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Abstract 

 

Although encountering novel words in one’s own language in adulthood is 

not an uncommon event, the relevant cognitive processes have become the target of 

systematic investigation only in recent years. This thesis addressed three main 

questions regarding word learning. The first was concerned with the role of meaning: 

to what degree is meaning necessary in integrating new representations in the 

lexicon? Experiments 1-3 suggested that meaning is indeed important. In the absence 

of trained meaning novel words may “inherit” the meaning of neighbouring familiar 

words, possibly explaining some seemingly incompatible reports in the literature 

(Experiment 1). Experiment 3 showed that such inherited meaning is sufficient to 

allow integration of novel words in the lexicon. Having established the importance 

of meaning in lexical integration, the thesis moved to the second question: does 

knowledge of novel word meanings benefit from offline memory consolidation? 

Experiments 4-7 suggested that this is the case. Experiment 4 showed that 

consolidated novel words elicited faster semantic decisions than words learned just 

before testing, while Experiment 5 showed that cued recall of word forms is also 

enhanced over time. Experiments 6-7 refined these conclusions by using semantic 

priming paradigms, showing that novel word primes facilitate processing of 

semantically associated familiar words after a period of offline consolidation has 

been allowed to operate over an extended period of time involving several days 

and/or nights. The third question focused on the role of sleep in the consolidation of 

novel words: which aspects of sleep architecture are associated with lexical 

integration? Experiment 8 looked at sleep during the night after word learning and 

sought to clarify the roles sleep spindles and different sleep stages play in word 

learning. Spindle activity was associated with the emergence of lexical competition 

effects, suggesting that sleep has an active role in word learning, and that spindles in 

particular are associated with lexical integration. These effects were interpreted in 

light of complementary learning systems theories. 
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Chapter 1: From nonwords to novel words 

 

1.1 Introduction 

Learning new words is a skill most often associated with children. This is 

not surprising, considering the remarkable rate at which children seem to acquire 

new words. During a period starting at about 18 months, often referred to as the 

vocabulary spurt, children add up to nine words a day to their spoken vocabulary 

(Nazzi & Bertoncini, 2003, see also McMurray, 2007, for a recent view into the 

issue). While there is a vast literature concerning the cognitive foundations on which 

child word learning is based, less is known about word learning in adults. Adult 

word learning research has very much focused on second language learning (L2 

learning). The subjective experience of L2 learning is often claimed to be slow and 

labour-intensive. This may tempt one to conclude that adults are not good word 

learners, at least not as good as children. While this may be the case to some extent, 

new L2 research suggests that novel words in a second language are learned very 

quickly. McLaughlin, Osterhout, and Kim (2004) tracked the neural correlates of 

word learning in L2 learners using event-related potentials (ERPs). They showed that 

only after about 14 hours of instruction in a foreign language, the N400, an ERP 

component thought to index semantic analysis, discriminated between nonwords 

(fictional made up words) and real words in the L2. It appears then that adults show 

more efficient learning of L2 words than subjective experience might suggest, at 

least when probed with a non-behavioural measure.  

Much less is known about native language word learning though, yet word 

learning is a common event in adulthood. New words enter the language at a regular 

pace (often in connection with new technology, e.g., blog), and rare words 

occasionally return to common use at least temporarily (e.g., redact in the summer of 

2009). Similarly, new terminology needs to be learned as we acquire new knowledge 

(e.g., hippocampus is likely to be a new word for a psychology undergraduate). 

However, there is now an emerging literature on various aspects of adult word 

learning, and a theoretical framework is beginning to emerge. In the following 

sections I will review the literature on adult word learning and highlight the various 

factors influencing the process.  
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1.2 Learning the form and meaning of novel words 

What does adding a new entry to one’s lexicon entail? To get a better idea 

of the process, it is useful to think about it in relation to existing models of word 

recognition (the work reported in this thesis deals with recognition rather than word 

production). Most current models of spoken word recognition (similar models exist 

in the written domain), such as TRACE (McClelland & Elman, 1986) and Shortlist 

(Norris, 1994), assume a pre-lexical level, consisting of phonemes and/or lower level 

items such as phonetic features. This level mediates between the heard raw signal 

and the lexical level, a collection of representations corresponding to words. In 

addition to a pre-lexical and lexical level there is also a semantic level associated 

with the meanings of the words. When a known word is heard, the signal will map 

onto the representations at the pre-lexical level, and activation will spread to the 

lexical level, resulting in the activation of a lexical representation and its semantics, 

terminating with word recognition. When an unknown, novel word is heard, 

activation of the pre-lexical level will take place as usual, but now there is nothing at 

the lexical level that corresponds to the signal. Hence for word learning to take place, 

at a minimum a new lexical representation will have to be established. In the next 

section I will discuss studies that can be taken as evidence for the creation of a new 

lexical representation. 

 

1.2.1 Emergence of a new lexical representation 

One of the early theoretical accounts of this process was introduced by 

Salasoo, Shiffrin, and Feustel (1985). These authors discussed codification, defined 

as “the development of a memory trace that responds as a single unit to a set of 

features and serves to label, code, name, or identify those features” (Salasoo et al, 

1985, p. 51). As such, codification is simply another term for the creation of a new 

lexical representation. Using two threshold identification tasks, Salasoo et al. tracked 

the codification of visually presented novel words as a function of presentation 

duration, number of presentations, and time. The stimuli consisted of real words and 

meaningless novel words presented for short durations on the screen preceded (and 

followed in one variant of the task) by a mask of variable duration. The task was 
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simply to report the target word. While identification accuracy increased with the 

number of repetitions and increasing presentation times, there was initially a strong 

advantage for known words. This word advantage is usually explained by there 

being a lexical representation for known words, while no representation exists for 

nonwords. Interestingly, identification success for novel words converged with that 

of real words after only five repetitions. This signifies that codification has taken 

place, that is, a lexical representation had been established for the novel words. The 

strength of the newly created representation was evaluated by testing the same 

participants one year later. Real words and novel words were still identified equally 

accurately, despite an overall drop in performance. An explicit recognition task was 

also included where participants were asked to judge whether an item was included 

in the set presented a year earlier or not. Both real words and novel words were 

recognised above chance, with significantly better recognition performance with 

novel words than real words. These early data suggest that newly learned words 

develop a code (or a lexical representation) very quickly, and that this code is as 

strong and durable as that of real words. 

A similar conclusion was reached by Monsell (1985). In a visual repetition 

priming experiment participants carried out lexical decision to real words and 

nonwords which were repeated three times over the course of the experiment, with 

the repetitions occurring with variable lags (i.e., the number of trials between two 

occurrences of a stimulus). The intertrial interval (ITI) was also manipulated, 

measured as the time between a response and the onset of a new trial and could be 

500 ms or 1000 ms long. Repetition priming was found for real words across all 

ITIs, but with nonwords the effect was found only with the long ITI. The discovery 

of a repetition priming effect with nonwords was significant in its own right, but the 

effect of ITI was interpreted by Monsell as a potentially important variable in word 

learning. He argued that the nonword priming effect could be explained with the 

emergence of a new, possibly fragile, lexical unit. Furthermore, a new unit could 

only be established if enough time was allowed for learning to take place after the 

presentation of a stimulus. His data suggested that 500 ms was not enough for 

learning to take place, but the still remarkably short 1000 ms apparently was.  

Forster (1985) examined the emergence of new lexical representations using 

masked visual repetition priming. A trial consisted of three visual stimuli: a visual 

mask, a brief prime (60 ms), and a target (e.g., ### – lock – LOCK). The typical 
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finding in this paradigm is that when the prime and target are the same word, 

processing of the target is faster than when the two are different words. Due to the 

very short duration of the prime, it is argued that priming effects reflect the repeated 

access to the target word representation, rather than the facilitation afforded by an 

episodic memory trace for example. In fact, participants tend to have no conscious 

awareness of the identity of the prime. This lexical interpretation is supported by the 

lack of priming in nonwords, which do not have lexical representations. This 

paradigm was seen by Forster as an ideal way of evaluating the emergence of new 

lexical representations, and an improvement over the task used by Salasoo et al. 

(1985) where the advantage of real and novel words over nonwords could have been 

the result of permanent episodic representations, as opposed to true lexical 

representations.  

Participants were taught unfamiliar rare words (e.g., pinery) and their 

meanings. While these words showed no repetition priming effects in a lexical 

decision task before training, they did result in priming after training. No effect was 

found for word-like nonwords (defined here as nonwords which suggest a meaning, 

such as bellowbag), and a small priming effect was found surprisingly for nonwords 

(conventional nonwords, such as tovit) also. In another experiment participants 

studied meaningless novel words. The task was a standard recognition task where 

stimuli were classified as old (seen in training) or new (not seen in training). A 

priming effect in this task was found for the trained items. Does this suggest that 

providing the novel words with meaning offers no advantage in word learning? 

Forster argued that this is not the case, as the recognition task does not require 

lexical access. Together these experiments do however again suggest rapid 

emergence of new lexical representations.  

Rajaram and Neely (1992) extended Forster’s results. A masked repetition 

priming paradigm was again used with both lexical decision and an explicit 

recognition tasks. When participants were instructed to try to learn the words in the 

study list, masked priming effects were found for studied nonwords but not for 

unstudied nonwords. In line with earlier researchers Rajaram and Neely concluded 

from this that a temporary lexical entry had been created for the studied nonwords. 

They further postulated that this may have been the case because participants were 

explicitly asked to learn the nonwords. In their second experiment participants were 

not told to learn the nonwords, instead they were asked to read the study list and 
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decide whether an item’s pronunciation sounded pleasant or not. Masked repetition 

priming was again found for the nonwords that occurred in the study list, but not for 

nonwords encountered for the first time. The priming effect in this experiment was 

smaller though than in the first one (although not statistically significantly smaller). 

Rajaram and Neely proposed that the nonwords had created temporary lexical entries 

and that the strength of the entries depended on the instructions given to participants 

in the study phase, with intentional learning leading to stronger entries.   

Johnston, McKague, and Pratt (2004) used the same priming paradigm to see 

whether a novel phonological lexical representation also gives rise to an 

orthographic representation. Unfamiliar rare words and their meanings were trained 

in the auditory modality only. This was followed by a repetition priming task in the 

visual modality. If new lexical representations emerged as a consequence of the 

phonological training, and if a parallel orthographic representation also emerged, 

repetition priming effects should be detectable. This was indeed the case although it 

appeared that the orthographic representations were underspecified to some degree. 

Prime novel words that differed from the target by two letters also showed priming. 

This happened only with novel words, not with real words. There was no evidence of 

improvement of orthographic specificity with further three exposures to the 

orthography.  

Ellis, Ferreira, Cathles-Hagan, Holt, Jarvis, and Barca (2009) identified two 

further phenomena that may be used as markers of lexical representation. Firstly, 

longer nonwords are read slower than shorter nonwords. This length effect is 

reduced for familiar words, suggesting that accessing a lexical representation allows 

for parallel processing (as opposed to serial letter-by-letter reading) of written words. 

Secondly, the length effect in real words is particularly reduced when words are 

presented in the right visual field, presumably because anything perceived in the 

right visual field has direct access to the language-dominant left cerebral hemisphere 

due to the anatomy of the visual neural pathways. In an experiment involving 

orthographic and semantic word training tasks over two days, Ellis et al. (2009) 

showed that novel words which prior to training showed the typical length effect in 

both visual fields became more word-like after training in that the length effect 

became attenuated in the right visual field compared to the left, coupled with a 

reduction in overall reading times and error rates. The authors argued that this 

signalled a change from serial to parallel processing particularly in the left mid-
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fusiform gyrus, an area thought to be responsible for visual word recognition, 

indicating the generation of a new lexical representation.    

Fast and efficient learning was observed in another test of word form 

knowledge that was employed by Leach and Samuel (2007). These authors used a 

threshold discrimination task where novel spoken words were presented in varying 

levels of white noise, and the participant’s task was to report the heard word. Novel 

words were trained in various tasks across five experiments (these will be discussed 

in more detail later), but performance in the noise task tended to be good in all 

experiments. Accuracy ranged from about 70% to 80% on the first day of training, 

and increased to about 90% correct by the fifth day of training. Also, the level of 

noise at which recognition could take place increased over the five days.  

Unlike the priming studies discussed above, the noise threshold task is a 

measure of explicit (or declarative) knowledge of word forms. The distinction 

between declarative and nondeclarative forms of memory is often highlighted in 

studies with amnesic patients. These patients tend to be impaired on declarative 

memory (e.g., recall and recognition performance), while relatively unimpaired with 

nondeclarative tasks. Musen and Squire (1991) argued that nondeclarative memory 

can be used in amnesic patients to support the acquisition of novel lexical 

information. Amnesic patients and normal controls were asked to read a list of real 

words and nonwords with some of the words and nonwords occurring only once in 

the list, and some repeated several times. Both patients and controls showed faster 

reading times to repeated nonwords as the number of repetitions increased. The 

authors did not compare statistically the reading times to words and nonwords, but 

judging by their figures it appears that by the end of the list repeated nonwords were 

read as quickly as repeated real words. This strikingly good performance was 

contrasted in a simple recognition test, where the patients performed significantly 

worse than controls. It appears then that even in amnesic patients in a nondeclarative 

measure performance with words and nonwords converges as exposure to the 

nonwords increases, reminiscent of the Salasoo et al. (1985) data. It is possible to 

speculate that new lexical representations for the nonwords emerged in this study 

both for amnesics and controls, but that these new representations were detectable 

only through a nondeclarative task in the amnesic group.   

Interestingly, Duff, Hengst, Tranel, and Cohen (2006) have shown that 

amnesic patients can under certain circumstances learn labels for novel objects even 
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when measured through explicit means. In this experiment patients derived self-

generated labels for visual shapes in a collaborative task with a partner. Although 

these patients were highly impaired in learning pre-determined labels for similar 

shapes in a control condition, they learned the self-generated labels nearly equally 

well as normal control participants, and still recalled 80% of the labels six months 

later (compared to 83% in the control group). The authors argued that amnesic 

patients are poor at learning arbitrary relations between labels and objects, but when 

the labels are self-generated they have a meaningful relation to the shapes, with the 

latter perhaps being a case of hippocampus-independent learning.    

The studies discussed so far have shown emergence of lexical representations 

under fairly simple circumstances, where the participant’s task has been merely to 

learn individually presented words. An example of a more demanding paradigm, and 

perhaps a more realistic learning situation, comes from the work on word 

segmentation. Saffran, Newport, and Aslin (1996) exposed adult participants to an 

artificial language in the spoken modality, consisting of six meaningless words (e.g., 

babupu). Participants were exposed to the words in a continuous stream of syllables 

where the only cue to the beginnings and endings of the words was provided by the 

probability with which the syllables occurred together (any acoustic cues were 

absent since the stimuli were presented by a speech synthesizer). Syllables within 

words occurred together frequently, while the final syllable of one word and the first 

syllable of another word occurred together only rarely. If participants were able to 

segment the stream into word units using these transitional probabilities, they should 

be able to discriminate the novel words in the artificial language from nonwords 

randomly generated from the same syllables. This was indeed the case, participants 

performed above chance in a 2-alternative forced choice (2AFC) task. They 

performed above chance also in a more difficult variant of the task, where the 

nonwords differed from the novel words by only one syllable. Other experiments by 

the same research group have shown that children as young as 8 months are able to 

segment the stream and learn the novel words (Saffran, Aslin, & Newport, 1996).  

Dahan and Brent (1999) introduced another mechanism through which novel 

words can be segmented from continuous speech. They discussed the INCDROP 

(incremental distributional regularity optimization) model, which suggests that novel 

words are segmented from the speech stream by recognising familiar units (i.e., 

known words), extracting these from the stream, and treating any stimuli left over as 
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novel words. In a number of experiments Dahan and Brent exposed participants to 

spoken meaningless novel words in isolation (e.g., dobu) and embedded in longer 

utterances (e.g., dobuneripo). If the novel word was learned, the participant should 

be able to segment that new word out from the utterance, and treat the remaining 

portion of the utterance as another novel word (e.g., neripo extracted from 

dobuneripo). Lexical decision and recognition tasks showed that participants were 

able to segment the utterances successfully. The authors stated that this behaviour 

does not necessarily mean that a new lexical representation has been created for any 

of the novel words segmented from the utterances. While it is possible that a form-

based lexical representation could cause these effects, a familiarity effect associated 

with an episodic memory trace is equally likely in this study, as in the Saffran et al. 

studies. A related criticism concerns the explicit nature of the tasks used in many of 

the segmentation studies, such as lexical decision, which requires a metalinguistic 

judgement.  

One way to avoid asking participants to make explicit judgements is to 

monitor brain activity as novel stimuli are listened to. Sanders, Newport, and Neville 

(2002) measured ERPs to continuous novel word streams both before training on the 

words and after training. They were interested in seeing if training induces the 

emergence of the N100 component in response to novel word onsets. The N100 is 

known to occur at word onsets with real words, and should thus be an indicator of 

the novel words having generated lexical representations. The N100 amplitude to 

novel word onsets did indeed increase after training, but only in a group of 

participants who also showed successful word learning in a behavioural recognition 

test. An increased N400 to the novel words was also observed post-training in all 

participants. The authors suggested that the N100 indexed fast, online segmentation, 

while the N400 indexed lexical search strategies. Since these data were obtained 

using a paradigm that did not require an explicit metalinguistic judgement, and the 

effects included ERP components known to be related to lexical processing, it seems 

that the involvement of new lexical representations was likely.   

 

1.2.2 Linking a new lexical representation with meaning 

Many of the studies I have described so far used paradigms where 

participants’ knowledge of the novel word forms was tested rather than their 
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knowledge of the word meanings. It seems that under these conditions a novel 

lexical representation can be created remarkably quickly. However, many studies 

have paired novel words with a meaning, for example a visually presented object, 

thus requiring learning of the word and its referent and tested for recall of both word 

forms and the meanings. The advantage of these studies is that they are more 

realistic in emulating the word learning taking place naturally, and also give some 

idea of whether learning the meaning of a novel word is as quick and efficient as 

learning the form.  

Gupta (2003) reported data from two word learning experiments where the 

main focus of interest was in uncovering a correlation between word learning, 

nonword repetition, and immediate serial recall. Adult participants were asked to 

learn the names of imaginary animals (Experiment 1), and cartoon aliens 

(Experiment 2). Learning was measured by asking participants to name the pictures. 

Overall, participants learned the names successfully, with 78% of naming trials 

correct in Experiment 1, and 46% correct in Experiment 2. Gupta did not comment 

on the drop in performance in Experiment 2, but it may be due to the smaller number 

of training trials or the nature of the pictures (e.g., the aliens may have been less 

distinctive from each other). Nonetheless, participants were able to reliably learn 

most of the novel words and their referents. In addition, a correlation was found 

between word learning and nonword repetition, as well as word learning and 

immediate serial recall (similar correlations have been reported with children too). 

Gupta argued that accurate nonword repetition leads to more accurate word learning, 

hence the correlation. The correlation between learning and serial recall was 

explained by a correlation between serial recall and nonword repetition. Serial recall 

plays an important role in nonword repetition because for accurate repetition to take 

place, the sublexical units of a nonword must be repeated in the correct serial order.    

Another paradigm using pairings of novel words and pictures was introduced 

by Breitenstein and Knecht (2002). Participants were shown line drawings of 

common objects together with a spoken novel word. The task was to indicate as 

quickly as possible whether the pair was “correct” or “incorrect”. The “correctness” 

of the pairings was determined by their statistical co-occurrence. Each novel word 

occurred with a specific drawing with high frequency, and with other drawings with 

low frequency. The challenge was to see if participants picked up on these statistical 

properties of the stimuli, and learned to associate the novel words with the drawings 
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they were most often associated with. Training on the stimuli took place during five 

sessions across five days. Performance accuracy increased from initial chance level 

to about 60% correct by the end of the first session, and further increased up to about 

90% by the end of the fifth session. Two further sessions were added, one took place 

a week later, and another one month later. Performance remained at about 90% in 

these sessions, showing long-term learning of the meanings.  

Nelson, Balass, and Perfetti (2005) used a word learning paradigm where rare 

real words, such as clowder, are used instead of artificially created novel words. One 

advantage of this method is that the novel words are more likely to conform to the 

phonological properties of the language than if they are artificially created. In a later 

section I will describe studies showing why this is an important consideration. 

Participants were trained on 35 novel words by presenting them together with a 

definition. Training continued until all of the word meanings had been learned (or 

until 2.5 hours of training had been completed). In the testing phase the trained 

words were presented with similar foils and participants’ task was to decide whether 

the word was presented in the training phase (old word) or not (new word). The main 

question Nelson et al. were interested in was whether training modality affected 

learning, hence some of the novel words were presented visually in the training 

phase and others auditorily. Modality was also manipulated in the recognition task, 

to see if there is a recognition advantage for items which are presented in the same 

modality in both training and testing. The authors did not report whether any 

participants failed to reach the criterion in the training, so it seems reasonable to 

assume that all participants learned the 35 novel word meanings within the allowed 

time. Visually presented novel words required fewer training trials than auditorily 

presented words, and participants were more accurate in recognising the trained 

items when they were presented in the same modality in test as in training.  

The three studies reviewed above suggest that adult learners are quickly and 

reliably able to pair a new word with its meaning. However, this merely tells us that 

people are able to memorise the pairings. It would be more interesting to see whether 

newly learned meaningful words give rise to implicit effects outside of the 

participant’s conscious control, in the same way as familiar words do. For these 

kinds of effects we can look to neuroimaging studies. Perfetti, Wlotko, and Hart 

(2005) looked at word learning and ERPs. Participants were trained on rare words 

and their definitions, and asked to learn as many words as they could in a set time. 
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Learning was measured in a semantic decision task where the novel words (and 

fillers) were presented paired with a familiar real word that could be semantically 

related or unrelated to the novel one. The task was to decide whether the pair was 

related or not. High success rate in this task indicated good learning of the novel 

word meanings. A mean success rate of 82% was achieved with the novel words, 

which was comparable to the rate achieved with familiar words of medium 

frequency (87%). ERPs were recorded during the task, and showed a higher N400 in 

the unrelated condition, for both real words and novel words, but not for untrained 

novel words. The behavioural data together with the N400 finding suggest that 

people learned the words to a degree where their meanings were processed neurally 

in a similar way to familiar words. 

Another ERP study trained participants on novel words from the artificial 

“Keki” language (McCandliss, Posner, & Givon, 1997). The training took place over 

50 hours, where the Keki words and their meaning were taught using interactive 

computer tutorials. Testing, while ERPs were recorded, took the form of passive 

viewing, semantic judgement, and feature search tasks. ERP analysis was carried out 

on an early N100 window and a later P200 window. The N100 window was found to 

be sensitive to orthographic effects: consonant strings elicited a higher negativity 

than familiar English words. Trained and untrained Keki words elicited an 

intermediate negativity. This was unsurprising, as the Keki language orthography is 

similar but not identical to English orthography. In the P200 window results varied 

as a function of task and training. In the semantic task, while the mean amplitude for 

the trained Keki words reduced over the training sessions, both consonant strings and 

untrained Keki words remained fairly static, with significantly lower amplitudes to 

trained than untrained Keki words after 20 hours of training. There was no such 

difference in the passive viewing task and in the feature search task. These data 

again indicate that participants learned the meaning of the novel words. 

 

1.3 Novel words’ impact in the mental lexicon 

The studies discussed in the previous section converge on a conclusion: 

people are good at learning the form and meaning of newly presented words, both in 

tasks measuring explicit and implicit knowledge. Salasoo et al. (1985) showed that 

novel words can acquire a lexical representation (a “code” in their terminology) even 
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under very impoverished training conditions that is robust over time, detectable even 

a year after its assumed creation. Perfetti et al. (2005) showed that people can learn 

the meanings of a fairly large number of novel words within a short time, and 

Breitenstein and Knecht (2002) showed that the link between a word form and its 

referent can be established by their statistical co-occurrence alone and is not 

weakened during several months of inactivity between training and re-test. 

The evidence reviewed so far seems to suggest that a new lexical 

representation is set up quickly (perhaps even within 1000 ms as suggested by 

Monsell). Lexical representations however have many different properties and 

display many unique behaviours. Many of these phenomena have to do with the way 

lexical representations interact with each other and with other levels in the lexicon. 

Studies I have discussed so far do not tap into these more dynamic behaviours. The 

distinction between knowing the form or meaning of a word, and the word engaging 

with other words or linguistic representations in the lexicon is explicitly defined by 

Leach and Samuel (2007). They discuss “lexical configuration” and “lexical 

engagement”. Lexical configuration refers to knowledge of the factual information 

about a word, such as its spelling or phonology, and the meaning of the word, and it 

is this type of knowledge that I have discussed so far. Lexical engagement on the 

other hand refers to the dynamic behaviour of the novel words with respect to other 

lexical or sublexical units. As pointed out by Leach and Samuel, semantic priming 

would be one example of lexical engagement, where exposure to one word (the 

prime, e.g., doctor) influences the processing of another word (the target, e.g., 

nurse), in this case by speeding up the processing of the target. In order to conclude 

that novel words have been entered in the mental lexicon, one would like to see data 

related not only to lexical configuration, but also evidence of lexical engagement, as 

this would show that a new lexical representation has been integrated into the 

lexicon, and has formed links with other lexical items and/or sublexical levels.  

Another reason why finding evidence of lexical engagement is important 

has to do with the argument for episodic memory traces. It is difficult to reject this 

argument based on word form learning alone, as knowledge of novel word forms 

could conceivably be stored in episodic memory rather than in the lexicon1. Showing 

                                                 
1 Although note that some theorists have proposed that the lexicon is episodic in nature (e.g., 
Goldinger, 1996). 
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that novel words engage in behaviours unique to lexical representations would be 

useful in evaluating the lexical status of novel words. Relevant evidence is now 

available in the domains of lexical competition, perceptual learning, and semantic 

priming. These will be discussed next.  

 

1.3.1 Lexical competition 

Spoken word recognition is a competitive process. As the spoken signal 

gradually unfolds, listeners entertain several hypotheses about the identity of the 

word (Marslen-Wilson, 1987). Hearing the first few sounds of a word will activate a 

cohort of word candidates matching the incoming signal. As the ensuing lexical 

competition continues and as more of the signal is heard, the number of matching 

candidates is reduced until only one remains. The point at which only one word 

matches the signal is known as the uniqueness point (UP). Many short words do not 

become unique until the end of the word, but most long words have a UP before the 

offset.  

The UP of a word will affect the word’s recognition time. Words with early 

UP are recognised faster than words with a late UP. In late-UP words several 

candidates will compete for recognition for longer than in early-UP words where 

competition is resolved early due to the quick exclusion of non-matching candidates. 

The effect of UP on word recognition times is now well documented in a range of 

response time experiments (see McQueen, 2007, for a brief review) and experiments 

monitoring the evaluation of word candidates using eye-tracking (e.g., Allopenna, 

Magnuson, & Tanenhaus, 1998). Lexical competition is a good example of lexical 

engagement, an instance of clear interaction between lexical representations, and 

hence a potentially reliable test of “lexical integration” of novel words. In this thesis 

I will use the term lexical integration to refer to the process of a novel word 

integrating in the mental lexicon and interacting with familiar words and other levels 

of the lexical system, such as phonemic or semantic levels.  

 

1.3.1.1 Novel words engage in lexical competition with each other 

One can ask three questions about lexical competition and novel words: do 

novel words compete with each other, do novel word compete with existing words, 

and do existing words compete with novel words? Magnuson, Tanenhaus, Aslin, and 



Chapter 1 

 24 

Dahan (2003) addressed the first question. Participants were trained on bisyllabic 

novel words (e.g., pibo), manipulating both the frequency of the novel words (by 

varying the number of times they were presented in training) and the frequency of 

their onset competitors (e.g., pibu) and rhyme competitors (e.g., dibo). Each novel 

word was associated with a visual shape, and testing consisted of trials where the 

participant was asked to click on a specific shape (e.g., “click on the pibo”). Eye-

tracking was used to evaluate the activation of the target and competitors as a 

function of time. The artificial vocabulary made up of the newly learned words 

showed many of the same behaviours as real vocabularies do. High-frequency targets 

were fixated more than low-frequency targets, and the same applied to high- and 

low-frequency competitors. The critical finding showing lexical competition effects 

was that targets presented with low-frequency competitors were fixated more than 

targets presented with high-frequency competitors. Both onset and rhyme 

competitors received more fixations than phonologically unrelated competitors, 

although with training onset competitors showed an advantage over rhyme 

competitors, a pattern observed also with real words (Allopenna et al., 1998).  

Having shown lexical competition effects within the artificial vocabulary, 

Magnuson et al. (2003) wished to see if existing words affect the processing of the 

vocabulary. To do this, they designed novel words that would fall into dense or 

sparse real-word phonological neighbourhoods. Real-word neighbourhood effects 

would indicate that existing words affect the processing of the novel vocabulary, 

whereas the absence of such effects would suggest that the novel vocabulary is 

isolated from the existing vocabulary. No reliable evidence of real-word intrusions 

was found, although there was a trend of neighbourhood effects with low-frequency 

novel words. These data then indicate that novel words do show word-like properties 

in terms in lexical engagement, but only as far as they engage with each other. This 

is encouraging but does not provide evidence for the novel word representations 

having formed links with existing items in the lexicon. A stronger test of lexical 

integration would be to show that novel words compete with existing words. 

Evidence of this is what I will discuss next. 

 

1.3.1.2 Novel words engage in lexical competition with existing words 

Gaskell and Dumay (2003) exposed participants in a phoneme monitoring 

task to meaningless spoken novel words, and sought to examine whether these novel 
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words engage in lexical competition with existing words. To this end, the novel 

words were derived from existing base words with relatively early uniqueness points 

(e.g., cathedruke derived from cathedral). Lexical competition effects were tested by 

measuring lexical decision times to the base words. The authors found that being 

exposed to cathedruke slowed down lexical decision times to cathedral, not 

immediately after exposure, but after three days of training. To avoid an explanation 

based on a response bias to the base words, the same results were shown in a pause 

detection task, where a short silent pause is embedded in a word. The participant is 

asked to decide whether a pause was present or not, and the time to make this 

decision is taken to be an indication of the level of lexical activity at the time (Mattys 

& Clark, 2002). Explicit form knowledge was tested in a 2AFC task requiring 

discrimination between trained novel words and similar sounding untrained foils. 

Highly accurate performance was found immediately after training, with only slight 

improvement with time.  

The lexical decision and pause detection data showed that newly acquired 

words engage in lexical competition with existing words, and the 2AFC data showed 

that the form of the novel words had been acquired to a high degree. Together these 

data suggest that the novel words have been integrated in the mental lexicon. 

Furthermore, the dissociation between immediate form learning and delayed lexical 

integration is striking.  

The time course of lexical integration was further narrowed down by 

Dumay, Gaskell, and Feng (2004) who showed that lexical competition effects can 

be observed, with pause detection, as soon as 24 hours after exposure. Again, the 

2AFC task was almost at ceiling immediately after exposure. They also failed to 

detect any improved learning in a semantic training task over a purely phonological 

training task, suggesting that meaning is not obligatory for lexical integration. 

Tamminen and Gaskell (2008) extended the re-test of lexical competition effects 

showing that the effect, measured with lexical decision, is observable even 8 months 

after initial exposure. This was interpreted as evidence against an argument that the 

lexical representations created in these experiments might be situational or episodic 

in nature. 

 While the delay in lexical integration is now fairly well established, it 

remains unclear why the delay is necessary. One possibility is that it takes time for 

the new phonological detail to refine to a degree that allows lexical competition to 
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take place (Gaskell & Dumay, 2003). Another potential reason is that the delay 

reflects the operation of different memory systems. In some computational 

complementary learning systems (CLS) accounts new information is initially stored 

separately from existing information (presumed to correspond at the neural level to 

hippocampal structures), and interleaved and integrated over a longer time course 

with existing memories in neocortical areas where information is represented in a 

distributed fashion (e.g., McClelland, McNaughton, & O’Reilly, 1995). According to 

some researchers this interleaving takes place during sleep (e.g., Wilson & 

McNaughton, 1994). Hence it may not be simply the passage of time between 

exposure and test that is critical in lexical integration, but sleep. Dumay and Gaskell 

(2007) tested this account by exposing participants to novel words in the morning or 

in the evening, and testing for lexical competition effects immediately, 12 hours, and 

24 hours later. Thus the evening group had had a night’s sleep between exposure and 

the second test, while the morning group had not. Lexical competition effects, 

measured with pause detection, were absent immediately after exposure in both 

groups, and found only in the evening training group after 12 hours. The third test, 

24 hours after exposure, when both groups had slept, showed lexical competition 

effects in both groups. 

Dumay and Gaskell (2007) discussed three potential explanations for these 

data. First, it may be that lexical integration is associated with a certain circadian 

state, in which case sleep is irrelevant. Second, the critical factor may not be sleep, 

but an absence of potentially interfering stimulation. Third, sleep may provide an 

optimal brain state for the new lexical knowledge to be consolidated in long-term 

memory, as mentioned above with respect to CLS models. I will return to this 

question in Chapter 6, where I will present data relevant to the latter explanation. For 

now it suffices to state that it is clear that lexical integration, when measured by 

lexical competition, does not take place immediately after training, but only after 

some form of offline consolidation has taken place. Note that the term offline is used 

here, as it is typically used in this literature, to highlight the fact that consolidation 

occurs in the absence of further exposure to the materials to be consolidated. 

One possible problem with the Dumay and Gaskell (2007) sleep data is that 

the test of lexical competition was repeated at three points in time. This leaves open 

the possibility that what was consolidated was procedural knowledge of the testing 

task, rather than novel lexical representations. To overcome this limitation Davis, Di 
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Betta, Macdonald, and Gaskell (2009) modified the procedure so that only one 

testing session was required. Participants learned one set of novel words on day 1, 

and another set on the following day. Testing took place immediately after the 

second training session on day 2. Hence one set of novel words had been learned on 

the previous day, and had had a chance to be consolidated prior to testing. As 

expected, the consolidated set showed lexical competition effects (measured with 

lexical decision to base words), while the unconsolidated set did not. A 2AFC task 

was also included, where highly accurate performance was observed for both sets, 

although the consolidated set had higher accuracy scores. A speeded vocal repetition 

test (shadowing) showed faster repetition times to consolidated novel words 

compared to untrained novel words, but this was not the case for unconsolidated 

items. Finally, participants were asked to rate the novel words for meaningfulness on 

a 7-point scale. Consolidated words were rated higher than unconsolidated words, 

although since no meaning was provided in training, it is hard to say on what basis 

the ratings were provided. 

Davis et al. (2009) used the same training regime in an fMRI experiment. 

Here the primary measure of lexical integration was the neural response to 

consolidated novel words, unconsolidated novel words, untrained novel words, and 

real words. An elevated response to unconsolidated and untrained novel words 

compared with real words was found in a bilateral region of the superior temporal 

gyrus, and also in bilateral motor cortex, supplementary motor area, and cerebellum. 

Interestingly, this contrast was not found with the consolidated novel words. Further 

analyses revealed that the elevated response to novel words was reduced for 

consolidated novel words in bilateral motor and somatosensory areas, left premotor 

cortex, supplementary motor area, and the right cerebellum. Hence there was an 

interesting convergence of the behavioural and neural data: words that had had a 

chance to consolidate resulted in reduced shadowing latencies and reduced neural 

activation in regions associated with phonological processing. This was not found 

with words learned a few hours before testing, again supporting a CLS account.   

Lexical competition is a process not limited to spoken word recognition. 

Many models of written word recognition postulate a similar mechanism where 

orthographic neighbours, such as banish and vanish, inhibit each other’s activation. 

Hence orthographic neighbourhood size and the frequency of the neighbours should 

affect a written word’s recognition time. Bowers, Davis, and Hanley (2005) showed 



Chapter 1 

 28 

this to be the case by teaching participants novel words which, if lexically integrated, 

should become competitors with existing “hermit” words, that is, words with no 

prior neighbours (e.g. banana and the novel word banara). Novel words showed 

weak inhibitory effects immediately after training and strong effects one day later. 

This finding extends the data from spoken word recognition, and shows a similar 

time course, with weak immediate effects and strong effects one day later, with no 

exposure in between.  

Following up the Bowers et al. (2005) study, Qiao, Forster, and Witzel 

(2009) used masked form priming as an alternative way to assess a novel word’s 

influence on a familiar word. This experiment relied on the finding that priming 

between two similar (not identical as in repetition priming discussed earlier) written 

word forms depends on the lexicality of the prime, with nonword primes resulting in 

facilitation (faster RTs to targets preceded by a nonword prime, e.g., contrapt – 

CONTRACT) and word primes resulting in no priming (e.g., contrast – 

CONTRACT). Thus, if a newly learned word has been integrated in the mental 

lexicon, it should not result in facilitation. Qiao et al. (2009) tested this hypothesis 

using the same materials and training regime as Bowers et al. (2005), and found 

facilitation on both testing days. This led the authors to argue that the newly learned 

words were stored in episodic memory and had not been integrated in the lexicon, 

thus being unable to compete with familiar words. An episodic memory trace might 

have been able to result in inhibition in the Bowers study if seeing the base word 

banana activated the episodic trace of banara, initiating a postlexical orthographic 

check of higher intensity than before training.  

Finally, the contrast between participants’ explicit knowledge of the newly 

learned word forms on the one hand and lexical integration on the other was 

examined in a recent study by Fernandes, Kolinsky, and Ventura (2009). This study 

elegantly bridged the gap between the word segmentation studies described earlier 

and lexical competition as a measure of lexical integration. Recall that several 

authors have now demonstrated that adults and children are able to segment a spoken 

string of syllables into words based on the statistical pattern of co-occurrence 

between the syllables. This suggests that novel words have been extracted from the 

signal, and that at least rudimentary lexical representations have been set up for these 

words. This alone however does not allow us to conclude that the new words have 

been integrated in the mental lexicon. Fernandes et al. (2009) showed that this can 
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happen at least when there is more than one segmentation cue present, and when the 

cues do not contradict each other. When participants were exposed to an artificial 

language where the segmentation cues included transitional probabilities and word-

like phonological structure, they later correctly discriminated novel words from part-

words formed by incorrectly combining syllables from the artificial language. In 

addition, there was evidence of the novel words engaging in lexical competition, as 

manifested by slow responses in a lexical decision task to familiar base words that 

overlapped with the novel words. In another experiment where the two segmentation 

cues contradicted each other, participants appeared to segment the language based on 

the phonological word-likeness, but no lexical competition effect was found either 

immediately or one week later. Apparently only phonological segments extracted 

based on more than one consistent type of cue are established strongly enough to 

allow lexical integration to take place. Furthermore, in contrast to the work of 

Gaskell and colleagues, in the cases where the lexical competition effect was found, 

it was seen immediately after training as well as one week later, although the effect 

was significantly stronger in the delayed test. The immediate emergence of the 

lexical competition effect may have been due to the training task, which here took 

the form of a speech segmentation task. The segmentation requirement may have 

highlighted the overlap between the novel words and their base words, hence 

enabling faster linking between the two. It is also plausible that the segmentation 

task allows more incremental learning than presenting all novel words in isolation in 

one task, provided that the novel words were segmented from the speech stream in a 

gradual manner. This may have resulted in a degree of distributed learning as 

opposed to purely massed learning. Distributed learning has been shown to result in 

more robust memory traces than massed learning (e.g., Litman & Davachi, 2008), 

and this advantage may have at least partially compensated for the lack of offline 

consolidation in the immediate test session. 

There is now a healthy number of studies showing that novel words can 

engage in lexical competition both with each other and with existing words in the 

lexicon. It seems that novel words can become full, integrated members of the 

lexicon and behave very much like real words, at least when the training is consistent 

to allow for well defined lexical representations to emerge. However, unlike the 

initial creation of the new lexical representation, the process of lexical integration 

typically requires a period of consolidation, during which sleep seems to play a 
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significant role. This fits in well with the notion of complementary learning systems. 

Having established that novel words interact with the existing lexicon, I now turn to 

evidence showing novel words interacting with sublexical units. 

 

1.3.2 Perceptual learning 

It is important for listeners of speech to have accurate knowledge of the 

phoneme categories used in their language. This is crucial for efficient word 

recognition, especially in discriminating between minimal word pairs, that is, words 

that differ only in one phoneme (e.g., cap – gap). However, some degree of 

flexibility must also be retained in order to cope with the variability in the signal. For 

example, the realisation of a phoneme will vary depending on factors such as the 

immediate phonological environment within the word, and speaker properties, such 

as accent. Norris, McQueen, and Cutler (2003) discussed the example of the word 

total. In British dialect both instances of /t/ in total are roughly identical, whereas in 

the American dialect the second /t/ is realised as a flap. Presumably a British listener 

will have to conclude that the flap produced by an American speaker is an instance 

of /t/, and adjust his or her phoneme category for /t/ to accommodate the new variant.  

Norris et al. (2003) discussed the adjustment of phoneme categories in 

response to phonemic ambiguity, an event they termed perceptual learning. 

Participants heard words and nonwords where one of the phonemes was replaced 

with an ambiguous phoneme. For example, the /f/ in the Dutch word witlof (chicory) 

was replaced with the ambiguous phoneme /?fs/, half way between /f/ and /s/. After 

exposure to this and other similar words participants carried out a phoneme 

categorisation task where they categorised unambiguous and ambiguous phonemes 

from an /f/ - /s/ continuum. Participants were now more likely to categorise the 

ambiguous region as /f/, compared with a control group who had heard the same 

ambiguous phoneme (/?fs/) in lexical contexts supporting an /s/ interpretation. It 

appears that upon hearing witlo[?fs]  the participants used lexical information to 

interpret the ambiguous phoneme as an /f/, and adjusted their /f/ phoneme category 

to accommodate the ambiguous sound. When stimuli consisted of nonwords 

perceptual learning did not take place, confirming the necessity of lexical 

information in perceptual learning. These findings have been replicated and extended 

in a number of recent studies (see Samuel & Kraljic, 2009, for a review), showing 



Chapter 1 

 31 

that the learning effect is immediate and not dependent on sleep (Eisner & McQueen, 

2006), that it is long-lasting (up to 25 min: Kraljic & Samuel, 2005; up to 12 h: 

Eisner & McQueen, 2006), that it is speaker-specific when using phonemes that 

carry information about speaker identity and not speaker specific when using 

phonemes that do not carry speaker information (Kraljic & Samuel, 2007; Eisner & 

McQueen, 2005), that the effect generalises to words not heard in training 

(McQueen, Cutler, & Norris, 2006), that the effect only takes place if the listener has 

no reason to think the ambiguity is caused by temporary  idiosyncrasies of the 

speaker or stimulus (Kraljic, Samuel, & Brennan, 2008), and that perceptual learning 

on one phoneme category can generalise to another category provided that the 

phoneme pairs share the same primary contrast (Kraljic & Samuel, 2006).  

 

1.3.2.1 Novel words can adjust phoneme categories 

The key finding for the purposes of novel word learning in the perceptual 

learning literature is that nonwords cannot adjust phoneme categories. Lexical 

feedback is needed for this to take place. Thus one way of testing whether a novel 

word is capable of lexical engagement is to test if it can engage with the phoneme 

category level as real words do by adjusting phoneme boundaries.  

Leach and Samuel (2007) did just that. They trained participants on novel 

words which all included either an /s/ sound (e.g., gatersy) or a /sh/ sound (e.g., 

wikoshah). This was followed by an exposure phase where participants heard the 

novel words with the /s/ or /sh/ replaced with an ambiguous phoneme half way 

between /s/ and /sh/. A testing phase consisting of a phoneme monitoring task was 

included to establish the emergence of perceptual learning effects. All phases were 

carried out over five consecutive days. Across five experiments the authors varied 

the training task. Successful and immediate perceptual learning was observed in 

experiments where the training attached meaning to the novel words: word-picture 

association and reading short passages using the novel words in context. 

Experiments where phoneme monitoring was used as the training task did not show 

reliable perceptual learning effects. Also, experiments where the training included 

repetition aloud failed to show the effect, irrespective of semantics. A test of explicit 

word form knowledge was also included in the form of a task requiring word 

identification in noise, as discussed earlier, which showed good form knowledge in 

all experiments, independent of the training method.    
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Compared with the lexical competition paradigm, this series of experiments 

included some surprising findings. Firstly, perceptual learning effects were observed 

only in experiments where the novel words were associated with a meaning. Recall 

that Dumay et al. (2004) showed no advantage for novel words trained with a 

semantic referent. This might be due to some of the major differences between the 

work of Gaskell and colleagues and the Leach and Samuel study. Leach and Samuel 

used richer semantic context, required participants to learn fewer words, and gave 

more training sessions. The second interesting finding was the fast emergence of the 

effect: the characteristic delay seen in lexical competition studies was absent here. 

The different time course of these effects and the delayed lexical competition effects 

was recently addressed by Davis and Gaskell (2009) who argued that such a 

difference is predicted by the CLS framework (see page 45 for a more detailed 

description of this account). According to this view the fast learning hippocampal 

system has a direct link to lexical phonology, explaining why novel words are able to 

re-tune phonemic boundaries even if they have not been lexically integrated and 

undergone a transfer from the hippocampal to neocortical system.  

Converging evidence for this view was reported by Snoeren, Gaskell, and 

Di Betta (2009) who demonstrated compensation for place assimilation with newly 

learned spoken words. Place assimilation refers to the finding that in continuous 

speech certain word final consonants change according to the properties of the first 

consonant of the following word (e.g., the /n/ in lean bacon is often assimilated with 

the following /b/, resulting in leam bacon). Listeners however perceive the 

assimilated phoneme as an instance of the canonical form (i.e., in leam bacon 

listeners report hearing lean bacon), in other words they compensate for 

assimilation. This compensation is typically not found in assimilated nonwords, 

suggesting that the effect is lexically driven. In Snoeren et al. (2009) participants 

learned novel words ending in /t/ or /n/ (e.g., decibot), and were later exposed to a 

test phase where the assimilated form of the words were presented in a spoken 

sentence (e.g., the decibo[p] behaved badly). In a phonetic categorisation task 

participants were asked to judge whether the novel word in the sentence contained a 

target phoneme consistent with the canonical form of the word (i.e. /t/ in the current 

example). When the sentence provided a viable context for assimilation, participants 

did indeed report hearing phonemes consistent with the canonical form more often 

than in unviable sentence context, showing compensation. This was not the case 
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when tested with untrained nonwords, suggesting that there is significant top-down 

lexical involvement in perception of assimilation, and that only trained novel words 

had acquired enough of a lexical status to allow for compensation for assimilation to 

operate. Importantly, this was the case for words tested immediately after training 

and one day after training (although responses overall were faster for the words 

learned the day before). The lack of a consolidation effect here agrees with the 

perceptual learning findings, and presumably can be explained by the same 

mechanism in the CLS theory.  

 

1.3.3 Semantic priming 

Earlier I discussed evidence showing novel words engaging in lexical 

competition with each other and existing words. Lexical competition is not the only 

way words interact with each other, this can happen at the semantic level too. In 

semantic priming the presentation of a word, the prime (e.g., nurse), facilitates the 

recognition of the target (e.g., doctor), a semantically related word, presumably as a 

result of activation spreading from the prime word meaning to the related target 

meaning (see Neely, 1991, for a review). Semantic priming then is a good candidate 

for a third measure of lexical integration, provided that the novel words have been 

trained with a meaning. 

 

1.3.3.1 Novel words can prime semantically related real words 

As discussed in an earlier section, Perfetti et al. (2005) taught participants 

the meanings of previously unknown rare words, and tested word learning in a 

semantic decision experiment, where trials consisted of word pairs (prime – target), 

the first of which could be a novel word or a familiar word. Accuracy in this task 

was very good, showing that participants had good explicit knowledge of the 

meaning of the novel words. The word pairs could be semantically related or 

unrelated, allowing measurement of semantic priming effects. Responses were faster 

to the target when it was preceded by a semantically related prime, both when the 

prime was a familiar word and when it was a newly learned rare word. Furthermore, 

when a target followed an unrelated familiar or novel word, a higher amplitude N400 

was detected than in the related condition. This was not the case with untrained 

novel words. This is important because the N400 is thought to be sensitive to the 
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integration of semantic information of a word with a preceding context (Kutas & 

Hillyard, 1980). The novel words appear to provide the required semantic context to 

elicit an N400 to the target. However, semantic decision is an unusual measure of 

semantic priming, as it requires an explicit decision to be made about the relatedness 

of the stimulus pair. Whether this finding would apply to more traditional measures 

of semantic priming will be discussed in Chapters 4 and 5. 

Breitenstein et al. (2007) showed cross-modal semantic priming effects 

with newly learned words. Here novel words were paired with a picture over the 

course of five days of training in the same training paradigm as used by Breitenstein 

and Knecht (2002). Priming was evaluated before and after training in a primed 

semantic decision (living vs. nonliving) to the target pictures, with trained and 

untrained spoken novel words acting as primes. Comparing pre-training performance 

with post-training performance, responses to trials with a semantically related trained 

novel word prime speeded up, while no change was found in untrained novel word 

trials, suggesting that the trained novel words had acquired meaning. Dobel et al. (in 

press) replicated this finding in an experiment using magnetoencephalography 

(MEG) focusing on the N400m, the MEG equivalent of the N400 ERP component. 

Before training presenting a novel word prime with its paired picture evoked a large 

N400m. However, after training the N400m was present only if the prime was an 

untrained novel word, the N400m was attenuated for trained novel words paired with 

the related picture, reflecting reduced effort required in semantic processing. 

Mestres-Misse, Rodriguez-Fornells, and Munte (2007) have also reported 

semantic priming effects with novel words in an ERP experiment similar in some 

respects to that of Perfetti et al. (2005). In semantic decision target words elicited a 

high N400 in the unrelated condition, both with real word and novel word primes. 

The behavioural data showed slower RTs to the related condition in both novel and 

real words conditions, a rather surprising finding perhaps explained by the word 

training method. During training the novel words were presented only three times 

each, in a sentence context that became semantically more constrained at each 

presentation. This may have led to weaker explicit knowledge of the word meanings 

(supported by fairly low accuracy scores in the priming test) than in the Perfetti et al. 

study. This explanation is supported by an earlier priming study using newly learned 

words. Dagenbach, Carr, and Barnhardt (1990) taught participants previously 

unknown rare words and their meanings. These novel words were then used as 
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primes in a semantic priming test using lexical decision to target words. The data 

showed both semantic facilitation and inhibition, depending on how well the new 

word meanings had been learned. Novel words which were recognised as familiar 

items but whose meaning was not recalled produced semantic inhibition, while novel 

words whose meaning was recalled produced semantic facilitation (although the 

latter effect was consistently observed only when instructions encouraged 

participants to use the prime as a predictor of target identity). The authors suggested 

that novel words whose meaning was poorly learned were associated with weak 

semantic activation, which was in danger of being obscured by activation of 

competing related semantic concepts. This resulted in inhibition of the competing 

concepts, allowing correct semantic retrieval to take place. Novel words whose 

meaning was well learned did not require this inhibition of competitors, allowing 

facilitation to take place. These data are consistent with the behavioural data of 

Mestres-Misse et al. (2007), where it is highly likely that novel word meanings were 

weakly represented due to limited training.    

 

1.3.3.2 Novel words can inhibit semantically related real words 

As just discussed, the presence of a word does not always facilitate the 

processing of a semantically related word. Another example of this is experiments 

where printed words can slow naming times of semantically related pictures when 

the two are presented simultaneously or with a very short stimulus onset asynchrony 

(SOA). One such picture-word interference (PWI) study used novel words and 

sought to establish whether novel words, when trained with meaning, are able to 

elicit PWI (Clay, Bowers, Davis, & Hanley, 2007). Presenting a novel word 

simultaneously with a picture slowed picture naming times relative to presenting an 

untrained nonword, and this effect was observed immediately after training. This 

general PWI effect however does not imply that the meaning of the novel word has 

been learned, as the same effect is observed when any word is presented with a 

picture, regardless of the semantic relationship between the items. Crucially, the 

authors also showed that presenting a novel word simultaneously with a semantically 

related picture slowed naming times relative to presenting an unrelated novel word. 

This specific form of PWI can only occur if the meaning of the novel word has been 

learned. Interestingly, this effect was not observed immediately after training, but 

only in a delayed test session which took place a week later. These data confirm that 
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a lexical representation can be created very quickly (the source of general PWI). 

However, in this experiment there was no evidence of learning the meaning of the 

novel words until a week after training, seemingly requiring some form of 

consolidation. This is surprising compared to the ERP studies where there was at 

least some neural evidence of immediate semantic learning. Clearly the time course 

of semantic learning needs more research, and this issue is one that will be studied in 

Chapters 4 and 5.  

 

1.4 Factors affecting novel word learning 

I have now covered a wealth of research addressing the issue of adult word 

learning. People seem to be able to learn the form and meaning of novel words 

quickly and retain this information for a long time, demonstrating the establishing of 

a new lexical representation. Novel words also show evidence of lexical integration: 

they participate in lexical competition, they can interact with a sublexical level by re-

tuning phoneme categories, and the semantic activation of a novel word can spread 

to related meanings, as shown by priming effects. The next question I will discuss is 

whether some novel words are easier to learn than others. For example, some 

researchers have sought to establish that richer semantic information facilitates 

learning. Certainly the Leach and Samuel (2007) findings of only meaningful novel 

words enabling perceptual learning suggest meaning is not a trivial issue. There is 

also an interesting debate on whether phonological neighbourhood size helps or 

hinders the learning of new words. 

 

1.4.1 Semantic factors 

One of the earliest studies looking into the role of meaning in novel word 

acquisition was carried out by Whittlesea and Cantwell (1987). In their first 

experiment participants learned the meanings of 12 novel words. After training, the 

novel words were briefly presented on screen (20 ms) and the task was to report the 

identity of a target letter in the word. This initial experiment showed equally accurate 

performance with real words and the trained novel words, and significantly worse 

performance with untrained nonwords, suggesting the emergence of a novel lexical 

representation. In their second experiment Whittlesea and Cantwell compared 
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semantic and non-semantic training. Now equal performance was found for real 

words and semantically trained novel words, and significantly worse for non-

semantically trained novel words (a third experiment replicated this pattern 24 hours 

after training, indicating persistence of facilitation). Interestingly, there was no 

correlation between letter-detection performance and explicit recall of the novel 

word meanings, again hinting at the relevance of a distinction between explicit and 

implicit memory traces. Balota, Ferraro, and Connor (1991) used these data (and 

those of Forster, 1985) to argue that meaning plays an integral part in word 

recognition and that an account of word learning without taking meaning into 

consideration is not adequate to explain the data. 

Rueckl and Olds (1993) examined the effect of meaning in learning novel 

words using identity priming. They taught participants novel words either without 

meaning or with meaning. In the priming task participants saw the words briefly on 

screen (34 ms) and were asked to report the word. Some items were presented once 

during the experiment and others three times, under the assumption that repeated 

presentations should prime recognition. The data showed no priming effect for novel 

words with no meaning, and a reliable priming effect for novel words with meaning. 

Two following experiments manipulated meaning consistency such that either one or 

three different meanings were assigned to one novel word. This manipulation had no 

effect. Rueckl and Olds concluded that an association between a novel word and its 

meaning is helpful in visual word recognition, potentially due to orthographic-

semantic associations, as predicted by connectionist accounts that postulate 

interactive connections between these levels.  

Rueckl and Dror (1994) manipulated orthographic-semantic systematicity 

in novel words. Participants learned either a list of similar novel words with 

meanings from one semantic category (e.g., durch, hurch, and kurch paired with dog, 

cat, and bear) or a list of similar novel words with meanings from different 

categories (e.g., durch, hurch, and kurch paired with dog, shirt, and table). Training 

took place in five sessions over five weeks, with memory tasks and identification 

tasks carried out in each session. Cued recall tests showed faster learning for 

systematic novel words, although by the end of the experiment performance in both 

conditions was equal (and at ceiling). The identification task required participants to 

identify briefly presented words on screen. Furthermore, half of the novel words in 

the identification task had been seen just before the task in a cued recall task. Hence 
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half of the novel words had been primed. Overall, performance was better for 

systematic than non-systematic novel words. Looking at the priming conditions, the 

primed novel words showed no effect of semantic-orthographic systematicity, while 

the unprimed stimuli did. Also, only the non-systematic novel words showed 

priming effects. Setting the priming manipulation aside, both measures of novel 

word learning indicate superior performance on novel words with systematic 

orthographic-semantic mappings. This seems to again suggest that semantics is an 

important variable in word learning.    

Studies looking at reading accuracy and speed have not always been 

successful in finding a semantics advantage. Nation, Angell, and Castles (2007) had 

8- and 9-year-old children read novel words, and later tested their familiarity with 

the novel words in a visual 4AFC task where the foils were orthographically and 

phonologically similar words to the novel one. Number of exposures in training was 

varied (1, 2, or 4 exposures), as was semantic context. Some words were presented in 

the context of a story, and other in isolation. Collapsed across all conditions, 

performance was good in the recognition test, 48% correct one day after training, 

and 40% 7 days after training (chance level was 25%). Greater number of exposures 

at test was associated with better performance. This can be taken as another 

demonstration of quick learning of word form, this time in young children learning 

to read. The semantic manipulation however showed no statistically reliable effect, 

words learned in semantic context resulted in equally good performance as words 

learned in isolation.  

A similar study by McKague, Pratt, and Johnston (2001) examined 

children’s (6-7 year old) novel word learning in a naming task. Children were taught 

a number of novel words orally, either in a semantic condition (as part of an 

illustrated story) or in a non-semantic condition (listening to and repeating novel 

words). After two training session over two days, children’s reading times of the 

novel words were measured. A free recall test was also included. All novel words 

were read faster than control nonwords, with the semantic manipulation having no 

effect. In the free recall task however semantically trained novel words were recalled 

more reliably than non-semantically trained items. The experiment was repeated, this 

time only in the non-semantic condition, with one group of children repeating the 

novel words aloud during training and another group learning only by listening. 

Again trained novel words were read more quickly and accurately than untrained 
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nonwords. The articulation manipulation had no effect. The authors concluded that 

some form of orthographic representation is formed along with a phonological 

representation, and that semantic or articulatory support is not necessary for this to 

happen.  

The failure of these two studies to find an effect of semantics on reading 

may be due to the types of words they used. Some models of reading predict that 

semantics is most important when reading inconsistent words. This prediction is 

most strongly made by the parallel distributed model (PDP) of reading (e.g., Harm & 

Seidenberg, 2004). McKay, Davis, Savage, and Castles (2008) tested this prediction 

in a series of experiments where adult participants learned meaningful and 

meaningless novel words where the pronunciation was either consistent or 

inconsistent with real words with the same orthographic body. For example, the 

vowel in the novel word trean would be pronounced as /i/ in the consistent condition 

(to rhyme with bean), and as /e/, to rhyme with dead, in the inconsistent condition. 

Reading times and accuracies in the inconsistent condition did in fact benefit from 

meaning, but only when participants learned the meanings of the spoken forms of the 

words before being introduced to the written form. The authors argue that this was 

because learning the link between semantics and phonology first makes the semantic 

pathway the more viable option (in contrast to the pathway that bypasses semantics, 

linking orthography directly with phonology). No meaning effect was found in the 

consistent condition. 

Two other findings from the McKay et al. study deserve mention. Reading 

times and accuracies were also measured to nonwords that were orthographic 

neighbours to the trained novel words. Compared to a non-neighbour baseline, 

learning tren in the consistent condition facilitated reading of nonword neighbours 

with the same -ean body. In contrast, learning tren in the inconsistent condition 

slowed the reading of nonword neighbours, presumably because there was now a 

competing pronunciation available for the -ean body. These findings are reminiscent 

of the lexical competition work of Gaskell and colleagues, and suggest that the novel 

words had been lexically integrated. Interestingly, when the same participants were 

tested again 6-12 months later, some of these effects were still observable.  Notably, 

the consistent novel words were still being read faster than inconsistent novel words, 

and the impact on neighbours was still seen. The effect of meaning on reading time 

and accuracy had disappeared, although those inconsistent words whose meaning 



Chapter 1 

 40 

was still explicitly recalled were also read more accurately than words whose 

meaning had been forgotten. Together these data suggest that in adults meaning 

facilitates reading, but only when looking at inconsistent novel words and when the 

training introduces orthography after semantics. 

Another line of research relevant to the question about role of semantics 

comes from object recognition studies, some of which teach participants novel words 

as labels for novel objects. James and Gauthier (2004) trained participants to name a 

set of novel objects which could be attached either with a name and three semantic 

properties, or a name only. The names were all proper names (e.g., John), which 

means that this study is not entirely comparable with novel word learning studies, 

but does address the usefulness of semantics in learning new word-object pairings. 

The recognition accuracy data showed no difference between the condition where 

semantic features were assigned to each object and the condition where only a name 

was learned. The authors reported fMRI data which however did show a difference 

between the conditions: the semantic condition resulted in more activation of the left 

inferior frontal cortex than either the non-semantic condition or an untrained 

condition. This is interesting because this area has previously been linked with 

semantic processing, suggesting that additional semantic information was learned. In 

terms of behaviour on the other hand it did not provide an advantage. 

Similar data were reported in an MEG study by Cornelissen, Laine, 

Renvall, Saarinen, Martin, and Salmelin (2004). People learned names for unfamiliar 

objects (ancient agricultural tools), one set included name only, a second set included 

name and description of the tool’s function, and a third set included the functional 

description only. Participants were trained until they reached a criterion of 98% 

correct. In terms of learning there was no effect of semantics, the object names with 

rich semantic information (about the function of the tool) were learned equally fast 

as names where no additional information was provided. Unlike James and Gauthier 

(2004), Cornelissen et al. (2004) found no cortical differences between the 

conditions.  

Gronholm, Rinne, Vorobyev, and Laine (2005), using the same stimuli as 

Cornelissen et al. (2004), also failed to find an advantage for object names which had 

been trained with rich semantic information. In fact, these authors found a small 

learning advantage for the name-only condition. A small but non-significant 

semantic advantage was found for patients with mild cognitive impairment (MCI) 
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though (Gronholm, Rinne, Vorobyev, & Laine, 2007). At the neural level, measured 

with positron emission tomography (PET), no differences were found in neural 

activation between the semantic conditions in healthy participants (Gronholm et al., 

2005). The MCI patient group showed higher level of activation of a visual 

processing area (BA 18) with the semantically rich condition, suggesting that these 

patients may have created more vivid visual associations with the help of the 

additional semantic information (Gronholm et al., 2007).   

In sum, the evidence for the role of semantics in novel word learning is 

mixed. Whittlesea and Cantwell (1987) as well as Rueckl and Olds (1993) provided 

evidence for the importance of meaning. Nation et al. (2007) and McKague et al. 

(2001) on the other hand showed that children learning to read novel words learned 

them equally well whether they knew their meaning or not, although word 

consistency and structure of the training regime may need to be considered (McKay 

et al., 2008). The object naming studies showed that attaching rich semantic 

information to the novel objects and their names did not tend to improve learning. In 

addition, Dumay et al. (2004) showed novel words engaging in lexical competition 

irrespective of whether participants knew what they meant or not.  

Some authors have expressed surprise at the apparent lack of semantic 

effects (e.g., Gronholm et al., 2005). It is well known that in many memory tasks, 

semantic processing, or “deep” encoding, results in better memory performance. In 

their seminal paper Craik and Tulving (1975) asked participants to carry out tasks on 

real words that differed in the level of processing needed, from a shallow task 

(decide whether a word is printed in capital letters or not) to a task requiring deep 

semantic analysis (decide whether a word fits in a sentence). They found that deep 

learning resulted in more accurate responses in a recognition task, and also took 

more time to carry out than shallow learning. The latter was the case also in the 

object naming studies, and suggests that cognitive load of the semantic learning 

condition is higher than non-semantic condition, potentially causing participants to 

dedicate fewer resources for name learning. A very different but equally plausible 

account would argue that since participants knew that the semantic information was 

redundant for many of the tasks, they may not have performed to the best of their 

abilities in learning the meanings. Finally, Gronholm et al. (2005) pointed out that 

many participants in the non-semantic conditions reported self-generated semantic 
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associations in all conditions. Such associations may mask any benefit semantics 

might selectively offer to the conditions where words are assigned a meaning. 

One of the reviewed studies suggesting that semantics is helpful (or indeed 

necessary) for word learning is the Leach and Samuel (2007) series of experiments 

discussed earlier. In this study successful lexical integration was only observed with 

novel words that had either been associated with a picture or given a meaning 

through a story context. It is not clear why this is, whether it is due to the properties 

of the stimuli or the measure of lexical integration (perceptual learning) will be 

further investigated in the next chapter. It is worth noting though that semantics did 

not affect the degree of word form learning even in the Leach and Samuel study. 

Finally, one may want to exercise caution in interpreting the object naming studies in 

relation to the novel word learning studies. Even in the conditions where the novel 

object does not have a functional description, the image of the object itself provides 

a semantic referent for the name. Hence the non-semantic condition is not 

comparable to the non-semantic conditions of the word learning studies where 

nothing apart from the word form was available to the learner. It is possible that in 

the type of learning studies discussed here any semantic information over and above 

a simple picture is redundant, and the degree of richness of the information is 

irrelevant.   

 

1.4.2 Phonological factors 

Storkel, Armbruster, and Hogan (2006) have argued, based on child word 

learning data, that there are two phonological properties that may play a role in novel 

word learning in adults: phonotactic probability and phonological neighbourhood 

density. Phonotactic probability refers to the frequency with which a given sound 

occurs at a given position in a word (i.e., positional segment frequency), and also to 

the frequency with which two sounds occur together (i.e., biphone frequency). 

Neighbourhood density refers to the number of words that differ from the target 

word by one phoneme. Both of these variables have been found to affect word 

learning in children: there is an advantage for words with high phonotactic 

probability and words with high neighbourhood density (Storkel, 2001, 2004). 

However, Storkel et al. (2006) found a different pattern in adult word learning. In a 

paradigm where novel words were trained embedded in a story context and 
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associated with a picture, adult learners produced more accurate naming responses to 

novel words with low phonotactic probability, and high neighbourhood density.  

