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ABSTRACT

This thesis analyses the role of Conservation Agriculture in reducing greenhouse gas
emissions and sequestering carbon in the Australian dryland grains sector. Australian
Government policy indicates that agriculture should play a role in climate change mitigation,
although the details of related policy are still evolving. Current policy relies on a market-
based instrument, known as the Carbon Farming Initiative, to incentivise farmers to change
farming practices to ones that reduce emissions and sequester carbon into soils and
vegetation. Many of the farming practices being considered as part of the Carbon Farming
Initiative are aligned to the concept of Conservation Agriculture as described by the United

Nations Food Agriculture Organisation.

The Australian farming system is highly variable depending on its agro-ecological and socio-
economic context. As a consequence, converting the opportunities for climate change
mitigation in Australian agriculture into achievable, practical, and commercially viable farm
practices is a complex challenge. Moreover, there are a number of economic and social
constraints to changing farm practices in Australian agricultural enterprises. In this thesis |
apply a systems-thinking and mix-methods approach to consider the issues that drive practice

change. The methodology uses both quantitative and qualitative analysis methods.

This thesis considers the role of a number of Conservation Agriculture practices in climate
change mitigation. These practices include; reducing tillage, maintaining full stubble
retention, including legume rotations, control traffic farming, application of precision
agriculture to fertiliser, recycling of organic waste and cover cropping. Review and analysis
of the challenges to the adoption of these practices in the Australian broad-acre grain farming
reveals that the Australian farming system is generally “under financial stress’ and there are a
number of constraints to the adoption of new practices, particularly in the short-term. An
examination of economic and social constraints operating on farms indicates that, under the
current circumstances, a market-based instrument offering payment for carbon offsets is not a
viable option to speed up the process of adoption. The main barriers are ongoing policy
uncertainty, the transaction costs associated with producing a verifiable carbon offset, the
rules of ‘Additionality’ and ‘Permanence’, and the current low market prices paid for carbon
offsets. These factors are further complicated by the vulnerability of the Australian broad-

acre farming system to carbon loss resulting from climate extremes and variability; this



presents a further commercial risk to aggregators and farmers considering carbon farming.
Furthermore, given the size of the typical individual Australian broad-acre farm, offset
production through Conservation Agriculture is currently not commercially feasible on an
individual farm basis. It appears that currently, difficult commercial conditions in general for
the farm sector means that farmers are more focussed on directly managing production issues

rather than on managing environmental externalities.

The current use of a carbon market instrument to encourage farmers to reduce agricultural
emissions by changing practices is not viable for some sectors such as the dryland grain
farmers covering 23 million hectares of production. The current market condition and the
associated compliance requirement to generate a market unit is simply not economically
attractive. The CFI policy when drafted did not account for such a significant market
downturn in the price of carbon and the increasing compliance requirement to meet the IPCC
guidelines. There is however a real opportunity for grain farmers to reduce their emissions
profile by adopting certain Conservation Agriculture practices. Although the current carbon
price on its own is not a sufficient incentive for increasing adoption rates of new farming
practices. Practice change in agriculture is risky and farmers change slowly as they evaluate
all the implications of change. Many simply do not have sufficient investment or knowledge
capacity to make the change. Ideally, adoption of practices that have mitigation benefit would
also need to have a production co-benefit to be considered as feasible investments by farmers.
The effectiveness of climate policy in Australian agriculture could be enhanced if it were to
support the fast-tracking of existing environmentally beneficial farming practices that also
have positive production outcomes. As the current carbon market is unlikely to offer
sufficient incentive for individual farms, | speculate that future research might consider a
specific Conservation Agriculture extension process which could be funded through the
production of nominal carbon offset units aggregated and measured at an industry or sector-

wide level, allowing for a degree of discounting for risk, variability and uncertainty.
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1.0 INTRODUCTION

This thesis investigates the role of Conservation Agriculture (CA) in climate change
mitigation in the Australian dryland grain cropping sector. The sector is a major exporter and
covers approximately 23 million hectares of cropping land, producing 40.5 million tonnes of
cereals, legumes and oil crops (GRDC 2013). It is a sector that is highly exposed to climate
change and is a significant contributor to emissions (Howden et al. 2010; Stokes and Howden
2010; Australian Government 2014). The thesis begins with a global perspective on the
contribution of agricultural externalities to atmospheric greenhouse gases, and examines the
current changes in Australian dryland cropping towards the adoption of CA and the
implications of this in terms of delivering reduced emissions and sequestration opportunities.
The thesis looks more closely at the Australian land climate policy context, particularly in
regards to agricultural participation as a response to climate change, and considers what
questions need answering to determine the potential for changing agricultural practices to

reduce emissions.

1.1 The global perspective and current Australian government policy

Planetary climate change will impact on agriculture and will inevitably require a change in
farming practices to reduce agricultural emissions and manage climate effects on production.
The changes in the past have been predominantly for productivity reasons such as increased
mechanisation; with some changes having emissions implications, such as those aimed at
reversing the loss of soil organic carbon and reducing demands on energy inputs (Hughes
1980; Thomas et al. 2007c; Kassam et al. 2009; Radford and Thornton 2010).

The conundrum for the agricultural industry globally is how to deliver food security to an
increasing population without further contributing to the levels of greenhouse gas emissions
that are contributing to climate change (Garnett et al. 2013). The most productive form of
agriculture in terms of yield per area is using industrialised agriculture typified in developed
nations such as the United States, Europe, Canada and Australia. Industrialised agriculture
also represents the highest emissions intensity in terms of production (Helsel 1992; Uri and
Day 1992; Lal 2004b; Labreuche et al. 2011). This thesis examines the value of CA as a
policy option to assist Australian dryland farmers in mitigating the impact of agricultural

emissions and adapting to climate change. It considers the current evolution in farming
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practices to CA practices and analyses what are its emissions characteristics and the potential

value of its reduced emissions in climate change policy.

The science of agricultural emissions and abatement opportunities is complex and still being
developed. This thesis is orientated by a concern for the policy options that leads to the
adoption of agricultural practice change. The thesis considers the development of CA
practices in the Australian dryland sector in light of the Carbon Farming Initiative (CFI) Act
2011 which came into being on the 15 September 2011 as the Carbon Credits (Carbon
Farming Initiative) Act 2011 (CFI Act)! and the Carbon Credits (Carbon Farming Initiative)
regulations 2011 (CFI regulations)?. This Australian legislation is an extensive and leading
effort involving agriculture in emissions reduction. The thesis looks at emerging Australian
farming practices, their impact on emissions and how such policies influence the adoption of
relevant changes in farming practices. The research anticipates outlining policy options that
will facilitate adoption of practices to reduce agricultural emissions and adapt to climate

change.

A range of possible ideas are discussed in the Carbon Farming Initiative handbook including
various CA practices such as reducing tillage, retaining crop residues (stubble) and control
traffic farming (DCCEE 2012). The current Liberal/National Party-led Australian
Commonwealth Government (at the time of writing) has indicated support for a policy
initiative towards increasing soil carbon (Australian Government 2013b; Heath 2014). The
Government’s Direct Action plan intends to use a ‘reverse auction’ as a market mechanism,
wherein an ‘Emissions Reductions Fund’ will be established to purchase emissions
reductions at the lowest price from industries including agriculture. This is outlined in the
current Green Paper® which reflects the Government’s consultation with business and the
community, with a policy White Paper planned for early 2014 (Australian Government
2013b).

Globally a number of authors have alluded to the value of CA practices in terms of carbon
sequestration and possible reductions in carbon dioxide emissions (Dalal et al. 2003; Lal
2004c; Ugalde et al. 2007; Gaiser et al. 2009; Stagnari et al. 2009; Boddey et al. 2010;

1 CFI Act 2011 - http://www.comlaw.gov.au/Details/C2012C00417

2 CFI Regulations 2011 - http://www.comlaw.gov.au/Details/F2012C00466

3 Refers to a policy review document in which a Green Paper is available for community consultation and a White Paper outlines the
government’s policy plan.
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Carbonell-Bojollo et al. 2011; Labreuche et al. 2011; Murphy et al. 2011; Gonzalez-Sanchez
et al. 2012; Schwenke et al. 2012); however definitions of CA in practice are inconsistent
(Friedrich and Kienzle 2007; Hobbs 2007; Giller et al. 2009; Govaerts et al. 2009; Heath
2011). Definitions of CA differ depending on the country concerned, climate and the farming
system in which the practices are being applied. It is therefore difficult to determine the
emissions intensity relating to a CA farming practice when the practices are so variable and
highly dependent on its agro-ecological and social context. Policy supporting changes in
farming practices such as the Australian CFI would benefit from a better understanding of
what practices farmers are actually doing in Australia, the emissions intensity of these

practices as we know them, and the relative merit of these practices in productivity terms.

1.2 Rationale for the inquiry into the role of Conservation Agriculture on
emissions and climate change adaptation

According to updates in the Garnaut Climate Change Review 2011 commissioned by the
Australian Government, the Australian climate is unequivocally changing, with most change
attributed to human generated greenhouse gas emissions (Garnaut 2011). This is said to be
having an ongoing impact on the nation’s agricultural production, forcing farmers to adapt to
maintain production (Crimp et al. 2008; Hope and Ganter 2009; Stokes and Howden 2010).
Climate change is forecasted to impact precipitation patterns and increase evapotranspiration
from higher temperatures, which is likely to significantly influence available soil moisture for
dryland grain production within the 250mm-600mm annual rainfall of the cereal belt (Preston
and Jones 2008; Cleugh et al. 2011; Evans et al. 2011). The degree of impact to production
will inevitably depend on the ongoing management responses of farmers to the nature of the

changes in climate over time.

Garnaut (2008) refers to Climate Change as a ‘diabolical problem’ because it is uncertain in
its impact, insidious rather than confrontational, long term, international and in the absence of
effective mitigation measures, carries a risk of dangerous consequences. Other authors have
pointed to the sheer complexity of the issue, the urgent need for action and the inequities of
its cause and effect (Stern 2006; Pearman and Hartel 2009; Pittock 2009; Stokes and Howden
2010).

There is some community expectation that world Governments will need to manage the

anthropogenic impact that greenhouse gas emissions is having on the planet’s climate. This
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need for action is based on the predictions of likely social and economic impacts as outlined
in the five synthesis Assessment Reports in 1990, 1995, 2001, 2007, 2013 of the working
groups coordinated by the Intergovernmental Panel on Climate Change (IPCC). Policy to
limit anthropogenic emissions of carbon dioxide (COz), Nitrous Oxide (N20), Methane (CHa),
Chloro-fluoro chlorides (CFC & HCFC), Perfluoromethane, and Sulphur Hexa-fluoride is
being considered by the IPCC through various mitigation measures such as development of
renewable energy, carbon capture technology, land use, land use change and forestry. Also
being considered is policy initiatives allowing for adaptation strategies given the likely slow

pace of mitigation impacts on reducing current climate change trends (Parnell 2010).

The IPCC Working Group | is concerned with the physical science basis of climate change,
reported in 2007 that the understanding of anthropogenic warming and cooling influences on
climate has improved to the extent that they offer with “very high confidence” that the global
average net effect of human activities since 1750 has been one of warming. They also report
that warming of the climate system is unequivocal as evidence of increases in global average
air and ocean temperatures, and predict a range of increased global average temperatures

depending on the relative success of stabilising further emissions (Solomon et al. 2007).

The IPCC working Group Il is concerned with the sensitivity, adaptive capacity and
vulnerability of natural and human systems to climate change. The group reported a number
of observable impacts to the natural systems and the likelihood of a slight crop productivity
improvement at the higher latitudes, but raises concerns for some areas such as Australia
where reduced precipitation and increased evaporation is likely to produce water security

problems (Parry et al. 2007; Reisinger et al. 2014).

The IPCC Working Group Il is concerned with mitigating the impact of climate change and
indicated a high degree of agreement as to the increasing level of GHG emissions attributed
mainly to anthropogenic activity in the order of 70% between 1970 and 2004 and point to
substantial economic potential for the mitigation of global GHG emissions over the coming
decades (Metz et al. 2007).

1.2.1 Agricultural contribution to emissions in Australia

Agricultural practices have resulted in climate change principally through land clearing, soil
erosion, soil compaction and cultivation (Malinda 1995; Govaerts et al. 2007; Lal 2007b;
Silva et al. 2007; Tullberg 2008; Batey 2009). But agriculture has also been regarded as
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having the potential to play a part in mitigating climate change and restoring atmospheric
carbon to the pedosphere by increasing soil organic carbon to a new equilibrium (Schlesinger
1999; Bayer et al. 2001; Chan et al. 2003; Lal 2004c; Franzluebbers 2005; Chivenge et al.
2007; Billen et al. 2009; Boddey et al. 2010). However carbon in agricultural soils is highly
cyclical and in order to act as a moderate carbon sink traditional farming practices need to
change to create new soil health parameters that include higher base levels of Soil Organic
Carbon (SOC) (Lal 2007a). An agricultural system with declining soil health is unsustainable
in the long term as it cannot continue to produce food without continuous inputs from
manufactured fertilisers which is highly dependent on fossil fuel (Addiscott 2004; Schwenke
2005; Kassam et al. 2009).

The Australian National Greenhouse National Inventory Report attributes Australian
agriculture as producing an estimated 79.5 million tonnes CO.e emissions or 14.64% of net
national emissions in 2010 (Australian Government 2014). The report indicated that enteric
fermentation was actually the main source of agriculture emissions contributing 67.8% (53.9
million tonnes COze) of the sector’s emissions. The next largest source was agricultural soils
(16.7%) and field burning of agricultural residues contributed less than 1% of the sector’s
emissions. The agriculture sector is the dominant national source of both CH4 and N0,
accounting for 57.0% and 72.6% respectively of the net national emissions for these two
gases. The impact for the cropping industry is much less; about 13.5 million tonnes COze
including soil emissions and residue burning. Agricultural soils emissions have decreased by
1.3% (0.2 million tonnes CO2¢e) between 1990 and 2010, and emissions from field burning of
agricultural residues have increased by 13.9% (0.04 million tonnes CO2e) between 1990 and
2010. This needs to be balanced by the sector’s role as a grain exporter which is significant to
global food security (ABARES 2010). If these grain products were not grown in Australia,
would the emissions be shifted to another jurisdiction? This might solve a national reporting

issue but does not solve a problem that exists in a global common; the planet’s atmosphere.

Much of the emissions attributed to agriculture is bio-chemical in nature and has no single
point source of emissions and is not easily measurable coming from grazing animals, soil,
manure breakdown and crop residue decay (McGinn 2006; Sanderman and Baldock 2010;
Browne et al. 2011; Whittle et al. 2013). Historical soil carbon loss from cropping is not

accounted for in the national accounts and the use of on-farm diesel is not included in
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agricultural emissions, being reported under the transport sector where the majority of diesel

is used (Sanderman et al. 2010; Australian Government 2014).

1.2.2 Balancing food security and adapting to climate change

Policy to manage Greenhouse Gas (GHG) emissions at a national level should take into
account the impact of its policy on international food demand. Shifting one nation’s liability
to other nations is unproductive when dealing with atmospheric pollution which is a ‘global
common’. Global crop production is susceptible to potential changes in climatic conditions,
although the magnitude of the impact is uncertain (Lobell 2010). Australia is an important
supplier to the world grain market and in the coming decades grain producers and policy
makers will need to consider how the country will adapt to climate change and what role
agriculture will play in providing food security in a low carbon economy (Parnell 2010;
Stokes and Howden 2010; World Bank 2010). The dryland cropping sector includes
Australia’s largest agricultural commodity exports with wheat, coarse grains and oilseeds
valued at approximately $SAUD10 billion (Australian Government 2013a). The average
rainfall in the production areas lies between 250 to 600mm per year, but this can fluctuate
with drought and flood years, which according to the Australian Bureau of Meteorology
depends on the various climatic patterns of the Indian and Pacific oceans®. While the
production areas are familiar with drought and flood years, they are nevertheless
economically vulnerable to future climate change impacts on rainfall patterns, evaporation,
carbon dioxide concentration and temperature (Crimp et al. 2008; Howden et al. 2010). A
factor that is of particular concern to crop yield in the short term outlook, are reductions in
net rainfall and the timing of that rainfall, with the possibility of a trend to increases in
rainfall intensity going to run-off and limiting infiltration required to recharge soil moisture
(Stephens and Lyons 1998; van Herwaarden et al. 1998; Hope and Ganter 2009).

The marginal rainfall of the cereal belt exposes future crop yield to potential losses from
climate changes of reduced rainfall and higher temperatures (Crimp et al. 2008; Hennessy et
al. 2010). Potential changes in rainfall will vary across regions but on the whole the trend is
towards reduced rainfall across the cereal belt (variability of -30% to +20%). With increasing
temperatures from climate change in the range 0 to 4°centigrade this will also impact on the

soil’s vapour pressure deficit reducing microbial activity and affecting soil fertility (Crimp et

4 Bureau of meteorology. www.bom.gov.au
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al. 2008; Pittock 2009). Cropping as a farming enterprise generally yields better profit than
livestock production, but it is also more economically vulnerable to climate risk in dry years
due to grain yield sensitivity to moisture loss (van Herwaarden et al. 1998; Day et al. 2010).
Both risk conditions of exposure to reduce rainfall and crop sensitivity to that change is likely
to have a significant impact on the future of farm profit if those risks are realized (Stephens
and Lyons 1998). Farming practices not only need to consider the impact it is having on the
environment but also the impact the changing environment will have on its future viability.
These influences are illustrated in Figure 1. The degree of impact is highly variable and
farming is only one of many contributing factors to greenhouse gas emissions but is itself in
turn affected by climate change in various ways; some positive, some negative. There is a
threefold objective in considering practice changes at farm level. Apart from reducing its
emissions liability it needs to remain productive in yield terms and adapt to future climate

outlook.

Change n farming Climate impacts on

practices . .

/ farming practices
Farming practices
emission
Impacts on global

climate

Contributes to excess /

External factors that Greenhouse gases

create emission\/'

Figure 1 Causal loop relationship of farming practices and climate change.

1.2.3 Production practices and emissions

With agriculture as a sector featuring so prominently in national emissions and being a major

commaodity exporter, there is some degree of interest in the details of the carbon footprint of
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agricultural produce and whether such emissions could be altered without compromising food
production (Harris and Nerayanaswamy 2009). | postulate that there is a need to have an
understanding of the main variables that account for the farm’s greenhouse gas emissions in
order to consider policy options to minimise those emissions. When considering farm policy
that is seeking to influence the behaviour of farmers, the boundaries affecting emissions from
the sector relates to those areas under the direct control of the farm business. Some leakage
factors such as the manufacture of herbicides and fertilisers can be given consideration,
however changes as part of the manufacturing process that might affect the carbon footprint
of the product is outside the control of farmers. In many cases the energy requirements of

production of farm inputs (e.g. herbicides) is not publicly available.

The major factors that impact on farm GHG emissions and operate under the control of a

farm manager include:

1. The type and amount of nitrogenous fertiliser applied and how it is applied. This
relates to the embodied energy of the product, the energy of application and the N,O
emissions resulting from application

The amount of tillage required and the subsequent mineralisation of organic matter
The amount of fuel and electricity required

The removal of crop residues by either burning or grazing

o~ DN

The application of chemicals, predominantly herbicides

1.2.4 Conservation Agriculture and its relationship to emissions

Conservation Agriculture is a set of principles that relate to farming practices that aims to
maximise the soil health parameters and water use efficiency in crop production within an
economically acceptable framework over the long term (Hughes 1980; Allmaras and Dowdy
1985; Uri 2000; Hobbs 2007; Reicosky and Saxton 2007; Hobbs et al. 2008; Kassam et al.
2009). This concept is offered as an adaptation of the Food Agriculture Organisation (FAO)
definition which states that farmers should minimize soil disturbance by minimizing
mechanical tillage, enhance and maintain a protective organic cover and cultivate a wider
range of plant species (Collette et al. 2011). The FAO definition of ‘Conservation
Agriculture’ deals primarily with reducing tillage, stubble retention and crop rotation. This is
primarily targeted at smallholder crop producers globally, but has long been in use by the

majority of Australian grain farmers. Many Australian grain farmers are looking beyond
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these three main principles to managing soil compaction problems presented by their use of
heavy machinery, nutrient management efficiency by incorporating legumes, cover crops,
recycled organics and application of precision agriculture techniques to efficiently deliver
fertiliser and pesticides (Thomas et al. 2007c; Tullberg et al. 2007; Butler 2008; Rochecouste
2009). They are applying a range of new farm practices but the objective is still targeted
towards long term soil health and improved water use efficiency (Branson 2011). This
extended definition has implications for policy management of GHG emissions looking to
change farm practices.

Conservation Agriculture involving reduced tillage, stubble retention and crop rotations has
played a key role in maintaining the productivity of farms in the marginal grain production
areas of Australia helping to manage the risk of drought periods over the last 30 years (Strong
et al. 1996; Armstrong et al. 2003; Turner and Asseng 2005; Thomas et al. 2007c; Thomas et
al. 2011). The compelling benefits of CA in increasing crop yield by managing soil moisture
and fertility has encouraged a change of practices to meet the economic realities of increases
in production costs and a reductions in the relative price of grains (Turner 2004; Mullen
2007). These gains are being further challenged by the risk of climate change (Howden et al.
2010). Available soil moisture will be a key driving factor for farmers in managing future risk
(Acuna and Wade 2005; Branson 2011). Given that farmers have already widely adopted
reduced tillage, stubble retention and crop rotation according to Llewellyn et al. (2009), are
there more efficiencies to be gained? The question for consideration is whether Australian
grain farmers can further reduce their GHG emissions by adopting a range of other CA
farming practices such as Control Traffic Farming (CTF) and Precision Agriculture (PA). If
so, what impact would this have on farm productivity and how likely are we to get ready
adoption, given that adoption of new farming practices such as reduced tillage (illustrated in
Figure 1 in book chapter under section 2.1 ) can take decades (Pannell et al. 2006; Knowler
and Bradshaw 2007; Tullberg et al. 2007; Llewellyn et al. 2009; Rochecouste and Crabtree
2014).

The process of improving efficiency by reducing inputs compared to older traditional
agricultural methods of forty years ago, also reduces net energy requirement (per hectare of
crop production) and other fugitive emissions that comes from cultivating the soil (Phillips
and Young 1973; Wittmuss et al. 1975; Percival 1979; Hughes 1980). This outcome has

become particularly relevant when considering the need to change the standard agricultural
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production paradigm to suit the emerging carbon economy (Uri 2000; Kimble et al. 2002;
Sanderman et al. 2010). The adoption of CA practices have been slow to evolve in other
parts of the world occupying only 8% of the total crop land globally compared to
approximately 80% of Australia’s dryland cropping area, excluding sugar cane and cotton
(Derpsch et al. 2010b). The reasons for the lack of global acceptance has in part been
attributed to a lack of suitable education on practices, cultural issues and economic
investment in practice change (Dent and McGregor 1994; Alroe and Kristensen 2002; Garcia-
Torres et al. 2003; Knowler and Bradshaw 2007; Llewellyn et al. 2009). In Australia the need
to reduce agricultural GHG emissions and the potential establishment of carbon trading
markets via the Australian CFI is being suggested as an opportunity for uptake of new
agricultural practices to provide carbon credits to polluting industries (Martens et al. 2005;
Benwell 2009; Miller 2009; Sanderman et al. 2010). In this thesis, | consider if this idea is

feasible in dryland grain production given current farming circumstances in Australia.

The potential of atmospheric carbon removal by total cropped land (38 million hectares
including cane cotton and horticulture) in Australia using conservation tillage® was estimated
by the Garnaut review (2008) to be about 60 million tonnes COze per year for 20-50 years.
For grain production to play its role in climate change mitigation, it needs to develop a
detailed understanding of the greenhouse gas emissions profile of its current farming
practices and establish the practices that are most effective in abating those emissions. Also,

what might be some of the policy initiatives that could assist those changes in farm practices?

An important consideration in farmers changing practices is the economic benefit that is
achieved by the farmer, and the cost of investment required on their part to make that change
(Nicholson et al. 2003; Vanclay 2004; D'Emden et al. 2008). Farmers may wish to take up a
practice but they may lack the initial investment capacity. As an example, a survey of 29
farmers attending Control Traffic workshops delivered by the company CTF Solutions over
the 2008-2009 seasons indicated that the vast majority (>90%) were interested in the
practices for their farm, but 58% indicated financing machinery and set-up technology as an
issue in taking up the practice, and they were not ready to go forward with adoption®. The
importance of financial benefits as a driver of practice change was also highlighted in an
Australian government survey of farmers into ‘Drivers of Practice Change’ (Ecker et al.

® Conservation Tillage as referred to in the report is a sub-category of Conservation Agriculture which applies solely to tillage practice
reductions

5 Internal survey conducted by the author for CTF Solutions in 2009. Used with permission.
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2012). Another factor that also needs consideration in policy framing is the capacity of
farmers to manage change, especially when those changes involve the use of digital
technology which many older farmers may not be familiar with and would thereby involve a
considerable investment of time and effort in training (Wilkinson 2011; Robertson et al.
2012).

1.2.5 Rural policies and impacts on abatement strategies

Under the Australian Government Emissions Reductions Fund program the Government is
intending for agriculture to play a role in reducing emissions and sequestering carbon
(Australian Government 2013b). Previously the role of agriculture in carbon trading has been
reviewed in Australia by the Government of Australia in which they highlighted the
problematic issues of verifying a carbon offset in practice change (Walcott et al. 2009). In
November 2010 the Financial Times announced the closure of the Chicago Climate Exchange
after the final carbon credit price per metric ton in November 2010 was between 10 and 5 US
Cents, down from its highest value of 750 US Cents in May 2008. The times indicated that
trading reached zero monthly volume in February 2010 and remained at zero for the next 9
months before a decision was made to close the exchange. The FAQ, in a submission to the
United Nations Framework Convention on Climate Change (UNFCCC), outlined that a
number of countries have indicated an interest in pursuing their mitigation outcomes through
agriculture (FAO 2010, FAO 2013). Foremost amongst those interested in agriculture as part
of their climate change strategy includes the USA (Young et al. 2007). Despite this interest, a
clear verifiable abatement role for agriculture at an international level still appears some way
off.

This thesis explores the potential role that CA can play in mitigating GHG emissions and
adapting to climate change in dryland agriculture in Australia. CA farming practices are
being increasingly adopted by Australian farmers mostly as an adaptation to improve
production under limited soil moisture which is likely to be further impacted by climate
change (Dalgliesh and Foale 1998; Hope and Ganter 2009; Llewellyn et al. 2009). In addition
it is apparent that CA farming practices have already delivered some reductions in GHG
emissions in terms of reduced energy demands (Chivenge et al. 2007; Kassam et al. 2009;
Young et al. 2009a; Derpsch et al. 2010a; Lam et al. 2013). Over the last twenty years a
number of CA farming practices such as reducing tillage, stubble retention, control traffic

farming and legume in crop rotations have evolved to improve crop production efficiency
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through improved soil health and water use efficiency (Phillips and Young 1973; Percival
1979; Allmaras and Dowdy 1985; Malinda 1995; Unger and Jones 1998; Li et al. 2001; Swift
2001; Valzano et al. 2001; Gajri et al. 2002; Roldan et al. 2003; Hamza and Anderson 2005;
Chivenge et al. 2007; Govaerts et al. 2007; Thomas et al. 2007a; Thomas et al. 2007c;
Tullberg 2008; Young et al. 2009a; Olson 2010; Igbal et al. 2011).

In order to determine how CA farming practices can further reduce GHG emissions we need
to consider some form of classifying the various CA sub-systems in a way that is recognised
by the agricultural industry. There is limited systematic operational definition of
‘Conservation Agriculture’ in Australia that can be readily used for comparison of GHG
emissions. This lack of definition is likely to create potential confusion in supporting practice
change policy. By applying various definitions of related farming practices, | include the
terminologies already employed by the Australian industry in farm literature as outlined in
Table 1. It is important to note that terminology such as ‘Tillage’ is often prefaced with other
words such as ‘Reduced tillage’; ‘Minimum-till’, ‘No-till” or ‘Zero-till’ that are interpreted
differently by farmers. There are degrees of tillage of which ‘zero-Till’ is the least soil
disruptive, referring to a one pass tillage operation with a disc planter. There are similar
variable interpretations regarding stubble retention, control traffic farming, crop rotation,
cover cropping and the use of precision agriculture. The process over time should also be
considered. Farmers often take a step process to adopting a practice moving through stages of
adoption. It is this variability in addition to the natural variability of a bio-chemical process
that creates an issue in linking a farm practice with a unit of carbon offset with any
measurable accuracy, as indicated in a review by Walcott et al. (2009). A range of farming
practices operating on Australian farms is proposed under the term ‘Conservation

Agriculture’, these are included in Table 1.

Table 1 Conservation Agriculture practices as communicated by the industry and its resulting
environmental impacts

Conservation Agriculture :
: Broad Environmental Impact
Farm practice
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Zero-till (reducing tillage to one
pass operation less than 12%
soil disturbance)

Higher OM/ reduced erosion/ improved WUE/ reduced
emissions (Bayer et al. 2001; Roldéan et al. 2003; Wang
and Dalal 2006; Ashworth et al. 2010)

Stubble retention (100%
retention of crop residue after

harvest)

Higher OM/reduced erosion/reduced chemical run-off
(Baker and Mickelson 1994; Yadav et al. 1994; Malinda
1995; Uri 2000)

Control traffic farming (All

machinery set for one lane pass)

Higher OM/improved WUE/ reduced erosion/ reduced
emissions (Li et al. 2001; Tullberg et al. 2007; Batey
2009; Tullberg 2009)

Legume/crop rotation (not
specifically defined in industry

terms, issue of time dimension)

Higher OM/ Reduced emissions (N fertiliser)

(Roldan et al. 2003; Addiscott 2004; Boddey et al. 2010;
Huth et al. 2010)

Cover cropping (Non-harvested
crop grown for organic matter

and as ground cover)

Higher OM/ carbon sequestration/ improved WUE

(Uri 2000; Dabney et al. 2001; Veenstra et al. 2007)

Precision Ag technologies (not
specifically defined as one

practice at this point)

Reduced emissions/ reduced pesticides & fertilisers

(Butler 2008; Mayfield and Trengrove 2009)

Application of recycled organics

(just emerging)

Higher OM/ improved WUE

(Gibson et al. 2002)

OM = Organic Matter (all components) WUE = Water Use efficiency mm/ha/kg product

The CA Practices listed in Table 1 are primarily adopted by farmers for production benefits

but they also have environmental benefits such as increasing soil organic matter, reducing

fuel use, reducing wind or water erosion and run-off pollution into waterways. In this thesis |

examine the grains cropping industry as a ‘system’ and the various CA practices as ‘sub-

system activities’ for their general emissions profile and the drivers that influence their

adoption.

The practices as described by the industry in Table 1 are at different stages and extents of
adoption in Australia (Thomas et al. 2007c; Llewellyn et al. 2009; Walcott 2010; Edwards et

al. 2012; Robertson et al. 2012). The use of reduced tillage and stubble retention for example,
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has been evolving for 30 years and is well recognised by grain producers (Llewellyn et al.
2009). Control traffic farming is reasonably well known by farmers but not yet strongly
adopted; data available from an Australian Bureau of Statistics survey indicates that Control
Traffic Farming (CTF) is now being implemented by about 25% of farmers’. The area sown
to legume rotations have decreased slightly in the last 25 years, but the number of hectares
are not large (about 1.37 million hectares in the 2013 Grain Year book), mainly because the
returns are less than cereals (Malcolm et al. 2009). Precision agriculture is a complex mix of
technologies relying on connectivity with Global Positioning Systems (GPS) to more
efficiently deliver inputs such as fertilisers and chemicals. The levels of use by farmers for
the purpose of more efficiently delivering inputs such as fertiliser using variable rate systems
is limited to about 20% of dryland farmers (Robertson et al. 2012). A survey of 33 dryland
farmers in south western Queensland® indicated 85% of participating farms used a GPS tool.
It is not apparent that if these functions extended to precision placement of fertiliser and
chemicals or whether they were simply used for auto-steer. There are other practices such as
cover cropping and the use of recycled organics that are only just emerging in the farming
discourse, but as yet there is little information on the extent of adoption in Australia (Gibson
et al. 2002; Butler 2008; Pritchard et al. 2010).

The environmental impacts listed in Table 1 are general in nature, not restricted to climate
change impacts only. They are included in the table as they may have an indirect effect on the
GHG budget of the farm. For example increased organic matter through stubble retention,
cover cropping or applying recycled organics can lead to increased soil organic carbon but it
is only of value in a climate change mitigation capacity if it can be retained in the soil (Bayer
et al. 2001; Dalal and Chan 2001). Clearly there is a need to have better information on these
practices and their potential climate change implications if farmers are to adopt them as part

of a climate and land use policy such as that outlined in the Carbon Farming Initiative.

There is considerable amount of research underway looking into the emissions profile and
sequestration potential of agriculture under the 2009-2012 Government’s “Filling the
Research Gap” program. Policy makers are aware that measuring gases and decay in

biological systems are inherently complex and variable. There is a reliance on the use of

" Data source: ABS ARMS survey. Number of agricultural businesses using controlled traffic farming. Supplied by Dr Michele Barson
Dept., Agriculture Fisheries and Forestry (personal Communication)

8 Survey conducted by the author for Conservation Farmers Incorporated in 2005-2007 unpublished (used with permission). Data has been
reanalysed as part of this study.
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proxy measurements and models to determine likely trends (Browne et al. 2011). Research
may determine that an agricultural practice (e.g. stubble retention) is beneficial to increasing
soil organic carbon but it does not tell us whether promoting or developing a market around
such a practice is going to be taken up by farmers. A farmer’s objectives are determined by a
range of other considerations such as markets, production economics and social capacity.
These potentially disparate goals may undermine a policy initiative to create practice change.
In this study | rely on the scientific literature to determine the extent of the emissions
reductions or sequestration possibilities associated with a CA practice and examine the
drivers within the farming system based on interviews with farmers and farming experts and
the analysis of various sector and regional-wide data collated from various sources. | will also

consider policy initiatives that can support the drivers for change.

1.3 Linking practices with a credit unit

The extent of GHG reductions and the means of measuring emissions from a farm practice in
Australia is still uncertain (Sanderman et al. 2010). The determination of an accepted
methodology for international markets is currently determined by agreements within the
United Nations Framework Convention on Climate Change (Hodgkinson and Garner 2008).
In Australia there is research underway in methodologies that can produce an Australian
Carbon Credit Unit. The Domestic Offsets Integrity Committee (DOIC) has endorsed twenty
methodologies covered under four basic themes (capture and combustion of landfill gas,
destruction of methane generated from manure, environmental plantings and savannah
burning) and these were recently approved by the Parliamentary Secretary for Climate
Change and Energy Efficiency (De Wit et al. 2013). At the time of writing, the potential for

biochar or fertiliser management is still to be listed as an approved methodology.

As farming provides a critical service in terms of food production, it is important that
emissions reductions on farms should not be at the cost of food security. In order to be
considered sustainable in the long term, farming should produce the equivalent amount of
food using alternative systems rather than relying on finite resources of fossil fuel (Diouf
2009). The relative benefits of CA farming practices to sustainable food production is
recognised in the literature (Garcia-Torres et al. 2003; Friedrich and Kienzle 2007; Hobbs
2007; Knowler and Bradshaw 2007; Butler 2008; Hobbs et al. 2008; Kassam et al. 2009;
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Collette et al. 2011). The adoption of new farming practices by Australian farmers is based
on economic and social factors which need to be clearly considered when setting policy

agendas for promoting change (Vanclay 2004; Pannell et al. 2006).

If CA practices already have economic benefits, could the government seek emissions
reductions practices that do not produce a carbon credit unit for the market? Given the
difficulty of measuring offset units from such a diffuse pollution source it is not
inconceivable that satisfying the requirement for a credit unit is simply not viable on an
individual farm level. Any measurement of abatement required to meet market requirements
is likely to have significant auditing processes involved to verify the validity of the unit.
Experiences from a Canadian agricultural farm carbon offset program suggest that these
difficulties are quite likely. McClinton (2008) from the Saskatchewan Soil Conservation
Association discussed the Canadian Saskatchewan farmer’s perspective on agricultural soil
offsets and concludes the ‘permanence’ and ‘additionality’ test as applied to offset generation
are the largest constraints to creating an agricultural carbon credit unit in Canada (McClinton
2008).

In the context of climate policy, permanence refers to the durability of an emissions
reductions activity. Carbon in vegetation or soils can only really offset emissions from
vehicles and industrial processes if it is stored permanently. If the carbon was subsequently
released back into the atmosphere, for example because vegetation was cleared, it could not
offset emissions. For this reason, sequestration projects are subject to permanence
obligations. Emissions reductions projects are not subject to permanence requirements
because they stop emissions from entering the atmosphere in the first place. The
internationally accepted timeframe to ensure sequestration is equivalent to emissions is 100
years, based on the estimated life of one ton of carbon pollution in the atmosphere (Locatelli
and Pedroni 2004; De Wit et al. 2013).

The concept of additionality is also an important integrity principle for all offset schemes,
including the CFI. Only emissions reductions that go beyond business as usual can be
considered to be a genuine offset. The CFI additionality test ensures this by assessing
whether the activity would be common practice within an industry and/or region without the
added incentive provided by the CFI (Woodhams et al. 2012).
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Policy agendas that are aimed at promoting farm practice change for emissions reductions
benefits without market support should consider the financial benefits of the practice change
to the farmer. The financial sustainability of any enterprise is dependent on being able to
meet market needs in a cost effective way (O'Reilly et al. 2009). For Australian dryland
farmers to remain sustainable they must continue to provide their products at a global market
price in the face of increasing input costs such as fertiliser and oil. They have managed this in
the past by driving down their cost of production through adoption of technology, increasing
economies of scale and adopting new management practices that enable efficiency gains
(Wylie 2008). CA farming systems have delivered increased productivity gains for those
farmers that have adopted the new practices, but there is still a significant potential to
increase the uptake of emerging practices (e.g. Precision Agriculture and Control Traffic
Farming) that reduce energy demands (Blumenthal et al. 2008; Butler 2008; Edwards et al.
2012). The adoption of these new CA practices would not only benefit farmers, but also
reduce energy input costs per tonne of grain, which could also reduce Australia’s net

emissions on a production basis.

Policy makers tasked with the role of mitigating the impact of climate change on food
security, need credible options that allows agriculture to continue operating and minimise its
impact on the environment. This means that policy makers need to set justifiable priorities,
and to achieve this it needs effective policy decision support tools. This thesis analyses the
policy options for farming practices in the Australian dryland sector. Balancing all the
competing needs requires a detailed understanding of the emerging practices, their

greenhouse gas implications and how the industry is likely to respond.

Despite the difficulties in monitoring GHG emissions from agriculture, Australia should not
ignore such a significant emitting sector. It should consider what options are readily available
to deal with the issue. The introduction of a Carbon Farming Initiative (CFI) and the current
policy green paper by the government is an indication of political intention in this area
(DCCEE 2012; Australian Government 2013b). Is CA farming practices such as reducing
tillage one of the possible solutions as indicated by the Garnaut review in its 2008 report? If

so, what do we need to know to put it into practice within a reasonable time frame?
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1.4 Summary of thesis rationale

Cropping agriculture in Australia is a major ongoing emitter and the history of agriculture has
been responsible for a shift in carbon from the soil to the atmosphere by clearing land for
cultivation and the mineralisation of soil organic carbon. There is a view amongst some
scientists that cropping agriculture could restore atmospheric carbon back to the soil by
increasing soil organic carbon. They do not however offer an economic cost for doing this.
As a biological system, cropping is dependent on a variable agro-ecological and social
context. Therefore the amount of GHG emissions produced is not readily measurable on a
day to day basis without expensive instruments. In most cases there are no previous baselines
of carbon stocks available by farms in Australia. Furthermore, carbon and nitrogen are
cyclical in a cropping system and they are in fact inter-dependent, since plants need nitrogen
to produce and maintain carbon biomass. It has also been shown that reducing tillage reduces
mineralisation and therefore it is postulated that this leads to increasing soil organic carbon.
As outlined in a draft paper being considered for journal submission in section 4.7.1 (A study
of developing carbon offset projects using conservation tillage on grain farms in northern
Australia), there is some evidence of a correlation between no-till systems and soil organic
carbon. It has also been reported that this correlation does not work as consistently in arid
zone cropping systems like Australia (Murphy et al. 2013). Stubble or crop residue retention
helps increase soil organic carbon but the process is incremental and slow, therefore the
amount of measurable carbon units is low and going to take decades to be relevant to the
point of being an effective tradeable unit (Chan 2008). Soil carbon in dryland systems,
plagued by droughts (which is likely to increase as a result of climate change) is vulnerable to
being lost once again through mineralisation. Those industries purchasing credits in an
emissions trading scheme want some guarantee that the units are real for the long term. It
would seem reasonable that they would also want access to the most economical unit they
can possibly have to minimise their business cost. Cropping agriculture also creates N2O
emissions and CO2 emissions, principally from inefficiencies in fertiliser application and fuel
consumption. Transaction costs in the aggregation of units and verification process of the

sequestration or emissions reductions unit is an uncertain cost.

The aim of this thesis is to evaluate to evaluate current climate change policy in Australian
agriculture and what type of policy consideration will more effectively engage grain farmers

in reducing on-farm GHG emissions. This involves examining how emissions and offset units
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can be derived from grain production and what are the drivers that create on-farm change
towards CA practices which have demonstrated mitigation and adaptation potential to climate
change. The thesis also considers the policy options that support the drivers of change and the
adoption of CA practices to support better climate change mitigation and adaptation.

1.5 Research problem and Research question

The introduction of recent legislation (Carbon Credit (Carbon Farming Initiative) Bill 2011)
would indicate that the Australian Government is expecting that agriculture will be part of a
broader carbon economy as a source of emissions reductions carbon credits. A carbon credit
is defined as sequestering or avoiding the equivalent to one tCOze. Under the current policy,
a unit can only be derived and allocated based on a scientifically approved methodology that
makes a clear nexus between the farm practice and the carbon credit unit. As of April 2016,
there are no carbon offset methodologies under the Australian CFI for dryland cropping-

based farming practices.

1.5.1 Overall Research Problem

The Research Problem of this thesis is; ‘how can the potential climate change mitigation
and the adaptation benefits of Conservation Agriculture be most effectively integrated

into dryland grain farming enterprises in Australia?’

If the aim of current climate change agricultural policy is to reduce emissions by having
farmers change their farming practices, we need to consider what are the practices that policy
would seek to change. Current funded research by the Australian Government under the
‘Filling the Research Gap’ program aims to examine the underlying scientific evidence on
emissions that would support practice change. Such programs are looking at areas such as
quantifying N2O emissions from fertiliser application. As the evidence linking practice
change and emissions becomes more apparent than a more extensive enquiry into the
adoption of farming practices and their role in climate change mitigation should be
considered. As indicated by Pannell & Vanclay (2011), facilitating change by land managers
requires an understanding of the complex social, psychological and economic dynamics that

affect their decisions. This broader approach of inquiry to direct policy implementation is
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also supported by Horan & Shortle (2001) reviewing environmental instruments for

agricultural pollution control (Horan and Shortle 2001).

Knowing that a practice is effective in reducing GHG does not necessarily mean that that
practice will be a feasible carbon offsetting activity. An understanding of the drivers for
adoption of that practice is also required. Therefore the research problem goes beyond having
the scientific knowledge that a particular farming practice will reduce emissions, to how we
can create climate and land policies that will drive that change within the time frame that the

IPCC has indicated is required to avoid dangerous climate change.

1.5.2 Research Questions

The Research Questions of the thesis are outlined in Table 2.

Table 2 Research questions and explanatory notes

Research Question Explanatory Notes

1. What is the current role of | I begin by looking at the current status quo in terms of
Conservation Agriculture in | what forms of Conservation Agriculture is being practiced
grain farming enterprises in by farmers in the dryland grain cropping industry in
Australia? Australia. Australia is one the more unique OECD
countries in the southern hemisphere in that it has a highly
industrialised level of agriculture operating in an extensive

relatively hot and arid zone climate.

2. How does Conservation | review the main variables that account for the farms’
Agriculture influence greenhouse gas emissions. They include such things as fuel
greenhouse gas emissions and fertiliser, and can be considered as a stock of inputs
from grain farming into the system. The farm processes the input stocks to
enterprises in Australia? produce grain commodities but also emit greenhouse gas

emissions as part of that process. CA practices were based
on the foundation of improving soil organic carbon and
improving the efficiency of finite input resources such as
oil, fertilisers, water and chemicals. The use of the above
input resources into crop production also represents an
emissions factor. Improvements in production efficiencies

in turn results in a reduction in emissions per tonne of grain
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produced. Increasing soil organic carbon, if it can be
stabilised over the long term results in the movement of
carbon from the atmospheric pool as greenhouse gases to

the pedosphere.

3. What factors influence
adoption of Conservation
Agricultural practices in

Australian grain production?

If there is to be a difference in emissions consequences
from changing one farming practice for another, than it is
relevant to consider the drivers for adopting change, and
ask whether these changes are sustainable over the long
term. We need to understand the relative strength of the
drivers and the factors that might lead to change from a
policy perspective. To address this question, | interviewed
industry experts and farmers to get a deeper understanding

of what has motivated them to make past changes to CA.

4. What climate policies are
likely to increase adoption of
CA in Australia?

Emissions reductions practices not directly contributing to
productivity benefits are unlikely to be taken up by farmers
without some form of imposed financial penalty or
incentive (Addiscott 2004; Hamilton et al. 2008; Lal et al.
2009). The use of markets as a means of driving practice
change is well established (Uri 2006) but requires detailed
knowledge of the practice to determine units of trade. To
answer this question, | evaluate what constitutes an
acceptable carbon offset unit and interview industry
practitioners to develop an understanding of their
perspective. | also critically analyse current government
policy and consider if there are alternatives policy options

to improving emissions reductions.

1.6 Thesis structure

This thesis is presented in eight chapters:

Chapter 1 reviews the literature and provides an introduction to the rationale for the research

on the role of CA in climate change in terms of emissions reductions, sequestration and its
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adaptation capacity under climate change. The chapter outlines the research problem and
states the questions that would contribute to a better understanding of the issues and the likely

solution to the problem.

Chapter 2 provides an understanding of the role of CA in Australia from the literature and is
presented as a book chapter published in a book entitled Conservation Agriculture: Global
Prospects and Challenges by CABI International in partnership with the International Crops
Research Institute for the Semi-Arid Tropics. The book was published on 13" December,
2013 (Rochecouste and Crabtree 2014).

Australia, as a leader in industrial agriculture, needs to also consider the impact it has on the
agriculture of developing countries. This is considered within chapter two in a paper format
published in the Annals of Tropical Research, vol. 33, no. 1, p. 85-100, in 2011 titled

Opportunities to produce carbon offsets using conservation farming practices in developing

countries.(Rochecouste and Dargusch 2011)

Chapter 3 summarises the thesis methodology, including the systems-based and mixed-

methods approach to data collection and analysis.

Chapter 4 addresses Research Question 2 and reviews the emissions and sequestration factors
associated with CA from the literature. It considers the opportunities for practice adoption
that reduces agriculture’s national emissions or sequestration of carbon. It includes a section
on tillage practice change in a paper format as the predominant practice change to have
occurred in the last 40 years in Australia, currently under review in the journal Land Use

Policy.

Chapter 5 reviews the underpinning knowledge to address Research Question 3 by exploring
adoption theory in agriculture so as to understand the drivers that influence changes in farm
practices. | also analyse the ‘systems’ context of the dryland sector in terms of factors that

influence farmers’ behaviour.

Chapter 6 directly addresses the question as to what factors influence adoption of CA

practices in Australian grain production by collecting direct industry. The chapter is
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presented as a paper that has been published in the journal Agricultural Systems 2015 vol.
135, pages 20-30.

Chapter 7 addresses Research Question 4 and looks at the opportunities for producing market
offsets in dryland cropping in Australia. This is presented in a paper format as a policy
discussion from the available evidence. The paper has been submitted to the journal Carbon

Management and is currently under review.

