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Abstract
Molecular interaction motifs in a system-wide network context: Computationally

charting transient kinase-substrate phosphorylation events

by Ralph Patrick

Protein phosphorylation is the most ubiquitous of post-translational modifications, regulating

a wide variety of essential functions from cell-cycle progression through to DNA damage repair.

Phosphorylation is regulated by the kinases – a super-family of proteins that comprise the

third largest protein family in the human genome. While advances in high-throughput mass

spectrometry have resulted in the identification of hundreds of thousands of phosphorylation

sites, the identification of the kinases that regulate these phosphorylation events has largely

remained elusive. Understanding the kinases responsible for phosphorylation events is often

crucial for understanding the function of the modification, however the transient nature of

kinase binding means that identifying genuine kinase-binding events in vivo is both difficult

and expensive.

The vast majority of methods for computationally predicting kinase binding targets rely pri-

marily on sequence features. A lack of specificity in many kinase-binding motifs means that

valid binding patterns can be found randomly throughout the proteome – leaving such meth-

ods susceptible to high false-positive rates. However, the determinants of phosphorylation are

not limited to the sequence; kinases are regulated through various cellular processes including

mediating/activating proteins, localisation and cell cycle-specific expression. While such infor-

mation has increasingly become accessible through proteomic databases, incomplete coverage,

variable certainty and the heterogeneous nature of context and sequence information means

that the integration of relevant features into a computational model is non-trivial.

In this thesis I present a method for the probabilistic integration of these two aspects of kinase

regulation – context and sequence – into a Bayesian network model that can accurately predict

kinase substrates. In the first part of the thesis I demonstrate how a model that incorporates

knowledge of kinase-substrate phosphorylation, protein interactions and protein abundance
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across the cell cycle can be used to classify kinase substrates. The model achieves high level

of prediction accuracy as determined by cross-validation, obtaining an average AUC of 0.86

across all kinases tested. When applying the model to complement sequence-based kinase-

specific phosphorylation site prediction using previously published methods, I find it improves

prediction performance for most comparisons made. As a validation of these ideas, I also show

how protein interaction networks can be coupled with gene expression data to predict changes

in phosphorylation status in response to varying cell treatment conditions.

To integrate kinase-binding affinity into the modelling framework, I present a method for

classifying kinase-binding sites from sequence, which captures features from the linear motifs

surrounding known kinase-specific phosphorylation sites. This method incorporates observed

position-specific amino acid frequencies and counts of co-occurring neighbouring amino acids

into a Bayesian network model. The model is trained to discriminate between a kinase’s bind-

ing profile, that of its family members, and a phosphorylation background. I show how this

sequence model can be integrated as a module into the larger context model, allowing for a

comprehensive description of the factors that influence kinase binding. This seamless integra-

tion of context and sequence increases kinase-substrate prediction accuracy, when compared

to the first context model, by over 50% at low false-positive levels. I find that this system

of predicting kinase substrates, coupled with predicting kinase binding sites from sequence,

convincingly outperforms existing kinase-specific phosphorylation site classifiers; a comparison

of prediction accuracy at strict specificity levels shows that my method predicts kinase-specific

phosphorylation sites with an average of 9-22% greater sensitivity (at a strict specificity level

of 99.9%) than the alternatives. The method, named PhosphoPICK, has been made freely

available as a web-service.

Possessing a predictor that ably integrates the context and sequence conditions that regulate

phosphorylation allows an approach to problems in phosphorylation that were not feasible

previously. Non-synonymous single nucleotide polymorphisms (nsSNPs) have the potential to

disrupt (or introduce) kinase binding sites through the modification of key amino acids that

mediate kinase activity. To validate that PhosphoPICK accurately represents the biological

characteristics determining phosphorylation occurrence, I developed a method applying Phos-

phoPICK to predict variant-causing phosphorylation loss and gain. The method quantifies the
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expected effect of a nsSNP on phosphorylation based on predictions from the sequence model,

and the probability that a query kinase will target the variant protein. Employing distributions

of predicted variants across the proteome, the method can provide a measure of the significance

of novel variants. Evaluating the method on known examples of variants causing phosphoryla-

tion loss or gain from the literature, I show that PhosphoPICK can detect the positive examples

at strict specificity levels.

While the methodology presented in this work was developed for phosphorylation, it should

be considered a framework that could be applied to alternative biological processes. Sequence

motifs and protein interactions are necessary elements for a spectrum of biology, including

post-translational modifications other than phosphorylation. The short ubiquitin-like modifier

(SUMO), for example, operates on defined sequence motifs, but is also highly dependent on the

context factors that SUMO substrates operate in. The methods I describe allow an approach to

alternative protein prediction problems, such as SUMOylation, where the integration of context

and sequence characteristics can provide a comprehensive description of the relevant regulatory

features.
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Professor Bostjan Kobe. As such, they contributed to the design of the project, and the design

of the experiments carried out as part of it.

Statement of parts of the thesis submitted to qualify for

the award of another degree

None

viii



Acknowledgements

I am very thankful to many people who have made this PhD thesis not just possible, but a

fun and rewarding experience. First and foremost, I owe a debt of gratitude to my primary

supervisor Mikael Bodén, who has been a patient teacher, and guided my research and writing

efforts for many years now. I am also thankful to my co-supervisors, Kim-Anh Lê Cao and
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Chapter 1

Introduction and overview

1.1 Introduction

Advanced “omics” technologies are rapidly transforming the proteomic research landscape, with

a variety of proteomic and genomic databases recording hundreds of thousands of molecular

interactions (1–3), post-translational modifications (4–9) and functional annotations (10–13).

This increasingly massive and diverse amount of data requires development of computational

methods that can integrate and analyse complex biological data – thus allowing for the kind of

observations and hypothesis testing that only a systems approach to biology allows.

Many important biological processes and functions involve, or are regulated by a variety of

post-translational modifications. For example, acetylation is a co-regulator of major cellular

functions including chromatin remodelling, nuclear transport and protein degradation (14, 15)

while glycosylation is involved in protein folding, localisation and trafficking amongst other

things (16). Protein phosphorylation is the most ubiquitous post-translational modification and

has regulatory roles in a wide array of biologically important functions from DNA damage repair

(17) through to the control of cell-cycle progression. As a consequence of this, there has been

great interest in identifying protein phosphorylation events, with advanced phosphoproteomic

technologies successful in identifying hundreds of thousands of phosphorylation sites across

multiple proteomes. The protein enzymes – kinases – responsible for these modifications have

generally remained elusive; however it is the assignment of kinases to phosphorylation sites that

can give insight into the biological pathway that a site may be involved in. This has resulted

in many attempts to build computational methods for predicting phosphorylation sites and the

kinases that are responsible for them (18).

1
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Broadly speaking, there are two domains of information that need to be considered when seek-

ing to understand the regulation of kinase-mediated phosphorylation. The first is linear motifs

– short regions of amino acids that allow interactions between proteins and are necessary for

kinases to bind their target substrates. The second domain of information concerns what may

be termed the “context factors” that regulate kinase activity at the wider cellular level. Given

the highly specific functions that kinases regulate, it is essential that the activity of kinases

themselves be tightly controlled (19). Kinases are subject to a range of regulatory mechanisms,

such as activating or mediating proteins (20), cell cycle stage-specific expression and sub-cellular

localisation (21). Furthermore, “cross-talk” between post-translational modifications adds an-

other element of regulatory complexity; for example, phosphorylation can act as a promoter

or inhibitor of ubiquitiniation (22), and likewise glycosylation can act as an inhibitor of phos-

phorylation (16). These diverse factors, in concert with the sequence-specificity of kinases, all

contribute towards ensuring kinase-substrate fidelity.

The majority of existing methods for predicting kinase-specific phosphorylation sites have pri-

marily focussed on modelling features within the linear motifs that surround phosphorylation

sites. However, many motifs are non-specific and can be found at random in protein sequences,

leading to the identification of numerous false-positives. In addition to motifs, there are several

examples of predictors complementing the sequence data with other types of information con-

tained within the protein. Protein features such as disorder (23) and surface accessibility (24)

have been shown to improve model accuracy for predicting phosphorylation sites, while protein

structure has been used to both inform the design of predictive methods (25), and supplement

motif-based predictions of phosphorylation (26). While such approaches can identify valid ki-

nase binding locations within a protein, even the presence of a perfect kinase binding motif is no

guarantee that a kinase will come into contact with the protein (27). Despite these limitations,

there has been very little work invested in developing methods to analyse the context factors

that regulate kinases.

There are numerous examples of context information, with high coverage across the proteome,

that could be leveraged to build computational methods for predicting kinase substrates.

Protein-protein interactions (PPIs) are relevant to essentially all biological processes, and huge

numbers of them have been recorded in databases. In particular, PPI networks are an excellent

source of information on the molecular context that proteins operate in. PPI networks contain

a unique capacity to identify proteins that interact with, and perhaps mediate between, kinases

and their substrates. Other information concerning the “association” between proteins can be

gleaned from gene co-expression studies, which are incorporated into the STRING database

(2). Similarly, as phosphorylation is involved in cell cycle-specific processes, the incorporation
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of information relating to cell-cycle progression would be useful in identifying cell cycle-specific

kinase activity (28). The increasing availability of such proteome-wide data in publicly avail-

able databases provides a unique opportunity to leverage such information in computational

methods.