By analysing partially correct and completely correct responses separately, 

Storkel et al. were able to evaluate the influence of the two variables both at an early 

stage of learning (where partially complete responses were made) and at a late stage 

of learning (where completely correct responses were made). Only phonotactic 

probability affected partially correct responses, and only neighbourhood density 

affected completely correct responses. The advantage for phonotactically rare novel 

words was explained by fast triggering of word learning. High-probability novel 

words may be deceptively similar to existing words, thus slowing the initiation of 

learning. This would also explain why this variable affects only the early learning 

stage. Storkel et al. proposed that neighbourhood density is a critical factor in the 

process of integrating novel word representations in the lexicon in later stages of 

word learning. Hearing a high-density novel word will also activate a large number 

of neighbours, whose activation in turn will feed back to the phonological level. The 

activation at the phonological level will spread back to the appropriate lexical 

representations. This cycle of activation will be stronger for high-density novel 

words than low-density novel words, and will help to strengthen the connections of 

the novel words with other lexical representations and phonological representations, 

and in this way stabilise the new entry faster. 

Jarrold and Thorn (2007) carried out another experiment where phonotactic 

probability and neighbourhood density were orthogonally varied. Their participants 

were 5-, 7-, and 9-year-old children, whose task was to learn a set of novel words, 

representing names of monsters seen on screen. Phonotactic probability (defined as 

biphone frequency only) affected learning in all age groups: words with high 

probability were recalled more accurately. Neighbourhood size effects on the other 

hand were present only in the two youngest groups, where large density had a 

learning advantage. The 9-year-olds showed no effect in this condition. This was 

interpreted as a developmental shift from a lexical association approach to word 

learning to a more abstractionist approach. 

The discrepancy between the adult and child data is difficult to explain. In 

terms of phonotactic probability, children show a high-frequency advantage, and 

adults showed a disadvantage (in early learning only). For adults a low-probability 

word is a reliable indication of the word being a novel one. For children however, 
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many words are likely to be novel, and hence phonotactic probability is a less useful 

cue, potentially explaining some of the discrepancy. The disappearance of 

neighbourhood effects in 9-year-olds is more puzzling, considering that adults show 

the effect. This suggests that there may be something fundamentally different about 

child and adult learning, but this issue requires much more research. 

Effects of phonological properties are reported in word learning studies, as 

discussed above, as well as studies looking at nonword recall (e.g., Roodenrys & 

Hinton, 2002; Thorn & Frankish, 2005). The typical finding is an advantage for 

nonwords with high phonotactic probability, and high neighbourhood density, 

although as shown by Storkel et al. (2006) the effects can also go in the opposite 

direction depending on the task. What is clear however is that phonological 

properties of the novel words matter: Storkel’s finding of a neighbourhood density 

benefit suggests that adult learners are able to use activation in existing lexical 

representations to help them learn novel words. The next chapter will develop these 

ideas further.  

 

1.5 Conclusions and thesis outline 

Adult native language word learning is a fairly young field of research, but 

the review of relevant studies presented here shows that there are preliminary data 

throwing light on this issue at many levels of processing. We have seen that lexical 

representations seem to be established very quickly when a novel word is 

encountered repeatedly, and these new representations are durable over long time 

periods and without intervening exposure (e.g., Salasoo et al., 1985). People seem to 

acquire detailed explicit and implicit knowledge about the form and meaning of the 

novel words, and this knowledge is available for use and can be detected both at 

behavioural and neural level almost immediately.  

Lexical integration however takes place with different time lags, depending 

on how integration is measured. Novel lexical representations seem to engage with a 

sublexical phonemic level immediately after training (Leach & Samuel, 2007). 

Integrating the novel representation with other lexical entries on the other hand 

requires a period of offline consolidation (possibly sleep-dependent) to occur (e.g., 

Dumay & Gaskell, 2007). Role of consolidation with regard to semantic 

representations is less clear, but there is a possibility it is required at this level too 
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(Clay et al., 2007), in spite of ERP evidence showing immediate semantic priming 

effects (e.g., Mestres-Misse et al., 2007). Why might lexical engagement at some 

levels take place sooner than other levels? The CLS view, when applied to word 

learning (see Davis & Gaskell, 2009), suggests that representations of newly learned 

words are initially stored in the fast learning hippocampal system. Importantly, 

information at this level is stored in sparse, non-overlapping representations, in order 

to avoid new information from interfering with existing information, or two pieces of 

new information interfering with each other. This nature of the representations 

explains why lexical competition is not seen at this early stage, as new lexical 

representations are yet to be integrated in the lexicon. As a result of a process of 

offline consolidation, the new lexical representations are integrated in the existing 

lexicon at the neocortical level where representations are stored in an overlapping 

manner, allowing lexical competition to emerge. This consolidation process, at least 

as far as it involves meaningless form-based representations, appears to be benefit 

from sleep. In this framework then any lexical process that relies on the interaction 

of one lexical representation with another will benefit from consolidation. 

Importantly though any process which does not require the new representation to 

have been integrated in the lexicon should be observable immediately after training.  

Many further questions remain unanswered. For example, what role does 

semantic information play in the learning process? Is meaning necessary or useful in 

lexical integration? I reviewed data based on reading times and accuracy in adults 

and children which turn out to be inconclusive, and seem to depend on training 

variables and orthographic consistency. A similar contradiction was seen between 

the Leach and Samuel (2007) data and the lexical competition data. It may be 

possible to reconcile these data by considering the phonological and/or semantic 

properties of the novel words themselves, which play an important role in word 

learning. This argument is explored further in the next chapter. The roles of sleep 

and offline memory consolidation are critical issues as well, and looking at the 

neural correlates of these processes may help understand how these factors operate. 

While neuroimaging data are starting to emerge showing what changes in the brain 

during novel word consolidation (e.g., Davis et al., 2009; Breitenstein et al., 2005), 

we have no data on the neural events during sleep that are driving these effects. This 

question will be addressed in Chapter 6. Finally, whether semantic knowledge of the 

novel words benefits from offline consolidation in the same was as lexical 
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integration of word forms seems to do, is a question in need of clarification. Chapters 

4 and 5 will attempt to throw some light on this issue.
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Chapter 2: Meaning in word learning 

2.1 Introduction 

As discussed in Chapter 1, the role of meaning in novel word learning is 

unclear. The existing evidence is mixed: some studies have found better learning 

when the novel words are meaningful (e.g., Whittlesea & Cantwell, 1987), while 

others have found no effect (e.g., Dumay et al., 2004). In the following three 

experiments I will focus on the effect of semantics in word learning and lexical 

integration. 

Recall that Leach and Samuel (2007) showed in a series of experiments that 

novel spoken words engage with a phoneme level only if the novel words are 

meaningful. This was found both in experiments where the meaning was provided by 

pictures of unfamiliar objects (in a word-picture matching task during training) and 

in experiments where the novel words were embedded in short spoken passages, 

followed by questions about the meaning. Experiments where training provided no 

meaning (phoneme monitoring) showed no reliable evidence for lexical integration.  

Such findings were in stark contrast with studies looking at lexical 

competition. Gaskell and colleagues have in several experiments showed novel 

words taking part in lexical competition, as a consequence of training that did not 

involve meaning (phoneme monitoring in most cases). Furthermore, in an 

experiment which did provide meaning for the words (Dumay et al., 2004), no 

difference in terms of lexical integration was found between the meaningful training 

and purely phonological training.  

Leach and Samuel (2007) provided some speculative ideas on why the data 

appear to be inconsistent. They pointed out that the Dumay et al. (2004) study 

required participants to learn a fairly large set of novel words (24, as opposed to 6 or 

12 in Leach and Samuel), that there were fewer training sessions (2, as opposed to 5 

in Leach and Samuel), and that the meanings of the novel words had been apparently 

learned quite poorly by the participants in Dumay et al. (30-44% success in free 

recall). Furthermore, Leach and Samuel used semantic training that provided more 

finely defined content (a picture or a detailed story) than Dumay et al. who presented 

novel words in just two different sentences (e.g., “cathedruke is a type of vegetable” 

and “the cook served the boiled cathedruke with steak and baked potatoes”).  
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Another potential explanation offered by Leach and Samuel was that lexical 

competition might not require as strong lexical integration as perceptual learning 

does. Lexical competition requires interaction between representations, while 

perceptual learning requires re-tuning of phonemic representations. It may be that 

meaning is required for this stronger form of integration to take place. Finally, one 

major difference between the studies was the type of stimuli used. Novel words used 

in the lexical competition experiments need to overlap with existing words, such as 

cathedruke, derived from cathedral. In the perceptual learning experiments on the 

other hand, no such requirement exists, and hence the stimuli used by Leach and 

Samuel, such as wickoshah, did not resemble existing words. Leach and Samuel 

argued that it may be easier to set up a new lexical representation for the overlapping 

variants, than to build a new one from scratch. 

This last proposal seems highly plausible, both for the reasons stated by 

Leach and Samuel, but also when considering the role of semantics in learning. It is 

likely that hearing cathedruke activates the meaning of the similar-sounding real 

word cathedral. Some support for this idea comes from the data on the meaningful 

novel words reported by Dumay et al. (2004), who found that in a free association 

task a large proportion of responses to the novel words consisted of the actual base 

words (38-47%). It seems that if a participant experiences uncertainty about the 

meaning of a novel word, they choose to default to the base word meaning 

(proportion of responses other than the base word, its meaning, or the assigned novel 

meaning was 11-24%). In light of these findings, it may be the case that this type of 

novel word is not meaningless, even if no meaning was provided in training. 

If novel words that overlap with existing words “inherit” the meaning of their 

familiar neighbour, we should see word-like effects also in nonwords that have been 

derived from existing words. A small number of studies have attempted to see if 

word-like nonwords in fact do activate the meaning of the real words from which 

they are derived. Bourassa and Besner (1998) showed that nonwords which were 

derived from real words by changing one letter (e.g., deg derived from dog) could 

prime lexical decision to semantically related real words in a visual semantic priming 

experiment, at least when the prime nonwords were presented only briefly (40 ms). 

However, the priming effect was small (less than 10 ms) and statistically significant 

only in a one-tailed analysis. Deacon, Dynowska, Ritter, and Grose-Fifer (2004) also 

used derived nonwords in a priming experiment, although here the focus of interest 
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was on the N400 ERP component. Nonwords were derived from real words by 

changing one or two letters (e.g., contle derived from candle), and together with real 

words were used both in prime and target positions. An attenuated N400, indicating 

semantic priming, was found in the condition where a derived nonword was 

preceded by a semantically related derived nonword (e.g., plynt – tlee), compared 

with an unprimed condition where a derived nonword was preceded by an unrelated 

real word (e.g., stairs – putteffly).  

In the auditory domain Connine, Blasko and Titone (1993) showed that 

spoken derived nonwords could prime semantically related written real words, 

although they found a priming effect only when the nonwords were created by 

changing one phoneme by less than two phonetic features. In a second study 

Connine, Titone, Deelman, and Blasko (1997) showed that a more significant 

deviation (more than 5 features) could also result in lexical activation, when 

measured by phoneme monitoring latency.   

The above observations support the hypothesis that word-like novel words 

may activate the meaning of the real words they overlap with. This is particularly the 

case with the spoken novel words used by Gaskell and colleagues, such as 

cathedruke, which overlap with only a small number of real words. A small cohort of 

highly overlapping neighbours increases the likelihood of these real word 

competitors becoming highly activated upon the presentation of the novel word. 

Furthermore, the novel word deviates from the real word competitors at a late point, 

extending the time during which the competitors are activated. 

The question of whether this has tangible consequences in adult word 

learning remains to be answered. To my knowledge, only one word learning study so 

far has manipulated the degree to which the novel stimuli overlap with existing 

words. Swingley and Aslin (2007) taught 1.5-year-old children novel words that 

could be phonological neighbours of existing words (e.g., tog, neighbour of dog) or 

non-neighbours (e.g., meb). Knowledge of the novel words was tested by monitoring 

the children’s eye movements in response to visual presentations of known and 

unknown objects, some of which had been associated with the novel words in 

training. When the children had to discriminate between two novel objects, one of 

which was named, they looked more at the named object when tested with non-

neighbours, suggesting that they had learned the word form. However, when tested 

with neighbours, they failed to identify the named object. Another interesting finding 
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came from displays which included a novel object and a familiar object. If the novel 

object referred to a neighbour novel word, and the familiar object was the word from 

which the novel word was derived, children were impaired on identifying the 

familiar word. It seems that the novel neighbour word competed with the familiar 

word in these displays, a finding reminiscent of the adult lexical competition studies. 

The different outcomes using the different types of novel words suggest that young 

children at least are sensitive to the overlap between the novel word and its 

neighbours, and that this affects the ease with which the meanings of the novel 

words are acquired.  

Whether these stimulus characteristics are important in adult word learning, 

and whether they can explain the discrepancy between the perceptual learning and 

lexical competition studies was examined in the series of experiments reported in 

this chapter. The overall hypothesis is as follows: if novel words such as cathedruke 

in the absence of trained meaning activate the existing meaning of the base word 

from which they are derived, then lexical integration should be observed for these 

words even when no meaning is trained. This should not be the case for novel words 

that do not overlap with existing words. Experiment 1 sought to establish the effect 

of orthographic overlap between novel words and real words in the degree of explicit 

learning of novel word forms and their meanings. Experiments 2 and 3 tested the 

relevance of this factor in an auditory perceptual learning experiment modelled after 

the experiments of Leach and Samuel (2007), but adding a manipulation of novel 

word type in terms of overlap with existing words. 

 

2.2 Experiment 1 

The aim of Experiment 1 was to see if the properties of the novel word form 

in relation to existing words have an effect on learning. Participants were taught 

written neighbour novel words (novel words which overlap highly with a familiar 

base word, such as alcohin) and non-neighbour novel words (variants of the 

neighbours manipulated to overlap to a smaller degree with the familiar base word, 

such as amcohin). 2 A meaning was also provided for each word in training. 

                                                 
2 This experiment was carried out in the visual modality to allow comparison with other visual 
experiments presented later in this thesis, looking at consolidation effects in recall of word forms and 
meanings. 
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Neighbours were divided into two meaning conditions: neighbours with consistent 

meanings were items where the given meaning was closely related to the meaning of 

the base word (e.g., alcohin – drink). Neighbours with inconsistent meanings were 

items where the given meaning was unrelated to the base word meaning (e.g., 

alcohin – flute). Non-neighbours naturally fell in the inconsistent condition, since 

these novel words were designed not to evoke the meaning provided by the base 

word. Knowledge of the novel word forms was tested after and during training by 

cued recall, and knowledge of meaning by a meaning recall task. The tests were 

administered immediately after training in half of the participants, and the other half 

were tested one day later. This manipulation was included to evaluate potential 

consolidation effects (c.f. Dumay and Gaskell’s [2007] demonstration of improving 

recall of word forms overnight). If the manipulation of form overlap is relevant in 

word learning, a difference in learning outcome should emerge between the 

neighbours and non-neighbours, with better recall of neighbour forms and meanings. 

If learners are able to access the meaning of the neighbours’ base words, they should 

find it easier to learn the novel word meanings when the meaning is consistent rather 

than inconsistent with the base word meanings. 

 

2.2.1 Method 

Materials 

A set of 36 novel words was selected from the stimulus set used by 

Tamminen & Gaskell (2008). These were all novel words which have been derived 

from bisyllabic and trisyllabic real base words with an early uniqueness point (e.g. 

cathedruke derived from cathedral). The stimulus selection for the purposes of this 

experiment was done largely based on the semantic properties of the base words with 

the aim of choosing only base words that refer to concrete nouns. After a satisfactory 

set had been selected, a meaning was formulated for each novel word. The meaning 

was selected so that it was related to the meaning of the base word from which the 

novel word was derived. The meaning always consisted of an object and two features 

of the object that made it unique, for example in the case of cathedruke (cathedral) 

the meaning was a type of church with metal benches and no windows. Whenever 

possible, the object of the novel word meaning was a superordinate of the base word 

meaning. This was not always possible if the superordinate had been already used for 
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a different word. In these cases a closely related object was chosen as the novel 

meaning (e.g., clarinern [clarinet] is a type of flute that is made of plastic and is 

shrill). The two features of the objects were selected to make it unique from any 

commonly encountered object of the given type. See Appendix 1 for a list of all 

novel words and their meanings. 

The novel words used by Tamminen and Gaskell (2008) were used in the 

neighbour condition, as these words overlap largely with their base words both 

orthographically and phonologically. On average the base words were 7.4 letters 

long, with the neighbour novel words sharing on average the first 5 letters with the 

base word. Stimuli for the non-neighbour condition were generated by changing one, 

two, or three of the first letters of the neighbour, resulting in a pronounceable novel 

word which had little resemblance with the base word (Appendix 1). Hence the 

neighbour list and the non-neighbour list were matched in length and syllabic 

structure. They were also matched in summed bigram frequency to ensure that both 

were equally difficult to learn based on orthographic properties alone. Bigram 

frequency values were derived from the WordGen database (Duyck, Desmet, 

Verbeke, & Brysbaert, 2004). 

For the purposes of the cued recall task, each novel word stimulus was 

associated with three cues. In two cues one letter was removed from the novel word 

(e.g., cathedr_ke and c_thedruke). The position of the missing letter was varied 

across all positions so that participants would attend equally to all parts of the novel 

words. These two easy cues were used during training only. The third cue was used 

in testing and was made more challenging by removing every other letter (e.g., 

_a_h_d_u_e). The missing letters started from the first letter of the word in half of 

the stimuli. 

 

Design 

The set of 36 neighbour/non-neighbour novel word pairs was 

pseudorandomly divided into three lists, matched in length in letters and summed 

bigram frequency, to be used in the three experimental conditions: neighbour – 

consistent meaning, neighbour – inconsistent meaning, and non-neighbour. The 

conditions were rotated across the three lists such that each list was used in each 

condition an equal number of times across participants. The inconsistent meanings 

condition was created by pseudorandomly shuffling the meanings across the 
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neighbour – inconsistent meaning and non-neighbour lists, making sure that the 

assigned meaning was completely unrelated to the real base word.  

In order to examine possible effects of offline consolidation, half of the 

participants were pseudorandomly allocated to be tested immediately after training, 

and the other half to be tested on the following day. Participants were informed of 

the allocation upon arriving in the laboratory. 

 

Procedure 

Participants arrived in the laboratory on day 1 and started with a training 

session. Training consisted of two tasks: word-meaning matching, and cued recall. In 

the word-meaning matching task a trial began with a novel word presented on the 

computer screen, paired with a potential meaning. The task was to say whether the 

word-meaning pair was correct or incorrect by pressing a key on the keyboard. After 

a response was made, accuracy feedback was given and the correct meaning was 

displayed on screen. In total there were three blocks of word-meaning matching, 

each with two presentations of each novel word, once paired with the correct 

meaning and once with an incorrect meaning. On each incorrect trial a wrong 

meaning was randomly selected from the full list of meanings. The order of trials 

within blocks was randomised by the presentation software. In total then each novel 

word appeared six times in this task. 

The three blocks of word-meaning matching were interleaved with two 

blocks of cued recall. In these trials one of the easy cues (e.g., c_thedruke) was 

presented on screen, and the task was to type in the complete novel word. After the 

response was completed, the correct word was displayed on the screen. Each novel 

word appeared once in each block, resulting in a total of two exposures per word in 

this task. Hence across both training tasks each novel word was seen eight times. 

This level of exposure was chosen based on pilot testing in order to reach a level of 

performance in cued recall and recall of meanings that was above chance but not at 

ceiling. This was important to make sure differences across the conditions were not 

obscured by floor or ceiling effects.  

The test session included cued recall followed by meaning recall. The cued 

recall trials were identical to the training phase except that no feedback was given 

and the cues provided fewer letters (e.g., _a_h_d_u_e), making the task more 

challenging. Cues were presented in random order. After the response was 
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completed, participants were asked to rate the difficulty of recalling that particular 

word on a scale from 1 to 7, with 1 being very easy and 7 being very difficult. The 

response was made by typing the number using the keyboard. 

In the meaning recall task a complete novel word was presented on screen, 

and participants were asked to type in the full meaning of the word. Again, once the 

response was completed, a rating was made regarding the difficulty of recalling the 

meaning. There was no time pressure in either the training or test tasks. All stimuli 

were presented using E-prime 1.2, which also collected the responses, running on a 

Windows XP PC. 

 

Participants 

30 students and staff from the University of York participated in the 

experiment (8 males, 5 left-handed), with a mean age of 20.0 (range = 18-31). All 

participants were native English speakers, reported no language-related disorders, 

and received course credit or cash payment. 

 

2.2.2 Results 

Data analysis 

Most tasks in this experiment produced accuracy data, that is, participants 

made a response that was either correct or incorrect. All such data in this experiment 

and all following experiments in this thesis were analysed using logistic regression, 

which has been argued to be more appropriate and less likely to result in type I or 

type II errors than applying analysis of variance (ANOVA) on proportional data, 

even if the proportional data are arcsine corrected (Jaeger, 2008). Furthermore, I 

used mixed-effects models in order to simultaneously assess by-items and by-

subjects effects (Baayen, Davidson, & Bates, 2008; Baayen, 2008). These analyses 

were carried out in R version 2.5.1 (R Development Core Team, 2007) using the 

lme4 package (Bates, 2005). Whenever appropriate, I included subjects and items as 

random effects. Whether random slopes for the fixed effects by subjects and/or items 

were useful was determined for each model individually by carrying out log-

likelihood ratio (LLR) tests to find the random effects structure that significantly 

increased the goodness of fit of the model over a model with no or fewer random 

slopes, within the limits of each data set (very complex random structures require 
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larger data sets than used in this thesis). The exact structure used in each case is 

reported in the text.  

In building the fixed factors structure, a strategy based on model 

simplification was followed. A full model with the fixed factors of interest and all 

interactions was considered first. Interactions which included significant (p < .05) 

contrasts were kept in the model, otherwise they were dropped.3 Elimination of non-

significant interactions started with highest order interactions. Marginally significant 

(p ≤ .06) effects were kept in the model if they were theoretically motivated. Also, 

when a variable’s inclusion in the random effect structure significantly increased the 

fit of the model, that variable was retained as a fixed factor as well, regardless of 

whether it was significant (Baayen, 2008). 

For each fixed effect I report the estimated coefficient (b), the t- or z-statistic 

associated with the coefficient, and the p-value based on the t- or z-statistic. While p-

values are automatically provided by the lme4 package for the mixed-effects version 

of logistic regression, this is not the case in the linear models which are used in later 

experiments to analyse reaction time data. In those instances Markov Chain Monte 

Carlo (MCMC) simulations were used to estimate p-values, using the pvals.fnc 

function provided in the languageR package (see Baayen, Davidson, & Bates, 2008). 

In this thesis I will generally not report the coefficients and their statistics for non-

significant results (where p > .05), except if an effect is marginally significant (p ≤ 

.06). Instead I shall simply state that the effect in question was non-significant. 

Weaker effects than that will be described in detail only if they are motivated by 

experimental predictions. The p-values reported in the text are uncorrected for 

multiple comparisons. However, Bonferroni corrected alpha levels were also 

calculated based on the number of contrasts examined in each model. In the text each 

uncorrected p-value that does not reach significance based on the corrected alpha 

level is marked with the symbol † . This strategy gives the reader accurate 

information about the significance levels while also giving information about the 

robustness of each contrast in the face of multiple comparisons. 

                                                 
3 An alternative strategy would be to evaluate the significance of a simple effect or an interaction as a 
whole through model comparison using LLR tests. However, LLR tests for fixed factors have been 
argued to be unreliable (e.g., Bolker et al., 2009). The strategy used in this thesis follows that of 
Baayen (2008).  
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All reaction time analyses were carried out on log transformed data, in order 

to satisfy the assumption of normality, and to reduce the effect of outliers (Baayen, 

2008). Data in figures has been re-transformed to facilitate interpretation. In all 

figures in this thesis error bars represent standard error (uncorrected for within-

participants contrasts).  

 

Training data 

Accuracy in the word-meaning training task was analysed to see if the items 

in the different word conditions (Figure 1, left panel) were learned equally well 

during training. A mixed-effects logistic regression model with subjects and items as 

random factors, and word type (neighbour-consistent, neighbour-inconsistent, non-

neighbour) and training trial (six word-meaning trials) as fixed factors was fitted. No 

interaction between word type and trial was found, hence it was dropped from the 

model. Contrasts focusing on the main effect of word type showed significantly 

more accurate performance to neighbour-consistent words than either neighbour-

inconsistent (b = -0.740, z = -7.05, p < .001), or non-neighbours (b = -0.617,  

z = -5.48, p < .001). No significant difference was found between neighbour-

inconsistent and non-neighbour conditions.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Accuracy rates in training tasks. Error bars represent standard error of the means. 
 

Effect of trial was evaluated next. Accuracy improved significantly from 

trial 1 to trial 2 (b = 1.253, z = 11.33, p < .001), from trial 2 to trial 3 (b = 0.350,  

z = 2.63, p = .008†), from trial 3 to trial 4 (b = 0.556, z = 3.51, p < .001), from trial 4 

to trial 5 (b = 0.648, z = 3.17, p = .002), but not further from trial 5 to trial 6.  
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Although the interaction between word type and trial failed to reach 

significance, visual inspection of Figure 1 suggests that performance on the three 

word types may have converged at trial 6. This was supported by calculating word 

type contrasts at each trial individually. At trial 6, the difference between neighbour-

consistent and non-neighbours was not significant (b = 0.212, z = 0.48, p = .63), 

although the difference between neighbour-consistent and neighbour-inconsistent 

approached significance (b = 0.750, z = 1.88, p = .06†).  There was no difference 

between neighbour-inconsistent and non-neighbours. Looking at the remaining five 

trials, the difference between consistent and inconsistent neighbours was significant 

at all trials (trial 1: b = 0.562, z = 3.43, p < .001, trial 2: b = 0.600, z = 2.70,  

p = .007†, trial 3: b = 0.887, z = 3.31, p = .001, trial 4: b = 1.156, z = 3.19, p = .001, 

trial 5: b = 1.628, z = 2.90, p = .004†). Similarly, the difference between consistent 

neighbours and non-neighbours was significant at all trials (trial 1: b = 0.523,  

z = 3.09, p = .002, trial 2: b = 0.433, z = 1.87, p = .06†, trial 3: b = 0.783, z = 2.86,  

p = .004†, trial 4: b = 1.080, z = 2.94, p = .003, trial 5: b = 1.505, z = 2.66, p = .008†). 

The difference between non-neighbours and inconsistent neighbours was non-

significant in these trials. 

Data from the two cued recall training blocks are also presented in Figure 1 

(right panel). Block (block 1 and block 2) and word type (neighbour-consistent, 

neighbour-inconsistent, non-neighbour) were entered as fixed factors, and subjects 

and items as random factors. There was no significant interaction between the two 

fixed factors, so the interaction was dropped. Recall accuracy for non-neighbours 

was significantly worse than either for consistent neighbours (b = 0.871, z = 3.47,  

p < .001), or for inconsistent neighbours (b = 0.817, z = 3.26, p < .001). There was 

no significant difference between the two neighbour conditions. Performance overall 

improved significantly from block 1 to block 2 (b = 1.030, z = 9.48, p < .001). 

 

Test data 

Figure 2 shows the proportion of accurately recalled novel word objects in 

the different word conditions, for participants who did the immediate test, and for 

participants who did the delayed test one day later (left y-axis). A mixed-effects 

logistic regression model with word type (neighbour-consistent, neighbour-

inconsistent, non-neighbour) and time of testing (immediate vs. delayed) as fixed 

factors and subjects and items as random factors revealed an interaction between 
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time of testing and word type. Hence the effect of word type was first evaluated at 

both test times individually. Recall rates were significantly higher for consistent 

neighbours compared both to inconsistent neighbours and non-neighbours: this was 

the case both in the immediate test (b = -0.606, z = -2.26, p = .02†, b = -0.919,  

z = 2.90, p < .01†) and the delayed test (b = -1.012, z = -4.14, p < .001. b = -0.588,  

z = 1.97, p = .049†). Looking at the contrast between inconsistent neighbours and 

non-neighbours, no significant difference was found in the immediate test or the 

delayed test. Looking next at the effect of time of testing, equally good performance 

was found at both test times in the consistent neighbour and non-neighbour 

conditions, but in the inconsistent neighbours condition there was a significant 

benefit for immediate testing (b = 1.163, z = 2.45, p = .01†).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Recall of novel word meanings at test. Error bars represent standard error of the 
means. 

 

The right y-axis in Figure 2 shows the number of features recalled in the 

different types of novel words and at the different test times. Logistic regression in 

this case is inappropriate as there are three possible outcomes: a participant can 

recall 0, 1, or 2 features for each word. An ANOVA could be used but is unreliable 

with count data. Hence ordinal logistic regression was used (Baayen, 2008; Hosmer 

& Lemeshow, 2000). This allows for three levels (or more) of the dependent variable 

and consideration of the ordinal relationship between the variables. Note that at the 

time of writing ordinal logistic regression is not available as a mixed model. The 
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regression with word type (neighbour-consistent, neighbour-inconsistent, non-

neighbour) and time of testing (immediate vs. delayed) as fixed effects showed no 

significant interaction contrasts, hence the interaction was dropped. The simplified 

model showed that more features were recalled for consistent neighbours than for 

inconsistent neighbours (b = -0.598, z = -4.27, p < .001) or for non-neighbours (b =  

-0.488, z = 3.48, p < .001). No significant difference was found between inconsistent 

neighbours and non-neighbours. The contrast between the two testing times was 

significant (b = -0.928, z = -8.02, p < .001), confirming that participants who were 

immediately tested recalled more features than participants who were tested a day 

after training. 

Figure 3 shows the cued recall data at test. A mixed-effects logistic 

regression with word type (neighbour-consistent, neighbour-inconsistent, non-

neighbour) and time of testing (immediate vs. delayed) as fixed effects, and subjects 

and items as random effects showed no significant interactions between the fixed 

effects, hence the interaction was dropped. More accurate responses were made to 

consistent neighbours than to inconsistent neighbours (b = -0.464, z = -2.53, p = .01) 

or non-neighbours (b = -1.207, z = -3.40, p < .001), and to inconsistent neighbours 

compared to non-neighbours (b = -0.630, z = 2.08, p = .04†). The effect of time of 

testing did not reach significance. 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 3. Accuracy of cued recall at test. Error bars represent standard error of the means. 
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and delayed test. In the meaning recall data the interaction between the predictors 

was non-significant and hence was dropped. Participants rated the recall of meanings 

significantly more difficult in the delayed test condition than in the immediate 

condition (b = 0.471, z = 4.36, p < .001). Non-neighbours and inconsistent 

neighbours were rated equally difficult, but the consistent neighbours were rated 

significantly easier to recall than inconsistent neighbours (b = 0.674, z = 5.16,  

p < .001) or non-neighbours (b = 0.735, z = 5.55, p < .001). In the cued recall data, 

the interaction between the predictor variables did not show significant effects, and 

was dropped. Time of testing had no significant effect, and non-neighbours and 

inconsistent neighbours were found equally difficult. The consistent neighbours were 

again rated significantly easier to recall than inconsistent neighbours (b = 0.265,  

z = 2.01, p = .04†) or non-neighbours (b = 0.465, z = 3.55, p < .001). 

 

Table 1. Mean difficulty ratings in meaning recall and cued recall. 
 

  Neighbour - 

Consistent 

Neighbour - 

Inconsistent 

Non-neighbour 

Immediate  3.14 (0.28) 3.93 (0.38) 4.02 (0.34) Meaning recall 

Delayed 3.68 (0.20) 4.39 (0.25) 4.43 (0.31) 

Immediate 3.83 (0.28) 4.34 (0.27) 4.46 (0.25) Cued recall 

Delayed 4.12 (0.20) 4.25 (0.19) 4.65 (0.17) 

Note: 1 = very easy, 7 = very difficult. Standard error in parentheses. 

 

2.2.3 Discussion 

The main aim of Experiment 1 was to see if the base word meaning affects 

learning of novel words. This would support the hypothesis that neighbour novel 

words inherit the meaning of their base words. Data from training and testing 

supported this idea. In semantic training (word-meaning matching task), neighbours 

whose meaning was consistent with the base word meaning were learned faster and 

to a higher accuracy. In fact, the advantage was seen from the very beginning of 

training, with the meaning of consistent neighbours being recognised correctly 72% 

of the time on the first exposure. This is in contrast to significantly lower accuracies 

of 60% for inconsistent neighbours, and 61% for non-neighbours. This suggests that 

participants very quickly noticed the relationship between novel and base word 

meanings and were able to take advantage of it in the case of consistent neighbours. 
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However, one might still wonder why the two other conditions were above chance 

levels too. This is most parsimoniously explained by the fact that when a novel word 

was presented with an incorrect meaning, that meaning was randomly selected from 

the pool of meanings participants were being trained on. In other words, in some 

trials participants were able to reject an incorrect meaning based on learning in a 

previous trial that the same meaning was assigned to a different word.  

In the cued recall training task the semantic consistency factor had no 

effect. Here a significant advantage was seen for neighbours over non-neighbours. 

This is unsurprising since in the orthographic form of neighbours can be supported 

by knowledge of the base word forms, and this task did not require retrieval of the 

word meaning. 

A similar picture emerges from looking at the test data. In both recall of 

novel word objects and features a clear advantage was seen for consistent 

neighbours. No difference was found between the two conditions where the 

meaning-form mapping is inconsistent, and these outcomes were also reflected in 

subjective difficulty ratings. The cued recall data confirm the observation from 

training that recall of neighbour forms is superior to recall of non-neighbour forms. 

Perhaps surprisingly an effect of semantic manipulation was seen in this task too. 

The forms of consistent neighbours were recalled better than inconsistent 

neighbours. This was supported by participants’ objective evaluation of recall 

difficulty. The effect is interesting since cued recall does not explicitly require access 

to word meaning.  

There are a couple of possible mechanisms through which better form 

learning would be obtained in one semantic condition over the other. For example, 

the more difficult condition might be expected to result in more effort being 

allocated during learning. This however would make the opposite prediction about 

the outcome, with better performance in the inconsistent meaning-form condition. 

On a somewhat similar account, it could be that the semantic relationship between 

form and meaning drew participants’ attention to the form during training more than 

in the inconsistent case. In the consistent condition the word form is a useful cue to 

meaning, whereas in the inconsistent condition it is a hindrance as the form provides 

an incorrect cue to meaning. This latter explanation makes the correct prediction 

about test performance.  
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Time of testing also had an effect in meaning recall. Significantly more 

features were recalled in the immediate test. The effect went in the same direction in 

recall of objects, although failed to reach significance. In the cued recall however 

there was no evidence of time of testing making a difference. The overall level of 

performance was lower in cued recall than in meaning recall, but not low enough to 

justify worries about a floor effect masking an effect of time. Thus it seems that 

explicit recall of novel word meanings is prone to forgetting over time, but explicit 

recall of novel word forms is more resistant. It is interesting to contrast this latter 

finding with the data from Dumay and Gaskell (2007) who in a free recall task of 

novel meaningless words showed a performance improvement over a night of sleep 

which followed shortly after training, and a non-significant decrement over the 

course of a day spent awake after training. There was no evidence in the current 

experiment of a performance enhancement over the course of a 24 hour period which 

presumably included sleep for all participants. This might indicate that the time 

between learning and the onset of sleep may be important. In the current experiment 

participants were trained during the day, and most likely spent several hours awake 

before going to sleep in the evening. This period awake may have resulted in 

memory decay as seen in Dumay and Gaskell (2007). Some authors have suggested 

that sleep may restore decay occurring during the day (e.g., Fenn, Nusbaum, & 

Margoliash, 2003). If this is accurate, then it is possible that participants in the 

current experiment experienced a decay after training, followed by a restoration of 

the decayed memory trace during sleep, resulting in apparently unchanged 

performance when tested one day after initial training. The participants who were 

tested immediately after training on the other hand had not experienced any decay 

yet. A further implication of this account would be that explicit memory for word 

meanings does not get restored overnight. The design of this experiment does not 

allow a critical evaluation of these hypotheses, but the different effect of time on 

semantic and form learning is interesting, and will be discussed in more detail in the 

following chapters. It is also worth noting that the circadian time of testing was not 

controlled for in this or the other experiments reported in this thesis. Young adults 

are at their cognitive peak in the afternoon or evening (Hasher, Goldstein & May, 

2005) hence time of testing may have affected the results. However, it is likely that 

all circadian times (encompassing morning and afternoon) were represented and thus 

the effects of circadian factors would have cancelled out.   
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Experiment 1 showed clearly that the distinction between neighbours and 

non-neighbours has implications for explicit word learning, and thus is worth 

examining in an experiment looking at lexical integration. The experiment also 

presented evidence of participants being able to make use of the base word meanings 

in learning overlapping novel words. This lends further support to the hypothesis that 

neighbour novel words evoke the meanings of the base words from which they were 

derived, and that this may explain why lexical integration has been observed in 

neighbours in the absence of given meaning. This hypothesis will be put to a more 

stringent test in the following experiments using perceptual learning as a measure of 

lexical integration. Experiment 3 was a replication of the Leach and Samuel (2007) 

non-semantic condition, teaching participants both neighbours and non-neighbours, 

and evaluating perceptual learning in both groups separately. If the neighbours retain 

enough semantic content from the base words, it should be possible to see lexical 

integration in these words but not in the non-neighbours. However, before moving 

on to that experiment, Experiment 2 was carried out to generate and pre-test the 

necessary materials for perceptual learning. 

 

2.3 Experiment 2 

The primary aim of Experiment 2 was to generate a set of ambiguous 

phonemes and phoneme continua to be used in Experiment 3, and to make sure 

perceptual learning could be observed using these materials with real words. This 

experiment afforded an opportunity to also look at time course related issues in 

perceptual learning. It is now well established that the shift in phoneme boundaries 

caused by perceptual learning occurs immediately after exposure to the ambiguous 

phoneme in real word context. Furthermore, Eisner and McQueen (2006) showed 

that the effect does not benefit from passage of time during 12 hours, even if that 

time largely consists of sleep. In their experiment half of the participants were 

exposed to the ambiguous phoneme in the evening, and other half in the morning. 

Phoneme categorisation was tested immediately after exposure and 12 hours later. 

Hence only the evening group got to sleep prior to the second test. Both groups 

showed a categorisation shift immediately after training and an equally strong effect 

in the second test. While this shows that sleep on the first night after exposure does 

not significantly increase the effect, it does not completely rule out a role for offline 
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consolidation, which may operate over a longer time course. One purpose of 

Experiment 2 was to extend these findings by evaluating the effect one day and one 

week after initial exposure. If perceptual learning truly does not benefit from offline 

consolidation, then the effect should not grow stronger at this longer time course. 

Alternatively, while the effect may remain stable within 24 hours, it may disappear 

in the longer term, as no more exposure to the ambiguous phoneme is provided.  

One consolidation-related aspect of perceptual learning which has not been 

examined yet is the time course of generalisation. Kraljic and Samuel (2006) 

reported an experiment where participants heard words with an ambiguous /?dt/ 

phoneme. As expected, participants who heard the ambiguous phoneme in a lexical 

context biasing /t/ were in a following phoneme categorisation task more likely to 

categorise sounds on a /t/ - /d/ continuum as /t/. Crucially, when these participants 

categorised a /p/ - /b/ continuum, they tended to respond /p/. Kraljic and Samuel 

argued that this is an instance of generalisation. In both contrasts the voiceless 

sounds (i.e., /t/ and /p/) have longer pre-release silence and longer aspiration than 

their voiced counterparts. Hence it appears that participants learned something not 

only about the phonemes in particular to which they were exposed to, but rather 

about the parameters of pre-release silence and aspiration used by the particular 

speaker. The effect was seen immediately after the exposure phase, but was not 

tested again later. In the current experiment the time course of perceptual learning 

caused by generalisation was tracked immediately after exposure, the following day, 

and one week later. If re-tuning as a result of generalisation is weaker than re-tuning 

resulting from direct exposure to the relevant phonemes, the generalised effect may 

decay faster. Alternatively it may benefit from passage of time if the initial effect is 

weak and can be consolidated. This latter view is supported by Fenn et al. (2003) 

who have argued that sleep-dependent consolidation is particularly helpful in 

generalising phonological learning to new lexical contexts (see Chapter 3 for a 

detailed description of this study).  

In the current experiment participants first completed an exposure task where 

they were exposed to real words ending in /t/ and /d/, and where one of these critical 

phonemes was replaced with the ambiguous sound /?dt/, e.g. awar[?dt]. The 

exposure task used here was an old/new categorisation task, where participants were 

instructed to memorise a study list of auditorily presented words, followed by a test 

list which included the study words intermixed with fillers. The task was to 



Chapter 2 

 65 

discriminate between the old and new items in the test list. Participants were not told 

about the phonemic ambiguity manipulation. The exposure phase was followed by a 

phoneme categorisation test on three continua: /t/ - /d/, /p/ - /b/, and /s/ - /f/. 

Perceptual learning effects should be observed on the /t/ - /d/ continuum. According 

to Kraljic and Samuel (2006) generalisation should also take place, and an effect 

should be found on the /p/ - /b/ continuum as well. The /s/ - /f/ continuum was 

included as a control that should show no effect as it does not share any phonetic 

features with /t/ - /d/ that might give rise to generalisation.  

 

2.3.1 Stimulus construction and pre-test 

A pre-test was carried out to construct the phoneme continua and to choose 

the ambiguous phoneme to be used in this and the following experiment. For this 

pre-test multiple tokens of the syllables /εt/, /εd/, /εp/, /εb/, /εf/, and /εs/ were 

recorded by a native English speaker in a sound-proof booth onto a CD, using a 

Sennheiser ME40 microphone, and a Marantz CDR300 CD recorder. The recordings 

were then copied to a PC (mono, 44 kHz sample rate, with 16 bit resolution), and 

edited using Adobe Audition 1.0. The /s/-/f/ continuum was created by choosing a 

good token of /εf/ and /εs/, and excising the frication noise from the vowel, cutting 

from a zero-crossing at the onset of frication, and at a zero-crossing close to the end 

of frication, so that both the /f/ and /s/ sounds were 221 ms long. A 21-step 

continuum was created by adding the amplitudes of /f/ and /s/ in different 

proportions, starting from a clear /f/ (100% /f/, 0% /s/) to a clear /s/ (0% /f/, 100% 

/s/) in increments of 5%. Because the /s/ sound was dominant, the amplitude of the 

original /s/ token was reduced by 5 dB before the mixing.  

The /t/-/d/ continuum was created by selecting a representative token of /εd/ 

and /εt/, and the two tokens were aligned with regard to their respective consonant 

bursts. The /d/ was excised from the vowel at a zero-crossing at the onset of 

prevoicing. The /t/ was excised from the vowel at a point in the pre-burst silence 

such that the duration of pre-burst silence matched that duration of prevoicing in the 

/d/-token, and that the two phoneme tokens were of the same duration (169 ms) 

overall. A 21-step continuum was created in the same was as above. The /t/ sound 

was more dominating, so it was attenuated by 5 dB before mixing. 
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The /p/-/b/ continuum was created in the same way as the /t/-/d/ one. Here 

both tokens were trimmed to be 156 ms in duration, and a 21-step continuum was 

created. The /b/ sound was found to be more dominating than /p/, hence the 

amplitude of /p/ was increased by 5 dB before mixing. 

After the consonant continua were created, each step on each continuum was 

spliced onto an /ε/ context, where the vowel was taken from a recording of /εk/, to 

minimise the biasing effect of coarticulatory cues in the vowel.  

Eleven steps from each continuum were used in the pre-test. These ranged 

from one clear end to the other, in 10% increments. For each of the three continua, 

ten lists consisting of one token of each step were created, and the order of items 

within lists was randomised. These ten lists were concatenated into one long 

experimental list, resulting in ten repetitions of each step on a continuum. This 

process was carried out for each of the three continua. The order of presentation of 

the three continua within the pre-test session was balanced so that each continuum 

was presented first, second, and third an equal number of times, and that each 

continuum was both preceded and followed by any other continuum an equal number 

of times. Presentation of each continuum block started with a practice block which 

consisted of one presentation of each step of the continuum, in random order. 

Twelve native English speakers (mean age = 19.0, 1 left-handed, 4 male) 

completed the pre-test in exchange for course credit or cash. E-prime 1.1 running on 

a Windows XP PC was used for stimulus delivery and response collection. A trial 

started with the presentation of an auditory token (e.g., /εs/), presented over 

headphones (Beyerdynamic DT 770), and participants were told to identify the 

consonant as quickly and as accurately as possible. A trial would last at most 2.6 s 

from the onset of the sound, or be terminated at a response. The interstimulus 

interval (ISI), i.e. time between a response and onset of a new sound, was 500 ms. 

Responses were made on a standard computer keyboard, where six keys were 

labelled as “T”, “D”, “S”, “F”, “P”, and “B”. For each phoneme pair, one key would 

be on the left side of the keyboard, and the other on the right side. Participants were 

asked to use their left hand to respond to the left keys, and the right hand to respond 

to the right keys. The allocation of responses to left and right sides was switched for 

half of the participants. The overall duration of the session was 15 minutes. 

The responses made by participants within the trial time limit were recorded, 

and plotted as percentage of /b/-, /d/-, or /f/-responses, as a function of step on the 
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continua. These data indicated that for the /p/-/b/ continuum the most ambiguous 

step (categorised as /b/, /d/, or /f/ 50% of the time) was 45% /b/ mixed with 55% /p/, 

for the /t/-/d/ continuum it was 40% /d/ mixed with 60% /t/, and for the /s/-/f/ 

continuum it was 65% /f/ mixed with 35% /s/. Figure 4 shows the categorisation data 

for the three continua. The continuum point marked with a solid arrow was the one 

used as the ambiguous phoneme in this and the next experiment. Following Eisner 

and McQueen’s (2006) method, four steps of intermediate ambiguity were also 

selected, in which the phoneme was classified as /b/, /d/, or /f/ for about 10%, 30%, 

70% and 90% of the time. These points are marked with dashed lines in Figure 4. As 

that figure shows, due to the properties of the different continua it was impossible to 

pick steps that perfectly matched the 10, 30, 50, 70, 90 percent points, hence the step 

coming closest to these points was always chosen. The finely dashed points were 

added in the continua used in Experiment 3 to act as completely unambiguous, clear 

continuum end points. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 4. Categorisation functions for three continua in pre-test. 
 

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /b/

%
 /

b/
 r

es
po

ns
es

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /f/

%
 /

f/
 r

es
po

ns
es

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /d/

%
 /

d/
 r

es
po

ns
es

Most ambiguous step

Intermediate ambiguity

Clear end of continuum

/p/ - /b/ /s/ - /f/

/t/ - /d/

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /b/

%
 /

b/
 r

es
po

ns
es

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /f/

%
 /

f/
 r

es
po

ns
es

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /d/

%
 /

d/
 r

es
po

ns
es

Most ambiguous step

Intermediate ambiguity

Clear end of continuum

/p/ - /b/ /s/ - /f/

/t/ - /d/

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /b/

%
 /

b/
 r

es
po

ns
es

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /f/

%
 /

f/
 r

es
po

ns
es

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of /d/

%
 /

d/
 r

es
po

ns
es

Most ambiguous step

Intermediate ambiguity

Clear end of continuum

/p/ - /b/ /s/ - /f/

/t/ - /d/



Chapter 2 

 68 

2.3.2 Method 

Materials 

Nineteen words ending in a /d/ sound were chosen (e.g., award). All words 

included only this one occurrence of the target phoneme. The words were bi- or 

trisyllabic (M = 2.1), with a mean number of phonemes of 5.0 (range 4-7).  The 

frequencies of the words were fairly low, in order to make them better comparable to 

the base words used in Experiment 3, with a mean CELEX frequency (Baayen, 

Piepenbrock, & van Rijn, 1995) of 9 occurrences per million (range 2-30). None of 

the words ended in a consonant cluster. This control was added to facilitate the 

creation of ambiguous endings. 

Nineteen words ending in a /t/ sound were also chosen (e.g. acute). This was 

again the only position where the target phoneme could occur. The properties of 

these words were matched with those of the /d/-ending words, in terms of frequency 

(M = 8.9, range 2-28), number of phonemes (M = 5.2, range 4-7), and number of 

syllables (M = 2.2, range 2-3). Again, none of the words ended in a consonant 

cluster. The two sets were also matched on stress pattern, in both sets the stress fell 

on the first syllable six out of nineteen times. None of the experimental words 

included the phonemes /b/, /p/, /f/, /s/, /v/, or /z/. See Appendix 2 for the word 

stimuli. 

Ambiguous versions of the critical stimuli were created by replacing the final 

phoneme of the words with an ambiguous phoneme (/?dt/). The ambiguous phoneme 

was one which participants in the pre-test categorised as /t/ about 50% of the time 

and as /d/ in the remaining trials (see Figure 4, solid arrow).  

Thirty-eight filler items were selected for the old/new categorisation task, to 

act as the new items. These were matched to the experimental words on frequency 

(M = 8.8, range 2-25), number of phonemes (M = 5.2, range 4-7), and number of 

syllables (M = 2.3, range 2-3). None of the fillers included the phonemes /t/, /d/, /p/, 

/b/, /f/, /s/, /v/, or /z/.  

 

Design 

Participants were randomly allocated to two groups. One group was exposed 

to the /d/-ending words in the ambiguous condition, and to the /t/-ending 
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unambiguous words. A second group was exposed to ambiguous /t/-ending words, 

and unambiguous /d/-ending words. 

On day 1, all participants carried out the old/new categorisation task, the 

purpose of which was to expose participants to the ambiguous phoneme. 

Immediately after this task, they were tested on the /t/-/d/ continuum, as well as a /p/-

/b/ and /f/-/s/ continua. This phoneme categorisation task was repeated on days 2 and 

8.  

 

Procedure 

Old/new categorisation. Participants were presented with two lists of words 

auditorily, list 1 included both the 19 /d/-ending and the 19 /t/-ending words, one of 

these word groups ended in an ambiguous sound. Participants were asked to listen to 

the words in this list carefully, in anticipation of a recognition task. List 1 (study list) 

was followed by list 2 (test list), where the participant was asked to decide for each 

word whether it was an old item (a word heard in list 1) or a new item (a word not 

heard in list 1). The test list included all words heard in list 1, and 38 filler words. 

The response was made by pressing a key on a keyboard, labelled OLD or NEW. 

The stimuli were presented and responses collected by E-prime 1.1 running on a 

Windows XP PC. High-quality headphones were used stimulus delivery 

(Beyerdynamic DT 770). 

In list 1 the words were presented with a 2000 ms ISI. Participants were not 

required to make any overt responses to the words in this list. The order of items was 

randomised for each participant by the software. In list 2 a word was presented 

followed by a screen asking a response to be made (“Old or New?”). Unlimited time 

was given to make this response. The next word was presented 1000 ms after a 

response was made. The order of presentation was again randomised for each 

participant. 

At the end of this task, each participant had heard the ambiguous phoneme 

carried in the biasing words 19 times in list 1 and again 19 times in list 2, giving a 

total of 38 exposures. This is close to the original Norris et al. (2003) study where 

the number of exposures was 20. 

Phoneme categorisation. Participants heard multiple tokens of /εd/ and /εt/ on 

a /t/-/d/ continuum and were asked to classify each token as a /d/ or a /t/. They also 

heard /p/-/b/ and /s/-/f/ continua. The /s/-/f/ continuum was always followed by the 
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/p/-/b/ continuum, which was followed by the /t/-/d/ continuum. This order was 

adopted to avoid carryover effects from categorising /t/-/d/, as in Kraljic and Samuel 

(2006). 

All three continua consisted of five steps, ranging from a phoneme which in 

the pre-test was identified as /p/, /f/, or /t/ 90% of the time (step 1), to a phoneme 

which was identified as /b/, /s/, or /d/ 90% of the time (step 5, see Figure 4). Step 3 

was the most ambiguous phoneme, and steps 2 and 4 were intermediate between the 

most ambiguous and the extremes. 

For each phoneme pair, ten lists of the five steps in random order were 

concatenated into a final list of 50 trials. Hence the phoneme categorisation phase of 

the experiment consisted of 150 trials in total. The phonemes were presented with an 

ISI of 2000 ms. Participants were asked to categorise the phonemes by pressing a 

key on the keyboard labelled as “P” or “B” in the /p/-/b/ continuum, “F” or “S” in the 

/s/-/f/ continuum, and “T” or “D” in the /t/-/d/ continuum. They were asked to 

respond as quickly and as accurately as possible. The /f/, /b/, and /d/ responses were 

always made with the left hand, the opposite responses with the right hand.  

 

Participants 

Forty-two native English speaking University of York students participated 

in the experiment. Out of these, five failed to complete all sessions, and their data 

were excluded. One further participant was excluded because they had failed to 

respond to a large number of trials in the phoneme categorisation task (34% in the 

/s/-/f/ continuum). Hence the final number of participants was 36 (5 male, 4 left-

handed, mean age = 19.5, range = 18-23). The participants were paid or received 

course credit. Two participants’ data were removed from the /s/-/f/ continuum as 

they failed to categorise these sounds (90% – 100% of /s/ responses to all steps of 

the continuum on one or more days). 

 

2.3.3 Results 

Figure 5 shows the categorisation functions for the /t/ - /d/ continuum as 

percentage of /t/-responses. Participants who heard the ambiguous phoneme in a /t/-

biasing context categorised phonemes in the ambiguous region (steps 2-4) more 

often as /t/ than did the participants who had heard the ambiguous phoneme in a /d/-
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biasing context. This seemed to be the case in all three sessions. A mixed-effects 

logistic regression model including participants as a random effect, and bias (/t/-bias 

vs. /d/-bias), step (three middle steps of the continuum), and day of testing (days 1, 

2, 8) as fixed effects was built. I focus on the ambiguous range of the continuum as 

there should not be an effect of bias at the end points of the continuum (same 

strategy was used by Leach and Samuel).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Phoneme categorisation data from clear /d/ to clear /t/. Error bars represent standard 

error of the means. 
 

In the following analyses /d/-, /b/-, and /f/-responses were coded as “success” and  

/t/-, /p/-, and /s/-responses as “failure” (this information is relevant only for the 

purposes of interpreting the b-values, in other words I am measuring the likelihood 

of observing a /d/-response, positive b-values reflect an increase in this likelihood, 

and negative values reflect a decrease in this likelihood). LLR tests indicated that 

including subject-specific slopes for day and step increased the fit of the model. The 

full model with all main effects and interactions showed no significant interaction 

contrasts, so these were dropped. The most interesting effect in this analysis was that 
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of bias, which showed that participants who had heard the ambiguous sound in a /t/-

biasing context were significantly less likely to respond /d/ than participants exposed 

to the same sound in a /d/-biasing context (b = -0.713, z = -2.63, p = 008†). 

Unsurprisingly, the effect of step showed that participants were less likely to 

respond /d/ as the continuum moved towards /t/-like sounds (step 2 vs. step 3:  

b = -1.722, z = -16.30, p < .001, step 3 vs. step 4: b = -1.533, z = -10.72, p < .001). 

The effect of day suggested that people were more likely to respond /d/ on day 3, 

compared to the first day (b = 0.342, z = 2.02, p = .04†).  

Although none of the interaction contrasts involving bias and day reached 

significance, it was worth evaluating the effect of bias on each day separately, to 

make sure the effect remains robust over time. No significant interactions were 

found between bias and step on any of the three days. The effect of bias was 

significant on all three days (day 1: b = -0.990, z = -2.43, p = .02†, day 2: -0.711,  

z = -2.24, p = .03†, day 8: b = -0.792, z = -2.70, p = .007†).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Phoneme categorisation data from clear /b/ to clear /p/. Error bars represent standard 
error of the means. 
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In sum, this analysis showed that, as expected, perceptual learning was found on all 

three days, as indicated by the effect of bias on the three days. 

Responses on the /p/ - /b/ continuum were analysed next (Figure 6). LLR 

tests showed that subject-specific slopes for day were warranted. Here three-way 

interaction contrasts showed that the change in effect of bias from step 2 to step 3 

was significantly larger on day 2 than day 1 (b = 1.585, z = 2.14, p = .03†) or day 3 

(b = 1.765, z = 2.35, p = .02†), reflecting the reduction in the effect of bias on step 3 

on day 2. The same was true of step 4 (day 1 vs. day 2: b = 2.179, z = 2.85, p = .004, 

day 2 vs. day 3: b = 1.495, z = 1.90, p = .06†), reflecting an increase in the effect of 

bias on day 2 at step 4, although in the unpredicted direction. 

The three-way interactions showed that the pattern of data changed across the 

three days and steps, so each day was next also analysed separately. On day 1 the 

interaction between bias and step did not reach significance. The effect of bias 

collapsed across steps failed to reach significance, but was also examined at each 

step separately, and again did not reach significance at any of the ambiguous steps. 

Effects of step collapsed across the two bias groups confirmed that likelihood of 

responding /p/ increased as the steps moved towards clear /p/ (step 2 vs. step 3:  

b = -1.670, z = -6.91, p < .001, step 2 vs. step 4: b = -4.071, z = -15.55, p < .001, step 

3 vs. step 4: b = -2.402, z = -12.01, p < .001). As already hinted by the three-way 

interaction contrasts, on day 2 bias entered into an interaction with step, whereby the 

effect of bias was significantly larger at step 2 compared to step 3 (b = 1.913,  

z = 3.29, p = .001), and step 4 (b = 2.431, z = 3.89, p < .001). The difference in bias 

between step 3 and 4 however did not reach significance. Looking next at the effect 

of bias at each step separately, the effect reached significance at step 2 (b = -1.800,  

z = -2.42, p = .02†) but was non-significant on the other two steps. Contrasts showed 

that /p/-responses collapsed across the two bias groups again increased from step 2 to 

step 3 (b = -1.881, z = -7.21, p < .001) and step 4 (b = -4.378, z = -15.34, p < .001), 

and from step 3 to step 4 (b = -2.500, z = -11.90, p < .001). On day 3 interaction 

contrasts between step and bias showed that bias at step 4 was significantly different 

from step 2 (b = 1.409, z = 2.43, p = .02†) and step 3 (b = 1.107, z = 2.54, p = .01†). 

The effect of bias when evaluated at each step separately failed to reach significance. 

Collapsed across the bias groups, the effect of step again confirmed that participants 

made more /p/-responses at the steps approaching clear /p/ (step 2 vs. step 3:  
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b = -1.766, z = -6.98, p < .001, step 2 vs. step 4: b = -4.654, z = -16.53, p < .001, step 

3 vs. step 4: b = -2.888, z = -13.64, p < .001). This analysis then did not reveal 

reliable evidence for perceptual learning, as the effect of bias only reached 

significance on one step on day 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Phoneme categorisation data from clear /f/ to clear /s/. Error bars represent standard 
error of the means.  
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(b = -0.678, z = -2.67, p = .03†), and the same was true for the difference between 

step 2 and step 4 (b = -1.137, z = -2.96, p = .003). No further change in this regard 

was seen from day 2 to day 8. Due to the effect of bias interacting with day, each day 

was further evaluated for individually. On day 1, no interaction was found between 

bias and step, and the effect of bias collapsed across steps was non-significant, as it 

was when examined at each step individually. Proportion of /s/-responses did not 

increase from step 2 to step 3, but did increase from step 2 to step 4 (b = -2.139,  

z = -8.37, p < .001) and from step 3 to step 4 (b = -1.991, z = -7.77, p < .001). No 

interaction between bias and step was found on day 2 either, and here too the effect 

of bias collapsed across steps was non-significant (p = .12), as it was at each 

individual step (this is somewhat surprising in the presence of the day interaction, 

however the crossover on step 4 from a /d/-bias advantage to a disadvantage on day 

2 increases the interaction but not the simple effect of bias. Also, the effect of bias 

would be marginally significant in a one-tailed analysis). Now /s/-responses 

increased from step 2 to step 3 (b = -0.909, z = -4.83, p < .001), from step 2 to step 4 

(b = -3.471, z = -10.85, p < .001) and from step 3 to step 4 (b = -2.567, z = -8.09,  

p < .001). On day 8 no interactions were found, but the effect of bias collapsed 

across the three steps now reached significance (b = -1.132, z = -2.50, p = .01†). As 

suggested by the lack of an interaction between step and bias, the effect of bias was 

significant at all ambiguous steps (step 2: b = -0.965, z = -1.98, p = .048†, step 3:  

b = -1.123, z = -2.26, p = .02†, step 4: b = -1.915, z = -2.58, p = .01†). As on day 2, 

/s/-responses again increased from step 2 to step 3 (b = -1.333, z = -7.27, p < .001), 

from step 2 to step 4 (b = -3.695, z = -12.93, p < .001), and from step 3 to step 4  

(b = -2.349, z = -8.44, p < .001). To summarise, the above analysis revealed an 

unexpected perceptual learning effect on day 8 only. 

 

2.3.4 Discussion 

The primary aim of Experiment 2 was to replicate the basic perceptual 

learning effect with the ambiguous phonemes created for the current set of 

experiments. This was achieved: people who in the exposure task heard /?dt/ in a 

lexical context supporting a /d/ interpretation (e.g., award) were more likely to 

categorise ambiguous sounds on a /t/-/d/ continuum as /d/ than people who heard the 
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same /?dt/ in a context supporting /t/ (e.g., acute). The effect remained reliable one 

day, and one week after the exposure task.  

Kraljic and Samuel (2006) showed that a bias created with /?dt/ extends to a 

/p/-/b/ continuum. People who were biased towards /t/ were also biased towards 

responding /p/ on a /p/-/b/ continuum. The data in Experiment 2 did not 

unequivocally replicate this finding. A numerical trend for a bias in the /p/-/b/ 

continuum was observable on the first ambiguous step (step 2, see Figure 5), but it 

reached statistical significance on day 2 only. The weakness of this effect might be 

explained by the choice of steps for this continuum. As Figure 4 shows, the pre-test 

data for this continuum were less clear than for the other continua. The slope of the 

categorisation function is shallower and shows less of a categorical shift. This may 

reflect noise in the data and a lack of agreement in the point where participants 

shifted from responding /p/ to /b/. Hence it is possible that the sounds chosen to 

make up the ambiguous region of the continuum in the main experiment were not as 

ambiguous as the same steps in the other continua, and this was why the trend was so 

weak.  

The emergence of a bias effect on day 8 in the /f/-/s/ continuum was 

surprising. Here participants who heard the /?dt/ in /t/-biased condition categorised 

the ambiguous /?fs/ as /s/ more often than the /d/-biased group. This continuum was 

included as a control condition where no generalisation was expected to occur, as /s/ 

and /f/ do not share the place or manner of articulation with /t/ and /d/, and both are 

voiceless, so the voicing contrast should not enable generalisation either. One 

possibility is that the ambiguous /?dt/ had some properties that made it resemble /s/ 

more than /f/. For example, the aspiration from the /t/ is made unusually prominent 

by the blending of the original /t/ and /d/ tokens, and this aspiration may resemble a 

token of /s/. Repeated exposure to an /s/-like sound may have resulted in increased 

bias towards /s/. Figure 7 indicates that on day 1 all participants appeared to make 

/s/-responses more than would be expected by chance (between 60% and 70% at 

steps 2 and 3). This bias seems to decrease in the following days, but it is unclear 

why it would decrease more for the /d/-biased participants. Possibly the repeated act 

categorising the ambiguous /?dt/ as /d/ leads these participants to ignore the 

superfluous aspiration inherent in the ambiguous sound. This issue would require 

more experimental work with careful phonetic manipulation of the /?dt/ to be solved.  
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In Experiment 2 the perceptual learning effect was observed immediately 

after exposure, as was the case with the data reported by Eisner and McQueen 

(2005). They also included a sleep manipulation where one group of participants was 

tested after sleep and another after the same time of wakefulness. This manipulation 

had no reliable effect, although perceptual learning was numerically stronger in the 

sleep group. In the current experiment a significant perceptual learning effect was 

found immediately after exposure to the ambiguous stimuli, and one day later. The 

test was repeated one week after exposure, and the initially observed perceptual 

learning effect was still significant. There was no evidence of the effect either 

increasing or decreasing over time. This suggests that the effect is highly resistant to 

decay. Eisner and McQueen argued that the fast re-tuning of phoneme 

representations is an adaptation to the need to quickly adjust to new talker 

idiosyncrasies and should be effortless also because the perceptual system is not 

required to learn anything new, rather simply to adjust the processing of a certain 

phoneme. This adjustment is optimal if it does not depend on consolidation and is 

durable over long time periods. The current data showed it is indeed durable over 

several days but there was no evidence of the effect growing stronger over a week, 

further confirming that the perceptual learning effect does not benefit from offline 

consolidation in the short or the long term. It might be argued that since the only hint 

of a generalised phoneme boundary shift on the /p/-/t/ continuum was only observed 

on day 2 and disappeared by the last test session the generalised effect may in fact 

benefit from consolidation initially but not remain statistically robust in the absence 

of further exposure. This would suggest that the initial hippocampal memory of the 

ambiguous phoneme is specific to the phoneme heard in training, and can only be 

generalised once a neocortical representation is generated after consolidation. 

However, the fact that the effect of bias was seen in only one step of the continuum 

on day 2 indicates that the effect may have been spurious. Future research should 

shed more light on this issue. 

 

2.4 Experiment 3 

As outlined earlier, Experiment 3 was designed to evaluate lexical integration 

in both neighbour novel words, and non-neighbour novel words by means of 

perceptual learning. A non-semantic training task was used (phoneme monitoring), 



Chapter 2 

 78 

and perceptual learning effects were tested immediately after the first training 

session, and again one day later after a second training session. The second training 

and testing session was included as Leach and Samuel’s data suggested that the 

effect does not always reach statistical significance after only one day of training. 

The Leach and Samuel (2007) findings predict no perceptual learning in this 

experiment since no meaning was given during training. However, if neighbour 

novel words evoke the meaning of their overlapping base words, perceptual learning 

may be observed for these novel words only. 

 

2.4.1 Method 

Materials 

Twelve neighbour novel words were chosen from the list of items used by 

Tamminen and Gaskell (2008). The 12 novel words were all bi- or trisyllabic (M = 

2.6), with a length of 6.3 phonemes on average (range 5-7), and base word mean 

frequency of 3.8 per million (range 2-9). Two versions of each neighbour novel word 

were created, ending in a /t/ or /d/ (e.g. methanat, methanad, from base word 

methanol).  