Chapter 8 finishes with a concluding summary and the significance of this study in policy
terms. The chapter outlines the limitations and future research questions that need to be

addressed.

1.7 Definitions

Some of the practices terminology used by industry need to be outlined to be sure that we are
referring to the same terms, because their impacts on GHG emissions will vary.

Conservation Tillage (CT): Conservation tillage was defined in 1984 by the U.S. Soil

Conservation Service (currently the USDA Natural Resources Conservation Service) as “any
tillage system that maintains at least 30% of the soil surface covered by residue after planting
primarily where the objective is to reduce water erosion”. Conservation tillage has thus been
described as a “collective umbrella term” that denotes practices that have a conservation goal

of some nature (Reicosky 2002).

Minimum-Till (MT): The term “minimum tillage” has been adopted as a subcategory of CT
(Reicosky 2002). It refers to systems that reduce tillage passes and thereby conserve fuel for a

given crop by at least 40 percent relative to what was conventionally done in the year 2000.

No-Till (NT) or Direct Seeding: In no-tillage or direct seeding systems, the soil is left
undisturbed from harvest to planting except perhaps for injection of fertilizers. Soil
disturbance occurs only at planting by coulters or seed disk openers on seeders or drills.
Weed control is generally accomplished with herbicides. “Direct seeding” is a synonym for

the term “no-tillage” which is commonly used in small grain production systems.

41



Zero Till: The term refers to the use of a slightly offset disc opener for planting; it creates
minimal soil disturbance in the range of 10-12% depending on the angle of the offset. It can
operate at higher speeds and has less drag (less energy demand) but is more difficult to set up

and operate. It is only operated at planting.

Conventional (Traditional) Tillage (CT): Traditional, or conventional, tillage refers to the
sequence of operations most commonly or historically used in a given field to prepare a
seedbed and produce a given crop (ASAE 2005) . Conventional tillage involves full soil
disturbance, although it varies widely among regions, has been defined as incorporating most
crop residue and leaving less than 15 percent of the surface covered by residue after planting.
Today it is most commonly used in irrigated broad acre crops such as cotton, soybean and

maize where the soil is worked into a seedbed condition ready for planting.

Conservation Agriculture (CA): Conservation Agriculture is a concept for resource-saving
agricultural crop production that aims to achieve acceptable profits and sustained production

levels while concurrently conserving the environment. It is fully outlined in Chapter 2.

Stubble retention: Involves the retention of the crop residues after the grain is harvested. It
includes the chaff (the collected plant head material after grain removal) and stems. Stubble
can be cut high and left standing (minimising chaff) or cut low with the chaff chopped and

spread across the back of the header.

Control Traffic Farming (CTF): Refers to the operation of farm machinery along dedicated
traffic lanes across the paddock to avoid soil compaction from wheel tracks. Farming
operations such as planting, spraying weeds and harvesting all follow the set tracks with the
assistance of global navigation satellite signals. The aim is to reduce damaging soil
compaction that limit root growth to an absolute minimum (Tullberg 2008).

Cover cropping: A crop grown solely to protect the soil in between the main cropping
season. There is no harvest and it may be ploughed in as a green manure crop (Dabney et al.
2001; Roldan et al. 2003; Bodner et al. 2010).

Recycled organics: Refers to animal manure fresh or composted from the intensive animal

industry. It may also refer to processed municipal waste (Gibson et al. 2002).
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Greenhouse Gas (GHG) Emissions: In this context refers to Scope 1 on-farm emissions of
greenhouse gases such as Nitrous Oxide, Methane and Carbon Dioxide. This is generally
referred to as units of grams of Carbon Dioxide equivalent (CO-¢). Scope 2 (electricity) and

scope 3 inputs are not included in this policy analysis.

43



2.0 CONSERVATION AGRICULTURE IN AUSTRALIA AND
INTERNATIONALLY

The following chapter is presented in two parts. The first part as a publication titled,
‘Conservation Agriculture in Australia’, in Conservation Agriculture: Global Prospects and
Challenges: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT),
Publisher CAB International, London. Publication date was 13" December 2013. It was co-
written with a farmer from Western Australia Mr Bill Crabtree and had some general inputs
from researchers and other No-till farming organisations around Australia. It is published in
Jat, R.A., Sahrawat, K.L. & Kassam, A.H. (eds), 2014, Conservation Agriculture: Global
Prospects and Challenges. International Crops Research Institute for the Semi-Arid Tropics
and Food and Agriculture Organization, Publisher CAB International, UK as chapter 5 under

Rochecouste, J.-F.G. and Crabtree, B. 'Conservation Agriculture in Australia’, on page 108.

The second part is a published paper on the potential for the production of carbon offsets
using CA within an international context. It was published as Rochecouste, J. and Dargusch,
P. 2011, ‘Opportunities to produce carbon offsets using conservation farming practices in
developing countries’, Annals of Tropical Research, vol. 33, no. 1, p. 85-101. It is attached as

Appendix A

2.1 Conservation Agriculture in Australian Dryland Cropping

The chapter in Jat, R.A., Sahrawat, K.L. & Kassam, A.H. (eds), 2014, Conservation
Agriculture: Global Prospects and Challenges. International Crops Research Institute for the
Semi-Arid Tropics (ICRISAT) and Food & Agriculture Organization (FAO), Publisher CAB

International, UK is inserted below:

Notes

The following two publications are the manuscript as sent to the publisher. The tables and
figures are not listed as part of the thesis but follow the numbering pattern of the text in the
publication. The figures have a border to distinguish them from figures in the main thesis.
The bibliography has been removed and incorporated into the thesis bibliography. There may

be slight differences in presentation format from this thesis based on publication editorial

policy.
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Conservation Agriculture in Australian dry-land cropping

By Jean-Francois Rochecouste® and Bill Crabtree!®

Abstract

Australia has seen a rapid adoption rate in no-till practices from about 1997 to the present
day, primarily led by the state of Western Australia as a result of its demonstrated financial
benefits in retaining soil moisture under dry conditions. The main changes in tillage practices
involved the adoption of narrow knife point tines and disc seeders to minimise soil
disturbance. Other conservation agricultural practices such as stubble retention, crop rotation
and controlled traffic farming have followed suit to various degrees. Current trends involve
an increasing use of global positioning technology combined with remote (satellite) and
proximal (tractor) sensors to more efficiently deliver resources such as fertiliser and
chemicals. Precision agriculture technology is also being used to reposition the planting row
to the inter-row between the standing stubble; thereby reducing energy demands on
machinery and protecting the emerging seedlings. Herbicide resistance, primarily to
glyphosate, is becoming an increasing problem with previous overuse as a stand-alone
application instead of in mixed herbicide combinations. A number of practice changes to
restore soil organic matter including cover cropping and using recycled organics from the
livestock industry are also being applied where conditions are favourable. Conservation
agriculture is recognised as contributing to the long term sustainability of the cropping sector
through supported extension projects by the Australian Government under the Care For Our
Country program. The concept of a payment to farmers as land managers for maintaining the
natural systems on farmland to supply ecosystem services to the general community is being
researched by the Alliance of no-till farmers as a future policy option. The Australian Carbon
Farming Initiative (CFI) was legislated in 2011, designed to reduce land sector emissions and
provide a source of carbon credit to high emissions industries; the potential fit for
conservation agriculture into this program is being researched but has not yet developed
adequate methodologies.

Key words:

9National Executive Officer for the Conservation Agriculture Alliance of Australia and New Zealand (CAAANZ)
10 Agronomist and farmer, Western Australia
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no-till, reduced tillage, controlled traffic farming, crop rotation, stubble retention, precision

agriculture, inter-row seeding, herbicide resistance, recycled organics, ecosystem services.

(Table of contents remove)

Introduction

The Australian grains industry generates approximately 45 megatonnes (Mt) of grain
annually, depending on seasonal conditions. They do this within a 200mm to 800mm annual
rainfall zone that extends from central Queensland to Western Australia (WA). Most of this
production occurs on light, low-fertility soils with limited water-holding capacity and an
annual rainfall of less than 450 mm. Grain production is directly reliant on rainfall and there
is a strong correlation between yield and available soil moisture in the northern Australian
states, and in-crop rainfall in the southern states.

The incentive for a change in farming practices in Australia was created through three
significant consequences of the traditional tillage farming system; erosion, the loss of soil
moisture and delayed time of sowing. The most visible consequence of full-cut tillage was
erosion from both water and wind depending on local climate patterns. In the northern
cropping zones of Australia, high-intensity summer storms prior to summer cropping resulted
in severe loss of topsoil and the associated loss of organic matter in the A horizon. In the
southern and western cropping regions where lighter soils predominate, pre-frontal late
autumn dust storms were similarly removing topsoils with severe impacts on soil fertility.
The consequence of these seasonal weather events was not immediately felt by most pioneer
farmers as the negative impact on yield was a gradual process. The exception was
circumstances in the sandier regions where crops were killed by sand-blasting in high winds.
However, the economic and emotional impact of declining yields from land degradation was
a strong incentive for change. Less visible, but more evident to farmers on a seasonal basis
was the loss of soil moisture from cultivation and the resulting lack of planting opportunities
in the dry years.

Following visits to the United States and the United Kingdom, Australian soil conservation
researchers and innovative farmers in the mid-1970s began experimenting with reduced
tillage in all states. They were primarily interested in managing soil erosion from high-
intensity rainfall events on hill slopes in Queensland, and managing severe wind erosion in
South Australia (SA), WA and Victoria. By the late 70s, the herbicide companies Monsanto

and Imperial Chemical Industries had established a number of demonstration trials where
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herbicide was substituted for tillage, and crop residue was maintained as a form of soil cover
to better manage the off-site impact of erosion. The early results demonstrated both a
significant reduction in erosion and a significant boost in available soil moisture.

From the early 1980s, leading farmers across Australia began experimenting with reducing
the number of tillage operations to two, than to zero cultivation prior to sowing. Later farm
trials showed increased planting opportunities over time and returned significant financial
benefit relative to traditional multiple cultivation systems. Despite the obvious financial
benefits (Table 1); uptake of such a new farming system by farmers at the time was relatively
slow. It required a significant paradigm shift in the attitudes of farmers and support for
change was limited by a range of factors. Foremost was the required change in seeding
machinery and the lack of commercially available equipment. Weed control was also an
issue, because without maintenance tillage in the fallow, cost-effective herbicides and

sprayers were needed.

‘Table 1 Wheat yields (tonnes/hectare) comparing farming practices over four years at two
locations in Queensland. Relative cost benefit to growers based on current grain market price
(Wylie and Moll 1998).

Compared practice ) Goondiwindi 1989—
Biloela 1989-92
92
Conventional cultivation 2.5 1.6
Stubble mulch 3.1 1.8
Reduced tillage 3.3 2.0
Zero-till 3.4 2.2
Relative income differences in moving from
conventional to zero-till in today’s dollar $95,400 $63,600
value ($212/t*) for a 500 ha per year crop

*Price based on multi-grade APW1 at Goondiwindi on the 28 May 2012, sourced from

Graincorp (www.graincorp.com.au/pricing)

Reduced tillage

In the early stages of reduced tillage adoption, no-till equipment was not commercially
available and many farmers were already locked into conventional planters/seeders designed
for a pre-seeding finely worked seedbed rather than one that would need to develop its own
seedbed. The process of adoption took many years, led most often by farmers in the more

marginal areas who had the most to gain from retaining soil moisture and timeliness of
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sowing. Adoption was faster in the dryer western part of Australia, and is ongoing in eastern
Australia where some farmers are still experimenting with reducing the number of tillage
operations. Locally made commercial products are now supporting more rapid adoption.
The cost of the herbicide glyphosate also became more competitive and over a span of 40

years reduced tillage has become the standard practice (Figure 1).

Estimated adoption rate of no-till across Australia
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‘Figure 1The adoption of reduced tillage farming practices in area terms by Australian states,
updated to 2012 from (Crabtree 2010)

Definitions of tillage
The definitions of tillage practices have been variously described over time and it is likely
that farmers’ interpretations have also varied over time. This has implications for survey
questions that compare today’s practices with those of the past. Australian Conservation
Agriculture (CA) farmer groups use the terminology below for common practices:

e conventional (or multiple) tillage —two or more tillages before seeding

e reduced tillage — one pass of full-soil disturbance prior to seeding

e direct drilling — one pass seeding with a full-cut or greater than 20% topsoil

disturbance
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e no-tillage — knifepoint or disc seeding with 5-20% topsoil disturbance
e zero-tillage — disc seeding without soil throw, but note that some discs do throw
soil(Crabtree 2010).

The term ‘conventional’ is becoming misleading as it now represents a minority practice in
most cropping regions. The current trend has been for farmers to continue to reduce soil
disturbance. Adoption of disc seeders has been more common in areas where livestock has
been removed from the farming system and where diverse crop rotations are economically
feasible. There are some regions where disc Zero-till has been popular and is close to 100%
adoption (Crabtree 2010). The dominant reduced tillage system in Australia now is No-
tillage and seeding with narrow (20-40 mm- knife points (see figure 2) on 25-35cm row
spacing, along with press wheels (see figure 3). No-tillage seeding using knife points
following surface applied pre-emergent herbicides has sufficient soil throw to cover the inter-

row area and allows for safe and effective weed control. This does not work as efficiently

with disc zero-till.

‘Figure 2 Narrow knife point with seed slot at rear (photo courtesy of Neville Gould from
Conservation Agriculture and No-till Farmers Association, Wellington NSW)
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‘Figure 3 Press wheel located behind knife point (photo courtesy of Neville Gould from
Conservation Agriculture and No-till Farmers Association, Wellington NSW)

Retained stubble

Australia has seen an increasing trend to stubble retention, which represents a change in
practice. In the past, one purpose of ploughing was to incorporate the plant residue left after
harvest, allowing it to be broken down by soil microorganisms and facilitating the next
planting (Thomas et al. 2007c). This involved a considerable amount of energy and often
required several machinery passes to break up the plant material and mix it with the soil
(Quick et al. 1984). In the more arid regions of Australia which experience dry conditions for
a large part of the year, there was generally insufficient topsoil moisture to allow the
breakdown process to occur to an acceptable level for planting without mechanical
intervention (Roper 1985). Planting problems were more pronounced following years when
high yields created biomass levels greater than four tonnes of dry matter per hectare
(Ashworth et al. 2010). In the past, farmers responded to these high levels by grazing the
stubble, baling it as feed or burning it with the aim of removing much of the crop residue
prior to cultivation (Anderson 2009). Although grazing and burning is still an option, many
Australian farmers and agronomists see the value of leaving the stubble in place to protect the
soil from high-intensity rainfall and erosion by water and wind (Silburn et al. 2007). This
benefit could be extended post-sowing but this required seeding equipment capable of

operating successfully in these conditions, without the tines serving as a rake (Butler 2008;
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Ashworth et al. 2010). A range of approaches were used in adapting seeding machinery for
this purpose, including many combinations of:

e Cutting crops 15-20 cm high, using harvesters with residue choppers/spreaders.

e Increasing row spacing (often to 30 cm or more)

e Using coulter cutting blades ahead of the seeding times to cut through residue

e Deflecting residue ahead of each tine to be inter-row space

e Distributing seeding tines between 3-5 machine bars, to increase the gap between

adjacent tines on the same bar.

Despite the issues of seeding through crop residue, farmers and natural resource officers all
considered the benefits exceeded the costs in effort and expense. Today more than 30
commercial machinery suppliers offer a large range of seeding machines and seeding
machine adaptations. This includes a variety of seed-trench firming "press wheels", which
can have a major positive impact on crop emergence under marginal moisture conditions.
Overload release ("stump jump") systems are universal in some areas, and individual row

depth control ("parallelogram mounts™) mechanisms are increasingly common.

To further reduce soil disturbance, farmers have moved to disc seeding equipment, usually
with individual row depth control and varying fertiliser placement systems. Some of these
units are extremely heavy and capable of cutting through substantial volumes of dry residue.
Most have some problems of pushing residue into the seed trench in soft moist conditions,
when soil adhesion can also be a problem. An increasing number of farmers are addressing
the issue of seeding through heavy residue by "inter-row seeding" using high-precision
guidance to place seed in a precise relationship to the standing stubble rows of the previous
crop. Disc seeders disturb less soil, and hence encourage less weed-seed germination, but
they are not as good as knife openers in producing even soil throw to incorporating pre-
sowing residual herbicides. Consequently, where disc seeders are common, farmers are

relying more on diversity in crop rotation as a weed management tool.

Some of the more important benefits of stubble retention in Australia’s dry climate and poor
soils include a reduction in surface sealing and herbicide movement into the seed furrow
resulting from raindrop impact, together with improved infiltration, and reduced soil erosion.

Crop residue can also impair weed growth, return nutrients to the soil and provide some
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protection for emerging seedlings (Roper 1985; Jacobson et al. 1992; Unger 1994; Malinda
1995; Lal 2008; Anderson 2009).

Stubble is also a source of organic material contributing to the nutrient cycling performed by

soil microorganisms and increases soil organic carbon. Wheat stubble consists of

approximately 40% carbon, 0.58% nitrogen, 0.05% phosphorus, 1.42% potash and 0.19%

sulphur and the degradation of crop residues releases about 55-70% of the carbon to the

atmosphere as CO2(Schomberg et al. 1994; Tan 2009). Microbial biomass takes up 5-15% of

the carbon and the remaining 15-40% is partially stabilised in soil as new humus (Jenkinson

1971).

‘Table 2 The advantages of crop stubble retention in Australian agricultural systems (Scott et

al. 2010)

Benefit

Description

Water erosion control

Reduced erosion by protecting the soil surface from the
impact of raindrops during high-intensity storms

predominantly in the north.

Wind erosion control

Reduced loss of soil from the winds that cause dust storms,
as wind speed is significantly decreased at the soil surface.
Standing wheat stubble with rows across the wind direction

reported the most effective to reduce wind erosion.

Slows evaporation of soil

moisture at the surface

Speed of loss proportional to volume of stubble. Standing

stubble more effective in resisting evaporation from wind.

Increases soil moisture

storage

In the higher rainfall areas, stubble cover increases net soil
moisture by reducing the amount of surface run-off. In the
southern lower rainfall areas stubble cover reduces

evaporation to retain soil moisture.

Nutrient conservation

Nutrient component of the stubble is returned to the system

but with some immobilisation during decomposition.

Soil organic carbon (SOC)

accumulation

May increase net SOC to a higher equilibrium or reduce the
ongoing decline of SOC depending on other farming

practices.
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Increased micro-fauna Populations of several species of earthworms have increased

with stubble retention when combined with reduced tillage.

The level of carbon returned to the soil is variable depending on the stubble type, soil
characteristics, environmental conditions and management practices (Chan et al. 2003; Wang
and Dalal 2006; Robertson and Thorburn 2007; Liu et al. 2009; Luo et al. 2010). The 2010
Australian grain crop left a potential 56.5 Mt of residue after harvest prior to burning,
grazing, or slow breakdown when retained for surface protection. This equates to 22.6 Mt of
carbon, so changes in farm practices that involve residue retention became a bipartisan
component of Australian government policy. This is currently expressed as part of the
Commonwealth “Caring for Our Country” initiative to support projects that help farmers
maintain ground cover. However, in farm management terms retaining stubble can create a
number of logistical and production problems that need to be considered in any policy
development (Unger 1994; Scott et al. 2010).

‘Table 3The disadvantages of crop stubble retention in Australian agricultural systems (Scott et
al. 2010)

Disadvantages Description

Interference with seeding Retained stubble can be a problem for machine operation at
operation seeding causing blockages between the tines or poor

establishment by interfering with seed placement.

Slow decomposition In dry areas decomposition is slow and can interfere with

future crop operations.

Disease carryover Can be serious under the right conditions for disease

development.

Pest carryover and habitat | Stubble can provide shelter that supports an increase in pest

populations; more notably snails.

Weed adaptation Some weeds have adapted to high stubble loads and the
stubble can interfere with foliar application of herbicides.

The 2010-11 seasons were La Nifia years and the fourth wettest on record for the eastern
states, following similar La Nifia events in 1973-74, 1955-56 and 1949-50. Wet seasons
create excess stubble that becomes difficult to manage and also increases the occurrence of
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pest and disease carryover. This is exemplified by yield impacts from such diseases as
yellow leaf spot (Pyrenophora tritici-repentis) and crown rot (Fusarium
pseudograminearum) on wheat, and can be a significant incentive for stubble removal. If
problems become excessive, residue disturbance or even burning becomes a management

option.

In 2007-08, an Australian Bureau of Statistics survey indicated that only 43% of crop
farmers (all sectors) left their stubble intact, although it should be recognised that the
percentage of farmers is not the same as the percentage of production. Another 33% tilled
crop residues and 34% baled or grazed the stubble with some overlapping practices (Pink
2009). Other surveys suggest the area of stubble burnt is about 20% of the cereal area
(Llewellyn et al. 2009), but burning is less common in states such as WA and Queensland

(Pink 2009), except in continuous wheat areas where weed resistance is becoming a problem.

Overall, the ongoing benefits of stubble retention to stored moisture and improved soil health
has seen a majority of farmers make the choice to retain crop residues after harvest, and
manage the associated disadvantages as best they can. Retained residues is more acceptable
than burning in terms of soil carbon impact, but the proportion of the remaining residue that
degrades into the more stable humus fraction of soil carbon is both small and uncertain. This
uncertainty creates a problem when we consider measuring the carbon balance of cropping

soils for sequestration under the climate change policy being developed.

Controlled traffic farming

The impact of soil compaction by heavy farm machinery has become more apparent as larger
tractors are used to operate more land per unit time (Chamen et al. 1992; Chamen et al. 2003;
Batey 2009). The effect of tractor wheels on soil compaction has resulted in crop production
issues stemming from a disruption of structure (Hamza and Anderson 2005; Kirchhof and
Daniels 2009), although not all soils are equally affected. The consequence has been reduced
microbial activity, reduced water infiltration and poor root growth leading to yield limitations
(Jones et al. 2003; Tullberg et al. 2007; Ahmad et al. 2009a; McKenzie et al. 2009; Botta et
al. 2010). Controlled traffic farming (CTF) restricts the wheels of all heavy field traffic to
permanent traffic lanes to prevent damage to the whole paddock area from conventional

"random™ operation.
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The compacted permanent traffic lanes are laid out and managed for efficient traction, traffic
and drainage, allowing the intervening crop beds to remain soft and in better condition for
crop production. Because the harvester is the most difficult machine, controlled traffic
operation has usually been achieved by modifying tractors to the harvester track width, using
a harvester and seeder of the same width, and a sprayer which is a multiple of this width.
This can provide machinery footprints in the range 12 — 16% of paddock area. This practice
was taken up initially by farmers on heavier soil types, providing evidence of soil structural
improvements, increased yields (Li et al. 2007), and substantial reductions in fuel use.
Farmers also report that hard permanent traffic lanes allow a wider window of operation for
machinery as they don’t have to wait as long for soft soils to dry out. Although farmers were
initially concerned about the cost of machinery modification and tractor warranties, there has
been an increasing adoption of control traffic farming (CTF) across the Australian cropping

Zone.

Use of compacted permanent traffic lanes resulted in greater energy efficiency than operating
randomly on softer soils. The difference recorded by Tullberg (2007) showed a 39%
reduction in energy requirement from employing CTF. Gas exchange between soft soils and
compacted soils are still under investigation, but preliminary results (Tullberg , J. pers.
comm.) show substantial reductions in nitrous oxide emissions from controlled traffic
cropping beds. Emerging problems of CTF include the difficulty of controlling weeds in

wheel tracks, and deep rutting of traffic lanes by continuous wheel passes in clay soils.

Despite the yield benefits of using CTF systems, the major barrier seems to be a false
perception that machinery conversion is very expensive. Some current estimates of CTF in
Australian agriculture indicate the number of farmers using some form of CTF at 15,320;
which is about 21.9% of all crop farmers (ABS). Given the overall energy savings, yield
benefits and improved soil condition across most soil types, there is an argument for CTF to
be considered an important practice in conservation agriculture (Yule and Chapman 2011).

Crop rotations
Rotating crops by growing different types of plants sequentially in the same paddock has
been a long-term practice of agriculture to reduce build-up of pathogens and manage the

Uaustralian Bureau of Statistics ARMS Survey: Broadacre crop farmers include those who planted cereals, canola, lupins, sugarcane and
cotton (excludes fruit and vegetables).
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nutrient demand of different crops (Bailey 1996; Feller et al. 2003; Korstanje and Cuenya
2010). Legume production crops are also highly valued in rotations as a means of increasing
nitrogen inputs or minimising commercial demands for the next crop (Angus 2001;
Lindemann and Glover 2003), but cereal crops are more profitable in the drier cropping
regions. It can be financially difficult for farmers to rotate into alternative crops with poorer
cash returns, despite the risk of plant disease carryover or increased weed burdens from not
doing so(Godsey et al. 2007; Thomas et al. 2011).

Farmers will also move from one crop to another depending on market price; they will seek
more profitable crop options if they are confident that they know how to grow the crop. Risk
is another factor affecting the choice of crops. High input crops that are complex to grow
often require a bigger outlay for greater returns, but there is also more to lose if conditions

become unfavourable.

The value of legumes in supplying soil nitrogen for following crops is well-known to
Australian farmers, but the economics of introducing a legume crop is not always acceptable
when cereal grain prices are high but pulse crop prices low (Malcolm et al. 2009). Grain
seasonal prices have varied as much as 200% since 2004-05, with some legumes having
similar variations though not necessarily in tandem. This has resulted in variable production
volumes and a gradual decrease in the area planted to pulses over the last decade (O'Connell
2010). Some of the more effective legume crops for fixing nitrogen are not always the most
economical from a production perspective (Lindemann and Glover 2003; Thomas et al.
2011).

In a recent report, the Grains Research Development Corporation evaluated the benefit of
break crops from a series of long-term trials in WA (GRDC 2011b). It indicated that the
yield benefits of legume break crops were highly variable, often riskier and less profitable
than cereals. The average yield benefit from the inclusion of lupin or field pea in the rotation
compared to ‘wheat following wheat” was in the range 0.3—0.6 tonnes/hectare in favour of a

legume break crop.

These yield benefits were more evident in the higher rainfall areas, with improved water use
efficiency over time attributed in part to no-till practices. Following the break crop, the

following cereals still responded to nitrogen application; however the rate of response was
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relatively low and more often dominated by non-nitrogen related benefits (diseases and weed
control). The break crop benefit was also reported to last up to a third wheat crop (Seymour
et al. 2012). Despite the perceived value of crop rotations, especially legumes, the choice of

cereals is predominantly driven by economics in many marginal areas.

Current trends in Australian conservation agriculture practices

Conservation agriculture (CA) is said to offer a new paradigm that offers greater productivity
from the same area of land using fewer resources and reducing negative impacts of
agriculture on the environment (Collette et al. 2011). Innovative farmers in Australia have
moved beyond reducing tillage, maintaining ground cover and including crop rotations. They
have sought further efficiencies in the use of resources from CTF and the application of
precision agriculture. Precision agriculture is defined as farming using computers and
information technology; it combines various sensors on farm with global positioning systems

to match farming practices more closely with crop needs(Bloomer and Powrie 2011).

These innovations have not been without their challenges in the management of weeds, pest
and diseases. Australia has benefited greatly from engineering innovations, research in weed
control, digital sensors and satellite technology. General acceptance of the benefits of CA by
farmers has encouraged industry suppliers to provide products that further support CA

practices.

Machinery advances

Many modern no-till seeders can achieve precision seed placement in changing soil types
(wet and dry); they can place the seed and fertiliser separately, ensure the crop seed is safely
separated from herbicides, are capable of seeding through thick crop residues, and can ride
over obstacles efficiently with less machinery damage. No-till seeders for instance, are
increasingly using hydraulic systems to provide adjustable down-force control for openers
and press-wheels, together with overload protection.

Herbicide resistance

Research into weed control has been critical to the development of CA. Fallow weed control
usually depends on glyphosate and some populations of annual ryegrass (Lolium rigidum)
have become glyphosate resistant, an issue which first emerged in 1996 in Victoria. Later,

glyphosate resistance also occurred in awnless barnyard grass (Echinochloa colona),
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liverseed grass (Urochloa panicoides) and windmill grass (Chloris truncata) in New South
Wales (NSW). The first recording of broadleaf resistance was in fleabane (Conyza
bonariensis) in Queensland. The most recent occurrence of resistance was in great brome
(Bromus diandrus) in 2011 in SA. Resistance problems have not been limited to broadacre

cropping but are also evident in horticulture, industrial weed control areas, railway lines and

roadsides.
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‘Figure 4 The cumulative increase in the number of ryegrass resistant populations over time
(source: courtesy of C. Preston, University of Adelaide)

To counter the increasing threat of resistant weeds, research has focussed on rotating
herbicides from different chemical groups, managing the post-harvest weed seedbank with

windrow burning where the harvested chaff is stacked in rows and burnt.

Reducing tillage limits moisture loss from evaporation but not from weeds, so when
cultivation is not an option, weed control relies heavily on herbicides. The use of Glyphosate
has been an inexpensive and effective broad-spectrum knockdown herbicide, but its
continuous use for fallow weed control has created an increasing problem of herbicide
resistance (Code and Donaldson 1996; Peltzer et al. 2009; VanGessel et al. 2009). An

integrated weed management strategy to slow the development of resistance requires the
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addition of other herbicides and a range of agronomic strategies, such as rotation and harvest
adaptations to reduce the weed seed bank. These all threaten to increase the cost of weed
control (Beckie 2011).

Technology that uses optical sensors to detect weeds , along with on-off solenoids on the
spray line would limit herbicide delivery to weed infestation areas instead of spraying the
whole paddock (Hilton 2000). The increasing use of this ‘weed-seeker’ technology is aimed
at reducing the volume of herbicides, thus allowing a broader range of herbicides at reduced
cost. The difference in application may not be obvious when wet years produce high weed
populations, but becomes more significant in drier years with non-uniform establishment.
Although expensive, this technology can provide substantial resource savings in the fallow

weed control required to reduce soil moisture loss (Figure 5).

Avrea to be sprayed 264 hectares
Water rate 80 litres/hectare
Actual usage 4.5% of volume
Actual area sprayed 11.88 hectares

Actual cost of chemical | $583.30

Chemical cost normal $12,962.40
spray
Actual cost saving $12,379.10

‘Figure 5 Demonstration by Crop Optic Australia at a farmer field day on how the optic sensor
identifies a weed and activates the spray solenoid over that area (picture on left). The data is
based on a case example supplied by grain and cotton farmer J. Grant on the Darling Downs
(Queensland).

Precision agriculture

The label precision agriculture was first applied when the combination of harvester yield
monitoring and satellite-based global positioning systems(GPS) allowed the economic
production of paddock yield maps, but 'PA" is now a generic term covering a wide range of
satellite and sensor-based technologies. The most widely adopted of these is 'GPS

Autosteer’(self-steering) for farm equipment.

The world's first commercial satellite-based auto-steer using Real Time Kinematic (RTK)

GPS correction for precise tractor steering, the 'Beeline Navigator', was developed by an
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Australian in the early 1990s. Guidance equipment of this type is now manufactured by
several international organisations, and is a built-in option or standard unit in many tractors
and harvesters. Inexpensive units claim pass-to-pass (repeatable only in the short term, not
year-to-year) accuracies of + 10 to 30cm, but more sophisticated units provide "2cm"
precision (£ 2cm 67%; £ 4cm 95% of time). This development was originally driven by
early controlled traffic adopters, but benefits — such as increased productivity with the
elimination of overlap, and reductions in operator fatigue are large, often quantifiable, and
easily justified by farmers managing increasingly large areas.

Accurate digital GPS position monitoring and recording now provides a platform for a large
number of precision agriculture applications where data from various proximal sensors
(Table 4, below) and other spatial information (e.g. satellite images) can be combined to
provide resource efficiencies of the key farm inputs: labour, fuel, fertiliser and chemicals.
The input cost benefits are balanced by the cost of establishing a digital network system on

farm and the human factor of having to learn how to use the system efficiently.

'Site-specific management' — the matching of seed, fertiliser and crop chemical inputs to crop
requirements or soil characteristics of each paddock zone — became possible with the
development of GPS-based harvest yield monitors and variable rate applicators. It has also
become cheaper as more monitoring capability is standard equipment built into harvesters
and applicators. Many Australian grain growers have now used yield mapping to provide
useful management information, but the next step — 'zone management' using variable rate
technology- requires complex assessment of soil/crop response characteristics and their
interaction with climate probabilities. Scientific enthusiasm and investment in this

technology has not been matched by practical adoption, which has been slow.

‘Table 4 lllustrates some example of sensors and related information for farmers

Farm asset | Sensor Data Information
Soil texture | Electromagnetic This is a non-contact Structure and depth
induction method of measuring of topsoil

electrical conductivity
involving inducing a

magnetic field into the soil
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and measuring the
electrical current response
field.

Soil moisture | Various: Moisture curves Current soil
Reflectometry, moisture trend
microwave or
radio frequency
via probe

Soil pH & Electrochemical various Field pH and

nutrient Sensors nutrient status

Crop vigour | Optical and Crop vigour (relative) Areas of poor

/weed radiometric growth, nutrient,

presence disease, insect

damage or presence
of weeds

Yield Flow meters Grain yield (relative) Harvestable yield

monitors based on

management

Variable Ground speed Seed volume Plant population

seeding sensor

Variable rate | Flow meters/ Fertiliser output Fertiliser volume

fertilising Chlorophyll
Sensors

More recent development of crop condition sensing equipment shows greater promise of

rapid application, particularly when early problem detection (e.g. nutrient deficiency) can

enable timely and effective management response (e.g. foliar nutrient application).

Development of systems to integrate proximal and remote sensor outputs to deploy farm

operation more accurately has also interested farmers managing increasingly expensive and
limited resources (Rochecouste 2009). The aim is to optimise economic performance and
avoid wasteful uniform applications by limiting inputs (e.g. fertilisers and chemicals) to
“what is needed, where it is needed” (Whitlock 2006; Butler 2008). This use of precision
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agriculture continues the trend towards increasing efficiency in the use of limited resources
(Cook and Bramley 2000; Shoup et al. 2004).

Most farmers and agronomists have taken up some aspect of digital technology as part of
their management, and the trend is increasing. Continuously Operating Reference Stations
(CORS) are being built and gradually covering much of rural Australia. CORS is a network
of permanent Global Navigation Satellite System (GNSS) tracking stations which provide
the RTK correction signals necessary for precise satellite positioning for industry and
agriculture (Janssen et al. 2011). CORS installation in Victoria is complete with 100%
coverage. New South Wales is more than 50% complete, Queensland has coverage but
mostly in the south-east and Western Australia and South Australia have limited coverage.
This technology will be an integral component of a more resource-efficient, productive and

sustainable mechanised farming future.

Inter-row seeding

As the practice of retaining crop residues increased to protect soils, farmers noticed that crops
sown between standing stubble rows performed better. Leaving the stubble standing after
harvest reduces the problems of tine planter residue blockage and disc planters 'hairpinning'
through failure to cutting through flat, wet stubble on soft soils. Precision autosteer made it
possible to routinely place an alternate row between existing rows of standing stubble,
perhaps after some increase in row spacing, and adjustment of sprayer nozzle positioning.
Inter-row planting provides a more consistent soil cover and associated weed control benefits
(Roberts and Leonard 2008), and is simply achieved by use of an offset hitch to displace the
seeder frame relative to the previous year's planting . Yield improvement of legumes sown
within cereal stubble has also been reported, attributed mainly to reduced lodging and

improvements in harvest efficiency (Roberts 2008).

Cover cropping

Planting cover crops helps protect the soil from erosion. Cover crops add organic matter and
immobilise soluble nutrients that would otherwise be lost down the soil profile. A cover crop
is generally not grown primarily for harvest but returned to the soil as a green manure input.
If the cover crop is a legume, there is an additional nitrogen input. The benefits are well

recognised, but dry-land farmers are concerned that cover crop moisture requirements will
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compromise moisture availability for the following economic crop. Cropping windows on
the lighter soils in the south and west are also short. Positive evidence about the impact of
cover crops continues to accumulate, but it is still not common, except in those areas with

reliable rainfall in the off-season.

Recycled organics

The nutrient value of animal industry waste as an alternative fertiliser and means of
improving long-term soil structure has been a point of discussion among farmers. This
applies particularly to those cropping zones with a number of intensive livestock enterprises
producing animal waste is conveniently located. Farmers have started purchasing and
applying this waste, and in most cases seen a yield increase, primarily due to the nutrient
content, released over several years. The cost of manure is comparable to traditional
inorganic fertilisers, but manures are generally less predictable in its NPK nutrient value, and
transport/application costs are significant. Uncomposted product has high water content, and
raw manure can also tie up nitrogen for some period of time. Despite these issues a

significant increase in its use occurred in 2008—-09 when global fertiliser prices rose sharply.

In addition to the nutrient benefit, some farmers have also reported better long-term water-use
efficiency from increased organic matter. This could be attributable to improved water-
holding capacity (WHC) where agriculture is dominated by sandy soils, as outlined by the
Waste Authority Western Australian (WAWA 2010). Other benefits attributed to recycled
organic amendments include increased water infiltration and improved soil structure.
Although the linkage between water-use efficiency and WHC is well researched,; it is unclear
if adding a range of unspecified animal manure to fine-textured, low-fertility soils in an arid

climate will lead to long-term improvement in WHC.

Use of urban sewerage is being trialled in some areas but there is concern about the likely
build-up of heavy metal contaminants. Grain farms are also generally distant from major
urban areas, making transportation costs prohibitive, so while the practice is favoured by
many farmers, logistics limits its use to certain areas within easy transport reach of waste

outlets.

Ecosystem services
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Ecosystem services are defined as the public benefit of maintaining land in good condition,
and payment for ecosystem services has often been advocated. Public benefit could include
changes in land characteristics that improve soil and water quality, increases biodiversity or
sequesters carbon. As a compensation for adopting land practices that reduce externalities,
the proposal is that farmers be paid by governments on behalf of taxpayers or by private
organisations looking to demonstrate their corporate social responsibility. This is still being

explored in Australian policy terms.

Some environmental services are already being delivered by conservation farmers in the form
of reduced erosion and improved soil biodiversity from retained stubble leading to improved
water quality. Extending this scheme could include an annual performance-based cash flow
to farmers to support revegetation on non-cropping marginal land (biodiversity refuges,
carbon sequestration), maintaining or establishing natural vegetation along riparian areas
(hydrological services), protecting established natural habitats (biodiversity), and the use of
cover cropping in the rotation when economic crops are not available (soil carbon

sequestration, soil biodiversity).

Policy impacts on conservation agriculture in Australia
The Australian Government has three rural policy programs directed at farmers that are likely

to impact on conservation farmers.

1. “Care for Our Country” is a two-billion dollar spending initiative to improve
Australia’s environmental assets which includes a multi-year budget of 15 million
dollars for sustainable farm practices. The target involves improving land
management practices of 42,000 farmers across 70 million hectares, and includes
initiatives to reduce tillage, maintain ground cover and build-up soil organic matter.

2. The Carbon Farming Initiative (CFI) was announced by the government in August
2010 with the aim of giving farmers, forest growers and land-holders access to
domestic voluntary and international carbon markets by providing a framework to
remove carbon dioxide from the atmosphere and to avoid the emissions of greenhouse
gases (GHG). The CFl is supported legislatively by the Carbon Credit (Carbon
Farming Initiative) Act 2011, and is a market-based instrument to encourage farmers

to become a net sink of carbon.
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3. As part of the Clean Energy Future plan, the government included within the Tax Act
a provision entitled The Conservation Tillage Refundable Tax Offset. 3.1 Schedule 2
to the Clean Energy (Consequential Amendments) Bill 2011. This amends the
Income Tax Assessment Act 1997 (ITAA 1997) to provide a Refundable Tax Offset
(RTO) for certain new depreciating assets used in conservation tillage farming
practices. The new law entitles the taxpayer to an RTO of 15% of the cost of an
eligible asset. This would include tine machines fitted with minimum tillage points to

achieve minimum soil disturbance, disk openers and suitable hybrid machines.

These rural policy programs offer some form of incentive to reduce tillage, retain on-farm
biomass, increase soil organic carbon, or to support new methodologies to reduce on-farm
greenhouse gas emissions. Farmers applying CA practices have some opportunities to

benefit from these policies.

Carbon sequestration using no-till in an Australian context

The concept that no-till practices will lead to significant carbon sequestration does not seem
very likely in Australian dry-land farming, where low rainfall limits biomass production, and
high temperatures accelerate the loss of soil organic matter. Soil carbon sequestration faces
the same ‘additionality’ and ‘permanence’ tests as other sequestration mechanisms
participating in carbon offset trading. The potential role of increasing Soil Organic Carbon
(SOC) in Australia has been reviewed by Sanderman et al. (2010). Grain cropping covers
approximately 23 million hectares of production (GRDC 2012) dominated by light-textured
soils. Cultivated soils lose organic carbon at variable rates depending on the clay content and
annual rainfall (Swift 2001). In a range of clay soils, losses of organic carbon averaged 0.6%
per year (Dalal and Chan 2001). The limited rainfall and high summer temperatures of the
cropping region limits the opportunity to significantly increase the organic carbon content of
these soils (Chan et al. 2008; Baldock et al. 2009).

Under these conditions, reduced tillage practices have limited capacity to increase soil
organic content, and in most situations they can only mitigate the ongoing loss (Wang et al.
2010). This would mean that many of the cropping soils would show only marginal increases
in SOC over time (Luo et al. 2010; Chan et al. 2011). Such small changes are unlikely to find
sufficient offset units across the average grain farm to interest traders and would require some

form of pooling to create the necessary economies of scale (Renwick et al. 2003).
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This is further complicated by the error margins associated with measuring SOC that emanate
from variations in bulk density (Throop et al. 2012) when sampling occurs to fixed depth,
rather than equivalent mass across heterogeneous soil types (Sanderman et al. 2010).
Sanderman and Baldock (2010) also argue that predicted stock change data from agricultural
trials may not truly reflect sequestration when the state of the soil carbon at the beginning of
the trial is unknown; that is, when there is no comparable baseline at the start of the field
trials. Thus current International Panel for Climate Change (IPCC) accounting
methodologies developed from trial results may not show the true value of the carbon storage

based on the management activities (Sanderman and Baldock 2010).

This uncertainty is likely to affect confidence in the market allocation of carbon credit units
for offsetting a unit of emissions using soil carbon sequestration. Nevertheless, CA
significantly reduces the loss of SOC to the atmosphere, and in certain seasons does create a
carbon sink. Although it may not fit the mainstream carbon market, this should perhaps still
be considered as a market-based instrument to encourage the benefits attributable to CA
through reduced emissions and positive effects on the soil carbon balance.

Carbon market options

The role of agriculture in carbon trading has been reviewed in Australia by the CSIRO
(Walcott et al. 2009). Current carbon markets in Australia are mostly voluntary and involve
predominantly offsets derived from designated carbon sinks — usually forest plantations— with
variable project methodologies (Ribon and Scott 2007; Hassall 2010). The operation of these
markets using offset units from agricultural practices is still evolving. This is in part due to
the uncertainties perceived by farmers that relate to contract terms in the offset market; that
is, what sort of monitoring is involved and how long would the payment last? (Sanderman et
al. 2010).

The extent of reductions and the means of measuring emissions performance from a farm
practice in Australia are still unclear (Sanderman et al. 2010). The determination of an
accepted methodology for international markets is currently determined by agreements within
the United Nations Framework Convention on Climate Change (Hodgkinson and Garner
2008). In Australia, research is underway into methodologies that can produce an Australian
Carbon Credit Unit. The Domestic Offsets Integrity Committee has endorsed four land-based

methodologies (capture and combustion of landfill gas, destruction of methane generated
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from manure in piggeries, environmental plantings and savannah burning) and these have
been approved by the Parliamentary Secretary for Climate Change and Energy Efficiency.
As farming provides a critical service in terms of food production, it is important that
emissions reductions should not be at the cost of our food production. This would be likely
to shift unintended consequences of food shortages to other nations to meet local national

emissions reductions targets.

At present, market options for a carbon credit unit based on CA practices are limited by not
having a methodology, due in part to the complex biophysical processes of both the carbon

and nitrogen cycles in seasonal agricultural practices.

Climate change consideration on future productions

Following the IPCC Fourth Assessment Report: Climate Change 2007, the IPCC Working
Group | noted in its executive summary that a 0.6°C increase was observed across the
Australian continent. They also noted that southern Australia, which holds a significant
portion of the cropping belt, is becoming drier. In 2010, the Australian Parliament’s House
of Representatives Standing Committee on Primary Industries and Resources held an inquiry
into the role of government in assisting Australian farmers adapt to the impacts of climate
change. The Conservation Agriculture Alliance of Australia and New Zealand (CAAANZ)
made a submission on behalf of its members. A farmer representative informed the
committee that conservation farmers had already been adapting to climate changes by
deploying technology such as zero-till, CTF and retaining crop residues to conserve moisture.
The committee was further advised that although gradual changes can be managed with
adaptation strategies, of more concern to farmers is an increase in the timing of temperature
extremes, and in the pattern as well as the level of precipitation. CAAANZ alliance members
sought support not only in research for adaptive strategies but also requested that it be

coupled with suitable extension programs.

The average rainfall in the grain production areas lies between 200 and 800mm per year, but
this can fluctuate with drought and flood years depending on the various climatic patterns of
the Indian and Pacific oceans. While the production areas are familiar with drought and flood
years, they are nevertheless economically vulnerable to future climate change impacts on
rainfall, evaporation and temperature (Crimp et al. 2008; Howden et al. 2010). Of particular

concern to crop yield in the short-term outlook are reductions in net rainfall and the timing of
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that rainfall, with the possibility of a trend to increases in rainfall intensity going to run-off
and limiting infiltration (Stephens and Lyons 1998; van Herwaarden et al. 1998; Hope and
Ganter 2009).

Potential changes in rainfall will vary across regions but overall the trend is towards reduced
rainfall across the cereal belt (-30% to +20%). Increasing temperatures in the range 0 to 4°C
will also impact on evaporation. Cropping as a farming enterprise generally yields better
profit than livestock production, but it is also more economically vulnerable to climate risk in
dry years due to grain yield sensitivity to moisture loss (van Herwaarden et al. 1998; Day et
al. 2010). Predicted meteorological changes increase the risk conditions of reduced rainfall
and reduced crop production which is likely to have a significant impact on the future of farm
profit if those risks are realised (Stephens and Lyons 1998). Research may provide future
solutions but that is purely speculative at this point. Successful adaptation therefore relies on
the capacity of farmers to manage their production vulnerability through better farm

management.

CA has played a key role in the marginal grain production areas to manage the risk of
drought over the last 30 years (Armstrong et al. 2003; Turner and Asseng 2005; Thomas et al.
2007c; Thomas et al. 2011). The compelling benefits of CA in increasing crop yield by
managing soil moisture and fertility have allowed farmers to meet the economic realities of
increases in production costs and a reduction in the relative price of grains (Turner 2004;
Mullen 2007). These gains are being further challenged by the risks associated with climate
change (Howden et al. 2010). Available soil moisture will be a key driving factor for farmers
in managing future risk in Australia (Acuna and Wade 2005; Branson 2011).
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2.2 Production of Carbon Offsets using Conservation Agriculture practices

This section is presented as a paper and is published as Rochecouste, J. and Dargusch, P.
2011, ‘Opportunities to produce carbon offsets using conservation farming practices in

developing countries’, Annals of Tropical Research, vol. 33, no. 1, p. 85-101.
Notes

This paper was published very early in the preparation of this research as part of an invited
review into the potential for carbon offsets using conservation agriculture in developing
countries. It does not directly deal with the main topic of the role of conservation agriculture
on Australian dryland farming systems. It does however support the early literature review of
the linkages between carbon offset and conservation agriculture. The paper has not been
included to avoid confusion over the main topic of the thesis that deals with the Australian

context.
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3.0 RESEARCH METHODOLOGY

This Chapter outlines the Methodology and methods applied in the thesis, including data
collection and analysis. Given the complexity of socioeconomic, ecological and policy
factors influencing the Research Problem, I believe that a mix-method approach was required
(Creswell 2003). Some of the data to be analysed for research question 1 and 2 for example
(The role of CA in Australian grain farming practices & its influence on greenhouse gas
emissions) was going to require the collection of empirical data to outline the baseline for
existing practice. Research question 3 (what factors influence adoption of CA) was going to
require an interpretive analysis of what motivates farmers to change CA practices and there
was a need to deal with classifying what were the CA practices that were being adopted to
begin with. Finally both sets of data needed to be interpreted when considering the policy
framework that looks at supporting farmers making a change in farm practices. This involved
integrating quantitative and qualitative approaches concurrently so as to generate new
knowledge by interpreting both sets of data format.

