover, the amount of 86 obtained was sufficient for the 

inhibition assay and there was no need for the coupling reaction to be repeated. 

 

Scheme 2.12: Synthesis of N-heptanamide 86 from pyrrole 65 and heptanoyl chloride (88). 
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The proposed mechanism for the formation of imide 78, 82 and 83 is illustrated in 

Scheme 2.13. It starts with the nucleophilic acyl substitution of one molecule of acyl chloride 

(R1C=O) with 2-aminocyanopyrrole 65 to give amide 79, 84 or 85 via tetrahedral 

intermediates 1 and 2 (TI 1 and 2).25 The triethylamine base facilitates the substitution 

reaction by deprotonating the positively charged ammonium end of TI 1. This then leads to TI 

2, with the expulsion of the chloride ion in TI 2 to form the amide intermediate.25 Next, another 

molecule of triethylamine is required to deprotonate the amide intermediate for the acyl 

substitution of a second molecule of acyl chloride to furnish the imide product 78, 82 or 83, via 

T1 3. 

 

 

Scheme 2.13: The proposed mechanism for the formation of imides 78, 82 and 83 by the 

coupling of pyrrole 65 with 4.0 equivalents of the appropriate acyl chloride reagent and 6.0 

equivalents of TEA, under refluxing condition. TI stands for tetrahedral intermediate. 
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The synthesised N-acyl amide and N,N-diacyl imide derivatives of pyrrole 65 were 

characterised by infrared (IR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, 

in addition to low- and high-resolution mass spectrometry (LRMS and HRMS).14,26,27 The IR, 

1H and 13C NMR spectra of derivative 82 are presented as a representative of the spectral 

data of the synthetic derivatives of pyrrole 65 (Figures 2.3, 2.4 and 2.5). 

The 3-cyano functional group of the starting material 65 and derivative 82 can be 

identified by the presence of a medium-intensity peak at around 2220 cm-1, which 

corresponds to the nitrile, C≡N stretch in the IR spectra (Figure 2.3).26-28 Pyrrole 65 and 

derivative 82 can be further distinguished by the presence of a strong peak at 1683.3 cm-1 in 

the IR spectrum of the latter, which corresponds to the carbonyl, C=O stretch.28 

 

 

Figure 2.3: The IR spectrum of 82 (neat sample). The broad peak at 3236.6 cm-1 could 

probably be due to the hydroxyl, O-H stretch from moisture in the sample.  

 

The 1H NMR spectrum of derivative 82 shows a characteristic singlet (2H) at δ 4.88 

ppm, which corresponds to the N-benzylic protons of 82 (NCH2Ph) (Figure 2.4).28 This 
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characteristic resonance signal is used in the 1H NMR spectral identification of pyrrole 65 and 

its synthetic derivatives which contain the N-benzyl side chain.  

 

 

Figure 2.4: The 1H NMR (400 MHz, CDCl3) spectrum of 82. 

 

Characteristic 13C NMR signals of pyrrole 65 and its synthetic derivatives were 

assigned with the aid of distortionless enhancement by polarisation transfer (DEPT) 

spestroscopy and 2D NMR spectroscopic techniques, such as heteronuclear single quantum 

correlation (HSQC) and heteronuclear multiple-quantum correlation (HMBC) (only the HSQC 

spectrum is shown, Figure 2.6).28 In addition, the 13C NMR data and assignment of two 

closely related, known 2-amino-3-pyrrocarbonitriles 89a and b were also employed to confirm 

the assignment of the characteristic signals (Table 2.1).26  
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Table 2.1: Characteristic 13C NMR peaks of known compounds 89a and b.26 

Compound 89 Chemical shift, δ(ppm) 

C-3 C≡N C-2 

a 70.9 117.6 148.9 

b 70.9 117.5 149.1 

 

The 13C NMR spectrum of 82 shows characteristic signals at δ 48.4 (CH2), 92.6 (C), 

114.6 (C), and 135.2 (C), which correspond to the N-benzylic carbon (NCH2Ph), the carbon 

adjacent to the 3-cyano group (C-CN), the cyano carbon (C≡N), and the carbon adjacent to 

the 2-amino group (C-NH2), respectively (Figure 2.5).26  The identity of the N-benzylic carbon 

was confirmed with HSQC which shows a direct correlation between the benzylic proton 

signal and benzylic carbon signal (6-CH2 and C-6, Figure 2.6). These characteristic 13C NMR 

signals, in conjunction with the aforementioned 1H NMR characteristic signal are utilised in 

the NMR spectroscopic identification of pyrrole 65 and its synthetic derivatives. In addition, 

the appearance of a downfield signal at δ 175.1 (C) in the 13C NMR spectrum of 82 is due to 

the resonance from the carbonyl carbon (C=O).28 This downfield 13C NMR signal is used to 

further distinguish pyrrole 65 from its N-acyl and N,N-diacyl synthetic derivatives.  

 Furthermore, positive mode HRMS analysis of 82 had detected a molecular ion peak 

with a m/z ratio of 512.2309, corresponding to the [M + Na]+ ion of the imide (spectrum not 

shown). The observed m/z value corresponds to a chemical formula of C32H31N3NaO2 and has 

a mass error measurement of 0.10 mDa or 0.20 ppm from its calculated m/z value of 

512.2308.29 
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Figure 2.5: The 13C NMR spectrum of 82 (100 MHz, CDCl3).The residual solvent peak is a 

triplet, resonating at δ 77.0 ppm. 
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Figure 2.6: The HSQC (500 MHz, CDCl3) spectrum of 82. 

 

2.3 b) Enzymatic kinetic studies – first series 

The percentage inhibitions of the compounds in the first series of synthetic pyrrole 

derivatives against IMP-1 are presented in Table 2.2. According to the results shown, imide 

78 and the corresponding N-benzamide 79 are the only two inhibitors which are more potent 

than the lead compound 65. The rest of the imide and amide inhibitors exhibit lower or 

comparable inhibition percentages with inhibitor 65. Thus, regardless of the chain length, 

aliphatic amide or imide derivatives of 65 are less potent IMP-1 inhibitors than aromatic amide 

79 or aromatic imide 78.  
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Table 2.2: The percentage inhibition of the first series of pyrrole derivatives (10 μM) against 

IMP-1 (5 nM, containing BSA at a final conc. of 20 μg mL-1a) at pH 7.0 and 25 °C, with 

CENTA (70 μM) as the substrate.  

Inhibitor Structure Percentage 

Inhibition 

(%) 

Inhibitor Structure Percentage 

Inhibition 

(%) 

65b 

 

26.3 ± 4.2 82 

 

17.1 ± 3.4 

76 

 

18.6 ± 4.8 84 

 

21.0 ± 2.5 

77 

 

16.1 ± 6.6 83 

 

14.3 ± 2.4 

78 

 

48.0 ± 5.9 85 

 

8.2 ± 4.5 

79 

 

50.9 ± 2.5 86 

 

23.2 ± 5.9 

aBovine serum albumin (BSA) was added to IMP-1 for enzyme stability. bPyrrole 65 is shown 

for comparison. Inhibition percentages of derivatives which are higher than that of pyrrole 65 

are highlighted in red. 

 

The competitive (Kic) and uncompetitive (Kiuc) inhibition data obtained for inhibitors 78 

and 79 (Table 2.3) suggests that the inhibitors exhibit a mixed-inhibition mode against IMP-1, 

i.e. the inhibitor may possibly bind to the enzyme at the same binding site as the substrate, 
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resulting in an enzyme-inhibitor (EI) complex or to the substrate bound enzyme, forming a 

ternary enzyme-substrate-inhibitor (ESI) complex (Scheme 2.14).19,30 In either mode, the EI or 

ESI complex does not result in turnover of substrate to product.19,30 This is in contrast to 65 

which is a purely competitive inhibitor,4 in which case the inhibitor only competes with the 

substrate for the same binding site (Table 2.3).30  

 

Table 2.3: The competitive (Kic) and uncompetitive (Kiuc) inhibition constants (μM) of inhibitors 

78 and 79 against IMP-1 (5 nM, containing BSA at a final conc. of 20 μg mL-1) at pH 7.0 and 

25 °C, with CENTA (5-70 μM) as the substrate.  

Inhibitor Structure Kic (μM) Kiuc (μM) 

65* 

 

 

21 ± 10 - 

78 

 

468 ± 6 55.2 ± 19.0 

79 

 

10.7 ± 9.3 4.31 ± 1.82 

*Pyrrole 65 is shown for comparison. 4  

 

Further analysis of the kinetic data of inhibitor 78 suggests that its uncompetitive mode 

is more dominant than its competitive mode as the Kiuc value of 78 is a magnitude lower than 

its corresponding Kic value4,19 (in general, for either competitive or uncompetitive inhibition 

mode, a smaller inhibition constant implies that a smaller concentration of the inhibitor is 

required to inhibit the enzyme by 50%, on condition that the substrate concentration is close 

to the Km value).30  
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Scheme 2.14: The reaction pathway of a mixed-inhibition mode inhibitor, I with the enzyme, 

E, substrate, S and product, P. Kic and Kiuc is the competitive and uncompetitive inhibition 

constants, respectively. Ks and kp is the Km and kcat equivalent of the uninhibited enzyme, 

respectively.30  

 

In addition, among the three inhibitors presented, 79 is the most potent IMP-1 inhibitor, 

exhibiting the lowest inhibition constant (uncompetitive) of 4.31 µM (Table 2.3). Therefore, the 

derivatisation of the 2-amino group of 65 to an N-benzamide group in 79 has the propensity to 

increase the IMP-1 inhibitory potency of the lead compound. This important observation was 

used as the basis for the design and synthesis of another series of synthetic N-benzamide 

pyrrole derivatives having various moieties such as p-nitro and 4-benzoyl (Section 2.2). 

 In order to determine whether the apparent IMP-1 inhibition of the imide derivatives 

were due to the corresponding hydrolysed amides or the imides themselves, a study on the 

stability of a few imide derivatives in the presence of IMP-1 was carried out. The study 

involved overnight incubation of DMSO solution of imides 76, 78 and 82 with the enzyme, 

followed by sample analysis with low resolution electrospray ionisation mass spectrometry 

(ESI-MS).  

The results of the MS analysis only showed the m/z ratio of the imides tested and no 

detectable m/z ratio of the corresponding hydrolysed amides. A representative result of the 

test is presented in Figure 2.7, showing a major peak at m/z 512.1 that corresponds to the [M 

+ Na]+ ion of imide 82. However, no m/z peaks corresponding to the hydrolysed amide 84 

(MW 419.5 g mol-1) was detected in the analysis. As ESI-MS is a qualitative analysis, the 

result does not necessarily imply that imide 82 is unchanged, but that some of it may have 
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remained in the sample. Nevertheless, the absence of any of the m/z peaks of 84 in the 

spectrum suggests that the imide is stable against IMP-1 even after overnight incubation with 

the enzyme.  

 

 

Figure 2.7: The ESI-MS spectrum of 82 (10 µM) after overnight incubation with IMP-1 (5 nM). 

The peaks at m/z 301.1, 360.3, 413.2, 685.3, 827.5 and 902.3 correspond to the solvent or 

background noise of the analysis and can be safely ignored. 

 

2.3 c) Synthetic work – second series 

Scheme 2.15 presents the synthetic work, including the reaction yields of another 

series of pyrrole derivatives. Interestingly, none of the entries involving substituted benzoyl 

chlorides 90, 92, 95 and 98 (entries A-D) afforded N,N-diacyl imide as the sole reaction 

product. Entires A and D afforded N-acyl amide as the only reaction product, whereas entries 

B and C afforded a mixture of imide and amide products. Overall, the reaction yields of the 

imide and/or amide products were modest. This observation is in contrast to the acylation of 

pyrrole 65 with benzoyl chloride, affording imide 78 as the sole reaction product in a good 

yield of 76%, under the same experimental conditions and with the same amount of acyl 

chloride and TEA used (Scheme 2.8). Therefore, this indicates that derivatising the benzoyl 
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chloride with various substituents, such as 3-nitro, 4-nitro, 3,5-dimethyl or 4-benzoyl results in 

a less reactive acyl chloride towards nucleophilic acyl substitution with 2-amino-3-

cyanopyrrole 65.  

In addition, The N-cyclohexanoyl pyrrole derivative 103 was introduced in the study as 

the unsaturated ring analogue of the N-benzamide derivative 79. Amide 103 was also 

obtained as the only reaction product from the acylation of pyrrole 65 with cyclohexanoyl 

chloride (102) (entry F). One possible explanation for this could be due to the steric hindrance 

of the cyclohexyl ring of the acyl chloride, thus rendering it less accessible for a second round 

of nucleophilic acyl substitution by amide 103. This explanation could also be applied to entry 

D, whereby the 4-benzoyl moiety of 98 could be deem as too bulky a group for further imide 

formation.  

The N-phthalimide pyrrole derivative 101 was also another molecule of interest, as it 

structurally resembles N,N-dibenzoyl imide 78 (entry E). The proposed mechanism for the 

synthesis of 101, via the condensation of pyrrole 65 with two equivalents of phthalic anhydride 

(100), under refluxing condition is illustrated in Scheme 2.16.31 The condensation reaction 

was neither catalysed by acid nor base. As shown by the proposed mechanism, the only 

driving force for the formation of phthalimide 101 is the expulsion of water from the 

condensation reaction, as phthalic anhydride (100) undergoes nucleophilic acyl substitution 

with 2-amino-3-cyanopyrrole 65.  
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Scheme 2.15: The syntheses of the second series of N-acyl and N,N-diacyl derivatives of 

pyrrole 65. 
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Scheme 2.16: The proposed mechanism for the formation of phthalimide 101 (adapted from 

Thale et al.)31 

  

 The structural identities of the second series were identified based on key diagnostic 

IR and NMR spectral signals, as previously identified for that of the first series (Section 2.3 a). 

For example, the presence of bands around 2225-2230 cm-1 and 1655-1700 cm-1, found in the 

IR spectra of the compounds correspond to the nitrile and amide carbonyl stretching bands, 

respectively (spectra not shown). Interestingly, the carbonyl stretching bands for phthalimide 

101 were observed to appear as two strong peaks at 1750.0 and 1732.6 cm-1 in its IR 

spectrum (spectrum not shown). These stretching frequencies are characteristic of that of a 

cyclic imide.28  

Moreover, the N-benzylic protons (NCH2Ph) of the compounds could be identified as a 

two proton-singlet at around δ 5.0 ppm in their respective 1H NMR spectra. On the other 

hand, the N-benzylic (NCH2Ph), 3-carbonitrile (C≡N) and carbonyl (C=O) carbon of the 

compounds could be each identified as a 13C signal, resonating at around δ 47-49, 114-116 

and 165-176 ppm, respectively in thier 13C NMR spectra. The 1H and 13C NMR spectra of 
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phthalimide 101 are shown in Figure 2.8 and 2.9, respectively as a representative spectral 

data for this series of compounds.  

As mentioned earlier, DEPT analysis was also instrumental in 13C NMR signal 

assignment for the compounds. The DEPT 135 spectrum of phthalimide 101 revealed a 

negatively-phased signal at δ 49.0, that corresponds to the N-benzylic (NCH2Ph) carbon, as 

well as 11 aromatic CH signals from δ 124.2 to 134.9 ppm, all of which could be seen pointing 

upwards (Figure 2.10). This result is consistent with the expected number of methylene and 

non-equivalent methine carbons for phthalimide 101 (Figure 2.11).  

 

 

Figure 2.8: The 1H NMR (400 MHz, CDCl3) spectrum of 101. The singlet at δ 1.56 and 2.05 

ppm is due to traces of water and ethyl acetate, respectively. The integration for the multiplet 

from δ 7.85-7.87 is 1.9284 (2H).  
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Figure 2.9: The 13C NMR spectrum of 101 (100 MHz, CDCl3). The triplet at δ 77.0 ppm is due 

to CDCl3. 

 



94 
 

 

Figure 2.10: The DEPT 135 spectrum of 101 (100 MHz, CDCl3). The negatively-phased signal 

resonates at δ 49.049 ppm. 

 

Figure 2.11: The molecular structure of 101, showing the 11 non-equivalent CH carbons, 

labeled from a to n and the N-benzylic carbon, marked with an asterisk. 

 

 Lastly, the molecular weight and chemical formula of phthalimide 101 was confirmed 

by HRMS analysis. The HRMS spectrum of the phthalimide showed a molecular ion peak with 
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a m/z ratio of 502.1527, corresponding to the [M + Na]+ ion of the compound. The observed 

m/z ratio corresponds to a chemical formula of C32H21N3NaO2 and has a mass error 

measurement of 0.10 mDa or 0.20 ppm from its calculated m/z value of 502.1526. 

 

2.3 d) Enzymatic kinetic study – second series 

Derivatives 91, 93, 96 and 99 were identified as significantly potent inhibitors against 

IMP-1 as they showed improved IMP-1 inhibitory potencies compared to the pyrrole lead 

compound 65 (Table 2.4). However, the N,N-diaromatic imides, 94 and 97 together with the 

N-phthalimide derivative 101 exhibit lower inhibitory activities than 65. This result taken 

together with the previous kinetic result (Section 2.2 b) implies that the imide derivatives are 

less potent inhibitors than the corresponding amide derivatives. In addition, example 103 

substantiates an earlier claim that the N-aromatic amide derivatives are more potent IMP-1 

inhibitors than the N-aliphatic or non-aromatic amide derivatives (Section 2.2 b).  

 

Table 2.4: The percentage inhibition of the second series of pyrrole derivatives (10 μM) 

against IMP-1 (5 nM, containing BSA at a final conc. of 20 μg mL-1) at pH 7.0 and 25 °C, with 

CENTA (70 μM) as the substrate.  

Inhibitor Structure Percentage 

Inhibition 

(%) 

65* 

 

26.3 ± 4.2 

91 

 

48.7 ± 1.9 
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93 

 

36.9 ± 2.4 

94 

 

20.2 ± 3.4 

96 

 

32.3 ± 4.7 

97 

 

13.3 ± 2.4 

99 

 

44.3 ± 3.3 

101 

 

20.3 ± 3.7 
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103 

 

23.3 ± 3.7 

*Pyrrole 65 is shown for comparison. Inhibition percentages of derivatives which are higher 

than that of pyrrole 65 are highlighted in red. 

 

Inhibitors 91, 93, 96 and 99 were then selected for further kinetic study (Table 2.5). 

The results revealed that inhibitor 91 and 96 exhibit a mixed-inhibition mode against IMP-1, 

whereas the N-p-nitrobenzamide derivative 93 is a purely competitive IMP-1 inhibitor with a K-

ic value of 1.24 μM (Table 2.5). Inhibitor 93 is thus far the most potent IMP-1 inhibitor for this 

class of inhibitors. The low Kic value of inhibitor 93 in comparison to the Km value of the 

CENTA substrate (200 µM) implies that binding of the inhibitor to the enzyme prevents the 

substrate from entering the active site of the enzyme, as a competitive inhibitor competes with 

the substrate for the same binding site in the enzyme molecule and the Kic and Km is a 

measure of affinity for the inhibitor and substrate to bind to the enzyme, respectively.6 The 

second most potent IMP-1 inhibitor for this series is inhibitor 99, which is a solely 

uncompetitive inhibitor with a Kiuc magnitude of 1.52 μM. 

 

Table 2.5: The competitive (Kic) and uncompetitive (Kiuc) inhibition constants (μM) of inhibitors 

65, 91, 93, 96 and 99 against IMP-1 (5 nM, containing BSA at a final conc. of 20 μg mL-1) at 

pH 7.0 and 25 °C, with CENTA (5-70 μM) as the substrate. 

Inhibitor Structure Kic (μM) Kiuc (μM) 

65* 

 

21 ± 10 - 
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91 

 

23.7 ± 25.2 3.33 ± 0.81 

93 

 

1.24 ± 0.59 - 

96 

 

20.2 ± 10.9 7.78 ± 2.54 

99 

 

- 1.52 ± 0.36 

*Pyrrole 65 is shown for comparison.4 “-“ Denotes  a large value (102-105 mM range). 

 

The difference in the mode of inhibition between N-nitrobenzamides 91 and 93 could 

be explained by molecular modelling with the Glide program. The modelling results suggested 

that the nitro group of 93 binds in the vicinity of the metal centres, whereas the nitro group of  

91 doesn’t make any significant interactions within the active site of the enzyme (Figures 2.8 

and 2.9, respectively).  

Further analysis of the in silico model of 93 bound with IMP-1 suggested that one of 

the oxygen ions of the p-nitro group of the inhibitor binds electrostatically to both of the Zn2+ 

ions (O-Zn1 distance 2.08 Å and O-Zn2 distance 2.52 Å), thereby  displacing the bridging 

hydroxide ion which is required for catalysis (Figure 2.12). The same oxygen ion is also 

predicted to make a hydrogen bond interaction with a nitrogen atom on the imidazole ring of 

His79 (118) (O-N distance 3.19 Å). Other possible interactions predicted by the model are a 

salt-bridge interaction between the nitrogen cation of the nitro group of 93 and the terminal 
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carboxylate ion of Asp81 (120) (N-O distance 3.44 Å), and a π-π stacking interaction between 

the p-nitrophenyl ring of 93 and the imidazole ring of His197 (263) (C-C distance 4.27 Å). The 

modelling therefore suggested that inhibitor 93 may possibly compete with the same binding 

site as the substrate CENTA in binding with IMP-1. 

 

  

Figure 2.12: The in silico model of 93 bound to the active site of IMP-1 as predicted by Glide. 

Atom colours: carbon on ligand in green, carbon on IMP-1 in orange, nitrogen in blue, oxygen 

in red, sulfur in yellow and hydrogen in white. The Zn2+ ions are shown as cyan spheres. ZN 

251 and ZN 252 denotes Zn1 and Zn2, respectively. The dashed orange and green lines 

represent the hydrogen bond and ionic interactions, respectively. 

 

 On the other hand, the computational model of inhibitor 91 docked into IMP-1 predicted 

that the 3-nitro group of the inhibitor is orientated away from the Zn2+ ions, with the nitrogen 

atom of the nitro group forming π-cation interactions with the imidazole ring of His197 (263) 

(N-C distance 4.92 Å) and the indole ring of Trp28 (64) (N-C distance 4.37 Å) (Figure 2.13). 

Unexpectedly, none of the oxygen atoms of the 3-nitro group of 91 were shown by the model 

to have any interactions with the hydrogen bond donor region of the active site. Instead, the 

model predicted that the carbonyl oxygen of 91 is hydrogen bonded to a nitrogen atom on the 

imidazole ring of His79 (118) (O-N distance 3.13 Å). 
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Figure 2.13: The in silico model of 91 bound to the active site of IMP-1 as predicted by Glide. 

Atom colours: carbon on ligand in magenta, carbon on IMP-1 in orange, nitrogen in blue, 

oxygen in red, sulfur in yellow and hydrogen in white. The Zn2+ ions are shown as cyan 

spheres. ZN 251 and ZN 252 denotes Zn1 and Zn2, respectively. The dashed orange and 

green lines represent the hydrogen bond and π-cation interactions, respectively. 