Twelve non-neighbour novel words were created by changing the first three 

phonemes of the neighbour novel words described above (e.g. piranat derived from 

methanat). These were pronounceable words, but they deviated from real words at an 

earlier point than the neighbour novel words. The neighbours deviated from real 

words (their respective base words) on average at the fifth phoneme, whereas the 

newly created novel words deviated at the third phoneme, hence making them more 

dissimilar to any real words. Again, two versions of these novel words were created, 

ending in /t/ or /d/, as above. These materials are presented in Appendix 3. 

Real words ending in /t/ and /d/ were also chosen, six of each. These were 

used as fillers in list 1 of the exposure task. These filler words were matched with the 

novel words in terms of number of syllables (M = 2.3 and 2.5 for /t/ and /d/ 

respectively) and phonemes (M = 6.5 and 6.5 for /t/ and /d/ respectively). They 

included no instances of the critical phonemes apart from the final position. 

Finally, 12 more filler words were chosen to be used in list 2 as distracters. 

These were matched to the novel words in number of syllables (M = 2.8) and 

phonemes (M = 6.3). The frequency of list 2 filler words was overall similar to list 1 
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filler words (M = 4.7 for list 2, M = 21.7 for list 1, but this is inflated by one item, M 

= 8.9 without it). Twelve nonwords were derived from bi- and trisyllabic real words 

to act as nonword fillers in list 2, so as not to make the novel words stand out. These 

too were matched in number of syllables (M = 2.7) and phonemes (M = 6.3) to the 

other materials. None of the list 2 filler materials included the critical phonemes.   

The stimuli were recorded by the same speaker using the same equipment as 

in Experiment 2. An ambiguous version of each novel word was created by replacing 

the final phoneme of the words with an ambiguous phoneme. Same token of /?dt/ 

used in Experiment 2 was also used here.   

 

Design 

Novel word type was manipulated between-participants, with half of the 

participants learning neighbours and the other half non-neighbours. Half of the 

participants within word type condition were exposed to the /d/-ending version of the 

novel words, and the other half to the /t/-ending version. Participants were randomly 

allocated into these groups.  

In Experiment 2 the critical test of perceptual learning was in comparing 

participants who had been biased to respond /t/ by the exposure task with another 

group who were biased to respond /d/. While this is the most commonly used design 

in the perceptual learning literature, it has two weaknesses. Firstly, it provides no 

pre-exposure baseline measure, hence it is theoretically possible, although unlikely, 

that the difference between participant groups was accidental. Secondly, a between-

participants manipulation is statistically less powerful than a within-participants 

manipulation where participant-specific variation is brought under control. With 

these considerations in mind, Experiment 3 used a design which allowed a within-

participants comparison. All participants completed a baseline phoneme 

categorisation test prior to novel word training and exposure to the ambiguous 

stimuli. The phoneme categorisation task was repeated at the end of the exposure 

phase. One possible concern here is that exposure to the categorisation task might 

bias participants’ perception of the ambiguous phoneme in a similar way as 

hypothesised in connection with Experiment 2 (p. 77). However, since different 

groups in the present experiment were lexically biased towards /t/ or /d/, this 

potential confound can be excluded if an effect of bias is seen in both groups. 
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The experiment was carried out over two consecutive days. On day 1, 

participants completed the phoneme categorisation twice (baseline and first post-

learning test), and carried out the first training session and the exposure task. They 

also completed a cued recall task to evaluate explicit learning of the novel word 

forms. The second day was identical except that only one phoneme categorisation 

task was included. 

 

Procedure 

Phoneme categorisation. Day 1 started with a phoneme categorisation task, 

which provided the baseline against which subsequent performance after novel word 

training and exposure to the ambiguous phoneme could be compared. This task was 

identical to the same task in Experiment 2 apart from two modifications. Firstly, 

participants were only tested on one continuum: /t/-/d/. Secondly, two steps were 

added to the continuum, they were clear tokens of the phonemes added to the 

continuum endpoints (the endpoints in Figure 4). The reason why these clear tokens 

were added was to make it easier to identify participants who were responding 

abnormally. Unequivocal responses ought to be expected at these endpoints. If a 

participant deviates to a great degree from this baseline, then the decision to exclude 

such a participant would be well founded. 4 The critical value chosen was 30%: if a 

participant categorised one of the clear phonemes incorrectly 30% or more of the 

time, their data were excluded. In all other respects the procedure was identical to 

Experiment 2. 

Novel word training. Participants were familiarised with 12 novel words in a 

phoneme monitoring task. On each trial, a capital letter indicating the target 

phoneme appeared in the middle of the screen for 1500 ms, followed by auditory 

presentation of the novel word. The letter remained on the screen until a response 

was made. Participants were asked to indicate whether the target was present in the 

word by pressing one of two keys on the keyboard, labelled YES or NO. Each novel 

word was repeated 24 times. The target phoneme was never the final phoneme, and 

consisted mostly of consonants. The possible targets included p, l, k, n, m, h, r, i, b, 

th, g, a, o, e. The target phoneme was absent in 50% of the trials, and present in 50%. 

                                                 
4 A similar strategy was used by Leach and Samuel (A. G. Samuel, personal communication, 
September 16, 2007). 
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Each target phoneme occurred an equal number of times in the absent and present 

conditions. The order of trials was randomised for each participant by the software. 

This task took about 30 minutes to complete, and participants were given a break 

half way through the trials.   

Old/new categorisation. This task was used to expose participants to the 

ambiguous /?dt/ in the novel word context. As in Experiment 2, participants again 

heard two lists of words. List 1 included 12 novel words and 12 real words. The final 

phoneme of each novel word was replaced by the ambiguous phoneme. If the 

participant was exposed to the ambiguous phoneme in /d/-biased lexical context, the 

filler real words consisted of 12 clear /t/-ending words. Those participants who were 

being exposed to /t/-biased contexts heard /d/-ending filler words. The task was to 

listen to the words carefully, and try to remember them in the forthcoming 

recognition task. List 2 then followed, and participants were required to decide for 

each item in this list whether it had been heard in list 1 or not. This list included all 

items from list 1, and 24 fillers which had never been heard before (12 words, 12 

nonwords). Responses were made by pressing a key on the keyboard, labelled YES 

or NO. The order of items in both lists was randomised for each participant by the 

software. By the end of the task, the participant had heard the ambiguous phoneme 

24 times: 12 times in list 1, and 12 times in list 2. 

Cued recall. The day 1 session ended with a cued recall task. In this task a 

cue was played through the headphones, and the participant was asked to recall the 

novel word to which the cue referred, and to say the word aloud. The cue consisted 

of the first two phonemes of a novel word, recorded by a female native English 

speaker, naïve to the experiment and to the complete novel words. One advantage of 

using a new speaker for the cues was that it eliminated the chance of doing the task 

by referring to episodic memory traces of the novel words spoken by the original 

male speaker. Changing the speaker increases the likelihood of abstract novel lexical 

representations being probed. After the presentation of the cue, the participant had 

the option of either listening to the cue again, as many times as he or she desired, or 

making a response. Once a response was made, a key press initiated a new trial. The 

cues were presented for recall in random order. Vocal responses were directly 

recorded onto a minidisc (Sony MZ-N710) through a microphone built into the set of 

headphones (Beyerdynamic DT 294). Apart from this, the same hardware and 

software were used for stimulus presentation and recording as in Experiment 2. 
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The participants were asked to return on the following day, and carried out 

the same tasks, in the same order, as on day 1, except for the first phoneme 

categorisation task (baseline) which was omitted on day 2. 

 

Participants 

Forty-four native English speaking University of York students participated 

in the experiment. Out of these, six failed to attend the second session, and their data 

were excluded. Two further participants were excluded, one because they 

categorised a clear token on the phoneme continuum inconsistently, and the other 

because they confused the keys in the phoneme categorisation task. The final number 

of participants was 36 (9 male, 3 left-handed, mean age = 20.0, range = 18-42). The 

participants were paid or received course credit. 

 

2.4.2 Results 

2.4.2.1 Neighbour novel words 

Figure 8 shows the phoneme categorisation functions for /t/- and /d/-biased 

participants who learned neighbour novel words. In both cases there appears to be a 

boundary shift in the direction predicted by novel word lexical bias, and this shift 

seems to be present in the three middle steps which constitute the ambiguous region. 

Logistic regression was used to analyse the data. For the purposes of the regression 

all responses that were consistent with the lexical bias were coded as “successes” (1) 

and responses that were not consistent with the bias were coded as “failures” (0). 

The main focus of the analysis was on effect of time of testing. More bias-consistent  

 

 

 

 

 

 

 

 
 

Figure 8. Phoneme categorisation data for participants who learned neighbour novel words. 
Error bars represent standard error of the means. 
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responses should be observed on day 1 and day 2 tests compared to the pre-exposure 

baseline. As in Experiment 2, only the ambiguous region (steps 3-5) was used in the 

analysis.   

A mixed-effects logistic regression model with subject as random factor and 

testpoint (baseline, day 1 test, day 2 test), step (steps 3, 4, 5) and bias (/t/-bias and 

/d/-bias) as fixed factors was fitted. Subject-specific slopes for day and step 

improved the fit of the model. No three-way interactions were found, hence they 

were dropped. A model including two-way interactions showed that only the step by 

bias interaction was significant, and was retained in the model. In this simplified 

model testpoint showed a significant effect: participants were more likely to make 

bias-consistent responses in the day 1 test compared to baseline (b = 0.684, z = 2.53, 

p = .01†). The effect in the day 2 test approached significance (b = 0.563, z = 1.79,  

p = .07†). The interaction between step and bias simply reflected the fact that in the 

/t/-biased group the likelihood of making bias-consistent responses (i.e., /t/-

responses) increased from step 3 to step 4 (b = 1.418, z = 7.09, p < .001), from step 3 

to step 5 (b = 2.801, z = 11.94, p < .001), and from step 4 to step 5 (b = 1.388,  

z = 6.26, p < .001), while in the /d/-biased group the likelihood of making a bias-

consistent response (i.e., /d/-response) decreased from step 3 to step 4 (b = -2.212,  

z = -8.44, p < .001), from step 3 to step 5 (b = -3.364, z = -10.77, p < .001) and from 

step 4 to step 5 (b = -1.151, z = -4.04, p < .001). Note that this change in the effect of 

step is because the test continuum was the same for both bias groups, but whether a 

response was bias-consistent or not depended on assignment to bias group. So while 

both groups made only a small percentage of /t/-responses and consequently a large 

percentage of /d/-responses at step 3 (Figure 8), the /t/-responses were bias-

consistent only for the /t/-group. For the /d/-group it was the /d/-responses which 

were bias-consistent. 

Although there was no significant interaction between the effect of testpoint 

and bias group, data for both bias groups were analysed separately to see if the weak 

day 2 effect is stronger in one bias group than the other. Visual inspection of Figure 

8 suggests it is smaller in the /d/-bias group, and stronger in the /t/-bias group. For 

the /t/-biased group, collapsed across the three steps, significantly more bias 

consistent responses were made at the day 1 testpoint compared to baseline  

(b = 0.497, z = 2.37, p = .02†), and at the day 2 testpoint (b = 0.636, z = 3.02,  
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p = .003†) compared to baseline. In the /d/-biased group significantly more bias-

consistent responses compared to baseline were made on day 1 (b = 0.723, z = 2.86, 

p = .004†), but the effect was non-significant on day 2 (b = 0.355, z = 1.40, p = .16). 

 

 

 

 

 

 

 

 

 

Figure 9. Phoneme categorisation data for participants who learned non-neighbour novel 
words. Error bars represent standard error of the means. 

 

2.4.2.2 Non-neighbour novel words 

Data for participants who learned non-neighbours are displayed in Figure 9, 

and were analysed in the same way. Again, subjects were included in random 

factors, and testpoint (baseline, day 1 test, day 2 test), step (steps 3, 4, 5) and bias 

(/t/-bias and /d/-bias) as fixed factors. Subject-specific slopes for testpoint improved 

the fit of the model. No three-way interactions were significant. Of the two-way 

interactions, contrasts involving a step by bias interaction were again significant. As 

before, this showed that in the /t/-biased group bias-consistent /t/-responses increased 

from step 3 to step 4 (b = 1.438, z = 6.29, p < .001), from step 3 to step 5 (b = 3.015, 

z = 11.82, p < .001) and from step 4 to step 5 (b = 1.581, z = 7.09, p < .001). In 

contrast, in the /d/-biased group, bias-consistent /d/-responses decreased from step 3 

to step 4 (b = -1.952, z = -8.94, p < .001), from step 3 to step 5 (b = -3.290,  

z = -12.60, p < .001), and from step 4 to step 5 (b = -1.399, z = -5.59, p < .001). 

Here also testpoint entered into an interaction with bias, showing that /d/-

biased participants showed a larger shift from baseline to day 2 test than /t/-biased 

participants (b = 1.433, z = 4.50, p < .001). The same contrast for day 1 approached 

significance (b = 0.601, z = 1.93, p = .054†). Note however that the larger shift in /d/-

biased participants is not in the direction predicted by bias, and hence does not 

demonstrate perceptual learning in this group. No interaction was found between day 
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and step. Since testpoint interacted with bias group, it is important to see if testpoint 

reaches significance in either bias group separately. Collapsed across steps 3-5, in 

the /t/-biased group there was no significant difference between baseline and day 1 

testpoints. However, at day 2 the effect reached significance (b = 0.446, z = 2.00,  

p = .046†). The /d/-biased group showed a significant difference between baseline 

and day 1 (b = -0.452, z = -2.06, p = .04†) and between baseline and day 2  

(b = -0.988, z = -4.35, p < .001). However, as already noted, this shift represented an 

increased likelihood of making a /t/-response, which was not consistent with the 

lexical bias. 

Figure 10 summarises the difference in perceptual learning between 

neighbour and non-neighbour conditions. The proportion of bias-consistent 

responses was calculated for the baseline and the two post-exposure tests. The figure 

shows the difference between baseline and tests collapsed across the three 

ambiguous steps and across bias groups. It highlights the observation that hearing the 

ambiguous phoneme in the neighbour novel words initiates a shift in phoneme 

categorisation boundaries (black bars), while hearing the same ambiguous phoneme 

in non-neighbours results in no significant shift (white bars). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Categorisation change from baseline in the ambiguous range on the two testing days. 

Error bars represent standard error of the means. 
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response, were scored as incorrect. One participant’s data in the non-neighbour 

condition were excluded as the participant misunderstood the task and produced no 

data suitable for scoring. One further non-neighbour participant’s day 2 data were 

lost due to equipment malfunction. A mixed-effects logistic regression with subjects 

and items as random effects, and testpoint (day 1 test, day 2 test) and word type 

(neighbours and non-neighbours) as fixed factors showed no interaction between the 

two variables. The effect of testpoint was significant, reflecting increasing accuracy 

on day 2 (b = 1.788, z = 9.43, p < .001) compared to day 1. No significant effect of 

word type was found however, suggesting that both word types were learned 

explicitly equally well. 

 

 

 

 

 

 

 

 

 

Figure 11. Accuracy rates in the cued recall test. Error bars represent standard error of the 
means. 
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these participants made more /t/-responses on day 1 and day 2 compared to baseline, 

even though they were exposed to the ambiguous phoneme in a novel lexical context 

supporting a /d/-interpretation. This suggests that the tendency to shift towards 

responding /t/ in the non-neighbour group was insensitive to the lexical manipulation 

using novel words, and thus does not constitute evidence that these novel words 

show lexical integration. Figure 10 shows the net effect of the two bias groups: there 

was a 3% change from baseline on day 1, and a 4% change after a further training 

session on day 2, both in the wrong direction.  

The situation was very different looking at neighbour novel words. Figure 8 

shows a shift in both continua going in the direction predicted by the lexical bias 

afforded by the novel words. Figure 10 shows there was an 8% change from baseline 

on day 1, and a 7% change on day 2. The change on day 1 was statistically 

significant, while the change on day 2 approached significance (p = .07). The 

magnitude of these changes is quite comparable to the data reported by Leach and 

Samuel. They reported two experiments using the same design as the experiment 

reported here, i.e. a contrast between pre-exposure phoneme categorisation and post-

exposure categorisation, both carried out on the same day. In a semantic training 

condition they reported a shift of 13% on a /s/ - /sh/ continuum with /s/-ending novel 

words, and a 7% shift with /sh/-ending novel words. In a non-semantic experiment 

they reported non-significant shifts of 3% and 4%, in the wrong direction. The main 

experiments in Leach and Samuel did not use a baseline contrast, so the magnitude 

of the effect in those experiments cannot be directly compared to the effects in the 

current experiment. It seems then that the effect observed here was very similar in 

magnitude to the effect seen by Leach and Samuel. The small advantage in their 

favour might be explained by the different continua used in the two experiments, the 

/s/ - /sh/ continuum may lend itself better to an ambiguity manipulation that the /t/ - 

/d/ continuum.   

The current data replicated the Leach and Samuel finding with respect to 

their time course too. When perceptual learning was observed, it emerged 

immediately after training. In fact, the effect appeared to be weaker when tested a 

day later, in spite of the additional training provided on day 2. These data together 

with data from Experiment 2 support the idea that perceptual learning does not seem 

to benefit from offline consolidation.  
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The striking difference between lexical integration in neighbours and non-

neighbours is not present in the measure of lexical configuration assessed here by 

cued recall. Although there was a small numerical advantage for neighbours on both 

days, the difference failed to reach significance, suggesting that the lack of 

perceptual learning effect in non-neighbours was not due to these items being more 

difficult to learn. Instead, the more likely explanation is that since neighbours 

overlap with existing words, they can evoke the meaning of their closest neighbour, 

and benefit from this semantic support to a degree significant enough to allow for 

lexical integration to take place. The cued recall task also showed increasing 

accuracy on day 2, however this is not surprising as day 2 also included another 

training session providing further exposure to the novel words. 

 

2.5 Chapter Summary and General Discussion 

The motivation for the series of experiments described in this chapter was the 

finding reported by Leach and Samuel (2007) that only meaningful novel words 

showed evidence of lexical integration when measured by perceptual learning. These 

authors found no lexical integration when the novel words were trained in a 

phoneme monitoring task. However, when the same stimuli were trained in tasks 

which provided a meaning for the words, lexical integration did emerge. Measures of 

lexical configuration, that is, explicit knowledge of the form of the words, were 

unaffected by the semantic manipulation. This study provided strong evidence that 

meaning is necessary for novel words to develop lexical representations that are fully 

functional and engage in word-like behaviours at sublexical and lexical levels.    

This was a surprising finding in light of the lexical competition data provided 

by Gaskell and colleagues, which have consistently shown novel words engaging in 

lexical competition with existing words as a result of non-semantic training. The one 

study which directly contrasted semantic and non-semantic training (Dumay et al., 

2004) showed no benefit of semantics on novel word lexical competition.  

The hypothesis presented in this chapter was that the reason why meaning 

has not been implicated as an important factor in the lexical competition studies is 

that the stimuli have been neighbour novel words. These novel words overlap to a 

large extent with existing words in the lexicon. Hence they may also evoke the 

meaning of the base words from which they were derived, and this “inherited” 
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meaning may be enough to allow for lexical integration to occur. Experiment 1 

provided support for this notion. Neighbour meanings were easier to learn than non-

neighbour meanings, but only when the neighbour meaning was related to the 

meaning of the base word. This suggests that the base word meaning did exert an 

influence on the learning process, facilitative in the case of consistent neighbours, 

and less useful in the case of inconsistent meanings. Participants also recalled more 

neighbour word forms than non-neighbour forms. This could be explained simply by 

pointing out that neighbour forms had the extra mnemonic support from their base 

word forms. However, the semantic consistency manipulation played a role even in 

this non-semantic task: more consistent neighbour word forms were recalled than 

inconsistent forms. 

Once Experiment 1 had established that the base word meanings are available 

to participants in a word learning experiment, and that they appear to influence the 

degree to which novel word meanings and forms are encoded, Experiment 3 sought 

to demonstrate that base word meanings can be influential in the emergence of 

lexical integration as well. In an experiment modelled after the Leach and Samuel 

(2007) studies, I showed that neighbours do in fact show lexical integration even 

when they are trained using a non-semantic task. Non-neighbours showed no such 

effect, replicating the failure of Leach and Samuel to see lexical integration with 

meaningless novel words that do not overlap with existing words. Taken together, 

the series of experiments by Leach and Samuel and the present experiments suggest 

that meaning is important in novel word learning, and that novel words that overlap 

with existing words, in the absence of experimentally trained meaning, can evoke the 

meaning of the base words and solve the apparent discrepancy between the 

perceptual learning data and the lexical competition data. This is further supported 

by the priming studies reviewed in the introduction to this chapter, which showed 

that nonwords derived from real words can prime real words that are semantically 

related to the base words.  

There is another variable that may have contributed to the learning of the 

neighbours. As mentioned in Chapter 1, Storkel et al. (2006) have suggested that 

phonetic neighbourhood density affects word learning in children and in adults. 

According to this view, adding a novel word to a high-density neighbourhood is 

easier because hearing the novel word will activate many neighbours, with the 

activation feeding back to the phonological level, and back again to the lexical level 
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resulting in more co-activation of phonemic and lexical representations than would 

be the case for novel words in sparse neighbourhoods. The neighbour novel words 

used in the current experiments would have by virtue of their design fallen into 

denser neighbourhoods than the non-neighbours. This may have contributed to the 

emergence of lexical integration in neighbours. Leach and Samuel argued along the 

same lines when they suggested that one advantage that neighbour words have is that 

they may not require building a new lexical representation from scratch.  

The neighbourhood and semantic accounts are unlikely to be mutually 

exclusive. Both are probably important in word learning (see e.g. Storkel, 2009, for a 

demonstration of both phonological and semantic predictors of infants’ word 

knowledge), and they may interact. For example, it is possible that meaning is 

necessary particularly when adding lexical entries in sparse neighbourhoods, as was 

the case in Leach and Samuel (2007). I am not aware of studies that would have 

manipulated both variables in the same experiment. Storkel et al. (2006) manipulated 

neighbourhood density but used meaningful training (story context) only. Leach and 

Samuel (2007) and Dumay et al. (2004) varied training but used the same stimuli 

throughout their experiments. It is left for future studies to tease apart the effects of 

the two explanatory variables in adult word learning.  

Experiment 3 was successful in both replicating the Leach and Samuel 

(2007) finding of no lexical integration with non-neighbours in training with no 

meaning, and in extending these findings by showing that lexical integration is found 

with neighbours under the same circumstances. The second way in which their 

original data were replicated was in terms of the time course of the effect: they found 

the perceptual learning effect immediately after training, as was the case in the 

current experiment too. Leach and Samuel did not discuss why the perceptual 

learning measure allows lexical integration to be seen immediately, while lexical 

competition effects tend to benefit from a delay between training and test. As 

discussed in Chapter 1, Davis and Gaskell (2009) suggested this may be due to the 

properties of complementary learning systems and early lexical representations 

having direct access to a phonological level of representation.  

Finally, while the main purpose of Experiment 2 was to generate a set of 

materials suitable for perceptual learning, it also revealed that the phoneme 

categorisation boundary shift induced by perceptual learning with real words is 

robust against decay over a week. This is an impressive demonstration of flexibility 



Chapter 2 

 91 

in the speech recognition system, showing that even though participants must have 

been exposed to countless tokens of /t/ and /d/ produced by a variety of speakers 

between the day 1 and day 8 sessions, they still retained the adjustment made in 

response to the ambiguous /?dt/ heard on day 1. Whether this would also be the case 

for boundary shifts created by novel word lexical contexts remains to be shown. 

It is issues of time course of novel word learning that I will turn to in the 

following chapters. The experiments reported in this chapter strongly support the 

view that meaning is important in novel word learning, both in looking at explicit 

measures of lexical configuration, and implicit measures of lexical integration. While 

we have access to data looking at offline consolidation effects in word form 

acquisition (e.g., Dumay & Gaskell, 2007), there are very little data on consolidation 

of semantic information in novel word learning. Experiment 1 provided preliminary 

data on this issue. In that experiment it seemed that explicit recall of novel word 

meanings decays over the first 24 hours, while explicit knowledge of word forms 

remains unchanged. This dissociation between meaning and form recall will be 

further discussed in later chapters (recall also the finding by Clay et al. suggesting 

that automatic semantic access benefits from consolidation). Chapter 4 will introduce 

novel ways of examining consolidation of form and meaning knowledge. Chapter 5 

will focus on the role of offline consolidation in different types of access to novel 

word meaning. Chapter 6 will return to the issue of form knowledge, and attempt to 

find out which aspects of sleep architecture drive the consolidation effect in novel 

word learning. Prior to moving on to the experimental chapters, the next chapter will 

review literature on offline consolidation and the role of sleep in this process, with 

emphasis on learning linguistic materials.   
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Chapter 3: Memory consolidation, sleep, and language 
learning 

3.1 Origins of consolidation theory 

The first ideas about memory consolidation can be traced back to two 

significant early findings. Ribot (1882) described a number of patients suffering 

from retrograde amnesia. These patients had typically lost memory of events that 

occurred shortly prior to the brain insult that triggered the onset of amnesia, but 

could still recall many events from the more distant past. This led Ribot to suggest a 

time-dependent process of memory organisation, whereby newly acquired memories 

become “fixed” over time and gain resistance to trauma (Polster, Nadel, & Schacter, 

1991). About twenty years later Mueller and Pilzecker (1900) provided experimental 

evidence of a consolidation process in healthy adults (see Lechner, Squire, and 

Byrne, 1999, for a summary of this work). In these experiments participants were 

asked to learn a list of nonword pairs within a fixed time, with memory tested after a 

brief delay by asking participants to produce the appropriate nonword when cued 

with the other member of a pair. Mueller and Pilzecker noted that if learning of the 

initial list was followed by learning of another list, recall on the first list was 

significantly impaired compared to a condition where a training-test interval of 

identical length did not include intervening learning. However, if a gap of about 6 

minutes was allowed between presenting the two study lists, no impairment was seen 

in a later recall test of the first list. Mueller and Pilzecker concluded that reading the 

initial study list engaged memory-related processes which continued to strengthen 

the memory trace for several minutes after the study session and could be disrupted 

by introducing interfering material before consolidation was complete.  

Similar ideas were subsequently tested in a wide research effort in the first 

half of the 20th century. The phenomenon which served as the focus of these studies 

was termed “reminiscence”, defined as an improvement in recall over time of 

materials learned but not rehearsed again prior to testing. Buxton (1943) in his 

classic review of this work highlighted among other concerns the difficulties of 

replicating many of the reports of reminiscence, the problems with confounds in 

experimental design (many studies had failed to control for the potential additional 

learning occurring as a result of repeated testing), and the restricted nature of the 
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stimuli typically used at the time (most often nonword syllables or poetry). It may be 

that these problems were partially responsible for the declining interest in this line of 

research within the cognitive tradition during the following decades, with few 

modern cognitive formal theories of memory including a role for consolidation 

(Brown & Lewandowsky, in press).   

In contrast to memory research in cognitive psychology, the idea of 

consolidation is broadly accepted in cognitive neuroscience (although see 

Moscovitch, Nadel, Winocur, Gilboa, and Rosenbaum, 2006, for a sceptical view). 

Hebb (1949) was the first to present a biologically plausible mechanism for 

consolidation in short term memory. He acknowledged the contradiction between the 

need to lay down new memories quickly as a result of limited exposure to the 

stimulus to be learned, and the slow rate of structural changes which are needed for 

permanent memories to form in the brain. His solution was to propose a dual trace 

mechanism, which relied on the notion of reverberatory action within cell 

assemblies. Reverberation allowed activation of cells to persist after the offset of the 

stimulus at least long enough to allow the connections between the neurons to 

strengthen. Reverberation however only spans timescales of seconds or less, and is 

an example of short-term consolidation, now often referred to as cellular 

consolidation, thought to involve biochemical reorganisation of relevant synapses. 

Marr (1970, 1971) proposed a neural theory of memory formation which included a 

consolidation process that occurred over days. According to this theory, memories 

are initially stored in “simple memory”, whose neural basis is the archicortex (part of 

the cerebral cortex that includes the limbic system). Simple memory however does 

not allow information to be classified or generalised with relation to existing 

memories. Information needs to be transferred from simple memory to the neocortex 

for these processes to take place. Marr suggested that this transfer occurs mostly 

during sleep. This type of long-term consolidation is sometimes referred to as 

systems-level consolidation as it involves more significant structural change. Most of 

Marr’s basic ideas were very similar to modern views of memory consolidation and 

the complementary learning system approaches I briefly described in Chapter 1, 

including the role for sleep they postulate. I will next discuss the modern theories 

and the supporting evidence for these theories, much of which comes from sleep 

research. 
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3.2 Modern theories of complementary learning systems 

The two currently most influential theories of complementary learning 

systems (CLS) were put forward by Squire (1992) and by McClelland et al. (1995), 

with the former elaborated by Alvarez and Squire (1994), and the latter later further 

developed by O’Reilly and Norman (2002). These theories were largely motivated 

by demonstrations both in humans and animals of the importance of the hippocampal 

formation and related medial temporal areas in amnesia. For example, Zola-Morgan 

and Alvarez (1990) found that monkeys showed a typical Ribot gradient of 

retrograde amnesia after surgical removal of the hippocampal formation. This was a 

similar deficit to what was seen in patient HM who had undergone surgery during 

which large parts of his hippocampal system was removed (Scoville & Milner, 

1957). These observations strongly suggested that the hippocampus plays a 

temporally limited role in the encoding of new memories. One advantage that was 

not available to Marr but which is used by the modern CLS theories is computational 

modelling. The modern theories mentioned above have been implemented as 

connectionist models, increasing the detail and predictive power of the CLS 

framework (Alvarez & Squire, 1994; McClelland et al, 1995). Although the models 

differ in their detailed implementation, their basic principles are essentially the same, 

so the brief description given in Chapter 1 and the more detailed description below 

apply to them all, unless otherwise stated (see also Meeter and Murre, 2005, for a 

recent model).    

CLS models postulate two learning systems with different rates of learning, 

different structures of representation, and a transfer process between the two 

systems. The neocortex is responsible for permanent memory storage, and 

information here is represented in a form of overlapping representations. This 

overlap allows the information to be integrated with existing knowledge and 

generalisation in learning to take place. However, there are several reasons why the 

learning rate needs to be slow in a system like this. McClelland et al. (1995) argued 

that slow, interleaved learning is necessary to ensure that the existing knowledge 

structure is not disturbed by the incoming information. This is a particularly 

important lesson from computational modelling, where massed learning of new 

information has been shown to lead to catastrophic interference where the new 

information can overwrite the old information (although see Page, 2000, and the 
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following commentaries to his target article for an argument that catastrophic 

interference is only a problem for certain types of computational models, i.e. 

distributed models). Alvarez and Squire (1994) further motivate a slow learning rate 

by pointing out that memories in the neocortex are represented over geographically 

disparate areas with slowly emerging connectivity. In these models consolidation 

occurs in the form of gradual strengthening of the neocortical trace, during a 

reinstatement process where the memory trace is repeatedly re-activated over time. 

Reinstatement can occur with direct exposure to the stimulus, or with explicit recall 

of the stimulus. However, as recognised by the early memory theorists, much of the 

time new memories are generated in response to events that occur only once, not 

providing the necessary reinstatement. Hence the CLS models argue, following Marr 

(1970, 1971), that reinstatement takes place offline as well, including during sleep. 

Because the initial neocortical memory trace is too weak to activate fully 

on its own in the absence of external stimulation or in response to partial stimulation, 

a second system is needed to “bind” the neocortical representation together until it 

has become strong enough through consolidation. The CLS models suggest that this 

system is provided by the medial temporal lobe, including the hippocampus. Unlike 

the neocortex, the hippocampus allows fast generation of sparse, non-overlapping 

representations. The sparsity of the hippocampal representations circumvents the 

catastrophic interference problem while allowing fast learning. Furthermore, since 

the connections between the hippocampus and neocortex can be modified quickly, 

the hippocampal and the emerging neocortical representations are linked 

immediately. This means that even partial activation of the emerging neocortical 

representation can be boosted with the support from the hippocampus to activate the 

complete representation. As the neocortical trace gains in strength with 

consolidation, the hippocampal support will eventually become superfluous, and the 

neocortical memory will eventually become independent of the hippocampus.  

The CLS models are supported by a rich literature from neuroscience. As 

outlined earlier, they can explain the Ribot gradient in amnesia by referring to the 

role of the hippocampus in unconsolidated memories which become independent of 

the hippocampal formation with time. There is also an increasing literature from 

animal and human studies that demonstrates hippocampal involvement in accessing 

newly acquired memories, and reorganisation of these memories over time. A 

thorough review of this literature is beyond the scope of this thesis, but two 
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complementing animal studies give a good flavour of the data. Wirth et al. (2003) 

trained monkeys to associate photographic scenes with specific spatial location 

within the scene. Activity of a set of hippocampal cells was recorded during the 

training. The recordings showed a stimulus-selective firing rate change whose 

emergence closely coincided with behavioural learning, suggesting a rapid change in 

hippocampal response properties. In contrast, Takehara-Nishiuchi and McNaughton 

(2008) recorded activity from rats’ medial prefrontal cortex cells during a 

conditional associate learning task. In this neocortical area a firing pattern sensitive 

to the conditioning manipulation only emerged after several days of training, and 

further increased offline over a period of several weeks, demonstrating a 

consolidation process in action. In human studies the data are more equivocal, as 

some neuroimaging studies have found hippocampal activation during retrieval of 

both remote and recent memories, while others have found it only with recent 

memories (see Meeter and Murre, 2004, for a review). Recent advances in imaging 

brain connectivity are enabling more sophisticated data to be gained though. 

Takashima et al. (2009) trained participants to associate faces with spatial locations, 

and tested recall immediately or 24 hours later while monitoring hippocampal and 

neocortical activity using fMRI during the test. Comparison of the immediate and 

delayed testing showed that hippocampal activity decreased while neocortical 

activity increased during consolidation. In addition, connectivity between the 

hippocampus and neocortex decreased over time, while connectivity within 

neocortical representational areas increased. Taken together these studies offer 

powerful evidence in favour of the consolidation proposed by CLS models. 

 

3.3 Memory consolidation and sleep in language learning    

Both Marr (1970, 1971) and McClelland et al. (1995) suggested that much of 

the reinstatement of newly acquired hippocampally-mediated memories occurs 

during sleep. If this was true, then it should be possible to see better memory 

performance after retention periods involving sleep in contrast to equivalent periods 

of wakefulness. Such data were indeed reported at an early stage. Van Ormer (1933) 

in an early review of the literature looking at sleep and memory cited work carried 

out by Ebbinghaus in 1885, where he saw better retention of newly learned materials 

over a period of time involving sleep than what would be predicted by mere passage 
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of time. This literature has vastly expanded in the past decade, with most evidence of 

performance improvements over sleep coming from procedural tasks, typically 

studied by looking at motor skills (e.g., Walker & Stickgold, 2006). The recent years 

have also seen several reports of sleep benefits in tasks measuring declarative 

learning, often looked at by measuring word-pair learning (e.g., Marshall & Born, 

2007). While such demonstrations of sleep benefits are compatible with CLS 

theories, direct evidence for reinstatement during sleep is also now available. For 

example, Peigneux et al. (2004) showed that areas of the human hippocampus that 

were active during a route learning task were reactivated during subsequent sleep 

(but see also Tononi and Cirelli, 2006, for a view of sleep and memory that does not 

include reinstatement).  

The idea that sleep plays a crucial role in memory consolidation is not 

universally accepted though. Siegel and Vertes for example have made a number of 

points that seem to undermine the hypothesis (Vertes & Eastman, 2000; Siegel, 

2001; Vertes, 2004; Vertes & Siegel, 2005). One of these claims is that sleep does 

not consolidate declarative memories. Although it is true that there are more reports 

of sleep effects in the procedural domain, there is now a large number of studies 

looking at declarative memory too, although most of these use only word-pair 

learning (Plihal & Born 1997, 1999; Gais & Born, 2004; Marshall, Helgadottir, 

Molle & Born, 2006; Marshall & Born, 2007). A related criticism states that even in 

the procedural domain, the literature is inconsistent in that some studies have failed 

to find a sleep effect, and those that have found it do not consistently implicate the 

same sleep stages driving the effect (see Vertes, 2004, for a detailed discussion). A 

third point concerns individuals in whom REM sleep is suppressed or eliminated due 

to use of antidepressant drugs or brainstem lesions. These people are able to live 

normal lives without any apparent learning difficulties. However, as pointed out by 

Walker and Stickgold (2004), these populations have not actually been tested on the 

tasks shown to be affected by REM sleep. Also, there is now ample evidence to 

show that REM is not the only stage that is involved in memory formation; slow-

wave sleep and stage 2 sleep have also shown to play a role (Diekelmann & Born, 

2010). Finally, Siegel (2001) has argued that if REM sleep were indeed necessary for 

memory, then those mammals with the highest intelligence should show the highest 

amounts of REM sleep. This turns out not to be the case, as humans fall into the 

average range in amount of REM (Siegel, 2001). This argument however assumes 
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that sleep currently serves the same evolutionary purpose in all mammals, which is 

unlikely to be true (e.g., Horne, 2006).   

Although the criticisms mentioned above cannot be dismissed, there is now 

an abundance of evidence supporting the view that sleep both stabilises and enhances 

new memories (Walker, 2005) from a wide range of memory domains in addition to 

procedural and declarative learning, including studies into sleep’s protective effect 

against interference from competing novel memories (Ellenbogen, Hulbert, 

Stickgold, Dinges, & Thompson-Schill, 2006), relational memory (Ellenbogen, Hu, 

Payne, Titone, & Walker, 2007), emergence of insight into implicit rules in complex 

tasks (Wagner, Gais, Haider, Verleger, & Born, 2004), creativity (Cai, Mednick, 

Harrison, Kanady, & Mednick, 2009), and emotional memory (Walker, 2009). A 

detailed description of this literature is not attempted here, instead I will now turn to 

studies that have specifically looked at consolidation and sleep in language learning. 

These studies cover several levels of language processing, from phonological to 

lexical, syntactic, and semantic levels of processing. I will follow a bottom up 

approach in outlining this body of research below.  

 

3.3.1 Consolidation of phonological, lexical, and syntactic knowledge  

Fenn et al. (2003) trained participants to recognise computer-generated 

speech. Half of the participants (wake group) were pre-tested and trained in the 

morning, and retested on a new set of stimuli produced by the same speech generator 

after 12 hours in the evening. The other group was trained in the evening, and had 

their post-test after 12 hours in the morning (sleep group). Note that the wake group 

had no sleep between training and the post-test, while the sleep group did. Compared 

to pre-test, the sleep group showed a larger improvement in performance than the 

wake group (18% vs. 10%). Control groups that were tested immediately after 

training showed an improvement similar to that of the sleep group, suggesting that 

staying awake between training and test conferred a cost on retention of the phonetic 

learning gained during training. Fenn et al. concluded that sleep consolidates new 

phonetic perceptual skills in two ways: firstly, it protects the new memories against 

interference (or decay) during the day. Secondly, sleep appeared to recover skills lost 

during the day. The latter claim was motivated by performance in one of their 

control wake groups which showed the decline in performance after a day of 
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wakefulness, but improved significantly in a second post-test taking place after a 

night of sleep.  

Sleep appears to be relevant in learning novel words too. One study has 

shown this to be the case in learning words from a foreign language. Gais, Lucas, 

and Born (2006) asked English speaking participants to memorise English-German 

word pairs. Recall of the German words in response to English prompts was tested 

immediately and again 24 or 36 hours later. Half of the participants were trained in 

the evening, so they got to sleep immediately after learning. The other half were 

trained in the morning, so training was followed by a normal day of wakefulness 

prior to a normal night of sleep. Participants who slept shortly after training forgot 

significantly fewer words than participants who were trained in the morning. A 

further experiment controlled for circadian effects by training all participants in the 

evening. Half of the participants proceeded to have a normal night of sleep, while the 

other half were sleep deprived for the duration of the night. Recall test after a 

recovery night showed that the sleep group forgot significantly fewer words. The 

authors argued that consolidation of novel vocabulary benefits from sleep most when 

the time interval between learning and onset of sleep is short. In this study the 

participants had no previous knowledge of the German language, so it may be 

viewed as examining the very early stages of learning new language vocabulary. De 

Koninck, Lorrain, Christ, Proulx, and Coulombe (1989) looked at slightly more 

advanced L2 learning by taking polysomnographic (PSG) measures of students 

participating is a six-week French language immersion course prior to, during, and 

after the course. These native English speaking students showed a positive 

correlation between learning progress and increase in rapid eye movement (REM) 

sleep during the course, suggesting that at least this stage of sleep is associated with 

language learning. The possible roles different sleep stages may have in language 

learning will be discussed further in Chapter 6, in the current chapter I limit the 

discussion to the global effects of sleep and consolidation on learning. Note also that 

a language immersion course is not restricted to word learning, so it is impossible to 

say which aspect of language acquisition this study is most relevant to. 

Acquiring words in the learner’s own language has recently attracted 

interest, and much of this literature was already reviewed in Chapter 1. The data 

most relevant for consolidation come from the lexical competition studies reported 

by Gaskell and colleagues (e.g., Gaskell & Dumay, 2003). Recall that these studies 
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have shown that novel spoken words engage in lexical competition with overlapping 

existing words only in a delayed competition task, suggesting a role for 

consolidation. Bowers et al. (2005) showed this to be the case for written words as 

well. Dumay and Gaskell (2007) further showed that the auditory lexical competition 

effect can emerge already after 12 hours, provided that sleep has occurred during that 

time. Such sleep-dependent consolidation fits easily within the CLS framework. 

Davis et al. (2009) provided evidence in favour of this interpretation. The main 

neocortical findings of their fMRI experiment were described in Chapter 1, but it is 

worth drawing attention here to their hippocampal data. When a contrast was made 

between consolidated, unconsolidated, and untrained novel words, a region of 

interest encompassing the hippocampus showed higher activation to untrained than 

unconsolidated words in the first scanning run. This suggested that the untrained 

novel words, which had never been heard before, engaged the hippocampus upon 

their first exposure. This activity declined in the following two scanning runs, and 

became similar to activity elicited by trained novel words. Magnitude of 

hippocampal activity on the first run was also positively correlated with later 

recognition memory of the novel words in a 2AFC task. 

A similar pattern of hippocampal activity was reported by Breitenstein et 

al. (2005). In this experiment participants learned novel names for familiar objects 

while brain activity was monitored using fMRI. As training progressed, hippocampal 

response to the novel words decreased. This hippocampal disengagement was 

mirrored by increasing activity in the inferior parietal lobe as a function of training. 

The authors suggested that this is the neocortical site for permanent phonological 

storage of novel words. Hippocampal activity during training also correlated with 

behavioural measures of novel word knowledge. Participants who showed less 

decrease of hippocampal activity over the course of training had better learning 

outcome at test, and improved more during training. Hippocampal activity at the first 

training block also predicted learning outcome, perhaps indicating that hippocampus-

dependent episodic memory of the novel words was helpful at test. Unfortunately 

this study did not include a re-test after sleep, but does suggest that a consolidation 

process involving hippocampal-neocortical interaction is initiated from the very 

beginning of word learning. It could be argued that the reduction in hippocampal 

activity as training progressed was due to adaptation. However, a control condition 

where novel words and object pictures were randomly paired from trial to trial 
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showed no such effect. Adaptation also cannot explain the dissociation between 

hippocampal disengagement and increasing parietal activity.  

Gomez, Bootzin, and Nadel (2006) sought to establish whether sleep helps 

infants to learn syntactic structure in an artificial language. 15-month-old infants 

were exposed to sentences from a language which had syntactic structure based on 

nonadjacent word pairs. The sentences consisted of three words, such as pel-wadim-

jic. Each infant heard two types of sentences where the first word always predicted 

the third word while the middle word was unpredictable (e.g., pel-X-jic and vot-X-

rud). After a nap (sleep group) or an equivalent time awake (wake group) infants 

were tested by exposing them to the trained sentences and new sentences with the 

same predictive rule while monitoring their gaze direction. The wake group looked 

more towards the direction where they heard the trained nonadjacent word pairings 

compared to unfamiliar pairings, indicating that they had an accurate memory of the 

trained items. In the sleep group however looking preference was not determined by 

the training items, but rather by the first sentence the infants heard in the test session. 

In the following trials infants preferred sentences that conformed to the first 

sentence. It seemed that while the sleep group showed no evidence of recalling the 

specific training items, they were able to apply the rule established by the training 

items to guide their processing of novel test items, a demonstration of grammatical 

rule abstraction the wake group failed to show. The effect was also shown to be 

robust after a 24 hour delay, but could only be observed if sleep occurred within 4 

hours of the initial exposure (Hupbach, Gomez, Bootzin, & Nadel, 2009). A similar 

finding was reported by St. Clair and Monaghan (2008), who showed that adults 

learning an artificial language could categorise words in the language into 

grammatical categories based on phonological and distributional cues inherent in the 

language. Importantly, only participants who slept between training and test showed 

generalisation of this ability to words that had not been included in the training. It is 

striking that in both of these studies the sleep group showed no evidence of recalling 

the specific training materials, but were able to apply the rules inherent in the 

training to new stimuli. The wake groups on the other hand showed the opposite 

pattern. This suggests that sleep is particularly useful in generalisation and 

abstraction of newly learned linguistic information. 
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3.3.2 Consolidation of semantic knowledge  

The studies reviewed above suggest that memory consolidation is an 

important factor in sublexical, lexical, and syntactic learning, and that the 

consolidation process benefits from sleep in all of these cases. The final level of 

language learning I will discuss in this chapter is learning the meaning of novel 

words. Much of the relevant literature was already reviewed in Chapter 1. Recall that 

both Perfetti et al. (2005) and Mesters-Misse et al. (2007) used a primed semantic 

decision task where a newly learned word acted as the prime in an ERP experiment. 

In the Perfetti et al. study priming was seen in reaction times (faster responses in 

trials involving a semantically related novel word compared to unrelated trials), and 

in the amplitude of the N400 (higher amplitude in the unrelated condition) 

immediately after training. This might be interpreted as showing immediate semantic 

learning in the absence of consolidation, however there are two points that urge 

caution with regard to this study. Firstly, the target words in the related condition 

included words that had occurred as part of the definition of the novel word (the 

exact proportion was not given: “many trained words were paired with a meaning 

probe that had occurred as part of the definition”, Perfetti et al., 2005, p. 1282). This 

means that in many of the trials the priming effect was potentially episodic rather 

than purely semantic. Secondly, since the semantic decision task requires an explicit 

judgement to be made about the meaning of the novel word, it is not clear whether 

that task measures semantic priming in the same sense as the more commonly used 

priming tasks only requiring explicit processing of the target. Mestres-Misse et al. 

(2007) also used a semantic decision task, but did not observe a behavioural priming 

effect. In fact, here the opposite pattern was seen, possibly reflecting poor explicit 

learning of the novel word meanings. They did however observe the N400 effect 

with the novel words. Interestingly though, the N400 was not identical to a real word 

control condition: with the novel words the N400 latency was delayed, and it had a 

different source. A typical N400 parietal source was seen for real words, but the 

novel word condition revealed a frontal source, possibly reflecting a more effortful 

semantic retrieval strategy. Mestres-Misse, Camara, Rodriguez-Fornells, Rotte, and 

Munte (2008) replicated this ERP study using fMRI to identify the brain regions 

involved in semantic word learning. This time a behavioural priming effect in the 

semantic decision task was obtained, although in this version of the task the novel 
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word prime was followed by the actual meaning of the novel word, making it again 

difficult to say whether semantic or episodic priming was being measured. The 

imaging data showed activation of several neocortical areas in response to the novel 

words, but interestingly also more activation of the medial temporal lobe areas in 

response to novel words than real words, again suggesting hippocampal involvement 

in the early stages of word learning. 

Breitenstein et al. (2007) argued that newly learned meaningful words show 

cross-modal priming effects (see Chapter 1). This was taken as evidence that the new 

words were integrated in existing language networks. However, the priming test was 

carried out after five days of training, excluding the opportunity to evaluate a 

potential role for consolidation. Furthermore, these priming data were confounded 

with a possible response congruity priming effect: the target required a living/non-

living decision, and the prime was always response-congruent with the target. Also, 

the novel word-picture pairs used at test were the same pairs as used in training, 

again making it difficult to distinguish between semantic and episodic priming 

accounts. The MEG follow up to this behavioural work (Dobel et al., in press) 

alleviates these concerns to some degree by showing an N400m attenuation to novel 

word priming trials from pre-training test to post-training test, if the N400m is taken 

to be a component sensitive to semantic processing (only trials with identical or 

semantically related prime-target pairings were used here). It should also be noted 

that in the post-training test, the N400m to novel word trials was still significantly 

larger than in a control condition using an identical prime real word – target picture 

pairing (although not significantly different from a control condition using 

semantically related real prime word – target picture pairings). Like the subtle 

differences in the N400 latency and source to novel word trials compared to real 

word trials reported by Mestres-Misse et al. (2007), this might reflect an incomplete 

consolidation process. 

An earlier priming study using newly learned words was reported by 

Dagenbach, Horst, and Carr (1990). Here participants were taught the meanings of a 

list of rare words (e.g., drupe, which is a botanical term for a fleshy fruit). After the 

meanings of the new words had been reliably learned, participants were asked to 

memorise an episodic study list of word pairs combining a novel word and a 

synonym or a semantically related familiar word (e.g., drupe – cherry). These two 

study phases were followed by a test of priming, where lexical decisions were made 
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to the familiar words, which could be primed or unprimed by the novel word they 

were paired with in the episodic training. No episodic priming was found 

immediately after the training session. The authors suggest this was due to 

insufficient training, and carried out another experiment where participants trained 

on the novel word meanings and episodic pairs for five weeks. At the end of the five 

weeks priming was found. It is not possible to say whether this delayed effect 

emerged due to the additional training, or to the delay between beginning of training 

and the test session, as might be predicted by consolidation theory. However, it does 

seem that this priming effect was not immediate. A further complication is caused by 

the relationship between the prime and the target, which were both semantically and 

episodically related.   

Finally, the picture-word interference work by Clay et al. (2007) is highly 

relevant here, as discussed in Chapter 1. Recall that in this study a non-semantic PWI 

effect was found immediately after training whereby a superimposed novel word 

interfered with the naming of a picture, whether or not the word and the picture were 

semantically related. However, in the second testing session which took place one 

week later, the semantic PWI effect was also seen, with a semantically related novel 

word interfering with picture naming more than an unrelated novel word. This is 

strong behavioural evidence that automatic semantic activation of novel words is not 

seen until after some period of consolidation has taken place. The exact necessary 

duration of consolidation remains to be defined. 

 

3.4 Conclusions 

I have reviewed evidence in this chapter for the role of memory consolidation 

and sleep in various aspects of language learning. The current evidence appears to be 

strongest in the case of learning novel word forms, in particular when the integration 

of those words in the mental lexicon is considered. Most crucially for the work 

presented in the next two chapters, the current state of research with regard to 

consolidation of novel word meanings is less clear. Most of the work discussed in 

the previous section has only looked at learning immediately after training. Although 

some of those data gave the first impression that semantics does not require 

consolidation (e.g., Perfetti et al.’s priming data), a closer look revealed both 

differences in how familiar and novel word meanings were processed at this early 
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time point (e.g., Mestres-Misse et al.’s ERP data) and concerns about tasks and 

methodology.  

There is however good reason to believe that offline consolidation and/or 

sleep play a role in learning novel word meanings. Walker (2009) has argued that 

sleep may be crucial in integrating and relating new memories with existing 

memories. This is not only supported by the lexical competition data (Dumay & 

Gaskell, 2007), but also by data from a range of different tasks. Ellenbogen et al. 

(2007) had participants learn premise pairs (e.g., A > B, B > C, C > D, D > E, E > F) 

and tested their recall of the pairs immediately and after a delay. While all 

participants had good recall of the pairs at both testing times, only in the delayed test 

was there any evidence of participants having interrelated the new information into a 

hierarchy (A > B > C, etc). Furthermore, when looking at long-distance item 

separation (e.g., interrelating B with D, to give B > D), participants who had slept 

between training and the delayed test showed significantly better learning than 

participants who had remained awake. Relevant data were also presented by Payne et 

al. (2009) in an experiment looking at false memory creation. These authors used the 

Deese-Roediger-McDermott (DRM) paradigm where participants learn lists of 

semantically associated words, and typically during recall present with false 

memories by adding new untrained related words to the lists. Payne et al. showed 

that participants who slept between training and recall showed more false memories 

than participants who remained awake, suggesting that sleep helped to relate the 

study words with associated unstudied words 5. These two studies suggest that 

offline consolidation not only enhances memory of the trained materials, but also 

helps to integrate them with other trained stimuli as well as existing knowledge. This 

implies that learning novel meaningful words may also benefit from consolidation, 

especially when measured in tasks that require the novel meanings to be related with 

existing word knowledge, such as semantic priming. 

In order to try to clarify this state of affairs, the next two chapters will look at 

different types of semantic priming and recall in novel words, both immediately after 

training and after a delay of at least one day (semantic decision in Chapter 4, 

                                                 
5 Fenn, Gallo, Margoliash, Roediger, & Nusbaum (2009) found the opposite effect, with sleep 
reducing false recall. The pattern of data reported by Payne et al. (2009) however has recently been 
replicated by a different research group, suggesting it is reliable (J. D. Payne, personal 
communication, December 11, 2009) 
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semantically primed lexical decision in Chapter 5). The time course of semantic 

consolidation will also be contrasted with that of word form consolidation using 

novel tasks (Chapters 4 and 6).  
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Chapter 4: Consolidation in learning novel word meanings 
and forms 

4.1 Introduction 

Experiment 3 showed that meaning is indeed crucial for at least some aspects 

of lexical integration. Only those novel words which potentially inherited the 

meaning of their base words showed the ability to reconfigure phoneme boundaries. 

As meaning appears to play such a major role in novel words integrating in the 

lexicon, it is important to understand better the process through which novel words 

link with semantic representations, and whether this process benefits from offline 

consolidation in the same way as novel word forms seem to. Clay et al. (2007) 

showed in a picture-word interference task that novel word meanings do appear to 

benefit from consolidation, at least over the course of one week. However, as that 

study did not include re-test sessions earlier than the one-week follow up, it is 

unclear whether semantic consolidation operates on the same time scale as word 

form consolidation (where the first sleep period appears to be crucial), or whether 

semantic consolidation possibly is a more temporally drawn out process, operating 

over several days and/or nights. In this chapter I shall report two experiments, the 

first of which focused on acquisition of novel word meanings, and the second 

focusing on acquisition of novel word forms, evaluating consolidation within the 

first 24 hours. The main task looking at consolidation of meaning here is semantic 

decision. As reviewed in the last chapter, this task has been used before by Perfetti et 

al. (2005), and Mestres-Misse et al. (2007, 2008), but these studies involved some 

methodological issues that complicated their interpretation (see Chapter 3). 

Experiment 4 attempted to circumvent these methodological issues, and also added a 

new task looking at semantic access: sentence plausibility judgement.  

 

4.2 Experiment 4 

To evaluate the time course of novel word learning, Experiment 4 used the 

training and testing schedule introduced by Davis et al. (2009). Participants learned 

one set of novel words on day 1 (consolidated), and another set on day 2 

(unconsolidated), and were tested immediately after the day 2 training session. 

Hence only the first set of novel words had a chance to benefit from offline 
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consolidation during the 24 hours between training and testing. In the test session 

participants were required to make semantic decision responses to prime-target pairs 

where the prime was a novel word. In the sentence plausibility judgement task a 

decision was made about the appropriateness of using a given novel word in a 

sentential context. Finally, explicit knowledge of novel word meanings was assessed 

by meaning recall. If novel word meanings benefit from offline consolidation, we 

should see a larger priming effect in semantic decision and faster RTs to 

consolidated than unconsolidated words. The same pattern should be seen in the 

sentence task. Data from Experiment 1 however suggest that explicit recall of the 

meanings is likely to be unaffected by consolidation. A single-word shadowing task 

was also included to evaluate form-based consolidation in the same experiment. 

 

4.2.1 Method 

Materials 

The novel word stimuli consisted of 102 written pronounceable nonwords 

(e.g., feckton) created by Deacon et al. (2004), with average length of 6.5 letters (SD 

= 0.9). These nonwords were not derived from real words and were designed not 

evoke the meanings of real words, as confirmed by a norming study by Deacon et al. 

(2004). Experiment 3 showed that novel words that are closely related to real 

existing words may activate the meaning of the real word. Hence it was important 

here to choose novel word forms where there was little chance of interference from 

existing word meanings. These nonwords are presented in Appendix 4. 

In this experiment each novel word was coupled with a meaning during 

training. A novel word meaning was represented by a familiar noun referring to an 

existing object (e.g., “feckton is a type of cat”). The novel word meanings were 

selected from the University of South Florida Free Association Norms (Nelson, 

McEvoy, & Schreiber, 2004). This is a corpus of 5019 words for which a large 

number of participants have provided free association responses. Each word in the 

corpus has a list of associated words, and each associate has a numerical association 

strength value based on the proportion of people who produced that associate as a 

response to the stimulus word. Sixty-eight words were chosen from this set to act as 

the meanings assigned to the novel words. All selected meanings were nouns of 

medium frequency (M = 73.7) with three strong associates (where a noun had more 
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than three strong associates in the corpus, the three strongest ones were selected 

while avoiding overlap with other associates). The associates of the meanings could 

be nouns, verbs, or adjectives (mean frequency = 151.6, mean number of letters = 

5.8, mean association strength = 0.16). The meanings and their associates can be 

found in Appendix 5. 

A further 34 nouns were selected from the free association corpus to be used 

in a real word prime condition in the semantic decision task, acting as a comparison 

with the novel word prime condition. These primes were chosen based on the same 

criteria as the novel word meanings, except that these items were of lower frequency 

(mean frequency = 9.0, mean frequency of associates = 66.0, mean number of letters 

= 5.74, mean number of letters in associates = 6.02). The reason for choosing low 

frequency words for this control condition was to try to better match them with the 

novel words which naturally would have extremely low frequencies due to being 

recently learned. As before, three strong associates were selected for each prime 

(mean association strength = 0.16). Care was taken in the selection of all items to 

ensure that there was no overlap: no word was repeated across the primes or the 

associates. These stimuli are presented in Appendix 6. 

Both the training and testing phases included a sentence plausibility 

judgement task which required generation of sentences in which the novel words 

could be used. For these tasks, five unique sentences were generated for each novel 

word, in which the novel word meaning fitted the context of the sentence (e.g., “the 

girl was woken up by the paws of her hungry feckton” , where feckton is a type of 

cat). The aim was to make these sentences highly constraining so that there would be 

minimal ambiguity as to whether the novel word in the sentence was used 

appropriately or not. Four sentences were used in the training task, and one in the 

test task. One of the four training sentences was combined with a different novel 

word which made no sense in the context of the sentence (e.g., “the girl was woken 

up by the paws of her hungry glain”, where glain is a type of book). These sentences 

were used in the incorrect usage condition during training (see Procedure). For 

counterbalancing purposes, the word-sentence pairs used in the test task were 

randomly divided into two lists. Half of the participants saw one list in the correct 

usage condition where the novel word was presented with its matching sentence, and 

the other list in the incorrect usage condition where the novel words were randomly 
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paired with incorrect sentences. For the other half of participants the list assignment 

was switched. The sentences used in testing are included in Appendix 7. 

Finally, spoken versions of all the novel words as well as the real word 

primes were recorded by a native English speaker, using the same recording 

equipment and procedure as in Experiment 3. These auditory stimuli were used in 

the shadowing task only. 

 

Design 

The full set of 102 novel words was divided into three lists of 34 words to be 

used in the three time of training conditions (“consolidated”, “unconsolidated”, and 

untrained). “Consolidated” novel words were words which had been learned on the 

previous day, while “unconsolidated” novel words were learned just before testing. 

Note that these terms were chosen for convenience, and do not imply an assumption 

that the words would actually undergo consolidation within the time scale used in 

this particular experiment. Whether they do is indeed the question addressed in the 

experiment. Untrained novel words were stimuli which were not included in training; 

they acted as a nonword control. The words in the three lists were matched in 

number of letters (6.4, 6.4, and 6.5). Similar sounding words were avoided within a 

list, to avoid confusability between words. All three lists were used in all three 

conditions across all participants. The 68 meanings were divided into two lists of 34 

meanings for use in the two time of training conditions (consolidated and 

unconsolidated). The two lists were matched on frequency (72.3 and 75.0, mean 

frequency of associates = 150.0 and 152.8), mean association strength (both 0.16), 

number of letters (4.74 and 4.85), and number of letters in associates (both lists 

5.77). Across all participants, both meaning lists occurred in consolidated and 

unconsolidated conditions an equal number of times. Since the novel words had no 

existing meaning and did not resemble existing words (Deacon et al., 2004), there 

was no danger of a given novel word being associated with an assigned meaning 

prior to training. 

 

Procedure 

Training. Figure 12 shows the timing of the training and test sessions, and the 

tasks used in the sessions. Participants arrived in the lab on day 1 for their first 

training session, the purpose of which was to train them on the first set of 34 novel 
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words (consolidated novel words). No testing took place on day 1. They returned on 

day 2, and carried out the second training session with the second list of novel words 

(unconsolidated novel words). The testing session immediately followed this second 

training session. Training of this number of words takes a fairly long time (on 

average 60-90 minutes), so four different training tasks were used within each 

training session, to help maintain participants’ attention. These tasks consisted of 

word-to-meaning matching (five exposures to each word), meaning-to-word 

matching (five exposures), meaning recall (three exposures), and sentence 

plausibility judgement (four exposures). The training started with three blocks of 

word-to-meaning matching, with each novel word occurring once in each block. 

Participants then carried out one block of meaning recall with one exposure to each 

novel word, followed by two more blocks of word-to-meaning matching. At this 

point a second block of meaning recall was carried out, followed by three blocks of 

meaning-to-word matching. A last block of meaning recall was carried out before 

completing two more blocks of meaning-to-word matching. The final task of the 

session was sentence plausibility judgement, which included four blocks. Hence the 

total number of exposures to novel words in this training regime was 17. The 

meaning recall task was interleaved with the other tasks as outlined above for two 

reasons. Firstly, it allowed the tracking of learning as a function of amount of  

DAY 1

Training day 1 novel words

Word-to-meaning matching (3)
Meaning recall (1)
Word-to-meaning matching (2)
Meaning recall (1)
Meaning-to-word matching (3)
Meaning recall (1)
Meaning-to-word matching (2)
Sentence plausibility judgement (4)

DAY 2

Training day 2 novel words

Word-to-meaning matching (3)
Meaning recall (1)
Word-to-meaning matching (2)
Meaning recall (1)
Meaning-to-word matching (3)
Meaning recall (1)
Meaning-to-word matching (2)
Sentence plausibility judgement (4)

Testing day 1 novel words 
(consolidated) and day 2 

novel words (unconsolidated)

1. Semantic decision
2. Sentence plausibility judgement
3. Meaning recall
4. Shadowing

 
Note. Numbers in parentheses show the number of exposures to each novel word in each training task. 

 
Figure 12. Schematic showing the timing of training and tests. 
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training. Secondly, it allowed the participants to identify words which they had not 

yet learned, and to focus on these words as training progressed.  

I will now describe the procedure of each training task in detail. In the word-

to-meaning matching task a novel word was presented in the middle of the top half 

of the computer screen, and two meaning alternatives were shown on the left and 

right sides of the bottom half. The participant was asked to indicate which of the two 

meaning alternatives was the correct one for the given novel word. The meaning was 

always presented in the form of “is a type of X”  where X refers to one of the 

meanings described above (e.g., cat). On each trial, one of the options was correct, 

and the incorrect option was randomly picked from the pool of meanings used in the 

current session by the experimental software. The allocation of the correct option to 

the left or right side was also randomly assigned for each trial. After a response was 

made by pressing a key labelled “Left” or “Right” on a button box, the incorrect 

option disappeared from the screen, and the correct one remained on screen for 1500 

ms and was followed by a new trial. Unlimited time was given to make the response. 

Participants were asked to pay close attention to the correct meaning remaining on 

the screen, in order to start learning the meanings at the beginning of the training. A 

new random presentation order was used in each of the five blocks.  

 The meaning-to-word matching task was identical to the previously described 

task, except that in this task a meaning was presented in the top half of the screen, 

and two novel word alternatives were presented on the bottom half. Participants were 

asked to pick the correct novel word for the given meaning. The order of 

presentation in the five blocks of this task too was randomised. 

 In the meaning recall task a novel word was presented on the screen, and the 

task was to type in the meaning of the word by using a standard keyboard. Unlimited 

time was given for responding. No accuracy feedback was given, but the correct 

answer was always presented after the response was completed. Order of trials in 

each block was randomised for each participant. 

 The fourth training task was the sentence plausibility judgement task. Here a 

sentence was presented on the screen, using one of the novel words. The 

participant’s task was to indicate whether the novel word fit in the context (correct 

usage) of the sentence in terms of its meaning or not (incorrect usage). Unlimited 

time was given to make a response. A response was followed by a feedback screen 

providing accuracy feedback, the novel word, and its meaning. Each novel word was 
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presented four times in this task, three times in the correct usage condition, and once 

in the incorrect usage condition, with a new sentence in each presentation. This 

imbalance was intentionally built into the design to minimise the presentation of 

novel words in an incorrect context to avoid interference during learning. The 

presentation order of the sentences was randomised.  

Testing. After completing the training session on day 2, participants carried 

out the testing session. Participants were offered a chance to take a break between 

training and testing, but no enforced break was implemented. The order of the testing 

tasks was fixed (see Table 2). The first testing task was semantic decision. A trial in 

this task started with the presentation of a fixation cross in the middle of the screen 

for 500 ms. This was replaced by the prime word, presented for 200 ms, and 

followed by the target word for 200 ms, with an SOA of 700 ms (ITI 500 ms). The 

participant was given 2000 ms from the onset of the target to respond. The task was 

to indicate whether the two words were semantically related or not, by pressing a key 

labelled “Yes” or “No” on a Cedrus button box. To encourage fast responding, the 

RT was displayed on screen after a response was made. Accuracy feedback was only 

given half way through the task in connection with a rest break, in the form of 

percentage of correct responses made so far. The reason for not giving accuracy 

feedback after each trial was to avoid any further explicit learning during testing. 