The challenge here is two-fold. Firstly, the context information that could be used to describe a

kinase’s regulation at the systems level is highly diverse, and the information will not be avail-

able for all proteins. Secondly, modelling the context that a kinase operates in, and modelling

its binding specificity are two very different problems. Therefore, the integration of context

and sequence into a single model of phosphorylation is non-trivial.

This thesis proposes a novel computational framework based on probabilistic modelling to

bridge the gap between these diverse sequence and context aspects of kinase regulation. I show

that Bayesian networks are an ideal tool for such a task, allowing for the seamless integration of

diverse types of information, and the handling of uncertain or missing data. The method works

across species, with the ability to predict kinase substrates with high accuracy in three model

organisms: human, mouse and yeast. While this work describes a method for the integration

of information relevant to phosphorylation, the framework that I propose should be considered

generic, with the potential to be applied to alternative post-translational modifications, or other

biological functions where both linear motifs and context factors are relevant.

1.2 Kinase-mediated phosphorylation

Protein phosphorylation was first described as an enzyme-regulated process in 1954, when a liver

enzyme was observed to catalyse the phosphorylation of caesin (29). Since then, the many stud-

ies involving phosphorylation have pointed to the modification as a central control mechanism

underlying every essential biological process that cells undertake (30). While earlier studies es-

timated that approximately 30% of human proteins could be phosphorylation substrates, more

recent work in phosphoproteomics has indicated a much higher figure of at least 70% (28),

making phosphorylation a highly ubiquitous post-translational modification. A consequence

of the central importance and pervasive nature of phosphorylation is that many diseases and

cancers are related to aberrant phosphorylation events, with kinases having emerged as key

drug targets (31).

Kinases are a protein superfamily containing over 500 identified members in human, and com-

prising the third most populated family of proteins (32). Kinases phosphorylate their target
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substrates through the transfer of a phosphate group from an adenosine triphosphate (ATP)

donor to (primarily) a serine (S), threonine (T) or tyrosine (Y) residue on the protein sub-

strate. It is well documented that histidine residues also undergo phosphorylation in bacterial

cells (33), though this is not known to be a common occurrence in eukaryotes. As the focus of

this work is on eukaryotic phosphorylation, only S/T/Y phosphorylation will be considered.

Phosphorylation is likely a significant factor in understanding complex organisms, with phos-

phorylation of eukaryotic proteins showing a significant increase compared to prokaryotes in

terms of numbers of phosphorylation sites (6). Indeed, the presence of large numbers of phos-

phorylation sites on a protein can result in high levels of regulatory flexibility, with a protein

containing n phosphorylation sites having 2n potential phosphorylation “states” that it can

exist in (34). There are a plethora of examples of complex biological processes that could be

explored to illustrate the important regulatory role of phosphorylation. The mitotic cell cycle

is particularly illustrative example of regulation by kinase-meditated phosphorylation, and has

been well studied (35).

1.2.1 Phosphorylation as a key regulator of the cell cycle

The mitotic cell-cycle is a highly regulated process in multi-cellular organisms, where correct

cell numbers must be maintained and damaged cells restrained from replicating. Indeed, the

definition of cancer is the situation where this process has become impaired, with cells containing

irreparable DNA damage continuing to replicate unchecked. The cell cycle is divided up in to 5

main cell-cycle stages, the progression through which are controlled tightly by phosphorylation

and mediated by a variety of kinases. The main drivers of the cell cycle are the cyclin-dependent

kinases (CDKs), which perform key (though potentially overlapping) functions at specific stages

of the cell cycle (36). There are a variety of other kinases that at specific stages, or under specific

conditions, act to inhibit or activate the CDKs; there are further kinases that respond to damage

and enable the organisation of the cell prior to the completion of mitosis.

The initial phase is the growth 1 (G1) phase, where the cell increases in size in preparation

of DNA replication. G1 progression is mediated by the CDK4 and CDK6 kinases (37). The

transition between G1 and synthesis (S) phase is crucial. A key driver of the G1/S phase

transition is CDK2 in complement with cyclin E (38). As the cell transitions into S phase the

expression of cyclin E decreases and cyclin A increases – forming the cyclin A-CDK2 complex

that phosphorylates the DNA replication machinery. As S phase involves the duplication of the

chromosomes, a highly delicate process, the DNA can suffer damage during replication (39).
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In situations of DNA damage during replication the ATR kinase interacts with the replication

machinery to halt S phase progression (40). The phase following S phase, growth 2 (G2),

specifically checks the newly replicated DNA for damage prior entry into M phase There are

a number of kinases that regulate the DNA damage response during G2, but key kinases are

ATR and ATM, which activate Checkpoint kinase 1 (CHK1) and CHK2.

Phosphorylation is particularly ubiqitous during mitosis where many complex operations are

required to take place in order to separate sister chromatid into separating cells. Various

processes to facilitate this such as spindle formation, centrosome maturation/separation and

chromosome attachment to the spindle are controlled by kinases (41, 42). The central driver

behind mitosis is the cyclin B1-CDK1 kinase complex, whose activity can trigger different

mitotic events (43). The number of cyclin B1-CDK1 complexes increases prior to mitosis, but

they are kept inactive by the phosphorylation of CDK1 by the MYT1 and WEE1 kinases.

The rapid dephosphorylation of CDK1 by phosphatases is a key signal for the start of mitosis,

causing the complex to activate Polo kinase 1 (PLK1), the most tightly periodically expressed

gene in the genome (44), which is essential for mitotic progression (if DNA damage is detected

PLK1 will be deactivated until the damage is repaired). There are several other kinases such

as Aurora kinases A and B that are involved in ordering and condensing chromosomes, and

organising the mitotic spindle (45).

Even this brief overview of the role of phosphorylation in cell cycle progression should illustrate

the fact that kinase activity must be highly specific, with kinases maintaining tight selectivity

for target selection. While there is some level of redundancy that can be tolerated, aberrant

functioning of several kinases has been linked to cancers – particularly kinases involved in

DNA damage repair pathways (such as ATM/ATR) and those involved in arresting cell–cycle

progression in case of irreparable DNA damage. The consequences of kinase malfunction should

further underline the importance of understanding kinase activity and selectivity. I now turn

to consider how it is that kinase-substrate specificity is maintained.

1.2.2 Kinase specificity and regulation

Given the role of kinases in regulating a wide array of biological processes through phosphoryla-

tion, it is critical that the kinases themselves be strictly regulated to maintain substrate fidelity.

There are several characteristics of kinases and the wider cell that contribute to ensuring that

kinases phosphorylate the correct substrates under the correct conditions. For the purpose of
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this work, I specify two main categories of interest: the binding affinity of kinases for their

substrates and the context factors that regulate kinase activity.
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Figure 1.1: Dendrograms showing sequence similarity of kinases from their catalytic do-
mains (a), and binding-specificity from their target peptides (b). Kinase domains were
sourced from Uniprot (www.uniprot.org) and phosphorylation peptides were sourced from
PhosphoSitePlusr (4). Kinases have been coloured according to the four sub-families clus-
tered by catalytic domain sequence similarity (a).

Kinase-substrate binding affinity concerns the propensity of kinases to preferentially phospho-

rylate sites on proteins that contain a short pattern of amino acids, what is often termed a

linear motif. The preference for a kinase to bind to a linear motif is determined by the catalytic

domain of the kinase. Analysis of the 3D structure of kinases has shown that kinases contain

short catalytic domains that bind to certain sequences on substrate proteins (46). Sequence

similarity between kinases in these domains allows them to be organised into families and sub-

families (32), with closely related kinases having a tendency to bind to similar sites. Figure 1.1

shows dendrograms of kinases within the CMGC family. In Figure 1.1(a) the kinases have been

clustered according to the sequence similarity in their binding domains, and coloured accord-

ing to sub-family. Figure 1.1(b) shows a dendrogram where the kinases have been clustered

according to sequence similarity in their known phosphorylation target peptides. While there

is not a perfect overlap between the two dendrograms, they demonstrate that kinases within

the same sub-family will have a tendency to bind to similar sequence patterns.

Figure 1.2 shows examples of sequence logos for various kinase binding sites and the surrounding

amino acids. Some kinase binding motifs appear to be unspecific – the proline-dependent kinases

www.uniprot.org
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such as CDK1 and ERK1 have a proline in the +1 position after the phosphorylation sites as

their main recognition symbol. An [S/T]P motif can easily be found at random throughout the

proteome, with almost 90% of human proteins containing the motif. Protein kinase A (PKA),

which appear to preferentially bind to a motif of the form [RK][RK]X[ST] can be found in 53%

of human proteins. The ATM motif, with a glutamine at the +1 position, can be found in 88%

of humans proteins. The AurB motif, which appears to have a preference for an arginine at the

-2 position, is seen in 87% of proteins. While a fixed motif is not the ideal way to predict kinase

binding sites (as explored in Section 1.5), this illustrates the fact that amino acid motifs that

could represent valid kinase binding sites can be found in a large proportion of the proteome.
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Figure 1.2: Sequence logos representing various kinase binding specificities in a 15 residue
window surrounding the phosphorylation site (position 0). Phosphorylation peptides were
sourced from PhosphoSitePlusr (4) and logos were generated using WebLogo 3 (47). Logos
are listed alphabetically according to kinase name.