 

 The uncompetitive inhibition mode displayed by inhibitor 99 could also be rationalised 

by molecular docking study of the inhibitor with IMP-1, which showed that only a segment of 

the inhibitor is bound to the enzyme active site (Figure 2.14). According to the docking result, 

inhibitor 99 is predicted to have two significant interactions with the enzyme: a hydrogen bond 

between the carbonyl oxygen of 99 and a nitrogen atom of His79 (118) (O-N distance 2.86 Å), 

as previously described for the 91-IMP-1 model, and a π-π stacking interaction between the 

N-benzamide ring and the imidazole ring of His197 (263) (C-C distance 4.27 Å). The rest of 

the inhibitor, such as the pyrrole ring together with the N-benzyl ring, vicinal diphenyl side 

chains and 4-benzoyl ring are exposed to the surface of the enzyme. This implies that the 

active site of the enzyme isn’t large enough to accommodate the inhibitor. The preferred 



101 
 

binding site of inhibitor 99 and IMP-1 may therefore possibly be an induced binding site 

formed from the binding of the CENTA substrate to the enzyme. 

 

 

Figure 2.14: The in silico model of 99 bound to the active site of IMP-1 as predicted by Glide. 

Atom colours: carbon on ligand in purple, carbon on IMP-1 in orange, nitrogen in blue, oxygen 

in red, sulfur in yellow and hydrogen in white. The Zn2+ ions are shown as cyan spheres. The 

dashed orange and green line represents the hydrogen bond and the π-π stacking 

interaction, respectively. The surface of the enzyme is coloured electrostatically, with the blue 

and red region corresponding to the positively and negatively charged region, respectively. 

 

2.4 Conclusion 

 First and foremost, the IMP-1 structure-activity relationship (SAR) of a series of N-acyl 

amide and N,N-diacyl imide derivatives of pyrrole 65 showed that the imide derivatives are 

less potent than the corresponding amide derivatives. A stability test of the imide derivatives 

in the presence of the enzyme revealed that the apparent inhibitory activity of the imides were 

due to the imides themselves, and not by the corresponding amides. 
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In addition, the SAR study also showed that the aromatic N-acyl amide derivatives are 

more potent than the aliphatic or non-aromatic N-acyl amide derivatives. In line with this 

observation, a series of aromatic N-aryl amide derivatives of pyrrole 65 were explored, which 

resulted in the discovery of two potent IMP-1 inhibitors, 93 and 99 for this class of inhibitors 

(Figure 2.15). 

 

 

Figure 2.15: The two most potent IMP-1 inhibitors, 93 and 99 for this class of inhibitors. 

 

 Finally, the position of the nitro group in the N-nitrobenzamide ring of inhibitors 91 and 

93 dictates the mode of IMP-1 inhibition, with the N-3-nitrobenzamide 91 exhibiting a mixed-

mode inhibition and the N-4-nitrobenzamide 93 being a purely competitive inhibitor against 

the enzyme. Computational modelling of isomers 91 and 93 predicted that the former doesn’t 

bind in the vicinity of the metal centres, whereas the latter binds directly with the Zn2+ ions via 

the 4-nitro group, thus displacing the bridging hydroxide which is involved in β-lactam 

hydrolysis.  
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2.5 Experimental 

2.5 a) General synthetic, spectroscopic and spectrometric experimental 

Thionyl chloride (b.p. 74.6 °C) and petroleum ether, PE (b.p. 40-60 °C) were distilled before 

use. The rest of the chemicals and reagents were used without prior purification. Flash 

column chromatography was carried out with Merck Kieselgel 60. Melting points were 

recorded on a SMP11 (Stuart) and DigiMelt MPA161 (Stanford Research Systems) 

equipment, and are uncorrected. NMR spectra were recorded on Bruker AVANCE 500 or 400 

MHz spectrometers. Chemical shifts are reported in parts per million (ppm) on a scale relative 

to the solvent peak CDCl3 (
1H, 7.24 ppm; 13C, 77.0 ppm) and DMSO-d6 (

1H, 2.49 ppm; 13C, 

39.5 ppm). Coupling constants (J) are reported in Hz and peak multiplicities described as 

singlet (s), doublet (d), triplet (t), doublet of doublets (dd), quintet (quin), triplet of triplets (tt), 

multiplet (m), or broad (br). Low-resolution ESI-MS measurements were carried out on a 

Bruker Esquire HCT (High Capacity 3D ion trap) instrument with a Bruker ESI source. High-

resolution electrospray ionisation accurate mass measurements (HRMS) were recorded on a 

Bruker MicrOTOF-Q (quadrupole–Time of Flight) instrument with a Bruker ESI source. 

Accurate mass measurements were carried out with external calibration using sodium formate 

as reference calibrant. Infrared (IR) spectroscopy samples were analysed as neat on a Perkin 

Elmer FT-IR/NIR Spectrometer Frontier.  

 

2.5 b) Preparation of 2-Amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (65)13,14,21 

 

A mixture of benzoin (2.1 g, 10 mmol), benzylamine (1.1 ml, 1.1 g, 10 mmol) and 

trichloroacetic acid, TCA (0.17 g, 1.0 mmol) in dry toluene (20 ml) was refluxed using a Dean-

Stark apparatus for 2 h. A yellow solution was obtained. Malononitrile (0.66 g, 10 mmol) was 

then added to the reaction mixture, followed by 3 drops of pyridine. The mixture was further 

refluxed under Ar for 17 h. A colour change from yellow to olive green and finally dark brown 

was observed. The excess solvent was removed in vacuo to give a brown semi solid residue 
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(7.33 g). The residue was purified by silica gel column chromatography [EtOAc/PE (2:23) → 

EtOAc/PE (7:43)], followed by recrystallisation from diethyl ether to afford the title compound 

as a light brown solid (4.67 g, 67%), m.p.:173.5-175.9 °C (literature m.p.: 173-175 °C).32 Rf: 

0.42 (30% EtOAc in PE, visible as a blue spot under UV). 1H NMR (500 MHz, CDCl3) δ (ppm): 

3.85 (br s, 2H, NH2, D2O exchangeable), 4.90 (s, 2H, NCH2Ph), 7.06-7.08 (m, 2H, Ar-H), 

7.13-7.15 (m, 3H, Ar-H), 7.18-7.32 (m, 8H, Ar-H), 7.35-7.38 (m, 2H, Ar-H). 13C NMR (125 

MHz, CDCl3) δ (ppm): 47.0 (NCH2Ph), 75.9 (C-CN), 117.5 (C≡N), 121.0 (Ar-C), 125.65 (Ar-

C), 125.63 (Ar-C), 126.4 (Ar-CH), 128.0 (Ar-CH), 128.1 (Ar-CH), 128.2 (Ar-CH), 128.67 (Ar-

CH), 128.72 (Ar-CH), 129.3 (Ar-CH), 130.8 (Ar-CH), 131.0 (Ar-CH), 133.2 (Ar-C), 136.1 (Ar-

C), 145.9 (C-NH2). ESI-MS: m/z 350.1 [M + H]+. IR νmax (cm-1): 3406.0 (N-H stretch), 3333.0 

(N-H stretch), 2199.7 (C≡N stretch), 1624.5, 1601.7, 1541.8, 1496.8, 1470.9, 1438.1, 1365.4, 

1339.3. 1H NMR and ESI-MS data are in agreement with the literature.14  

 

2.5 c) General procedure for the derivatisation of acyl chlorides33 

A mixture of thionyl chloride (2.0 ml, 3.6 g, 30 mmol) and the corresponding carboxylic acid (3 

mmol) was refluxed for 1.5 h. Excess thionyl chloride was removed by distillation (74-76 °C, 1 

atm). The residue obtained was co-evaporated with toluene (3 x 5 ml) in vacuo to ensure the 

complete removal of thionyl chloride. The acyl chloride product was used without further 

purification in the next step. 

 

2.5 d) General procedure for the condensation of pyrrole 65 with acyl chlorides 

A solution of the appropriate acyl chloride (2.4 mmol) in toluene (2.0 ml) was added dropwise 

to a stirred mixture of pyrrole 65 (0.21 g, 0.60 mmol) and triethylamine, TEA (0.50 ml, 0.36 g, 

3.6 mmol) in dry toluene (8 ml). The reaction mixture was refluxed overnight under Ar. The 

excess solvent was removed in vacuo and the residue obtained was dissolved in EtOAc (20 

ml) and washed successively with 5% HCl (10 ml), saturated NaHCO3 (10 ml) and brine (10 

ml). The organic layer was dried over Na2SO4 and concentrated in vacuo. The crude product 

was purified by silica gel column chromatography. 
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2.5 e) General procedure for the partial deacylation of N,N-diacyl imides to N-acyl 

amides23 

Equimolar quantities of potassium carbonate (28 mg, 0.20 mmol) and the appropriate N,N-

diacyl imide (0.20 mmol) was stirred at rt for 1 h in MeOH or AcMe/MeOH (1:1) (2.5 ml). The 

excess solvent was removed in vacuo and the residue obtained was dissolved in CHCl3 (15 

ml) and partitioned with water (15 ml). The aqueous layer was extracted with CHCl3 (2 x 5 

ml). The organic layers were combined, washed with brine (20 ml), dried over Na2SO4 and 

concentrated in vacuo. The crude product was purified by recrystallisation or silica gel column 

chromatography. 

 

2.5 f) Experimental data of synthesised compounds 

N-acetyl-N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)acetamide (76)21  

 

A mixture of pyrrole 65 (0.20 g, 0.58 mmol) and acetic anhydride (2.3 ml, 2.5 g, 24 mmol) was 

refluxed for 3 h under Ar. The reaction mixture was cooled and poured into a mixture of ice 

and water. A 25% solution of ammonia (10 ml) was added to the mixture until a red precipitate 

was formed. The precipitate was vacuum filtered and recrystallised from diethyl ether to afford 

the title compound as a brown solid (0.20 g, 79%), m.p.: 170.2-171.1 °C. Rf: 0.45 (30% EtOAc 

in PE). 1H NMR (300 MHz, CDCl3) δ (ppm): 2.15 (s, 6H, 2 x COCH3), 4.85 (s, 2H, NCH2Ph), 

6.95-6.99 (m, 2H, Ar-H), 7.22-7.38 (m, 13H, Ar-H). 13C NMR (75 MHz, CDCl3) δ (ppm): 25.6 

(COCH3), 48.6 (NCH2Ph), 92.5 (C-CN), 114.4 (C≡N), 124.2 (Ar-C), 127.1 (Ar-CH), 127.5 (Ar-

CH), 128.3 (Ar-CH), 128.4 (Ar-CH), 128.8 (Ar-CH), 128.95 (Ar-CH), 129.01 (Ar-CH), 129.1 

(Ar-CH), 130.0 (Ar-C), 131.4 (Ar-CH), 131.8 (Ar-C), 133.6 (Ar-C), 135.2 (C-NH2), 172.1 

(C=O). ESI-MS: m/z 456.2 [M + Na]+. HRMS, found: m/z 456.1683, C28H23N3NaO2 requires 

456.1682. IR νmax (cm-1): 3033.8, 2223.8 (C≡N stretch), 1743.3 (C=O stretch), 1705.0 (C=O 
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stretch), 1605.2, 1533.7, 1497.2, 1479.3, 1455.9, 1446.4, 1429.1, 1364.1, 1349.7, 1255.8, 

1202.2, 1016.6. 

 

N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)acetamide (77) 

 

Potassium carbonate (21 mg, 0.15 mmol) and imide 76 (65 mg, 0.15 mmol) were used. 

MeOH (6 ml) was used as the solvent. The crude product was recrystallised from diethyl ether 

to afford the title compound as a peach coloured solid (40 mg, 68%), m.p.: 130.2-132.6 °C. 

Rf: 0.14 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 2.05 (s, 3H, COCH3), 4.97 

(s, 2H, NCH2Ph), 6.84-6.86 (m, 2H, Ar-H), 7.14-7.27 (m, 13H, Ar-H), 7.67 (br s, 1H NH). 13C 

NMR (100 MHz, CDCl3) δ (ppm): 29.7 (COCH3), 48.5 (NCH2Ph), 89.8 (C-CN), 115.7 (C≡N), 

123.4 (Ar-C), 126.0 (Ar-CH), 126.8 (Ar-CH), 127.7 (Ar-CH), 128.3 (Ar-CH), 128.7 (Ar-CH), 

128.9 (Ar-CH), 130.2 (Ar-C), 130.4 (Ar-C), 131.2 (Ar-CH), 132.4 (Ar-C), 132.7 (Ar-C), 136.8 

(C-NH2), 170.1 (C=O). ESI-MS: m/z 414.2 [M + Na]+. HRMS, found: m/z 414.1573, 

C26H21N3NaO requires 414.1577. IR νmax (cm-1): 3236.6 (N-H stretch), 3063.1, 3031.6, 2222.2 

(C≡N stretch), 1675.2 (C=O stretch), 1583.2, 1564.1, 1541.8, 1497.3, 1452.7, 1423.7, 1366.9, 

1355.2, 1332.4, 1296.3, 1260.5, 1075.4, 1020.1, 1003.7. 

 

N-benzoyl-N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)benzamide (78) 

 

Benzoyl chloride (0.28 ml, 0.34 g, 2.4 mmol) was used as the acyl chloride. The crude 

product was purified by silica gel chromatography [EtOAc/PE (3:97) → EtOAc/PE (3:22)] to 
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afford the title compound as a light brown solid (0.25 g, 76%), m.p.: 181.9-184.4 °C. Rf: 0.56 

(30% EtOAc in PE). 1H NMR (300 MHz, CDCl3) δ (ppm): 5.05 (s, 2H, NCH2Ph), 6.84-6.87 (m, 

2H, Ar-H), 7.00-7.03 (m, 2H, Ar-H), 7.09-7.26 (m, 15H, Ar-H), 7.37 (tt, 2H, J1 = 7.5 Hz, J2 = 

1.5 Hz, Ar-H), 7.58-7.61 (m, 4H, Ar-H). 13C NMR (75 MHz, CDCl3) δ (ppm): 48.5 (NCH2Ph), 

93.0 (C-CN), 115.2 (C≡N), 124.5, 126.4, 127.0, 127.5, 128.3, 128.5, 128.6, 128.7, 128.9, 

129.1, 130.1, 131.0, 131.5, 132.0, 132.8, 133.6, 133.8, 134.0, 135.4 (C-NH2), 172.10 (C=O). 

ESI-MS: m/z 580.2 [M + Na]+. HRMS, found: m/z 580.1979, C38H27N3NaO2 requires 

580.1995. IR νmax (cm-1): 3063.1, 3031.6, 2222.8 (C≡N stretch), 1713.0 (C=O stretch), 1677.5 

(C=O stretch), 1596.3, 1580.6, 1564.8, 1532.9, 1497.3, 1476.5, 1463.8, 1448.9, 1424.5, 

1316.1, 1223.1, 1120.4, 1073.3, 1065.1, 1073.3. 

 

N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)benzamide (79) 

 

Potassium carbonate (28 mg, 0.20 mmol) and imide 78 (0.11 g, 0.20 mmol) were used. A 1:1 

mixture of acetone/MeOH (12 ml) was used as the solvent. The title compound was obtained 

as a white solid by recrystallisation of the crude product from MeOH (48 mg, 53%), m.p.: 

198.2-200.2 °C. Rf: 0.51 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 5.05 (s, 2H, 

Ar-CH2), 6.86-6.88 (m, 2H, Ar-H), 7.16-7.40 (m, 15H, Ar-H), 7.51 (tt, 1H, J1 = 7.5 Hz, J2 = 1.4 

Hz, Ar-H), 7.61-7.64 (m, 2H, Ar-H), 7.81 (br s, 1H, NH). 13C NMR (100 MHz, CDCl3) δ (ppm): 

48.7 (NCH2Ph), 89.9 (C-CN), 115.8 (C≡N), 123.5, 126.1, 126.8, 127.5, 127.7, 128.3, 128.69, 

128.74, 128.95, 128.96, 130.3, 130.6, 131.2, 132.4, 132.6, 132.77, 136.8 (C-NH2), 166.9 

(C=O). ESI-MS: m/z 452.1 [M - H]-. HRMS, found: m/z 452.1762, C31H22N3O requires 

452.1768. IR νmax (cm-1): 3249.2 (N-H stretch), 3063.1, 3031.6, 2221.9 (C≡N stretch), 1678.0 

(C=O stretch), 1581.0, 1555.6, 1532.7, 1498.1, 1479.2, 1448.5, 1422.9, 1353.4, 1314.4, 

1275.4, 1222.9, 1180.3, 1120.1, 1073.9, 1022.1. 
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N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)-N-butyrylbutyramide (82) 

 

Butyryl chloride (0.25 ml, 0.26 g, 2.4 mmol) was used as the acyl chloride. The crude product 

was purified by silica gel chromatography [EtOAc/PE (1:49) → EtOAc/PE (1:19)] to afford the 

title compound as a light brown solid (0.25 g, 86%), m.p.: 114.6-115.2 °C. Rf: 0.73 (30% 

EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 0.91 (t, 6H, J = 7.4 Hz, 2 x CH3), 1.40-1.53 

(m, 2H, CH2CH3), 1.56-1.69 (m, 2H, CH2CH3), 2.20-2.28 (m, 2H, COCH2), 2.60-2.68 (m, 2H, 

COCH2), 4.88 (s, 2H, NCH2Ph), 6.98-7.01 (m, 2H, Ar-H), 7.22-7.28 (m, 8H, Ar-H), 7.34-7.42 

(m, 5H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 13.5 (CH3), 17.8 (CH2CH3), 39.5 

(COCH2), 48.4 (NCH2Ph), 92.6 (C-CN), 114.6 (C≡N), 124.2 (Ar-C), 127.1 (Ar-CH), 127.5 (Ar-

CH), 128.29 (Ar-CH), 128.32 (Ar-CH), 128.9 (Ar-CH), 129.0 (Ar-CH), 129.1 (Ar-CH), 130.2 

(Ar-C), 131.4 (Ar-C), 131.5 (Ar-CH), 131.9 (Ar-C), 133.4 (Ar-C), 135.2 (C-NH2), 175.1 (C=O). 

ESI-MS: m/z 512.2 [M + Na]+. HRMS, found: m/z 512.2309, C32H31N3NaO2 requires 

512.2308. IR νmax (cm-1): 3056.8, 3031.6, 2920.9 (sp3 C-H stretch), 2850.5 (sp3 C-H stretch), 

2224.0 (C≡N stretch), 1683.3 (C=O stretch), 1602.6, 1564.8, 1531.0, 1497.5, 1466.6, 1450.6, 

1415.9, 1367.7, 1351.6, 1221.7, 1183.4, 1075.8, 1029.2, 709.7. 

 

N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)-N-tetradecanoyltetradecanamide (83) 

 

Myristoyl chloride (0.61 g, 2.5 mmol) was used as the acyl chloride. The crude product was 

purified by silica gel chromatography [EtOAc/PE (1:49) → EtOAc/PE (1:19)] to afford the title 

compound as a golden oil (0.43 g, 93%). Rf: 0.90 (30% EtOAc in PE). 1H NMR (400 MHz, 
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CDCl3) δ (ppm): 0.86 (t, 6H, J = 6.0 Hz, 2 x CH3), 1.24 (br s, 44H, CH2CH3 x 22), 2.16-2.24 

(m, 2H, COCH2), 2.56-2.64 (m, 2H, COCH2), 4.83 (s, 2H, NCH2Ph), 6.93-6.95 (m, 2H, Ar-H), 

7.19-7.37 (m, 13H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 14.1 (CH3), 22.7 (CH2), 25.4 

(CH2), 29.1 (CH2), 29.28 (CH2), 29.33 (CH2), 29.4 (CH2), 29.59 (CH2), 29.63 (CH2), 29.7 

(CH2), 31.9 (CH2), 36.2 (COCH2), 48.4 (NCH2Ph), 89.6 (C-CN), 115.7 (C≡N), 123.4 (Ar-C), 

125.9 (Ar-CH), 126.8 (Ar-CH), 127.6 (Ar-CH), 128.2 (Ar-CH), 128.6 (Ar-CH), 128.7 (Ar-CH), 

128.86 (Ar-CH), 128.91(Ar-CH), 130.29 (Ar-C), 130.34(Ar-C), 131.1 (Ar-CH), 132.4 (Ar-C), 

132.9 (Ar-C), 136.8 (C-NH2), 173.2 (C=O). ESI-MS: m/z 792.5 [M + Na]+. HRMS, found: m/z 

792.5449, C52H71N3NaO2 requires 792.5438. IR νmax (cm-1): 3066.0, 3028.0, 2918.0 (sp3 C-H 

stretch), 2849.9 (sp3 C-H stretch), 2221.9 (C≡N stretch), 1677.6 (C=O stretch), 1603.0, 

1562.7, 1497.6, 1465.3, 1453.7, 1422.5, 1354.0, 1301.0, 1275.3, 1223.8, 1180.5, 1074.4, 

1022.4, 727.5. 

 

N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)butyramide (84) 

 

Potassium carbonate (28 mg, 0.20 mmol) and imide 82 (0.10 g, 0.20 mmol) were used. 

MeOH (12 ml) was used as the solvent. The crude product was purified by recrystallisation 

from MeOH to afford the title compound as a light yellow solid (80 mg, 95%), m.p.: 201.0-

203.0 °C. Rf: 0.50 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 0.94 (t, 3H, J = 

7.4 Hz, CH3), 1.63-1.68 (m, 2H, CH2CH3), 2.25 (t, 2H, J = 7.4 Hz, COCH2), 4.98 (s, 2H, 

NCH2Ph), 6.84-6.86 (m, 2H, Ar-H), 7.10-7.27 (m, 13H, Ar-H). 13C NMR (100 MHz, CDCl3) δ 

(ppm): 13.6 (CH3), 18.9 (CH2CH3), 38.0 (COCH2), 48.4 (NCH2Ph), 89.7 (C-CN), 115.7 (C≡N), 

123.4 (Ar-C), 125.9 (Ar-CH), 126.8 (Ar-CH), 127.6 (Ar-CH), 128.2 (Ar-CH), 128.6 (Ar-CH), 

128.7 (Ar-CH), 128.85 (Ar-CH), 128.91 (Ar-CH), 130.29 (Ar-C), 130.34 (Ar-C), 131.1 (Ar-CH), 

132.4 (Ar-C), 132.9 (Ar-C), 136.8 (C-NH2), 173.1 (C=O). ESI-MS: m/z 418.1 [M - H]-. HRMS, 

found: m/z 418.1923, C28H24N3O requires 418.1925. IR νmax (cm-1): 3236.6 (N-H stretch), 

3053.7, 3034.7, 2920.8 (sp3 C-H stretch), 2850.5 (sp3 C-H stretch), 2224.1 (C≡N stretch), 
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1683.1 (C=O stretch), 1605.8, 1561.6, 1530.6, 1497.5, 1466.7, 1450.3, 1415.4, 1367.9, 

1351.6, 1221.1, 1076.0, 1029.2, 709.9. 