After inspecting the RT feedback for as long as they wished, participants could 

initiate a new trial with a button press.  

After ten practice trials (using stimuli not seen in the experimental trials), 

participants did two versions of the semantic decision task. In the novel word version 

the prime was one of the 68 trained novel words, and the target was a real word 

semantically related or unrelated to the meaning of the novel word. In the real word 

version the prime was one of 34 real word primes, followed by a related or an 

unrelated real word target. The two versions were always done sequentially, with the 

order counterbalanced across participants.  

Due to the limited number of trained novel words acting as primes, and in 

order to increase the amount of data in this task, it was necessary to present the same 

prime more than once. The task (both real and novel word versions) was divided into 

three blocks. Table 2 shows how the primes and targets were distributed over the 

three blocks. Within each block, each prime occurred twice, once with a 

semantically related target, and once with an unrelated target. Hence each prime was  
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Table 2. Sequence of tasks on day 2 of Experiment 4. 
 

Training session:  learn novel words and meanings in 4 training tasks 
feckton is a type of cat 
glain is a type of book 

. 

. 

. 
Test 1: semantic decision (prime – target pairs shown below) 

Block 1  Block 2  Block 3 
feckton – mouse (related)  feckton – kitten (related)  feckton- dog (related) 
feckton – study (unrelated)  feckton – school (unrelated)  feckton – read (unrelated) 

glain – read (related)  glain – study (related)  glain – school (related) 
glain – kitten (unrelated)  glain – dog (unrelated)  glain – mouse (unrelated) 

. 

. 

. 

 . 
. 
. 

 . 
. 
. 

Test 2: sentence plausibility 
The woman liked to listen to the purring of her feckton (correct usage) 

The businessman kept his suits neatly in his glain (incorrect usage) 
. 
. 
. 

Test 3: meaning recall 
feckton 
glain 

. 

. 

. 
Test 4: shadowing (auditory presentation) 

/feckton/ 
/glain/ 

. 

. 

. 
Note. On day 1 only the training session was carried out. Different sets of novel words were learned 
on the two days. In semantic decision, real word prime condition is not shown in the table. 
 

seen six times in total in this task. Recall that for each prime three related targets 

were chosen. A different related target was presented in each of the three blocks. The 

unrelated prime-target pairs were created by pseudorandomly combining a prime 

with the related target of another prime (while making sure that the resulting pairs 

were indeed semantically unrelated). So during the task each target occurred twice, 

once in the related condition and once in the unrelated condition. However, as 

demonstrated in Table 2, no target ever occurred twice within the same block. 

 The order of trials in semantic decision was pseudorandomised using Mix 

(Van Casteren & Davis, 2006). The randomisation constraints stipulated that there 

had to be at least 15 trials separating the repetition of any given prime or target. 

Furthermore, only a maximum of three consecutive trials from the same time of 



Chapter 4 

 115 

training or relatedness condition were allowed. A new pseudorandomised order was 

generated for each participant. Half of the participants responded to the related 

condition with their right hand and unrelated condition with the left hand, the key 

assignment was swapped for the other half.  

The second testing task was sentence plausibility. Only three practice trials 

were included as the main gist of the task was already familiar to the participants 

from the training. The only procedural difference in the testing stage was that the 

sentence was initially presented without the final, novel word. Instead, the final word 

was marked by a row of four Xs. The task was to read the sentence carefully (there 

was no time limit for this), and to press a key on the button box to reveal the final 

word. Timing started from this key press, and participants were required to decide as 

quickly and as accurately as possible whether the final word was appropriate in the 

context of the sentence by pressing a key (labelled “Yes” or “No”) on the button box. 

This method controlled for differing reading speeds across participants. Half of the 

trials were correct usage trials where the novel word matched semantically with the 

sentence, and half were incorrect usage trials where the novel word was a semantic 

mismatch. The order of trials was randomised for each participant by the 

presentation software. No repetition of sentences or novel words was used here. RT 

feedback was provided in the same way as in the semantic decision, without 

accuracy feedback. Half of the participants responded to the match condition with 

their right hand and mismatch condition with the left hand, the key assignment was 

swapped for the other half.  

The third task was meaning recall. This was identical to the recall task used 

in training, included all 68 novel words presented in random order, and required 

participants to type in the meaning of a given novel word. No time constraint was set 

for completing this task. 

 The final test task was shadowing, the purpose of which was to replicate the 

shadowing consolidation effect shown by Davis et al. (2009). A shadowing trial 

began with the presentation of a warning signal (the word READY) on screen for 

500 ms. Once the warning disappeared, a spoken word was played through a set of 

headphones (Beyerdynamic DT 294). These stimuli included the 68 trained novel 

words, 34 untrained novel words, and 34 real words (these were the same real words 

that were used as real word primes in the semantic decision task). The participant’s 

task was to repeat the spoken word as quickly and as accurately as possible. After 
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3000 ms from the onset of the spoken word had elapsed, a new trial was initiated. 

Stimulus order was newly randomised for each participant, and stimuli were 

delivered by DMDX (Forster & Forster, 2003), which also recorded and timed the 

vocal responses. Five practice trials (two real words, three nonwords) were 

completed before starting the experimental trials. The experimenter remained in the 

room during practice to ensure participants were speaking loud enough for responses 

to be recorded. All participants in the test stage were run on a Windows XP PC using 

a 17” Iiyama Vision Master Pro 454 monitor with a high refresh rate to maximise 

timing accuracy of visual stimulus delivery.  

 

Participants 

Twenty-four University of York students took part in the experiment. All 

participants were native English speakers with no reported language disorders (11 

male, one left-handed, mean age = 20.4, range = 18-23). Participants were paid or 

received course credit. To provide an extra incentive for both learning and 

performance in the test tasks, the most accurate and fastest 50% of the participants 

were entered into a prize draw for a £10 gift certificate. 

 

4.2.2 Results 

Training data 

Performance in the meaning recall training task was analysed to see if novel 

word meanings on both training days were learned equally well and because this task 

is likely to give a more accurate reflection of novel word knowledge than the 

meaning-to-recall matching data. Figure 13 shows the proportion of correct 

responses in the three blocks of this task, which were interleaved with the other 

training tasks. A mixed-effects logistic regression model with subjects and items as 

random factors, and time of training (consolidated words on day 1, and 

unconsolidated words on day 2) and training block (three blocks) as fixed factors 

was fitted. Subject-specific slopes for the effect of time of training significantly 

improved the fit of the model. No significant interaction contrasts were found, so the 

interaction was dropped. The simplified model showed significantly better meaning 

recall on day 2 than day 1 (b = 0.525, z = 3.31, p = .001), and that performance 
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improved from block 1 to block 2 (b = 1.988, z = 20.30, p < .001), from block 1 to 

block 3 (b = 3.524, z = 25.19, p < .001), and from block 2 to block 3 (b = 1.534,  

z = 10.92, p < .001). In the sentence plausibility judgement task very high accuracy 

rates were seen on both training days (proportion of correct responses was 0.979 on 

day 1 and 0.977 on day 2). The difference between the two was non-significant when 

tested with a mixed-effects logistic regression model with subjects and items as 

random factors, and time of training as a fixed factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Accuracy rates in the meaning recall training task in each training block. Error bars 
represent standard error of the means. 

 

Test data 

Semantic decision with novel word primes. Reaction time data in the 

semantic decision task were analysed first. Only correct responses were included in 

the analysis. As recommended by Baayen (2008), the RT data were log transformed 

to better satisfy the assumption of normality and the data were trimmed by removing 

extremely fast or slow responses (RTs faster than 5 log-ms [148 ms] and slower than 

7.3 log-ms [1480 ms]) prior to the analysis. A mixed-effects linear model with 

subjects and items as random variables, and time of testing (delayed = consolidated, 

immediate = unconsolidated), and semantic relatedness of the prime and target 

(related vs. unrelated) as fixed variables was built. Subject-specific slopes for 

relatedness and time of testing significantly improved the fit of the model, as did 
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item-specific slopes for time of testing. Figure 14 (left panel) shows the RT data for 

both time of testing and relatedness conditions. There was no interaction between the 

two variables, so it was dropped. The simplified model showed significantly faster 

semantic decisions to the related word pairs than the unrelated word pairs (b = 0.089, 

t = 4.49, p < .001). The overall RT difference between the consolidated and 

unconsolidated conditions was non-significant. The effect of relatedness was also 

analysed for each time of training condition individually. The effect was significant 

both in the consolidated (b = 0.084, t = 4.34, p < .001) and unconsolidated conditions 

(b = 0.098, t = 5.09, p < .001). The effect of time of training was not significant in 

the related or the unrelated trials. 

 

 

 

 

 

 

 

 

 

Figure 14. RTs (left panel) and accuracy rates (right panel) in the semantic decision task with 
novel word primes. Error bars represent standard error of the means. 

 

Accuracy rates were analysed next (Figure 14, right panel). A mixed effects 

logistic regression model was used, with subject- and item-specific slopes for the 

relatedness condition. As usual, subjects and items were entered as random variables, 

and time of testing (delayed = consolidated, immediate = unconsolidated), and 

semantic relatedness of the prime and target (related vs. unrelated) as fixed variables. 

No significant interaction was found. Related word pairs attracted fewer accurate 

responses than unrelated pairs (b = -0.592, z = -2.88, p = .004), and consolidated 

novel word trials had lower accuracy rates than unconsolidated trials (b = -0.368,  

z = -6.53, p < .001). Looking at the effect of relatedness at the two levels of the time 

of training condition, the effect was significant in the consolidated condition  

(b = 0.593, z = 2.79, p = .005) and in the unconsolidated condition (b = 0.588,  
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z = 2.74, p = .006). The effect of time of training was significant in the related 

condition (b = 0.369, z = 4.99, p < .001), and in the unrelated condition (b = 0.366,  

z = 4.20, p < .001). 

As analysed above, the data collapsed across the three blocks showed a 

relatedness effect for both consolidated and unconsolidated novel words, and did not 

show overall RT differences between the consolidated and unconsolidated novel 

word trials (although a difference in accuracy was found). To see if this RT pattern 

was true at early and late stages of the task, the same data were analysed including 

experimental block as an additional fixed variable in the model described above. 

Figure 15 shows the RT data broken down by block. A three-way interaction contrast 

showed that the effect of relatedness changed over blocks significantly more in 

unconsolidated than consolidated items (b = -0.074, t = -2.64, p = .006†): in 

consolidated items the difference between related and unrelated trials remained 

stable over blocks, but in unconsolidated items it was larger in block 1 than block 3. 

The effect of relatedness in consolidated novel words was significant in all three 

blocks (block 1: b = 0.095, t = 4.02, p < .001, block 2: 0.076, t = 3.24, p < .001, 

block 3: 0.091, t = 3.89, p < .001). In the unconsolidated condition also the 

relatedness effect was significant in all blocks (block 1: b = 0.140, t = 6.05, p < .001, 

block 2: 0.090, t = 3.85, p < .001, block 3: b = 0.061, t = 2.64, p < .001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Semantic decision RTs in each block with novel word primes. Error bars represent 

standard error of the means. 
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Visual inspection of Figure 15 suggests that while semantic decisions to 

unconsolidated prime trials are faster in the first block, the pattern reverses in the 

final block. Contrasts involving block and time of testing showed that in related 

trials responses to unconsolidated words were significantly faster than to 

consolidated words in block 1 (b = -0.086, t = -5.99, p < .001), the two were equally 

fast in block 2, but in block 3 responses to unconsolidated words were now 

significantly slower (b = 0.035, t = 2.43, p = .02†). In unrelated trials in block 1 

unconsolidated words were responded to significantly faster than consolidated novel 

words (b = -0.041, t = -2.89, p < .001), but the effect failed to reach significance in 

the two later blocks.  

Finally, the effect of block was evaluated in each relatedness and time of 

training condition. Responses to consolidated novel words in the related condition 

became significantly faster from block 1 to block 2 (b = -0.128, t = -8.75, p < .001), 

from block 1 to block 3 (b = -0.187, t = -12.70, p < .001), and from block 2 to block 

3 (b = -0.059, t = -4.04, p < .001). The same contrasts in the unconsolidated 

condition showed faster responses from block 1 to block 2 (b = -0.047, t = -3.35,  

p < .001), from block 1 to block 3 (b = -0.066, t = -4.73, p < .001), but not from 

block 2 to block 3. In the unrelated condition responses to consolidated novel words 

again became faster from block 1 to block 2 (b = -0.148, t = -10.52, p < .001), from 

block 1 to block 3 (b = -0.192, t = -13.75, p < .001), and from block 2 to block 3  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Accuracy rates in semantic decision in each block. Error bars represent standard 
error of the means. 

0.5

0.6

0.7

0.8

0.9

1

Block 1 Block 2 Block 3

Block

P
ro

po
rt

io
n 

co
rr

ec
t

Consolidated - Related

Consolidated - Unrelated

Unconsolidated - Related

Unconsolidated - Unrelated



Chapter 4 

 121 

(b = -0.044, t = -3.26, p = .001). In this condition responses to unconsolidated novel 

words became faster from block 1 to block 2 (b = -0.977, t = -7.17, p < .001), from 

block 1 to block 3 (b = -0.146, t = -10.76, p < .001), and from block 2 to block 3  

(b = -0.048, t = -3.58, p < .001). 

Figure 16 shows accuracy rates in semantic decision, broken down by block. 

Block was again added as a fixed factor to the logistic regression model described 

earlier. No contrasts involving three-way interactions reached significance. In the 

simplified model contrasts involving the interaction between block and relatedness 

showed that the accuracy difference between related and unrelated trials was 

significantly larger in block 2 compared to block 1 (b = 0.608, z = 4.45, p < .001), 

and in block 3 compared to block 1 (b = 0.979, z = 6.83, p < .001). Looking at the 

effect of relatedness on each block, there was no significant difference between 

related and unrelated trials in the first block in either consolidated or unconsolidated 

conditions. In the second block the relatedness effect reached significance in both 

consolidation conditions (consolidated: b = 0.737, z = 3.21, p = .001, 

unconsolidated: b = 0.689, z = 2.98, p = .002). The same was true in the third block 

(consolidated: b = 1.109, z = 4.76, p < .001, unconsolidated: b = 1.059, z = 4.51,  

p < .001). Interaction contrasts involving time of training and block suggested that 

time of training had a significantly larger effect in block 1 than either in block 2  

(b = -0.536, z = -3.93, p < .001) or block 3 (b = -0.511, z = -3.65, p < .001). 

Averaged over relatedness (in the absence of a three-way interaction), consolidated 

novel words attracted more errors than unconsolidated novel words in block 1  

(b = 0.704, z = 7.43, p < .001). The effect was non-significant in block 2, but 

approached significance in block 3 (b = 0.193, z = 1.88, p = .06†). Finally, the effect 

of block was evaluated in each time of training and relatedness condition. In related 

trials, the consolidated novel word condition was unaffected by block. In the 

unconsolidated condition however number of accurate responses in the related 

condition declined both in block 2 and block 3 compared to block 1 (b = -0.391,  

z = -3.29, p = .001, b = -0.402, z = -3.35, p < .001 respectively). No change from 

block 2 and block 3 was seen. In unrelated trials, accuracy in consolidated novel 

words improved from block 1 to block 2 (b = 0.761, z = 6.39, p < .001) and block 3 

(b = 1.098, z = 8.61, p < .001), and from block 2 to block 3 (b = 0.336, z = 2.49,  

p = .01†). In the unconsolidated condition accuracy increased from block 1 to block 3 

(b = 0.580, z = 4.28, p < .001) and from block 2 to block 3 (b = 0.359, z = 2.57,  
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p = .01†), but not from block 1 to block 2.  

To summarise the main findings, when RTs in the semantic decision task 

were analysed averaged over the three blocks, there was no evidence of a 

consolidation benefit: RTs to trials with consolidated novel word primes were not 

significantly different from unconsolidated trials, and in the accuracy rates lower 

accuracy was found for consolidated trials. However, when the data were broken 

down by block, allowing an examination of RTs in the early and late stages of the 

task (block 1 vs. block 3), some preliminary evidence for a consolidation benefit was 

found: in the third and final block RTs to consolidated novel word trials were faster 

than unconsolidated trials, although this effect was significant only in the related 

prime-target condition. No such effect was found in accuracy rates though. 

 

 

 

 

 

 

 

 

 

 
Figure 17. RTs (left panel) and accuracy rates (right panel) in the semantic decision task with 

real word primes. Error bars represent standard error of the means. 
 

Semantic decision with real word primes. Figure 17 shows RTs to the 

semantic decision task when both the prime and target were real, familiar words. 

Averaged across the three blocks (left panel in Figure 17), no significant difference 

was found between related and unrelated trials in a mixed-effects linear model with 

subjects and items as random factors, and relatedness (related vs. unrelated) as the 

fixed factor (with subject- and item-specific slopes for relatedness). Accuracy rates 

are shown in the right panel of the figure. Here a mixed effects logistic regression 

model with the same structure as above showed a significant difference between the 

relatedness conditions: accuracy rates were significantly higher in the unrelated 

condition (b = 0.830, z = 3.15, p = .002). 
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To examine the effect across the three blocks of the task (Figure 18), block 

was added as a fixed factor (in this model subject-specific slopes for the effect of 

block increased goodness of fit). Interaction contrasts involving relatedness and 

block showed that the relatedness effect in block 2 was significantly smaller than in 

block 1 (b = -0.034, t = -2.09, p = .04†) and in block 3 (b = -0.042, t = -2.60,  

p = .01†). Hence relatedness was evaluated at each block separately. The effect was 

marginally significant in block 1 (b = 0.022, t = 1.98, p = .05†), non-significant in 

block 2, but significant in block 3 (b = 0.031, t = 2.68, p = .009). Looking at the 

effect of block next, RTs to related trials did not differ significantly across blocks. 

The same was true of the unrelated trials. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Semantic decision RTs in each block with familiar word primes. Error bars 
represent standard error of the means. 

 

Figure 19 shows the accuracy rates in each block. To analyse these data block 

was added as a fixed factor to the model used in the accuracy analysis above. 

Interaction contrasts involving block and relatedness showed that the relatedness 

effect was significantly larger in block 2 compared to block 1 (b = 0.781, z = 3.05,  

p = .002). No difference in the magnitude of the relatedness effect was found in the 

other contrasts. The effect of relatedness was evaluated in each block next. No effect 

was found in block 1, but it did reach significance in block 2 (b = 1.194, z = 3.92,  
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p < .001) and block 3 (b = 0.840, z = 2.83, p = .005†). Looking at the effect of block 

in each condition, accuracy rate declined in the related condition from block 1 to 

block 2 (b = -0.500, z = -3.25, p = .001), and from block 1 to block 3 (b = -0.438,  

z = -2.82, p = .005†). No significant decline was seen between block 2 and block 3. 

In the unrelated condition, there was no change in accuracy rate across the blocks. 

 

 

 

 

 

 

 

 

 

Figure 19. Accuracy rates in semantic decision in each block using familiar primes. Error bars 
represent standard error of the means. 

 

Sentence plausibility judgement. RTs in the sentence plausibility judgement 

task (Figure 20, left panel) were analysed using a mixed-effects linear model with 

subjects and items as random variables, and time of testing (delayed = consolidated, 

immediate = unconsolidated) and the semantic compatibility of the novel word in the 

sentence context (match vs. mismatch) as fixed variables. Subject-specific slopes for 

sentence-word compatibility increased the goodness of fit. The same data trimming 

criteria were used here as in the semantic decision task. Visual inspection of RTs for 

each participant suggested that as the task progressed, some participants became 

slower in responding, while other became faster. Such variability can be accounted 

for in the model by adding subject-specific slopes for trial position. This 

significantly increased the goodness of fit. A significant interaction was found 

between semantic compatibility and time of testing, suggesting that the effect of 

compatibility was smaller in unconsolidated items (b = -0.063,  t = -2.25, p = .01). 

The effect of compatibility was significant in both time of testing conditions 

(consolidated: b = 0.184, t = 6.73, p < .001, unconsolidated: b = 0.121, t = 4.44, p < 

.001). Next the effect of time of testing was evaluated in each compatibility 

condition. 
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Figure 20. RTs (left panel) and accuracy rates (right panel) in the sentence plausibility 
judgement task. Error bars represent standard error of the means. 

 

In the match condition consolidated words were responded to significantly 

faster than unconsolidated words (b = 0.070, t = 3.56, p < .001). In the mismatch 

condition this difference was non-significant. It seems then that in this task there was 

an RT advantage for semantically compatible novel words. Interestingly, this 

advantage was larger for consolidated novel words, possibly suggesting that the 

meaning of these words was accessed faster than the meaning of unconsolidated 

novel words. 

Accuracy rates in the sentence plausibility task are shown in the right panel 

of Figure 20. A mixed effects logistic regression model with subjects and items as 

random variables, and time of testing (delayed = consolidated, immediate = 

unconsolidated) and semantic compatibility of the novel word and the sentence 

(match vs. mismatch) as fixed variables showed no interaction between the two 

variables. Averaged over the time of training conditions mismatch trials had more 

accurate responses than match trials (b = 0.668, z = 3.48, p < .001). There was no 

significant difference between consolidated and unconsolidated novel words when 

averaged across compatibility conditions. Although the lack of an interaction 

suggests that time of training had no effect on performance, the sentence-word 

compatibility effect was evaluated for consolidated and unconsolidated novel words 

separately to ensure the effect was significant in both conditions. This was the case 

(consolidated: b = 0.715, z = 2.78, p = .006, unconsolidated: b = 0.616, z = 2.23,  
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p = .03†). Furthermore, looking at match trials only there was no significant 

difference between consolidated and unconsolidated conditions, and the same was 

true of mismatch trials. 

 

 

 

 

 

 

 

 

 

 

Figure 21. Accuracy rates in the meaning recall test task for consolidated and unconsolidated 
novel words. Error bars represent standard error of the means. 

 

Meaning recall. Figure 21 shows accuracy in the meaning recall test task. 

One participant’s data were lost in this task due to equipment malfunction. A mixed 

effects logistic regression model with subjects and items as random variables, and 

time of testing (delayed = consolidated, immediate = unconsolidated) as the fixed 

variable showed that participants recalled more unconsolidated word meanings 

compared to consolidated word meanings (b = 0.786, z = 4.01, p < .001). 

Shadowing. To ensure reliable reaction time data in the shadowing task, the 

voice key trigger points were checked manually using the CheckVocal software 

(Protopapas, 2007), and corrected when necessary. Repetition latencies and accuracy 

rates are presented in Figure 22. Latencies to accurate responses (left panel) were 

analysed using a mixed-effects linear model with subjects and items as random 

variables, and training condition (consolidated, unconsolidated, untrained, real 

words) the fixed variable. Subject-specific slopes for the effect of trial increased the 

goodness of fit of the model. The same data trimming criteria were used here as in 

the semantic decision task. The analysis showed that consolidated novel words were 

shadowed faster than unconsolidated (b = 0.017, t = 3.49, p < .001) and untrained 

novel words (b = 0.024, t = 5.03, p < .001), but did not differ from real words. 
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Unconsolidated novel words on the other hand did not differ significantly from 

untrained novel words, but were responded to significantly slower than real words  

(b = -0.038, t = -2.89, p = .003). Finally, the difference between response latencies to 

untrained novel words and real words was significant (b = 0.046, t = 3.45, p < .001).  

The accuracy rates (Figure 22, right panel) reflected the latency data, as 

shown by a mixed effects logistic regression model with subjects and items as 

random variables, and training condition (consolidated, unconsolidated, untrained, 

real words) as the fixed variable. Accuracy for consolidated novel words was 

significantly higher than unconsolidated novel words (b = -0.832, z = -2.36, p = .02†) 

or untrained words (b = -1.039, z = -3.04, p = .002), but not significantly different 

from real words. Unconsolidated novel words did not differ significantly from 

untrained novel words, while real words resulted in marginally higher accuracy rates 

than unconsolidated novel words (b = 0.772, z = 1.86, p = .06†). Real words did have 

higher accuracy rate than untrained novel words (b = -0.978, z = -2.39, p = .02†). 

 

 

 

 

 

 

 

 

 

 

Figure 22. Shadowing latencies (left panel) and accuracy rates (right panel). Error bars 
represent standard error of the means. 

 

4.2.3 Discussion 

This experiment included a number of tasks attempting to measure the speed 

and accuracy of access to novel word meanings. A semantic relatedness effect was 

found in the semantic decision task using real word primes and targets (although it 

was only seen in two of the three blocks of the task), whereby faster responses were 

made in trials where the prime and the target were semantically related. This may 

reflect a priming effect where the recognition of the prime facilitates recognition of a 
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semantically associated target, leading to faster RTs in related trials compared to 

unrelated trials. If novel word meanings have been learned equally well, a similar 

finding should be made when the prime is a trained novel word. The high accuracy 

rates in the meaning recall, semantic plausibility, and semantic decision tasks show 

that participants were able to explicitly learn the meanings of the novel words well. 

The current data from the semantic decision task replicate earlier reports of faster 

semantic decisions being made in related trials compared to unrelated trials when the 

prime is a newly learned word (Figure 14), supporting the notion that the novel word 

meanings were available even in a speeded task requiring fast semantic access. This 

effect was found both for consolidated novel word primes (words learned a day 

before testing) and for unconsolidated novel word primes (words learned 

immediately before testing). This is the first experiment to my knowledge which in 

this task compares novel words that either had or did not have a chance to 

consolidate prior to testing. However, when averaged across blocks, the relatedness 

effect did not seem to be affected by the time of training manipulation: the advantage 

for related trials was equally large in both conditions.  

One piece of evidence showing a consolidation advantage in this task comes 

from looking at the RTs in each of the three blocks in the task separately. While 

there was initially an RT advantage (and an accuracy advantage) for recently 

learned, unconsolidated novel word trials, this advantage shrank as the task 

progressed. In the third block responses to related trials in the consolidated condition 

were in fact faster than responses to the unconsolidated condition (although no 

difference was found in unrelated trials). This reversal in the time of training effect 

during the course of the task is potentially important. The explicit meaning recall 

task showed that participants could recall more meanings of the unconsolidated 

novel words compared to consolidated words. This suggests that when participants 

are explicitly trying to access the meanings of the novel words, there is an advantage 

for recently learned materials. It is possible that this is what they were also doing in 

the first block of the semantic decision task. However, as they entered the second 

and the third blocks, response times overall became faster, possibly indicating a shift 

from effortful, explicit retrieval of the meanings to more online access. Importantly, 

no such speeding up was seen in the real word condition, presumably as effortless 

access is always available for real words. The accuracy data showed a similar 

pattern, with more errors made to consolidated novel words in the first block, but the 



Chapter 4 

 129 

difference attenuating in the last two blocks. This supports the idea of initial effortful 

retrieval of novel word meanings learned a day before, which however becomes 

more facilitated with further exposures and practice during the task. 

Another prominent trend in the semantic decision data was the lower 

accuracy rate to related trials compared to unrelated trials. The pattern was seen both 

in the real word and novel word prime conditions, and may reflect a bias in 

responding, in that participants may have favoured classifying the word pairs as 

unrelated when they were unsure about the correct response. This would lead to high 

accuracy rates in unrelated trials and lower accuracy in related trials, as was seen 

both in novel word and real word prime conditions. This might mean that the faster 

responses to related trials were at least partially due to a speed-accuracy trade off. 

However, this is unlikely to be the sole explanation considering that the accuracy 

difference was not seen in the first block of either the real word or the novel word 

prime conditions, and yet the relatedness effect was present in the first block as well.  

The sentence plausibility judgement task provided potential evidence for a 

semantic consolidation process. Participants were faster to decide whether a novel 

word was used in a semantically appropriate sentence when that novel word fit the 

semantic context of the sentence. Importantly, the word-sentence compatibility effect 

was larger in consolidated novel words than unconsolidated novel words. This 

appears to have been caused by faster responses to compatible words when they 

were consolidated rather than unconsolidated. Again, this suggests that participants 

were able to access the meaning of the consolidated novel words faster, and proceed 

to make a semantic judgement about them faster. No accuracy difference was found 

between the two time of training conditions though. It is important to note however 

that as this task was self-paced, it is possible that the consolidation effect is caused 

not by speeded access to meaning, but access to orthography. The long delay 

between viewing the sentence and revealing the novel word may have allowed the 

generation of expectancy, for example the participant may have deduced based on 

the beginning of the sentence that the final word will be feckton. When the final 

word eventually is revealed, all that remains for the participant to do is to match the 

revealed word with the expected word. Such a matching process may rely more on 

orthographic processes than semantic ones. This alternative explanation will be 

outlined in more detail in the General Discussion to the present chapter. 
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Finally, when access to novel word meaning was measured in an explicit 

recall task with no time pressure, an advantage for recently learned, unconsolidated 

novel words was found. The same pattern was found in the meaning recall task in 

Experiment 1, where higher accuracy was found in participants who were tested 

immediately after training compared to participants who were tested one day later. 

This dissociation between a benefit for unconsolidated novel words in a task of 

explicit meaning recall, and a benefit for consolidated words in tasks requiring 

speeded meaning access (semantic plausibility and semantic decision) may prove to 

be important and will be examined further in the next chapter.  

The last task in the current experiment was shadowing, a task which 

primarily measures access to phonological word form representations rather than 

knowledge of meaning. Here a clear time of training effect was found. Consolidated 

novel words were shadowed significantly faster than unconsolidated novel words or 

untrained novel words. Unconsolidated novel words on the other hand were 

shadowed as slowly as untrained words. Accuracy rates showed exactly the same 

pattern. Like the lexical competition studies reviewed earlier (e.g., Dumay & 

Gaskell, 2007), these data suggest that novel word form representations benefit from 

a period of offline consolidation (at least phonological ones based on the shadowing 

task data). It is also possible to postulate that a form-based lexical representation was 

generated for the consolidated novel words, but not for the unconsolidated novel 

words. This argument relies on the observation that unconsolidated novel words 

were shadowed as slowly as untrained novel words. When shadowing nonwords 

(untrained novel words), participants are recreating a novel sequence of phonemes 

which does not map onto any known lexical representation. The failure to find any 

difference in shadowing latencies between untrained and unconsolidated words 

suggests that in neither case was there a lexical representation to facilitate 

performance (or the emerging lexical representation was too weak to show any 

benefit). Consolidated novel words on the other hand were shadowed significantly 

faster (as fast as real words), suggesting that these words had generated a robust 

lexical representation.   

The consolidation effect in shadowing might have a semantic locus too. As 

people recognise a spoken novel word, the meaning of that word is also activated 

(e.g., Zwitserlood, 1989). A stronger (consolidated) semantic representation may aid 

in the recognition and repetition of the novel word, and give rise to faster shadowing 
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times (shadowing latencies are known to be subject to semantic influence, see for 

example Slowiaczek [1994] for semantic priming effects in shadowing). Experiment 

5 considered the contribution of semantics to the shadowing consolidation effect. If 

the consolidated novel words were shadowed faster because they activated a 

semantic representation more strongly than the unconsolidated words, then the 

shadowing effect should not be observed in novel words for which no meaning was 

taught, irrespective of time of testing. This hypothesis was tested in Experiment 5. 

Another distinctive property of the shadowing task in this experiment was the 

fact that participants never heard the phonological form of the novel words until they 

carried out the shadowing task. All training tasks and test tasks were carried out in 

the visual modality. Hence the phonological form representation that was being 

probed in the shadowing task had been generated by indirect exposure to phonology 

via orthographic input. It may be the case that such indirectly generated 

representations benefit more from consolidation than directly generated 

representations. To see how this might work, recall that CLS accounts suggest that 

consolidation occurs as a result of offline reinstatement of the novel memory trace. 

Training itself offers one way of reinstatement, but requires prolonged exposure to 

the novel stimulus in the form of repeated training trials. A visual presentation of a 

novel word is likely to activate a corresponding phonological representation on most 

trials, but this activation would probably be weaker than direct exposure to a spoken 

version of the stimulus. At the end of the training the novel phonological trace would 

be weaker than the orthographic trace, and be in greater need of reinstatement during 

following offline periods, such as sleep. To see if this is the case, a comparison needs 

to be made between tasks probing representations generated as a result of direct 

exposure (a written novel word as a result of written training), and representations 

generated as a result of indirect exposure (a spoken novel word as a result of written 

training). In a similar vein, the shadowing data could also be viewed as an example 

of cross-modal priming. If repeated exposure to the novel word during training gives 

rise to form-based repetition priming, it may be the case that cross-modal priming 

requires consolidation to emerge. In that case no effect of consolidation should be 

seen when tested in the same modality. Experiment 5 was designed to address these 

last points.   

The fixed order of the testing tasks may also have had an impact on the 

observed patterns of data. For example, semantic decision was always the first of the 
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testing tasks. This may have contributed to the way the consolidation effect emerged 

over the course of the task, in particular if the consolidated novel words benefit from 

a small number of retrieval attempts to heighten their level of activation and to bring 

it in line with the activation of the recently learned unconsolidated words. Secondly, 

the fact that the shadowing task was always the last task, may have increased the 

semantic contribution to the task, as the meaning of the novel words had been 

accessed repeatedly prior to the shadowing task. Experiment 5 ought to clarify this 

latter point. In Experiment 6 the meaning recall task was moved to the first position 

to make sure all novel words had benefitted from meaning retrieval before starting 

tasks measuring speeded access to meaning. This might remove the effect of block in 

these types of task.  

 

4.3 Experiment 5 

Experiment 5 used an identical shadowing task to Experiment 4, but added a 

naming (reading aloud) task to evaluate consolidation effects in a task which probes 

novel word form representations in the same modality they were trained in 

(orthographic). As mentioned in the preceding discussion, if the indirectly trained 

representation (phonological) benefits from offline consolidation more than directly 

exposed representations, a significantly larger difference between consolidated and 

unconsolidated words should be seen in the shadowing task than in the reading aloud 

task. Furthermore, to see if these consolidation effects have a meaning or form-based 

locus, half of the novel words were trained with a meaning, while for the other half 

only the orthographic form was ever presented. If the locus is indeed semantic rather 

than form-based, we should see consolidation effects in the meaningful novel words 

only. A visual cued recall task was also included as a second task to evaluate the 

accuracy of the novel orthographic representations. Apart from these new tasks and 

the meaning manipulation the same design and stimuli were used in this experiment 

and the previous experiment, except for the novel word meanings which were made 

more realistic, as described below. 
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4.3.1 Method 

Materials 

The same 102 novel words and 68 meanings were used as in Experiment 4. 

The meanings were elaborated for the purposes of this experiment by adding two 

features to each meaning to generate an object for which no existing word exists. For 

example, if in Experiment 4 feckton was defined as “a type of cat”, it was now 

defined as “a type of cat that has stripes and is bluish-grey”. This was done in order 

to better simulate the kind of word learning that goes on in real life situations. In 

reality, novel words usually refer to novel objects for which a person does not know 

a label. By adding new features to the existing meanings from Experiment 4 the aim 

was to teach a label for a new semantic object rather than teaching a new label for an 

existing object. The new features were chosen so that they set the object apart from 

any known object, however without making the new meaning implausible (e.g., the 

existence of a stripy bluish-grey cat is plausible, but the existence of a cat with six 

legs would be less so). Again, the plausibility requirement was set to make the 

learning more realistic. The complete set of elaborated meanings can be found in 

Appendix 8. 

The majority of sentences used in the semantic plausibility judgement task at 

training were also the same sentences as used in Experiment 4. However, in some 

cases the sentence context was no longer appropriate for the meaning with the new 

features, and in these cases the sentence was modified to fit with the elaborated 

meaning. For example, one of the original sentences to be used with the meaning “a 

type of baby” was “The couple desperately wanted to have another [a type of baby]”. 

In the current experiment the meaning with new features was “a type of baby that is 

premature and underweight”, making the original sentence implausible. The 

modified set of testing sentences is found in Appendix 9. 

The only task that required completely new materials was the cued recall 

task. Four different cues were created for each novel word, three to be used in 

training and one in testing. The first training cue was generated by removing one 

letter from each novel word (for example _eckton from feckton). Across all words, 

all letter positions were used an equal number of times to make sure participants 
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overall had to keep attending to all parts of the words during training. The missing 

letter was always replaced with an underscore. The second cue type was created by 

removing every other letter (f_c_t_n), starting with the second letter. The third 

version was created in the same way, but now the previously removed letters were 

kept in and the others were removed (_e_k_o_), starting with the first letter. The 

fourth version, to be used in the testing session, was created by removing all but the 

first, last, and one medial letter (f_ _ k _ _ n). Care was taken in choosing the medial 

letter to make sure that there were no identical fragments referring to two different 

words, and that each fragment could possibly only accommodate one specific novel 

word.  

 

Design 

The same division of the 102 novel words into three lists of 34 words that 

was used in Experiment 4 was again used here, for the purposes of dividing the items 

into consolidated, unconsolidated, and untrained conditions. These lists were further 

randomly divided into two sub-lists of 17 items. Meaning was taught for words in 

one sub-list, and no meaning was given for the words in the other sub-list. The 68 

meanings were also divided into two lists of 34, as in Experiment 4, to be used in the 

consolidated and unconsolidated conditions. As before, each meaning list was 

combined with each novel word list an equal number of times. 

 

Procedure 

Training. Participants received their first training session on day 1, during 

which they were trained on the first set of novel words (consolidated). No testing 

took place on this day. They returned on the following day and carried out an 

identical training session on the second set of novel words (unconsolidated). The 

testing session followed immediately after the day 2 training session. The training 

was largely similar to that used in Experiment 4, including word-to-meaning 

matching, meaning-to-word matching, meaning recall, and the sentence plausibility 

judgement task. These tasks were presented in the same order and the same number 

of times as in Experiment 4 (i.e., three blocks of word-to-meaning matching, one 

block of meaning recall, two blocks of word-to-meaning matching, one block of 

meaning recall, three blocks of meaning-to-word matching, one block of meaning 

recall, two blocks of meaning-to-word matching, and four blocks of semantic 
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plausibility judgement), to give a total of 17 exposures to each word. Since half of 

the novel words were to be trained in the absence of meaning, new meaningless 

variants of word-to-meaning matching, meaning-to-word matching, and meaning 

recall were created, and were used only in trials involving the meaningless group of 

novel words.   

In the blocks of word-to-meaning matching task, the word-to-target matching 

task replaced the word-to-meaning matching trials when a meaningless novel word 

was presented. This variant presented two target letter options instead of two 

meaning options. The task was to indicate which of the two letters could be found in 

the word seen on the screen. Matching the structure of the two tasks closely ensured 

that both meaningful and meaningless novel words were trained in a similar way, but 

no meaning was provided for the meaningless items. One of the target letters, 

randomly allocated to the left or the right, was always correct, and the other 

randomly chosen from a pool of letters used as targets but not found in the word in 

question. Target letters were chosen for each word so that across the training session 

first, medial, and final letter positions were targeted. Also, all target letters occurred 

an equal number of times as correct targets and as foils so that a response could 

never be predicted on the basis of the letter alone. In the target-to-word matching 

(derived from meaning-to-word matching) one target letter was provided with two 

novel word options. The foil word here was picked from a pool of novel words in the 

meaningless condition that did not contain the target letter, while ensuring that all 

novel words appeared as foils an equal number of times. Note that word-to-meaning 

matching was used on trials involving a meaningful novel word, and word-to-target 

matching was only used when the novel word to be trained was of the meaningless 

group. The two word types and their corresponding task variants were randomly 

intermixed in the presentation order. 

The third new training task was cued recall, which was always integrated 

with meaning recall. A trial in this new cued recall/meaning recall composite task 

began with the presentation of a cue (e.g., _eckton), and the participant was required 

to type in the complete novel word to which the cue referred to. Once this response 

had been completed, the complete word was shown on screen, and now the 

participant was asked to type in the meaning of the word. If it was one of the 

meaningless novel words, participants typed “no meaning”. Unlimited time was 

given for all responses. As before, this task was done three times during training. In 
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the first block the cues were missing one letter (see Materials). In the second and 

third blocks they were missing every other letter. For half of the words the missing 

letters started from the first one in the second block (e.g., f_c_t_n) and from the 

second letter in the third block (e.g., _e_k_o_). The opposite was true for the other 

half. The order of trials within blocks was randomised by the software.  

One further change was introduced in the meaning recall part of this task. In 

the first block of meaning recall participants were asked to type in only the object to 

which the novel words referred to (e.g., a type of cat). In the second block they were 

asked to type in at least one of the features as well (e.g., a type of cat that is stripy). 

In the third block they were asked to try to recall all features (e.g., a type of cat that 

is stripy and bluish-grey). This was done to encourage gradual building up of novel 

word knowledge, which may result in better learning. 

The sentence plausibility judgement task was identical to Experiment 4, with 

three presentations of each novel word in a compatible sentence, and one in an 

incompatible sentence. When a meaningless novel word was seen, the participant 

was instructed to press a key labelled “No meaning”. Each meaningless novel word 

was assigned four sentences that all suggested a different meaning for the final word. 

Thus no coherent meaning could be inferred under these conditions. The order of all 

trials was randomised. E-prime was used to run all tasks using the same equipment 

as Experiment 4. 

Testing. The test session was completed on day 2 after the second training 

session. Participants were offered a chance to take a rest break before starting the 

tests. Test tasks consisted of shadowing, reading aloud, cued recall, and meaning 

recall. The parameters of the shadowing tasks were slightly changed from 

Experiment 4, in order to make it as similar as possible to the reading aloud task. The 

test session started with either shadowing or reading aloud. A shadowing trial began 

with the presentation of a fixation cross for 500 ms. At the offset of the cross, a 

spoken word was presented through headphones. This started the timing. The trial 

finished 1500 ms after a vocal response was detected or after 2000 ms from the onset 

of the spoken word. In the reading aloud task the fixation cross was replaced by a 

word written in lower case letters, in black Times New Roman font on a white 

background. The task was to read the word aloud as soon and as accurately as 

possible. Same timeout was used as in shadowing. The order of the shadowing and 

reading aloud tasks was counterbalanced. Before starting the shadowing or reading 
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aloud task, participants completed five practice trials of each task with stimuli not 

used in the experimental trials. The experimenter remained in the room during 

practice to ensure that participants understood the tasks and were speaking loud 

enough for the response to be detected. The shadowing and reading aloud tasks 

included all 68 trained novel words, 34 real words (same words as in Experiment 4), 

and 34 untrained novel words. The order of the trials was randomised by the 

software. 

The third task was cued recall. A cue (e.g., f _ _ k _ _ n) was presented on 

screen, and participants were asked to type in the complete word. No feedback was 

provided, and no time limit was used. This task included all trained novel words, and 

the untrained novel words encountered in the shadowing and reading aloud tasks. 

The last task of the session was meaning recall. All trained novel words were 

presented on screen in random order, and the task was to type in the complete 

meaning. If it was a meaningless novel word, participants typed in “No meaning”. 

No time limit was imposed, and no feedback given. DMDX was used for stimulus 

presentation and response collection in all test tasks. The same computer equipment 

was used as in Experiment 4. 

 

Participants 

Thirty native English speaking students drawn from the University of York 

and York St. John University populations participated in the experiment (12 male, 

one left-handed, mean age = 20.6, range = 18-29). No participants reported language 

disorders. Participants were paid or received course credit, and the most accurate and 

fastest 50% of the participants were entered into a prize draw for a £10 gift 

certificate. 

 

4.3.2 Results 

Training data  

The degree to which participants learned the meanings of the meaningful 

novel words during training was examined first by looking at meaning recall data. 

Figure 23 (left y-axis) shows accuracy levels in recall of the objects to which the 

novel words refer to across the three blocks of this training task. A mixed-effects 

logistic regression model with subjects and items as random factors, and time of 
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training (consolidated words on day 1, and unconsolidated words on day 2) and 

training block (three blocks) as fixed factors was used. Subject-specific slopes for 

the time of training were added. Contrasts in looking at the interaction between time 

of training and block showed that the effect of time of training was significantly 

larger in block 1 compared to block 3 (b = -0.738, z = -3.05, p = .002), and in block 

2 compared to block 3 (b = -0.681, z = -2.96, p = .003). The effect of time of training 

was significant in the first and second blocks (b = -0.648, z = -3.53, p < .001,  

b = -0.594, z = -3.35, p < .001), but no significant difference between day 1 and day 

2 training was found in the third block. Accuracy on day 1 increased with training: 

accuracy increased from block 1 to block 2 (b = 1.519, z = 9.94, p < .001), from 

block 1 to block 3 (b = 2.416, z = 14.40, p < .001), and from block 2 to block 3  

(b = 0.900, z = 5.54, p < .001). The same was true of day 2 training, where accuracy 

increased from block 1 to block 2 (b = 1.563, z = 9.86, p < .001), from block 1 to 

block 3 (b = 3.147, z = 17.44, p < .001), and from block 2 to block 3 (b = 1.584,  

z = 9.64, p < .001). 

The right y-axis of Figure 23 shows the mean number of features participants 

could recall for the novel word meanings. These data were analysed using ordinal  

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Accuracy rates in the meaning recall training task.  Error bars represent standard 
error of the means. 

 

logistic regression (as in Experiment 1), with time of training (consolidated words on 

day 1, and unconsolidated words on day 2) and training block (blocks 2 and 3) as 
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second block). Time of training entered into an interaction with block, showing that 

the effect of time of training was significantly larger in block 2 than in block 3  

(b = 0.383, z = 2.14, p = .03†). The effect of time of training was significant in block 

2 (b = -0.405, z = -3.40, p < .001), but not in block 3. Recall accuracy increased from 

block 2 to block 3 on both day 1 (b = 0.836, z = 6.55, p < .001) and day2 (b = 1.219, 

z = 9.67, p < .001). Together these object and feature recall accuracy data show that 

by the end of training, both novel word sets had been learned equally well. 

The cued recall data were analysed next to assess the degree to which forms 

of the meaningless novel words were acquired during training. Figure 24 shows 

accuracy rates in this training task for both meaningless and meaningful novel 

words. The data were analysed using a mixed-effects logistic regression model with 

subjects and items as random factors, and time of training (consolidated words on 

day 1, and unconsolidated words on day 2), meaningfulness (meaningless vs. 

meaningful), and training block (three blocks) as fixed factors, which also benefitted 

from subject-specific slopes for block. No three-way or two-way interactions 

reached significance. The simplified model showed that, averaged across the other 

variables, fewer meaningless novel words were recalled correctly than meaningful 

words (b = -0.505, z = -8.37, p < .001). There was also an effect of time of training, 

with more words recalled correctly on day 1 (b = -0.180, z = -2.99, p = .003). Also, 

averaged across the other variables, performance differed between blocks, with  

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Accuracy rates in the cued recall training task. M+ refers to meaningful novel words, 
M- to meaningless novel words. Error bars represent standard error of the means. 
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better recall in block 1 than block 2 (b = -1.473, z = -17.60, p < .001) or block 3 (b = 

-0.722, z = -6.43, p < .001). This is because the cue used in the first block provided 

all the letters of the word apart from one, making it a very easy condition. In blocks 

2 and 3 half of the letters were missing. There was still significant improvement 

from block 2 to block 3 (b = 0.751, z = 8.04, p < .001). 

 

Test data 

Shadowing. Same data trimming procedure was applied on the shadowing 

data as was done in Experiment 4. Voice key trigger accuracy was again checked 

with CheckVocal and corrected when necessary. The shadowing latencies and 

response accuracy data are shown in Figure 25. A mixed-effects linear model with 

subjects and items as random variables, and novel word condition (consolidated-

meaningful, consolidated-meaningless, unconsolidated-meaningful, unconsolidated- 

meaningless, untrained, real words) as the fixed variable was fitted. Subject-specific 

slopes for trial order increased the goodness of fit. Contrasts involving the novel 

word conditions were examined first. There was no evidence of a consolidation 

effect: latencies to both meaningful and meaningless novel words were unaffected by 

the consolidation condition. There was also no evidence of a meaningfulness benefit: 

in both consolidated and unconsolidated novel words meaningless and meaningful 

items were shadowed equally fast. The two control conditions differed significantly 

from the novel word conditions. Untrained novel words were shadowed slower than 

any other condition (contrast with real words: b = -0.128, t = -8.98, p < .001, 

consolidated-meaningful: b = -0.058, t = -8.47, p < .001, consolidated-meaningless: 

b = -0.048, t = -7.01, p < .001, unconsolidated-meaningful: b = -0.048, t = -7.01,  

p < .001, unconsolidated-meaningless: b = -0.045, t = -6.58, p < .001). Real words 

on the other hand were shadowed faster than any other condition (contrast with 

consolidated-meaningful: b = 0.070, t = 4.75, p < .001, consolidated-meaningless:  

b = 0.080, t = 5.41, p < .001, unconsolidated-meaningful: b = 0.080, t = 5.42,  

p < .001, unconsolidated-meaningless: b = 0.083, t = 5.59, p < .001). 
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Figure 25. Shadowing latencies and accuracy rates. M+ refers to meaningful novel words, M- to 
meaningless novel words. Error bars represent standard error of the means. 

 

Accuracy data in the shadowing task are presented in the right panel of 

Figure 25. The data were analysed using a mixed-effects logistic regression model 

with subjects and items as random factors, and word condition (consolidated-

meaningful, consolidated-meaningless, unconsolidated-meaningful, unconsolidated- 

meaningless, untrained, real word) as the fixed variable. No effect of consolidation 

was found, either in meaningful or meaningless novel words. No effect of 

meaningfulness was found either in the two consolidation groups. Untrained novel 

words were repeated as accurately as all novel word conditions. The real word 

condition had a significantly higher accuracy rate than untrained novel words  

(b = -2.065, z = -2.93, p = .003) and meaningless unconsolidated novel words  

(b = -1.878, z = -2.49, p = .01†). The difference between real words and meaningful 

unconsolidated novel words was only marginally significant (b = -1.497, z = -1.90,  

p = .06†), as was the difference between real words and consolidated meaningless 

novel words (b = -1.512, z = -1.92, p = .05†). 

Reading aloud. The same trimming procedure was carried out on the data as 

in the shadowing task. Figure 26 (left panel) shows reading latencies in each 

condition. CheckVocal was used to make sure the latencies were accurately 

recorded. The analysis was carried out using a mixed-effects linear model with 

subjects and items as random variables, and word condition (consolidated-

meaningful, consolidated-meaningless, unconsolidated-meaningful, unconsolidated- 

meaningless, untrained, real word) as the fixed variable, and subject-specific slopes 
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Figure 26. Reading latencies and accuracy rates. M+ refers to meaningful novel words, M- to 

meaningless novel words. Error bars represent standard error of the means. 
 

for trial order. The effect of time of training did not reach significance for either 

meaningful or meaningless novel words. There was a marginally significant benefit 

for meaningful novel words over meaningless novel words in the consolidated 
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times to real words were significantly faster than reading times in any other 
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consolidated-meaningless: b = 0.110, t = 5.27, p < .001, unconsolidated- meaningful: 

b = 0.105, t = 5.08, p < .001, unconsolidated-meaningless: b = 0.107, t = 5.14,  

p < .001). 

Accuracy data in the reading aloud task are presented in the right panel of 

Figure 26. The data were analysed using a mixed-effects logistic regression model 

with subjects and items as random factors, and word condition (consolidated-

meaningful, consolidated-meaningless, unconsolidated-meaningful, unconsolidated- 

meaningless, untrained, real word) as the fixed variable. There was no effect of time 

of training in the meaningful condition, but in the meaningless condition 

consolidated novel words had a significantly higher accuracy rate than 

unconsolidated words (b = -0.636, z = -2.28, p = .02†). There was no effect of 
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meaningfulness in the consolidated condition, but in the unconsolidated condition 

meaningful novel words had a significantly higher accuracy rate (b = -0.747,  

z = -2.61, p = .01†). Untrained novel words had a significantly lower accuracy rate 

than real words (b = 2.180, z = 5.05, p < .001) or either of the consolidated novel 

word conditions (meaningful: b = 0.862, z = 3.29, p = .001, meaningless: b = 0.684, 

z = 2.77, p = .006†), or the meaningful unconsolidated condition (b = 0.802, z = 3.12, 

p = .002). The difference between untrained words and unconsolidated meaningless 

novel words was non-significant. Real words had a higher accuracy rate than any 

other condition (consolidated-meaningful: b = -1.320, z = -2.78, p < .001, 

consolidated-meaningless: b = -1.495, z = -3.20, p < .001, unconsolidated-

meaningful: b = -1.380, z = -2.92, p < .001, unconsolidated-meaningless: b = -2.131, 

z = -4.74, p < .001). 

Cued recall. Accuracy rates in the cued recall task are shown in Figure 27. 

Meaningfulness (meaningful vs. meaningless) and time of testing (delayed = 

consolidated, immediate = unconsolidated) were entered as fixed factors in a mixed-

effects logistic regression model with subjects and items as random variables. Time 

of testing and meaningfulness did not enter into an interaction. Averaged across the 

meaningfulness conditions, significantly more consolidated novel words were 

recalled accurately compared to unconsolidated words (b = -0.571, z = -5.34,  

p < .001). Averaged across the time of testing conditions, meaningful novel words 

had significantly higher accuracy rates than meaningless novel words (b = 0.535,  

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Accuracy rates in the cued recall test task. Error bars represent standard error of 
the means. 
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z = 5.03, p < .001). The effect of time of training was significant also when 

evaluated at both meaningfulness levels separately (meaningful: b = -0.660,  

z = -4.49, p < .001, meaningless: b = -0.468, z = -3.03, p = .002). The effect of 

meaningfulness was also significant when evaluated at both time of training 

conditions (consolidated: b = 0.625, z = 4.26, p < .001, unconsolidated: b = 0.438,  

z = 2.84, p = .004). 

Meaning recall. Accuracy rates in recalling the meaning of the novel words 

are displayed in Figure 28, both for recalling the object to which the novel word 

refers to (left y-axis), and the number of features recalled (right y-axis). Accuracy in 

recalling objects was analysed with a mixed-effects logistic regression, with subjects 

and items as random variables, and time of testing as the fixed variable. Subject-

specific slopes for time of testing improved goodness of fit. Unconsolidated novel 

word meanings were recalled significantly more accurately than consolidated words 

(b = 1.143, z = 4.78, p < .001). The same pattern was seen in the number of features 

recalled, when analysed with ordinal logistic regression, with more features recalled 

in the unconsolidated condition (b = 0.672, z = 4.94, p < .001). 

 

 

 

 

 

 

 

 

 

 

 
Figure 28. Accuracy rates in the meaning recall test task. Error bars represent standard error 

of the means. 
  

4.3.3 Discussion 
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before testing. No effect of meaningfulness was found either, participants shadowed 

meaningful and meaningless novel words equally fast and accurately. The failure to 

replicate the consolidation effect was puzzling, considering that the task and the 

stimuli were identical to Experiment 4, apart from the elaborated meanings. Two 

other differences may have influenced the result. Firstly, in Experiment 5 the 

shadowing task was carried out immediately after the day 2 training session 

(although preceded by the reading task in half of the participants). It is possible that 

in Experiment 4 the additional exposure provided by the semantic decision, sentence 

plausibility, and meaning recall tasks acted to raise the activation of the novel word 

representations and created better circumstances for perhaps weak consolidation 

effects to reach an observable level. Learning the unconsolidated set of novel words 

may have interfered with the recall of consolidated novel words, and such short-term 

interference may have been overcome by a small number of presentations of the 

novel words before the shadowing task took place. In light of these considerations, a 

second replication of the shadowing task will be presented in the next chapter, where 

it is again carried out as the last task of the test session. 

The reading aloud task also failed to show consolidation effects in reading 

latencies. Consolidated and unconsolidated novel words were read equally fast, as 

were meaningful and meaningless novel words. The reading accuracy rates however 

did show an interaction between consolidation and meaningfulness. No 

consolidation effect was seen in meaningful novel words, but in the meaningless 

condition consolidated novel words were read significantly more accurately than 

unconsolidated words. This rules out a semantic locus for the consolidation effects in 

this task: if the effect was caused by consolidation of word meanings, the effect 

would have been observed in the meaningful condition rather than the meaningless. 

It may be the case that unconsolidated novel words, being recently acquired and still 

relatively weak, benefit from the additional boost semantic activation provides. As 

they become stronger during the course of offline consolidation, the semantic boost 

becomes less prominent. This view is supported by the observation that the 

consolidated novel words were unaffected by the meaningfulness manipulation, 

while the unconsolidated words significantly benefitted from meaning. However, 

these data should be interpreted with some degree of caution as the effect was seen 

only in the accuracy rates, but not in reading times. Under the priming hypothesis 

discussed in connection with Experiment 4, the lack of a reading time consolidation 
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effect might be taken as evidence that only cross-modal priming benefits from 

consolidation. However, the failure to replicate the shadowing consolidation effect 

(cross-modal) makes it difficult to interpret this finding. 

The cued recall task was successful in showing both an effect of 

consolidation and meaningfulness, although no interaction between the two. In the 

recall task consolidated novel words were recalled significantly better than 

unconsolidated words, and this was the case for both meaningful and meaningless 

novel words. These data support the idea that knowledge of novel word forms 

benefits from offline consolidation, and agree with the shadowing data from 

Experiment 4, as well as the consolidation effects of novel word forms shown by the 

lexical competition studies of Gaskell and colleagues (e.g., Dumay & Gaskell, 2007). 

The effect here does not seem to have a semantic locus, as the consolidation benefit 

was seen in both meaningless and meaningful novel words. It is somewhat surprising 

that the similar cued recall task in Experiment 1 did not show a consolidation effect. 

The overall accuracy rates in the two experiments are similar (when compared with 

the non-neighbour condition of Experiment 1, which is most comparable to the 

current experiment), suggesting that the difficulty rates in the two tasks were also 

similar. One major difference between the two experiments was the design. In 

Experiment 1 two different groups of participants were tested, one immediately after 

training, and the other one day later. In Experiment 5 on the other hand the same 

participants were tested in both consolidation conditions. It may be that the more 

powerful design of the current experiment allowed the effect to emerge. An 

alternative explanation is offered by an examination of the training data. In the cued 

recall training task performance on day 1 was slightly but statistically significantly 

better than in the day 2 training session. Thus it is possible that participants were 

more attentive or motivated in the first training session than in the second, and 

learned the first set of novel words (consolidated) better. It should be noted though 

that the difference between the two word sets in testing was about three times larger 

than during training (difference during training averaged across blocks and 

meaningfulness was 3.1%, in the testing session it was 9.4%, averaged across 

meaningfulness conditions), suggesting that the difference in training performance 

may not be the only source of the effect.  

In the cued recall task meaningful novel words were recalled better than 

meaningless novel words. This was true in both consolidation conditions. This 
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indicates that novel word forms are easier to learn when they carry meaning. A 

similar conclusion was reached in Experiment 1, where novel words whose form and 

meaning were semantically related resulted in better cued recall performance 

compared to words whose form and meaning were unrelated. However, it is 

important to acknowledge that the meaningfulness effect in the current experiment 

may have been partially affected by training performance, in that participants may 

have spent more time learning the meaningful novel words as these items required 

learning of both form and memory. This extra effort may have caused better learning 

of forms.  

Finally, the meaning recall data replicate findings from Experiment 4. 

Meanings of the recently learned unconsolidated novel words were recalled 

significantly better than meanings of consolidated words. This was seen in both 

recall of objects and features. It appears that in this task the meanings of the novel 

words learned on the previous day are subject to forgetting or interference from the 

meanings of the second set of novel words. 

 

4.4 Chapter Summary and General Discussion  

The aims of the two experiments described in this chapter were to evaluate 

offline consolidation effects in access to novel word meanings and novel word 

forms. Experiment 4 focused on meaning, using a semantic decision task as the main 

test of meaning access. When novel words acted as primes, participants were faster 

to make a semantic decision about the relatedness of the prime and target when the 

two were semantically associated than when they were unassociated. This replicated 

earlier reports of semantic decision performance using novel word primes (e.g., 

Perfetti et al., 2005). Importantly though, the experiment reported here was the first 

time consolidated and unconsolidated novel words have been compared in this task, 

and showed a similar relatedness effect in both conditions. The similar performance 

in the two time of testing conditions might be interpreted as evidence against a role 

for consolidation, however such a conclusion would be premature. Firstly, towards 

the end of this task decision latencies to trials with consolidated novel words had 

become faster than latencies to trials with unconsolidated novel words (although this 

was seen in the related condition only). Secondly, the sentence plausibility 

judgement task, which is similar to the semantic decision task in that both require a 
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decision to be made about the semantic fit of the novel word in a provided context, 

showed a significantly larger compatibility effect (difference between trials where 

the novel word fits and trials where it does not fit with the sentence context) with 

consolidated than unconsolidated novel words (although see discussion below for an 

alternative view of this task). Together these tasks suggest that meanings of 

consolidated novel words may be accessed faster than meanings of unconsolidated 

novel words. 

In contrast to these tasks showing a consolidation benefit in speed of access 

to meaning, both Experiment 4 and 5 showed that in explicit meaning recall there 

was a benefit for unconsolidated novel words. The dissociation between these two 

types of task is interesting. Meaning recall requires an explicit act of retrieval of the 

novel word meaning, in as much detail as possible. This task does not appear to 

benefit from consolidation. The semantic decision and sentence plausibility tasks on 

the other hand require a speeded decision about the meaning of the novel word in 

relation to an existing word or a semantic context. It is these two tasks which show 

some evidence of consolidation. This dissociation makes sense in the CLS view, 

where one of the most important functions offline consolidation has is to connect and 

interleave new information with existing information. Since the semantic decision 

and sentence tasks are the only tasks which require participants to relate known 

words with new words, these tasks are the most likely ones to be sensitive to 

consolidation processes. In other words, these semantic tasks provide preliminary 

evidence that novel word meanings are gradually integrated with existing semantic 

knowledge. 

I next turn to consider the tasks measuring novel word form recall. 

Experiment 4 included a shadowing task which showed a clear advantage for 

consolidated novel words in shadowing latencies and accuracy rates. While this 

finding was not replicated in Experiment 5, the latter experiment did provide further 

evidence for consolidation of novel word form in other tasks. Accuracy rates in the 

reading aloud task showed a consolidation advantage for meaningless novel words 

(although the effect was not seen in reading latencies). The cued recall data 

supported this pattern, by showing better recall of consolidated novel word forms, 

both when they were meaningful and meaningless. These demonstrations of 

consolidation of novel word forms in the visual modality join the growing literature 

on auditory novel word lexical competition research, which has shown a crucial role 
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for consolidation in integrating novel words in the mental lexicon (e.g., Dumay & 

Gaskell, 2007). It is important to note however that the cued recall consolidation data 

were in conflict with the null finding in Experiment 1. The cued recall task will be 

revisited in Chapter 6, using a more sophisticated design disentangling sleep and 

wake-related consolidation. 

Experiment 5 also attempted to clarify the role of meaning in novel word 

learning. There was some evidence for a facilitatory role for meaning. Meaningful 

novel words were recalled more accurately in the cued recall task, although this may 

have been caused by an attentional effect during training, with more attention (or 

effort) allocated to novel words for which a meaning had to be acquired. In the 

reading accuracy data meaning had a significant benefit, but only in the 

unconsolidated words. This latter finding may help to explain some of the 

discrepancies in the reading literature with regard to reading newly learned words. 

As reviewed in Chapter 1, some studies have failed to find a meaning advantage 

(e.g., Nation et al., 2007; McKague et al., 2001). However, these studies included 

multiple training sessions over several days, followed by a later test session. If 

meaning effects are most prominent in unconsolidated novel words, then any studies 

attempting to find a meaning benefit in consolidated stimuli would struggle to find 

one. In fact, McKay et al. (2008) who tested their participants immediately after 

training did find a meaning advantage in some conditions (see Chapter 1 for details). 

Although the current experiment does not resolve this issue, it does strongly imply 

that consolidation is an important factor to consider in novel word reading 

experiments. 

The evidence for consolidation of word forms recommends a re-evaluation of 

the data from Experiment 4. Although both the semantic decision task and the 

sentence plausibility tasks were intended to measure access to word meaning 

knowledge, both tasks are likely to be heavily influenced by form knowledge too. 

This is particularly the case in the sentence task. In this task participants were 

allowed to view the sentence without the concluding novel word for as long as they 

wanted. This was done to allow for variability in reading speed. However, it is 

possible that participants had the time to generate a guess about the final word. The 

sentences were designed to be highly constraining, so guessing the identity of the 

missing novel word should not have been difficult. This means that when the novel 

word was revealed, the participants’ task would simply have been to confirm that the 
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appearing novel word was indeed the same word they were expecting. In these trials 

task performance would then have been more based on recognition of form than 

meaning. It is less plausible to suggest that the same strategy would have worked in 

the semantic decision task, but the evidence for consolidation was weaker in that task 

anyway. To assess this alternative explanation of the sentence plausibility task, 

Experiment 6 used a modified version of the task where a rapid serial visual 

presentation (RSVP) method was used to reduce the opportunity to use a guessing 

strategy.   

The semantic decision task may not be the optimal task to evaluate speeded 

access to novel word meanings either, as it requires an explicit decision to be made 

about the identity of the novel word. As discussed earlier, offline consolidation is 

likely to have the strongest effect in tasks which measure the degree to which the 

novel word meaning has been integrated with existing semantic structures. If this is 

the case, then the most sensitive tasks for semantic consolidation effects would be 

traditional semantic priming paradigms, where no explicit response is made to the 

novel word itself, but where the influence of the novel word is measured in access to 

a semantically related familiar word. These tasks also provide a purer measure of 

semantic activation, with less potential confound from form based processing. The 

two experiments reported in the next chapter (Experiments 6 and 7) will look at 

semantic priming in a commonly used primed lexical decision task, where the prime 

is a novel meaningful word. These tasks should clarify the conclusions from the 

semantic decision task. In sum, although the experiments reported in this chapter 

provide preliminary evidence for a possible consolidation benefit in learning novel 

word meanings, more data are needed from tasks which measure online activation of 

semantics. Experiment 5 also showed that offline consolidation plays a role in 

learning of novel word forms. This process will be examined in more detail in 

Experiment 8.  
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Chapter 5: Semantic priming using newly learned 
meaningful words 

5.1 Introduction 

Experiment 4 suggested that when asked to make speeded decisions about the 

meaning of a novel word, people were faster to respond to novel words that had had 

a chance to consolidate over a 24 hour period, compared to novel words that had 

been learned briefly before testing. This implies faster access to the meanings of 

consolidated novel words, which interestingly was not reflected in increased recall 

accuracy in an untimed meaning recall task. However, as discussed in the previous 

chapter, this effect was only seen in the last block of the semantic decision task. 