A variety of data collection and analysis methods were used including discourse and
document analysis, semi-structured interviews and case studies to generate the data. It was
important to understand what drives farmers to adopt CA practices in-situ. A systems-
thinking approach was applied as a tool to analyse the nature of the data collected and the
extent of the relationships between factors influencing what drives CA adoption. | believe
that practice change and the policy framework that would support the means for farmers to
change land practices needs to consider the various economic and social drivers as a system.
This approach is integrated as a socio-economic analysis and presented as a paper in chapter
6.

3.1. Introduction

In this chapter I present the methodology as a ‘Mixed-Method’ analysis which is used to
address the Research Questions outlined in section 1.5.2 of the Introduction. In considering
the evidence that would answer the questions about the ‘current role of CA in the Australian
grains industry’, ‘the impact of these practices on emissions’, ‘how do we get adoption’ and
‘what policies support these farm changes’, I collate a range of data, both ‘quantitative’ and
‘qualitative’ from different sources into an integrative unit for interpretation. A study of how
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particular climate change policy might promote sustainable agriculture within an industry
requires consideration from multiple disciplines; agricultural science, economics, financial
management, sociology, politics, sustainability science and environmental management. |
used a Mixed-method approach to collate a range of data from various sources such as
farmers, advisers, suppliers, researchers and government literature in considering the
evidence they represent when deriving the policy recommendations. It was particularly
important to understand the drivers in ‘changing practices towards CA’, so farmer interviews
were targeted towards what motivated them to make past changes and consideration for

future changes.

The conceptual framing underpinning my methodology is that of a human activity systems. In
terms of a method of analysis for the data it was proposed by Checkland (1999) that human
activity systems are unlike natural systems and are not testable in the same fashion, but are
perceived by the likely behaviour of its constituents. Farmers differ in their approach to the
way they operate their farm, there can be many balancing factors that individual farmers
consider in choosing between a range of practice options (Vanclay 2004). These apparently
small details (e.g. cultivation tools) will impact the emissions profile of a farm in different
ways. The Research Problem of this thesis involves the study of both the social and economic
drivers that cause changes in farmer behaviour, and is better considered a ‘Human Activity
System’ given the lack of predictability of future behaviour and therefore the lack of

suitability of a reductionist approach (Creswell 2003).

‘Human Activity Systems’ requires a more inductive and exploratory approach to research
(O'Leary 2004). | recognise that the use of climate policy to attempt to change a farmer’s
practices to achieve changes in externalities created by the farm can have uncertain outcomes
due to the inherent complexity of agricultural practices. Given the traditionally slow progress
of agricultural social change and the urgency of climate change there is a risk that poorly
conceived policy would simply result in inaction in farm practice change, hence the need on
research on farm practice change relating to climate policy (Feder and Umali 1993; De Souza
Filho et al. 1999; Vanclay 2004; Vignola et al. 2010). In this thesis | have accepted that the
approach should consider a wider range of views than either a ‘quantitative’ or ‘qualitative’
approach in order to derive effective policy. | proposed that if the aim of current climate
change policy was to reduce emissions by having farmers change their farming practices,

than making a change requires an investment by the farmer in either time or money. Framing
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a policy to encourage this investment needs an understanding of the activity system of the
farmers involved. We need to consider what are the practices that policy would seek to
change and what would motivate farmers to make an investment to change. As outlined by
Vanclay (2004) the motivation for change in agriculture is not just a rational economic

decision, it is also significantly influenced by family and other social considerations.

Using a Mixed-method analysis to understand a farmer’s motivation involves a review of
both the empirical data available to the farmer in terms of such things as the cost to change
and resulting production outcome; but also the social consideration such as the ability to take
on digital technology or their risk appetite for introducing new methods. Weighing the
influential value of these various data sources is part of interpreting a human activity

(agricultural) system.

In the following sections of this thesis | will outline the data sources, the method of analysis,
how the data is structure for analysis and finally the boundaries of the study.

3.2. Data Sources

CA is an accepted term to describe the phenomena of changing farm practices in a way that
reduces demand for finite resources such as fossil fuel and encourages soil organic matter
recycling (Friedrich and Kienzle 2007). There are however no set definition of CA and
different jurisdiction use the term loosely referring to a range of farm practices. In the context
of this thesis it will refer to its application in the Australian grains industry.

Data was collected from document analysis and through the discourse of farmers and industry
practitioners. Data came from various sources, including farmer magazines, conferences,
industry and government reports as well as the academic literature. The data is organised into
themes by individual CA practices and analysed for its impact on emissions and how it can be
influenced by policy. This thematic approach to analysis is outlined by Lapadat (2010).
According to Lapadat it is widely used by qualitative researchers for its insightful
interpretations of large mixed sources of data despite criticism from positivist researchers as
having an ambiguous approach that is not easily replicable (Lapadat 2010). However policy
is more about trying to understand factors that influence a change of behaviour. It seems
logical that policy initiatives need to consider the likelihood and extent of what will drive
policy adoption. There is therefore value in understanding the current practices within the
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various agro-ecological zones and the drivers that created them; as well as having a critical
understanding of policy impacts and the options available. Such a study of factors affecting
policy options is generally limited by having insufficient quantitative data, particularly in the

early stage of any policy deployment.

The basis for this mixed approach to the collation of data is discussed by Rapley (2007) who
suggests that industry literature supplies a rich source of data for academic research and that
there is much to be learnt about the direction and trajectory of culture and institutional
practice by engaging in such documented material and that literature such as industry
magazines, books and digital media provides a strong sense of context to industry thinking,
more so than simply relying on interviews (Rapley 2007). This thesis presents a range of data
and analysis methods including document analysis (published and unpublished data from
industry & government departments), discourse analysis (what the industry communicates to
its farmer constituents via farmer magazine and websites) and semi-structured interviews of
farmers and industry experts. Document and discourse analysis refers to dialogue, written
texts and mixed digital media engaged in by the industry around farm practices (Titscher et
al. 2000). The interviews are intended to elicit a deeper understanding of farmer’s
motivational factors that drive or constrain CA practice change in the current circumstances
and use an “Interview Guide” approach as per Patton (2002). Where possible the validity of
these methods is supported by triangulation with on-ground observations, interviews and the

scientific literature.

The data collection and analysis methods used are summarised in Table 3. I list the source of

the data, highlighting some examples and the areas of the thesis that it relates to.

Table 3 Data Type and form used in document analysis

Data type Example Chapter reference
Government Publications Government reports and fact Chapter 4,6 & 7
sheets in relation to Research Question 2

agricultural emissions and

farm practices

Statistical data from Data reports of agricultural Chapter 4 & 6
Australian Bureau of statistics on energy and farm Research Question 2 &
Agriculture Resource inputs such as fertiliser 3
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Economics and Science
(ABARES)

Government Development

Corporations

Data on farmer practices and
industry figures and changes

over time

Chapter 2 & 5
Research Question 1& 3

Industry peer reviewed

literature

Includes publications such as
Agriculture, Ecosystems &
Environment or Climate

Policy

All sections

Industry literature

Data collected by farming
organisations such Grain
Council of Australia or the
Grain Producers Association
in regards to fuel use by

farmers over time

Chapter 2,4 &5

Research Question 1

Industry unpublished data

Data collected by farmer
organisations as part of
extension and research
projects and may include such
things as machinery use and
type. A lot of industry material
as part of research projects is
unpublished and stored on-site.
Companies may also hold farm
data sets in regards to such
things as soil analysis by

region.

Chapter 2 & 4
Research Question 1, 2
&3

Corporate industry literature

Documents related to
government commissioned
projects by legal firms on such
topics as legal evaluation of

carbon farming

Chapter 7
Research Question 2 &
3
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Industry technical magazine A number of farm Chapters 2,5,6 & 7
organisations and natural

resource management group
produce technical documents

often supported by

government scientists.

Note that wherever possible the data was cross referenced across a range of sources. Where

that was not possible, some cautionary notes are included.

3.3 Methodology of analysis

In Section 3.2 | considered the nature of the data being collected from mixed sources. |
grouped the data into themes based on CA practices and | considered what the data was
telling us in regards to the Research Questions. In this section I outline the method of analysis

applied in this thesis.

To begin, | restate that the aim of this thesis is to evaluate to evaluate current climate change
policy in Australian agriculture and what type of policy consideration will more effectively
engage grain farmers in reducing on-farm GHG emissions. It considers the inputs into the
farming system and how the policy-management complex of those inputs affects the
greenhouse gas outcomes and farm profitability. The farm inputs produce varying degrees of
output which are in turn influenced by the various types of farming practices (e.g. no-till),
social conditions (e.g. education) and macro-economic factors (e.g. cost of finance). In order
to determine policy investment options to reduce greenhouse gas emissions, it is important to
consider how a policy initiative (e.g. carbon tax) will impact on the influencing factors (e.g.
price of fertiliser) to produce a different output (e.g. grain profit and reduced GHG). To
estimate the degree of emissions reductions that can be gained from introducing new
practices we need to include data from many parts of the process. This tells us that farm
practices across the Australian grains industry is a highly complex system. The ‘systems’
paradigm referred to by Weinberg (1975) and Sherwood (2002) is concerned with wholes and
their properties and every system has a purpose. The dryland farming system operates to
produce food grain for export and is a source of input into livestock production or local food

manufacturing. The farmers operating the system are motivated by a ‘reasonable’ level of
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profit that allows them to keep farming (Vanclay 2004). In the process of doing this they
create a vital community resource, food; but they also create externalities over an area of

some 23 million hectares. This outlined in detail in section 5.2.

The development of policy to create changes in practices to manage externalities would need
to consider the complex set of drivers that creates farm practice change. It should be noted
that historically practice change is more usually targeted at short term production benefit as
opposed to long term risk associated with externalities (Feder and Umali 1993). A ‘system’
also consists of a number of interacting parts that influence the internal processes; in such
agricultural systems there are inputs from suppliers, agronomic advisors, researchers, peer
facilitators (grower groups), rural communities, grain buyers, government services and policy
makers. A farming system is further affected by commodity markets, the weather and soil

conditions.

In analysing such a complex system the research began by reviewing the literature on what is
the current role of CA in Australian grain production. The literature is used to validate the
personal observations of this author from direct involvement in a range of industry events. It
was evident from the literature that CA in Australia had unique issues given its heavy
reliance on technology and its geographical context of large scale production in an arid zone
environment. It was also evident that gaps were present when emerging research on
emissions indicated that Australian conditions could not rely entirely on research outcomes
from other jurisdiction and Australian policy would need to take this into consideration
(Dalal and Chan 2001; Schwenke 2005; Walcott et al. 2009; Chan et al. 2011; Maraseni and
Cockfield 2011).

A systems-thinking approach was adopted to deal with the complex nature of the grain
production system as it applies to an Australian context and the drivers that influence it (see
Figure 24). This is intended to support the research question 3 looking into the factors that
influence the adoption of CA. Managing complex world problems using systems-thinking has
been outlined by a number of authors mostly in the business field as a means of testing
solutions to complex business problems (Sterman 2000; Sherwood 2002; Maani and Maharaj
2004; Richmond 2004; Nguyen et al. 2011). It recognises the principle that a problem may be
better understood and managed by examining the various interacting drivers of the system,
rather than concentrating on an isolated part of the system. In this thesis a systems thinking
model is used to analyse the factors that supports the adoption of various farm practices.
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Understanding those drivers can assist us in the framing of agricultural policy that might
create changes in practices. Agricultural policy decision to support emission reductions from
farms also requires an understanding of the farm practices by industry sectors, what drives it
and what impact it will have on emissions. The policy factors that drive the grains industry
are not the same as the cattle, sugar or horticultural industry; hence the need for considering

sectoral analysis such as limiting it to the grains industry.

| developed a systems model as per Sherwood (2002) to discuss and better understand the
factors that influence changes in farm practice behaviour. | recognise that the development of
policy requires policy makers to consider the history of events and the belief, values and
assumptions of individuals and organisations that are likely to affect policy (Maani and
Maharaj 2004; Nguyen et al. 2011). In this analysis the systems model will consider both the
economic and social drivers that creates a change of behaviour towards practices that reduce

net farm emissions.

3.4 Data collation and methods applied

The following section describes the data collation and methods by Research Questions. |
accept that the information associated with GHG emissions by farmers’ practices in some
sectors is limited and would seem inadequate to support policy development in changing
farming behaviour. In such circumstances the available data is still presented but a systems
analysis is not conducted. In Chapter 6, systems models are presented on reducing tillage,
stubble retention, control traffic farming and legume rotations, but not precision agriculture,
recycling organics or cover cropping. The reason being there is insufficient reliable data to

derive the model on the latter 3 practices at this time.

Further details of the methodology applied to derive the analysis are referred to in the

corresponding chapters 2, 6 and 7 that are published as papers.

3.4.1 Research Question 1 - What is the current role of Conservation Agriculture in grain
farming enterprises in Australia?

Participant observation and literature review was used to collect data to address Research
Question 1 of this thesis. The literature (including general, industry, Government reports and
policies, text books and peer reviewed journals) provide useful information in terms of

current issues in CA. | also decided to engage with the dryland farming sector more fully by
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attending industry conferences and workshops, visiting farms directly to gain in-depth details
and talk to industry researchers, industry practitioners, CA farming executives and farmers to
gain a clearer picture of what is happening on the ground. Quantitative industry datasets (e.g.
Grains Research Development Corporation and ABARES surveys) were also used, in

combination with participatory observation.
The specific activities | undertook as part of this participatory observation method included;

e Attended an Australian Control Traffic Farming Meeting on 23 March 2010.

e Visited a farm in WA and talked with owners, manager and consulting staff in detail
over a 2 day period. 19-20™ October 2010

e Being on the organising committee for the 5™ World Congress of Conservation
Agriculture held in Brisbane on the 26-29 September in 2011. This provided wide
access to CA industry participants and researchers from 2010 to 2011.

e Attended Manure recycling and spreading farmer field day Darling Downs on 21
October 2011

e Attended a Precision Agriculture Conference at the Twin Waters Qld on 16-18
February 2012

e Met with Umbers Rural (Farmer & Agricultural Consultant Grenfell NSW) in
Canberra on 21% November 2012 to discuss GRDC practices survey an industry views
in regards to emissions reductions

e Attended South Australian No-Till farmers Conference in Tanunda South Australia on
22 February 2013 to talk to farmers and industry

e Attended meetings with Victorian No-Till Farmers Association on three occasions in
Horsham 11-13 October 2012, Melbourne 25" March 2013 and Birchip on 25-26
August 2013 speaking to farmers.

e Attended meetings with Conservation Agriculture and No-Till Farmers Association in
Wellington NSW on 7 February 2013

e Attended the 1% International Control Traffic Farming Conference held in
Toowoomba Queensland on 25-27 February 2013

e Attended a strategic Tillage farmer field day on 25™ June 2013

e Visited farmers locally, August 2012, December 2012, 23 June 2013, July 2013
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The validity of this document and discourse analysis was checked by triangulating the data
collated with data collected through semi-structured interviews with 31 farmers and six
industry experts, and a review of current government publications, reported surveys and peer
reviewed literature in this area. The practices being observed as part of the grains industry
were tillage practices, stubble management, control traffic farming, legume crop rotations,

cover cropping, precision agriculture and the use of recycled organics.

The response to Research Question 1 ‘what is the current role of Conservation Agriculture in
grain farming enterprises in Australia?’ is reported as part of a book chapter entitled
‘Conservation Agriculture in Australian Dryland*? Cropping’ and can be found in
Conservation Agriculture: Global Prospects and Challenge, for the International Crops
Research Institute for the Semi-Arid Tropics and Food and Agriculture Organization,
Published by CAB International, UK.

Research Question 1 is also partly discussed in a paper | co-authored on the role of Australian
Conservation Agriculture practices for the Organisation for Economic Co-operation and
Development (OECD) for the 35" session of the Joint Working Party on Agriculture and the
Environment in April 2013. The report is entitled ‘An Analysis of the Impacts of
Conservation Agriculture Practices on Resource Productivity and Efficiency in Australian
Cropping’. The report is not included as part of this thesis, and is yet to be released.

3.4.2 Research Question 2 - How does Conservation Agriculture influence greenhouse gas
emissions from dryland farming enterprises in Australia?

The method of analysis used to answer Research Question 2 relied on document analysis of
literature from industry and Government publications and technical reports from research
institutions and journal articles. Data on emissions were sourced principally from government
publications dealing with a broad range of farm practices not always related to CA. The
various reports are collated to cover greenhouse gas emissions from those specific CA
practices such as tillage or stubble management outlined previously in Research Question 1.
Where available, industry data on farm practices survey such as fuel consumption, chemical
and fertiliser use is also collated to support details of practices in the current Australian

context. The emissions characteristic of a practice on grain farms is reviewed in the

12 Note: The vast majority of Australian grain production is dryland, hence representative of grain farming enterprises.
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international academic literature for validation. There are a number of direct links reported in
the international literature including reports from the UNFCC on farm practices and
production inputs in relation to levels of emissions. The Australian context derived from the
previous research question is examined in terms of the emissions characteristics for CA and
non-CA farm practices. The data is collated to form a picture of the current understanding of
the emissions profiles of various CA farming practices to allow us to compare the value of

changes in practices.

The data collection and analysis methods used to answer Research Question 2, ‘how does CA
influences greenhouse gas emissions from dryland farming enterprises in Australia?’ are
outlined in detail within Chapter Four of this thesis and notably in the paper titled ‘A study of
developing carbon offset projects using conservation tillage on grain farms in northern
Australia’, which is currently under review in the journal Agroecology and Sustainable Food
Systems. An examination of the international literature in regards to CA and emissions
characteristics is also reported within another paper entitled ‘Opportunities to produce carbon
offsets using conservation farming practices in developing countries’, published in the Annals
of Tropical Research, vol. 33, no. 1, p. 85-101 in 2011. Chapter Four of this thesis also
reviews the literature to consider emission reporting issues in dealing with the variables that

impact on greenhouse gas emissions from farming practices.

3.4.3 Research Question 3 - What factors influence adoption of Conservation Agricultural
practices in Australian grain production?

Research Question 3 was addressed using two methods; first; data was collected from semi-
structured interviews with farmers and industry advisors, and second, a review of the
literature on adoption and the factors likely to act as drivers for change (e.g. social concern)
or constraints (e.g. economics) was undertaken. The review provides the basis for the
questions but also for reflecting on the responses. The factors are framed into a systems
analysis using Causal Loop Diagrams (Weinberg 1975; Checkland 1999; Sherwood 2002;
Maani and Maharaj 2004; Bosch et al. 2007).

The theory of technological and practice change adoption is well covered in the literature and
| used this as a platform to examine the research question. | have examined farmer’s
behaviour and operational practices from direct observations on farm, supported by practices
survey and industry publication. Research Question 3 is answered based on the scientific
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literature as a means of validating my observation and industry reports. Where there is
uncertainty in interpretation this is explicitly stated in cautionary statements within the text.
The main theory examined for practice change requirement correlated with rate of adoption is
that of Rogers Diffusion of Innovation model (Rogers 2003). | also note that a number of
technical adoption observations do not fit a typical sigmoid adoption curve evident from
Rogers’ theory but they also did not match some of the requirements for the model proposed

by Rogers. The reason as to why this may be the case is discussed in Chapter Five.

I have further included the concept of a systems model as a means of interpreting the various
socio-economic drivers that influence the adoption of CA. Changes in a system such as
agriculture interact in complex ways, so | developed a series of systems models to visually
describe the main factors that drive the adoption of CA practices in Australia. Applying
‘systems thinking’ to an issue helps us understand the interactions that drive adoption in
complex situations (Sterman 2000; Quan Van and Nam Cao 2013). | have summarised the
variables from chapter 4 in a series of visual model to explain the interactive factors that
support change of practices (Bosch et al. 2007; BeLue et al. 2012). Representative mental
model are used in a range of disciplines to identify how a system operates and how they
might interact, thereby provide a framework to manage change by understanding dynamic
feedback (Sherwood 2002). To develop this framework | use Causal Loop Diagrams (CLDs)
consisting of identified variables and arrows that represent causal relationships between
variables as either (+) or (-) (Ventana-Systems 2013). This is described in a paper entitled
‘An analysis of the socio-economic factors influencing the adoption of conservation
agriculture as a climate change mitigation activity in Australian dryland grain production’;
this paper has been accepted with revisions in the journal Agricultural Systems. This paper is

included as Chapter Six of this thesis.

Note that although the literature provides an important framework for this analysis, not all of
the factors for change are covered in the literature, nor are they contextualised to current
Australian conditions. | therefore also used semi-structured interviews with CA farmers to
determine what influenced their decisions for practice change. From across Australia’s
diverse farming regions, | interviewed 31 farmers who were willing to take part in an
extended conversation as to what led them to adopt or not adopt each of the CA practices in
their area. The research approach | applied is known as phenomenography with CA perceived

as a phenomena (Marton 1981). The number of interviews was limited by cost and my ability
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to cover the large geographical spread of the Australian grain belt to talk with farmers face to
face. The details of the interview formats are outlined in the methodology description

presented in the paper in Chapter Six.

Further data was collected from case studies of specific farms. For example several days was
spent at “Bungulla Farming” in WA where a detailed case study of the operations of the farm

was conducted. The results of this case study were presented at the following conference:

Rochecouste, J., Jones, B. and Betti, J. 2011, 'Managing crop production uncertainties and
climate variability through a map-based system — WA case study', presented to The Climate
Change Research Strategy for Primary Industries (CCRSPI) Conference 2011, Melbourne,
14-17 February 2011.

The learnings from this case study was that the owners are aware of significant risk scenario
presented by a changing climate and rising input costs of fuel and fertiliser. With limited
investment resources it was necessary to clearly identify risk in terms of likelihood plus
impact, and management options for investment. This presentation identifies critical points
of production failure and demonstrate the use of a map based system using spatial data as a
tool to collate and analyse production variables across 70 paddock zones. Each critical
operation sought to have relevant spatial layers from remote and proximal sensors that
allowed managers to analyse issues for discussion with advisors. The layers are used to
implement prescriptive farming systems using variable rate controllers. Efficiency was
based not only on demonstrated reduce inputs (e.g. fertiliser, chemicals) but speed of
operation to allow for example an investment in fertiliser application on a predicted rain-front

rather than a pre-set operation.

The scenario of changing climatic conditions (dry years) allows the farm manager to invest

resources on better performing paddocks.
The interactive data layers included such things as:

e Soil type proximal EM38 (completed)
e Crop history & yield (historical available)
e Topography (completed)

e Vegetation (completed)
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e Fertiliser variable inputs (available)

e Chemical variable inputs using Weedseeker (in progress)
e Soil moisture (in progress)

e Weed population (in progress)

e Disease population (in progress)

e Waterways & drainage (completed)

e Fuel use in map form (in progress)

e Financial return by paddock (in progress)

Some current problems include layers not being interactive on one system, nevertheless the
investment in this process has demonstrated substantial savings in terms of fertiliser/fuel
inputs but more significantly it has reduced the risk profile to manage inputs away from
unreliable mid-term forecast. It allows operation to operate more effectively on more reliable
short term forecast, as expensive inputs can be held back longer towards critical timing

points.

In other conversations with farmers where they have supplied sensitive or personal
information as part of the case studies presented in this thesis, the names of the farmers
involved have been kept confidential. Other case studies where data was collated were from
Rodney & Margaret Hamilton “Callitris” in Condamine 4416 Queensland and Peter and
Nikki Thompson of “Echo Hills farming Co.” in Wallumbilla QId 4428.

3.3.4 Research Question 4 - What climate Change policies are likely to increase adoption of
CAin Australia?

CA is a phenomenon that implies a particular constructed view of how agriculture should
operate. The CA movement began by challenging traditional agricultural practices that were
seen to be contributing to land degradation (Phillips and Young 1973) and became a
movement for reform on farm management practices. It has distinct principles such as
reducing tillage and retaining crop residues that is consequently reflected in reduced
emissions profiles for agriculture. I am not primarily concerned with how the phenomenon
evolved or its purpose, but how it impacts on GHG emissions and carbon sequestration into

the future and what are the factors that might drive it in policy terms.
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I have outlined a number of potential opportunities for CA in the preceding Sections 1.2.4
and 1.2.5, and further details are provided in Chapter 4 and Chapter 6. | am particularly
interested in the response of farmers to the prospect of them changing their practices
specifically for the purposes of capturing a carbon market opportunity. | have sought to
answer this Research Question by engaging in direct dialogue with farmers and farming
industry experts on how farmers respond to Market Based Instruments (MBI), which is the

current policy model offered by the Australian Government.

The Australian Government’s current Carbon Farming Initiative (CFI) is a recent and
relatively complex piece of legislation and Australian farmers are still unfamiliar with MBIs
in general as they are not widespread and still relatively new to land management (Whitten et
al. 2004). To determine their response to an environmental service market, such as the CFl, |
believe a qualitative approach is a useful means of analysing complex responses (Patton
2002; Maraseni and Dargusch 2008; Schirmer and Bull 2014). | looked at how farmers
respond to an economic offer accepting that there is limited opportunity to cover the contract
details, as there are limited emissions reduction methodologies presently in place for the
Australian grains industry. | accept that farmers are unlikely to be aware of the details of the
methodologies being developed (e.g. biochar), but there is some awareness of established
methodologies (e.g. tree plantings) from the general media. I interviewed industry
professionals who have a more detailed grasp of the CFlI legislation and who work with

farmers to add some insights from their on-ground experience with clients.

| applied a phenomenographic approach in interviewing 31 farmers and 6 industry
professionals on the CFI opportunities and how such a policy is likely to be received (Marton
1981). This methodology has been used in the health sector to understand a patient’s
experience of various phenomena (Barnard et al. 1999). The value of qualitative research as
part of this approach is that it allows broad views into intention to be assessed based on a
‘phenomenon’, in this research | am attempting to determine the constraints to ‘participating
in a carbon offset MBI’ (Maraseni and Dargusch 2008). The interview structure is based on
qualitative interviewing using an ‘Interview Guide’ approach as per Patton (2002). The
interview questions are open-ended and based on a guided format to ensure the same basic
lines of enquiry (themes) are pursued for each farmer. This provides some structural
similarity but allows for individual perspectives and experiences to emerge. If farmers

wanted to expand their views into a broader range of comments, they were encouraged to do
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so (Patton 2002). | did not believe it was necessary to explain all the details of the CFI market
function to the farmers as | hope to capture the farming community’s current interpretation of
government policy. At present, the only carbon abatement methodology for dryland crop
farmers involves environmental plantings on non-cropped land, which require farmers to
hand over the rights of their non-cropped land to the project proponent under section 27 of
the CFI Act 2011.

The data being collected for analysis uses second-order interpretation, that is, the meanings of
the responses are grouped into summary responses for reporting on general trends (Tracy
2013). The discourses of the research are retained via transcribed recordings allowing the
research to focus on people’s understanding and interpretation of the carbon offset market

and feelings towards these types of MBIs (Rapley 2007).

The interview process operated in different parts of the dryland cropping region: Western
Australia (7), South Australia (11), Victoria (4), New South Wales (3) and Queensland (6).
For the districts involved, the precipitation varied from 250 mm to 600 mm annual rainfall
and the crops grown were wheat, oats, barley, sorghum, corn, mung beans, canola, faba
beans, lentils, chickpeas and lupins. Some had mixed livestock enterprises, but none were
exclusively livestock. Interviewees were asked about how they perceived the value of their
non-cropped land, what role such land played as part of their enterprise, and whether they
would be willing to be involved in a sponsorship agreement to provide vegetation services
(tree planting) for financial benefit on their non-cropped land? The need for a legal covenant
requirement of approximately 100 years was included in the explanation. They were further
asked to elaborate on the reasons for either participating or not wanting to participate. The
interview process did not elaborate on the soil carbon offset area as there is no detailed
methodology that could be offered as part of the discussion and farmers did not seem to have
an in-depth knowledge of how the CFI functions. The recorded interviews were typically 30
minutes and farmers were encouraged to expand their views based on the standard series of
questions. The Australian Landcare vegetation program was used as a familiar concept of
payment for environmental services, including the legal requirement for a covenant. The
farmers were predominantly but not exclusively male, with a mix of ages though

predominantly older. Specific age was not requested.

The industry professionals were from various agricultural industry positions and understood

both the CFI and the farming constituency. They were asked to broadly explain how they
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perceived farmers would react to an offset scheme regarding tree planting, but also share their
thoughts on their client’s likely engagement to soil carbon projects. They were encouraged to
elaborate why they believed their farmer clients would or would not participate in a CFI
carbon offset scheme, based on their knowledge of the legislation and their close link with

farmers.
The results of these interviews were incorporated in a paper as part of chapter 7.

3.4 The farm as a system boundary for emissions

In this thesis, | set a boundary around the emissions of farming practices to ensure the system
| am examining are the farm variables that can be influenced by the farmer or farm manager.
They involve factors that can influence the flow of GHG emissions or sequestration to the
extent that farmers have the opportunity to change that flow by choosing a different product,
introducing a new technology or adopting a change in practice. The choice for this boundary
is that factors beyond the farmer’s control have no effective role in farm targeted policy.
Environmental policy targeted at farmers is intended to create changes in resource outcome,
but it can only do so where a farmer’s choice is applicable to that resource outcome. The
focus of this study relates to the role of CA and is targeted to policies that influence a
farmer’s behaviour and agronomic practice choice. Policy in this area is complex and the
outcomes uncertain due to various influential factors, including the economic output of farms,
the varied forms of farming enterprises and the varied environmental landscape in which

farms operate.

Boundaries also relates to the scopes of emissions. In order to avoid double accounting the
Australian Department of Climate Change issues boundaries on scopes of emissions based on
international standards. The emissions standards are as follows;

Scope 1 emissions!3: The release of GHG into the atmosphere as a direct result of activities
at a facility, which in this study is the farm business. This does not include external

contractors whose operations are not under the control of the farm business.

18 NGERS (Measurement) Technical Guidelines 2010 Page 22
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Scope 2 emissions®*: The release of GHG into the atmosphere as a result of electricity
generation, heating, cooling or steam that is consumed by a facility. This relates to farm in

relation to electricity use on farm for machinery maintenance, grain drying and pumps.

Scope 3 emissions: The release of GHG into the atmosphere that is generated in the wider
economy as a consequence of a facility’s activities but that are physically produced by
another facility. These might include the manufacture of fertiliser, herbicides, seeds and

machinery.

The farm boundary is related primarily to scope 1 emissions that relate to policy initiatives
impacting on farm practices. Scope 2 emissions play a limited role in farm policy
frameworks for dryland cropping unlike irrigators or horticultural producers, because they are
not major users of electricity. Factors affecting electricity consumption will impact on all
consumers and is covered by policy related to the stationery electricity generation industry.
Some consideration is given to scope 3 emissions in our discussion as some policy options
may include mandatory reporting of energy consumption in the manufacture of farm inputs.
This may provide farmers with a choice of products that have a lower carbon footprint,

although this option is not prevalent at this time.

The premise on which the boundaries are based is that policy initiatives directed at farmers
can only really be concerned with factors that are within the scope of the farmers to change.
The embedded energy in the production of machinery, fertilisers and chemicals are ultimately
the responsibility of the manufacturers who should be required to pay emissions liabilities
within their own jurisdiction. Such manufacturers may also have offset their energy liability
within their product, but this may not be known unless they are required to report on it. A
farmer using a brand of fertiliser or herbicide as a matter of necessity would not be aware if
the imbedded energy in the product they have chosen has been offset by the manufacturer.
This is an important distinction to consider; as an example, policy to reduce tillage inevitably
leads to an increase in the use herbicides to control weeds. The imbedded energy of current
herbicides may be known, but is not reported by the manufacturers. Manufacturers in a
competitive environment are constantly adjusting formulation and processes, so energy data
would need to be updated in line with those changes. Helsel (1992) reported on the energy

requirement in the manufacture of a range of pesticides at the time which highlighted their

4 NGERS (Measurement) Technical Guidelines 2010 Page 27
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variation (Table 4) (Helsel 1992) and it is clear that their emissions impact is also dependent
on the extent of their deployment. Current energy figures on the production of individual

herbicides are not readily available from manufacturers.

Table 4 Embedded energy of some grain production herbicides calculated to emissions per
hectare by Helsel (1992)

- L
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Herbicide —_ =9 = S = = L 3 @)

o o0 |38 8|2 | ® s |53 5| &8
RoundUp | 454 43.1 | 105 045|113 |0585|6.2 16.6
MCPA 130 43.1 | 3.0 05 |05 (025 |08 2.0
2,4-D 85 43.1 | 2.0 05 |07 035 |07 19
Atrazine 190 43.1 |44 09 |3 2.7 119 32.1

NOTE: Gj = Gigajoules, a.i. = active ingredient, Mj = Megajoules,

Farmers are unlikely to be aware of the energy footprint of the herbicides they use, but they
are clearly aware of its costs. The product life cycle system of analysis is an important
consideration in terms of emissions across the supply chain to avoid policy distortions, but of
equal importance is farmer behaviour. Agricultural policy targeted at the local level is
generally more concerned with farmer behaviour than their international suppliers.
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4.0 THE VARIABLES INFLUENCING GREENHOUSE GAS
EMISSIONS ON DRYLAND GRAIN FARMS

In this Chapter | explore emissions from Australian grain farms as they relate to CA
practices. | also consider if there are new environmental accounting systems that may
influence agricultural policy impacting on the farm. | consider what the reason for
intervention is, and if there is to be an intervention, what should the approach be and why
such an approach is relevant. Given current established policies of a market-based instrument
| consider what the reporting issues are for farmers participating. I also look at the
sequestration factor as the other side of the ledger to emissions; especially given the

government’s interest in soil carbon as a role for agriculture.

Further, I look at current practices and examine the individual CA practices; namely reducing
tillage, stubble retention, fertiliser management, reducing soil compaction by controlling farm
machinery traffic, the inclusion of legumes in rotation or a green manure crops, emerging use
of digital technology in the form of ‘Precision Agriculture’ and the use of recycled organics
from waste streams. | explore policy considerations in relation to agricultural practices and

the implication of data variability in reporting.

The final section of the chapter reviews the various practices in the farming system and the

potential emissions and sequestration opportunities they represent.

4.1 Research approach

As this research is predominantly a policy analysis of the role of CA; the determination of
what variables influence GHG emissions from the grains industry is based on a review of the
technical literature specifically for CA practices. Some CA practices such as tillage reduction
and stubble retention are well known and extensively discussed in the literature, other
practices such as Control Traffic Farming, cover cropping are less well known and more
limited in the available data. This chapter intends to collate the known facts in regards

emissions and sequestration potentials from current CA practices.

4.2 New potential environmental accounting system

Changes to accounting for emissions are also being proposed by various parties
internationally that will likely impact on the reporting process around the carbon accounting
system. A new System of Environmental-Economic Accounting (SEEA) was accepted as part
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of the international statistical standard by the United Nations Statistical Commission at its
43" meeting, held 28 February 2012. This means that the SEEA now has the same status as
the System of National Accounts favoured by the IPCC. The Australian Bureau of Statistics
(ABS) is looking at aligning their SEEA accounts and the Department of Climate Change and
Energy Efficiency’s Kyoto protocol based accounts. It intends for both account systems to be
produced as part of the set of environmental-economic accounts. They are also considering
looking at emissions in terms of final consumption. Therefore agricultural production will be
attributed to the final consumer using environmentally extended ‘input-output’ analysis
(Australian Bureau of Statistics 2012) (figure 2).

B Mtonnes

Emissions from
Australian
production

Mtonnes

Emissions from
Australian
consumption

Mtonnes =

Figure 2 Production and consumption approaches to GHG measurements (adapted from The
Australian Bureau of Statistics)

The proposed shift of focus to consumption reporting is based on the premise that ultimately
industries exist to satisfy consumption in Australia and abroad. It is also intended to address
issues of leakage by considering the environmental cost of a country by considering its

environmental balance of trade.

In terms of the land sector it may lead to the use of carbon stock accounts from carbon

carrying capacity (land stock) and land use history (depletion of stock) to consider:

e Depleting carbon stocks due to changing natural systems to agriculture
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e Land restoration value versus food and fibre production

e Land uses that result in temporary carbon removal and storage

However the accounts are considered, different farming practices will result in different
emissions and carbon storage profiles which is in turn influenced by the decisions the farmer

makes on farm.

4.3 Farm Greenhouse Gas emissions and the need for policy intervention

With sunlight, grain crops take up atmospheric carbon dioxide in the process of
‘photosynthesis’ to produce oxygen to assimilate sugars, and then at night during
‘respiration’ the oxygen is combined with sugars or fat in living cells to release water, CO2
and energy required by the plant. The cycle favours carbon based biomass and in the process
produces an excess of oxygen. This process is one of the main ways in which atmospheric
CO2 moves into other carbon pools (Hartman et al. 1981). Plants are approximately 40%
carbon sequestered from the atmosphere (Ho 1976) but the sequestered carbon is short lived
in annual grain crops, and a only small fraction moves into the soil carbon pool (Wang and
Dalal 2006). The policy implication of this is that plants are still the main pathway for
removing atmospheric carbon over which we have some control (Miller 2005). The grain

portion of the crop is used as an energy source for human or animal consumption.

In generating the grain, the farm can be both an ‘emitter’ in terms of fuel use, mineralisation
of soil organic matter, applied fertiliser or the breakdown of crop residue. It can also be a
‘sink’ with the atmospheric carbon moving into the soil pool (pedosphere) via plant decay,
noting that the atmospheric carbon moves into the soil matrix via microbial decomposition
and assimilation into both resilient and labile carbon pools. The process of plant decay is then
also a source of emissions. This balance can be influenced by farm practices and is the
subject of policy consideration in terms of national carbon accounting.

If farms can be both a ‘source’ of GHG emissions and a ‘sink’ for atmospheric carbon; how
can farms participate in mitigating climate change? Jonge (2010) interviewed farmers in
South Australia and 50% did not believe in, or were undecided about, the necessity to
respond to climate change and 90% indicated that if they were required to respond to climate

change it would be easier if there were financial incentives to do so (Jonge 2010). On the
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premise that only a small percentage of farmers will voluntarily make changes to mitigate
their emissions at a cost to them for a broader public benefit; I consider policy intervention by
government as the main driver to creating change in behaviour. There are two broad policy
directions that can be pursued to minimise the impact of farming on climate change; the first
is to consider policy that encourage farmers to reduce existing emissions, and the second to
encourage farmers to take up sequestration opportunities. This can be sought by means of
regulation using legislation, market based instrument such as a ‘carbon offset’ market,
incentive payments or education. All four instruments require some form of measurement
from which to gauge the effectiveness of the policy. Governments often pursue a combination
of these policy initiatives to manage the potentially long time frames and the likely
uncertainty in outcomes (Hanley 2001; Horan and Shortle 2001; Lal et al. 2009). In the
industrial sector, policy might consider supporting ‘avoided emissions’ by encouraging a
reductions in emissions to below a business as usual standard, by for example: switching to
renewable energy or participate in offset markets (Whittington 2002). Offset markets in turn

can be based on ‘avoided emissions’ or sequestration (Ribon and Scott 2007).

Simple measurement of farm emissions is not always possible due to the inherent nature of
farm emissions such as N2O emissions being bio-chemically based and the need for
specialised equipment to do the measuring (Smith et al. 2000; Schwenke et al. 2011). As a
consequence it is not likely to be clear to farm operators what exactly is their emissions
profile during their daily activities or indeed what it should be operating at. It is therefore not
surprising that farm practices decision is based on factors such as input price, convenience or
productivity. Without some form of policy intervention it is most likely that farmers will
continue to operate simply on production goals. Although some activities such as reducing
energy inputs may well have aligned goals with emissions reductions; their perceived value
in terms of targeted management is also likely to be different. It may be reasonable to expect
farmers to want to cut energy costs but other production factors may be more critical. The
choice of farm machinery for fuel efficiency may not be as important as having sufficient
power to get all the planting operations done within a window of opportunity dictated by the
weather. Farmers may manage immediate individual risks (loss of crop opportunity) ahead of

long term community risks (climate change).

Policy intervention is inevitably required to manage long term community risks since

individuals will seek to improve their position by reducing their personal risk ahead of the

93



community good. This was evident in the behaviour of wheat producers of the American
mid-west during the 1930s when the price of wheat fell sharply due to reduced demand
during an economic downturn (the Great Depression), producers responded by increasing
production to make up their income shortfall and in the process increased available supply
resulting in further decreases in wheat prices (Russell 1988). In current terms simply
educating farmers about the long term risk associated with climate change is likely to be
insufficient to create widespread farm practice change, especially if those changes are likely
to limit their immediate opportunities. It will inevitably require some form of political

intervention in terms of a Market Based Instrument or regulatory processes.

4.4 Emissions factors of farming operations and the need for a farming systems
approach

Policy to manage the externalities of GHG emissions needs to consider how they were
produced. Scope 1 emissions as a direct result of on-farm activities can be highly variable due
to climate and bio-physical factors but also other operational factors such as the extent of the
use of contractors that supply such services as spraying, harvesting and to a lesser extent
planting. Contractors play an important role in farming, but the pattern of use is highly
variable. Some farmers will have some operations (e.g. spraying) totally devoted to
contractors and others will only use them when needed. From an emissions accounting point
of view the use of contractors is a complex demarcation area because the type of machinery
used by the contractor and its energy output is not under the control of the farm business, but
the soil emissions from planting operation as performed by the contractor is at the direction
of the farmer. Therefore clear demarcation lines on operational control relating to emissions

can become a bit blurred under the IPCC carbon accounting system.

Furthermore emissions on farm can be concerned with farming ‘operation’ such as tractor
operation or it can be viewed from a farming ‘practice’ perspective which incorporates a
range of operations such as a ‘no-till” versus a ‘conventional’ planting system. The value of
perceiving emissions from a ‘farming systems’ perspective rather than simply a farm
operation is that farmers have a diverse range of machinery and infrastructure but

communicate between themselves around improving farming systems?® (Allmaras and

15 CSIRO farming systems research group. http://www.csiro.au/Outcomes/Food-and-Agriculture/Farming-systems.aspx
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Dowdy 1985; Dent and McGregor 1994; Cornish and Kelleher 1996; Crawford 2004). The
size of their planters may differ significantly but the way in which the machine is deployed to
achieve successful plant establishment has common ground for discussion, therefore it is a
much more engaging issue for farmers. The systems approach is more commonly used by
agronomists and agricultural researches in their dealing with farmers. Policy can be
concerned with influencing either ‘individual farm operations’ or ‘farming systems’, this
research considers that policy influencing farming systems as a collective of operations

provides a better option to engage farmers.

Emissions from the ‘operational’ component of the farm is more effectively analysed under
life-cycle assessment analysis (Biswas and John 2009; Brock et al. 2012) or by the use of
farming carbon calculators; whereas the ‘systems’ approach looks at a collective of
operations from which the farmer perceives an outcome for his or herself. The differences
between the two approaches is that ‘operational accounting’ provides a better emissions
accounting framework by reducing overlap, but the systems approach is better suited to
creating changes in behaviour given that is the preferred extension model of the industry. The

major emissions from farming enterprises are outlined in Table 5.

Table 5 Major reported emissions sources from farm operation (Biswas and John 2009; Eckard
and Armstrong 2009)

Farm operation Emissions

On farm transport; tractors, trucks, vehicles CO2 (transport sector)

Tillage; tractor and soil emissions CO2, CH4 and N20 (sector mix)
Fertiliser application, Legume rotations, stubble N20 (agriculture sector)

retention and leaching of inorganic nitrogen

Stubble burning CO2, CH4 and N20 (agriculture
sector)

Because many of the emissions from farm operations cannot be easily measured without
complex scientific instruments; the IPCC also provides default guidelines of emissions
factors to allow for calculation of certain emissions from various on-farm sources (Table 6).
It is used primarily to estimate NoO emissions as inputs into the global atmospheric pool
operating as a simple box model (Smith et al. 2000). N2O is the main emissions source for
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cropping agriculture and has a global warming potential of 310 relative to CO. (Forster et al.
2007). CO2 from farm machinery is reported in the transport sector and CO, emissions from
crop residue burning is much less than N2O from soils in Australia and can be more

consistently estimated.

Table 6 IPCC Default Method for Calculating N,O Emissions from Direct Sources

Source N content Emissions Factor

Crop production — Synthetic N | Amount of N applied — 10% NHz + | 1.0%

fertilisers N-O loss

Animal waste used as fertiliser | Amount of N applied — 20% NHs + | 1.25%

& other organic fertilisers N20 loss

Biological nitrogen fixation Amount of N is 2 — harvested crop | 1.25%
biomass — N content (3%) for

pulses and soybeans

Crop residues Amount of N is 2 — harvested crop | 1.2%
— N content minus harvested parts
(45%) minus fraction of crop

residue that is burnt in fields < 10%

Cultivation of organic soils Area of cultivated organic soils Temperate regions:

(not prevalent in Australia) 5kg N2O-N hat y?t

In 2006 the IPCC changed the emissions factor for N2O to 1% based on more updated
information (De Klein et al. 2006). Even with this change the default factors do not reflect
conditions in Australia’s cereal belt which experiences limited seasonal rainfall. If microbial
activity is a driver of N2O emissions than lack of moisture would be expected to suppress
those emissions (Galbally et al. 2010). Barton et al. (2008) report that in Western Australia’s
cropping region the measured emissions factor for NoO was 60 times lower (0.02%) than the
new IPCC default value of 1% and they suggest that the default values are not appropriate for
semi-arid regions (Barton et al. 2008; Galbally et al. 2008). Trials in Eastern Australia with
slightly higher seasonal rainfall report slightly higher emissions values around 0.45%
(Schwenke et al. 2011; Brock et al. 2012). In a review of N>O emissions from Australian

agriculture Dalal et al. (2003) report the range of emissions in grain cropping as varying from

96



nil to 9.9% depending on a range of environmental factors. N2O is the most significant
emissions factor for Australian cropping in our national accounts and the current research
suggests that Australia’s semi-arid climate may well be over-reporting N2O emissions if
based on IPCC default factors for emissions from soils. From a policy perspective the grains
industry has an emissions profile that is not readily measurable in terms of reporting (Dalal et
al. 2003; Thamo et al. 2013).

At present agriculture emissions does not account for scope 3 emissions, and from a policy
perspective attempts on reducing emissions into the future remains focussed on farm
activities. If we take scope 3 into account than from a Life Cycle Analysis (LCA)
perspective, a typical tonne of wheat has 45.3% of its emissions from pre-farm input
production emissions (Brock et al. 2012). How reliable the energy of production figures are
is difficult to say; input products such as herbicides are manufactured in different parts of the
world and companies do not readily supply information on their energy cost of production or

if they have offset the emissions liabilities of their product in some form.

In the current reporting context the extent of emissions from Australian agriculture accounted
for 85.2 million tonnes CO-e or 15.58% of the national inventory in March 2012 excluding
Land Use, Land Use Change & Forestry (LULUCF). The Australian National Greenhouse
Gas Accounts record emissions from cropping primarily as N2O from Agricultural soils
estimated at 15.8 million tonnes CO-e or 2.8% of the national inventory. Field burning of
agricultural residues is less than 1% of the national inventory for 2012 (DCCEE 2013).
Machinery Diesel is accounted for under the transport sector and not included in agricultural
emissions. The emissions of methane CH4 and N2O relate to the decay process of organic
matter in the soil and is influenced by human activity including cultivation, the addition of
organic as well as inorganic fertilisers and deliberate burning of crop residue (DCCEE 2013).
The main factors to reduce scope 1 emissions in terms of Australia’s national accounts
require a reductions in the amount of tillage that involves the mineralisation of organic
matter, a reductions in the demand for inorganic fertiliser that create fugitive N>O emissions
and to reduce the level of residue burning. Farmers are unlikely to respond to suggestions that
they should reduce tillage, apply less fertiliser and stop burning crop residues without a sound
business reason. Given the time and cost involved in tillage and fertiliser application it is
reasonable to assume that farmers have business reasons for doing so, albeit those reasons

may not necessarily be optimal, but it will continue if they believe it to be necessary (Vanclay
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2004). Therefore the answer to changing practices would need to address the underlying
agronomic and profitability issues for the practice. This needs to be pursued in a way that
does not adversely impact on the farming sector or food production, hence the need for a

‘systems’ approach.