The presence of a valid kinase binding site on a protein is no guarantee that a kinase will come

into contact with the protein however (27). It has long been recognised that the activity of ki-

nases can be regulated through upstream processes. The activation of kinases can be controlled

through interacting proteins, complex formation, or phosphorylation events (48). Protein-

protein interaction (PPI) networks can influence phosphorylation, or themselves be regulated
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by phosphorylation, in a variety of ways. For example, kinase activity can be regulated by

mediating proteins that help target their substrates (27, 49). In addition, phosphorylation can

act as a switch within PPI networks, to enable or disable specific protein-protein interactions

within a network (50). Phosphorylation has previously been found to be associated with pro-

teins at the centre of PPI “hubs”, with a broad array of interaction partners (51). There is also

a wide variety of processes throughout the cell to activate or mediate kinases. Cell-cycle control

kinases are activated at specific stages in the cell cycle, with the cell cycle-specific expression

of cyclins coupled to the activation of their cyclin dependent kinase (CDK) counterparts to

regulate their activity at the correct cell-cycle stage (52). An example of proteins that mediate

the interaction between kinases and their substrates can be seen in scaffold proteins, which

are integral to intracellular signalling networks and phosphorylation – in particular through

coordinating kinase cascades (20).

In Section 1.2.1 I described the importance of kinase activity over the cell cycle, and some of

the regulatory mechanisms involved in ensuring cell cycle stage-specific kinase activation and

deactivation. In addition to protein interactions and the cell cycle, sub-cellular localisation

plays a role in regulating kinase activity. Kinase CK2, which has large numbers of identified

substrates, regulates different processes depending on its location in the cell (53). Critical

cellular functions like apoptosis can be associated with kinase sub-cellular location. CDK2

has been shown to localise to the nucleus in proliferating cells, and to the cytoplasm in cells

undergoing apoptosis (54). Sub-cellular localisation can also act in concert with cell-cycle

progression to regulate kinase activity – for example the sub-cellular localisation of Wee1 kinase

is dependent on cell-cycle stage (55).

There are many examples of context factors that regulate kinase activity. The ones that have

been described here have the capacity to be modelled, using the available data: huge numbers

of protein-protein interactions across multiple species have been catalogued in databases such

as BioGRID (1), and less direct “associations” in the STRING database (56). Protein-protein

interaction (or association) networks can feasibly be used to model the “interaction” context

that kinases and their substrates operate it. Furthermore, the sub-cellular activity of kinases

could be indirectly captured through the interaction networks of a kinase and its substrates.

1.3 Experimental identification of phosphorylation

There are two separate problems to consider when attempting to identify the phosphorylation

status of a protein. The first is identifying whether a “phosphorylateable” residue actually
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undergoes a phosphorylation modification. The second is the identification of the kinase that

catalyses the modification. As is outlined below, while the identification of phosphorylated

residues has become easier, and therefore the data extensive, the same has generally not oc-

curred for the identification of kinases. This has lead to a large disparity between the number

of known phosphorylation sites, and the sites that are annotated with a kinase. As phosphory-

lation is reversible, another consideration is the phosphatases that are responsible for removing

phosphorylation modifications. However, the focus in my work will be on the identification of

phosphorylation and kinase targets.

In initial studies on phosphorylation, protein phosphorylation sites were detected using 32P

labelling – a radioactive isotope of phosphorous. An alternative method for detecting phospho-

rylation sites is phospho-antibodies, which can recognise the phosphorylated form of a protein.

In recent years however, the introduction of high-throughput mass spectrometry has resulted

in phosphoproteomic studies that have identified tens of thousands of phosphorylation sites

(28, 57).

While the identification of in vivo phosphorylation sites has become easier, identifying the ki-

nases responsible for regulating the sites has in most cases remained elusive. Many experiments

to identify the kinases regulating phosphorylation sites are performed using in vitro assays.

Such experiments generally involve purifying the kinase and potential substrate to be tested

and adding them in solution with ATP. Phosphorylated forms of the potential substrate can

then be tested for using anti-bodies (for phosphorylation-specific forms of a protein or peptide)

or mass spectrometry. For example, putative ATM substrates were identified through mutage-

nesis experiments on a known substrate to characterise the kinase’s optimal binding motif (58).

This motif was then used to identify proteins containing similar motifs, and again subjected

to in vitro assays to confirm that they can be phosphorylated by the kinase. While in vitro

experiments certainly provide valuable information about the likely kinases to be catalysing a

phosphorylation modification, they are no guarantee that the kinase will phosphorylate the site

in vivo.

There are several methods for using a combination of in vivo and in vitro experiments to detect

kinase targets. Kinases can be transfected with the protein under study, and the phosphoryla-

tion levels measured; if inhibition of the kinase leads to a reduction in phosphorylation, this is

a strong indication that the site is phosphorylated by the kinase (59). Another related method

used frequently is to show through an in vitro assay that a kinase binds to the site of interest,

then show in vivo that when the kinase is inactivated (through the use of a kinase inhibitor or

transfection of kinase-specific siRNA for example), the target site does not get phosphorylated
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(60–63). Alternative or additional evidence that can be provided is to demonstrate that the

kinase interacts with the putative substrate in vivo – something that can be shown through

co-immunoprecipitation experiments (64–67). There are also kinase phosphorylation-specific

antibodies that can be used, through immunoprecipitation experiments, to identify whether a

specific phosphorylation event occurs (68). Such experiments can also be combined with kinase

inhibitors to confirm that the site is down-phosphorylated in the absence of the kinase.

There are also examples of “global” screening for kinase substrates across the proteome. Such

methods can include in vitro screening of kinases simply for the purpose of deciphering their

binding specificity (69). There are also methods that aim to identify putative kinase substrates.

One method takes advantage of a small genetic modification of a kinase that allows it to use

bulky ATP that wild-type kinases would not be able to bind to. Mass spectrometry can then

be used to identify peptides that contain the heavier phosphate form. This method has been

employed using in vitro kinase assays with cell lysates to identify putative substrates for CDK2

(70), and a similar method has been employed for CDK1 in both a human cell line (71) and

in yeast (72). Such methods are useful for the identification of putative substrates, but require

further work to confirm that the kinase targets the substrates and sites in vivo.

1.4 Phosphorylation databases

The inherent difficulty associated with identifying in vivo kinase substrates means that while

phosphorylation sites are regularly detected, the kinase responsible generally remained un-

known. For databases that catalogue phosphorylation sites, there is a substantial gap between

the number of phosphorylation sites, and the number of phosphorylation sites annotated with

a kinase. I present here a brief overview of the main eukaryotic phosphorylation databases,

and their data collection for phosphorylation sites and kinase annotations. Figure 1.3 shows

counts for four different databases that catalogue phosphorylation sites. PhosphoGRID is a

yeast-specific phosphorylation site database, Phospho.ELM catalogues vertebrate phosphoryla-

tion sites, HPRD catalogues human modifications and PhosphoSitePlus contains modifications

from a variety of mammalian organisms.

The Phospho.ELM, HPRD and PhosphoGRID databases collate phosphorylation data from

the primary literature. The PhosphoGRID data collection process involves searching abstracts

identified through a PubMed search using phosphorylation-related keywords (73). An exam-

ination of the experimental technique used for identifying the phosphorylation site (or sites)
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Figure 1.3: Counts of the total number of phosphorylation sites, and the number of sites
annotated with a kinase for the four databases used in this work. Databases shown are
PhosphoGRID (73), Phospho.ELM (74), HPRD (7) and PhosphoSitePlusr (4)

informs the confidence assigned to a particular phosphorylation sites; phosphorylation sites

recorded in PhosphoGRID typically have multiple examples of experimental evidence support-

ing their inclusion. Where a kinase has been experimentally shown to target the site, that

information is included.

Phospho.ELM also compiles phosphorylation sites (and kinase annotations) through manual

searches of the literature. In addition, the database web-site contains the capacity for re-

searchers to upload their phosphorylation data for inclusion in the database. HPRD collates

large amounts of human protein information, including protein-protein interactions, sub-cellular

localisation data, as well as multiple PTMs. Similar to the previous database, the information

in HPRD is manually curated through the search and analysis of the primary literature. The
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PhosphoSitePlus database, while also relying on the manual curation of phosphorylation sites

and kinase interactions, contains a far larger number of phosphorylation sites compared to the

alternatives (Figure 1.3). The PhosphoSitePlusr database has grown substantially as a result

of phosphorylation data generated through high-throughput mass spectrometry. Cell signalling

Technology (CST), which operates PhosphoSitePlus, also generates its own phosphoproteomic

data that is incorporated into the database. The phosphorylation sites contained in Phospho-

SitePlus are all recorded with the experimental techniques used to identify them, and whether

the experiments were performed in vitro or in vivo. Where kinases are known for the sites, the

experimental methodology is also listed. This ensures that users can choose what data they are

willing to trust, based on the methods of experimental validation.

As can be seen from Figure 1.3, there is a large disparity between the number of phosphorylation

sites recorded in these databases, and the number of sites that are annotated with a kinase.

The number of kinase-specific phosphorylation sites in PhosphoSitePlus is barely 5% of the

total number of phosphorylation sites, and for Phospho.ELM the percentage is 10%. Due to the

expansive gap between known phosphorylation sites and their kinase annotations, there has been

a great interest in developing computational methods that can not only predict phosphorylation

sites, but also the kinases that mediate the modification.

1.5 Computational prediction of phosphorylation

Since Blom and colleagues published their phosphorylation site predictor, NetPhos, in 1999

(75), the field of computational eukaryotic phosphorylation prediction has grown tremendously,

with over 50 methods published to date (Figure 1.4). While some methods aim only to predict

phosphorylation sites (75–77), the majority of these predictors are kinase-specific. That is,

the predictor scans a potential phosphorylation substrate to identify the most likely positions

for some query kinase to bind to. As the focus of this thesis is on predicting kinase targets,

rather than phosphorylation sites generally, this section will focus on the methods for predicting

phosphorylation sites in a kinase-specific manner. The different methods have various coverage

of kinases, with the approach and the training data impacting what kinases are available to the

method. Some methods will make predictions for kinase families or sub-families in addition to,

or instead of, individual kinases.

