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Abstract 

The integrity of the human genome is constantly challenged by a variety of endogenous and 

exogenous factors such as ultraviolet radiation and cigarette smoke. To deal with these threats, five 

major DNA repair pathways, which are principally defined by the type of lesions they repair, have 

evolved. Defects in these repair pathways predispose individuals to a wide variety of cancers, and at 

the same time can be therapeutically exploited to target tumours with defective DNA repair. 

Dysregulation of these repair pathways are also frequently observed in cancer, presenting both 

opportunities and challenges for cancer therapy: downregulated repair pathways sensitise tumours 

to DNA-damaging therapies, while upregulated repair pathways cause resistance to these therapies. 

The primary aim of this thesis is to obtain a comprehensive and in-depth understanding of the 

mechanisms and roles of these major DNA repair pathways in the context of breast cancer. This 

will be beneficial for predicting response to radiation and chemotherapy, and for developing novel 

targeted therapies in this common type of malignancy. 

By careful literature search and consulting a domain expert, the research presented in this thesis 

started with a manual curation of six DNA repair pathways, including the five major repair 

pathways and the Fanconi anaemia pathway that is closely associated with breast cancer 

susceptibility. Six comprehensive pathway figures were generated, each for one repair pathway, 

describing in total 195 genes and 138 reactions with direct relevance to DNA repair. Moreover, to 

facilitate a deep understanding of the repair mechanisms, a detailed description for each reaction 

was given, importantly including the literature references used for curating the reaction. This 

curation work enables a mechanistic understanding of how cells respond to DNA damage, and 

provides a solid foundation for the subsequent computational analyses. 

In the second study of this PhD research, I performed a personalised pathway analysis to investigate 

the status of homologous recombination (HR) pathway dysregulation in individual sporadic breast 

tumours, its association with HR repair deficiency and its impact on tumour characteristics. 

Specifically, using the expression values of the HR genes curated in the previous study, I calculated 

an HR score for each tumour that quantifies the extent of HR pathway dysregulation in that tumour. 

Based on that score, I observed a great diversity in HR dysregulation between and within gene 

expression-based breast cancer subtypes. And by comparing to two published HR-defect signatures, 

I found HR pathway dysregulation reflects HR repair deficiency. Furthermore, I uncovered a novel 

association between HR pathway dysregulation and chromosomal instability (CIN): tumours with 

more-dysregulated HR tend to have higher CIN. Although CIN has long been considered to be a 
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hallmark of most solid tumours, with recent studies highlighting its importance in tumour evolution 

and drug resistance, the molecular basis of CIN in sporadic cancer remains poorly understood. The 

novel association revealed in this study implies that HR pathway dysregulation is an important 

determinant of CIN in sporadic breast cancer, and thus helps pinpoint the causative factors of CIN 

in breast and other sporadic cancers. 

The third study is a multi-omics data analysis that aimed to dissect the underlying mechanisms of 

DNA repair dysregulation in breast cancer. Specifically, I assessed the contributions of DNA copy 

number alteration (CNA), DNA methylation at gene promoter regions, and expression changes of 

transcriptional factors (TFs) to the differential expression of individual DNA repair genes in breast 

tumour versus normal samples. These gene-specific results were summarised at pathway level to 

estimate whether different DNA repair pathways are influenced in distinct manner. In particular, 

TFs potentially associated with each differentially expressed DNA repair gene were identified using 

a regularised linear regression-based statistical framework developed in this study. The results 

suggest that CNA and expression changes of TFs are major factors for DNA repair dysregulation in 

breast cancer, and that a limited number of TFs with multiple targets in various repair pathway may 

exert a global impact on repair dysregulation in this malignancy. This study thus provides new 

insights into the underlying mechanisms of DNA repair dysregulation in breast cancer. These 

insights improve our understanding of the molecular basis of the DNA repair biomarkers identified 

thus far, and have potential to inform future biomarker discovery in this common cancer type. 
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Chapter One: Introduction 

1.1 Breast cancer classification 

Breast cancer is one of the most common malignancies worldwide, with more than 

1,300,000 cases diagnosed each year, along with 450,000 deaths (1). It is also the leading cause of 

disease burden in Australia, with 14,560 cases reported nationwide in 2012 (2). 

Breast cancer is a highly heterogeneous disease that consists of a spectrum of subtypes with 

distinct morphological features, variable clinical outcomes and different responses to different 

therapies (2, 3). To dissect this heterogeneity, several classification schemes have been proposed 

(Figure 1), which are described as follows: 

1.1.1 Resulted from germ-line mutation or sporadic genetic change 

Based on whether the disease is caused by germ-line mutation or sporadic genetic change, 

breast cancer can be divided into two categories: familial (inherited) and sporadic. Familial breast 

cancer represents ~7% of breast cancer cases, and is mainly due to inherited mutation in DNA 

repair genes (4, 5). For example, ~30% cases of familial breast patients are carriers of mutations in 

either BRCA1 or BRCA2, two essential genes for DNA repair (6). 

Sporadic breast cancer, which arises primarily as a result of genetic alterations acquired 

during a person’s lifetime, is the dominant form of breast cancer. Although familial breast tumours 

also show genetic aberrations other than gene mutations, sporadic breast tumours exhibit much-

more complicated patterns of genetic changes including focal mutations, epigenetic alterations, 

small insertions and/or deletions of DNA segments, and even large-scale chromosomal 

abnormalities (7, 8). Interestingly, many sporadic genetic changes are also associated with DNA 

repair genes (9, 10), highlighting the intimate relationship between breast cancer susceptibility and 

DNA repair abnormality. 
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1.1.2 Hormone and growth factor receptor-based 

A second classification of breast cancer, which is based on two hormone receptors [Estrogen 

Receptor (ER) and Progesterone Receptors (PR)] and one epidermal growth factor receptor [Human 

Epidermal growth factor Receptor 2 (HER2)], has been routinely used in the clinical practice of 

breast cancer management for about two decades (9-11). This classification scheme divides breast 

cancer into three groups: hormone receptor positive, hormone receptor negative with HER2 over-

expression, and triple negative (i.e., breast tumours that do express none of these three receptors). 

Each of these three subtypes is summarised as follows: 

1.1.2.1 Hormone receptor positive 

This subtype comprises ~70% of breast cancer cases (12). Cancer cells of this subtype 

express at least one of the two hormone receptors (i.e., ER and PR), and are dependent on hormone 

signals to promote their growth. As a result, tumours of this subtype are likely to respond to anti-

hormone drugs such as tamoxifen, and hence are not considered as refractory when a combination 

of surgery, chemotherapy (or radiation) and hormonal therapy is used. However, if tumours of this 

subtype recur, they tend to evolve into hormone-insensitive forms by acquiring resistance to anti-

hormone drugs (9, 10). 

1.1.2.2 Hormone receptor negative with HER2 over-expression 

Tumours in this subtype correspond to ~15% of breast cancer patients (13). The cells in 

these tumours express neither ER nor PR, but instead exhibit amplification and overexpression of 

HER2, a tyrosine kinase transmembrane receptor that promotes cell growth. Tumours of this 

subtype are in general more aggressive than the hormone-positive tumours, but some of them 

respond well to anti-HER2 agents such as trastuzumab (9, 10).  

1.1.2.3 Triple negative 

This subtype accounts for ~15% of breast tumours (14), and is often referred to as Triple 

Negative Breast Cancer (TNBC) as cancer cells of this subtype do not express any of the three 

aforesaid receptors. In most cases, TNBC tumours are much more aggressive than tumours that 

express at least one of the three receptors. As of now, the pathogenesis of TNBC remains poorly 

understood, and cytotoxic agents such as anthracycline are the major therapeutic option for this 

subtype. As a consequence, TNBC patients are characterised by poor prognosis including high 

recurrence rate and low five-year survival (15, 16). 

 The study of TNBC has gained growing interest in recent years. There is increasing 

evidence showing that BRCA1 inactivation may play an important role in the development of this 
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subtype, as most breast tumours with BRCA1 mutation belong to TNBC (14). Besides, recent 

developments of novel target therapies based on the concept of Synthetic Lethality (SL) have 

brought hope for better treatment in this subtype. More detail about SL-based therapies is given 

below in Section 3.2 of this chapter, and in Chapter Two. 

1.1.3 Gene expression profile-based 

The development of high-throughput technologies, in particular microarrays, has made it 

possible to refine breast cancer classification based on whole-genome molecular profiles that better 

reflect the underlying biology of tumours. As pioneers in this regard, Perou et al. (17) first classified 

breast tumours into four intrinsic subtypes (luminal, HER2-enriched, basal-like and normal-like) by 

using hierarchical clustering analysis of microarray data. These four intrinsic subtypes are of 

clinical relevance and have been confirmed by a number of subsequent studies [for example, see 

(18-21)]. Some of the subsequent studies also revealed that the luminal subtype can be further 

divided into two subtypes with distinct prognoses: luminal A and luminal B [see (22) for a review]. 

To date, these five gene expression-based subtypes (also known as the PAM50 subtypes) have been 

widely used in research. A brief summary about each of them is given below. 

1.1.3.1 Luminal A 

Luminal A is the most prevalent subtype, representing ~50%-60% of all breast cancer cases 

(22). Tumours in this subtype are characterised by increased expression of ER and/or PR-related 

genes, and decreased expression of genes involved in cell proliferation. Patients of this subtype 

generally have a lower relapse rate and longer survival time compared with other subtypes (9, 22). 

1.1.3.2 Luminal B 

Luminal B tumours account for ~10%-20% of breast cancers. Similar to luminal A tumours, 

luminal B tumours normally exhibit elevated expression of ER and/or PR-associated genes. The 

difference between these two subtypes is that luminal B tumours also display increased expression 

of proliferation-related genes such as MKI67 and CCNB1. As a consequence, luminal B tumours are 

more aggressive and have worse prognosis than luminal A tumours (9, 22). 

1.1.3.3 HER2-enriched 

About 15%-20% of breast cancer tumours correspond to the HER2-enriched subtype. This 

subtype is characterised by high expression of HER2 as well as some other genes whose genomic 

locations are close to HER2, and of genes involved in cell proliferation. In addition, ~40% HER2-

enriched tumours harbour p53 mutations. Clinically, although HER2-enriched tumours are highly 
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proliferative, patients of this subtype are getting better prognosis with the development of anti-

HER2 therapies (9, 22). 

1.1.3.4 Basal-like 

Tumours of basal-like subtype constitute ~10%-20% of all breast carcinomas. Tumours in 

this subtype normally express one or more of the basal cytokeratins (e.g. CK5, CK14 and CK17) 

and usually display an elevated p53 mutation rate. Familial breast cancers with germ-line BRCA1 

mutations are mostly clustered into this subtype (9, 22). 

Compared with other subtypes, basal-like tumours tend to occur at an early age, with larger 

tumour size and higher histological grade. Consequently, although basal tumours in general are 

more sensitive to chemotherapy, they usually have a worse prognosis than do other subtypes (9, 

22). 

In clinical practice, the terms basal-like and TNBC are often considered as synonymous, but 

according to microarray-based measurements up to 30% genes display distinct expression patters 

between these two categories. Therefore, basal-like and TNBC should be regarded as distinct but 

intersecting classes (15). 

1.1.3.5 Normal-like 

Normal-like breast tumours are rare, accounting for about 5%–10% of the diagnosed cases. 

The clinical significance of subtype has yet to be determined due to its rarity. As normal-like 

tumours show similar expression pattern to normal breast tissues, some researchers even argue that 

this subtype might correspond to tumour samples contaminated by normal breast tissues during 

sample preparation and/or microarray experiment (22). 

1.1.4 Recent advances in breast cancer classification 

Despite the critical roles that the above-mentioned classification schemes have played in 

breast cancer research and treatment, substantial variation still exists within each subtype. Several 

studies have been conducted in recent years to tackle this issue. As one major effort, Gatza et al. (23) 

suggested 17 subgroups of breast cancer based on pathway activity patterns using gene expression 

data. Specifically, subgroups 11 and 17 correspond to luminal A tumours; subgroups 3, 4, 6, 9 and 

16 represent luminal B tumours; subgroups 7 and 10 are composed of HER2-enriched tumours; 

subgroups 2, 5, and 8 are basal-like tumours; and the other subgroups are a mixture of varied 

PAM50 subtypes. This new breast cancer taxonomy provides a functional interpretation of each 

subgroup and therefore can be particularly useful in guiding therapeutic choices and patient 

stratification for testing new drugs (23). 
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As another major effort, by integrating DNA copy number and gene expression data, Curtis 

et al. classified breast cancer samples into ten integrative clusters (8). Of these clusters, clusters 3, 

7, 8 are primarily luminal A tumours; clusters 1, 6, 9 contain luminal B tumours; cluster 10 

corresponds to basal-like tumours; and the other clusters are composed of tumours from mixed 

PAM50 subtypes. This genome-driven integrated classification represents an important advance in 

understanding the genomic diversity of breast cancer, and therefore is expected to have profound 

implications for the rationale development of tailored breast cancer therapy (8, 24). 

Some other studies also aimed to refine the commonly used breast cancer classifications. 

For example, Lehmann et al. identified seven sub-categories within TNBC (25) according to gene 

expression profiles, and Ciriello et al. defined four major subtypes within luminal A tumours 

through an integrative analysis of DNA copy number data and mutation data (26). However, it is 

likely that heterogeneity still exists within these newly established subtypes. To achieve the aim of 

personalised medicine, in the future each tumour needs be analysed individually. 

1.2 Overview of DNA repair pathways 

The cellular DNA repair machinery is crucial for maintaining the integrity of human 

genome, which is constantly challenged by a variety of endogenous and exogenous factors, 

including ultraviolet radiation (UV), chemical carcinogens and oxidative by-products from normal 

cellular respiration. This repair machinery can be generally divided into five distinct but functional 

interlinked pathways: homologous recombination (HR), non-homologous end joining (NHEJ), 

nucleotide excision repair (NER), base excision repair (BER) and mismatch repair (MMR) (Figure 

2). Defects in these repair pathways predispose individuals to a variety of cancers, and the cellular 

status of these repair pathways can be a key determinant of cancer outcome following 

chemotherapy, radiotherapy and some targeted therapies. Below is a brief overview for each of 

these pathways, emphasising their clinical relevance. A detailed description regarding the 

mechanistic aspect of each pathway can be found in Chapter Two. 

1.2.1 The HR Pathway 

The HR pathway represents an error-free mechanism mainly for the repair of double-strand 

breaks (DSBs) during DNA replication, and is thus vital for the high-fidelity transmission of genetic 

information across generations. Many breast cancer susceptibility genes are involved in this 

pathway, including BRCA1 and BRCA2 as mentioned above, and also ATM, PALB2, BRIP1 and 

RAD51L1 (27). Defects in HR also predispose to many other cancers, including ovarian, prostate 

and pancreatic cancer (28-30). 
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Figure 2 A panoply of DNA repair mechanisms maintains genomic stability (from Lord et 
al., 2012). Direct reversal repair is not considered as a pathway as it involves only one enzyme. 

HR is the most-complicated DNA repair pathway, containing the largest number of repair 

proteins. Many of the these proteins have been exploited intensively as drug targets or biomarkers 

because defects in HR sensitise tumours to DSB-inducing agents such as ionising radiation and 

topoisomerase I poisons, and platinum-based agents such as cisplatin and carboplatin (30). 

Clinically, the most-exciting discovery in the field of HR in recent years is the identification of the 

SL relationship between HR deficiency and poly (ADP-ribose) polymerase (PARP) inhibition, 

which is described in more detail below. 

1.2.2 The NHEJ Pathway 

NHEJ is another major pathway to repair DSB. However, unlike HR, which employs a 

sophisticated mechanism to ensure accuracy of the repair, NHEJ ligates the two broken ends of a 

DSB in a direct way, which is faster than the HR repair but tends to be more error-prone. The 

choice between NHEJ and HR is primarily dependent on the cell cycle stage – HR normally occurs 

during S and G2 phases of the cell cycle as it requires a homologous sister chromatid to serve as a 

template for repair, whereas NHEJ predominantly functions in the G0 and G1 phases, although it 

can also come into play in other cell-cycle phases especially when the HR repair becomes 

compromised (31). 

by elongating RNA polymerase; and global-genome NER, in which 
the lesion is detected not as part of a blocked transcription process but 
because it disrupts base pairing and distorts the DNA helix. Although 
these processes detect lesions using different mechanisms, they repair 
them in a similar way: DNA surrounding the lesion is excised and then 
replaced using the normal DNA replication machinery. Excision repair 
cross-complementing protein 1 (ERCC1) is key to this excision step. 

The major mechanisms that cope with DSBs are homologous 
recombination9 and non-homologous end joining (NHEJ)10. Homol-
ogous recombination acts mainly in the S and G2 phases of the cell 
cycle and is a conservative process in that it tends to restore the original 
DNA sequence to the site of damage. Part of the DNA sequence around 
the DSB is removed (known as resection) and the DNA sequence on 
a homologous sister chromatid is used as a template for the synthesis 
of new DNA at the DSB site. Crucial proteins involved in mediating 
homologous recombination include those encoded by the BRCA1, 
BRCA2, RAD51 and PALB2 genes. In contrast to homologous recom-
bination, NHEJ occurs throughout the cell cycle. Rather than using a 
homologous DNA sequence to guide DNA repair, NHEJ mediates repair 
by directly ligating the ends of a DSB together. Sometimes this process 
can cause the deletion or mutation of DNA sequences at or around the 
DSB site. Therefore, compared with homologous recombination, NHEJ, 
although mechanistically simpler, can often be mutagenic.

 Mismatch repair11 is crucial to the DDR. It deals primarily with dNTP 
misincorporation and formation of ‘insertion and deletion’ loops that 
form during DNA replication. These errors cause base ‘mismatches’ in 
the DNA sequence (that is, non-Watson-Crick base pairing) that distort 
the helical structure of DNA and so are recognized as DNA lesions. The 
recognition of this distortion triggers a procession of events resulting in 
the excision of newly synthesized DNA encompassing the mismatch site 
and the resynthesis of DNA in its place. Key to the process of mismatch 
repair are proteins encoded by the mutS and mutL homologue genes, 
such as MSH2 and MLH1. 

Finally, translesion synthesis and template switching allow DNA to 
continue to replicate in the presence of DNA lesions that would oth-
erwise halt the process. Translesion synthesis and template switching 
are therefore usually considered to be part of the DDR. In translesion 

synthesis, relatively high-fidelity DNA replication polymerases are tran-
siently replaced with low-fidelity ‘translesion’ polymerases that are able 
to synthesize DNA using a template strand encompassing a DNA lesion. 
Once the replication fork passes the site of the lesion, the low-fidelity 
DNA polymerases are normally replaced with the usual high-fidelity 
enzyme, which allows DNA synthesis to continue as normal. In template 
switching, the DNA lesion is bypassed at the replication fork by simply 
leaving a gap in DNA synthesis opposite the lesion. After the lesion 
has passed the replication fork, the single-strand gap is repaired using 
template DNA on a sister chromatid, similar to the process used during 
homologous recombination.

Although sometimes considered distinct from the DDR, the 
mechanisms that control the integrity of telomeric DNA at the end of 
each human chromosome also act as a barrier against genomic instabil-
ity and mutation12. Rather than being an exposed DNA double-helix 
structure at the end of the chromosome, telomeric DNA comprises 
a series of guanine-rich, repetitive DNA sequences. These enable the 
telomeric DNA to be bound in a loop-like structure with a series of 
proteins (telomere repeat binding factor 1 and 2 (TERF1 and TERF2), 
protection of telomeres 1 (POT1), TERF1-interacting nuclear factor 
2 (TINF2)) that form a shelterin complex. This ‘capping’ structure 
prevents the otherwise exposed ends of different chromosomes from 
becoming fused together (a process known as end–end fusion) by the 
DDR. In most somatic cells, the length of telomeric DNA is reduced 
at each cell cycle, a process termed telomere attrition. Eventually, tel-
omeres reach a crucial length that precludes the formation of an effec-
tive shelterin complex. In normal cells, this failure in telomere capping 
induces a p53-mediated response that results in cellular senescence, a 
mechanism that ultimately prevents unlimited cell proliferation. When 
the p53 response is abrogated, end–end fusions occur, which leads to 
the formation of chromosomes with two centromeres. At mitosis, each 
centromere in a dicentric chromosome attaches to an opposite spindle 
pole. The physical stress of opposing forces during chromosome segre-
gation shears dicentric chromosomes, resulting in broken chromosome 
ends. This process is an ideal substrate for the chromosome translo-
cation, focal DNA amplification and deletion events that potentially 
drive tumorigenesis. Sheared chromosomes could also be the source of 
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Figure 1 | A panoply of DNA repair mechanisms 
maintains genomic stability. DNA is continually 
exposed to a series of insults that cause a range of 
lesions, from single-strand breaks (SSBs) to base 
alkylation events. The choice of repair mechanism 
is largely defined by the type of lesion, but factors 
such as the stage of the cell cycle also have a role. 
Key proteins involved in each DDR mechanism, 
the tumour types usually characterized by DDR 
defects and the drugs that target these defects are 
shown. BER, base excision repair; NER, nucleotide 
excision repair; NHEJ, non-homologous end-
joining. Figure modified, with permission, from  
ref. 72.
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The genetic alterations in key NEHJ genes have been linked to cancer preposition. For 

example, mutations in KU70 have been associated with susceptibility to breast cancer, colorectal 

cancer and lung cancer, and lung cancer can also be caused by epigenetic silencing of KU80 (30). In 

addition, increased activity of NHEJ has been proposed as a main source of genomic 

rearrangements observed in various cancers (32). 

1.2.3 The NER Pathway 

The NER pathway deals with DNA double helix-distorting damage, such as that induced by 

UV light or tobacco smoke. Defective NER predisposes individuals to different cancer-prone 

syndromes, including xeroderma pigmentosum, cockayne syndrome, and trichothiodystrophy, each 

of which is characterised by a high risk of skin cancer (33). Genetic alterations in key NER genes 

may also give rise to other cancers. For example, ERCC1 methylation and the polymorphisms 

observed in XPA and XPC have been implicated in the genesis of lung cancer and bladder cancer, 

respectively (30, 34). NER deficiency confers sensitivity to various chemotherapeutic agents 

including cisplatin, mitomycin and nitrogen mustard (33). 

1.2.4 The BER Pathway 

The BER pathway is primarily responsible for removing small, non-helix-distorting base 

lesions caused by oxidation, alkylation or deamination, which often induces single-strand breaks 

(SSBs). Genetic defects in essential BER genes such as MUTYH, OGG1 and MTH1 are primarily 

coupled with excess risk of colorectal cancer (35). In addition, the polymorphisms observed in 

OGG1 has been implicated in lung cancer susceptibility (36). 

Compromised BER activity renders tumour cells sensitive to ionising radiation and 

alkylating agents such as methyl methanesulphonate and temozolomide. Especially, alkylating 

agents represent a primary class of front-line chemotherapeutic drugs, whose efficacy is largely 

influenced by the cellular status of BER and MMR pathways (37). 

1.2.5 The MMR Pathway 

The MMR pathway is the major mechanism for the repair of base-base mismatches and 

insertion/deletion loops (IDL) formed during DNA replication. In MMR-deficient tumour cells, 

mutation rates are up to 1,000-fold greater than normal cells (38). Germ-line mutations in central 

MMR genes including MSH2, MSH6, PMS2 and MLH1 can cause Lynch syndrome, an inherited 

disorder associated with an elevated lifetime risk for colorectal cancer, endometrial cancer, ovarian 

cancer and stomach cancer (39). MMR deficiency can cause hypersensitivity of tumours to 

alkylating agents, as mentioned above (37). Moreover, the cellular status of MMR can also affect 
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the resistance of tumours to ionising radiation (40) and chemotherapeutic agents such as 

methotrexate, anthracycline and taxane (41). 

In addition to these five major repair pathways mentioned above, in Chapter Two I also 

provided a detailed mechanistic description for the Fanconi anaemia (FA) pathway as this pathway 

is closely associated with breast cancer susceptibility. In brief, FA is a rare genetic disorder 

characterised by bone marrow failure, susceptibility to breast and other cancers, and 

hypersensitivity to DNA inter-strand crosslink agents such as cisplatin. This disorder is caused by 

mutations in a cluster of DNA repair-related genes that function in the FA pathway (42, 43). 

1.3 DNA repair pathways and breast cancer therapy 

Although defects in distinct DNA repair pathways are connected with different cancer 

susceptibilities, as described above, it appears that the occurrence of breast cancer has a particularly 

close relationship with DNA repair deficiency. For instance, in an epidemiological study comparing 

285 women with breast cancer and 539 women without breast cancer, Matta et al. revealed a 

significant correlation between reduced overall DNA repair capacity and elevated breast cancer risk 

(44). The biological mechanism behind this phenomenon has not been explained convincingly, but 

one suggestion is that cells in mammary tissue have a higher rate of proliferation, apoptosis and 

differentiation compared with cells in most of other human tissues (10). 

DNA repair pathways have important implications for radiation therapy and chemotherapy, 

as described above. Moreover, the research of DNA repair pathways in breast cancer has gained 

more attention in recent years due to the encouraging progress in the developments of SL-based 

targeted therapies. In the following section, I briefly discuss the relevance of various DNA repair 

pathways in the context of different breast cancer therapies. 

1.3.1 DNA repair pathways and radiotherapy/chemotherapy response 

Current breast cancer therapy typically involves surgery in combination with various DNA 

damaging agents including ionising radiation, platinum-based drugs, anthracycline and taxane. 

Ionising radiation induces SSBs, DSBs and oxidised bases. The primary component of platinum-

based drugs is an alkylating compound that causes intra- and inter-strand crosslinks. Anthracyclines 

mainly function as topoisomerase II inhibitors, giving rise to DSBs. Taxane agents are mitotic 

inhibitors that disrupt the process of mitotic cell division (9, 10). 

Breast tumours show subtype-specific response to DNA-damaging agents, although in most 

cases the underlying mechanisms are not completely understood and substantial exceptions still 

exist. For example, basal-like tumours normally exhibit hypersensitivity to platinum-based drugs 

such as cisplatin, which is generally believed to be the consequence of HR deficiency (45). As 
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another example, HER2-enriched tumours frequently exhibit sensitivity to anthracycline and taxane, 

but not to platinum-based drugs (9, 46, 47). The underlying mechanisms of these observations are 

not clear so far, and possibly multiple mechanisms are involved, including NER, HR and NHEJ (9). 

Luminal tumours, which include luminal A and luminal B, are more diverse in terms of drug 

response, and it has been proposed that the altered activities of HR, NHEJ and/or BER might be 

involved in this diversity (9). 

In recent years, small-molecule inhibitors that specifically target each DNA repair pathway 

have been under active development. The major rationale behind this development is that DNA 

repair pathways with increased activities can cause resistance to DNA-damaging therapies. 

Therefore, in addition to damaging the DNA, targeting these pathways by specific inhibitors is 

likely to achieve enhanced therapeutic effects (9, 30). As an example in breast cancer, Huang et al. 

demonstrated that inhibition of RAD51 by a small molecule termed B02 results in diminished HR, 

which in turn leads to significantly increased tumour sensitivity to cisplatin (48). Developments in 

this field are likely to have substantial impact on breast cancer therapy in the near future. 

1.3.2 SL-based targeted therapy 

The concept of SL first arose from genetic studies in Drosophila and is now often used to 

refer to a type of genetic interaction in which the co-occurrence of two genetic events results in cell 

death, while the occurrence of one event is still compatible with cell viability (49-51). In the field of 

oncology, it has been shown that tumour cells can become ‘addicted’ to compensatory DNA repair 

pathways for survival if they already acquired one defective DNA repair pathway at their origin 

(49). This addiction can be therapeutically exploited based on the concept of SL, which represents a 

promising direction for developing targeted therapy that can effectively kill cancer cells while at the 

same time spare normal cells. 

A good example of applying SL in breast cancer therapy is the development of PARP 

inhibitors for tumours that are deficient in HR due to mutations in BRCA1 or BRCA2 (52, 53). 

Although these tumours exhibit extraordinary sensitivity to PARP! inhibitors at concentrations that 

are safe for normal tissues (52, 53), the exact mechanism underlying this observation remains 

somewhat contentious. It was suggested that the inhibition of PARP results in compromised BER 

repair, leading to accumulation of SSBs that will be converted into DSBs during DNA replication. 

In normal cells, these resultant DSBs can be repaired by HR, but in cancer cells that are defective in 

HR, these DSBs will accumulate and eventually induce cell death (54). This explanation, however, 

has been challenged by alternative models. In particular, Patel et al. (55) showed that the NHEJ 

pathway is the major contributor to the cytotoxicity generated by PARP inhibitors in HR-deficient 
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cells. A detailed description regarding the recent advances in this field is given in the publication 

(51) incorporated in Chapter Two. 

To summarise the biological part of this thesis introduction: a major obstacle in current 

breast cancer management is the extensive heterogeneity observed among breast cancer patients. 

Successfully dissecting this heterogeneity, ideally at the individual level, should lead to enormous 

improvements in treatment effectiveness. The cellular status of DNA repair pathways is one of the 

decisive factors underlying the sensitivity and resistance of individual tumours to various cancer 

therapies; however, much is still unknown regarding the mechanisms and status of these highly 

complex pathways. This thesis thus aims to perform a computational analysis of these repair 

pathways in the context of breast cancer, making use of the cutting-edge bioinformatics tools that 

have emerged in recent years. 

In the remaining sections, I summarise the development of pathway analysis approaches in 

the field of bioinformatics, with emphasis on the pros and cons associated with each type of 

methods, and on the challenges that remain. 

1.4 Overview of pathway analysis approaches 

1.4.1 Introduction 

The advent of high-throughput whole-genome profiling techniques, such as microarray and 

RNA-Seq, has greatly enhanced biological research by allowing genome-wide measurements of 

molecular features in a single experiment (56, 57). Univariate single gene-based analysis (e.g. t- or 

F- test) of the high-throughput data typically yields a list of differentially expressed (DE) genes 

between two different phenotypes (56, 58). This list, however, is often inadequate in providing 

functional insights into the underlying mechanisms that drive the phenotypic distinction. To 

overcome this limitation, new methods termed pathway analysis have been developed, which shift 

the analysis from gene level to pathway level (56, 59-66). 

A biological pathway corresponds to a set of proteins that participate in the same biological 

process in a cell. The term "pathway analysis" has been widely used in the literature. For example, 

it has been applied to describe kinetic simulation of pathways, flux-balance analysis of steady-state 

pathways and inference of novel pathways from high-throughput data (56, 61, 62). In this thesis, I 

use pathway analysis to describe approaches that statistically test one or multiple pathways for 

significant association with a phenotype. These approaches are sometimes also called "knowledge-

based pathway analysis" [for example in (61)] to emphasise that they make use of prior biological 

knowledge about the pathways being studied. In many other articles, these approaches are referred 

to as gene set enrichment analysis (GSEA) or gene set analysis (GSA), especially when the sets of 
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genes being analysed do not correspond to biological pathways [e.g., gene sets defined by gene 

ontology (GO) terms] (59, 62, 67, 68). 

It needs to be pointed out that the biological meanings of “pathway” and “gene set” are 

substantially different. These two terms seem to be interchangeable in some literature, especially 

when enrichment analyses are used to identify pathways enriched for differentially expressed genes. 

However, equating a pathway with a gene set disregards knowledge of gene interactions within the 

pathway. Furthermore, a pathway can be regarded as a functional biological unit, while the genes in 

a gene set do not necessarily participate in the same biological process (e.g., signature gene sets 

derived from genome-scale gene expression studies), or represent only parts of pathways (e.g., gene 

sets including only pathway component genes differentially expressed in tumours). Therefore, 

genes sets may provide incomplete information or include irrelevant genes when they are used to 

investigate, for instance, which biological processes are altered between two conditions. In light of 

this, I use pathways rather than gene sets throughout this thesis. 

The application of pathway analysis for interpreting high-throughput data has exploded over 

the past decade for the following reasons: 

a) From a biological point of view, a list of pathways identified as altered between two 

phenotypes has more explanatory power for explaining the phenotypic difference than does a list of 

DE genes (56, 57).  

b) From a statistical point of view, grouping tens of thousands of genes into hundreds of 

pathways is advantageous as the dimensionality of the data is reduced. As a result, the number of 

statistical hypotheses that need to be tested is also much reduced (59). 

c) Pathway analysis is capable of detecting weak but coordinated expression changes of 

genes within the same pathway (56, 57). These changes may have a significant impact on the 

phenotypic difference being studied but can be easily missed by assessing each gene separately. For 

example, Mootha et al. found no single DE gene between Type II diabetes positive and negative 

patients, but identified a set of genes that show subtly but coordinated expression changes in 

diabetes positive patients. This set of genes is involved in the oxidative phosphorylation pathway, 

suggesting a role of this pathway in the development of diabetes (69). 

1.4.2 Classification of pathway analysis approaches 

A large number of pathway analysis approaches has been developed so far. According to 

Khatri et al. (61), these approaches can be classified into three categories: over-representation 

analysis (ORA) approaches, functional class scoring (FCS) approaches, and pathway topology 

(PT)-based approaches (Figure 3). 
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Figure 3 Three categories of pathway analysis approaches (from Khatri et al., 2012). 