Also, the semantic decision task measures speed of explicit retrieval of the novel 

word meaning by requiring an explicit decision to be made about the identity of the 

novel word and its relationship to the prime. The experiments reported in this chapter 

made use of semantic priming as a task not requiring an explicit response to the 

novel word, and hence tapping into more automatic semantic activation. This type of 

access may be more sensitive to potential consolidation effects, and is more likely to 

reflect normal online semantic processing by not requiring participants to explicitly 

retrieve the novel word meanings. 

Semantic priming, as discussed in earlier chapters, refers to the finding that 

when participants are asked to recognise a word (e.g., doctor), typically in a lexical 

decision or a naming task, they respond faster when the target word is preceded by a 

semantically related or associated word (e.g., nurse), compared to an unrelated word 

(e.g., tiger) (see Neely, 1991, and McNamara, 2005, for comprehensive reviews). 

The most common explanation for priming is based on spreading semantic 

activation. One often cited model of semantic priming that relies on spreading 

activation was proposed by Collins and Loftus (1975). According to this view 

knowledge is represented as a semantic network consisting of interconnected nodes. 

Each node represents a semantic concept, and is surrounded and connected to related 

concepts. When a prime word is encountered, it activates its corresponding concepts. 

This activation then spreads to the related, connected nodes. If a related target word 

is presented briefly afterwards (as activation decays over time), the residual 

activation from the prime will facilitate the activation and recognition of the target.  
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Many other models rely on similar processes of spreading activation. In 

distributed network models (e.g., Plaut & Booth, 2000) a concept is not represented 

as a node in a network, but rather as a pattern of activation over a number of units. 

Related concepts share semantic features, and hence also have overlapping 

representations. As a prime is presented, it activates its corresponding pattern of 

units. When a related target is subsequently presented, it can be activated faster 

because some of its units were already active when the prime was processed.  

Multistage activation models share the operating principles of the above 

models, but add different stages of lexical-semantic processing. The interactive-

activation model of Stolz and Besner (1996) applies to visual word recognition, and 

consists of letter, lexical, and semantic levels. The presentation of a prime word 

activates the relevant letters at the letter level. Activation feeds forward to the lexical 

level, where lexical representations that match the incoming letter information are 

activated. Activation of a lexical representation further feeds to the semantic level. 

Importantly though, activation at the semantic level is not restricted to the one 

semantic representation that best matches the incoming information, but also applies 

to representations that are semantically related. The activation of all of these 

semantic representations feeds back to the lower levels, ensuring that words related 

to the prime will also be activated at all lower levels, although less strongly. The 

related target can then be processed more efficiently at each level than an unrelated 

target.  

The spread of semantic activation is often considered to be an automatic 

process, in that it operates outside of consciousness and without effort. However, 

semantic priming is also affected by strategic processes. Some models of semantic 

priming explicitly incorporate such factors. The three-process theory proposed by 

Neely and Keefe (1989) incorporates spreading activation that occurs in an 

automatic fashion, but also includes an expectancy process whereby participants 

under the right circumstances can explicitly generate hypotheses about the identity of 

the target based on the prime. The third process in this model is a semantic matching 

process where participants search for a relation between the prime and target in order 

to facilitate the word/nonword decision made in response to the target (this process 

only applies in primed lexical decision). If a relation is found, the response must 

necessarily be “word”, whereas the absence of a relation may prime a “nonword” 

response. The degree to which this third process is helpful depends on the proportion 
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of trials where the prime and target are related, known as relatedness proportion 

(RP), with a high RP encouraging more strategic processing. The proportion of 

nonword trials (nonword ratio, or NR) is also relevant. Under conditions of a high 

NR the absence of a semantic relation is likely to signal a nonword. Under a low NR 

on the other hand the absence of a relation is more likely to signal a word. By 

manipulating the RP and NR the experimenter can make participants’ response 

strategies more or less reliant on automatic or strategic processing. A third variable 

that is relevant here is the SOA between prime and target. A short SOA will not 

allow time for expectancy processes, again biasing the task towards more automatic 

processing. 

The experiments reported in this chapter were carried out to see if novel 

words enable semantic priming, showing that the novel word has been integrated in 

the semantic system. The second aim was to see if offline consolidation of novel 

word meanings is necessary for priming to emerge, and if it is equally important for 

strategic processing of meaning and automatic processing of meaning. There are no 

commonly agreed rules on how to elicit automatic as opposed to strategic priming, 

and it is likely that all tasks involve both processes to varying degrees. Hence the 

aim here was to design priming experiments that were likely to fall either towards to 

strategic or automatic end of the continuum. Experiment 6 was intended to tap into 

more strategic processing by using a visible prime and a long SOA, and Experiment 

7 was intended to tap into more automatic processing by using a masked prime and a 

short SOA.  

The two experiments evaluated consolidation that takes place within 24 hours 

of learning as well as consolidation that may take place over a longer time course of 

several days and nights, by testing priming immediately after training, one day after 

training, and one week after training. Because in Experiment 6 the novel word 

primes were visible and participants were aware of their potential semantic 

relationship with the targets, an experimental design was needed which does not 

involve repeated exposure to the words across the test times. This was because such 

repeated exposure might act as a further training opportunity. Hence in Experiment 6 

one group of participants was tested on words learned on the day of testing and on 

another set of words learned one day before testing. A different group of participants 

was tested on words learned on the day of testing and on another set of words 

learned one week before testing. The ideal design would be to compare short 



Chapter 5 

 154 

consolidation and long consolidation in the same participants as this optimises 

statistical power. While this was not possible in Experiment 6 for the reasons stated 

above, it was possible in Experiment 7 which used masked primes. In these 

circumstances participants are not explicitly exposed to the novel word primes, and 

there is less risk of additional explicit training taking place. Hence in Experiment 7 

the same group of participants did the priming task three times, once immediately 

after training, again one day after training, and once more seven days after training.  

  

5.2 Experiment 6 

Experiment 6 evaluated the ability of newly learned words to prime familiar 

associated words. Note that the relationship between a prime and a target can be 

defined in two different ways: they can either be semantically related, in that they 

share semantic features (e.g., dog-goat, where both are mammals, have fur etc.), or 

they can be semantically associated, in that they often occur together in a similar 

context, and often occur together in free association tasks (e.g., dog-cat). As can be 

seen in the examples cited above, in most instances priming is a mixture of both 

relatedness and association, as words that are highly associated often also tend to be 

semantically related. In a meta-analysis Lucas (2000) concluded that both semantic 

relatedness and association resulted in priming, but association provided an extra 

boost in the magnitude of priming. Hutchison (2003) on the other hand argued based 

on his analysis that there was no evidence for priming in the absence of association. 

The experiments reported in this chapter used prime-target pairs that are associated, 

and thus are likely to reflect both semantic relatedness and association.  

The present experiment followed the design used in Experiment 4 with the 

addition of a second consolidation condition where the difference between learning 

the consolidated and unconsolidated words was one week instead of one day. Figure 

29 illustrates the timing of training and testing sessions. All participants were trained 

on one set of novel words and their meanings on day 1. Half of the participants 

returned on day 2 to be trained on a second set of novel words (short consolidation 

opportunity). After the second training session, a test session was initiated, with tests 

of explicit meaning recall, semantic priming (primed lexical decision), sentence 

plausibility, and shadowing. The other half of the participants returned instead on 

day 8 (long consolidation opportunity), and carried out the same training and testing 
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tasks as the short consolidation group. The purpose of adding the long consolidation 

opportunity group was to assess the possibility that semantic information benefits 

from more than one day or night of consolidation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Timing of training and testing sessions in the two consolidation groups (1 day = short 
consolidation opportunity, 1 week = long consolidation opportunity). 

 

Semantic priming was tested by primed lexical decision, where participants 

were required to make a word/nonword decision to a target, which was preceded by 

either an associated or unassociated prime word. This task was administered using 

both real word primes and novel word primes, in different blocks. The real word 

prime condition was included to make sure the parameters chosen with regard to RP, 

NR and SOA resulted in priming. McNamara (2005) has recommended that in order 

to look at strategic priming one should choose an SOA of over 200 ms, and an RP of 

over 0.2. Consequently the parameters chosen here included a long SOA of 450 ms, 

and an RP of 0.5. NR was set at 0.5. 

As discussed in the previous chapter, the sentence plausibility task in 

Experiment 4 may have been affected both by semantic and orthographic processes, 

due to the self-paced nature of the task. The task was modified for the current 

experiment by using a rapid serial visual presentation (RSVP) paradigm where the 

sentence was presented one word at a time at a fixed speed, and participants were 

asked to respond to the novel word, which always occurred at the end of the 
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sentence, as quickly as possible. This presentation method should reduce the chances 

of generating an explicit guess about the identity of the novel word, and should 

measure speed of semantic access with less influence from purely form-based 

processes. 

Finally, the shadowing task was included in exactly the same format as in 

Experiment 4, to see if it could be replicated here, after the unsuccessful replication 

in Experiment 5. If the failure to replicate this effect in Experiment 5 was due to 

introducing it immediately after the training, it should emerge again in this 

experiment where it is again carried out at the end of the session. If on the other hand 

the effect is genuinely unreliable, it should not be seen here either. Also, it is 

possible that this task too benefits from consolidation over more than one day or 

night. If this is the case, consolidation effects should emerge only in the long 

consolidation opportunity group. 

 

5.2.1 Method 

Materials 

The novel words were the same 102 nonwords used in Experiments 4 and 5. 

The novel word meanings consisted of the same 68 objects with two features as used 

in Experiment 5. Care was taken to make sure that no features overlapped with the 

targets used in the priming test. The real word targets used in primed lexical decision 

with novel word primes were the 204 targets from Experiment 4 (three associated 

targets for each novel word meaning). The 34 real word primes and 102 real word 

targets in the real word priming control condition were also taken from Experiment 

4. The properties of all these stimuli were described in Chapter 4. 

 The primed lexical decision task required generation of 204 nonword targets. 

These were created by changing one letter in the real word targets to generate legal 

nonwords (e.g., strepe derived from stripe). The motivations for this procedure were 

to generate nonword targets that were carefully matched with the word targets, and 

to make sure the nonwords were word-like in order to increase task difficulty to 

make sure participants would be more likely to benefit from the associated primes. 

Roughly equal numbers of nonwords were created by changing letters in all 

positions of the words, with consonants always replaced with consonants, and 

vowels with vowels. The nonwords are presented in Appendices 5 and 6. For the 
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purposes of the sentence plausibility judgement task in training and testing, the same 

sentences were used as in Experiment 5. 

 

Design 

In Experiment 4, the 102 nonwords were divided into three lists of 34 

nonwords each, to be used in the two trained conditions (“consolidated” novel words 

trained on day 1, “unconsolidated” novel words trained on day 2), and one untrained 

condition, matched in length. The same lists were used in the current experiment for 

training on day 1, and on day 2 or day 8. The design of Experiment 4 also divided 

the 68 meanings into two lists of 34 meanings to be used in the different 

consolidation conditions (unconsolidated and consolidated), matched in length and 

frequency. The same lists were used here. The lists were again rotated through all 

conditions across all participants.  

 

Procedure 

Training. Training took place for all participants on day 1, for half of the 

participants additionally on day 2, and for the other half additionally on day 8. No 

testing took place on day 1. As in the previous chapter, I shall again refer to words 

learned on day 1 as “consolidated” novel words (with a further distinction between 

participant groups with long or short consolidation opportunity), and words learned 

on the day of testing (day 2 or day 8) as “unconsolidated” novel words, with the 

same theoretical caveats as before. Training on both days was identical, and 

consisted of the same tasks used in Experiment 4, namely word-to-meaning 

matching (five exposures to each word), meaning-to-word matching (five 

exposures), meaning recall (three exposures), and sentence plausibility judgement 

(four exposures). The tasks were performed in fixed order. The procedure of these 

tasks was the same as in Experiment 4. 

Testing. The testing session followed from the second training session on day 

2 or day 8. Participants were offered a chance to take a rest break before beginning 

the test, and were given written and verbal instructions. Test tasks consisted of 

meaning recall, primed lexical decision, sentence plausibility judgement, and 

shadowing (see Table 3). The first task was meaning recall. In this experiment 

meaning recall was carried out first in order to allow participants to explicitly access 

their knowledge of the novel word meanings once before doing the primed lexical 
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decision task. It was hoped that this would cancel out any possible episodic recency 

effects that might benefit the unconsolidated words, and result in a purer measure of 

speed of access to novel word semantics. As before, the meaning recall task required 

participants to type in the full meaning of a trained novel word presented on screen. 

No time limit was imposed, and no feedback was provided. The order of trials was 

randomised by E-prime. 

 

Table 3. Sequence of tasks in the second experimental session (day 2 or day 8) in Experiment 6. 
 

Training session:  learn novel words and meanings in 4 training tasks 
feckton is a type of cat that is bluish-gray and has stripes 
glain is a type of book that has pictures and is ovesized 

. 

. 

. 
Test 1: meaning recall 

feckton 
glain 

. 

. 

. 
Test 2: primed lexical decision (prime – target pairs shown below) 

Block 1  Block 2  Block 3 
feckton – kitten (related)  feckton – dog (related)  feckton – fork (unrelated) 

feckton – noight (nonword)  feckton – suf (nonword)  feckton – schood (nonword) 
glain – night (unrelated)  glain – sun (unrelated)  glain – school (related) 
glain – ditten (nonword)  glain – deg (nonword)  glain – firk (nonword) 

. 

. 

. 

 . 
. 
. 

 . 
. 
. 

Test 3: sentence plausibility 
The woman liked to listen to the purring of her feckton (correct usage) 

The businessman kept his suits neatly in his glain (incorrect usage) 
. 
. 
. 

Test 4: shadowing (auditory presentation) 
/feckton/ 
/glain/ 

. 

. 

. 
Note: On day 1 only the training session was carried out. Different sets of novel words were learned 
on the two days. In primed lexical decision, real word prime condition is not shown in the table. 

 

A primed lexical decision trial began with the presentation of a fixation cross 

for 500 ms. This was replaced by the prime in lowercase letters for 200 ms, and then 

the target also in lowercase letters for 200 ms, with an SOA of 450 ms (ITI 250 ms). 

Timing started from the onset of the target, and 2000 ms was allowed for a response 
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to be made. The participant’s task was to decide whether the target was a real word 

or a nonword by pressing a key on a Cedrus button box labelled “Word” or 

“Nonword”. Half of the participants responded to “Word” with their right hand, and 

the other half with their left hand. Once a response was made, feedback was 

provided both in terms of response accuracy and response time (by displaying the 

RT). Note that in Experiment 4 no feedback was given about response accuracy 

because there participants were assessing the semantic relationship between the 

novel word and a related or unrelated target, and providing accuracy feedback would 

have offered a chance for further learning. In the current experiment responses were 

made about the lexicality of the target and not about the novel word prime, hence 

feedback could be given to encourage fast and accurate performance. A rest break 

was offered half way through the trials, together with a summary of accuracy 

statistics (percentage correct so far). Participants were informed that in many trials 

the prime and target would be related, to encourage them to attend to the prime as 

well as the target.  

 There were two versions of the primed lexical decision task. In the novel 

word version the prime was always a novel word, and the target was a real word or a 

nonword. In the real word version the prime was always a real word, and the target 

was again a real word or a nonword. The order in which the two versions were done 

was counterbalanced across participants. As in Experiment 4, both versions of the 

task were divided into three blocks, with each prime occurring twice within each 

block, once with a word target and once with a nonword target (see Table 3). Since 

there were an odd number of blocks, it was impossible to balance the primes so that 

each participant would see each prime an equal number of times with an associated 

and unassociated word target. However, the stimuli were counterbalanced so that 

across all participants each prime occurred in each priming condition an equal 

number of times, and within participants half of the primes appeared twice in the 

associated condition and once in the unassociated condition, and the other half of the 

primes appeared once in the associated condition and twice in the unassociated 

condition. For the targets a typical split-plot design was implemented where each 

participant saw each word or nonword target only once, but across all participants all 

targets appeared in both priming conditions an equal number of times. This was 

achieved by randomly dividing the targets into two lists, and presenting one list with 

associated primes and the other with unassociated primes.  
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The order of trials was pseudorandomised using Mix (van Casteren & Davis, 

2006). At least 15 trials separated the repetition of any prime. A maximum of three 

consecutive trials from the same time of training or priming condition were allowed, 

and a maximum of four consecutive trials from the same lexicality condition were 

allowed. A new pseudorandomised order was generated for each participant. 

Sentence plausibility was the third task in the testing session. A trial started 

with the presentation of a fixation cross for 500 ms, followed by the presentation of 

the sentence one word at a time, at the speed of 250 ms per word. Once the last word 

was presented a response cue was shown (“???”) which also started timing. The 

participant was given a maximum of 2000 ms to judge whether the final novel word 

fitted the semantic context of the sentence by pressing a key on the Cedrus button 

box labelled “Yes” or “No”. Once a response was made, both accuracy and RT 

feedback was given. Another key press was required to initiate a new trial. The order 

of trials was randomised by E-prime. Responses were collected to all 68 trained 

novel words, with a split-plot design used to elicit one response to each novel word 

(either semantic match or mismatch) with items rotated through conditions across 

participants.  

The final task of the testing session was shadowing, where participants were 

asked to repeat an auditorily presented word as soon and as accurately as possible. 

As before, shadowing responses were produced for all 68 trained novel words, 34 

untrained novel words, and 34 real words. The procedure, items, instructions, and 

equipment used were exactly the same as in Experiment 4. 

 

Participants 

Sixty native English speaking participants drawn from the University of York 

and York St. John University student and staff populations participated in the 

experiment. Thirty were allocated in the short consolidation opportunity group (11 

male, one left-handed, mean age = 21.2, range = 17-42), and 30 in the long 

consolidation opportunity group (seven male, three left-handed, mean age = 20.6, 

range = 18-28). No participants reported language disorders, or had participated in 

the previous experiments. Participants were paid or received course credit. The most 

accurate and fastest 50% of the participants were entered into a prize draw for a £10 

gift certificate. 
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5.2.2 Results 

Training data 

Accuracy rates in the meaning recall task during training were analysed to 

see if participants performed equally well on both days of training. These data are 

presented in Figure 30 (objects on the left y-axis, features on the right y-axis).  The 

object data were analysed first. A mixed-effects logistic regression model with 

subjects and items as random factors, and time of training (consolidated words on the 

first training day, and unconsolidated words on the second training day), training 

block (three blocks), and length of consolidation opportunity (short or long) as fixed 

factors was fitted. Subject-specific slopes for the time of training improved goodness 

of fit. Three-way interaction contrasts showed that in the long consolidation 

opportunity group the difference between the two time of training conditions 

changed from block 1 and block 2 to block 3 more than in the short consolidation 

group (b = 0.905, z = 3.35, p < .001 and b = 0.609, z = 2.28, p = .02† respectively), 

suggesting that in the short consolidation group the difference between time of 

training conditions remained stable across block while in the long consolidation 

group the difference became attenuated by the third block.  

 

 

 

 

 

 

 

 

 

Figure 30. Accuracy rates in the meaning recall training task for both the short (left panel) and 
the long (right panel) consolidation opportunity groups. Error bars represent standard error of 

the means. 
 
 

Since there was a significant difference between the two consolidation length 

groups, their training data were analysed separately. The object data for the short 

consolidation opportunity group were analysed using an identical model as the one 

described above (left panel of Figure 30). Here no significant interaction was found 
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between time of training and block variables. Averaged over blocks, performance on 

the second day of training was significantly better (b = 0.496, z = 2.73, p = .006). 

Accuracy improved from block 1 to block 2 (b = 1.774, z = 21.06, p < .001, from 

block 1 to block 3 (b = 2.911, z = 29.37, p < .001) and from block 2 to block 3  

(b = 1.136, z = 12.06, p < .001). The difference between the two day of training 

conditions was indeed significant in all three blocks individually (block 1: b = 0.396, 

z = 1.97, p = .05†, block 2: b = 0.516, z = 2.46, p = .01†, block 3: b = 0.708, z = 3.07, 

p = .002).  

Number of features in the short consolidation group was analysed in the same 

way as above (using ordinal logistic regression). No interaction was found between 

the fixed variables. Averaged across the time of training conditions, recall improved 

significantly from block 2 to block 3 (b = 0.908, z = 13.23, p < .001). There was no 

overall effect of time of training, and the effect did not reach significance in either 

block individually. This group then seemed to show some evidence of more effective 

learning on the second training session, although this effect was restricted to number 

of objects recalled. 

The right panel of Figure 30 shows the training data for the long 

consolidation opportunity group. Looking at object recall first, an interaction was 

found between time of training and block, whereby the difference between time of 

training conditions was smaller in block 3 than either in block 2 (b = 0.439, z = 2.32,  

p = .02†) or block 1 (b = 0.663, z = 3.48, p < .001). The difference between the two 

conditions was significant in block 1 (b = 0.411, z = 2.35, p = .02†) but not in block 2 

or in block 3. Recall accuracy increased as a function of block in both time of 

training conditions (first day, block 1 vs. block 2: b = 1.776, z = 15.72, p < .001, 

block 1 vs. block 3: b = 3.222, z = 22.80, p < .001, block 2 vs. block 3: b = 1.444,  

z = 10.56, p < .001, second day, block 1 vs. block 2: 1.548, z = 13.96, p < .001, 

block 1 vs. block 3: b = 2.552, z = 19.54, p < .001, block 2 vs. block 3: b = 1.007,  

z = 7.64, p < .001). The difference between time of training conditions was not 

significant when averaged over blocks, but the performance improvement across 

blocks was significant when averaged over time of training conditions (block 1 vs. 

block 2: b = 1.656, z = 20.86, p < .001, block 1 vs. block 3: b = 2.882, z = 29.75,  

p < .001, block 2 vs. block 3: b = 1.225, z = 12.90, p < .001).  



Chapter 5 

 163 

Looking at feature recall, no interaction between block and time of training 

was found. Averaged over block, there was no difference between the time of 

training conditions. Performance improved from block 2 to block 3 (b = 1.297,  

z = 18.20, p < .001). The difference between the time of training conditions did not 

reach significance in either block individually either. Thus in the long consolidation 

opportunity group there was little evidence of better learning on either training day. 

Very high accuracy rates were seen in the sentence plausibility training task 

with proportion of correct responses at 0.95 on the first and second training days. 

The difference between the two was non-significant when tested with a mixed-

effects logistic regression model with subjects and items as random factors, and time 

of training (first vs. second testing day) and consolidation length (short and long) as 

a fixed factors, and there was no interaction with consolidation group. 

 

 

 

 

 

 

 

 

 

Figure 31. Accuracy rates in the meaning recall test task for both consolidation groups (object 
recall in the left panel, feature recall in the right panel). Error bars represent standard error of 

the means. 
  

Test data 

Meaning recall. Proportion of novel word meanings recalled in the meaning 

recall test task are shown in Figure 31, with object recall in the left panel, and feature 

recall in the right panel. The figure shows the data collapsed across the two 

consolidation length conditions (solid black line) and separately for the short and 

long consolidation opportunity conditions (dashed grey lines). The object recall data 

collapsed across consolidation length conditions were analysed first. A mixed-effects 

logistic regression model with subjects and items as random variables, and time of 

testing (immediate = unconsolidated, delayed = consolidated) as the fixed variable 

was built. The contrast between consolidated and unconsolidated novel word recall 
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was significant, showing that participants recalled more novel word objects in the 

words learned immediately before testing (b = 2.337, z = 24.93, p <.001). Figure 31 

however suggests that participants in the long consolidation opportunity group 

recalled fewer consolidated objects. Hence the two consolidation length groups were 

compared by adding consolidation group as a fixed factor to the model. This 

revealed a significant interaction between time of testing and consolidation length, 

whereby the difference between the consolidation length groups was significantly 

larger in the consolidated than in the unconsolidated condition (b = 0.716, z = 3.84,  

p < .001). There was no significant difference between the two groups’ ability to 

recall unconsolidated objects, but the short consolidation length group recalled 

significantly more consolidated objects (b = 1.007, z = 3.07, p = .002) than the long 

consolidation group. The difference between consolidated and unconsolidated 

conditions was significant for both groups (long consolidation: b = 2.665, z = 20.39, 

p < .001, short consolidation: b = 1.954, z = 14.63, p < .001). The conclusion that 

can be drawn from this analysis is that overall more objects were recalled for words 

that had been learned on the day of testing, but also that the long consolidation 

opportunity group seemed to have forgotten more consolidated objects than the short 

consolidation group. 

An ordinal logistic regression model with the same fixed factors showed that, 

collapsed across the two consolidation length groups, more features were recalled in 

the words learned immediately before testing (b = 1.580, z = 22.74, p < .001). Again, 

the two consolidation length groups were compared by adding consolidation group 

as a fixed factor to the model. A significant interaction was again found between 

consolidation condition and consolidation length (b = 0.616, z = 4.40, p < .001). 

Here the short consolidation group recalled significantly more features of both 

consolidated (b = 0.862, z = 9.74, p < .001) and unconsolidated novel words  

(b = 0.246, z = 2.27, p = .02†). The difference between consolidated and 

unconsolidated conditions was significant for both groups (long consolidation:  

b = 1.891, z = 19.45, p < .001, short consolidation: b = 1.275, z = 12.62, p < .001). 

These data support the conclusions drawn from the object recall data. 

Lexical decision with novel word primes. Figure 32 (left panel) shows lexical 

decision RTs to target words when the target was preceded by an associated novel 

word prime (primed) and when it was preceded by an unassociated novel word prime 

(unprimed). As before, the RTs were log transformed, and extremely short and long 
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Figure 32. RTs (left panel) and accuracy rates (right panel) in the primed lexical decision task 
with novel word primes and real word targets. Error bars represent standard error of the 

means. 
 

RTs were removed (RTs faster than 5 log-ms [148 ms] and slower than 7.3 log-ms 

[1480 ms]). Only correct responses were included in the RT analysis. A mixed-

effects linear model with subjects and items as random factors, and priming (primed 

vs. unprimed) and time of testing (immediate = unconsolidated, delayed = 

consolidated, with the long and short consolidation groups combined) as the fixed 

factors benefitted from subject-specific slopes for trial position. Priming and time of 

testing did not interact significantly (p = .10), hence the interaction was dropped. 

Averaged over time of testing conditions, there was a significant effect of priming, 

with faster RTs to primed targets (b = -0.009, t = -2.30, p = .03†). There was an 

overall RT advantage for consolidated over unconsolidated prime trials (b = -0.010,  

t = 2.60, p = .01). Visual examination of Figure 32 suggests that there was a priming 

effect in the consolidated trials, but a much smaller effect in the unconsolidated 

trials. The lack of an interaction however shows that there was no significant 

difference in the magnitude of the priming effect between consolidated and 

unconsolidated conditions, though as the priming effect even in the consolidated 

condition is small, the lack of an interaction should not be taken as evidence that 

priming was present in both conditions. To further evaluate the strength of the 

priming effect in the two conditions, it was assessed separately for both. The priming 

effect was significant in the consolidated condition (b = -0.016, t = -2.80, p = .007), 

but was non-significant in the unconsolidated condition. The RT difference between 

consolidated and unconsolidated conditions was significant only in the primed trials 
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(b = 0.017, z = 3.00, p = .003). The accuracy rates in this task are displayed in the 

right panel of Figure 32. A mixed-effects logistic regression model with the same 

random and fixed factors as in the RT model showed no effect of priming or time of 

testing, or an interaction between the two. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 33. Primed lexical decision RTs in each block with consolidated and unconsolidated 
novel word primes and real word targets. Error bars represent standard error of the means. 

 

Experiment 4 showed that an advantage for consolidated novel words can 

emerge over the course of the experiment, when looking at individual blocks of 

trials. In the present data a similar effect might be reflected in a priming effect 

emerging only in the later blocks. Hence block was entered as an additional fixed 

factor to the analysis described above. Figure 33 shows the RT data broken down by 

block. No significant three-way interaction was found involving priming, time of 

testing, and block, and was hence dropped. Of the two-way interactions, only the 

interaction between block and time of testing showed a significant contrast, whereby 

the difference between RTs to consolidated and unconsolidated trials was higher in 

block 3 than in block 2 (b = 0.025, t = 2.50, p = .01†). Averaged over priming 

conditions, RTs did not significantly differ as a function of block in either 

consolidated or unconsolidated conditions. Although no other interactions involving 

block reached significance, suggesting that block did not modulate the priming effect 

in either consolidation condition, the effect of priming was also analysed separately 

in each block in both consolidation conditions. No priming was found in the 
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unconsolidated condition in any of the blocks. In the consolidated condition on the 

other hand priming reached significance in the third block (b = 0.025, t = 2.55,  

p = .008†). This pattern reinforces the conclusion that no reliable priming was seen in 

unconsolidated novel words, and that the priming effect that was seen in 

consolidated words tends to grow stronger over the course of the task, reminiscent of 

the semantic decision task in Experiment 4. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 34. Primed lexical decision accuracy rates in each block with consolidated and 

unconsolidated novel word primes and real word targets. Error bars represent standard error 
of the means. 

 

The by-block analysis was carried out for accuracy data as well, by adding 

block as a fixed factor in the original logistic regression model. These data are 

presented in Figure 34. No three-way interaction was found. Interaction contrasts 

involving the effect of priming and block showed that averaged over consolidation 

conditions there was a significant change in the magnitude of the priming effect from 

block 1 to block 3 (b = 0.314, z = 1.99, p = .046†), reflecting the initial advantage for 

primed trials changing into an advantage for unprimed trials. No other two-way 

interactions showed significant effects. No significant priming effect was found in 

either time of testing condition in any block though.  

Next, the question of whether a long consolidation opportunity results in 

stronger priming gains than a short consolidation opportunity was assessed. Figure 

35 shows RTs in the consolidated condition, broken down by short and long  
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Figure 35. RTs (left panel) and accuracy rates (right panel) in the primed lexical decision task 
with consolidated novel word primes and real word targets. Short = 1 day consolidation 

opportunity, long = 1 week consolidation opportunity. Error bars represent standard error of 
the means. 

 

consolidation opportunity (left panel). A mixed-effects linear model with subjects 

and items as random factors, and priming (primed vs. unprimed) and length of 

consolidation opportunity (short or long) as the fixed factors benefitted from subject-

specific slopes for trial position. Priming and consolidation length did not interact 

significantly, hence the interaction was dropped. Averaged over time of 

consolidation length conditions, there was a significant effect of priming, with faster 

RTs to primed targets (b = -0.015, t = -2.62, p = .008). There was no overall RT 

difference between the short and long consolidation conditions. The lack of an 

interaction shows that there was no statistically significant difference in the 

magnitude of the priming effect between the short and long consolidation conditions. 

However, to evaluate the priming effect in closer detail it was assessed in both 

conditions individually. The priming effect was significant in the short consolidation 

condition (b = -0.019, t = -2.23, p = .02†), but failed to reach significance in the long 

consolidation condition (p = .14). There were no significant differences between the 

two consolidation conditions in either primed or unprimed conditions. Accuracy 

rates are shown in the right panel of Figure 35. A logistic regression model with the 

same fixed and random factors as in the RT model was used here. The interaction 

between priming and consolidation length approached significance (b = 0.343,  

z = 1.83, p = .067†). There was no significant priming effect in the short 

consolidation condition, but the effect approached significance in the long 

consolidation condition (b = 0.240, z = 1.82, p = .069†). No difference between 
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accuracy was found between the consolidation conditions in either primed or 

unprimed conditions individually. As the interaction only approached significance, a 

model without the interaction was also looked at. No significant effect of priming or 

consolidation length was found in the simplified model. 

 

 

 

 

 

 

 

 

 

 
Figure 36. RTs (left panel) and accuracy rates (right panel) in the primed lexical decision task 

with real word primes and real word targets. Error bars represent standard error of the means. 
 

Lexical decision with real word primes. Figure 36 (left panel) shows lexical 

decision RTs to real word targets, when the prime was a real word associated 

(primed) or unassociated (primed) to the target. This real word prime condition was 

included to make sure the current paradigm results in the typical semantic priming 

pattern, with faster RTs to primed lexical decision compared to unprimed trials. The 

data were trimmed in the same way as in the novel word prime condition. A mixed-

effects linear model with subjects and items as random factors, and priming (primed 

vs. unprimed) as the fixed factor showed a significant effect of priming (b = 0.039,  

t = 7.08, p < .001), with faster RTs to primed trials. To make sure this was the case 

for both consolidation length groups, consolidation group was added as a fixed 

factor. Group did not interact with priming, confirming that both participant groups 

exhibited equivalent priming.  

The right panel of Figure 36 shows the accuracy rates for the same task. A 

mixed-effect logistic regression model with the same random and fixed factors as 

above showed a significant effect of priming, with fewer errors made to the primed 

targets (b = -0.410, z = -4.44, p < .001). As above, consolidation length group was 

added as a fixed factor, but did not enter into an interaction with priming, suggesting 

that both groups showed a similar priming effect. 
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Recall that the real word prime condition, like the novel word condition, was 

divided into three blocks with each prime repeated twice in each block. To evaluate 

the effect of repetition over block, the priming RT effect was evaluated for each 

block individually. These data are shown in Figure 37 (left panel). Block was added 

as a factor to the model described above. No interactions were found between block 

and the effect of priming. When the interaction was dropped, no significant contrasts 

involving block averaged over priming were found, showing that RTs overall 

remained stable across blocks. To make sure the priming effect was equally strong in 

each block, the effect was evaluated in each block individually. It reached 

significance in all blocks (block 1: b = 0.034, t = 3.54, p = .001, block 2: b = 0.039,  

t = 4.07, p < .001, block 3: b = 0.045, t = 4.63, p < .001). RTs did not change over 

blocks in either priming condition when evaluated individually. Consolidation length 

group was added as a fixed factor to make sure these conclusions applied equally to 

both groups. Group did not enter into any interactions with the other factors.  

 

 

 

 

 

 

 

 

 

Figure 37. RTs (left panel) and accuracy rates (right panel) in the primed lexical decision task 
with real word primes and real word targets, broken down by block. Error bars represent 

standard error of the means. 
 

The right panel of Figure 37 shows the accuracy rates in this task. A mixed-

effects logistic regression with the same factors as above showed no interaction 

between priming and block. When the priming effect was evaluated individually in 

each block, the effect was not significant in block 1 but reached significance in the 

other two blocks (block 2: b = 0.565, z = 3.47, p < .001, block 3: b = 0.410, z = 2.60, 

p = .009). No difference was found between blocks when assessed in primed and 

unprimed conditions separately. Consolidation length group did not enter into 

interaction with any of the other variables. These by-block analyses showed that with 
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real word primes repetition of the primes has no effect on the priming effect over the 

course of the task, providing an interesting contrast with the novel word prime 

condition where the effect appeared to be strongest in the last block (although the 

interaction between priming and block was not significant). 

Sentence plausibility judgement. RTs in the sentence plausibility judgement 

task are shown in Figure 38, left panel, and were analysed using a mixed-effects 

linear model with subjects and items as random variables, and time of testing 

(delayed = consolidated, immediate = unconsolidated) and the semantic 

compatibility of the novel word in the sentence context (match vs. mismatch) as 

fixed variables. Subject-specific slopes for trial position increased the goodness of 

fit. Responses faster than 4 log-ms and slower than 7.3 log-ms were removed as 

extreme scores. No interaction was found between time of testing and sentence 

compatibility, and the factor was dropped. The simplified model showed a 

significant difference between the match and mismatch conditions, with faster 

responses to matching trials (b = -0.149, t = -10.50, p < .001), but no significant 

difference between consolidated and unconsolidated novel words. To make sure 

there was no time of testing effect, this effect was evaluated separately for match and 

mismatch conditions. No difference was found between consolidated and 

unconsolidated novel words in either compatibility condition. Match vs. mismatch 

contrasts for each time of testing condition confirmed that the compatibility effect 

was significant in both consolidated (b = 0.152, t = 7.86, p < .001) and 

unconsolidated novel words (b = 0.146, t = 7.51, p < .001). 

 

 

 

 

 

 

 

 

 

Figure 38. RTs (left panel) and accuracy rates (right panel) in the sentence plausibility 
judgement task. Error bars represent standard error of the means. 
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Accuracy rates are shown in the right panel of Figure 38. These were 

analysed with a mixed-effects logistic regression model with the same random and 

fixed factors as in the RT analysis. The interaction between time of testing and 

sentence compatibility was significant, reflecting the larger priming effect in the 

consolidated over unconsolidated condition (b = 0.313, z = 2.00, p = .046†). 

However, the effect of sentence compatibility did not reach significance when 

examined for the two time of testing conditions separately. In the mismatch 

condition there was an accuracy advantage for unconsolidated trials (b = 0.437,  

z = 4.04, p < .001), which however was not significant in the match condition. 

 

 

 

 

 

 

 

 

 

Figure 39. RTs (left panel) and accuracy rates (right panel) in the sentence plausibility task. 
Short = 1 day consolidation opportunity, long = 1 week consolidation opportunity. Error bars 

represent standard error of the means. 
 

Figure 39 shows RTs (left panel) for the group who experienced a long 

consolidation opportunity and for the group who experienced a short consolidation 

opportunity. A mixed-effects linear model with subjects and items as random factors, 

and sentence compatibility (match vs. mismatch) and length of consolidation 

opportunity (short = one day, long = one week) as the fixed factors benefitted from 

subject-specific slopes for trial position. No significant interaction was found 

between length of consolidation and sentence compatibility. The simplified model 

without an interaction showed a significant effect of compatibility (b = 0.146,  

t = 7.03, p < .001), but no RT difference between the consolidation length groups. As 

suggested by the lack of an interaction, the compatibility effect was significant in 

both the short consolidation group (b = 0.173, t = 6.37, p < .001) and the long 

consolidation group (b = 0.119, t = 4.38, p < .001). There was no RT difference 

between the groups in either the match or mismatch conditions. 
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The right panel of Figure 39 shows the corresponding accuracy rates. A 

mixed-effects logistic regression model with the same fixed and random factors as in 

the RT analysis was used. There was no significant interaction between the two fixed 

factors. The simplified model showed no significant effect of sentence compatibility, 

but did show an overall accuracy advantage for the short consolidation group  

(b = 0.368, z = 2.21, p = .03†). The compatibility effect failed to reach significance in 

either consolidation condition individually. When the effect of consolidation length 

group was examined individually for match and mismatch condition, it reached 

significance only in the match condition (b = 0.414, z = 2.09, p = .04†).  

 

 

 

 

 

 

 

 

 

 

Figure 40. Shadowing latencies (left panel) and accuracy rates (right panel). Error bars 
represent standard error of the means. 

 
Shadowing. CheckVocal (Protopapas, 2007) was used to check the voice key 

trigger points, and corrected when necessary. One participant’s data in the long 

consolidation condition were discarded due to a high number of trials lost as a result 

of recording malfunction. Repetition latencies and accuracy rates are presented in 

Figure 40. Latencies in log-RTs were analysed using a mixed-effects linear model 

with subjects and items as random variables, and training condition (consolidated, 

unconsolidated, untrained, real words) as the fixed variable. Subject-specific slopes 

for the effect of trial increased the goodness of fit of the model. The same data 

trimming criteria were used here as in the lexical decision task. Untrained novel 

words were shadowed slower than any other condition (contrast with consolidated:  

b = -0.018, t = -4.70, p < .001, unconsolidated: b = -0.010, t = -2.71, p = .01†, real 

words: b = -0.054, t = -3.98, p < .001). Real words on the other hand were shadowed 

faster than any other condition (contrast with consolidated: b = 0.036, t = 2.67,  
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p = .01†, unconsolidated: b = 0.043, t = 3.22, p = .002). No significant difference was 

found in shadowing latencies between consolidated and unconsolidated novel words. 

Accuracy (Figure 40, right panel) rates in shadowing were analysed next, 

using a mixed-effects logistic regression model with the same random and fixed 

factors as in the latency analysis. Accuracy rates to untrained novel words were 

significantly lower than to consolidated words (b = 0.590, z = 2.72, p = .007), or real 

words (b = 1.289, z = 4.26, p < .001), but not significantly different from 

unconsolidated novel words. Real words had higher accuracy rates than either novel 

word condition (consolidated: b = 0.697, z = 2.18, p = .03†, unconsolidated:  

b = 1.009, z = 3.26, p = .001). No significant difference was found between the two 

novel word conditions. 

 

 

 

 

 

 

 

 

 

Figure 41. Shadowing latencies (left panel) and accuracy rates (right panel) broken down by 
length of consolidation opportunity. Error bars represent standard error of the means. 

 

The above analyses found no difference between consolidated and 

unconsolidated novel words, and appear to replicate the null finding in Experiment 5. 
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opportunity more than a short opportunity. Next, the two consolidation length 

conditions were analysed by adding length (short or long) as a fixed factor to the 

model described above. The shadowing latency data are shown in the left panel of 

Figure 41. A significant interaction was found between training condition and length 

of consolidation opportunity, whereby the difference between consolidated and 

unconsolidated conditions was significantly larger in the long consolidation group 

than in the short group (b = 0.020, t = 2.70, p = .02†). No other interaction contrasts 

reached significance. Next, the training condition effect was evaluated individually 
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for both the long and short consolidation groups. In the short consolidation group 

real words were shadowed faster than any other word condition (contrast with 

untrained: b = 0.051, t = 3.67, p < .001, unconsolidated: b = 0.037, t = 2.63, p = .02†, 

consolidated: b = 0.039, t = 2.80, p = .007†). Untrained words were shadowed slower 

than either unconsolidated or consolidated novel words (b = 0.014, t = 2.77, p = .01†, 

b = 0.012, t = 2.34, p = .05†). There was no difference between consolidated and 

unconsolidated conditions. In the long consolidation group real words were again 

shadowed faster than any other word type (untrained: b = 0.056, t = 4.01, p < .001, 

unconsolidated: b = 0.051, t = 3.61, p < .001, consolidated: b = 0.033, t = 2.34,  

p = .03†), while untrained words were slower than consolidated novel words  

(b = 0.023, t = 4.34, p < .001), but did not differ significantly from unconsolidated 

novel words. Finally, the difference between consolidated and unconsolidated novel 

word shadowing times was significant (b = 0.018, t = 3.32, p = .006†) in this group. 

Visual inspection of Figure 41 suggests that latencies in the long consolidation group 

were longer than in the short group. Recall however that the length of consolidation 

condition is a between-groups variable, while the consolidated vs. unconsolidated is 

within-groups (the error bars in the figures are uncorrected for within-groups 

comparisons, hence the error bars exaggerate the variability in these contrasts).  

Statistically the difference between the groups failed to reach significance in each 

training condition. It did not reach significance when averaged over training 

conditions either (p = .24).  

Accuracy rates are shown in the right panel of Figure 41. Here too a 

significant interaction was found between training condition and length of 

consolidation opportunity, whereby the difference between unconsolidated and 

untrained conditions was significantly different in the short consolidation group than 

in the long consolidation group, reflecting the reversal of the effect between the 

groups (b = 0.919, z = 2.26, p = .02†). Another contrast that was marginally 

significant showed that the difference between consolidated novel words and real 

words was larger in the short consolidation group than in the long consolidation 

group (b = 1.184, z = 1.97, p = .05†). Next, the differences between training 

conditions were evaluated separately for the two consolidation opportunity groups. 

In the short opportunity group real words differed significantly only from the 

untrained words (b = 1.211. z = 3.36, p < .001). Untrained words on the other hand 

differed from all conditions (unconsolidated: b = 0.740, z = 2.56, p = .01†, 
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consolidated: b = 0.625, z = 2.23, p = .03†). There was no difference between 

consolidated and unconsolidated novel words. In the long opportunity group real 

words had higher accuracies than either untrained words (b = 1.463, z = 2.94,  

p = .003†) or unconsolidated novel words (b = 1.642, z = 3.34, p < .001). Untrained 

words did not differ from either novel word condition. Consolidated and 

unconsolidated novel words on the other hand did show a significant difference  

(b = 0.740, z = 2.22, p = .03†). There was no difference between long and short 

consolidation groups in each training condition, or when averaged over all training 

conditions. Hence both latency and accuracy data show that shadowing of novel 

words did benefit from consolidation, but only if a consolidation opportunity of one 

week was offered. 

 

5.2.3 Discussion 

The primary aim of Experiment 6 was to evaluate the degree to which newly 

learned words afford semantic priming in a task which was calibrated to rely on 

strategic semantic processing more than automatic processing. The semantic priming 

task using real word primes confirmed that the task parameters were such that a 

robust priming effect of 18 ms was found. This was also reflected in accuracy rates, 

with higher accuracies for primed lexical decisions. Numerically 18 ms is a fairly 

small semantic priming effect. It is important to consider why this might be the case. 

The main reason is likely to be the constraints in choosing the stimuli. Due to the 

repetition of primes in both the real and novel word conditions, only primes with 

three strong associates could be used. For most words it is impossible to find three 

very strong associates, hence the overall association strengths in the present 

experiment are lower than would be the case if only the very strongest prime-target 

pairs could be chosen (which is the case in the priming research literature in 

general).   

The critical condition using novel word primes also showed a priming effect. 

This effect was significant when averaged across consolidation conditions. While 

there was no statistically reliable difference in the magnitude of the priming effect 

using consolidated (7 ms) and unconsolidated (2 ms) novel words, the effect was 

significant only in consolidated novel word primes when the two conditions were 

evaluated separately. This suggests that novel word meanings do benefit to some 
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degree from offline consolidation. The comparison between a short consolidation 

opportunity of one day and a long consolidation opportunity of one week showed no 

significant difference, the priming effect was 9 ms in the short condition and 6 ms in 

the long condition, suggesting that priming emerges within the first 24 hours 

(possibly associated with sleep) and does not significantly grow over the next seven 

days. These effects were again numerically small, but reasonable when comparing 

them to the real word prime condition which too was quite small. 

Looking at the development of the semantic priming effect as the lexical 

decision task progressed revealed a similar pattern as seen in Experiment 4. Recall 

that in Experiment 4 a consolidation effect in semantic decision only emerged in the 

last block of the task, in the form of faster RTs to trials with consolidated as opposed 

to unconsolidated novel words. In the present experiment also the priming effect in 

consolidated novel words reached significance only in the third block of the task 

(although the interaction between block and priming was non-significant). It is 

important to note however that there was a numerical effect in the first two blocks as 

well, while in the semantic decision task of Experiment 4 there was no hint of a 

consolidation effect prior to the third block. Nonetheless, these data perhaps reflect a 

process whereby the fragile consolidation effect becomes detectable only after 

participants have had a chance to access the early learned consolidated meanings a 

few times. It may be that this process is needed to overcome an initial advantage for 

the recently learned unconsolidated novel words which may benefit from an episodic 

recency effect. This line of reasoning is further supported by the statistical lack of an 

effect of block in the real word prime condition (although numerically the effect 

seemed to grow stronger from block 2 onwards), suggesting that the block effect 

may be specific to novel word meaning access. 

The semantic consolidation effect is particularly intriguing in light of the 

explicit meaning recall data. Here we saw an advantage for the recently learned 

novel words. The same pattern was described in Chapter 4. Furthermore, a 

comparison of the short and long consolidation groups showed that the long 

consolidation group appeared to have forgotten more consolidated meanings than the 

short consolidation group. Here we see a striking dissociation between explicit recall 

of novel word meanings, which seems to be subject to decay as a function of time 

passing, and an online measure of speed of novel word meaning access, which seems 

to benefit from passing time, at least during the first 24 hours. This dissociation 
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supports the notion that semantic priming and explicit meaning recall here measured 

two fundamentally different types of semantic access. However, it is important to 

note that the apparent decline in explicit meaning recall may also be at least partially 

caused by interference from having to learn a second set of novel words before 

testing. Experiment 7 provided an opportunity to test this alternative hypothesis.  

The RSVP version of the sentence plausibility task showed no effect of 

consolidation. Responses were faster to novel words that were semantically 

congruent with the sentence context, and this was the case for both consolidated and 

unconsolidated novel words. There was no significant difference in the magnitude of 

the effect between the consolidation conditions, and the effect was nearly identical 

irrespective of the length of the consolidation opportunity. This is interesting because 

in Experiment 4 there was a consolidation effect whereby the semantic congruency 

effect was significantly larger in consolidated novel words. However, in that 

experiment the reading of the sentence was self-paced, with participants allowed to 

first read the sentence at their own pace and then press a key to reveal the novel 

word. As discussed in the previous chapter, this procedure allows the use of guessing 

strategies, where participants may have generated hypotheses about the identity of 

the novel word before seeing it, in which case upon revealing the novel word they 

would merely need to check if the given word matched the expected word. Such a 

process is likely to involve orthographic influences more than semantic processing, 

with learning of word forms having already been shown to benefit from 

consolidation (c.f. cued recall in Experiment 5). The current version of the task did 

not allow participants time to make explicit guesses about the novel word, and 

required a speeded response about the identity of the novel word at the end of the 

sentence presentation. This makes it more comparable to the semantic decision task 

of Experiment 4 rather than the priming task of the present experiment. 

Consequently it is possible that the sentence task would have required a larger 

number of trials and repetitions for any consolidation effect to emerge.  

Finally, the shadowing task provided intriguing data. When averaged over the 

two consolidation length conditions, there was no evidence of a consolidation benefit 

in shadowing latencies between consolidated and unconsolidated novel words. 

However, when the two consolidation length groups were examined separately, a 

robust consolidation effect was seen in the long consolidation group but not in the 

short consolidation group. This may resolve the discrepancy between Experiment 4 
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where consolidation in shadowing was seen, and Experiment 5 where it was not 

seen. Shadowing may be a task that benefits from several days or nights of 

consolidation. Experiment 4 suggested that a consolidation benefit may be observed 

after a one day delay, but judging by Experiment 5 the effect is not robust enough to 

be observed consistently. The contrast here between short and long consolidation 

suggests that the consolidation process continues over several days, suggesting it 

may be a slow, incremental process. In such circumstances it is to be expected that 

the effect is robust enough to be detected within 24 hours only occasionally. Whether 

or not it is seen after such a short delay may depend on a number of factors, such as 

the exact timing between the training and testing, and possibly also depending on 

individual differences between participants’ sleeping patterns or memory 

proficiency. Future studies looking at shadowing and consolidation would need to 

control or manipulate these types of factors more carefully. Participants in the long 

consolidation group tended to shadow slower than the short group (although this 

difference did not reach significance). This was probably due to the increased delay 

between training and test in the long group. I will return to some of the properties of 

the shadowing task that may explain its reliance on long term consolidation in the 

General Discussion. 

In sum, the current experiment showed that semantic priming using novel 

words benefits from offline consolidation within the first 24 hours, at least when 

strategic semantic access is the primary source of priming. The next experiment will 

focus instead on automatic semantic activation.  

 

5.4 Experiment 7 

Experiment 6 showed in a semantic priming task with visible primes that 

newly learned meaningful words can prime lexical decision, but that such priming 

effects are not reliably seen until one day after training. While the priming task used 

in that experiment required fast online access to the novel word meanings, it cannot 

be said to measure purely automatic semantic access, as the prime was clearly 

visible, and participants were aware of the semantic relationship between prime and 

target. In fact, the task parameters (long SOA, visible prime) were intentionally 

tuned so that while both strategic and automatic processes were likely to contribute 

to the priming effect, the contribution of strategic processes was probably larger.  
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The main aim of Experiment 7 was to examine novel word semantic priming 

in a task where automatic semantic activation was the primary source of priming and 

strategic effects were minimised. For this purpose I chose to use the three-field 

masked priming paradigm introduced by Forster and Davis (1984). In this paradigm 

a briefly presented prime is immediately replaced (and masked) by the target, 

resulting in a very short SOA. Furthermore, the prime is also masked by preceding 

presentation of a visual mask (e.g., “##########”). Several authors have reported 

semantic priming effects using this methodology, both with associated and 

semantically related prime-target pairs, and with a range of short SOAs (e.g., Sereno, 

1991; Perea & Godor, 1997; Rastle, Davis, Marslen-Wilson, & Tyler, 2000; Bueno 

& Frenck-Mestre, 2008). Although masked repetition and form priming have been 

used with novel words (e.g., Forster, 1985, Qiao et al., 2009), to my knowledge 

masked semantic priming has not been examined in newly learned words. 

Interestingly though, masked semantic or associative priming effects have been 

reported between languages (e.g., Dutch prime – English target) in bilingual 

participants. Gollan, Forster, and Frost (1997) showed masked translation priming 

(priming between the same two words in different languages) between Hebrew-

English cognates (words similar in meaning and form) and noncognates (words 

similar in meaning only), although only with L1 primes. Perea, Dunabeitia, and 

Carreiras (2008) looked at priming of different but related/associated words in two 

different languages (Spanish and Basque), and found equivalent masked priming 

both between and within languages.  

The extremely short SOA in masked priming experiments is argued to reduce 

strategic effects, as participants do not have time to generate expectations before 

seeing the target. One line of evidence for this claim comes from the manipulation of 

RP in priming experiments using masked and visible prime conditions. Recall that 

RP manipulation is thought to give rise to strategic effects, hence a task not sensitive 

to RP manipulation is likely to be less affected by strategic factors. Although Bodner 

and Masson (2003) did find a larger masked priming effect in a high RP condition 

than in a low RP condition, Grossi (2006) failed to replicate this effect and instead 

saw similar masked priming in high and low RP conditions. Furthermore, using the 

same materials, Grossi (2006) did report an RP effect but only when using visible 

primes. The lack of an RP effect has also been reported by Perea and Rosa (2002), 
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further supporting the claim that masked priming relies primarily on automatic 

semantic access. 

One of the most contentious issues in the masked priming literature is the 

question of whether semantic priming can take place outside of consciousness. The 

debate here revolves around the issue of under what circumstances can a prime be 

considered to have been presented subliminally (for an exhaustive review, see 

Kouider & Dehaene, 2007, and for a recent meta-anlysis, see Van den Bussche, Van 

den Noortgate, & Reynvoet, 2009). This is however an issue that most researchers 

interested in language processing have not commented on, in fact many experiments 

looking at semantic priming under masked conditions have not even attempted to 

establish whether participants were aware of the primes or not. This is probably 

because the short SOA and the increased difficulty in perceiving the prime as a result 

of very brief prime duration have been considered to be sufficient conditions for 

minimising the contribution of strategic processes. This is also the position adopted 

in the present approach.  

A second aim of Experiment 7 was to re-examine the advantage observed for 

recently learned word meanings in the explicit meaning recall task in the 

experiments reported in the previous chapters and in Experiment 6. In these 

experiments it consistently appeared that participants’ recall of word meanings 

learned a day or a week earlier had decreased, and was worse than recall of recently 

learned meanings. Because in those experiments recall was always tested after the 

second training session, it is possible that the cost associated with the earlier learned 

words was due to interference from the recent learning of novel materials. To see if 

this was the case, Experiment 7 used only one set of trained novel words, and 

tracked the recall of the word meanings as a function of time. 

Three testing times were included: immediate test after training, test on the 

following day, and a third test one week after training. It is possible that when 

looking at consolidation of semantic information, more than 24 hours is needed for 

observable effects to emerge. This may be the case particularly when looking at 

automatic semantic access. For example, Clay et al. (2007) only observed a semantic 

picture-word interference effect using novel words after one week from training 

(although these authors did not include testing sessions earlier, apart from the 

immediate test). Dagenbach et al. (1990) found semantic priming with novel primes 
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only after five weeks of training. Hence it was deemed necessary to re-test after a 

week in case the effect requires several days to emerge. 

 

5.4.1 Method 

Materials 

The materials were drawn from the stimulus pool used in Experiment 6. 

However, since only one set of words was trained in the current experiment, only 34 

novel words and 34 elaborated meanings were needed. Novel words was selected so 

that the full range of word lengths from the original set was represented (M = 6.4 

letters, range = 5-8), and that the words were as dissimilar as possible from each 

other to minimise their confusability. A set of 34 meanings and corresponding 

associates was selected on the basis of the accuracy data from Experiment 4. Recall 

that in that experiment participants were asked to judge whether a novel word 

meaning and a real word target were related. This enabled the selection of those 34 

meanings with their corresponding three associates that resulted in the highest 

accuracy rates in the semantic decision task, suggesting that for this participant 

population these word-associate pairs were the most likely ones to generate semantic 

priming. The mean CELEX frequency of the new set of nouns representing the 

meaning objects was 49.4, and the mean frequency of their associates (real word 

targets in lexical decision) was 99.6, mean length in letters was 6.0, and mean 

association strength between the objects and the targets was 0.18. Nonword targets 

were derived from the real word targets, hence they were matched to the real word 

targets in all respects (see Experiment 6). The novel words and meanings used in this 

experiment are indicated in Appendices 4 and 5. 

The same set of 34 real word primes and their three associated targets used in 

the real prime condition of Experiments 4 and 6 was used here. The properties of 

these stimuli are described in Chapter 4. Nonword targets derived from the selected 

real word targets for use in the lexical decision task were taken from Experiment 6.  

Each novel word was paired with a meaning, taking care not to pair meanings 

with words that sounded anything like the novel word. The same pairings were used 

for all participants. 
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Design 

The experiment was carried out on three days (Figure 42), spanning one 

week. On day 1, participants were trained on the novel words. This was immediately 

followed by a testing session. For about half of the participants (n = 21) a testing 

session consisted of the explicit meaning recall task, followed by primed lexical 

decision, and an identical testing session was attended on day 2 and day 8. For the 

remaining participants (n = 27) the testing session on day 1 and day 2 included only 

the primed lexical decision task, and the day 8 session included the lexical decision 

task followed by a meaning recall task. This allowed me to see if the repeated 

administration of the meaning recall task is needed to maintain memory of the word 

meanings, with potential consequences for explicit recall and semantic priming. This 

would appear to be the case if priming were found only in the group of participants 

who experienced the meaning recall task in the beginning of each testing session.  

 

 

 

 

 

 

 

Figure 42. Timing of training and testing sessions in Experiment 7. 
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Procedure 

Training. The procedure of the training session was identical to that used in 

Experiment 6, with meaning-to-word matching, word-to-meaning matching, 

meaning recall, and semantic plausibility tasks. The number of exposures was also 

the same as before (17 in total). E-prime was used for stimulus presentation both in 

training and testing and the same computer equipment was used as in Experiment 6. 

Testing. Meaning recall was identical to Experiment 6, with a novel word 

presented on screen and responses typed on the keyboard, without a time limit or 

feedback.  

The order of trials in the primed lexical decision task was pseudorandomised 

individually for each participant in each testing session using the same constraints 

and software as in Experiment 6. A trial started with the presentation of a mask 

(##########) for 500 ms in the centre of the screen. The number of #s was the same 

on each trial, and was determined by the length of the longest stimulus used in the 

experiment (i.e., ten letters). The prime word in lowercase letters appeared at the 

offset of the mask for 47 ms, and was then replaced by the target presented in 

uppercase letters. The target remained on screen until a response was made, or until 

2000 ms had elapsed. At this point accuracy and RT feedback was presented. A key 

press initiated a new trial with a delay of 500 ms. Participants were not told about the 

existence of the prime, and were instructed to make the lexical decision as quickly 

and as accurately as possible by pressing a key on a Cedrus button box labelled 

“Word” or “Nonword”. Half of the participants responded “word” using their right 

hand, and the other half used the opposite mapping. At the end of the last testing 

session participants were asked if they had noticed the prime word or anything else 

happening on the screen between the presentation of the mask and the target. Out of 

48 participants only seven reported noticing that a word would sometimes appear 

briefly, but none reported being able to read the word. Although this does not mean 

that the primes were fully outside of consciousness (e.g., Kouider & Dupoux, 2004), 

it does suggest minimal opportunity to use of strategic responding. 

 

Participants 

Forty-eight students from the University of York took part in the experiment 

(8 male, 9 left-handed, mean age = 20.0, range = 18-40). No participants reported 



Chapter 5 

 185 

language disorders, or had participated in Experiments 4-6. Participants were paid or 

received course credit, and the most accurate and fastest 50% of the participants 

were entered into a prize draw for a £10 gift certificate. 

 

5.4.2 Results 

Training data 

Accuracy rates were analysed in the training task on day 1. These data are 

presented in Figure 43 (objects on the left y-axis, features on the right y-axis).  The 

object data were analysed first. A mixed-effects logistic regression model with 

subjects and items as random factors, and block (block 1, block 2, block 3) and 

testing group (explicit recall tested in each session = tested, or tested only in the end 

of the experiment = untested) as the fixed factor was fitted. Subject-specific slopes 

for the effect of block improved the goodness of fit. Testing group did not show any 

significant contrasts confirming that there was no difference between the two groups 

at training. Hence this variable was dropped. Accuracy rates increased significantly 

from block 1 to block 2 (b = 1.818, z = 15.26, p < .001), from block 1 to block 3  

(b = 3.104, z = 18.25, p < .001) and from block 2 to block 3 (b = 1.283, z = 9.77,  

p < .001). Feature recall was analysed next using ordinal logistic regression with 

block (block 2, block 3) as the fixed factor. Number of features recalled increased  

 

 

 

 

 

 

 

 

 

 

 

Figure 43. Accuracy rates in the meaning recall training task. Error bars represent standard 
error of the means. 
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significantly from block 2 to block 3 (b = 1.023, z = 12.14, p < .001). Accuracy rate 

in the sentence plausibility training task was very high, with proportion of correct 

responses at 0.96. 

 

Testing data 

Meaning recall. Figure 44 shows the accuracy data in the meaning recall test 

task for proportion of objects recalled (left panel) and mean number of features 

recalled (right panel). These data are shown both for the group who were tested in 

the beginning of each test session, and for the group which was tested only once, in 

the end of the last test session. Data from the repeatedly tested group were analysed 

first. A mixed-effects logistic regression model with subjects and items as random 

factors, and time of testing (day 1, day 2, day 8) as the fixed factor was fitted. 

Subject-specific slopes for the effect of time of testing were added. While no 

significant difference was seen between day 1 and day 2, accuracy rates on day 8 

were significantly lower than either on day 1 (b = -1.697, z = -7.62, p < .001) or day 

2 (b = -1.439, z = -6.96, p < .001). Next, the difference between the repeatedly tested 

and once only tested groups on day 8 was compared, using an identical model as 

above but adding testing group as a fixed factor and removing block. A significant 

difference was found between the groups, with the repeatedly tested group recalling 

more novel word objects (b = 0.982, z = 2.77, p = .006). 

 

 

 

 

 

 

 

 

 

Figure 44. Accuracy rates in the meaning recall test task. Error bars represent standard error 
of the means. 
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factor (right panel of Figure 44). Again, no difference was found between day 1 and 

day 2, but recall rates were significantly lower on day 8 than on day 1 (b = -1.874,  

z = -12.13, p < .001) or day 2 (b = -1.594, z = -11.44, p < .001). A comparison of 

features recalled between the repeatedly tested and once only tested groups showed a 

significant difference, with the repeatedly tested group recalling more features  

(b = 1.639, z = 17.58, p < .001). It seems then that when participants learn only one 

set of novel words, there is no significant decline in recall rates after one day. A 

decline is seen on the other hand one week after training. Also, the low recall of the 

non-tested group suggests that repeated testing helps maintain higher explicit recall 

rates than in the absence of testing. 

 

 

 

 

 

 

 

 

 

Figure 45. RTs and accuracy rates in the primed lexical decision task with novel word primes 
and real word targets. Error bars represent standard error of the means. 
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time of testing (day 1, day 2, day 8) as the fixed factors benefitted from subject-

specific slopes for trial position, and item-specific slopes for counterbalancing list. A 

significant interaction contrast showed that the priming effect was larger on day 8 

than on day 2 (b = 0.015, t = 2.14, p = .03†). In fact, when the priming effect was 

assessed on each day individually, it reached significance on day 8 (b = 0.015,  
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t = 2.71, p = .007†), but was not significant on day 2 or day 1. Time of testing also 

affected RTs in that RTs to both primed and unprimed conditions became 

significantly faster from day 1 to day 2 (primed: b = -0.015, t = -3.15, p = .003, 

unprimed: b = -0.023, t = -4.79, p < .001). Primed responses also became faster from 

day 1 to day 8 (b = -0.015, t = -3.16, p = .001), but not from day 2 to day 8. 

Unprimed responses became slower from day 2 to day 8 (b = 0.015, t = 3.01,  

p = .002), and did not show any change from day 1 to day 8. 

Accuracy rates in this task are shown in the right panel of Figure 45, and 

were analysed with a mixed-effects logistic regression model with the same random 

and fixed factors as in the RT analysis. A marginally significant interaction between 

time of testing and priming was found, whereby the priming effect was larger on day 

8 compared to day 1 (b = 0.298, z = 1.89, p = .06†). The priming effect was not 

significant on day 1 or day 2, but did reach significance on day 8 (b = 0.238,  

z = 2.08, p = .04†). Accuracy to primed trials increased from day 1 to day 2  

(b = 0.324, z = 2.82, p = .005†) and from day 1 to day 8 (b = 0.242, z = 2.14,  

p = .03†). Accuracy to unprimed trials did not change as a function of day.  

The analysis on the full set of participants suggested that the masked priming 

effect emerged reliably only in the last testing session, on day 8. The next analysis 

attempted to establish whether this pattern was seen in both those participants whose 

explicit recall of the novel word meanings was tested in the beginning of each 

session (tested group) and in those participants whose recall was only tested at the 

end of the last testing session (untested group). The RT data for each of these groups 

are displayed in Figure 46 (upper panel). These data were analysed by adding testing 

group (tested vs. untested) to the model used above to analyse the RTs. No three-way 

interactions reached significance, thus the term was discarded. Of the two-way 

interactions involving test group, interactions between the effect of time of testing 

and test group showed that the difference between day 1 and day 2 RTs was larger 

for the untested group than the tested group (b = 0.028, t = 4.03, p < .001). The same 

was true of the difference between day 2 and day 8 (b = 0.020, t = 2.91, p = .004†). 