Typically, phosphorylation site predictors, whether kinase-specific or not, are primarily sequence-

based – that is, the predictor mostly relies on sequence information in the form of motifs sur-

rounding phosphorylation sites to make predictions. In some cases however, there are methods
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that complement the amino acid sequence with additional information such as structure, disor-

der or context. In addition to the variety of information types, there have been different kinds

of tools that have been employed for predicting phosphorylation sites. In this section I give an

overview of how these tools have been applied to build the various phosphorylation predictors,

and how different types of information have been used. Table 1.1 contains a summary of the

available kinase-specific phosphorylation prediction tools, with information concerning their

availability and usability.
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Figure 1.4: Count of eukaryotic phosphorylation prediction methods published between
1999 and 2015.

1.5.1 Scoring matrices

There are several kinds of sequence scoring matrices that have been used in phosphorylation site

prediction – position specific scoring matrices (PSSMs), position weight matrices (PWM) and

substitution matrices. A substitution matrix is a 20× 20 matrix representing all possible pair-

wise combinations of amino acids, and is used to score the substitution of one amino acid for

another. A classic example is the BLOSUM62 matrix often used to calculate sequence similarity.

The original Group Phosphorylation Site predictor (GPS 1.0) used the BLOSUM62 substitution

matrix to make predictions (78). The method relies on the hypothesis that phosphorylation
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sites with high sequence similarity in the surrounding peptides are more likely to be targeted by

the same kinase (or kinase family). They define a “Phosphorylation Site Peptide”, or PSP(m,n)

to represent a phosphorylation site with m residues upstream and n residues downstream from

the site. To score a putative phosphorylation site for a given kinase, they take the known

phosphorylation sites of the kinase and its immediate family. A similarity score is calculated

between the putative site PSP and the known binding sites by summing the substitution scores

from the BLOSUM62 matrix that occur in each position of the PSP(m,n). In an updated

version of the method (GPS 2.0), the authors used matrix mutation to modify the BLOSUM62

matrix and found increased sensitivity and specificity in the performance of the method (79).

In the current version of the method (GPS 2.1), the authors optimised the number of upstream

and downstream residues that are used for the PSP(m,n) (80). Instead of a fixed m and n, the

values were optimised for each kinase family.

A different kind of scoring matrix is the position weight matrix (PWM). A PWM is a 20 ×
m matrix, where each row in the matrix represents an amino acid and m is the length of

some sequence motif. Each value in the matrix represents the weight – based on observed

frequencies in training data – that an amino acid contributes towards classification at a given

position. An example of a method that uses PWMs is Predikin, which guides its generation of

PWMs based on an understanding of kinase structure and substrate-binding sites from X-ray

structures of kinase-bound phosphorylation substrates (25). Predikin is based on the concept of

specificity determining residues (SDRs): conserved sequence regions in the binding domain of

kinases that determine whether they will bind to certain substrates. Given a kinase, Predikin

identifies other kinases with similar substrate binding sites. Substrates and phosphorylation

sites for these kinases are identified from the Predikin database PredikinDB (81, 82), which itself

sources kinase substrates from UniProt (83). A frequency matrix is constructed by counting the

occurrences of amino acids in a heptapeptide (7 residue window) centred on the phosphorylation

sites, and is converted into a PWM. Predikin is therefore able to build PWMs for any kinase if

it has a binding region similar to a kinase in the PredikinDB, giving it a wide scope over many

kinases.

The MIMP (mutation impact on phosphorylation) predictor was implemented as part of a

method for scoring the expected effect of protein variants on phosphorylation (84). The au-

thors collected kinase-specific phosphorylation data from a variety of databases, and constructed

kinase-specific PWMs by calculating amino acid frequencies at each position within a 15 residue

window around the phosphorylation site. To optimise the performance of their PWMs the au-

thors performed an iterative refinement process, whereby they constructed an initial PWM
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based on the full set of positive samples. Based on random sampling of negatives, they gener-

ated distributions of scores using the PWM, scoring both the negatives and the positives used

to generate the PWM. If a positive sample fell within the 90th percentile of the negative dis-

tribution, it was discarded, and a new PWM was built based on the remaining set of positives.

This process was repeated until positives were no longer discarded (subject to a lower bound

of ten positive sequences remaining).

The above methods use phosphorylation data from known kinase-protein targets to train their

algorithms, but an alternative method is to estimate the binding specificity of kinases from

in vitro peptide array experiments. Scansite scores kinase binding locations on proteins using

kinase-specific PSSMs constructed from data generated in peptide library experiments (85).

These experiments involve incubating a kinase domain of interest with peptides that have

a fixed phosphorylatable (S/T/Y) residue and sequencing the peptides that are found to be

phosphorylated (86). These experiments yield relative levels of amino acid at positions relative

to the central phosphorylation residue, which can be normalised and converted into a PSSM

(87). The NetPhorest predictor (88) also builds PSSMs from in vitro peptide array data, though

its scoring matrices are complemented with artificial neural network classifiers (discussed below).

Due to the fixed structure of PSSMs, they train PSSMs on the peptide array data that is unlikely

to offer information regarding relationships between residues.

There are several drawbacks to using scoring matrices for predicting kinase targets. Firstly, on

account of their fixed structure, scoring matrices do not have the capacity to recognise subtle

sequence patterns; co-occurrence of certain amino acids acids would not be picked up by a

scoring matrix for example. Secondly, on account of only considering the linear motifs, scoring

matrices are blind to additional factors both within the substrate (e.g. surface accessibility),

and outside the protein, which could have an important regulatory impact on the kinases that

target it. Due to these issues, many phosphorylation predictors use machine learning methods

that are not only able to detect patterns in the sequences surrounding kinase binding sites, but

have the capacity to incorporate information in addition to that contained in the amino acid

sequence.

1.5.2 Machine learning methods

There are several machine learning methods that have been applied to phosphorylation pre-

diction. By far the most popular method is the support vector machine (SVM), though there

have been several examples of the use of neural networks. In addition, hidden Markov models
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Table 1.1: Table of kinase-specific phosphorylation site predictors. For tools with multiple
versions published, the most recent is cited. Availability specifies whether the tool can be
used through the web (Webtool), with a downloadable graphical user interface (GUI), or with
a downloadable command line (CL) tool that can be operated through a terminal. If there is
no available tool, or if a method’s website is no longer accessible, it is listed as “unavailable”;
alternatively, the authors may offer a downloadable dataset. Batch specifies whether users can
feasibly input and run large numbers (e.g. over one thousand) of protein sequences through the
tool. Some tools (e.g. Scansite) instead have options to search an existing sequence database,
instead up a large upload. The methods have been listed according to year published.

Name Availability Batch Website Year Ref.

Scansite Web No scansite3.mit.edu 2003 (87)
NetPhosK Web No cbs.dtu.dk/services/NetPhosK 2004 (16)
PPSP Web No ppsp.biocuckoo.org 2006 (89)
KinasePhos Web No kinasephos2.mbc.nctu.edu.tw 2007 (90)
CRPhos CL tool Yes (CL) ptools.ua.ac.be/CRPhos 2008 (91)
NetPhorest Web, CL tool Yes (CL) netphorest.info 2008 (88)
Phos3D Web No phos3d.mpimp-golm.mpg.de 2009 (26)
PredPhospho Unavailable N/A N/A 2009 (92)
Musite Web, GUI Yes (GUI) musite.net 2010 (93)
N/A dataset N/A bioinfo.bjmu.edu.cn/phospho 2010 (94)
Predikin Web, CL tool Yes (Web/CL) predikin.biosci.uq.edu.au 2011 (95)
GPS Web, GUI Yes (GUI) gps.biocuckoo.org 2011 (80)
PhosK3D Web No csb.cse.yzu.edu.tw/PhosK3D 2013 (24)
PKIS Web No bioinformatics.ustc.edu.cn/pkis 2013 (96)
NetworKIN Web, CL tool Yes (CL) networkin.info 2014 (97)
MIMP Web, CL tool Yes (CL) mimp.baderlab.org 2015 (84)

(HMMs) and conditional random fields have been employed. In this section I firstly give a

review of the use of support vector machines in kinase-specific phosphorylation site prediction;

this is followed by an overview of the additional tools that have been employed.

Support vector machines

The most popular machine learning method that has been applied to phosphorylation is the

support vector machine (SVM). An SVM is a discriminatory method of binary classification,

that solves an optimisation problem to separate two labelled sets of inputs (98). A key concept

in SVM training is the use of kernel functions to transform training data into more easily sepa-

rable dimensions. This is useful for the classification of high dimensional data, such as protein

sequences. The other key concept in SVMs is margins. SVMs use decision boundaries to sepa-

rate classes, such that a margin separating the data points in the two classes is maximised; often

the data points associated with the classes will not be perfectly separable however. The idea of

a “soft margin” SVM is to allow some flexibility in the margin around the decision boundary,

scansite3.mit.edu
cbs.dtu.dk/services/NetPhosK
ppsp.biocuckoo.org
kinasephos2.mbc.nctu.edu.tw
ptools.ua.ac.be/CRPhos
netphorest.info
phos3d.mpimp-golm.mpg.de
musite.net
bioinfo.bjmu.edu.cn/phospho
predikin.biosci.uq.edu.au
gps.biocuckoo.org
csb.cse.yzu.edu.tw/PhosK3D
bioinformatics.ustc.edu.cn/pkis
networkin.info
mimp.baderlab.org
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whereby points close to the decision boundary are ignored – allowing for the placement of a

decision boundary that provides greater separation of the two classes.