 

N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)tetradecanamide (85) 

 

Potassium carbonate (37 mg, 0.27 mmol) and imide 83 (0.21 g, 0.27 mmol) were used. A 1:1 

mixture of AcMe/MeOH (12 ml) was used as the solvent. Silica gel column chromatography 

[EtOAc/PE (1:49) → EtOAc/PE (7:93)] of the crude product afforded the title compound as a 

light yellow solid (0.13 g, 87%), m.p.: 125.4-126.6 °C. Rf: 0.80 (30% EtOAc in PE). 1H NMR 

(400 MHz, CDCl3) δ (ppm): 0.86 (t, 3H, J = 6.9 Hz, CH3), 1.24 (s, 20H, 10 x CH2CH3), 1.56-

1.59 (m, 2H, COCH2CH2), 2.26 (t, 2H, J = 7.5 Hz, COCH2), 4.98 (s, 2H, NCH2Ph), 6.84-6.86 

(m, 2H, Ar-H), 6.97 (br s, 1H, NH), 7.14-7.28 (m, 13H, Ar-H). 13C NMR (100 MHz, CDCl3) δ 

(ppm): 14.1 (CH3), 22.7 (CH2), 25.4 (CH2), 29.1 (CH2), 29.28(CH2), 29.33 (CH2), 29.4 (CH2), 

29.59 (CH2), 29.63 (CH2), 29.7 (CH2), 31.9 (CH2), 36.2 (COCH2), 48.4 (NCH2Ph), 89.7 (C-

CN), 115.7 (C≡N), 123.4 (Ar-C), 125.9 (Ar-CH), 126.8 (Ar-CH), 127.6 (Ar-CH), 128.2 (Ar-CH), 

128.6 (Ar-CH), 128.7 (Ar-CH), 128.86 (Ar-CH), 128.91 (Ar-CH), 130.29 (Ar-C), 130.34 (Ar-C), 

131.1 (Ar-CH), 132.4 (Ar-C), 132.9 (Ar-C), 136.8 (C-NH2), 173.2 (C=O). ESI-MS: m/z 582.4 

[M + Na]+. HRMS, found: m/z 582.3460, C38H45N3NaO requires 582.3455. IR νmax (cm-1): 

3239.8 (N-H stretch), 3053.7, 3034.7, 2920.5 (sp3 C-H stretch), 2850.4 (sp3 C-H stretch), 

2224.2 (C≡N stretch), 1683.4 (C=O stretch), 1602.6, 1561.8, 1529.7, 1497.4, 1467.0, 1450.3, 

1415.9, 1367.9, 1351.7, 1221.5, 1076.1, 1029.3, 709.9. 
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N-(1-Benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)heptanamide (86) 

 

Heptanoyl chloride (61 mg, 0.41 mmol) was used as the acyl chloride. The title compound 

was obtained as a white solid from silica gel column chromatography [EtOAc/PE (1:49) → 

EtOAc/PE (1:6)] of the crude product (0.04 g, 20%) m.p.: 155.8-158.8 °C. Rf: 0.64 (30% 

EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 0.86 (t, 3H, J = 6.8 Hz, CH3), 1.24-1.32 

(m,  6H, CH2CH3 x 3), 1.58-1.62 (m, 2H, COCH2CH2), 2.26 (t, 2H, J = 7.6 Hz, COCH2), 4.98 

(br s, 2H, NCH2Ph), 6.84-6.86 (m, 2H, Ar-H), 7.00 (br s, 1H, NHCO), 7.14-7.30 (m, 13H, Ar-

H). 13C NMR (100 MHz, CDCl3) δ (ppm): 14.0 (CH3), 22.4 (CH2), 25.3 (CH2), 28.8 (CH2), 31.4 

(CH2), 36.2 (CH2), 48.4 (NCH2Ph), 89.9 (C-CN), 115.5 (C≡N), 123.4 (C-Ar), 125.8 (CH-Ar), 

126.8 (CH-Ar), 127.7 (CH-Ar), 128.3 (CH-Ar), 128.67 (CH-Ar), 128.71 (CH-Ar), 128.9 (CH-Ar), 

130.3 (C-Ar), 130.4 (C-Ar), 131.1 (CH-Ar), 132.4 (C-Ar), 132.6 (C-Ar), 136.9 (C-NH2), 173.0 

(C=O). ESI-MS: m/z 460.3 [M - H]-. HRMS, found: m/z 484.2353, C31H31N3NaO requires 

484.2359. IR νmax (cm-1): 3239.8 (N-H stretch), 3056.8, 3034.7, 2920.9 (sp3 C-H stretch), 

2850.6 (sp3 C-H stretch), 2224.2 (C≡N stretch), 1683.1 (C=O stretch), 1602.6, 1561.8, 

1530.5, 1497.6, 1466.9, 1450.3, 1415.9, 1368.1, 1351.8, 1221.6, 1076.1, 1029.4, 711.0. 

 

N-(1-Benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)-3-nitrobenzamide (91) 

 

The acyl chloride used was 3-nirobenzoyl chloride (0.45 g, 2.4 mmol). The title compound 

was obtained as a white solid from silica gel column chromatography [EtOAc/PE (1:24) → 

EtOAc/PE (1:6)] of the crude product (0.14 g, 46%), m.p.: 219.0-220.0 °C. Rf: 0.51 (30% 
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EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 5.08 (s, 2H, NCH2Ph), 6.91-6.93 (m, 2H, 

Ar-H), 7.25-7.36 (m, 13H, Ar-H), 7.56 (t, 1H, J = 7.8 Hz, Ar-H), 7.99 (d, 1H, J = 7.2 Hz, Ar-H), 

8.34-8.36 (m, 2H, Ar-H), 8.41 (br s, 1H, NHCO). 13C NMR (100 MHz, CDCl3) δ (ppm): 48.9 

(NCH2Ph), 89.9 (C-CN), 115.8 (C≡N), 122.7, 123.6, 126.0, 126.9, 127.0, 127.94, 128.3, 

128.8, 128.9, 129.0, 129.1, 129.9, 130.0, 131.0, 131.2, 132.2, 132.3, 133.6, 134.1, 136.4, 

148.1 (C-NH2), 164.6 (C=O). ESI-MS: m/z 521.2 [M + Na]+. HRMS, found: m/z 521.1570, 

C31H22N4NaO3 requires 521.1584. IR νmax (cm-1): 3243.0 (N-H stretch), 3053.7, 3031.6, 

2225.4 (C≡N stretch), 1684.3 (C=O stretch), 1602.6, 1531.3, 1505.4, 1498.1 (N-O asymmetric 

stretch), 1467.2, 1449.3, 1426.6, 1343.8 (N-O symmetric stretch), 1298.3, 1258.8, 1223.4, 

1075.5. 

 

Synthesis of amide 93 and imide 94 

 

 

N-(1-Benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)-4-nitrobenzamide (93) 

 

The acyl chloride used was 4-nitrobenzoyl chloride (0.46 g, 2.4 mmol). The title compound 

was obtained as a light yellow solid from silica gel column chromatography [EtOAc/PE (1:49) 

→ EtOAc/PE (1:12)] of the crude product (0.11 g, 36%), m.p.: 214.3-215.4 °C. Rf: 0.51 (30% 
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EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 5.02 (br s, 2H, NCH2Ph), 6.85-6.87 (m, 

2H, Ar-H), 7.17-7.33 (m, 13H, Ar-H), 7.70 (d, 2H, J = 8.7 Hz, Ar-H), 8.12 (d, 2H, J = 8.8 Hz, 

Ar-H), 8.46 (br s, 1H, NHCO). 13C NMR (100 MHz, CDCl3) δ (ppm): 49.0 (NCH2Ph), 89.6 (C-

CN), 116.1 (C≡N), 123.68, 123.72, 126.0, 127.1, 127.9, 128.3, 128.8, 128.90, 128.9, 129.1, 

130.0, 131.1, 131.2, 132.2, 132.3, 136.4, 137.8, 150.0 (C-NH2), 165.0 (C=O). ESI-MS: m/z 

497.2 [M - H]-. HRMS, found: m/z 521.1589, C31H22N4NaO3 requires 521.1584. IR νmax (cm-1): 

3293.4 (N-H stretch), 3113.6, 3060.0, 3034.7, 2224.7 (C≡N stretch), 1699.6 (C=O stretch), 

1605.8, 1574.2, 1518.5 (N-O asymmetric stretch), 1495.6, 1463.9, 1455.9, 1410.2, 1342.1 (N-

O symmetric stretch), 1272.3, 1256.0, 1206.3, 1076.1, 1009.3. 

 

N-(1-Benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)-4-nitro-N-(4-nitrobenzoyl)benzamide (94) 

 

 The title compound was obtained as an orange solid from silica gel column chromatography 

[EtOAc/PE (1:49) → EtOAc/PE (1:24)] of the crude product (0.12 g, 26%), m.p.: 243.5-245.4 

°C. Rf: 0.75 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 5.43 (br s, 2H, 

NCH2Ph), 6.94-6.96 (m, 2H, Ar-H), 7.10-7.13 (m, 2H, Ar-H), 7.23-7.36 (m, 11H, Ar-H), 8.08 

(d, 2H, J = 9.0 Hz, Ar-H), 8.15 (d, 2H, J = 9.0 Hz, Ar-H), 8.33 (d, 2H, J = 9.1 Hz, Ar-H), 8.49 

(d, 2H, J = 9.0 Hz, Ar-H). ESI-MS: m/z 648.3 [M + H]+. 13C NMR (100 MHz, CDCl3) δ (ppm): 

46.9 (NCH2Ph), 102.0 (C-CN), 120.7 (C≡N), 123.2 (CH-Ar), 124.1 (CH-Ar), 127.0 (CH-Ar), 

127.5 (CH-Ar), 127.9 (CH-Ar), 128.6 (CH-Ar), 128.8 (CH-Ar), 129.0 (CH-Ar), 129.1 (CH-Ar), 

129.4 (C-Ar), 130.8 (CH-Ar), 131.0 (CH-Ar), 131.2 (CH-Ar), 132.1 (C-Ar), 135.5 (C-Ar), 136.5 

(C-Ar), 136.9 (C-Ar), 141.8 (C-Ar), 144.7 (C-Ar), 149.9 (C-Ar), 152.0 (C-Ar), 155.1 (C-NH2), 

172.3 (C=O). ESI-MS: m/z 648.3 [M + H]+. HRMS, found: m/z 648.1883, C38H26N5O6 requires 

648.1878. IR νmax (cm-1): 3113.6, 3060.0, 3034.7, 2224.9 (C≡N stretch), 1699.7 (C=O stretch), 
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1605.8, 1518.6 (N-O asymmetric stretch), 1496.1, 1445.9, 1342.0 (N-O symmetric stretch), 

1272.3, 1255.7, 1206.7, 1076.4, 1009.7. 

 

Synthesis of amide 96 and imide 97 

 

 

N-(1-Benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)-3,5-dimethylbenzamide (96) 

 

The acyl chloride used was 3,5-dimethylbenzoyl chloride (0.47 g, 2.8 mmol). The title 

compound was obtained as a white solid from silica gel column chromatography [EtOAc/PE 

(1:49) → EtOAc/PE (1:16)] of the crude product (0.03 g, 10%), m.p.: 79.9-82.5 °C. Rf: 0.60 

(30% EtOAc in PE). 1H NMR (300 MHz, CDCl3) δ (ppm): 2.30 (s, 6H, 2 x CH3), 5.04 (br s, 2H, 

NCH2Ph), 6.88-6.92 (m, 2H, Ar-H), 7.15-7.31 (m, 16H, Ar-H), 7.48 (s, 1H, NHCO). 13C NMR 

(100 MHz, CDCl3) δ (ppm): 19.3 (CH3), 47.5 (NCH2Ph), 90.0 (C-CN), 115.6 (C≡N), 123.5, 

125.1, 125.3, 125.9, 126.2, 127.7, 128.6, 128.8, 129.0, 129.2, 130.5, 131.2, 132.4, 132.5, 

132.7, 134.2, 136.9, 138.5 (C-NH2), 167.1 (C=O). ESI-MS: m/z 480.2 [M - H]-. HRMS, found: 

m/z 504.2044, C33H27N3NaO requires 504.2046. IR νmax (cm-1): 3523.7 (N-H stretch), 3391.2, 
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3280.9, 3189.3, 2971.7, 2918.0, 2848.6, 2760.3, 2722.5, 2485.9, 2227.2 (C≡N stretch), 

1682.0 (C=O stretch), 1605.4, 1586.9, 1497.1, 1447.4, 1396.9, 1345.5, 1324.7, 1260.6, 

1153.4, 1100.3, 1079.1, 1045.5, 1012.4. 

 

N-(1-Benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)-N-(3,5-dimethylbenzoyl)-3,5-

dimethylbenzamide (97) 

 

The title compound was obtained as an off white solid from silica gel column chromatography 

[EtOAc/PE (1:49) → EtOAc/PE (1:25)] of the crude product (0.22 g, 59%), m.p.: 188.4-190.2 

°C. Rf: 0.71 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 2.19 (s, 12H, 4 x CH3), 

5.04 (br s, 2H, NCH2Ph), 6.86-6.89 (m, 2H, Ar-H), 6.95 (br s, 2H, Ar-H), 7.05-7.07 (m, 2H, Ar-

H) 7.11-7.25 (m, 15H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 21.0 (CH3), 48.4 

(NCH2Ph), 93.0 (C-CN), 115.2 (C≡N), 124.5, 126.4, 126.8, 126.9, 127.4, 128.3, 128.4, 128.57 

128.65, 129.0, 130.3, 131.0, 131.3, 132.2, 134.0, 134.1, 134.2, 135.7, 138.0 (C-NH2), 172.5 

(C=O). ESI-MS: m/z 636.2 [M + Na]+. HRMS, found: m/z 636.2637, C42H35N3NaO2 requires 

636.2621. IR νmax (cm-1): 3284.4, 3116.6, 3078.6, 3062.8, 3040.6, 3012.0, 2971.0, 2945.6, 

2917.1, 2866.4, 2227.2 (C≡N stretch), 1678.0 (C=O stretch), 1606.2, 1533.4, 1495.4, 1476.4, 

1453.8, 1333.5, 1297.0, 1251.8, 1180.1, 1168.0, 1129.7, 1077.6, 1027.7.  
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4-Benzoyl-N-(1-benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)benzamide (99) 

 

The acyl chloride used was 4-benzoylbenzoyl chloride (0.72 g, 3.0 mmol). The title compound 

was obtained as a light yellow solid from silica gel column chromatography [EtOAc/PE (1:24) 

→ EtOAc/PE (1:6)] of the crude product and recrystallisation from dichloromethane (0.16 g, 

47%), m.p.: 240.3-242.3 °C. Rf: 0.47 (30% EtOAc in PE).  1H NMR (400 MHz, CDCl3) δ 

(ppm): 5.06 (br s, 2H, NCH2Ph), 6.88-6.91 (m, 2H, Ar-H), 7.15-7.32 (m, 13H, Ar-H), 7.48 (tt, 

2H, J1 = 7.6 Hz, J2 = 1.5 Hz, Ar-H), 7.61 (tt, 1H, J1 = 7.4 Hz, J2 = 1.5 Hz, Ar-H), 7.70-7.77 (m, 

6H, Ar-H), 8.01 (br s, 1H, NHCO). 13C NMR (100 MHz, CDCl3) δ (ppm): 48.8 (NCH2Ph), 90.1 

(C-CN), 115.7 (C≡N), 123.6 (C-Ar), 126.1 (CH-Ar), 126.9 (CH-Ar), 127.6 (CH-Ar), 127.8 (CH-

Ar), 128.3 (CH-Ar), 128.5 (CH-Ar), 128.8 (CH-Ar), 128.95 (CH-Ar), 129.04 (CH-Ar), 130.1 

(CH-Ar), 130.8 (C-Ar), 131.2 (CH-Ar), 132.3 (C-Ar), 132.4 (C-Ar), 133.0 (CH-Ar), 135.6 (C-Ar), 

136.7 (C-Ar), 136.8 (C-Ar), 141.0 (C-NH2), 166.1 (C=O), 195.8 (C=O). ESI-MS: m/z 556.2 [M - 

H]-.HRMS, found: m/z 580.1981, C38H27N3NaO2 requires 580.1995. IR νmax (cm-1): 3284.4 (N-

H stretch), 3176.7, 3113.4, 3094.4, 3075.4, 3062.8, 3040.6, 3012.0, 2230.0 (C≡N stretch), 

1655.2 (C=O stretch), 1596.7, 1565.0, 1529.5, 1497.5, 1455.4, 1445.5, 1429.7, 1319.2, 

1276.5, 1182.0, 1153.4, 1077.2, 1015.9. 
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1-Benzyl-2-(1,3-dioxoisoindolin-2-yl)-4,5-diphenyl-1H-pyrrole-3-carbonitrile (101)34  

 

 

 

A mixture of phthalic anhydride (0.18 g, 1.2 mmol) and pyrrole 65 (0.21 g, 0.60 mmol) in dry 

toluene (10 ml) was refluxed overnight under Ar. The reaction mixture was then cooled and 

the excess solvent was removed by evaporation in vacuo. This gave a dark brown solid which 

was recrystallised from diethyl ether to afford the title compound as a light brown solid (0.12 

g, 43%), m.p.: 207.6-209.7 °C. Rf: 0.48 (30% EtOAc in PE). 1H NMR (300 MHz, CDCl3) δ 

(ppm): 4.96 (br s, 2H, NCH2Ph), 6.82-6.85 (m, 2H, Ar-H), 7.05-7.07 (m, 3H, Ar-H), 7.18-7.32 

(m, 10H, Ar-H), 7.77 (dd, 2H, J1 = 3.0 Hz, J2 = 5.7 Hz, Ar-H), 7.86 (dd, 2H, J1 = 3.0 Hz, J2 = 

5.6 Hz, Ar-H). 13C NMR (75 MHz, CDCl3) δ (ppm): 49.1 (NCH2Ph), 93.6 (C-CN), 114.5 (C≡N), 

124.3 (Ar-CH), 124.6 (Ar-C), 126.2 (Ar-C), 126.3 (Ar-CH), 127.0 (Ar-CH), 127.8 (Ar-CH), 

128.3 (Ar-CH), 128.7 (Ar-CH), 128.8 (Ar-CH), 128.9 (Ar-CH), 129.0 (Ar-CH), 130.0 (Ar-C), 

131.2 (Ar-CH), 131.3 (Ar-C), 132.0 (Ar-C), 132.2 (Ar-C), 134.9 (Ar-CH), 135.4 (C-NH2), 165.6 

(C=O). ESI-MS: m/z 480.2 [M + H]+. HRMS, found: m/z 502.1527, C32H21N3NaO2 requires 

502.1526. IR νmax (cm-1): 3113.6, 3060.0, 2226.3 (C≡N stretch), 1750.0 (C=O stretch), 1732.6 

(C=O stretch), 1605.8, 1533.2, 1505.0, 1480.7, 1457.3, 1345.1, 1325.0, 1260.3, 1077.8, 

1017.0. 

 

N-(1-Benzyl-3-cyano-4,5-diphenyl-1H-pyrrol-2-yl)cyclohexanecarboxamide (103)  
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The title compound was obtained as light pink solid from silica gel column chromatography 

[EtOAc/PE (1:49) → EtOAc/PE (1:12)] of the crude product (0.07 g, 66 %), m.p.: 227.5-229.5 

°C. Rf: 0.63 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 1.19-1.83 (m, 10H, 5 x 

CH2), 2.16-2.23 (m, 1H, CHCO), 4.97 (br s, 2H, NCH2Ph), 6.83-6.85 (m, 2H, Ar-H), 7.06 (br s, 

1H, CONH), 7.13-7.30 (m, 13H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 25.4 (CH2), 25.5 

(CH2), 29.4 (CH2), 45.0 (COCH), 48.4 (NCH2Ph), 89.7 (C-CN), 115.6 (C≡N), 123.3 (C-Ar), 

125.8 (CH-Ar), 126.8 (CH-Ar), 127.6 (CH-Ar), 128.3 (CH-Ar), 128.6 (CH-Ar), 128.7 (CH-Ar), 

128.86 (CH-Ar), 128.91 (CH-Ar), 130.3 (C-Ar), 130.4 (C-Ar), 131.1 (CH-Ar), 132.4 (C-Ar), 

132.9 (C-Ar), 136.9 (C-NH2), 176.0 (C=O). ESI-MS: m/z 482.2 [M + Na]+. HRMS, found: m/z 

482.2209, C31H29N3NaO requires 482.2203. IR νmax (cm-1): 3274.5 (N-H stretch), 2931.5 (sp3 

C-H stretch), 2855.0 (sp3 C-H stretch), 2227.7 (C≡N stretch), 1673.3 (C=O stretch), 1602.6, 

1583.7, 1567.5, 1535.3, 1496.4, 1446.9, 1350.2, 1300.8, 1249.8, 1229.8, 1173.9, 1132.6, 

1105.9, 1078.5, 1029.4, 723.0. 

 

2.5 g) Expression and purification of IMP-1 

Refer to Appendix 1. 

 

2.5 h) Preparation of CENTA (73) 

Refer to Appendix 2. 

 

2.5 i) IMP-1 screening assay of the derivatives4,15,19,35 

The screening assays were performed in triplicates, with CENTA as the substrate and 

HEPES X (50 mM HEPES, 0.1 M NaCl, 100 μM ZnCl2, pH 7.0) as the buffer at 25 °C. The 

final concentration of IMP-1 and CENTA was 5 nM and 70 μM, respectively. Bovine serum 

albumin (final concentration of 20 μg ml-1) was added to the enzyme solution for enzyme 

stability. The imide and amide derivatives of pyrrole 65 were assayed at a final concentration 

of 10 μM. The rate of CENTA hydrolysis was monitored at 405 nm (ε = 6400 M-1 cm-1) 
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(Scheme 2.4). The percentage inhibition of a compound was calculated based on the residual 

activity of the enzyme in the presence of the inhibitor (Equation 2.1). 

 

                     

  
(                                 )  (                              )

                                 

      

Equation 2.1: The percentage inhibition of a compound. 

 

2.5 j) IMP-1 Ki assay of the inhibitors4,15,19,35 

The Ki assay conditions are the same as the screening assay conditions, except that 

various inhibitor concentrations were assayed against different substrate concentrations. The 

final inhibitor concentrations assayed were: 5, 10 and 25 μM, while the final substrate 

concentrations used were: 5, 10, 20, 30, 40, 50, 60 and 70 μM. The raw kinetic data were 

analysed by non-linear regression method, based on Equation 2.1, with the aid of 

WinCurveFit program (Kevin Raner Software). The substrate hydrolysis rate, v is the 

dependent variable, whereas the substrate concentration, [S] and inhibitor concentration, [I] 

are the independent variables. Kic and Kiuc is the competitive and uncompetitive inhibition 

constant, respectively. Vmax is the limiting rate and Km is the Michaelis constant.  

 

  
       

   (  
   
    

)   (  
   
   

)
 

Equation 2.2: The relationship between substrate hydrolysis rate, v and substrate 

concentration, [S] and inhibitor concentration, [I]. 
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According to the Equation 2.2, it is assumed that the inhibitor is either competitive, 

uncompetitive or a mixed-mode inhibitor. A selection of experimental Ki plots for inhibitors 78 

and 96 are shown in Figures 2.16 and 2.17, respectively.  