1.4.2.1 ORA approaches 

ORA approaches represent early efforts in the field of pathway analysis. In general, these 

approaches use a contingency table to test whether a pathway is overrepresented by a predefined list 

of DE genes. The univariate statistical tests adopted in these approaches include the hypergeometric 

test, the chi-square test and the binomial test. Despite the popularity of ORA approaches in GO-

based tools such as BiNGO (70), GOstat (71) and GOEAS (72), they share two significant 

drawbacks: 

a) They all use an arbitrary threshold (e.g., genes with fold-change ≥ 2 and/or p-values 

≤ 0.05) to obtain a list of DE genes. This may lead to severe information loss as a substantial 

portion of the genes is discarded, especially those that are marginally less significant (e.g., fold-

change = 1.999 and/or p-value = 0.051) (61, 65, 66). 

b) The statistical tests adopted by these approaches consider only the number of DE genes, 

and ignore any quantitative values associated with the genes (e.g., fold-change, p-value etc.). This 

may also result in significant information loss (61, 65, 66). 

c) These statistical tests all assume that the component genes of the same pathway are 

independent of each other, resulting in information loss. More-advanced statistical analyses that 

account for inter-gene correlations, such as ROAST (73) and CAMERA (74), have been developed 

to tackle this issue. 

1.4.2.2 FCS approaches 

FCS approaches represent the mainstream methods for the current pathway-based analysis 

of high-throughput data, which include gene set enrichment analysis (GSEA) (75), the most 

prominent method in the field. An important hypothesis underlying FCS approaches is that although 

statistical tests as well as overlapping pathway databases (Table
S1).

Limitations. Despite the availability of a large number of tools
and their widespread usage, ORA has a number of limitations. First,
the different statistics used by ORA (e.g., hypergeometric
distribution, binomial distribution, chi-square distribution, etc.)
are independent of the measured changes. This means that these
tests consider the number of genes alone and ignore any values
associated with them such as probe intensities. By discarding this
data, ORA treats each gene equally. However, the information
about the extent of regulation (e.g., fold-changes, significance of a
change, etc.) can be useful in assigning different weights to input
genes, as well as to the pathways they are involved in, which in turn
can provide more information than current ORA approaches.
Second, ORA typically uses only the most significant genes and

discards the others. For instance, the input list of genes from a
microarray experiment is usually obtained using an arbitrary
threshold (e.g., genes with fold-change§2 and/or p-valuesƒ0:05).
With this method, marginally less significant genes (e.g., fold-
change= 1.999 or p-value= 0.051) are missed, resulting in infor-
mation loss. Breitling et al. addressed this problem by proposing an
ORA method for avoiding thresholds. It uses an iterative approach
that adds one gene at a time to find a set of genes for which a
pathway is most significant [14].
Third, by treating each gene equally, ORA assumes that each

gene is independent of the other genes. However, biology is a
complex web of interactions between gene products that constitute
different pathways. One goal of gene expression analysis might be to
gain insights into how interactions between gene products are
manifested as changes in gene expression. A strategy that assumes
the genes are independent is significantly limited in its ability to
provide insights in this regard. Furthermore, assuming independence

between genes amounts to ‘‘competitive null hypothesis’’ testing (see
below), which ignores the correlation structure between genes.
Consequently, the estimated significance of a pathwaymay be biased
or incorrect.
Fourth, ORA assumes that each pathway is independent of other

pathways, which is erroneous. For instance, GO defines a biological
process as a series of events accomplished by one or more ordered
assemblies of molecular functions (http://www.geneontology.org/
GO.doc.shtml). Another example of dependence between pathways
is the cell cycle pathway in KEGG (http://www.genome.jp/kegg/
pathway/hsa/hsa04110.html), where the presence of a growth
factor activates the MAPK signaling pathway. This, in turn,
activates the cell cycle pathway. No ORA methods account for this
dependence between molecular functions in GO and signaling
pathways in KEGG.

Second Generation: Functional Class Scoring (FCS)
Approaches
The hypothesis of functional class scoring (FCS) is that although

large changes in individual genes can have significant effects on
pathways, weaker but coordinated changes in sets of functionally
related genes (i.e., pathways) can also have significant effects. With
few exceptions [15–17], all FCS methods use a variation of a
general framework that consists of the following three steps [18]
(Figure 1; Table 1): first, a gene-level statistic is computed using the
molecular measurements from an experiment. This involves
computing differential expression of individual genes or proteins.
Statistics currently used at gene-level include correlation of
molecular measurements with phenotype [19], ANOVA [20],
Q-statistic [15], signal-to-noise ratio [21], t-test [20,22], and Z-
score [23]. Although the choice of a gene-level statistic has a

Figure 1. Overview of existing pathway analysis methods using gene expression data as an example. Note that this overview is equally
applicable to molecular measurements using proteomics, and any other high-throughput technologies. The data generated by an experiment using a
high-throughput technology (e.g., microarray, proteomics, metabolomics), along with functional annotations (pathway database) of the
corresponding genome, are input to virtually all pathway analysis methods. While ORA methods require that the input is a list of differentially
expressed genes, FCS methods use the entire data matrix as input. In addition to functional annotations of a genome, PT-based methods utilize the
number and type of interactions between gene products, which may or may not be a part of a pathway database. The result of every pathway
analysis method is a list of significant pathways in the condition under study. DE, differentially expressed.
doi:10.1371/journal.pcbi.1002375.g001
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DE genes can have most significant effects on the activity of a pathway, the statistic of a given 

pathway should be based on the statistic of all genes that function in that pathway. Specifically, 

there are two reasons that make FCS approaches superior than ORA methods (56, 61, 68):  

a) FCS approaches do not require an arbitrary threshold for separating expression data into 

significant and non-significant parts and thus make full use of all experimental data. 

b) FCS approaches use gene-specific molecular measurements to detect coordinated changes 

in the expression of genes in the same pathway. 

1.4.2.3 PT-based approaches 

A significant drawback associated with FCS approaches is that they ignore the topology of a 

pathway (i.e, the relative positions of component genes in a pathway as well as the number and 

types of interactions between the genes). As a consequence, the output of FCS approaches will 

remain unchanged even if a pathway is redrawn with new connections between the component 

genes (61). 

The PT-based approaches, which utilise pathway topology to calculate pathway statistics, 

are thought to be able to overcome the drawback of the FCS methods (61). For now, only a small 

number of PT-based approaches have been reported, which include ScorePAGE (76), Pathway-

Express (77), SPIA (78) and NetGSA (79). Some of these approaches are not implemented in 

software or a package (e.g., ScorePAGE and NetGSA), while others may have functional 

restrictions (e.g., Pathway-Express is available only as a Web server). Moreover, at the moment PT-

based approaches have difficulties in modelling large complex pathways (e.g. the DNA repair 

pathways) due to the complexity of interactions within these pathways. Those difficulties as well as 

the non user-friendly features currently make PT-based approaches less than ideal for pathway 

analysis. 

1.4.3 Steps of FCS approaches 

As FCS approaches play a dominant role in the current pathway analysis-based studies, in 

this section I summarise the common steps of FCS approaches and discuss challenges that are 

associated with each step (Figure 4). 
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  Figure 4 Steps of Functional Class Scoring (FCS) approaches for pathway analysis. 

1.4.3.1 Collection of pathway information 

The first step in applying FCS approaches is to retrieve biological knowledge for pathways 

that are to be investigated. This step is not specific to FCS approaches, but may have significant 

impact on the quality of their outputs. Commonly-used public pathway databases include Reactome 

(80), KEGG (81), MetaCyc (82), PID (83), PantherDB (84), WikiPathways 

(http://wikipathways.org/), STKE (http://stke.sciencemag.org/cm/), BioCarta 

(http://www. biocarta.com) and ResNet (http://www.ariadnegenomics.com/). Detailed description 

of these pathway databases is beyond the scope of this introduction. Interested readers are referred 

to excellent reviews (85-87) that provide nice summaries of commonly used pathway databases. 

Particularly, the recent work by Chowdhury et al. summarises and compares the properties of 24 

pathway databases, including their in-built technical features and their respective merits and 

demerits (85). 

There are two major problems associated with the current public pathway databases. First, 

as different pathway databases adopt distinct strategies for pathway inclusion and curation, these 

databases differ greatly in terms of content quality. In particular, some databases such as ResNet 

were developed by electronic curation (i.e., they use data-mining algorithms to infer functional 

relationships between genes). Although these inferred annotations are useful for hypothesis 

generation, their accuracy is usually in doubt, and this has limited the usefulness of such databases 

for high-quality pathway analysis. By contrast, many other databases such as Reactome, KEGG and 

MetaCyc employ manual curation for their development and maintenance. Although relatively 

time-consuming, manual curation can lead to more accurate and up-to-date results, which is 

particularly useful for pathways that are complicated and/or poorly annotated. 
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Second, even for pathway databases that are manually curated, similarly named pathways 

across different databases may exhibit substantial differences in constitution, whereas differently 

named pathways across databases may exhibit considerable overlap. For example, Altman et al. 

performed a systematic comparison between KEGG and MetaCyc databases and found many 

KEGG pathways are much larger in size compared with their MetaCyc counterparts (87). As 

another example, Chowdhury et al. demonstrated significant data heterogeneity between 24 

pathway databases, including Reactome, KEGG and MetaCyc (85). 

1.4.3.2 Calculation of gene-level statistic 

The second step is to compute a gene-level statistic for each gene in the same pathway. This 

step is relatively simple and often corresponds to, for example, a single gene-based differential 

expression analysis in a microarray experiment. A gene-level statistic can be a t-statistic, a p-value, 

a signal-to-noise ratio (mean to standard deviation ratio), a log-likelihood ratio, a fold change, or a 

Wilcoxon rank sum statistic (59, 62). An interesting point to note is that the choice of gene-level 

statistic seems to have negligible effect on identifying significant pathways (59). 

Different technologies for measuring gene expression levels, such as RNA-seq and 

microarray, might also affect the calculation of gene-level statistic. RNA-seq is thought to be 

superior to microarray in detecting low abundance transcripts and novel isoforms, and is also free of 

issues inherent to microarray, such as probe redundancy, cross-hybridisation and non-specific 

hybridisation. Besides, to obtain a gene-level measurement, RNA-seq usually adopts the union of 

the transcripts that represent the same gene while microarray often considers only the most-

abundant probe of the gene. However, recent large-scale comparisons showed that these two 

techniques produce highly-correlated results (Spearman correlation coefficient of 0.8) (88) or that 

the choice between them is not a significant factor affecting the final results (89). Together with the 

facts that microarray is more cost-effective, and that a great wealth of microarray-based expression 

data has already been accumulated, the results from these two gene expression profiling techniques 

are complementary to each other. 

1.4.3.3 Calculation of pathway statistic 

The next step is to calculate a pathway-level statistic by aggregating the gene-level statistic 

of all component genes in a pathway. A pathway-level statistic can be univariate, such as the 

Kolmogorov-Smirnov statistic generated by GSEA (75), the maxmean (90) and the Wilcoxon rank 

sum (91), which disregards interdependencies (e.g., correlations)  among genes within a pathway; it 

can also be multivariate, such as the Hotelling's T2 (92, 93) and the statistic generated by 

GlobalANCOVA (94), which accounts for interdependencies among the pathway component genes. 



 17 

Excellent reviews (56, 59, 61-63) have summarised and compared the commonly-used pathway-

level statistics. 

It is tempting to speculate that a multivariate statistic may have a higher statistical power 

than a univariate statistic because the former takes more information into consideration. However, 

Glazko et al. showed that although multivariate statistics exhibited higher statistical power than 

univariate statistic on simulated data, when applied to real biological data, univariate statistics 

displayed more power at stringent cutoffs (p-value ≤ 0.001), and equal power at less-stringent 

cutoffs (p-value ≤ 0.05) [(95); reviewed in (61)]. Considering that multivariate statistics are 

generally much more computationally expensive, univariate statistics still remain the common 

choice in current pathway analysis (59, 61). 

Regardless of the differences between univariate and multivariate statistic, the power of a 

pathway statistic is largely determined by the proportion of DE genes within the pathway, the size 

of the pathway and the strength of correlations between the expression of the component genes of a 

pathway (61). 

1.4.3.4 Estimation of significance of pathway statistics 

A further step is to estimate the statistical significance of the pathway statistic calculated in 

the previous step. The result of this step strongly depends on the choice of null hypothesis. As first 

defined by Tian et al. (96) and further described by Ackermann and Strimmer (59), there are two 

types of null hypothesises, termed competitive null hypothesis and self-contained null hypothesis: 

a) The competitive null hypothesis permutes gene labels for each pathway, and compares 

the genes in a pathway with the genes that are not in the pathway. The rationale in this hypothesis is 

that a significantly altered pathway between two phenotypes should be distinguishable from equal 

sized pathways that are composed of randomly selected genes (59, 96). 

b) The self-contained null hypothesis permutes phenotype labels for each sample and 

compares the genes in a pathway with themselves. The rationale in this hypothesis is that the 

association of a pathway with a phenotype change should be distinguishable by randomly shuffling 

phenotype labels (59, 96). 

There is no consensus in the literature regarding which hypothesis is better. Many 

researchers favour the self-contained null hypothesis, as the results directly address the question of 

finding pathways whose expression change correlates with the phenotype change (56, 66, 97). 

Others prefer the competitive null hypothesis, as sample permutation takes much more 

computational time, and the results based on the two hypotheses are similar to each other (68, 98). 
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1.4.3.5 Correction for multiple testing 

Although a p-value is considered to be an appropriate measure of statistical significance 

when one single pathway is tested, if a large number of pathways are tested, there can be many false 

positives among pathways with small p-values. Multiple hypotheses correction is therefore needed 

to correct the p-values of multiple pathways obtained in the previous step (59, 62). 

Bonferroni-related approaches represent a straightforward way for multiple test correction, 

and simply multiply the p-values obtained in each test by the total number of hypotheses (i.e. the 

total number of pathways being tested). Despite their simplicity to understand and implement, these 

approaches do not account for pathway overlap and dependence, and therefore may result in a large 

number of false negatives (62, 99). 

In recent years, False Discovery Rate (FDR) methods have become widely used for multiple 

testing correction in pathway analysis (61, 62). Several variations of FDR with different 

assumptions of the underlying data distribution have been proposed, including the Benjamini-

Yekutieli (BY) correction (100), the Benjamini-Hochberg (BH) correction (101), positive FDR 

(pFDR) (102) and significant analysis of microarray (SAM) FDR (103). Kim et al. compared these 

FDR methods using random correlation matrices, and found that BH was the most robust method 

(104). 

1.4.4 Recent advances in pathway analysis approaches 

Despite the great number of pathway analysis methods that have been developed, and the 

significant role these methods have played in interpreting genome-wide molecular measurements, 

the vast majority of these methods focus on identifying altered pathways between two groups (e.g. 

cancer versus normal), and thus cannot provide pathway information for individuals. This issue is 

becoming a critical concern since cancer is a heterogeneous disease. Dissecting this heterogeneity 

will be crucial for understanding the underlying mechanisms and disease status of each tumour, and 

for developing tailed therapies that target specific pathways. In the following part, I discuss several 

tools that have been recently developed for individualised pathway analysis. 

Ahn et al. (105) extended several existing ORA- and FCS-based pathway analysis methods 

to generate individualised pathway aberrance score (iPAS) for each tumour. Overall, the steps for 

generating iPAS are similar to the procedures described in Section 4.3, with the exception that the 

pathway statistic is calculated by comparing each individual tumour sample with many accumulated 

normal samples (i.e., normal samples from patients with the same type of disease). The authors 

applied iPAS to lung adenocarcinoma and colon cancer samples respectively, and showed that this 

score can provide biologically and clinically relevant representation for the individual tumours. In 

particular, they found the iPAS based on the “amino acid synthesis and interconversion” pathway 
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can be used to identify lung adenocarcinoma samples from unknown samples [Area Under the 

Curve (AUC) = 0.982], which cannot be achieved by using the conventional ORA or FCS methods 

(105). 

Wang et al. (106) developed individPath to detect pathways with significantly disrupted 

coordination of gene expression for individual disease samples. This was achieved by performing 

intra-pathway gene pair comparisons between each disease and accumulated normal samples. One 

key advantage of individPath is its robustness to batch effects as relative expression orderings of 

genes within samples are insensitive to normalization methods. The effectiveness of individPath for 

personalised pathway analysis was demonstrated by the identification of a prognostic intra-pathway 

gene pair signature for early-stage lung adenocarcinoma, and an intra-pathway gene pair signature 

that is predictive of relapse-free survival of ER+ breast cancer patients after tamoxifen treatment 

(106). 

The Pathifier method proposed by Drier et al. (107) quantifies a pathway’s dysregulation in 

individual tumours by calculating a pathway deregulation score (PDS) separately for each pathway 

in every sample, with accumulated normal samples serving as a reference. Specifically, to calculate 

the PDS for pathway P, Pathifier first fits a principal curve that captures the maximal variability of 

the expression of all genes in pathway P in both tumour and normal samples, and then projects all 

samples onto that curve; a tumour's PDS for that pathway is defined as the distance along the curve 

from the projection of the tumour to the centroid of the projections of normal samples (107). 

Through the analysis of three colorectal cancer datasets and two glioblastoma datasets, the authors 

showed that PDSs can consistently dissect heterogeneity of pathway dysregulation in a sensible, 

valid and clinically useful manner (107). Moreover, Pathifier has been successfully applied to 

provide a pathway-based classification of breast cancer (108), and when combined with Cox 

regression and L1 penalised estimation has achieved better prognosis prediction compared with 

gene-based models (109). 

The pathway recognition algorithm using data integration on genomic models 

(PARADIGM) developed by Vaske et al. (110) represents another prominent tool for personalised 

pathway analysis. Unlike the aforementioned methods, a pathway component considered by 

PARADIGM is not limited to mRNA values; it can be any molecular measurement of a gene (copy 

number, mRNA or protein level), a protein complex, a gene family or even an abstract process such 

as “apoptosis”. For each sample and each pathway component, PARADIGM builds a probabilistic 

graphical model to generate a single summary, called integrated pathway level (IPL), to indicate the 

status of a pathway component in a given sample relative to a benchmark (e.g. as measurements in 

normal tissues). The IPLs belonging to the same pathway are then summarised to represent the 

activity of that pathway in a given tumour. 
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PARADIGM has been successfully applied in various cancer studies (110-113). Compared 

with the methods mentioned above, PARADIGM might perform better with multi-omics data, as it 

takes into consideration the relationships between different pathway components. However, it might 

not perform well with single-omics data and/or when relationships between different pathway 

components are not well understood (107). Moreover, PARADIGM was not available until 

recently, which had limited its wide usage. 

One common problem associated with the above-mentioned personalised pathway analysis 

methods is that instead of comparing tumour and normal samples from the same individual, they 

make use of accumulated normal samples. Although this is a good strategy for now as matched 

normal samples are often unavailable, the results of these methods can be inaccurate due to 

interpersonal heterogeneity. Furthermore, intra-tumour heterogeneity has gained increased attention 

in recent years (114), and with the development of new single-cell sequencing technologies, it has 

been suggested that whole-genome sequencing of a number of separate cells in a single tumour will 

become a necessity in the near future (115). Accordingly, pathway analysis tools that account for 

intra-tumour heterogeneity need to be developed. 

To summarise the bioinformatics part of this Introduction, the pathway information 

retrieved from various pathway databases differs in quality, which may exert notable influence on 

pathway analysis result. Besides, although FCS methods remain the mainstream approaches for 

pathway analysis, and ORA methods were thought as the future (61), personalised pathway 

methods are emerging as promising tools to rise up the challenge posed by the tremendous 

heterogeneity observed in cancer. I would anticipate more personalised pathway analysis methods 

to be developed in the coming years. 

To address some of the issues raised in this introduction, three studies were conducted and 

are presented in this thesis (chapters Two, Three and Four). The specific issue addressed is 

summarised at the beginning of each chapter. In general, these studies are driven by various 

biological questions regarding DNA repair and breast cancer, and involve applying state-of-the-art 

bioinformatics methods to the increasing amount of genomic data to formulate knowledge that is of 

biological relevance and clinical implication. In this sense, this thesis serves to bridge the gap 

between biological findings and bioinformatics developments. 
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Chapter Two: Manual curation of the DNA repair pathways 

The cellular DNA repair machinery is a highly complex system, involving hundreds of proteins 

with diverse functions. To dissect this complexity, research on DNA repair is advancing rapidly, 

with the number of proteins known to be involved in this machinery expanding constantly. At the 

time I commenced this PhD study (2012), however, the commonly used pathway databases such as 

KEGG and Reactome had failed to keep their DNA repair entries up-to-date to reflect these 

advancements (e.g., the Reactome DNA repair pathways had not been updated since 2003). This 

posed a primary difficulty for an accurate computational analysis of the DNA repair pathways. 

To tackle this issue, I manually curated the gene content for six DNA repair pathways (i.e., the HR, 

NHEJ, NER, BER, MMR and FA pathways as described in Chapter One) by literature search and 

consulting a domain expert. In total, this curation work covered 195 genes and 138 reactions that 

have direct relevance in DNA repair. For each repair pathway, information on relevant genes and 

reactions, which was scattered over a wide range of original publications, was assembled into a 

comprehensive pathway diagram. Moreover, to facilitate a deep understanding of repair 

mechanisms, a detailed description for each reaction is given, which includes the references used 

for curating the reaction. This work paved the way for the computational analyses presented in the 

following chapters. 

 

Results'presented'as'a'publication'

The results regarding HR and NHEJ pathways were published as a review in the peer-reviewed 

journal Nucleic Acids Research in May 2014. According to Google Scholar, this publication has 

attracted 26 citations as of 18th January 2016. The pathway figures and reaction descriptions for all 

pathways are presented in Appendix 1. The original PDF version of the pathway figures, and an 

Excel File containing all curated DNA repair genes are deposited at UQ eSpace. 
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Abstract 

DNA-damage response (DDR) machinery is crucial to maintain the genomic integrity of 

cells, by enabling effective repair of even highly lethal lesions such as DNA double-strand breaks 

(DSBs). Defects in specific genes acquired through mutations, copy-number changes or epigenetic 

silencing can alter the balance of these pathways, triggering cancerous potential in cells. Selective 

killing of cancer cells by sensitizing them to further DNA damage, especially by induction of DSBs, 

therefore requires careful modulation of DSB-repair pathways.  

Here, we review the latest knowledge on the two DSB-repair pathways, homologous 

recombination (HR) and non-homologous end joining (NHEJ) in human, describing in detail the 

functions of their components and the key mechanisms contributing to the repair. Such an in-depth 

characterization of these pathways enables a more mechanistic understanding of how cells respond 

to therapies, and suggests molecules and processes that can be explored as potential therapeutic 

targets. One such avenue that has shown immense promise is via the exploitation of synthetic 

lethality (SL) relationships, for which the BRCA1-PARP1 relationship is particularly notable. Here 

we describe how this relationship functions and the manner in which cancer cells develop therapy 

resistance by restoring their DSB repair potential. 
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1. Introduction 

Most DNA-damaging chemotherapeutic agents directly or indirectly cause DNA double-

strand breaks (DSBs), which are highly lethal lesions sufficient to kill cells by inactivating essential 

genes or, in metazoans, by triggering apoptosis (1, 2). The key to highly selective cancer therapies 

therefore lies in exploiting the distinctive molecular and cellular traits that sensitise only cancer 

cells to these agents. 

Cancer is a disease of genomic instability and cancer cells differ genetically from normal 

cells in their ability to repair their DNA. Consequently, if these differences can be exploited to 

induce a high level of DNA damage, which can nonetheless be repaired in normal cells, then cancer 

cells can be selectively forced into DNA-damage-induced apoptosis. DNA-damage response (DDR) 

pathways offer molecular targets to exploit cancer-specific traits and through their precise 

modulation, cancer cells can be selectively sensitised to DSB-inducing drugs. 

Cells have evolved an intricate assembly of interlocking mechanisms that repair DSBs 

efficiently or, if the damage cannot be repaired, commit the cells to apoptosis. Extensive studies 

mapping mutational landscapes of cancers have linked specific defects in DSB-repair pathways to 

‘driver’ events in breast and other cancers (3, 4). It is also now established that cancer cells become 

drug-resistant and retain their proliferative potential by modulating their DSB-repair potential (5). 

Therefore in-depth characterization of DSB-repair pathways and deciphering their connection to 

tumorigenic activity is critical to understand the basis of cancer and develop effective therapies. 

In the following section, we describe the basic mechanisms underlying DSB-repair and 

associated sub-pathways, from sensing of DNA damage and recruitment of early-response factors 

through to repair and the re-joining of DNA ends. In the subsequent section, through associating 

specific genes and mechanisms in these pathways to cancerous potential particularly for breast 

cancer, we outline how this information can be harnessed to improve cancer therapy, focusing on a 

promising strategy called synthetic lethality.  

2. DNA damage response (DDR) 

The detection of DSBs activates a sequence of closely linked cellular events, designated the 

DDR, consisting of cell-cycle checkpoint activation, chromatin modification, transcriptional 

changes, DNA repair, or apoptotic cell death in cases where the damage cannot be repaired [see (1, 

6-8) for more details]. The principal function of this regulatory network is to maximise the 

likelihood that any genetic lesion incurred is faithfully repaired prior to being transmitted to 

progeny during DNA replication or mitotic cell division. Critical regulators of cell cycle 
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checkpoints include the ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and 

Rad3 related) protein kinases, which act in concert or independently to deal with DNA damage in 

the cell (9, 10). A large-scale proteomics screen identified greater than 700 proteins phosphorylated 

by ATM and/or ATR in response to genotoxic stress, demonstrating the broad impact of DNA 

damage on cellular signalling (11-13). The checkpoint functions of ATR and ATM are mediated, in 

part, by a pair of checkpoint effector kinases termed CHK1 (checkpoint kinase 1) and CHK2 

(checkpoint kinase 2) [reviewed in (14)]. Another direct target of ATM phosphorylation relevant to 

G1 phase cell cycle arrest is p53 (9), one of the most important tumour suppressors. Together with 

its key target p21, p53 plays an important role in inducing cell cycle arrest and regulating the 

balance between repair and survival of the cell or apoptosis [(15, 16); recently reviewed in (8)]. In 

addition to the classical transducers (ATM and ATR) and effector kinases (CHK1 and CHK2), 

stress-activated p38 SAPK (stress-activated protein kinase) and its downstream target MAPKAP-

kinase 2 (Mitogen-Activated Protein Kinase-Activated Protein Kinase 2) (17, 18) and tyrosine 

kinases such as Abl (Abelson murine leukemia) play an important role in coordinating the DDR of 

higher eukaryotic cells (19, 20). Description of all the DNA damage response-induced pathways is 

beyond the scope of this article, and the reader is referred to several excellent reviews (1, 6, 7, 21); 

only salient features of DSB repair will be highlighted here. 

3. DSB repair 

Homologous recombination (HR) and Non-homologous end joining (NHEJ) are the two 

main DSB repair pathways. HR restores the original DNA sequence at DSB sites using a template 

sequence from a sister chromatid or a homologous chromosome to direct the error-free repair of 

DSBs, and is restricted to the S and G2 phases of the cell cycle.  In addition to DSB repair, HR is 

also involved in the resolution of stalled replication forks and in the generation of genetic diversity 

through mitotic and meiotic recombination (22, 23). By contrast, NHEJ directly joins the two ends 

of a DSB, regardless of the sequence template at the exposed ends of the break, making it error-

prone but available at all times during the cell cycle. NHEJ is involved in the maturation of immune 

cells through V(D)J recombination and class-switch recombination (24). The major steps in DSB-

mediated repair pathways will be discussed here. 

3.1. DNA damage-induced chromatin relaxation 

In most eukaryotic cells the DNA is tightly packaged into the DNA-protein complex known 

as chromatin, which represents a significant barrier for DSB-repair proteins to access and repair 

DNA breaks. The dynamic restructuring of chromatin surrounding the lesion including 
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modifications of histone tails and remodelling of chromatin by remodelling factors allow HR and 

NHEJ machinery access to the damaged DNA [for more details, see (25-27)]. The most prominent 

chromatin modification after DSB induction is phosphorylation of H2AX (a type of histone H2A 

variant), which plays a primary role in the DNA damage repair by facilitating the access of HR 

factors to sites of DNA damage (discussed in the next section). 

In response to a DSB, the chromatin surrounding the DSB is rapidly PARylated (modified 

by covalent addition of poly-ADP ribose, or PAR), a reaction catalysed by PARP1 (poly [ADP-

ribose] polymerase 1) (28). This creates PAR chains at DSBs, allowing rapid and transient 

accumulation of the NuRD, PcG (polycomb group) and ALC1 remodelling complexes through 

interaction with PAR (28-30), and of the KAP-1/HP1 complex possibly through interaction with 

PAR at break sites [reviewed in (25)]. The NuRD complex is required for subsequent steps in DDR 

such as efficient marking of DNA damage site with ubiquitin by RNF8 (ring finger protein 8) and 

RNF168 (ring finger protein 168), and also for recruitment of BRCA1 to damaged DNA (31). PcG 

proteins exist in the form of two main complexes, PRC1 and PRC2 (polycomb repressive complex 

1 and 2), which are recruited to DSB sites in a PARP-dependent manner. PRC1 can 

monoubiquitinate histone H2A at sites of DSBs, and PRC1-mediated monoubiquitination is 

required for subsequent RNF8- and/or RNF168-mediated polyubiquitination at DSBs (32-34). 

ALC1 may have a role in repositioning DSB-flanking nucleosomes, and in stabilizing the chromatin 

structure for further DSB processing and repair, while KAP-1/HP1 may promote the unpacking of 

heterochromatin, thereby facilitating repair of heterochromatic DSBs (26). These three complexes 

are retained at DSBs for only a short period of time, and then rapidly released from the chromatin, 

potentially through dePARylation by PARG (polyADP-ribose glycohydrolases) (25). The 

requirement of PARG for efficient DNA repair suggests that the presence of PAR at sites of DNA 

of damage must be tightly regulated. 

Subsequent DSB signalling, including ATM activation and phosphorylation of histone 

H2AX, recruits MDC1 (mediator of DNA damage checkpoint 1) which then interacts with and 

loads another chromatin-remodelling complex, NuA4, onto chromatin adjacent to DSBs (35). 

Loading of NuA4 catalyses the exchange of H2A for H2A.Z through the p400 component of NuA4 

[(36); reviewed in (25)]. This reaction is required for the acetylation of histone H4 by the TIP60 

(also known as KAT5) component of NuA4, leading to the relaxation of DNA in proximity to 

DSBs [reviewed in (25, 37)]. 

Chromatin relaxation in both HR and NHEJ also involves ubiquitination of histone H2B by 

the heterodimer consisting of RNF20 (ring finger protein 20) and RNF40 (ring finger protein 40) in 

an ATM-dependent manner (38). Two tumour suppressors, CDC73 (cell division cycle 73) (39) and 

Smurf2 (Smad ubiquitin regulatory factor 2) (40), have been reported to regulate this ubiquitination 
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reaction, and this may represent a major mechanism by which mutations in these tumour 

suppressors exert their tumorigenic effect (39, 40). 

3.2. Homologous recombination (HR) 

HR occurs through a series of steps involving DSB-induced chromatin relaxation; 

recruitment of early HR factors to site of DSBs; DSB end resection; formation of the D loop; 

processing of the D loop or Holliday junctions; and the single-strand annealing (SSA) sub-pathway. 

We consider these in order. 

3.2.1. Recruitment of early HR factors to DSBs 

HR-mediated repair begins with the recognition and binding of DSB ends by the MRN 

(MRE11-RAD50-NBS1) complex (41, 42) (Figure 1a). Subsequently, MRN recruits a complex of 

ATM and the histone acetyltransferase TIP60 [TIP60/NuA4 complex mentioned above, which 

binds to histone H3 methylated at Lys-9 (H3K9me3)], to the sites of damage (43, 44). Both its 

recruitment to DSBs and phosphorylation of TIP60 by c-Abl kinase (20) are required to trigger the 

acetyltransferase activity of TIP60, leading to the activation of ATM by acetylation-induced auto-

phosphorylation (44). The activated ATM then phosphorylates a multitude of substrates in response 

to DNA damage, particularly H2AX (termed γH2AX when phosphorylated), which serves as an 

anchoring platform for the accumulation of subsequent HR factors (Figure 1b), and is considered as 

an early marker of DSB signalling [reviewed in (45, 46)]. The recruitment of HR factors at sites of 

damage is regulated by various post-translational modifications which have been subject of 

comprehensive reviews (47, 48), only some of the most relevant post-translational modifications 

will be highlighted here. 

The adaptor protein MDC1 localises to DSB sites by direct binding to γH2AX [reviewed in 

(9, 45)]. MDC1 also harbours a binding site for NBS1 component of MRN complex, promoting 

additional ATM recruitment and kinase activation (49, 50). The ability of MDC1 to bind γH2AX 

and NBS1 simultaneously enables positive feed-forward phosphorylation of H2AX by ATM 

and generates a megabase-sized γH2AX region surrounding DSBs [reviewed in (9, 46)].  
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Figure 1 Recruitment of early homologous recombination (HR) factors to double-strand breaks (DSBs). Proteins represented 
in different colours are recruited at different times a) The MRN (MRE11-RAD50-NBS1) complex recognises and binds to DSBs, 
which then recruits ATM and TIP60. b) Activated ATM phosphorates H2AX, leading to the formation of γH2AX that provides 
binding sites for MDC1. c) Next, two ubiquitin ligases RNF8 and RNF168 are recruited to catalyse poly-ubiquitination of γH2AX. 
This ubiquitination event is tightly controlled by various positive and negative regulators. d) Subsequently, BRCA1 (in the form of 
BRCA1-A complex) and 53BP1 are recruited; these two proteins play important roles in the balance between HR and NHEJ, wherein 
a variety of regulatory mechanisms are involved. 