Cropping agriculture as a source of emissions is essentially dealing with two biological
cycles; the carbon cycle and the nitrogen cycle. This increases the complexity of agricultural
emissions as the two cycles are interlinked in a complex system. Increasing plant biomass
required for increasing SOC requires adequate levels of nitrogen, phosphorus and sulphur
(Lal et al. 2004a). However Cogle et al. also point out that adding carbon to a soil system can
increase denitrification (Cogle et al. 1987b). Furthermore the cycles are both temperature and
moisture dependent, which in the Australian context is highly variable. The pursuit of policy
targeted at such complex systems has a risk of unintended consequences if aspects of the
system being considered are not clearly understood. Beyond targeting emissions there are
other environmental consequences such as salinity, land degradation, offsite pollution and
loss of biodiversity that also needs to be considered as an important part of the landscape

assets.

The reason for pursuing a system’s approach is to achieve a more in depth understanding of
the factors that influence changes in farm practices that will reduce emissions from the sector.
Systems approach has also been used to manage other forms of environmental externalities in

agriculture such as chemical drift into waterways (Collins 2012).

4.5 Reporting issues for agricultural emissions

As previously outlined the major sources of emissions in agriculture are from non-mechanical
sources such as the bio-chemical process that occur in soils or enteric fermentation in the gut
of grazing ruminants. To better understand the inherent reliability and accuracy of reporting,
the advantages and disadvantages of the means of calculating emissions are outlined by
Russell (2011) in a working paper on Corporate GHG Inventories for the Agricultural Sector
(Table 7).
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Table 7 Approaches for calculating GHG emissions from non-mechanical emissions within the
agricultural sector adapted from (Russell 2011)

Approach Advantage Disadvantages

Direct field measurements Accurate with high | Technical capacity required,

levels of sampling
Determination of measurable

variable, Expensive, Time

consuming
Emissions factors quantified as a Inexpensive, Low accuracy, Does not
function of farming activity account for environmental
Easy to use changes
Empirical models constructed from | Inexpensive, Potential data gaps for all agro-
statistical relationships between ecological zones
empirical GHG data and Low to medium
management factors accuracy
Process-oriented models using Medium to high Requires large data sets,

mathematical representation of bio- | accuracy with good

geochemical processes that drive models, Expensive with high technical

GHG emissions requirements to establish

More flexible

approach

Non-mechanical emissions such as methane and nitrous oxide losses from soils are expensive
and complicated to measure on a regular basis, which means that agricultural emissions are
predominantly based on estimates. Countries can modify the IPCC Emissions Factor where
they have data that suggest their condition differs. In the recent National Inventory Report
(NIR) 2010 for Australia, The application of synthetic fertiliser and animal waste has been
revised for Australian conditions. Since more than 75% of Australia’s grain crops is located
in low-rainfall regions (<550 mm annual rainfall) with porous soils where both nitrification
and the denitrification potential is low; these areas are not regarded as having substantial
background N2O emissions rates. The government’s National Inventory Report 2010
indicates that soil moisture as a result of irrigation or rainfall, and excess fertiliser application
being predominantly responsible for the majority of soil N2O emissions. Detailed studies of
N20 emissions over the entire cropping cycle is indicating that Emissions Factors (EF) in low
rainfall areas that use traditionally less fertiliser are significantly lower than the IPCC default
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factor of 1-1.25%. Based on the research, the current EF for Dryland cropping has been reset
to 0.3%. Whereas grains grown under irrigation or high rainfall areas have had their EF
increased to 2.1% (figure 3) (Australian Government 2014) this is based on research carried
out by the Australian Nitrous Oxide Research Program (Grace et al. 2010; Scheer et al.
2010).

Review of N20O Emission Factors for a range agricultural cropping
sectors in Australia

2.1

0.3

IPCC Default EF Low Rainfall EF irrigated-high irrigated cotton Sugarcane
Crops rainfall crops

Axis Title

Percentage Emission Factor

Figure 3 Australia’s Emissions Factor for cropping have been revised based on new research to
a selected range of EF based on rainfall and use patterns (adapted from DCCEE 2010)

Given that agriculture is the second largest emitter by sector (Figure 4), it is understandable
that the Australian government is investing in research and policy initiatives to minimise
GHG emissions from the sector despite the difficulties involved in measuring non-
mechanised emissions. However the lack of a simple to use, inexpensive and accurate method
of measuring the main GHG emissions of agriculture, makes it difficult to rely on market
instruments such as Carbon Offset trading. Essentially the buyers in the market may be
concerned about the validity of the offset even when using simple emissions factors and may
shun agricultural offsets in favour of more reliable offsets from industrial processes (Walcott
et al. 2009).
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Figure 4 Greenhouse Gas emissions estimates by economic classification (ANZSIC Code)
(source: Department of Climate Change and Energy Efficiency; Australian National
Greenhouse Accounts, National inventory by Economic Sector, April 2011).

The government could link activities within the sector to estimated emissions and changes in
activity would than correspond with reductions in emissions. The levels of activities such as
the degree of stubble burning, tillage and stubble retention is measurable via surveys and
remote sensors (satellite). Linking into farm data using proximal sensors is another possibility
for collecting farm information for analysis. Therefore reductions in practices such as tillage
or stubble burning would be expected to correspond to a reduction in emissions, barring
leakage factors. Factors that are likely to limit such outcomes is the variability across agro-
ecological zones based on soil types and climate, so robust models are required to equate
activities and emissions reductions by regions. Furthermore at the farm level, farmers will
make different choices on practices based on soil type, seasons and their world view of
farming, which makes it difficult to support carbon offset trading for individual farmers
(Thamo et al. 2013). A possible option at the policy level is to support changes at a more
fundamental level using a farming systems approach. The Farming System’s paradigm looks
primarily at improving farming productivity and as an added outcome it can also reduce GHG
emissions or demand less energy. What may be of interest to farmers in this approach is that
farming systems operate from an agronomic perspective. Since farmers are not under the
threat of a penalty for their emissions, they may well be less interested in reducing emissions

for its own sake. Where there is also a production benefit such as the option to improve
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fertiliser efficiency than essentially emissions can be clearly linked to unwanted waste from
the system which makes participation more likely. Encouraging a self-induced incentive
(reducing cost) may be more effective and cost efficient from a public expenditure
perspective than an externally applied market instruments. This will depend on the drivers for

change and the timeframe involved, which is discussed in the sections to come.

| acknowledge that any emissions reporting process in agriculture will have some degree of
uncertainty and this is mainly due to the nature of the processes being reported on. In this
instance | am concerned with policies likely to produce changes to on-farm practices that will
have an outcome for reducing climate change impacts, accepting that the degree of emissions
reductions may be uncertain (Freney 1997; De Klein et al. 2006; Omonode et al. 2007) .

4.6 Sequestration factors

On the other side of the balance sheet from emissions of GHG is ‘sequestration’ generally
defined in climate change terms as the removal of carbon dioxide from the atmosphere for
long-term storage in either soil, plants, geological formations, oceans or mineral
carbonation®®. The key point of such a definition in terms of climate change is the
requirement for long term storage as opposed to short term processes such as the fluctuation
that occurs between photosynthesis and respiration (Johnson et al. 2007). Farms have two
potentially significant opportunities for sequestration, firstly via long term forest plantation
on surplus land (Keating and Carberry 2010) and secondly via the soil, by increasing the
levels of soil organic carbon (Baldock et al. 2009; Sanderman et al. 2010). While these

potential exist they are nevertheless complex to manage in practice.

Farm Forestry is defined as forestry plantations on private land for commercial production as
part of a broader farming system; they are predominantly of a smaller scale than industrial
plantations and may have less emphasis on timber as the primary output (URS Forestry
2008). The potential for carbon sequestration on farms is based on the concept that farmers
may want to permanently plant trees for other reasons than commercial harvest, such as
managing salinity. From our interviews with farmers, concern was raised on the issue of

permanence for projects under the Carbon Farming Initiative legislation; this means that

16 Carbon sequestration as defined within the Australian parliament.
http://www.aph.gov.au/library/pubs/climatechange/responses/mitigation/carbon.htm
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plantations would have to be retained for 100 years plus to qualify for an Australian Carbon
Credit Unit'". Such a long term liability is unlikely to be palatable to farmers especially if the
carbon price is low. The subject of farm forestry is not within the scope of this inquiry,
although it acknowledges its role on the farm.

The subject of soil carbon sequestration faces the same test of permanence if it is to
participate in carbon offset trading. The potential role of increasing Soil Organic Carbon
(SOC) has been reviewed by Sanderman et al. (2009). Grain cropping in Australia covers
approximately 23 million hectares of production (GRDC 2012) dominated by light textured
soils. Cultivated soils lose organic carbon at variable rates depending on the clay content and
annual rainfall (Swift 2001). In a range of clay soils loses of organic carbon averaged 0.6%
per year (Dalal and Chan 2001). The Limited rainfall of the cropping region in the range
300mmm to 800mm limits the opportunity to significantly increase the organic carbon
content of these soils (Chan et al. 2008; Baldock et al. 2009). Under Australian conditions
current practices have limited capacity to increase soil organic carbon, and in most situations
they can only mitigate the ongoing loss (Wang et al. 2010). This would mean that much of
the cropping soils would show only small marginal increases in soil organic carbon (Luo et
al. 2010; Chan et al. 2011). Such small changes are unlikely to find sufficient offset units
across the average grain farm to interest traders and would require some form of pooling to
create the necessary economies of scale (Renwick et al. 2003). This is further complicated by
the error margins associated with measuring soil organic carbon that emanates from
variations in bulk density (Throop et al. 2012); samples being based on depth rather than
equivalent mass across a heterogeneous soil types (Sanderman et al. 2010). Sanderman and
Baldock (2010) also argue that predicted stock change data from agricultural trials may not
truly reflect sequestration when the state of the soil carbon at the beginning of the trial is
unknown; that is when there is no comparable baseline at the start of the field trials. Thus
current IPCC accounting methodologies developed from some trial results may not be
reflective of the true value of the carbon storage based on the management activities
(Sanderman and Baldock 2010). This uncertainty is likely to affect confidence in the market
allocation of carbon credit units for offsetting a unit of emissions using soil carbon

sequestration.

17 Carbon Credits (Carbon Farming Initiative) Bill 2011. Bills Digest Service No. 5, 2011-12
http://www.aph.gov.au/library/pubs/bd/2011-12/12bd005.htm
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Measuring non-mechanical GHG emissions and the balancing of sequestration for a farm
business for the purpose of trading ‘Carbon Offset Credit Unit’ is likely to be contentious
when compared to the more simplified mechanical measurements associated with an
industrial process. In policy terms, that leaves the government with introducing some form of
estimated index based on management practices, which has its own inherent variability
(Baldock et al. 2009).

4.7 Farm cropping practices and their impact on Greenhouse Gas emissions and
carbon sequestration

The Australian National Greenhouse Accounts (ANGA) does not cover all potential GHG
emissions associated with farm operations. They include ones that have some capacity to be
measured; the following related to cropping are reported by the Australian National

Greenhouse Accounts ANGA (updated quarterly at climatechange.gov.au) :

* Rice cultivation — methane emissions from anaerobic decay of plant and other organic

material when rice fields are flooded.

* Agricultural soils — emissions associated with the application of fertilisers, crop residues
and animal wastes to agricultural lands and the use of biological N fixing crops and pastures.

* Field burning of agricultural residues — emissions from field burning of cereal and other

crop stubble, and the emissions from burning sugar cane prior to harvest.

Other farm emissions are either located in other sectors (e.g. diesel consumption - transport)
or have no reliable way of being measured so are not included in the accounts. A comparison
of these measured and unmeasured emissions is presented in Table 8.
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Table 8 A comparisons of agricultural emissions that are accounted and not-accounted for in
the national accounts

Accounted Not accounted

CHg emissions from rice Loss of SOC from cultivation as CO;

flooding

N20 from Fertiliser application | Emissions from soil compaction

N20 Planting of legumes C Sequestration from crop residue

CO2 burning of residues Emissions from anaerobic soil conditions (water
logging)

N2O from retained residues

The Australian government does however measure a number of farm practices for other
purposes outside of ANGA. At present the major agricultural activities for cropping
monitored by the Australian Government for Sustainable Agriculture include tillage, crop
residue practices, ground cover management, fertiliser usage, and the incidence of soil
acidity. They are measured for productivity reasons and each of these practices is under the
control of the farm business unit. The practices previously mentioned also have GHG
emissions and soil carbon sequestration implications and could play a role in reporting
emissions where a direct correlation can be made between their emissions and the farm

practices.

The types of CA practices that can be related to carbon accounting consideration include
tillage practices, crop residue retention, control farm traffic, legume crop rotations, fertiliser
application, the application of recycled organics such as animal waste and cover crop
management. Some of those farming practices are well established in Australia and are
already being measured for productivity reasons, whilst others are only just developing. |
consider each of the current practices as a whole for all its potential emissions characteristics
regardless of its current accounting position. This provides an option to consider future
potential policy options targeting farming systems and how changes in farming system might

contribute to reduced emissions.

As part of this examination on how farming systems practices might be operated to reduce
emissions | consider in more detail some of the practices in the grain farming system and how

those practices create emissions. This further examination is hoped to provide potential
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avenues for changing the practices to reduce emissions or actively remove CO2 from the

atmosphere is a more permanent way.

4.7.1 A review of tillage practices and their emissions in broad-acre grain (PAPER)

This section is presented as a paper to the Journal Agroecology and Sustainable Food Systems
on the 20" of September 2014

Notes
The following publications are presented in the format of the manuscript as sent to the

relevant Journal publisher. The tables and figures are not listed as part of the thesis but follow
the numbering pattern of the text in the publication. The figures have a border to distinguish
them from figures in the main thesis. The bibliography has been removed and incorporated
into the thesis bibliography.
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A study of developing carbon offset projects using conservation tillage on grain farms in
northern Australia

Jean-Francois Rochecouste and Paul Dargusch

Abstract

This paper examines the issues that affect the development of carbon offsets from farms in northern
Australia using conservation tillage. Legislation is available for carbon farming in Australia, although
there is no methodology for changing tillage practices at this time. Our analysis highlights that there
are several issues constraining the development of carbon offset methodologies in northern Australia
around tillage. First, tillage terminology as it applies to soil carbon is inconsistent within the literature
and is likely to complicate the development of practical methodology. Second, our analysis of
regional farm soil tests shows no significant correlation between local tillage practices and levels of
accumulated carbon. This suggests that more-intensive individual farm soil analysis may be required,
which would lead to a substantial increase in transaction costs. Third, leakage factors indicate an
emissions benefit in fuel consumption but an unknown impact from herbicide use. Herbicide use and
bioaccumulation is highly variable depending on seasonal rainfall. The general literature seems to
indicate that reducing tillage reduces carbon loss and may account for small levels of carbon
accumulation in Australia. However, we conclude that the measuring process required for verification
of a carbon credit unit at current prices is likely to be cost prohibitive at farm level and poses a risk to

aggregators.

Keywords
soil carbon, carbon sequestration, herbicide emissions, Emissions Reductions Fund, Carbon Farming

Initiative

1.0 Introduction

The Australian Government is examining opportunities for the agricultural sector to play a role in
reducing greenhouse gas (GHG) emissions and sequestering atmospheric carbon. The previous Labor
Government introduced specific legislation to support this on 8 December 2011, with the Carbon
Credits (Carbon Farming Initiative) Act 2011 (CFI Act)*® and the supporting Carbon Credits (Carbon
Farming Initiative) Regulations 2011 (CFI Regulations)!®. The CFI Act allows for land managers to
develop projects to remove carbon dioxide (CO2) from the atmosphere and to avoid emissions of
GHGs associated with agriculture, principally nitrous oxide (N2O) and methane (Australian-
Government 2011; Browne et al. 2011). The scheme was designed to help farmers and land managers

earn additional income by reducing emissions and sequestering carbon in vegetation and the soil

18 CFI Act 2011 - http://www.comlaw.gov.au/Details/C2012C00417
19 CFI Regulations 2011 - http://www.comlaw.gov.au/Details/F2012C00466
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through changes to agricultural and land management practices (DCCEE 2012). The major challenges
to producing carbon offsets from Australian agriculture are that emissions from agriculture are not
easily measurable, emissions come from a wide range of small operators and the factors causing
emissions are linked to biophysical and socio-economic factors (Freney 1997; Walcott et al. 2009;
Parnell 2010; Chan et al. 2011; Brock et al. 2012). The Liberal/National Coalition Government of
Australia, elected to federal office in the September 2013 election, appears committed to supporting
the production of carbon offsets from agriculture under its ‘Direct Action’ climate policy plan. This is
outlined in the Emissions Reductions Fund Green Paper which summarises the government’s
consultation with business and the community (Australian Government 2013b). Reducing tillage has
been linked to the production of carbon offset units in other jurisdictions, such as Alberta Canada. The
process uses a ‘deeming’ method based on agro-ecological soil zones by deeming those farmers who
implement a practice change to conservation tillage systems as having produced a prescribed level of
carbon offsets specified by the protocol (Alberta-Environment 2009). There is no current
methodology of reducing tillage practices in Australia that might account for the production of carbon
offset units (Harper et al. 2007; DCCEE 2012).

Practicing conservation tillage as an abatement option is listed in the Carbon Farming Initiative
Handbook as worthy of evaluation, tillage having been one of the main contributors to the loss of soil
organic carbon (SOC) in Australia’s cropping land over time (Sanderman et al. 2010; Chan et al.
2011; DCCEE 2012). It has also been referred to in the 2008 Garnaut Climate Change Review to the
Australian Government and is listed as part of the Australian Greenhouse Gas Abatement Cost Curve
in a report by McKinsey & Company Australia (Garnaut 2008; Lewis and Gorner 2008). In this study
we explore the feasibility of deriving carbon offset units from conservation tillage within the grains
industry. The grains industry is Australia’s largest cropping sector and has substantially changed its
tillage practices towards conservation tillage over the last 40 years (Thomas et al. 2007c; Llewellyn et
al. 2009; Agbenyegah et al. 2014).

The loss of carbon due to tillage results from the mineralisation of soil organic matter from soil
disturbance and the amount lost is highly variable depending on soil type, moisture and temperature
(Chan et al. 2003; Chan et al. 2011). The feasibility of a soil carbon sequestration project depends on
farmers’ ability to permanently maintain the SOC they have sequestered (Dalal and Chan 2001;
Baldock et al. 2009). Research is ongoing into the carbon cycle of cropping soils and the development
of baselines for measuring changes in SOC; cropping also directly emits GHGs as N2O during tillage
(Barton et al. 2008; Sanderman and Baldock 2010; Antle and Ogle 2012).

Farming systems around Australia are complex, spatially extensive and regionally variable. We have

therefore focussed this paper on the emissions characteristics of conservation tillage and farmers’
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operation in Australia’s northern cropping sector to determine the feasibility of producing measurable
carbon offsets. The northern grain region is subtropical with highly variable rainfall; both summer and
winter cropping are dependent on stored soil moisture to maintain growth during the growing season
(Dalgliesh and Foale 1998). The overlapping sequence of winter and summer crops had been heavily
dependent on cultivation to prepare for planting until conservation tillage techniques were adopted
over the last 40 years (Thomas et al. 2007c). Reducing tillage is generally argued as having an impact
on reducing GHG emissions in comparison to continuing ‘business as usual’ cultivation (Lee et al.
2009; Hobbs and Govaerts 2010; Labreuche et al. 2011). Others have argued that the emissions
benefits are negligible after accounting for leakage factors (Maraseni and Cockfield 2011).

2.0 Definitions of conservation tillage and greenhouse gas emissions from soil

Here we consider what conservation tillage means and how it is likely to impact on farm GHG
emissions if adopted by farmers in the northern cereal belt. Tillage is a practice of soil disturbance
that prepares the soil for planting or controls weeds and refers to the ‘number of passes’ and ‘the
percentage area of surface soil disturbance’ in land preparation and seeding. The amount of soil
disturbance from tillage is directly linked to soil carbon loss and soil emissions (Valzano et al. 2001;
Choudhary et al. 2002; Reicosky 2002). One difficulty facing policymakers is the high degree of
variability in the way farmers till their soils and how this might be linked to a method for measuring
carbon offsets. Although relevant factors such as soil type can be determined ‘in situ’, the general
definition of tillage in relation to the degree of soil disturbance appears to be highly variable and

dependent on a number of farm management factors.

The area of cultivation required for seed placement will depend on the requirements for crop row
spacing. In northern Australia, winter wheat row spacing is approximately 25 to 35cm and for the
summer crops sorghum and corn may be as much as 90 to 100cm (Caldwell 2009; Queensland-
Government 2011; GRDC 2014). In addition, local definitions of tillage do not deal with depth and
often only infer a seeding depth of 50 to 100mm; however, this does not account for weed control
needs. This variation in defining tillage practices in terms of its impact on soil disturbance is accepted
by farmers and consultants at the level of farm production. However, in a GHG accounting system the
lack of a precise international definition around tillage practices and tillage-related SOC changes is
likely to create uncertainty in developing a carbon offset framework for the market. Therefore, when
reports refer to ‘abatement opportunities from conservation tillage’ it is not well understood what this

means. Below is a review of terminology used in Australia (Ugalde et al. 2007) (Table 1).

‘Table 1 A review of tillage terminology and potential greenhouse gas (GHG) implications
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Tillage practices in

Australia

Terminology

Author

GHG implication

Full tillage: multiple

Conventional

(Gajri et al. 2002)

Highest level of soil CO, emissions

passes (>3) across tillage and mineralisation of SOC.
100% of a field to a Highest fuel consumption with first
depth greater than ploughing operation, and with
100mm + additional amounts from each pass.
The number of tillage | Reduced (Gajri et al. 2002; | An unclear terminology that is
passes is reduced to <3 | tillage Mitchell et al. simply less than conventional
operating at planting 2009) tillage. Hence there is likely to be
time across 100% of some emissions reductions but the
the field with depth not amount is unclear.
specified Minimum (Chang and Depth of the implement has
tillage Lindwall 1989; significant impact on fuel

Baker and Saxton | consumption; this potential

2007; Anderson variation is not captured in GHG

2009) terms.
Tillage only occurs No-till or no- | (Gajri et al. 2002) | CO. emissions from soils are
prior to planting and is | tillage reduced by minimising soil
limited to the plant row disturbance and so is CO; from
using various points or diesel operation but the relative
tine (area of field and quantity is uncertain.
depth not specified)
Tillage only occurs at | Direct (Baker and Saxton | The area of soil disturbance is
planting using either seeding 2007; Butler 2008; | considerably reduced, soil
disc or tine for seed Ashworth et al. emissions are also expected to be
placement 2010) low. Energy requirement at the
Tillage only occurs at | Zero-till drawbar is also significantly

planting using a disc to

open soil for seeding

reduced. To manage weeds more
passes for spraying is required, but
energy use of sprayers operating

across the paddock is low.

In a review of planting operations in northern Australia from grower organisations, we note

considerable variation in practices, input and equipment (Table 2). Such a range of practices
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demonstrates the diverse equipment choices that can be made by farmers in response to similar

regional conditions.

‘Table 2 Planting operation of farmer in northern Australia.

Number of | _
Tillage system Various planter types
farmers

e Gyral AgBoss — double-disc system

¢ NDF-disc Planter & Orion for deep sowing
Zero-till using disc
8 e homemade
system
e Austil Disc

e Rogro Parallelogram

e AFM with tines
Combined options - ] o
) ) e Gyral and Shearer with Stealth point tines
no-till and zero-till ) )
e Inverted T, 5mm points or disc planter for
systems on the farm,
7 ) ) ) summer crop
includes tines and disc
. . ¢ Kinze and Flexicoil tine
options depending on
e Gyral, Mason for broadacre planting and John

crop
Deere Maximerge for summer
e Universal Shearer with tines
e Flexicoil with tine
13 No-till system using e Universal Shearer cultivator with Peter Points
tines e Converted tine opener
e John Deere Cultivator, primary sales-inverted T
points
¢ BigRig
3 Minimum-till e AlFarm 420
e Alfarm or Janke
1 Uses contractor ¢ Not specified

(Source: unpublished — Conservation Farmers Inc. used with permission, January 2012)

The snapshot provided in Table 2 highlights the significant differences in the equipment used by
farmers to manage their soils; it suggests that tillage practices are likely to be very difficult to
standardise. This in turn limits the ability to correlate tillage practices and soil emissions with the
degree of accuracy that may be required for an offset scheme methodology at a farm level. There is no

information on the way farmers operate disc machines, and the degree of soil disturbance can be
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highly variable depending on the set angle of the disc; narrow angles disturb less soils than wide
angles (Ashworth et al. 2010).

Tillage terminology traditionally relates to machinery set-up, crop establishment and moisture
requirement; it does not consider GHG emissions that emanate from soil disturbance. As indicated in
Table 1, applying a GHG management methodology to tillage practices is limited by the observed
inconsistencies in the way a tillage operation is performed. In the literature, recent comparisons of full
tillage and some form of reduced tillage most commonly record a degree of significance in GHG
emissions between conventional and no-till systems, but a detailed description of the tillage operation
in terms of the degree of soil disturbance is rarely provided (Mummey et al. 1998; Desjardins et al.
2001; Landers et al. 2003; Six et al. 2004; Venterea et al. 2005; Lee et al. 2006; Elder and Lal 2008;
Ahmad et al. 2009b; Smith et al. 2011). To estimate the value of changing farm practices for a carbon
offset, a baseline of current practice based on the level of soil disturbance and potential emissions
should be available to compare emissions with farm practice change over time at a local level. The
lack of a standardised definition for no-till was identified at the 5" World Congress of Conservation
Agriculture as problematic for researchers in this field (Derpsch et al. 2011). This may become even
more relevant if the adoption of conservation tillage is to be considered as a means of generating

carbon offsets as was initiated in the province of Alberta Canada (Alberta-Environment 2009).

3.0 The impact of conservation tillage and measuring soil carbon

Tillage refers to the disruption of the soil to varying depths using metal farm implements with the aim
of loosening the soil in preparing the seedbed before depositing seed and fertiliser and also as a follow
up to controlling weeds (Phillips and Young 1973). In the process of shearing the soil, the general
structural integrity of the soil is changed and affects the bulk density, drainage and organic carbon
content (Unger and Jones 1998; Dalal and Chan 2001; Swift 2001). Opening the soil mineralises
organic matter, provides available nutrient to the crop and releases carbon dioxide (Reicosky 2002).
Traditional tillage practices in Australia involve considerable soil shearing from a number of
cultivations (4 to 10 passes) to manage weeds, incorporate previous crop residues and in the
preparation of a seedbed (Ugalde et al. 2007). This type of conventional tillage resulted in extensive
soil erosion and is thought to have caused approximately 20 to 50% of historic carbon losses (Lal
2004c; Sanderman et al. 2010). Conservation tillage has significantly reduced soil erosion and the
associated carbon loss (Lal 2004a; Thomas et al. 2007c; Barson 2013; Ryan 2013). In the last 200
years, agriculture expanded in an effort to meet world food demand and in the process caused a net
shift of carbon from the soil carbon pool to the atmospheric pool (Lal 2007b). This is not entirely
replaced by growing crops, because the carbon derived from the atmosphere in the harvested grain
moves into the food chain and the waste produced is generally not recycled, at least not in Australia

(Scott et al. 2010). Therefore, agricultural soils in Australia have suffered a net loss of SOC requiring
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inputs of highly energy-intensive nitrogen, in the form of inorganic fertilisers, to feed the crop (Liu et
al. 2006; Bell et al. 2007; D'Haene et al. 2009).

Recent international papers report savings in soil carbon and emissions (CO2e) from reducing tillage.
In a study of SOC in the sub-alpine meadow of China Shang et al. (2012) reported an increase of 1.73
tonnes of soil C/ha over a ten year period using conservation tillage. Hillier et al. (2012) report a
reductions in emissions of 0.02 tonnes of COe/ha/year by reducing tillage over a 50-year period.
Following the adoption of conservation tillage in Spain, Gonzalez-Sanches et al. (2012) report
significant variability in the reductions of emissions with a maximum of 0.85 tonnes of COze/ha/year.
Not all regions can be directly compared due to cultural variations in how farmers interpret
‘conventional’ and ‘conservation’ tillage, so international reports may not be relevant to local
conditions (Wang et al. 2010; Gonzalez-Sanchez et al. 2012; Hillier et al. 2012; Shang et al. 2012).
The Alberta Government in Canada operated a tillage reductions offset scheme from 2007 to 2011
where farmers were able to generate carbon offsets based on pre-set data by agro-ecological zones
based on farm change practices (Alberta-Environment 2009). In a review of Australian conditions,
Lam et al. (2013) conducted a meta-analysis of published data from 1984 to 2012 on the responses of
soil carbon to improved agricultural practices. The dataset was compiled from 56 studies with 172
comparisons for the effects of conservation tillage and reported the relative gain in SOC was in the
order of 139kg C/ha/year and 62kg C/ha/year for the associated residue retention (Lam et al. 2013).
This should only be taken as an approximation given the variability of Australia’s grain production

areas.

Researchers have also supported the concept that an important part of soil fertility is related to carbon
as part of soil organic matter (SOM) (Dalal and Chan 2001; Loveland and Webb 2003; Bell et al.
2007; Manlay et al. 2007). SOC makes up about 50% of SOM depending on soil type (Pribyl 2010).
A number of studies comparing native woodland and agricultural land in Australia have indicated a
reduction in SOC caused by land clearing for agriculture (Riezebos and Loerts 1998; San Jose et al.
2003; McHenry 2009). It became apparent in the latter part of the 20th century that continuous tillage
in Australia was reducing SOM and SOC, leading to a depletion of soil fertility (Lal 2004a; Liu et al.
2006; Luo et al. 2010).

The loss of SOC from cultivated farming soils is variable but based on international studies is
generally in the range from 0 to 2.5% SOC (Omonode et al. 2007; Beheydt et al. 2008; Luo et al.
2010; Sanderman et al. 2010; Buragiene et al. 2011; Omonode et al. 2011). The loss of carbon and
nitrogen from disturbed soils is mostly in the form of GHG emissions such as CO; and N»O (Reicosky
2002; Olson 2010; Regina and Alakukku 2010). As the major portion of the organic matter content is

in the surface horizons, using aggressive cultivation practices at depth means that the loss of SOC is
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likely to occur across both A and B soil horizons (Bauer et al. 2002; Heckrath et al. 2005;
VandenBygaart et al. 2007; Alvarez et al. 2009).

The level of N,O emissions relates more closely to fertiliser application to the in-situ crop than the
practice of tillage (Regina and Alakukku 2010; Venterea et al. 2011). Ormonode and others (2007)
reports a significant amount of CO. and small amounts of methane (CH.) emissions from traditional
tillage operations (Omonode et al. 2007). Soil emissions are also affected by biophysical factors such
as soil type, moisture content and temperature (Unger and Jones 1998; Buragiene et al. 2011; Morell
et al. 2011). Therefore, the ability to routinely quantify soil emissions from such a farm operation is
very complex and costly to put into commercial practice, thereby limiting the policy opportunities to
support verifiable emissions reductions units into a carbon offset market such as the CFI (Sanderman
et al. 2010).

Changing practices by applying conservation tillage on its own does not significantly rebuild SOC in
Australia’s arid-zone systems, but can reduce its net loss (Kirchhof and Daniels 2009; Varvel and
Wilhelm 2010). Additional biomass in some form is required to increase SOC (Liu et al. 2006; Gaiser
et al. 2009; Govaerts et al. 2009; Fuentes et al. 2010; Igbal et al. 2011). In policy terms, any
reductions in unnecessary tillage will reduce soil emissions to some extent and halt the loss of SOC.
The problem is that the emissions reductions benefit from changes in practice to cropping soils is not
readily measurable, so estimates of emissions factors are required. The only reliable emissions data in
relation to reducing tillage operation is going to come from mechanical emissions such as fuel
savings. In relation to sequestration of atmospheric carbon in soils, Chan et al. (2003) and Luo et al.
(2010) conclude that the amount of SOC accumulation in Australia is unlikely to be significant in the

low rainfall cropping areas in the short term.

Measuring increases in soil carbon baselines is also likely to be difficult. We compared 30 soil test
results collated from local agronomists for western Queensland farmers practicing some degree of
tillage (minimum-till) and zero-till to identify any trends evident in SOC (Figure 1). zero-till (ZT)
refers to tillage with only one pass for seeding and minimume-till (MT) refers to some degree of
cultivation not specified. The practices were consistent for at least the previous three years. The
region was experiencing a number of dry years during the sampling period with little organic matter
input from crop residue. Some of the sample farms had also been including an animal manure
treatment when the product was available and this was reflected in a higher than average SOC for
some samples. The soils in the sample area had low clay content on the surface horizon, annual

rainfall ranges from 550 to 630mm and were mostly alkaline with pH ranging between 7.5 and 8.5.
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Percentage soil organic carbon from farm soil samples by western
Queensland locality and tillage practice (ZT = zero-till and MT =
minimum- till)
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‘Figure 1 Farm soil samples supplied by agronomists and farmers. (Source: Adapted from data
collected by Dave Hall Consulting and Conservation Farmers Inc., January 2012 used with
permission)

The 30 samples suggests that no easily defined correlation exists between stated current tillage
practices and their levels of SOC, there is simply too much variability. Although not a rigorous
analysis, it does indicate that industry information alone is not going to be sufficient to make a case
for obtaining a verifiable carbon sequestration unit on comparative regional farm practices. A system
requiring extensive data collection to confirm changes at farm level is going to significantly increase

the transaction costs of any project and would have to operate in addition to standard soil testing.

Adopting reduced tillage practices may improve organic carbon or reduce its loss. However, in the
more arid-zone farms, the tillage practices that a farmer undertakes are unlikely to record easily
measurable improved SOC levels based on existing soil sampling techniques. Significantly more
detailed studies would be required to ascertain the factors leading to changes in SOC levels. Using
serial time sampling of the soil to measure on-farm soil carbon accumulation over time for a particular
change in farm practice, for example to reduced tillage, is likely to be confounded by the seasonality
of biomass production and from other farm activities such as the importation of manure. Given the
low values of soil carbon and the variability, it is unclear that a ‘deeming’ method as previously
mentioned in regards to the Alberta scheme can be supported in Australia. We suggest that for farmers
to demonstrate carbon sequestration from changes in tillage practices is going to involve significant
time and transaction cost for a series of small incremental gains in soil carbon. This is likely to be a
dilemma for regulators trying to encourage farmers to participate in the CFI using a tillage reductions
methodology.
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4.0 GHG leakage factors from conservation tillage

Conservation tillage operations produce CO, emissions from tractor fuel combustion and from the
manufacture of the herbicides required to replace tillage as a means of weed control. Changes in farm
practice can result in sideline emissions in other industry sectors and those ‘leakage’ factors can be
positive or negative. For example, diesel use is reduced under conservation tillage and emissions can
be easily measured by the farm industry, whereas herbicide use is greatly increased and emissions
factors are not readily accounted for by farmers. In this section, we consider the two main emissions
leaks that result from a change of tillage practice to conservation tillage; the direct reductions in diesel
consumption reported under the transport sector and the required increase use of herbicides as indirect

emissions from manufacturing (scope 3).

4.1 Farm fuel consumption

The most direct impact of abatement from reducing tillage is the reductions of on-farm diesel
consumption. Although this is not accountable as part of agricultural emissions, it is still part of the
national accounts within the transport sector (Nationmaster.com 2005; Australian Government 2014).
Whether it should be included as part of agricultural emissions is a matter of process, but its impact is
not insignificant. As tillage requires energy, reducing tillage proportionally reduces energy
requirements. A review of fuel consumption estimates using figures from the Australian Bureau of
Agriculture and Resource Economics and Sciences (ABARES) shows a decline in the volume of fuel
used in the grains industry from 11L/ha in 1990 to below 6L/ha in 2005 (Ugalde et al. 2007) (Figure
2).

Average fuel use per hectare in Australian grain production from 1990 to
2005
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‘Figure 2 The trend in average fuel use per hectare by grain farmers for the period from 1990 to 2005.
(Source: A. Umbers, Umbers Rural Services, used with permission)
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A survey commissioned by Conservation Farmers Incorporated and conducted by the author of
farmer’s fuel consumption in the cropping areas of south-western Queensland for the period 2005 to
2007 indicated that the national ABARES data was supported at the regional level with an average

across 23 farms of 7.5L/ha (excludes harvesting).

Farm fuel consumption by tillage practices on grain farms in south-western
Queensland

Average 7.7
L/ha

Fuel consumption as L/ha in one season

Minimum Ti
50%Zero Till,..

Zero Till,Minimum Ti
Zero Till, Minimum Ti
Minimum Till, Zero Ti

‘Figure 3 Farm fuel consumption by tillage practices on grain farms in south-western Queensland per
planting season. (Source: Adapted from unpublished survey data - Conservation Farmers Inc. used
with permission.)”

The survey data is slightly skewed by a farmer who included an exceptionally deep ripping operation
to manage sub-soil constraints that used 27L/ha. If this entry is discounted this provides an average of
6.6L/ha which is more consistent with the national average of 2005 (5.5-6.0L/ha). The fuel reductions
as a result of reduced tillage would indicate that grain farmers as a whole are using about 36% less
diesel than they did in 1990.

This general decline in diesel consumption in cropping operations could result from a number of
contributing factors. The most significant contributor to the decline is likely to be the sharp increase in
conservation tillage adoption between 1990 and the mid-2000s as reported by (Llewellyn et al. 2009).
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Percentage of no-till adoption in the Australian grains industry
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‘Figure 4 Australian no-till adoption (Llewellyn et al. 2009). (Source: Adapted from data by R.
Llewellyn 2009, used with permission.)

4.2 Herbicide products

Another indirect emissions factor that is a consequence of reducing tillage is the need for increased
herbicide use to control weeds. When cultivation is removed as a weed control option, the most
economical alternative is herbicide, predominantly glyphosate in Australia. The energy consumed in
the manufacture of herbicides should be considered as indirect ‘scope 3* emissions which is additional
to the function of reducing tillage (i.e. it would not have occurred if using cultivation). During the
period from 1990 to 2005 when the adoption of zero tillage was on the rise, we also noted a
corresponding increase in the sales of herbicides in Australia (Figure 5). Although it may not be the
only factor involved, the increase in reduced tillage would have necessitated a demand for more

herbicides for fallow weed control.
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‘Figure 5 An increasing trend in the use of herbicides in Australian agriculture.
(Source: Australian Bureau of Agricultural and Resources Economics and Sciences)
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To date the carbon footprints (or energy profile) of commonly used herbicide is very limited. The last
published data for the Australian farming context on the energy requirement for the manufacture of

herbicides appears to be by Helsel (1992). The data in Table 3 (extracted from Helsel, 1992) includes
energy inputs of commonly used herbicides for grain production in South-west Queensland as well as

energy conversions to diesel equivalent and corresponding estimates of GHG emissions (Table 3).

‘Table 9 calculation of GHG emissions for common grain herbicides based on energy of manufacturing
(Helsel 1992).

(5]
- T
: g g
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Els| 3|2 £/ 3
= A S 2 g |5 < | Emissions Kg of
(%2} = o5} [72]
Herbicide E = A 2 Z g A& | COyhectare
RoundUp 454 43.1 | 105 045 |14 0.63 | 6.6 17.9
MCPA 130 43.1 | 3.0 0.5 05 0.25 | 0.8 2.0
2,4-D 85 43.1 | 2.0 0.5 1.0 05 |1.0 2.7
Atrazine 190 43.1 |44 0.9 3.0 2.7 11.9 32.1

Although the above data is likely to be out of date with improvements in manufacturing, it provides
an example of the importance of characterising the energy values of herbicides where a life cycle
analysis is being considered. The type of herbicide can have significant emissions characteristics and
a number of authors exclude the use of herbicides in describing the benefits of reduced tillage or
where it is included it is not clear if the actual calculated energy data comes directly from the
manufacturers (Zentner et al. 2004; Maraseni and Cockfield 2011). According to Cowie et al. (2012)
in a review of GHG accounting in the land-based sectors the energy associated in producing
herbicides is covered under the manufacturing sector (Cowie et al. 2012). This scope 3 factor is
significant in determining the overall benefit of reduced tillage in terms of emissions accounting, but
data on energy of production of herbicides is simply not readily available to farmers to account for
their emissions. In April 2008 Monsanto, the manufacturer of the most widely used herbicide in
cropping announced the planned expansion of its Roundup™ (glyphosate) facility in the United States
to be completed in 2010 where the company implemented a hydrogen-recovery project to reduce

natural gas cost (Jany 2008). The Monsanto Company is claiming that it is expected to reduce its
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GHG emissions by an estimated 58,000 tCO,e annually. The plant is likely to constitute more than
10% of the world’s production of glyphosate and is a major supplier to Australian farmers. What
manufacturers may be doing in terms of reducing the GHG of their products is not directly available
to farmers at the purchase point.

Moreover, use patterns for herbicides are highly dependent on the needs of individual farmers and
prevailing seasonal conditions. A survey of herbicide use pattern by farmers in South-west
Queensland shows a high degree of variability in energy profile relating to herbicide use by farmers
and herbicide practice base on local seasonal conditions (Figure 6). Some farmers varied in their
pattern of use from O to 5 sprays in preparing their ground for planting. This means that individual
farms can have a high degree of variability in their emissions leakage profile in any one season based

on the weed load.

Emissions from applied herbicides (Glyphosate, MCPA, Atrazine, 2,4 D) as kg
of CO,e/hectare from 298 fields in western Queensland from 2005-07 using
energy calculations after Helsel (1992).
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‘Figure 6 Herbicide emissions patterns from the history of 66 paddocks across various seasons in
Queensland from mid-2005 to 2007%° (source: Adapted from unpublished data - Conservation

Farmers Inc. used with permission, January 2012)

In figure 6 we note that at the start of the survey in the second half of 2005 farmers applied a lot of

herbicides prior to the summer crop with diminished use in the 2006 winter season. This indicates that

2 Herbicides are Glyphosate, MCPA, Atrazine, 2, 4 D, as kg of CO,e/hectare from 66 fields by quarter in western Queensland from 2005-07
using energy calculations after Helsel (1992).
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if we take into account leakage factors of scope 3 emissions there is going to be significant
background variation in emissions depending on cropping choice and seasons.

It indicates that accounting for agricultural emissions in any detail from a change in practice as might
be required by a carbon offset market is going to hold considerable uncertainty. It suggests that some
broad industry based assumptions may have to be made as farmers may not want to be involved in
collating the data required to verify emissions. It may be the reason that to date there has not been an
established CFI methodology for soil carbon in the cropping sector involving tillage practices. The
compliance requirement and transaction cost are likely to be prohibitive in terms of the current low
price of carbon. However at a macro-level farmers are still looking to reduce tillage activities. This
means that the agricultural sector is contributing to reducing emissions but is doing so as a co-benefit
to production efficiency.

5.0 The implications of reducing tillage in Australian climate policy

Australian grain farmers in Northern Australia have been reducing their tillage practices since the
1970s but the most significant change occurred from around the 1990s when only 20% of farmers had
adopted some form of reduced tillage practices, to over 80% in 2008 (Llewellyn et al. 2009). The
opportunity still exists to further reduce the degree of tillage over another 10 million ha of land in
Australia (Edwards et al. 2012). It should be noted that it has taken nearly 40 years for the process to
occur without a direct external policy or carbon market incentive.

It should also be acknowledged that quantifying and monitoring emissions from tillage at farm level is
very costly and likely to be impractical for a farm based project (Sanderman and Baldock 2010;
Sanderman et al. 2010; Wang et al. 2011). Tiessen et al (1981) in a review of the literature suggests
that grain operations using conventional cultivation lose about 1% of their SOC stocks per year
(Tiessen et al. 1981), which is also discussed by Slattery & Surapaneni (2002). A number of studies
have indicated that under Australian conditions reducing tillage achieved little in the way of
increasing SOC but did significantly reduce the depletion of SOC stocks (Dalal and Chan 2001; Chan
et al. 2003; Wang and Dalal 2006; Luo et al. 2010). A soil baseline measurement of Carbon stock (Cs,
t/ha) for Eastern Australian vertosols in 1994 by Young was recorded at 25.35 t/ha (average of A & B
horizon) and 6 years later recorded 25.9 t/ha under reduced tillage (Young et al. 2009a). Based on
this estimates, we could speculate that a farm in Eastern Australia under a business as usual case since
the 1990s that continued to use conventional tillage would have incurred a depletion of SOC of about
5 tonnes per hectare more than Conservation Tillage over a 21 year period. This is likely to be much
lower on the non-vertosols in the dryer parts of Australia. These amounts do not correspond to
commercially significant volumes on a per farm basis, but in national terms with 20+ million hectares
of grain production the potential soil carbon loss even with some degree of discounting for soil types,
would be in the order of 50 million tonnes of SOC over that 21 year period since 1990. In figure 7 we

have plotted two scenarios based on the continuing decline of soil carbon stocks from ongoing
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conventional tillage to maintenance of soil carbon stocks with possibly a slight increase as indicated
by Lam et al. (2013).

A potential pattern of change in SOC stocks when changing farm practices
from conventional to conservation tillage
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‘Figure 7 Potential savings in soil carbon from Business as usual conventional tillage versus the
adoption of Conservation tillage

6.0 Conclusion

Although the Australian government is seeking to encourage agricultural projects that will reduce
emissions and increase carbon sequestration, the means of establishing a market ready project is
proving difficult in some sectors. The concept of incentivising farm practice change using a Market
Based Instrument can only function where a clear carbon credit unit can be demonstrated from the
adoption of such practices. Although conservation tillage has been considered in various reports on
agricultural emissions reductions, there is no approved carbon farming methodology available at
present in Australia. We studied the opportunity for carbon offsets in the northern Australian region
where conservation tillage is well suited to grain production as indicated by Thomas et al. (2007b).
The indications are that farmers operate their production systems in widely different ways so it would
be difficult to establish uniformity in practices that can be correlated to emissions reductions or
carbon sequestration. Further changes in farm practices like reducing tillage create complex leakage
factors that can shift the emissions to other jurisdictions, but information on those factors are not
always readily available to the farm manager making on-farm decisions. We have also noted that
seasonal conditions can strongly influence these leakage factors like the use of herbicides.

We conclude that due to the inherent variability in the way that individual farms operate, the means of
demonstrating clear and reliable carbon offset generation at farm level is unlikely to be efficacious.
The main reason being the volume of carbon offset units capable of being generated on a typical grain

farm is relatively small given transaction cost required to verify those units (Lam et al. 2013). The
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costs of verification, aggregation and assuring for permanence would further reduce the gains. The
concept of an individual farm credit system in relation to reducing tillage reductions as per the Alberta
model seems economically questionable in an arid zone context (Alberta-Environment 2009). It
would seem preferable to recognise the benefit at an industry-wide level where perhaps a modest
deeming rate could be allocated to support the co-benefits gained from reducing tillage.

Although carbon sequestration is not easily measured at a farm level there is evidence of a potential
measurable mitigation benefit from reducing tillage on a regional to national scale. The value of
having measurable soil carbon units at a regional scale, even allowing for some discounting for
variability, should be considered in a positive light. Reducing tillage also brings with it considerable
environmental co-benefits in terms of maintaining soil health for food production and reducing
pollution of waterways from erosion containing sediments and pesticide.