 

 

Figure 2.16: The Ki plot of inhibitor 78 against IMP-1 (r2 = 0.97). 
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Figure 2.17: The Ki plot of inhibitor 96 against IMP-1 (r2 = 0.97). 

 

2.5 k) Imide stability test 

A mixture of the imide (1 mM, 10 μl) in DMSO and IMP-1 (10 nM, 490 μl) in HEPES X 

buffer were kept at 25 °C for 30 mins and then at 4 °C overnight. The mixture was then 

extracted with EtOAc (2 x 500 μl). The organic layers were combined and evaporated under a 

steady stream of nitrogen. The dried samples were diluted in LCMS grade MeOH (1 ml) and 

analysed by low resolution ESI-MS. 

 

2.5 l) Computational modelling 

Refer to Appendix 3. 
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CHAPTER 3: THE SAR STUDY OF THE 3-CYANO, 4,5-DIPHENYL AND N-

BENZYL SIDE CHAINS OF 2-AMINO-1-BENZYL-4,5-DIPHENYL-1H-

PYRROLE-3-CARBONITRILE 

 

3.1 General introduction  

The previous structure-activity relationship (SAR) study of the 2-amino functional 

group of the pyrrole lead compound 65 has successfully led to the identification of two 

potent IMP-1 inhibitors, 93 and 99 for this class of inhibitors, with a 14- to 17-fold increase 

in IMP-1 inhibitory potency (Figure 3.1).  

 

 

Figure 3.1: The lead compound 65 and the optimised potent IMP-1 inhibitors, 93 and 99. 

 

 This chapter will focus on the SAR of the 3-cyano group, vicinal 4,5-diphenyl and N-

benzyl side chains of pyrrole 65.  

 

3.2 Research plan 

Previous MVD computational study of pyrrole 65 bound with IMP-1 suggested that 

the 3-cyano group of pyrrole 65 is involved in hydrogen bonding with the terminal amino 

group of Lys161 (224) (Section 2.2). The same in silico model however, did not predict any 

interactions between the inhibitor and the zinc ions. Therefore, it is envisioned that 

derivatisation of the 3-cyano group to a tetrazole ring, 105 may possibly form additional 

contacts between the inhibitor and the zinc ions, as previous 3D structure of biphenyl 

tetrazole 38h bound with the B1 CcrA MBL showed an ionic interaction between one of the 
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negatively charged tetrazole ring nitrogens and the Zn2 site (Section1.11 c).1 In addition, 

the 3-cyano group of pyrrole 65 can also be hydrolysed into an amide group, 104 to further 

evaluate the role of the 3-cyano group in IMP-1-binding (Scheme 3.1).  

 

 

Scheme 3.1: The proposed synthetic derivitisation of the 3-cyano group of pyrrole 65. 

 

 

 

 Molecular modelling of 105 with a deprotonated tetrazole ring bound in the active 

site of IMP-1 with MVD predicted that N-4 and N-5 of the tetrazole ring is close to the 

metal centres, with N-Zn distances of 2.03-2.26 Å (Figure 3.2 and Table 3.1). Based on 

the 3D structure of 38h co-crystallised with a variant of the B1 CcrA MBL, a N-Zn distance 

of ≤2.36 Å is indicative of an ionic tetrazolyl N-Zn interaction (Section 1.11 c).1 In addition, 

the in silico model also predicted plausible hydrogen bond interactions between the 

tetrazole nitrogen atoms of the ligand with the carboxamide terminal group of Asn167 

(233) and the N-H of the imidazole ring of His79 (118). Asn167 (233), that is conserved 

among two-thirds of all sequenced MBLs, is part of the oxyanion hole that activates the 
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carbonyl carbon of the β-lactam substrate for nucleophilic attack by the bridging hydroxide 

(Section 1.10).2,3   

 

   

Figure 3.2: The MVD computational model of 105 docked into the active site of IMP-1. 

Atom colours: carbon on ligand in yellow, carbon on IMP-1 in grey, nitrogen in blue, 

oxygen in red and hydrogen in white. The Zn2+ ions are shown as red spheres. The 

dashed, green lines represent hydrogen bonds.  

 

Table 3.1: Notable atom-atom interactions and distances between ligand 105 and the 

active site of IMP-1, as predicted by MVD. 

Interaction Type Atom-atom distance (Å) 

N-4-Zn1 ionic 2.03 

N-5-Zn2 ionic 2.26 

N-4-N (His79) hydrogen 2.61 (N-N) 

N-3-N (His79) hydrogen 2.85 (N-N) 

N-3-N (Asn167) hydrogen 2.80 (N-N) 

N-2-N (Asn167) hydrogen 2.79 (N-N) 
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In addition, the vicinal 4,5-diphenyl side chains of the pyrrole 65 lead compound can 

also be substituted with methyl and 2-furanyl side chains, in order to study the extent of 

hydrophobic interaction between the phenyl rings of 65 with the mobile L3 loop (Section 

1.9).4 The starting materials required for the syntheses of these derivatives, acetoin (108a) 

and furoin (108b) are both commercially available (Scheme 3.2). 

  

 

Scheme 3.2: The proposed syntheses of 2-aminopyrrole-3-carbonitrile with vicinal dimethyl 

108a and di-2-furanyl 108b side chains. 

 

The MVD computational model of 108a complexed with IMP-1 suggested that the 

ligand doesn’t have any hydrogen bond or ionic interactions with the active site of the 

enzyme (Figure 3.3). Furthermore, the vicinal methyl side chains of 108a were predicted 

not to have any hydrophobic contacts with Val25 (61) and Val31 (67), which are part of the 

mobile L3 loop (Section 2.2). The only plausible interaction between the ligand and the 

enzyme is a π-π stacking interaction between the pyrrole ring of 108a and indole ring of 

Trp28 (64). Trp28 (64), which is positioned at the edge of the mobile loop, closes the 

active site of the enzyme upon substrate or inhibitor binding (Section 1.9).5 This prediction 

is reflected in the low MolDock score magnitude of the in silico model of 108a-IMP-1 

complex (Table 3.2). The Moldock score is a prediction of the binding affinity of the ligand 

with the enzyme. The larger the negative value of the Moldock score is, the higher the 

predicted binding affinity. 
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Figure 3.3: The in silico model of 108a complexed with IMP-1, as predicted by MVD. Atom 

colours: carbon on ligand in olive green, carbon on IMP-1 in grey, nitrogen in blue, oxygen 

in red and hydrogen in white. The Zn2+ ions are shown as red spheres. 

 

 Finally, the N-benzyl side chain of pyrrole 65 can be removed by a catalytic 

hydrogenolysis reaction, in order to evaluate the importance of the N-benzyl moiety in 

inhibitor-enzyme binding (Scheme 3.3). Furthermore, the distance between the pyrrole ring 

nitrogen and the phenyl ring can also be varied to augment the IMP-1 inhibitory SAR study 

of this pharmacophore (Scheme 3.4). 

 

 

Scheme 3.3: The proposed N-debenzylation of pyrole 65 via a catalytic hydrogenolysis 

reaction.  
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Scheme 3.4: The proposed syntheses of pyrrole 65 derivatives with various chain lengths 

between the pyrrole ring nitrogen and phenyl ring. 

  

 MVD in silico modelling of 112a  bound in the active site of IMP-1 suggested only 

one hydrogen bond interaction between the 3-cyano group of the ligand with the terminal 

amino group of Lys161 (224) (Figure 3.4). The in silico model didn’t predict any 

interactions between the ligand with the Zn2+ centres.  
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Figure 3.4: The MVD computational model of 112a bound in the active site of IMP-1. Atom 

colours: carbon on ligand in yellow, carbon on IMP-1 in grey, nitrogen in blue, oxygen in 

red and hydrogen in white. The Zn2+ ions are shown as red spheres. The dashed, green 

line represents a hydrogen bond (N-N distance 3.10 Å). 

 

 On the other hand, the MVD computational docking of 112d complexed with IMP-1 

suggested that the carbon chain between the pyrrole nitrogen and phenyl ring has 

additional hydrophobic contacts with Val25 (61), Val30 (66), Val31 (67) and Phe51 (87) 

(Figure 3.5). Furthermore, the computational model also predicted hydrogen bond 

interactions between the 3-cyano nitrogen of the ligand and the terminal amino group of 

Lys161 (224) (N-N distance 2.79 Å), and N-H of the His139 (196) imidazole ring (N-N 

distance 2.61 Å). 
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Figure 3.5: The in silico model of 112d complexed with IMP-1, as proposed by MVD. Atom 

colours: carbon on ligand in magenta, carbon on IMP-1 in grey, nitrogen in blue, oxygen in 

red and hydrogen in white. The Zn2+ ions are shown as red spheres. The dashed, green 

lines represent hydrogen bonds. 

 

The MVD Moldock score is derived from the docking scoring function, Escore which is 

in turn defined from the ligand-protein interaction energy, Einter and the internal energy of 

the ligand, Eintra (Equation 3.1).6 Table 3.2 lists the Moldock scores obtained from the 

molecular docking of pyrrole derivatives 104, 105, 108a, 108b, 109 and 112a-d, as well as 

pyrrole 65.  

 

Escore = Einter + Eintra 

Equation 3.1: The definition of the docking scoring function, Escore.
6 

 

As previously mentioned, tetrazole 105 is the only pyrrole derivative predicted in 

this series of derivatives to have interactions between the ligand and the zinc ions. This is 

reflected in its MolDock score magnitude, which is the largest in this series of ligands. 

Conversely, derivative 108a which was predicted to exhibit minimal binding interactions 
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with the enzyme was calculated to exhibit the lowest MolDock score magnitude in this 

series of ligands. In addition, a trend of increasing magnitude of the MolDock score is 

observed as the chain length between the pyrrole ring nitrogen and phenyl ring increases, 

with 112c and 112d predicted to have the same score.  

 

Table 3.2: The MolDock scores (kcal mol-1) of pyrroles 65, 104, 105, 108a, 108b, 109 and 

112a-d bound with IMP-1, as predicted by MVD 

Ligand Molecular structure MolDock score (kcal mol-1) 

104 

 

-109.0 

105 

 

-204.7 

108a 

 

-85.4 

108b 

 

-125.0 

109 

 

-91.7 

112a 

 

-113.3 

65a 

 

-116.2 
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112b 

 

-125.2 

112c 

 

-142.1 

112d 

 

-142.6 

 

3.3 Results and discussion 

3.3 a) Synthetic work 

The acid-catalysed hydrolysis of the 3-cyano group of pyrrole 65 to the 

carboxamide derivative, 104 was accomplished by using polyphoshoric acid and 

phosphoric acid, as reported by Eger and colleagues on another 2-amino-1H-pyrrole-3-

carbonitrile analogue (Scheme 3.5).7  
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Scheme 3.5: The acid-catalysed hydrolysis of pyrrole-3-carbonitrile 65 to pyrrole-3-

carboxamide 104. 

 

 Hydrazoic acid (HN3), which is formed in situ from sodium azide and an ammonium 

salt, is commonly used as the azide reagent in the tetrazolyl derivatisation of aromatic 

nitriles.8-13 However, the thermal 1,3-dipolar cycloaddition of the 3-cyano group of pyrrole 

65 with sodium azide and ammonium salts, such as triethylammonium sulfate or 

ammonium chloride failed to give the tetrazole product 105 (Scheme 3.6).8,10 The 

percentage of starting material 65 recovered from both attempts was 80% and 83%, 

repectively. This implies that hydrazoic acid is not the appropriate azide reagent for the 

1,3-dipolar cycloaddition of the 3-cyano group of pyrrole 65.13  

 

 

Scheme 3.6: The unsuccessful 1,3-dipolar cycloaddition of pyrrole-3-carbonitrile 65 with 

sodium azide and ammonium salts. 

 

 The tetrazolyl derivatisation of pyrrole-3-carbonitrile 65 was finally achieved using 

aluminium triazide (113) as the azide reagent (Scheme 3.7). The reagent is formed in situ 

from trimethylsilylazide, Me3SiN3 and  trimethylaluminium, Me3Al.13  

 



135 
 

 

Scheme 3.7: The successful 1,3-dipolar cycloaddition of pyrrole-3-carbonitrile 65 with 

trimethylsilylazide, Me3SiN3 and  trimethylaluminium, Me3Al. 

 

 The low reaction yield may be due to the bulky vicinal diphenyl groups and the N-

benzyl side chain of pyrrole 65, which may hinder the access of aluminium triazide (113) to 

the 3-cyano group of 65 (Scheme 3.8).13 Another explanation for this observation is that 

the 2-amino group of pyrrole 65 may form a Lewis acid-base complex with 

trimethylaluminium.14 In addition, a low reaction yield was also reported by Cottyn and co-

workers in their attempt to derivatise an aromatic indazole carbonitrile, 114 to a tetrazole 

derivative, 115 with the same azide reagent (Scheme 3.9).15 

 

 

Scheme 3.8 The mechanism of the 1,3-dipolar cycloaddition of pyrrole 65 with aluminium 

triazide (113), as proposed by Huff and Staszak.13 
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Scheme 3.9: The tetrazolyl derivatisation of 1H-indazole-7-carbonitrile (114), as reported 

by Cottyn et al.15 

 

 The molecular structures of derivatives 104 and 105 were characterised by NMR 

(1H and 13C), and IR spectroscopy, as well as low resolution mass spectrometry (LRMS) 

and high resolution mass spectrometry (HRMS).  

The carbonyl carbon of carboxamide 104 was confirmed by the appearance of a 

downfield signal at δ 168.7 ppm, and the disappearance of the nitrile carbon (C≡N) at δ 

117.5 ppm in its 13C NMR spectrum (Figure 3.6).16 In addition, the disappearance of the 

nitrile, C≡N stretch at around 2220 cm-1, and the appearance of a carbonyl, C=O stretch at 

1670.7 cm-1 in the IR spectrum of 104 further confirmed the presence of the carbonyl 

group of the carboxamide  (Figure 3.7).16  

Lastly, the HRMS spectrum of 104 showed a key molecular ion peak, having a m/z 

ratio of 368.1758, which corresponds to the [M + H]+ ion of the hydrolysed carboxamide 

product (spectrum not shown). The experimental m/z ratio corresponds to a chemical 

formula of C24H22N3O and has a mass measurement error of 0.10 mDa or 0.27 ppm from 

its calculated m/z value of 368.1757.17 
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Figure 3.6: The 13C NMR (100 MHz, CDCl3) spectrum of carboxamide 104. The triplet at δ 

77.0 ppm is due to CDCl3. The peaks at δ 15.2 and δ 65.8 ppm are due to a diethyl ether 

impurity in the sample. 
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Figure 3.7: The IR spectrum of carboxamide 104. 
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 As for compound 105, the presence of the tetrazole ring of the pyrrole derivative 

was confirmed by its 1H and 13C NMR spectra (Figure 3.8 and 3.9, respectively). The 

broad, downfield 1H signal at δ 10.80 ppm is indicative of the tetrazolyl N-H proton; 

whereas the downfield 13C signal at δ 151.3 ppm corresponds to the tetrazolyl, N-CH=N 

carbon.18  

Furthermore, the chemical formula of 105 was confirmed by HRMS analysis as 

having a total number of six nitrogen atoms, as would be expected for the tetrazolyl 

product. The negative mode HRMS spectrum of the compound showed a molecular ion 

peak with a m/z value of 391.1685, that suggests a chemical formula of C24H19N6 

(spectrum not shown). This observed m/z ratio corresponds to the [M - H]- ion of the 

product and has a mass measurement error of 0.80 mDa or 2.0 ppm from its calculated 

m/z value of 391.1677.  

 

 

Figure 3.8: The 1H NMR (400 MHz, CDCl3) spectrum of tetrazole 105. A triplet, singlet and 

quartet at δ 1.24 ppm, 2.02 ppm and 4.10 ppm, respectively is due to trace amounts of 

ethyl acetate in the sample. The broad singlet at δ 5.09 corresponds to the amino, NH2 

protons of 105, which was expected to give an integration of two protons. 
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Figure 3.9: The 13C NMR (100 MHz, CDCl3) spectrum of tetrazole 105. The triplet at δ 77.0 

ppm is due to CDCl3. 

 

The vicinal dimethyl 108a and di-2-furanyl 108b derivatives of pyrrole 65 were 

successfully synthesised in moderate yields of 61 and 59% via the condensation of 

benzylamine (70) and malononitrile (72) with acetoin (106a) and furoin (106b), respectively 

(Scheme 3.10).  
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Scheme 3.10: The syntheses of 2-aminopyrrole-3-carbonitrile with vicinal dimethyl 108a 

and di-2-furanyl 108b side chains. 

 

The structural identities of derivatives 108a and b were elucidated by 1H and 13C 

NMR as well as IR spectroscopy. The 13C NMR spectra of both 108a and b showed 

resonance signals at around δ 46-47 ppm and δ 117 ppm, corresponding to the N-benzylic 

and nitrile carbon, respectively (Section 2.3 a). The 13C NMR spectrum of 108a is shown 

as a representative spectrum in Figure 3.10. In addition, the benzylic protons of 108a and 

b were shown to resonate as a two-proton singlet at δ 4.9 ppm in the 1H NMR spectra of 

the said compounds (Figure 3.11). Interestingly, upon closer inspection on the 1H NMR 

spectrum of 108a, the two vicinal methyl protons of 108a were depicted to resonate as a 

pair of three-proton doublets with an average coupling constant of 0.6 Hz.19 This long-

range 5J (CH3-CH3) coupling across four single bonds and one double bond is known as 

homoallylic coupling (Figure 3.12).20  

The IR spectra of the compounds also showed two broad peaks at around 3420-

3450 and 3330 cm-1, as well as a moderately-intense peak at around 2200 cm-1. The first 

two peaks correspond to the two N-H stretching bands of the 2-amino group, whereas the 

other peak corresponds to the nitrile stretch of the 3-cyano group of the compounds 

(spectra not shown).  

In addition, the molecular weight and chemical formula of derivatives 108a and b 

were confirmed by HRMS analysis (spectra not shown). For example, the positive mode 

HRMS spectrum of 108a showed a molecular ion peak with a m/z value of 226.1344, 
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suggesting a chemical formula of C14H16N3. The observed m/z ratio corresponds to the [M 

+ H]+ ion of the compound and has a mass measurement error of 0.50 mDa or 2.2 ppm 

from its calculated m/z value of 226.1339.  

 

 

Figure 3.10: The 13C NMR (100 MHz, CDCl3) spectrum of 108a. The residual solvent peak 

is a triplet at δ 77.0.  

 

  

 



142 
 

 

Figure 3.11: The 1H NMR (400 MHz, CDCl3) spectrum of 108a. 

 

Figure 3.12: The 5J homoallylic coupling between the protons of the two vicinal methyl 

groups of 108a. 

 

 The proposed mechanism for the syntheses of pyrrole derivatives 108a and b are 

illustrated in Scheme 3.11. Initially, acetoin (106a) or furoin (106b) condenses with 

benzylamine (70) to give α-aminoketone 107a, b, which then undergoes Knoevenagel 

condensation with malononitrile (72) to give 107f.21,22 Further cyclisation and aromatisation 

of 107f finally afford the pyrrole derivative 108a or b.21 Both the aforementioned 

condensation reactions are catalysed by trichloroacetic acid, TCA.22 
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Scheme 3.11: The proposed mechanism for the syntheses of 108 a and b. 
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As anticipated, the N-debenzylation of pyrrole 65 was a challenging task, as the N-

benzyl groups of nitrogen-bearing aromatic heterocyclic rings, such as indoles, imidazoles 

and pyrroles are highly resistant against deprotection.23,24 The Pd/C-catalysed 

hydrogenolysis25 and aluminium chloride-promoted debenzylation24 were both 

unsuccessful in the removal of the N-benzyl group of pyrrole 65 (Scheme 3.12). The 

percentage of pyrrole 65 recovered from the catalytic hydrogenolysis and aluminium 

chloride-promoted debenzylation reaction was 70% and 92%, respectively.  

 

 

Scheme 3.12: The unsuccessful N-debenzylation attempts of pyrrole 65. 

  

The aluminium chloride-promoted deprotection was finally accomplished on an N-4-

methoxybenzyl derivative 117 of pyrrole 65, as suggested by Greene (Scheme 3.13).24,26 

Nevertheless, the reaction yield is low, and 27% of the starting material 117 was recovered 

from the reaction mixture. The low reaction yield could be due to the formation of an acid-

base complex between the 2-amino group of pyrrole 117 and aluminium chloride, as 

previously described for tetrazole 105.14 Nevertheless, another outcome of this synthetic 

exercise is that the N-4-methoxbenzyl derivative 117 can be assayed for its IMP-1 

inhibitory activity. 
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Scheme 3.13: The de-N-methoxybenzylation of pyrrole 117 with aluminium chloride and 

anisole. 

 

 The molecular structures of the N-4-methoxybenzyl protected pyrrole 117 and 

deprotected pyrrole 109 were characterised by NMR (1H and 13C), and IR spectroscopy, 

including spectrometric methods, such as LRMS and HRMS (the IR and HRMS spectra 

are not shown).  

 The 1H and 13C NMR spectra of 117 showed characteristic signals for the N-4-

methoxybenzyl moiety of the pyrrole (Figures 3.13 and 3.14, respectively). The three 

methoxy protons (OCH3) and methoxy carbon (OCH3) of 117 were depicted to resonate as 

a singlet at δ 3.79 ppm and a OCH3 signal at δ 55.3 ppm in the 1H and 13C NMR spectrum, 

respectively.16 The downfield 13C NMR signal at δ 159.3 corresponds to the ipso C-OCH3 

carbon, while the pair of doublets at δ 6.88 ppm and δ 6.99 ppm in the 1H NMR spectrum 

of 117 is characteristic of a para-disubstituted phenyl ring pattern.16,27 Furthermore, the 

two benzylic protons (NCH2) and benzylic carbon (NCH2) of 117 were shown to resonate 

as a singlet at δ 4.84 ppm and a NCH2 signal at δ 46.5 ppm in the 1H and 13C NMR 

spectrum, respectively (Section 2.3 a).  
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Figure 3.13: The 1H NMR (400 MHz, CDCl3) spectrum of 117. A singlet at δ 2.34 ppm and 

an excess of five protons in the aromatic region of δ 7.11-7.29 are due to a toluene 

impurity in the sample. 
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Figure 3.14: The 13C NMR (100 MHz, CDCl3) spectrum of 117. 13C signal at δ 21.4, 125.3, 

128.2, 129.0 and 137.8 ppm are due to a toluene impurity in the sample, and the triplet at 

δ 77.0 ppm is due to CDCl3. 