After its recruitment, MDC1 is phosphorylated by ATM. MDC1 serves an important role 

as a scaffold for the downstream recruitment of the ubiquitin (Ub) E3 ligases RNF8 and 

RNF168, which work in tandem to ubiquitylate histone H2A and possibly other factors to 

create docking sites for Ub-binding proteins [for recent reviews, see (51, 52)]. Among these are 

53BP1 (p53-binding protein 1) and Rap80/Abraxas, whose crucial function is to recruit 

BRCA1 (breast cancer type 1 susceptibility protein) to DSBs (53). Both of these two proteins are 

tumour suppressors and play a critical role in the pathway choice between HR and NHEJ (discussed 

in more detail below). The mechanisms for signal amplification exist due to crosstalk within one 

pathway and also across different pathways. RNF168 itself has ubiquitin-binding domain and E3 

ligase activity, which together provide RNF168 the capability to amplify its own catalytic product. 

RNF8 but not RNF168 also promotes extensive decondensation of higher-order chromatin structure 

by recruiting the NuRD component CHD4 (31), which in turn promotes the recruitment and 

activation of RNF8, RNF168 and subsequent assembly of downstream repair factors [reviewed in 

(54)].  As discussed in section 3.1, PARylation is also required to recruit NuRD to assist chromatin 

ubiquitination at sites of breaks. 

Multiple regulators tightly control RNF8/RNF168-mediated ubiquitination in HR. At 

present, four DUB enzymes (USP3, USP16, BRCC36 and OTUB1) and two HECT E3 ligases 

(TRIP12 and UBR5) have been shown to target RNF168 for proteasome-mediated degradation, 

potentially constraining the DSB repair machinery around the break site, and terminating the 

signal after repair has finished [reviewed in (51, 52)]. Interestingly, unlike TRIP12 and UBR5, 
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another HECT E3-ligase, HERC2, promotes RNF8/RNF168-based ubiquitination (55).  In addition, 

another E3 ligase, RNF169, has an unexpected negative role in regulating RNF8/RNF168-induced 

ubiquitin signalling by directly binding to ubiquitin-modified chromatin, leading to impaired 

recruitment of 53BP1 and BRCA1 (52). Moreover, SUMOylation of HERC 2 and RNF8 is also 

involved in the regulation of RNF8/RNF168-induced ubiquitination (56). 

Following RNF8/RNF168-catalysed ubiquitination of DSB-flanking chromatin, BRCA1 and 

53BP1, two seemingly antagonistic factors, localise to the DSBs at approximately the same time 

(Figure 1d), providing an important layer of discrimination for DSB repair pathway choice. BRCA1 

is required for functional HR, while 53BP1 promotes NHEJ by preventing DSB-end resection that 

is essential for HR. Interestingly, loss of 53BP1 can largely relieve the requirement of BRCA1 for 

HR, suggesting that a major role of BRCA1 in HR is to overcome a barrier to resection posed by 

53BP1 (57, 58). This finding may have clinical implications, as a recent study showed that loss of 

BRCA1 often activates 53BP1 degradation in BRCA1-deficient cancer cells (59). Below we 

summarise current knowledge on how these two proteins are recruited, their role in determining 

pathway choice, and the regulation mechanisms that are involved. 

BRCA1 participates in multiple stages of HR by forming at least three mutually exclusive 

complexes: the BRCA1-A, BRCC and BRCA1-C complexes by binding of different adaptors 

(Abraxas, BACH1 and CtIP, respectively) [reviewed in (60, 61)]. Following RNF8/RNF168-

mediated ubiquitination of H2A and H2AX, BRCA1 is recruited to DSBs in the form of the 

BRCA1-A complex (61, 62). The accumulation of this complex to DSBs takes place through the 

binding of the Abraxas-RAP80 sub-complex with K63 poly-ubiquitin chains catalysed by RNF8 

and RNF168 (63-65). SUMOylation of BRCA1 mediated by PIAS1 and PIAS4 is thought to 

promote the recruitment of the BRCA1-A complex, and stimulates the ubiquitin ligase activity of 

BRCA1 (66, 67).  

53BP1 does not contain any known ubiquitin-binding motif and its accumulation at DSBs 

relies on binding to methylated histone H4 (68) and ubiquitinated histone H2A, the latter being a 

product of the RNF168 ubiquitin ligase activity (69). In addition, post-translational modifications of 

p53BP1 itself, including PIAS1/PIAS4-mediated SUMOylation, can promote the recruitment of 

53BP1 at sites of DSBs (67) 

The regulation of DSB repair pathway choice comes from the actions of 53BP1 and RIF1. 

Several recent studies have elegantly demonstrated that RIF1 is a downstream effector of 

53BP1 in this process. In G1, RIF1 is recruited to DSB sites via ATM-dependent 53BP1 

phosphorylation, and the 53BP1-RIF1 pathway inhibits the recruitment of BRCA1 to damage sites 

via an unknown mechanism to ensure repair through NHEJ. However, in S and G2 phases, 

CDK-and ATM-dependent phosphorylations of CtIP (CtBP-interacting protein) support the 
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formation of the CtIP-MRN-BRCA1 (BRCA1-C) complex which displaces RIF1 at break 

sites to promote DNA resection (70-73). However, unlike 53BP1, the loss of RIF1 only partially 

rescues HR defect in BRCA1-deficient cells, suggesting that additional RIF1-independent activities 

of 53BP1 might exist. Accordingly, a recent study (74) showed that PTIP is required for 53BP1-

mediated inhibition of HR in BRCA1-deficient cells, but is dispensable for NHEJ during CSR (class 

switch recombination). Thus RIF1 and PTIP separate 53BP1 functions in productive and 

pathological DSB repair (74). 

Compared to the mechanisms that regulate the assembly of early HR repair factors at DSB 

sites, those that regulate their disassembly remain largely unknown. The mechanism best-

documented so far is the removal of MDC1 from DSB sites through PIAS4-mediated SUMOylation 

and consequent ubiquitination by the SUMO-targeted E3 ubiquitin ligase RNF4 (75-77), which 

leads to MDC1 degradation. MDC1 removal is important to remove 53BP1 from the damage sites, 

and is required for the recruitment of downstream HR proteins such as CtIP, RPA (replication 

protein A) and RAD51 (DNA repair protein RAD51 homolog 1) (75-77). In addition, TIP60-

dependent histone H4 acetylation, which reduces the binding of 53BP1 to methylated histone H4 

leads to reduced 53BP1 association with DSB-flanking chromatin (78). 

3.2.2. DSB end resection 

The sequential recruitment of early-stage HR factors, as outlined above, is required for and 

followed by DSB end resection – an evolutionarily conserved process that involves 5'-to-3' 

nucleolytic degradation of DSB ends to generate 3′ overhangs (a long stretch of single-stranded 

DNA (ssDNA) at DSB ends; also known as the 3' tail) (Figure 2). This 3′ overhang is a key 

determinant of DSB repair pathway choice, which commits cells to HR and is also required for 

activation of the ATR-mediated checkpoint response (79). 

A two-step model has been put forward to describe DSB end resection in mammals (80). 

The first step, initiation of resection, involves a limited resection that removes ~50-100 nucleotides 

from the DSB ends, creating a short 3′ overhang that is further processed in the second step of 

resection generating a long 3′ overhang that is essential for the strand invasion step in HR 

[discussed below; for a recent review see (81)].  



 39 

 
Figure 2 A two-step model for the Double Strand Break (DSB) end resection. Proteins represented in different colours are 
recruited at different stages. a) The first step, “initial resection”, is carried out by the endonuclease activity of the MRN (MRE11-
RAD50-NBS1) complex and promoted by CtIP. Multiple regulatory mechanisms, especially the cell cycle-dependent regulation are 
involved. b) The second step, “long-range resection”, is performed by EXO1, or BLM in concert with DNA2.It remains unclear 
whether EXO1 and BLM work in parallel or interact. 

The major resection machinery involved in first step is the MRN complex, which has an 

essential role in damage detection and ATM signalling, in conjunction with CtIP (82, 83) (Figure 

2a). The initial resection per se is carried out by the endonuclease activity of the MRN complex 

followed by its exonuclease activity (84). CtIP promotes initial resection by interacting with MRN 

(79) and stimulating its endonuclease activity (83). The activity of CtIP in HR is regulated by 

multiple mechanisms, among which cell cycle-dependent regulation is of greatest importance 

because DSB resection must be restricted to the S and G2 phases where sister chromatids are 

present to serve as templates for HR. In the G1 phase, the level of CtIP protein is suppressed by 

proteasome-mediated degradation, which is subsequently alleviated as cells enter S phase (85). 

During S and G2 phases, CtIP is phosphorylated by CDKs (cyclin-dependent kinases) on multiple 

sites that promote resection in distinct ways. Among them, serine 327 is required for the CtIP-

BRCA1 interaction and the formation of the BRCA1-C complex (82, 86), and threonine 847 for the 

localization of CtIP to DSBs and for end resection (87). These CDK-mediated phosphorylation 

signals directly link the DNA resection capacity with cell cycle control, thereby ensuring that the 

operation of HR is restricted to the S and G2 phases.  

A phosphorylation-specific prolyl-isomerase, PIN1 (peptidyl-prolyl cis-trans isomerase 

NIMA-interacting 1), has recently been shown to counteract CDK-dependent end resection (88). 

PIN1 controls CtIP levels by promoting its isomerization in a CDK2-dependent manner followed by 

poly-ubiquitination (through an as-yet-unknown E3 ubiquitin ligase) and consequent degradation to 

limit end resection (88).  
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The second step, long-range resection, is carried out by two alternative pathways involving 

either the exonuclease function of EXO1 (DNA exonuclease I) alone, or the helicase function of 

BLM (Bloom syndrome, RecQ helicase-like) in concert with the nuclease function of DNA2 (DNA 

replication helicase 2) (89-91) (Figure 2b). It remains controversial whether BLM and EXO1 

pathway work in parallel (90) or interact [(89); reviewed in (81)]. Recently, CDK1/2 has been 

shown to promote long-range resection by directly phosphorylating EXO1 on 4 different sites in 

mammalian cells (92). 

Although PCNA (proliferating cell nuclear antigen) has recently been proposed to facilitate 

long-range resection by promoting the function of EXO1 (93), in general the regulatory 

mechanisms involved in this step are not well-understood. Interestingly, PCNA is also involved in 

base excision repair (BER) (94), nucleotide excision repair (NER) (95), mismatch repair (96), 

translesion synthesis (97), the Fanconi anaemia (FA) pathway (98) and the DNA repair synthesis 

step as well as suppressing inappropriate recombination in HR (99) (discussed below). 

3.2.3. D loop formation and DNA repair synthesis 

The 3′ overhang formed by end resection is coated and stabilised by RPA, which prevents 

ssDNA from forming secondary structure, and then RPA is displaced by the evolutionarily 

conserved recombinase RAD51. The loading of RAD51 onto ssDNA is a critical step in HR, as it 

generates a nucleoprotein filament that searches for and invades a nearby homologous duplex DNA 

template (usually a sister chromatid). As a consequence of this invasion, the second strand of the 

sister chromatid is displaced and a transient structure known as the D (displacement) loop is formed 

[reviewed in (100, 101)] (Figure 3a).  

The loading of RAD51 onto ssDNA is promoted and controlled by multiple mechanisms 

[for a recent review, see (101)]. BRCA2 is the major recombinase accessory factor (also known as 

recombination mediator) that facilitates the loading of RAD51 onto ssDNA by overcoming the 

inhibitory effect of RPA (102).  PALB2 is a partner and localiser of BRCA2, and serves as a 

molecular adaptor between BRCA1 and BRCA2 (103, 104). In this complex, BRCA1 is thought to 

fine-tune HR in part through its modulatory role in the PALB2-dependent loading of the BRCA2-

RAD51 repair machinery at DNA breaks (103, 104). In addition, DSS1 (deleted in split hand/split 

foot 1), which forms a complex with BRCA2, is required for the stability of BRCA2 and facilitates 

the role of BRCA2 in RAD51–ssDNA filament formation (105, 106).  

Recently, the SWI5-MEI5 complex was identified as an evolutionarily conserved mediator 

of RAD51 (107). This complex contributes to maintenance of the RAD51 nucleofilament in its 

active ATP-bound form by promoting the release of ADP from this structure (108). 
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Figure 3 D loop formation and DNA repair synthesis. Proteins represented in different colours are recruited at different times a) 
The 3′ ssDNA overhang generated by DSB end resection is coated and stabilised by RPA, which is then displaced by RAD51 with 
the help of recombination mediators which promote both the formation and stability of RAD51-ssDNA filament. The balancing act 
of proteins involved in stability and dismantling of RAD51 filaments is depicted here as discussed in the text. Rad51 presynaptic 
filament performs homology searches with help of other proteins and invades nearby homologous duplex DNA template, resulting in 
the formation of the D loop structure. b) The invading strand is then elongated by copying missing genetic information from the 
template molecule, which involves the participation of several redundant DNA polymerases. 

The loading of RAD51 onto ssDNA and subsequent formation of the D loop also depends 

on the concerted action of other proteins, which include the five RAD51 paralogs (RAD51B, 

RAD51C, RAD51D, XRCC2 and XRCC3) [reviewed in (109)], RAD52 [RAD52 homolog (S. 

cerevisiae)] (110), RAD54 [RAD54 homolog (S. cerevisiae)] and its paralog RAD54B [RAD54 

homolog B (S. cerevisiae)] [reviewed in (111)], RAD51AP1 (RAD51 associated protein 1) (112, 

113), and the two ssDNA-binding proteins SSB1 (single-strand DNA-binding protein 1) and SSB2 

(single-strand DNA-binding protein 2) (114, 115). 

Although HR has a key role in maintaining genome stability, its inappropriate activity can 

cause genomic instability potentially even leading to cancer. Several anti-recombinases suppress 

uncontrolled HR activity. These include PARI (PCNA-associated recombination inhibitor), RTEL1 

(regulator of telomere elongation helicase 1), RECQL5 (RecQ protein-like 5) and FBH1 (F-box 

DNA helicase 1). PARI can disrupt toxic RAD51-ssDNA filaments in a PCNA-dependent manner 

(116), and overexpressed PARI has been implicated in the development of pancreatic cancer (117). 

RECQL5 regulates HR by targeting undesirable RAD51-ssDNA filament, and is important for 

tumour suppression in mice (118). FBH1 also functions by targeting RAD51-ssDNA filaments, and 
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its activity in HR is tightly controlled by PCNA (119, 120). RTEL1 can suppress inappropriate HR 

by promoting D loop disassembly (121). 

Following D loop formation, the 3′ end of the invading strand serves as a primer for 

elongation of this strand via copying missing genetic information from the template molecule (100) 

(Figure 3b). For elongation to start, RAD51 in the 3′ end of the invading strand must be removed by 

RAD54 and RAD54B to reveal the 3′ hydroxyl group for priming (111). The DNA replication 

machinery involved in this elongation has not been well characterised. Recently Sebesta et al. 

showed that replicative DNA polymerase δ and two TLS polymerases (η and κ) play redundant 

roles in strand extension, and PCNA may act as a regulatory point for the recruitment of various 

polymerases and recombination outcomes (99). 

HR can take two alternative routes beyond this point (Figure 4). Most frequently, in mitotic 

cells, elongation of the invading strand continues over only a limited distance, it is then released 

and anneals with the complementary ssDNA strand associated with the other DSB end. DSB repair 

is subsequently completed by gap-filling DNA synthesis and ligation. This sub-pathway is referred 

to as the SDSA (synthesis-dependent strand annealing) pathway [for a review, see (100)]. RTEL1 is 

the major enzyme that promotes the release of the invading strand by promoting the disassembly of 

the D loop structure, resulting in non-crossover products (no exchange of genetic information 

between the original DNA molecule and the template DNA molecule) (121). The D loop can also 

be processed by BLM to generate a non-crossover product (122), or by the MUS81-EME1 complex 

to generate a crossover product (123, 124) 

Alternatively, in the DSBR (DSB repair) sub-pathway typical of meiosis, the second end of 

the DSB is captured to form an intermediate that harbours two Holliday junctions (HJs) [for 

reviews, see (7, 100)]. Processing/resolution of the HJ is promoted by various redundant enzymes 

including the BLM-TOPOIII-RMI1-RMI2 complex (125) and the endonucleases GEN1 (GEN 

endonuclease 1) (126), the MUS81-EME1 complex (123, 124) and the SLX1-SLX4 complex (127) 

(SLX4 is also known as FANCP in FA). In mitotic cells, the BLM-TOPOIII-RMI1-RMI2 complex 

is the major machinery responsible for dissolution of HJs to generate a non-crossover product (128, 

129). Alternatively, HJs can be resolved by endonucleases that simply cleave HJs to generate 

crossover or non-crossover products. A recent study suggests two redundant pathways of HJ 

resolution in human cells, one pathway involves GEN1 and the other involves the coordinated 

action of SLX1-SLX4 and MUS81-EME1 (130). However, another recent study indicated that 

GEN1 alone cannot replace the resolvase activity provided by SLX1-SLX4 and MUS81-EME1 

(131). 
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Figure 4 The SDSA (synthesis-dependent strand annealing) and DSBR (DSB repair) sub-pathways. D loop formation and 
DNA repair synthesis can follow two different routes namely SDSA and DSBR to complete homologous recombination. In SDSA 
invading strand is displaced from D-loop and annealed with complementary strand associated with second end of the DSB. SDSA is 
preferred over DSBR during mitosis, and mainly results in a non-crossover product. In the DSBR pathway, the other end of the DSB 
is captured and double Holliday Junction (dHJ) intermediate is formed which is then resolved to produce cross-over (mainly during 
meiosis) or non-crossover products. 

3.2.4. The SSA sub-pathway 

In addition to canonical HR, an alternative error-prone form of HR called SSA has been 

described (Figure 5). SSA is efficient in repairing DSBs between two direct repeat sequences 

flanking the ends of the DSB, and results in deletion of sequence between the two repeats. This 

pathway can be important for both DNA repair and mutagenesis, given that almost half of the 

human genome consists of repeated sequences (7, 100). The activity of SSA has been observed to 

increase in BRCA2 or RAD51-deficient cells (132).  

SSA is initiated by RAD52 that binds the 3' ssDNA ends generated by DSB end resection 

(the same process as described in Section 3.2.2), and functions in concert with RPA to facilitate 

strand annealing between the two direct repeats (133). This is followed by the removal of non-

homologous 3′ single-stranded flaps between the two repeats (Figure 5),  which is catalysed by a 

XPF-ERCC1 heterodimer that harbours 5′-3′ structure-specific endonuclease activity (134). In 

addition to SSA, XPF-ERCC1 also plays an important role in other DNA repair pathways including 

NER, FA and A-NHEJ (alternative-NHEJ; discussed below). The final step of SSA is the ligation of 

the two DSB ends, which is carried out by LIG3 (DNA ligase III) (135). 
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Figure 5 The Single-Strand Annealing (SSA) sub-pathway of Homologous Recombination. This is a Rad51-independent sub-
pathway of HR, which operates when there are regions of homology/direct repeats at both sides of the DSB, allowing annealing. a) 
SSA is initiated by RAD52 that binds the 3' ssDNA ends generated by DSB end resection. RAD52 then functions in concert with 
RPA to facilitate strand annealing between the two direct repeats. b) Next, the XPF-ERCC1 heterodimers remove the non-
homologous 3′ single-stranded flaps between the two repeats. c) The two DSB ends are re-joined by DNA ligase III. d) The sequence 
continuity is restored. 

3.3. Non-homologous end-joining 

NHEJ repairs the majority of DSBs throughout the cell cycle in human cells, although it 

remains unclear why such a low-fidelity pathway has evolved to dominate DSB repair. It is now 

generally accepted that there exist two forms of NHEJ: canonical NHEJ (C-NHEJ) and A-NHEJ. 

3.3.1. Canonical NHEJ (C-NHEJ) 

The most common amongst the two pathways, C-NHEJ (136-140) (Figure 6) commences 

with the rapid recognition and binding of the Ku heterodimer (consisting of Ku70 and Ku80) to 

DSBs (139, 141), which protects and stabilises the DNA ends, and serves as a scaffold onto which 

other NHEJ factors can dock (139). 

Once Ku is bound to DSB ends, it directly recruits the DNA-PKcs kinase (DNA-dependent 

protein kinase catalytic subunit) to the damage sites (142), leading to activation of the kinase 

activity of DNA-PKcs (138, 139, 143). It has been shown in vitro that DNA-PKcs can 

phosphorylate a large number of NHEJ proteins, but in vivo only Artemis (144) and DNA-PKcs 

itself (auto-phosphorylation) (142) have been demonstrated so far as true substrates of DNA-PKcs 

phosphorylation [reviewed in (138)].  

Ku also directly recruits a complex composed of XRCC4 (X-ray cross complementing 

protein 4), DNA ligase IV and XLF (XRCC4-like factor) (145, 146) to ligate DNA ends. This 

recruitment is independent of the presence of DNA-PKcs (146). XRCC4 has no known enzymatic 



 45 

activity in NHEJ, and may serve as a second scaffold for the recruitment of other DSB-processing 

enzymes in this pathway. In addition, XRCC4 and XLF can form a filament that may play a role in 

bridging DSB ends (138, 147).  

 
Figure 6 The Canonical NHEJ (C-NHEJ). Proteins represented in different colours are recruited at different stages a) The C-NHEJ 
pathway is initiated by the Ku70-Ku80 heterodimer. b) The Ku70-80 dimer then recruits the DNA-PKcs kinase. c) In many instances 
ends of the breaks are not amenable to direct ligation and must be resected or filled in prior to ligation by end processing factors 
depicted here are discussed in the text d) The synthesis step is catalysed by DNA polymerase µ and λ. e) The gap after DNA repair 
synthesis is ligated by the XRCC4-LIG4-XLF complex. f) The sequence continuity is restored. 

In many instances the ends of a DSB are not amenable to direct ligation.  For instance, the 5′ 

hydroxyls or 3′ phosphate termini of a DSB may be covalently modified or the ends may harbour 5’ 

or 3’ overhangs that must be resected or filled in prior to ligation.  Important end-processing factors 

include PNKP (polynucleotide kinase-phosphatase), aprataxin, Ku, APLF (aprataxin-and-PNK-like 

factor), Artemis, WRN (Werner syndrome), and DNA polymerases µ and λ [reviewed in (138)]. 

Specifically PNKP (148), aprataxin (149) and Ku (150) remove blocking end groups such as non-

ligatable 5′ hydroxyls or 3′ phosphates, as well as abasic sites near DSBs. APLF (151), Artemis 

(152, 153) and WRN (154) have roles in resecting DNA ends [reviewed in (138)]. APLF also 

facilitates the recruitment and/or retention of the XRCC4-DNA ligase IV-XLF complex at DSBs 

(155).  

Following the removal of blocking end groups and DNA end resection, the resulting DNA 

gaps are filled by the action of DNA polymerase µ and λ, and are then ligated by LIG4 (DNA ligase 

IV) in conjunction with XRCC4 and XLF to finalise this pathway (156).  
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3.3.2. Alternative NHEJ (A-NHEJ) 

Like C-NHEJ, A-NHEJ (Figure 7) has no inherent mechanism to ensure the restoration of 

the original DNA sequence in the vicinity of DSBs. Initial evidence for the existence of an 

alternative form of C-NHEJ, termed A-NHEJ, emerged when C-NHEJ is disabled [for reviews see 

(136, 137, 140, 157)], but recent studies have shown that substantial activity of this pathway can be 

observed when HR and C-NHEJ are still functional (158). A-NHEJ often benefits from 

microhomology in the proximity of DSBs; it has been frequently referred to as microhomology-

mediated end-joining (MMEJ), but not all A-NHEJ requires microhomology for function (159). 

A-NHEJ is initiated by PARP1, which competes with Ku for binding to DSB ends (160, 

161). Following this binding, MRN, CtIP and BRCA1 are recruited to the damage sites for end 

resection (162-166), but this process can be blocked by 53BP1 to promote C-NHEJ to increase 

repair accuracy (167, 168). The step that finalises A-NHEJ is ligation. Unlike C-NHEJ, which 

exclusively utilises LIG4, ligation in A-NHEJ can be carried out by either LIG3 (169, 170) in a 

complex with XRCC1 (171), or LIG1 (DNA ligase I) (170, 172). 

 
Figure 7 The Alternative A-NHEJ (A-NHEJ). Proteins represented in different colours are recruited at different stages. In A-
NHEJ, a) the broken ends are detected and bound by PARP1. b) This is followed by end-processing by MRN, CtIP and BRCA1, 
which is prohibited by 53BP1. c) The ligation step can be performed by either LIG3 in concert with XRCC1, or LIG1. d) The 
sequence continuity is restored. 
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3.4. DSB-repair proteins in replication fork restart 

A major physiological source of DNA damage in all cells and at every cell cycle is DNA 

replication. Replication forks are vulnerable to stalling or collapse (disassembly) due to obstacles 

encountered during replication, which can be unrepaired DNA damage or presence of DNA-bound 

proteins or secondary structures. A stalled fork is capable of resuming replication (replication fork 

restart), whereas a collapsed fork has become inactivated, possibly converting into DSBs that are 

repaired by HR. While a complex set of pathways from the core replication as well as fork-restart 

machinery are involved in the resumption of replication, several members of DSB-repair pathways, 

in particular HR, are known to be involved in this process to varying extents. The roles of these 

proteins here are distinct from the conventional HR activated during the S-phase. A detailed 

description of replication fork restart is beyond the scope of this article, and readers are directed to 

excellent reviews (23, 173, 174); here we summarise the roles of DSB-repair proteins in this 

process. 

In case of shorter stalls (2 – 4 hours), most replication forks resume progression, with restart 

promoted by the proteins BLM, WRN, SMARCAL1, PARP1, XRCC3 and RAD51 (23).  However, 

replication forks stalled for many hours (24 hours or more) are collapsed and DSBs are generated 

by the MUS81-EME1 complex (175), following which replication is resumed by new origin firing. 

The DSBs so-formed promote RAD51-dependent SDSA repair. In addition, PARP1, MRE11, BLM 

and WRN promote restart of collapsed forks. This suggests that DSB formation by MUS81, and 

DSB repair-mediated fork restart might be a mechanism to achieve replication fork progression, 

especially after prolonged fork stalling. 

4. Implications of DNA repair for tumorigenesis and cancer 
therapy 

At its core, cancer is a disease driven by genomic instability, accumulating into aberrations 

in large regions of the genome. Many of these aberrations are hallmarks of erroneous joining of 

DSB ends, resulting from disruption of DNA repair machineries. These defects, in turn acquired 

through certain ‘driver’ events such as mutations, copy-number changes or chromosomal 

rearrangements, that cause inactivation of DNA-repair, tumour-suppressor and apoptotic genes, 

leading to deficiency, misrepair or defects in the repair of DNA damage. Therefore an in-depth 

characterisation of the DSB-repair mechanisms (Section 3) and associating DSB-repair genes to 

specific driver events in cancer is crucial to understand cancer mechanisms and develop novel 

therapeutic strategies. 
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4.1. The genomic landscape of breast cancer 

Germline mutations in DNA repair genes are major contributors to familial breast and 

ovarian cancer development  (Table 1). For example, recent estimates suggest that 55-65% of 

women who inherit a deleterious BRCA1 mutation, and around 45% who inherit a deleterious 

BRCA2 mutation, will develop breast cancer by the age of 70 (176, 177). Patients who carry 

BRCA1/2 mutations are also at a higher risk of developing contralateral disease (178). Likewise, 

germline mutations in ATM result in the autosomal recessive disorder Ataxia-telangiectasia, a 

neurodegenerative disorder characterised by hypersensitivity to ionizing radiation and a 100-fold 

increased risk of developing cancer (179). Heterozygous carriers of certain mutations in ATM also 

have a moderate risk of developing breast cancer (180).  

The initiating events in sporadic cancer are less-clearly understood, but large-scale 

integrated molecular profiling of cancer genomes is beginning to reveal complex landscapes of 

point mutations, copy-number alterations and chromosomal rearrangements that contribute to 

tumorigenesis (3, 4, 181-186). 

4.1.1. Point mutations and copy-number alterations 

At the time of writing, the latest census on cancer mutations from COSMIC 

(http://cancer.sanger.ac.uk/cancergenome/projects/census/) (187) shows 19 genes implicated in 

breast cancer either by germline or somatic mutations,  of which 11 are involved in DDR (Table 1). 

This list will expand as potential driver genes identified from large-scale sequencing initiatives are 

validated. For example, The Cancer Genome Atlas (182) identified 35 significantly mutated genes 

in breast cancer from analysis of 507 tumour genomes, including ten novel genes TBX3, RUNX1, 

CBFB, AFF2, PIK3R1, PTPN22, PTPRD, NF1, SF3B1 and CCND3. This cohort included genomes 

harbouring deleterious germline variants in breast cancer susceptibility genes involved in DDR 

(ATM, BRCA1, BRCA2, CHEK2, PTEN, and TP53) (Table 1). Similar large-scale sequencing 

efforts (4, 182-186) have demonstrated extreme heterogeneity in mutation profiles, with TP53 and 

PIK3CA being the most frequently mutated genes, occurring in over 30% of breast tumours, and the 

remaining genes (e.g. GATA3, CDH1, MAP3K1, MAP2K4, MLL3, PTEN, AKT1, CDKN2A and 

NCOR1) mutated at frequencies of 10% or less.  
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Table 1: DSB-repair and/or cell-cycle checkpoint genes associated with breast cancer development, compiled from TCGA and 
COSMIC. Germline mutations or epigenetic changes associated with breast cancer risk have been observed for some of these genes, while a 
few also fall close to single-nucleotide polymorphisms (SNPs) linked to breast cancer risk, identified from genome-wide association studies 
(GWAS) (http://www.genome.gov/gwastudies (242). 

GWAS locus – if the gene is noted as the nearest gene to a breast cancer associated SNP identified by a GWAS study. However, it 
should be noted that unless a reference is given there is no evidence that the gene is the target of that association. Copy number 
alterations are shown as predominant amplification (↑) and homozygous deletion (↓) in TCGA cases. 

Gene Gene name Function of encoded protein 
Chromosome 
band 

Somatic 
mutation 
frequency 
in TCGA 
(%) 

Somatic 
mutation 
frequency 
in 
COSMIC 
(%) 

Copy-
number 
alterations 
frequency 
in TCGA 
(%) 

Target of 
germline 
mutations, 
epigenetic 
changes or SNPs 
(GWAS locus) 

TP53 Tumour protein p53 

Tumour suppressor involved in cell 
cycle arrest, apoptosis, senescence 
and DNA repair 17p13.1 23.15 29.0 0.60↓ 

Germline (243, 
244)  

MLL3 

Myeloid/lymphoid 
or mixed-lineage 
leukaemia 3 

Part of ASCOM complex regulated 
by acetylation toinduce expression 
of p53 targets such as p21  in 
response to DDR (245, 246)  7q36.1 4.61 6.48 0.40↑    

BRCA2 

Familial 
breast/ovarian 
cancer gene 2 HR-mediated DSB repair 13q12.3 2.79 2.81 1.70↑↓ 

Germline (247) 
and GWAS locus 

PTEN 
Phosphatase and 
tensin homolog 

Tumour suppressor with role in 
DNA repair through interactions 
with Chk1 and P53 pathways and 
regulation of RAD51 activity 10q23.3 2.30 9.13 1.80↓ Germline (248)  

ATM 

Ataxia-
Telangiectasia 
Mutated 

Master controller of cellular 
responses to DNA damage, 
regulates various tumour 
suppressors including P53 and 
BRCA1 11q22-q23 2.06 6.18 0.70↑↓ 

Germline (180, 
249); epigenetic 
silencing (250, 
251)  

BRCA1 
Familial  breast/ovar
ian cancer gene 1 

Tumour suppressor with key roles 
in HR-mediated DSB repair 17q21 1.82 2.19 1.10↓ 

Germline (252); 
epigenetic 
silencing (253)  

AKT1 

v-akt murine 
thymoma viral 
oncogene homolog 1 

Regulates components of apoptotic 
machinery, also checkpoint 
pathway through phosphorylation of 
CHK1 (241)  14q32.32 1.45 1.17 1.00↑   

RB1 
Retinoblastoma 
gene 

Tumour suppressor, mediates cell 
cycle arrest 13q14.2 1.21 4.64 1.30↓ Germline (254)  

BRIP1 

BRCA1 interacting 
protein C-terminal 
helicase 1 

Involved in HR-dependent DNA 
repair by association with BRCA1 17q22.2 0.97 1.39 7.50↑ 

Germline (255) – 
not confirmed 

CDKN1-
B 

Cyclin-dependent 
kinase inhibitor 1B Cell-cycle progression at G1 12p13.1-p12 0.61 0.48 0.70↑   

CCND3 Cyclin D3 Regulates cell cycle G1/S transition 6p21.1 0.61 0.42 1.10↑   

HIST1H-
2BC 

Histone cluster 1, 
H2bc 

Core histone playing roles in DNA 
repair, replication and chromosomal 
stability 6p22.1 0.48 0.42 1.00↑   

CHEK2 
CHK2 checkpoint 
homolog (S. pombe) 

Cell cycle arrest in response to 
DNA damage. Interacts and 
phosphorylates BRCA1for 
activating DNA repair 22q12.1 0.48 2.57 0.50↑ Germline (256)  

EP300 

300 kDa E1A-
Binding protein 
gene 

Regulates transcription via 
chromatin remodelling. Regulated 
by acetylation in response to DDR 
(257)  22q13.2 0.36 2.98 0    

BAP1 

BRCA1 associated 
protein-1 (ubiquitin 
carboxy-terminal 
hydrolase) 

Binds to BRCA1 and involved in 
cell cycle growth, response to DNA 
damage and chromatin dynamics. 3p21.1 0.24 2.97 0.40↓ 

Germline (258) – 
not confirmed 

CCND1 Cyclin D1 

Regulates cell cycle during G1/S, 
also interacts with a network of 
repair proteins including RAD51 to 
regulate HR (259)  11q13 0.12 0.59 14.1↑ 

GWAS locus 
(260)  

PALB2 
Partner and localizer 
of BRCA2 

Critical role in HR-mediated repair 
by recruiting RAD51 and BRCA2 
to DSB sites. 16p12.2 0 1.14 1.80↑ Germline (261)  
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In addition to point mutations, most solid tumours display widespread changes in 

chromosome number (aneuploidy), as well as deletions, inversions, translocations, and other genetic 

abnormalities. By integrated analysis of DNA copy-number alterations and gene expression profiles 

in 2000 breast cancers, Curtis et al. (183) identified 45 regions of the genome that act as copy-

number drivers of gene expression in breast cancer. These included known (MYC, CCND1, MDM2, 

ERBB2, CCNE1) and putative candidate driver genes (MDM1, MDM4, CDK3, CDK4, CAMK1D, 

PI4KB, NCOR1, PPP2R2A, MTAP and MAP2K4). 