SVMs have been applied to phosphorylation prediction in several ways. The simplest involves a

binary encoding of amino acid occurrences at positions within a window surrounding a phospho-

rylation site; other methods provide more sophisticated profiles of the amino acid content of the

motifs. There are also publications demonstrating how SVMs can be used to incorporate into a

model different types of protein information, such as protein disorder, evolutionary information

(in a kinase-generic predictor) and 3D structure, to supplement sequence data (90, 93, 99).

PredPhospho is an SVM phosphorylation predictor that was developed as part of a database for

scoring the potential effect of missense mutations on protein phosphorylation (92). The authors

represented phosphorylation site motifs using a binary encoding of amino acid occurrence within

some m length window surrounding the phosphorylation site. Amino acids were encoded using

a vector of length 20 where, for example, methionine was encoded as 10000000000000000000,

isoleucine as 010...000 and so forth. A motif was therefore represented as a vector of such binary

vector encodings. The vectors were used as input features for training SVM models in a kinase-

specific manner. Another method for encoding kinase binding peptides for use in an SVM is the

composition of monomer spectrum (CMS) technique, used by the protein kinase identification

server (PKIS) (96). Given some phosphorylated peptide, a single monomer spectrum is defined

as a vector of amino acid counts for that peptide; i.e. the peptide sequence EQEESPLRR could

be encoded as the vector 01000300110000201000, where each position in the vector represents

the count of an amino acid occurrence in the peptide. The CMS method encodes the sequence

information in an m length sequence window by computing monomer spectrum vectors for all

windows from size 3 to m, where the window is centred on the phosphorylation site.

KinasePhos2 (90) is the successor to the hidden Markov model (HMM) methodology of Ki-

nasePhos (100), and incorporates information on sequence content and protein-coupling pat-

terns from phosphorylation motifs into SVM classifiers. For the KinasePhos2 predictor, a kinase

binding motif (taken as a 9-residue window surrounding the phosphorylation site) is represented

by two features: an encoding of the protein sequence in the motif, and a profile of amino acid

couplings. Given some pair of amino acids X and Z, and a distance d between them, Wong

and colleagues defined an amino acid coupling, CXdZ , as the frequency of XdZ divided by the

frequency of Z, as observed in training data. In order to select couplings relevant for phospho-

rylation, they calculated the difference in values of CXdZ for both the set of phosphorylation

sites and a background set of all phosphorylatable residues. If the difference in CXdZ passed a

certain threshold it was used as a feature in the SVM model. In addition to amino acid coupling
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profiles, the authors defined three different encodings of the amino acid content of the phospho-

rylation motifs: (1) an encoding based on the row numbers of amino acids in the BLOSUM62

matrix, (2) a reduced alphabet based on the amino acid properties (hydrophobicity, polarity

etc.) and (3) a vector encoding where each amino acid was defined using a 20-dimensional

vector.

The SVM methods described so far use a variety of motif representations as input features

in SVM classifiers. However, SVMs are able to perform classification on the basis of multiple

protein characteristics – in addition to the sequence – when these are represented as numerical

values in feature vectors. This is something taken advantage of by the Musite predictor, which

combines k-nearest neighbour (KNN) scores (representing the distance between the motif sur-

rounding a query site and positive or negative examples of phosphorylation) with amino acid

frequencies and protein disorder scores into SVM classifiers (93). Given positive and negative

phosphorylation data, a distance metric is calculated between a query site and the sites within

the positive and negative data sets. Some k number of the top scoring neighbours in both

positive and negative sets are then identified, and a ratio of positives to negatives is calculated.

The authors defined five increasing levels of k such that the KNN score for a phosphorylation

site is represented as a vector of 5 elements. Amino acid frequencies were calculated within

at 13 residue window around the phosphorylation site, and represented as a size 20 vector of

frequencies. Disorder predictions for query proteins were made using the VSL2b disorder pre-

dictor (101), and disorder scores for a phosphorylation peptide (as defined by some m length

window around the phosphorylation site) were defined as the average VSL2b disorder prediction

across the residues contained in the peptide. The authors define 3 values of m (1, 5 and 13) to

calculate disorder scores for a peptide. These scores were included as inputs into the feature

vectors used to train the SVM.

The Phos3D predictor proposed that some elements of kinase-substrate recognition may lie

in amino acids that are spatially close, though sequence distant, from phosphorylation sites

(26). They used sequence content from phosphorylation motifs encoded with physical-chemistry

properties (hydrophobicity, disorder indices, solvent accessibility etc.), and supplemented this

with spatial data from 3D structures. To incorporate spatial information into the model they

identified amino acids that were in a range of 2 to 10 Å to the phosphorylation residue. For each

amino acid they calculated a ratio between the number of times the amino acid was in range

of the phosphorylation site, and all other amino acids that were in range. They were therefore

able to build a profile of amino acid frequencies in spatial closeness to the phosphorylation

site. After comparing the prediction accuracy of their model using just sequence features verse
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the combination of sequence and spatial information, they found that the inclusion of spatial

information increased prediction accuracy by approximately 5%.

Separate (though similarly named) to the Phos3D predictor is the PhosK3D predictor, which

also incorporates amino acid motifs and spatial information from PDB structures into kinase-

specific SVM models (24). The authors incorporated several sequence characteristics into SVM

models. After extracting phosphorylation peptides of length 13 from around phosphorylation

sites, the authors constructed PWMs to represent the raw sequence content of the motifs. In

addition, they calculated surface area accessibility of the residues within the phosphorylation

peptides with the tool RVP-Net (102), and secondary structure using PSIPRED (103). Similar

to Phos3D they used the 3D protein structures to calculate spatial amino acid frequencies,

though the authors of PhosK3D calculated amino acid frequencies at varying distances from

the phosphorylation site, ranging from 3 to 12 Å. Su and colleagues found that a model in-

corporating spatial and sequence information obtained an average 10% increase in prediction

accuracy over using sequence alone, up from the 5% increase seen with the Phos3D predictor.

The results from the Phos3D and PhosK3D methods demonstrate that spatial information im-

proves phosphorylation prediction accuracy over using linear motifs alone; however, a major

drawback is the lack of availability of 3D structure information for many proteins. This imposes

restrictions both for the proteins that predictions can be made on, and the kinases that the

method can make predictions for; there needs to be 3D structures available for a kinase’s sub-

strates in order to train a kinase-specific predictor. The PhosK3D predictor offers prediction

for 127 kinases or kinase sub-families using its sequence method, but only 21 for the method

incorporating spatial information. This illustrates a drawback of using SVMs to train phospho-

rylation predictors on selectively available data: they are unable to handle proteins where that

data is missing.

The SVM methods presented in this section have an advantage over scoring matrices in that

they allow for more flexible representations of the phosphorylation peptides, and have the ca-

pacity to incorporate multiple information types. There are limitations to using SVMs for

phosphorylation prediction, however, as seen by the restraints of data availability imposed on

the Phos3D and PhosK3D methods. An additional limitation concerns the discriminatory ap-

proach of SVMs, which make them unsuitable for problems that are not of a binary classification

nature. As was shown in Section 1.2.2, kinases within the same family can share binding site

characteristics; indeed one phosphorylation site can be targeted by multiple kinases. The bind-

ing preference of kinases is therefore not best represented as a binary discrimination problem,

as it will be in an SVM model.
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Additional methods

While scoring matrices and SVMs are the tools underlying the majority of phosphorylation

predictors, there are several alternative methods that have been proposed. Neural networks

(NN) are an earlier machine learning method that have been applied in phosphorylation site

prediction. A NN is a network consisting of layers of nodes, with input at the top of the

layer and output at the bottom. Weights associated with the inputs and subsequent layers

of nodes – set using training data – can potentially learn non-linear sequence features, such

as relationships between positions in a motif. The kinase-generic phosphorylation predictor

NetPhos (75), its kinase-specific successor NetPhosK (16), as well as the Yeast-specific (though

kinase-generic) variation NetPhosYeast (104) each train three layer neural networks to predict

phosphorylation sites on the basis of sequence data. NetPhos and NetPhosK represent motifs

surrounding a phosphorylation site as a vector of binary encodings of amino acids (105), similar

to that described for the PredPhos method previously; i.e. an encoding of an amino acid takes

on the form 100..000. The phosphorylation peptides represented using the binary encoding

scheme were then presented as feature vectors for training the NN models.

As mentioned previously, the NetPhorest predictor has an alternate approach to either building

PSSMs or training neural networks depending on the type of phosphorylation data being con-

sidered (88). In vitro peptide array data, which offers a quantitative representation of amino

acid frequencies, but can not be used to glean correlations between positions in a motif, was

used to construct PSSMs. The protein phosphorylation data generally used for training phos-

phorylation predictors was applied to training NNs. They trained NNs by representing the

phosphorylation peptide data using the binary amino acid encoding scheme employed by Blom

and colleagues (75), and used cross-validation testing to optimise several parameters (peptide

window size, number of hidden neurons in the model and the learning rate) for the kinase-

specific models.