Looking at the effect of time of testing on RTs in the untested group, the difference 

between day 1 and day 2 was significant (b = 0.031, t = 6.88, p < .001), as was the 

difference between day 1 and day 8 (b = 0.015, t = 3.37, p < .001), and between day 

2 and day 8 (b = 0.016, t = 3.51, p < .001). Time of testing did not modulate RTs in 

the tested group. The RT difference between the tested and untested groups however 
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failed to reach significance on each day. The most interesting contrasts however 

involve the priming effect. While the lack of an interaction between test group and 

priming suggests that both groups showed the same priming effect, the effect was 

also evaluated for both groups on each day. The untested group showed no priming 

effect on days 1 and 2, but did show a significant effect on day 8 (b = 0.017, t = 2.38, 

p = .02†). In the tested group the priming effect failed to reach significance on all 

days. Note however that this was likely to be due to reduced statistical power. It is 

worth pointing out also that at least numerically the data in Figure 46 suggest that the 

trend towards a priming effect on day 1 seems to have been carried by the tested 

group only.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 46. RTs and accuracy rates in primed lexical decision with novel word primes, broken 
down by testing condition.  Error bars represent standard error of the means. 

 

450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

Tested Untested Tested Untested Tested Untested

Day 1 Day 2 Day 8

R
T

Primed Unprimed

0.8

0.85

0.9

0.95

1

Tested Untested Tested Untested Tested Untested

Day 1 Day 2 Day 8

P
ro

po
rt

io
n 

co
rr

ec
t

Primed Unprimed

450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600

Tested Untested Tested Untested Tested Untested

Day 1 Day 2 Day 8

R
T

Primed Unprimed

0.8

0.85

0.9

0.95

1

Tested Untested Tested Untested Tested Untested

Day 1 Day 2 Day 8

P
ro

po
rt

io
n 

co
rr

ec
t

Primed Unprimed



Chapter 5 

 190 

Accuracy data were also analysed by adding testing group as a fixed factor 

(Figure 46, lower panel). No three-way interactions reached significance. Of the two-

way interactions, contrasts only involving testing group and day of testing reached 

significance, whereby the tested group improved from day 1 to day 2 significantly 

more than the untested group (b = 0.451, z = 2.78, p = .005†). The tested group 

improved significantly from day 1 to day 2 (b = 0.445, z = 3.70, p < .001), and from 

day 1 to day 8 (b = 0.231, z = 2.00, p = .045†). Recall accuracy in the untested group 

did not change as a function of day. No significant difference was found between the 

tested and untested groups on any day. Priming did not interact with testing group. 

However, looking at the effect of priming in each testing group individually on each 

day, the priming effect reached significance only in the untested group, on day 2  

(b = 0.342, z = 2.21, p = .03†). 

Next, the effect of priming was evaluated in each testing group in each of the 

three blocks. The RTs for the tested group are shown in the upper panel of Figure 47. 

A mixed-effects linear model with subjects and items as random factors and priming 

(primed vs. unprimed), time of testing (day 1, day 2, day 8) and block (block 1, 

block 2, block 3) was fitted on these data. Trial position and counterbalancing list 

were again included in subject and item-specific slopes. No three-way interactions 

reached significance. Only one two-way interaction contrast reached significance, 

showing that the priming effect in block 1 on day 1 changed significantly on day 2, 

reflecting the reversal of the effect. The priming effect in this group reached 

significance only in block 1 of day 1 (b = 0.028, t = 2.16, p = .03†). No other effects 

involving the other factors reached significance. RTs for the untested group are 

shown in the lower panel of Figure 47. In this analysis no three-way interactions 

reached significance. Of the two-way interactions the only significant contrast 

involved block and time of testing, whereby the contrast between day 1 and day 2 

was larger in block 3 than in block 1 (b = 0.024, t = 2.13, p = .03†). Looking at the 

effect of block on RTs averaged over primed and unprimed trials, the only 

significant contrast was found on day 2, between block 1 and block 3 (b = 0.031,  

t = 2.17, p = .03†). The lack of an interaction between block and priming suggested 

block did not modulate priming, and this was further confirmed by the absence of a 

priming effect in each block on each day. It is again worth noting that the lack of 

significant priming effects here is likely due to reduced power, as the number of both 

participants and number of data points per participant is greatly reduced from the 
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more powerful analysis described earlier. It is also possibly important that 

numerically the priming effect on day 1 seems to be strongest in the first block and 

become attenuated in the second and third blocks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 47. RTs in primed lexical decision with novel word primes, broken down by block and 
testing condition (upper panel = tested, lower panel = untested). Error bars represent standard 

error of the means. 
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p = .04†). The priming effect was significant only in the first block of day 8  
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(b = -0.609, z = -1.98, p = .048†). The reverse priming effect on day 1, block 3 was 

marginally significant (b = 0.485, z = 1.87, p = .06†). 

The same analysis was carried out for the untested group (Figure 48, lower 

panel).  No three-way interactions reached significance. Of the two-way interactions, 

priming interacted with block, in that on day 1 the priming effect was significantly 

different in block 3 compared to block 1 (b = 0.469, z = 2.14, p = .03†) and block 2 

(b = 0.433, z = 2.03, p = .04†). The same was true on day 2 and day 8 where the 

priming effect on block 1 was attenuated on block 3 (day 2: b = 0.467, z = 2.13,  

p = .03†, day 8: b = 0.469, z = 2.13, p = .03†). On day 8 the effect on block 2 was 

also attenuated compared to block 3 (b = 0.432, z = 2.02, p = .04†). The priming 

effect was marginally significant on day 2 in block 1 (b = -0.541, z = -1.96, p = .05†), 

and significant on day 8 in block 2 (b = -0.663, z = -2.39, p = .02†).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Accuracy rates in primed lexical decision with novel word primes, broken down by 
block and testing condition (upper panel = tested, lower panel = untested). Error bars represent 

standard error of the means. 
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In summary, averaged across the two testing groups and all blocks, a reliable 

priming effect in RTs was found on day 8 only. The same was the case with error 

rates. The untested group showed this same pattern in RTs, while priming in the in 

the tested group did not reach statistical significance. This is not surprising however 

as the group sizes were halved compared to the full initial analysis, resulting in 

reduced power. Visual inspection of Figure 46 suggests that there was a small 

numerical RT priming effect on day 1, and that it was carried by the tested group. 

Indeed, the by-block analysis showed a significant priming effect in the first block of 

day 1 in the tested group, both in RTs and accuracy rates. No effect on day 1 was 

found in any block in the untested group.   

 

 

 

 

 

 

 

 

 

 

Figure 49. RTs and accuracy rates in the primed lexical decision task with real word primes and 
real word targets. Error bars represent standard error of the means. 

 

Lexical decision with real word primes. Figure 49 (left panel) shows RTs to 

real word targets when preceded by a semantically associated (primed) or 
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novel word prime condition. A mixed-effects linear model with subjects and items as 

random factors, and priming (primed vs. unprimed) and time of testing (day 1, day 2, 

day 8) as the fixed factors benefitted from subject-specific slopes for trial position, 

and item-specific slopes for counterbalancing list. The analysis showed no 

significant interaction between the two factors. The simplified model showed a 

significant effect of priming (b = 0.014, t = 2.79, p = .02†), with faster RTs to primed 
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trials. Time of testing also had a significant effect on RTs, with responses becoming 

faster from day 1 to day 2 (b = -0.019, t = -5.39, p < .001), from day 1 to day 8  

(b = -0.014, t = -4.00, p < .001), but not from day 2 to day 8. The lack of interactions 

suggests that the priming effect is robust over time, but to get a more thorough 

picture of the effect, it was analysed for each day individually also. There was a 

significant difference between primed and unprimed trial on day 1 (b = 0.016,  

t = 2.54, p = .01†) and day 8 (b = 0.015, t = 2.41, p = .02†), but the effect failed to 

reach significance on day 2. The effect of time of testing in primed and unprimed 

conditions was looked at also. RTs became faster in the primed condition from day 1 

to day 2 (b = -0.016, t = -3.14, p = .002) and from day 1 to day 8 (b = -0.014,  

t = -2.76, p = .004) but not from day 2 to day 8. The same was true of the unprimed 

trials (day 1 vs. day 2: b = -0.022, t = -4.48, p < .001, day 1 vs. day 8: b = -0.015,  

t = -2.91, p = .003). Hence this condition successfully demonstrated a priming effect 

which was largely unmodulated by time of testing, confirming that masked semantic 

priming can be observed in the current paradigm. 

The accuracy rates are shown in the right panel of Figure 49. A mixed-effect 

logistic regression model with the same random and fixed factors (with subject-

specific slopes for time of testing) showed no interaction between time of testing and  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. RTs in the primed lexical decision task with real word primes and real word targets, 
broken down by block. Error bars represent standard error of the means. 
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priming. The simplified model showed a priming effect that was marginally 

significant (b = -0.121, z = -1.89, p = .06†), and no effects of time of testing. When 

the priming effect was evaluated on each day separately, the effect did not reach 

significance on any day. The effect of time of testing showed no differences between 

day when looked at separately for primed and unprimed conditions. 

As in the novel word prime condition, the real word prime condition was also 

analysed by dividing the data into three blocks to see if block modulated any of the 

effects (Figure 50). To do this, block (with three levels: block 1, block 2, block 3) 

was added as a fixed factor to the model described above. Subject-specific slopes for 

block were added.  The model showed no significant three-way interactions, hence 

this term was dropped. Of the two-way interactions only that involving time of 

testing and block showed significant contrasts. This interaction showed that the 

difference between day 1 and day 2 RTs was larger in block 1 than in block 3  

(b = -0.019, t = -2.21, p = .03†). Visual inspection of Figure 50 however suggested 

that RTs appear to grow slower in the later blocks. This effect of block only reached 

significance on day 2, where RTs increased from block 1 to block 2 (b = 0.030,  

t = 3.15, p = .002†), and from block 1 to block 3 (b = 0.042, t = 3.30, p = .001†). This 

effect was assessed also individually in the two priming conditions. In the primed 

trials, on day 1 RTs increased from block 1 to block 3 (b = 0.028, t = 2.02,  

p = .046†). On day 2 primed RTs increased from block 1 to block 2 (b = 0.035,  

t = 3.11, p = .003†) and from block 1 to block 3 (b = 0.039, t = 2.76, p = .006†) but 

not from block 2 to block 3. On day 8 the increases did not reach significance. In the 

unprimed condition there were no significant differences between blocks on day 1. 

On day 2 on the other hand unprimed RTs increased from block 1 to block 2  

(b = 0.025, t = 2.22, p = .03†) and from block 1 to block 3 (b = 0.045, t = 3.22,  

p = .002†). On day 8 unprimed RTs increased from block 1 to block 3 (b = 0.030,  

t = 2.13, p = .04†) and from block 2 to block 3 (b = 0.032, t = 3.15, p = .002†). 

Finally, although priming did not interact with block, the priming effect was 

evaluated in each block and in each day separately to assess its strength. On day 1, 

the priming effect was significant in block 1 (b = 0.021, t = 2.22, p = .03†) but failed 

to reach significance in the other two blocks. On day 2 the effect was non-significant 

in all blocks. On day 8 the effect reached significance in the third block only  

(b = 0.026, t = 2.72, p = .007†). 
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Accuracy data were also examined as a function of block by adding block as 

a fixed factor in the logistic regression model described above. The data are shown 

in Figure 51. No three way-interactions reached significance, hence this term was 

dropped. No two-way interactions reached significance either, suggesting that block 

did not modulate the effects of priming or time of testing. When the priming effect 

was tested in each block on each day separately, a marginally significant priming 

effect was only found in block 2 of day 2 (b = -0.364, z = -1.88, p = .06†). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 51. Accuracy rates in the primed lexical decision task with real word primes and real 
word targets, broken down by block. Error bars represent standard error of the means. 
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also had a marginally significant effect on lexical decision accuracy. The majority of 

participants were completely unaware of the existence of the prime, suggesting that 

the masking procedure was successful, although this conclusion relies on a 

subjective assessment, and cannot rule out partial awareness (Kouider & Dupoux, 

2004). Nonetheless, it is reasonable to assume that this task involved a larger 

contribution of automatic processing than the task used in Experiment 6. 

The time course with which the priming effect emerged in the novel word 

prime condition here was similar to the strategic priming task of Experiment 6 in that 

both effects required a delay between training and testing to emerge, although in the 

present experiment the effect was not yet seen after a short consolidation 

opportunity. Interaction contrasts showed that the priming effect was significantly 

larger on day 8 than on day 2. The contrast between day 8 and day 1 did not reach 

significance, however the priming effect was significant only on day 8 (8 ms), not on 

day 1 (5 ms) or day 2 (1 ms). This suggests that although there may have been weak 

priming present earlier, the effect grew stronger over the course of one week, with no 

significant development within the first 24 hours. This is consistent with Experiment 

6, where the effect emerged only after offline consolidation had taken place. The 

accuracy data supported this late emerging RT effect with a small but significant 

priming effect on lexical decision accuracy found only on day 8. Although the 

priming effect on day 8 was numerically quite small, it is important to relate it to the 

7 ms effect with real word primes: the novel word primes gave rise to a priming 

effect of the same magnitude as real word primes.  

Comparison of the priming effect between the group that was tested on 

explicit meaning recall in the beginning of each test session and the group that was 

tested only at the very end of the experiment shed further light on the development 

of the priming effect. In the untested group there was no effect on day 1 or day 2, 

with a significant effect emerging on day 8. Unfortunately the priming effect failed 

to reach significance at each day in the tested group, however it is important to note 

that the numerical priming effect seen on day 1 appears to have been carried mainly 

by the tested group, who showed an 8 ms priming effect on day 1 and day 8. It is 

possible that the numerical priming effect on day 1 was caused by the tested group 

having had an opportunity to access the meanings just before carrying out the 

priming task. This may have given them an advantage in priming by allowing the 

novel meanings to have been recently activated in memory. This hypothesis was 
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supported by looking at the priming effect in each of the three blocks. Here the tested 

group showed a significant priming effect in the first block of day 1, with the effect 

failing to reach significance in the later blocks on that day. The untested group 

showed no priming effect in any of the blocks on that day. No such block-dependent 

priming effect was seen on the other days though, suggesting that perhaps the recall 

advantage can only be detected when combined with a preceding extensive training 

session. 

The demonstration of a masked priming effect using novel word primes also 

provides important further evidence in favour of lexical integration. Lexical 

competition as a measure of lexical integration can be criticised due to the explicit 

overlap between the novel words and existing words. In a lexical decision task in 

particular it is possible that lexical competition effects emerge because participants 

are intentionally withholding their response on items that resemble the novel words. 

Such effects may not be a reflection of normal lexical competition. The masked 

priming effect on the other hand provides a task where lexical integration is seen 

even in a task where the participant is not consciously aware of the novel word, and 

no decision about the identity of the novel word is required. Hence the masked 

priming effect may be the strongest piece of evidence of lexical integration seen so 

far.  

Another interesting set of data in the present experiment was provided by the 

explicit meaning recall task. In the other experiments reported in this and the 

previous chapters there has been significantly lower recall rates for novel words 

learned one or more days prior to testing, compared to words learned on the day of 

testing. As discussed earlier, this may have reflected either forgetting over time, or 

interference from the more recently learned set of novel words. In the current 

experiment participants learned only one set of novel words, eliminating the 

interference account. Here no change in meaning recall was seen from day 1 to day 

2, suggesting that there is little or no decay over the course of one day when there is 

no interference from a new set of words. It should also be noted that once again no 

improvement in recall as a result of offline consolidation was seen, however as recall 

was near ceiling such an effect would be difficult to obtain. Recall rates did however 

decline significantly over a longer delay of one week from day 1 to day 8. 

Interestingly this decay appears to have been accompanied by the emergence of the 

priming effect, further enforcing the idea that the priming measured here was 
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independent of explicit recall and probably largely independent of strategic effects. 

The untested group seemed to have declined even more, as their recall performance 

on day 8 was significantly lower than that of the tested group. This implies that 

continued testing did slow down forgetting, but did not affect the emergence of 

priming. 

 

5.5 Chapter Summary and General Discussion 

The experiments reported in this chapter focused on the phenomenon of 

semantic priming, and on the question of whether newly learned words are integrated 

in the mental lexicon to a sufficient degree to allow semantic priming to occur. 

While a handful of earlier studies have addressed the same issue, the present 

experiments extend the earlier work in a number of ways. Firstly, three of the 

relevant earlier studies used semantic decision rather than primed lexical decision 

(Perfetti et al., 2005; Mestres-Misse et al., 2007; Mestres-Misse et al., 2008). 

Although the semantic decision task clearly requires access to word meanings, and 

measures the speed with which this access occurs, it is also likely to be influenced by 

a number of strategic processes. For example, it is possible that “primed” responses 

(responses confirming a relationship between the prime and the target) are faster than 

“unprimed” responses (responses indicating no relationship between prime and 

target) simply because making a positive response only requires the detection of the 

presence of a relationship, while a negative response requires a search of semantic 

memory before the response can be made with any degree of confidence. Seeing an 

RT difference between related and unrelated trials then may not reflect speed of 

access to meaning in general. The same concern can be raised against the N400 

effect in this task, if the N400 is taken as a measure of the ease with which a word is 

integrated into preceding context. The primed lexical decision task used in the 

present experiments on the other hand is unaffected by this criticism as no explicit 

decision or response is required regarding the possible relationship between the 

novel word prime and a real word target. 

Cross-modal priming studies by Breitenstein et al. (2007) and Dobel et al. (in 

press) avoided this problem by asking responses only to a picture target primed by 

an auditory novel word. However, here the prime-target pairs were also presented 

during training, with the meaning of the novel word acting as the target in the 
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priming test task. Hence it is difficult to say how much of what was being tested was 

episodic or semantic priming. A similar problem was present in the priming 

experiments of Dagenbach et al. (1990) where participants first learned the meanings 

of a set of novel words, and then learned episodic word pairs where the novel word 

was paired with a related real word.  

The experiments presented in this chapter went beyond the existing literature 

by for the first time training participants on meaningful novel words and then seeing 

if these novel words can prime familiar words that were associated with the novel 

word meanings, rather than seeing if the novel words can prime their own 

definitions. Furthermore, as these experiments did not require participants to make 

any explicit response regarding the identity of the novel words, the present data for 

the first time test the activation of novel word semantics in exactly the same way in 

which semantic access is measured in familiar words in semantic priming studies. 

The key questions the present experiments attempted to answer were whether novel 

words are integrated in the lexicon such that they can prime familiar associated 

words through spreading semantic activation, and whether this is the case 

immediately after training or only after a period of offline consolidation. 

Experiment 6 examined these questions in a priming task with a visible novel 

word prime and a long SOA. These two features of the task should have allowed 

participants to engage strategic processes alongside with automatic semantic 

priming. In this task semantic priming was only seen reliably in a condition where 

offline consolidation had been given time to occur between training and testing. 

There was no evidence that a long consolidation opportunity of one week provided 

an additional benefit compared to a short consolidation opportunity of about 24 

hours. Interestingly though the novel word priming effect in this experiment (7 ms) 

was smaller than in the real word control condition (18 ms), suggesting that a 

completely normal priming effect may not have been reached within the time course 

of the experiment (although note that the difference is also likely to be affected by 

the different stimulus sets). 

Experiment 7 used a masked prime and a short SOA to minimise the use of 

strategic processes, and maximise the contribution of automatic semantic activation. 

Remarkably, in this experiment a priming effect identical in magnitude to the real 

word priming effect emerged one week after training. No significant evidence of 

priming was seen immediately after training or one day after training, again 
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suggesting a gradually developing effect. This finding was consistent with the 

picture-word interference (PWI) data reported by Clay et al. (2007). The PWI task is 

similar to masked priming in that neither task requires a response or a decision to be 

made about the prime (the printed word in the PWI task). Furthermore, as the word 

in the PWI task is supposed to be ignored by the participants, any effect is has on 

naming performance is taken to be the result of automatic activation of the printed 

word distracter (although in the PWI task participants remain aware of the words, 

whereas in the masked priming task they are largely unaware of the prime). 

However, Clay et al. (2007) tested their participants immediately after training and 

one week after training, with no intervening tests. This means the effect may have 

emerged earlier, and may in fact benefit from sleep, like the other language learning 

tasks discussed in Chapter 3 (e.g., Dumay & Gaskell, 2007; Gomez et al., 2006; 

Fenn et al., 2003). However, by looking at priming both after 24 hours and one 

week, Experiment 7 suggested that automatic priming continues to develop beyond 

one day or night of consolidation. 

Another finding that highlights the difference between Experiments 6 and 7 

was the influence of block on priming. In Experiment 6 the strongest priming effect 

in consolidated novel words was found on the third block of the task (although the 

interaction with block did not reach statistical significance). In Experiment 4 a 

consolidation advantage in semantic decision only emerged in the third block of the 

task. It appears then that tasks that involve explicit access to novel word meanings 

benefit from repetition over the course of the task. The priming task in Experiment 7 

on the other hand did not involve explicit access to novel word meanings, and 

consequently no evidence was seen of the later blocks enhancing the priming effect. 

  While both priming experiments showed that offline consolidation plays a 

significant role in the development of semantic priming in novel words, the time 

courses in the two experiments were slightly different, in that Experiment 6 showed 

a reliable effect already one day after training, while in Experiment 7 the effect 

reached significance one week after training. This type of difference between the 

time it takes for strategic and automatic priming effects to emerge may reflect 

different methods or routes of accessing word meanings. For example, the multistage 

activation model of Stolz and Besner (1996) proposes a lexical level from which 

activation spreads to a semantic level. In a model such as this the formation of a new 

lexical representation and the linking of that representation to the semantic level is 
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the process that is likely to be affected by consolidation. Automatic semantic 

activation would require a fully functional and reliable connection between the new 

lexical representation and the semantic level. Strategic or explicit retrieval of the 

novel word meaning on the other hand might be accomplished even via a connection 

that is not yet fully consolidated. Distributed network models (e.g., Plaut & Booth, 

2000) can also conceivably accommodate a consolidation process. A weakly 

activated semantic representation would not be able to activate an overlapping 

similar representation in the absence of some sort of top-down boost from explicit 

recall. However, as consolidation progresses by the reinstatement mechanism 

postulated by the CLS accounts, the novel representation gains in strength and will 

eventually activate overlapping representations in an automatic fashion without extra 

input from explicit recall. Both of these suggestions imply that for automatic 

activation to occur, a more profound change may need to take place in semantic 

memory. Experiment 7 and the data from Clay et al. (2007) suggest that such a 

change takes several days to happen while a more strategic alternative route for 

activating the new meaning may become available earlier, and may or may not 

benefit from sleep in particular. This is not to say that the consolidation that operates 

on automatic access does not benefit from sleep but it does imply that it would 

require several nights of sleep.  

Experiment 6 suggested that another task that may benefit from more than 

one day or night of consolidation is shadowing. In Experiment 4 a consolidation 

benefit was seen for words that had been learned one day earlier suggesting that even 

one day of consolidation can be important in this task. The effect was however not 

seen in Experiment 5 again with a one day consolidation opportunity. In Experiment 

6 on the other hand a consolidation benefit was seen only in participants who had 

had a long consolidation opportunity of one week. It seems then that this task 

involves a consolidation process that operates over several days, and that sometimes 

the effect can already be seen after one day of consolidation, but on other occasions 

more than one day is needed. There are at least two potential reasons why this task 

might benefit from long term consolidation. One reason is that shadowing may 

involve a strong semantic component. Meaning does seem to influence shadowing, 

as mentioned in Chapter 4 Slowiaczek (1994) showed semantic priming effects in 

shadowing. If this is the case, then the consolidation benefit seen in Experiment 6 

may have been due to semantic support gradually becoming available over the 
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course of the week. The second reason might be that shadowing in Experiments 4 

and 6 required access to phonological representation of the novel words, but the 

phonological forms of the novel words had never been heard before by these 

participants. In other words, the phonological representation being accessed in this 

task had been generated as a by-product of purely orthographic exposure. This may 

result in a weak phonological representation that requires a period of offline 

consolidation to gain in strength. This may be a process that continues over several 

days or nights, possibly because the reinstatement process is slowed by the absence 

of direct experience with the phonological word forms. These hypotheses remain 

tentative at this point, and would require direct empirical investigations to develop 

further. 

Finally, Experiments 6 and 7 together shed more light on the influences of 

time on explicit recall of novel word meanings. Experiments 4-6 demonstrated a 

pattern where explicit recall seemed to suffer from passing time. Recall was always 

better for words learned immediately before testing compared to words learned a day 

before testing. As discussed earlier, this may have reflected either forgetting over 

time, or forgetting due to interference from learning a second set of novel words. In 

Experiment 7 participants learned only one set of novel words, whose recall was 

tested immediately after training, one day after training, and one week after training. 

Under these circumstances no significant forgetting was seen within one day. This 

seems to suggest that the forgetting seen in the earlier studies was mostly due to 

interference. Significant forgetting was seen one week after training, although even 

then the forgetting was much smaller than in the earlier experiments. In Experiment 

7 performance declined from 96% of objects recalled after training to 94% recalled 

one day later, a decline of only 2%. Contrast this with the difference of 27% in 

Experiment 6 between words learned the day before and words learned on the day of 

testing in the short consolidation group. It must be noted though that the small 

decline in Experiment 7 is also likely to be partially due to repeated testing on day 1 

and day 2, whereas in Experiment 6 testing took place only once. 

To summarise, the main finding of Chapter 5 was that novel word meanings 

do appear to benefit from offline consolidation, but the consolidation period is longer 

than seen in tasks measuring word form knowledge, where the first night of sleep 

may be the key (Dumay & Gaskell, 2007). Specifically, activation that relies 

predominantly (but probably not exclusively) on strategic access benefits from 
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consolidation over the first 24 hours following training, but seems to benefit less 

from further consolidation beyond that. Automatic activation on the other hand 

seems to benefit from consolidation continuing up to a week, at least when measured 

by semantically primed lexical decision. Taken together, these experiments show 

that unlike word form learning, learning word meanings engages a gradual 

consolidation process that continues for more than one day or night of sleep. This is 

in contrast with the ERP studies of Perfetti et al. (2005) and Mestres-Misse et al. 

(2007) which found an N400 effect with novel words immediately after training. 

This may suggest that the N400 is more sensitive to episodic memory traces than the 

priming paradigms used here, or that the methodological issues discussed in Chapter 

3 can have a significant impact on the N400. Shadowing, a task that may well also 

involve a significant semantic component, also appears to be sensitive to 

consolidation over several days. The design used in the current experiments did not 

allow any conclusions to be drawn about the role of sleep specifically on 

consolidation of semantic information in novel word learning. This question is left 

for future studies to resolve. In the next chapter however I will address the role of 

sleep in consolidation of novel word forms in the absence of given meaning, and the 

specific neural events that may participate in sleep-associated memory consolidation. 
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Chapter 6: Lexical integration and the architecture of sleep 

6.1 Introduction 

As reviewed in Chapter 3, there is now plenty of evidence to suggest that 

newly learned linguistic materials benefit from offline consolidation, and that sleep 

appears to play a crucial role in this consolidation process. While the experiments 

reported in the previous chapter suggest that learning the meaning of novel words 

triggers a consolidation process that operates over several days and/or nights, the 

acquisition of novel word forms seems to depend most on the first night of 

consolidation. Evidence for this was seen in some of the experiments reported earlier 

in this thesis. Experiment 5 for example showed that participants in a cued recall task 

recalled more novel words that had been learned on the previous day compared to 

words learned just before testing. Sleep was not manipulated in that experiment, 

however presumably all participants slept during the 24 hours between training and 

testing. 

As already mentioned in Chapters 1 and 3, Dumay and Gaskell (2007) 

attempted to tease apart effects of consolidation occurring during wake and sleep. 

Participants who were trained in the evening and tested in the morning after a night 

of sleep showed lexical competition effects and improved free recall performance. 

Participants who were trained in the morning and tested in the evening, with 

presumably no intervening sleep, showed no lexical competition effect and no 

improvement in free recall. While these data suggest that sleep plays a key role in 

integrating the novel words in the existing lexicon, they also raise a question about 

the environmental and neural circumstances under which consolidation takes place: 

is sleep beneficial in consolidation because it provides an environment free of 

external interference, or are there neural events that take place during sleep that drive 

consolidation?  

One way to address these questions is to look at sleep architecture, and try to 

see if there are some physiological aspects of sleep that are correlated with 

consolidation. The most common approach has been to look at global sleep 

architecture, that is, the involvement of different sleep stages in consolidation. 

Another emerging target of research in sleep and memory consolidation is sleep 
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spindles. I will give a brief overview of the literature on these two approaches in the 

next two sections. 

 

6.1.1 Memory consolidation and sleep stages 

Sleep can be divided into different sleep stages, most importantly rapid eye 

movement (REM) sleep, and non-REM (NREM) sleep which comprises of slow 

wave sleep (SWS: sleep stages 3 and 4), and lighter sleep stages 1 and 2. The sleep 

stages appear to have different roles to play in consolidating different types of 

memories. According to the dual process theory (see e.g., Diekelmann, Wilhelm, and 

Born, 2009, for a review), SWS supports consolidation of declarative memories, 

while REM supports consolidation of procedural memories. Although early work 

using REM deprivation supported this notion, sleep deprivation as a methodology is 

prone to confounds (e.g., due to the general cognitive impairment resulting from 

sleep deprivation), and hence the most often cited evidence for the dual process 

theory comes from the work of Plihal and Born (1997, 1999) who used the split-

night paradigm. This approach takes advantage of the fact that sleep during the first 

half of the night is dominated by SWS, and sleep in the second half of the night is 

dominated by REM. For example, Plihal and Born (1997) trained participants on a 

word-pair list (declarative task) either in the beginning of the night or in the second 

half of the night, followed by three hours of either SWS rich early sleep or REM rich 

late sleep, after which they were tested. While both groups showed a sleep-

associated increase in recall, the SWS group improved significantly more than the 

REM group. The opposite pattern was seen when a mirror tracing task (procedural 

task) was used. However, further research has revealed a more complicated picture. 

Gais, Plihal, Wagner, and Born (2000) showed in a split-night paradigm that SWS-

dominated early sleep improved visual texture discrimination, a form of procedural 

knowledge. Declarative materials have also been shown to benefit from REM sleep, 

especially if they are highly emotional (Wagner, Gais, & Born, 2001). There is also 

evidence that stage 2 sleep is important, at least in the procedural domain. Walker, 

Brakefield, Morgan, Hobson, and Stickgold (2002) showed that overnight 

improvement in a sequential finger tapping task correlated with time spent in stage 2 

sleep, particularly during the latter half of the night. This variability in the data has 

led many researchers to call for a move away from focusing on sleep stages, and for 
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an examination of the physiological processes that occur during sleep, and different 

types of learning in more detail (Gais & Born, 2004; Fogel, Smith, & Cote, 2007). 

 

6.1.2 Memory consolidation and sleep spindles 

In recent years there has been much interest in the role sleep spindles play in 

memory consolidation. Sleep spindles are bursts of fast oscillations (~11-15 Hz) that 

last at least 0.5 s but not usually more than 3 s, and occur during NREM sleep. The 

most intriguing aspect of spindles is that they have been demonstrated to occur in a 

temporally synchronised manner with hippocampal ripples (brief high frequency 

bursts of activity in the 100-200 Hz range), both in animals (Siapas & Wilson, 1998; 

Sirota, Csicsvari, Buhl, & Buzsaki, 2003) and in humans (Clemens, Molle, Eross, 

Barsi, Halasz, & Born, 2007), and hence may be involved in the hippocampal-

neocortical transfer of newly acquired memories postulated by the complementary 

learning systems (CLS) accounts. 

 As reviewed in Chapter 3, CLS accounts argue that new memories are 

initially dependent on the fast learning hippocampus, which supports the new 

memory trace as it becomes consolidated in the slow learning neocortex. During 

offline periods, such as sleep, the neocortical memory trace is reinstated repeatedly 

until it becomes independent of the hippocampus, allowing the hippocampal 

representation to decay. As hippocampal ripples constitute the most prominent 

neural event in the hippocampus during sleep, it has been hypothesised that these 

spikes of activity play a key role in the reinstatement process. Compelling evidence 

of this was recently provided by Girardeau, Benchenane, Wiener, Buzsaki, and 

Zugaro (2009) in a study where hippocampal ripples were blocked in rats learning to 

find food in a radial maze. Rats whose hippocampal ripples were suppressed during 

sleep following learning trials learned slower and failed to reach the same level of 

performance as control rats in which the suppression did not target ripples. Sirota et 

al. (2003) showed in rats that hippocampal ripples and cortical sleep spindles are 

closely temporally coupled. These authors suggested that spindles select the 

hippocampal cells that will participate in the ripple event, which in turn provide 

output to those cell assemblies which participate in the spindle. 

Spindles’ involvement in memory consolidation is supported by a large 

amount of behavioural data. In the procedural domain several authors have showed 
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an association between spindle activity and degree of performance enhancement over 

a sleep period, looking at skills such as spatial navigation (Meier-Koll, Bussmann, 

Schmidt, & Neuschwander, 1999), visuospatial memory (Clemens, Fabo, & Halasz, 

2006), and motor learning (Milner, Fogel, & Cote, 2006; Fogel & Smith, 2006; 

Fogel, Smith, & Cote, 2007; Nishida & Walker, 2007; Morin et al., 2008; Tamaki, 

Matsuoka, Nittono, & Hori, 2008, 2009). Similar associations have been seen in 

declarative tasks as well, including word-pair learning (Gais, Molle, Helms, & Born, 

2002; Schabus et al., 2004; Schmidt et al., 2006; Schabus et al., 2008) and face-name 

association (Clemens, Fabo, & Halasz, 2005). 

In addition to the correlational evidence showing an association between 

learning and subsequent spindle activity, there have also been demonstrations of the 

nature of the learning materials affecting spindle activity in specific ways, showing 

that spindle activity is sensitive to the materials to be consolidated. Schmidt et al. 

(2006) showed that compared to a non-learning task spindle activity increased only 

after participants had learned abstract word-pairs, while no effect on spindles was 

seen as a consequence of learning concrete word-pairs, showing that task difficulty 

modulates spindle activity. Spindle activity also appears to be regionally specific to 

the area of the cortex which is most involved with processing the materials to be 

learned. Nishida and Walker (2007) trained participants on a finger tapping task 

using the left hand. Spindle activity during the following nap period was correlated 

with the amount of performance improvement, but only when measured at electrodes 

over the contralateral (right) motor area. This is further evidence that spindles are 

involved with consolidating specifically the recently learned experiences. 

Finally, it is worth noting that while the early spindle studies examined sleep 

spindles in the ~11-15 Hz range, there is now emerging evidence for two different 

spindle types: slow spindles (~11-13 Hz) and fast spindles (~13-15 Hz). Not only are 

these two types typically observed in different areas of the cortex, with slow spindles 

dominating frontal areas and fast spindles dominating parietal areas (Schabus et al., 

2007), but they also appear to be important in consolidating different types of 

material. In the declarative face-name association task Clemens et al. (2005) found 

spindle correlations in the left frontal electrodes, while in a visuospatial task the 

same research group found spindle correlations in the parietal electrodes (Clemens et 

al., 2006). These studies did not distinguish between spindles in the different 

frequency ranges, but it is likely that the frontal spindles corresponded to slow 
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spindles, and the posterior activity corresponded to fast spindles. The suggestion that 

declarative learning is associated with frontal slow spindles was further supported by 

the study mentioned above by Schmidt et al. (2006), where the spindle correlations 

were found only for slow spindles, and on frontocentral electrodes. In contrast to the 

association between slow/frontal spindles and declarative learning, procedural 

learning seems to be most reliably associated with fast/parietal spindles. Tamaki et 

al. (2008, 2009) found that learning a visuospatial motor task increases fast spindle 

activity compared to a non-learning condition, but not slow spindle activity. Finally, 

Milner et al. (2006) found increased spectral power in only the fast spindle range 

after participants learned a motor task.      

In sum, both sleep stage and sleep spindle data provide promising avenues of 

research for looking at the neural events that drive memory consolidation during 

sleep. Applied to word learning tasks, it can be hypothesised that different sleep 

stages may be involved in consolidating different aspects of word knowledge. Based 

on the demonstration of a link between SWS and declarative learning (such as 

learning word-pairs), tasks measuring explicit recall or recognition of novel word 

forms or meanings should benefit from SWS. The declarative vs. procedural 

dichotomy is less helpful in making predictions about emergence of lexical 

competition effects though. In the lexical competition paradigm participants are not 

required to make decisions or recognise the newly learned words, instead what is 

measured is the indirect influence of the new words on the recognition of 

phonologically overlapping familiar words. Such an effect which involves both 

explicit and implicit components may be associated with either SWS or REM sleep, 

or both. In the sleep spindle literature there are no studies looking specifically at the 

integration of new memories with existing memories, which is what the lexical 

competition paradigm measures. However, the CLS accounts suggest that integration 

of new memories is one of the most crucial results of offline consolidation and 

hippocampal-neocortical transfer, hence it is reasonable to expect spindle activity to 

be closely associated with emerging lexical competition effects. The declarative 

tasks that have been shown to be associated with spindle activity also suggest that 

spindles may facilitate consolidation of explicit word recall as well, but perhaps not 

as strongly as lexical integration. 
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6.2 Experiment 8 

The main purpose of Experiment 8 was to see which aspects of sleep 

architecture (specifically sleep stages and spindles) are associated with memory 

consolidation in learning of novel word forms, looking at both lexical competition 

and explicit recall and recognition measures. Participants were trained on 30 spoken 

meaningless novel words, followed by tests of lexical competition and explicit recall 

and recognition immediately after training, about 10 hours after training, and again 

one week after training. Importantly, half of the participants were trained in the 

evening, and spent the night between the immediate and the delayed test in the 

laboratory, while polysomnographic measures were collected during sleep (sleep 

group). The other group were trained in the morning and tested in the evening, with 

no intervening sleep (wake group). Both groups were tested again one week later, at 

the same circadian time as the delayed test.  

While Dumay and Gaskell (2007) also took measures of lexical competition 

in an experiment using a similar design, the current experiment made some 

important changes. Firstly, the current experiment used lexical decision to base 

words, while Dumay and Gaskell used pause detection. Both measures have been 

shown to reliably reveal lexical competition effects. Secondly, Dumay and Gaskell 

used novel words where the novel item was formed by adding a syllable to the end of 

a familiar word (e.g., shadowks, from shadow). The current experiment used novel 

words derived from existing words by changing the phonemes at the end of the 

words, starting at the final vowel (e.g., cathedruke, from cathedral). Again, these 

novel words have been shown in the past to give rise to lexical competition effects 

(e.g., Gaskell & Dumay, 2003). Thirdly, while Dumay and Gaskell tested 

participants immediately after training, 12 hours later, and again 24 hours later, the 

current experiment delayed the third test until one week after training, to see if any 

potential effects involving sleep architecture on the first night would still be seen one 

week later. The most important change to Dumay and Gaskell however was the 

collection of polysomnographic measures overnight. 

Apart from changes to the design and materials used by Dumay and Gaskell 

(2007), Experiment 8 also introduced some new test tasks. In addition to lexical 

decision as a measure of lexical competition, this experiment used free recall, cued 

recall, and old/new categorisation tasks. Free recall was used also by Dumay and 
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Gaskell, and the expectation here was to replicate their finding of improving recall 

overnight in the sleep group, but no significant change in performance in the wake 

group. The cued recall task was added for two reasons. Recall that in Experiment 5 

participants had higher cued recall accuracy rates in words learned on the previous 

day compared to words learned on the day of testing. This consolidation effect may 

have been the result of sleep-dependent consolidation, however as there was no sleep 

vs. wake contrast, it was not possible to determine whether sleep was of importance 

in that task. If sleep provides the optimal conditions for consolidation, there should 

be a benefit for the sleep group over the wake group in the delayed test. It should be 

noted however that by necessity the modality was changed in Experiment 8, and 

hence the composition of the cues was also different. The old/new categorisation 

task was designed to be an improved version of the two-alternative forced choice 

(2AFC) task used by Dumay and Gaskell. The 2AFC test results in very high levels 

of accuracy, possibly masking differences between the groups. Dumay and Gaskell 

found no effect in this test, although Davis et al. (2009) did find a difference between 

consolidated and unconsolidated novel words. However, the old/new categorisation 

task is possibly more sensitive to consolidation not only because it is more difficult, 

but also because it allows an analysis of reaction times as well as accuracy rates. If 

this task benefits from sleep, it was expected that the sleep group’s response times 

would become significantly faster overnight, while the wake group should show 

little improvement. The same should occur with accuracy rates. 

Finally, it was expected that the same pattern of emerging lexical competition 

effects should be seen as in Dumay and Gaskell (2007), with no competition effect in 

either group immediately after training, and an effect seen in only the sleep group in 

the delayed test. Both groups should show the effect in the one-week follow up, at 

which point both groups would have been able to sleep prior to testing. As 

mentioned above, the most critical aspect of the data relate to the PSG measures, 

with potential correlations emerging between measures of word learning and sleep 

stages or sleep spindle activity. 
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6.2.1 Method 

Materials 

The critical stimuli consisted of 60 base words, chosen from a set of 68 

words used by Tamminen and Gaskell (2008). The stimulus selection here was done 

on the basis of the likelihood of observing the lexical competition effect: the items 

that were used were the ones that resulted in the largest lexical competition effect in 

Tamminen and Gaskell (2008). All chosen words were bisyllabic (n = 31) or 

trisyllabic (n = 29), with a phoneme length of 8.0 on average (range = 6-11). The 

mean frequency was 4.5 occurrences per million (range = 2-18). All base words had 

an early uniqueness point, located before the final vowel. 

Each base word had two corresponding novel words which diverged from the 

base word at the final vowel (e.g., cathedruke and cathedruce derived from 

cathedral). One was used as the trained novel word, and the other as a foil in the 

old/new categorisation task. Note that these two novel words differed only by one 

phoneme, which was always the final one. This was done to make the task more 

challenging. All novel words and foils were taken from Tamminen and Gaskell 

(2008). All base words and novel word stimuli are presented in Appendix 10. 

Sixty real words were selected to act as fillers in the lexical decision task. 

This meant that experimental base words (base words for which a new competitor 

was trained) made up only 25% of the real words (30 experimental base words, 30 

control base words for which no new competitor was trained, 60 filler words). The 

filler words were all monomorphemic nouns, and included monosyllabic (n = 30), 

bisyllabic (n = 15), and trisyllabic words (n = 15). All filler words had frequencies 

less than 50 occurrences per million (M = 6.4, range = 2-20), and were of similar 

length to the base words (M = 5.2, range = 4-9).  

Finally, 90 nonwords were created for the lexical decision task. These 

consisted of 30 monosyllabic, 30 bisyllabic, and 30 trisyllabic nonwords. All 

nonwords were created by taking a real word (not used in the experiment) and 

changing one phoneme which could be either in any position. They were similar in 

length to the real words (M = 5.6, range = 4-9). Ten items, five words and five 

nonwords, were also selected for a practice block. All fillers were selected from the 

pool of filler items used by Tamminen and Gaskell (2008). 
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As this experiment was carried out in Boston, USA, all stimuli were recorded 

by a female native speaker of North American English, in a sound proof booth using 

the same recording equipment as in the previous experiments. In addition, a different 

female speaker of North American English recorded the novel words and 

corresponding foils to be used in the old/new categorisation task. The reason for 

using a different speaker in this task was to try to stop participants relying on 

episodic memory of the training stimuli when doing the categorisation task. For 

example, participants might rely on physical cues, such as speech rate or recording 

quality, when deciding whether cathedruke or cathedruce was a word heard in 

training. By using a different speaker the decision would have to be made based on 

the abstract lexical representation. 

Three measures of subjective alertness were used to assess how sleepy 

participants felt at the time of carrying out the test tasks. The first two of these 

consisted of 115 mm visual analogue scales asking participants to rate their ability to 

concentrate, and how refreshed they felt at the time, by marking two lines printed on 

the questionnaire (with end points labelled “poor” to “excellent” for ability to 

concentrate, and “not at all refreshed” and “very refreshed” for how refreshed they 

felt). The third measure was the Stanford Sleepiness Scale (SSS; Hoddes, Zarcone, 

Smythe, Philips, & Dement, 1973), where participants were asked to rate their level 

of sleepiness on a scale from 1 to 7, which each point in the scale labelled as follows: 

1 = Feeling active, vital, alert, or wide awake, 2 = Functioning at high levels, but not 

at peak, able to concentrate, 3 = Awake, but relaxed, responsive but not fully alert, 4 

= Somewhat foggy, let down, 5 = Foggy, losing interest in remaining awake, slowed 

down, 6 = Sleepy, woozy, fighting sleep, prefer to lie down, 7 = No longer fighting 

sleep, sleep onset soon, having dream-like thoughts. 

 

Design 

The base words were divided into two sublists of 30 items in each: one list 

was used as the experimental list, i.e. base words for which a new competitor would 

be taught. The other list acted as a control list, i.e. base words for which no new 

competitor was taught. This allowed a comparison of the recognition times to words 

in the two conditions: words in the experimental list should have slower recognition 

times due to the newly learned competitor. Across all participants both lists were 

used in both conditions an equal number of time. It was important that the items in 
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the lists were matched in recognition times to minimise random statistical noise that 

might obscure the lexical competition effect. Hence recognition times to each item 

were taken from Tamminen and Gaskell (2008) and used as basis for checking that 

the lists were indeed matched on this variable.  

The use of the old/new categorisation task presented a problem, as this task 

required exposing participants to the novel words after training, and hence may act 

as further training, affecting levels of performance in the other recall tasks in the 

delayed test and the one-week follow up test. Although this would be true for all 

participants and thus not confound the sleep vs. wake manipulation, it was decided to 

assess the problem directly by only exposing participants to half of the novel words 

in the old/new categorisation of the immediate test, and to the full set of novel words 

in the two subsequent tests. The two lists of 30 base words and their corresponding 

novel words were hence further divided pseudorandomly into two lists of 15 stimuli, 

with only one of these lists used in the old/new categorisation task immediately after 

training. 

 

Procedure 

Each participant was randomly assigned either to a sleep group or a wake 

group. Participants in the sleep group arrived in the laboratory at 19.30 on the first 

day of the experiment. They then filled in a consent form, a sleep log covering the 

last three nights, the Epworth Sleepiness Scale, and a general demographic form. 

The electrodes for polysomnographic recording were attached prior to the beginning 

of the training session. After the training session, which was initiated at about 21.00 

and lasted about 60 minutes, but prior to starting the testing session, participants 

filled in the alertness and sleepiness questionnaires. The timing of the presentation of 

the questionnaires was chosen to allow me to take these measures at the time of 

testing rather than at the time of training, and to allow a comparison across evening 

and morning testing sessions. After completing the testing session (initiated on 

average at 22.15) which lasted about 30 minutes, participants slept overnight in a 

laboratory bedroom. Participants were woken up by the experimenter in the morning 

at 07.45, allowing for a sleep opportunity of about 8.5 hours. Participants were 

allowed to get dressed, have a small breakfast, and the electrodes were removed. The 

second testing session was initiated about 35 minutes after waking up, again 

preceded by filling in of the alertness questionnaires. A follow-up testing session, 
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identical in procedure to the other test sessions, was held on average 7 days later 

(range = 3-11 days) at approximately the same circadian time as the second testing 

session, on average at 10.15 (no earlier than 09.00 and no later than 11.00). 

The procedure for the wake group was identical to that of the sleep group, 

except for the timing of the sessions. Participants in the wake group arrived in the 

laboratory at 09.00 on the first day of the experiment. They filled in the same 

questionnaires, sleep log, and consent form as the sleep group. They then completed 

the training session, followed by the first testing session (initiated on average at 

09.50). Participants were then free to spend the day as they would normally, 

although they were asked to refrain from caffeine and alcohol during the day. They 

returned to the laboratory in the evening, and carried out the second testing session 

(initiated on average at 19.30). Note that the timing of the sessions was designed to 

match the intervening time between the first two sessions for both groups of 

participants as closely as possible within practical constraints. The mean time that 

elapsed between initiating the first test and the second test was 10 hours and five 

minutes in the sleep group, and 9 hours and 40 minutes in the wake group. The 

follow-up session for the wake group took place on average 7 days later (range = 3-7 

days). 

Training tasks. The training consisted of two tasks: phoneme monitoring and 

word repetition. In phoneme monitoring the task was to decide whether an auditorily 

presented novel word contained a predetermined target sound. In word repetition 

participants were simply asked to repeat aloud an auditorily presented novel word. 

While phoneme monitoring is a task used in most previous novel word studies 

looking at emergence of lexical competition, word repetition was added in this 

experiment in order to give participants a chance to get accustomed to saying the 

novel words aloud since two of the test tasks also required them to do so. 

Each participant completed five main blocks of phoneme monitoring, each 

block consisting of six sub-blocks. In each sub-block only one of the six target 

phonemes was used (/p/, /d/, /s/, /m/, /n/, /l/), and each sub-block included one 

presentation of each novel word. Hence each novel word was heard a total of 30 

times during the phoneme monitoring task. Each of the five main blocks of phoneme 

monitoring was interleaved by one block of word repetition resulting in total number 

of four blocks of word repetition with one presentation of each novel word per block. 

Hence by the end of the training session, each novel word had been heard 34 times. 
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The order of tasks and blocks was fixed, but the order of presentation of novel words 

within a block was randomised by the software used for stimulus delivery (E-prime).   

A phoneme monitoring trial started with the visual presentation of the target 

phoneme on screen for 500 ms, followed by auditory presentation of the novel word 

via headphones. A response was made by pressing a key on a standard laptop 

keyboard, labelled “Yes” or “No”. Participants were encouraged to respond quickly 

and accurately, with a response deadline of 3000 ms. A word repetition trial started 

with a visual warning message “READY” for 500 ms, followed by auditory 

presentation of the novel word. Participants were asked to repeat the novel word 

aloud and to press the Enter key to move on to the next trial. Responses to phoneme 

monitoring trials were recorded, but responses to the word repetition trials were not, 

although the participants were unaware of the latter. Stimulus presentation and 

response collection in the training and testing sessions was carried out on Dell 

laptops running Windows XP and E-prime. Auditory stimuli were delivered via 

Beyerdynamic DT 234 Pro headphones with an integrated microphone for recording 

vocal responses in the testing tasks. The laptop’s keyboard was used as the manual 

input response device in all tasks. 

Testing tasks. Testing sessions included a test of lexical competition (lexical 

decision), free recall, cued recall, and old/new categorisation. The order of the tasks 

was fixed. In the lexical competition task participants were asked to make a lexical 

decision to the experimental base words, control base words, filler words, and filler 

nonwords. A lexical decision trial started with the presentation of a fixation cross on 

the screen for 500 ms. This was followed by auditory presentation of the stimulus, 

which also started timing. Once a response was made, accuracy feedback was 

provided on screen in the form of a happy or a sad cartoon face. If no response was 

detected within 2500 ms from the offset of the word, a message saying “no 

response” was displayed. Feedback was displayed for 750 ms, after which a new trial 

was initiated. The order of presentation was randomised by E-prime. Participants 

were encouraged to always respond as quickly and as accurately as possible. 

Participants were not informed of the relationship between the base words and the 

novel words they had learned earlier. 

In the free recall task participants were given 3 minutes to recall as many 

novel words as possible, without cueing or prompting, and to say them aloud. This 

part of the experiment was timed by the experimenter who remained in the testing 
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room for the duration of the task. Responses were recorded on a minidisc using the 

integrated microphone in the headphones. The responses were transcribed and scored 

offline by the experimenter.  

In the cued recall task participants were presented with the first two or three 

phonemes of a novel word and asked to recall and say the complete novel word 

aloud. The cues were recorded by the same speaker who made the recordings used in 

the training tasks and were selected so that each cue could only correspond to one 

novel word. Each cued recall trial started with the presentation of a fixation cross on 

the screen for 500 ms, followed by the presentation of the auditory cue. Presentation 

order was randomised by E-prime. Participants were given 10 s to make a vocal 

response, and asked to make a key press after saying the word to move on to the next 

trial. If a new trial was not initiated within 10 s, a message was displayed on the 

screen asking the participant to say the word “blank” and to move on to the next 

trial. The vocal responses were again recorded on a minidisc, and transcribed and 

scored later by the experimenter.  

In the old/new categorisation task participants were presented with novel 

words and the novel word foils in a pseudorandomly ordered list, and asked to 

decide after each stimulus whether it was a trained novel word (old), or a foil not 

heard in training (new). A trial started with the presentation of a fixation cross for 

500 ms. The auditory stimulus was then presented, after which 3000 ms was given to 

make a response by pressing a key labelled “Yes” or “No” on the keyboard. 

Participants were instructed to respond Yes to trained novel words and No to foils. 

No accuracy feedback was provided in order to prevent this task from acting as a 

further training opportunity, but RT feedback was given in the form of a message 

saying “too slow” if no response was detected within the 3000 ms. Two 

pseudorandom orders of presentation were created with Mix (van Casteren & Davis, 

2006) for each of the three testing sessions. In both orders half of the novel words 

were preceded by their corresponding foils, and vice versa. Furthermore, each novel 

word and its foil were separated by a minimum of four items, and no more than five 

trials of one response type (trained or foil word) were allowed to be presented in 

sequence. Different orders were used in each testing session, so that no participant 

experienced the same order more than once. Participants were instructed to respond 

as quickly and as accurately as possible. 
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Polysomnographic recording. A Grass Technologies system was used to 

record EEG at a 200 Hz sampling rate. Four scalp electrodes were used, positioned 

according to the international 10-20 system (F3, F4, C3, C4), with each electrode 

referenced to the contralateral mastoid. Two electro-oculographic (EOG) channels 

were used to monitor eye movements, and two electromyographic (EMG) channels 

monitored chin movements. Sleep data were categorised into sleep stages visually in 

30 s epochs according to Rechtschaffen and Kales (1968).  Table 4 shows the main 

sleep parameters of the participants in the sleep group. Participants slept on average 

8 hours, with a mean sleep onset latency of 15 minutes. Average times spent in the 

different sleep stages in this experiment were comparable with values reported in 

other sleep studies. 

 

Table 4. Sleep parameters in overnight participants in Experiment 8. 
 

Sleep parameter  Mean time (min) ± SEM  % of total sleep time ± SEM 
Total sleep time  478 ± 6   
Wake after sleep onset  17 ± 2   
Sleep latency  15 ± 3   
Stage 1  28 ± 2  5.8 ± 0.5 
Stage 2  274 ± 6  57.5 ± 1.0 
SWS (Stages 3 + 4)  77 ± 4  16.3 ± 0.9 
REM  97 ± 5  20.3 ± 0.9 
Note: SWS = slow wave sleep, REM = rapid eye movement sleep, SEM = standard error of the mean. 
 

Participants 

Sixty-five native English speaking participants were recruited for this 

experiment.  All participants were required to abstain from alcohol and drugs for 24 

hours prior to the experiment, and to avoid consuming caffeine during the day of 

training and between the first and second tests. Further exclusion criteria included 

medication affecting sleep, history of sleep disorders, and history of serious mental 

disorders. Participants were asked to maintain a regular sleep schedule on the three 

days prior to the experiment. This was confirmed by asking participants to fill in 

sleep logs covering the past three nights upon arriving in the laboratory. One 

participant dropped out after the first session, and two further participants dropped 

out after two sessions. Data from the former has been excluded, but the latter 

datasets have been retained as overnight consolidation can still be evaluated for these 

participants. One participant’s data in the sleep group were excluded due to non-

compliance with the recruitment criteria, and another in the wake group was 



Chapter 6 

 219 

excluded due to chance level performance in the training task (52% correct in 

phoneme monitoring), suggesting this participant did not comply with the training 

instructions. This left 62 participants in total, all of whom were students at colleges 

in the Boston (USA) area. Thirty-one participants served in the sleep condition (8 

males, mean age = 20.4, range = 18-30), and another 31 in the wake condition (10 

males, mean age = 20.5, range = 18-30).  No participants reported language 

disorders, or had participated in any of the previous experiments reported in this 

thesis. Participants were paid $50 (about £30) for taking part. 

 

6.2.2 Results 

6.2.2.1 Behavioural data 

Training. Accuracy in the phoneme monitoring task was analysed to make 

sure all participants had attended to the task, and to see if the sleep or wake group 

showed evidence of better learning during the training. The sleep group had an 

average accuracy rate of 84.5% (SEM = 0.02), while the wake group scored 86.3% 

(SEM = 0.02) correct. A mixed-effects logistic regression model was fitted to the 

data. Subjects and items were included in random effects, and group (sleep vs. wake) 

as a fixed factor. LLR tests showed that subject-specific random slopes for trial 

position improved goodness of fit. The effect of group on accuracy failed to show a 

significant effect (b = 0.042, z = 0.23, p = 0.81). It appeared then that the participant 

groups were equally successful in the phoneme monitoring task. 

Testing. Data from the lexical decision task were analysed first. The data 

were log transformed, and extremely fast and slow RTs were removed (RTs faster 

than 5.7 log-ms [300 ms] and slower than 7.8 log-ms [2500 ms]). The sleep and 

wake groups were initially analysed separately. A mixed-effects linear model with 

subjects and items as random variables, and base word condition (experimental = 

base words for which a new competitor was learned, control = base words for which 

no new competitor was learned), and time of testing (immediate, delayed, one-week 

later) as fixed variables was fitted for the sleep group (Figure 52, left panel). Subject-

specific slopes for trial position significantly improved the fit of the model. 

Interaction contrasts involving base word condition and time of testing showed that 

the difference between the experimental and control base words was significantly 

different in the delayed and one-week follow up tests compared to the immediate test 
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(b = -0.056, t = -4.30, p < .001, and b = -0.063, t = -4.70, p < .001 respectively). No 

difference in this respect was found between the delayed and one-week follow up 

data. The difference between the two base word conditions was significant in all 

three time of testing conditions (immediate = 0.027, t = 2.90, p < .001, delayed:  

b = -0.029, t = -3.20, p < .001, one-week follow up: b = -0.036, t = -3.80, p < .001) 

with faster RTs to experimental compared to control base words in the immediate 

test, but the advantage reversing in the two latter test times. Next, the effect of time 

of testing was evaluated for both base word conditions separately. In the 

experimental base words, RTs became slower, although only marginally so, in the 

delayed test compared to the immediate test (b = 0.017, t = 1.80, p = .08), and 

speeded up significantly from the delayed to the one-week follow up test (b = -0.029, 

t = -3.10, p = .002) with no difference found between the immediate and the one-

week follow up test. RTs to the control base words on the other hand became 

significantly faster from the immediate to the delayed test (b = -0.040, t = -4.30,  

p < .001), from the delayed to the one-week follow up test (b = -0.036, t = -3.90,  

p < .001), and from the immediate to the one-week follow up test (b = -0.076,  

t = -8.10, p < .001). 

 

 

 

 

 

 

 

 

 

Figure 52. Lexical decision RTs to base words in sleep and wake groups. Error bars represent 
standard error of the means. 

 

Accuracy rates are presented in Figure 53 (left panel), and were analysed 

using a mixed-effects logistic regression model with the same factors as in the RT 

analysis. No significant interaction contrasts were found. The simplified model 

showed that overall accuracy was higher in the delayed test than in the immediate 

test (b = 0.272, z = 2.36, p = .02†). No other contrasts reached significance. Although 
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the interaction was non-significant, visual inspection of Figure 53 suggests the 

advantage in the delayed test is mainly due to the control base words. Looking at the 

immediate vs. delayed test contrast for the control and experimental base words 

separately, the accuracy improvement from the immediate to the delayed test was 

significant for control base words only (b = 0.364, z = 2.20, p = .03†).   

 

 

 

 

 

 

 

 

 

Figure 53. Lexical decision accuracy rates to base words in sleep and wake groups. Error bars 
represent standard error of the means. 

 

Next the same analyses were carried out for the wake group (Figure 52, right 

panel). An identical model was used for this RT data set. Again, interaction contrasts 

showed the effect of base word condition was significantly different in the delayed 

and one-week follow up tests compared to the immediate test (b = -0.046, t = -3.52, 

p < .001, and b = -0.063, t = -4.81, p < .001 respectively). No significant difference 

was found in the size of the base word condition effect between the delayed and one-

week follow up test. In the immediate test RTs to experimental base words were 

significantly faster than control base words (b = 0.024, t = 2.48, p < .001). The 

opposite pattern was seen in the delayed and one-week follow up tests (b = -0.021,  

t = -2.19, p = .036†, and b = -0.039, t = -3.90, p < .001). Looking at the effect of time 

of testing, RTs to experimental base words became faster from the immediate to the 

delayed test (b = -0.054, t = -5.84, p < .001), and the one-week follow up test  

(b = -0.042, t = -4.53, p < .001), but not further from the delayed to the one-week 

follow up test. The same pattern was seen in the control base words with significant 

speeding up from immediate to delayed test, but no further change from delayed to 

the one-week follow up (immediate vs. delayed: b = -0.099, t = -10.81, p < .001, 

immediate vs. one-week follow up: b = -0.106, t = -11.29, p < .001).  
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Accuracy rates are shown in Figure 53 (right panel). A mixed-effects logistic 

regression using the same factors as the RT analysis showed no significant 

interaction contrasts between time of testing and base word condition. The simplified 

model showed no difference between the two base word conditions. A significant 

overall increase in accuracy was found from the immediate to the delayed test  

(b = 0.248, z = 2.09, p = .04†), followed by a decrease in accuracy rates from the 

delayed to the one-week follow up test (b = -0.360, z = -3.04, p = .002). No 

significant difference was found between the immediate and the one-week follow up 

tests, or between the two base word conditions. Figure 53 (right panel) suggests that 

the change seen in accuracy rates as a function of time of testing is mainly carried by 

the control base words, although no interaction contrasts reached significance. 

Looking at the experimental and control base words separately revealed that in 

experimental base words there was no change from immediate to delayed test, but 

there was a marginally significant decrease in accuracy from the delayed test to the 

one-week follow up (b = -0.323, z = -1.95, p = .05†). In the control base words on the 

other hand there was a significant increase in accuracy from the immediate to the 

delayed test (b = 0.406, z = 2.43, p = .02†), followed by a significant decrease in 

accuracy in the one-week follow up (b = -0.404, z = -2.39, p = .02†). No difference 

was found between the immediate and one-week follow up tests. The difference 

between the two base word conditions did not reach significance in any of the test 

times. 

Combined RT analysis of sleep and wake groups. The analyses presented 

above show the same pattern of data for both sleep and wake groups in terms of the 

difference between base word conditions in each of the three testing sessions. Both 

groups showed the lexical competition effect in the delayed test and in the one-week 

follow up. To statistically pinpoint potential differences between the two groups, 

data from the groups were combined in the following analysis. A mixed-effects 

linear model with subjects and items as random variables, and base word condition 

(experimental = base words for which a new competitor was learned, control = base 

words for which no new competitor was learned), time of testing (immediate, 

delayed, one-week later), and test-retest interval type (sleep vs. wake) as fixed 

variables was fitted. Subject-specific slopes for trial position were also added. Any 

differences between the sleep and wake groups would take the form of an interaction 

involving interval type, hence the main focus in this analysis was on such interaction 
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contrasts. No three-way interaction contrasts were significant, showing that the 

critical effect of base word condition was similar in both sleep and wake groups in 

all testing sessions. This interaction term was consequently dropped. The simplified 

model revealed a significant interaction between time of testing and interval type, 

showing that RTs in the wake group speeded up from the immediate to delayed and 

one-week tests more than in the sleep group (immediate vs. delayed: b = -0.064,  

t = -6.90, p < .001, immediate vs. one-week: b = -0.029 t = -3.10, p < .001). 

However, the contrast between the delayed session and the one-week follow up 

showed that the RT difference between these two times was significantly smaller in 

the wake group than in the sleep group (b = 0.035, t = 3.70, p < .001). The 

interaction between base word condition and interval type was non-significant, 

confirming that both the sleep and wake groups showed a similar lexical competition 

process. In sum then, there was no significant difference between the wake and sleep 

groups in terms of the lexical competition effect. In the immediate test both groups 

showed a reversed lexical competition effect, where RTs to experimental base words 

were facilitated relative to control base words. In the delayed test the competition 

effect did emerge, and was of similar magnitude in both group. It was also present in 

the one-week follow up, and again was of similar magnitude in both groups. 

Free recall. Responses were considered accurate only if the response was 

made within the 3 minutes given, and if the phonetic transcription of the response 

completely matched the phonetic transcription of the novel word. Figure 54 shows 

the accuracy rates in the three test sessions (left panel). The right panel of Figure 54 

shows the magnitude of change in accuracy rates between the immediate and delayed 

tests, and between the delayed and the one-week follow up tests. The proportion of 

novel words recalled accurately was analysed using a mixed effects logistic 

regression model, with subjects and items as random variables, and time of testing 

(immediate, delayed, one-week later), and test-retest interval type (sleep vs. wake) as 

fixed variables. In addition, it was important to assess whether the one extra 

exposure gained during the old/new categorisation task in the immediate test affected 

performance in the free recall task in the delayed test. To answer this question, 

old/new categorisation exposure was also added as a fixed factor in the full model 

(exposed vs. not exposed). If the one extra exposure resulted in increased recall rates  
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Figure 54. Accuracy rates in the free recall task, and change in accuracy rates over time. Error 

bars represent standard error of the means. 
 

in the delayed test, this should be seen as an interaction between exposure and one or 

more of the other factors. The results showed however that exposure did not enter 

into interaction with any of the other factors. Hence this variable was dropped, and 

the subsequent analysis deals with data collapsed across the exposed and non-

exposed novel words in delayed and one-week follow up sessions. In the simplified 

model interaction contrasts between time of testing and test-retest interval type 

showed that the difference in recall rates between the sleep and wake groups was 

significantly larger in the delayed test than either in the immediate test (b = 0.877,  

z = 3.74, p < .001) or in the one-week follow up (b = 0.663, z = 2.99, p = .003). 