 

On the contrary, none of the aforementioned characteristic 1H and 13C NMR signals 

of 117 were present in the 1H and 13C NMR spectra of pyrrole 109 (Figures 3.15 and 3.16, 

respectively). Instead, a broad singlet at δ 10.81, which appears in the 1H NMR spectrum 

of 109, corresponds to the N-H proton of the deprotected pyrrole.16 In addition, the 

presence of an additional N-H stretching band at 3373.0 cm-1 in the IR spectrum of 109 

suggests that it corresponds to the deprotected pyrrole N-H bond of the compound, 

therefore also confirming that the deprotection reaction of 117 did occur  (Figure 3.17).28  

The structural identity of 109 in terms of its molecular weight was confirmed by its 

negative mode HRMS analysis (Figure 3.18). The most intense peak in the spectrum was 

found to have a m/z ratio of 258.1047, that corresponds to the [M - H]- ion of the 

deprotected pyrrole (Figure 3.18). This observed m/z value also suggests a chemical 

formula of C17H12N3 and has a mass measurement error of 1.0 mDa or 3.9 ppm from its 

calculated m/z value of 258.1037.  
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Figure 3.15: The 1H NMR (400 MHz, DMSO-d6) spectrum of 109. A quintet at δ 2.49 is due 

to DMSO-d6. An intense singlet at δ 3.35 ppm is due to water in the sample.  
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Figure 3.16: The 13C NMR (100 MHz, DMSO-d6) spectrum of 109. A septet at 39.5 ppm is 

due to DMSO-d6. 
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Figure 3.17: The IR spectrum of 109 (neat sample).  
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Figure 3.18: The negative mode HRMS spectrum of 109.  

 

All of the pyrrole derivatives with carbon chain lengths n = 2, 3 and 4 between the 

pyrrole ring nitrogen and the phenyl ring (112b-d), except derivative 112a (n = 0) were 

successfully synthesised in good to moderate yields (Scheme 3.14). Instead, the 

corresponding α-aminoketone intermediate 111a of derivative 112a was fully recovered 

from the reaction mixture. This may be due to α-aminoketone 111a not being nucleophilic 

and basic enough to facilitate further nucleophilic addition and elimination steps, that are 

both essential for the formation, cyclisation and aromatisation of pyrrole 112a (Scheme 

3.15). 

 

 

Scheme 3.14: The syntheses of pyrrole derivatives 112a-d, with varying chain lengths 

between the pyrrole nitrogen and phenyl ring.  
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Scheme 3.15: The unsuccessful nucleophilic addition, cylisation and aromatisation of α-

aminoketone 111a to pyrrole 112a. 

  

A strong base, such as sodium ethoxide is thus required to convert the α-

aminoketone 111a to the pyrrole product 112a. The addition of sodium ethoxide into the 

reaction mixture, as suggested by Roth and Eger finally afforded pyrrole 112a in a 

moderate yield of 60% (Scheme 3.16)29. The role of sodium ethoxide in the conversion of 

α-aminoketone 111a to pyrrole 112a is illustrated in Scheme 3.17. 

 

 

Scheme 3.16: The successful sodium ethoxide-catalysed synthesis of pyrrole 107a,  as 

suggested by  Roth and Eger 29. 
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Scheme 3.17: The proposed mechanism for the conversion of α-aminoketone 111a to 

pyrrole 112a, with the utility of sodium ethoxide as the general base catalyst. 

 

The presence of two N-H stretching bands at 3473.5 and 3384.4 cm-1, as well as a 

cyano, C≡N stretching band at 2199.60 cm-1 in the IR spectrum of 112a confirmed the 

amino and cyano functional groups of the compound (Figure 3.19). Moreover, the 

disappearance of the α-aminoketone carbonyl stretching peak at 1670.5 cm-1 also 

confirmed  the successful conversion of 111a to 112a (the IR spectrum of 111a is shown in 

Figure 3.20 as a comparison to that of 112a).30 In addition, the positive mode HRMS 

analysis of 112a had detected a molecular ion peak with a m/z ratio of 358.1316, which 

corresponds to the [M + Na]+ ion of the pyrrole (spectrum not shown). The experimental 

m/z value suggests a chemical formula of C23H17N3Na and has a mass error measurement 

of 0.10 mDa or 0.28 ppm from its calculated m/z value of 358.1315. 
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Figure 3.19: The IR spectrum of pyrrole 112a (neat sample). 

 

 

Figure 3.20: The IR spectrum of α-aminoketone 111a (neat sample). 

 

The structural identities of the rest of the pyrrole derivatives of this series, 112b-d 

were confirmed by NMR (1H and 13C) and IR spectroscopy, as well as LRMS and HRMS. 

The varying carbon chain lengths between the pyrrole ring nitrogen and phenyl ring of 

derivatives 112b-d were observed in the aliphatic region of their 1H and 13C NMR spectra. 

The 1H and 13C NMR spectra of 112b are shown as representative NMR spectra of the 

rest of the pyrrole series in Figure 3.21 and 3.22, respectively.  
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Figure 3.21: The 1H NMR spectrum (400 MHz, CDCl3) of 112b. The protons of the N-

phenethyl side chain of 112b (NCH2CH2) are shown to resonate as a pair of two-proton 

triplets at δ 2.72 and 3.90 ppm. 
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Figure 3.22: The 13C NMR spectrum (100 MHz, CDCl3) of 112b. The 3-carbonitrile carbon 

(C≡N) and the two carbon atoms of the N-phenethyl side chain of 112b (NCH2CH2) are 

shown to resonate at δ 117.7, 45.0 and 36.2 ppm, respectively. The triplet at δ 77.0 is due 

to CDCl3. 

 

3.3 b) Enzymatic kinetic study 

The synthetic pyrrole derivatives 104, 105, 108a and 108b, 109, 112a-d and 117 

were screened against IMP-1, and the results are presented in Tables 3.3 and 3.4. The 

kinetic assay results showed that replacement of the 3-cyano group of pyrrole 65 with an 

amide group led to a total loss of inhibitory activity for carboxamide 104. In addition, 

substitution of the cyano group with a tetrazole ring resulted in a 67-76% decrease in 

inhibitory potency across all inhibitor concentrations tested for 105. These two 

observations demonstrate the crucial role of the 3-cyano group of pyrrole 65 in maintaining 

IMP-1 inhibitory activity of the pyrrole. 
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Table 3.3: The percentage inhibition of pyrrole derivatives 104, 105, 108a, b, 109 and 117 

against IMP-1 (10 nM, containing BSA at a final conc. of 20 μg mL-1), at pH 7.0 and 25 °C, 

with CENTA (20 μM) as the substrate. 

Inhibitor Molecular structure Percentage inhibition (%) 

Inhibitor concentration 

5 μM 10 μM 20 μM 

65a 

 

23.2 ± 4.8 26.0 ± 2.7 54.7 ± 2.8 

104 

 

0 0 1.0 ± 3.4b 

105 

 

7.3 ± 2.3 

 

8.7 ± 1.3 13.1 ± 1.2 

108a 

 

3.0 ± 1.4 2.3 ± 3.3 2.8 ± 1.5 

108b 

 

35.6 ± 2.7 23.2 ± 3.9 44.2 ± 2.0 

109 

 

3.2 ± 2.1 12.0 ± 2.6 7.9 ± 2.6 

117 

 

7.7 ± 2.9 20.1 ± 4.3 39.3 ± 2.2 

aPyrrole 65 is shown for comparison. bThe inhibitor concentration was 25 μM. 
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Direct ligand-metal ion interactions observed in 3D structures of inhibitor-enzyme 

complexes are associated with potent, competitive inhibitors of MBLs (Section 1.11).31-34 

However, the MVD computational model of tetrazole 105 bound to IMP-1, which predicted 

plausible ionic interactions between the negatively charged tetrazole ring and the Zn2+ ions 

(Figure 3.2), does not reflect the observed inhibitory activity of the ligand.  

Conversely, the Glide in silico model of 105 complexed with IMP-1 proposed that 

the tetrazole ring doesn’t bind in the vicinity of the metal centres. Instead, it interacts with 

Lys161 (224) via a π-cation interaction (average distance atom-atom 6.1 Å) (Figure 3.23)*. 

The model also predicted a hydrogen bond interaction between N-3 of the tetrazole ring 

and the terminal hydroxyl group of Ser198 (N-O distance 3.34 Å). This demonstrates the 

inconsistency in molecular docking results obtained from different programs and the 

possibility of low correlation between the docking results and experimental kinetic assay 

results.35 Therefore, an X-ray crystal structure of pyrrole 65 bound with IMP-1 is needed to 

determine the actual binding mode of the 3-cyano group with the enzyme.  

 

 

Figure 3.23: The Glide computational model of 105 complexed with IMP-1. Atom colours: 

carbon on ligand in green, carbon on IMP-1 in orange, nitrogen in blue, oxygen in red and 

hydrogen in white. The Zn2+ ions are shown as turquoise spheres, with Zn251 and Zn252 

denoting Zn1 and Zn2, respectively. The dashed, orange, green and blue lines represent 

hydrogen bond, π-cation and π-π stacking interactions, respectively.   
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Replacement of the vicinal 4,5-diphenyl side chains of pyrrole 65 with dimethyl side 

chains resulted in a significant loss in IMP-1 inhibitory activity for example 108a. This 

observation is in agreement with the MVD in silico model and MolDock score of 108a 

bound with IMP-1 (Figure 3.3 and Table 3.2), which suggested that the ligand has fewer 

hydrophobic contacts with the L3 loop, and no interactions with the enzyme active site. On 

the contrary, substitution of the vicinal 4,5-diphenyl side chains of pyrrole 65 with di-2-

furanyl side chains, which is a bioisostere of the phenyl ring, led to maintenance of 

inhibitory activity of 108b.36 The observed inhibitory activity agrees well with the MolDock 

score of 108b-IMP1, which is comparable in magnitude with that of pyrrole 65 (Table 3.2). 

These observations highlight the importance of the 4,5-diphenyl side chains in maintaining 

IMP-1 inhibitory activity of pyrrole 65. 

Removal of the N-benzyl side chain also led to a significant loss of IMP-1 inhibitory 

activity, as observed for the deprotected pyrrole 109. On the contrary, the N-4-

methoxybenzyl derivative, 117 exhibited relatively similar inhibitory activity as pyrrole 65, 

particularly at an inhibitor concentration of 10 μM. These observations imply that the N-

benzyl side chain is also required in retaining IMP-1 inhibitory activity of pyrrole 65. In 

addition, Glide computational modelling of 117 bound in the enzyme active site suggested 

that the 4-methoxy moiety of the ligand binds in the vicinity of the Zn2 site, with O-Zn 

distance of 2.00 Å (Figure 3.24)*. 
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Figure 3.24: The Glide in silico model of 117 bound in the active site of IMP-1. Atom 

colours: carbon on ligand in green, carbon on IMP-1 in orange, nitrogen in blue, oxygen in 

red and hydrogen in white. The Zn2+ ions are shown as turquoise spheres, with Zn251 and 

Zn252 denoting Zn1 and Zn2, respectively.  

 

*Glide work was carried out by Ajit Kandale, a PhD student with the McGeary group. 

 

Based on the kinetic assay results shown in Table 3.3, the introduction of spacers 

of various lengths between the pyrrole ring nitrogen and phenyl ring didn’t result in any 

enhancement of IMP-1 inhibitory activity for examples 107b-d. Furthermore, omission of 

the benzylic carbon between the pyrrole ring nitrogen and phenyl ring led to a significant 

loss in inhibitory activity, as observed for example 107a. These observations further 

substantiate the earlier finding that the N-benzyl side chain is essential for maintenance of 

IMP-1 inhibitory activity of pyrrole 65.  

 

Table 3.4: The percentage inhibition of pyrrole derivatives 112a-d and 65 against IMP-1 

(0.1 nM, containing BSA at a final conc. of 20 μg mL-1), at pH 7.0 and 25 °C, with CENTA 

(70 μM) as the substrate. 

Inhibitor Molecular 

structure 

Percentage inhibition (%) 

Inhibitor concentration 

5 μM 10 μM 20 μM 

112a 

 

0 0 6.6±2.7 

65a 

 

6.4±1.3 17±1.0 27±1.9 
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112b 

 

0 4.8±0.77 16±1.5 

112c 

 

3.5±1.9 4.1±0.81 10±1.3 

112d 

 

4.2±0.86 8.7±1.1 18±1.4 

aPyrrole 65 is shown for comparison. 

 

3.4 Conclusion 

The 3-carbonitrile functional group of pyrrole 65 was successfully hydrolysed to a 

carboxamide group, 104, and derivatised to a tetrazole ring, 105, using aluminium triazide 

(113) as the azide reagent.  

All N-debenzylation attempts of pyrrole 65 were unsuccessful. The derivatisation of 

the N-benzyl moiety to a more labile group, such as an N-4-methoxybenzyl group, was 

thus necessary to facilitate deprotection of the pyrrole. 

Kinetic assay results of 104 and 105 against IMP-1 showed that the 3-cyano group 

of pyrrole 65 is crucial in maintaining IMP-1 inhibitory potency of the pyrrole. An X-ray 

structure of pyrrole 65 co-crystallised with the enzyme is therefore needed to ascertain the 

actual binding mode of the 3-cyano group with the enzyme.  
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The vicinal 4,5-diphenyl side chains of pyrrole 65 are also important for retaining 

IMP-1 inhibitory potency of the inhibitor, as modification of the side chains from diphenyl to 

dimethyl side chains resulted in complete loss of activity. Hydrophobic contacts between 

the mobile L3 loop of the enzyme with pyrrole 65 via the diphenyl side chains is thus vital 

for the observed inhibitory potency of the compound.  

The N-benzyl side chain of pyrrole 65 is also another essential pharmacophore of 

the inhibitor, as kinetic assay results revealed that removal of the chain or omission of the 

benzylic carbon led to significant decrease in IMP-1 inhibitory activity. This was further 

substantiated by the finding that the introduction of spacers of various lengths between the 

pyrrole ring nitrogen and phenyl ring didn’t result in enhancement of IMP-1 inhibitory 

activity.  

The only two pyrrole derivatives in this series which demonstrated comparable IMP-

1 inhibitory activity with pyrrole 65 are derivatives 108b and 117. Glide computational 

modelling predicted that the 4-methoxy group of 117 binds in the vicinity of the metal ions. 

Various substituents, such as halides or a nitro group on the N-benzyl ring could be 

explored for future SAR study of pyrrole 65. Furthermore, the vicinal 4,5-diphenyl rings 

could also be substituted with bulky groups, such as a methoxy or a t-butyl group to 

increase hydrophobic contacts with the enzyme. 

   

3.5 Experimental 

3.5 a) General synthetic, spectroscopic and spectrometric experimental 

Refer to Section 2.5 a. 

 

3.5 b) Preparation of 2-Amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (65) 

Refer to Section 2.5 b. 
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3.5 c) General procedure for the syntheses of 2-aminopyrrole-3-carbonitrile 

derivatives 108a,b, 117 and 112b-d.21,37  

A mixture of the appropriate α-hydroxyketone (10 mmol), the appropriate benzylamine (10 

mmol) and trichloroacetic acid (0.08 g, 0.5 mmol) in dry toluene (15 ml) was refluxed using 

a Dean-Stark apparatus for 2-4 h under Ar, after which it was cooled to room temperature. 

The reaction mixture turned yellow as the reaction progressed. Malononitrile (0.66 g, 10 

mmol), followed by pyridine (81 µl, 0.080 g, 1.0 mmol) was added to the cooled mixture 

and reflux was resumed overnight under Ar. The mixture was cooled to room temperature, 

and filtered. The solid product obtained was washed successively with cold toluene (5 x 25 

ml), followed by cold petroleum ether (5 x 25 ml), and purified by either recrystallisation or 

silica gel column chromatography. 

 

3.5 d) Experimental data of synthesised compounds 

2-Amino-1-benzyl-4,5-diphenyl-1H-pyrrole-3-carboxamide (104)7 

 

Pyrrole 65 (0.31 g, 0.90 mmol) was added to a mixture of polyphosphoric acid (6.4 g 

phosphoric oxide and 4.5 ml phosphoric acid) and phosphoric acid (3.6 g, 1.9 ml). The 

reaction mixture was heated at 120 °C for 5 h, after which it was quenched with a mixture 

of ice and 25% ammonia (20 ml). The addition of ammonia to the mixture was continued 

until a pH of 7 was achieved. The precipitate obtained was then filtered off and 

recrystallised from EtOAc to afford the title compound as a black semi-solid (0.26 g, 79%). 

Rf: 0.24 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 4.91 (br s, 2H, NCH2Ph), 

5.06 (br s, 2H, D2O exchangeable protons), 6.98-7.38 (m, 15H, Ar-H). 13C (100 MHz, 

CDCl3) δ (ppm): 46.6 (NCH2Ph), 95.6 (CCONH2), 119.3 (Ar-C), 125.8 (Ar-C), 125.9 (Ar-

CH), 127.1 (Ar-CH), 127.7 (Ar-CH), 128.1 (Ar-CH), 128.4 (Ar-CH), 129.1 (Ar-CH), 130.6 

(Ar-CH), 131.1 (Ar-CH), 135.3 (Ar-C), 136.6 (Ar-C), 146.3 (C-NH2), 168.7 (C=O). LRMS: 

m/z 368.1 [M + H]+. HRMS, found: m/z 368.1758, C24H22N3O requires 368.1757. IR νmax 

(cm-1): 3165.1 (N-H stretch), 3061.2, 1670.7 (C=O stretch), 1597.5, 1495.9, 1448.7, 

1410.9, 1274.4, 1209.9, 1176.1, 1105.7, 1069.8, 1027.9, 1002.0. 
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Preparation of polyphosphoric acid38 

A 1.8 parts by weight of phosphoric oxide (6.4 g) was dissolved in a 2.0 part by weight of 

phosphoric acid (7.6 g, 4.5 ml) at 160 °C. 

 

 

1-Benzyl-4,5-diphenyl-3-(1H-tetrazol-5-yl)-1H-pyrrol-2-amine (105)13 

 

Trimethylsilyl azide (0.23 ml, 0.20 g, 1.7 mmol) was cautiously added to 

trimethylaluminium (2.0 M in toluene, 0.85 ml, 1.7 mmol) at 0 °C. A solution of pyrrole 65 

(0.45 g, 1.3 mmol) in toluene (7 ml) was added dropwise to the resulting clear solution at 0 

°C. The reaction mixture was stirred at rt for 30 min and then overnight at 80 °C. The 

reaction mixture was cooled to 0 °C and subsequently poured into a biphasic mixture of 6 

ml of EtOAc and 6 ml of 6 M HCl. The aqueous layer was extracted with EtOAc (2 x 40 ml) 

and the organic layers were combined, washed with brine, dried over anhydrous Na2SO4 

and concentrated in vacuo to afford a golden-coloured solid (0.59 g). The crude product 

was finally subjected to silica gel column chromatography [EtOAc/PE (3:17) → EtOAc/PE 

(7:13)] to afford the title compound as a light brown solid (0.13 g, 26%), m.p.: 143.5-145.6 

oC (with degradation). Rf: 0.52 (30% EtOAc in PE). 1H NMR (400 MHz, CDCl3) δ (ppm): 

5.01 (s, 2H, NCH2Ph), 5.09 (br s, 2H, NH2, D2O exchangeable), 7.06-7.08 (m, 2H, Ar-H), 

7.15-7.18 (m, 5H, Ar-H), 7.23-7.26 (m, 2H, Ar-H), 7.29-7.40 (m, 6H, Ar-H), 10.79 (br s, 1H, 

tetrazole NH, D2O exchangeable). 13C NMR (100 MHz, CDCl3) δ (ppm): 47.1 (NCH2Ph), 

86.8 (C-CH=N), 118.6 (Ar-C), 125.9 (Ar-CH), 127.0 (Ar-C), 127.5 (Ar-CH), 127.7 (Ar-CH), 

127.9 (Ar-CH), 128.3 (Ar-CH), 129.27 (Ar-CH), 129.29 (Ar-CH), 130.3 (Ar-CH), 130.5 (Ar-

CH), 130.6 (Ar-C), 134.8 (Ar-C), 136.4 (Ar-C), 142.3 (C-NH2), 151.3 (NH-CH=N); LRMS: 

m/z 391.1 [M - H]-. HRMS, found: m/z 391.1685, C24H19N6 requires 391.1677. IR νmax (cm-

1): 3421.8 (N-H stretch), 3304.8 (N-H stretch), 3217.0, 3165.1, 3061.2, 3032.0, 1683.8, 

1573.8, 1497.0, 1481.1, 1453.4, 1443.9, 1357.7, 1270.6, 1170.5, 1070.7, 1001.0. 
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2-Amino-1-benzyl-4,5-dimethyl-1H-pyrrole-3-carbonitrile (108a) 

 

Acetoin (0.88 g, 10 mmol) and benzylamine (1.1 ml, 1.1 g, 10 mmol) were used for the 

synthesis of the title compound, which was obtained as a dark brown solid from silica gel 

column chromatography of the crude product [EtOAc/PE (1:4) → EtOAc/PE (3:7)] (2.3 g, 

61%), m.p.: 72.3-74.9 °C. Rf: 0.52 (30% EtOAc in PE, visible as a blue spot under 254 

nm). 1H NMR (400 MHz, CDCl3) δ (ppm): 1.99 (d, 3H, J = 0.5 Hz, CH3), 2.03 (d, 3H, J = 

0.6 Hz, CH3), 3.59 (br s, 2H, NH2, exchangeable with D2O), 4.90 (s, 2H, NCH2Ph), 6.96-

6.99 (m, 2H, Ar-H), 7.26-7.34 (m, 3H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 9.5 

(CCH3), 10.0 (CCH3), 45.9 (NCH2Ph), 77.2 (C-CN), 113.5 (C), 117.7 (C≡N), 119.2 (C), 

125.7 (Ar-CH), 127.8 (Ar-CH), 129.1 (Ar-CH), 136.3 (Ar-C) 143.2 (C-NH2); LRMS: m/z 

226.1 [M + H]+. HRMS, found: m/z 226.1344, C14H16N3 requires 226.1339. IR νmax (cm-1): 

3418.5 (N-H stretch), 3330.8 (N-H stretch), 3233.3, 2202.1 (C≡N stretch), 1650.9, 1603.3, 

1564.2, 1509.2, 1496.2, 1455.0, 1441.9, 1354.6, 1303.7, 1244.4, 1176.6, 1146.9, 1016.4.  

 

2-Amino-1-benzyl-4,5-di(furan-2-yl)-1H-pyrrole-3-carbonitrile (108b) 

 

Furoin (1.92 g, 10.0 mmol) and benzylamine (1.1 ml, 1.1 g, 10 mmol) were used for the 

synthesis of the title compound, which was obtained as a dark brown solid from silica gel 

column chromatography of the crude product [EtOAc/PE (1:4) → EtOAc/PE (3:7)] (1.9 g, 

59%), m.p.: 162.0-165.4 °C. Rf: 0.54 (30% EtOAc in PE, visible as a blue spot under UV). 