4.1.2. Chromosomal rearrangements 

Chromosomal rearrangements, particularly intra- and inter-chromosomal translocations, 

may fuse two genes to create an oncogene (e.g. BCR-ABL fusion gene in chronic myeloid 

leukaemia) or, in a small number of cases, inactivate a tumour suppressor gene (e.g.TEL-AML 

fusion repressing the tumour suppressor TEL1). Catastrophic rearrangements (chromothripsis), 

which affects local chromosomal regions, can also have similar tumorigenic effects (188-190). 

Chromothripsis is characterized by highly focal shattering of chromosomes into tens to hundreds of 

segments (188), leading to focal amplifications, deletions or fusions in chromosomal regions (191). 

In an analysis of 24 breast tumours, rearrangements were found in known cancer genes 

including BRAF, PAX3, PAX5, NSD1, PBX1, MSI2 and ETV6, each of which is a partner in a fusion 

gene in several other human cancers. Rearrangements were also found in tumour suppressor genes 

such as RB, ABC and FBXW7, possibly resulting in gene inactivation (3). 

The analyses of rearrangements also revealed striking signatures of defective DNA repair by 

different pathways. For instance, in the same study of 1821 rearrangement junctions (3642 

breakpoints) in 24 breast tumours (3), the segments on either side of each rearrangement junction 

showed overlapping microhomology immediately adjacent to the junction. Approximately 15% of 

the rearrangements showed non-templated sequence at the junction. Overlapping microhomology 

and non-templated sequences at rearrangement junctions are often considered to be signatures of the 

NHEJ-mediated repair process. In particular, in some of the tumour genomes, rearrangements with 

zero base pairs of microhomology were most frequent, while in others rearrangements with two or 

more base pairs were common, indicating at least two variants of NHEJ repair to be operative in 

different breast tumours. BRCA1- and BRCA2-associated tumours showed few tandem duplications, 

indicating that the mechanisms responsible for chromosomal rearrangements in these tumours were 

distinct from those in triple-negative tumours, which exhibited tandem duplications. 

On the other hand, the mechanistic origin of chromothripsis is largely unclear. Although 

large-scale genome analyses have not identified chromothriptic rearrangements in breast tumours 

(192), analysis of rearranged regions in glioblastomas, bone and lung tumours have identified a 
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catastrophic event in which chromosomes undergo multiple fragmentation and rejoining, mainly by 

NHEJ (191, 193). Sequencing of samples from primary, relapse and metastatic tumours have noted 

that most of these chromothriptic events were present in the primary and initial tumours and did not 

necessarily occur in an on-going basis or only during metastasis (188, 194). 

4.1.3. Molecular basis of breast tumours revealed through mutational 
signatures 

Large-scale sequencing studies such as TCGA and those initiated by the International 

Cancer Genome Consortium (ICGC) have generated an increasingly comprehensive atlas of 

molecular alterations across a wide range of cancers and allowing a systematic exploration of the 

genetic basis of cancer. This has led to studies identifying mutational signatures across cancers 

(195, 196). For example, 21 mutational signatures have been identified across ~7000 tumours (195) 

associating cancers to risk factors such as exposure to specific carcinogens, particularly smoking in 

lung cancer and UV radiation in melanoma.  

Breast tumours are largely characterised by three signatures (1B, 2 and 3) strongly 

associated with age, APOBEC activity and BRCA1/2 mutations, respectively. These signatures are 

predominantly characterised by C>G and C>T changes, and “rainfall plot” clustering of these 

mutations exhibits heavily mutated stretches of the genome characterised by distinctive C>T 

transitions at TpCpX trinucleotides, resembling kataegis (Greek for shower or thunderstorm) in 

these plots (197, 198). 

The correlation of breast cancer mutations with the age of diagnosis (Signature 1B) is 

consistent with the hypothesis that a substantial proportion of these mutations are acquired over the 

lifetime of the patient at a relatively constant rate that is similar in different people.  Signature 2 is 

attributed to the overactivity the APOBEC family of cytidine deaminases, which convert cytidine to 

uracil, coupled to activity of the base excision repair and DNA replication machineries. Because 

APOBEC activation constitutes part of the innate immune response to viruses and retrotransposons, 

it has been hypothesised that collateral damage on the genome might be initiated from a response 

originally directed at retrotransposing DNA elements or exogenous viruses (199, 200). Finally, 

Signature 3 is associated with inactivating mutations in BRCA1 and BRCA2 genes, indicating that 

abrogation of functional HR- and/or NHEJ-mediated repair contributes considerably to breast 

cancer development, even in patients not harbouring a germline mutation in either of these two 

genes. 

Likewise, another large-scale study (196) characterised ~3000 tumours on the basis of ~500 

selected functional events (SFE) encompassing copy-number gains and losses, recurrent mutations 

and epigenetic silencing of genes. Based on these SFEs, tumours were classified into two classes, M 
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primarily with mutations, and C primarily with copy-number alterations, revealing a characteristic 

trend of “genome hyperbola” – cancers have either a large number of mutations or a large number 

of copy-number alternations, but rarely both. Breast cancer was included in class C, as reflected in 

amplifications of the MYC oncogene, CCND1 and PIK3CA, deletion of CDK2NA, and inactivating 

mutations in TP53 leading to copy-number instability. A subclass of tumours in C showed copy-

number alterations in cell cycle regulation and DDR pathways attributable to amplification of the 

gene encoding the mitotic regulator AURKA kinase and the inactivation of BRCA1 and BRCA2 

genes.  

Analyses of mutational signatures across cancers have led to three fundamental observations 

so far (182, 195, 196): tumours originating in the same organ or tissue vary substantially in the 

number, type and pattern of genomic alterations; similar patterns of genomic alteration are observed 

in tumours from different tissues of origin; and common mutational signatures in tumours are 

“imprints” of common underlying mechanisms (e.g. APOBEC activity or DDR deficiency) or 

factors (e.g. age and exposure to carcinogens/DNA damage). These observations suggest that 

‘signature-driven therapies’ designed and tailored to tissue-specific tumour types could be 

extensible across classes of cancer that share similar mutational signatures.  

4.2. DNA repair pathways as targets for cancer therapy 

The efficacy of DNA damage-based therapy can be modulated selectively towards cancer 

cells by targeting DNA-damage induced checkpoint and repair pathways (21, 201, 202). Drugs and 

agents that inhibit the activity of DNA-repair pathways have been reviewed in detail elsewhere (6, 

21, 203, 204); here we focus on an exciting strategy called synthetic lethality, which has recently 

gained attention due to its potential for being both selective for and highly effective against cancer 

cells. 

4.2.1. Synthetic lethality-based therapy 

Synthetic lethality refers to a type of genetic interaction in which the co-occurrence of two 

genetic events results in death of the cell or organism (205, 206). For example, two genes are 

synthetic lethal when their simultaneous inactivation results in cell death, but deletion of either 

individually does not affect cell viability. Two common models have been proposed to explain 

synthetic lethality between two genes (207): 

(i) the two genes function in parallel pathways, with each contributing to a process essential 

to viability, or 
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(ii) the genes encode proteins that form part of an essential complex that is partially 

functional in the absence of one of the proteins, but its functions are completely 

disrupted in the absence of both. 

4.2.2. Leveraging synthetic lethality to selectively target cancer cells 

Cancer cells undergo a multi-step selection for acquisition of hallmark phenotypes including 

evasion of apoptosis, insensitivity to growth-control signals and unlimited replicative potential (208, 

209). In this scenario, genes of minor importance to the well-being of normal cells may become 

essential lifelines specifically in cancer cells, providing opportunities for novel therapeutic 

interventions (209). 

The DNA repair machinery is attractive in this context, given that cancer cells are driven by 

a loss of fidelity in DNA repair and continually accumulate further DNA damage (Figure 8). 

Selective killing of cancer cells could be made possible either by targeting an otherwise non-

essential gene that has turned essential and hence lethal specifically in cancer cells, or alternately by 

inducing massive amounts of DNA damage (via DNA-damaging chemotherapeutic agents or 

radiation) and subsequently forcing cancer cells into DNA-damage-induced apoptosis. Normal cells 

remain adequately buffered to repair the induced DNA damage, and will continue to maintain 

regular function and homeostasis. 

 
Figure 8 Strategy for synthetic lethality based cancer therapy. Targeted inhibition of DNA-damage repair pathways in defined 
cancer cell populations to selectively kill cancer cells. 
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4.2.3. BRCA1-PARP1 synthetic lethality 

A clinically relevant synthetically lethal relationship in the DDR has been documented 

between mutations in BRCA1 or BRCA2 and the inhibition of PARPs (210, 211). BRCA1- or 

BRCA2-deficient cells are sensitive to siRNA-mediated knockdown or chemical inhibition of 

PARP, leading to the clinical testing of PARP inhibitors as potential anti-cancer drugs in BRCA1 or 

BRCA2-deficient cancers. This suggests a new approach to cancer therapeutics: olaparib 

(AZD2281), veliparib (ABT-888) and niraparib (MK-4827) are some of the PARP inhibitors that 

are in advanced clinical trials (212).  

Despite the pronounced synthetic lethality observed between BRCA1/2 deficiency and 

PARP inhibition, the exact mechanism responsible for this observed phenomenon remains 

somewhat contentious. Nonetheless, the inhibition of PARP itself is not lethal for mammals, and 

PARP1-/- mice are viable and fertile, even though they manifest accelerated aging and exhibit a 

higher incidence of tumours compared to wild-type controls (213). The reason PARP1 is non-

essential could be due to overlapping functions with other members of the PARP family, in 

particular PARP2 (214). However, most PARP inhibitors inhibit both PARP1 and PARP2 and the 

side-effects of this inhibition appear to be mild in both mice and humans (212), suggesting that the 

pronounced effect of PARP inhibition might be specific to HR-deficient cells. 

An early model attributed the pronounced lethality between BRCA1/2 deficiency and PARP 

inhibition to the involvement of PARP1 in BER. In this model, PARP inhibition leads to persistent 

accumulation of SSBs, which convert to lethal DSBs during the S-phase; the inability to repair 

these DSBs in HR-deficient cancer cells result in the selective death of these cells. However, 

subsequent studies failed to demonstrate an increase in SSBs upon PARP inhibition in BRCA2-

deficient cells (215), or reproduce synthetic lethality upon inhibition of XRCC1, an essential 

component of BER (216), suggesting that this may not be the mechanism of action of this 

synthetically lethal relationship.  

Recent studies suggest that additional roles for PARP in DNA repair may be responsible for 

this observed synthetic lethality (215-221). The contribution of PARP1 to DSB repair, in particular 

through its involvement in alternative NHEJ (Section 3.3.2), has been suggested for its observed 

synthetic lethality with HR. A deficiency in HR could further result in lesions that require PARP1-

dependent NHEJ for repair. However, PARP inhibition shifts this dependency onto the DNA-PKcs-

dependent canonical NHEJ, thereby exposing HR-deficient cells to aberrant repair, resulting in 

increased genomic instability and apoptosis (216, 221) (Figure 9). 

In addition to these roles, PARP1 also plays a role at stalled replication forks (Section 3.4), 

and in vitro studies in BRCA2-deficient cells suggest that PARP1 protects stalled replication forks 
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from MRE11A-mediated degradation in a manner that is distinct and complementary to the role of 

BRCA2, resulting in synthetic lethality with BRCA2 at stalled replication forks (219, 220).  

Further, the chemical action of PARP inhibitors itself can contribute to cell death. Most 

PARP inhibitors target the catalytic site of the enzyme and thereby block the binding to its 

substrates, thus preventing PAR-synthesis and causing the enzyme to be  

“trapped” on the DNA (222). As a result, PARP inhibition not only restricts its signalling, but the 

inactivated enzyme forms an obstacle that prevents access for repair proteins to the damaged site or 

hinders replication (223). 

 
Figure 9 Alternative model (216) centred on the unrestricted error-prone NHEJ as the cause of death in tumour cells. HR-
deficient cells were found to be hypersensitive to PARP1 inhibition, but this effect was reversed by disabling classical NHEJ, 
verified through knockdown of Ku80 and Artemis. This suggests that classical NHEJ contributes to the toxicity of PARP1 inhibitors 
in HR-deficient cells, and therefore an active classical NHEJ is necessary for PARP inhibitor-based synthetic lethality. 

In normal cells, the inhibition of PARP alone is not sufficient to kill these cells as both HR 

and the canonical NHEJ pathways provide functional repair of DSBs throughout the cell cycle. 

Cancer cells are prone to excessive oncogene-induced replication stress, often resulting in increased 

levels of DNA damage (224). An increased PARP activity might be required for protecting stalled 

replication forks from degradation, fork restart (Section 3.4) or alternative NHEJ-mediated repair of 

DSBs generated at replication fork, and the increased levels of PARP1 expression seen in cancer 

cells might be reflective of such PARP activity (210). Therefore, upon PARP inhibition, as 

demonstrated in BRCA1/BRCA2-deficient cells, HR becomes essential to resolve these lesions 

(211). Indeed cells lacking or with inhibited PARP1 display an increase in HR, sister chromatid 

exchange and micronuclei formation (225, 226). It is also possible that various components of HR 

are in general essential for survival during PARP inhibition, and thus become synthetically lethal to 
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the cell during HR deficiency. In support of this, deficiency in RAD51, MRE11, NBS1, RPA1 and 

loss of PALB2 and RAD51D has been shown to sensitise cells to PARP inhibition (227).   

4.3. DSB repair as a determinant of resistance to cancer therapy 

It has long been known that DSB-repair-deficient tumours attain resistance by improving 

their DSB repair potential (5). In some cases such as breast and ovarian cancer, mutational events in 

any of the genes (Section 4.1) affect only a subset of the domains of these genes, leaving the 

remaining domains functional with some residual pathway activity. For example, mammary 

tumours from BRCA1C61G mutant mice lacking a functional RING domain respond more poorly to 

cisplatin than do BRCA1-null mammary tumours (228), indicating that a certain basal activity of 

RING-deficient BRCA1 protein is sufficient to reduce initial drug sensitivity and promote drug 

resistance (229). 

Secondary mutations in these genes can potentially restore their functionality, also 

contributing to therapy resistance (230, 231). For example, BRCA1- and BRCA2-mutant cells are 

known to develop acquired resistance to PARP-inhibitor treatment due in part to secondary 

mutations in these genes that restore the reading frame and produce a functional protein that 

reverses the HR deficit (230-232). In some of the PARP-inhibitor resistant BRCA2-mutant clones 

the mutation was spliced out, allowing functional BRCA2 proteins to be produced with internal 

deletions (233, 234). 

Tumours with intrinsic HR deficiencies may counteract therapeutic sensitivity by rewiring 

their DNA repair pathways or by altering pathway choices. For example, alterations in the balance 

between HR and NHEJ may change responses to DSB-inducing agents, as is seen when the loss of 

53BP1 resulting from truncating TP53BP1 mutations confers PARP-inhibitor resistance in BRCA1-

deficient cells by providing the CtIP protein with unrestricted access to DNA breaks and facilitating 

DNA end resection (57, 58, 235). Loss of 53BP1 also restricts NHEJ, which is required for the 

success of PARP1-inhibitor therapy (216). Likewise, HSP90-mediated stabilisation of BRCT 

domain-mutated BRCA1 protein can confer resistant to PARP inhibitors, reversible by treatment 

with an HSP90 inhibitor (236). Suppressing NHEJ components including Ku70, Lig4 or DNA-

PKcs alters the tight balance between HR and NHEJ, and such a strategy has the potential to be 

used against FA (237, 238). 

These observations collectively mean that deeper understanding of the underlying functional 

relationships, particularly their specific genetic context and alternative rewiring in response to 

therapy, is critical to counter restoration of DSB repair and hence the development of resistance to 

therapy. Cancer pathways have been compared to a transport or subway map (209, 239): blocking a 

major commuter line will have repercussions throughout the network as passengers try to find 
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alternative routes to their destinations. Similarly, targeted cancer therapies are thwarted by the 

emergence of drug resistance, typically through unanticipated rewiring of signalling pathways and 

the surfacing of alternative functional relationships that are not obvious from the original wiring 

diagrams (209, 240, 241).  

 

5. Conclusion 
Aberrant DDR lies at the core of all cancers, and cancer cells differ genetically from normal 

cells in their ability to repair their DNA. These differences can be exploited to selectively kill 

cancer cells. However, this requires a deep understanding of the complexities of DDR pathways, in 

particular of DSB repair, in order to precisely modulate the pathways and sensitise cancer cells to 

DSB-inducing drugs.  

Here we have presented an in-depth description of DSB repair mechanisms, focusing on HR 

and NHEJ, reflecting the latest state of knowledge in the field. We have discussed synthetic 

lethality as a new strategy to target components of these pathways, with emphasis on the BRCA1-

PARP1 relationship that opened up promising avenues for targeted therapies in breast cancer. 

Finally we considered cases in which cancer cells become resistant to therapy by improving their 

DSB-repair potential. These observations suggest that we need better biomarkers to detect patients 

with HR deficiency eligible for treatment with PARP inhibitors. It is likely that the response to 

other cancer therapeutics including inhibitors of other repair pathways will also become more 

predictable, thus allowing more effective, targeted cancer treatments. 
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Chapter Three: Personalised pathway analysis reveals 

association between DNA repair pathway dysregulation and 

chromosomal instability in sporadic breast cancer 

Compared to other DNA repair pathways, HR is the most complicated one, which is also the most 

closely related to breast cancer susceptibility and therapy response. Understanding the cellular 

status of HR repair is thus of key importance for breast cancer research and treatment. However, 

HR deficiency can be caused by various mechanisms, including loss-of-function mutations in key 

genes, inappropriate post-translational modifications and defects in chromatin remodelling, which 

make it difficult to directly detect HR status by interrogating one gene or one mechanism. 

In this chapter, I calculated an expression-based HR score to quantify HR pathway dysregulation in 

individual sporadic breast tumours. The results based on this score show that the degree of HR 

dysregulation varies from sample to sample, and samples with highly dysregulated HR are very 

likely to be HR deficient. More importantly, I uncovered a novel association between HR 

dysregulation and chromosomal instability (CIN), indicating that compromised HR activity might 

be an important cause of the CIN observed in sporadic breast cancer. This result helps pinpoint the 

molecular basis of CIN in sporadic cancers, which remains poorly understood so far, and has 

important implications for understanding CIN-related tumour evolution and drug resistance. 

The Pathifier method used to calculate the HR score is available as an R package (Drier et al., 

2013). The working principle of this method has been briefly described in Chapter One (Section 

1.4.4 Page 19) and also in the publication below. To be more specific, Pathifier evaluates one 

pathway at a time, calculating for each sample a pathway deregulation score (PDS) that quantifies 

the extent to which the pathway is dysregulated in a particular tumour sample. Pathifier requires as 

input the expression levels of the component genes of a given pathway in both tumour and normal 

samples, with the latter serving as a benchmark.  

The calculation of a PDS is a four-step process. First, the absolute expression values are normalised 

to account for differences in variation between genes. Next is a principal component analysis (PCA) 

to reduce dimensionality of the input data and counteract the effects caused by noisy or highly 

correlated genes. In the following step, Pathifier adopts the Hastie and Stuetzle’s algorithm (Hastie 

and Stuetzle, 1989) to construct a principal curve that best describes the variability of the entire 

sample set. Lastly each sample, including normal and tumour, is projected onto the principal curve; 
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the PDS of a tumour sample is defined as its distance along the curve from the centroid of the 

projections of the normal samples. More technical details concerning these steps can be found in the 

publications by the Pathifier authors (Drier et al., 2013; Livshits et al., 2015).  

Although Pathifier is emerging as a promising method for personalised pathway analysis, it 

harbours a limitation that, while each sample can be assigned a PDS for a particular pathway, the 

calculation of the PDS requires the entire sample set to build the principal curve, as described 

above. Therefore, this method cannot be used in studies where there are only a few samples. 

Besides, the PDSs of samples from different cohorts are not directly comparable as each score is 

calculated in the context of a particular sample set (i.e., the PDSs are relative values rather than 

absolute values). However, these limitations do not affect the results presented in this chapter as 

they were obtained through the independent analyses of four different datasets. 

These four datasets are from two major genomic studies in breast cancer in recent years, performed 

by the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) (Curtis et 

al., 2012) and The Cancer Genome Atlas (TCGA) (Cancer Genome Atlas Network, 2012), 

respectively. Descriptions about these datasets, including the number of samples in each breast 

cancer subtype, and how the respective gene expression data and DNA copy-number data had been 

generated and pre-processed, are provided in the Materials and Methods section of the following 

publication. Further details about these datasets can be found in the original METABRIC and 

TCGA publications (Cancer Genome Atlas Network, 2012; Curtis et al., 2012). 

Results'presented'as'a'publication'

The results were published in the peer-reviewed journal Molecular Oncology in September 2015. 

The supplementary figures of this publication are presented in Appendix 2, and the supplementary 

tables (which are all Excel files) are deposited at UQ eSpace. 
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 Abstract'

The Homologous Recombination (HR) pathway is crucial for the repair of DNA double-

strand breaks (DSBs) generated during DNA replication. Defects in HR repair have been linked to 

the initiation and development of a wide variety of human malignancies, and exploited in chemical, 

radiological and targeted therapies. In this study, we performed a personalised pathway analysis 

independently for four large sporadic breast cancer cohorts to investigate the status of HR pathway 

dysregulation in individual sporadic breast tumours, its association with HR repair deficiency and 

its impact on tumour characteristics. Specifically, we first manually curated a list of HR genes 

according to our recent review on this pathway (Liu et al., 2014), and then applied a personalised 

pathway analysis method named Pathifier (Drier et al., 2013) on the expression levels of the curated 

genes to obtain an HR!score quantifying HR pathway dysregulation in individual tumours. Based on 

the score, we observed a great diversity in HR dysregulation between and within gene expression-

based breast cancer subtypes, and by using two published HR-defect signatures, we found HR 

pathway dysregulation reflects HR repair deficiency. Furthermore, we identified a novel association 

between HR pathway dysregulation and chromosomal instability (CIN) in sporadic breast cancer. 

Although CIN has long been considered as a hallmark of most solid tumours, with recent extensive 

studies highlighting its importance in tumour evolution and drug resistance, the molecular basis of 

CIN in sporadic cancers remains poorly understood. Our results imply that HR pathway 

dysregulation might contribute to CIN in sporadic breast cancer. 

 
Keywords: DNA repair; homologous recombination; breast cancer; chromosomal instability; 
pathway analysis 
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 Introduction'

Chromosomal instability (CIN), defined as an increased rate of gain or loss of whole 

chromosomes or large chromosomal fragments, is a hallmark of most solid tumours. CIN is the 

primary form of genomic instability that is thought to be the major cause of genetic heterogeneity in 

cancer (Burrell et al., 2013b), and is thus strongly implicated in tumour evolution. CIN also has 

important clinical implications, as it has been linked to poor prognosis e.g. by conferring intrinsic 

multidrug resistance (Lee et al., 2011). The molecular basis of CIN in hereditary cancer is relatively 

clear, and has been attributed to mutations in DNA repair genes (Negrini et al., 2010); however, the 

underlying mechanisms of CIN in various sporadic cancers remain poorly understood. Carter and 

colleagues developed a gene expression-based CIN signature, termed CIN25, based on 25 genes 

that are most overexpressed in tumours with CIN (Carter et al., 2006). A considerable number of 

genes involved in replication and cell cycle contribute to this signature, suggesting an important 

link between these cellular processes and CIN. This was further corroborated by Negrini et al. 

(2010), who proposed a replication stress model to explain CIN in sporadic tumours; this model 

was recently validated in colorectal cancer (Burrell et al., 2013a).  

Highly proliferative cancer cells undergo considerable replication stress that results in the 

stalling of replication forks. These stalled forks are usually stabilised and restarted after the source 

of stress is removed via a complex replication stress response pathway (Zeman and Cimprich, 

2014). Lack of stabilisation and/or the prolonged persistence of a stalled fork can generate DNA 

double-strand breaks (DSBs), which are subsequently repaired by DSB repair machinery to restart 

the forks. However, in the absence of such a DSB repair machinery the DSBs will develop into 

chromosomal breaks, resulting in CIN. Homologous recombination (HR) is a crucial pathway 

responsible for repairing DSBs during replication. Using homologous sister chromatid as templates, 

HR presents a high-fidelity repair mechanism that is crucial for error-free DNA replication.  

The core components of HR are fairly well established for their specific roles i.e. 

monitoring, signalling and repairing of DSBs (Liu et al., 2014), and HR defects can be detected by 

investigating the loss-of-function mutations in these genes. However, the dysfunction of HR can 

also be caused by numerous other mechanisms. For example, changes or defects in chromatin 

remodelling (Price and D'Andrea, 2013; van Attikum and Gasser, 2009), microRNAs (Chowdhury 

et al., 2013; d'Adda di Fagagna, 2014; Sharma and Misteli, 2013), post-translational modifications 

such as ubiquitination and sumoylation (Bekker-Jensen and Mailand, 2011; Dou et al., 2011; 

Ulrich, 2012),  and inappropriate expression of certain genes that are not directly involved in HR 

(Y. Peng et al., 2015; Watkins et al., 2015) can considerably affect HR components, thereby 

causing aberrant HR function. As a consequence, single-gene approaches or approaches focussing 
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on one mechanism yield only an incomplete picture of abnormal HR in a given tumour. On the 

other hand, HR-deficient cells may compensate for the defect in a given HR gene by altering the 

expression level of other HR genes (Pitroda et al., 2014). The most notable example is the 

overexpression of DNA repair protein RAD51 homolog 1 (RAD51), which is observed when breast 

cancer susceptibility gene 1 (BRCA1) (Martin et al., 2007), breast cancer susceptibility gene 2 

(BRCA2) (Brown and Holt, 2009) or other key HR genes (Takata et al., 2001) are defective. It is 

therefore of interest to determine a measure of HR pathway dysregulation, aggregating the 

expression of all HR genes, which may reflect HR repair deficiency in tumours regardless of the 

mechanism that has led to the deficiency.  

The vast majority of breast tumours are sporadic, accounting for 90%-95% of all diagnosed 

breast cancer cases (Davis, 2011) and are characterised by their great heterogeneity in biological 

property and patient outcome. To dissect this heterogeneity, estrogen receptor (ER), progesterone 

receptor (PR) and human epidermal growth factor receptor 2 (HER2) have been used as 

standardised diagnostic markers in clinical practice to guide the choice of treatment. Gene 

expression profiling has defined five intrinsic subtypes (also known as PAM50 subtypes) with 

clinical relevance: Luminal A, Luminal B, Basal-like, HER2 and Normal-like (Hu et al., 2006; 

Parker et al., 2009; Perou et al., 2000; Sørlie et al., 2001). More-recent genomic studies, notably 

from the Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC), have uncovered substantial heterogeneities within these receptor- or 

gene expression-based subtypes, resulting in the definition of up to ten subtypes (Ciriello et al., 

2013; Curtis et al., 2012; Koboldt et al., 2012; Lehmann et al., 2011; Yanagawa et al., 2012). 

However, it is likely that heterogeneity exists even within these newly established subtypes. In the 

coming age of personalised medicine, each tumour may be analysed individually. 

Pathway analysis has become the first choice to gain functional insights from expression 

data, beyond the detection of differential genes. Numerous pathway analysis tools have been 

developed, however, most of them are designed for providing pathway dysregulation information at 

population level instead of tumour level. Among the recently proposed methods for personalised 

pathways analysis (Ahn et al., 2014; Drier et al., 2013; Vaske et al., 2010; Wang et al., 2015a; 

2015b), Pathifier (Drier et al., 2013) has proven to be particularly robust. It has been successfully 

applied to provide a pathway-based classification of breast cancer (Livshits et al., 2015), and when 

combined with Cox regression and L1 penalised estimation, has achieved better prognosis 

prediction compared with gene-based models (Huang et al., 2014). 

In this study, we sought to perform a personalised pathway analysis to obtain a 

comprehensive understanding of the status of HR pathway dysregulation in individual sporadic 

breast tumours, its association with HR repair deficiency and its impact on tumour characteristics 
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(CIN in this case). To this end, we calculated for each breast tumour an HR!score that quantified the 

extent of HR pathway dysregulation in that tumour. Based on the score, we observed a great 

diversity in HR dysregulation between and within the PAM50 subtypes, and by using two published 

HR-defect signatures, we found HR pathway dysregulation reflects HR repair deficiency. More 

importantly, we uncovered a novel association between HR dysregulation and CIN, which indicates 

that dysregulated HR might contribute to replication stress-induced CIN in breast cancer. This 

knowledge may help future studies to identify the causative factors of CIN in sporadic breast cancer 

as well as in other cancer types. 

Materials'and'Methods'

1. Genomic'data'

Whole-genome gene expression data, DNA copy-number data, gene mutation data (only 

available for the TCGA samples) and related clinical data for four breast cancer cohorts (Table 1) 

were obtained from METABRIC (Curtis et al., 2012) and TCGA (Koboldt et al., 2012). 

Table 1 Breast cancer cohorts analysed in this study. The METABRIC gene expression data are microarray-based. 

Cohort 
No. of tumour samples No. of  

All Basal-like HER2 LumA LumB Normal-like normal breast tissues 

METABRIC Discovery 997 118 87 466 268 58 144 

METABRIC Validation 995 213 153 255 224 144 144 

TCGA RNA-seq 1068 188 80 549 213 38 113 

TCGA Microarray 522 98 58 231 127 8 22 

 

Gene-expression data and chromosomal-level DNA copy-number data from the 

METABRIC project (Genome-phenome Archive accession number EGAS00000000083) were 

made available upon request, and had already been preprocessed as described by Curtis et al. 

(Curtis et al., 2012). Gene-expression data from this project were based on the Illumina HT-12 v3 

Expression Beadchip (Illumina, San Diego, CA, USA). The probe-level transcription estimates 

were mapped to gene-level estimates using the HT-12 v3 annotation file downloaded from the 

Illumina website (http://www.illumina.com/). Where two or more probes represented the same 

gene, the probe with the largest variation was chosen as the gene representative. DNA copy-number 

data from METABRIC had been generated using Affymetrix SNP 6.0 arrays (Affymetrix, Santa 

Clara, CA, USA). The corresponding PAM50 subtype assignment and clinical outcome were 

obtained from (Curtis et al., 2012).  

The preprocessed gene-expression and DNA copy-number data (both chromosome-level and 

gene-level) for the TCGA RNA-seq cohort were downloaded via the UCSC Cancer Genomics 
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Browser (https://genome-cancer.ucsc.edu/) on 13 October 2014. Gene-expression data for this 

cohort were measured using the Illumina HiSeq 2000 RNA Sequencing platform, and show the 

Expectation Maximization (RSEM)-normalised and percentile-ranked gene-level transcription 

estimates. DNA copy-number data for this cohort had been generated using Affymetrix SNA 6.0 

arrays, with germline copy-number variation filtered out. PAM50 classifications for this cohort 

were obtained through personal communication with the TCGA consortium. A subset of these 1068 

cases also has gene expression data obtained from microarray. The Level 3 gene-expression data for 

this TCGA Microarray cohort and the corresponding PAM50 classifications were downloaded from 

the TCGA data portal publication site (https://tcga-data.nci.nih.gov/docs/publications/brca_2012/) 

on 3 June 2014. These gene-expression data were based on Agilent custom 244K whole-genome 

microarrays and had been preprocessed as described by Koboldt et al. (Koboldt et al., 2012). DNA 

copy-number data for this cohort were obtained as a subset of the TCGA RNA-seq cohort, as the 

samples of the former cohort were covered by the later cohort. 