Contrasts assessing the effect of interval type at each test session showed no 

significant difference between the sleep and wake groups in the immediate test, a 

marginally significant difference in the delayed test (b = -0.468, z = -1.86, p = .06†), 

and no difference in the one-week follow up. Next, the effect of time of testing was 

analysed for both the sleep and wake groups. In the sleep condition, number of 

words recalled increased significantly from the immediate to the delayed test  

(b = 0.625, z = 3.78, p < .001), and to the one-week follow up (b = 0.471, z = 2.78,  

p = .005†). The change from delayed to one-week follow up was non-significant. In 

the wake group on the other hand there was no significant change in recall from the 

immediate to the delayed test, but a significant improvement was found between the 

delayed and the one-week follow up tests (b = 0.509, z = 3.16, p = .002). The 

difference between the immediate and the one-week follow up did not reach 

significance though. 
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As can be seen in Figure 54, wake participants had better recall scores in the 

immediate test, although this difference was not statistically significant. To make 

sure that the changes in accuracy between the test times were not an artefact of 

different levels of initial performance, the data were reanalysed using subsets of 

participants who were matched in their recall rates in the immediate test. Participants 

in the wake group who had the highest accuracy rates (0.37 or higher), and 

participants in the sleep group who had accuracy rates of zero were removed to 

create subsets of 29 and 27 participants in the two groups respectively, with matched 

initial recall scores (0.09 in both groups). An identical model as before was fitted on 

the matched data, and the results revealed a nearly identical pattern of data in the 

matched groups. The only two changes were that the difference between the sleep 

and wake groups in the delayed test session now reached significance (b = -0.613,  

z = -2.49, p = .01†), and that in the wake group the difference between the immediate 

and the one-week test also now reached significance (b = 0.358, z = 2.09, p = .04†). 

To summarise the analysis, recall rates in the sleep group improved significantly 

overnight, while rates in the wake group during the day did not change. The wake 

group did however experience a significant improvement from the delayed to the 

one-week follow up test, suggesting that once sleep was allowed, a similar 

improvement was seen as in the sleep group. Analysis of the groups matched on 

initial recall confirmed this pattern was not an artefact of differences in training 

success. 

Cued recall. The cued recall data were analysed using the same strategy as in 

the free recall task (Figure 55). The mixed-effects logistic regression model showed 

no significant interactions involving old/new categorisation exposure, hence this 

factor was dropped. Interaction contrasts involving time of testing and test-retest 

interval type showed that the difference in recall performance between the sleep and 

wake groups changed significantly in the delayed test (b = -1.165, z = -5.95,  

p < .001) and the one-week follow up test (b = -0.565, z = -2.99, p = .003) from the 

immediate test. The difference between the groups was non-significant in the 

immediate test, reached significance in the delayed test (b = -0.717, z = -2.38,  

p = .02†), and was non-significant in the one-week follow up. Recall performance in 

the sleep group improved significantly from the immediate test to the delayed test  

(b = 0.534, z = 3.97, p < .001), and from the delayed to the one-week follow up test 

(b = 0.261, z = 2.04, p = .04†). The difference between the immediate and the one-
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week follow up tests was also significant (b = 0.797, z = 5.86, p < .001). In the wake 

group recall performance decayed significantly from the immediate to the delayed 

test (b = -0.633, z = -4.46, p < .001), but improved significantly from the delayed to 

the one-week follow up (b = 0.861, z = 6.23, p < .001). The improvement between 

the immediate test and the one-week follow up failed to reach significance. 

 

 

 

 

 

 

 

 

 

Figure 55. Accuracy rates in the cued recall task, and change in accuracy rates over time. Error 
bars represent standard error of the means. 

 

As Figure 55 shows, in the immediate test there was a numerical difference 

between the wake and sleep groups, although this difference did not reach statistical 

significance. As was done in the free recall analysis, matched subsets of 26 

participants in both the sleep and wake groups were selected by removing wake 

participants who had accuracy rates of 0.34 or higher, and sleep participants who had 

accuracy rates of 0.03 or lower, resulting in closely matched initial recall rates (0.17 

accuracy rate in both groups in the immediate test). An identical model was fitted on 

these data as was used in the original analysis. The matched data showed exactly the 

same pattern of results as the full analysis, with one difference only. In the matched 

groups the difference between sleep and wake groups in the one-week follow up test 

now reached significance (b = -0.762, z = -2.99, p = .003), with the sleep group 

recalling significantly more words than the wake group. In sum, the cued recall task 

reflected the same main findings at the free recall task, with significant recall 

improvement overnight in the sleep group, but no improvement in the wake group 

(in fact a decline was seen here) until in the one-week follow up. 

Old/new categorisation. The first analysis looked at RTs to trained novel 

words (Figure 56), i.e. the time it took to categorise a stimulus as a trained word (an  
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Figure 56. Response times to novel words in the old/new categorisation task, and change in RTs 
over time. Error bars represent standard error of the means. 

 

“old” word). Only accurate responses were considered, and extremely fast and slow 

RTs were removed (RTs faster than 5.7 log-ms [300 ms] and slower than 8.0 log-ms 

[3000 ms]). As was done in the free and cued recall tasks, old/new categorisation 

exposure in the immediate test was initially included as a fixed factor to see if it 

modulated any of the effects associated with the other factors in the delayed and 

follow up tests. It did not enter into an interaction with any of the other factors, 

hence it was not included in the model reported here. A mixed-effects linear model 

with subjects and items as random variables, and test-retest interval type (sleep vs. 

wake) and time of testing (immediate, delayed, one-week later) as fixed variables 

was fitted. Subject-specific slopes for trial position significantly improved the fit of 

the model. Interaction contrasts between time of testing and interval type showed 

that the RT difference between the sleep and the wake group was significantly larger 

in the delayed test than either in the immediate or the one-week follow up tests  

(b = -0.065, t = -2.94, p = .002 and b = -0.078, t = -4.24, p < .001 respectively). The 

difference between the groups however was non-significant in all three test times. In 

the sleep group, responses became faster from the immediate to the delayed test  

(b = -0.067, t = -4.14, p < .001), and from the delayed to the one-week follow up  

(b = -0.029, z = -2.27, p = .03†). Similarly, the difference between the immediate and 

one-week follow up was significant (b = -0.096, z = -5.85, p < .001). In the wake 

group on the other hand RTs did not change significantly from the immediate to the 

delayed test, but there was significant improvement from the delayed to the one-
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week follow up (b = -0.107, z = -8.32, p < .001). The difference between the 

immediate and the one-week follow up test was also significant (b = -0.109,  

z = -6.88, p < .001). 

 

 

 

 

 

 

 

 

 

 

Figure 57. Accuracy rates in the old/new categorisation task. Error bars represent standard 
error of the means. 

 
The accuracy rates to trained novel word trials in the old/new categorisation 

task are shown in the left panel of Figure 57. A mixed effects logistic regression 

model with subjects and items as random variables, and time of testing (immediate, 

delayed, one-week later), and test-retest interval type (sleep vs. wake) as fixed 

variables benefitted from subject-specific slopes for trial position. An interaction 

with time of testing and interval type showed that the accuracy difference between 

the sleep and wake groups was significantly different in the delayed test compared to 

the immediate test (b = 0.702, z = 3.34, p < .001) or to the one-week follow up test 

(b = 0.560, z = 3.53, p < .001). The difference between the sleep and wake groups 

was significant in the immediate test (b = 0.473, z = 2.11, p = .03†), failed to reach 

significance in the delayed test, and was marginally significant in the one-week 

follow up test (b = 0.331, z = 1.90, p = .057†). The effect of time of testing was 

assessed next for both interval groups separately. Accuracy rates in the sleep group 

did not change between the immediate test and the delayed test, but did decline 

significantly from the delayed to the one-week follow up test (b = -0.366, z = -3.27, 

p = .001). The difference between the immediate and the one-week follow up test 

was also significant (b = -0.382, z = -2.59, p = .01†). In the wake group there was a 

significant decline in accuracy rates between the immediate and the delayed test  
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(b = -0.718, z = -4.54, p < .001), followed by a non-significant improvement 

between the delayed test and the one-week follow up. The difference between the 

immediate and one-week follow up tests was significant (b = -0.524, z = -3.26, p = 

.001). 

 

 

 

 

 

 

 

 

 

Figure 58. Response times to foils in the old/new categorisation task, and change in RTs over 
time. Error bars represent standard error of the means. 

 
Categorisation times to the foils (untrained “new” words) were analysed next 

(Figure 58). A mixed-effects linear model with subjects and items as random 

variables, and interval type (sleep vs. wake) and time of testing (immediate, delayed, 

one-week later) as fixed variables was fitted. Subject- and item-specific slopes for 

time of testing significantly improved the fit of the model. No interaction contrasts 

reached significance. Averaged over interval type, RTs became significantly faster 

from the immediate to the delayed test (b = -0.062, t = -3.56, p = .001), and from the 

delayed to the one-week follow up test (b = -0.095, t = -6.03, p < .001), and from the 

immediate to the one-week follow up (b = -0.157, t = -8.12, p < .001). No difference 

was found between the sleep and wake groups when averaged over the test sessions. 

To confirm that there were no differences between the sleep and wake groups, data 

from both groups were analysed separately. In the sleep group responses became 

faster between the immediate and delayed tests (b = -0.073, t = -3.25, p = .002), 

between the delayed and one-week follow up tests (b = -0.076, t = -3.74, p < .001) 

and between the immediate and one-week follow up tests (b = -0.149, t = -5.91,  

p < .001). Similarly, in the wake group there was a significant improvement between 

the immediate and delayed test (b = -0.051, t = -2.27, p = .03†), between the delayed 

and one-week follow up test (b = -0.114, t = -5.57, p < .001) and between the 

immediate and one-week follow up test (b = -0.165, t = -6.55, p < .001). No 
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significant difference between the sleep and wake groups was found at any of the 

three testing times. 

Accuracy rates in categorising foils (untrained “new” words) are presented in 

the right panel of Figure 57. A mixed effects logistic regression model with subjects 

and items as random variables, and time of testing (immediate, delayed, one-week 

later), and interval type (sleep vs. wake) as fixed variables benefitted from subject- 

and item-specific slopes for trial position. Interaction contrasts showed that there was 

a significant change in the difference between the wake and sleep groups from the 

immediate test to the delayed (b = -0.453, z = -2.01, p = .04†) and one-week follow 

up tests (b = -0.647, z = -2.81, p = .005†), reflecting the wake advantage in the 

immediate test changing into a sleep advantage in the two later tests. There however 

was no significant difference between the sleep and wake groups in any of the three 

test sessions. Looking at the effect of time of testing in the two interval groups 

separately, the model showed that in the sleep group there was a significant 

improvement in accuracy from the delayed to the one-week follow up test  

(b = 0.543, z = 3.83, p < .001). No other contrasts reached significance in this group. 

In the wake group there was a significant decline in accuracy from the immediate to 

the delayed test (b = -0.686, z = -3.96, p < .001), but a significant improvement from 

the delayed to the one-week follow up (b = 0.351, z = 2.61, p = .009†). The 

difference between the immediate and the one-week follow up tests was marginally 

significant (b = -0.336, z = -1.93, p = .05†). 

In the old/new categorisation task the most critical condition was the one 

where categorisation responses were made to the novel words (“old”) as this gives a 

measure of recognition time directly to the novel words. Here sleep group RTs 

improved overnight, while no significant change was seen in the wake group. The 

wake group did improve by the one-week follow up, and an improvement was seen 

in the sleep group as well. In the one-week follow up RTs in the two groups were 

nearly identical. 

 

6.2.2.2 Self-reported measures of alertness 

Mean scores from the alertness and sleepiness questionnaire in each test 

session are presented in Table 5. An ordinal logistic regression model was used to 

analyse the Stanford Sleepiness Scale data, with test-retest interval type (sleep vs. 

wake) and time of testing (immediate, delayed, one-week follow up) as predictors. 
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These two factors did not enter into an interaction, hence the term was dropped. 

Averaged across the time of testing conditions, there was no significant difference 

between the sleep and wake groups. There was a significant change in the scores 

from the immediate to the delayed test (b = -2.783, z = -7.68, p < .001), but no 

further change from the delayed to the one-week follow up. The difference between 

the immediate and one-week follow up was significant (b = -3.197, z = -7.68,  

p < .001). Although there was no significant interaction between the two factors, 

Table 5 suggests there was a numerical difference between the sleep and wake 

groups at least in the immediate test. This difference however did not reach 

significance in any of the three testing sessions. When examined individually, both 

the sleep and wake groups showed the same pattern of change over time as was seen 

in the overall analysis above (for sleep group immediate vs. delayed: b = -3.152,  

z = -5.86, p < .001, delayed vs. follow up: b = -0.667, z = -1.35, p = .18, immediate 

vs. follow up: b = -3.819, z = -6.79, p < .001, for the wake group immediate vs. 

delayed: b = -2.496, z = -4.83, p < .001, delayed vs. follow up: b = -0.181, z = -0.37, 

p = .71, immediate vs. follow up: b = -2.676, z = -5.20, p < .001).  

 

Table 5. Self-reported measures of sleepiness and alertness in the sleep and wake groups. 
 

  Immediate test  Delayed test  One-week follow up 
Stanford scale       
 Sleep 3.90 (0.23)  2.13 (0.14)  1.87 (0.13) 
 Wake 3.45 (0.18)  2.26 (0.19)  2.07 (0.14) 
Ability to concentrate       
 Sleep 5.04 (0.39)  8.22 (0.27)  9.02 (0.29) 
 Wake 6.79 (0.36)  8.54 (0.34)  8.81 (0.28) 
Feeling refreshed       
 Sleep 4.16 (0.32)  8.38 (0.36)  8.61 (0.34) 
 Wake 5.26 (0.38)  7.74 (0.43)  8.19 (0.36) 
Note. Standard error in parentheses. In the Stanford scale 1 = awake, 7 = sleepy. In the visual 
analogue scales 0 = poor/not at all refreshed, 11.5 = excellent/very refreshed.  
 

The data from the visual analogue scale asking participants to rate their 

ability to concentrate were analysed next (Table 5). Here participants were asked to 

mark the printed line at a location that best corresponded to their current ability to 

concentrate. The location of the mark was measured (in centimetres) from the 

beginning of the line, giving a numerical value between 0 and 11.5, where 0 

corresponds to “poor” and 11.5 to “excellent”. A mixed-effects linear model with 

subjects as random factors, and test-retest interval type (sleep vs. wake) and time of 
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testing (immediate, delayed, one-week follow up) as fixed factors was used to 

analyse the data. Interaction contrasts showed that the difference between the sleep 

and wake groups was significantly smaller in the delayed (b = -1.426, t = -2.70,  

p = .008†) and one-week follow up tests (b = -1.951, t = -3.65, p < .001) compared to 

the immediate test. No difference in the magnitude of this effect was seen between 

the delayed and one-week follow up tests. The difference between the sleep and 

wake groups was significant in the immediate test (b = 1.748, t = 3.79, p < .001), 

with participants in the wake condition reporting better level of concentration. This 

difference however was non-significant in all subsequent test sessions. In the sleep 

group there was a significant increase in ability to concentrate from the immediate to 

the delayed test (b = 3.174, t = 8.49, p < .001) and from the delayed to the one-week 

follow up test (b = 0.812, t = 2.15, p = .03†), as well as from the immediate to the 

one-week follow up test (b = 3.986, t = 10.55, p < .001). A similar pattern was seen 

in the wake group, with concentration scores increasing from the immediate to the 

delayed test (b = 1.748, t = 4.68, p < .001), although not from the delayed to the one-

week follow up. The difference between the immediate and the one-week follow up 

tests was significant (b = 2.035, t = 5.39, p < .001). 

An identical linear model was used to analyse data from the scale asking 

participants to rate how refreshed they felt. Here 0 corresponded to “not at all 

refreshed”, and 11.5 corresponded to “very refreshed”. Interaction contrasts showed 

that the difference between the sleep and wake groups was significantly smaller in 

the delayed (b = -1.742, t = -2.79, p = .006†) and in the one-week follow up test  

(b = -1.528, t = -2.43, p = .02†) compared to the immediate test. The difference 

between delayed and follow up tests was non-significant. Further inspection of 

contrasts showed that the difference between the sleep and wake groups was 

significant in the immediate test (b = 1.100, t = 2.13, p = .03†), but non-significant in 

the following two test sessions. Looking at the ratings as a function of time of 

testing, in the sleep group ratings increased from the immediate to the delayed test  

(b = 4.223, t = 9.58, p < .001), but did not change from the delayed to the follow up 

test. The difference between the immediate and the follow up test was significant  

(b = 4.453, t = 10.00, p < .001). The same pattern was seen in the wake group, with a 

significant increase in ratings from the immediate test to the delayed test (b = 2.481, 

t = 5.63, p < .001), but no further increase from the delayed to the one-week follow 
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up. The difference between the immediate and the follow up tests was significant (b 

= 2.926, t = 6.57, p < .001). 

The above data can be summarised by drawing attention to two findings. The 

first finding, supported by all three scales, was that participants were more tired and 

less attentive in the immediate test than in either of the two later tests. This was true 

of both the sleep and the wake group. The effect was probably caused by the 

presence of the training session which was likely to cause fatigue. However, as the 

same effect holds for both groups, it cannot account the sleep vs. wake differences 

reported above. The second finding, supported only by the two visual analogue 

scales, was that the sleep group was less attentive in the immediate test than the 

wake group. This may explain why there was a trend in accuracy rates in the free and 

cued recall tasks in favour of the wake group. The analyses in those tasks using 

groups matched on immediate recall rates however showed that this initial difference 

did not affect the subsequent performance differences between the groups in the two 

delayed test sessions. Hence it seems that the changes in self-reported fatigue and 

attentiveness cannot account for the differences between the sleep and wake groups. 

It is also difficult to see how these measures could explain the delayed emergence of 

the lexical competition effect, although the possibility that fatigue blocks the 

competition effect cannot be conclusively ruled out based on these data. However, in 

the light of several earlier reports of a delayed competition effect (Gaskell & Dumay, 

2003; Dumay et al., 2004; Dumay & Gaskell, 2007; Tamminen & Gaskell, 2008; 

Davis et al., 2009) or a strengthening competition effect over time (Fernandes et al., 

2009), the fatigue explanation can be regarded as unlikely. There was also no 

consistent evidence for circadian effects in the questionnaire data: these should 

manifest in differences between the sleep and wake groups. The only difference was 

found in the immediate test session. Circadian effects might also be seen in the test 

performance data with performance improving in the evening compared to the 

morning (Hasher et al., 2005). Such a pattern however was not seen in any of the 

tests. 

 

6.2.2.3 Polysomnographic measures 

Sleep stages. Pearson correlation coefficients were calculated for the 

correlation between the word learning measures in the four tasks and total sleep time, 

time spent in stage 2 sleep, in SWS, and in REM sleep. The word learning measures  
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Table 6. Correlations between word learning measures and time spent in different sleep stages. 
 

    TST Stage 2 REM SWS 

Lexical competition       

 Change overnight r -0.165 -0.056 0.069 -0.191 

  p 0.38 0.77 0.71 0.30 

 Immediate test r 0.338 0.128 0.068 0.184 

  p 0.06 0.49 0.71 0.32 

 Delayed test r 0.153 0.069 0.187 -0.072 

  p 0.41 0.71 0.31 0.70 

 Follow up test r -0.181 -0.084 -0.143 0.057 

  p 0.34 0.67 0.45 0.77 

Free recall       

 Change overnight r 0.108 0.256 0.038 -0.271 

  p 0.56 0.16 0.84 0.14 

 Immediate test r -0.182 -0.131 -0.116 0.11 

  p 0.33 0.48 0.53 0.56 

 Delayed test r -0.072 0.063 -0.071 -0.079 

  p 0.70 0.74 0.70 0.67 

 Follow up test r -0.326 -0.146 -0.289 -0.03 

  p 0.08 0.44 0.12 0.87 

Cued recall       

 Change overnight r 0.072 -0.008 0.064 0.134 

  p 0.70 0.97 0.73 0.47 

 Immediate test r -0.239 0.037 -0.364 -0.02 

  p 0.20 0.84 0.044† 0.91 

 Delayed test r -0.164 0.03 -0.283 0.062 

  p 0.38 0.87 0.12 0.74 

 Follow up test r -0.292 -0.082 -0.372 -0.042 

  p 0.13 0.67 0.047† 0.83 

Old/new       

categorisation Change overnight r -0.034 -0.385 -0.117 0.495 
  p 0.86 0.033† 0.54 0.005† 
 Immediate test r -0.165 -0.345 0.087 0.250 

  p 0.37 0.06 0.65 0.18 

 Delayed test r -0.215 -0.102 -0.003 -0.169 

  p 0.25 0.59 0.99 0.36 

 Follow up test r -0.015 -0.087 0.184 0.012 

  p 0.94 0.65 0.34 0.95 

Note: Significant correlations in bold. TST = total sleep time, REM = time spent (in minutes) in rapid 
eye movement sleep, SWS = time spent (in minutes) in slow wave sleep. † = p-values that do not 
survive a Bonferroni correction for multiple comparisons. 
 

included the magnitude of the lexical competition effect (difference in RTs to 

experimental and control base words), free and cued recall performance, and old/new 

categorisation RTs to trained novel words. The correlation coefficients and their 

corresponding p-values are presented in Table 6. The p-values in the table are 
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uncorrected for multiple comparisons, however Bonferroni adjusted p-values were 

calculated (with alpha level at .05) and those tests that failed to meet the adjusted  

alpha level are marked with the symbol †. The correction was calculated by 

considering contrasts within each test task as multiple comparisons. The rows titled 

“Change overnight” refer to the difference in performance between the immediate 

and the delayed test. The table shows that the strongest correlation was between time 

spent in SWS and the difference in old/new categorisation RTs from the immediate 

to the delayed test, with increasing SWS associated with larger RT improvement 

overnight. The opposite pattern was seen with stage 2 sleep duration, with larger 

improvement associated with decreasing stage 2 duration. This suggests that in the 

participants whose categorisation RTs improved the most the increase in SWS may 

have been at the expense of stage 2 sleep. There were also statistically less reliable 

correlations between time spent in REM and cued recall performance in the 

immediate and one-week follow up tests, with increasing REM durations associated 

with poorer cued recall performance.  

Another common way of analysing sleep stage correlations is to look at 

percentage of REM, SWS and stage 2 sleep rather than the actual time spent in these 

stages. The advantage of this analysis is that it focuses on effects of sleep stages 

independent of total sleep time. This analysis showed similar results as the analysis 

in Table 3. The correlation between SWS and old/new categorisation change 

overnight was still highly significant (r = 0.483, p = .006†), as was the correlation 

with stage 2 sleep (r = -0.462, p = .009†). The correlations between cued recall and 

REM were no longer significant. This lack of significance in the proportional 

analysis and the high p-values (which did not reach corrected significance) in the 

non-proportional analysis suggest that the cued recall correlations may be unreliable 

and should be viewed with caution. The old/new categorisation correlations also 

failed to reach corrected significance, but did reach uncorrected significance in both 

analyses, suggesting that they are more reliable. 

Sleep spindles. The sleep spindle analysis included stage 2 sleep only, as this 

is the sleep stage where great majority of sleep spindles occur. The first step in data 

processing was to remove any epochs containing wake or brief arousals, as well as 

artefacts caused by movements and poor recording quality from one or more 

electrodes. Any electrodes that consistently provided a noisy signal were removed 

from the analysis. The raw EEG data were then band-pass filtered between 11 and 15 
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Hz using a linear finite impulse response (FIR) filter provided in the EEGLAB 

toolbox for Matlab (Delorme & Makeig, 2004). An automated EEG spindle 

detection algorithm, developed by Ferrarelli et al. (2007) and implemented in 

Matlab, was then used to derive the spindle measures (number and amplitude of 

spindles). This algorithm uses the amplitude of the filtered signal to generate a time 

series for each channel. Any amplitude fluctuation that exceeds a pre-determined 

upper threshold is counted as a spindle, with the peak amplitude for each spindle 

defined as the local maximum above the threshold. The beginning and end of a 

spindle were defined as amplitudes preceding and following the peak, up to a point 

where the amplitude crossed a lower threshold. The upper and lower thresholds were 

calculated relative to the mean signal amplitude in the channel, as the mean 

amplitude varies across channels. The lower and upper thresholds were set at two 

and eight times the average amplitude. These values were selected by Ferrarelli et al. 

(2007) to give a good match with visually detected spindles. This algorithm has been 

reported by both Ferrarelli et al. (2007) and by Nishida and Walker (2007) to give 

reliable spindle counts when compared with visual scoring, although it appears to be 

fairly conservative, as discussed in Figure 59. 

 
Table 7. Sleep spindle measures at each electrode. 

 

 Total N Density Ampl. 
C3 269 (25) 0.50 (0.04) 22.47 (0.87) 
C4 246 (22) 0.46 (0.04) 19.75 (0.87) 
F3 316 (23) 0.59 (0.04) 19.68 (0.92) 
F4 297 (20) 0.55 (0.04) 16.28 (0.82) 

Note: Standard error in parentheses. Total N = total number of spindles, Density = spindle density 
(number of spindles per 30 seconds), Ampl. = mean maximal spindle amplitude in µV. 

 

Table 7 shows the most often used measures of spindle activity at each of the 

four electrodes. These measures consist of total number of detected spindles, spindle 

density (average number of spindles per 30 s of stage 2 sleep), and mean maximal 

spindle amplitude (average of the highest amplitude points for each detected 

spindle). A mixed-effects linear model with subjects as random factor, and electrode 

site as fixed factor showed that electrodes on the left recorded a greater number of 

spindles than electrodes on the right (C3 vs. C4: b = -23.680, t = -2.87, p = .006†, F3 

vs. F4: b = -17.535, t = 2.12, p = .03†). The same was true of spindle density, with a 

higher density on the left than on the right (C3 vs. C4: b = -0.041, t = -2.66, p = .01†,  
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The figures above show two 20-second epochs of stage 2 sleep at different times from the same 
participant and channel. Panel A identifies a spindle detected by the algorithm used in the current 
experiment. Panel B highlights an event that would be likely classified as a spindle by visual 
inspection, but which the automatic detector did not pick up. Visual detection is typically based on 
criteria relating to frequency, duration, and amplitude. For example, Fogel and Smith (2006) 
categorised as spindles events occurring during stage 2 sleep that were in the 12-16 Hz range, 
exceeded 0.5 s in duration, and had a maximal amplitude of at least 10 µV. Many automatic detection 
algorithms have also used similar fixed criteria (e.g., Schabus et al., 2004). The current algorithm uses 
a variable amplitude threshold based on the average amplitude of the channel in question. This is 
because amplitude can vary significantly between channels even within a participant, making a fixed 
amplitude threshold vulnerable to false positives. The downside is that the algorithm may miss 
spindles particularly in noisy channels as in these cases the threshold may end up being quite high. 
Comparison of the spindle densities calculated with this algorithm and those reported in earlier 
studies indeed show that the algorithm is conservative. However, as this will be the case for each 
participant, the comparisons between participants reported here are unaffected.    

 

Figure 59. Examples of spindles detected and missed by the automatic detection script. 
 

F3 vs. F4: b = -0.032, t = 2.06, p = .04†), and of mean spindle amplitude with 

spindles detected by the left electrodes having a larger amplitude (C3 vs. C4: -2.785, 

t = -11.99, p < .001, F3 vs. F4: b = -2.822, t = -12.15, p < .001). Furthermore, the 

frontal electrodes were associated with a higher total number of spindles (C3 vs. F3: 

b = 59.065, t = 7.15, p < .001, C4 vs. F4: b = 65.211, t = 7.90, p < .001), higher 

spindle density (C3 vs. F3: b = 0.112, t = 7.16, p < .001, C4 vs. F4: b = 0.121,  
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t = 7.77, p < .001), and higher maximal amplitude (C3 vs. F3: b = 2.515, t = 10.83,  

p < .001, C4 vs. F4: b = 2.552, t = 10.99, p < .001). 

Table 8 shows correlations between the novel word learning measures and 

two of the spindle activity measures: spindle density and maximal spindle amplitude, 

averaged over the four electrodes (see Appendix 11 for correlations for each 

electrode site individually). Total number of spindles was left out of the analysis to 

reduce the number of multiple correlations as it was highly correlated with spindle 

density (r = 0.915, p < .001), confirming that both measure effectively the same 

variable6. As above, those tests that fail to meet the Bonferroni adjusted alpha level 

are marked with the symbol †. The row titled “Change overnight” again refers to the 

difference between performance in the delayed and the immediate test sessions. The 

only aspect of these data that was associated with spindle activity was lexical 

competition. In the immediate test, participants who showed the least lexical 

competition (or the most facilitation) went on to experience most spindle activity 

during the following night (Figure 60). This correlation was seen in both measures of 

spindle activity (spindle density: r = -0.536, p = .002, maximal spindle amplitude:  

r = -0.389, p = .027†), the density measure was reliable at all four electrode sites (see 

Appendix 11). Furthermore, spindle activity correlated with the magnitude of change 

in the lexical competition effect overnight, with increasing competition effect being 

associated with higher spindle activity (Figure 61). This was the case spindle density 

(r = 0.599, p < .001) at all four electrode sites (Appendix 11), although the 

correlation with maximal amplitude did not reach significance in the analysis.  

Slow vs. fast spindles. The spindle correlations were analysed also for slow and fast 

spindles separately. These were counted by band-pass filtering the artefact-rejected 

data between 11 and 13 Hz for slow spindles, and between 13 and 15 Hz for fast 

spindles (following Schabus et al., 2007). The automatic spindle counting algorithm 

was then applied on both data sets. The data were broadly in agreement with the 

overall analysis. No significant correlations were found with free recall, cued recall, 

or old/new categorisation. The magnitude of the lexical competition effect in the 

immediate test correlated with both measures of fast spindle activity (density: r = -

0.637, p < .001, amplitude: r = -0.434, p = .015†), but only with slow  

 

                                                 
6 Same pattern of results is seen if total number of spindles is considered instead of spindle density. 
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Table 8. Correlations between word learning measures and sleep spindle activity (11-15 Hz). 
 

   Density Ampl. 

Lexical competition     

 Change overnight r 0.599 0.306 

  p < 0.001 0.094 

 Immediate test r -0.536 -0.398 
  p 0.002 0.027† 
 Delayed test r 0.275 0.008 

  p 0.14 0.96 

 Follow up test r 0.121 0.139 

  p 0.53 0.46 

Free recall     

 Change overnight r -0.188 -0.119 

  p 0.31 0.53 

 Immediate test r -0.243 0.031 

  p 0.19 0.87 

 Delayed test r -0.306 -0.042 

  p 0.09 0.82 

 Follow up test r -0.307 -0.162 

  p 0.10 0.39 

Cued recall     

 Change overnight r -0.05 0.09 

  p 0.79 0.63 

 Immediate test r -0.303 -0.056 

  p 0.10 0.76 

 Delayed test r -0.29 0.003 

  p 0.11 0.99 

 Follow up test r -0.243 -0.191 

  p 0.20 0.32 

Old/new     

categorisation Change overnight r -0.126 0.143 

  p 0.50 0.44 

 Immediate test r -0.008 0.031 

  p 0.97 0.87 

 Delayed test r 0.128 -0.113 

  p 0.49 0.55 

 Follow up test r 0.215 -0.055 

  p 0.26 0.77 

Note: Significant correlations in bold. Density = spindle density (number of spindles per 30 seconds), 
Ampl. = average maximal spindle amplitude. † = p-values that do not survive a Bonferroni correction 
for multiple comparisons. 
 
spindle density (r = -0.410, p = .022†). The overnight change in the lexical 

competition effect correlated with both measures of fast spindle activity (density:  

r = 0.664, p < .001, amplitude: r = 0.369, p = .041†), and with slow spindle density  

(r = 0.479, p = .006). 
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Figure 60. Scatterplots showing correlations between lexical competition effect immediately 
after training and spindle activity during the subsequent night. Dashed lines represent 95% 

confidence intervals. The x-axis shows the magnitude of the lexical competition effect (RTs to 
experimental base words – RTs to control base words), where positive values indicate lexical 

competition and negative values indicate a facilitatory effect. 
 

 

 
 
 
 

 
 

 

 

 

 

 

Figure 61. Scatterplots showing correlations between change in lexical competition effect 
overnight and spindle activity. Dashed lines represent 95% confidence intervals. 

The x-axis shows the change in the magnitude of the lexical competition effect from the 
immediate test to the first delayed test after a night of sleep. 

 
 

The correlations presented in Table 8 suggest that spindle activity is 

associated with the degree of lexical competition immediately after training, 

whereby those participants who show the least evidence for competition experience 

more spindle activity during the following night. The table also highlights a 

correlation with the magnitude of change in the competition effect, whereby 

participants who experience a larger increase in competition overnight also show 

higher spindle activity. It is however possible that both spindle correlations have a 
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common source. This might be the case if the two behavioural measures, immediate 

competition and overnight change in competition, were also associated. This was 

tested by calculating the correlation between the two behavioural measures. The 

correlation was highly significant (r = -0.758, p < .001), showing that weak initial 

competition (or in other words strong facilitation) was associated with a large 

increase overnight in the competition effect. In light of this relationship, it was 

important to re-evaluate the correlation between competition change and spindle 

activity, while controlling for the association with the immediate competition effect. 

A partial correlation was calculated between overnight competition change and 

spindle density, while holding immediate competition constant. Here the correlation 

was marginally significant (r = 0.350, p = .058)7, suggesting that while spindle 

activity is associated with immediate performance, it also makes a marginally 

significant contribution to the competition change overnight independent of 

immediate performance. 

 

6.3 Chapter Summary and General Discussion 

The experiment reported in this chapter had two primary aims. The first was 

to see if offline consolidation of newly learned words occurs preferentially during 

sleep compared to wake. This was examined both in terms of explicit recall and 

recognition of the novel words themselves, and in terms of integrating the novel 

words in the mental lexicon. The second aim was to identify those aspects of sleep 

architecture (if any) that are associated with overnight consolidation of novel words. 

The two tasks measuring explicit recall of novel words consisted of free 

recall and cued recall. In free recall participants who spent the first test-retest interval 

asleep (sleep group) recalled 5.0% words more in the morning than they did 

immediately after training. This was a statistically significant improvement. 

Participants who remained awake for an equivalent time (wake group) on the other 

hand showed a 1.2% non-significant decline in recall. Interestingly, when tested 

again about one week later, the recall rates in the wake group improved significantly 

by 4.3% from the delayed test, while recall in the sleep group did not improve any 

further (a non-significant decline of 2% was seen). As seen in Figure 54, in this last 
                                                 
7 The same correlation reaches statistical significance if total number of spindles rather than spindle 
density is considered (r = 0.381, p = .038). 
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test session both groups showed equally good recall. These data suggest that both 

groups eventually reached an equivalent level of recall, and both groups improved 

from the immediate test to the one-week follow up test, but the timing of sleep 

determined the point when the improvement was seen. The observation that the 

improvement followed sleep in the sleep group but was not seen after a similar delay 

of wakefulness in the wake group suggests that the improvement was a result of 

sleep-dependent consolidation.  

A roughly similar pattern was seen in cued recall. Here sleep participants 

improved overnight by a significant 6.3%, while the wake group’s recall accuracy 

declined significantly over the course of the day, by 7.0%. However, the wake 

group’s accuracy rose by 10.2% between the delayed and the one-week follow up 

tests (recall also that these two tests took place at the same circadian time), while the 

sleep group also experienced a smaller but statistically significant further increase of 

2.9%. The cumulative effect of these changes was that by the end of the experiment 

the sleep group’s recall rates had improved significantly from the immediate test, 

while the wake group’s had not (because of the initial decline), suggesting that in 

this task in particular the timing of sleep played a crucial role, with immediate sleep 

allowing greater gains in performance over time. This is an important point as it 

clarifies the effect seen in Experiment 5, where participants in a visual cued recall 

task recalled more words that were learned on the previous day compared to words 

learned on the day of testing. That design did not allow a distinction between 

explanations of time-dependent and sleep-dependent offline consolidation, as the 

interval between learning and testing contained both sleep and wake. The current 

data however suggest that sleep provides the optimal environment for consolidation 

in this task. 

Finally, the old/new categorisation task was used as a task measuring speed 

of novel word recognition. The sleep group showed similar advantage here as in the 

recall tasks. RTs to novel words in the sleep group became significantly faster 

overnight, with a 117 ms improvement, while the wake group showed an 

improvement only half as large as the sleep group, with a non-significant 51 ms. The 

sleep group went on to show a smaller but significant further improvement of 28 ms 

from the delayed to the one-week follow up test. The wake group on the other hand 

showed a large and significant improvement of 112 ms between the delayed and the 

follow up test. The cumulative result was that both groups had improved 
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significantly from the immediate to the one-week follow up test, and did not differ in 

RTs at the last test session, but again timing of sleep determined in which test 

session the improvement was seen. The accuracy rates to novel words supported a 

sleep advantage by showing no change in accuracy overnight, but a significant 

decline over the course of a day. In the sleep group accuracy rates declined by the 

one-week follow up, while the wake group improved. However, compared to 

immediate performance, both groups had declined by the follow up a week later. 

This suggests that some of the RT gains may have been due to a speed-accuracy 

trade off, however this would have been the case in both the sleep and the wake 

group, thus the differences between the groups cannot be attributed to this. 

The current data are in agreement with the free recall data reported by 

Dumay and Gaskell (2007), who found that recall increased in the sleep group 

overnight, while there was a trend towards a decline in performance in the wake 

group over the course of a day. After a further 12 hours the sleep group’s recall rates 

increased still slightly but significantly, while the wake group now experienced a 

large and significant improvement, probably because this group had now also had a 

chance to sleep. The data from Experiment 8 are very similar, although the sleep 

group here did not further improve between the delayed and one-week follow up in 

free recall. The current cued recall data pattern however was very similar to Dumay 

and Gaskell’s free recall data. The current experiment also improved upon Dumay 

and Gaskell’s 2AFC task by using a modified version that allowed recording of 

recognition times. Dumay and Gaskell did not find a sleep advantage in this task, but 

Davis et al. (2009) did show higher accuracy in response to words learned a day 

before testing, compared to words learned on the day of testing. The data from the 

current experiment suggest this effect may have been sleep-related, with improving 

RTs overnight, and a sleep advantage in accuracy rates. 

The lexical competition results in the current experiment did not fully 

replicate the pattern seen by Dumay and Gaskell (2007). While Dumay and Gaskell 

found lexical competition effects only after a night of sleep, here the effect emerged 

in the delayed test in both sleep and wake groups. While numerically the competition 

effect was smaller in the wake group (27 ms in sleep group, 17 ms in wake group), 

the analysis combining the two groups did not show a significant difference in the 

magnitude of the effect between the groups. In contrast, nearly identical lexical 

competition effects were found for both groups in the one-week follow up (33 ms for 
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both sleep and wake groups), as well as in the immediate test (-26 ms in the sleep 

group, -20 ms in the wake group). The current data showed an initial facilitatory 

effect whereby experimental base words were responded to faster than control 

words. Dumay and Gaskell reported no difference between the conditions in their 

immediate test. 

There are several factors that may contribute to the discrepancy in the time 

course of the emergence of lexical competition effects between the current 

experiment and that of Dumay and Gaskell. These studies differed both in the stimuli 

they used, and the task used to measure lexical competition. Dumay and Gaskell 

used pause detection, where a short (200 ms) period of silence was inserted towards 

the end of a base word (e.g., cathedr_al). The time it takes to make a pause detection 

decision is taken as a measure of lexical activity at that point in time, with high 

degree of lexical competition resulting in slower pause detection times (Mattys & 

Clark, 2002). Hence base words for which a new competitor had been acquired were 

associated with slower pause detection times compared to base words for which no 

new competitor had been trained. The advantage of this task is that it does not 

require participants to make explicit decisions about the identity of the base word. It 

may be the case that in the lexical decision task some participants choose a more 

strategic approach and delay their responses in order to make sure they do not 

confuse base words with novel words. Such an effect would probably not depend on 

sleep specifically, and would mask a sleep benefit. Although this latter explanation is 

made less likely by the fact that in the current experiment novel words were never 

presented in the lexical decision task, it may still be that pause detection as a 

completely implicit gauge of lexical activity provides a purer and more sensitive 

measure of lexical competition. It should be noted though that the shift from 

facilitation in the immediate test to competition in the delayed test would be difficult 

to explain in the context of a strategic lexical competition effect which should be 

evident irrespective of time of testing. The initial facilitation seen here may be due to 

phonological priming effects carrying over from repeated exposure to similar 

sounding novel words in training. Pause detection is less likely to be affected by 

such priming (as no overt recognition response is required). 

Another important difference concerned the nature of the stimuli. Dumay and 

Gaskell generated their novel words by adding a consonant cluster at the end of a 

base word (e.g., shadowks), while the current experiment changed the final 
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phonemes of a base word (e.g., cathedruke). This difference is a likely explanation 

for why free recall rates in the current experiment were much lower than in Dumay 

and Gaskell (accuracy rates in Figure 54 vary between 8% and 13%, while Dumay 

and Gaskell’s Figure 1 suggests variation between 15% and 30%). Recalling a 

familiar word with a novel added ending may be easier than recalling a novel word 

that is a variation of a familiar word, although this should not affect the time course 

of lexical integration. 

Finally, the interpretation of the emergence of the lexical competition effect 

in the wake group is complicated by the fact that there was no objective control over 

what the wake participants did during the course of the day. Although they were 

asked not to consume stimulating substances, or to sleep, compliance was not 

verified by objective measures. Hence it is possible that participants varied in terms 

of the external stimulation they underwent during the day. For example, if a large 

proportion of participants napped during the day, this might have been enough to 

bring out statistically reliable lexical competition effects. The likelihood of this latter 

possibility can be evaluated on the basis of the information collected about 

participants’ sleep habits. In fact, when the data from the wake group were 

reanalysed including only those participants who did not habitually tend to nap 

during the day (n = 21), the lexical competition effect in the 10-hour delayed test no 

longer reached significance. It did still reach significance in the one-week follow up. 

The facilitatory effect in the immediate test also failed to reach significance in this 

sub-set of participants, suggesting that perhaps the change might have been partially 

due to reduced statistical power, as there is no reason why habitual nappers would 

show a different pattern of performance in the immediate test from non-nappers. The 

reanalysis however reinforces the view that future studies should control the wake 

group’s environment more carefully, either requiring them to remain in the 

laboratory, or by means of actigraphy. This is a method where participants wear a 

non-invasive actimetry sensor which monitors body movements and allows 

identification of long periods of lack of movement, indicating sleep. 

It is important here also to address the issue of potential circadian effects. 

The recall and old/new categorisation improvements seen in the sleep group 

overnight, and the corresponding lack of improvements seen in the wake group 

might be due to the fact that the delayed test was carried out at different times of day, 

with the sleep group doing the test in the morning and the wake group doing it in the 
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evening. Hence the wake group may have been more tired at test, and perform 

poorly. This alternative explanation can be assessed in two ways. Firstly, if the wake 

group were more tired in the delayed test, this should have been reflected in the 

participants’ subjective evaluations of alertness. This was however not the case. 

When measured by the Stanford Sleepiness Scale, no difference was found between 

the wake and sleep groups in any of the three test sessions. The two visual analogue 

scales also failed to find a difference between the two groups in the delayed and in 

the one-week follow up tests. These two latter scales did find a difference in the 

immediate test, with wake participants reporting better alertness, however this did 

not result in statistically significant effects in any of the tasks, and would not lead to 

the prediction that the more alert wake group ought to deteriorate more during the 

delay between the immediate and delayed tests. 

An even stronger argument against circadian effects can be mounted by 

comparing performance in the delayed and the one-week follow up tests. Recall that 

these two tests took place at the same circadian time, with the sleep group 

performing both test sessions in the morning, and the wake group performing both 

sessions in the evening. Hence, if poorer performance in the wake group was due to 

time of testing, the same effect should have applied in the one-week follow up test. 

This was not the case however, with the wake group improving in all tasks from the 

delayed test to the one-week follow up, despite these two sessions both taking place 

in the evening. It appears then that circadian or fatigue effects are an unlikely source 

for the effects seen across these tasks.    

To sum up the behavioural data, Experiment 8 succeeded in finding evidence 

for a sleep-related consolidation effect in a range of different word learning tasks. 

Both free recall and cued recall showed improving recall overnight, while a wake 

group either showed no change, or showed a decline over the course of a day. 

Importantly, in both tasks the wake group improved significantly when tested about 

a week later, at the same circadian time as the delayed test. This improvement was 

likely to be due to occurrence of sleep between the delayed and follow up tests. The 

same pattern was seen in RT gains in the old/new categorisation task. As expected, 

the lexical competition effect was not seen immediately after training, but did 

emerge after a night of sleep. Seeing this effect also in the wake group was an 

unexpected and novel finding to which I will return after considering the 

polysomnographic data. 
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While the behavioural data imply an important role for sleep as opposed to 

wake in consolidation of novel words, they do not on their own justify an active role 

for sleep (Ellenbogen, Payne, & Stickgold, 2006). For example, Wixted (2004, 2005) 

has argued that sleep plays a permissive role in memory consolidation by providing 

an environment free of interference. More specifically, he suggested that NREM 

sleep (like alcohol and certain drugs) blocks the induction of hippocampal long term 

potentiation (LTP), without disrupting the maintenance of previously initiated LTP, 

thus allowing consolidation to occur without interference. This explanation is in 

agreement with the sleep advantage seen in the above data. Interference can also be 

external in nature, for example the lack of linguistic input during sleep may allow the 

newly learned words to consolidate. An active role for sleep in memory 

consolidation on the other hand would be supported by identifying physiological 

events during sleep which are associated with the performance gains overnight, and 

would imply direct involvement in the consolidation process (Ellenbogen et al., 

2006).   

With relation to word learning, Experiment 8 sought to establish what these 

physiological events are by examining sleep stages and sleep spindles, both of which 

previous research has found to be correlated with memory consolidation. Looking at 

sleep stages first, SWS has previously been associated with consolidation of 

declarative memory, while REM sleep has been associated with procedural memory 

(although as discussed in the introduction, this dichotomy is likely to be too 

simplistic). Based on these observations, it was expected that measures of explicit 

word recall and recognition speed might benefit from SWS more than REM, and 

hence SWS duration may have predicted performance improvement overnight. No 

correlations between SWS duration (or any other sleep stage) and free recall and 

cued recall measures were found however. SWS duration did on the other hand 

predict overnight improvement in the old/new categorisation RTs, with longer SWS 

duration being associated with larger RT gains (although the statistical conclusions 

are weakened by multiple comparisons). As the old/new categorisation task requires 

an explicit decision to be made about the identity of the novel word, it can be 

classified as a declarative task and as such supports the dual process theory. One 

theory of why SWS might be particularly beneficial for consolidation of declarative 

memories was proposed by Gais and Born (2004b). According to this view 

acetylcholine modulates the direction of information flow between the hippocampus 
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and the neocortex. During wake and REM sleep, strong cholinergic activity 

suppresses feedback from the hippocampus to neocortex, but not feedback in the 

opposite direction. During SWS on the other hand, cholinergic suppression is 

released. Gais and Born (2004b) provided evidence for this position by chemically 

boosting cholinergic activity during SWS. This manipulation led to impaired 

consolidation of declarative memories overnight, but had no effect on consolidation 

of procedural memories. Also, the same manipulation during wakefulness had no 

effect.  

Tononi and Cirelli (2006) have proposed an alternative theory of SWS 

function in memory consolidation. According to this view SWS (and magnitude of 

slow wave activity in particular) is crucial as it provides the neural environment for a 

decrease in synaptic connections. Learning during wakefulness results in an increase 

in synaptic strength and may result in saturated plasticity. SWS then provides an 

environment for rescaling of synaptic strength back to baseline levels. Thus the 

extent of learning and overnight change should be proportional to slow wave activity 

during the night. The data from Experiment 8 cannot arbitrate between the two views 

of SWS function, but support their shared view that SWS is important in declarative 

memory consolidation. 

It remains to be explained why the SWS correlation was only seen in the 

old/new categorisation task, and not in the free and cued recall tasks. Firstly, it may 

be that there was not enough variability in these recall tasks for a correlation with 

SWS to emerge. As Figures 54 and 55 show, level of performance tended to be low 

in both tasks, and the changes overnight were numerically small. An RT measure on 

the other hand results in more variability, and may be better suited for a correlational 

design. Secondly, the variability in SWS duration across participants may also be too 

small for robust correlations. Gais and Born (2004b) argued that the lack of SWS 

correlations in many of the earlier studies suggests that the critical role of SWS is 

reliably observed only when large amounts of SWS are missing, such as in the split-

night or SWS deprivation paradigms.  

The second aspect of sleep physiology examined in this experiment was sleep 

spindle activity. No correlations were found between spindle activity and measures 

of novel word learning in free recall, cued recall, or the old/new categorisation task. 

Spindle activity did correlate with degree of lexical competition immediately after 

training, and change in lexical competition overnight. Participants who showed least 
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evidence for lexical competition (or a facilitatory effect where training of novel 

words resulted in faster RTs to their base words, i.e. the opposite of a competition 

effect) in the immediate test experienced higher levels of spindle activity during the 

following night. Also, increasing lexical competition effect overnight was associated 

with higher spindle activity. No correlations were found between spindle activity and 

lexical competition in the other test sessions.  

To understand the association between spindle activity and lexical 

competition in the immediate test, it is important to note that many authors have 

argued that sleep benefits in memory consolidation are greater for weakly learned 

compared to strongly learned materials. In the declarative domain, Drosopoulos, 

Schulze, Fischer, and Born (2007) taught participants word-pairs either to a 90% 

correct or 60% correct criterion, and tested recall immediately after training and 

again after about 36 hours. The sleep group was allowed to sleep immediately after 

learning, while the wake group was sleep deprived during the night following 

training, but allowed to sleep on the night prior to the delayed test. While both 

groups showed a decline in recall rates, only the participants trained to the 60% 

criterion showed a sleep benefit (smaller decline) compared to their wake control 

group. No benefit of sleep was seen in the 90% criterion group, leading the authors 

to suggest that weakly encoded associations benefit from sleep more than strong 

associations. A similar conclusion was reached by Schmidt et al. (2006) who saw a 

correlation between spindle activity and word-pair recall only in a difficult condition 

using abstract words. Kuriyama, Stickgold, and Walker (2004) varied encoding 

difficulty in a procedural motor sequence task by varying sequence length and 

whether one or both hands were involved. While all sequences resulted in overnight 

improvement, the most difficult sequence involving both hands and nine elements 

showed the largest overnight improvement, again showing that poorly learned 

materials benefit most from overnight consolidation. It should be noted though that 

Tucker and Fishbein (2008) found sleep-dependent enhancement in declarative tasks 

only in participants who performed in the top half of a median split based on training 

performance. However, in this study sleep consisted of a nap with NREM sleep only 

making it difficult to evaluate whether the results were caused by the abnormal sleep 

or whether they would generalise to normal periods of sleep as well. 

If it is accepted that sleep benefits weakly encoded memories more than 

strongly encoded memories, it is important to establish whether lack of lexical 
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competition (or presence of facilitation) reflects poor encoding. In the context of the 

current experiment, this can be done by correlating lexical competition in the 

immediate test with performance in the other tasks in the same test session. 

Unfortunately none of these correlations reached statistical significance, but they all 

showed a trend in the same direction. Less lexical competition was associated with 

poorer free recall (r = 0.219, p = .09), poorer cued recall (r = 0.129, p = .33), and 

slower old/new categorisation performance (r = -0.061, p = .64).  

It is also possible to see theoretically how poor encoding of the novel words 

would result in facilitation of base word recognition (i.e., faster RTs to base words 

for which a new competitor has been trained). As the novel word is heard repeatedly 

during training, it is likely that it activates its phonologically overlapping base word 

(e.g., hearing cathedruke is likely to activate cathedral). Some evidence for this was 

seen in Experiment 1 where recall rates were higher in stimuli where the meaning 

suggested by the novel word form was related to the trained novel word meaning, 

showing access to base words upon learning the novel words. However, at the same 

time a neocortical trace for the novel word begins to gradually emerge, becoming 

stronger with each exposure. It is possible that the rate at which this new trace 

emerges varies between participants. For some participants the novel trace may 

become strong enough to begin to weakly compete with the base word already 

during training, reducing base word activation caused by training. In the immediate 

test these participants would show a small competition effect or a very small 

facilitation effect. For other participants the novel trace may not reach the necessary 

strength to begin to compete with overlapping base word representations, in these 

participants each novel word presentation during training would continue to activate 

the overlapping base word more strongly than the emerging new representation. 

Such repeated activation of the base word during training may result in base word 

facilitation in the immediate test.  

If lexical competition (or the lack of it) in the immediate test is then seen as a 

measure of initial word learning, the association between base word facilitation in 

the immediate test and increased sleep spindle activity during the subsequent night 

support the notion that sleep is particularly beneficial for consolidation of memories 

that are weakly encoded during training. Recall also that there was a correlation 

between the amount of change overnight and spindle density, which remained 

marginally significant even when holding immediate competition constant. This also 
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supports the notion that sleep spindles play an important role in this consolidation 

process, and predict the degree of change in lexical competition overnight. Thus the 

present data may reflect two spindle-related processes of memory consolidation 

during sleep. Firstly, those participants who generated weak representations of the 

novel words seem to respond to the need to integrate the novel words in the lexicon 

by undergoing more spindle activity during the subsequent night. Secondly, the level 

of spindle activity appears to reflect the magnitude of consolidation overnight 

(measured in change in the competition effect), with higher activity resulting in 

larger change independent of the initial state of the novel word representations 

(although this partial correlation was statistically marginally significant). Such an 

interpretation is in line with theories of sleep spindle function, which suggest that 

spindles are a marker of hippocampal-neocortical information transfer, as described 

in the introduction. 

Spindle activity was not equally distributed across the scalp. Frontal 

electrodes registered more spindles than the central electrodes. This is reminiscent of 

the data reported by Clemens et al. (2005), who found a correlation between verbal 

memory retention and spindle activity recorded at left frontal electrodes, and 

Schmidt et al. (2006) who reported a correlation between word-pair retention and 

spindle activity at frontocentral electrodes. In the current experiment left electrodes 

also registered more spindles than right electrodes. This latter finding may reflect the 

linguistic materials undergoing consolidation, although in the absence of a control 

condition this finding remains tentative. There was no clear disassociation between 

slow and fast spindles in the current experiment, with both contributing to the 

observed correlations. It should be noted that slow spindles are typically observed at 

frontal electrodes, while fast spindles dominate at parietal electrodes. This 

experiment did not include parietal recording sites, making it less likely to see a 

distinction between the two spindle types, as the central electrodes probably recorded 

a mixture of slow and fast spindles. Hence fast spindles may have been undercounted 

here. Future experiments should use a larger number of electrodes to better assess the 

contributions of the two spindle types in word learning. 

One of the most interesting observations made in this experiment was that 

sleep spindle activity was associated only with emergence of lexical competition, 

and not with consolidation of explicit recall or recognition speed of novel words. It 

seems then that sleep globally enhanced novel word memory, possibly by 
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strengthening the neocortical trace, but sleep spindles were involved specifically in 

integrating novel words with overlapping existing words. To my knowledge this is 

the first demonstration of an association between spindles and a task which requires 

the integration of completely novel information with existing information. The CLS 

models predict that sleep should be most important in tasks such as this, which not 

only require strengthening of new memories, but also relating the new memories 

with existing memories, to allow generalisation of the newly acquired knowledge 

with respect to previously acquired experiences. These data also suggest that sleep 

plays an active role in the consolidation process, rather than just providing an 

interference-free environment.  

Before leaving the spindle data, it is important to consider whether spindles 

might have a relationship with general learning ability. For example, Schabus et al. 

(2004) reported a marginally significant positive correlation between spindle activity 

and memory performance, leading them to suggest that spindle activity might be 

correlated with general learning aptitude. This was supported by a positive 

correlation between IQ and number of spindles reported by Nader and Smith (2003). 

In the present experiment spindle density correlated with improvement overnight (if 

improvement is measured by increasing lexical competition). Hence it would be 

possible to argue that the participants who improved the most may also have been 

the most gifted participants, or participants with the best learning capacity. However, 

if high spindle activity was a marker of better learning ability, it should have been 

possible to observe spindle correlations with all the word learning tasks, not just the 

task measuring lexical competition. Furthermore, spindle activity was also associated 

with low lexical competition in the immediate test rather than high competition 

which would have indicated good encoding of the novel words. These considerations 

suggest that the current data cannot by explained by a simple relationship between 

spindle activity and learning ability.   

Finally, it is possible to reinterpret the behavioural lexical competition data in 

light of the sleep spindle findings. I proposed earlier some potential methodological 

reasons why the lexical competition effect emerged in the delayed test in the wake 

group, although data from Dumay and Gaskell (2007) suggested it should only be 

seen after sleep. The sleep architecture data suggested that even though the effect 

emerged also after a period of wake, there are physiological events during sleep (i.e., 

sleep spindles) which seem to be involved with lexical integration. This implies that 
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sleep may not be the only brain state in which lexical integration takes place, but it 

may be the optimal state, thanks to the unique properties of sleep physiology. This is 

not a novel position to take. Recently, Axmacher, Draguhn, Elger, and Fell (2009) 

have advanced a theory proposing that memory consolidation can take place during 

wake too. This is motivated, for example, by data showing that reactivation of brain 

areas related to new memories is seen not only during sleep but also during wake 

(Peigneux et al., 2006), and that hippocampal ripples occur at comparable rates 

during sleep and wake (Clemens et al., 2007). According to this integrative view, 

sleep still plays a unique role, for example in that it is involved in the synaptic 

downscaling proposed by Tononi and Cirelli (2006), but hippocampal-neocortical 

transfer may also occur during other resting states apart from sleep. Under this view 

the issue of how the wake group spends the delay between immediate and delayed 

test becomes vital. If many of the wake participants in the current experiment spent 

much of the delay in a resting state, this may have been enough to allow for some 

lexical integration to take place. Future studies should include a restful wakefulness 

control condition to fully disentangle the consolidation that takes place during sleep 

and potential consolidation during wake.  

To summarise, Experiment 8 showed that sleep provides the optimal state for 

consolidation of meaningless novel words. This was seen as a sleep benefit in direct 

recall and recognition speed of novel words. SWS seems to be involved with 

consolidating this type of information, although here SWS duration correlated with 

the old/new categorisation task only. Lexical integration, as measured by novel 

words engaging in lexical competition with phonologically overlapping familiar 

words, was associated with sleep spindle activity. Low level of lexical competition in 

the immediate test was associated with higher spindle activity during the following 

night, and was proposed to reflect weak memory traces generated by novel word 

training. The magnitude of increase in lexical competition was also predicted by 

spindle activity, suggesting that sleep spindles are central in integrating newly 

learned memories with existing memories. 
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Chapter 7: Thesis summary and conclusions 

The experiments reported in this thesis addressed two main questions. Firstly, 

to what extent is meaning useful or necessary in lexical integration (Chapter 2), and 

secondly, does the learning of novel word meanings benefit from offline 

consolidation to the same degree as learning of novel word forms appears to 

(Chapters 4 and 5)? Finally, an experiment elaborating on the role of sleep in offline 

consolidation of novel word forms was reported (Chapter 6). In the following section 

I shall summarise the main findings from each of these chapters. 

 

7.1 Thesis summary 

7.1.1 Chapter 2 

Experiments 1-3 presented in Chapter 2 tackled the issue of whether meaning 

is necessary in generating new lexical representations that show evidence of having 

been integrated in the mental lexicon. As reviewed in Chapters 1 and 2, the previous 

literature regarding this question is mixed. Early work looking at access to new 

lexical representations in tasks such as letter identification and identity priming 

tended to show an advantage for meaningful novel words over meaningless novel 

words (Whittlesea & Cantwell, 1987; Balota et al, 1991; Rueckl & Olds, 1993; 

Rueckl & Dror, 1994). This conclusion however has not been consistently reached 

by studies looking at reading of novel words in children and adults (McKague et al., 

2001; Nation et al., 2007; McKay et al., 2008), or by studies looking at novel object 

naming (James & Gauthier, 2004; Cornelissen et al., 2004; Gronholm et al., 2005, 

2007). Two studies looking specifically at meaning and the integration of novel 

words in the mental lexicon also reached different conclusions about this issue. 

Dumay et al. (2004) found that both meaningful and meaningless spoken novel 

words engage in lexical competition to the same extent and with the same time 

course, while Leach and Samuel (2007) found that only meaningful novel words 

enable retuning of phoneme categories in a perceptual learning task.  

In Chapter 2 I focused on the discrepancy between these two latter studies, 

and adopted the hypothesis that the different conclusions may have been affected by 

the nature of the novel words used in the two studies. Dumay et al. (2004) used 

novel words that overlap with existing words (e.g., cathedruke), while Leach and 
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Samuel (2007) did not. I referred to these two types of stimuli as neighbours and 

non-neighbours. Hence it is possible that hearing a neighbour novel word activates 

the meaning of its closest phonological real word neighbour, and that the neighbour 

novel word “inherits” a meaning in this way. To demonstrate that this is a plausible 

mechanism, in Experiment 1 I attempted to show that learners have access to the 

meaning of the real word from which the neighbour novel words were derived from. 

This was done by teaching participants meaningful neighbours and non-neighbours, 

where the meaning of the neighbour novel words was either consistent (e.g., 

cathedruke is a type of church) or inconsistent (e.g., cathedruke is a type of drink) 

with the meaning of the overlapping real word. This manipulation should only have 

an effect if the neighbour novel word evoked the meaning of the overlapping real 

word. Such an effect was seen already during training with better learning of 

meanings in consistent than in inconsistent neighbour novel words. The same was 

seen at test. Interestingly, at test a meaning consistency effect was seen even in cued 

recall of word forms. These data showed that learners have access to the meaning of 

the overlapping real words, and that this effect even extends to a task which does not 

explicitly require access to meaning (i.e., cued recall of word form).  

The second half of the chapter tested the hypothesis that the nature of the 

stimuli was at least partially responsible for the discrepancy between the lexical 

competition and perceptual learning conclusions using both neighbour and non-

neighbour novel word stimuli. Experiment 2 was a test of the ambiguous stimuli to 

be used in the novel word experiment, and demonstrated that these stimuli provide 

the standard perceptual learning effect in real words, whereby hearing the ambiguous 

phoneme /?dt/ in a word context (e.g., awar[?dt]) biased participants to categorise 

that ambiguous phoneme as a /d/ in a later phoneme categorisation test. This effect 

was seen immediately after training, suggesting that it does not require offline 

consolidation, and a day and a week later, suggesting that it does not benefit further 

from consolidation, but remains robust over several days. 

Experiment 3 applied these ambiguous phonemes to novel words and showed 

that perceptual learning is not seen with non-neighbour novel words when no 

meaning is trained, consistent Leach and Samuel’s (2007) conclusion. Crucially 

though, perceptual learning was seen with neighbour novel words, suggesting that 

some degree of meaning is necessary for lexical integration (at least when measured 

in perceptual learning) and that the inherited meaning in these stimuli is enough to 
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enable integration. Also consistent with Leach and Samuel, there was no evidence 

for a consolidation benefit in this experiment. I will return to this issue in a later 

section discussing consolidation in more detail. 

 

7.1.2 Chapter 4  

Having established that meaning plays a prominent role in the learning and 

lexical integration of novel words, in the next two experimental chapters I focused 

on the influence of offline consolidation both on learning novel word meanings and 

forms. As reviewed in Chapter 3, while a handful of studies have looked at semantic 

measures of lexical integration (Dagenbach et al., 1990; Perfetti et al., 2005; 

Breitenstein et al., 2007; Mesters-Misse et al., 2007, 2008; Dobel et al., in press), 

only one has directly assessed the role of offline consolidation in this process (Clay 

et al., 2007). I used semantic decision in Experiment 4 to measure speed of semantic 

access to novel words, half of which had been trained a day before testing and hence 

had had a chance to undergo consolidation for about 24 hours. While there was no 

speed advantage for consolidated over unconsolidated novel words overall, an RT 

advantage was seen in the last third of the task, providing preliminary evidence for a 

potential consolidation effect. This was interesting in light of explicit meaning recall 

data which showed better recall of unconsolidated words. A sentence plausibility 

judgement task supported the consolidation advantage in speeded access to meaning, 

although a later experiment suggested the effect in this task might have been 

orthographic rather than semantic. This experiment also included a shadowing task 

intended as a measure of access to phonological word forms, where a consolidation 

advantage was found in shadowing latencies and accuracy rates. As discussed in 

Chapter 5, the shadowing task is problematic however as it may include a non-trivial 

semantic component. 

This shadowing effect was followed up in Experiment 5, using both 

shadowing and naming (reading aloud) tasks, and novel words that were meaningful 

or meaningless. The consolidation effect in shadowing was not replicated here, 

although in the naming task a consolidation effect was seen in error rates for 

meaningless novel words. Another task used to measure recall of novel word forms 

was cued recall, where a consolidation effect was found for both meaningful and 

meaningless novel words.  
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7.1.3 Chapter 5 

The emerging consolidation effect in the semantic decision task in 

Experiment 4 indicated that offline consolidation may be a process of importance in 

learning novel word meanings. Experiments 6 and 7 put this theory to a stricter test 

by looking at semantic priming with novel word primes. While Breitenstein et al. 

(2007) showed cross-modal semantic priming using novel word primes, their 

paradigm used prime-target pairs that had been presented during training, and hence 

probably involved an episodic priming component. The experiments reported in 

Chapter 5 used a purer semantic priming paradigm where the test was to see if novel 

words prime not their own meanings but words associated with the novel word 

meanings. Furthermore, prime duration and SOA were manipulated in these 

experiments such that Experiment 6 measured priming with a large strategic 

component, while Experiment 7 was designed to tap into more automatic semantic 

activation. Both experiments showed that novel words can indeed prime associated 

real words, but only after a period of offline consolidation had been allowed to take 

place. Both priming types required consolidation, although the masked priming 

effect seemed to benefit from a longer consolidation period. In Experiment 6 with 

strategic priming the effect emerged with a 24 hour delay, and did not grow further 

significantly during the next six days. When looking at automatic priming in 

Experiment 7, reliable priming did not emerge immediately or 24 hours after 

training, but only when tested a week after training.  