Under the Australian Government Department of Environment’s Emissions Reductions Fund (ERF)
White paper released in April 2014, it was noted that some emissions reductions activities such as in
the land sector is likely to be from smaller-scale actions that would need to be implemented through
some form of aggregation to be cost-effective. This would require the aggregator establish a project
involving the support of a number of farms to conform to a specified activity and measurement
reporting. At the time of writing soil carbon project methodology was still under development.

The Clean Energy Regulator will be responsible for the operation of the market through an auction
process and the regulator will set a benchmark price for each auction, above which bids will not be
considered. The auctions will begin after June 2014, and will be run quarterly, and the government’s
preference is that contracts will be for five years. As the bidders will need to guarantee payment for
the future delivery of emissions reductions, it will be important for aggregators to have surety of
supply of carbon offsets from farmers. As we have noted previously farm practices are highly varied
and subject to climate and operational needs. The aggregator will be severely exposed if farmers

cannot deliver due to climate factors impacting on soil carbon accumulation.
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4.7.2 Stubble management and their emissions in broad-acre grain

The primary benefit of stubble retention from a production perspective was to improve
infiltration, retain valuable moisture, reduce soil erosion, impair weed growth and protect the
emerging seedling (Jacobson et al. 1992; Unger 1994; Malinda 1995; Lal 2008; Anderson
2009). Stubble as a source of organic material also contributes to the nutrient cycling of soil
micro-organism and increases soil organic carbon, with typical wheat stubble consisting of
approximately 40% Carbon, 0.58% Nitrogen, 0.05% Phosphorus, 1.42% Potash and 0.19%
Sulphur and decay of the crop residue releases about 55-70% of the carbon to the atmosphere
as CO2 (Schomberg et al. 1994; Tan 2009). Microbial biomass take up about 5-15% of the C

and the remaining 15-40% is partially stabilised in soil as new Humus (Jenkinson 1971).

In terms of greenhouse gas balance; the retained stubble releases N2O as its breaking down
and leaves a residual carbon fractions in the topsoil layer (Howden and O'Leary 1997;
Jorgensen and Jorgensen 1997; Chan et al. 2003; Robertson and Thorburn 2007; Baldock et
al. 2009; Liu et al. 2009; Wang et al. 2010). The level of carbon returned to the soil is
variable depending on the stubble type, soil characteristics, environmental conditions and
management practices, and at present there is no consistent regional data for Australia (Chan
et al. 2003; Wang and Dalal 2006; Robertson and Thorburn 2007; Liu et al. 2009; Luo et al.
2010). A number of models have been developed that consider the influence of Temperature,
soil moisture deficit and the inorganic Cation Exchange Capacity (CEC) of the soil on the
general degradation of crop residue (Jenkinson 1990). Whether these models can be applied
to Australian conditions is still being researched (Howden and O'Leary 1997; Liu et al. 2009;
Li et al. 2010; Luo et al. 2011). Some of the capacities for Australian soils to accumulate
organic carbon have been reviewed by Baldock et al (2009), but it is still difficult to
determine the fractional component of stubble that will turnover into stable soil organic
carbon to the degree of confidence required for a soil carbon offset market. Hence there is a
balance of emissions factors involved (Table 9). If the stubble is burnt than it emits a known
estimate of carbon dioxide, methane and N>O based on the level of biomass. If the stubble is
retained than the N2O emissions associated with the microbial nitrification associated with
breakdown of organic material is counted as an emissions. However the carbon input is
uncertain so is not include in the equation. If it is to be considered it must be accounted via an

addition of carbon over time based on a standard measure taken at the start of the period.
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Table 9 Comparative emissions in tonnes of CO; equivalent for the management of wheat
residue per 100 hectares, based on IPCC guidelines and the Grains Greenhouse Accounting
Framework version 6 by Eckard & Armstrong (2009).

Action by Farmer | Emissions t CO2e /100 Sequestration | Net emissions t
hectares CO2e accounted
Stubble burnt 12.5 (methane & N20) nil 12.5
Stubble retained 4.4 (N20) unknown 4.4
Stubble removed Nil (moves to another nil 0.0
system)

The lack of a sequestration figure undervalues the basis of stubble retention in the system and
its contribution to soil organic carbon. The issue is understandably complicated by the
variability and fluctuations in the carbon cycle from the decomposition process of crop
stubble to stable humus fractions (Cogle et al. 1987a; Cogle et al. 1987b; Scharppenseel et al.
1992; Tan 2009).

From a national policy perspective it is possible to consider initiatives that are targeted to
farmers with the aim to retain stubble since there is an associated production benefit. In a
broader agricultural sense it is also possible to broadly estimate carbon inputs since crop
residue is estimated to contain approximately 40% carbon, and considering the ratio of grain
yield and vegetative yield, than using the harvest indices of the major cereal crop we can
make an estimate of the volume of stubble retained (Donald and Hamblin 1976). Using the
estimate of a general harvest index of 0.4 for the major cereals; wheat, barley, oats and
triticale (Kemanian et al. 2007), the 2010 Australian crop harvest returned 37,741,000 tonnes
of grain (GRDC 2012) and left a potential 56,584,500 tonnes of stubble after harvest prior to
burning or grazing, of which the 40% carbon component equates to 22,633,800 tonnes of
carbon. On a national area basis we could divide the tonnages of stubble by area of
production (23 million hectares) that tells us that in 2010 Australia averaged approximately
2.46tonnes of fresh grain stubble per hectare (0.984 tonnes of carbon). In 2007-08 the
Australian Bureau of Statistics survey indicated that only 43% of crop farmers (all sectors)
left their stubble intact, although this may not equate with area of production. Another 33%
ploughed the crop residue into the soil and 34% baled or grazed the stubble, covering 90% of

all land managed (Pink 2009). The area of stubble burnt from surveys suggest about 20% of
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the median area of cereal stubble was burnt (Llewellyn et al. 2009). Some attempts was also
made to estimate areas burnt using satellite technology to detect fire hot spots, but on the
whole accurate records of practices are not collected (Scott et al. 2010). Some states like
Western Australia and Queensland are less likely to use fire to remove residue (Pink 2009).
As the areas of production are highly variable, it is at this point that due to the margin of
errors in estimation that we lose track of the stubble impact on carbon inputs at the regional
scale without more consistent local data. The degree of the degradation of the stubble into the
more stable humus fraction of the soil carbon is another uncertainty that makes it difficult to

consider the carbon input into the soil system.

The burning of crop residue is only a small fraction of the national emissions (0.025%),
however it is a practice that can be changed for more beneficial agronomic reasons as
indicated previously, along with environmental benefits from reduced soil erosion (Malinda
1995; Govaerts et al. 2007; Anderson 2009; Scott et al. 2010). Stubble has a nutrient value
that can be returned to the farming system and can contribute to the soil organic matter in the
more productive years as oppose to an emissions liability from burning (Whitbread et al.
2000; Dalal and Chan 2001; Hulugalle and Weaver 2005; Bell et al. 2007; Dalal et al. 2011)
(figure 5).

Australia; Net CO,e Emissions (G-grams) (1,000 tonnes) from
the burning of wheat crop residue
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Figure 5 the pattern of emissions from stubble burning of wheat stubble. (Source: Australian
Greenhouse Emissions Information System, Department of Climate Change and Energy
Efficiency).
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Policy aimed at stubble retention needs to also consider the issue of pest and disease carry-
over in stubble which is an important agronomic consideration. An example that highlights
this issue is the yield impact of wheat following wheat rotations by such diseases as Yellow
Leaf Spot (Pyrenophora tritici-repentis), Crown Rot (Fusarium pseudograminearum) and
Take-all (Gaeumannomyces graminis var tritici) which can be a significant incentive for
stubble removal and this is one of the recommendations of the Grains Research &
Development Corporation (Scott et al. 2010; GRDC 2011a).

In summary grain stubble left after harvest will emit a measurable estimate of GHG
emissions as it breaks down, but it will also leave a component of carbon that is not easily
measured in the soil dependent on the volume of biomass. Grain stubble burnt emits
predominantly CO2, CH4 & N20, and leaves small amounts of mineral carbon but does not
contribute to labile organic carbon, but will contribute charcoal to the inert carbon pool.
Grain stubble grazed or taken off as feed transfers to another sector and reduces the
contribution to organic carbon except as manure from grazing animals which comes with a

component of N2O from enteric fermentation.

At present there is a need for measurable information on the value of stubble residue in the
carbon cycle and its role in the build-up of soil organic carbon. In dryland conditions it would

appear to be a slow cyclical process with potentially small gains over time.

4.7.3 Fertiliser management and emissions in broad-acre grain

Fertiliser application is the second largest emitter of agricultural GHG emissions as N2O,

accounting for 18 % of Australia’s agricultural emissions in 2012 (figure 6).
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Percentage of emission from agricultural sector

® Enteric fermentation

® Manure management

m Agricultural soils

m Prescribed burning of savannas

m Rice cultivation and field burning of agricultural residues

Figure 6 The percentage of emissions from the agricultural sector as accounted by the
Australian National Greenhouse Accounts in 2012.

Following fertiliser placement in the soil in the form of ammonium compounds the product is
transformed by urease bacteria to ammonia and ammonium; than to nitrates and N2O which is
released as a gas (Dalal et al. 2003; Addiscott 2004; Venterea et al. 2011). Fertiliser includes
both organic and inorganic sources and is predominantly centred on the nitrogen cycle. Early
farming practices involved a significant degree of cultivation and in doing so caused a
reduction in soil organic carbon, hence a net loss of nutrients, predominantly nitrogen,
phosphate and potassium (Dalal and Chan 2001). To manage the loss of nutrient in early
farming systems, cropping areas were spelled and rotated with other crops such as legumes,
new areas were exploited or manure was brought in. The advent of the manufacture of
inorganic fertiliser by means of the Haber-Bosch process for ammonia synthesis saw a more
cost effective way of replacing lost soil nitrogen (Addiscott 2004).

CHs + H20  (superheated at 750 - 850°C, over a nickel catalyst) = CO + 3H>
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N2 + 3H2 (Nitrogen added via heat exchanger) = 2NH3
(after Addiscott 2004)

The process was energy intensive, but the price of energy was cost effective relative to the
value of the product. The process saw an exponential increase in inorganic fertiliser from less
than 10 million tonnes of production before 1950 to approximately 80 million tonnes during
the next 50 years (Addiscott 2004).

This was followed by the mining of non-renewable phosphate rock deposits which is blended
into fertiliser products (Cordell and White 2010). Potassium is also mined from potash
deposits and imported (Johnston 2012). Mineral fertilisers provide the equivalent nutrient to
20 times the levels found in organic fertilisers on a tonnage basis, but does not include an
organic carbon component (Drew 2010). Australian farmers have become dependent on
manufactured and blended fertiliser as a more economical means of replacing the loss of soil

nutrient and this is reflect in the increase in demand (Figure 7).
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Figure 7 Volume of Nitrogen based fertiliser used by the farming sector over time (Source:
ABS, Australian National Accounts, National Income and Expenditure, cat. No. 5204.0,
Canberra; ABARES).

129



Inorganic fertiliser does not include organic carbon; the expectation is that farmers will
incorporate the organic carbon from the biomass produced. However with a predominance of
early cultivation, drought conditions and removal for animal feed, the levels of organic matter
in many cropping soils have dropped significantly from the original native soils (Young et al.
2009a; Chan et al. 2011). A study by Conservation Farmers on the Organic Carbon (OC)
content of 33 farmers in Western Queensland indicated an average of 0.92% OC in a range
from 0.01 to 1.9% (n=33)** (Conservation Farmers Incorporated 2010 data used with
permission). Native soils typically range from 1.15 to 2.2% depending on soil type and
rainfall (Sanderman et al. 2010).

Fertiliser is a significant input in Australian grain production, but it is the application of Urea
N that is the main source of emissions in the form of N2O (Freney 1997; Dalal et al. 2003;
Barton et al. 2008; Eckard and Armstrong 2009). The degree of N2O emitted per rate of
nitrogen fertiliser applied varies on the soil’s environmental conditions but has been set a
default figure by the United Nations Framework Convention on Climate Change of 1% where
local estimations are not available (UNFCCC 2007). The UNFCCC takes advice on emission
factors from the working party on EF data base. It is the responsibility of countries to
determine what the best EF’s are for their crops and environments. Australia has done this
through the research programs and a culmination of nitrous oxide data over the past 10 years.
This has been revised from a previous version of 1.25% established in 1996 (Dalal et al.
2003). Another factor that impacts on N2O emissions is the pH of the soil; Australia has 90
million hectares of agricultural land that is acidic and at risk of further land degradation
(Land Water Australia 1999). In current research Begum et al (2011) report a significant
decrease in N2O emissions by up to 70%, with a corresponding increase in CO2 emissions by

increasing pH from 5.0 to 8.0 (Begum et al. 2011).

The application of farm fertiliser can also be highly variable by region and does not always
result in a yield response. In a study of 35 paddocks in western Queensland | obtained
unpublished data from Conservation Farmers Incorporated to look at fertiliser application and
the associated yield responses that indicated significant variation in use patterns (figure 8).

The emissions of N2O were calculated using the Grains Greenhouse Accounting Framework

21 Data obtained from farmers soil test by Conservation Farmers Incorporated as part of GRDC research project CFI00009; used with
permission
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(GGAF) version 6 after Eckhardt & Armstrong (2009) showed that emissions did not

correlate well with yield response from applied fertiliser.

WHEAT - Methane and Nitrous Oxide Emission (t CO2 equiv) based on
fertiliser application to 35 paddocks (100 hectares equivalent) input using
GGAF model (Eckhard & Armstrong 2009)
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Figure 8 Fertiliser application data relative to yield from a sub sample of farms in Western
Queensland in the period 2005-07 (source: unpublished data from Conservation Farmers
Incorporated) analysed using Grain Greenhouse Accounting Framework V6 (Eckard and
Armstrong 2009).

It would suggest that applications of urea can be lost with no benefit to the crop and that
fertiliser management still has considerable room for improvement, being a source of
emissions with no guarantee of a corresponding yield gain. Fertiliser application is also one

of the higher inputs costs of farmers, although the emission profile of producing industrial
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fertiliser is standardised and measurable, its emissions characteristics on application to the

soil is highly variable.

The second main source of nitrogen input is from the use of manure, both composted and
raw. During the 2008-09 season industrial fertiliser prices increased dramatically in line with
oil prices at the time and farmers turned to manure from intensive livestock production in
their area as an alternative. The logistical cost of cartage and spread was being trialled and
farmers were encouraged with some increases in yield. The Australian Bureau of Statistics
estimates that farmers apply approximately 2.2 million tonnes of animal manure annually
over 717,500 hectares (Australian Bureau of Statistics 2007). The increase in the application
of animal manure as a source of nutrient was sparked by the sharp rise in fertiliser prices in

2008-09 which saw a subsequent decline in nitrogen consumption (Figure 9).

Patterns of Australian consumption and prices of nitrogenous fertiliser
1986-2009
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Figure 9 The consumption and price profiles for nitrogen fertiliser in Australia from 1987 —
2009 (Source: ABARES: Australian Commodity Statistics 2010).
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Apart from N2O emissions as a result of microbial de-nitrification of Nitrates (NO3) and the
nitrification of ammonium (NH4"), nitrogen plays an important role in building the necessary
biomass for conversion to soil organic carbon (Herridge 2011). The interlinking of the two
cycles means that nitrogen is important to the uptake of carbon in plants and that penalising
nitrogen consumption could reduce biomass accumulation which is required in building and
maintaining SOC (Lam et al. 2013).

4.7.4 Controlling machinery traffic on cropping soils

Limiting wheeled traffic on cropping soils achieves one very important agronomic benefit; it
reduces sub-soil compaction so that roots can exploit more of the soil environment (Tullberg
et al. 2007). Compaction not only limits the extent of root development, but also negatively
affects the population of macro-fauna such as earthworms (McKenzie et al. 2009). The
presence of flora and fauna also acts as a carbon sink in the soil environment and with less
compaction the activities of macro-fauna increases soil aeration, thereby limiting anaerobic
conditions (Krupenikov et al. 2011). Having the tractor wheels limited to a compacted lane
also reduces the tractors energy requirement compared to driving on soft soils. The use of
Control Traffic Farming (CTF) has been reported to reduce fuel consumption by a further
50% from Zero-Till systems (Tullberg 2009). At present the main measurable benefits of
CTF to reducing emissions involves a reductions in tractor energy requirements and hence
diesel consumption. The relevance of fuel consumption to emissions may also be
significantly altered with fuel switching to a source of biofuel. The indirect impact of CTF to
the exchange of soil GHG gases is less certain. Current field trials (unpublished) by Tullberg
comparing compacted planted areas and non-compacted areas indicates that significant
differences in emissions do exist in N2O emissions with a ratio of 5.5 (compacted) to 1 (non-
compacted) for 42 days after planting (J. Tullberg personal communication 2012). It is hoped
that future research may provide more information as to any direct correlation between CTF
systems and reduced N>O emissions from cropping paddocks. Given the agronomic benefits
of CTF; a direct emissions reductions benefit would indicate that a policy initiative targeted
at increasing the level of CTF within the cropping sector would provide sustainability
benefits to the industry given that less than 22% of crop farmers are operating on CTF
(Edwards et al. 2012).
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4.7.5 A return to crop rotations

Rotating crops by growing different types of plants sequentially in the same paddock has
been a long term practice of agriculture to reduce the build-up of pathogens and manage the
nutrient demand of different crops (Bailey 1996; Feller et al. 2003; Korstanje and Cuenya
2010). Under modern market pressures it is sometimes difficult for farmers to grow
alternative crops that have poorer cash returns despite the potential risk of carry-over plant
diseases (Godsey et al. 2007; Thomas et al. 2011). Legume production crops are widespread
components of rotations as a means of increasing nitrogen inputs or minimising the demands
from inorganic fertiliser (Whitbread et al. 2000; Lindemann and Glover 2003; Peoples and
Griffiths 2009; Herridge 2011). Farmers will also move from one crop to another depending
on market price; they will seek more profitable crop options if they are confident that they

know how to grow the crop (Thomas et al. 2011).

From an emissions perspective the main benefit of crop rotations is the option to grow crops
with larger biomass and the introduction of legume crops to reduce the demand for scope 3
emissions from synthetic nitrogen production. A larger biomass would also allow for a
greater level of carbon capture to increase organic matter if the stubble is retained (Roldan et
al. 2003; Schwenke 2005). Nitrogen is an essential element of plant nutrition but nitrogen
needs to be transformed to nitrate and ammonium before it can be taken up by the plant
(Jacobson et al. 1992). The value of legumes is that they can convert elemental nitrogen to
nitrates using a nitrogenase enzyme (Herridge 2011). This is a much slower but more energy
efficient process than the industrial Haber-Bosch process which requires a great deal of
energy, mostly generated by fossil fuel (Roldan et al. 2003; Addiscott 2004; Dalal and Wang
2010; Huth et al. 2010).

The value of legumes in supplying soil nitrogen for following crops is well known to farmers
but the economics of introducing a legume crop is not always acceptable when grain prices
are high and pulse grains from legume crops low (Lindemann and Glover 2003). Grain
seasonal prices have varied as much as 200% since 2004-05 with some legumes having
similar variations not necessarily in tandem, resulting in variable production volumes and a
gradual decrease in the area planted to pulses in general over the last decade (O'Connell

2010). Some of the more effective legume crops for fixing nitrogen are not always the most
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economical from a production point of view (Lindemann and Glover 2003; Thomas et al.
2011).

A policy option that supports the introduction of legumes to reduce nitrogen demand below
standard application can significantly reduce N2O and methane emissions which are potent
greenhouse gases (Eckard and Armstrong 2009). However choice of crops based on
emissions is not the same as crops chosen for profit maximisation or risk management; it is
introducing another element in the choice process. Managing agricultural emissions by
influencing the choice of crops would require some form of incentive in competition with the
grain market. | suggest that the demand for a grain crop has limitations and incentivising
growers to grow legumes could create an oversupply and destabilise the pulse market. There
would be less market consequences to return the crop to the ground as a cover crop since
legume residue breaks down more easily than cereal stubble (Herridge 2011; Zhou et al.
2012).

4.7.6 Cover cropping to protect and restore fragile soils

Cover crops are defined as crops which are not harvested, but grown during a potential fallow
phase. The crop, sometimes referred to as a green manure crop is sacrificed to protect the soil
from erosion, to build up organic matter or as part of an integrated pest management system
(Dabney et al. 2001). The added benefits of cover cropping are similar to crop residue
retention in improving soil structure and infiltration; most of which relate to the increase in
organic matter (Jacobson et al. 1992). Soil condition, Temperature and moisture play an
important role in establishment of cover crops (Dabney et al. 2001).

From an emissions perspective the main benefit of cover cropping is the potential increase in
soil organic carbon from the addition of organic matter (Veenstra et al. 2007). The amount of
organic carbon would depend significantly on the quality of the cover crop chosen, available
moisture and nutrients (Herridge 2011; Zhou et al. 2012). There is some uncertainty in a
greenhouse gas budget evaluation as to the final benefits given the N2.O and methane
emissions from vegetation decay when balance against the carbon sequestration component
(Baggs et al. 2000; Bavin et al. 2009; Gomes et al. 2009). Fertilisers to produce the cover

crop will increase respiration and N2O emissions (Eckard and Armstrong 2009). Where the
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cover crop involves a legume, some of this risk is mitigated with an increase in total soil

nitrogen thereby reducing demand for inorganic nitrogenous fertiliser (Gomes et al. 2009).

From a farming perspective cover crops have a number of conflicting considerations;
involving the long term soil management benefits versus the cost of implementation (Butler
2008). As there is no harvestable produce, there is no resulting cash flow. Subsequently the
level of cover crop adoption is limited as farmers are likely to consider potential returns on
investment (Dabney et al. 2001). In policy terms if the value of cover cropping is arguably
beneficial from an emissions perspective, which is not yet clear, than there is an option for
operating an emissions reductions scheme on the basis of ‘additionality’. The major issue will
still involve a measure of the units of emissions as the main benefit would be carbon
sequestration not emissions reductions in the form of N>O or methane. | noted that the
perceived value of soil organic carbon is increasing amongst farmers and in parts of the US
the use of cover cropping has increased from 62,000 acres in 2008 to 301,000 acres in 2013
(Myers et al. 2013).

4.7.7 Emerging Precision Agriculture technologies

Precision Agriculture (PA) involves the application of Global Navigation Satellite System
(GNSS) to the deployment of farm machinery. Often other software are integrated to locate
position for specific operations such as fertiliser or herbicide application (Cook and Bramley
2000; Mayfield and Trengrove 2009). Mostly farm operations are set as a series of paddock
management zones; where each paddock is a crop portfolio based on physical landscape or
historical consideration. Traditionally paddock zones are treated uniformly from a machine
operation perspective, ignoring soil type, moisture conditions or weed populations. The
ability of being able to integrate proximal and remote sensors on a farm map to gain detailed
paddock information so as to deploy farm inputs more accurately has interested farmers in
managing increasingly expensive resources such as fertilisers (Cook and Bramley 2000;
Chanet et al. 2005; Rochecouste 2009; Bloomer and Powrie 2011). The value of the
technologies aggregated under the name ‘Precision Agriculture’ to emissions reductions is
their capacity to report on current practices and that opens the way to improve farm
efficiency (Cook and Bramley 2000; Bloomer and Powrie 2011). Part of the aim of PA is to

reduce the input cost of resources by placing only “what is needed, where it is needed”
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(Bloomer and Powrie 2011). I believe that improving fertiliser management in particular can
have a significant and measurable reduction in N2O emissions given its correlation with N2O
emissions. It is not about simply ‘more’ or ‘less’ fertiliser but reducing fertiliser waste and
maximising plant uptake; thereby using less fertiliser per unit of production (Whitlock 2006;
Whelan et al. 2009).

Agronomic advisors have been supportive of supplying case examples of fertiliser efficiency
that can be achieved on the farm. The expanding role of Geographic Information Systems

(Sappington 2000) are increasingly being used for:

1. Automation of processes previously managed by hand or other technologies

2. Cartography the production of more informative and detailed maps

3. Decision planning — where maps are created for planning purposes in order to
visualise and analyse data for planning purposes

4. Inventory of natural resources assets such animals, vegetation, water supplies

5. Modelling of scientific concepts

The yield from any crop can be obtained using the on-board yield monitor and with several
seasons of historical data, it can be averaged to give the mean normalised yield data for that
field (Figure 10).
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Figure 10 (Left) yield data collected at harvest from in cabin yield monitor (centre). Several
years of data can be averaged to provide a normalised yield map of the field (right). Red-orange
low yields (< 1.5 tonnes/ha), blue high yields > 2 tonnes/ha). (Source T. Neale
Precisionagriculture.com.au used with permission)
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In the example shown above the red orange area is consistently showing below average yield
while the bottom blue-green area is more consistently producing better yields. The reason for

this variation can be explored further for the likely problems associated with this response.

This level of detail is designed to match fertiliser requirement to the production capacity of
the field. If the on farm trials (Figure 11) indicate that the more consistent higher yielding
areas can deliver higher yields, this would indicate there is value in adding more fertiliser; if
low yielding areas fail to respond to higher applications than it is more efficient to minimise
the levels of inputs (Figure 12). Since nitrogen fertiliser is proportionally linked to N2O
emissions than any fertiliser not taken up by the plant ends up as an externality to the system
by either polluting waterways or the atmosphere. Such a waste can be regarded as avoidable

emissions.
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Figure 11 (Left) The degree of variability in the yield history can be analysed to determine the
degree of stability in the data to predict stable areas of ‘below average’, ‘average’ and ‘above
average’ yields. (Right) A range of fertiliser rates can be applied in trial strips to determine
response. (Source T. Neale Precisionagriculture.com.au used with permission)

138



bl .

P, R
\‘ 3
. *
n = .
LY
s \
5 ‘ :
N N . B
b T
Legend v - . Tl
o e AR
kg/ha . - .q, ','
[ R4 by
@ 1
@ 4
@ « [

Figure 12 Prescription maps can be produced based on the trial results that will operate the
fertiliser applicator to vary the amount of fertiliser to be applied to various parts of the field.
This can deployed to different levels of accuracy such as a simple three zone system (Left) or a
more complex system that delivers fertiliser to more exacting requirements (Right). (Source T.
Neale Precisionagriculture.com.au used with permission)

It was evident from figure 8 previously in section 4.7.3 that the addition of fertiliser does not
always result in yield increases and an average application of 100 -120Kg urea per hectare
could create approximately 140kg of CO.e /hectare and cost the farmer about $84
AUD/hectare for no discernible benefit in grain production. Any practice that can reduce the
wastage of fertiliser can make a worthwhile contribution to emissions reductions per tonne of
production; which is not the same as a net reduction in fertiliser use. However the more
fertiliser is taken up by the plant, the less is left to go into the atmosphere and the more

biomass in increased that can contribute to SOC.

The cost of entry into a PA system is variable depending on where a farmer is in the
purchase of machinery cycle, but new equipment such as yield monitors, have been
incorporated as a standard feature of new harvesters. This simplifies the entry process of
using new technology as it is no longer an after sale add-on system. Farm efficiency can also
refer to a reduced requirement for diesel fuel as operational logistics are reorganised to
manage fuel savings. Where less fertiliser or chemicals based on more accurate crop

demands is required, the amount of tractor hours is reduced.

A PA system also has important consideration from an emissions management perspective;

apart from the direct energy management side, they introduce the means to provide reports
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for monitoring and evaluation purposes. Indeed one of their primary commercial function
was to collect activity data in digital format for farm reporting, analysis and planning
(Rochecouste 2009). That digital capacity could also be used as a monitoring and evaluation
tool in reporting to market investors for abatement projects. At the research level the
combination of proximal sensors combined with a geo-referencing technology can provide

detailed spatial recordings of soil profile changes (Adamchuk et al. 2004).

In summary digital technology combined with a spatial referencing system can help improve

the efficiency of resource deployment.

4.7.8 Rediscovering the role of manure (recycled organics)

Recycled organics is a general term for products derived from garden and food waste,
biosolids, animal industry effluent; the product is either as a raw product (waste or manure)
or as a composted material (recycled organics)(Gibson et al. 2002; GRDC 2010). Composted
quality is defined by an Australian standard (Standards Australia, 1999%2). The artificial
composting process is a shorter more controlled process than the natural decomposition and
decay of organic material (Epstein 1997). Many agricultural soils in Australia have depleted
levels of soil organic carbon in comparison to their natural states, and therefore it is perceived
to have a potential capacity to sequester a significant amount of carbon (Dalal and Chan
2001; Chan et al. 2003; Chan et al. 2008; Kirchhof and Daniels 2009; McHenry 2009).
Another option to stubble retention and green manure crops is to introduce soil organic
carbon to the field from recycled organics (Gibson et al. 2002; Calcino et al. 2009). The
process of recycling waste streams has been used as part of agriculture for centuries. In the
last two centuries with the growth of cities it became more efficacious to dispose of waste
stream in central locations, rather than disperse the waste across a multitude of farms over
large areas. Modern cities and industrial processes also introduced industrial contamination
such as heavy metals to waste streams which was problematic from an agricultural
perspective (Chen et al. 2010; Pritchard et al. 2010). These contaminants compounded with
potential health issues of transferring diseases would have required extra costs to sanitise

waste streams as well as allowing for transport and spreading (Barry and Bell 2006).

22 Standards Australia 1999. Australian Standard AS 4454-1999. Composts, soil conditioners and mulches.
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This change in old world practice means where a significant proportion of farm produce
(food waste) ends up in non-recycled waste streams is common to most cities. Recent
research has being undertaken to look at the capacity of agriculture to take biosolids from the
urban areas (Barry and Bell 2006). The major issue of concern is soil quality being
compromised by heavy metal contamination and the cost of transport and spreading material
that has a low value with a high water component. The value is limited by what farmers can

afford in competition with inorganic fertilisers.

In recent times local government are increasingly creating other waste stream in the form of
modified green waste to reduce the rising cost of landfill. The green waste has low nutrient
value but can be bulked with biosolids to produce alternative product options (Barry and Bell
2006). Most commonly waste stream from animal industries, including cattle feedlot,

piggeries and poultry sheds areas being diverted to cropping agriculture as an alternative to

synthetic fertilisers (Figure 13).

Figure 13 Manure being loaded on spreader for field application (left) and spreading process
(right) (source: Conservation Farmers Inc.)

Only a part of the applied recycled organics actually remains as soil carbon but there is
limited data available in Australia on the fraction retained based on various recycled waste
material (Gibson et al. 2002, Slattery et. al 2002). Manure prior to a composting process
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emits a number of greenhouse gases including methane and carbon dioxide. From an
agricultural emissions management perspective, recycling organic material does provide an
opportunity to increase soil organic carbon despite the uncertainty on measurements
(Sanderman et al. 2010).

4.8 Policy consideration

Whilst farmers may willingly change farming practices such as reducing tillage of their own
volition, this will usually take decades for the practice to be commonplace (Llewellyn et al.
2009). In some instances, the policy agenda may require a shorter cycle based on the
emissions reductions commitments of a government to climate change targets. In
circumstances where the time frame for change in practices is likely to be too long to meet
committed targets, some form of policy intervention will most likely be required to accelerate
changes. A policy consideration when encouraging changes of farm practices to reduce
emissions in cropping is that both the carbon and nitrogen cycle in plant production needs to
be considered. In such a complex system a careful examination of consequences is required
to consider whether policy intervention is needed or even possible, and if so where it might
be most relevant to intervene. There are circumstances where farmer’s goals are in line with
carbon policy such as yield maximisation and biomass (carbon) accumulation. The
government is looking to increased soil organic carbon in long term carbon pools but needs
biomass to initiate the process. Since biomass is a function of yield; farmers most often seek
to maximise yield in the expectation of realising a profit. However there are also some
potential conflicts; grain being a commodity product means that farmers are likely to base
their decision of crop choice and input requirements on the anticipated return for the
commaodity, not the volume of biomass it produces. Also growing of big biomass crops
means that there is a large amount of stubble to sow into with the next season’s crop. Dealing
with big stubble loads is an on-going issue for conservation agriculture farmers who often
rely on old practices (e.g. burning) to alleviate the problem and deal with slugs and crop

diseases in wet years.

The degree of uncertainty of agricultural commodity prices and seasonal weather influences
also results in unpredictable profit risk for a producer, therefore it is likely that farmers are

not focussed on reducing GHG emissions of the inputs required, but are more focussed on
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increasing yield (biomass) at the lowest input cost. While the farmer’s goals and policy
agenda may at times have similar direction (figure 14), farmers are less likely to be concerned
about the emissions implication and more concerned about profitability. However as
previously reported emissions are often a by-product of inefficiency and certain farming
systems by reducing waste and associated costs are also reducing emissions. This is evident
in the CA systems where reduced tillage, reducing soil compaction, stubble management,
legume rotation, introducing cover crops, and precision delivery of inputs with aim of
improving long term soil health is also reducing emissions (Butler 2008). A question for
consideration is whether such an integrated system is capable of delivering improved

agricultural production and emissions efficiency in line with government policy.

- ‘ Increase yield Reduce cost

Government
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policy agenda biomass emission
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Reduce tillage and soil compaction

Improve nitrogen use efficiency
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Figure 14 Alignment of government and farmer interest in outcomes and the farming practices
that might be considered supportive of both outcomes.

Another factor for policy consideration is whether to apply a direct or an indirect policy
instrument. A direct policy instrument seeks to make changes in practices directly at the

source of change required and may use a ‘command and control’ process such as penalising a
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pollutant source (taxing fertiliser) or incentive payment for taking up a product such as
fertilisers with urease inhibitors (Horan and Shortle 2001). Other policy alternatives are more
indirect and can also be either a penalising process on incentivising process. The introduction
of an additional tax offset for reduced tillage equipment is an example of an indirect incentive
on an input to tillage practices. In this instance the policy is seeking to introduce an incentive
for taking up reduced tillage by offering a financial reward. Reducing tillage is not the same
as reducing emissions but indirectly reducing tillage is accepted as reducing organic matter
mineralisation leading to soil emissions. The accepted linkage is deemed to be sufficient that
an uptake of no-till equipment will lead to a reduction in tillage, which will in turn lead to a
reduction in emissions. Such an indirect process can apply to a range of farm practices but

needs careful consideration to avoid unintended consequences.

The issue of applying a direct policy penalty is that it is generally unpopular and needs to be
enforceable which can also be expensive and be difficult to implement (Cocklin et al. 2007).
Indirect intervention in the market is another option; in the state of Victoria the government
has taken on the role of providing farmers access to accurate guidance (RTK correction) for
farm practices, which is required to be commercially purchased by individual farmers in other
states. In doing so Victorian farmers are able to take up Precision Agriculture at reduced cost

in comparison to their interstate counterpart (Millner et al. 2007).

The government has a range of options to interfere in the market place, however doing so
often has social consequences and can be costly. In a democracy, negative social impacts tend
to have an impact on potential re-election, so the impact of any policy or legislation is usually
thoroughly considered through consultation with stakeholders (Gourley and Ridley 2005).
Financial incentives are likely to be more popular but must be affordable. A breakdown of
policy framework is considered in Table 10. Whatever approach or drivers are used, the

policy should be measureable and accountable for the outcome being delivered.

Table 10 Policy approaches and drivers to influencing farming practices

Approach
Direct Indirect
_ Penalty Taxes, Levies on emissions Taxes on contributing inputs or
priver directly markets
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Incentive | Rebate and subsidies on Rebates and subsidies on
emissions reductions selected inputs. Levy on

markets to support output.

Policy development can be further complicated by policy initiatives that are in place for other
outcomes by either another government department or a different level of government. It is
possible for policies to be in some degree of conflict that reduces the outcomes anticipated.
This is evident when production goals and environmental goals do not account for each other
(Abler and Shortle 2001).

Climate policy options might explore areas where farm efficiency would also result in a
potential reduction in emissions. Options for consideration might include a range of practices
for nitrogen use efficiency leading to a reduction in N>O emissions relative to grain
production (figure 15 & 16). Production is still an important consideration so crop input
efficiency is the outcome in this instance, rather than a direct net decrease in fertiliser

consumption.

Nitrogen use efficiency policy option

Aim of policy would be to increase the relative yield outcome per tonne of nitrogen. Less
nitrogen is lost with a higher proportion ending up in plant biomass. In doing so biomass
volume is increased with a greater opportunity to increase soil organic carbon portion.
This may not result in a net decrease in fertilise usage.

Support a CORS national network to increase the uptake of Precision agriculture
and the use of Variable Rate Application of fertilisers to reduce field variability

Support the cost of soil testing prior to seasonal fertiliser application

Require fertiliser management plan and record application data

Support an environmental marketfor legume cover cropping to increase soil
nitrogen and organic matter

Figure 15 Some policy consideration for reducing nitrogen waste by improving nitrogen
efficiency
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Figure 16 Some potential farm practices for improving nitrogen efficiency include regular soil
testing, the use of VVariable Rate Application, supporting Global Navigation Satellite System
with correction station for highly accurate guidance and legume crop rotation. (Source photos J.
Rochecouste)

4.9 The issue of data variability and the potential policy implication

Policy development is largely dependent on the quality of the data supporting the argument
for intervention. Where such data is not directly or easily available some forms of estimates
and proxies may be used with risk that it may draw erroneous conclusions. Agriculture is
highly variable and the grains industry exemplifies this degree of variability (Malcolm et al.
2009). Both soil and climate can dictate the farming practices that are available to a farmer.
The soil environment which is one the main factors driving GHG emissions and
sequestration, is highly variable in terms of its physical, chemical and biological capacity
(McKenzie et al. 2000). Such variability makes for a very unstable base from which to
develop national policy. Across the grains industry this can vary from the high clay content of
the vertosols on the Queensland Darling Downs to the mostly sandy loams of Western
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Australia; therefore policy that is seeking to uniformly change a practice has to accept a high
degree of variability in outcome. It is therefore problematic for policies such as increasing
soil carbon to have equal opportunity across such a variable environment. Another important
factor of the grain growing regions is moisture; its availability, timing and intensity. Grain
production is predominantly reliant on incidental rainfall rather than irrigation, and available
moisture has significant impact on biomass accumulation, soil biomass decay, emissions of
gases and carbon retention. Another significant factor in variability is climate cycles, such as
‘la Nina’ and ‘El Nino’ which determines temperature, evaporative index and retained
moisture. Drought years will have little opportunity for biomass accumulation, while wet
years will drive high biomass accumulation but also increase the incident of disease carry-

over that requires burning of residues.

Beyond the variability of the biophysical factors of the farm, an individual farmer’s practice
is inherently variable, based on local conditions and their own view of farming (Vanclay
2004). While such things as fertiliser may fit within a range, agrochemicals such as herbicide
and fungicides rarely do and can vary significantly based on seasons and local conditions. In
an analysis of scope 3 emissions from herbicide use for 30 farms across South West
Queensland, using energy values reported by Helsel (1992) indicated variations from 0 to
195.1 KgCOze/hectare (see chapter 7). The policy implication is that creating environmental
markets for emissions that are mostly reliant on non-mechanical processes in a highly
variable environment is unlikely to produce the type of certainty that markets expect (Kimble
et al. 2002; Antle and Stoorvogel 2009; Walcott et al. 2009; Sanderman and Baldock 2010).
This leads to the problem of what other alternatives can policy development take, knowing
that a number of assumptions are going to have to be made. Developing policy under these
types of interactive complexity is perhaps best considered by using a systems thinking
approach (Checkland 1999; Sherwood 2002; Bosch et al. 2007). ‘Systems thinking’
recognises that complexity is an inherent part of dealing with wide ranging policy areas like
climate change. It attempts to consider the issue as a whole so as to avoid conflicting isolated
silo mentalities, where fixing the problem in one area may simply push the problem to
another area (Sherwood 2002). In the following chapters | will examine emissions from the
cropping system as a whole and consider the various drivers influencing emissions from the

CA practices as sub-systems.
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4.10 A review of CA practices and potential for emissions reductions from
dryland agriculture

If CA practices have potential for reducing agricultural emissions than it is worth considering
to what extent it is already part of normal agricultural practice. In terms of abatement
projects, under the IPCC guidelines which have been adopted by the Carbon Farming
Initiative, projects cannot claim carbon credits if it involves a change of practice that is
considered ‘common practice’ within the industry. Abatement projects are expected to go

beyond ‘common practice’ under what is termed an ‘Additionality’ test to standard practice
(Woodhams et al. 2012).

The proposed ‘common practice’ framework recommends that a practice that falls below 5
per cent of activities by farmers may be deemed ‘additional’; if the level of adoption is above
20 per cent then the practice is deemed to be ‘non-additional” (Woodhams et al. 2012). This
was drafted to give the market confidence that they were not paying industries for what is
deemed commercial interest activities. This means that abatement projects could not apply to
changing agricultural practices that are already at levels of 20% adoption or above and
effectively rules out a carbon market initiative for the adoption of most CA practices.
Depending on the likely emissions reductions value of the change it seems that foregoing a
further 80% in the short term seems somewhat premature given the difficulties getting
practice change in agricultural industries and the statement by the UNFCCC for action sooner
rather than later. The key to evaluating the validity of this rule in regards to the climate
change imperative is perhaps to put a carbon emissions reduction value on the remaining

percentage not adopted (Table 11).

Table 11 Percentage uptake of practice within the grains industry in 2011 (Edwards et al. 2012)
and the potential abatement value of changing farming practices.

System Estimated | Potential abatement value based on 23 million
uptake hectares (m ha) of production

No-till (<25% 60% In terms of carbon (C) loss from tillage using a

soil disturbance) conservative estimate of 0.139 tonne C ha® /year (Lam
(13.8m ha) et al. 2013). Of the remaining 9.2m ha, this would

The balance provide an estimated potential of 1.2m tonnes of

reflects a

carbon net loss from mineralisation per year.
combination of
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minimum till,
direct seeding or

conventional

tillage

Full stubble 60.5% The Australian grain crop produces about 22.6m tonnes

retention of carbon or 0.98 tonnes of carbon per hectare as crop

(13.9m ha) residue. Only a small fraction of this carbon potentially

(Defined as stabilises to a humus fraction (excluding biota). Figures

stubble retained from the NSW DPI AgNote DPI — 464 suggest that

to next planting retaining stubble rather than burning it can sequester

but may include 70-90 kg C ha™/year. A more recent meta-analysis by

some grazing) Lam et al. (2013) suggests a figure of 62 kg C ha’
Yfyear. For the balance of 9m ha, this would equate to a
potential 558,000 tonnes of carbon that needs attention.
It is not clear from the percentage land area where
stubble is not fully retained to planting, how much
carbon is lost, but at least 3m ha was burnt in 2011.

Legume rotation | 6.8% It is not suggested that cereals be replaced by legumes

but the inclusion of legumes in a 1:4 year rotation
would add 0.25 of the estimated 110 kg N/ha (Herridge
2011) and equates to about 28kg of N per year across
23m hectares and represents 0.635m tonnes of
Urea/year that is otherwise produced from fossil fuel as
a scope 3 emissions. The exact abatement potential is
uncertain as legume production is limited by the

market volume from export demand.

NSW DPI AgNote DPI — 464 also suggests that
legumes can sequester up to 150 kg C haY/year. If only
0.25 of the full cropping area was planted to legumes
once in every four years that would represent about

862,500 tonnes of carbon per year.
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Controlled traffic | 21.1% There is indication that compacted soils emit higher
farming (CTF) rates of N2O than non-compacted soils and that CTF
(4.85m ha) reduces overall soil N.O emissions by limiting

(Itis unclear if compaction to a small section of the field. The amounts

this represents involved are not able to be calculated at this time. CTF

all farm also reduces fuel consumption per hectare to about

machinery or 50% less than non-CTF fields, noting that definitions

only some of the of CTF are often perceived differently by farmers and

machinery, surveys do not always pick up the variations. What this

noting that a represents in abatement terms is still unknown without

single pass further research.

creates

compaction)

Precision 8.1% Although the use of auto-steer guidance requiring

agriculture use of precise GPS capacity is at 66.7% adoption, VRT use is

variable rate (1.9m ha) still quite low. Efficiency gains are primarily measured

technology in production terms of nitrogen use efficiency. This can

(VRT) to represent an increase in the efficiency of fertiliser use,

fertilising reducing waste of an intensive energy manufactured

operations product. The value to abatement is still unclear without
further research.

Use of recycled unknown According to the Grains Research and Development

organics Corporation (2010). The annual volume of recycled
organic fertilisers produce from industry waste is in the
order of 5.21m tonnes. The carbon fraction is highly
variable but represents about 35% dry weight. The N2O
emissions value of uncomposted manure brought on-
farm is unknown. This represents a recycling of about
1.8m tonnes of carbon per year. There is a complex
balance of emissions options associated with intensive
animal industry.

Cover cropping* | <1% Cover cropping is the addition of soil organic carbon

in rotation

inputs as a green manure crop. The amount varies
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considerably depending on the cover crop chosen. The
introduction of a cover crop in the production cycle is

limited by available soil moisture and cover crop

produces no cash-flow for farmers.

* The following has not been included in any recent surveys and is not accepted practice within the industry. Only a very small number of

growers practice cover cropping.

Table 11 is not intended as a detailed analysis of available carbon credit, indeed there are
many complications in relation to the bio-physical factors existing on farms and the
interaction of the Carbon-Nitrogen ratio. Nevertheless from a policy perspective it does ask
the question whether excluding the balance of practice change is perhaps missing an
opportunity for low cost abatement, given the land sector is still a key option for sequestering
carbon. It seems the additionality framework is predicated on farmers acting as ‘firms’ and
there has been some suggestions by sociologists that while farmers prefer to operate within an
economic framework; they do not entirely fit the economic behaviour of a ‘firm’ (Vanclay
and lawrence 1995; Vanclay 2004; Egan 2008). It is also evident that individual farms are
unlikely to have sufficient carbon credits to warrant the required compliance effort; estimates
for emissions from a typical grain farm is in the vicinity of 660 tonnes of COze (Keogh 2007)
from fertiliser, fuel, soils and stubble burning. Any decrease from that level as an abatement
opportunity is not going to provide much in the way of returns when compared to grains.
Their value is perhaps more as an industry sector than as individual enterprises.

Estimates by Tiessen et al in a review of the literature suggests that grain operations using
conventional cultivation lose about 1% of their Soil Organic Carbon (SOC) stocks per year
(Tiessen et al. 1981). A number of studies have indicated that under Australian conditions
reducing tillage achieved little in the way of increasing SOC but did significantly reduce the
depletion of SOC stocks (Dalal and Chan 2001; Chan et al. 2003; Wang and Dalal 2006; Luo
et al. 2010). A soil baseline measurement of Carbon stock (Cs, t/ha) for an Eastern Australian
vertosol in 1994 by Young was recorded at 25.35 t/ha (average of A & B horizon) and 6
years later recorded 25.9 t/ha under reduced tillage (Young et al. 2009a). If we consider the
impact of tillage since 1990 when the date established for quantification by the Kyoto
protocol, when conventional tillage practices in Australia was at about 20% (LIlewellyn et al.
2009). A ‘Business as Usual’ case using conventional tillage would have meant a depletion
of SOC of about 5 tonnes per hectare more than CA over a 21 year period (Figure 17). This

is not significant on an individual farm basis, but in national terms the potential for reducing
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carbon loss from the soil can conservatively be estimated using 50% of the calculated
estimated loses (i.e. 2.5 tonnes/hectare ) over the Australian cropping area (23 million
hectares) it could be in the order of 57.5 million tonnes of carbon depletion. These can only
be broad estimates given the variability of biophysical factors across Australia. However it
does point to the likelihood that at the national level there is some externality benefit to be

gained by encouraging farmers to reduce tillage.