The preprocessed gene mutation data for 982 TCGA samples, generated on an IlluminaGA 

system, were downloaded via the UCSC Cancer Genomics Browser (https://genome-

cancer.ucsc.edu/) on 6 July 2015. Each gene had been assigned a value of 1 or 0, indicating whether 

a non-silent mutation was identified in the coding region of that gene (value=1) or not (value=0). 

These data were matched to the two TCGA cohorts respectively according to the sample ID.  

2. HR'pathway'curation'and'calculation'of'HR!score'
Based on our recent review of the HR pathway (Liu et al., 2014), we manually curated a list 

of 82 genes with direct relevance to HR (Supplementary Table S1). We then applied Pathifier 

(Drier et al., 2013) to the mRNA expression level of the curated HR genes to calculate an HR!score 

that quantifies HR pathway dysregulation in individual breast tumours. Based on gene-expression 

profiles for tumours and normal breast tissues, Pathifier transforms HR gene-expression 

measurements into a measure of HR pathway dysregulation by fitting a principal curve (see 

Supplementary Figure S1 for a visualisation of the curve) that captures the maximal variability of 

the expression levels of the HR genes in all samples, and then projects each sample onto that curve. 

A sample’s HR! score is defined as its distance along the curve from the centroid of the normal 

tissues (Drier et al., 2013).  

Not all HR genes we curated were present in the gene expression data for each of the four 

cohorts. We therefore calculated the HR! score for each cohort based only on HR genes that are 

available for that cohort (ranges from 67 to 72, see Supplementary Table S1). No other ways for 

selecting HR genes were examined to minimize retrospective optimization for the correlations with 

CIN (see below). 
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3. CIN'measurements'calculation'

The numbers of chromosomal breakpoints and the proportions of the genome affected by 

copy-number change (Genomic Instability Index, GII) for samples in the two METABRIC cohorts 

were downloaded from a recent study (Vollan et al., 2015) in which the METABRIC Group was 

involved. According to this study, a few samples with mismatched DNA/RNA were identified and 

excluded, resulting in 985 samples remaining in the Discovery cohort and 965 in the Validation 

cohort. To get the number of amplified/deleted genes for the same samples, we first calculated the 

copy number of each gene using the chromosomal-level DNA copy-number data available for the 

two cohorts, then applied cut-offs (≥ 0.10 for amplified genes and ≤ −0.15 for deleted genes; values 

represent log2 ratios of the tumour intensity to the normal intensity) that are similar to those used by 

METABRIC to define chromosomal regions with amplifications or deletions. 

For the two TCGA cohorts, we used the chromosomal-level DNA copy-number data to 

calculate number of breaks by counting the total number of chromosomal segments at least 1 kb in 

length. The calculation of GII was also based on the chromosomal-level DNA copy-number data 

after filtering out segments shorter than 1kb, and the same cut-offs as mentioned above (≥ 0.10 for 

amplification and ≤ −0.15 for deletion) were used to identify chromosomal regions with copy-

number change. The number of amplified/deleted genes for each of the two TCGA cohorts was 

obtained from the downloaded gene-level DNA copy-number data, where +1 and +2 represent 

amplification and -1 and -2 represent deletion. 

4. Survival'analysis'

Survival analysis for both of the METABRIC datasets was performed using the R package 

survival (http://cran.r-project.org/web/packages/survival/index.html). Patient follow-up time was 

limited to 15 years, and only breast cancer-related deaths were counted.  

 Results''

1. An'HR!score'for'quantifying'HR'pathway'dysregulation'in'individual'breast'
tumours'

An HR score was developed for each breast tumour to quantify HR pathway dysregulation 

in that tumour; a high HR! score means that the expression of the HR genes as a whole in an 

individual tumour is very different from the situation in normal breast tissues (see Supplementary 

Figure S2 for HR gene expression in tumours with low to high HR score). To calculate this score, 

we first manually curated a list of 82 HR genes (Supplementary Table S1) according to our recent 

review on the HR pathway (Liu et al., 2014). This gene list provides more up-to-date knowledge 
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about the content of HR compared to publicly available pathway databases; for instance, it 

catalogues 54 more genes than the HR pathway in the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database (Kanehisa and Goto, 2000). The expression profiles of the curated HR genes 

were then employed as input to the Pathifier method (Drier et al., 2013) to compute the score. To 

ensure reproducibility of the results, we performed this pathway analysis independently for four 

large breast cancer cohorts that also include data on normal breast tissues (Table 1). Depending on 

data availability, the number of HR genes for calculating the score is slightly different across the 

cohorts (Supplementary Table S1).  

The boxplots in Figure 1 display the HR!score distribution in each cohort with regard to the 

PAM50 molecular subtypes, and in normal breast tissues. We observed a consistent pattern across 

the four cohorts: basal-like tumours generally have the highest HR! score, followed by HER2 and 

Luminal B tumours, and then Luminal A and Normal-like tumours; the normal breast tissues always 

have the lowest HR!score as a consequence of being the benchmark. Similar results can be seen in 

Supplementary Figure S3 showing HR score versus the HR score-based rank of the tumours of 

different subtypes. The consistent distribution of the HR! score by tumour subtype across the 

different cohorts and gene-expression profiling platforms (RNA-seq and microarray in TCGA) is 

strong evidence that the HR! score is robust and reproducible. Interestingly, we observed some 

variability in HR!score within tumours of the same subtype, as highlighted by some outliers in the 

boxplots, suggesting some heterogeneity in HR pathway dysregulation within the subtypes. 

 
Figure 1 Distribution of the HR score across the PAM50 subtypes and normal breast tissues 
(in green) for the four cohorts. The scores were generated independently within each cohort. 

2. The'HR!score'is'reflective'of'HR'repair'deficiency.'''
The HR!score is gene expression-based, and measures the extent to which the HR pathway is 

dysregulated. To test whether there exists an association between HR pathway dysregulation and 
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HR repair deficiency, we next asked whether the HR!score is reflective of HR repair deficiency (i.e., 

whether a tumour with high HR!score is likely to be HR-defective). We used two published HR-

defect signatures, homologous recombination defect (HRD) (G. Peng et al., 2014) and large-scale 

transitions (LSTs) (Popova et al., 2012), to test this hypothesis. 

2.1. Comparison'with'the'HRD'signature'

The HRD signature encompasses 230 genes that are differentially expressed between HR-

intact and HR-deficient cells, and is intended to represent the global impact of HR defect on the 

transcriptome of a tumour cell (G. Peng et al., 2014). To identify tumours (or cell lines) with HR 

deficiency, Peng et al. performed a hierarchical clustering analysis based on the expression level of 

the 230 genes to divide samples into two clusters, one considered as HR-intact and the other HR-

deficient (G. Peng et al., 2014).  

In this study, we performed the same clustering analysis for each of the four cohorts (Figure 

2A for the METABRIC Discovery cohort and Supplementary Figures S4, S5 and S6 for the three 

remaining cohorts). As shown in Figure 2A, tumours with low HR score (upper horizontal bar, 

green) are mostly tumours belonging to the HR-intact cluster, whereas tumours with high HR score 

(upper horizontal bar, red) are mostly tumours belonging to the HR-deficient cluster. To be more 

precise, Figure 2B shows the distribution of the HR score in the two HRD-based clusters for each of 

the four cohorts, demonstrating that tumours in the HR-deficient cluster in general have 

significantly higher HR score compared with tumours in the HR-intact cluster (p-values ≤ 9.1e-63, 

Wilcoxon rank-sum test). These observations indicate that tumours with high HR scores are likely 

to be HR-defective, as predicted by the HRD signature. 
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Figure 2 Comparison of the HR score with the HRD signature. A: HRD-based hierarchical clustering of 
tumours from the METABRIC Discovery cohort. B: Distribution of the HR score in the two HRD-based 
clusters for each of the four cohorts. Colour represents the HRD-based cluster. The p-values were obtained 
using a Wilcoxon rank-sum test. 

2.2. Comparison'with'the'LST'signature'

LST refers to a chromosomal break whose flanking regions are at least 10 Mb in size. A 

tumour with a large number of LSTs indicates HR defect-related genomic scarring as a measure of 

chromosomal instability (Popova et al., 2012). In this study, we estimated the number of LSTs for 

each tumour using the DNA copy number data, and divided each cohort into two groups according 

to the method and cut-offs described in (Popova et al., 2012): LST+ (≥ 20 LSTs) and LST- (< 20 

LSTs). The numbers of LST+ and LST- tumours identified in each cohort are summarised in 

Supplementary Table S2. As in the comparison with the HRD signature, we found that LST+ 

tumours generally have higher HR scores compared with LST- tumours, even in the case of the 

METABRIC Discovery cohort where only nine LST+ tumours were identified (Figure 3).  This 

observation also supports the idea that the HR!score is indicative of HR defect. 
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Figure 3 Distribution of the HR score in LST+ tumours and LST- tumours for each of the 
four cohorts. Colour represents LST status. The p-values were obtained using a Wilcoxon rank-
sum test. 

Taken together, the results based on HRD and on LST demonstrate an association between 

HR pathway dysregulation, as represented by the HR score, and HR repair deficiency. In addition, 
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overcome replication stress-induced senescence barriers (Zheng et al., 2012). All these results 

indicate that altering the expression of DNA repair genes or pathways may be a compensatory 
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3. Association'with'CIN'

Because replication stress has emerged as a common source of CIN in caner, and HR is the 

crucial pathway for the repair of replication stress-induced DSBs, we hypothesised that there might 

be a link between HR pathway dysregulation, which is indicative of HR repair deficiency as 
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al., 2006). We then investigated the association between the HR score and each of the three 

common CIN measurements: number of chromosomal breakpoints, fraction of the genome with 

copy-number alterations (genomic instability index, GII), and number of amplified/deleted genes. 

In particular, as data pre-processing and segregation algorithms can significantly affect the actual 

value of the CIN measurements, we downloaded the numbers of chromosomal breaks and GII for 

the two METABRIC cohorts from a recent publication (Vollan et al., 2015). We believe these 

measures from a third-party study provide more-objective results for our analysis. 

3.1. Association'with'CIN25'

Figure 4 displays a scatter plot between the CIN25 score, defined as the mean expression 

value of the CIN25 genes (Carter et al., 2006), and the HR!score for tumours from each of the four 

cohorts. Each cohort showed a high correlation between the CIN25 score and the HR! score 

(Spearman correlation coefficient r = 0.94 and r = 0.93 for the two METABRIC cohorts, and r = 

0.85 and r = 0.96 for the two TCGA cohorts), indicating that the HR!score is also correlated with 

CIN level. Moreover we found ten of the CIN25 genes (40%) to be present among the 230 genes of 

the HRD signature mentioned in Section 2.1, which indicates that HR defects might be one of the 

underlying biological mechanisms responsible for the expression change of the CIN25 genes.  

 
Figure 4 Correlations between the CIN25 score and the HR score for each of the four cohorts. 
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HR!score tend to have a higher CIN level. To address this, we divided tumours into four equal-sized 

groups based on the HR!score quartiles, and statistically examined the differences between adjacent 

groups for each of the three CIN measurements. The boxplots in Figure 5 (METABRIC Discovery 

cohort) show a high variability in each HR! score quartile group for each CIN measurement, 

indicating that other mechanisms can also affect CIN. However, we observed a clear pattern that 

tumours with higher HR!score indeed tend to have higher CIN level (Wilcoxon rank-sum test, one 

sided FDR p-value < 0.05), with the exception of tumours in the third and fourth quartile groups in 

GII. Similar results were obtained for the remaining three cohorts (Supplementary Figures S8, S9 

and S10). Overall, these results suggest an association between the extent of HR pathway 

dysregulation and the degree of CIN level in breast carcinomas. 

 
Figure 5 HR score versus the three CIN measurements for the METABRIC Discovery cohort. Left: Boxplots of 
the three CIN measurements versus the four HR score quartile groups; stars indicate statistical significance according 
to a Wilcoxon rank-sum test: ns means not significant and *** means p-value < 0.001. Right: Scatter plots of the HR 
score versus each of the three CIN measurements; r represents Pearson Correlation Coefficient. 
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As the HR score is based on gene expression, to ascertain whether the association observed 

above is due to the gene expression-based PAM50 subtypes, we performed the same analysis 

independently on tumours within each PAM50 subtype. In each analysis, the samples were divided 

into high and low HR! score groups according to the median. The results for the METABRIC 

Discovery cohort are summarised in Figure 6. For this cohort we consistently observed that tumours 

in the high HR! score group have more breakpoints than do tumours in the low HR! score group 

within the subtypes, despite the wide range of the breakpoint numbers observed for each subtype. 

The difference in GII between the low and high HR! score groups was significant in Basal-like, 

Luminal A and Normal-like tumours, but not in HER2 and Luminal B tumours, while the difference 

in number of amplified/deleted genes between the two groups was significant in all subtypes except 

HER2. For the other cohorts (Supplementary Figures S11, S12 and S13) we observed some 

differences between cohorts. For example, in the METABRIC Validation cohort, all three CIN 

measurements are significantly different between the two HR!score groups for all subtypes, whereas 

the difference is significant in fewer subtypes in the TCGA Microarray cohort. These discrepancies 

might be due to low sample size in the TCGA Microarray cohort (e.g. there are only eight samples 

in its Normal-like subtype). Apart from these possible exceptions, the above results support the 

hypothesis that tumours with more-deregulated HR pathway are likely to have a higher degree of 

CIN, and this relationship can still be detected within the gene expression-based PAM50 subtypes. 
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Figure 6 HR score versus the three CIN measurements within PAM50 subtypes (METABRIC 
Discovery cohort). For each plot, the two HR score groups were divided according to the median 
HR score in each subtype; stars indicate the significance according to a Wilcoxon rank-sum test for 
each pair of groups: ns means not significant, * means 0.01< p < 0.05, ** means 0.001 < p <0.01, 
and *** means p < 0.001. 
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and number of amplified/deleted genes r = 0.48). These moderate correlations are not surprising, 

given that we do not consider aberrant HR as the only mechanism that contributes to CIN. In this 

section we investigated whether there are other pathways whose dysregulation also correlates with 

CIN, and whether these moderate correlations are far from random. 

We computed a score for each of the 186 KEGG pathways (Kanehisa and Goto, 2000) and 

for 674 Reactome pathways (Croft et al., 2010), using the same approach as for the HR! score. 

Spearman correlation coefficients between these scores and each of the three CIN measures were 

recorded and compared against the respective correlations between the HR!score and the three CIN 

measurements. Figure 7 shows the results for the METABRIC Discovery cohort (KEGG pathways 

are in green and Reactome pathways in blue; similar results for the other three cohorts are in 

Supplementary Figures S14, S15 and S16). We found only a few KEGG or Reactome pathways 

whose dysregulation showed a similar level of correlation with CIN as did the HR pathway. For 

example, only four (2.2%) KEGG pathways (cell cycle, oocyte meiosis, progesterone-mediated 

oocyte maturation and p53 signalling) were more strongly associated with number of breakpoints 

than with the HR pathway (r = 0.61 - 0.63 compared to r = 0.60 for the HR pathway in Figure 7). 

Moreover, the strong associations of the oocyte meiosis, progesterone-mediated oocyte maturation 

and p53 signalling pathways with number of breakpoints is mainly due to their considerable overlap 

in gene content with the KEGG cell cycle pathway: 37%, 34% and 36% genes from each of these 

three pathways are also present in the cell cycle pathway (Supplementary Table S3). In contrast, 

only two HR genes are present in the cell cycle pathway. After removing the overlapping genes, 

association levels between each of these three pathways with number of breakpoints significantly 

decreased (results not shown). Similarly, although there were 24 (3.6%) Reactome pathways whose 

dysregulation showed a similar level of correlation with CIN as did the HR pathway, 18 of these are 

either the cell cycle pathway or its sub-pathways (Supplementary Table S4). 
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Figure 7 Distributions of the correlations between pathway scores and the three CIN 
measurements (METABRIC Discovery cohort). Results for KEGG pathways are in green, 
Reactome pathways in blue and Random pathways in pink. Spearman correlation coefficients (r) are 
represented on the x-axis. Pathway score were calculated with Pathifier. The vertical dashed line in 
each histogram indicates the value of r between the HR score and each of the three CIN 
measurements, and p represents an empirical p-value for that value of r. 

As the KEGG and Reactome pathways do not cover all genes measured in the whole-

genome gene expression profiling data analysed in this study, we also constructed 1000 “Random” 

pathways for each cohort to calculate an empirical p-value for the association between the HR score 

and each of the three CIN measurements. Each Random pathway is of the same length as HR but is 

composed of genes randomly selected from the gene-expression profiling data, excluding those 

from HR and cell cycle pathways. Similar to the KEGG pathways analysed above, we computed a 

score for each Random pathway, and compared the correlation coefficients with the three CIN 

measures against those for the HR!score. As shown in Figure 7, only a few Random pathways (in 

pink) showed a level of association with CIN similar to that of the HR pathway, as indicated by the 

empirical p-values. Similar results for the other three cohorts were obtained (Supplementary Figures 

S14, S15 and S16). 
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Overall, these results indicate that the CIN level in tumours is associated with the 

dysregulation of only a limited number of pathways (e.g., the cell cycle pathway), and that the 

correlation between HR and CIN is far from being random. 

4. Association'with'survival'in'ER+'tumours'

The two METABRIC cohorts are annotated with disease-specific survival data that are 

lacking for the two TCGA cohorts. We thus tested whether the HR!score can predict patient survival 

in the two METABRIC cohorts. Figure 8 shows Kaplan-Maier plots for patients with ER+ tumours 

from the METABRIC Discovery (n=699; follow-up time ≤ 15 years) and validation cohorts 

(n=582; follow-up time ≤ 15 years). For each cohort, patients were divided into high and low HR!
score groups based on the median HR!score. For both cohorts, we observed a significant difference 

in patient survival between the two HR!score groups with ER+ tumours (Figure 8; Cox proportional 

hazards regression test p-value = 8.4e-04 and 3.9e-09 for the two cohorts, respectively). However, 

we observed no significant difference in survival between the two HR!score groups for patients with 

ER- tumours (data not shown). As an association between CIN and prognosis in ER+ tumours has 

already been documented (Przybytkowski et al., 2014; Smid et al., 2011), and after control for the 

number of chromosomal breaks there is no significant difference in survival between the two HR 

score-based groups (result not shown), we infer that the prognostic value of the HR!score in ER+ 

tumours is due to the association between the HR!score and CIN. 

 
Figure 8 Kaplan-Maier plot for disease specific survival in the METABRIC Discovery cohort (left) and 
Validation cohort (right). Patients with ER+ tumour were divided into two equal-sized groups based on the median 
HR score in each cohort. 
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 Discussion'

Multiple molecular mechanisms have been associated with the origin of CIN in cancer, 

including replication stress, telomere dysfunction, aberrant DNA repair and various defects in 

chromosome segregation (reviewed in Abbas et al., 2013; Aguilera and García-Muse, 2013; Negrini 

et al., 2010; Thompson et al., 2010). Although CIN can be experimentally induced by exploiting 

any of these mechanisms, replication stress has been recently identified as the first recurrent genetic 

defect associated with CIN in colorectal cancer (Burrell et al., 2013a). In this scenario, CIN is 

induced during DNA replication in fast-dividing tumour cells, giving rise to frequent stalling of 

replication forks. Consequently, HR as the primary pathway for repair of the resultant DSBs during 

replication becomes overworked, and if HR is dysfunctional the frequency of replication stress-

induced CIN is likely to increase dramatically. Here we have shown that HR dysregulation as 

measured by the HR score, which is indicative of aberrant HR repair, is prevalent in sporadic breast 

cancer and correlates with the level of CIN. We thus propose that HR dysregulation might 

contribute to replication stress-induced CIN at least in sporadic breast cancer. Consistent with this 

view, overexpression of the key HR gene RAD51, which is commonly seen in breast cancer as well 

as other cancer types, promotes chromosomal instability (Richardson et al., 2004), and two other 

critical HR genes, BRCA1 and BRCA2, were recently proposed as chromosome custodians mainly 

due to their role in HR (Venkitaraman, 2014a; 2014b). 

Dysfunction of the HR pathway, although not the primary cause, may increase the level of 

replication stress-induced CIN in several ways. Firstly, it can cause inefficient repair of DSBs, 

resulting in an accumulation of chromosomal breaks. Secondly, by triggering error-prone repair 

pathways including canonical non-homologous end-joining (C-NHEJ) and alternative non-

homologous end-joining (Alt-NHEJ, also called microhomology-mediated end joining (MMEJ)), 

HR dysfunction can lead to translocations, translocation-related chromosomal breaks and DNA 

copy-number changes. Specifically, in contrast to HR that requires homologous sequence to guide 

repair, C-NHEJ and Alt-NHEJ mediate the repair by a direct ligation of the break ends after more-

or-less end processing, and so do not ensure that the broken DNA strands are re-joined in the 

correct position. These two low-fidelity pathways come to repair DSBs generated during DNA 

replication when HR is deficient, resulting in translocation as well as translocation-related 

chromosomal breaks (Alexandrov et al., 2013; Bunting and Nussenzweig, 2013; Ottaviani et al., 

2014; Villarreal et al., 2012). Moreover, gene copy number changes also arise when the repair of 

broken replication forks switched from HR to the two NHEJs, especially Alt-NHEJ (Hastings et al., 

2009); 
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A third way in which HR pathway dysfunction can increase replication stress-induced CIN 

is by affecting mitosis and the proper functioning of telomeres. HR defects and the consequent slow 

progression of replication forks can elicit alterations of mitosis, which highlights the importance of 

HR at the interface of these two processes for protection against CIN (Wilhelm et al., 2014). In 

addition, DSB repair is shut down during the M phase to avoid telomere fusion and as a 

consequence, mitosis will continue even in the presence of DSBs or fragmented chromosomes, 

giving rise to CIN (Orthwein et al., 2014). This emphasises the importance of DSB repair during 

DNA replication, especially given the presence of DSBs that result from replication stress. HR 

defects caused by BRCA2 mutations could also lead to telomere dysfunction, a mechanism that has 

been proposed to explain, in part, the chromosomal instability observed in BRCA2-deficient 

tumours (Badie et al., 2010). Taken together, HR dysfunction can increase CIN via diverse 

mechanisms, and the association revealed in this study between HR dysregulation and CIN (Figures 

4, 5 and 6) indicates that dysregulated HR might contribute to the CIN observed in highly 

replicative tumours. 

The study of CIN in breast cancer has attracted immense interest in recent years following 

the recognition of its clinical relevance in disease heterogeneity, drug resistance and patient 

response (A'Hern et al., 2013; Birkbak et al., 2011; Endesfelder et al., 2014; Habermann et al., 

2009; Roylance et al., 2011; Sansregret and Nepveu, 2011; Swanton et al., 2009; Vincent-Salomon 

et al., 2013); reviewed by (Wiechec, 2011). CIN induces evolution in tumours, providing the 

heterogeneity from which aggressive and/or drug-resistant tumour clones are selectively 

established. CIN aids tumour development by amplifying genomic regions containing oncogenes 

and deleting regions containing tumour-suppressor genes, thereby significantly influencing 

treatment response and survival in patients. Our results further strengthen this connection by 

associating dysregulated HR with the extent of amplified/deleted genes and regions of the 

chromosome, and by showing that ER+ tumours with high HR score or CIN levels display 

significantly poorer prognosis (Figure 8). 

A measure of HR dysregulation such as the one adopted here can be extremely valuable to 

guide therapeutic options. The observation that cancer cells deficient in HR are profoundly sensitive 

to PARP inhibitors (Bryant et al., 2005; Farmer et al., 2005) has already led to the development of 

targeted PARP therapies for sporadic breast and ovarian cancers with defects in core HR genes such 

as BRCA1 and BRCA2, a condition termed as “BRCAness” (Turner et al., 2004). PARP is an 

important protein family whose members function in restarting stalled replication forks and 

diverting DSBs to HR-mediated repair. It has been proposed that accumulated chromosomal 

instability arising from the continued stalling of replication forks, accompanied by deficiency in 

repairing DSBs and thereby triggering a genomic catastrophe, may explain how PARP inhibition 
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kills HR-deficient cancer cells (Bryant et al., 2005; Farmer et al., 2005). Although focussing on a 

mechanistic explanation for PARP-based cancer therapy, these models indirectly suggest an 

underlying relationship among replicative stress, dysfunctional HR and the accumulation of 

chromosomal instability.  

In conclusion, we performed a personalised pathway analysis by calculating an HR! score 

that quantifies HR pathway dysregulation in individual breast tumours, with the behaviour of HR in 

normal breast tissues serving as a benchmark. Our results are reproducible across four large breast 

cancer cohorts (~ 3000 tumours in total). We found HR is dysregulated to various extents between 

and within the gene expression-based PAM50 subtypes, which may reflect their HR repair 

deficiency. More importantly, we uncovered a novel association between HR dysregulation and 

CIN. Although HR has a well-known role in maintaining genomic integrity, this work is the first 

large-scale study to assess the correlation between HR dysregulation and CIN in sporadic breast 

cancer. As such our results will be useful for future studies that aim to identify causative factors of 

CIN in sporadic breast cancer as well as in other cancer types. 
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Chapter Four: Integrating multi-omics data to dissect 

mechanisms of DNA repair dysregulation in breast cancer 

In the preceding chapter, I showed that HR dysregulation is prevalent in breast cancer. Many 

previous studies on breast cancer also showed that some other DNA repair genes and/or pathways 

exhibit abnormal expression in this malignancy, and can be used as biomarkers to predict therapy 

response. All these observations raised an important question: what are the underlying mechanisms 

of DNA repair dysregulation in breast cancer?  

In this chapter, I assessed the contributions of possible mechanisms, including DNA copy number 

alteration (CNA), DNA methylation at gene promoter regions and mRNA expression changes of 

transcription factors (TFs), to the differential expression of individual DNA repair genes in breast 

cancer. In particular, I developed a penalised linear regression-based statistical framework to 

identify TFs that are potentially associated with each differentially expressed DNA repair gene.  

The results from this study indicate that CNA and expression changes of TFs are major contributors 

to DNA repair dysregulation in breast cancer, and that ten TFs, each of which has a number of 

targets in multiple DNA repair pathways, may exert a global impact on the repair dysregulation in 

this cancer type. This study thus provides new insights into the underlying mechanisms of DNA 

repair dysregulation in breast cancer. These insights improve our understanding of the molecular 

basis of the DNA repair biomarkers identified thus far, and have the potential to inform future 

biomarker discoveries. 

These results are presented here as a manuscript in preparation. The supplementary data of this 

manuscript, which are all Excel files, are deposited at UQ eSpace. 
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 Abstract(

The cellular status of DNA repair mechanisms has important implications for both 

carcinogenesis and cancer treatment, as supported by the observations that mutations in key DNA 

repair genes predispose individuals to a wide variety of cancers, and DNA repair capacity is one of 

the decisive factors underlying the outcome of chemo- and radiotherapy. DNA repair genes and 

pathways that are transcriptionally dysregulated in cancer provide the first line of evidence for the 

altered DNA repair status in tumours, and hence have been explored intensively as a reservoir for 

biomarker discovery. The molecular mechanisms underlying DNA repair dysregulation, however, 

have not been systematically investigated in any cancer type. In this study, we dissected the roles of 

DNA copy number alteration (CNA), DNA methylation at gene promoter regions (DM) and the 

expression changes of transcriptional factors (TFs) in the differential expression of individual DNA 

repair genes in normal versus tumour breast samples. These gene-level results were summarised at 

pathway-level to assess whether different DNA repair pathways are affected in distinct manner. In 

particular, we developed a penalised linear regression-based statistical framework to identify TFs 

potentially involved in the dysregulation of individual DNA repair genes. Our results demonstrated 

that CNA and expression changes of TFs are major causes of DNA repair dysregulation in breast 

cancer, and that a subset of the identified TFs may have global impact on the dysregulation of 

multiple repair pathways. This study thus provides novel insights into DNA repair dysregulation in 

breast cancer. These insights improve our understanding of the molecular basis of the DNA repair 

biomarkers identified thus far, and have the potential to inform future biomarker discovery. 

 

Keywords: multi-omics data analysis; DNA repair; transcription factor; DNA copy number; DNA 
methylation; breast cancer 
  



 104 

 Introduction(

Cells have evolved complex mechanisms to repair DNA lesions that arise from various 

endogenous and exogenous factors, including ultraviolet radiation, chemical carcinogens and 

oxidative by-products from normal cellular respiration. Hundreds of DNA repair genes have been 

identified, which mainly participate in five distinct but functionally intermingled pathways: 

homologous recombination (HR), non-homologous end joining (NHEJ), nucleotide excision repair 

(NER), base excision repair (BER) and mismatch repair (MMR). The functionalities of these 

pathways and their constituent components have been elucidated in detail [1-5]. 

The cellular status of DNA repair genes or pathways has important implications for both 

carcinogenesis and cancer treatment. Mutations in DNA repair genes predispose to a wide variety of 

cancers, and altered DNA repair efficiency is one of the decisive factors underlying the response of 

DNA damage-based cancer therapies [1-5]. DNA repair genes and pathways that are 

transcriptionally dysregulated in tumours carry valuable information with regard to drug response, 

patient survival and tumour characteristics, and thus have been extensively studied [6-14]. For 

instance, Santarpia et al. [11] analysed the expression profiles of 145 DNA repair genes in untreated 

breast cancer patients versus breast cancer patients treated with chemotherapeutic agents. The 

authors found that the upregulation of nine genes (BUB1, FANCI, MNAT1, PARP2, PCNA, POLQ, 

RPA3, TOP2A, and UBE2V2) are associated with poor prognosis, and that of one gene (ATM) is 

associated with good prognosis [11]. At the pathway level, Kang et al. [10] devised a DNA repair 

pathway-focused score (DRPFS) by combining the expression levels of 23 genes involved in 

platinum-induced DNA damage repair; this DRPFS score outperforms other clinical factors in 

predicting treatment response of ovarian cancer patients [10]. More recently, our group [12] 

developed a homologous recombination (HR) score based on the expression of about 70 core HR 

genes. This score reflects HR repair efficiency and correlates with chromosomal instability as well 

as patient survival [12]. While the dysregulation of DNA repair genes and/or pathways has been 

documented in many studies, to our knowledge, the molecular mechanisms underlying these 

transcriptional abnormalities have not been systematically elucidated in any cancer type. 

Cancer-related gene expression alterations may result from genetic and/or epigenetic 

changes in tumours, including DNA copy number alteration (CNA) and DNA methylation (DM) of 

CpG islands at gene promoter regions. In fact, aberrantly expressed genes with CNA or DM are 

more likely to be critical genes that drive tumour initiation and progression. For example, MYC was 

considered an oncogene candidate as its overexpression together with its copy-number gain were 

commonly observed in cancer [15], which led to subsequent experiments that further validated its 

oncogenic role [16]. Similarly, the tumour suppressor gene PTEN was often found to be 
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underexpressed in tumours that also exhibit PTEN deletion [17]. The recent availability of multi-

omics data in several major cancer types has facilitated studies that aim to obtain a more-holistic 

understanding of the global impact of CNA or DM on the transcriptomic changes [18-21]. 

However, effects specific to DNA repair dysregulation have yet to be elucidated. 

TFs are key cellular components that serve to activate or repress the transcription of their 

target genes, and as such are important mediators of many cellular pathways, including the DNA 

repair mechanisms. Expression changes of TF genes in cancer are often crucial events as they are 

frequently associated with tumour initiation and/or development. For example, a recent meta-

analysis revealed that the transcriptional regulatory network in colorectal adenomas is characterised 

by more than 250 differentially expressed TF genes, a considerable fraction of which have 

established roles in colorectal tumourigenesis [22].  

Identifying target genes for the individual TFs is challenging. Motif-based computational 

prediction of TF binding sites at gene promoter regions has long been used to infer TF-target 

relationship [23-26]; however, it is a well-known issue that such analyses tend to give false positive 

results mainly due to the short length of the motifs and lack of tissue specificity. In recent years, 

ChIP-Seq, which combines chromatin immunoprecipitation (ChIP) with massively parallel DNA 

sequencing, has been employed to produce genome-wide binding profiles for individual TFs in a 

cell line-specific manner. This technique can generate relatively accurate information about TF 

binding sites genome-wide, however, due to its high cost, as of now only a limited number of TFs 

have been profiled in certain cell lines [27]. Moreover, for TFs whose binding profiles have been 

measured by ChIP-Seq, defining their target genes still remains an open question [28]. 

Breast cancer is one of the most common malignancies worldwide. This malignancy has a 

particularly close relationship with DNA repair defects, with the two well-known breast cancer 

susceptibility genes, BRCA1 and BRCA2, being essential components of the HR repair pathway 

[29,30]. Previous studies showed that DNA repair genes and/or pathways are frequently 

dysregulated in breast cancer [11-14]. In this study, we aimed to provide biological insights 

regarding the underlying mechanisms of DNA repair dysregulation in this cancer type, taking 

advantage of the multi-omics data recently generated by the Cancer Genome Atlas (TCGA) [20]. 