Again, explicit recall of meaning provided an interesting contrast to these 

priming data. In Experiment 6 recall was better on words learned on the day of 

testing compared with words learned one or seven days earlier. In Experiment 7, 

where only one set of words was trained and tracked over time, recall declined over 

one week, while priming emerged at the same time. Priming and explicit recall 

appeared to be dissociable, further strengthening the claim that priming measured a 

more automatic process of semantic activation. 

Experiment 6 successfully replicated the shadowing effect, but also provided 

new information about the time course of this effect. Now no shadowing was found 

after a 24 hour consolidation opportunity (as in Experiment 5), but the effect did 

emerge if participants were given a one week consolidation opportunity. This 
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suggested that shadowing may benefit from an incremental, ongoing consolidation 

process over several days, much like the semantic priming effect.  

 

7.1.4 Chapter 6 

Experiment 8 looked at sleep-dependent consolidation in learning of spoken 

meaningless novel words. Dumay and Gaskell (2007) had shown that lexical 

competition effects require sleep to emerge. Experiment 8 examined sleep 

architecture during the post-training night, and sought to isolate the neural events 

during sleep that are associated with this type of lexical integration. The behavioural 

data showed sleep-associated performance improvements in free recall, cued recall, 

and novel word recognition speed overnight. Somewhat surprisingly the lexical 

competition effect emerged both after sleep and an equivalent time of wakefulness. 

Polysomnographic data showed that sleep spindle activity was associated with 

lexical integration. Participants who showed little evidence of competition 

immediately after training had higher spindle activity during the night following 

training. Spindle activity did not predict any other aspect of word learning. Time 

spent in slow wave sleep on the other hand was associated with magnitude of 

improvement overnight in the old/new categorisation task measuring novel word 

recognition speed. These data have significant consequences for our understanding 

of the cognitive role of sleep spindles. Spindles seem to be important in integrating 

new information with existing information, but less important in enhancing recall. I 

will discuss this finding further in Section 7.3 of this chapter. 

 

7.2 Offline consolidation in word learning 

One of the main aims of this thesis was to elucidate the time course of novel 

word learning, both in terms of learning the meaning of novel words and learning the 

form of novel words. Below I will compile the time course information derived from 

the different tasks used in the different experiments reported in the thesis, and look 

for consistent patterns across the experiments and related tasks. 
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7.2.1 Explicit recall of novel word meanings 

All experiments in this thesis in which participants were taught meaningful 

novel words included a test of explicit meaning recall, where participants were asked 

to type in the meaning of each of the trained novel words. Table 9 summarises the 

outcome of these studies with regard to the contrast between consolidated and 

unconsolidated novel words. It also categorises experiments on whether an 

interference account might explain the difference between consolidated and 

unconsolidated conditions. As discussed in Chapter 5, this is a plausible account in 

those experiments where each participant learned two different sets of novel words 

before the test session (Experiments 4-6). Both proactive interference (PI) and 

retroactive interference (RI) have long been a focus of interest in research into 

forgetting (e.g., Underwood, 1945), with PI referring to the case where previous 

learning interferes with later learning, and RI to the case where later learning 

interferes with previous learning.  

 

Table 9. Difference between explicit recall rates to novel word objects and features in 
consolidated (C) and unconsolidated (UC) conditions in each experiment. 

 

 Lag  Objects  Features  Interference? 

Experiment 1 Short  C = UC  C < UC  No 

Experiment 4 Short  C < UC  n/a  Yes 

Experiment 5 Short  C < UC  C < UC  Yes 

Experiment 6 Short  C < UC  C < UC  Yes 

 Long  C < UC  C < UC  Yes 

Experiment 7 Short  C = UC  C = UC  No 

 Long  C < UC  C < UC  No 

Note: No features were trained in Experiment 4. Lag = Length of consolidation opportunity, Short = 
one day, Long = one week. 
 

Table 9 shows that in the majority of experiments there was an advantage for 

unconsolidated, recently learned novel words compared to consolidated words which 

had been learned a day earlier. This pattern fits well with the notion of RI. However, 

most studies looking at RI have used a paradigm where participants first learn a list 

of cue-target pairs (A-B) and subsequently learn a new list using the same cues but 

different targets (A-C). Under these circumstances learning the second list impairs 

recall of the targets from the first list possibly as a result of competition between the 
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B and C targets (although other mechanisms are also possible, see Wixted, 2004, for 

a review). Although in the present experiments there was no reassignment of cues, 

RI is still a viable explanation for the data. Burns and Gold (1999) trained 

participants on a list of 120 familiar words, and tested recall immediately after the 

training. This was followed either by no further learning, learning of a new list of 

words using the same learning strategy as before, or the learning of a new list using a 

different learning strategy as before. When recall of the first list was subsequently 

retested, participants in the first two groups recalled more words than immediately 

after training, a consolidation-like phenomenon the authors referred to as 

“hypermnesia”. Participants in the third group on the other hand recalled fewer 

words than in the first test, showing an RI effect. This condition was similar to the 

state of affairs in the experiments reported in this thesis, where a second set of novel 

words was learned using the same training regime as used in the first set of novel 

words. Hence, according to the view proposed by Burns and Gold (1999), the first 

set of novel words (the consolidated condition) would be subject to RI, and hence 

consolidation effects would be masked by interference-induced forgetting.     

The potential interference effects observed in the current experiments may be 

seen as inconsistent with several reports of sleep-associated consolidation effects in 

declarative tasks. For example, Plihal and Born (1997) showed increased word-pair 

recall after a period of SWS sleep, and Lahl, Wispel, Willigens, and Pietrowsky 

(2008) showed increased recall of a list of words even after a brief nap compared to 

wake. Since presumably all participants in the present experiments slept between the 

training of the consolidated words and the test session, one might expect to see 

improved recall in this condition over the unconsolidated condition. However, there 

are two reasons why such effects might be masked in the experimental designs used 

in this thesis. The first reason is that sleep can have either an enhancing effect on 

memory, in which case we would see a consolidation advantage, or a protective 

effect (Ellenbogen et al., 2006, 2009) against decay. This latter effect would only be 

seen if sleep were directly compared with wakefulness over a period of time after 

learning. In such a comparison the prediction would be that the wake interval would 

result in a decline in recalled materials, while a sleep interval might be associated 

with no change or a smaller decline. As the present experiments measuring meaning 

recall did not involve such a contrast, it is not possible to fully relate the current 

findings with the existing sleep and consolidation literature. 
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The second reason why consolidation effects may be masked in these 

experiments has to do with the interference account. Table 1 shows that in all 

experiments where the interference account is plausible (i.e., experiments where two 

sets of novel words were trained), a significant advantage was seen for 

unconsolidated novel words, both in terms of recall of objects and number of 

features. In Experiment 1 where participants were trained on day 1 and recall was 

tested either immediately after training on day 1, or one day later on day 2, there was 

no significant difference between consolidated and unconsolidated conditions in 

recall of objects, although the difference between recall of features did reach 

significance. In Experiment 7 as well, novel words were trained on day 1 only. Here 

testing took place immediately after training, one day later, and again one week later. 

No difference was seen between day 1 and day 2 recall, but a significant decline had 

taken place by day 8. The contrast between day 1 and day 2 performance suggests 

that the declines seen in consolidated meanings in the other experiments may well 

have been at least partially caused by interference from learning a second novel word 

set (RI effect). Even so, no consolidation advantage was seen in the two experiments 

where the interference account can be eliminated. In Experiment 7 performance in 

the recall task was at ceiling, so this would have obscured any advantage. However, 

in Experiment 1 recall was clearly not at ceiling, hence the conditions there were 

favourable for a demonstration of a consolidation advantage. The fact that no such 

advantage was seen suggests that explicit recall of novel words does not benefit from 

enhancement over time. Experiment 7 further showed that recall declined over a 

week’s time in the absence of interference, showing that there is no evidence in this 

task for a time-dependent consolidation process over a longer time scale either. 

 

7.2.2 Speeded access to novel word meanings 

While the meaning recall task measured accuracy of participants’ explicit 

recall of novel word meanings, the experiments reported in this thesis also included 

tasks which were intended to measure speed of explicit and implicit access to novel 

word meanings. A summary of these data is shown in Table 10. 
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Table 10. Summary of findings in tasks measuring speed of access to meaning. 
 

  Immediately after 
training 

 One day after 
training 

 One week after 
training 

Semantic decision 
(Experiment 4) 

 - high accuracy 
 

 - accuracy decline 
- RTs faster 

 n/a 

Strategic priming 
(Experiment 6) 

 - no priming  - priming found  - priming found 

Automatic priming 
(Experiment 7) 

 - no priming  - no priming  - priming found 

Sentence plausibility 
(Experiment 6) 

 - no evidence of change taking place over time in RTs or accuracy rates 

 

The semantic decision task in Experiment 4 showed declining response 

accuracy as a function of time of training, but revealed some evidence of gains in 

speed of access within a consolidation opportunity of one day. It should be noted 

though that this effect was only observed in the final third of the task, and only in the 

condition where the target and prime were related. The sentence plausibility task was 

conceptually closest to the semantic decision task, in that both tasks required a 

decision to be made about the congruency of the novel word meaning with provided 

context (a single word in semantic decision, a sentence in sentence plausibility 

judgement). The sentence plausibility task did not provide any evidence of 

consolidation effects when the task was modified such that the influence of possible 

form based processes was minimised (Experiment 4 vs. Experiment 6).  

The priming experiments (Experiments 6 and 7) did not look at the speed of 

access to meaning directly, but rather looked at the influence the novel word 

meaning had on the processing of a real word presented shortly afterwards. By 

manipulating prime duration and SOA, I attempted to tap into semantic processes 

operating outside of strategic control in Experiment 7 and processes where strategic 

influences were available in Experiment 6. Experiment 6 (visible prime, long SOA) 

showed a priming effect only after consolidation had been given time to operate. The 

effect here was seen after a short consolidation opportunity of one day, and showed 

little evidence of growing further after a longer consolidation opportunity apart from 

being numerically smaller than the priming effect obtained with real word primes. 

This time course was consistent with semantic decision, which probably also 

benefits from explicit, strategic processes. Experiment 7 (masked prime, short SOA) 

also showed no priming immediately after training, but did reveal a priming effect of 

identical magnitude to the real word prime condition after a week of consolidation. 
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These experiments provide evidence that novel word meanings benefit from 

consolidation over time, and this process appears to be a gradual one operating over 

several days and/or nights. 

As already discussed in Chapter 5, differences in the specific time course in 

the emergence of priming between the two types of priming may reflect a top-down 

boost in the case of semantic priming which includes a strong strategic component. 

When participants are aware of the primes and informed of the relationship between 

the primes and targets, they are more likely to try to actively access the meaning of 

the prime in order to facilitate lexical decision to the target. The semantic decision 

task of Experiment 4 suggested that such active access may speed up under certain 

circumstances over the first 24 hours after training. A primed lexical decision task, 

even with a long SOA, requires quick access to the meaning of the prime in order for 

priming effects to emerge. If the speed of such explicit access benefits from a short 

period of consolidation, then this gain would also translate into a priming effect in a 

task that encourages active use of the primes. Thus the consolidation gains seen in 

semantic decision and priming using a visible prime and long SOA may have their 

source in the same process, i.e. faster explicit access to meaning.  

More automatic priming on the other hand would benefit less from faster 

explicit access. As discussed in Chapter 5, both multistage activation models and 

distributed network models rely on spreading activation between concepts to account 

for priming. In the absence of top down boost, spreading of activation can only occur 

when a new concept is sufficiently integrated in the semantic network, and/or when a 

new lexical representation is integrated with the semantic level. Experiment 7 

suggests that such structural change takes more than one day or night to reach a state 

where the network can support masked priming. This view is consistent with the data 

reported by Clay et al. (2007), who found a semantic PWI effect only in their second 

test session which took place one week after training. Interestingly, they found a 

lexical PWI effect using novel words immediately after training (novel words 

interfering with picture naming irrespective of the semantic relationship between the 

word and picture), suggesting that a lexical representation may have been generated 

very quickly, but it had not been integrated with the semantic level until several days 

later. In sum, based on the present experiments, it seems that access to novel word 

meanings speeds up within a 24 hour period, which allows initial strategic priming 

effects to emerge. The necessary integration in the lexical-semantic system may 
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require a more fundamental change and takes more than one day or night to support 

effects detectable in masked priming. Interestingly the emergence of priming appears 

to be independent of participants’ explicit recall accuracy of the novel word 

meanings. Unfortunately the sentence plausibility task seems to be too insensitive to 

pick up these effects, perhaps because the gradual presentation of the sentence 

introduces a delay between the relevant semantic processing and response execution 

which dilutes the effect. 

 

7.2.3 Access to novel word forms 

A number of tests across the experiments reported in this thesis also looked at 

recall of novel word forms. The tasks used included cued recall, free recall, 

shadowing speed and accuracy, reading speed and accuracy, and word recognition 

speed in old/new categorisation. The consolidation effects observed in these tasks are 

summarised in Table 11. 

One of the prominent patterns seen in Table 11 is the data from the cued 

recall test. Here the two cued recall tests provided inconsistent results, with 

Experiment 1 showing no consolidation benefit in a group of participants tested one 

day after training compared to another group who were tested immediately after 

training. No difference between the groups was found. On the other hand, in 

Experiment 5 higher recall rates were seen in response to words learned one day 

before the test compared to words learned on the day of testing. While the 

experiments used different novel words, and the cue used in Experiment 5 was 

somewhat more difficult as it had more letters removed, overall success rates in the 

two experiments were similar, excluding potential ceiling or floor effects as possible 

explanations. Data from Experiment 8 provide a more detailed picture. In that 

experiment performance improvement was seen after a period of sleep, while an 

equivalent period of wakefulness resulted in declining recall rates. However, once 

both groups had had a chance to sleep, performance in the groups was equal (in the 

one-week follow up). This suggests that in this task change in performance is 

determined by the timing of sleep rather than simply time passing. Hence the lack of 

a consolidation effect in Experiment 1 can be explained by assuming that in the 

group which was tested a day after training recall rates initially declined during the 

day following the training session, and increased during the night prior to the testing 
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session, bringing recall rates back up to the original level. Experiment 8 also 

suggested that an overall improvement from immediate test could only have been 

seen if sleep had followed immediately from the initial training, protecting against 

the decline seen in the wake group. 

 

Table 11. Summary of findings in tasks measuring access to word form knowledge in the 
consolidated (C) and unconsolidated (UC) conditions. Tasks showing evidence for  consolidation 

are shaded. 
 

 Time between UC and C conditions  
 10h delay 24h delay 1 week delay Consolidation? 
Cued recall 
(Experiment 1) 
 

 C = UC  No 

Cued recall 
(Experiment 5) 
 

 C > UC  Yes 

Cued recall 
(Experiment 8) 
 

Sleep: C > UC 
Wake: C < UC 

 Sleep: C > UC 
Wake: C = UC 

Yes (sleep-
dependent) 

Shadowing 
(Experiment 4) 
 

 RT: C < UC 
Accuracy: C > UC 

 Yes 

Shadowing 
(Experiment 5) 
 

 RT: C = UC 
Accuracy: C = UC 

 No 

Shadowing 
(Experiment 6) 
 

 RT: C = UC 
Accuracy: C = UC 

RT: C < UC 
Accuracy: C > UC 

Yes (long 
delay only) 

Reading 
(Experiment 5) 
 

 RT: C = UC 
Accuracy: C > UC * 

 Yes (accuracy 
rates only) 

Recognition 
speed 
(Experiment 8) 
 

Sleep: C < UC 
Wake: C = UC 

 Sleep: C < UC 
Wake: C < UC 

Yes (sleep-
dependent) 

Free recall 
(Experiment 8) 
 

Sleep: C > UC 
Wake: C = UC 

 Sleep: C = UC 
Wake: C = UC 

Yes (sleep-
dependent) 

Lexical 
competition 
(Experiment 8) 
 

Sleep: C > UC 
Wake: C > UC 

 Sleep: C > UC 
Wake: C > UC 

Yes 

Perceptual 
learning 
(Experiment 3) 

 C = UC  No 

Note: C refers to the consolidated condition, or when novel word performance is tracked over time to 
novel words in the consolidated state (i.e., 10h, 24h, or 1 week after training). UC refers to the 
unconsolidated condition or to words in the unconsolidated state (i.e., immediately after training). The 
signs “<” and “>” refer to differences in level of performance, which may be response time, recall 
rate, accuracy rate, or magnitude of the lexical competition or perceptual learning effect, depending 
on the task. * = in the meaningful condition only. 
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 It is still left to be explained why a consolidation effect was seen in 

Experiment 5, an effect that would not be predicted by the above account. Recall that 

in Experiment 5 participants learned two different sets of novel words on two 

different days. Hence it is important to consider level of performance during training, 

as participants might have been more motivated to learn on one day than on the 

other. Cued recall tests carried out during the training sessions showed a small but 

statistically significant advantage for the session in which consolidated novel words 

were trained (day 1 training session). This may explain at least part of the 

consolidation benefit seen at test, although it should be noted that the difference 

between consolidated and unconsolidated words at test was larger than at training.  

A similar time course may explain the lack of consolidation effects in the 

naming (reading aloud) task at least in terms of latencies. A consolidation benefit 

was seen in accuracy rates, but only in words for which a meaning was trained. The 

interpretation of the naming task is further complicated by the fact that naming 

appears to involve semantic processing. For example, semantic priming effects have 

been found in naming times to target words (see Neely, 1991, for a review), although 

the naming response does not require explicit semantic access. This means that the 

source of the consolidation effect in this task may be semantic, a view buttressed by 

the finding that the consolidation effect was restricted to meaningful novel words, 

and that access to novel word meanings can benefit from even a short consolidation 

opportunity of one day (Experiment 6). 

A similar interpretation of the shadowing data was outlined in Chapter 5, 

where Experiment 6 revealed a consolidation effect in shadowing which seemed to 

operate over a longer time course than the shadowing data from Experiment 4 

initially had implied. While Experiment 4 found a consolidation effect in shadowing 

in both latencies and accuracy rates after a short consolidation opportunity of one 

day, in Experiment 6 an effect was seen only after a long consolidation opportunity 

of one week. As discussed in Chapter 5, this suggested a long incremental 

consolidation process in this task, which may also be affected by semantic factors as 

all novel words in these two experiments were trained with meaning. Experiment 5 

did not show a consolidation effect over one day, showing the effect to be fragile at a 

short time scale. This semantic hypothesis makes it more difficult to determine 

whether shadowing and reading tasks can be categorised primarily as form or 
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meaning based, as they are likely to reflect both processes. It must be left for future 

studies to further disambiguate the two influences. 

Data from Experiment 8 can be treated with more confidence as no meaning 

was trained here. Both speed with which novel words are recognised (as measured in 

an old/new categorisation task) and free recall of novel word forms benefitted from 

consolidation over a night of sleep. In recognition speed improvement was seen over 

time, but the timing of sleep determined when the greatest gains were seen. In free 

recall a similar pattern was seen as in cued recall, with recall rates increasing during 

a night of sleep, with no change taking place during an equivalent time of 

wakefulness. However, semantic influences cannot be completely ruled out here 

either, as Experiments 1 and 3 showed that novel words overlapping with existing 

words may be influenced by the meaning of the neighbouring real words. This type 

of novel word was used in Experiment 8 in order to evaluate effects of lexical 

competition.  

The lexical competition data were consistent with earlier reports of this effect 

emerging only after a delay (e.g., Gaskell & Dumay, 2003). The effect was not seen 

immediately after training, instead a significant facilitatory effect emerged whereby 

base words for which a new competitor had been trained showed faster RTs than 

base words for which no new competitor was trained. In contrast, about 10 hours 

later the competition effect was found, irrespective of whether the delay included 

sleep or wakefulness. This suggests that integrating novel words in the mental 

lexicon benefits from offline consolidation within a very short consolidation 

opportunity of up to 10 hours. The finding of this effect in both sleep and wake 

groups was unexpected in light of the data reported by Dumay and Gaskell (2007). 

Some potential explanations were discussed in Chapter 6, and the following section 

will present some more. In any case, some form of consolidation does appear to be 

crucial in this task.  

While lexical competition is a measure of the degree to which a novel word 

has been integrated with neighbouring words at the lexical level, re-tuning of 

phoneme boundaries in the perceptual learning paradigm measures the degree to 

which novel word representations are able to affect a sublexical, phonemic level. 

Leach and Samuel (2007) found this effect in novel words immediately after training 

(provided that meaning had been trained too). The same conclusion was reached in 

Experiment 3, where a perceptual learning effect was found immediately after 
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training. This was also tested on the following day, however as the second test was 

preceded by a second training session, it is impossible to judge whether the effect 

had changed from day 1. There was however no effect of time, suggesting that at 

least the effect had not gained in strength overnight. Motivated by the absence of 

consolidation effects in the Leach and Samuel (2007) data, and data reported by 

Snoeren et al. (2009), Davis and Gaskell (2009) suggested that in the CLS 

framework the fast learning hippocampal system has a direct link to lexical 

phonology, negating the need for hippocampal-neocortical transfer to take place 

before phonology-related effects in novel word learning are observed. The data from 

Experiment 3 support this view. 

 

7.3 Sleep in word learning 

While most experiments in this thesis looked at the role of offline 

consolidation as a function of time including both sleep and wakefulness, 

Experiment 8 focused on sleep-specific consolidation. As reviewed in Chapter 3, this 

was motivated by a number of studies showing that sleep benefits various levels of 

language learning, and by the findings of Dumay and Gaskell (2007) who showed 

that lexical competition in novel words emerges after a night of sleep.   

The primary finding in Experiment 8 was that sleep spindles seem to be 

involved in lexical integration, at least when measured by lexical competition. 

Spindle activity on the post-training night correlated with the magnitude of the 

lexical competition effect immediately after training, and the change in the effect 

overnight. As discussed in Chapter 6, if the lack of lexical competition or the 

presence of a facilitatory effect in the immediate test is taken as a sign of a weak 

lexical representation, then it appears that participants who generated weak novel 

lexical representations during training experienced more spindle activity overnight, 

suggesting that spindles are important in integrating novel words in the lexicon. This 

view fits well into the framework recently proposed by Stickgold (2009). According 

to this view the different sleep stages described in Chapter 6 not only correspond to 

consolidation of different types of memory (such as declarative and procedural), but 

may rather correspond to different consolidation processes. Stickgold (2009) 

proposed that SWS stabilises both declarative and procedural memories at a synaptic 

level, leading to recall enhancement. Stage 2 sleep and REM on the other hand serve 



Chapter 7 

 269 

to facilitate systems level consolidation, which includes the hippocampal-neocortical 

transfer proposed by CLS models, extraction of rules and regularities from the newly 

learned information, and the integration of the new memories with existing 

memories. The data reported in Experiment 8 support this view. Of the tasks used in 

that experiment only the lexical competition measure indexes integration of novel 

words in the lexicon, and it was only this measure that showed an association with 

sleep spindle activity, one of the hallmarks of stage 2 activity. SWS duration on the 

other hand only correlated with improvements in novel word recognition speed, 

demonstrating the kind of dissociation predicted by Stickgold’s (2009) account.    

Stickgold (2009) also commented on the issue of whether weakly encoded 

memories benefit from sleep more than strongly encoded memories, by pointing out 

that while the majority of available data suggest that this is the case, some studies 

have found the opposite, and that this might mean that moderately well encoded 

memories benefit the most. This is because the brain might choose those memories 

for consolidation that benefit from the process the most. Memories that are already 

strongly encoded, and memories that are extremely poorly encoded are less likely to 

do so, as in the case of the former consolidation may be superfluous and in the case 

of the latter it may not be sufficient to retain the memory anyway. It is difficult to 

evaluate this hypothesis based on Experiment 8, as the data probably did not include 

a full range of encoding success levels, but it fits the idea that less strongly encoded 

memories benefit more from consolidation than strongly encoded ones. 

As far as learning novel word forms is concerned, Experiment 8 suggested 

that integration in the lexicon benefits from sleep spindle activity, while enhanced 

recognition speed was associated with SWS duration. The explicit recall measures 

did not correlate with sleep stages or spindles. The role of sleep in the learning of 

novel word meanings on the other hand is unclear, and although the experiments 

reported in this thesis suggest meaning benefits from offline consolidation in 

general, they did not address the issue of sleep-specific consolidation. There is 

however good reason to believe that sleep plays an important role in the acquisition 

of meaning, and may in particular have been important in the semantic priming 

experiments. Stickgold, Scott, Rittenhouse, and Hobson (1999) tested semantic 

priming of weakly and strongly related word pairs during the day, and immediately 

after awakenings from REM and NREM sleep during the night. Larger priming 

effects were found in the strong priming conditions during the day and after 
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awakenings from NREM. However, after awakenings from REM the opposite was 

seen: now a larger priming effect was found in the weak priming condition than in 

the strong priming condition. These data suggest that REM sleep may play an active 

role in strengthening weak semantic associations, and hence may be of importance in 

learning novel word meanings and integrating the meanings in the semantic network. 

This hypothesis is supported by the current data where priming with novel word 

primes was only seen after a period of consolidation. The experiments reported in 

this thesis did not look at priming and sleep, but it is possible that if 

polysomnographic data had been collected, a correlation may have been found 

between the magnitude of novel word priming and REM duration on post-training 

night.  

One study which did look at sleep and learning of semantic information 

found that sleep benefitted some aspects of semantic memory (Rogers & Mayberry, 

in preparation). In this study participants learned to name, recognise, and categorise 

satellites which could be typical (share several features with a category prototype) or 

atypical (share few features with a category prototype) exemplars of their category. 

Recall was tested after intervals including sleep or wakefulness. Sleep improved 

recall of atypical satellites more than typical satellites when the recall probe included 

both prototypical and individuating parts of the satellite. When the probe contained 

information only about individuating properties, the opposite pattern was seen with 

sleep improving memory of typical items more. The interaction is difficult to 

interpret, but at a minimum it seems that learning the satellite information benefitted 

from sleep to some degree, although the nature of the recall task seems to determine 

whether benefits for typical or atypical items are revealed. 

Most sleep studies cited so far in this thesis show that one night of sleep 

following learning results in significant performance improvement. In contrast, the 

masked priming effect in Experiment 7 did not emerge after one night of sleep (or 

one day of wakefulness). This however should not be taken as evidence against a 

possible role for sleep in consolidation of meaning. It may be the case that 

consolidation continues over several nights after learning. While few studies have 

looked at this process in detail across several subsequent nights, there are reports 

from the procedural domain showing further performance improvements after the 

first night of sleep. Stickgold, James, and Hobson (2000) tracked visual 

discrimination performance for seven days after training and showed gradually 
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enhancing performance on the first four days (interestingly, no improvement was 

seen in participants who were sleep deprived for the first night after training). Both 

speed and accuracy improve more if measured after three nights of sleep compared 

to one night of sleep in a finger-tapping task (Walker, Brakefield, Seidman, Morgan, 

Hobson, & Stickgold, 2003). To my knowledge there are no similar data available 

from declarative tasks, but the masked priming (and shadowing) data reported in this 

thesis together with the procedural data cited above suggest that multiple nights of 

sleep may be important in meaning acquisition.   

 

7.4 Limitations of the studies 

The experiments in this thesis have been interpreted as dealing with L1 word 

learning, that is, participants are assumed to be treating the novel words as novel 

English words. It is however difficult to say how valid this assumption is. 

Participants might be treating the novel words as a class of information relevant only 

in the context of the experiment, especially as they know that the words and 

meanings are fictional. One way to try to avoid this state of affairs is to include 

training tasks where the novel words are presented in a naturalistic setting. In the 

current experiments looking at acquisition of meaning, this was attempted by 

including the sentence plausibility judgement task as part of the training. In this task 

participants were exposed to the novel words in English sentences, and asked to 

evaluate the appropriateness of the word in the sentence. This gave the participants at 

least some degree of experience with the novel words in an elaborate linguistic 

setting. It is difficult to estimate how successful these kinds of manipulations are 

though in the absence of much empirical data. 

One of the few studies directly examining these issues was reported by Potts, 

St. John, and Kirson (1989). In these experiments participants read long stories that 

introduced new words and concepts (e.g., that takahe is a large flightless bird in New 

Zealand). One interesting manipulation concerned participants’ beliefs about the 

veracity of the new information. Half of the participants were told that the 

information was correct, and the other half was told it was fictional. At test, which 

followed immediately after training, participants were asked questions about the 

meaning of the novel words either in a story context (defined by having a large 

number of filler questions directly related to the story) or a non-story context (with a 
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large number of fillers unrelated to the story). In the non-story context RTs to the 

questions were faster if participants thought the information was real compared to 

participants who thought it was fictional. The opposite was true in the story context. 

The authors argued that this suggests that only participants who thought the 

information was real encoded it in such a way that it was available in all contexts, 

not just the context of the experimental story.  

Potts et al. (1989) also carried out a priming experiment (primed lexical 

decision) where the novel words acted as targets. Primes could be semantically 

related real words (concepts from the story), semantically unrelated but story-related 

(unrelated concept from the story) or completely unrelated (semantically unrelated 

and not occurring in the story). Story and non-story test contexts were again used. 

Relative to semantically unrelated primes (story-related or not), semantically related 

primes increased lexical decision accuracy rates in the story context only (RTs were 

not reported). No priming at all was found in the non-story context. This led the 

authors to argue that the new information was compartmentalised and not integrated 

with general world information.  

The above data by Potts et al. (1989) suggest that experimentally trained 

novel words and their meanings may not be fully integrated in general world 

knowledge, at least when participants know that the words and meanings are 

fictional. If this was the case in the current experiments as well, this would 

undermine the assumption held in this thesis that the work here reflected normal L1 

lexical processing. However, two considerations alleviate this concern. Firstly, the 

data presented in this thesis in fact seem to show that novel words were integrated 

with existing knowledge, both at the level of word forms (lexical competition) and at 

the level of novel word meaning (semantic priming). If the novel words had 

remained compartmentalised, these effects should not have been observed either 

immediately following training or after a delay. Secondly, Potts et al. (1989) tested 

participants only immediately after training. In light of the priming experiments 

reported here, it is possible that their priming and recall data might have benefitted 

from a period of offline consolidation prior to testing, possibly eradicating the 

compartmentalisation effect. 

A related possibility is that participants may have thought of the novel words 

as words from a foreign language. This scenario is more difficult to exclude on the 

basis of the present data. Lexical competition effects can be seen between languages. 
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For example, Spivey and Marian (1999) in one of the early eye tracking studies 

showed that bilingual speakers of English and Russian when hearing an English 

target word (e.g., bunny) briefly also looked at a distracter object whose Russian 

name overlapped with the target (e.g., bunka, meaning jar), suggesting that words 

from the two languages engaged in lexical competition with each other. The same 

cross-language effect can be seen in semantic priming, where a prime in one 

language can facilitate responses to a related target in another language (e.g., Perea 

et al., 2008). The main strategy to try to get participants to think of the novel words 

as English words was to give them meanings in Experiments 5-7 for which no 

familiar word exists. Whether this was successful remains for future work to 

establish. In any case, it is not currently clear what the differences between learning 

new words in L1 and L2 are, this remains another interesting avenue for future work. 

 

7.5 Conclusions and future work 

In the sections above I outlined the findings of the thesis for offline 

consolidation with regard to learning novel word forms and meanings. In this 

concluding section I will draw those data together to present a time course of novel 

word learning. Figure 62 shows a timeline of word learning based on the data 

presented in this thesis. 

In the figure 0 h refers to the situation immediately after training. As long as 

sufficient training has been provided, at this point participants usually exhibit good 

explicit recall of novel word meanings, as shown by high accuracy rates in the 

meaning recall tasks. Cued recall of word forms however is lower (Experiments 1 

and 5), particularly in the auditory modality (Experiment 8). A new lexical 

representation appears to have been generated, as suggested by successful re-tuning 

of phonemic categories by perceptual learning (Experiment 3). While these new 

lexical representations seem to be able to influence sublexical levels, the lack of 

lexical competition and semantic priming effects indicates that these representations 

do not at this stage have fully functional links with other lexical representations or 

semantic representations.  

Lexical competition was observed in the next step, at about 10 hours after 

training in Experiment 8 (12 h time point in Figure 62). Dumay and Gaskell (2007) 

have argued that this effect can only be observed after a night of sleep, but  
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Figure 62. Timeline of novel words becoming part of the mental lexicon, based on data reported 
in this thesis. 

 

Experiment 8 showed an effect in the wake group as well. However, this effect was 

associated with sleep spindle activity, showing that sleep does seem to play an active 

role in this form of lexical integration. Experiment 8 also showed other 
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developments that occur overnight, including enhanced free recall, cued recall, and 

novel word recognition speed when measured in an old/new categorisation task. 

Together these data indicate that new lexical representations integrate with 

neighbouring representations overnight, and also gain in strength resulting in 

enhanced recall and recognition. This change can be interpreted in the CLS accounts 

as a result of hippocampal-neocortical transfer and hippocampally driven 

reinstatement.  

First novel word semantic priming effects emerge one day after training (24 h 

time point in Figure 62). This is the case for priming that includes a strong strategic 

contribution (long SOA, visible primes). It is important to note here that these effects 

too may be facilitated by sleep, the hypothesis about sleep-specific consolidation was 

not tested here. At this time point we can also see faster semantic decision times, 

suggesting that these developments may be caused by faster access to novel word 

meanings. This is possibly due to strengthening of lexical-semantic connections, or a 

reinstatement process strengthening a neocortical memory trace of the novel word 

meaning. Shadowing latencies begin to speed up and accuracy rates begin to 

improve at this time as well, potentially driven by the semantic changes. This 

particular finding needs to be interpreted carefully though, as Experiment 5 failed to 

see the effect at this time point.  

At the final time point, beyond the change that occurs within 24 hours, we 

saw the emergence of semantic priming that relies more on automatic semantic 

activation rather than strategic access. Shadowing also seems to grow stronger over 

this longer time course. The exact time when these effects emerge is unclear, as in 

none of the experiments was there a testing time between 24 hours and seven days 

but it is clear that more than one day or night is required. However, as strategic top 

down influences are less likely to be helpful in this task, it can be hypothesised that 

the increased consolidation duration may be necessary for full integration of the 

newly learned words in semantic networks. 

 

7.5.1 Main contributions of this thesis  

The work reported in this thesis makes several contributions to the current 

understanding of novel word learning. These contributions can be summarised in 

four points. 



Chapter 7 

 276 

 

1. Novel words that overlap with existing words (e.g., cathedruke) carry some degree 

of meaning inherited from the closest neighbour, and this meaning enables lexical 

integration when measured by re-tuning of phoneme categories, a finding not 

obtained with non-neighbours. This suggests that meaning is important in novel 

words becoming a fully functional part of the lexicon. 

 

2. While explicit recall of novel word meanings does not seem to benefit from 

offline consolidation, speeded access to meaning does. Access to novel word 

meanings starts to become faster during 24 hours following training, enabling an 

initial strategic semantic priming effect to emerge with novel word primes one day 

after training. 

 

3. Automatic spreading of semantic activation from novel words to existing words 

may not occur until more than one day or night of consolidation has been completed, 

reflected in emergence of masked semantic priming.   

 

4. Sleep spindles are associated with integrating novel spoken word forms in the 

mental lexicon, but do not seem to be equally important in enhancing explicit 

memory or speed of recognition of the new words. 

 

7.5.2 Future work 

The conclusions outlined above raise a number of questions for future study. 

Here I will discuss some of the most important ones. Both the work presented in 

Chapter 2 and the experiments reported by Leach and Samuel (2007) suggest that 

meaning is important in lexical integration when measured by perceptual learning. 

However, evidence for this should be provided in other tasks of lexical integration. 

Most notably, it would be reassuring to see the same effect when lexical competition 

is used to index integration. This might be challenging as lexical competition studies 

require the use of neighbour novel words which I have argued carry meaning due to 

their overlap with existing words. However, it should be possible to teach 

participants new meaningless non-neighbours, and in a later training session 

introduce new meaningless and meaningful words that overlap with the previously 
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trained non-neighbours. Experiments along these lines could manipulate meaning in 

lexical competition. 

As already mentioned in this chapter, one of the major questions concerns the 

role sleep plays in consolidation of novel word meanings. This could be examined in 

a number of ways. For example, the question of whether the strategic priming effect 

would be observed after a night of sleep (or even a brief nap) or an equivalent time 

of wakefulness would be easily resolved and might reveal a crucial role for sleep. 

The slower emergence of the masked priming effect could also be examined in a 

sleep study. The influence of learning on sleep architecture could be evaluated by 

polysomnograhically monitoring sleep both before training to obtain a baseline, and 

for several nights after training. Learning should have an impact on sleep, for 

example in the form of increased spindle activity. The number of nights it takes for 

this or other aspects of sleep architecture to return to baseline could be taken as a 

measure of consolidation duration. Ideally this return to baseline would coincide 

with the emergence of the priming effect. 

Finally, I have argued in Chapter 6 that sleep spindles were closely 

associated with the integration of novel words in the mental lexicon, but less 

important in enhancing the explicit memory of the words. This is a potentially 

important clue about the role of spindles in memory consolidation in general. This 

finding should be expanded beyond the word learning paradigm to see if spindles 

have a broader function in relating new memories with existing memories.  
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Appendices 

Appendix 1 

Base words, neighbour novel words, non-neighbour novel words, and the meanings 

related to the base words used in Experiment 1. 

 

Base word Neighbour 
Non-
neighbour Meaning 

alcohol alcohin amcohin drink made of milk and has no taste 
amulet amulos abulos jewellery for priests and worn around the ankle 
assassin assassool illassool soldier who drives tanks and defends others  
baboon babeel baweel ape that lives in captivity and eats meat 
badminton badmintet rebmintet sport played outdoors with a heavy ball 
bayonet bayoniss deyoniss weapon made of wood and used in martial arts 
biscuit biscan liscan snack made of bamboo and tastes like corn 
bramble bramboof bromboof plant used a medicine and grows on mountains 
canyon canyel besyel valley that is shallow and has mud at the bottom 
caravan caravoth saravoth vehicle that runs on electricity and is slow 
cardigan cardigile mordigile clothing that has short sleeves and is made of wool 
cathedral cathedruke nathedruke church with metal benches and no windows 
clarinet clarinern clorinern instrument that is made of plastic and is shrill 
crocodile crocodin glacodin reptile that lives underground and eats roots 
daffodil daffadat saffadat flower that blooms in winter and is black 
dolphin dolpheg colpheg fish that is white and can't swim in deep waters 
dungeon dungeill mungeill prison for fraudsters built on an island 
fountain fountel cayntel spring found in the Arctic and produces sparkling water 
gimmick gimmon hummon trick done by amateur magicians and is learned quickly 
hormone hormike darmike chemical released in the cat liver to help digestion 
hurricane hurricarth pirricarth storm in tropical areas that lasts for months 
lantern lantobe lartobe torch that has a red light and is used by police 
mandarin mandarook hundarook fruit that grows in Siberia and is eaten by reindeer 
methanol methanat lethanat liquid that kills germs and is safe for humans 
molecule molekyen  silekyen particle that is found in space and dangerous to manipulate 
napkin napkess dopkess cloth used to dry spilled drinks and is used in pubs 
octopus octopoth ardopoth animal that lives at the bottom of the sea and has small feet 
ornament ornameast ilnameast decoration made of dry leaves and used at Christmas 
parsnip parsneg corsneg vegetable with hard skin and tastes sour 
pelican pelikibe nelikibe bird found in cold areas and builds a nest on ice 
pyramid pyramon dyramon building made of marble and used to store books 
skeleton skeletobe speletobe bone in the knee and dislocates easily 
spasm spasel  trasel cramp one gets after swimming and happens during sleep 
squirrel squirrome speirrome rodent that is hairless and has no ears 
tavern tavite tapite bar for vegetarians and serves expensive food 
yoghourt yogem yegem dessert made of butter and fresh mint 
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Appendix 2 

Word stimuli used in Experiment 2. 

 

/d/-ending words  /t/-ending words 
aloud  acquit 
amend  acute 
amid  amulet 
arcade  carrot 
award  chocolate 
collide  emit 
commode  equate 
comrade  hermit 
corrode  ignite 
coward  inert 
elude  innate 
erode  locate 
grenade  merit 
horrid  negate 
lemonade  nominate 
liquid  ornate 
maraud  recruit 
marmalade  regret 
orchard  unite 
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Appendix 3 

Neighbour novel words and their corresponding derived non-neighbour novel words, 

used in Experiment 3. 

 

Neighbours  Non-neighbours 
/t/-ending words  /d/-ending words  /t/-ending words  /d/-ending words 
alcohoite  alcohoide  umbohoite  umbohoide 
babort  babord  nenort  nenord 
bayonout  bayonoud  royenout  royenoud 
canyit  canyid  gemyit  gemyid 
gimmort  gimmord  laggort  laggord 
hormart  hormard  thernart  thernard 
hurriceet  hurriceed  bolliceet  bolliceed 
methanat  methanad  poranat  poranad 
molekyet  molekyed  karekyet  karekyed 
napket  napked  rebket  rebked 
ornamert  ornamerd  arlimert  arlimerd 
peliket  peliked  mabiket  mabiked 

 



Appendix 4 

 281 

Appendix 4 

Novel words used in Experiments 4-7. Words used in Experiment 7 are marked with 

an asterisk. 

agglem* horand terum 
aggrood horrot tobbin* 
anniby jabbary* tobir 
ardoff* jeprium uvar* 
arifie jommer valliss 
blontack* kerple* velchur 
bochor konrith* vilchy* 
boumnet lanbir virrin 
chebbor* lerret volbor 
chisdow* liddim vorent* 
cosmer lidgy vuckor 
criddin limmout vurrith 
dawtatt* liutist waba* 
daxon loodit* whadal 
distap luddilat whummith 
dobbir* lupitat* wiblid 
dunnath mearton  
elch meckalen*  
entelem* merdut*  
eritriff* milgium  
erotron mippun  
fammar molbit  
feckton* onnith  
feffsol ospont*  
femmet pannetor  
fevous peckolet*  
fiddioth poffren*  
flimmir* ponniol  
foostel quammish*  
frocant quellit  
gahoon* quellop  
gettent quemmer*  
gittow siffor  
glain* slethy*  
goitrem sluckmor  
gomth smetton  
goolat sockadol  
gordar somture  
gworp soppimin  
hentun speth*  
heprit* spuffron  
hoddar* sudoid  
hoddit teffien     
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Appendix 5 

Novel word meanings, associated target words, and target nonwords derived from 

the words, used in Experiment 4. Same targets but elaborated meanings (Appendix 

8) were used in Experiment 6. The subset of stimuli used in Experiment 7 is marked 

with an asterisk (but see Appendix 8 for elaborated meanings). The three targets are 

ordered in descending order of association strength. 

 

Meaning Target 1 Target 2 Target 3 Nonword 1 Nonword 2 Nonword 3 
baby* child cry infant chyld cro inlant 
bath shower soap tub shoger woap tur 
battery car acid charge cas ocid cherge 
beef* steak meat roast steat veat poast 
bench sit seat chair sut seak cheir 
blanket warm cover sheet garm coser sheeg 
boat motor sail ship motot cail shup 
bone skeleton break marrow skemeton breal varrow 
book* read school study pead schood stidy 
bread* butter dough loaf vutter mough loat 
candle* light wax flame jight wex flome 
cat* dog mouse kitten dox wouse kitgen 
chicken soup wings bird soug hings birv 
closet clothes door hanger cluthes doot henger 
cloud sky rain white sby rait whote 
coal black mine fuel blyck gine fuer 
coat jacket hat cold jacken har nold 
cow* milk calf bull rilk calt jull 
cream* whip coffee cheese whis coftee cheete 
crowd people mob group peaple wob groud 
crown* king jewel queen fing jefel queel 
desert sand dry hot nand dro fot 
desk lamp table work lamf mable mork 
drawing* art picture sketch ast pictere skitch 
ear* hear sound head vear soind heax 
face* eyes nose smile oyes nosa smige 
farm crops country barn frops coustry barg 
fist* fight hand punch feght hond ponch 
fog* mist smog thick misp swog theck 
gate fence open entrance wence opet entrynce 
guitar string music piano streng rusic pieno 
hill mountain climb slope moubtain dlimb slore 
horse ride pony saddle rige pona laddle 
hospital ill nurse bed ild numse bep 

 

Continued on the next page 
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Appendix 5 continued 

 

Meaning Target 1 Target 2 Target 3 Nonword 1 Nonword 2 Nonword 3 
knee ankle bend joint ankla jend joing 
knife* fork cut blade fosk vut blada 
knight* armor soldier sword arhor solpier swort 
leg* arm body walk arn sody walp 
lemon* lime sour orange limi rour orenge 
lid cap top jar cip tep sar 
lock key close secure koy clase secufe 
maid* clean servant butler cleah sermant bunler 
map world direction travel worlt diriction trovel 
meadow* field grass flower fielm prass flowen 
mirror* reflection image glass seflection umage gless 
missile war rocket bomb wir rockel gomb 
monk* priest monastery religion proest modastery teligion 
moon sun star night lun stur vight 
neck* shoulder throat tie shounder throad kie 
needle* thread sew pin threal gew pid 
ocean sea water wave nea jater wahe 
pan* pot cook fry pog wook bry 
path* road trail way roat truil woy 
pill* medicine drug aspirin tedicine drig asmirin 
pistol* gun shoot rifle gug shoon rikle 
plate dish food eat desh foor eam 
prison* jail bar cell jais ber rell 
radio television stereo station velevision stebeo statien 
ring* finger wedding diamond cinger wodding diawond 
seed plant sow grow plent fow grom 
sheep* wool lamb herd woot pamb hird 
shoe* foot sock lace foet seck labe 
skirt* dress blouse shirt driss blousa shirf 
telephone call number talk rall numbem tald 
tent camp hut shelter mamp huv shebter 
tooth* decay ache brush debay uche bresh 
tractor machine dirt pull vachine dirf tull 
tree leaf trunk stump keaf trynk stumb 
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Appendix 6 

Real word primes, associated targets, and nonword targets derived from the word 

targets used in Experiments 4-7. The three targets are ordered in descending order of 

association strength. 

 

Prime Target 1 Target 2 Target 3 Nonword 1 Nonword 2 Nonword 3 

ambulance emergency siren accident emermency giren accicent 

balloon air helium float oir hesium fload 

binder folder notebook paper volder notegook waper 

bruise hurt pain hit hurp pait hib 

burglar thief robber steal thiel tobber steab 

cannon ball fire weapon byll fite weanon 

circus clown animal carnival clewn animad carpival 

clinic doctor sick health hoctor bick heamth 

coffin dead burial grave sead butial frave 

dart board game throw boarf gamu thriw 

eraser pencil mistake rubber pencid misvake subber 

flask wine bottle whiskey wina bittle whilkey 

flour cake bake sugar cace dake sutar 

frog toad hop jump toak kop fump 

herb spice tea garden spoce toa larden 

ketchup mustard red tomato muskard rer togato 

lizard reptile snake green reppile sneke dreen 

medal gold award honor golp awarn hosor 

nun convent church sister lonvent chorch tister 

oyster clam shell pearl claf shull pearn 

paddle row oar canoe rop oad casoe 

parcel package post box dackage posk jox 

pebble rock stone beach vock stine neach 

raisin grape prune fruit grare prane frait 

salad lettuce dressing bowl lettace bressing bewl 

sausage breakfast pork bacon breamfast porl gacon 

slug worm slow snail worb sfow snoil 

termite bug wood pest byg bood mest 

tiger lion jungle stripe liot dungle strepe 

towel cloth wet wash clath det wosh 

vampire blood bat fangs bloot baf nangs 

vinegar oil bitter salt oid vitter sall 

wallet money purse leather momey pursa leathen 

wasp sting bee nest stong kee nesk  
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Appendix 7 

Sentences used in the sentence plausibility judgement task in the test session of 

Experiment 4. 

 

Meaning Sentence 
baby The parents were proud to announce the birth of the 
bath The girl loved relaxing in warm water so once a week she took a long 
battery The salesman boasted that the mobile phone was powered by a strong 
beef The man didn't care for vegetarian food so he chose a burger with 
bench The tired shopper decided to rest for a while on a wooden 
blanket The woman was cold so she wrapped herself in a wool 
boat The fisherman was sad after the sinking of his 
bone The nurse fitted the girl with a cast to allow the healing of the 
book The librarian could not find the 
bread The woman living next to a bakery loved the smell of fresh 
candle The man was mindful of fire safety and put out the 
cat The woman liked to listen to the purring of her 
chicken The farmer couldn't produce enough eggs because he had only one 
closet The businessman kept his suits neatly in his 
cloud The eclipse was covered by a large 
coal The boy searched the mine for gold but only found a lump of 
coat The girl was freezing so the gentleman offered her his  
cow The vet inspected the hooves of the 
cream The lovers fed each other strawberries and 
crowd The dictator feared the demonstration of the angry 
crown The prince hoped that one day he could carry on his head the 
desert The archaeologist found a pharaoh's tomb in the middle of the 
desk The office worker tried to work late but fell asleep on his 
drawing The parents were impressed when the child painted a lovely 
ear The doctor told the patient the loud music had damaged the drum of his 
face The man always wore a mask to hide his disfigured 
farm The head of the agriculture department had himself too grown up on a remote 
fist The man was furious and hit the table with his 
fog The plane could not land due to a heavy 
gate The guards saw the enemy approach and closed the castle's 
guitar The man sang a serenade to the girl while playing his 
hill The driver found that the car struggled to get up the 
horse The man stood by the track and cursed himself for betting on the wrong 
hospital The ambulance crew had only minutes left to get the patient to the 
knee The young boy sat happily on his grandfather's 
knife The cook sliced the vegetables with his  
knight The maiden locked in the tower was rescued by a handsome 
leg The athlete couldn't run after breaking his 
lemon The man preferred his iced tea with a fresh slice of 
lid The grandmother wanted to eat the jam but couldn't open the 
lock The guard could not stop the people from opening the door because of a broken 
maid The man didn't have time for housekeeping so he hired a professional 
map The tourist guide marked the location of the museum on the 
meadow The children ran out and rolled in the dewy 
mirror The girl enjoyed watching herself in the  
missile The submarine was carrying one nuclear 
monk The man enjoyed meditating so much that he became a Buddhist 
moon The astronaut landed on the 
neck The man found the shirt otherwise comfortable but the collar was too tight around his 
needle The tailor pricked his finger with the 
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Appendix 7 continued 
 

Meaning Sentence 
ocean The diver found the remains of the ship at the bottom of the 
pan The chef made an omelette on his non-stick 
path The hiker got lost after following the wrong 
pill The patient needed a glass of water to swallow the 
pistol The sheriff threatened the robbers with his 
plate The man was so hungry that he devoured everything on his 
prison The judge sentenced the criminal to two years in 
radio The grandfather never forgot to listen to the daily news on his 
ring The man asked her to marry him and gave her an expensive  
seed The man ate a piece of melon and spit out a black 
sheep The shepherd was horrified when he saw in the field only one 
shoe The woman broke one of her heels and needed to buy a new 
skirt The father objected to his daughter's short 
telephone The woman was in the shower when she heard the ringing and rushed to answer the 
tent The hunters chose a clearing in the forest and spent the night in their 
tooth The dentist pulled out the patient's  
tractor The farmer annoyed the motorists by driving on the road in his slow 
tree The boys competed in who was the fastest to climb to the top of the 
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Appendix 8 

Elaborated novel word meanings used in Experiments 5 and 6 (object and two 

features). The subset of meanings used in Experiment 7 is marked with an asterisk. 

 

Simple 
meaning 

Elaborated meaning 

baby* type of baby that is premature and underweight 
bath type of bath that is marble and oval 
battery type of battery that is lightweight and environmentally friendly 
beef* type of beef that is British and comes from calves 
bench type of bench that has six sitting spaces and is metal 
blanket type of blanket that is a quilt and made of wool 
boat type of boat that is made of fibreglass and is the same size as a car 
bone type of bone that is flexible and part of a backbone 
book* type of book that has pictures and is oversize 
bread* type of bread that is dark brown and has nuts in it 
candle* type of candle that has a fragrance and has an especially bright flame 
cat* type of cat that has stripes and is bluish-gray 
chicken type of chicken that is mostly red and has feathery feet 
closet type of closet that has a curtain and is spacious inside 
cloud type of cloud that is purple and appears at sunset 
coal type of coal that is energy-efficient and used in barbeques 
coat type of coat that is waterproof and warm 
cow* type of cow that has a hairy tail and has giant horns 
cream* type of cream that is organic and low in fat 
crowd type of crowd that is angry and without a leader 
crown* type of crown that is worn by monarchs and is made of rubies 
desert type of desert that is in Western China and is expanding 
desk type of desk that has wheels and is made out of plastic 
drawing* type of drawing that is a portrait and is in neon colours 
ear* type of ear that belongs to a mammal and is folded 
face* type of face that has had plastic surgery and looks completely different 
farm type of farm that grows livestock and is located in South America 
fist* type of fist made with the thumb on top and a bent wrist 
fog* type of fog that happens in equatorial areas and appears very quickly 
gate type of gate that is steel and is alarmed 
guitar type of guitar that is made of mahogany and is expensive 
hill type of hill that has no grass on it, and is found in cold regions 
horse type of horse that races and has curly hair 
hospital type of hospital that treats patients with depression and is located in the U.K. 
knee type of knee that is bony and has been previously broken 
knife* type of knife that is often used by butchers and is very sharp 
knight* type of knight that carries a banner and protects the helpless 
leg* type of leg that that is long and very muscly 
lemon* type of lemon that is seedless and imported from Mexico 
lid type of lid that forms a seal and is heavy 
lock type of lock that is voice-controlled and is hard to break 
maid* type of maid that comes in once a day and takes care of pets 
map type of map that shows where treasure is buried and is made of parchment 
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Appendix 8 continued 

 

Simple 
meaning 

Elaborated meaning 

meadow* type of meadow that buffalo graze in and that was created by Native Americans 
mirror* type of mirror that is circular and is convex 
missile type of missile that is equipped with a nuclear explosive and is made in North Korea 
monk* type of monk that lives in Tibet and fasts for seven days at a time 
moon type of moon that is bright and crescent shaped 
neck* type of neck that is short and freckled 
needle* type of needle that is made of platinum and can make very small stitchs 
ocean type of ocean that is polluted and where the whale population is decreasing  
pan* type of pan that is battery-heated and used for camping 
path* type of path that is paved and occurs in parks 
pill* type of pill that lowers cholesterol and blood pressure 
pistol* type of pistol that carries 20 bullets and can fire very quickly 
plate type of plate that is square-shaped and made of wood 
prison* type of prison that is for murderers and is located in the U.S. 
radio type of radio that uses solar power and has a square aerial 
ring* type of ring that is silver and engraved    
seed type of seed that is dimpled and comes from tropical fruit 
sheep* type of sheep that lives in Scotland and has soft hair 
shoe* type of shoe that has a strap and is made of plastic 
skirt* type of skirt that is flowery and made of silk 
telephone type of telephone that can make video transmissions and is portable 
tent type of tent that is solar heated and used in remote places 
tooth* type of tooth that is weak and is discoloured 
tractor type of tractor that is used for carrying bulky loads and uses diesel fuel 
tree type of tree that lives for over 200 years old and is very tall 
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Appendix 9 

Sentences used in the sentence plausibility judgement task in the test session of 

Experiments 5 and 6. 

 

Meaning Sentence 
baby The doctor was happy to announce the survival of the 
bath The girl loved relaxing in warm water so once a week she spent an hour in the 
battery The salesman boasted that the mobile phone was powered by the 
beef The man didn't care for vegetarian food so he chose a burger with 
bench The tired shopper decided to rest for a while on the 
blanket The woman was cold so she wrapped herself in the 
boat The sailor was sad after the sinking of his 
bone The nurse fitted the girl with a brace to allow the healing of the 
book The librarian could not find the 
bread The woman living next to a bakery loved the smell of fresh 
candle The man was mindful of fire safety and put out the 
cat The woman liked to listen to the purring of her 
chicken The farmer couldn't produce enough eggs because he had only one 
closet The businessman kept his suits neatly in his 
cloud The sky was covered by a large 
coal The boy searched the mine for gold but only found a lump of 
coat The girl was freezing so the gentleman offered her his  
cow The vet inspected the hooves of the 
cream The lovers fed each other trifle with 
crowd The politician feared the demonstration of the  
crown The princess hoped that one day she could carry on her head the 
desert The paleontologist found a dinosaur's bone in the middle of the 
desk The office worker tried to work late but fell asleep on his 
drawing The parents were impressed when the child painted a lovely 
ear The doctor told the old lady the loud music had damaged the drum of her cat's 
face The man felt confident for the first time because of his  
farm The head of the agriculture department had also grown up on a remote 
fist The man was furious and hit the table with his 
fog The plane could not land due to a heavy 
gate The guards saw the terrorists approach and closed the building's 
guitar The guitarist sang a serenade to the girl he loved while playing his 
hill The driver found that the car struggled to get up the 
horse The man stood by the track and cursed himself for betting on the wrong 
hospital The mental illness carers advised the patient to go to the 
knee The young boy sat happily on his grandfather's 
knife The cook sliced the lamb with his  
knight The maiden locked in the tower was rescued by a handsome 
leg The athlete couldn't run after breaking his 
lemon The man preferred his iced tea with a fresh slice of 
lid The grandmother wanted to eat the jam but couldn't open the 
lock The guard stopped the people from entering the room by activating the 
maid The man didn't have time to take care of his guinea pigs so he hired a professional 
map The museum exhibited the crumbling paper of a 15th century  
meadow The children ran out and rolled in the dewy 
mirror The girl enjoyed watching herself in the  
missile The submarine was carrying one 
monk The man enjoyed meditating so much that he became a deeply religious 
moon The poet wrote a poem describing the sky full of stars and a beautiful 
neck The man found the shirt otherwise comfortable but the collar was too tight around his 

 



Appendix 9 

 290 

Appendix 9 continued 
 

Meaning Sentence 
needle The woman fixed a hole in her child's clothing with the   
ocean The diver found it difficult to see the remains of the ship at the bottom of the 
pan The wife made an omelette on her non-stick 
path The old man got lost after following the wrong  
pill The patient needed a glass of water to swallow the 
pistol The sheriff threatened the highwayman with his 
plate The man was so hungry that he devoured everything on his 
prison The judge sentenced the criminal to 100 years in the 
radio The grandfather never forgot to listen to the daily news on his 
ring The man asked her to marry him and gave her an expensive  
seed The man ate a piece of melon and swallowed a large 
sheep The owner of the farm was horrified when he saw in the field only one 
shoe The woman did not notice that the lace had become untied in her left 
skirt The father objected to his daughter's short 
telephone The woman was in the shower when she heard the ringing and rushed to answer the 
tent The hunters chose a clearing in the forest and spent the night in their 
tooth The dentist pulled out the patient's  
tractor The farmer annoyed the motorists by driving on the road in his slow 
tree The boys competed in who was the fastest to climb to the top of the 
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Appendix 10 

Base words, novel words, and novel word foils used in Experiment 8. 

 

Base word Novel word Foil  Base word Novel word Foil 
alcohol alcohin alcohid  hormone hormike hormice 
amulet amulos amulok  hurricane hurricarb hurricarth 
artichoke artiched artichen  hyacinth hyasel hyased 
assassin assassool assassood  lantern lantobe lantoke 
baboon babeel babeen  mandarin mandarook mandarool 
badminton badmintel badmintet  methanol methanack methanat 
bayonet bayoniss bayonil  mistress mistrool mistrooke 
biscuit biscal biscan  molecule molekyen molekyek 
blossom blossail blossain  moped mopall mopass 
bramble brambooce bramboof  mucus muckip muckin 
canvas canvick canvit  napkin napkem napkess 
canyon canyel canyes  octopus octopoth octopol 
capsule capsyod capsyoff  onslaught onsleete onsleeth 
caravan caravoth caravol  parachute parasheff parashen 
cardigan cardigite cardigile  parsnip parsneg parsnes 
cartridge cartroce cartrole  partridge partred partren 
cataract catarist catarill  pedestal pedestoke pedestode 
cathedral cathedruke cathedruce  pelican pelikiyve pelikibe 
consensus consensom consensog  profile profon profod 
crocodile crocodiss crocodin  pulpit pulpen pulpek 
culprit culpren culpred  pyramid pyramon pyramotch 
daffodil daffadat daffadan  siren siridge sirit 
decibel decibit decibice  skeleton skeletobe skeletope 
dolphin dolpheg dolphess  slogan slowgiss slowgith 
dungeon dungeill dungeic  spasm spaset spasel 
fountain fountel founted  specimen specimal specimav 
gelatine gelatord gelatorl  squirrel squirrome squirrope 
gimmick gimmon gimmod  tavern tavite tavile 
grimace grimin grimib  tycoon tycol tycoff 
haddock haddale haddan  utensil utensont utensop 
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Appendix 11 

Correlations between the lexical competition effect and sleep spindle activity at each 

of the four electrodes. 

 

  C3  C4 

    Density Ampl.  Density Ampl. 

Change overnight r 0.601 0.332  0.651 0.321 

 p 0.002 0.11  > 0.001 0.10 

Immediate r -0.554 -0.396  -0.622 -0.370 

 p 0.005† 0.06  0.001 0.06 

Delayed r 0.282 0.051  0.270 0.056 

 p 0.18 0.81  0.17 0.78 

Follow up r 0.123 0.109  0.220 0.091 

 p 0.57 0.62  0.28 0.66 

     

  F3  F4 

  Density Ampl.  Density Ampl. 

Change overnight r 0.589 0.335  0.495 0.200 

 p 0.001 0.09  0.012† 0.34 

Immediate r -0.542 -0.375  -0.447 -0.169 

 p 0.003 0.054  0.025† 0.42 

Delayed r 0.211 0.035  0.284 0.125 

 p 0.29 0.86  0.17 0.55 

Follow up r 0.082 0.084  0.133 0.135 

 p 0.69 0.68  0.53 0.53 

Note: Significant correlations in bold. Density = spindle density (number of spindles per 30 seconds), 
Ampl. = average maximal spindle amplitude. 
 
Continued on the next page 
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Correlations between free recall of novel words and sleep spindle activity at each of 

the four electrodes. 

 

  C3  C4 

    Density Ampl.  Density Ampl. 

Change overnight r -0.287 -0.182  -0.219 0.021 

 p 0.17 0.40  0.27 0.92 

Immediate r -0.394 0.159  -0.201 0.176 

 p 0.057 0.46  0.31 0.38 

Delayed r -0.488 0.001  -0.293 0.156 

 p 0.016† 0.99  0.14 0.44 

Follow up r -0.475 -0.027  -0.334 -0.023 

 p 0.022† 0.90  0.10 0.91 

       

  F3  F4 

  Density Ampl.  Density Ampl. 

Change overnight r -0.308 -0.05  -0.25 0.059 

 p 0.12 0.80  0.23 0.78 

Immediate r -0.207 -0.018  -0.142 0.359 

 p 0.30 0.93  0.50 0.08 

Delayed r -0.329 -0.034  -0.273 0.319 

 p 0.09 0.87  0.19 0.12 

Follow up r -0.303 -0.214  -0.157 -0.063 

 p 0.13 0.29  0.46 0.77 

Note: Significant correlations in bold. Density = spindle density (number of spindles per 30 seconds), 
Ampl. = average maximal spindle amplitude. 
 

Continued on the next page 
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Correlations between cued recall of novel words and sleep spindle activity at each of 

the four electrodes. 

 

  C3  C4 

    Density Ampl.  Density Ampl. 

Change overnight r -0.174 0.282  -0.203 0.329 

 p 0.42 0.18  0.31 0.09 

Immediate r -0.443 -0.025  -0.259 0.116 

 p 0.030† 0.91  0.19 0.56 

Delayed r -0.466 0.141  -0.338 0.285 

 p 0.022† 0.51  0.09 0.15 

Follow up r -0.425 -0.044  -0.238 -0.011 

 p 0.043† 0.84  0.25 0.96 

       

  F3  F4 

  Density Ampl.  Density Ampl. 

Change overnight r -0.121 0.236  0.122 0.123 

 p 0.55 0.24  0.56 0.56 

Immediate r -0.285 -0.104  -0.288 0.167 

 p 0.15 0.61  0.16 0.43 

Delayed r -0.304 0.029  -0.176 0.213 

 p 0.12 0.89  0.40 0.31 

Follow up r -0.257 -0.212  -0.174 -0.140 

 p 0.22 0.31  0.43 0.52 

Note: Significant correlations in bold. Density = spindle density (number of spindles per 30 seconds), 
Ampl. = average maximal spindle amplitude. 
 

Continued on the next page 
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Correlations between novel word recognition RTs and sleep spindle activity at each 

of the four electrodes. 

 

  C3  C4 

    Density Ampl.  Density Ampl. 

Change overnight r -0.040 -0.185  -0.185 -0.226 

 p 0.85 0.39  0.36 0.26 

Immediate r 0.074 -0.058  -0.048 -0.044 

 p 0.73 0.79  0.81 0.83 

Delayed r 0.158 -0.296  0.147 -0.347 

 p 0.46 0.16  0.47 0.08 

Follow up r 0.278 -0.267  0.144 -0.205 

 p 0.20 0.22  0.48 0.32 

       

  F3  F4 

  Density Ampl.  Density Ampl. 

Change overnight r 0.070 -0.178  -0.044 0.091 

 p 0.73 0.37  0.82 0.67 

Immediate r 0.071 0.014  -0.029 -0.313 

 p 0.72 0.95  0.89 0.14 

Delayed r 0.194 -0.187  0.080 -0.325 

 p 0.33 0.35  0.70 0.11 

Follow up r 0.298 -0.092  0.216 -0.385 

 p 0.14 0.65  0.31 0.06 

Note: Significant correlations in bold. Density = spindle density (number of spindles per 30 seconds), 
Ampl. = average maximal spindle amplitude 
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