1H NMR (400 MHz, CDCl3) δ (ppm): 3.91 (br s, 2H, NH2, D2O exchangeable), 4.88 (s, 2H, 

NCH2Ph), 6.34 (d, 2H, J = 1.2 Hz, furanyl-H), 6.43-6.46 (m, 2H, furanyl-H), 7.09-7.11 (m, 
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2H, Ar-H), 7.35-7.36 (m, 4H, Ar-H), 7.47 (dd, 1H, J1 = 0.8 Hz, J2 = 1.8 Hz, Ar-H). 13C NMR 

(100 MHz, CDCl3) δ (ppm): 47.4 (NCH2Ph), 74.1 (C-CN), 106.6 (Ar-CH), 111.0 (Ar-CH), 

111.1 (C), 113.1 (Ar-CH), 114.2 (Ar-C), 115.2 (C), 116.7 (C≡N), 126.3 (Ar-CH), 128.2 (Ar-

CH), 129.2 (Ar-CH), 135.5 (C) 141.4 (Ar-CH), 143.3 (Ar-CH), 143.5 (C), 146.4 (C-NH2), 

147.3 (C); LRMS: m/z 352.1 [M + Na]+. HRMS, found: m/z 352.1055, C20H15N3NaO2 

requires 352.1056. IR νmax (cm-1): 3454.2 (N-H stretch), 3327.5 (N-H stretch), 3269.0, 

3236.6, 3210.6, 3152.1, 3116.4, 2200.1 (C≡N stretch), 1673.7, 1633.9, 1562.7, 1497.0, 

1456.0, 1346.0, 1203.0, 1156.9, 1013.0. 

 

2-Amino-4,5-diphenyl-1H-pyrrole-3-carbonitrile (109)24 

 

A solution of pyrrole 117 (0.30 g, 0.79 mmol) in anisole (5 ml) was added to a stirred 

suspension of aluminium chloride (0.53 g, 4.0 mmol) in anisole (5 ml) at 0°C for 5 mins. 

The reaction mixture was then heated at 120 °C for 17 h. Next, the reaction mixture was 

cooled to rt and poured into water (20 ml) and extracted with EtOAc (3 x 10 ml). The 

organic layers were collected and washed successively with saturated NaHCO3 (10 ml), 

water (10 ml) and brine (10 ml), and dried over anhydrous Na2SO4. The excess EtOAc 

solvent was removed in vacuo and the resulting crude product (brown oil) was purified by 

silica gel column chromatography [EtOAc/PE (1:19) → EtOAc/PE (3:7)] to give the title 

compound as a black solid (0.075 g, 36%), m.p.: 98.5-99.0 °C. Rf: 0.21 (30% EtOAc in 

PE). 1H NMR (400 MHz, DMSO-d6) δ (ppm): 5.74 (br s, 2H, NH2, D2O exchangeable), 

7.11-7.33 (m, 10H, Ar-H), 10.81 (br s, 1H, NH, D2O exchangeable). 13C NMR (100 MHz, 

DMSO-d6) δ (ppm): 72.9 (C-CN), 117.9 (C≡N), 119.8 (Ar-C), 119.9 (Ar-C), 126.0 (Ar-CH), 

126.3 (Ar-CH), 126.7 (Ar-CH), 128.4 (Ar-CH), 128.5 (Ar-CH), 129.0 (Ar-CH), 131.8 (Ar-C) 

134.3 (Ar-C), 148.9 (C-NH2); LRMS: m/z 258.1 [M - H]-. HRMS, found: m/z 258.1047, 

C17H12N3 requires 258.1037. IR νmax (cm-1): 3451.0 (N-H stretch), 3373.0 (N-H stretch), 

3327.5 (N-H stretch), 3272.3, 3233.3, 3210.6, 3155.4, 2203.9 (C≡N stretch), 1670.8, 

1628.0, 1562.4, 1497.0, 1455.9, 1345.8, 1205.8, 1157.7, 1113.5, 1065.4, 1013.2. 
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1,2-Diphenyl-2-(phenylamino)ethanone (111a) 

 

A mixture of benzoin (2.12 g, 10.0 mmol), aniline (0.90 ml, 0.93 g, 10 mmol) and 

trichloroacetic acid (0.08 g, 0.5 mmol) in dry toluene (20 ml) was refluxed using a Dean-

Stark apparatus for 3 h (LRMS monitoring). The yellow solution was evaporated in vacuo 

to give a brown solid residue (3.3 g). Silica gel column chromatography [EtOAc/PE (1:19) 

→ EtOAc/PE (7:93)] afforded the title compound as a brown solid (1.81 g, 63%), m.p.: 

93.8-95.7 °C (lit. m.p. 98-99 °C).40 Rf: 0.58 (30% EtOAc in PE). 1H NMR (300 MHz, CDCl3) 

δ (ppm): 6.03 (s, 1H, CHNH), 6.68-6.71 (m, 3H, Ar-H), 7.09-7.29 (m, 5H, Ar-H), 7.39-7.44 

(m, 4H, Ar-H), 7.52 (tt, 1H, J1 = 2.4 Hz, J2 = 7.5 Hz), 7.95-7.98 (m, 2H, Ar-H). 13C NMR (75 

MHz, CDCl3) δ (ppm): 63.3 (CHNH), 114.3 (Ar-CH), 118.6 (Ar-C), 128.2 (Ar-CH), 128.3 

(Ar-CH), 128.7 (Ar-CH), 128.9 (Ar-CH), 129.1 (Ar-CH), 129.2 (Ar-CH), 133.5 (Ar-CH), 

134.9 (Ar-CH), 137.1 (Ar-C), 145.2 (Ar-C), 196.7 (C=O); LRMS: m/z 288.0 [M + H]+. IR 

νmax (cm-1): 3389.5 (N-H stretch), 1670.5 (C=O stretch), 1599.1, 1580.3, 1506.3, 1490.3, 

1428.9, 1321.3, 1313.2, 1245.1, 1169.8. 

 

2-Amino-1,4,5-triphenyl-1H-pyrrole-3-carbonitrile (112a)29 

 

Malononitrile (0.18 g, 2.7 mmol) was added to a hot solution of α–aminoketone 111a (0.78 

g, 2.7 mmol) in absolute EtOH (6 ml). A solution of sodium (72 mg, 3.1 mmol) in absolute 

EtOH (3 ml) was then added dropwise to the mixture, and the mixture was heated under 

reflux for 18 h.  The orange solid which had formed was filtered off and washed with EtOH 

(2 x 10 ml). Recrystallisation of the orange precipitate from MeOH afforded the title 

compound as an orange solid (0.55 g, 60%), m.p.: 242.4-246.6°C (literature 248-250°C).41 

Rf: 0.27 (30% EtOAc in PE, visible as a blue spot under UV).1H NMR (400 MHz, CDCl3) δ 
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(ppm): 4.15 (br s, 2H, NH2), 6.87-6.90 (m, 2H, Ar-H), 7.02-7.08 (m, 3H, Ar-H), 7.13-7.29 

(m, 7H, Ar-H), 7.33-7.39 (m, 3H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 74.2 (C-CN), 

117.4 (C≡N), 121.3 (Ar-C), 124.7 (Ar-C), 126.6 (Ar-CH), 127.0 (Ar-CH), 128.0 (Ar-CH), 

128.2 (Ar-CH), 128.3 (Ar-CH), 128.8 (Ar-CH), 129.0 (Ar-CH), 129.7 (Ar-C), 130.6 (Ar-C), 

130.7 (Ar-CH), 133.1 (Ar-C), 135.3 (Ar-C), 146.5 (C-NH2); LRMS: m/z 358.0 [M + Na]+. 

HRMS, found: m/z 358.1316, C23H17N3Na requires 358.1315. IR (νmax, cm-1): 3473.5 (N-H 

stretch), 3384.4 (N-H stretch), 3221.5, 3053.5, 2199.6 (C≡N stretch), 1614.2, 1596.0, 

1559.0, 1548.2, 1494.1, 1474.2, 1453.6, 1439.3, 1355.6, 1268.9, 1221.5, 1154.2. 

 

2-Amino-1-phenethyl-4,5-diphenyl-1H-pyrrole-3-carbonitrile (112b) 

 

Benzoin (2.12 g, 10.0 mmol) and phenethylamine (1.3 ml, 1.2 g, 10 mmol) were used for 

the synthesis of the title compound. Silica gel column chromatography [EtOAc/PE (1:9) → 

EtOAc/PE (23:77)] of the crude product afforded the title compound as a brown solid (2.8 

g, 78%), m.p.: 186.9-190.7 oC. Rf: 0.33 (30% EtOAc in PE, visible as a blue spot under 

UV). 1H NMR (400 MHz, CDCl3) δ (ppm): 2.71 (t, 2H, J = 7.0 Hz, CH2Ph), 3.46 (br s, 2H, 

NH2, D2O exchangeable), 3.90 (t, 2H, J = 7.0 Hz, NCH2), 6.91-6.93 (m, 2H, Ar-H), 7.11-

7.25 (m, 10H, Ar-H), 7.34-7.36 (m, 3H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 36.2 

(CH2), 45.0 (N-CH2), 76.1 (C-CN), 117.7 (C≡N), 121.1 (Ar-C), 125.2 (Ar-C), 126.3 (Ar-CH), 

127.1 (Ar-CH), 128.1 (Ar-CH), 128.3 (Ar-CH), 128.5 (Ar-CH), 128.7 (Ar-CH), 128.8 (Ar-

CH), 128.9 (Ar-CH), 131.5 (Ar-CH), 133.1 (Ar-C), 137.6 (Ar-C), 145.5 (Ar-C); LRMS: m/z 

362.0 [M - H]-. HRMS, found: m/z 362.1663, C25H20N3 requires 362.1663. IR νmax (cm-1): 

3428.2 (N-H stretch), 3349.0 (N-H stretch), 3059.0, 3025.8, 2937.0, 2194.5 (C≡N stretch), 

1624.0, 1601.2, 1545.9, 1496.9, 1481.7, 1453.8, 1442.1, 1350.8, 1224.0, 1141.2, 1029.5, 

1013.7. 
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2-Amino-4,5-diphenyl-1-(3-phenylpropyl)-1H-pyrrole-3-carbonitrile (112c) 

 

Benzoin (2.12 g, 10.0 mmol) and 3-phenyl-1-propylamine (1.4 ml, 1.4 g, 10 mmol) were 

used for the synthesis of the title compound. Filtration of the reaction mixture and washing 

of the precipitate with cold toluene (2 x 30 ml) afforded the title compound as a light brown 

solid (2.0 g, 53%), m.p.: 161.0-165.3 oC. Rf: 0.38 (30% EtOAc in PE, visible as a blue spot 

under UV). 1H NMR (400 MHz, CDCl3) δ (ppm): 1.85 (quin, 2H, J = 7.6 Hz, CH2CH2Ph),  

2.46 (t, 2H, J = 7.4 Hz, CH2Ph), 3.65 (t, 2H, J = 7.8 Hz, NCH2), 7.00-7.02 (m, 2H, Ar-H), 

7.09-7.26 (m, 10H, Ar-H), 7.30-7.39 (m, 3H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 

30.7 (CH2), 32.5 (CH2), 42.6 (N-CH2), 75.7 (C-CN), 117.7 (C≡N), 120.9 (Ar-C), 125.3 (Ar-

C), 126.3 (Ar-CH), 128.09 (Ar-CH), 128.13 (Ar-CH), 128.56 (Ar-CH), 128.59 (Ar-CH), 

128.7 (Ar-CH), 128.91 (Ar-CH), 128.94 (Ar-CH), 131.2 (Ar-CH), 133.1 (Ar-C), 140.2 (Ar-C), 

145.2 (Ar-C); LRMS: m/z 376.1 [M - H]-. HRMS, found: m/z 376.1815, C26H22N3 requires 

376.1819. IR νmax (cm-1): 3420.0 (N-H stretch), 3338.3 (N-H stretch), 3243.6, 3059.3, 

3024.3, 2934.1, 2856.0, 2191.5 (C≡N stretch), 1947.4, 1632.5, 1601.3, 1558.4, 1505.4, 

1495.3, 1462.9, 1453.1, 1444.1, 1372.4, 1356.8, 1320.3, 1227.9, 1211.7, 1179.3, 1151.3, 

1110.2, 1079.8, 1029.4. 

 

2-Amino-4,5-diphenyl-1-(4-phenylbutyl)-1H-pyrrole-3-carbonitrile (112d) 
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Benzoin (2.12 g, 10.0 mmol) and 4-phenylbutylamine (1.6 ml, 1.5 g, 10 mmol) were used 

for the synthesis of the title compound. Silica gel column chromatography [EtOAc/PE (1:4) 

→ EtOAc/PE (23:77)] of the crude product afforded the title compound as a brown solid 

(2.8 g, 78%), m.p.: 150.3-153.1oC. Rf: 0.40 (30% EtOAc in PE, visible as a blue spot under 

UV). 1H NMR (400 MHz, CDCl3) δ (ppm): 1.42-1.57 (m, 4H 2 x CH2), 2.47 (t, 2H, J = 7.3 

Hz, CH2Ph), 3.64 (t, 2H, J = 7.0 Hz, NCH2), 7.02-7.05 (m, 2H, Ar-H), 7.16-7.26 (m, 10H, 

Ar-H), 7.30-7.31 (m, 3H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 27.8 (CH2), 28.9 

(CH2), 34.9 (CH2), 43.2 (N-CH2), 75.8 (C-CN), 117.7 (C≡N), 120.9 (Ar-C), 125.2 (Ar-C), 

126.0 (Ar-CH), 126.2 (Ar-CH), 128.08 (Ar-CH), 128.12 (Ar-CH), 128.3 (Ar-CH), 128.4 (Ar-

CH), 128.59 (Ar-CH), 128.64 (Ar-CH), 131.3 (Ar-CH), 133.2 (Ar-C), 141.3 (Ar-C), 145.1 

(Ar-C); LRMS: m/z 390.1 [M - H]-. HRMS, found: m/z 390.1970, C27H24N3 requires 

390.1976. IR νmax (cm-1): 3418.6 (N-H stretch), 3341.1 (N-H stretch), 3243.8, 3061.6, 

3024.6, 2934.2, 2857.4, 2191.2 (C≡N stretch), 1947.6, 1631.6, 1601.0, 1558.2, 1495.4, 

1462.7, 1453.2, 1443.5, 1357.3, 1319.7, 1225.9, 1212.0, 1179.6, 1150.0, 1110.5, 1074.7, 

1029.3, 733.5. 

 

2-amino-1-(4-methoxybenzyl)-4,5-diphenyl-1H-pyrrole-3-carbonitrile (117) 

 

Benzoin (2.12 g, 10.0 mmol) and 4-methoxybenzylamine (1.3 ml, 1.4 g, 10 mmol) were 

used for the synthesis of the title compound, which was obtained as a golden solid (2.4 g, 

63%), m.p.: 148.0-150.6 °C. Rf: 0.40 (30% EtOAc in PE, visible as a blue spot under UV). 

1H NMR (400 MHz, CDCl3) δ (ppm): 3.79 (s, 3H, OCH3), 3.88 (br s, 2H, NH2, D2O 

exchangeable), 4.84 (s, 2H, NCH2PhOCH3), 6.88 (d, 2H, J = 8.8 Hz, Ar-H), 6.99 (d, 2H, J 

= 8.8 Hz, Ar-H), 7.14-7.27 (m, 10H, Ar-H). 13C NMR (100 MHz, CDCl3) δ (ppm): 46.5 

(NCH2PhOCH3), 55.3 (OCH3), 75.7 (C-CN), 114.7 (Ar-CH), 117.5 (C≡N), 120.9 (Ar-C), 

125.6 (Ar-C), 126.4 (Ar-CH), 127.2 (Ar-CH), 127.8 (Ar-C), 128.1 (Ar-CH), 128.68 (Ar-CH), 

128.72 (Ar-CH), 130.9 (Ar-C) 131.0 (Ar-CH), 133.2 (Ar-C), 145.9 (Ar-C), 159.3 (Ar-C); 

LRMS: m/z 378.2 [M - H]-. HRMS, found: m/z 378.1599, C25H20N3O requires 378.1612. IR 
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νmax (cm-1): 3416.3 (N-H stretch), 3328.3 (N-H stretch), 3233.7, 2202.9 (C≡N stretch), 

1651.5, 1603.3, 1564.4, 1508.8, 1495.9, 1455.4, 1441.9, 1354.6, 1244.0, 1176.6, 1016.5.  

 

3.5 e) Expression and purification of IMP-1 

Refer to Appendix 1. 

3.5 f) Preparation of CENTA (73) 

Refer to Appendix 2. 

 

3.5 g) IMP-1 screening assay of the derivatives41-44 

The screening assays was performed in triplicates, with CENTA as the substrate 

and HEPES X (50 mM HEPES, 0.1 M NaCl, 100 μM ZnCl2, pH 7.0) as the buffer, at 25 °C. 

The final concentration of IMP-1 and CENTA was 0.1, 10 nM and 20, 70 μM, respectively. 

Bovine serum albumin (final concentration of 20 μg ml-1) was added to the enzyme 

solution for enzyme stability. The synthetic derivatives of pyrrole 65 were assayed at final 

concentrations of 5, 10 and 20 μM, except for 104, which was assayed at 5, 10 and 25 µM. 

The rate of CENTA hydrolysis was monitored at 405 nm (ε = 6400 M-1 cm-1) (Scheme 2.4). 

The percentage inhibition of an inhibitor was calculated based on the residual activity of 

the enzyme in the presence of the inhibitor (Equation 2.1). 

 

3.5 h) Computational modelling 

Refer to Appendix 3. 
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CHAPTER 4: OPTIMISATION OF (2RS, 4R)-3-(2-MERCAPTOACETYL)-2-

PHENYLTHIAZOLIDINE-4-CARBOXYLIC ACID AS POTENT INHIBITORS OF IMP-1 

 

4.1 General introduction 

MBL inhibitor design based on the β-lactam molecular scaffold is a propitious 

approach for the search of more potent, broad-spectrum MBL inhibitors.1 Thus far, this 

approach has been fruitful in the identification of two highly potent IMP-1 inhibitors, 59 

(Section 1.11 f) and 119, which exhibit inhibitory potencies in the submicro- to nanomolar 

range (Figure 4.1).2,3 Both of the mercaptocarboxylate-type inhibitors, 59 and 119 were 

originally designed to structurally mimic the β-lactam substrate, in order to facilitate the 

study of the 3D active site architecture of B1 MBLs and the flexibility of the mobile L3 loop, 

respectively.2-4 

 

 

Figure 4.1: The potent mercaptocarboxylate-type IMP-1 inhibitors, 59 and 119, (left) which 

structurally resemble penicillins 1 and 5 (right).2-4 Part of the structure of 59 which is similar 

to penicillin G (1) is highlighted in blue, whereas 119 has an open mercapto chain in lieu of 

a β-lactam ring. 
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 The 3D structure of 59 co-crystallised with IMP-1 revealed that the inhibitor binds 

tightly in the active site of the enzyme through three key interactions (Figure 4.2):  

a) ionic interactions between the thiolate group of 59 and the Zn2+ centres (S-Zn1 

distance 2.2 Å and S-Zn2 distance 2.4 Å); 

b) interactions involving the C1’-carboxylate oxygens of 59 and the enzyme, such as a 

salt bridge interaction between the terminal amino group of Lys161 (224) and the 

C1’-carboxylate oxygen (N-O distance 2.7 Å), as well as a hydrogen bond 

interaction  between the amide backbone N-H of Asn167 (233) and the C1’-

carbonyl oxygen (N-O distance 2.9 Å); 

c) hydrophobic contacts between the 4-phenyl ring of 59 and the hydrophobic pocket 

of the enzyme, which comprises of Glu23, Val25 (61), Val31 (67) and Phe51 (87), 

as well as π-π stacking interaction between the thiophene ring of 59 and Trp28 (64) 

indole ring.2 

Furthermore, the S absolute configuration at both C-2 and C-2’ is essential for the 

observed, noteworthy IC50 potency of the inhibitor.2  

 

 

Figure 4.2: The active site view of the crystal structure of 59 bound with IMP-1 (PDB No.: 

1DD6).2 Atom colours: carbon on inhibitor in yellow, carbon on IMP-1 in grey, nitrogen in 
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blue, oxygen in red and sulfur in gold. The red spheres represent the Zn2+ ions and the 

green dotted lines represent ionic and hydrogen bonds (figure drawn with MVD).17  

 

Comparably, NMR studies of inhibitor 119 bound with the CcrA B1 MBL revealed 

that the flexibility of the L3 β-hairpin loop decreased upon inhibitor binding, particularly 

Trp64 (28), which is located at the edge of the loop.4 This implies that the loop is involved 

in the binding of a broad-range of β-lactam substrates, with various hydrophobic side 

chains, which are readily accommodated by a flexible hydrophobic pocket, adjacent to the 

enzyme active site.4 In addition, the loop also functions in shielding the enzyme active site 

from solvent exposure.4   

The five-membered thiazolidine ring, which is part of the bicyclic ring structure of 

penicillins, is an interesting scaffold for the design of MBL inhibitors.5 Thiazolidines 120a 

and 60b (Section 1.11 f) were identified by Chen et al.6 and Feng et al.,7 respectively, to 

exhibit moderate to potent inhibitory activity against B1 MBLs (Figure 4.3).  

 

 

Figure 4.3: Reported MBL inhibitors, 60b and 120a bearing the thiazolidine ring, which is 

highlighted in blue. 

 

(2RS, 4R)-2-Phenylthiazolidine-4-carboxylic acid (120a), which has a modest 

inhibitory activity against IMP-1, is an advantageous starting point for the design of more 

potent IMP-1 inhibitors. Preliminary Glide computational modelling of the 2S, 4R isomer of 

120a in complex with IMP-1 suggested that both of the carboxylate oxygens of 120a bind 

to the metal centres, with O-Zn distances of 1.99-2.81 Å (Figure 4.4). In addition, the 2-

phenyl ring of 120a was predicted to fit into the hydrophobic pocket, which comprises of 

Val25 (61) and Val31 (67), as well as a favourable hydrophobic contact with Trp28 (64). 
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However, the in silico model didn’t predict any significant interactions between the ligand 

and the conserved amino acid residues Lys161 (224), or Asn167 (233). 

 

 

Figure 4.4: The active site view of the in silico model of 2S, 4R-120a bound with IMP-1, as 

predicted by Glide. Atom colours: carbon on ligand in green, carbon on IMP-1 in light blue, 

hydrogen in white, nitrogen in navy blue, oxygen in purple and sulfur in yellow. The zinc 

ions are represented as cyan spheres. The purple dotted lines represent ionic interactions 

between the ligand and zinc ions. 

 

Chen and colleagues also reported a similar Glide in silico model of a structurally 

related inhibitor, 121 in complex with IMP-1 (model not shown).6 The computational model 

of 121-IMP-1 suggested ionic interactions between the carboxylate group of the ligand with 

both of the zinc ions, but no interactions between the ligand and Lys161 (224) or Asn167 

(233) amino acid residue.6 

 



178 
 

 

  

It is therefore envisaged that linkage of the thiazolidine ring nitrogen of 120a with a 

potent zinc chelator, such as a thiol group, would allow the 4-carboxylate group of the 

inhibitor to bind with Lys161 (224) via a salt bridge interaction, and simultaneously 

preserve direct ligand-Zn interaction.  

The secondary thiazolidine ring nitrogen of 120a can be linked with mercaptoacetic 

acid (30), which has a Ki potency of 0.23 μM against IMP-1 (Section 1.11 a).8  This can be 

achieved by acylating 120a with S-(2-chloro-2-oxoethyl) ethanethioate (122), which is the 

thioacetate-protected, acyl chloride derivative of 30 (Scheme 4.1). Removal of the 

thioacetate protecting group from intermediate 123a by base-promoted hydrolysis will 

finally afford the mercapto-amide-linked thiazolidine compound, 124a.  