Towards this aim, we first identified DNA repair genes that are differentially expressed between 

normal and tumour breast samples. Next, we evaluated the in cis effects of CNA and DM on the 

expression alteration of the identified DNA repair genes. Finally, we developed a penalised linear 

regression-based statistical framework, which takes into account the effects of CNA and DM on 

gene expression, to identify TFs potentially associated with each differentially expressed DNA 

repair gene. Our results showed that CNA and the expression changes of the identified TFs can 

statistically explain most of the expression variance of the repair genes, indicating the potential 
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importance of these two factors in driving DNA repair dysregulation in this common type of 

malignancy. 

 

 Materials(and(Methods(

1. Data(collection(

The preprocessed genomic data generated by TCGA [20], including gene expression data 

for 113 normal breast tissues, and gene expression, CNA and DM data for 720 breast tumour 

samples, were retrieved via the UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu/). 

Gene expression data for both the normal tissue and tumour samples had been generated using the 

Illumina HiSeq 2000 RNA sequencing platform, and show the Expectation Maximisation (RSEM)-

normalised and percentile-ranked gene-level transcription estimates. The CNA data had been 

produced using Affymetrix SNA 6.0 arrays, with germline copy-number variation filtered out. The 

CNA values we obtained are gene-level segmentation values where value 0 represents the diploid 

state of the chromosome. The DM profiles had been produced with the Illumina Infinium 

HumanMythylation450 platform. The preprocessed methylation values we obtained, known as beta 

values, are continuous variables between 0 and 1, representing the percentage of methylation at the 

gene promoter region (defined as regions from 1.5 kb upstream to 0.5 kb downstream of 

transcription start site). 

The pre-processed ENCODE Chip-Seq data for seven TFs (E2F1, MYC, TCF7L2, CTCF, 

GATA3, ZNF217 and POLR2A) measured on the breast cancer cell line MCF-7 were downloaded 

from the UCSC genome browser (https://genome.ucsc.edu/encode/).  Detailed information about 

how these data had been generated, including antibody and immunoprecipitation specificity, library 

complexity, sequencing depth, peak calling and quality assessment, were elaborated in a dedicated 

publication by ENCODE [31]. Briefly, in each ChIP-Seq experiment for mammalian genomes, 

ENCODE generated ≥ 10 million uniquely mapping reads (25-36 bp in length), providing a reliable 

and valuable data source for TF studies [31]. 

2. Differential(expression(analysis((

DNA repair genes differentially expressed in tumour versus normal breast tissues were 

identified using Limma [32], with the criterion that false discovery rate (FDR) < 0.05 after 

Benjamini and Hochberg’s multiple-test adjustment [33]. 
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3. Identification(of(TFs(potentially(involved(in(DNA(repair(dysregulation(

To systematically search for TFs potentially involved in DNA-repair dysregulation in breast 

cancer, we performed TF selection from a list of 1391 manually curated human TFs, which was 

estimated to cover 85% to 94% of all human TFs [34]. Specifically, for each differentially 

expressed DNA repair gene identified in this study, we built a linear regression model connecting 

CNA, DM and the transcriptional changes of the 1391 TFs to explain the observed expression 

variance of the repair gene. For each repair gene g, we formulate the model as: 

!! = !!,! + !!",!!!",! + !!",!!!",! + !!",!,!!!",!
!!!,…,!"#!

+ !!! 

where !!, !!",!!! and !!",! represent the abundances of mRNA, CNA, and DM of DNA repair 

gene g, respectively, while !!",! denotes the mRNA level of TF k. The regression coefficients 

!!",! and !!",! estimate the in cis contributions of CNA and DM to the expression changes of the 

repair gene g, while !!",!,! evaluates the influence of the transcriptional changes of TF k on the 

expression changes of repair gene g. The intercept is represented by !!,! and error term by !!. 

We then applied LASSO penalisation constraints [35] through the R package glmnet [36] to 

select a subset of the 1391 TFs whose transcriptional changes are significantly associated with the 

dysregulation of a given DNA repair gene. To ensure that the effects of CNA and DM on gene 

expression are always taken into consideration, we imposed an additional constraint, also through 

the glmnet package, that the regression coefficients for CNA and DM are never set to zero by 

LASSO during this feature selection process. 

In practice, a major drawback of LASSO is that its result can be heavily affected by an 

initiating parameter termed regularisation coefficient (λ), whose value needs to be specified for 

each analysis. For a given analysis, this value is typically obtained using cross-validation; however, 

due to the randomness associated with the cross-validation process, the estimated optimal λ value 

for the same analysis can differ across different cross-validation runs, resulting in unstable feature 

selection results. To overcome this, we developed a secondary feature-selection procedure with the 

assumption that TFs consistently selected with different λ values are likely to be truly associated 

with a given repair gene (Figure 1). 
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Figure 1 A LASSO-based statistical framework to identify TFs potentially involved in DNA repair dysregulation. 

Specifically, for each differentially expressed DNA repair gene, we generated 100 different 

λ values by running the cv.glmnet function 100 times, and then performed LASSO on each λ. This 

led to 100 different, but overlapping, sets of TFs selected for the same repair gene. Next, we 

calculated for each TF the frequency of being selected across the 100 LASSO runs. This frequency, 

denoted as !!(1 ≤ !! ≤ 100), is important as it indicates the selection stability for each TF. To 

determine an optimal cutoff for !, we further built different regression models, whose response and 

explanatory variables are similar to the one described above except that, instead of including all the 

1391 TFs, only the TFs that had been selected more than !!times were included. As different values 

of ! correspond to different sets of TFs, and in turn to different regression models, we reasoned 

that the optimal cutoff of ! could be obtained by comparing the performance of these models. For 

this purpose, in the following step we randomly divided the samples into a training set (2/3 of all 

samples) and a testing set (the remaining 1/3 of all samples) for model training and testing, 

respectively. We repeated this subsampling process 100 times, and each time the performance of 

each model on the testing set was recorded as the mean squared error (MSE). The value of ! that 

gave the minimal averaged MSE across the 100 subsampling was considered the optimal cutoff, and 

the TFs whose selection frequency was above this cutoff were considered to be associated with a 

given DNA repair gene (Figure 1). 
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4. Four(alternative(linear(regression(models(to(dissect(the(contributions(of(possible(

mechanisms(to(DNA(repair(dysregulation(

To dissect the contributions of CNA, DM and TF-gene expression change to DNA repair 

gene dysregulation, for each differentially expressed DNA repair genes we further constructed four 

alterative linear regression models. Each model uses the mRNA abundance of the same DNA repair 

gene as response variable, but comprises different explanatory variables as follows: 

(1) CNA + DM + TFs 

(2) CNA + DM 

(3) DM only 

(4) CNA only 

We compared the performance of these four alternative models via a subsampling-based 

process. Specifically, we randomly selected two-thirds of the tumour samples to train each of the 

four models, and the remaining one-third of the samples was used for testing the model 

performance. This process was repeated 100 times for each differentially expressed DNA repair 

gene, and the average performance of each model on the testing set was recorded. 

 

Results(

1. Identification(of(DNA(repair(genes(that(are(differentially(expressed(between(

tumour(and(normal(breast(tissues(

We manually curated a list of 195 DNA repair genes (Supplementary Table 1) by systematic 

literature search and consultation with a domain expert. This list includes genes from the five major 

DNA repair pathways and the Fanconi anaemia (FA) pathway, which is responsible for the repair of 

DNA inter-strand crosslinks and is closely associated with breast cancer susceptibility [37]. Of 

these 195 genes, 169 have CNA, DM and expression data in TCGA, of which 149 (88%) are 

differentially expressed between normal and tumour breast samples (Table 1; see Supplementary 

Table 2 for detail). This high percentage of differential expression is consistent with the existing 

knowledge that DNA repair genes are frequently dysregulated in breast cancer. Of the 149 

differentially expressed repair genes, 106 (71%) exhibit significantly increased expression, and 43 

(29%) show reduced expression. Similar observations were obtained when the number of up- and 

down-regulated genes within each individual repair pathway was examined separately (Table 1), 

indicating that DNA repair genes are more likely to be up-regulated than down-regulated in breast 

cancer. 
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Table 1 Number of differentially expressed (DE) genes in each DNA repair pathway  

Pathway( Curated*( Present(In(TCGA( DE( Overexpressed( Underexpressed(

HR# #82## 60# 60# 43# 17#

NER# 66# 48# 48# 36# 12#

BER# #31## 27# 27# 24# 3#

FA# 31# 23# 23# 19# 4#

NHEJ# #25## 22# 22# 13# 9#

MMR# 24# 20# 20# 15# 5#

Total†# #195## 169# 149# 106# 43#
*This#column#represents#the#number#of#manually#curated#genes#in#each#repair#pathway.##
†#Genes#that#appear#in#two#or#more#pathways#were#counted#only#once.#

2. Estimate(the(effects(of(genetic(and(epigenetic(changes(on(the(DNA(repair(

dysregulation(in(breast(cancer(

2.1. Contribution(of(CNA(to(the(DNA(repair(dysregulation(

To evaluate the effects of CNA and DM on DNA repair dysregulation, for each of the 

differentially expressed genes identified above, we measured the respective correlations of mRNA 

with CNA and DM using Spearman correlation coefficients. Figure 2 summarises the results for the 

correlations between CNA and mRNA, and Figure 3 for the correlations between DM and mRNA.  

As shown in Figure 2A, the correlations between CNA and mRNA are in general modest, 

with a median correlation coefficient of about 0.4 (see Supplementary Table 3 for detail). As a 

background, the median correlation for the other 16,946 genes with CNA and mRNA data but not 

involved in DNA repair is 0.23. Out of the 149 differentially expressed DNA repair genes, 148 

show positive correlations between CNA and mRNA, of which 146 have significant correlations 

(FDR < 0.05; Supplementary Table 3). These positive correlations are consistent with the role of 

CNA in modulating gene expression, and indicate that CNA plays an important role in driving 

DNA repair dysregulation in breast cancer. Similar patterns of modest positive correlations were 

observed when either all differentially expressed genes were considered, or when only genes within 

each repair pathway were included (Figure 2A), indicating that CNA affects different repair 

pathways in a similar way.  



 111 

 
Figure 2 The effect of CNA on DNA repair gene expression. (A) Distributions of the in cis correlations between 
CNA and mRNA expression, summarised for all differentially expressed DNA repair genes, or only genes from 
each individual repair pathway. (B) The top ten DNA repair genes, sorted by their in cis correlation between CNA 
and mRNA expression. 

Figure 2B displays the top ten DNA repair genes whose differential expression is most 

likely due to their altered copy number status (i.e., these ten genes have the highest correlations 

between CNA and mRNA). For example, the up-regulation of POLR2K can be largely ascribed to 

its copy number gain while the down-regulation of POLR2C is mainly due to its copy number loss. 

We consider that these relative high correlations between inherent genetic changes and differential 

expression may have important implications for breast cancer therapy. For instance, recently studies 

showed that the CUL4A is a promising biomarker for a variety of cancers, including breast caner, 

whose overexpression is associated with elevated drug sensitivity [38,39]; and here we revealed that 

CUL4A overexpression in breast cancer is mainly induced by its copy number gain (Figure 2B). As 

another example, the protein encoded by PARP1 is a newly proposed drug target in breast cancer 

[40], and here we showed that there is a relative high correlation between its mRNA overexpression 

and DNA amplification (Figure 2B). 

2.2. Contribution(of(DM(to(the(DNA(repair(dysregulation(

Compared to the correlations between CNA and mRNA, the correlations between DM and 

mRNA are in general weak, with a median value of about -0.25 (Figure 3A and Supplementary 

Table 3; the median correlation for the other 13,382 genes with DM and mRNA data but not 

involved in DNA repair is -0.27). This is the case both for all differentially expressed genes, and for 

only those genes within each individual repair pathway (Figure 3A). Nonetheless, all 149 
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Gene Cor. p-value Pathway Expression
POLR2K 0.78 6.59E-149 NER Up
POLR2C 0.77 1.86E-140 NER Down

CSNK2A2 0.77 9.37E-138 HR Down
ERCC5 0.72 1.21E-116 NER Down
RNF40 0.71 1.41E-111 HR Up
CUL4A 0.70 2.64E-107 NER Up
XRCC6 0.70 1.51E-105 NHEJ Up
RAD54B 0.69 1.65E-100 HR Up
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differentially expressed DNA repair genes show negative correlation between DM and expression, 

and 143 of them are significant (FDR < 0.05; Supplementary Table 3). This is in accordance with 

the role of methylation in suppressing gene expression. We found the DM-mRNA correlations are 

not significantly different between the up-regulated genes and down-regulated genes (p-value = 0.5, 

Wilcoxon rank-sum test), suggesting that DM is not a major factor for the downregulation of DNA 

repair genes in breast cancer. This observation is in line with a recent meta-analysis showing 

cancer-specific methylation patterns usually have marginal effects on mRNA expression [41].  

 
Figure 3 The effect of DM on DNA repair gene expression. (A) Distributions of the in cis correlations between DM 
and mRNA expression, summarised for all differentially expressed DNA repair genes, or only genes from each 
individual repair pathway. (B) The top ten DNA repair genes, sorted by their in cis correlation between DM and 
mRNA expression. 

A few DNA repair genes have modest correlations between DM and mRNA (Figure 3B). 

These genes are not enriched with downregulated repair genes (p-value =1, Fisher’s exact test), 

indicating again that DM is not the major cause for reduced expression of DNA repair genes in 

breast cancer. However, DM may have important effect on the underexpression of some DNA 

repair genes. For example, of the downregulated repair genes listed in Figure 3B, the transcriptional 

silencing of WRN by promoter hypermethylation has been frequently observed in a number of 

cancers, including breast cancer [42]. This epigenetic inactivation of WRN can lead to increased 

chromosomal instability and hypersensitivity to DNA-damaging drugs, and thus has important 

implications for cancer therapy [42,43].  
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Gene Cor. p-value Pathway Expression
TCEA3 -0.55 2.16E-55 NER Up
TCEA1 -0.47 8.09E-39 NER Up
PARP3 -0.45 5.04E-36 NHEJ Down
FANCA -0.45 6.76E-35 FA Up

RAD54B -0.44 6.62E-34 HR Up
PSIP1 -0.43 1.98E-32 HR Down
WRN -0.42 2.65E-31 NHEJ Down

MUTYH -0.41 4.85E-29 BER Up
POLB -0.41 6.00E-29 BER Up

ERCC5 -0.40 6.83E-28 NER Down
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3. Estimate(the(effect(of(TF(transcriptional(changes(on(the(DNA(repair(dysregulation(

in(breast(cancer(

3.1. TFs( identified( by( our( LASSONbased( statistical( framework( and( their( contribution( to( the(

DNA(repair(dysregulation(

One of the aims of this work was to systematically search for TFs that are likely to be 

involved in DNA repair dysregulation in breast cancer. To this end, we first downloaded a list of 

1391 manually curated TFs, which was estimated to cover 85% to 94% of all the human TFs [34]. 

Next, for each of the 149 differentially expressed DNA repair genes identified above, we built a 

linear regression model connecting CNA, DM and the transcriptional changes of the 1391 TFs to 

explain the observed repair gene dysregulation. Since the vast majority of the 1391 TFs are not 

associated with the dysregulation of a particular repair gene, we further developed a LASSO-based 

statistical framework to identify relevant TFs for each repair gene (see Materials and Methods for 

detail).  

In brief, the LASSO constraint [35] enforces scarcity in a linear regression model (i.e., 

enforcing most of the small regression coefficients to be zero) and thus reduces the number of 

explanatory variables included in the model. To account for the effects of CNA and DM on gene 

expression, we imposed an additional constraint that the regression coefficients of CNA and DM 

will never be set to zero by LASSO. In other words, after taking into account the confounding 

effects from CNA and DM, we identified TFs whose transcriptional changes are associated with the 

aberrant expression of each DNA repair gene. Through this approach, we identified 6 to 132 

relevant TFs (with a median value of 39) for each differentially expressed DNA repair gene 

(Supplementary Table 4). Many of these TFs have established roles in DNA repair, and some of 

them are discussed in the next section.  

To dissect the contributions of CNA, DM and TF-gene expression change to DNA repair 

gene dysregulation, next we constructed four alternative linear regression models for every 

differentially expressed DNA repair gene. Each model uses the mRNA abundance of the same 

DNA repair gene as the response variable, but comprises different explanatory variables as shown 

in Table 2. We compared the performance of the four models for the same repair gene via a 

subsampling-based process (see Materials and Methods for detail), and summarised the results 

across the 149 differentially expressed DNA repair genes in terms of two measurements: Spearman 

correlation coefficient between predicted and observed mRNA abundance, and variance in the 

mRNA abundance explained by the model (coefficient determination, R2).  

As we can see from Table 2, the model using CNA alone as explanatory variable performs 

better than the model using DM alone (average Spearman correlation coefficient 0.41 vs 0.25, and 
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R2, 22% vs 0%), which is consistent with the result from Section 1 showing that CNA in general 

has a higher correlation with mRNA than DM. Furthermore, results in Table 2 also reveal that, 

compared with using CNA alone, combining CNA and DM does not greatly improve the model 

performance (average Spearman correlation coefficient 0.44 vs 0.41, and R2, 24% vs 22%).  By 

contrast, when the expression values of the selected TFs are added, the model performance becomes 

substantially improved (average Spearman correlation coefficient 0.85 vs 0.44, and R2, 73% vs 

24%). These results demonstrate that using the expression values of the identified TFs can 

substantially improve the model performance, which underscores the importance of these TFs in 

driving DNA repair dysregulation. 

Table 2 Performance comparison of the four linear regression models. Each model uses the mRNA abundance of 
the same DNA repair gene as the response variable, but comprises different explanatory variables as listed below. A 
negative R2 means that the linear model poorly fits the data. 

  Spearman Correlation Coefficient (%) Coefficient of Determination (R2) (%) 

  Min Median Mean Max Min Median Mean Max 

DM -13 24 25 55 -237 3 0 24 

CNA -7 40 41 78 -14 20 22 61 

CNA + DM -6 43 44 78 -13 21 24 61 

TFs 37 77 75 95 12 56 55 87 

CNA + DM + TFs 64 86 85 97 34 74 73 91 

3.2. Selected(TFs(that(may(be(major(drivers(of(DNA(repair(dysregulation((

Among the TFs identified by the LASSO-based statistical framework, some are predicted to 

target multiple genes within the same repair pathway, and therefore might be particularly important 

for the dysregulation of that pathway. Moreover, they may also target genes that function in 

different repair pathways, and hence may be able to exert a global influence on the dysregulation of 

the DNA repair machinery. With these thoughts in mind, we sorted the TFs identified in this study 

according to the number of genes that they target, and showed the top ten TFs and their pathway-

specific targets in Figure 4. We consider these TFs as potential major drivers of DNA repair 

dysregulation in breast cancer. 
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Figure 4 Ten TFs as potential major drivers of DNA repair dysregulation in breast cancer. TFs selected by the LASSO-
based statistical framework were sorted by the number of target genes, and only the top ten TFs and their target genes are shown. 
The target genes are grouped according to pathway participation. Node size indicates level of differential expression. The figure 
was made using the Cytoscape software (http://www.cytoscape.org/) with manual layout. 

Of these selected TFs, some have well-established roles in modulating DNA repair. The 

most prominent example is FOXM1, a master regulator of DNA damage response and a 

determinant of resistance to DNA-damaging agents [44]. Overexpression of the FOXM1 gene is 

observed in many cancers [45], including breast cancer [46], and is thought to cause genomic 

instability [47] and poor prognosis [48,49]. Another noted DNA repair regulator is E2F1, which 

coordinates the function of several vital cellular processes, including DNA repair, cell cycle 

checkpoint and apoptosis [50-52]. A recent study showed that, following treatment with histone 

deacetylase inhibitors (HDACs), a promising class of drug in prostate cancer, decreased recruitment 

of E2F1 results in downregulation of a few key DNA repair genes, leading to reduced DNA repair 

capacity and enhanced sensitivity to genotoxic agents [53]. Interestingly, most of these key repair 

genes, including BRCA1, RAD51, RAD54L and BLM, were also identified in this study as E2F1 

targets in breast cancer. 

Apart from TFs with well-established role in DNA repair, the top ten TFs shown in Figure 4 

also include TFs whose role in DNA repair is less-well studied. For example, the protein p73 (also 

known as TP73), which belongs to the same family as the well-known tumour suppressor p53, was 

recently discovered to regulate DNA repair gene expression [54]. As another example, MXD3, 

whose role in human DNA repair has not begun to be explored, was recently proposed to be 

involved in DNA repair in mouse [55]. We hence propose that these less well-known TFs identified 

in this study may serve as good candidates for identifying novel regulators of DNA repair and/or 

innovative drug targets for DNA repair-related breast cancer therapy. 
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3.3. TFs(with(ChIPNSeq(profiles(in(ENCODE(

In the LASSO-based statistical model, TFs were selected based on an association of the 

expression of the TF genes with the expression of a given DNA repair gene. One issue associated 

with this process is that some of the TFs selected for a given DNA repair gene may not directly 

regulate the repair gene, i.e. these TFs may function as upstream regulators of DNA repair, which 

do not directly bind and target a particular repair gene. We therefore sought to estimate the 

percentages of the identified TFs that have direct targets in DNA repair. 

A major difficulty is that the genome-wide binding sites of most human TFs are currently 

unknown. For example, the Encyclopedia of DNA Elements (ENCODE) project, which aims to 

build a comprehensive list of functional elements in the human genome [56], describes only 161 

TFs (~10% of all human TFs) that have ChIP-Seq data. These 161 TFs were profiled in 91 cell 

types, with each cell type having a few to dozens of TFs analysed 

(https://genome.ucsc.edu/encode/). In addition, for TFs whose binding sites have been measured by 

ChIP-Seq, how to define their direct target genes is still an open question [28]. 

Here we searched the ENCODE database for TFs which were identified in this study and 

also have binding profiles measured by ChIP-Seq. As all ENCODE ChIP-Seq data were measured 

in cell lines, here we used the breast cancer cell line MCF-7 as a surrogate for the TCGA breast 

cancer samples analysed in this study. MCF-7 has been widely used in breast cancer research, and it 

has more TFs measured by ChIP-Seq than do other breast cancer cell lines in ENCODE. Of the 

seven TFs measured in MCF-7, we found six (E2F1, MYC, TCF7L2, CTCF, GATA3, ZNF217) 

were identified in this study as potential DNA repair regulators. For each of these six TFs, we 

further examined how many of the predicted targets have support from the ChIP-Seq data. 

Specifically, we calculated the physical distances between TF binding sites and the transcription 

start sites (TSSs) of target genes located on the same chromosome; we consider a direct TF-target 

relationship to exist if such a distance is ≤ 100 kb (the criterion was chosen according to [57]). As 

shown in Table 3, although the small sample size used in this analysis may lead to a biased result, 

we found in total 81% of the predicted DNA repair targets are supported by the ChIP-Seq data; and 

in particular, of the 46 predicted E2F1 targets, 41 (89%) have support from this ChIP-Seq analysis. 

This result suggests that most of the TFs identified in this study are likely to directly regulate their 

DNA repair targets. 
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Table 3 TFs with predicted DNA-repair targets and ChIP-Seq profiles from ENCODE  

TF( No.(of(predicted(
targets(

No.(of(predicted(targets(
supported(by(ChIPNSeq(data( Percentage(

E2F1# 46# 41# 89%#

MYC# 12# 10# 83%#

TCF7L2# 8# 5# 63%#

CTCF# 6# 6# 100%#

GATA3# 6# 2# 33%#

ZNF217# 2# 1# 50%#

Total# 80# 65# 81%#

 
 

 Discussion(

Prognostic and predictive biomarkers selected from high-throughput genomic data, which 

allow stratification of patients for tailored therapy, are of critical importance in cancer management 

[58]. Cancer-related dysregulation of DNA repair genes or pathways reflects altered DNA repair 

efficiency in tumours, and hence has been investigated intensively for biomarker discovery; to our 

knowledge, however, the genetic underpinnings of DNA repair dysregulation have not been 

systematically elucidated for any cancer type. In this study, we dissected gene-specific 

contributions of CNA, DM and expression changes of TFs to the differential expression of DNA 

repair genes between tumour and normal breast samples. We showed that CNA and expression 

changes of TFs are major causes of DNA repair dysregulation in breast cancer, and identified ten 

TFs that may potentially exert global impact on the dysregulation of multiple DNA repair pathways 

in this cancer type. Our work thus provides novel biological insights into DNA repair dysregulation 

in breast cancer. These insights improve our understanding of the molecular basis of the DNA 

repair biomarkers identified thus far, and have potential to inform future biomarker discovery. 

Access to multi-omics data for major cancer types has been greatly facilitated by large-scale 

projects such as TCGA in recent years. Accordingly, many methods for integrative multi-omics 

data analysis have emerged, aiming to help us understand the interplay between different molecular 

levels, and/or provide improved power to identify important genomic factors [59,60]. Compared to 

other integrative methods, linear regression models have two distinct advantages for studying the 

altered transcriptional programs in cancer: 1) they regard the expression of a gene as a function of 

CNA, DM and TF activities etc., and thus provide a priming biological knowledge-based causal 

framework for data integration and gene expression modelling; and 2) unlike most integrative 

methods, which may encounter the “curse of dimensionality” when adding more data types into the 

analysis, linear regression models are quite flexible in this regard because even with a large number 
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of potential explanatory variables, a parsimonious model can still be obtained through penalisation 

(e.g, by LASSO). 

Studies that utilise linear regression models for multi-omics data analysis have been 

reported recently [61-64]. For instance, Li and colleagues [61] fitted a linear model on the 

expression of each gene in acute myeloid leukaemia (AML) using gene-specific CNA, DM, TF 

binding signals and the counts of miRNA binding sites at the 3'-UTR as explanatory variables. In 

another study, Setty et al. [62] modelled gene expression change in glioblastoma as a linear function 

of CNA, DM, the number of TF binding sites at the promoter region, and the number of miRNA 

binding sites at the 3'-UTR. These studies successfully identified a dozen TFs and miRNAs as key 

drivers of global transcriptional changes in AML and glioblastoma, respectively [61,62]. 

The above-mentioned regression-based integrative analyses also have certain limitations. 

For example, while LASSO-enhanced linear regression models can achieve better prediction 

accuracy and interpretability by effectively reducing the number of explanatory variables needed, 

the variable selection results may be significantly influenced by the choice of the initiating factor λ. 

As a common practice in the field, such as in the aforementioned study in AML [61], the value of λ 

is determined by running a cross-validation function only once, which may lead to an unstable 

result due to the random nature of the cross-validation process. In this study, we addressed this 

issue by developing a secondary feature selection procedure that ensures the robustness of the TFs 

identified in this study (See Material and Methods for detail). 

Another problem is associated with insufficiency of explanatory variables. For example, the 

number of TFs covered by either of the two above-mentioned studies was quite limited. 

Specifically, Li and colleagues [61] conducted TF identification from 97 TFs whose binding 

profiles were measured in K562, a cell line that by far has the highest number of TFs measured by 

ENCODE ChIP-Seq experiments; the TF binding information utilised by Setty et al. [62], retrieved 

from the TRANSFAC database [65], was available for only 152 TFs. Although TF-binding 

information from ChIP-Seq experiments or the TRANSFAC database can be more accurate, the 

vast majority of human TFs were nonetheless omitted from these studies. By contrast, in the current 

study we performed TF selection from a list of 1391 TFs, covering 85% to 94% of all human TFs. 

This high coverage enabled us to identify TFs potentially involved in DNA repair. 

There are some remaining issues in this study that are mainly associated with lack of 

datasets. Firstly, our current model does not as yet consider the impact of miRNAs on gene 

expression, i.e. key variables may be absent. In fact, we failed to establish an association between 

dysregulation of DNA repair gene and expression changes of miRNAs (data not shown). The reason 

might be that in comparison with TFs, miRNAs usually have much smaller effects on target gene 

expression [66], and so given the large number of TFs in the model, miRNA-mediated 
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downregulation was not recognised by our LASSO-based approach. Future studies employing other 

features of miRNA, and/or other genomic datasets are needed to further refine the current model. 

Secondly, due to the lack of other large breast cohorts measured at multiple molecular levels, we 

had to perform model training and testing on the same TCGA breast cancer dataset. The availability 

of an independent dataset could provide more-accurate assessment for model performance. This 

limitation is common to many studies [61,62,64]. Thirdly, the TFs selected in this study were 

mainly based on statistical analysis and thus may contain false positives. Although the results in 

Section 3.3 indicate that our result may enjoy high accuracy, we hope that in the future our results 

can be further evaluated with against more experimentally based TF-binding profiles. 

In summary, we developed a penalised regression-based statistical framework that can 

integrate CNA, DM and expression changes of TFs to explain DNA repair dysregulation in breast 

cancer. Our results demonstrated that CNA and TF expression changes are major factors affecting 

the dysregulation of individual DNA repair genes, and pointed to ten TFs that might be potential 

master drivers of DNA repair pathway dysregulation in this malignancy. This work thus facilitates 

our mechanistic understanding of how the exquisite control of DNA repair regulation is 

pathologically altered in breast cancer, and may provide important implications for future 

biomarker discovery. With the accumulation of ever-increasing amount of genomic data and 

developments in integrative analysis methods, a complete understanding of the transcriptional 

dysregulation in cancer will no longer beyond reach. 
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Chapter Five: General Discussion 

Genomic instability is an enabling hallmark of cancer, which generates genetic diversity 

that fosters the acquisition of other cancer hallmarks (1). In order to prevent genomic instability, 

cells have evolved sophisticated DNA repair machinery to detect, signal and repair a diverse array 

of genotoxic lesions. Hundreds of DNA repair genes have been identified as components of this 

machinery. From a genetic perspective, the behaviour of DNA repair genes is much like that of 

tumour suppressor genes in a sense that defects in both types of genes predispose to cancer 

development (1, 2). This highlights the importance of studying DNA repair in order to understand 

cancer etiology. 

Studying DNA repair is also critical in cancer management. The majority of the DNA repair 

genes can be functionally grouped into five major DNA repair pathways, each specific for the repair 

of one type or limited types of DNA lesions (described in Chapter One and Two). It is now clear 

that upregulated DNA repair pathways can enable tumour cells to survive damages induced by 

chemotherapy and/or radiotherapy, while downregulated DNA repair pathways render tumours 

sensitive to these DNA-damaging therapies (3, 4). Accordingly, small-molecule inhibitors that 

directly target different repair pathways are being developed (3, 5), and it is very likely that in the 

near future these inhibitors can be used in combination with distinct chemotherapeutic agents and/or 

radiation to improve treatment efficacy. Furthermore, defects in a DNA repair pathway that arise 

during tumour initiation and progression often make tumours become “addicted” to another 

compensatory repair pathway for survival. This provides a vulnerability that can be therapeutically 

exploited using the principle of SL (described in Chapter One and Two) for the development of a 

novel class of targeted therapies (6). In fact olaparib, the first drug regime of this class, has recently 

been approved by the US Food and Drug Administration (FDA) for remedying BRCA-mutated, 

heavily pretreated ovarian tumours; and efforts are underway to expand the use of olaparib in other 

cancer types (5, 6). 

Taken together, these developments suggest that we are now entering a new era of cancer 

treatment, in which optimised therapy can be tailored for individual cancer patients based on the 

DNA repair status of the tumour, rather than on its histologic appearance and/or tissue of origin (3, 

5, 7, 8). In light of the precision medicine initiative recently announced by the US government (9), 

the importance of a thorough understanding of the DNA repair system for better cancer therapy can 

hardly be overemphasised. 

In the last decade, enormous progress has been made towards characterising the constituent 

gene components for each repair pathway and understanding how the gene-specific genetic defects 
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affect cancer predisposition and/or treatment response. However, outstanding challenges still 

remain before DNA repair knowledge can be successfully applied for precision medicine. The 

studies presented in this thesis attempt to address some of these fundamental challenges through a 

computational analysis of DNA repair pathways in breast cancer. This chapter summarises the key 

outcomes of the thesis and discusses possible future directions. 

5.1 A%High*quality%manual*curation%of%the%repair%pathways%

One challenge facing us is to provide an accurate, comprehensive and up-to-date annotation 

for each repair pathway. The quality of such work is of fundamental importance for applying any 

systems biology approaches, including pathway and network analyses, to the study of DNA repair. 

Much effort has been invested to construct prime pathway databases via manual curation (10, 11); 

however, at the time I commenced this thesis (2012), these common pathway resources failed to 

keep their DNA repair-related content up-to-date. For example, the Reactome database (10) had not 

updated its DNA repair entries since 2003, even though dozens of new DNA repair genes had been 

identified after that time. A similar situation was seen with the KEGG database (11). The first 

project of this thesis (Chapter Two) was therefore committed to performing a high-quality manual 

curation for each repair pathway. 

This curation process involved extracting relevant knowledge from literature and consulting 

a domain expert. The components in each curated pathway include not only enzymes such as 

ATPases, polymerases and DNA ligases, that directly conduct the repair function, but also various 

histone modification and chromatin remodelling factors that enable access to DNA lesions. 

Moreover, various posttranslational modification factors, including those involved in methylation, 

phosphorylation, ubiquitination, sumoylation and acetylation are also incorporated as they have a 

substantial impact on the repair pathway activity. After the curation, all the knowledge about a 

repair pathway, which was widely scattered over a range of knowledge domains, was assembled 

into a pathway diagram using Cytoscape (12). And for each reaction included in the pathway 

diagrams, a detailed description is given that enables mechanistic understanding of the pathway 

content. This curation work provides a solid foundation for the computational analysis presented in 

the following chapters. 