A potential pattern of change in SOC stocks changing farm practices
from conventional to zero-till

30
25 === oo o __
Q -----------------
§ 20 = == SOC stocks
§ (t/ha)
o 15 conventional
o .
B tillage
O
S 10
%]
5
e SOC stocks
0 (t/ha) reduced
O 1 N M T O~ 0HDO 1 AN MTL O~ 00 O tlllage
OO OO O O OO O OO0 00O dHd
D OO OO OO O)O) O OO OO OO0 OO O O O
T AN AN AN AN NN ANANANNN N

Figure 17 Estimated loss of carbon from conventional tillage over time (adapted from Young et
al 2009a)

At present Australia is unable to include these abatement options in the national accounts in
the national accounts as part of the Kyoto agreement. Under Acrticle 3.4 of the Kyoto protocol
which allows changes in practices such as going from conventional tillage to reduced tillage
to gain credits it must conform to set accounting rules that compare net baseline values of soil
carbon against future net values, after discounting for any on-farm emissions. As yet we do
not have clear baselines of soil C stocks from 1990 across the various soil types. Australia is
also subject to drought and bushfires that can significantly increase on-farm emissions
relative to the likely increase in soil carbon and this was seen as too great a risk for Australian
agriculture and Australia has therefore not previously signed up to Article 3.4 as part of its

Kyoto obligation.
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Given that farmers are not currently liable for their emissions and the continuing uncertainty
around compliance, legal liabilities, low carbon price and transaction costs, it would seem
that the most rational use of their limited time would be to be improving their production
efficiency. The net result is that the majority of farmers under the current market condition

are unlikely to participate as individuals in carbon farming opportunities.

Summary

In terms of a rural climate change policy target, the farm boundary is the scope 1 emissions
emanating from the operational activities under the influence of the farm manager. We note
that farms can be either an emitter of GHG or a source of sequestration for carbon depending
on practices. They are not however, required to report their emissions liabilities; which are
highly variable, based on bio-chemical processes and are difficult to record. The need for
policy intervention is highlighted by the perception that farmers are more concerned with
immediate production issues and less concerned about looking for ways to reduce climate
change externalities. Emissions, predominantly CO> and N2O come from a range of sources
and are difficult to measure, relying on approximations (default factors from models). This
creates reporting issues in terms of accuracy and linking policy with changes that will reduce
emissions. Practices and the need for changes are better understood by farmers under a
farming system paradigm. The opportunity for carbon sequestration is highly variable and
cyclical in cropping systems, which creates issues with measurements and reporting of
emissions. | note that only some emissions are accounted for by the National Accounts, the
major contributions from cropping in terms of carbon loss to the atmosphere is from earlier
land clearing, tillage of the soil, applied fertiliser and the burning of crop residues. CA
practices advocates reducing tillage, retaining stubble, improving fertiliser efficiency and
building soil health that is more resilient. These activities may reduce emissions and carbon
loss. This tells us that CA practices reduce a certain degree of emissions even accounting for
leakage factors, but it is difficult to measure at a farm scale. Adoption of CA practices would
reduce an uncertain level of emissions and in the preceding chapter I consider the

characteristics of the farming systems and what the drivers to adoption are.

It is acknowledged that CA practices like all farming operations will have variability and
cannot provide a consistent abatement unit, especially at farm level. | feel that broad adoption
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of CA will contribute towards an emission reduction, albeit not directly measurable. We

noted that the Canadian model operated on an approximation of emission reduction across
region based on a farm practice change (see section 3.3.3). Similarly, it may be possible to
make a conservative estimate of the emission benefits associated with the level of practice

change in Australian agriculture that would contribute to the national accounts.
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5.0 AREVIEW OF SYSTEMS AND ADOPTION FACTORS IN
AGRICULTURAL INDUSTRIES

The previous sections outlined the variables influencing GHG emissions in CA practices in
Australia. Most of the focus on CA to date has centred on tillage practices and stubble
retention (Murphy et al. 2011). However with many farmers having already adopted no-till
and stubble retention, growers have turned their attention to other CA practices as outlined in
section 4.7.4 to 4.7.8 (Tullberg et al. 2007; Butler 2008; Llewellyn et al. 2009; Robertson et
al. 2012).

Where a practice change shows a net reductions in emissions it can be considered that
adopting such a practice will contribute to an overall reduction in agriculture’s emission
profile. The degree of emissions is likely to remain uncertain due to the variations in farming
practices and the environmental conditions prevailing at the time as outlined in section 4.7.1.
Some estimates can be made on a regional scale but is unlikely to be useful for accounting
emissions on individual farms. From a market supply perspective the supply of units of
abatement is more efficient from an aggregate of individual farms since typical family farms
do not produce sufficiently large volumes of emissions in their own right to cover the cost of
transaction (Keogh 2007). Even at this level the variability in accounting for emissions is
likely to add to the cost of compliance. Knowing the emissions characteristics of a practice is
only part of the equation in policy terms; policy needs to consider how such practices are
likely to be adopted. I place a strong emphasis on adoption and drivers of adoption in this
policy analysis since without adoption of practice change there is no resulting change in

emissions.

I maintain that policy development intending to create changes in farming practices for
whatever purpose needs to consider the system characteristics of the industry sector, what
drives management decisions and activities within the system, the reaction of the actors and
institutions in the system as well the resources and flows into and out of the system. In the
following chapter I consider the theory of adoption and analyse the system characteristics of
the dryland grain production sector.

This chapter draws its conclusions from the interpretation of Government data such as the

Australian Bureau of Agriculture Resource Economics and Sciences, The Australian Bureau
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of Statistics, the literature and engagement from industry. For more details refer to research

question 3 under Methodology in section 3.1.

5.1 Adoption theory in Agriculture

Adoption of new agricultural practices is regarded as a key aspect of reducing emissions; it is
therefore relevant to understand how adoption takes place in the agricultural sector. The early
theoretical and empirical literature on the adoption of agricultural innovations has studied
how new farming technologies such as new crop varieties was adopted by farmers as part of
the ‘Green Revolution’ (Feder and Umali 1993). The main focus of early studies was
predominantly on increasing yield, rather than a balance of productivity and environmental
outcomes. According to a review by Feder & Umali (1993) the diffusion cycle of innovations
in agriculture is strongly impacted by the agro-climatic environment which is in some sense
related to the likely responses that can be achieved given the conditions where the farm is
operating. Their findings is supported by examples in the Australian broad-acre grain
cropping sector by the greater pace of adoption of ‘no-till’ practices in the more arid
conditions of Western Australia compared to the higher rainfall of Eastern & Southern NSW
(Crabtree 2010) (Figure 18).
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The Adoption of No-Till comparison by NRM region New South
Wales and Western Australia
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Figure 18 A comparison of No-Till adoption in the wetter and better soil areas of NSW versus
the drier sandier regions of WA which is highly conducive to wind erosion (adapted from ABS
reports June 2009 on agricultural practices).

The assumption is that farmers in less forgiving environments have seen greater returns from
conserving moisture, than farms in better rainfall areas (Crabtree 2010). There is also a
suggestion that the linkages between the step process of adoption and the aggregate diffusion
process across the industry as a whole needs to be firmly established to achieve a clearer
understanding of diffusion patterns (Feder and Umali 1993). That process can stall or take
longer depending on a whole range of socio-economic conditions (Pannell and Vanclay
2011). Several studies showed that the impact of policy interventions to promote technology
adoption depends on the type of technology, and how complex it is to put in place (Thomas et
al. 2007c; Tullberg et al. 2007; Robertson et al. 2012; Tey and Brindal 2012). For example
auto-steer on tractors first began to appear in the early millennium and was adopted by 48.6%
of farmers in Australia by 2008, growing to 66.7% in 2011, this relatively quick adoption in
Australia was attributed to the benefits being easily evident (reduce fatigue) to farmers, and
the process was relatively straightforward being a purchased product (Edwards et al. 2012).

Other technologies such as setting up a Control Traffic Farming system are considerably
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more complex to establish, requiring re-engineering of machinery and reshaping the
landscape on occasions, so adoption has proven relatively slow with just over 20% of farmer
adoption (Barson et al. 2012a; Edwards et al. 2012). Much the same story can be seen with
reducing tillage in the early stages of adoption and with the need to take the time to
demonstrate how the planter can be changed, but adoption significantly increased in the late
nineties and early millennium with the advent of a range of commercially available zero-till
planters (Crawford 2004; Thomas et al. 2007c; D'Emden et al. 2008). This also indicates that
the market structure is relatively influential by providing economic signals in terms of the
price to sustain the change process. When farmers could see the crop production benefit from
retained moisture across their neighbour’s fence from practicing reduced tillage and stubble
retention they were driven to make changes on their farm (Thomas et al. 2007¢; D'Emden et
al. 2008). Where the economic benefit has been limited or economically capped such as the
market for legumes, than inclusion of legumes in the rotation is necessarily limited to a
certain level. The nature and duration of the policy intervention is also relevant to the speed
of adoption, whether it be in the way of market based incentive or an education program
through agricultural extension (Miller and Tolley 1989; Feder and Umali 1993; Nicholson et
al. 2003; D'Emden et al. 2008; Pannell et al. 2011). What is indicated by these examples is
that adoption is affected by a range of factors such as the climate, how complex the
technology is, the market forces operating and policy intervention. These impacts are useful
to understand but do not give a good construct to accurately forecast how much is adopted

and how long it takes for adoption to occur.

The adoption of CA practices has also shown a return on investment to the farmer and can be
described as providing a productivity benefit (Kassam et al. 2009). If we consider the
adoption trends for reducing tillage in Australia we find it does tend towards a logistic
function curve or sigmoid curve for adoption of innovation as proposed by Rogers (2003)
(Figure 19 & 20).

158



Rate of No-Till adoption in Australia

100

90

80

; /
60 ////
5 /

Percentage adoption of no-till

30 "}///
. e
10 /

1966
1968
1970
1972
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006
2008

Figure 19 The adoption trend for reducing tillage in Australia adapted from (Llewellyn et al.
2009) aggregated for all states
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Figure 20 A typical logistic function curve on the left and Rogers Diffusion model with a
sigmoid curve representing the adoption of innovation adapted after (Rogers 2003)

The elements of Roger’s diffusion model can be applied to the adoption of reduced tillage
farming practices in that the practices was regarded as new by farmers (innovation) and it
was communicated by leading farmers in ‘grower groups’ and government extension officers
in the early stages and private agronomists and machinery manufacturers in the latter stages

(communication channels) (Belloti and Rochecouste 2014). The relative rate of adoption has
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been recorded for some practices (time) and there is a social system (agricultural community)
that is motivated towards increasing production and saving resources (common goal)
(Vanclay 2004). The diffusion process in terms of acceptance of new practices by the
farming community over time is variable and in some instances such as ‘no-till’ adoption
described by Llewellyn et al. (2009) follows a pattern similar to that proposed by Rogers
(2003). Some others do not quite fit the profile such as legume rotation being constrained by
the market size based on production figures from ABARES (2010). A number of other CA
practices are still relatively new within the adoption cycle and it is not certain if they will
follow the same pattern of adoption. | propose that if the innovation can be self-sustaining in
an economical way than we would expect that adoption will follow a one way process and
until we get a slowdown in adoption or even a slight reversal due to balancing economic
factors. | therefore regard the ability of the innovation to provide a significant economic
return to the farmer as an important criterion in sustaining practice change. This may seem
evident in regards to innovations promoted purely on the basis of productivity but it is not
necessarily the same for practices design to reduce externalities. The question of profitability
is not an inherent characteristic of a practice designed primarily to reduce externalities given

the goal is other than productivity.

In Roger’s theory of diffusion he outlines the likelihood of a practice being adopted based on
five characteristics as perceived by the individual (farmers). | consider how the theory might
apply to CA practices based on our experiences with the adoption of No-Till which has
already been well documented (Freebairn et al. 1986; D'Emden et al. 2006; Thomas et al.
2007c; D'Emden et al. 2008; Llewellyn et al. 2009). The first important characteristic as
perceived by Rogers was the relative advantage of the innovation in relation to current
practices. The main innovation perceived by farmers in No-Till systems was increased soil
moisture leading to more planting opportunities and reduced erosion of top soil (Thomas et
al. 2007c). The second characteristic of the model was the compatibility of the innovation to
the farmer’s paradigm and this was a barrier for some considerable time as it required farmers
to significantly change their perceived view of how farming is normally carried out; which is
by cultivation in preparation of a seedbed. However it is worth noting that the success of
leading farmers in the application of this change in practice created a constant drive towards
adoption (Belloti and Rochecouste 2014). Farmers established No-Till grower groups in the
eighties and nineties to provide the means of demonstrating how the practice can be

practically applied to suit their farms (Belloti and Rochecouste 2014). The third characteristic
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was the degree of complexity involved in the change and again this was initially slow but was
more readily adopted in the late nineties and early millennium due to the increasing support
of local manufacturers in supplying ready made No-Till planters as is illustrated by available
commercial equipment (Figure 21).

requiring modification to existing planters. (source: Excel website)

The fourth driver in Roger’s diffusion theory was based on the requirement that the practice
be ‘trial-able’ on a small scale to provide confidence for a complete change in practice. This
is difficult where large machinery is concerned and may be part of the reason that No-Till
took so many years to be taken up (Thomas et al. 2007c). This was in some way mitigated by
demonstrating how some local farmers had managed to modify their current machinery to
suit (Crawford 2004). The final characteristics of Rogers theory was how the new innovation
could be readily observed in delivering benefits (Wylie and Moll 1998). Again this was very
much a feature of grower groups holding farm machinery demonstration where farmers came
to learn about how No-Till could be deployed and the resulting production benefits (Figure
22). Attendance at field days is a time consuming event and attendance is indicative of the

relative value of the event to their thinking process of change.
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Figure 22 Machinery field days (left) and crop walks (right) was a major feature of grower
group extension promoting reduced tillage in the 90s and continues today (Photos courtesy of
Conservation Farmers Incorporated & Gemma Elwell)

Despite the difficulties of machinery modification No-Till was adopted primarily because it
could demonstrate a value return on their investment (see chapter 6). We can extrapolate that
evolving farm practices such as Control Traffic Farming, Precision Agriculture and Cover
Cropping may well follow a similar pattern of adoption. However there should be some
caution as not all innovations have been accepted by farmers; the proliferation of computer
based Decision Support System (DSS) made available for farmers have not been readily
taken up by them in Australia despite available computing capacity. Lynch et al (2000)
reviewed why such adoptions have not taken place along the lines of Rogers Diffusion model
and points to the failure of many of the DSS tools to make themselves relevant to the way
farmers make decisions. They point to a number of social considerations such as the lack of
familiarity of farmers with computers, the need for data entry not normally collected by
farmers and the uncertainty by farmers that the results being presented were real (Lynch et al.
2000).

Innovation adoption in farming was oriented around assisting farmers becoming more
productive; therefore the number of farmers adopting as a percentage of the farming
population is a relevant measure. However in emissions terms we are dealing with adoption
change as the means of reducing an externality. The ‘number’ of farmers adopting a practice
change is not entirely relevant unless all farmers are assumed to have approximately the same
property size in terms of production, but they do not. According to ABARES data the range
for farm size extends from 500 to 20,000 hectares of cropping (see also figure 28). We note
that 10% of farmers at the smaller end of the property size scale are not the same as 10% of

farmers at the larger scale. In managing an environmental externality other requirements
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come into play. The ‘area’ under change is more relevant than the number of farmers as
emissions is more a factor of farm area and soil type than the number of farmers. Upadhyay
et al (2003) indicated that farmers adopting multiple conservation tended to have larger

farms, more financial resources and better education than non-adopters.

Another observation from looking at adoption theory in practice is that the process is
governed by a range of factors that can act to slow the process such that it can take decades to
get meaningful levels of adoption. In the case of No-Till, if taken from early appearances in
the early 70s it took until 1998 (just under 30 years) to achieve 50% adoption (Llewellyn et
al. 2009). Such a time frame may not be suited to externalities that is considered time critical
such as climate change. It would suggest that if adoption of emissions reductions practices
may need to be accelerated than the normal parameters of diffusion as suggested by Rogers
(2003) may need to be modified in policy terms. In such circumstances there needs to be a

clear understanding as to what are the drivers most likely to support practice change.

| believe that Roger’s Diffusion of Innovation theory can be a useful tool to examine the
process of adoption and may suggest likely trends into the future. It should however be used
cautiously as some of the parameters that support adoption can be negative, which is likely to
result in longer adoption curves than is the ideal time frame for climate change mitigation.
Some innovations have also been known not to have been successfully taken up because they
did not fit the farmer’s paradigm and did not offer sufficient value proposition (Robertson et
al. 2012). Environmental practices were not inherently designed for production benefit; but
they may be beneficial as a by-product of the market (e.g. high energy price environment). In
such circumstances applying the right policy choices that understand the value proposition for

farmers is going to be important to reduce agricultural emissions.

5.2 A farming systems analysis of grain production for emissions policy

I will begin an analysis of the production system by seeking to better understand the main
characteristics of the system that assists in interpreting the drivers for practice change. The
geographical location of the system is located in the inland West, South and East of the

Australian continent (Figure 23).
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Figure 23 Australian grain cropping areas (source: ABARES at www.abareseconomics.com)

The boundary of the system includes the dryland Australian grain farms as a sector and the
factors influencing the CA farming practices as sub-systems (Figure 24).
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Emissions from broadacre dryland cropping systems

System characteristics: 23 million hectares of production from WA to central Qld, mostly within an annual rainfall band of 200mm to 800mm, involving 30,000
+ farmers, 99% family owned and cperated, producing about 45 million tonnes of grain and oil seeds most of which is exported.

Emissions to atmospheric pool: contributes inthe range of 2-3% of national emissions (notall emissions accounted)
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Figure 24 A systems framework with production systems and sub-systems creating emissions in the process of producing food and fibre.
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The system in Figure 24 highlights the main characteristics of production, including input
resources on the left and outputs of food and fibre to the right. The externalities in emissions
terms are highlighted from the various sub-systems that are being considered for change.

Some emissions factors are uncertain and need further research shown by broken lines.

5.2.1 Systems Characteristics of dryland grain cropping

In this section I source data from the Australian Bureau of Agricultural Resource Economics
& Science (ABARES) and from industry; | have visited farms across different parts of
Australia and held conversation with farmers, industry bodies and agronomists. The industry

is able to share insight into the implication of structural and market changes on farm.

In production terms the dryland grain cropping system in Australia consists of approximately
23 million hectares of production operated by an estimated 30,000 growers in 2006, with
99% of farms being family owned (Australian Bureau of Statistics 2006). This indicates that
the policy target audience includes a significant number of individuals. Production data from
the Australian Bureau of Agricultural and Resource Economics and Science (ABARES)
collected in 2005-06 indicates that in terms of distribution of impacts on land area resources;
it is relatively even across the medium to larger growers; the medium to larger producers
representing just over half of the total number of growers (53%) have a proportionally higher
impact factor per farm unit accounting for 90% of production (Figure 25). The assumption is
that they also account for the majority of emissions, although larger growers are more likely

to take up new efficient farming systems.
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Farm size (numbers of major farmers) as a percentage contributor to
production in 2005-06 (source ABARES)

40

9,281

Percentage of industry production

small (<500t) medium (<2000t)  med-large (<4000t) Large (4000t+)
Indicative farm size by level of production

Figure 25 A comparative analysis of the policy target audience relative to their likely emissions
profile. This indicates that 53% of farmers account for 90%o of production. Mixed small farmers
not included.

In climate terms the system is described as ‘dryland’ as most of the production is reliant on
rainfall and sits within the 250mm to 600mm annual rainfall belt inland from the coast, but
this can fluctuate with drought and flood years depending on the various climatic patterns of
the Indian and Pacific oceans?. While the production areas are familiar with drought and
flood years, they are nevertheless economically vulnerable to future climate change impacts
on rainfall, evaporation, carbon dioxide concentration and temperature (Crimp et al. 2008;
Howden et al. 2010). Of particular concern to crop yield in the short term outlook, are
reductions in net rainfall and the timing of that rainfall, with the possibility of a trend to
increases in rainfall intensity going to run-off and limiting infiltration (Stephens and Lyons
1998; van Herwaarden et al. 1998; Hope and Ganter 2009). The marginal rainfall of the
cereal belt exposes future crop yield to potential losses from climate changes of reduced
rainfall and higher temperatures (Crimp et al. 2008; Hennessy et al. 2010). Potential changes
in rainfall will vary across regions but on the whole the trend is towards reduced rainfall
across the cereal belt (-30% to +20%). With increasing temperatures in the range 0 to

23 Bureau of meteorology. www.bom.gov.au
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4°centigrade this will also impact on the soil’s vapour pressure deficit reducing microbial
activity and affecting soil fertility (Crimp et al. 2008; Pittock 2009). Cropping as a farming
enterprise generally yields better profit than livestock production, but it is also more
economically vulnerable to climate risk in dry years due to grain yield sensitivity to moisture
loss (van Herwaarden et al. 1998; Day et al. 2010). Both risk conditions of exposure to
reduce rainfall and crop sensitivity to that change is likely to have a significant impact on the
future of farm profit if those risks are realized (Stephens and Lyons 1998). Although the
outputs of research may provide future solutions that outcome is speculative, it therefore
relies on the adaptive capacity of farmers to manage their production vulnerability through

better farm management as a more immediate priority.

From a number of farm visits | have noted that the soils supporting the system are highly
variable from sandy loams in the west and south to deep profile alluvial vertisols in the north
(Figure 26) (ABS 1966). The rainfall totals and soil types have an impact on the capacity of

the soil to store carbon; and the majority of heavier soils and better rainfall form the hard

wheat production areas (referring back to Figure 23) (Baldock et al. 2009).

Figure 26 Varied soil types across the regions from black alluvial clays (left), red loams (centre)
to sandy loams (right); which impacts not only on crop options but also the ability to store SOC.
(photos J. Rochecouste)

In economic terms dryland farmers produce about 45 million tonnes of grain annually; a

significant portion is exported and contributes to export earnings (GRDC 2013). Grains as a
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produce operates in highly competitive commodity markets and abatement policies likely to
impact on input resources such as fuel and fertiliser need to take this into account. Farmers
control neither the price of their product nor their input costs and are subject to fluctuating
global commodity prices. In recent years there has been a strong increase in farm input costs
relative to commodity returns driving the need for increased efficiency (ABARES 2010).
This impact has been significant as two of the main staples of farming inputs, fuel and
fertiliser have seen large increases (Figure 27). This high cost, with a series of drought years
and slow growth in the gross value of product being produced has coincided with an
increasing level of average broadacre debt nationally (Figures 28 & 29). This is relevant in
emissions terms as | would suggest that policies promoting practice change will need to meet
certain economic parameters to be accepted by farmers. From our interviews with farmers it
seems unlikely that farmers will entertain increasing debt levels until they are sure of the

return on investment.

Increase in percentage costs from reference year 1997-98 to 2010-11
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Figure 27 The percentage increase for the 12 years from 1998 to 2010, fuel fertiliser and
electricity have seen the largest increases. Significantly the major farm inputs in budget terms
are fuel, fertiliser & chemicals (source: ABARES)
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Figure 28 The gross value of product looks at the relative return per tonne which has been
highly volatile in the last 6 years. The trend line indicates the average increase in the last 12
years (source ABARES)
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Figure 29 Indicates the increasing trend of broadacre farm debt in Australia with a slight
flattening post 2008 and a reduction in the wetter years, currently regaining an upward trend
sitting at $509k for 2015 (source: ABARES Outlook 2015)
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In social terms the cost constraints has also impacted on the ability of the farm business to
employ labour and there is also some indication that competition with mining in some areas
is impacting on labour availability. Farmers seem to be doing more themselves resulting in
increased time pressure with little capacity available to suitably assess farm system changes
whose benefits are not clear from the start. This is likely to create resistance to engagement in

reducing emissions if the objective is not perceived by the farmer as relevant.

In summary the dryland cropping system objective is geared to producing grain for sale in
order to provide economic viability to the family farm. The management of externalities such
as atmospheric emissions of GHG is perceived as one of the many risk management
requirements of the farm. Others from media reports would include:

e Reducing chemical drift likely to damage neighbours crop

e Reducing runoff of sediments into rivers and streams

e Ensuring the Occupational Health & Safety of farm workers

e Maintaining rural community services (schools & sports clubs)

e Maintaining biodiversity

This indicates that there is a range of risk issues associated with externalities that is of
concern to the farmer. They compete for time and resources away from the main objective of
the system; the business of grain production. Externalities associated with GHG emissions
and their potential long term impact may be accepted as relevant to the community, but it also
has to compete for the time and resource of the farmer.

The use of a one dimensional agricultural policy aimed at reducing farm emissions may have
difficulty in engaging the farmer amidst the many other competing factors. It suggests that
policy may need to consider in more detail how emissions reductions can align with
production issues. The development of CA was done with the support of farmers because
they saw the opportunity to better manage input resources and deliver real economic gains
(Thomas et al. 2007c) (Table 13). As CA practices continue to expand in an economically
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constrained environment; its potential emissions reductions profile provides a unique

opportunity to align policy to a mutually positive environmental and economic outcome.

Table 12 Comparison of yield from two tillage systems at two locations in Queensland from
trial conducted by the than Queensland Department of Primary Industries (QDPI) and
presented to farmers in the publication Opportunity Cropping 2™ Edition produced by
Conservation Farmers Inc. 1998

Tillage system comparison Biloela 1989-92 Goondiwindi 1989-92
Wheat yields Wheat yields
Tonnes/Ha Tonnes/Ha

Conventional cultivated 25 1.6

Zero-till 34 2.2

Relative annual benefit value of
Zero-till in today’s dollar value
(AUD) ($220/t) for a 1000 ha

production property

$ 198,000 $ 132,000

It is profit that has supported the continual adoption process despite the negative parameters
previously outlined under Rogers Diffusion of Innovation theory, suggesting that if the
returns are sufficiently attractive farmers will eventually take up the required practice change.
This may require further scrutiny from a policy perspective as simply outlining an
overwhelming case for productivity increase may not realise an immediate response in the
adoption of practice change. This is indicated by the data presented in Table 13 above where
in the years 1995-98 advisors clearly outlined a business case for No-till but the majority
adoption still took another 10 years (Thomas et al. 2007c; Llewellyn et al. 2009). Yet Auto-
steer technology was widely adopted in a much shorter time according to the farmers
interviewed, not for specific income benefit but more as a means of managing labour

productivity and fatigue.
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5.2.3 Management decisions and activities within the system

It is important to understand what influences the decision making process of farmers as
adoption of practice change is what will create mitigation from the sector. The decisions
made within the system appear to revolve predominantly around grain production. The
farmer’s objective is primarily about making a reasonable profit to allow them to continue
farming as a business and lifestyle option (Vanclay 2004). In contrast | perceived from media
reports that government is about increasing yields in order to expand the value of the industry
in terms of export earnings. The commercial services industry is predominantly about
increasing production that uses more commercial resources (e.g. herbicides & fertiliser) and
other sections of government are about minimising the externality of this industry impacting
on community assets (e.g. Great Barrier Reef Marine Park) and other industries (e.g.
Tourism). | suggest that these various objectives are at time likely to coincide and at other

times work in a counterproductive fashion.

In making policy to influence management decisions to reduce externalities, the type of
policy applied will inevitably have supporters and detractors within almost any system. |
believe it is important to understand the relative strengths of others to influence the farmer’s
decision process. It is reasonable to assume that management decision that does not support
the relative economic objective of farmers are less likely to be supported by other players
within the system who want to gain favour with farmers ( e.g. agronomic advisers). For this
reason policy development should have a strategy to manage the response of other players in
the system, since all parties in the system are likely to work on the basis of self-interest.
Other factors influencing decision making in the system may come from global forces. The
concept that farmers should pay for managing their externalities is complicated by external
forces. Competitive global markets for grain leading to low farm profits within the system
means that farmers are not likely to have the capacity to pay for any significant
environmental reconstruction or costly management changes (Gourley and Ridley 2005).
Furthermore farmers may not see any immediate benefit to them for creating an unrecognised
social benefit downstream (Vanclay and lawrence 1995). Given that most modern cropping
agriculture are subject to global markets, in an open economy they become price takers for
the goods they produce and have little option to demand greater profit in order to spend on
legislative compliance (Pannell et al. 2006). The situation appears to have reached a potential
‘impasse’ attributable to “who pays?” and what can be afforded. Although farmers may still

have some capacity to participate in environmental mitigation strategies given the correct

173



extension framework, any attempt to shift the majority of the cost on to landholders is most
likely to be resisted (Gourley and Ridley 2005; Jonge 2010). Therefore it is most likely to

come down to some form of cost sharing across the whole community.

Ultimately all consumers of the grain produced have contributed in some way to creating the
problem within the system. The market has not valued the maintenance requirement of the
ecosystem services, considering instead the operating cost of the farm in the production of
agricultural goods, and as a result we can observe a decline in the capital value of the
ecosystem (see section 4.2 on new potential environmental accounting system). | propose that
policy might recognise that the result of an economic framework which does not support the
‘maintenance’ of the environment will result in a decline in capacity to mitigate externalities

such as excessive GHG emissions.

5.2.3 Actors and Institutions within the dryland grain cropping system

Other major influential actors within the farming system are other like-minded farmers with
whom the farmer associates. This is not always a neighbour but is more usually a farmer who
has similar issues and circumstances from which a shared discussion of practices can be
supported (Vanclay 2004). Other farmers play a major role based on their credible experience
having to deal with the same issues or because they share a similar degree of risk (Gianatti
and Carmody 2007; Belloti and Rochecouste 2014). The degree of influence exerted by
industry on farmers appears to be a function of the degree of working contact farmers hold
with industry players (Kancans et al. 2014). Surveys reveal that the advisory agronomist is
highly influential to the farm’s practices, which is not surprising given the regular working
relationship that advisory agronomist have with farmers (Ecker et al. 2012). In similar order,

| suggest that supplier agronomists are also likely to have influence as do grower groups and
specialist advisors (Kancans et al. 2014). Government advisory officers have become less
influential as their degree of contact with farmers has dropped (Belloti and Rochecouste
2014). Trust is mentioned as a factor in farmers accepting ideas for change, but trust is slow
to develop and to some degree is dependent on the level of inter-personal contact (Ecker et al.
2012). I note that many institutions have little inter-personal contact with farmers and the
extension message they believe to be self-evident may in fact not be acted on without

corroborating support from other trusted actors in the system. | perceive that the implication
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of this from climate change policy is that the climate change message is largely being driven
by government and scientific organisations directed at farmers with little examination as to
what support the climate change message is being given in the corroborating process. | have
noted that institutional messages most often provide broad objectives and less often deal with
the processes of how that objective can be logistically achieved within the local context
(Belloti and Rochecouste 2014). A message that cannot be contextualised to the farmer’s
need is likely to be set aside as other priorities take over. | suggest that only where this
message has a productivity context does the objective become more worthy of consideration.
Corroboration by influential actors such the farm agronomist and financial advisor is a key

process to adoption (Vanclay 2004; Ecker et al. 2012).

As in most systems | suggest it is not simply a one way flow of advisors influencing farmers;
leading farmers that have a drive for experimentation in turn influence agronomists (Belloti
and Rochecouste 2014). It is sometimes observed by farmers that their agronomist gain their
experience from a range of other local farmers making mistakes (farmer, requested name
withheld, interviewed 2013). Therefore leading farmers can influence local agronomists who
in turn influence secondary adopters (Belloti and Rochecouste 2014). However all this can
take time as more often there is a range of factors that is considered by the farmer and for

which agronomists are well in tuned with.

It is also worth considering that farmers may not have the finance or the degree of skill
required to take on a particular practice change. This has been a factor evident with precision
agriculture; where a great deal of digital underpinning knowledge is required. Most often
there is a generational gap in the operation of on-farm technology, with young farmers
generally more comfortable with digital connectivity (Robertson et al. 2012). Targeting

specific demographics in terms of practices uptake may be a consideration.

| believe this will have implications in terms of the need for aggregation of farms into a
carbon market project. If the aggregators are from outside the community, they make take
longer to get acceptance in creating the trust needed to create the type of project partnership
required. If the agronomists were to be involved there is some question as to their
underpinning knowledge in how to manage a carbon project. If the project were to engage the
support of local agronomists they would need to consider a hire charge to cover their

involvement which | suggest would in turn increase the transaction costs. The cost of
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engagement will come at a price whatever path is chosen and in turn this adds to the

transaction cost and the likely viability of carbon offset project.

5.2.4 Resources & Flows within the dryland grain cropping system

In order to deploy a policy initiative within a system it is worth considering the associated
resources and how they flow within the system. Cropping in a dryland system as mentioned
previously is dependent on three main resources; rain, agricultural inputs (machinery, seeds,
fertiliser and chemicals) and information. All can significantly impact on production and

emissions by influencing the farm production system.

The variability of rainfall as a resource can particularly impact on policies related to
sequestration of carbon into plants initially and ultimately the soil (Baldock et al. 2009;
Walcott et al. 2009; Sanderman et al. 2010). Drought years are a common feature of
Australian agriculture and limit the amount of organic material available to reduce erosion
and feed the soil organic precursors (Chowdhury et al. 2013). In the wet years the opposite is
true and this can have an impact on carbon projects related to plant sequestration, but it can
also impact on any methodology likely to be considering soil sequestration. These fluctuating
conditions cannot be planned for and can seriously impact the viability of a project where a
project goes into an extended drought period. Based on a series of farm visits over time
Figure 30 demonstrate the change of condition that can rapidly occur with changes in

seasonal climatic conditions from ‘El Nino’ to ‘La Nina’ patterns. This can be further

exacerbated by practices such as overgrazing in drought years.

Figure 30 Comparison of on ground vegetation at the same location in the dry years 2005 (left)
and following wet years (2013) (photos J. Rochecouste)
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Agricultural Input resources are heavily market driven; Fertiliser for example is mostly
imported into Australia and sold by a number of commercial companies on a competitive
basis. The material is packaged to suit current machinery operations with companies strongly
supporting nutrient management. If an intended policy is aimed at reducing the sales volume
of a commercially supplied commodity, it is likely to come into conflict with commercial
operators in the system. The commercial culture has developed over a long period time and
has a well-established pattern within the farming system. Sales agronomists have regular
contact with farmers, perhaps more than any other agency. Where policy is intended to
intrude into this pattern it needs to consider the responses of the firms in both an overt way
(What they say publicly) and a covert way (what their staff say in private conversation to
farmers). It is not too suggest a deliberate conspiracy on the part of commercial firms, but
field staffs often develop a personal relationship with their clients and may well express their
personal views in general conversation with farmers. Grower groups on the other hand are
independent of any commercial interest and have no conflict of interest in providing advice
that reduces the consumption of commercial products such as fertilisers. There is little
confirmed research in this area, but from the authors own experience of 8 years in agricultural
sales it is my experience that commercial firms have strong level of contacts with farmers and
that sales agronomists can develop a high degree of trust with their producer clients. Without
such understanding it is possible for a policy initiative to be seriously undermined or
exploited.

Policy initiatives are just as likely to develop commercial allies who can benefit in some way
from the policy objective of reducing a product sale. If fertiliser use is seen as directly
proportional to GHG emissions, than products that support fertiliser efficiency becomes allied
to the policy objective. All input products flow through a series of commercial units on the
way to the farmer and the logistics of this flow and the associated costs can impact on how

policy initiatives might best be deployed.

| consider a current example with the Refundable Tax offset on conservation tillage on how a
policy initiative is being interpreted by the commercial suppliers in the industry. Tillage is
primarily a function of the tool that engages the soil, how it is deployed and the amount of
times it is used. Discs as an example, is the least disruptive to the soil depending on the angle
it is operating, the number employed and the amount of times it operates (Ashworth et al.

2010). The same tool operated differently can have significant soil impacts (Table 13).
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Table 13 comparative disc used in agriculture planting operations

Least disruptive to soil Highly disruptive to the soil

Narrow angle relative to travel direction Large angle relative to travel direction

Only operates as soil opener for planting Operates with high numbers to turn over the
soil

Operated once only at planting Operates in a series of operations

This level of technical detail is relevant to policy. For example the Conservation Tillage
Refundable Tax Offset. 3.1 Schedule 2 to the Clean Energy (Consequential Amendments)
Bill 2011, provides a refundable tax offset (RTO) for certain new depreciating assets used in
conservation tillage farming practices up until 201424, It was intended to support reduced
tillage practices by creating an incentive for zero-till planters. The new law entitled the
taxpayer to an RTO of 15 per cent of the cost of an eligible asset above normal depreciation.
This would include “disk openers” and suitable hybrid machines such as zero-till planters. A
number of commercial operators have advertised their machine as being eligible in total
contradiction to the intention of the legislation, whether this was done knowingly or
unwittingly is uncertain (Figure 31). But it is clear the term “disc” was interpreted as any
‘disc implement’. Although we can note that the term ‘conservation’ is missing in the

advertisement

2 The offset was repealed following the repeal of the carbon tax legislation -
http://www.daff.gov.au/climatechange/carbonfarmingfutures/rto
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Invest in a BROOKFIELD® & receive
15% Tillage Refundable Tax Offset

Visit www.brooklield.net.au/rto for detalls
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Figure 31 Advertising of a full cut cultivation equipment using discs as an eligible ‘disc
planter’. This type of implement is intended for full cultivation and is not in fact a no-till disc
planter. (source Advertising from rural paper The Land 09August 12)

Without clear technical knowledge, the use of such a market based policy can in fact be
negated in its purpose by misunderstanding or overt manipulation. The two implements are
compared in Figure 32.
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Figure 32 (Left) - a Brookfield disc cultivator used for full cut tillage. (Right) — A disc planter
designed to plant with minimal soil disturbance and full stubble retention (photos from
manufacture’s website)

From the example above there is no doubt that machinery or implement purchased can be an
indicator of farm practices, it does however need to be well defined and the implement itself
have a specific use directly relating to the practice being sought. It also needs to be compared
to its opposite factor in order to determine that one is growing at the cost of the other and not
have both growing in tandem which would indicate simple market growth as oppose to
change. Once the preliminary details are in place the use of market incentive such as a tax
reward to report function is an excellent measurement of change as it creates a motivation to

self-report on practice change.

An important consideration that is relevant to practices like reducing tillage is that they
require a major shift in operational procedures, which additionally requires significant capital
investment. Therefore the decision making process is expected to take more time and the
process is likely to take place over many years. This means that policies such as educational
activities may not deliver a response within the short term. Information is an important
resource in managing farms that are isolated, not simply in a geographical sense, but also in a
communication sense. Yet information can play an important role in influencing a farmer’s
perspective as well as providing the details to evaluate the merit of a practice change.
Farmers report value in farmer field days based strongly on the opportunity to network with
other farmers to share experiences (Kancans et al. 2014). Because of the perceived economic
risk involved in changing whole farm operations, farmers will often take many seasons to
evaluate the merit of a change and will often seek a range of other external perspective. |
suggest that resources flow through the system at a pace limited by farm capacity.
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6.0 DRIVERS FOR ADOPTION OF CONSERVATION AGRICULTURE
PRACTICES AND IMPACT ON EMISSIONS REDUCTIONS (PAPER)

6.1 Preview

The following chapter is presented as a published paper inclusion:

Rochecouste, J., Dargusch, P., Cameron, D. & Smith, C., 2014, ‘An analysis of the socio-
economic factors influencing the adoption of conservation agriculture as a climate change
mitigation activity in Australian dryland grain production’, Agricultural Systems, Volume

135, pages 20-30. Article has been downloaded or viewed 1125 times since publication.

The paper is an integral part of the way this PhD research is presented to the broader research
community and therefore it is included as part of the PhD submission. It is intended to be

read independently of the PhD going through a separate peer review process.

The paper was designed to follow up on two aspect of the research; the first is that a review
of CA practices from chapter 4 section 4.11 indicated there was a net emission reduction
benefit from the adoption of CA practices in Australian dryland grain cropping (approx. 23
million hectares). Although individual practices will vary in the level of emission reduction
and with some practices there is uncertainty as to the emission value due a research gap (e.g.
the use of recycled organics or the inclusion of cover cropping). The assumption is that a
greater level of CA practices adoption is likely to reduce agricultural emissions to a degree
that stills need to be further researched. The positive level of reduction is directionally

proportional with increased adoption. We looked into what drives this adoption.

The second aspect of the research is outlined in chapter 5 which looks at the agricultural
system as a whole, the various emissions characteristics and the theory of adoption. The
review indicates that the factors of adoption are complex and are influenced by a range of

factors. Economic consideration being only one part of the equation to adoption.

The paper is seeking to evaluate the various economic and social factors that specifically
drives CA adoption in the grains industry and its implication affecting carbon sequestration

and emission reduction.
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Due to the complex nature of socio-economic drivers we applied a systems thinking
approach, using a series of systems model for each of the various CA practices. The
reasoning for such an approach is outlined in the paper. This application to CA in a climate
change context is a new approach and is informed by triangulating the research literature
(secondary data), analysis of current industry data (mix of secondary and primary data
analysis) and industry/farmer interviews and case studies (primary data). The new knowledge
is designed to inform policy about the complexity that influences farmer practice change. It is
intended to provide in-depth analysis as to the factors that influence farmers to adopt CA.

We conclude with comments from farmer interviews to explain the factors that influences
their thinking in terms of adoption or non-adoption and what are some of their unresolved

issues in terms of the CFI.

The following publication is the manuscript as sent to the publisher. The tables and figures
are not listed as part of the thesis but follow the numbering pattern of the text in the
publication. The paper’s bibliography has been removed and incorporated into the thesis
bibliography. As the paper is required to stand alone as a unit the reader will note that some

parts of the previous chapters have been directly used in the paper to give it due context.

6.2 Published paper

An analysis of the socio-economic factors influencing the adoption of
conservation agriculture as a climate change mitigation activity in
Australian dryland grain production

Jean-Francois Rochecouste?, Paul Dargusch®, Donald Cameron® & Carl Smith¢

Abstract

The cropping sector in Australia contributes 2.5% of national greenhouse gas emissions, not
accounting for the historical loss of soil carbon. The Australian Government is developing
policy initiatives targeted at farmers to encourage changes in management practices that aim
to reduce emissions from the agricultural sector. The main policy proposal being developed is

a market-based mechanism to pay farmers from an Emissions Reduction Fund using
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methodologies specified under the Australian Carbon Farming Initiative. The adoption of
conservation agriculture practices in the dryland grain sector in Australia shows the potential
to achieve emissions reductions in the order of three million tCOze annually. This paper
presents a series of systems models that describe the process of how Australian dryland grain
farmers decide to change and adopt conservation agriculture practices. Results indicate that a
number of economic and social factors drive the rate of practice change, and change seems to
be motivated mostly by the pursuit of productivity benefits rather than environmental benefits.
We postulate that it may be more effective for climate policy to directly target the adoption of
conservation agriculture practices among Australian dryland grain farmers by promoting the
crop productivity benefits likely to be achieved by such practices, rather than attempting to
develop a market-based mechanism for carbon payments. Under this approach, emissions
reduction outcomes and carbon payments would not be the primary driver for changing farming

practices, but rather a concurrent benefit.

Keywords
Emissions Reduction Fund, soil carbon, no-tillage, environmental plantings, crop rotation,

Carbon Farming Initiative

1.0 Introduction

Cropping agriculture that employs conventional cropping systems in countries such as
Australia results in greenhouse gas (GHG) emissions from the combustion of tractor fuels, the
use of inorganic fertilisers and the mineralisation of soil carbon during land preparation (Kupfer
and Karimanzira 1990; Dalal et al. 2003; Lal 2004a; Luo et al. 2010; Garnaut 2011). In most
cases, these emissions are biologically based and not easily measured (McGinn 2006;
Sanderman and Baldock 2010). This creates a policy dilemma for governments looking to
create reportable changes in GHG emissions from agriculture (Lal 2004b; Wang and Dalal
2006; Keogh 2007; Regina and Alakukku 2010; Schwenke et al. 2011).

The Australian Government introduced the Australian Carbon Farming Initiative (CFI) in
September 2011, a market-based instrument that pays farmers for reducing GHG emissions as
an incentive for them to change to more sustainable farming practices (Australian-Government
2011). By participating in the CFI, farmers and land managers who reduce GHG emissions or
sequester carbon will be able to generate credits for this abatement that can then be sold to a

proposed Emissions Reduction Fund (Australian Government 2013b).
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There has been considerable research into the quantum of emissions reductions or sequestration
possible on Australian farms in general (Jawson et al. 2005; Li et al. 2010; Regina and
Alakukku 2010; Browne et al. 2011; Schwenke et al. 2011; Wang et al. 2011; White and Van
Rees 2011; Cowie et al. 2012; Harris et al. 2013; Thamo et al. 2013). However, there is
relatively little research into the socio-economic factors affecting the drivers for changing farm
practices by Australian dryland grain farmers under emerging and uncertain climate policy
circumstances (Llewellyn 2011; Ecker et al. 2012). In this paper, we focus on the adoption of
conservation agriculture (CA) by dryland grain farmers in Australia, a farming system
recognised as one of the effective ways of reducing emissions in the sector (Hobbs and
Govaerts 2010; Li et al. 2010; Garland et al. 2011; Labreuche et al. 2011; DCCEE 2012).

CA is a set of farming principles that over time aims to reduce resource inputs and maximise
agricultural productivity by increasing soil carbon in crop production, but within an
economically acceptable framework (Hughes 1980; Allmaras and Dowdy 1985; Uri 2000;
Hobbs 2007; Reicosky and Saxton 2007; Hobbs et al. 2008). Its principles of minimal soil
disturbance, permanent soil cover and crop rotations are supported by the United Nation’s Food
Agriculture Organization (Friedrich and Kienzle 2007; Kassam et al. 2009). In Australia, CA
farmer organisations have promoted a range of additional technologies to reduce energy,
improve soil health and conserve soil moisture. These include controlled traffic farming (CTF),
precision agriculture, cover cropping and recycled organics (Tullberg et al. 2007; Butler 2008;
Branson 2011). There is also a body of literature on the role of CA in mitigating climate change
by reducing emissions and sequestering carbon (Uri 2000; Chan et al. 2003; Lal 2004c; Zentner
et al. 2004; Wang and Dalal 2006; Govaerts et al. 2007; D'Haene et al. 2009; Young et al.
2009b; Rochecouste and Dargusch 2011; Gonzalez-Sanchez et al. 2012). CA provides a range
of co-benefits for dryland grain farmers in Australia in that CA practices can improve cropping
productivity, help to mitigate climate change and support adaptation to climate change
(Thomas et al. 2007c; Tullberg 2009; Rochecouste and Crabtree 2014).

In order to gain the benefits of reduced agricultural emissions from CA we need to better
understand what drives CA adoption for Australia dryland grain farmers. Past studies have
suggested that adoption from a farmer’s perspective is based predominantly on its profitability,
despite not always being simple to implement on-farm (Upadhyay et al. 2003; Scott and
Farquharson 2004; Vanclay 2004; Thomas et al. 2007b; Wylie 2008; Pannell et al. 2011).
Factors that drive the adoption of changes in practice are on-farm benefits as opposed to policy

drivers which are usually designed to produce off-farm benefits as outlined in Table 1.
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Table 1- The distribution of costs and benefits associated with conservation agriculture across
different spatial scales (adapted after Knowler and Bradshaw 2007).

Practice benefit On-farm | Off-farm
Benefits

Reduction in on-farm costs in time, labour and machinery v

Increase in soil fertility resulting in higher yields and food security | v/ v
Reduced impact of erosion downstream v
Reduction of pollutants in run-off 4
Reduced air pollution (dust and diesel fumes) v
Reduced carbon dioxide in the atmosphere v
Conservation for terrestrial biodiversity v
Costs

Purchase of new machinery 4

Short-term pest problems (e.g. disease carryover) v

Time and effort in acquiring new skills v
Application of additional herbicides v

Formation and operation of local farmers group v v
High risk due to technological uncertainty v v
Development of technical packages and training programs v v

2.0 Conservation agriculture practices and greenhouse gas emissions

The Carbon Farming Initiative Handbook produced by the Australian Government highlights
a number of CA practices as being potentially effective opportunities for soil carbon-based
climate change mitigation (DCCEE 2012). The handbook points to a number of activities that
broadacre farmers may consider including reducing tillage, reducing fertiliser use, applying
CTF, increasing stubble retention after harvest, green manuring with legume crops and

applying ameliorants such as biochar, compost or manure (DCCEE 2012).
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2.1 Reducing tillage

So called, ‘No-till’ practices involving less than 25% soil disturbance using narrow tines and
disc planters are used on about 13.8 million hectares of Australian grain production area
(Edwards et al. 2012). This equates to about 60% of the Australian dryland grain area. On the
remaining 40% (approximately 9.2 million ha) a range of full-cut tillage system is used
(Edwards et al. 2012). According to Lam et al. (2013) in a review of Australian studies on
agricultural emissions using meta-analytic techniques to determine the feasibility of increasing
soil carbon, approximately 0.139 tonne of carbon (C) per hectare per year can be saved from
reducing tillage in Australia (Lam et al. 2013). Assuming that no-till practices are introduced
on this remaining 40% of dryland grain that is currently using tillage, it would potentially avoid
the loss of a further 1.2 million tonnes of C/year.