 

 

Scheme 4.1: The acylation of thiazolidine 120a with acyl chloride 122 to afford the 

mercapto-amide-linked thiazolidine compound, 124a. 

 

 Glide molecular modelling of the 2S, 4R diastereomer of 124a bound with IMP-1 

predicted that the ligand binds to both Zn2+ ions through its thiol group (S-Zn1 distance 3.8 

Å and S-Zn2 distance 4.1 Å) (Figure 4.5). Furthermore, one of the carboxylate oxygens of 

the ligand binds to the terminal amino group of Lys161 (224) via an ionic bond interaction 
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(O-N distance 2.5 Å), while the other oxygen interacts with the N-H amide backbone of 

Asn167 (233) through another hydrogen bond interaction (O-N distance 2.7 Å). 

 

  

Figure 4.5: The active site view of the computational model of 2S, 4R-124a in complex 

with IMP-1, as predicted by Glide. Atom colours: carbon on ligand in green, carbon on 

IMP-1 in light blue, hydrogen in white, nitrogen in navy blue, oxygen in purple and sulfur in 

yellow. The zinc ions are represented as cyan spheres. The dotted purple and green lines 

represent ionic and hydrogen bond interactions, respectively. 

 

 On the other hand, the Glide in silico model of the 2R, 4R diastereomer of 124a in 

complex with IMP-1 suggested a different binding mode between the ligand and the 

enzyme (Figure 4.6). In this model, both of the carboxylate oxygens of the ligand were 

predicted to bind to both of the Zn2+ ions, with an O-Zn distance of 1.9 Å for each bond. In 

addition, the thiolate group of the ligand was suggested to have an ionic interaction with 

the Lys161 (224) terminal amino group (S-N distance 4.1 Å), as well as a hydrogen bond 

interaction with the N-H backbone of Asn167 (233) (S-N distance 3.3 Å). 

 

 



180 
 

 

Figure 4.6: The active site view of the in silico model of 2R, 4R-124a bound with IMP-1, as 

predicted by Glide. Atom colours: carbon on ligand in green, carbon on IMP-1 in light blue, 

hydrogen in white, nitrogen in navy blue, oxygen in purple and sulfur in yellow. The zinc 

ions are represented as cyan spheres. The dotted purple and green lines represent ionic 

and hydrogen bond interactions, respectively. 

 

This chapter focuses on the SAR of various derivatives of (2RS, 4R)-3-(2-

mercaptoacetyl)-2-phenylthiazolidine-4-carboxylic acid (124a) as IMP-1 inhibitors. 

 

4.2 Research plan 

The synthetic work was completed by Dr Sara Mustaddiq, then an occupational 

trainee with the McGeary group (2013-2014), who synthesised a range of mercapto-

amide-linked thiazolidines 124a-o, with various aromatic rings and substituents on the 

phenyl ring (Figure 4.7).9 My contribution to this project included inhibitor design and 

enzymatic inhibition study, whereas the computational modelling of the inhibitors was 

carried out by Ajit Kandale, a PhD student with the McGeary group.  
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Figure 4.7: The various mercapto-amide-linked thiazolidines 124a-o, which were 

synthesised by Dr Sara Mustaddiq.9 

 

 The (2RS, 4R)-2-arylthiazolidine-4-carboxylic acids, 120a-o  which are the starting 

materials for the syntheses of the mercapto-amide-linked thiazolidines 124a-o, were 

prepared from the condensation of L-cysteine (125) with various aromatic aldehydes, 

126a-o (Scheme 4.2).9,10 

 

 

 

Scheme 4.2: The preparation of the (2RS, 4R)-2-arylthiazolidine-4-carboxylic acid starting 

materials, 120a-o.9,10 
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 The β-lactam substrate for the IMP-1 kinetic assays of thiazolidines 124a-o would 

have to be penicillin G (1), as CENTA (73) has the propensity to react with the thiol group 

of the inhibitors.11 The enzyme activity in the presence and absence of the inhibitors can 

be measured as the rate of penicillin G (1) consumption, which can be monitored 

spectrophotometrically at 235 nm (ε = 936 M-1 cm-1) (Scheme 4.3). The Km and kcat 

parameter for the hydrolysis of penicillin G (1) by IMP-1 is 520 μM and 320 s-1, 

respectively.12 

 

 

Scheme 4.3: Hydrolysis of penicillin G (1) by IMP-1 as a measurement of enzyme activity. 

 

 The crystal structure of mercaptocarboxylate 59 bound with IMP-1 (PDB no.: 1DD6) 

can be used for computational docking of the mercapto-amide-linked thiazolidine 

derivatives with the active site of the enzyme.2 Both of the 2R, 4R and 2S, 4R 

diastereomer of the synthetic derivatives can be docked separately by using the Glide 

program, as suggested by Chen et al.6  

 

4.3 Results and discussion 

4.3 a) Enzymatic kinetic studies  

The mercapto-amide-linked thiazolidines 124a-o were screened against IMP-1 (5 

nM) at four different inhibitor concentrations: 0.1, 1, 10 and 100 μM, and the results are 

presented in Table 4.1. The majority of the thiazolidines, except 124c and 124o showed 

inhibitory activity close to, or above 50% at an inhibitor concentration of 10 μM. This is an 

appreciable, 20-fold improvement for this series of inhibitors, as thiazolidine 120a was 

originally reported to have an IC50 value greater than 200 μM against IMP-1.6   
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Thiazolidine 124a, which has an unsubstituted phenyl ring, was selected as the 

reference compound for the selection of other thiazolidine derivatives for further inhibition 

constant, Ki study against IMP-1. The reference compound demonstrated a percentage 

inhibition of 87.3% at an inhibitor concentration of 10 μM against the enzyme. Therefore, 

thiazolidine derivatives exhibiting a percentage inhibition close to (13-19%) or greater than 

87.3% at 10 μM inhibitor concentration were selected for the study (Table 4.2). 

According to the screening results, thiazolidine derivatives with electron donating 

groups on the phenyl ring, such as methyl, methoxy or hydroxyl groups displayed 

decreased inhibitory activity as compared to the reference compound 124a. These 

derivatives, except for the p-methoxy substituted thiazolidine 124d, which has comparable 

activity with 124a, were not selected for the Ki study. On the contrary, thiazolidine 

derivatives bearing a halide group on the phenyl ring demonstrated comparable or greater 

inhibitory activity than the reference compound. These observations suggest that the 

inhibitory potencies of the thiazolidine derivatives are influenced by the electronic nature of 

the substituent on the phenyl ring. 

 

Table 4.1: The percentage inhibition of thiazolidine derivatives 124a-o screened against 

IMP-1 (5 nM, containing BSA at a final conc. of 20 μg mL-1) at pH 7.0 and 25 °C, with 

penicillin G (1 mM) as the substrate. 

Inhibitor

124 

Molecular 

structure 

Percentage Inhibition (%) 

0.1 μM 1 μM 10 μM 100 μM 

a 

 

5.6±2.2 11.3±3.31 87.3±3.49 100 

b 

 

0±17 19.5±6.70 95±2.7 100 
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c 

 

9.5±0.8 18.6±2.89 38.6±1.61 100 

d 

 

11.2±2.97 20.3±2.66 84.6±10.8 97.4±5.56 

e 

 

0±1.5 11.0±1.47 76.4±1.83 99.5±2.60 

f 

 

13.9±3.57 55.0±1.64 100 100 

g 

 

25.6±4.19 41.9±7.93 100 100 
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h 

 

10.9±4.21 8.92±3.38 57.9±3.55 87.1±2.52 

i 

 

8.50±5.25 20.6±3.02 63.4±1.10 100 

j 

 

0±5 18.4±1.95 70.5±3.78 100 

k 

 

10.8±2.35 89.2±2.04 100 100 

l 

 

21.7±6.02 15.4±3.55 50.4±4.15 100 

m 

 

21.1±3.99 11.3±2.28 47.8±4.92 100 
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n 

 

35.4±8.92 40.3±11.3 75.0±6.95 100 

o 

 

27.2±8.02 17.9±2.82 29.2±3.80 78.3±4.16 

Inhibition percentages of derivatives which are comparable to or higher than that of the 

reference compound 124a at 10 μM inhibitor concentration are highlighted in red. 

 

The Ki study of the selected thiazolidine derivatives suggested that all of the 

derivatives assayed exhibit competitive inhibition mode against IMP-1, with similar 

potencies (Table 4.2). The only exception to this is the p-bromo derivative, 124g which is 

the most potent derivative in this series, with a Kic potency of 0.57 μM against the enzyme.  

On the contrary, the least potent thiazolidine derivative in this series is the p-

methoxy derivative, 124d. This observation is consistent with an earlier view that electron 

donating substituents on the phenyl ring have a diminishing effect on the inhibitory 

potencies of the thiazolidine derivatives.  

Moreover, there is an increasing trend in inhibitory potency as the p-halide 

substituent on the phenyl ring of the derivatives is replaced with a larger halide group in 

the following order: Br > Cl > F. This p-halogen effect in IMP-1 inhibitory activity was also 

observed by Siemann et al. in their SAR study of N-arylsulfonyl hydrazones 127-130, a-c 

as IMP-1 inhibitors (Table 4.3).13 These observations suggest that halogen bonding 

between the p-halide group and the backbone carbonyl oxygen of certain amino acids, 

such as Val and Phe may come into play.14 Halogen bonds, which is shown by quantum 

mechanics/molecular mechanics (QM/MM) calculations to be comparable in strength with 

hydrogen bonds increase in strength in the following order: I > Br > Cl.14 

Interestingly, switching the position of the p-bromo substituent of 124g to a meta 

position as in 124j, led to a marked, 17-fold decrease in IMP-1 inhibitory potency. This 
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observation demonstrates that the p-halide position is crucial for the observed IMP-1 

inhibitory potencies of the thiazolidine derivatives 124e, 124f and 124g. 

Furthermore, the addition of an extra methylene group between the thiol group and 

the amide group of 124a didn’t result in any significant effects on the IMP-1 inhibitory 

potency for 124b. This effect was moderately observed for the meta-bromo derivative, 

124k which has a two-fold enhancement in inhibitory potency as compared to 124j. The 

addition of methylene groups between the thiol group and the amide group only affects the 

inhibitory potency of the thiazolidines to a small extent. 

Substitution of the 2-phenyl ring with a furan ring also didn’t result in any significant 

changes in inhibitory potency for 124n. As mentioned previously, the furan ring is a 

bioisostere of the phenyl ring (Section 3.3b).15 

 

Table 4.2: The competitive (Kic) and uncompetitive (Kiuc) inhibition constants (μM) of 

selected thiazolidine derivatives against IMP-1 (10 nM, containing BSA at a final conc. of 

20 μg mL-1) at pH 7.0 and 25 °C, with varying concentrations of the penicillin G substrate 

(0.4-1.2 mM). 

Inhibitor 124 Structure Kic (μM) Kiuc (μM) 

a 

 

7.16 ± 3.12 

 

- 

 

b 

 

8.78 ± 2.45 - 
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d 

 

14.7 ± 7.3 - 

 

e 

 

4.20 ± 0.98 - 

 

f 

 

1.37 ± 0.41 - 

 

g 

 

0.57 ± 0.47  

 

- 

 

j 

 

9.54±3.17 - 

 

k 

 

4.03 ± 0.94  - 
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n 

 

10.4 ± 3.1 - 

 

 “-“ Denotes  a large value (101-102 mM range).  

 

Table 4.3: The IC50 (μM) data of N-arylsulfonyl hydrazones 127-130, a-c against IMP-1 (4 

nM, with a final BSA conc. of 1 μg ml-1), with nitrocefin (20 μM) as the substrate at pH 7.3, 

and 30 °C.13 

Inhibitor 

 

X IC50 (μM)* 

R 

   

127 I 17.5 6.3 3.0 

128 Br 25 13 4.6 

129 Cl 55 19 7.0 

130 F 150 55 13.5 

*The margin of error for the measurements were within 10%. 

 

4.3 b) Computational modelling study 

Both of the 2R, 4R and 2S, 4R diastereomer of the selected thiazolidine derivatives 

were docked separately into the active site of IMP-1 by using the Glide program. The 

docking scores of the in silico models, together with the binding affinities of the docked 

ligands are shown in Table 4.4. Like the Moldock score, the GlideScore is also a prediction 

of the binding affinity of the ligand with the enzyme.16 The bigger the magnitude of the 

GlideScore is, the greater the predicted binding affinity (Section 3.2).16 The docking results 

showed little variation in the GlideScore of the docked ligands. This observation is 

reflective of the Ki values of the inhibitors, which also exhibited a lack of distribution. 
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Nevertheless, the 2R, 4R and 2S, 4R diastereomer of the docked thiazolidine 

derivatives exhibit different binding modes, as previously described for those of 124a 

(Section 4.1). The 2R, 4R diastereomers were predicted to bind to the zinc ions via the 4-

carboxylate groups, whereas the 2S, 4R diastereomers were predicted to bind to the zinc 

ions through the thiolate groups.  

 

Table 4.4: The GlideScore values (kcal mol-1) and binding affinities (µM) of selected 

thiazolidine derivatives, including 120a and the original co-crystallised ligand, 59 for 

comparison. 

Ligand Molecular structure GlideScore (kcal mol-1) Binding 

affinity (µM) 2R 2S 

120a 

 

-5.74 -7.50 >200* 

124d 

 

-7.59 -9.76 14.7 ± 7.3 

124n 

 

-7.82 -8.42 10.4 ± 3.1 

124j 

 

-7.47 -9.12 9.54 ± 3.17 
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124b 

 

-7.78 -9.62 8.78 ± 2.45 

124a 

 

-8.53 -8.77 7.16 ± 3.12 

 

124e 

 

-8.39 -8.68 4.2 ± 0.98 

124k 

 

-7.64 -7.78 4.03 ± 0.94  

124f 

 

-8.34 -9.37 1.37 ± 0.41 

124g 

 

-8.56 -9.55 0.57 ± 0.47  
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59 

 

-12.2 0.09* 

*IC50 values. 

 

4.4 Conclusion 

 The SAR study of the mercapto-amide-linked thiazolidine derivatives 124a-o 

demonstrated that the electronic nature of the substituent on the phenyl ring affects the 

IMP-1 inhibitory activity of the derivatives, with electron donating substituents having a 

diminishing effect on the inhibitory activity of the derivatives. Substitution of the phenyl ring 

with various electron withdrawing substituents such as a nitro or a trifluoromethyl group 

may be helpful in further examining this effect.   

In addition, the IMP-1 inhibitory potency of the p-halide derivatives increases as the 

size of the halide substituent increases in the following order: Br > Cl > F. The position of 

the p-halide substituent on the phenyl ring is also essential for the observed high inhibitory 

potency of the p-halide derivatives. 

Introduction of an additional methylene group between the thiol group and the 

amide group, or replacement of the phenyl ring with a furan ring, both have an insignificant 

effect on the IMP-1 inhibitory potency of the thiazolidine derivatives. 

Computational modelling of the thiazolidine derivatives suggested the possibility of 

two distinct binding modes for each diastereomer. 

  

4.5 Experimental 

4.5 a) IMP-1 screening assay of the inhibitors 

The screening assay was performed in triplicates, with penicillin G as the substrate 

and HEPES X (50 mM HEPES, 0.1 M NaCl, 100 μM ZnCl2, pH 7.0) as the buffer at 25 °C. 

The final concentration of IMP-1 and penicillin G was 5 nM and 1 mM, respectively. Bovine 

serum albumin (final concentration of 20 μg ml-1) was added to the enzyme solution for 
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enzyme stability. The inhibitors were assayed at final concentrations of 0.1, 1, 10 and 100 

μM. The rate of penicillin G hydrolysis was monitored at 235 nm (ε = 936 M-1 cm-1) 

(Scheme 4.3). The percentage inhibition of an inhibitor was calculated based on the 

residual activity of the enzyme in the presence of the inhibitor (Equation 2.1). 

 

4.5 b) IMP-1 Ki assay of the inhibitors 

The Ki assay conditions are the same as the screening assay conditions, except that 

various inhibitor concentrations were assayed against different substrate concentrations. 

The final inhibitor concentrations assayed were: 0.2-50 μM, while the final substrate 

concentrations used were: 0.4, 0.5, 0.6, 0.8, 1.0, and 1.2 mM. The raw kinetic data were 

analysed by non-linear regression method, based on Equation 2.1, with the aid of 

WinCurveFit program (Kevin Raner Software). According to the Equation 2.2, it is 

assumed that the inhibitor is either competitive, uncompetitive or a mixed-mode inhibitor. 

The Ki plot of 124f is shown in Figure 4.8 as a representative Ki plot of all the inhibitors 

assayed in this series. 

 

  

Figure 4.8: The Ki plot of thiazolidine 124f (r2 = 0.98). 
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CHAPTER 5: CONCLUSIONS AND FUTURE STUDIES 

5.1 Conclusions 

The naturally-occurring β-lactam ring is a unique molecular structure that mimics 

part of the structure of the bacterial cell wall,1 that consists of a complex structure of 

polymeric glycan strands, which are cross-linked by peptide bonds, with the involvement of 

the transpeptidase enzyme.2 As such, β-lactam bearing compounds, such as penicillin G 

(1) have the propensity to be mistakenly recognised as the actual bacterial cell wall 

material, and thus form stable acyl-enzyme complexes with bacterial transpeptidase.1 This 

interference leads to the disruption of the bacterial cell wall biosynthesis, which ultimately 

leads to bacterial cell death.1 β-Lactams are thus classified as antibiotic chemical, an 

agent that has an adverse effect on the bacterial cell and not on the eukaryotic host.3 

Since its administration in the 1940’s, β-lactam antibiotics have been the cornerstone of 

chemotherapy for bacterial infections, with over 50% of all antibiotics currently in use 

bearing the β-lactam ring.1,4  

 

 

 

One of the bacterial responses to the widespread use of β-lactam antibiotics is in 

the form of biochemical resistance, i.e. the expression of β-lactam degrading enzymes, or 

β-lactamases.1 The zinc-dependent metallo-β-lactamases, MBLs is one of the classes of 

the β-lactamase enzymes.1,5 Currently, of major concern is the rapid, global distribution of 

MBLs, particularly the plasmid-mediated B1 MBLs, which are transferable on mobile 

genetic elements among related and unrelated bacterial species.6 Furthermore, the B1 

MBLs exhibit a broad-spectrum β-lactam substrate profile.6 Thus far, there are no clinical 

inhibitors available for the inhibition of MBLs.7,8 In light of these findings, the B1 MBLs, 

such as the Imipenemase 1 (IMP-1) enzyme present as an attractive biological target for 

medicinal chemistry study.  
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The active site architecture of IMP-1 is characterised by the presence of two zinc 

ions in the active site, Zn1 and Zn2, as well as a mobile β-hairpin L3 loop adjacent to the 

active site (Figures 1.16 and 1.17, Section1.9).9-11 The zinc ions are bridged by a 

hydroxide ion that is proposed to be the attacking nucleophile on the β-lactam carbonyl 

group (Figure 1.17).9 Studies have shown that the L3 loop is stabilised upon inhibitor or 

substrate binding.8,9 In addition, the active site also consists of two conserved amino acid 

residues-Lys161 (224), which binds to the 3-carboxylate group of penicillins via a salt 

bridge interaction and Asn167 (233), that is part of the oxyanion hole that stabilises the C-

7 carbonyl oxygen of penicillins upon nucleophilic attack (Figure 4.2, Section 4.1).9 

Thus far, MBL inhibitor design has been centred around the zinc ions, hydrogen 

donor region, such as Lys161 (224) and mobile L3 loop.12 This approach has led to the 

successful design of mercaptocarboxylate- and dicarboxylate-type inhibitors with binding 

affinities in the submicro- to nanomolar range.12 

 In 2012, the McGeary and Schenk group were the first to identify 2-amino-1-benzyl-

4,5-diphenyl-1H-pyrrole-3-carbonitrile (65) as a competitive IMP-1 inhibitor.13 Preliminary 

MVD computational modelling of this structurally unique inhibitor bound with IMP-1 

suggested hydrophobic contacts between the mobile loop and the vicinal diphenyl side 

chains of 65, a hydrogen bond interaction between the 3-carbonitrile nitrogen and the 

Lys161 (224) terminal amino group, and another hydrogen bond interaction between one 

of the 2-amino hydrogens and His139 (196), which is a Zn1 chelator (Figure 2.1, Section 

2.2). Nonetheless, the in silico model did not predict any interactions between 65 and the 

zinc ions. A structure-activity relationship (SAR) study of 65 was therefore initiated to 

examine these in silico predictions. 
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 Chapter 2 described the SAR study of the 2-amino group of 65, whereby a series of 

N-acyl derivatives were synthesised and assayed against IMP-1(Figure 5.1). The 

corresponding synthetic N,N-diacyl imide intermediates were isolated and evaluated for 

their inhibitory potency.  

 

 

Figure 5.1: The first series of N-substituted derivatives of pyrrole 65. 

 

The IMP-1 screening results of the first series of N-substituted pyrrole 65 

derivatives showed that introduction of an N-arylamide group enhances the inhibitory 

potency of the pyrrole moderately. This finding led to the design of a second series of N-

substituted pyrrole derivatives (Figure 5.2). In addition, a stability test of the imide 

derivatives in the presence of IMP-1 revealed that the imides resist the hydrolytic activity of 

the enzyme. 
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Figure 5.2: The second series of N-substituted derivatives of pyrrole 65. 

  

N-4-Nitrobenzamide 93 and 4-benzoyl-N-benzamide 99 were subsequently 

identified as the two most potent IMP-1 inhibitors for this class of compounds, with a 14- to 

17-fold enhancement in IMP-1 inhibitory potency compared to the pyrrole lead compound 

65 (Figure 5.3). The kinetic assay results suggested that 93 is a purely competitive 

inhibitor, whereas 99 is a solely uncompetitive inhibitor. Glide computational modelling of 

93 in complex with IMP-1 suggested that one of the 4-nitro oxygens has direct co-

ordination with both of the zinc ions, which may explain its purely competitive inhibition 

mode (Figure 2.7). Nevertheless, an X-ray crystal structure is still needed to ascertain the 

actual binding mode of the inhibitor with the enzyme. On the contrary, the in silico model of 

99 bound with IMP-1 suggested that the active site of the enzyme may not be big enough 

to accommodate the inhibitor (Figure 2.9). Inhibitor 99 may probably bind to an enzyme 

site distinct from the active site. 
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Figure 5.3: The two most potent N-arylamide derivatives of pyrrole 65. 

  

 In addition, the position of the nitro group on the phenyl ring of the N-

nitrobenzamide derivatives 91 and 93 influences both the IMP-1 inhibitory potency and 

binding modes of the derivatives.  

 The SAR of the 3-cyano group, vicinal 4,5-diphenyl and N-benzyl side chains of 

pyrrole 65 were described in Chapter 3. Figure 5.4 shows the modified synthetic pyrrole 65 

derivatives which were used for this study. 
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Figure 5.4: The synthetic derivatives which were used in the SAR study of the 3-cyano 

group, vicinal 4,5-diphenyl and N-benzyl side chains of pyrrole 65. 