Currently, our understanding of the DNA repair pathways continues to expand. In addition 

to cataloguing new DNA repair genes, in the future we will also need to annotate exact transcripts 

that function in a given repair pathway and/or a given tissue. This can be a critical issue for pathway 

analysis as more than 90% of the human genome is subjected to alternative splicing and multiple 

transcripts from the same gene may have different or even opposing functions (13, 14).  
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5.2 Quantifying%DNA%repair%pathway%dysregulation%at%tumour%level%

Another challenge lies in how to accurately and efficiently evaluate the functional status of 

each repair pathway at the level of individual patients. This issue is of key importance for applying 

DNA repair knowledge for precision medicine, as described at the beginning of this Chapter. To 

date, pathway analysis has become a common practice in biomedical research; however, most of 

these analyses capture only pathways that differ between two phenotypic conditions, such as 

disease and normal, and hence are not able to provide patient-specific pathway aberrance 

information. 

In Chapter Three, I performed a personalised pathway analysis independently for four large 

breast cancer cohorts (about 3,000 tumours in total) to investigate the status of HR pathway 

dysregulation in individual sporadic breast tumours, its association with HR repair deficiency and 

its impact on tumour characteristics. Specifically, I calculated an HR score for each breast tumour to 

quantify the extent of HR pathway dysregulation in that tumour. Based on the score, I found HR 

dysregulation is prevalent in breast tumours but the extent differs greatly between and within the 

previously well-recognised breast cancer subtypes, underscoring the necessity of personalised 

analysis. Furthermore, I found that HR pathway dysregulation reflects HR repair deficiency, 

suggesting that the HR score can be used as a convenient way for detecting HR repair deficiency in 

individual tumours. Most importantly, I uncovered a novel association between HR pathway 

dysregulation and CIN in sporadic breast cancer. Although the importance of CIN in tumour 

evolution and drug resistance has been highlighted in recent extensive studies, the molecular basis 

of CIN in sporadic cancers remains poorly understood. The novel association revealed here 

indicates that dysregulated HR may be an important contributor to CIN in sporadic breast cancer, 

and thus facilitates future experiments to pinpoint the causative factors of CIN in sporadic breast 

cancer as well as in other sporadic cancers. 

Variability of HR dysregulation can also exist within individual tumours. A bulk tumour 

sample is usually composed of thousands of tumour cells that belong to genetically distinct 

subclonal populations. The relative abundances of these populations, known as the subclonal 

structure of a tumour, vary dynamically in different micro-environments or after exposure to cancer 

drugs, enabling the tumour to obtain metastatic potential or survive therapy (15-17). It is possible 

that the cellular status of HR, along with the status of other DNA repair pathways, may 

substantially affect how the subclonal tumour cell populations acquire new genetic alterations, 

evolve, and compete with each other; this topic, however, has rarely been touched upon so far due 

to a lack of study tools. With the rapid advance of single-cell sequencing technologies in recent 

years and the ever-falling cost of sequencing, it is becoming feasible to obtain genomic datasets for 
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different parts of a tumour. As long as there are enough samples being measured, Pathifier can be 

applied directly to such datasets to interrogate pathway variation within tumours. 

5.3 Integrating%multi*omics%data%to%decipher%mechanisms%of%DNA%repair%dysregulation%

A third challenge is how to integrate multi-omics data to facilitate a mechanistic 

understanding of DNA repair dysregulation in cancer. In Chapter Three, I demonstrated that HR 

pathway dysregulation is prevalent in breast cancer. In earlier studies, numerous research groups 

documented the aberrant expression of individual DNA repair genes in various cancer types. The 

transcriptional changes of DNA repair genes and/or pathways in cancer provide the first line of 

evidence for the altered DNA repair status in tumour, and hence have important implications for 

biomarker discovery and treatment selection. However, although large-scale genomic projects, such 

as TCGA, have generated a wealth of genomic data at multiple molecular levels, it remains 

challenging to combine the information from these different levels of data to provide insights into 

the underlying biology of DNA repair dysregulation in cancer. 

In Chapter Four, I systematically dissected the contributions of DNA copy number alteration 

(CNA), DNA methylation at gene promoter regions (DM) and expression changes of transcriptional 

factors (TFs) to the differential expression of individual DNA repair genes in breast tumour versus 

normal samples; these gene-specific results were summarised at pathway level to examine whether 

different DNA repair pathways are affected in distinct manner. In particular, I developed a 

regularised linear regression-based statistical framework to identify relevant TFs for each DNA 

repair gene from a comprehensive list of 1391 manually curated human TFs (18). This framework 

takes into account the contributions of genetic and epigenetic changes to gene expression variations, 

and overcomes the instability inherent to the regularised linear regression methods. The results 

suggest that CNA and expression changes of TFs are major causes of DNA repair dysregulation in 

breast cancer, and that a subset of the identified TFs may have global impact on the dysregulation 

of different repair pathways. The work presented in this chapter provides novel insights into DNA 

repair dysregulation in breast cancer. These insights improve our understanding of the molecular 

basis of the DNA repair biomarkers identified thus far, and have the potential to inform future 

biomarker discovery. 

Integrating multi-omics data for better understanding of biological systems is still in its 

infancy, and much still remain unknown regarding how gene expression is regulated in normal 

cells, and how this exquisite control is compromised in cancer as well as in other diseases (19). In 

the future, novel methods taking advantage of the ever-increasing multi-omics data, especially 

chromatin immunoprecipitation sequencing (ChIP-Seq) data, would be the key to obtain a more 

comprehensive understanding of DNA repair dysregulation in cancer. 
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5.4 Concluding%remarks%

Cancer is an increasingly serious concern, especially with an aging population. A 

thorough understanding of the DNA repair system will ultimately lead to tremendous improvements 

in cancer treatment. The three pieces of work presented in this thesis form a coherent research story, 

starting from building a knowledge base for DNA repair (Chapter Two), followed by personalised 

analysis of DNA repair pathway dysregulation (Chapter Three), then ending up with elucidating 

underlying molecular mechanism of DNA repair dysregulation (Chapter Four). The results 

generated from these studies deepen our understanding of the complex DNA repair system and also 

inform future studies for better cancer therapy. 

There are two emerging directions in the field of DNA repair research, which were not 

touched upon in this thesis due to limitations of time and resources, but are worth exploring in the 

future. First, although DNA repair pathways are generally considered as mutually exclusive 

mechanisms responsible for distinct types of damages, a more accurate view is that they function in 

a dynamic and interconnected network. Recent studies (20-23) provide strong evidence that 

“crosstalks” exist between different DNA repair mechanisms; namely, these repair pathways not 

only share common proteins, but also operate synergistically to repair lesions. Moreover, proteins 

that are involved in multiple repair pathways, termed DNA repair hubs, are frequently compromised 

in various cancers, and have been proposed as potential targets for targeted therapy (24).  

In a broader view, DNA repair pathways are linked and coordinated with other important 

cellular pathways, such as cell cycle checkpoint and apoptosis, all of which can be included in the 

intrinsic network responsible for maintaining genomic instability. In light of this view, it is 

interesting to see that, among 186 KEGG pathways (11) and 674 Reactome pathways (10), the 

pathway dysregulation score of the cell cycle pathway is most highly correlated with the HR score; 

and the dysregulation score of DNA repair pathways other than HR also have much higher 

correlation with the HR score compared with most of other pathways (Chapter Three, 

Supplementary Table S3 and S4; the pathway dysregulation score and HR score were calculated in 

the same way). In the future, more systems-level analyses are needed to further characterise this 

genome-maintaining network, of which the results will be of great importance for dissecting the 

complexity of the cellular DNA repair system. 

Second, although it is a well-known issue, I still would like to emphasise the importance of 

applying proteomics techniques for DNA repair research. Gry et al. (25) compared the RNA 

profiles and protein profiles of 1066 genes in 23 human cell lines, and found that the mean 

correlations between protein and RNA levels was only about 0.22. Besides, recent studies (26-28) 

have shown that a variety of posttranslational modifications have a substantial impact on various 
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aspects of DNA repair, including damage recognition, signal transduction and loading of the repair 

proteins. With the mass spectrometry-based proteomics technologies becoming more mature (29), 

these new technologies will play increasingly important roles in our understanding of the DNA 

repair system. 

In conclusion, we will very likely see the realisation of precision medicine in the next 

decade or two, which will improve human health and life expectancy in an unprecedented manner. 

With the advances of the various genomic profiling techniques and the advent of novel pathway and 

network analysis approaches, I hope that systems biology studies in the field of DNA repair, 

including those herein, will contribute to the early achievement of this great goal. 
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Appendix 1: Unpublished results from the curation work 

 A1.1$Homologous$recombination$

Of all DNA lesions, double-strand breaks (DSBs) are generally considered to be the most 

toxic and can be lethal if left unrepaired. Homologous Recombination (HR) and Non-homologous 

End-joining (NHEJ) are the two main repair pathways for DSBs, the choice of which depends on 

cell cycle stage and the structure of the DNA ends. HR occurs during the S and G2 phases of the 

cell cycle as it needs a homologous sister chromatid to restore the lost DNA information at the 

break site, resulting in a repair that is more accurate than with other mechanisms.  

HR is proposed to occur in several steps. First, the damaged DNA is recognized by the 

MRE11-RAD50-NBS1 (MRN) complex, which also plays a role in the recruitment and activation 

of the Ataxia Telangiectasia Mutated (ATM) kinase. Activated ATM initiates a signaling cascade 

that results in the phosphorylation of many substrates, including histone variant H2AX. 

Phosphorylated H2AX (γH2AX) in turn recruits MDC1 to sites of DNA damage, which acts as an 

adaptor protein that help many other DDR proteins to be targeted to the damage sites, such as 

RNF8, RNF168, BRCA1 and 53BP1.  

At the same time as these repair proteins are recruited, the DSB ends are undergoing a two-

phase resection, with limited resection initiated by MRN and CtIP, and extensive resection 

mediated by the BLM helicase and DNA2 exonuclease, or the EXO1 exonuclease alone. The 

replication protein A (RPA) recognizes and binds the 3’ single-stranded (ssDNA) tail generated by 

the resection, and is then replaced by RAD51 with the assistance of other factors, including 

BRCA2. The RAD51-bound ssDNA (termed RAD51 nucleoprotein filament) searches for and 

invades homologous template. The invading strand is extended by synthesis of new DNA, and can 

facilitate the exchange of the homologous DNA strands to generate a D loop or a Holliday junction 

structure, which can then be resolved by various enzymes, respectively, to complete the repair.  
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Figure 1 Homologous recombination (HR) pathway figure. The original PDF version is deposited at UQ eSpace. 
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A1.1.1 Reaction Description 

R1 Formation of RAD50:MRE11 Complex  

See description for R3. 

R2 Association of RAD50:MRE11 with NBS1 via MRE11 interaction 

See description for R3. 

R3 Association of MRN with sites of DSB 

The MRN complex is an assembly of two MRE11 subunits, two RAD50 subunits, and one 

NBS1 subunit. MRE11 has ssDNA endonuclease and 3’ to 5’ exonuclease activities important for 

the initial step of DNA end resection in HR; RAD50 associates with DSB ends and interacts with 

MRE11; NBS1 also interacts with MRE11 and it has been shown to recruit ATM to a DSB through 

its C-terminus and interacts with MDC1 via its N-terminus.  

MRN complex has multiple roles in DSB repair – it recognizes the broken ends, acts as a 

DNA-bridging scaffold to prevent chromosome separation, catalyzes the activation of ATM in 

conjunction with other proteins (such as TIP60), and participates in the early steps of end resection 

at DSBs. By promoting the activation of the ATM kinase, this complex is also involved in setting 

up a cell cycle checkpoint response in reaction to DNA damage [1, 2].  

R4 formation of ATM-TIP60 Complex�

See description for R6.  

R5 Recruitment of ATM-TIP60 Complex by MRN, and activation of TIP60 histone 

acetyltransferase activity by Binding to H3K9me3 

See description for R6.  

R6 Acetylation of ATM by TIP60 

ATM and tumor suppressor TIP60 form a stable complex that is then recruited to DSBs by 

MRN. Following the recruitment, TIP60 binds to a histone variant H3 tri-methylated on lysine 9 

(H3K9me3), which activates the histone acetyltransferase (HAT) activity of Tip60, leading to the 

subsequent acetylation and activation of the kinase activity of ATM [3-5]. 
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R7 Intermolecular autophosphorylation and dissociation of dimeric ATM 

Complexes 

ATM normally remains inactive in human cells as a dimer in which it is unable to 

phosphorylate other cellular substrates. In response to DNA damage, and with the presence of MRN 

in the damage site, the kinase domain of one ATM molecule phosphorylates Ser-1981 of another 

ATM molecule in the same dimer, and the phosphorylated ATM is then dissociated from the 

complex with its phosphorylation activity activated [3, 6, 7]. It has been recently shown that the 

activation process of ATM also involves autophosphorylation on Ser-367, Ser-1893, Ser-2996 and 

acetylation on Lys-3016 [8]. 

R9 Phosphorylation of histone H2AX at Serine-139 by ATM at the site of DSB 

Immediately following recruitment of ATM to DSB sites, it phosphorylates histone variant 

H2AX on Ser139, producing γH2AX that is required for DNA damage signal amplification and 

subsequent accumulation of numerous DNA damage response (DDR) proteins at DSBs sites [3, 6, 

9]. 

In addition to ATM, recent research shows H2AX can also be phosphorylated by ATR and 

DNA-PK in response to DNA damage. These two proteins are members of the phosphoinositide 3-

kinase related protein kinase (PIKK) family that also contains ATM. ATM and DNA-PKcs display 

functional redundancy in phosphorylating H2AX following ionizing radiation, while ATR is more 

important for H2AX phosphorylation in response to DNA damage that would slow or stall 

replication forks [9]. 

R10 Association of γH2AX and phosphorylated MDC1 

MDC1 directly binds γH2AX for its recruitment to DSB sites. After its recruitment, MDC1 

facilitate more ATM and MRN recruitment to further promote γH2AX spreading for distances up to 

1-2 megabases around DSBs. It has been suggested that the recruitment of γH2AX and the 

phosphorylation of MDC1 at DSB sites provides a docking site for many components of HR 

pathway [10, 11].  

R11 Recruitment of chromatin-remodeling complex INO80, SWR1, SWI/SNF, RSC 

and NuRD 
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Chromatin-remodeling complexes, such as INO80, SWI/SNF, RSC and NuRD, are thought 

to be involved directly in HR repair. In particular, recent experiments suggested that INO80, which 

is recruited in a γH2AX-dependent manner, promotes histone eviction around the DSB site, and 

stimulates ssDNA formation and checkpoint activation; SWI/SNF, which is also recruited in a 

γH2AX-dependent manner, can further promote H2AX phosphorylation to form a positive feedback 

loop; RSC is recruited to DSB lesions very early and mobilizes nucleosomes to promote loading of 

MRN complex; NuRD facilitates RNF8/RNF168-dependent histone ubiquitination to facilitate 

ubiquitin-dependent retention of RNF168 and BRCA1[12, 13].  

R13 Phosphorylation of MDC1 by ATM 

Immediately following phosphorylation of H2AX by ATM, MDC1 is also phosphorylated 

by ATM and then recruited to DSB sites via binding to γH2AX. Phosphorylated form of MDC1 

could serve as a docking site for the FHA domain of RNF8 [3, 6]. 

R14 Formation of RNF8-UBC13 complex 

The E3 ubiquitin ligase RNF8 forms a complex with E2 ubiquitin-conjugating enzyme 

UBC13 to ubiquitinate γH2AX near the DSB sites [14]. The formation of this complex is facilitated 

by HERC2, another E3 ubiquitin ligase that interacts with the FHA domain of RNF8, and 

stimulates the ubiquitin ligase activity of RNF8 [15]. 

R15 Recruitment of RNF8-UBC13 complex which then mono-ubiquitinate gamma 

H2AX 

The phosphorylated MDC1 serves as a docking site for the recruitment of RNF8 and 

UBC13 complex, which mediates the mono-ubiquitination of γH2AX and provides a docking site 

for the recruitment of RNF168 [12]. 

R17 Formation of RNF168-UBC13 complex 

See description for R18. 
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R18 Recruitment of RNF168-UBC13 complex which then poly-ubiquitinate gamma 

H2AX 

The E3 ubiquitin ligase RNF168 forms a complex with E2 ubiquitin-conjugating enzyme 

UBC13, which binds and amplifies the RNF8-mediated ubiquitination of γH2AX, generating 

ubiquitin chains that are required for the accumulation and retention of 53BP1 and BRCA1-A 

complex [16, 17]. The chromodomain helicase DNA-binding protein 4 (CHD4), which is a 

chromatin remodelling factor, may also play an essential role in this process as depletion of CHD4 

disrupts the recruitment of RNF168 [18]. 

On the other hand, as uncontrolled amplification of chromatin ubiquitination could have 

deleterious consequences, there are at least five deubiquitination enzymes (BRCC36, USP3, 

OTUB1, TRIP12, UBR5) that can counteract the activity of RNF168, and therefore confine the 

ubiquitination to DNA lesions [19, 20].  

R20 The formation of BRCA1-A Complex ( BARD1 - BRCA1- abraxas - RAP80 - 

BRCC36 - BRCC45 - MERIT40 ) 

The BRCA1-A complex consists of BRCA1-BARD1 heterodimer, RAP80 (also known as 

UIMC1), Abraxas (also known as FAM175A or CCDC98), BRCC36 (also known as BRCC3), 

BRCC45 (also known as BRE), RAP80 (also known as UIMC1), NBA1 (also known as 

MERIT40). BRCC36 and BRCC45 are thought to facilitate the E3 ubiquitin ligase activity of the 

BRCA1–BARD1 heterodimer; NBA1 stabilizes various components of the BRCA1-A complex; 

Abraxas-RAP80 sub-complex specifically binds to polyubiquitin chains present on γH2AX at DNA 

damage sites [21-23]. 

R21 Recruitment of BRCA1-A complex 

The BRCA1-A complex directly binds to the polyubiquitin chains generated by RNF8 and 

RNF168 through the Abraxas-RAP80 sub-complex. It has been suggested that this complex may 

functions to control BRCA1 activity for DSB end resection and prevent excess HR activity by 

suppressing BRCA1-C complex [21-23]. 53BP1 binds to methylated histones, which could possibly 

only be recognized after RNF8–RNF168–UBC13-mediated polyubiquitylation. This protein is 

critical for the control of DSB repair, promoting NHEJ and inhibiting the 5′ end resection needed 

for HR. Loss of 53BP1 partially rescues the HR defect of BRCA1 mutant cells [24, 25].  
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R23 Phosphorylation of CtIP at Thr-847 and Ser-327 by CDK2-cycline A Complex 

CtIP (also known as RBBP8) acts together with BRCA1 and MRN complex to promote 

initial end resection for DSBs, which is a critical step for HR repair. Actually, HR capacity is 

maximized in S and G2 through phosphorylation of CtIP on Thr-847 and Ser-327 by CDK2-cycline 

A complex [26]. As DSB end resection is essential for HR but not for NHEJ, this modification of 

CtIP many represent a mechanism by which human cells modulate DSB repair pathway choice 

during cell cycle [27].  

R24 Ubiquitination of CtIP by BRCA1 

In S and G2, CDK-dependent phosphorylation of CtIP causes its interaction with the BRCT 

domains of BRCA1, resulting in the activation of BRCA1 E3 ligase activity and subsequent CtIP 

ubiquitination [22, 28]. 

R25 The formation of BARD1-BRCA1-CtIP - MRN Complex (BRCA1-C Complex) 

BRCA1, CtIP, and MRN form a complex when cells enter the S and G2 phases of the cell 

cycle. It has been proposed that phosphorylated CtIP promotes DNA end resection by interacting 

and stimulating the nuclease activity of the MRN complex [22, 29].  

R26 Initial DSB end resection by BRCA1-C complex 

The resection of DSBs to generate ssDNA tails is a two-step process, which occurs after the 

accumulation of a number of upstream HR proteins, such as MDC1, RNF8 and BRCA1. The initial 

DSB end resection by BRCA1-C complex is likely to be conducted mainly by the nuclease activity 

of the MRN complex. CtIP promotes this resection by interacting with MRN and stimulating its 

nuclease activity. BRCA1 may function as a scaffold to stabilize MRN and CtIP as it is not known 

to have any nuclease or helicase domains [22, 30, 31].  

R27 Extensive resection by EXO1 

Following the initial resection of DSB ends, a long-range resection is conducted by either 

DNA Exonuclease I (EXO1) or by Bloom Syndrome Protein (BLM) and DNA replication helicase 

2 (DNA2). This process generates ssDNA tails at the break site, which is essential for the 

subsequent cell cycle checkpoints activation and for RAD51 mediated strand invasion into 
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homologous duplex DNA. EXO1 serves as a resection nuclease and plays a predominant role in this 

process [30, 32, 33]. 

R28 Extensive resection by DNA2 and BLM 

BLM and DNA2 form a complex and interact functionally to conduct extensive resection of 

DSB ends [34]. This long-range resection machine is redundant with the one involving EXO1, and 

it remains unknown what determines the choice between these two machines [30, 35]. 

R29 Association of RPA Complex with ssDNA 

Replication protein A (RPA) is an ssDNA binding protein that has three subunits (RPA1, 

RPA2 and RPA3), which is recruited to DSB sites following the formation of 3’ ssDNA by DSB 

end resection. It plays a critical role in stabilizing the 3’ ssDNA regions, and therefore is essential 

for the assembly of RAD51 filaments on RPA-coated ssDNA and activation of the cell cycle check 

point by ATR [36-38].  

R30 The formation of BARD1- BRCA1 - PALB2 - BRCA2 - RAD51 - BRCC36 - 

BRCC45 Complex (BRCC Complex) 

BRCC is an ubiquitin E3 ligase complex consisting of BRCA1, BARD1, BRCA2 (also 

known as FANCD1), PALB2 (also known as FANCN), RAD51, BRCC36 and BRCC45. In this 

complex, BRCC36 and BRCC45 have been found to promote the E3 ubiquitin ligase activity of the 

BRCA1–BARD1 heterodimer. PALB2, a partner and localizer of BRCA2, has been shown to serve 

as the molecular adaptor between BRCA1 and BRCA2. BRCA1 is thought to fine tune HR partly 

through its modulatory role in the PALB2-dependent loading of BRCA2-RAD51 repair machinery 

at DNA breaks [21, 22, 39]. 

R31 Formation of RAD51-ssDNA nucleoprotein filament and DNA D-loop structure 

One of the key steps in HR is the loading of RAD51, an evolutionarily conserved 

recombinase, onto ssDNA to form a nucleoprotein filament. This filament is the catalyst for strand 

invasion into homologous duplex DNA, resulting in the formation of a D loop structure. The above 

process requires the participation of the tumor suppressor BRCA2, which acts as a mediator binding 

both ssDNA and RAD51. This process also depends on the concert action of a number of partner 

proteins, including the five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) 
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[40], RAD52 [41], RAD54 and its paralog RAD54B [42, 43], RAD51AP1 [44, 45], and the two 

ssDNA binding proteins SSB1 and SSB2 [46, 47]. 

Apart from the positive role that HR has in maintaining genome stability, inappropriate 

hypercombination can also cause genomic instability and cancer.  Proteins that restrict unscheduled 

HR include RETL1, which interferes with the formation of RAD51-ssDNA filament [48], and 

PCNA-associated recombination inhibitor (PARI), which promotes the disassembly of the D loop 

structure [49]. 

R34 Extension of 3' invading strand by DNA polymerase eta 

See description for R35. 

R35 Extension of 3' invading strand by DNA polymerase delta 

After resection to create single-stranded 3′ overhangs, strand invasion allows for 3′ 

extension. Branch migration of the resulting Holliday Junction allows for release of the invading 

strand, which subsequently anneals to the opposite side of the original break. Recent studies showed 

that DNA polymerase eta [50, 51] or more likely DNA polymerase delta [52, 53] can perform 3′ end 

extension at a D-loop.  

R36 Holliday junction formation mediated by RAD52  

Capture of the second DSB end by annealing to the extended D loop leads to the formation 

of Holliday junctions, which is mediated by RAD52 [40, 51].  

R37 Resolution of D loop by RTEL1 producing non-crossover product 

Regulator of Telomere Length 1 (RTEL1) is an essential helicase that is essential in DNA 

repair as well as telomere maintenance. It promotes the disassembly of D loop at an early stage of 

HR generating non-crossover product, and thus promotes synthesis-dependent strand annealing 

(SDSA), one of the HR-mediated repair mechanisms [38, 48]. 

R38 Formation of MUS81-EME1 Complex 

See description for R39. 
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R39 Resolution of D loop by MUS81-EME1 Complex producing crossover product 

MUS81 is a member of the XPF family of heterodimeric nuclease and can form a complex 

with EME1. The major role of this complex is to resolve Holliday Junction, but it also can 

efficiently cleaves D loop, leading to crossover product [54, 55]. 

R40 Formation of BLM, TOPOIIIα, RMI1 and RMI2 Complex 

See description for R41. 

R41 Dissolution of Holliday junctions by BLM, TOPOIIIα, RMI1 and RMI2 

Complex giving non-crossover product 

BLM, the helicase mutated in a cancer predisposition syndrome known as Bloom 

Syndrome, forms a complex with topoisomerase 3α, RMI1 (also known as BLAP75) and RMI2 

(also known as BLAP18). This complex stimulates the dissolution of Holliday structure and always 

generate non-crossover product. It is therefore important for preventing aberrant recombination, 

elevated sister chromatid and genome rearrangements [38, 56]. 

R42 Resolution of Holliday junctions by GEN1 giving noncrossover product 

See description for R43. 

R43 Resolution of Holliday junctions by GEN1 giving crossover product 

GEN1 is a member of the Rad2/XPG family of monomeric, structure-specific nucleases, but 

it has been adapted from a simple 5’-flap endonuclease into an HJ resolvase, generating crossover 

or non-crossover product [38, 57]. 

R44 Resolution of Holliday junctions by MUS81-EME1 complex giving crossover 

product 

See description for R39. 

R45 Formation of SLX1-SLX4 Complex 

See description for R47. 
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R46 Resolution of Holliday junctions by SLX1-SLX4 C giving noncrossover product 

See description for R47. 

R47 Resolution of Holliday junctions by SLX1-SLX4 C giving crossover product 

SLX4 is an important Fanconi Anemia protein also known as FANCP. It associates with 

SLX1 to form a complex that has remarkable Holliday junction-resolving activity, generating 

crossover or non-crossover product [38, 58]. 

R48 RAD52 binds ssDNA to initiate SSA 

RAD52-dependent single-strand annealing (SSA) subpathway of HR is an error-prone but 

efficient way to repair DSBs between two direct repeat sequences, each present on one side of the 

DSB ends. SSA is an important pathway for both DNA repair and mutagenesis given the fact that 

almost half of the human genome consists of repeated sequences. This pathway is initiated by 

RAD52 that binds 3’ ssDNA ends and functions in concert with RPA to facilitate strand annealing 

between the two direct repeats [38, 59, 60]. 

R64 Heterodimer formed by ERCC1 and XPF 

See description for R49. 

R49 Removal of non-homologous 3' single-stranded flaps at DSB ends by ERCC1 

and XPF 

XPF and ERCC1 form a heterodimer that functions as a 5′-3′ structure-specific 

endonuclease. The key activity of this heterodimer is to remove non-homologous 3′ single-stranded 

flaps at broken ends before they are rejoined (in this case, it is the sequence between the two 

repeats). In addition to SSA, this heterodimer plays an important role in another a few DNA repair 

pathways, including Nucleotide Excision Repair (NER), Fanconi Anemia (FA) pathway, and 

Microhomology-Mediated End-Joining pathway (MMEJ, a subpathway of Non-homologous End-

joining repair pathway) [61, 62].  

R50 Ligation of the DSB ends by LigIII 

The last step of SSA is the ligation of two DSB ends to restore the broken DNA as a 

continuous duplex. This process is conducted by DNA ligase III. [63]. 
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R51 SUMOylation of 53BP1 by PIAS4 

The tumor suppressor 53BP1 is SUMOylated by SUMO ligases PIAS4 in response to DSB, 

which is essential for the association of 53BP1 with the damage site [64, 65]. 

R52 SUMOylation of BRCA1 by PIAS1 

In response to DSB, tumor suppressor BRCA1 is SUMOylated by PIAS1 or PIAS4, two 

SUMO ligases that are important for DDR. This reaction stimulates the ubiquitin ligase activity of 

BRCA1 and promotes the recruitment of BRCA-A complex to the damage site [38, 64, 65] 

R58 SUMOylation of BRCA1 by PIAS4 

See description for R52. 

R53 BRCA2 stabilized by RBMX 

RBMX is a heterogeneous nuclear ribonucleoprotein that has a role in alternative splicing. It 

has been recently shown that RBMX is recruited to DNA damage site with the help of PARP1 and 

promotes HR by facilitating proper expression of BRCA2 [66]. 

R54 Phosphorylation of MDC1 by CK2  

It has been shown that MDC1 is phosphorylated by casein kinase 2 (CK2) on a cluster of 

conserved repeat motifs. Mutation of these conserved motifs in MDC1 or depletion of CK2 disrupts 

the interaction between MDC1 and NBS1 (one of the MRN complex components), and in turn 

abrogates the targeting of MRN on DNA DSB sites [10, 11, 38]. 

R55 Association of phosphorylated MDC1 with MRN complex 

See description for R54. 

R56 Formation of BRCA2-DSS1 complex 

DSS1 forms a complex with BRCA2, which is required for the stability and ssDNA binding 

ability of the latter protein. DSS1 also facilitates BRCA2 in RAD51–ssDNA filament formation [21, 

67]. 
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R59 SUMOylation of RNF168 by PIAS4 

It has been recently shown that RNF168 is SUMOylated by PIAS4 in response to DSB, and 

this modification might be important for RNF168 retention at the DSB site [68, 69]. 

R60 SUMOylation of HERC2 by PIAS4 

The ubiquitin ligase HERC2 is SUMOylated by PIASA in response to DSB. This 

modification of HERC2 promotes its interaction with RNF8 and is necessary for stabilizing the 

RNF8-UBC13 complex [69]. 

R61 Heterodimer formed by RNF20 and RNF40 

See description for R63. 

R62 Phosphorylation of RNF20 and RNF40 by ATM 

See description for R63. 

R63 Monoubiquitylation of histone H2B by RNF20 and RNF40 dimer  

RNF20 and RNF40 are both E3 ubiquitin ligase and form a heterodimer termed BRE1. This 

complex plays a role in HR by monoubiquitinating histone H2B. This process relies on 

phosphorylation of RNF20 and RNF40 and is essential for DNA end resection in HR and 

recruitment of downstream HR proteins such as RAD51 and BRCA1 [70-72]. 

R64 SUMOylation of MDC1 by PIAS4 

See description for R65. 

R65 Ubiquitination of SUMOylated MDC1 by RNF4 

It has been recently shown that MDC1 is SUMOylated mainly by PIAS4 at sites of DNA 

damage, which is then recognized and ubiquitinated by the SUMO-targeted E3 ubiquitin ligase 

RNF4. This process is required for MDC1 degradation and removal of MDC1 and 53BP1 from the 

damage sites, and is important for the recruitment of downstream HR proteins such as CtIP, RAD51 

and RPA [73-75]. 
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A1.2 Non-homologous end-joining 

Non-homologous end-joining (NHEJ) repair is the main pathway for repairing DNA double-

strand breaks (DSBs). It functions in all phases of the cell cycle but predominates in G0 and G1 

phase. In contrast to Homologous Recombination (HR) repair, NHEJ directly rejoins the DSBs 

without the need for homologous template - namely, it restores genomic integrity without ensuring 

sequence fidelity - and thus be considered as error-prone [76-78]. NEHJ has two subpathways – 

canonical NEHJ (C-NHEJ) and alternative NHEJ (A-NHEJ). The choice between them is regulated 

by both 53BP1 (which promotes C-NHEJ) and PARP1 (which promotes A-NHEJ), and A-NHEJ 

usually operates under C-NHEJ defective conditions [79, 80]. Interestingly, it was recently shown 

that deregulated NHEJ plays a critical role in the hypersensitivity of HR-deficient cells to PARP 

inhibitors [81]. 

 
Figure 2 Non-homologous end joining (NHEJ) pathway figure. The original PDF version is deposited at UQ eSpace. 
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A1.2.1 Reaction Description 

R48 Binding of Ku70-Ku80 heterodimer with ends of DNA double-strand break 

(DSB) 

Ku is a heterodimer consisting of Ku70 and Ku80, which functions as the major DSB 

sensing protein in NHEJ, and also possesses a DNA end processing activity. In response to DSB, it 

rapidly binds to each of the two broken ends with high affinity but without apparent sequence 

specificity, and forms a Ku-DNA complex that serves as a docking site for the subsequent NHEJ 

proteins [76, 82, 83].  

R49 Recruitment of DNA-PKcs to DNA damage sites 

Binding of Ku to DSB ends is followed by recruitment of the DNA-dependent protein 

kinase catalytic subunit (DNA-PKcs) that forms a complex called DNA-PK with Ku. Formation of 

this active kinase complex causes the phosphorylation of other NHEJ proteins as well as the 

autophosphorylation of DNA-PKcs. This autophosphorylation reaction is thought to induce a 

conformational change in DNA-PKcs, resulting in the release of the autophosporylated DNA-PKcs 

from DNA before or after end processing [76, 83, 84]. 