2.2 Retaining crop stubble

Cereal crop stubble after harvest represents a significant carbon pool. Using the estimate of a
general harvest index of 0.4 for the major grain crops grown in Australia (wheat, barley, oats
and triticale), the 2012 Australian grain crop harvest returned 33 866 000 tonnes of cereal grain
and left a potential 50 799 000 tonnes of stubble after harvest prior to burning or grazing
(Kemanian et al. 2007; GRDC 2013). If we assume that the retained stubble is 40% carbon,
this equates to a potential 20 319 600 tonnes of carbon or 0.86 tonnes of C ha* for 2012. If the
crop stubble is fully retained in the field, only a small fraction of this carbon potentially
stabilises to a humus fraction after breaking down (excluding biota) (Stagnari et al. 2009).
According to the New South Wales Department of Primary Industry, retaining stubble rather
than burning it can avoid the loss of 70 to 90 kg of soil C ha'/year (DP12004). The more recent
meta-analysis by Lam et al. (2013) suggests a carbon accumulation figure of 62 kg C ha*/year.
Full stubble retention, from harvest to the next planting period, is practiced by about 60.5% of
dryland grain cropping farmers, representing approximately 13.9 million hectares (Edwards et
al. 2012). For the balance of 39.5% of farmers (occupying approximately 9 million hectares)
that otherwise graze, remove or burn their stubble, this would equate to a loss of 558 000 tonnes
C ha/year that could potentially be returned to the soil. The details on the fate of removed
stubble by either grazing, baling for hay or burning varies by season, but a 2011 industry survey
showed that at least 3.8 million hectares was burnt to facilitate planting (Edwards et al. 2012).

2.3 Legumes
Including a legume in Australian cropping rotation has been estimated to add approximately
110 kg of nitrogen per hectare as a natural fertiliser depending on the type and growing
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conditions (typically a farmer might plant legumes in a 1:4 year rotation with cereals) (Herridge
2011). Across the industry’s 23 million hectares of dryland grain production, legume crops
could replace about 644 000 tonnes of manufactured urea per year. The exact abatement
potential that can be gained by Australian farmers planting legumes is uncertain because the
choice of legume as part of crop rotation is limited by market demand for the grain, with only
a 12% increase in production as a response to demand in the 10 years from 2002 to 2012
(GRDC 2013). The New South Wales Department of Primary Industry soil research unit also
suggests that legumes can sequester up to 150 kg C ha*/year (DPI 2004). In 2012, Australia
produced 2201 tonnes of legumes over 1.77 million hectares or 7.5% in terms of production
area, which we estimate would add 265 200 tonnes of soil carbon per year (DPI 2004; GRDC
2013). Legumes are not routinely grown in all grain cropping areas due to a lack of suitable
varieties for some local climate conditions (Edwards et al. 2012). However, based on the
estimate of 150 kg C haY/year as indicated by Lam et al. (2012), every 1% increase in the area

grown to legumes annually represents approximately 35 000 tonnes of additional soil carbon.

2.4 Controlled traffic farming

According to Tullberg (2010), there is an indication that compacted soils emit higher rates of
nitrous oxide (N20) than non-compacted soils and that CTF reduces overall soil N2O emissions
by limiting compaction to a small section of the field (Tullberg 2010). It is based on limited
experimental data in one region; therefore the quantity of soil emissions involved cannot yet
be calculated at a national level across the various soil types. CTF also reduces fossil fuel

consumption per hectare by about 50% of conventional non-CTF systems (Tullberg 2009).

2.5 Fertiliser efficiency

Fertiliser efficiency can be significantly improved by using a variable rate application system
that adjusts fertiliser rate across the field based on predetermined needs (Chen et al. 2008). The
process requires precise global positioning system capacity which is already used by the 66.7%
of Australian dryland grain farmers with auto-steer tractors; however, the use of variable rate
application with fertilisers is still quite low; in the order of 14% of dryland farmers (Robertson
et al. 2012). Although the technology for increasing fertiliser efficiency is available in
Australia, the amount of GHG emissions reduction that this represents is still uncertain under
Australian dryland conditions. Fertiliser efficiency is included as a carbon abatement
methodology for creating carbon offsets in some carbon markets, although it is not yet
approved by the Australian Clean Energy Regulator for use under the Australian Carbon
Farming Initiative (DCCEE 2012; De Wit et al. 2013; Millar et al. 2013).
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The rate of adoption of CA practices in 2011 in Australia and the emissions reduction potential
possible from full adoption of different CA practices in cropping systems in Australia is

displayed in Table 2.

‘Table 2 Percentage adoption of conservation agriculture farming system practices by dryland
grain farmers in 2011 (Edwards et al. 2012) and the potential abatement value of changing

farming practices.

Farming system practices as | Estimated adoption by | Potential abatement value based on full
part of conservation | grain farmers in 2011 | industry adoption
agriculture in Australia (% of total cropped in
Australia)
No-till (<25% soil | 60% 1.2 million tonnes of carbon loss avoided
disturbance) (13.8 million ha)
Full stubble retention 60.5% 558 000 tonnes of carbon added
(13.9 million ha)
Legume rotation 6.8% 35 000 tonnes of carbon sequestered for
every 1% increase in the area of adoption
Controlled traffic farming 21.1% Unknown
(4.85 million ha)
Precision agriculture use of | 8.1% Unknown
variable rate technology to | (1.9 million ha)
fertilising operations

Table 2 shows that Australian cropping farmers have already been adopting CA practices of
their own accord for productivity reasons. In policy terms, there is still potential for further
improvement in reducing emissions if we could better understand the drivers of CA adoption
and consider policies that support those drivers. In the following analysis, we look at the factors
influencing adoption amongst Australian cropping farmers to better understand what might
motivate farmers to make changes in practices that also reduce emissions. The Australian
grains industry represents a unique opportunity to study an industrial agricultural system
operating in a semi-arid zone context and may provide experience to other arid-zone farming

systems adopting industrial technology.

3.0 Methodology
The socio-economic drivers that create farming system change interact in complex ways, so

we developed a series of systems models to visually describe the main factors that drive the
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adoption of CA practices in Australia. Applying ‘systems thinking’ to an issue helps us
understand the interactions that drive adoption of changes in behaviour and those that balance
the drivers in the opposite direction in complex situations (Sterman 2000; Quan Van and Nam
Cao 2013). Understanding the mechanism of change in a visual model should support better
policy development (Bosch et al. 2007; BeLue et al. 2012). We can use a representative mental
model to identify parts of the farming system and how they might interact, thereby provide a
framework to manage change by understanding dynamic feedback (Sherwood 2002). To
develop this framework we use causal loop diagrams (CLDs) consisting of identified variables
and arrows that represent causal relationships between variables as either (+) or (-) (Ventana-
Systems 2013). A positive polarity indicates that a cause and effect are reinforcing, that is,
increasing the cause increases the effect. A negative polarity indicates that a cause is inversely
influencing the effect, thereby balancing the effect in the opposite direction (e.g. Figure 1).

Figure 1 - A reinforcing and balancing causal loop diagram about the impact of births and
deaths on a population.

In the simple example illustrated in Figure 1, a number of factors might influence deaths or
births thereby impacting on the rate of deaths to births and subsequently influencing the
population levels. Such mental models can help better understand cause and effect in a dynamic
way (Checkland 1999). In real-world situations, there are additional interactive variables
creating a more complex framework (Sherwood 2002).

For the models presented in this paper, important information about farm practices adoption
has been synthesised from published literature to inform the early stages of model
development. The literature provides an important framework for analysis, but not all of the

factors for change are covered in the literature, nor are they contextualised to current Australian
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conditions. We therefore also used a qualitative survey instrument approach (semi-structured
interviews with CA farmers) to determine what influenced their decisions for practice change.
From across Australia’s diverse farming regions, we interviewed 31 farmers attending field
days or on farms, this was organised by local advisors asking if they were willing to take part
in an on changes in farming practices in their area. There was only one female interviewed,
two were couples and the balance males. The research approach we applied is known as
phenomenography (Marton 1981). According to D’emden et. al. (2008) a significant
percentage of grain farmers in Australia had adopted some form of CA in order to remain
competitive. In our sample no-till was practiced by 93% of farmers, stubble retention by 90%
with some burning stubble only if required. Crop rotation was practiced by most farmers at
74%, precision guidance was used by 71%, control traffic system was applied by 48% of our
sample and only 19% had included some form of cover cropping. We visited the farmers on
site at field days or on their farm and conducted face-to-face interviews, so our sample numbers
were limited by cost and our ability to cover the large geographical spread of the Australian
grain belt. We believe that it was important to go beyond telephone surveys and have a more
in-depth discussion with farmers to gain a better sense of the underlying motives for the
adoption or non-adoption of the various farming practices. The interviews lasting up to 45
minutes depending on the farmer’s openness to conversation were conducted across all of
Australia’s dryland cropping regions: Western Australia (7), South Australia (11), Victoria (4),
New South Wales (3) and Queensland (6). Due to the sheer size of the continent and the spread
of grain growing not all agro-ecological zones could be covered but most states recorded a
spread across several hundred kilometres. A previous survey on current farming systems
adoption by Edwards et al. (2012) does not include underlying motivation. Other studies such
as Vanclay (2004); Llewellyn (2011); Pannell et al. (2011); Ecker et al. (2012) and Schirmer
and Bull (2014) have looked at drivers of practice change regarding land use but not
specifically at emissions reduction to do with CA. The interviewees were representing a family
farm, typically cropping 2500 to 5000 hectares. All were previously part of farming families
and some had been on the same farm for many generations. For the districts involved, the
precipitation varied from 250 to 600 mm annual rainfall and the crops grown were wheat, oats,
barley, sorghum, corn, mung beans, canola, faba beans, lentils, chickpeas and lupins.

A similar qualitative approach has been used in other studies to gain an understanding of
various phenomena (Barnard et al. 1999). Using a qualitative research approach is useful for
studying rural change issues as it allows a broad series of views and perceptions to be captured

(Kvale 1996; Patton 2002; Maraseni and Dargusch 2008). The interview structure used was
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based on an ‘Interview Guide’ approach as per Patton (2002). The interview questions are
open-ended and based on a guided format to ensure the same basic lines of enquiry are pursued
for each farmer. Farmers were asked about their location details in regards to soils, climate and
crops grown. They were also asked to elaborate on the CA practices they had or had not adopted
based on the list in Table 2. We sought to get a further understanding of their prior practices
and the basis of their reasoning for making or not making the changes. To confirm the value of
the drivers to making changes we also covered the benefits they had gained in making the
changes and if they had abandoned any of the practices. This provides some structural
similarity but allows for individual perspectives and experiences to emerge (Kvale 1996; Patton
2002). We asked farmers which CA practices they had adopted and why they had adopted
them. If farmers wanted to expand their views into a broader range of comments, we allowed
them to do so. The responses are grouped by themes of responses such as ‘moisture retention’.
The grouped responses formed the basis for constructing the ‘drivers’ in the model. We also
considered why farmers had not adopted or had delayed the uptake of some practices and what
might cause them to abandon a practice. These formed the positive and negative causal
relationships of the model.

4.0 Results and discussion
All farmers interviewed highlighted that the main reason for changing practices was that they
thought the change would make their farming operations more profitable -
“It's the only thing that’s going to keep you here is profit.”
Western Australian farmer
“If you’re still back conventionally farming your country and planting late, and you’re
just not making the money. So, we probably find that we’ve got to skew towards the
early adopters and innovators in farming”
Queensland farmer
They clearly weighed the cost involved against the potential benefit that could be observed
from early adopting peers. This was also supported in the literature where farming systems
groups and advisers have primarily focused on issues of profitability and economic
sustainability (Gourley and Ridley, 2005; Thomas et al. 2007b; Wylie, 2008). Positive drivers
were those that improved profitability. Negative drivers were those that tended to lead to
conditions that may reduce profit or create financial loss. Farmers indicated that adopting a
practice was also related to other factors, such as investment cost or the knowledge and skills

required to implement the change of practice. Farmers were in agreement on the value of
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reduced tillage and stubble retention; those that had not adopted had very specific reasons for
not doing so or were new to the industry and intended to adopt it in the near future. This is not
surprising given the volume of published evidence in industry media supporting such benefits
since the 1980s. The adoption of a legume rotation was simply a matter of economics in
competition with other rotations such as canola. Controlled Traffic was more contentious with
a number of farmers not convinced of the value of the investment.

We developed models for four CA practices: reducing tillage, retaining crop stubble,
introducing legume in rotations and adopting CTF. A model was not created for fertiliser
application because most of the farmers interviewed had not yet made changes to their fertiliser

application system.

4.1 Model 1 — Reducing tillage

All farmers interviewed highlighted that their decision to implement reduce tillage practices
was heavily influenced by the examples provided by peer farmers which demonstrated the
production and profitability benefits possible through reducing tillage. Farmers indicated that
they valued the real-life context in which the peer farmer presented results. Locality was also
important to the decision on whether to reduce tillage; the level of moisture retention leading
to better productivity from this practice was more evident in the low-rainfall areas especially
during drought years. They indicated that the economics of reducing tillage provided them with
more cropping opportunities and reduced overall cost of inputs by replacing diesel with
increased herbicide use. The comparative economics of ‘tillage’ to control weeds versus the
‘herbicides’ was in favour of herbicides as glyphosate prices decreased through competition.
Another important driver was the impact of wind or rain erosion in removing valuable topsoil.
This did not directly affect short-term income, however it did raise concerns about the long-
term viability of land affected by reduced fertility and steered farmers towards measures that
reduce erosion.

The CLD in Figure 2 represents a mental map of the factors that influence the profitability of
reduced tillage practices. The model is premised by the finding that farmers will change
practices if the change results in better profitability. It follows that if we want to further reduce
tillage by farmers for environmental purposes, than we need to formulate policy within the

social and economic framework that is already driving industry change.
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Figure 2 - A causal loop diagram of factors influencing the profitability of moving from
conventional tillage to a no-till system

In the figure above and those to follow, the symbol ‘R’ refers to a reinforcing loop where
actions positively affects the outcome and increases the drive creating a positive feedback loop.
The symbol ‘B’ refers to a balancing loop in which the action has negative consequences that
drives against continuing the action. The double slash refers to a delay in effect (Sherwood
2002). Reducing tillage to a no-till system (Figure 2, R1) can significantly improve the
retention of soil moisture leading to greater yield (approximately 20 kg/ha/mm of stored soil
moisture) (French and Schultz 1984) and more cropping opportunities per range of seasons,
thus increasing the level of income (Silburn et al. 2007; Thomas et al. 2007c; Wuest 2010).
This is reflected in Figure 2 and has been suggested by other studies as a key reason for farmers
to adopt reduced tillage practices (Taschetto and England 2009; Quinton 2010; Farley 2013).
Another reason for uptake seems to be the favourable commercial availability of no-till
equipment which some farmers indicated as important as they no longer had to re-engineer the

machine themselves (Figure 2, R2).

194



However, herbicide resistance sometimes requires farmers to resort to cultivation to control
weeds and it acts as balancing factor in the model (Figure 2, B3). Another balancing factor is
nutrient stratification where soil organic carbon and the major immobile nutrients of
phosphorus and potassium can be locked into the drier surface horizon of cropping soils
(Figure 2, B4) (Bauer et al. 2002; D'Haene et al. 2009; Hernanz et al. 2009). If farmers were to
revert to cultivation to manage weed control or to invert soil layers to redistribute nutrients,
they would once again face high diesel costs, erosion (Figure 2, B2) and the loss of soil
moisture especially in the dry years, thereby affecting profitability (Figure 2, B1).

The process of reducing tillage in cropping systems in Australia is already a well-established
practice. The implication for soil carbon is that further tillage reduction is coming under
pressure from the looming problems of herbicide resistance and nutrient stratification, a source

of concern for farmers (Argent 2012).

4.2 Model 2 — Crop stubble

A model of the factors influencing the cycling of surface carbon as a result of stubble retention
is presented in Figure 3. All farmers interviewed perceived stubble retention as a component
of no-till practices and considered it a beneficial practice for soil moisture retention. Stubble
offers flexible options for farmers; it can be retained, grazed or sold as animal feed depending
on the prevailing economic conditions. Farmers also indicated that stubble creates problems
for machinery at planting and is a source of carry-over for pests and diseases. Carry-over pests
themselves, including snails (Theba pisana) and rodents (Mus domesticus), weed seeds and
diseases such as yellow leaf spot (Pyrenophora tritici-repentis), crown rot (Fusarium
pseudograminearum) and take-all (Gaeumannomyces graminis var. tritici), can be a significant
incentive for stubble removal (Rees and Platz 1983; Scott et al. 2010; GRDC 2011a).
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Figure 3 - A causal loop diagram of the factors that influence the retention of crop stubble after
crop harvest

The main reason the farmers interviewed retained stubble was for its benefits in soil moisture
retention (Figure 3, R1). Improved soil moisture also provides more cropping opportunities
(Oleary and Connor 1997; Anderson 2009; Scott et al. 2010). Mitigating soil erosion (Figure 3,
R2) has also been reported as a significant benefit (by retaining valuable topsoil). Retained
stubble also cycles carbon back into the system, thereby buffering nutrient demand from
fertiliser (Figure 3, R3) (Malinda 1995; Thomas et al. 2007¢). From our farmer interviews, we
determined that these benefits to production seem to be balanced by the problems of managing
stubble during planting operation (Figure 3, R1). That is, problems from ‘clogging’ of the tines

and ‘pinning’ which occur on soft soils when the disc does not cut the stubble straw, instead
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pushing it into the seed furrow and disturbing the soil-seed contact. We know that this problem
can be severe enough for some farmers that they opt to burn prior to planting (Scott et. al.
2010). The other balancing factors are pest and disease carry-over (Figure 3, R2), for which
the most efficacious risk option is to burn the stubble, and the basic opportunity cost of the
stubble as animal feed, for which there is a ready market. To a large extent the final decision
depends on how much farmers value the option of stored moisture for a future yield return
compared to the immediate cash return from animal feed. The demand for crop stubble as
animal feed and the need for stubble retention to reserve soil moisture both coincide with
drought conditions. There is a need to better understand the issues around stubble management
and its impact on crop establishment. If farmers have to make a choice about whether they are
going to remove or retain crop stubble, than they need solutions to some of the problems of
stubble management.

4.4 Model 3 — Legume rotations

Introducing a legume crop into a cropping rotation cycle can reduce demand for synthetic
fertiliser by the next crop and thus GHG emissions can be reduced (Dalal and Wang 2010;
Lupwayi et al. 2011; Schwenke et al. 2012). In legume crops atmospheric nitrogen (N2) is
reduced to ammonia (NH3) via the nitrogenase enzymes in their root nodules which are
inhabited by the soil bacteria Rhizobia spp. The ammonia produced is converted by the plant
into amino acids and other compounds used by the plant for growth (Herridge 2011). Legumes
also provide nitrogen residues after decomposition of the soft plant tissue making it available
for the following crop to the value of about 100 to 120 kg per hectare of nitrogen fertiliser
(Peoples and Griffiths 2009). The process also emits N2O as a scope 1 emission, but does not
have the additional scope 3 emission from the high energy inputs required by the manufacture
of fertiliser using the Haber-Bosch process (Addiscott 2004).

Although legumes can be a significant contributor to soil nutrition, they are not always as
favoured as cereals or oilseeds. The main reason given by the farmers in our interviews is that
the relative profitability of legumes is not as good as for other crops in certain seasons. In dry
years, cereals are more productive and offer better returns (Seymour et al. 2012).

Based on current adoption trends, legume crops are unlikely to be a significant alternative to
purchasing synthetic fertiliser to supply the needs of cereal crops (Whitbread et al. 2000). The
major driver is the need for legume as a break crop where it is cost effective (Kirkegaard et al.
2008; Evans et al. 2010). The market price for legumes is the second main driver for farmers

choosing to plant legumes compared to an oil crop such as canola. It is also apparent that not
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all agro-ecological zones can support the high-value legume crops, and in some instances the
available crop options in the southern and western regions of Australia are limited by soil type
and climate (Herridge 2011; Edwards et al. 2012; GRDC 2012).

Legumes have a potential role in mitigating the climate change impacts of agriculture by
reducing the need for industrial fertiliser, increasing soil organic carbon and as a possible
feedstock for biofuels (Jensen et al. 2012). However, a decision about whether to pay a farmer
from a carbon market to grow legumes would need to consider the potential overproduction of
the legume grain and the impact this would have on its market price. A more effective approach
might be to grow legumes as a green manure cover crop to increase soil carbon as there is no
grain market impact (Lal et al. 2009; Olson 2013). A green manure crop refers to a crop grown
for the purpose of protecting the soil from erosion and turning it back into the soil to increase
the level of organic matter. The farmers we interviewed indicated that they value legume
rotations, but not at any price, and seasonal conditions will influence the option. Mostly they
perceive legume rotations as a break crop for risk-management and are just as likely to shift to
more profitable oil crops (Figure 4). Some farmers suggested that legumes can be somewhat
more complex to grow and not all farmers are confident of getting a good crop in-place.

Figure 4 - A causal loop diagram of the factors influencing the uptake of legumes in dryland
cropping rotation in Australia
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Cereal yield is one of the main drivers of farm profits (Figure 4, R1). However, cereal yields
can be affected by a build-up of cereal diseases, especially when increasing stubble retention
occurs in adverse weather (Figure 4, R2). This rotation reduces the need for cereal fungicide,
thus improving profits from future cereal crops. However, the choice of crop ultimately
depends on farm profitability (Seymour et al. 2012) (Figure 4, B1). If fertiliser prices are very
high, farmers may look to the nitrogen value of the legume to boost future grain yields (Figure
4, R4). Legumes also make a useful break crop to avoid herbicide resistance, thereby insulating
against future herbicide-resistant weed problems (Figure 4, R3). The availability of suitable
legumes can also limit options. A number of the farmers interviewed indicated that they
recognise the value of legumes in rotation, but are required to make pragmatic economic
decisions on crop choices. Hence consideration is given to what crop is available, the price
return for legumes, fertiliser prices and the presence of diseases in last season’s crop.

Given that there are no consistent productivity benefits from including legumes, prospects for
introducing legumes as part of an emission reduction strategy appear limited. This is because
farmers will introduce a legume crop into rotations for a number or reasons not directly related
to carbon. Most of the emission benefits from a legume crop come from reducing the demand
for manufactured fertiliser in their supply chain (Huth et al. 2010; Schwenke et al. 2011).
Actual on-farm emissions from the introduction of legumes would be very difficult to measure
under current conventions. There is research underway into using legume crop rotations as a
means of reducing N2O emissions by making fewer applications of fertiliser, but it is unclear
at this point how that might fit into a carbon offset project methodology (Huth et al. 2010;
Schwenke et al. 2012).

4.5 Model 4 — Controlled traffic farming

The value of CTF in reducing the emission profile of Australian cropping farm operations is
based on two assumptions. The first is that limiting machinery traffic to set lanes means
machinery operates on a compacted hard surface and this uses less energy than on soft soils.
According to Tullberg (2009), fuel use is reduced by as much as 50% for tillage and planting
operations and 35% for harvest operation and spraying. The second assumption is that the better
aeration of uncompacted soils leads to less N2O emissions than for compacted soils (Tullberg
2010). Early trials indicate emissions from cultivated fields and no-till paddocks that have some
level of soil compaction are around 2-2.5 kg N2O-N/ha compared to CTF fields at 1.2 kg N.O-
N/ha. Softer, less-compacted soils also increase populations of soil organisms, such as

earthworms, which can help organic recycling (McKenzie et al. 2009). The agronomic benefit

199



of CTF in providing improved yields from better managing soil compaction should be a
sufficient driver for farmers to adopt it (Chamen et al. 2003; Li et al. 2007; Batey 2009).
However, advocating yield increases to farmers is not sufficient to gain adoption of new
practices. At least two participants did not believe compaction was an issue, one indicated that
the topography was not felt to be suitable and four saw investment in changing farming system
as an important consideration—the cost of entry and how easy it is to make the change. There
is an indication from our interviews that at least 20 % of the farmers were non-committal on
soil compaction as an issue. Those that had become aware of the issue from past presentations
by agronomists indicated they had to consider the capital cost requirements and the changes
required across the farm, such as reorganising fencing or changing the direction of the planting
row. Permanent wheel lanes can also cause other issues such as deep ruts in clay soils that have
to be renovated (Neale 2013). The factors relating to the uptake of CTF are presented in Figure
5.

Figure 5 - A causal loop diagram of the factors affecting the uptake of controlled traffic farming

The main reinforcing loops that drive adoption of the CTF system (Figure 5, R1) relate to crop
production improvement and greater profit (Blackwell et al. 2013). The Global Positioning

System (GPS) investment required to operate CTF is in place on most farms that use auto-
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steering tractors and the use of publicly accessible regionally continuous operating reference
stations (CORS) is expanding (Janssen et al. 2011). These GPS reference stations are multi-
compatible with various suppliers and allow farmers and other rural industries to access
precision GPS positioning of their equipment without having to buy a reference station.
Perhaps the simplest and most obvious benefit of CTF is in the fuel savings from running
machinery on compacted tracks instead of soft soils (Figure 5, R2). Factors balancing the
adoption process are cost and the problems associated with the system, such as the deep ruts
from the weight of machinery operating on the same track (Figure 5, B1). A delayed reinforcing
loop creates a market opportunity for commercial product development (Figure 5, R3). The
relatively low level of adoption of CTF provides the opportunity to significantly increase
adoption and thereby reduce future emissions. An important issue that seems to be constraining
rapid adoption by Australian farmers concerns machinery configuration. Usually the front axle
has to be widened to match the back wheels and this can be a problem for a farmer who has
just purchased a new machine. The uptake of CTF is therefore currently limited to those farmers
willing to have their machinery significantly modified.

The Australian Department of Environment recognises the climate change mitigation value of
CA, but there are no carbon market methodologies for CA under the CFI (DCCEE 2012). Ata
macro level, Australian agricultural emissions could be reduced through greater adoption of a
range of CA practices. However, based on the models presented in this paper, it is unlikely that
a market-based approach will be a commercially viable solution.

Under the Australian CFI legislation, the process for producing a carbon offset unit is quite
complex for farmers. Australian carbon credit units (ACCUSs) are gained via an abatement
project registered by the farmer or ‘body corporate’ acting on behalf of the farmer. For
sequestration projects, the proponent must have the legal sequestration rights to register the
project. This is created under a separate State law and all proponents are required to have the
sequestration rights registered on the land titled to be in force for the duration of the
‘permanence obligation’ which is set at 100 years (Section 43 of CFI Act 2011). Further,
anyone having an eligible interest in the land such as a bank or family partnership will need to
give their consent to the 100-year obligation being placed on the land (section 44 CFI Act
2011). Should the carbon stored not be maintained, the proponents may be required to pay back
the ACCUs received for the project (section 89, 90 & 91 CFI Act 2011). In the event of
insolvency, the regulator may apply for the farmer’s land to be subject to a carbon maintenance
obligation, and the bank as the likely mortgagee in possession becomes the responsible entity

(De Wit et al. 2013). There are also various reporting requirements to be undertaken for
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projects. The process requirements for what is a relatively small gain, especially when
compared with the likely gains from agricultural production, suggest that farmers may be

reluctant to change farming practices based on a carbon project alone.

5.0 Conclusion

Cropping agriculture in Australia is a significant source of GHG emissions. In recognition of
the need to reduce emissions and return carbon to the soil environment, one of the current
imperatives of the Australian Government has been to introduce a ‘market-based instrument’
to encourage farmers to change farming practices in ways that conserve and enhance soil
carbon, and thereby produce carbon offsets for sale. Cropping practices globally and in
Australia have been slowly changing in response to land degradation by using CA farming
practices, thereby reducing emissions and increasing soil carbon.

Our interviews with Australian farmers indicate that CA has a number of productivity benefits
that have lead farmers to gradually invest in making changes in practices (such as reducing
tillage and retaining their crop stubble after harvest). Although such practice change can take
decades to be adopted across the community, we suggest that the pace of adoption for new CA
practices could be increased by education and extension policies where the benefits have been
clearly demonstrated by early adopters such as control traffic farming and the use of variable
rate fertiliser application using digital technology. It becomes essentially an investment option
for farmers, unless government believe there is a need to introduce a policy involving
incentives such as added tax benefits. Where there still exist unresolved issues such as potential
cover cropping options or new rotational legume crops, a targeted research program is required
to determine the opportunities.

We have noted that those drivers of practice change will vary based on the practice being
targeted and that the pace of change is constrained by the farmer’s awareness of the internal
benefits. Implicitly important in the extension process is a demonstrated cost-benefit analysis
of these emerging practices, for example, ‘Is there a realistic economic benefit after investment
cost?’, ‘Have the financial implications for the farm been made clear?’, ‘What size of
investment is required by the farmer?’ and ‘What is the degree of complexity involved?’. We
suggest that CA provides sufficient production benefit to drive change in practices that reduce
emissions. If policy is looking to drive faster change it needs to, as a minimum, demonstrate a
clear economic benefit to the farm enterprise and outline the level of investment required and
return on investment that is gained. It seems the larger the investment required, the slower the

adoption process and we have noted that changes that take years to show a response as opposed
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to seasonal responses are less likely to be adopted. In addition, the more complex the process,
the less likely it is to be adopted as it requires expenditure for professional support. New
unfamiliar practices not widely practiced or endorsed by trusted peers, regardless of benefit,
will result in slow adoption. We suggest the need to consider an ‘extension’ policy that includes
the use of champion farmers that demonstrate how they have overcome the barriers and allow

them to tell their story of how they perceive the inherent benefits.

6.3 Concluding notes

The above paper concludes that CA does have an emission reduction and carbon
sequestration benefit, and that adoption would reduce overall agricultural emissions from the
cropping sector. However it also suggests that adoption of CA is driven by both economic
and social factors mainly production benefit and the ability of farmers to overcome the
barriers to adoption. A carbon market incentive at the current price and considering
transaction cost seems unlikely to support market offset production on a per farm basis. It

suggests investment in extension as a more direct means of intervention to reduce emissions.
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7.0 OPPORTUNITES FOR PRODUCING MARKET OFFSETS IN
DRYLAND CROPPING (PAPER)

The following chapter is presented as a paper manuscript with the intention for it to be

submitted to the journal Australian Journal of Environmental Management.

The tables are not listed as part of the thesis but follow the numbering pattern of the text in
the publication. The bibliography has been removed and incorporated into the thesis
bibliography. There may be slight differences in presentation format from this thesis based on
publication editorial policy.

Farmer perceptions of the opportunities and constraints to producing carbon

offsets from Australian dryland grain cropping farms

Jean-Francois Rochecouste?, Paul Dargusch® and Christine King®

Abstract

The Australian Government is attempting to use a market-based mechanism to involve
agriculture in activities that reduce emissions and sequester carbon. The initiative, known as
the Carbon Farming Initiative, represents a significant investment as part of the government’s
climate change and land-use policies. To examine the potential opportunities and constraints
faced by Australia’s 23 million hectares of dryland grain cropping farms to engage in these
carbon farming activities, we interviewed 31 grain farmers and 6 industry professionals. Our
analysis suggests that agriculture presents opportunities for reducing national emissions, but
that lack of project methodology development and the current project approval processes pose
significant constraints to engagement. A particular concern for farmers is the extent of the
‘permanence’ obligation and the ‘additionality’ requirement regarding the ‘common practice’
test required for project approval. Given the requirements of the processes and the associated
transaction costs, producing offsets from dryland grain cropping operations in Australia is
currently not a profitable endeavour for farmers and therefore fails to act as an incentive to

participation. We propose the policy needs reviewing in order to engage farmers and
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alternatives for further consideration might include a national pooling framework to account

for carbon offsets produced from individual Australian farms.

Keywords
soil carbon, emissions reduction, agricultural policy, Carbon Farming Initiative, additionality,

permanence, market-based instrument

1.0 Introduction

A range of policy instruments is available for governments to help change farming practices
that create environmental externalities such as greenhouse gas (GHG) emissions. These include
cash incentives, taxes applied to inputs, education, subsidies, the creation of standards, and
market-based instruments (MBI) (Horan and Shortle 2001). Using markets to manage the
externalities of industry is seen as a cost-efficient way of dealing with pollution. The Australian
dryland grain cropping sector covers some 23 million hectares of production with just under
29,000 farmers involved in cropping including mixed livestock (Australian Bureau of Statistics
2006).

1.1 The Australian Carbon Farming Initiative

As part of its climate change policy, the Australian Government introduced the Carbon
Farming Initiative (CFI) on 8 December 2011 as an MBI in the land sector. The incoming
coalition government has opted to retain the CFI and be the main buyer in the market through
its Emissions Reduction Fund under its Direct Action Plan (Australian Government 2013b).
The scheme was designed to help farmers and land managers earn additional income from
reducing emissions and by sequestering carbon in vegetation and soils by changing land
management practices. Farmers can participate by registering a project, individually or with a
project developer that reduces GHG emissions or sequesters carbon which in turn generates
credits for abatements that can then be sold to the carbon market. The legislation on which the
CFl is based was enacted on 15 September 2011 as the Carbon Credits (Carbon Farming
Initiative) Act 2011 (CFI Act)? and the main provisions of the Act commenced on 8 December
2014, with the supporting Carbon Credits (Carbon Farming Initiative) Regulations 2011 (CFI
Regulations) commencing on 8 December 201125,

% CFI Act 2011 - http://www.comlaw.gov.au/Details/C2012C00417
% CFI Regulations 2011 - http://www.comlaw.gov.au/Details/F2012C00466
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In this paper, we consider the practicalities for farmers producing carbon offsets through
project-based activities on dryland cropping operations in Australia for sale to a government-
administered market. We consider if this is likely to be an effective tool for generating carbon
offsets from a major agricultural sector. The current government’s Direct Action Plan intends
to use a reverse auction system as a market mechanism, wherein the ‘Emissions Reduction
Fund’ will be established to purchase emissions reductions at the lowest price as offered by
industries including agriculture (Australian Government 2013b).

The government’s Clean Energy Regulator is responsible for the market process and has
proposed a ‘positive list’ which is a register of emissions reduction activities that are deemed
eligible for earning carbon offsets under the CFI (CFI Regulations 3.28). The activities have to
go beyond common practice and lead to emissions reductions that would not have occurred
without the CFI (Woodhams et al. 2012). If a land management activity is not on the ‘positive
list’, it cannot progress to become a methodology until it is nominated (De Wit et al. 2013).
The current ‘positive list’ pertaining to cropping land contains the following eligible CFI
activities (De Wit et al. 2013):

1. the establishment of permanent carbon plantings since 1 July 2007

2. assisted regeneration of native vegetation, since 2007, on land that is not conservation

land
3. the application of biochar to soil

4. the application of urease or nitrification inhibitors to, or with, livestock manure or

fertiliser

Activities proposed for the positive list from the community or industry are open for review,
but may be rejected if considered inappropriate for the CFI by failing to meet the required test
under section 41 (3) of the CFI Act (2011) that deems a practice to be common to the industry
or that may be held to be unsuitable by the Domestic Offset Integrity Commission in advice to
the minister.

The only methodology listed that is directly applicable to dryland grain-cropping operations at

present is ‘environmental plantings’, which requires land be set aside for tree plantings.

1.2 Carbon offset opportunities in Australian dryland cropping
We want to consider the capacity of crop farmers to supply carbon offsets from projects such

as environmental plantings, but also the potential for methodologies involving soil carbon
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sequestration and emissions reduction. We will explore some of the opportunities for and
constraints to engaging farmers in the development of carbon offsets associated within the

dryland grain cropping sector in Australia.

1.21 Environmental plantings

This methodology is concerned with carbon stocks within the vegetation pool and must use
Australian plant species that are native to the local area. The plantings can consist of a mix of
tree and understorey species or a single species if the monoculture occurs naturally in the
project area. Under the ‘permanency’ requirement, projects must abide by strict rules in relation
to tree management, weed control and other land-use activities within the project zone for up
to 100 years (De Wit et al. 2013). This creates a long-term covenant over the land beyond the
current generation of landowners, and may impact on the saleability of the land in the future.
The current government policy draft is considering allowing landowners to select either a 100-
year or 25-year permanence option with an associated discount in earnings for the reduced

period (Australian Government 2013b).

Environmental planting does have an existing methodology that can be readily taken up by
farmers under the CFIl. We consider if dryland grain farmers are willing to take up this
opportunity to create offsets on their non-cropped land. In this context, we consider the
reactions of dryland grain cropping farmers to their potential role in such a policy. We seek to
understand this major farm sector’s intention to participate in the carbon market, but more
importantly to try and understand why they might, or might not, participate as anticipated by

government.

1.22 Reducing tillage for soil carbon sequestration

Tilling the soil for planting removes valuable organic matter and Australian dryland farmers
have been reducing their tillage practices since the 1970s (Loveland and Webb 2003; Thomas
et al. 2007a; Kirchhof and Daniels 2009). The most significant change occurred after the 1990s,
when the number of farmers that had adopted some form of reduced-tillage practice increased
from approximately 20% in 1992 to over 80% in 2008 (Llewellyn et al. 2009). Australian
farmers have already adopted a high level of reduced tillage, but reducing tillage under dryland
conditions does not accumulate much soil organic carbon (Wang and Dalal 2006; Luo et al.
2010; Chan et al. 2011). Over time, the carbon that does accumulate is usually locked into the
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surface layers and can be easily mineralised by changes in farming practices (VandenBygaart
et al. 2007; Powlson et al. 2014). The vulnerability of carbon in dryland grain cropping in
Australia makes it somewhat risky to use as a ‘deemed’ methodology as applied by other crop
producing states (such as Alberta, Canada), where reducing tillage can be ‘deemed’ to have
accumulated a value of carbon based on bio-physical conditions (Dalal and Chan 2001;
Alberta-Environment 2009; Chan et al. 2011). Although reducing tillage will reduce the loss
of soil carbon and may accumulate small quantities of carbon; the amount of carbon
sequestration per farm under Australian conditions is approximately 0.139 tonne C ha* /year
(Lam et al. 2013). This should, however, be considered in terms of the large area involved.
According to Edwards et al. (2012), in 2011 zero-till (<12% soil disturbance) accounted for
5.6 million hectares (24.6% of grain production areas) and no-till (12% to 30% soil
disturbance) accounted for 8.1 million hectares (35.4%). This leaves a potential nine million
hectares of dryland cropping land in Australia on which a change in practice to zero-till might

accumulate small amounts of carbon rather than incur a loss.

We are particularly interested in the response of farmers to changing practices for a carbon
market opportunity. The research objective is to assess the farmer’s likely response to a
carbon market policy and their likely intention to participate in an MBI. We attempt to
answer this question by engaging in direct dialogue with the industry, focusing primarily on
environmental plantings and reducing tillage as vehicles for carbon offsets.

2.0 Methodology

To explore farmers’ perceptions of the CFI and of changing practices for a carbon market
economy, we used a phenomenological method of inquiry; a qualitative inquiry method that
can be applied to understanding a myriad of experiences. For example, this methodology has
been used in the health sector to understand a patient’s experience of various phenomena
(Barnard et al. 1999). This method interpreted a ‘lived experience’ or fact, by listening to the
different stories of the participants themselves, allowing an examination of the ‘phenomenon’
through the subjective eyes of the participants (Patton 2002; Starks and Trinidad 2007).

The CFI was a new and relatively complex piece of legislation and Australian farmers were
still unfamiliar with MBIs in general as these instruments were not widespread and were still
relatively new to land management (Whitten et al. 2004). To understand farmers’ perceptions
of, and responses to, an environmental service market such as the CFI, we determined that a

qualitative approach was the most appropriate. Qualitative approaches are useful for gaining
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in-depth understanding of complex issues that are not well understood (Patton 2002; Maraseni
and Dargusch 2008; Schirmer and Bull 2014). These approaches contrast quantitative
approaches that have the capacity to include a large sample size but lack the capacity to elicit
depth and assume the issue being explored is relatively known (King 2000; Patton 2002).

The ‘lived experience’ we explored in our study was the response to an economic offer, rather
than specific contractual processes, as there are limited methodologies in place. We were also
able to determine the constraints to ‘participating in a carbon offset MBI’ (Maraseni and
Dargusch 2008). We took into account that farmers were unlikely to be aware of the details of
the CFI methodologies being developed (e.g. biochar), but were more likely to have some
awareness of established CFI methodologies from the general media. We interviewed industry
professionals who had a more detailed grasp of the CFI legislation and who worked with
farmers to add further insights to our enquiry from their on-ground experience.

Using a phenomenographic approach, we interviewed 31 farmers and 6 industry professionals
on the CFI opportunities and how such a policy is likely to be received (Marton 1981). Starks
and Trinidad (2014) explain that ‘phenomenologists are interested in common features of the
lived experience. Although diverse samples might provide a broader range from which to distil
the essence of the phenomenon, data from only a few individuals who have experienced the
phenomenon—and who can provide a detailed account of their experience—might suffice to
uncover its core elements’. They suggest that typical sample sizes for phenomenological
studies range from 1 to 10 persons. Table 1 summarises the research criteria and the
explanation of these criteria when using a Phenomenological Approach.

Table 1: Criteria and explanation of criteria of the Phenomenology Approach (adapted from
Starks and Trinidad, 2014)

Research Criteria Phenomenological Approach

Assumption There exists an essential, perceived reality with common
features

Goal Describe the meaning of the lived experience of the
phenomenon

Question formulation | ‘“What is the lived experience of [the phenomenon of interest]?’

Sampling Those who have experienced the phenomenon of interest
(typically 1-10 participants)

Data collection Observe participants in the context in which the phenomenon is

experienced
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Interview Strategy Participant describes experience, interviewer probes for detail

and clarity

Analysis Identify descriptions, cluster into discrete categories, taken
together these describe the commonality and structure of the

experience

Audience Clinicians, practitioners and others who need to understand the
lived experience of the phenomenon of interest

Product A thematic description of the essences and structures of the lived

experience

The interview structure was based on qualitative interviewing using an ‘Interview Guide’
approach as per Patton (2002). The interview questions were open-ended and based on a guided
format to ensure the same basic lines of enquiry were pursued for each farmer. This provided
some structural similarity but allowed for individual perspectives and experiences to emerge.
If farmers wanted to expand their views into a broader range of comments, we allowed them
to do so (Patton 2002). We did not explain all the details of the CFI market function to the
farmers as we hoped to capture their current interpretation of government policy. At present,
the only carbon abatement methodology for dryland crop farmers involves environmental
plantings on non-cropped land, which requires farmers to hand over the rights of their non-
cropped land to the project proponent under section 27 of the CFI Act 2011.

The data collected used second-order interpretation, that is, the meanings of the responses are
grouped into general responses or ‘themes’ for reporting on general trends (Tracy 2013). The
discourses of the research were retained via transcribed recordings allowing focus on
participants’ understanding and interpretation of the carbon offset market and perceptions
towards these types of MBIs.

Participants were chosen randomly from a number of no-till farming associations. The median
age of farmers was 52 and farmers’ ages ranged from early 30s to late 70s (mean 58). The
farmers were predominantly, but not exclusively male, with a mix of ages. This can be
compared to the median range of farmers in Australia in general, where the majority of
Australian farmers are male (72%) and, although the median age is 53, almost one quarter of
farmers are aged 65 or older (ABAREYS).
The interview process operated in different parts of the dryland cropping region: Western
Australia (7), South Australia (11), Victoria (4), New South Wales (3) and Queensland (6). For
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the districts involved, the precipitation varied from 250 mm to 600 mm annual rainfall and the
crops grown were wheat, oats, barley, sorghum, corn, mung beans, canola, faba beans, lentils,
chickpeas and lupins. Some had mixed livestock enterprises, but none were exclusively
livestock.

Interviewees were asked about how they perceived the value of their non-cropped land, what
role such land played as part of their enterprise, and whether they would be willing to be
involved in a sponsorship agreement to provide vegetation services (tree planting) for financial
benefit on their non-cropped land? The need for a legal covenant requirement of approximately
100 years was included in the explanation. We further asked them to elaborate on the reasons
for either participating or not wanting to participate in MBIs. We did not elaborate on the soil
carbon offset area as there is no detailed methodology that could be offered as part of the
discussion and farmers did not seem to have an in-depth knowledge of how the CFI functions.
The recorded interviews were typically 30 minutes and we encouraged the farmers to expand
their views based on the standard series of questions. The Australian Landcare vegetation
program was used as a familiar concept of payment for environmental services, including the
legal requirement for a covenant.

The industry professionals were from various agricultural industry positions and understood
both the CFI and the farming constituency. We asked them to broadly explain how they
perceived farmers would react to an offset scheme regarding tree planting, but also share their
thoughts on their client’s likely engagement to soil carbon projects. We asked them why they
believed their farmer clients would or would not participate in a CFI carbon offset scheme,

based on their knowledge of the legislation and their close link with farmers.

3.0 Results and Discussion

3.1 Farmer opinions regarding environmental plantings

At present, the only established methodology for producing carbon offsets from dryland
cropping in Australia is through environmental plantings defined as the planting of native trees
on either retired land or marginal spaces. Of the farmers surveyed, about 16% indicated they
cropped most of their land and 84% indicated that they had non-cropped land ranging from 20
to 8000 hectares. Farmers were not able to give us a condition report on the state of non-cropped
land to determine its suitability for a tree planting project, variously describing their non-
cropped land as ‘bush’, ‘scrub land’ ‘grassland’ ‘pasture, small amount of remnant coolibah

trees’, ‘bush and creek lines that are deteriorated’, ‘poor quality, mainly saltbush, with weed
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issues’ and ‘virgin native bushland’. It was evident that some farmers have part of their non-
cropped land available for a tree planting project. Even if only a small percentage is available
for revegetation, it still represents an opportunity for such tree planting projects on dryland

farms across Australia.

According to the Australian Government, 65% of agricultural businesses in Australia have
native vegetation in their holdings which gives an estimated total of over 224 million hectares
across Australia (Barson et al. 2012b). How much of this land is degraded and available for
carbon farming projects is uncertain as there are no national condition assessments to determine
suitability. Nevertheless, the scale involved points to some level of opportunity for available
land to carry out tree planting projects. We consider if farmers have the means and the

motivation to take up such environmental plantings projects under the CFI.

Allowing for land availability, we consider if an MBI such as the CFI can create the financial
motive to participate in the current methodology. Perhaps this could act as a starting level
project for landowners and over time graduate to other carbon offset projects involving soil

sequestration and emissions reduction.

In considering the responses to available projects for environmental plantings; of the 31 farmers
interviewed, 45% of those interviewed were not interested in considering environmental
plantings on their farms or in any way associated with their dryland cropping operations. This
was based on lack of available land or they were simply more focussed on their own production
needs and not interested in sharing control.

‘... l guess, philosophically, I'm a little bit wary of that because I’ve started off with
a very small farm and I still haven’t got a big one and I’ve had to put a lot of blood,
sweat and tears into paying the bank and everybody else so I can own it. And I’'m a

bit wary about giving up any control of that hard earned asset.’
3.12 Farmer uncertainty regarding operational details

Although 55% of interviewees explained that they would consider environmental planting on
their farms, all but two said they needed further information before they could respond
definitively. Most of the respondents who said that they would be willing to consider

environmental plantings on their farms were only interested provided it was worth their while
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financially and they wanted to know more about how such a scheme would operate over the
long term. Many seemed initially sceptical of why anyone would want to pay them to establish
and maintain native land, something they are presently doing mainly at their cost. As a
preliminary finding, we perceive that farmers are interested in potential earnings outside of
farm production. However, it needs to make sense financially, and for a number of them the
long-term covenant over the land was a significant concern. In essence, the farmers are seeking
more detailed information on how the program would operate. The major concerns for farmers
as they consider their options are: “What are to be the terms of the contract?’ and ‘What are the
associated transaction costs?’. They operate from the business view that the validity of the
arrangement is in the contractual details and the overall economics of the program. Typically
farmers expressed an interest but seemed unsure of the details as indicated by the following

farmer interview response that indicated interest but uncertainty in the arrangements.