  

The design of tetrazole 105 was based on a preliminary MVD docking simulation of 

deprotonated tetrazole 105 in complex with IMP-1 (Figure 3.3). The in silico model 

predicted ligand-Zn interactions via the tetrazolyl nitrogens, and a high binding affinity for 

105. An attempt at derivatising pyrrole 65 into tetrazole 105 was only successful by using 

aluminium triazide as the azide reagent. 

Contrary to the docking result, tetrazole 105 exhibited a significant decrease in IMP-

1 inhibitory activity, while carboxamide 104 didn’t show any inhibitory activity against the 

enzyme. Therefore, retention of the 3-cyano group is crucial for maintenance of IMP-1 

inhibitory activity for pyrrole 65.  

The significant loss in IMP-1 inhibitory activity for 108a, but retention of IMP-1 

inhibitory activity for 108b highlights the importance of the vicinal 4,5-diphenyl side chains 

in making favourable hydrophobic contacts with the L3 mobile loop. 

All attempts at deprotecting pyrrole 65 were unsuccessful. Deprotection of the 

pyrrole was only successful on the N-4-methoxybenzyl derivative 117, by using aluminium 

chloride as the deprotection agent. 

Removal of the N-4-methoxybenzyl side chain as in 109, or omission of the benzylic 

carbon as in 107a led to a significant loss of IMP-1 inhibitory activity. Furthermore, chain 

lengthening between the pyrrole ring nitrogen and phenyl ring didn’t result in improvement 

of IMP-1 inhibitory activity. Therefore, the N-benzyl chain is vital for the observed IMP-1 

inhibitory activity of pyrrole 65. 

Chapter 4 described the optimisation of (2RS, 4R)-2-phenylthiazolidine-4-carboxylic 

acid (120a), as an IMP-1 inhibitor by linking the ring nitrogen of 120a with a highly-affinitive 

zinc chelator, such as mercaptoacetic acid (Scheme 5.1). 
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Scheme 5.1: The optimisation of thiazolidine 120a as a potent IMP-1 inhibitor, 124a. 

 

The work was later expanded to include a range of mercapto-amide-linked 

thiazolidines 124a-o (Figure 5.5).  

 

 

 

Figure 5.5: The mercapto-amide-linked thiazolidines 124a-o, which were studied. 
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 The SAR of thiazolidines 124a-o demonstrated that the electronic nature of the 

substituent has a significant effect on the IMP-1 inhibitory potency of the derivatives. In 

addition, the IMP-1 inhibitory potency of the p-halide derivatives increases as the size of 

the halide group increases, suggesting the involvement of halogen bonding in inhibitor-

enzyme interaction.14 Furthermore, the addition of a methylene group between the thiol 

group and amide group has no significant effect on the IMP-1 inhibitory potency of the 

thiazolidines. 

 Glide computational modelling of the thiazolidines suggested different binding 

modes for each diastereomer. The 2R, 4R diastereomers were predicted to bind to the 

zinc ions via the carboxylate groups, while the 2S, 4R diastereomers were predicted to 

bind in an S-Zn fashion.   

 

5.2 Future studies 

 Computational modelling by either MVD or Glide program remains inconclusive in 

predicting the actual binding modes of pyrrole 65 or its synthetic derivatives with IMP-1. An 

X-ray crystal structure of either pyrrole 65, or its most potent derivative, N-4-

nitrobenzamide 93 bound with the enzyme is therefore needed to ascertain the actual 

binding modes of the inhibitor with the enzyme. This will set the direction for future SAR 

studies involving pyrrole 65. Work in obtaining an X-ray crystal structure of 93 in complex 

with the B3 AIM-1 enzyme is currently underway in the Schenk group.  

Nevertheless, there are a few suggestions for future SAR studies of pyrrole 65 

(Figure 5.6). N-2-nitrobenzamide 131 can be introduced to study the effect of the nitro 

group position in IMP-1 inhibitory activity for the N-nitrobenzamide series. In addition, 

bulky groups, such as a methoxy or a t-butyl group can be introduced on the vicinal 4,5-

diphenyl rings to study their effect in hydrophobic contacts with the enzyme (132). Various 

electron withdrawing groups and halide substituents can also be introduced on the N-

benzyl ring to study the substituent effect on IMP-1 inhibitory (133). 
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Figure 5.6: Suggestions for the future SAR study of pyrrole 65. 

 

Pyrrole 65 and its potent synthetic derivatives can also be assayed against another 

B1 MBL, such as NDM-1, which has a pronounced L3 loop that may make favourable 

hydrophobic contacts with the vicinal 4,5-diphenyl side chains of the pyrrole.8 This work is 

currently in progress in the Schenk group. 

 As for the mercapto-amide-linked thiazolidine series, a few more examples are 

needed to complete the SAR study of this class of inhibitors (Figure 5.7). One of the 

suggested examples is the p-iodo derivative 124p, which is needed to further reinforce the 

view that the IMP-1 inhibitory potency increases as the p-halide size increases. 

Furthermore, electron withdrawing groups, such as a trifluoromethyl group or a nitro group 

can be introduced on the phenyl ring to study the effect of these substituents on IMP-1 

inhibitory potency. A methylene group can also be introduced between the phenyl ring and 

thiazolidine ring to study the effect of increased ring flexibility in IMP-1 inhibitory activity. 
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Figure 5.7: Suggested examples for the future SAR study of thiazolidines. 
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APPENDIX 1: THE EXPRESSION AND PURIFICATION OF IMP-1 

 

Expression of 1MP-11,2 

Competent BL21 (DE3) E. coli cells were transformed by pET47b-IMP-1 plasmid via 

the heat-shock method at 42 °C. The transformed cells were then cultured in LB broth (4 x 

20 mL) supplemented with kanamycin (50 μg ml-1) at 30 °C for 14 h. The starter culture 

was subsequently grown at 37 °C in Terrific Broth (4 x 500 mL) supplemented with 

kanamycin (50 μg ml-1) and ZnCl2 (25 μM) to an optical density at 600 nm (OD600) of 0.4-

0.6, before induction with IPTG (1 mM).* The cells were then incubated for 24 h at 25 °C, 

for enzyme expression to take place. The cells were finally harvested by centrifugation at a 

speed of 5000 rpm for 20 min at 4 °C. The cell pellet obtained (the average mass from two 

preparations was 25.059 g) was stored at -20 °C until ready to be extracted and purified. 

*Care must be taken to ensure that the OD600 doesn’t exceed 0.6, for optimum enzyme 

induction. An OD600 of 0.4 and 0.58 was achieved within 30 and 45 minutes of culture 

growth at 37 °C, respectively. 

 

Extraction of IMP-1 from the cell pellet1,2 

The frozen cell pellet was re-suspended in 18 mL of HEPES A (50 mM HEPES, 500 

μM ZnCl2, pH 7.0) and lysed (breaking up of the cell wall) by the addition of lysozyme (0.2 

mg ml-1) and one tablet of Roche EDTA-free protease inhibitor cocktail (25 mg), followed 

by sonication. MgCl2 (10 mM) and Roche DNAse I (1 μg per 1 mL mixture) was added to 

the lysate mixture. The lysate was left for 20 mins (in order for the DNAse I to take effect) 

at 0 °C prior to centrifugation at 12500 rpm for 32 min at 4 °C.  

 

Purification of crude IMP-11,2 

The supernatant obtained from the previous centrifugation (13 mL) was filtered 

through a 0.22 μm Milipore membrane filter before being loaded on a SP-sepharose cation 

exchange column (GE Healthcare).* The enzyme was eluted with HEPES A over a 

gradient of 0–1.0 M NaCl. The eluted fractions were assayed for IMP-1 activity with 

penicillin G (0.5 mM) as the substrate. The fractions containing IMP-1 were pooled 

together and concentrated to 5 ml prior to being loaded on a Sephracyl S-200 gel filtration 

size exclusion column (GE Healthcare).* The enzyme was eluted with HEPES A. Fractions 
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that were active against penicillin G were pooled and stored at -20 °C, with 15% glycerol 

added to the enzyme solution as a cryoprotectant. 

*Purification by the SP-sepharose and S-200 column was necessary to remove plasmid 

DNA and high-molecular weight impurities, respectively.3 

 

Enzymatic kinetic assay2 

 The fractions obtained from each step of fast protein liquid column chromatography 

(FPLC) were assayed for IMP-1 enzyme activity by using penicillin G as the substrate (500 

µM final conc.) and HEPES X as the buffer (50 mM HEPES, 0.1 M NaCl, 100 μM ZnCl2, 

pH 7.0). The activity of IMP-1 was measured as by monitoring the rate of penicillin G 

consumption at 235 nm (ε = 936 M-1 cm-1), pH 7.0 and 25 °C (Scheme A.1.1). 

 

 

Scheme A.1.1: The rate of penicillin G consumption at 235 nm as the measurement of 

IMP-1 activity. 

 

Enzyme quantification1,2 

Enzyme quantification was carried out by measuring the absorbance of the enzyme 

at 280 nm (ε = 44620 M-1 cm-1). 

 

Results and discussion 

 The chromatogram of the elution profile of IMP-1 from the SP-sepharose column is 

shown in Figure A1.1. Based on the chromatogram, fractions 5, 10, 11, 12, 13, 14, 20, 25, 

32, 34, 39, 45, 46, 48 and 49 were selected and assayed for IMP-1 activity (Table A.1.1). 

Fractions exhibiting IMP-1 enzyme activity greater than 0.001 µmol min-1, i.e. fractions 12-

48 were pooled, concentrated and purified by the S-200 column. 
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Figure A.1.1: The chromatogram of the elution profile of IMP-1 from the SP-sepharose 

column, eluted with HEPES A over a gradient of 0–1.0 M NaCl, pH 7.0 at a flow rate of 4.0 

ml min-1. 
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Table A.1.1: The IMP-1 enzyme activity (µmol min-1) of fractions eluted from the SP-

sepharose column with penicillin G (500 µM) as the substrate, at pH 7.0, 25 °C. 

Fractions IMP-1 enzyme activity (µmol min-1) 

5 -0.001 

10 -0.002 

11 0.001 

12 0.016 

13 0.010 

14 0.020 

20 0.125 

25 0.322 

32 0.242 

34 0.116 

39 0.045 

45 0.023 

46 0.023 

48 0.019 

49 0.001 

 

 

The chromatogram of the elution profile of IMP-1 from the S-200 column is shown in 

Figure A.1.2. Based on the chromatogram, fractions 12, 18, 23, 30, 33, 40 and 57 were 

selected, assayed for IMP-1 enzyme activity and quantified (Table A.1.2). Fractions 10-14, 

15-19, 20-22, 23-29, 30-32 and 33-40 were finally pooled and stored at -20 °C with 15% 

glycerol added to the enzyme solution as a cryoprotectant. 
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Figure A.1.2: The chromatogram of the elution profile of IMP-1 from the S-200 column, 

eluted with HEPES A, pH 7.0 at a flow rate of 0.5 ml min-1. 
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Table A.1.2: The IMP-1 specific activity (µmol min-1), enzyme amount (mg), and turnover 

number, kcat (s
-1) of fractions eluted from the S-200 column, with penicillin G (500 µM) as 

the substrate, at pH 7.0, 25 °C. 

Fraction Enzyme activity 

(µmol min-1) 

Enzyme 

conc. (µM) 

Enzyme 

amount (mg) 

Specific activity 

(µmol mg-1 min-1) 

kcat (s
-1) 

12 0.039 25.4 0.007 5.68 2.56 

18 0.104 35.6 0.010 10.9 4.89 

23 0.032 108 0.003 11.1 5.00 

30 0.090 47.5 0.013 7.05 3.17 

33 0.172 9.41 0.003 67.8 30.5 

40 0.018 9.41 0.003 6.94 3.12 

57 0.015 ND ND ND ND 

“ND” denotes not determined. 

 

 The overall yield of IMP-1 obtained from two litres of culture was 12 mg. To 

evaluate the purity of the IMP-1 enzyme obtained, an SDS-PAGE analysis was run on a 

sample of the purified enzyme (Figure A.1.3). The analysis showed a single band, 

corresponding to 25 kDa, which is close to the expected molecular weight of IMP-1, which 

is 27 kDa.2 Therefore, IMP-1 was successfully expressed and purified from known 

protocol. 
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Figure A.1.3: The SDS-PAGE of purified IMP-1, stained with Bio-Safe Coomassie G-250. 

The band from two enzyme samples (in the black box) corresponds to 25kDa of the 

marker protein on the left. 
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APPENDIX 2: PREPARATION OF CENTA 

 

a) General synthetic, spectroscopic and spectrometric experimental 

The chemicals and reagents were used without prior purification. NMR spectra were recorded 

on Bruker AVANCE 400 or 300 MHz spectrometers. Chemical shifts are reported in parts per 

million (ppm) on a scale relative to the solvent peak CD3OD (1H, 3.30 ppm). Coupling 

constants (J) are reported in Hz and peak multiplicities described as singlet (s), doublet (d), 

doublet of doublets (dd), and multiplet (m). Low-resolution ESI-MS measurements were 

carried out on a Bruker Esquire HCT (High Capacity 3D ion trap) instrument with a Bruker ESI 

source. 

 

b) 5-Mercapto-2-nitrobenzoic acid (74b)1 

 

 

 

2-Mercaptoethanol (4.95 mL, 5.55 g, 71.0 mmol) was added to a solution of DTNB (1.01 g, 

2.50 mmol) in 50 mL of Trisbase (0.5 M, pH 8.0). The mixture was stirred at rt for 5 mins, after 

which it was acidified to pH 1.5 by 6 M HCl. The mixture was then left to cool in an ice bath for 

5 h and subsequently kept at 4-5 °C overnight. The orange crystals that formed were filtered 

and washed with cold 5% HCl solution (50 mL) to give the title compound as a bright orange 

crystal (0.70 g, 70%). 1H NMR (400 MHz, CD3OD)  (ppm): 7.56 (dd, 1H, J1 = 2.1 Hz, J2 = 8.5 

Hz), 7.64 (d, 1H, J = 2.0 Hz), 7.86 (d, 1H, J = 8.5 Hz). ESI-MS: m/z 197.8 [M - H]-. ESI-MS 

datum is in agreement with the literature.2 
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c) CENTA (73)2,3 

 

 

 

5-Mercapto-2-nitobenzoic acid (74b) (0.48 g, 2.4 mmol) was added to a solution of 

cephalothin sodium salt (1.00 g, 2.4 mmol) in Milli-Q water (20 mL). The pH of the mixture 

was adjusted to pH 7.0 with NaOH (1M) and the mixture was stirred at 65 °C for 6 h. The 

mixture was cooled to rt and extracted with EtOAc (2 x 10 mL) to remove unreacted starting 

material. The aqueous layer was acidified to pH 2.0 with HCl (1 M). The insoluble red oil 

which formed was extracted with EtOAc (3 x 15 mL), and the organic layers were combined, 

dried over anhydrous Na2SO4 and evaporated in vacuo to give an orange solid. The solid 

residue was dissolved in one equivalent of NaHCO3 (25 mL, 0.096 M, 2.4 mmol). Another 

three equivalents of NaHCO3 (75 mL, 0.096 M, 7.2 mmol) was added to dissolve the 

remaining undisolved solid material. The mixture was filtered and the orange solution 

obtained was freeze-dried to afford the title compound as an orange solid (0.71 g, 50%). Rf: 

0.84 in C18 reverse-phase TLC (50% MeOH in CHCl3, observed as a single yellow spot).1H 

NMR (300 MHz, CD3OD)  (ppm): 3.37-3.65 (m, 2H), 3.78 (d, 2H, J = 2.7 Hz), 4.10-4.44 (m, 

2H), 4.96 (d, 1H, J = 4.7 Hz), 5.60 (d, 1H, J = 4.7 Hz), 6.91-6.96 (m, 2H), 7.25 (dd, 1H, J1 = 

1.5 Hz, J2 = 5.0 Hz), 7.58 (dd, 1H, J1 = 2.2 Hz, J2 = 8.6 Hz), 7.66 (d, 1H, J = 2.2 Hz), 7.88 (d, 

1H, J = 8.9 Hz). 1H NMR data are in agreement with the literature.2 

 

Determination of kinetic parameters of IMP-1 with CENTA as the substrate 

IMP-1 (5 nM) was assayed with CENTA as the substrate at concentrations ranging from 2-

300 μM, at pH 7.0, 25 °C, and the kinetic profile is shown in Figure A.2.1.The kinetic assay 

results satisfy the Michaelis-Menten equation (Equation A.2.1), with an R2 value of 0.98, and 
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the kinetic parameters are presented in Table A.2.1, together with literature values.2,3 The 

observed experimental parameters, particularly the Michaelis constant, Km and turnover 

number, kcat are vastly different from those reported in the literature.2,3 This may probably be 

due to differences in protein expression and purification conditions, amount of Zn2+ ions 

added and kinetic assay conditions. Nonetheless, the specificity constant, kcat/Km obtained 

(2.66 μM-1 s-1) is closer in magnitude to that reported by Bebrone and colleagues (2 μM-1 s-1).3 

 

 

Figure A.2.1: The kinetic profile of IMP-1 (5 nM) with CENTA as the substrate at pH 7.0, 25 

°C. The plot is typical of that of an enzyme obeying the Michaelis-Menten relationship. 

 

  
       

      
 

Equation A.2.1: The Michaelis-Menten equation, with v, Vmax, [S] and Km denoting the reaction 

rate, limiting velocity, substrate concentration, and Michaelis constant, respectively.4  
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Table A.2.1: The experimental and literature kinetic parameters of IMP-1 with CENTA as the 

substrate. 

Source Km (μM)  kcat (s
-1) kcat/Km (μM-1 s-1) 

Experimentala 5.84 ± 0.25 15.5 ± 0.1 2.66 ± 0.12 

Literature 1b 400 200 2 

Literature 2c 17.1 ± 2.0 431.9 25.3 

aExperimental conditions were pH 7.0 and 25 °C, with HEPES X (50 mM HEPES, 0.1 M NaCl, 

100 μM ZnCl2) as the buffer and [IMP-1] of 5nM (containing BSA at a final conc. of 20 μg mL-

1). 

bValues taken from Bebrone et al.3 Standard deviation values did not exceed 10%. Assay 

conditions were pH 7.0 and 30 °C, with sodium phosphate (50 mM, 100 μM ZnSO4) as the 

buffer and [IMP-1] of 1 nM. 

cValues taken from van Berkel et al.2 Assay conditions were pH 7.2 and 24-25 °C, with 

HEPES (50 mM, 1 μM ZnSO4, 0.01% Triton X-100) and [IMP-1] of 1 nM (containing BSA at 

final conc. of 1 μg mL-1). 
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APPENDIX 3: COMPUTATIONAL MODELLING 

 

Docking program 

 Preliminary in silico docking was performed on Molegro Virtual Docker (MVD), which 

has a potential binding site (cavity) prediction logarithm and piecewise linear potential (PLP) 

scoring function embedded in its program.1 The PLP scoring function is useful as it takes 

hydrogen bond directionality into consideration.1 In addition, the Glide program was also used 

to predict possible inhibitor-enzyme interactions. A unique feature of the Glide program is the 

extra precision (XP) scoring function, which estimates protein-ligand binding affinities based 

on water desolvation effects and protein-ligand structural motifs.2  

 

Docking template 

The 1JJT crystal structure (Figure 1.33) was used as the docking template for 

Chapters 2 and 3. As mentioned in Chapter 2, the 1JJT crystal structure was selected as the 

docking template as it has the highest resolution (1.3 Å) among all the IMP-1 3D crystal 

structures surveyed, with a very potent co-crystallised inhibitor bound in the active site (IC50 of 

9 nM).3 On the other hand, the 1DD6 crystal structure was used as the docking template for 

the thiazolidine series in Chapter 4 (Figure 4.2). The 1DD6 crystal structure was selected as 

the docking template as both the co-crystallised ligand and the docked ligands are 

mercaptocarboxylate-type inhibitors.4 

 

Docking validation 

 The validation of the docking programs was carried out to evaluate the predictive 

power of the programs, by removing the original co-crystallised ligand from the docking 

template and re-docking the ligand into the template, in the absence of co-crystallised water 

molecules. The docking template used for this validation exercise is the 1JJT crystal 

structure.  
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The root mean square deviation (RMSD) of the docked pose superimposed over the 

original co-crystallised ligand was found to be 1.56 Å and 0.62 Å for the MVD (Figure A.3.1) 

and Glide (Figure A.3.2) program, respectively. The RMSD value obtained for the MVD 

program is significantly larger than that for the Glide program. Nevertheless, the RMSD value 

is not far from the average, expected value for the MVD program, i.e. 1.38 Å.1 In view of this 

observation, docking poses obtained from the Glide program were used to rationalise 

inhibitor-enzyme interactions whenever MVD docking results were deemed unsatisfactory. 

 

 

Figure A.3.1: The docking pose of 56a superimposed over the original position of the co-

crystallised ligand in the 1JJT crystal structure, with the use of MVD as the docking program. 

The docked pose is in yellow, whereas the original co-crystallised ligand is in grey. Atom 

colours on amino acid residues: carbon in grey, hydrogen in white, nitrogen in blue, oxygen in 

red and sulfur in gold. The zinc ions are represented as red spheres. 
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Figure A.3.2: The docking pose of 56a superimposed over the original position of the co-

crystallised ligand in the 1JJT crystal structure, with the use of Glide XP as the docking 

program. The docked pose is in green, whereas the original co-crystallised ligand is in 

orange. Atom colours on amino acid residues: carbon in teal, hydrogen in white, nitrogen in 

blue, oxygen in burgundy and sulfur in gold. The zinc ions are represented as cyan spheres. 

 

Ligand preparation 

  The molecular structures of the ligands were drawn with ChemBio3D Ultra for MVD 

program and Maestro for Glide docking. The structures were energy minimized before 

docking. Ligands to be docked with the Glide program were energy minimised by the OPLS* 

2005 force field, embedded in the MacroModel module of the Schrödinger suite. Thiol groups 

were prepared as thiolate ions (S-)5, in addirion, carboxyl and tetrazolyl groups were docked 

as in the deprotonated form. 

 

MVD docking with 1JJT as the docking template 

Co-factors other than the zinc metal centres (Zn251 and Zn252), water molecules and 

the bound ligand were removed prior to docking. Amino acid residues Val25 (61), Trp28 (64) 

and Val31 (67) were set as the flexible flap. A number of three cavities, with a grid resolution 

of 0.8 Å were detected, and the biggest cavity (71.1-66.0 Å3) was selected for docking.1 
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Glide docking  

 The entire protein molecule was energy minimised by using the OPLS* 2005 force 

field. The minimised protein structure was used to generate a search grid by selecting the 

reported co-crystal ligand in 1JJT or 1DD6 and extending the docking search grid to 8 Å 

surrounding this ligand. Flexible docking was performed for all molecules by allowing the side 

chain hydroxyl groups of protein to rotate around their bond axes. An extra precision (XP) 

docking was performed for all the ligands.2 Docking poses were visualised with Maestro.  

 

*OPLS is the acronym for optimised potentials for liquid simulations.6 The parameters of the 

force field were optimised to fit experimental thermodynamic and structural properties of 

liquids.6  
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