KinasePhos (the predecessor to the SVM-based predictor KinasePhos2 described above) trained

profile hidden markov models (profile HMMs) to predict kinase-specific phosphorylation sites

(100). HMMs are a form of graphical modelling used for labelling sequential data, and profile

HMMs are a specialisation whereby a sequence alignment is used to build a position-specific

scoring model. The authors sourced phosphorylation data from the PhosphoBase (106) and

Uniprot (83) databases. The phosphorylation sites were labelled according to kinase anno-

tations, with non-phosphorylated S/T/Y sites contained in the substrate sequences used as

negative. Extracted phosphorylation peptides were then used to construct the profile HMMs

on a kinase-specific basis.
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Dang and colleagues proposed that conditional random fields (CRFs) could be used to model

the amino acid characteristics in kinase binding sites (91). CRFs are similar to HMMs in that

they are used for labelling sequential data and are a form of graphical modelling. In contrast to

HMMs however, CRFs use a conditional probability approach to assign labels to observations.

The authors used phosphorylation data from Phospho.ELM to construct sets of kinase-specific

phosphorylation peptides (using a window of length 9 centred around the phosphorylation site).

They built feature vectors representing a variety of amino acid characteristics in the motif, such

as co-occurrence of amino acids, and co-occurrence of grouped amino acids according to chemical

classes defined by Wong and colleagues (90). For each kinase, a set of feature vectors from the

positive phosphorylation examples was used to build a CRF model, and the negative data used

to obtain false-positive rate thresholds for predictions made by the model.

Another methodology that has been proposed is Bayesian decision theory, which was employed

in the PPSP (prediction of PK-specific phosphorylation site) predictor (89). Xue and col-

leagues defined two classes, C1(phosphorylated) and C2 (unphosphorylated). The application

of Bayesian decision theory in this scenario is given some unclassified sample x, x will be

considered phosphorylated (i.e. belonging to class C1) if P (C1|x) > P (C2|x), and unphos-

phorylated otherwise. The authors obtained kinase-specific phosphorylation sites from Phos-

pho.ELM, and as with other methods defined negatives to be S/T/Y sites within the retrieved

proteins that were not phosphorylated. From these sequences, peptides of length 9 were re-

trieved. They defined a sample peptide as ~x = (x1, x2, ..., x9) and used Bayes theorem to denote

P (C1|xj) = P (xi|C1)P (C1)
P (xj)

, where j ∈ [1, 2, ..., 9] positions in the motif. The values in the equa-

tion are therefore determined based on observations in the training data. In addition to an

error function calculated on the basis of bio-chemical similarities between amino acids from a

BLOSUM62 matrix, they were able to use the above function to predict the phosphorylation

status of given peptides based on the known phosphorylation examples.

The methods described so far only rely on information that is contained within a protein. There

are many different ways that the sequence context within a phosphorylation site motif can be

represented. Typically some m length window around a phosphorylation site is chosen and the

amino acid content of the resulting peptide can then be represented in several ways. The amino

acid content can be modelled in a position specific manner as in scoring matrices or in some

machine learning methods such as NetPhosK and KinasePhos. Alternatively, or additionally,

the amino acid content can be modelled in a non-position specific manner, for example the

composition of monomer spectrum approach used by PKIS. As we have seen, machine learning

classifiers also allow for additional information contained in the protein (such as structure) to

be incorporated as features in predictive models.
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As was outlined in Section 1.2.2, the factors that determine kinase substrates are not limited to

those contained in the protein. While the methods outlined here may be able to ascertain the

validity of a kinase binding location on a protein, they cannot say anything about the probability

of a kinase coming into contact with the protein in the first place. A separate problem, and

one that cannot be addressed by modelling the binding characteristics of kinases alone, is

how phosphorylation substrates come into contact with the required kinase (27). The cellular

context that the protein exists in needs to be considered to determine candidate kinases. In

the following section I describe the previous work that has been carried out in applying context

information to phosphorylation prediction.

1.5.3 Context-based methodology

While the vast majority of phosphorylation predictors only consider information contained in

the protein, there have been three studies that have supplemented models of phosphorylation

motifs with context information. One of the studies, by Li and colleagues, attempted to inte-

grate phosphorylation motifs with a variety of different functional or context annotations (94);

this approach was also adopted by Fan and colleagues, and applied to additional kinase families

(107). The context and functional information included protein-protein association scores from

the STRING database, gene ontology (GO) annotations (molecular functions, cellular compo-

nents and biological processes), and other structural or pathway data. Li and colleagues used

SVMs to build classifiers for 8 kinase families and compared prediction accuracy between using

sequence alone, and sequence with various other data sources. Sourcing phosphorylation data

from Phospho.ELM, they generated feature vectors representing peptides from a 9 residue win-

dow surrounding phosphorylation sites using the binary encoding scheme employed by Blom

and colleagues (16).

The authors experimented with adding a variety on functional data types to their SVM classi-

fier. Most relevant to the issue of context is their use of protein-protein associations obtained

from the STRING database, and labelling of protein cellular components from gene ontology

(GO) annotations. STRING contains binary protein-protein “association scores” – a prob-

ability of two proteins being functionally related, if not interacting directly, on the basis of

various sources such as gene co-expression data, literature searching and protein-protein inter-

actions (108). To incorporate STRING data into their model they identified proteins in the

STRING database that were over-represented (based on a hypergeometric test) in their pos-

itive data compared to the negative unphosphorylated data. The STRING associations were

also encoded using a binary format; if a query substrate interacted with a protein according to
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STRING it was designated a 1, and 0 otherwise. Comparing the accuracy of phosphorylation

prediction using sequence alone against incorporating STRING, the authors’ results show that

the use of STRING scores resulted in virtually no average increase in prediction accuracy. While

one kinase family (PKC) obtained a moderate increase in accuracy from 78.26% to 83.46%, on

average they obtained an accuracy of 87.33% using sequence alone, and 87.98% when the se-

quence was supplemented with STRING scores. As the STRING database contains a range

of scored protein-protein associations, from low confidence to high confidence, converting all

occurrences to a binary format is likely to introduce a large amount of noise, perhaps partially

explaining the results. Similar to their results with STRING, there appeared to be one kinase

family (GSK3) that benefitted from the cellular component annotations, with an increase of

accuracy from 77.69% to 87.24%. However, if the GSK3 kinase is excluded, the cellular com-

ponent annotations actually result in an average decrease in accuracy, from 78.34% to 77.62%.

While the authors found their addition of context information useful in some regards, it appears

that their approach has little generalisability among kinase families. This should illustrate that

modelling the context that kinases operate in is not a trivial exercise, and an ad hoc approach

of simply adding various sources to a model is unlikely to result in a system with generalised

predictive power.

To date, the most promising approach to using context information to improve kinase-specific

phosphorylation prediction was made with the NetworKIN predictor (109). NetworKin im-

proved upon motif based scoring by including a “context score”, which was calculated on the

basis of protein-protein association scores contained in the STRING database (108). The origi-

nal NetworKIN algorithm consisted of two main stages. In the first stage, one or more proteins

were submitted along with known, or suspected, phosphorylation sites. Using PSSMs and NN-

based sequence prediction (i.e. the NetPhorest methodology described earlier), one or more

kinase families were assigned to the sites. In the second stage, candidate kinases from the fam-

ilies predicted in the first stage are scored on the basis of an “association network” constructed

using the STRING database. As STRING associations are represented with a probability

based on the strength of the underlying data, a network of protein-protein associations can be

constructed with varying path lengths. To calculate a context score on the basis of such an

association network, the Floyd-Warshall algorithm was used to find the shortest path between

the query protein and a kinase that is a member of the predicted kinase families. The final

score was the product of the STRING and sequence scores.

The latest version of NetworKIN updated the distance algorithm used to assign a kinase to a

potential substrate (97). The current score includes penalties based on path length, and the

number of connections in intermediate association hubs. In addition, rather than pre-screening
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the query substrates to identify potential kinases from sequence, the sequences are scanned

separately with NetPhorest (88) to allow a probability to be assigned for any kinase. The final

score for a kinase-specific phosphorylation site is a naive Bayes product of the sequence and

context scores. In contrast to the method by Li and colleagues described above, Linding and

colleagues showed that their use of the STRING network provides a more generalised level of

increased phosphorylation prediction accuracy over using sequence alone. They evaluated their

method for its ability to correctly predict kinase-specific phosphorylation sites on a set of 38

kinases for which 10 or more phosphorylation sites were known. This evaluation yielded an

average area under the curve (AUC) of 0.78 using sequence (NetPhorest) alone, and an average

of 0.83 when NetPhorest was complemented with STRING scores. Despite this, 12 out of the 38

kinases recorded a decrease in AUC when the STRING score was included, and an additional 4

recorded an AUC increase of under 0.01, meaning that for over 40% of the kinases the STRING

score resulted in a negligible or negative impact on prediction accuracy.

The methods described here have used context data to supplement sequence scores, but the

factors that contribute towards a kinase targeting a protein at the systems level are complex.

The context that surrounds a phosphorylation event will likely be more sophisticated than

what can be represented with a shortest path search; indeed it appears that there are strong

limitations in how much accuracy can be gained through the sequence and context models

described above. There are three problems that need to be addressed: (1) modelling how

kinases come into contact with their substrates, (2) modelling the binding of kinases to target

sites and (3) integrating these divergent elements into a unifying model of phosphorylation.

While much work has been done on (2), even the little work that has been done on (1) and (3)

has focussed less on modelling context to understand how kinases target substrates, but rather

using context as a supplement to sequence scores.