‘...we cleared a lot of it (trees) and we shouldn’t have. A few weeks ago, they
(project proponents) come out, it was through SANTFA?, and they were looking for
land to revegetate. So I put my hand up, and they’ll come out and they’re going to do
some figures on it. They’ll come and do probably seventy or eighty hectares of
country; it could even be more, it could go to two or three hundred hectares. | just
looked at it as in, well, if we don’t crop it may as well go back (to native vegetation).
They started talking this carbon tax and | thought well, let’s work out what | can
make out of that. If I can make something out of that, well, I might do it that way. |

don’t know.’

This is a similar response to that reported by Maraseni and Dargusch (2008) where farmers
expressed uncertainty at the details of an MBI in relation to woodland regeneration. The
farmers wanted to gain a better understanding of potential return and the details of the

arrangement over the long term, including intergenerational liability:

‘But that’s what’s been talked about, there was one company in our shire that, |
suppose, bought the carbon credits and they planted—I can’t remember how many
hectares or trees. It was a lot of trees - two hundred thousand. And they get the rights

to the carbon for the next seventy years on that land. So what happens, in effect, is

27 South Australian No-Till Farmers Association based in Clare, South Australia.
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that land is actually tied up for the next seventy years. Which is not attractive, because

things happen and generations change.’

How farmers are going to react to their legal obligation under ‘permanence’ in the CFI Act is
still an issue for project proponents. This type of long-term covenant is also going to require
the approval of other stakeholders in the land in question, including any family partnerships or
banks holding a mortgage on the land (De Wit et al. 2013).

3.2 Farmer opinions regarding increasing soil carbon

In terms of increasing the level of soil carbon, there is ample evidence that farmers are strongly
focussed on improving their soil’s health (Silburn et al. 2007; Kassam et al. 2009; Ashworth et
al. 2010). The responses we got about changing practices to reducing tillage and retaining

stubble invariably revolved around the soil.

“The soil is very important and the changes that we are seeing to it just keep coming

back to me as the reason I’'m going to stick with that (reducing tillage).’

The opportunity for improving soil carbon is limited by climatic conditions, but widely
accepted by farmers as being relevant to their enterprise (Dalal and Chan 2001; Chan et al.
2011; Chowdhury et al. 2013). However, soil carbon sequestration is also subject to

‘permanence’ obligations similar to environmental plantings (De Wit et al. 2013).

3.3 Insights from industry professionals

It appears that the opportunity and the means exist for dryland farmers to produce carbon
offsets, but there are concerns from some survey participants regarding the terms of the contract
in relation to ‘permanence’ and changes to their land title. None of the farmers interviewed
held a carbon offset contract or had a clear understanding of the contractual obligations under
the CFI Act. We found industry professionals had a greater knowledge of the CFI and were
able to provide further insights into their clients’ thinking and go beyond tree planting and
discuss more fully potential constraints to the market. They were able to put forward the view
of their clients in terms of the other priorities farmers had to consider, priorities that farmers
did not highlight in their responses.

3.31 Lack of confidence in governmental efficacy
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An agricultural carbon project manager indicated that the farmers with whom his organisation
dealt had expressed concern on the capacity of government to manage a market over the long
term. The farmers he spoke to were concerned whether the market process could exist beyond
a change of government, recognising that government can change policies retrospectively to
the farmer’s detriment. The company indicated that a typical forestry methodology works out
around $27/tonne in transaction cost and includes the long-term liability of ‘permanence’
which is a big stumbling block when it is explained to a producer. The income is taxed at 30%
for company rate leaving farmers with 70 cents in the dollar income, but leaves them with a
contingent liability for the full amount. This in their view means an immediate loss in putting

these projects together, with the returns coming over the longer term.
3.32 Time, money, and risk

A field research officer with a farming organisation dealt with a number of other issues. The
adviser indicated that the reasons for participation or non-participation by farmers are
associated with time, money and risk. The officer suggested that the farmers would be willing
if there was money in it and it wasn’t degrading the land. But time is the key issue; they would
not want to take time out to learn about a whole new business practice if it’s not going to pay.
Their main concern is the factors that affect the crop, and anything that distracts farmers from
the main game can cost them very dearly. Indicating that carbon markets were seen by farmers
as ‘fickle’, prices are highly variable for reasons farmers don’t fully understand and seem to be
affected by events such as the global financial crisis. How they could play in that market is a
big unknown. Options such as biochar may be better, as there are fewer risks of loss involved
under drought conditions. However, the issue is that at some time in the near future the practice
is likely to be deemed as common practice (additionality rules®®) and credits are no longer
allocated. It is seen as a waste of time and effort invested for a very short-term return. Therefore
permanence and additionality are seen as the biggest agricultural carbon participation risks.
When tied to an already volatile carbon market, it is likely that growers will prefer the known

quantity of crop production risks.

A farm organisation executive explained his farmer’s views from discussions he has had with
farmers. His view was that carbon is a major part of soil health and a major focus of his farmer

members. However, farmers in his view are more focussed on soil health as a driver of

28 Additionality refers to a test that determines when a practice change is regarded as being ‘common practice’ and is therefore not eligible
under the CFI.
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productivity in the crop market, not so much in the carbon market. He thought the carbon offset
market may be of some interest to farmers that are more prepared than others to take risks, but
noted that most of his members are risk conservative. He indicated that the long-term liability
associated with tree planting is not a serious option for cropping and emissions reduction; it is
not on their agenda. They are unlikely to change their farming practices simply to suit a carbon
emissions reduction requirement. Such changes are likely to be cost driven in terms of farm
economics rather than as part of a CFI offer. The current pricing is not much of an incentive
and he suggests that farmers are more interested in something that is going to increase their
productivity (something they know) rather than diversify into making money from another
system. Farmers are more profit driven than yield driven at this time and they are making the
changes they can to make it as environmentally friendly as possible, but are not likely to be
driven to it by the carbon market. If they are likely to get involved, it would need to be
something very simple and that is easy to manage. They (farmers) don’t want to get into the
rigour that is required as part of the new methodologies; they have too much else on their plate
that has a higher priority than the carbon market and that’s the challenge for government to

overcome when getting farmers involved.

3.3.3 The need for simplicity in carbon offset programs

We also consulted with a carbon auditor and agronomist on the Canadian experience in Alberta.
Alberta operates a carbon farming program using a ‘deeming’ method where a practice change
is deemed to have generated a certain level of carbon sequestration (Alberta-Environment
2009). He indicated that his farmer clients got involved in Alberta program primarily because
it was simple—there was minimal data required which farmers already had and all it needed
was someone to collate it and act as an aggregator to produce the offset. Unfortunately the data
collection process was very loosely applied by the regulator. As a consequence, previously sold
credits did not meet auditing standards. It needs to be simple for farmers to participate, but it
needs to also be clearly verifiable and some aggregators did not do their job adequately. For
his farmers in Alberta there was not a lot of money involved, they received in the range of 60
cents to $CAD1.00 per acre. The Alberta Government needed offsets and so they allowed
farmers to retrospectively pool their offsets from ‘reduced tillage’ back to 2002 from when the
market started in 2007. Although Alberta farmers did not see much value from 60 cents to
$CAD1.00 per acre, he suggests they did see the value in 5+ years’ worth of claims on a typical

10 000 acre farm, but that was closed after 2011. The retrospectivity it seems was a major
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incentive and the simplicity of the system did not place any significant barrier to participation.
Up until 2011, the only methodology in practice was tillage reduction. They have since
developed a fertiliser N2O emissions reduction protocol that he says has some complex internal
calculations, but is based on fertiliser nitrogen use per yield (nitrogen-use efficiency) over a
three-year baseline. As of 2013, the uptake was very small compared to the tillage protocol
which was much simpler to calculate. The other factor suggested as an issue is that the data is
a bit more personal and involves the need to access the farmer’s financial information on
purchases and the farmers yield for the season. It also requires an agronomist to sign off on the

crop plan, which makes the process a little more onerous for his farmers.
3.34 Concern about over-burdening farmers

What we have discerned from our sample interview is that farmers appear to lack the details at
present to make clear choices and the institutional experts have been cautioning farmers about
signing up to commercial carbon contracts. A leading soil scientist Jeff Baldock from CSIRO,

who stated in this ABC radio interview with reporter Bel Tromp on 29 August 2012:

‘... there are a range of challenges to be overcome before soil carbon can be
sequestered in farmland to any extent and for the 100-year time line required under
federal government rules. He says while measuring soil carbon is fairly easy, there’s
great variability across paddocks. Accurate measurement requires multiple samples in
any given paddock, and the process is then very expensive. As well, a range of factors
can affect the longevity of soil carbon.’

This highlights the issue of the cost associated with soil sampling in the development of a

property carbon baseline. Australian dryland farms are reasonably extensive covering several

thousand hectares and soil types across the farm may be quite variable. Normally sampling

procedures across a paddock for agronomic purposes have to take this into account so

samples are located based on different soil types. If this is required in detail, the costs will

depend very much on how many samples are required to satisfy the regulator.

We have summarised the general responses in Table 2.

Table 2 Summarised findings from industry interviews about farmers’ perceptions of the

potential for producing carbon offsets from dryland farms

1 Farmers perceived that ‘environmental plantings’ are the only available

methodology appropriate for crop farmers at this time.
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2 84% of farmers indicated that they had non-cropped land ranging from 20 to

8000 hectares (average 438 hectares/farm).

3 Farmers perceived that there are no condition reports of non-cropped land

across dryland farms requiring individual assessment.

4 45% of farmers indicated they were not interested in carbon offsets and 55%

would consider carbon offsets but wanted further details of the contract terms.

5 Farmers did not have a clear idea of the Australian Carbon Farming Initiative

process, the associated contractual obligations and likely returns.

6 Dryland farmers will plant trees for a host of other reasons; this is not a new
process.
7 Farmers appeared comfortable with the process of mass planting trees, but

believed they took a risk on their survival in the absence of available irrigation.

8 There was deep concern about a long-term covenant (permanence 100 years) on
the land creating an intergenerational liability.

9 Farmers were naturally interested in the quality of their soil and saw increased

organic matter as a worthwhile outcome.

10 | The cost associated with deriving a soil carbon baseline across changing soil

types is uncertain and may impact on returns.

11 Farmers have limited financial capacity for off-farm investment.

12 | The time available for farmers to operate a carbon project is limited as they

need to concentrate on their farming operations.

The concept of sequestering carbon using environmental plantings is well established and
existing methodologies established under the CFI have led to various on-ground projects
(Battaglia 2012; Australian Government 2013b). The value of soil carbon as a means of
producing carbon offsets is still being debated as an option for agriculture. There is recognition
that the level of soil carbon that can be accumulated in Australian agricultural systems is limited
in scope by climatic conditions (Dalal and Chan 2001; Wang et al. 2010; Luo et al. 2011,
Chowdhury et al. 2013). The proponents of soil carbon as the means of generating carbon
offsets point to the extensive potential in storage capacity when its applied across the nation,
and the detractors point to the associated cost per farm being unfeasible (Butler 2009; Walcott
et al. 2009; Sanderman and Baldock 2010; Sanderman et al. 2010; Luo et al. 2011; Chowdhury
et al. 2013; Lam et al. 2013; Murphy et al. 2013; Heath 2014). Soil carbon sequestration in an
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agricultural system is technically possible, but who is going to produce it is an important

question.

In terms of managing a carbon offset policy involving dryland agriculture, Australia has two
mitigating issues. Firstly, it has an arid climate with limited rainfall and poor soils extending
over much of its agricultural area. This limits the storage capacity of carbon in plants via native
vegetation and soils. Secondly, it has a highly industrialised form of agriculture that requires
high input costs. A grain farmer in northern Australia reported a typical crop gross income for
his area being approximately $AUD500/hectare and a profit/loss range of +$AUD100
depending on costs and seasonal conditions (Farmer’s name withheld pers. comm. 28
September 2013).

In regards to emissions reduction, a report by the Birchip Cropping Group?® investigating
typical emissions from farms in south-eastern Australia varied from 166 kg COe ha™ to 228
kg COze hal (White and Van Rees 2011). The average farm size in this southern region is
about 2000+ hectares and cropping is just under that figure depending on livestock mix
(Edwards et al. 2012). This suggests that whole-farm emissions typically range from 332 to
546 tonnes COze per annum and if we assume an efficiency reduction in the range of 10% to
20%, this would be about 60 tonne CO2e of available offset per farm per annum. Further,
project establishment will have a time and cost burden; in making this investment farmers will
necessarily consider the amount of abatement that can be offered by the farm versus the price
the market is willing to pay. The complexity of farm operations also means that farmers are
time poor and proper risk evaluation is limited (Pannell and Vanclay 2011). According to our
interviews with industry professionals, most farmers will use a precautionary principle until

they hear reports from other farmers that demonstrate value.

Farmers and industry professionals in our interviews also identified issues associated with
additionality as a key constraint to engaging in carbon farming. The ‘additionality’ rule exists
to avoid commercial enterprises claiming offsets for what is expected to be ‘business as usual’
development. It presumes that if the development is financially viable to provide a return on
investment, it should be open to normal commercial investment and not be eligible for carbon

finance.

2 A farmer cooperative involved in agricultural research and extension

219



In the CFI under Division 3.6, offset projects need to pass an ‘additionality test” (section 27(4)
(d) of the CFI Act). The test criterion is set out in subsection 41(1) of the CFI Act, which
provides that a project passes the additionality test if the project is of a kind specified in the
regulations and the project is not required to be carried out by or under a law of the
Commonwealth, a state or a territory. Under section 59 of the CFI legislation, the positive list
identifies activities that are not considered to be common practice within relevant industries or
environments. If a project consists of activities listed in the positive list and is not required to
be carried out by law, then the project passes the additionality test. Subject to compliance with

other eligibility requirements, the project would be eligible to participate in the CFI.

The main issue for farmers is that the additionality provision is applied as a ‘common practice
test” as operated by farmers. The Australian Bureau of Agricultural and Resource Economics
and Sciences has put forward parameters to define common practice. These parameters outline
that if the number of adopters of a practice falls below 2.5% of the target population (category
of farmers), the practice can be deemed additional. If the number of adopters is above 20% of
the target population, the practice can be deemed non-additional and will not be accepted on
the positive list (Woodhams et al. 2012). Above 20%, the concept suggests that firms or farmers
would view a practice as commercially beneficial and would be adopting the practice regardless

of any carbon unit incentive.

According to the industry professionals that we interviewed, many farmers lack sufficient
resources or cashflow to evaluate business opportunities that do not provide a significant return
and hence conveniently operate only within the practices they are used to and comfortable with
(Table 2, points 11 and 12). Given the level of emissions reduction likely in dryland cropping
farms in Australia, industry interviews indicated that income from carbon offsets on an

individual farm level is likely to be too small to significantly influence farm activity decisions.

Our interviews with industry professionals and farmers also revealed that the issues associated
with ‘permanence’ also served as constraints to dryland cropping farmers engaging in carbon
offset production (Table 2, point 8). The rule of permanence as applied to carbon sequestration
was designed to ensure that the ‘sequestered’ carbon was not released back into the atmosphere
within the short to medium term. To prevent this, land-based offset projects involving the

biosphere or pedosphere usually have a legal covenant of 100 years imposed on that carbon.
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Our interviews suggest that few farmers are likely to enter into 100-year-long agreements and
sequestration projects will attract little interest from dryland cropping farmers, unless applied
to marginal land that would have no value for cropping at any time. The permanence rule is a
major barrier to participation by crop farmers in sequestration projects generally (McClinton
2008). Reducing the liability period for permanence would have some effect, but it would need
to be reasonably significant to have any substantial impact given that returns may be low and
the income period is capped. Basing a project on soil carbon is seen as a high-risk strategy as
the carbon fractions in soils are small, highly ephemeral and prone to being lost through
mineralisation from changing farm practices (Powlson et al. 2014). A loss of carbon within the
permanence period would leave the project proponent with a requirement to make up for the

loss.

An option for consideration is to regionally pool carbon offsets based on local practices,
thereby limiting liability for individual farmers. Farmers are naturally motivated to improve
soil conditions by increasing organic carbon and a scheme that incentivises natural drivers to
better perform as a sector can create an increasing pool of carbon offset units. After risk
adjustment, such a pool can be sold to support extension activities at farm level. Ideally national
measurements using adjusted survey data can be linked to National Greenhouse Accounts to
demonstrate agriculture meeting its obligation despite the difficulties in measuring climate-
dependent biochemical reactions. Discounting to allow for uncertainties can be applied to
support market acceptance. This scheme is essentially paid for by the market seeking offsets.
5.0 Conclusion

The results of our interviews with industry professionals and farmers suggest that the supply
of carbon offsets by farmers face a number of constraints. The responses suggest project
activities need to make economic sense for the farmer, and at present it seems they do not.
Further any project that imposes legal constraints that may affect the viability of the farm or
the earning potential of future generations is not likely to be taken up. Finally it seems farmers
are looking for rules and administrative processes that are easy to follow in order to participate.
The interviews with industry professionals suggest that for farmers the carbon market is a
‘sideline event’ and they perhaps cannot afford to have it distract them from the main business
of grain production, which has its own financial challenges. At present it does not appear that
Australian dryland cropping farmers will likely engage with the CFI to supply carbon offset
units. If the dryland grain cropping industry is to participate, it will need more specific

methodologies to be developed for the sector that also addresses their concerns of simplicity,
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additionality and permanence. It appears that the current CFI is not engaging a major part of
the farming sector as the government had anticipated and as such it may need to review its

policy in regards to farmer engagement or consider alternative policy instruments as outlined
in the introduction.
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8.0 CONCLUSION

With agriculture the second largest emitter for Australia’s national inventory (16%), reducing
the sector’s emissions liability is a current priority of the Government as part of reducing the
nation’s overall emissions accounts. There is a high degree of variability within sub-sections
of the agricultural sector both in terms of the types of emissions produced and the overall
amount it produces. The dryland cropping sector occupying the inland cereal belt from
central Queensland to Western Australia was considered for study as it represents a
significant area of agricultural production. The sector’s emissions contribution is primarily in
the form of N2O and CO> from fertiliser application, tillage, residue burning and machinery
operations. It rates relatively small within the agricultural sector accounting for
approximately 2.9% of national emissions in 2012. The historical transfer of SOC from
cropping soils by means of mineralisation to the atmosphere is not included in the national

accounts.

Climate change mitigation involves removing CO- from the atmosphere for sequestration
within the land sector. The cropping sector has little scope for atmospheric carbon to be
stored in the biosphere pool since agricultural production is highly cyclical in the
management of biomass. Bio-sequestration would have to sit aside from the production part
of the farm. There is also a question as to whether agriculture could act to store atmospheric
carbon in the soil over the long term. This would in effect reverse the trend from pre-colonial

practice of aggressive soil tillage and the loss of soil organic carbon from mineralisation.

Waste in agricultural practices is also strongly linked to emissions from the sector, thereby
reducing waste, reduces emissions. Leakage contributing factors such as fertiliser and
chemical imports has been used to maintain farm profitability and is directly linked to
environmental externalities. Given that the atmosphere is a global common, the shifting of
externalities abroad does not assist with managing climate change. It is therefore incumbent
on Australian agriculture to manage its inputs as efficiently as it can while maintaining
profitability. This is in line with FAO recommendations that globally agriculture needs to
better manage its inputs but not at the cost of farmer’s livelihoods which is important to food

security (Friedrich and Kienzle 2007; Diouf 2009; Collette et al. 2011).
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8.1 What is the current role of Conservation Agriculture in grain farming enterprises in
Australia?

| discussed that Conservation Agriculture has evolved in Australia based on two significant
consequences of the traditional tillage farming system; erosion and the loss of soil moisture.
The most visible consequence of full-cut tillage was erosion from both water and wind
depending on local climate patterns. In the northern cropping zones of Australia, high-
intensity summer storms prior to summer cropping resulted in severe loss of topsoil and the
associated loss of organic matter in the A horizon. In the southern and western cropping
regions where lighter soils predominate, pre-frontal late autumn dust storms were similarly

removing topsoils with severe impacts on soil fertility.

Cultivation also resulted in the loss of soil moisture and as soil moisture is integral to yield;

retained soil moisture from CA saw an increase in productivity benefits for farmers.

The adoption process of early CA practices involving reduced tillage and stubble retention
has extended to include control traffic farming to reduce soil compaction, crop rotations to
reduce disease carry-over, the use of precision systems in agriculture to reduce input costs,
the consideration for cover crops and recycled manure to improve soil health. There is some
indication from surveys that CA farming practices are gradually being taken up by Australian
cropping farmers to improve farm profitability by managing inputs more carefully. These
adaptations are covered in more details in chapter 2 Part | which is book chapter publication
and outlines the current status of CA in Australia. Significantly for this thesis the adoption of
CA practices has climate change implications in terms of emissions and soil carbon

sequestration.

One of the contributions this PhD research makes to agricultural knowledge is to offer the
terminology that delineates the range of CA practices in Australian dryland cropping;
including practices other than the FAQO definition of ‘reducing tillage, stubble retention and
crop rotation” which is more often applied to developing countries. The proposed
terminologies for Australian dryland cropping is justified on the basis of an analysis of the
discourse of CA farmer groups around Australia that promote these new practices (e.g.
control traffic farming and the use of precision agriculture tools) to all their members and the
broader farming community. Members of CA farming groups voluntarily share their
knowledge of these new technologies and their application to CA principles for protecting the

soil. The research review of CA also indicates that some of these practices are only just
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emerging (< 20%) and as they demonstrate a reduced emissions profile as outlined in chapter
4, their greater adoption would likely further reduce emissions from the dryland cropping
sector (Table 11). However our ability to quantify the emission values cannot be certain as it
is complicated by the nature of a mix of energy use and biological emissions typical of
agriculture and this is discussed in the rationale section 1.2.1 Agricultural contributions to
emissions in Australia and section 1.2.3 Production practices and emissions indicating that
agricultural emissions are generally highly variable, which is problematic for market

mechanism that would prefer simple verifiable units that have low transaction costs.

The degree of emission variability would suggest that it is difficult and therefore more
expensive to determine a verifiable level of emission for farming practices in typical dryland
cropping, when compared to many industrial type practices. We therefore suggest that
consideration be given to the rate of practice adoption as a proxy to the sectors overall
emission reductions. Farming practices are routinely measured by Research Development
Corporations and the Department of Agriculture. The measure of ‘what practices?’ is usually
based on the farmer’s own terminology, as they are the ones responding to the surveys.

The research also indicate that greater adoption of CA practices supports the profitability of
farmers but the required investment is slowed by a complex number of barriers highlighted in
the published paper include as part of chapter 6. The complex nature of those barriers is why
a ‘systems approach’ has been included in the research to explain the factors that influence
adoption. The justification for a systems approach is outlined in the paper’s methodology and
not repeated in the main thesis.

8.2 How does Conservation Agriculture influence greenhouse gas emissions from grain
farming enterprises in Australia?

The fundamental principle of CA is based on conserving natural resources by eliminating
waste within the production system. The research indicates that the uptake of Conservation
Agriculture practices will reduce emissions from the dryland grain production sector. The
potential value of CA adoption to the dryland grain sector in climate change terms is
estimated at 2.5 million tonnes COe of potential offsets per year not accounting for various
Scope 3 emissions reductions. Those figures are subject to significant variation but does

indicate something of the order of magnitude of emission reduction across the dryland
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cropping sector. In this thesis, | considered how the various Conservation Agriculture

farming practices meet the farmer’s requirement for future sustainability and impact on

climate change mitigation and adaptation (Table 14).

Table 14 The relative merits of Conservation Agricultural Practices to farm sustainability

indicators

Practice

Climate Change
Adaptation

Economic benefit

Environmental

Outcome

Reduced Tillage

Reduces moisture
loss in dry years.

More crops.

Less fuel and
resource

requirement

Reduces the loss of
SOC

Stubble retention

Reduces moisture
loss in dry years.

More crops.

Balances crop yield

with price of feed

Increases recycled
Organic Matter
towards soil

sequestration

improves fertility
and holds moisture

but depends on price

of supply

Control Traffic Reduces moisture Less fuel Reduced emissions
Farming loss, improved plant
growth,

Precision Reduces waste Waste reductions

Agriculture reduces externalities
from resource supply

Legume crop Reduces demand for | Reduced energy

rotations inorganic fertilisers | demand in producing
nitrate fertilisers

Recycled organics Increased SOC Improves fertility Recycling reduces

energy demand in
producing nitrate
fertilisers. Increases
SOC.

Cover cropping

Increased SOC
improves fertility

and holds moisture

Increases SOC

Environmental

Plantings

Increased

biodiversity and
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improved water
quality in riparian

Z0nes

Any of the practices listed - reducing tillage, retaining stubble, reducing compaction
associated with machinery and applying recycled organics - meet at least two of the three
criteria set out in the table 14. Climate change benefit is primarily based on moisture
retention capacity to continue producing crops under drying climatic conditions. They do this
primarily by reducing soil moisture loss or increasing soil organic carbon which has positive
environmental benefits. The economic benefit is primarily based on improving efficiency on
farm and maintaining crop production. The climate change environmental benefit results
from emissions reductions associated with operational waste and the drive to increase soil
carbon for its plant productivity benefit. CA is essentially a departure from the traditional
industrial agriculture of the 1950s and 60s to a less intensive intervention in crop production.
The thesis newly highlights the linkages between CA practices which covers a large
proportion of our agriculture and their associated emission profile. It does not do this in exact
terms as it is beyond the scope of this research, it simply highlights approximate measures
based on second order data (e.g. reduced fuel consumption and stubble burning). This
connection is important to the central relationship between CA expansion in dryland cropping
and climate change mitigation and adaptation. More research is needed to more clearly
identify the relative value of farming practice’s emission if it is to play its role in reducing its

climate change impacts along with other industries.

The thesis also indicates that the adoption of CA practices is incomplete for a number of
socio-economic reasons; primarily to do with investment capacity and the need for farmers to
be thoroughly convinced of the productivity benefits. This discussed in more detail in the

next section.
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8.3 What factors influence adoption of Conservation Agricultural practices in Australian
grain production?

Accepting that Australian dryland agricultural practices is gradually changing and that this
will in turn change the emission profile of the sector as outlined in section 4.7. The thesis is
particularly concerned to analyse the factors that affect practices adoption and how that can
inform climate change policy. To do this in some depth | have opted to employ qualitative
methods in addition to the available data and literature. This required being thoroughly
immersed as a participant in the way that CA farming groups, farm advisors and allied
industry farming groups operate. These groups represent the key knowledge based of
farmers’ perceptive value of CA practices. Many of the CA group’s farmers are actively
writing and demonstrating new methods to other farmers. Being involved in those discussions
provides a rich source of insight into why farmers ‘choose’ or ‘not choose’ to adopt various
CA practices. This information is important to determine if farmers will actually adopt any
particular practice or how they can be influence to adopt a practice. This will impact on such
matters as ‘Additionality’ rules under the CFI that makes assumption that once a percentage
of adoption in the farming population has been reached, it needs no further incentive for
future adoption. However what the thesis has determined is that the factors affecting adoption
relates less directly to promoted economic benefits by Government and more based of what
the farmers perceive as an economic benefit from their farmer peers. This is a process of
affirmation from trusted peers as to its demonstrable farm benefit and they perceive that these
peers have taken all farm considerations into account and can clearly demonstrate the
benefits. Without this catalyst from farmer group and advisors adoption is much reduced and

market incentives does not effectively promote changes in behaviour.

Farmers need to clearly see the production benefits and how the process of a promoted
practice change will occur from the required ‘investment cost’ to the timeline for a ‘return’
on investment. The closer to a ‘turn-key’ solution that can be presented and costed, the easier
it is for farmers to understand the cost-benefit analysis for making practice change. Too many
promoted benefits from government fails to outline the full cost involved (social &
economic) and the likely consequences as a result of the change. This uncertainty about the

true value of the promoted benefits delays the rate of adoption.

Whether the gradual uptake of CA practices across the dryland industry should be left to

market forces over time or should there be some form of government intervention to speed up
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the process depends very much on the urgency for reducing emissions from the agricultural
sector. It will also depend on the perceived efficiency gains that can be achieved by
intervening in the sector and the cost of that intervention. CA practices also have two other
dimensions; the first is that some of the CA practices conserves soil moisture so can support
adaptation to climate change where hotter, dryer conditions are likely to increase in
frequency. The second dimension is that Australian agriculture is one of the most advanced
industrial agricultural systems in arid zone cropping. Most other industrial agricultural
systems are located in wetter temperate zones. Australian agriculture does therefore provide
an important leadership role for arid zone farming management in developing countries. As
the problem of climate change is a global issue there is significant value in providing the

management experience in the better use of limited resources.

If CA practices are to be encouraged it is suggested that the most gains in reducing emissions
or sequestering carbon can be obtained from full crop residue retention, controlling
compaction via limiting machinery traffic to set lanes, improving fertiliser efficiency through
precision agriculture, increasing the opportunity for cover cropping and the use of recycled
organics where available. It is recognised that tillage reductions is already at a high adoption
rate, although there is still significant option for improvement. Most of these practices apart
from cover cropping are practiced in some form by over 20% of farmers, but the rate of
uptake based on experiences with reducing tillage would indicate that significant adoption is
still some 20 years away. Once again the question of urgency would be a determining factor

in terms of the need for policy intervention.

This thesis has reviewed factors of CA adoption by looking at the existing literature and
delved in more depth by interviewing farmers and advisors as to what motivates farmers to
change practices. This is new knowledge providing insight into motivation factors of dryland
farmers and | believed it complemented the broader survey data by ABARES and sections of
the in-depth farmer interviews was provided to Robert Kancans of ABARES for inclusion
(with permission) in their latest reports by Eckers et al 2012 called 'Drivers of Practice
Change in Land Management in Australian Agriculture: Results of a national farm survey ',
ABARES report to Department of Agriculture, Fisheries and Forestry, Canberra, December,
p. 61.

The farmer interviews and the balance of the data was used in a different way in this thesis it

interpreted the data in terms of its relevance to emission reduction using a socio-economic
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analysis of the drivers and was published in a journal paper titled An analysis of the socio-
economic factors influencing the adoption of conservation agriculture as a climate change
mitigation activity in Australian dryland grain production. The paper is included as part of
chapter 6.

Understanding these drivers is important to develop policy that is likely to increase farm
practice change adoption. It was clear that the offer of a price to farmers for carbon offsets
interested very few dryland growers. The major undelying reason being the high transaction
costs to meet the demands of the market and the uncertainty around operating in such a

market.

8.4 What climate Change policies are likely to increase adoption of CA in Australia?

Any policy must be fully costed and the benefits of change presented clearly to farmers along
with any related consequences. The choice of policy tools should be cognizant of the
economic and social consideration that creates practice adoption within a rural context. Such
practices as CA cannot be imposed via a ‘command and control’ policy regime without
creating social inequities as many farmers would not have the capacity for rapid adoption.
The use of incentives is also limited by available funds and any excessive expenditure in
terms of incentive programs may be regarded as an unjustified use of taxpayer funds.

8.4.1 Market based instrument

The CFI as a market based instrument is a bold piece of legislation, but unfortunately fails to
provide a full cost-benefit analysis for farmers and offers an uncertain market price for a high
level of compliance requirement. There has been a significant cost in establishing a market
structure without consideration as to the target audience benefit. The transaction costs
associated with compliance requirement to produce carbon offset would indicate a lack of
potential financial benefit to the farmer based on current carbon price. This is in part due to
the climate dependent bio-chemical nature of emissions and carbon sequestration, and in part
to the highly variable nature of farming practices. Although practice change can act as
proxies to emissions reductions and sequestration, they can only be broad estimates and
would only be applicable to large areas requiring aggregation of data with some form of
discounting as a buffer. It is difficult to justify the fungibility of these units to those coming
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from the manufacturing sector using measurable mechanical processes. Biological systems
can also be reversed under adverse climatic condition such as drought, which is highly likely
in a climate change scenario. The potential impact of climate change is an additional
uncertainty factor. The cost of creating confidence in a biological offset unit is likely to

significantly increase the transaction cost to the market.

It is clear that farmers want to engage in environmental schemes but it needs to fit their
paradigm. In this instance, to engage the agricultural industry requires a shift in paradigm
towards farmers in that any scheme should consider “how abatement can operate in their
system” rather than “how their system can fit into abatement”. The issue of price being the
only determinant factor is not entirely correct, as a proportion of farmers have indicated some
acceptance of discounting in return for simplicity and risk reductions. Farmers want “fair
recompense” for their effort; certainly not be “out of pocket”. Farmers also want to avoid
future uncertainty and their paradigm emanates from having a sound knowledge of their

system but limited knowledge of abatement requirements.

If farmers are reducing emissions by making changes to their systems without resorting to
market incentives, than it would seem that the only value of incentives is to speed the
process. Is there a need for a carbon trading scheme or can we simply support farmers to keep
on doing what they are already doing, but to get there faster. Is there an option to value and
trade their national offset to further support changes that drive emissions reductions and

carbon sequestration.

8.4.2 Education

The use of ‘education’ as a policy tool to change farmer behaviour is a workable option if it is
acknowledged that information on the process of practice change is only one part of the
equation towards meeting the requirement for adoption. There is also a need to consider
capital available to farmers and capacity of farmers to make the change, especially in those

areas involving technology.

The recommendations from this research is not about pushing for more extension but moving
to a different avenue for environmental extension to farmers. Education in an agricultural
context is complicated by the ways farmers prefer to learn, the indication from the research is

that farmers prefer a more ‘hands on” approach learning on site via such activities as field
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days and field workshops. This leads to a more complicated andragogical framework
requiring specific skills familiar with the farming environment which is limited in some
areas. Farms are also geographically isolated and there is a cost to farmers and education
providers in providing the services required. For farmers it is not always a question of money,
sometimes it is also about having the time. The best people to understand this intricate
balance are farm advisers and grower groups who are the major contact points for the farming
community. The research indicates that these groups are not strongly connected to the market
mechanism being offered by government. Therefore farmers have very few trusted advice
sources to discuss the options of taking up options in the carbon market. The grower groups
and farm advisers can play a significant role in driving government policy but it’s not evident
from the interviews that they have been specifically engaged and as indicated in section 5.2.3
they play an important role in influencing farmers. A new policy condition would take into
account the means of delivering the message (e.g. reducing emissions) in a way that would
focus how such messages are best received by the farmers and what avenues need to be

pursued to deliver the message in the right context.

The context of the message is also important to gain the interest of grower groups and
advisors. They need to be strongly engaged in determining the context of the message
delivery. It is noticeable that where changes are simple, relatively low cost and provide
evident benefit than adoption is more readily taken up. However the converse is often the
case and in the context of this thesis many CA practices can be complex to put into practice,
and may have consequences to other parts of the system or they require capital investment in
new equipment; which results as a barrier to adoption. The risk and time investment required
in learning a new system further adds to the slow pace of adoption. The use of digital
technology is beyond some as they have never acquired the underpinning knowledge over
time to cope with current evolutions of the technology. Those types of barriers are not easily
overcome regardless of incentives and many farmers close to retirement age would prefer to

simply continue as they have done leaving the changes for the new generation.

Policy consideration needs to take into account the content of the message, the social context
of the recipients (e.g. age, education), the context of the message (e.g. does it align with the
farm goals) and the avenue for delivery.
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8.5 Contribution to knowledge

The following table summarises the contribution to knowledge made by this thesis,

Table 15 Contribution to knowledge made by the thesis

How can the
potential climate
change mitigation
and adaption
benefits of
Conservation
Agriculture (CA)
be most effectively
integrated into
dryland grain
farming
enterprises in
Australia?

What have | confirmed or
disconfirmed in terms of
previous work?

I have confirmed that
conservation agriculture
creates less emissions than
traditional farming practices. |
have also confirmed that there
is still an opportunity for
further adoption of CA
practices in Australian dryland

cropping.

I have disconfirmed that
publishing the scientific
benefit of farm practice
change from climate research
will logically result in a
significant increase in
adoption by farmers; thereby
reducing agricultural
emissions. It seems rather that
research recommendations are
best supported by trusted
advisors and peer on-farm
demonstrations. This has

What is my new contribution to
knowledge? (in addition to
confirmation and
disconfirmation)

My contribution to knowledge is that
climate change market-based
mechanism targeted at Australian
dryland grain growers, as a subset of
the farming community, would need
to better understand how the target
audience will perceive the risk and
cost-benefit required to produce the
carbon credit unit in relation to the
carbon price. Without such an
understanding of the farming system
drivers, market mechanism will bear
a significant cost burden for
government and the community
without creating the intended practice
change at farm level. Despite the
existing opportunity that dryland
grain farmers can reduce emissions
by changing practices, they are
unlikely to take up the offer of
changing for the specific purpose of
supplying carbon credit units to the
Carbon Farming Initiative (CFI). The
evidence supports the view that the
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What data actually showed this
contribution to knowledge?

The data supporting this contribution
resides in two areas, firstly in a cost
analysis of farming systems some of
which is outlined in chapter 7
‘Opportunities for producing market
offsets in dryland farming’; secondly

from in-depth interviews with farmers on

what is their motivating drivers in

considering investment in market-based
mechanism. This is outlined in chapters

5 ‘A review of systems and adoption

factors in agricultural industries’ and 6

‘Drivers for adoption of conservation
agriculture practices and impact on
emissions reductions’

What research method
captured this data and any
reflections on research
method?

A review of the scientific
literature in regards to dryland
farm practices in general and
noted Conservation Agriculture
practices in particular in regards
to their comparative emissions

I have used qualitative analysis
by interviewing 31 farmers and 6
advisors using semi-structured
interviews, also a review of the
literature on adoption and the
factors likely to act as drivers for
change (e.g. social concern) or
constraints (e.g. economics) in
regards to the way farmers
respond to information on farm
practice change.



1. What is the
current role of
Conservation
Agriculture in
grain farming
enterprises in
Australia?

2. How does
Conservation
Agriculture
influence
greenhouse gas
emissions from
grain farming
enterprises in
Australia?

consequences for agricultural
extension policy.

That Conservation agriculture
plays an important role in
reducing costs of farm inputs
and makes more efficient use
of available rainfall

The review of previous work
by the thesis confirmed that
Conservation Agriculture
delivers a net reduction in
average dryland grain farm
emissions if adopted.

Previous work reviewed
disconfirmed that the possible
level of carbon sequestration

current transaction costs of the CFI
scheme and a farm business risk
analysis by dryland grain farmers
does not commercially support
individual farmers supplying carbon
credit units to the Emission
Reduction Fund. Further that farmers
will only engage in very simple
schemes that require minimal effort
on their part.

I have identified the need for a more
consistent definition of Conservation
Agriculture as they are practiced on
grain farming enterprises in Australia
before the practices can contribute to
measurable emission reduction. |
have offered a potential definition for
emissions in a published paper
included in Table 1, also in chapter 2,
section 2.2 and chapter 4, section
4.11. This would allow a regulator to
consider what is the CA farm practice
change required and something of the
order of emissions reduction that may
be involved. The direct emissions
would have to be measured in a
different format due to variability of
agro-ecological zones.

The thesis reviewed the dryland grain
industry and clearly demonstrates the
various emission reduction benefits
of all the CA practices in the
Australian context. The farmer and
industry in-depth interviews added a
social dimension that explains some
of the thinking that determines what
makes farmers consider changes in
practices. The interviews also
confirmed the lack of understanding
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The data in determining the role of CA in
dryland grain was obtained from the
research literature, from current
government and industry literature, from
CA farming groups, farm advisors and
finally from farmers themselves.

The data was obtained from the
published research literature, from
government reports on emissions this
was combined with farm practices data
supplied by CA grower to determine
potential emissions at farm level and at
regional level

The conclusion from this was determined
from the research literature and was
included for consideration when using

I have confirmed this from
Participant observation of the
Conservation Agricultural
community in dryland farming
and a literature review was used
to collect other more specific
data

The method of analysis used
relied on document analysis of
literature from industry and
Government publications and
technical reports from research
institutions and journal articles.
Data on emissions in the
Australian context were sourced
principally from government
publications dealing with a broad
range of farm practices not



3. What factors
influence adoption
of Conservation
Agricultural
practices in
Australian grain
production?

is Australia is on par with
international measurements.
The main reason being
intermittent and low rainfall
patterns in inland Australia.

The review of previous work
Adoption of hew farm
practices such as Conservation
Agriculture is influenced by a
complex range of factors
including investment capacity,
inherent knowledge,
personality type, existing
stress condition (e.g. drought)
and confidence in being able
to effect change with minimal
risk to income.

of how the Australian Carbon
Farming Initiative actually operates.
This lack of understanding is likely to
be behind the lack of interest by
farmers in the carbon market.

The review of industry data and
interviews have confirmed that
dryland grain farmers operate on
small margins and are more influence
by production incentives then
potential benefits from environmental
markets, especially if the price of
carbon is low. Farmers adopt CA
practices to better manage time, to
reduce resource input and have more
consistency in crop production. To
make the change from traditional
practices to CA farmers need the
support of trusted extension services
and other farmers who have made the
changes.

I have disconfirmed that the current
carbon price (2010-15) will prove a
sufficient incentive for the majority
of farmers to involve themselves in
producing carbon credit units for a
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international calculations to determine
potential carbon sequestration in
Australia.

The data for this was synthesised from
the published research literature, from
unpublished data obtained from grower
groups and from interviews with farmers
and advisors.

This was determined from direct
interviews from growers and advisors.

always related to CA. The
various reports are collated to
cover greenhouse gas emissions
from those specific CA practices
such as tillage or stubble
management. Where available,
industry data on farm practices
survey such as fuel consumption,
chemical and fertiliser use is also
collated to support details of
practices in the current
Australian context. The
emissions characteristic of a
practice on grain farms is
reviewed in the international
academic literature for
validation.

Once again | have relied on
qualitative analysis by
interviewing 31 farmers and 6
advisors using semi-structured
interviews, also a review of the
literature on adoption and the
factors likely to act as drivers for
change (e.g. social concern) or
constraints (e.g. economics) in
regards to the way farmers
respond to information on farm
practice change.

I have further included the
concept of a systems model as a
means of interpreting the various
socio-economic drivers that
influence the adoption of CA.
Changes in a system such as
agriculture interact in complex
ways, so | developed a series of
systems models to visually



4. What climate
policies are likely
to increase
adoption of CA in
Australia?

I have confirmed that the
Carbon Farming Initiative is a
new scheme, and that farmer
reaction to such a scheme in
the Australian grains industry
does not have clear
precedence. | have also
confirmed that available
methodologies are very
limited for dryland grain
producers so they have limited
option to participate in carbon
reduction scheme.

carbon offset scheme requiring
practice change.

I have identified that farmers are
more likely to adopt CA practices
when extension and field day
programs of the production benefits
is delivered by trusted advisors and
peers rather than an environmental
market incentive. The in-depth
interviews indicated that farmers
were confused by the details of the
requirements for the carbon market
and were very concerned about the
legal implications. This will impact

on policy for creating practice change

in agriculture when considering
incentive schemes. It is more likely
that an extension policy will have
greater influence for change than
purchasing carbon units from an
environmental market.
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This was determined from direct

interviews from growers and advisors.

describe the main factors that
drive the adoption of CA
practices in Australia. Applying
‘systems thinking’ to an issue
helps us understand the
interactions that drive adoption in
complex situations

Finally, I have relied on
qualitative analysis by
interviewing 31 farmers and 6
advisors using semi-structured
interviews, also a review of the
literature on adoption and the
factors likely to act as drivers for
change (e.g. social concern) or
constraints (e.g. economics) in
regards to the way farmers
respond to information on farm
practice change.



8.6 Concluding comments

The stated aim of this thesis was “An analysis of conservation agriculture as a response to
climate change in Australian dryland farming systems”. The conclusion is that although the
adoption CA practices (new & old) can reduce emissions in dryland grain enterprises; there
are a number of barriers to farmers quickly changing practices. The current use of a carbon
market instrument to encourage farmers to reduce emissions by changing practices is not
viable for dryland grain farmers under the current market condition and the associated
compliance requirement to generate a market unit. The CFI policy did not account for such a
significant market downturn in the price of carbon and the increasing compliance requirement
to meet the IPCC guidelines. As such the inherent complexity of the market system and the
transaction cost in relation to individual farm benefits does not favour uptake by dryland

grain farmers as a sector.

Government policy in 2016 under Direct Action is supportive of soil carbon units for a
carbon market and seems set to continue the failure of previous policy in not making the cost-
benefit argument for the farming sector. Despite simplifying the argument for barriers such as
‘permanence’ the December 2013 Green Paper has not addressed the issue of ‘additionality’

or the transaction cost associated with verifying an offset unit.

As the average individual farm units are too small in regards to the transaction costs, any
continuation of the current policy of a market based instrument should consider whether a
simplified aggregation process could be used instead. Grower groups provide the means from
which such a farm aggregation process might operate but this would require a more detailed
analysis beyond the context of this research. A number of their member farmers may create a
pool of units thereby reducing the transaction costs. This would also need further
investigation to determine if the cost benefits are acceptable to the grower groups. | propose
there is a need for a simplification of the process through which the means of pooling carbon
units are based on independent recorded practices. Farming systems have become
increasingly complex and demanding of farmer’s time. The removal of state government
extension officers over time means that the dynamics of how farmers react to government

policy very much involves the messages they receive from their current advisors and peers.
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Policy intent on driving farm practice change can only succeed when due consideration has

been given to the way farmers currently make decisions.

These type of market policy can drive changes in behaviour, but in a complex system like
agriculture not all parts of the system will benefit equally. In some cases, as in this study the
benefit for the dryland grain sector is minimal when compared to industries such as intensive
pork production. There is a suggestion that broad policy initiative like the CFI can create
unrealistic expectation in the community and governments might want to consider the
development of smaller more specific initiatives related to the context of sector being

targeted.

In general future climate change policy reliant on changes in farmers’ behaviour would do
well to start engaging with farmers and advisors more directly before the drafting of policy
on the changes they want farmers to make. In some cases it may not simply be about farmers
intention to participate as their inability to participate due to structural constraints such as
farm size or social constraints such digital literacy. Consultation must also involve all the
actors influencing farmers such as grower groups and farm advisers, because they connect
more broadly with the farming community and are strong influencers of behaviour. This
broader engagement process may take longer and would require more resources but it is

likely to deliver a better targeted program with increased participation.

8.6.1 Limitations of the Thesis

| believe it is necessary to draw attention to the following limitations of this thesis. The first
is that the broad study area of this thesis is complex and rapidly changing with a large volume
of international research and changing policy framework being continuously generated. This
means that emerging information is likely to impact on the findings of the thesis and there is

a strong possibility that some new information will have been missed.

The second is that an analysis of policy is subjected to continual changes in legislation and
changes in government intention. Partway through this thesis there was a change of
Government and the previous Government’s Carbon Tax legislation was repealed. The CFI
legislation has been retained for the moment, and is anticipated to be funded by an Emission

Reduction Fund. The details of the process are yet to be released in the Government’s White
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Paper. It is still expected that Climate Change policy will still involve agriculture and will

necessarily require some form of change in farming practices.

The third limitation is based on the necessary assumptions that are made in a qualitative
analysis. A qualitative framework most often contains limited data sets and it is therefore
necessary to qualify the conclusions as being open to alternative interpretations based on new

information.

8.6.2 Future research ideas

The character of farming enterprises is changing rapidly with the incoming generation and a
number of farms appear to be adopting a more business orientated model. There is more to do
to establish a business case at the farm level addressing the impacts of climate change in the
grains industry. There is a need for more research on the financial impact of better managing

farm investment and rural debt in dealing with climate risks.

A combination of social and economic research is a sound investment in the effective
development of land and climate policy. Future research should consider how a research
mechanism could be better used to support the development of better climate policy as far as
it relates to Australian agriculture. That research mechanism should rigorously consider the
costs and benefits of specific policy to farmers, the likely rates of uptake and an analysis of
the likely outcomes. This suggest the greater use of multi-disciplinary approach to the

research of complex systems involving human activity such as farming and the environment.
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