R50 Autophosphorylation of DNA-PKcs 

See description for R49. 

R51 Recruitment of Artemis to damage sites where it performs DSB ends processing 

DSB ends often need to be processed before ligation, and this is performed by the 5’-3’ 

endonuclease Artemis in NHEJ. It has been proposed that the recruitment of Artemis to damage site 

and the activation of its nucleolytic activity requires the autophosphorylation of DNA-PKcs [76, 83, 

85].  

R61 Gap filling by DNA polymerase µ 

DNA polymerase µ (Pol µ) and DNA polymerase λ (Pol λ) are polymerases of X family, 

which are recruited to DSBs via their interactions with Ku and responsible for fill-in synthesis 

during NHEJ. These two polymerases are both prone to slippage on the template strand and as a 

result, repeats are commonly seen at NHEJ junctions. In addition, Pol µ may has a ability for 



 148 

template-independent synthesis; that is, it can cross from one DNA end to another DNA end [76, 83, 

86]. 

R62 Gap filling by DNA polymerase λ 

See description for R61. 

R52 Formation of LIGIV:XRCC4:XLF complex 

See description for R60. 

R53 Recruitment of LIGIV:XRCC4:XLF complex to damage sites  

See description for R60. 

R60 Ligation of DSB ends by LIGIV:XRCC4:XLF complex 

The last step in C-NHEJ is the ligation of DSB ends once they have been processed, which 

is catalyzed by a complex composed of DNA ligase IV (LIGIV) and another two nonenzymatic 

components named XRCC4 and XLF. In this complex, XRCC4 seems to stabilize LIGIV and 

stimulates its joining activity [87, 88]; XLF may help LIGIV to ligate a more diverse array of DNA 

[89]. This complex is targeted to damage sites by an interaction with Ku [90, 91]. 

R54 Binding of PARP1 with DSB ends 

A-NHEJ is another form of NHEJ that involves more resection of the free DNA ends to find 

microhomologies, and thus is less accurate than C-NHEJ. This pathway is initiated by PARP1 poly 

(ADP-ribose) polymerase 1 (PARP1), which competes with Ku for DSB end binding. As Ku has 

much higher affinity for DNA ends than PARP1, the activities of A-NHEJ is limited to cells that are 

deficient in C-NHEJ [80, 92, 93]. 

R55 Recruitment of MRN complex and CtIP to the DSB site  

See description for R57. 

R57 DSB ends processed by MRN and CtIP, which could be inhibited by 53BP1 

Following binding of PARP1 to DSB ends, MRN and CtIP are recruited to DSB sites and 

conduct single-stranded end-resection during A-NHEJ, which exposes microhomologies that 
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promote pairing of broken ends [94, 95]. This process could be blocked by 53BP1, which promotes 

C-NHEJ to increase NHEJ accuracy [79]. 

R56 Formation of LIG3:XRCC1 complex 

See description for R59. 

R58 Recruitment of the LIG3:XRCC1 complex to the DSB site 

See description for R59. 

R59 DSB ends ligated by the LIG3:XRCC1 complex 

The ligation step of A-NHEJ is performed by a complex consisting of DNA ligase III 

(LIGIII) and XRCC1. The ligation function of this complex is regulated by PARP1. Interestingly, 

LIG3, XRCC1 and PARP1 are also involved in Base Excision Repair (BER) [96-98].  

 

A1.3 Nucleotide excision repair 

Nucleotide excision repair (NER) deals with helix-distorting damage, such as lesions 

induced by UV light. It is often subclassified into transcription-coupled NER (TCR), which 

recognizes and removes helical distortions selectively from the transcribed strand of active genes; 

and global-genome NER (GGR), which is able to repair lesions throughout the entire genome. 

Impairment in this DNA repair activity has been associated with several human diseases, including 

xeroderma pigmentosum (XP), a hereditary syndrome characterized by UV hypersensitivity and 

skin cancer [99, 100]. 
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Figure 3 Nucleotide excision repair (NER) pathway figure. The original PDF version is deposited at UQ eSpace. 
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association with XPC. The third component of the complex, Cen2, serves to stabilize the complex 

and improve its activity in NER [100-102]. 

R20 Formation of TFIIH complex 

TFIIH has an important role in both transcription initiation and NER. It is a multiprotein 

complex with ten subunits, 6 of which (XPB/ERCC3, p62, p52, p44, p34 and p8) form the core 

complex and 3 of which (CDK7, cyclin H and MAT1) form the CAK complex. The remaining 

subunit, XPD (also named ERCC2), connects these two subcomplexes by interacting with the p44 

and MAT1 of the core or the CAK subcomplex, respectively. The precise function of all these 

subunits is not known, but it is thought that CDK7 acts as a cyclin-dependent kinase and XPB and 

XPD are ATP-dependent helicases of opposite polarities [100, 103]. 

R3 A denaturation bubble of about 30 nucleotides around the lesion opened by 

TFIIH 

Following the XPC-HR23B-Cen2 complex binding to the DNA lesions, TFIIH is recruited 

through the interaction of XPC with at least two TFIIH subunit (p62 and XPB). It then mediates the 

excision of the damaged DNA by unwinding the DNA to open a denaturation bubble around the 

lesion. XPB and XPD, the two subunits of TFIIH also help to stabilize the single-stranded DNA 

during the repair process [100, 102, 103]. 

R4 Formation of XPA-RPA complex 

See description for R5. 

R5 Recruitment of RPA and XPA to DNA lesions helps to release the XPC-HR23B-

Cen2 complex and confirm the presence of DNA damage. 

The XPA protein forms a complex with RPA complex, which plays an indispensable role in 

NER. In particular, RPA stabilizes the unwound state of DNA by binding to the undamaged DNA 

strand; XPA binds specifically to damaged DNA, which is reinforced by interaction with RPA, and 

has been implicated in the damage-verification step of NER [102, 104, 105]. 
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R6 Dual incision of damaged DNA by XPF-ERCC1 complex and XPG 

ERCC1- XPF complex and XPG are both structure-specific endonucleases. The recruitment 

of ERCC1–XPF to DNA lesion sites is thought to be mediated by both ERCC1/XPA and XPF/RPA 

interactions, whereas the recruitment of XPG depends on TFIIH. After being recruited, ERCC1-

XPF and XPG incise the damaged DNA strand 5′ and 3′, respectively, to the lesions [61, 100, 106]. 

R7 Formation of XPF-ERCC1 complex 

XPF and ERCC1 form a complex that functions as a structure-specific endonuclease. This 

heterodimer has important roles in a few DNA repair pathways, including NER, Fanconi Anemia 

pathway, Single-strand Annealing pathway (SSA, a subpathway of Homologous Recombination 

pathway) and Microhomology-mediated End-joining pathway (MMEJ, a subpathway of Non-

homologous End-joining pathway) [61, 62]. 

R8 Gap filling by DNA polymerase delta facilitated by PCNA and RFC  

Following the removal of the damage-containing oligonucleotide, the single-stranded gap 

left behind is filled by the replicative DNA polymerase delta (Pol δ), DNA polymerase epsilon (Pol 

ε) or the translesion DNA polymerase Kappa (Pol κ). This step depends on PCNA, which stimulates 

and coordinates the polymerase activities, and RFC, which helps loading of PCNA onto the DNA 

template. The recruitment of RFC and PCNA seems to be dependent on RPA and XPG [100, 102, 

105]. 

R9 Gap filling by DNA polymerase epsilon facilitated by PCNA and RFC  

See description for R8. 

R10 Gap sealing mainly by the DNA ligase III-ERCC1 complex 

See description for R11. 

R11 Formation of ERCC1-DNA ligase III complex 

DNA ligase III forms a complex with ERCC1, which is required for the normal function of 

DNA ligase III [107]. 
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R12 Gap sealing by DNA ligase I in replication cells 

Following DNA synthesis, the remaining nick is rejoined by DNA ligase I or DNA ligase 

III-XRCC1 complex to conclude NER [100, 108, 109]. 

R13 Formation of DDB complex 

See description for R15. 

R14 DNA with a subtle distortion recognized by DDB complex  

See description for R15. 

R15 Recruitment of XPC-HR23B-Cen2 complex with the help of DDB complex 

DDB complex is a damage-sensor in GGR, which monitor DNA lesions that only cause 

subtle helix distortion and thus are difficult to be recognized by the XPC-HR23B-Cen2 complex. 

DDB is a heterodimer consisting of DDB1 and DDB2, and may have evolved especially to cope 

with dinucleotide lesions, such as UV-induced photodimers. It also seems to promote the 

recruitment of XPC at sites of DNA damage [100, 102, 105]. 

R16 Initiation of TCR by RNAPII 

TCR is initiated by RNA polymerase II (RNAII) when this polymerase encounters a DNA 

lesion in the transcribed strand during transcription and so gets stalled. Damage-arrested RNAII 

also serves as a trigger to assemble other TCR proteins [110-112]. 

R17 Recruitment of protein CSB and CSA  

The damage-stalled RNAPII leads to the recruitment of protein CSB which tightly binds to 

RNAII and function as a repair coupling factor to attract the remaining NER factors. Protein CSA is 

also recruited in a CSB-dependent way, and in cooperation with CSB, CSA is required to recruit 

other NER factors (such as XAB2, HMGN1 and TFIIS) to damage site [100, 111, 112]. 
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R18 Recruitment of additional TCR-specific factors: TFIIS, XAB2, HMGN1 and 

P300 

Following the recruitment of CSA and CSB to the damage site, NER proteins XAB2, 

HMGN1 and TFIIS are recruited in a CSA-dependent way while protein p300 is recruited in a 

CSB-dependent way. It has been suggested that the recruitment of p300 and HMGN1 might 

facilitate chromatin remodeling and reverse translocation of RNAPII, therefore allowing the 

removal of the blocking damage by the repair machinery and the resumption of transcription [100, 

111, 112]. 

R19 Formation of TFIIH-XPA-RPA-Damaged DNA with denaturation bubble 

complex 

Following damage detection, GGR and TCR merge into a common mechanism to unwind 

the DNA around the lesion, incise the DNA at both sides of the lesion and fill the resulting gap [100, 

111, 112].  

 

A1.4 Base excision repair 

Base Excision Repair (BER) is primarily responsible for removing small, non-helix-

distorting base lesions caused by oxidation, alkylation and deamination. It uses a collection of 

specific enzymes (known as glycosylase), to recognize and remove different types of damaged or 

inappropriate bases, forming apurinic/apyrimidinic (AP) sites [113, 114].  

The AP sites are further processed by AP-endonuclease 1 (APE1) that generates DNA 

Single Strand Breaks (SSBs) with a 5'-sugar phosphate. This 5’-sugar phosphate is then cleaved by 

DNA polymerase β (Pol β), which at the same time adds one new nucleotide to the 3' end of the 

nick. The nick is finally sealed by DNA ligase III. This process is termed short-patch BER [113, 

114]. 

If the 5'-sugar phosphate is resistant to cleavage by Pol β, then after the addition of the first 

new nucleotide by Pol β, DNA polymerase delta or epsilon comes in and adds 2-8 more nucleotides 

into the repair gap, resulting a flap structure that is then removed by the Flap Endonuclease-1 (FEN-

1) in a PCNA-dependent manner. In the final step, the remaining nick is sealed by DNA ligase I. 

This process is termed long-patch BER [113, 114]. 
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Figure 4 Base excision repair (BER) pathway figure. The original PDF version is deposited at UQ eSpace. 

 

A1.4.1 Reaction Description 

R1 – R11 description 

DNA glycosylase refers to a large family of enzymes that cleave the damaged base from the 

sugar-phosphate backbone. They are classified as monofunctional and bifunctional, depending on 

their reaction mechanisms. The monofunctional glycosylases (e.g. UNG) only have glycosylase 

activity that cleaves the glycosidic bond linking the damaged base and the ribose. The bifunctional 

glycosylases (e.g. OGG1) have both glycosylase and AP lyase activity. In addition to cleaving the 

glycosidic bond, they also be able to incise the DNA backbone 3’ to the AP site [113-115]. 
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R1 Binding and cleavage of Uracils by monofunctional glycosylase UNG 

R2 Binding and cleavage of Uracils by monofunctional glycosylase SMUG1 

R3 Binding and cleavage of Pyrimidine derivates in mismatches by monofunctional 

glycosylase MBD4 

R4 Binding and cleavage of Pyrimidine derivates in mismatches by monofunctional 

glycosylase TDG 

R5 Binding and cleavage of Oxidatively damaged bases by bifunctional glycosylase 

OGG1 

R6 Binding and cleavage of Oxidatively damaged bases by monofunctional 

glycosylase MYH 

R7 Binding and cleavage of Alkylated purines by monofunctional glycosylase MPG 

R8 Binding and cleavage of Oxidized, ring-fragmented or ring-saturated 

pyrimidines by bifunctional glycosylase NTHL1 

R9 Binding and cleavage of Oxidized, ring-fragmented or ring-saturated 

pyrimidines by bifunctional glycosylase NEIL1 

R10 Binding and cleavage of Oxidized, ring-fragmented or ring-saturated 

pyrimidines by bifunctional glycosylase NEIL2 

R11 Binding and cleavage of Oxidized, ring-fragmented or ring-saturated 

pyrimidines by bifunctional glycosylase NEIL3 

R12 – R23 Reaction Description 
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Following the generation of the AP site, the DNA glycosylase is displaced by APE1 that 

binds to the AP site and hydrolyzes the phospho-diester bond 5' to the this site, generating a DNA 

single strand breaks (SSBs) with a 5'-terminal sugar phosphate [113, 114, 116]. 

R12 Displacement of glycosylase by APE1 

R13 Displacement of glycosylase by APE1 

R14 Displacement of glycosylase by APE1 

R15 Displacement of glycosylase by APE1 

R16 Displacement of glycosylase by APE1 

R17 Displacement of glycosylase by APE1 

R18 Displacement of glycosylase by APE1 

R19 Displacement of glycosylase by APE1 

R20 Displacement of glycosylase by APE1 

R21 Displacement of glycosylase by APE1 

R22  Displacement of glycosylase by APE1  

R23 APE-mediated DNA backbone incision 5' to the AP site  

R24 Displacement of APE1 and adding one new nucleotide by Pol β 

Following the APE1-mediated cleavage, it is then displaced from the damaged DNA by 

DNA polymerase III, which also incorporates one nucleotide to the 3’-end of the arising single-

nucleotide gap [113, 117, 118].  

R25 Formation of LigIII-XRCC1 complex 

See description for R26. 
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R26 DNA nick ligation by DNA ligase III-XRCC1 complex 

If the 5'-terminal sugar phosphate generated by APE1 cleavage is not resistant to the β-

elimination reaction mediated by Pol β, it can be removed from the single-stranded break, and the 

final nick can be sealed by DNA Ligase III with the help of the scaffold protein XRCC1 [114, 119, 

120]. This process is commonly referred to as short-patch BER [113, 114, 118]. 

R27 Strand-displacement DNA synthesis by Pol Delta  

R28 Strand-displacement DNA synthesis by Pol Epsilon 

R31 Strand-displacement DNA synthesis by Pol beta 

If the 5'-terminal sugar phosphate generated by APE1 cleavage is resistant to the β-

elimination, Pol β may or may not dissociate from the damage site after adding the first nucleotide 

into the repair gap. Then, either Pol β, Pol δ or Pol ε will add 2-8 more nucleotides into the repair 

gap, a process known as “strand-displacement DNA synthesis”, producing a multi-nucleotide repair 

patch and a single-stranded DNA structure termed DNA flap. [117, 118, 121]. 

R29 Removal of DNA flap structure by FEN1 and PCNA 

In this step, the DNA flap structure generated by DNA polymerase, which contains the AP 

site and a few displaced unannealed nucleotides, is cleaved by FEN1 in a PCNA-dependent manner 

[113, 118, 122]. 

R30 DNA nick ligation by DNA ligase I  

Following the flap cleavage by FEN1 and PCNA, the remaining nick in the DNA backbone 

is sealed by DNA ligase I. This process is commonly referred to as long patch BER [113, 114, 118]. 

 

A1.5 Mismatch repair 

The Mismatch Repair (MMR) pathway is the main mechanism responsible for the repair of 

base-base mismatches and insertion/deletion loops (IDL) that are formed during DNA replication. It 

degrades the error-containing section of the newly synthesized strand and therefore provides the 

DNA polymerase with another chance to generate an error-free copy of the template sequence. In 
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MMR-deficient tumor cells, mutation rates are 100 to 1,000 fold greater in comparison to normal 

cells [123-125]. 

 
Figure 5 Mismatch repair (MMR) pathway figure. The original PDF version is deposited at UQ eSpace. 

A1.5.1 Reaction Description 

R1 Formation of MutSα complex 

Human MutS heterodimer is present in two basic forms (MutSα and MutSβ), and initiates 

the MMR pathway. MutSα encompasses MSH2 in a complex with MSH6, and primarily 

responsible for the repair of base substitutions and small mismatched loops. MutSβ consists of 

MSH2 and MSH3, and repairs both small loops as well as large loop mismatches (~10 nucleotide 

loops) [125-127]. 

R9 Formation of MutSβ complex 

Described in R1  

MSH3 MSH2 PMS2MSH6 MLH1

EXO1

R4

RFC

MutS:MutL:DNA 
with mismatch 

R8

PCNA

R3

PCNA:RFC

MutLMutS alpha

R2R1

DNA with 
mismatch MutS beta

R9

Repaired DNA

R7

PCNA:DNA with 
a stretch 
excised 

R6

Pol delta
Lig I

PCNA:EXO1:MutS:MutL:DNA 
with mismatch 

RPA

R5

Input&

Physical&en0ty&

Output&

Reac0on&

Protein&

Complex&



 160 

R2 Formation of MutLα complex 

Human MutL heterodimer is present in three basic forms - MutLα, MutLβ and MutLγ. 

MutLα is made up of MLH1 and PMS2, which is responsible for the primary activity of MutL 

during MMR. MutLβ, which consists of MLH1 and PMS1, might contribute a minor role. The 

function of MutLγ (MLH1 and MLH3) remains unknown [124, 125, 127]. 

R3 DNA mismatch detection and recruitment of MutL by MutSα  

Described in R8 

R8  DNA mismatch detection and recruitment of MutL by MutSβ 

MutS (either MutSα or MutSβ) initiates the MMR pathway by recognizing distortions in the 

DNA double helix structure caused by mismatched bases. After binding to double-strand DNA at 

damage site, it then recruits MutL that may function as a mediator for the interactions of 

downstream MMR proteins. MutS and MutL also form a complex that leaves the mismatch site and 

slides up and down the flanking DNA sequence until it encounters a single-strand DNA gap bound 

by PCNA and RFC [124, 125, 127]. 

R4 Formation of PCNA-RFC complex 

Protein PCNA is a cofactor required for DNA synthesis mediated by DNA polymerase δ. It 

has an important role in a few DNA repair pathways, including MMR, Base Excision Repair (BER) 

and Nucleotide Excision Repair (NER). In MMR, it forms a complex with protein RFC that 

facilitates the loading of PCNA onto primed DNA templates [125, 127, 128].  

R5 Displacement of RFC and recruitment of EXO1 

As MMR is mainly responsible for replication error repair, it must be able to distinguish 

parental DNA from daughter DNA. It has been suggested that when the sliding clamp of MutS and 

MutL encounters PCNA and RFC, RFC is displaced, which allows exonuclease EXO1 to access the 

daughter strand DNA [125, 127, 129].   



 161 

R6 Degradation of DNA across the site of mismatch by EXO1 and with the help of 

RPA 

With the guidance of MutS and MutL complex, EXO1 removes the sequences across the 

mismatch site on daughter strand, and is then inactivated by MutL. While the daughter strand is 

processed, the parental strand of DNA is stabilized by RPA [125, 127, 129]. 

R7 New DNA synthesis and gap ligation by DNA polymerase delta and DNA ligase I 

Once the mismatched DNA on daughter is excised, DNA polymerase delta synthesizes new 

DNA followed by DNA ligase I that seals the remaining nick to complete the repair process [125, 

127, 129]. 

 

A1.6 Fanconi anemia 

Fanconi Anemia (FA) is a rare hereditary genomic instability syndrome characterized by 

bone marrow failure, developmental abnormalities, and cancer predisposition. This disorder is 

caused by mutations in genes that are responsible for the removal of DNA Interstand Crosslinks 

(ICLs). To date, 15 FA or FA-like genes (FANCA, B, C, D1, D2, E, F, G, I, J, L M, N, P and O) 

and two other FA-associated genes, FAAP24 and FAAP100, have been identified. The pathway that 

they constitute is therefore termed the Fanconi Anemia (FA) pathway. The FA pathway coordinates 

three common DNA repair pathways, including Homologous Recombination (HR), Nucleotide 

Excision Repair (NER) and Translesion DNA synthesis (TLS). In addition, most of the FA and 

associated proteins form a large ubiquitin ligase complex termed the FA core complex [130, 131]. 
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Figure 6 Fanconi Anaemia (FA) pathway figure. The original PDF version is deposited at UQ eSpace. 

A1.6.1 Reaction Description 

R1 Formation of FANCM-FAAP24-MHF1/2 complex 

The FANCM protein forms a complex with FAAP24, MHF1 and MHF2, and initiates the 

FA pathway. FAAP24 helps FANCM to recognize DNA lesion, recruit the FA core complex, 

stabilize the stalled replication fork, and initiate ATR mediated checkpoint signaling. MHF1 and 

MHF2 maintain the stable association of FANCM with chromatin and promote efficient pathway 

activation [131-133]. 
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R2 Recognition of stalled replication fork by FANCM-FAAP24-MHF1/2 complex 

When a replication fork encounters an ICL during replication, the replication fork arrests 

near the lesion, resulting in aberrant DNA structures. The FANCM– FAAP24–MHF1/2 complex 

recognizes the stalled replication fork structure and recruits the FA core complex to the ICL region. 

FANCM can also prevent the collapse of replication fork via its translocase activity [131-133].   

R3 Formation of FA core complex 

Eight FA proteins (FANCA/B/C/E/F/G/L/M) form a multisubunit nuclear complex, known 

as the FA core complex, which through FANCL, acts as an ubiquitin E3 ligase to mono-ubiquitinate 

FANCD2 and FANCI following DNA damage [131, 134, 135].  

R4 FA core complex recruited to the DNA lesion by direct interaction between 

FANCM and FANCF 

FANCM is an essential component of the FA core complex. When an ICL is present, it is 

recognized by FANCM– FAAP24–MHF1/2 complex, which recruits the rest of the FA core 

proteins by interaction between FANCM and FANCF [131, 136].  

R5 Formation of FANCD2-FANCI complex 

FANCD2 and FANCI form a complex (also known as ID complex) that can be 

monoubiquitinated by the FA core complex before being localized to chromatin in response to 

DNA damage. Moreover, the ubiquitination of each of these two proteins is important for the 

maintenance of ubiquitin on the other [131, 137, 138]. 

R6 Monoubiquitination of FANCD2 and FANCI on chromatin by FA core complex 

See the description for R7. 

R7 Recruitment of monoubiquitinated FANCD2 and FANCI to the damaged DNA 

with ICLs 

The Monoubiquitination of FANCD2 and FANCI by the FA core complex is the key 

regulatory step in the FA pathway. Following this mono-ubiquitination, the ubiquitin-tagged 

FANCD2–FANCI complex is relocalized to the DNA lesion where it coordinates cross-link repair 
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activities together with downstream FA proteins. In particular FANCD2 acts as a landing pad to 

recruit multiple nucleases such as FAN1 and FANCP (SLX4) in order to initiate the nucleolytic 

incision flanking the ICL [131, 134, 139]. 

1.1. R8 Recruitment of other DNA repair factors to the damaged site 

Following the recruitment of FANCD2-FANCI complex to DNA lesions, multiple 

downstream FA proteins, including FANCD1 (also known as BRCA2), FANCJ (also known as 

BRIP1), FANCN (also known as PLAB2), FANCO (RAD51C), FANCP (also known as SLX4), 

BRCA1 and FAN1, are also recruited. FAN1 and FANCP act as a DNA nuclease in ICL repair in 

order to initiate nucleolytic incision; BRCA1, FANCD1, FANCJ, FANCN, FANCO play an 

important role in the HR process that is involved in ICL repair [130, 131, 135, 138, 140];  

1.2. R12 Formation of MUS81-EME1 complex 

MUS81 and EME1 form a complex that acts as a endonuclease and plays an important role 

in rescuing stalled replication forks during ICL repair, and resolving the Holliday Junctions (HJs) in 

eukaryotes [54, 131, 134]. 

1.3. R13 Formation of ERCC1-XPF complex 

The complex formed by ERCC1 and XPF is an endonuclease that is essential for NER and 

has important roles in ICL repair and DSB repair. Therefore, it has a critical role in the response of 

cancers to a range of DNA-damaging chemotherapeutics [61, 62, 131].  

R11 Dual incision on each side of the ICL performed by MUS81-EME1 and ERCC1-

XPF respectively 

During ICL repair, the nucleolytic dual incisions on each side of the ICL (also known as 

unhooking) are performed by MUS81-EME1 and ERCC1-XPF, respectively. This unhooking 

process converts a stalled replication fork into a DSB. FANCP and FAN1 may also contribute to 

this process [131, 134, 141]. 

R15 Formation of the DNA Pol zeta complex 

DNA polymerase ζ is a complex consisting of REV 3 and REV7. It belongs to a family 

known as translesion synthesis polymerases which are low fidelity DNA polymerases that allow 

cells to replicate over the replication-blocking lesions without correcting it [131, 134, 142]. 
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R14 The unhooked lesion bypassed by DNA Pol ζ and REV1 

Following ICL unhooking, the cross-linked nucleotides are bypassed by TLS polymerase 

REV1 and Pol ζ to restore a nascent strand that is subsequently used as a template of HR. PCNA 

also contributes to this process by recruiting and regulating REV1 and DNA polymerase ζ to the 

damage site [131, 138, 143].  

R16 The participation of HR and NER in ICL repair 

The dual incision flanking the ICL region creates a DSB as an intermediate in the ICL repair 

process, which is then repaired by HR using the homologous template that has been repaired by 

TLS. The downstream FA proteins promote RAD51-dependent strand invasion and the resolution 

of recombinant intermediates. The remaining DNA adducts are removed and gap filled by NER 

[131, 138, 144]. 

R18 Formation of USP1-UAF1 complex 

See the description for R17. 

R17 Deubiquitination and release of FANCD2 and FANI by the USP1-UAF1 

complex 

The deubiquitinating enzyme USP1 and its activating partner, UAF1, forms a complex that 

removes the monoubiquitin from FANCD2 - FANCI complex and completes the ICL repair. In 

animal models, knockdown either USP1 or UAF1 can lead to hypersensitivity to DNA cross-linking 

agents [131, 145, 146]. 
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Appendix Two: Supplementary figures of Chapter Three* 

 

 
Figure 1 Principal curve of the HR pathway for each of the four cohorts. For each cohort, the black 
points represent samples in that cohort. The samples are projected onto the principal curve and are 
coloured according to their PAM50 assignment. The data points and the principal curve are projected on 
the three leading principal components for visualisation.1 

                                                
*The supplementary tables of Chapter Three, which are all Excel files, are deposited at UQ eSpace. 
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Figure 2 Expression of the HR genes in tumours from the METABRIC Discovery cohort. The HR genes 
are ranked in decreasing importance according to their contribution to the first principal component. 
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Figure 3 Scatter plots of the HR score versus the rank of tumours according to their HR score, 
colour by the PAM50 assignment. 

 

 
Figure 4 Hierarchical clustering of tumours from the METABRIC Validation cohort based on the HRD signature. 

 

 
Figure 5 Hierarchical clustering of tumours from the TCGA RNA-seq cohort based on the HRD signature. 
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Figure 6 Hierarchical clustering of tumours from the TCGA Microarray cohort based on the HRD signature. 

 

 
Figure 7 HR score versus HR gene mutation for the two TCGA cohorts. Mutant refers to tumours with at least 
one nonsynonymous mutation in any of the six key HR genes (BRCA1, BRCA2, RAD51, PALB2, DNA2 and EXO1). 
Wild type refers to tumours with no mutations in these six genes. Normal refers to normal breast tissues. P-values 
were obtained using a Wilcoxon rank-sum test, for the comparison between wild type and mutant tumours.   
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Figure 8 HR score versus the three CIN measurements for the METABRIC Validation cohort. Left: Boxplots of 
the three CIN measurements versus the four HR score quartile groups; stars indicate statistical significance according to 
a Wilcoxon rank-sum test: ns means not significant, ** means 0.001 < p-value <0.01, and *** means p-value < 0.001. 
Right: Scatter plots of the HR score versus each of the three CIN measurements; r represents Pearson Correlation 
Coefficient. 
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Figure 9 HR score versus the three CIN measurements for the TCGA RNA-seq cohort. Left: Boxplots of the three 
CIN measurements versus the four HR score quartile groups; stars indicate statistical significance according to a 
Wilcoxon rank-sum test: ** means 0.001 < p-value <0.01 and *** means p-value < 0.001. Right: Scatter plots of the HR 
score versus each of the three CIN measurements; r represents Pearson Correlation Coefficient. 
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Figure 10 HR score versus the three CIN measurements for the TCGA Microarray cohort. Left: Boxplots 
of the three CIN measurements versus the four HR score quartile groups; stars indicate statistical significance 
according to a Wilcoxon rank-sum test: * means 0.01< p-value < 0.05, ** means 0.001 < p-value <0.01, and *** 
means p-value < 0.001. Right: Scatter plots of the HR score versus each of the three CIN measurements; r 
represents Pearson Correlation Coefficient. 
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Figure 11 HR score versus the three CIN measurements within PAM50 subtypes (METABRIC 
Validation cohort). For each plot, the two HR score groups were divided according to the median HR score in 
each subtype; stars indicate the significance according to a Wilcoxon rank-sum test for each pair of groups: * 
means 0.01< p < 0.05, ** means 0.001 < p <0.01, and *** means p < 0.001. 
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Figure 12 HR score versus the three CIN measurements within PAM50 subtypes (TCGA RNA-seq cohort). For 
each plot, the two HR score groups were divided according to the median HR score in each subtype; stars indicate the 
significance according to a Wilcoxon rank-sum test for each pair of groups: ns means not significant, * means 0.01< p 
< 0.05, ** means 0.001 < p <0.01, and *** means p < 0.001. 

 

** ns ***

*** ***

Basal−like HER2 Luminal A

Luminal B Normal−like

0

200

400

600

200

400

600

0

200

400

600

800

0

250

500

750

0

100

200

Low High Low High Low High

Low High Low High

N
um

be
r o

f b
re

ak
s

***

ns ***

*** *

Basal−like HER2 Luminal A

Luminal B Normal−like

0.00

0.25

0.50

0.75

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.25

0.50

0.75

0.0

0.2

0.4

0.6

Low High Low High Low High

Low High Low High

G
II

**

ns
***

** *

Basal−like HER2 Luminal A

Luminal B Normal−like

0

5000

10000

15000

20000

5000

10000

15000

20000

0

5000

10000

15000

20000

5000

10000

15000

20000

0

5000

10000

15000

Low High Low High Low High

Low High Low High

N
um

be
r o

f g
en

es
 w

ith
 C

N
A

HR score group



 183 

 
Figure 13 HR score versus the three CIN measurements within PAM50 subtypes (TCGA Microarray cohort). 
For each plot, the two HR score groups were divided according to the median HR score in each subtype; stars 
indicate the significance according to a Wilcoxon rank-sum test for each pair of groups: ns means not significant, * 
means 0.01< p < 0.05, ** means 0.001 < p <0.01, and *** means p < 0.001. 
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Figure 14 Distributions of the correlations between pathway scores and the three CIN measurements 
(METABRIC Validation cohort). Results for KEGG pathways are in green, Reactome pathways in blue and 
Random pathways in pink. Spearman correlation coefficients (r) are represented on the x-axis. Pathway score were 
calculated with Pathifier. The vertical dashed line in each histogram indicates the value of r between the HR score and 
each of the three CIN measurements, and p represents an empirical p-value for that value of r. 
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Figure 15 Distributions of the correlations between pathway scores and the three CIN measurements (TCGA 
RNA-seq cohort). Results for KEGG pathways are in green, Reactome pathways in blue and Random pathways in 
pink. Spearman correlation coefficients (r) are represented on the x-axis. Pathway score were calculated with Pathifier. 
The vertical dashed line in each histogram indicates the value of r between the HR score and each of the three CIN 
measurements, and p represents an empirical p-value for that value of r. 
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Figure 16 Distributions of the correlations between pathway scores and the three CIN measurements (TCGA 
Microarray cohort). Results for KEGG pathways are in green, Reactome pathways in blue and Random pathways in pink. An 
additional 100 CIN-related genes were excluded prior to the construction of the Random pathways as the Pathifer method was 
sensitive to the addition or removal of a small number of genes in this cohort. Spearman correlation coefficients (r) are 
represented on the x-axis. Pathway score were calculated with Pathifier. The vertical dashed line in each histogram indicates 
the value of r between the HR score and each of the three CIN measurements, and p represents an empirical p-value for that 
value of r. 

 