1.6 Research aims and project overview

The computational methods described in Section 1.5 rely almost exclusively on information

that is contained within the protein. These predictors primarily model amino acid content

within a fixed window surrounding a phosphorylation site, though some incorporate additional

information such as protein disorder or 3D structure. The NetworKIN method, though it is

the first step towards the use of context information, essentially identifies the “closest” kinase

to a protein substrate it can find in the STRING database. Furthermore, separating out the

problem of the sequence specificity of kinases and the context factors that regulate their activity
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means that potential influences between the two domains of information will be neglected. A

comprehensive model of phosphorylation would provide a seamless integration of the context

and sequence factors that influence how kinases target their substrates. My hypothesis is that

by integrating of two aspects of kinase regulation, context and sequence, I can build methods

that predict kinase substrates with greater accuracy than if considering context or sequence in

isolation.

The general aim of this project was to develop a framework for integration of cellular con-

text data such as protein-protein interaction information with sequence data in order to solve

biological problems where these two domains of information are of high relevance. As phos-

phorylation is an event regulated both through the sequence binding affinity of kinases, and

mediating protein interactions, it has been a prime candidate for this study. In the final part of

the study, the prediction tool was applied to a biological problem: detecting the effect of single

nucleotide polymorphisms (SNPs) on protein phosphorylation status. The more specific aims

of the project are outlined below.

1. Integrate cellular context information in the form of protein-protein interactions, cell-cycle

progression and kinase-specific phosphorylation events into a model that can classify the

kinase, or kinases, responsible for phosphorylating a putative phosphorylation substrate.

As part of this aim I also address the following questions:

(a) Can the model be used to improve sequence-based phosphorylation site prediction

through combining its output with that of existing phosphorylation predictors?

(b) Can context can be used to predict phosphorylation status change in proteins (part

of an sbv IMPROVER competition)?

2. Develop a probabilistic model for predicting kinase binding sites from sequence. Incorpo-

rate this sequence model into the context model.

(a) How generalisable is the modelling approach when applied to kinases from different

species?

(b) How accurate is the model at predicting kinase-specific phosphorylation sites com-

pared to alternative methods?

3. The final aim is to apply the model to a biological problem: detecting the effect of nsSNPs

on protein phosphorylation status.
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(a) Is context an important contributor for understanding the effect of nsSNPs on phos-

phorylation?

(b) How reliable is the system for detecting known examples of variant-causing differen-

tial phosphorylation?

The first part of the project, described in Chapter 2, focussed on understanding the context

that kinases operate in and how to leverage available data in order to design a method that

could predict kinase substrates based on context. This chapter describes the design and imple-

mentation of a Bayesian network model that incorporates experimentally confirmed instances

of kinase-substrate phosphorylation, protein-protein interaction/association data and cell-cycle

data in order to predict kinase substrates. Through cross-validation evaluation I show that

the model obtains reliable prediction accuracy, with an average AUC of 0.86 across the 59 ki-

nases tested. Chapter 2 also demonstrates that the accuracy of previously-published sequence-

operating methods for predicting kinase-specific phosphorylation sites can be improved by com-

plementing their scores with context-based predictions from the Bayesian network. The method

has been implemented as a tool accessible to the scientific community. The web server of Phos-

phoPICK (Phosphorylation in a Protein Interaction Context for Kinases) is publicly available

at http://bioinf.scmb.uq.edu.au/phosphopick.

I had the opportunity to participate in the sbv IMPROVER (systems biology verification for

Industrial Methodology for PROcess VErification in Research) species translation challenge.

The purpose of the challenge was to the predict protein phosphorylation status change in re-

sponse to varying treatment conditions, given gene expression data as measured under the

same conditions. The first sub-challenge was to develop a method for predicting phosphory-

lation status change in rat cells, and the second sub-challenge was to predict phosphorylation

status change in human cells using data from rat cells. The challenge allowed me to investigate

whether a phosphorylation model based on protein-protein interaction data could use condition-

dependent knowledge of protein expression levels to predict changes in protein phosphorylation.

Chapter 3 describes a method for overlaying the protein-protein interaction networks of phos-

phoproteins with gene expression data in order to predict phosphorylation status change. The

method obtained promising prediction accuracy, being ranked 6 out of 21 competitors in the

first sub-challenge, and 7 out of 13 in the second sub-challenge.

While Aim 1 focussed on the problem of modelling context to predict kinase substrates, Aim

2 focussed on developing an algorithm for predicting kinase binding sites from sequence, and

incorporating this algorithm into the larger context model. to obtain a more complete model of

http://bioinf.scmb.uq.edu.au/phosphopick
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kinase-protein phosphorylation. Chapter 4 describes a method that considers position-specific

amino acid frequencies and the occurrence of co-occurring neighbouring amino acids (specifi-

cally dimers and trimers) within a window surrounding a phosphorylation site. The model was

defined using a Bayesian network structure that allows the model to discriminate between a

kinase’s binding pattern, that of it’s family members, and a phosphorylation background. In-

corporating the sequence and context models enabled this “combined model” to predict kinase

substrates with higher accuracy than by using context alone. The final system employed by

PhosphoPICK involves using the combined model to obtain a prediction for whether a kinase

will phosphorylate a substrate, and the sequence model to score the potential binding sites

within the protein. When comparing the ability of PhosphoPICK and alternative methods

to predict kinase-specific phosphorylation sites, I found that PhosphoPICK outperformed the

alternatives for most comparisons made; PhosphoPICK obtained an average increase in sensi-

tivity of between 9 and 22% over the alternatives at a 99.9% specificity level. Employing this

system, PhosphoPICK is currently able to make predictions for 107 human kinases.

While I have primarily been working on human data, I was interested in testing PhosphoPICK

on additional species. After obtaining phosphorylation data for mouse and yeast, I was able to

build models for mouse covering 24 kinases, and models for yeast covering 26 kinases. When

testing the mouse and Yeast models for predicting kinase substrates, I found that the combined

model offered greater performance gains over using context alone than for the human version.

This likely reflects the diminished availability of context data for mouse and yeast – protein

abundance information over the cell-cycle was not available like it was for human, and the

protein-protein interaction networks are smaller than for human.

Non-synonymous SNPs (nsSNPs) have the potential to cause loss or gain of protein phospho-

rylation sites through amino acid variants that either disrupt, or introduce, kinase-substrate

binding sites. The final aim of the project was to use PhosphoPICK to build a method for pre-

dicting the effect of nsSNPs on phosphorylation. This method is described in Chapter 5. Using

the Bayesian network models presented in Chapter 4, I build distributions of predicted variant

effects over all protein-altering variants contained in the UniProt database. These distribution

could then be used to quantify the significance of a novel variant’s effect on phosphorylation.

Using a set of phosphorylation-loss or phosphorylation gain-causing variants collected from the

primary literature, I show that the method is able to detect known phosphorylation-altering

variants at high levels of specificity.





Chapter 2

PhosphoPICK: Modelling cellular

context to map kinase-substrate

phosphorylation events1

2.1 Abstract

The determinants of kinase-substrate phosphorylation can be found both in the substrate se-

quence and the surrounding cellular context. Cell cycle progression, interactions with mediating

proteins and even prior phosphorylation events are necessary for kinases to maintain substrate

specificity. While much work has focussed on the use of sequence-based methods to predict

phosphorylation sites, there has been very little work invested into the application of systems

biology to understanding phosphorylation. Lack of specificity in many kinase substrate binding

motifs means that sequence methods for predicting kinase binding sites are susceptible to high

false-positive rates.

We present here a model that takes into account protein-protein interaction information, and

protein abundance data across the cell cycle to predict kinase substrates for 59 human kinases

that are representative of important biological pathways. The model shows high accuracy for

substrate prediction (with an average AUC of 0.86) across the 59 kinases tested. When using the

model to complement sequence-based kinase-specific phosphorylation site prediction, we found

that the additional information increased prediction performance for most comparisons made,

particularly on kinases from the CMGC family. We then used our model to identify functional

1Chapter reproduced from the paper published in Bioinformatics, 2015
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overlaps between predicted CDK2 substrates and targets from the E2F family of transcription

factors. Our results demonstrate that a model harnessing context data can account for the

short-falls in sequence information and provide a robust description of the cellular events that

regulate protein phosphorylation.

2.2 Introduction

Regulation of cellular processes occurs on multiple levels, with epigenetic modifiers and tran-

scription factors (TFs) controlling gene expression, while various post-translational modifi-

cations regulate many protein functions (14–16). The most ubiquitous of post-translational

modifications is phosphorylation, with at least 70% of human proteins estimated to be phos-

phorylation substrates (28). Phosphorylation is likely a significant factor in regulating the

function of complex organisms, with a significant increase in the numbers of phosphorylation

sites in eukaryotic compared to prokaryotic proteins (6). Phosphorylation is known to have

numerous regulatory roles across the cell cycle, and specific kinases have been implicated in

the regulation of G1 phase (110), the G1/S phase transition (111) and DNA replication and

damage repair (112). Phosphorylation is particularly ubiquitous during mitosis where many

complex operations such as spindle formation, centrosome maturation/separation and chromo-

some attachment to the spindle are controlled by kinases (41).

While advanced phosphoproteomic technologies have succeeded in identifying thousands of

phosphorylation sites across multiple proteomes (28, 113), there has been an ever widening

gap between known phosphorylation sites and the kinases responsible for those sites (114).

Currently just over 10% of the phosphorylation sites recorded in the eukaryotic phosphoryla-

tion site database Phospho.ELM are annotated with a kinase. There have been examples of

in vitro studies identifying kinase-substrate binding events (69), and while these studies offer

interesting insights into the consensus motifs of kinase binding sites, it is unknown whether the

binding events observed in vitro would occur in vivo. Determining kinase-substrates in vivo is

non-trivial however, though there have been promising results from combining in vitro kinase

detection assays with in vivo phosphoproteomics (115). As a result of the inherent difficulty in

determining in vivo kinase substrates, there has been a great interest in developing computa-

tional tools to predict kinase-specific phosphorylation sites, with over forty phosphorylation site

prediction methods published (18). While some methods aim only to predict phosphorylation

sites (75, 104), the majority predict kinase-specific phosphorylation sites.
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Historically, phosphorylation site predictors have operated primarily on protein amino acid

sequences, relying on the information contained in the sequence region surrounding phospho-

rylation sites. It has long been recognised that short sequence motifs alone are insufficient for

achieving respectable accuracy in predicting kinase-specific phosphorylation sites. As a result,

prediction methods have often complemented sequence information with other types of data

such as knowledge of 3D structure (26, 81), sequence disorder (93) and kinase family similarity

(80). While such additional data typically improves prediction performance to an extent, they

do not reflect the wider cellular regulatory mechanisms that cause kinases to target their correct

substrates – a protein with an appropriate kinase binding site will not necessarily come into

contact with that kinase (27).

The phosphorylation of a target substrate by a kinase is not determined solely by its binding

affinity, but by various context factors that determine how a kinase comes into contact with its

substrates (46). This is recognised by the NetworKIN predictor (97), which combines sequence-

based scores with a score generated on the basis of a STRING network (108). Context factors

can include cellular location (21), mediating and activating proteins such as scaffold proteins

(20), cyclins (116), and cell cycle-specific expression of kinases and their substrates. Protein-

protein interaction data can certainly be used to represent such context factors; though while

there is vast amounts of protein-protein interaction data currently available in databases such

as BioGRID (1) and STRING, incomplete coverage and variable certainty means that the

integration of context features into a model is non-trivial.

In this work we explore a probabilistic model to accommodate missing values, seamless com-

bination of protein interactions and cell-cycle expression, and to provide flexible options for

querying potential kinase substrates. The model we present here, named PhosphoPICK (Phos-

phorylation in a Protein Interaction Context for Kinases), integrates known kinase-substrate

relationships, protein-protein interactions (PPI), and cell-cycle data to predict kinase substrates

for 59 human kinases. PhosphoPICK shows high prediction accuracy, with a mean AUC of 0.86

across the 59 kinases. We then demonstrate how our method can boost the prediction accuracy

of kinase-specific phosphorylation site prediction by combining PhosphoPICK predictions with

the phosphorylation site predictions from three previously published methods. We find that

PhosphoPICK improves kinase-specific phosphorylation site prediction for most comparisons

made, though greater performance increases were noticed on CMGC kinases – in particular cy-

clin dependant kinases (CDKs), where we observed substantial performance gains as measured

by AUC50. We show that proteins predicted to be CDK2 substrates by PhosphoPICK have GO

terms consistent with known CDK2 substrates, and investigate the functional overlap between
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known and predicted CDK2 substrates, and the targets of specific E2F TFs using ChIP-Seq

data.

2.3 Methods

2.3.1 Bayesian network model

We used a Bayesian network (BN) to design our model. Bayesian networks differ from machine

learning tools that have previously been used for phosphorylation site prediction in several

important ways. Bayesian networks are transparent, allowing for an understanding of how

the variables in the model influence the final outcome (117). Furthermore, the probabilistic

nature of a Bayesian network means that even in the absence of missing data, the model can

still infer the most likely value of the unknown variables on the basis of the known data (118,

119). We represent observations about protein interactions, kinase-specific phosphorylation

events and cell-cycle profiles as Boolean variables in a BN model (Figure 2.1). The model

represents observations about a phosphorylation substrate - the kinases that bind to it, protein

interactions, and whether it is up-regulated during the cell-cycle phases. The kinase nodes are

linked to protein-protein interaction events that are believed to be relevant for the kinase to

phosphorylate substrates. A latent variable is used to capture information from the cell-cycle

data, and the kinase nodes are then conditioned on this latent variable.

2.3.2 Data resources

Known kinase-substrate relationships.

We obtained kinase substrates from Phospho.ELM and HPRD, after converting HPRD IDs to

Uniprot identifiers. In order to identify protein interactions between kinases and their sub-

strates, we selected kinases for which we found greater than 10 substrates. In total, we use 59

human kinases along with a total of 1,210 substrates. Table 2.1 shows the numbers of substrates

that were identified for each of the 59 kinases. The 1,210 substrates contained 2,964 unique

phosphorylation sites that were annotated with at least one kinase.
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Figure 2.1: The PhosphoPICK Bayesian network model. Each of the kinase (K ) nodes,
representing a phosphorylation event by that kinase, are conditioned on a latent variable
incorporating protein abundance across four stages of the cell cycle: Mitosis (M), G1, S
and G2. The “leaf” nodes represent protein-interaction (P) events between the proteins
represented in the nodes and a potential substrate. These nodes are conditioned on relevant
kinase-specific phosphorylation events.

Protein-protein interaction and association data.

To identify and model interaction networks of kinases and their substrates, we used PPI data.

In cases where physical interaction data is unavailable, associations inferred on the basis of

other sources such as gene co-expression or literature mining may be informative, and such

information is available in the STRING database. PPI information was taken from the Bi-

ological General Repository for Interaction Datasets (BioGRID) (1) by selecting entries that

were of type “direct interaction” or “physical association”. As protein-protein interactions are

represented in binary format, this information was incorporated into the model as a Boolean

value. The STRING database scores an association probability between two proteins, with a

score of 0.4 defined as medium confidence. To convert this probability into a Boolean value
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we defined cut-off probabilities, such that given some cut-off θ, any association with a proba-

bility ≥ θ was classified as true, and any association with a probability < θ was classified as

false. We tested three cut-off probabilities, starting at the medium confidence level of 0.4 and

increasing in increments of 0.2. We found that a cut-off probability of 0.6 provided the best

overall performance (Table A.1), and is the cut-off used in this work.

To identify relevant connections between kinases and protein-protein interaction events, the

following steps were taken. Substrates were first grouped according to their kinase (one sub-

strate could be assigned to multiple kinases). BioGRID was then searched for proteins that

interacted both with a substrate and with its kinase – these proteins were added to a pool

of potential protein interaction connections. For each kinase, the proteins in the pool were

ranked in descending order according to the number of interactions that were observed with

the kinase’s substrates. An observation is defined as a substrate-protein interaction occurring

in BioGRID and/or the STRING database. A count c was defined, so that for each kinase

only the top c protein-interactions were used to form connections. To ensure that there would

be enough observations of substrate-protein interactions for setting model parameters, a lower

bound of 10 was set such that for a given kinase, at least 10 substrate-protein observations

were required for the protein to be considered as a connection to that kinase. We tested three

different upper-bounds of c: 25, 40 and 50 to determine the effect of varying sized interaction

networks on prediction performance.

Protein cell-cycle data.

In order to model the availability of substrates during the cell cycle, we used data obtained from

the experiments by (28), who measured the abundance of proteins at six stages throughout the

cell cycle - M phase, G1 phase, the transition between G1 and S phase (G1/S), early S phase,

late S phase and G2 phase. An asynchronous population of cells was also measured, and the

signal used to log2 normalise the measurements from the cells arrested during the six stages.

A protein with a value of 0 during a stage of the cell cycle has an abundance equivalent to

the asynchronous population, while a negative value indicates down-regulation and a positive

value indicates up-regulation. To avoid fitting the model too strongly to data generated from

a single cell type, we represented proteins’ cell-cycle profiles in a simple binary format across

four stages – M, G1, S and G2. We collapsed the G1 and G1/S stages in to the single variable

“G1” and the early S and late S stages into the variable “S”. If a protein has a value greater

than 0 that stage is labelled as true; otherwise it is labelled as false. The G1 and S variables

were set to true if at least one of their respective collapsed stages had a value greater than 0.
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2.3.3 Model parameters and training

The variables in the network were represented with two kinds of probability tables. A condi-

tional probability table (CPT) represents all possible values that a variable X can take given

the set of parents, pa(X), it is conditioned on. Parameters are set during training by calculating

the frequency of occurrence of all possible configurations of pa(X). If X does not have parents,

the CPT simply represents the observed frequency from training data of X being true.

For situations where a variable is conditioned on greater than six parents, we used a variation of

the Noisy-OR approximation (120). In order to set the parameters of the Noisy-OR table during

training, each row (representing a parent variable) in the table was calculated as follows: each

training sample where the parent is observed as being true was identified. A weighted frequency

for each parent pa was calculated such that

freq(pa) =
1

n

n∑
i=1

(
t

(t+ f)pconfi

)
, (2.1)

where n is the number of configurations of parent variables where pa is observed to be true,

pconfi is the number of parents set to true in configuration i, t is the count of the variable the

Noisy-OR node is representing being true during the ith configuration of parents, and f is the

count of it being false.

For the latent variable, and variables that are conditioned on it, parameters are calculated using

the expectation-maximisation (EM) algorithm on a training set (121).

2.3.4 Evaluation and definition of negative test sets

A common problem to phosphorylation-site prediction is that of defining a negative test set

(18). However, as our model is not trained using sequence data, we were able to use a sequence-

scoring method to define negative test sets for each of the 59 kinases in the model. To score

protein sequences for kinase binding sites we used the Predikin web server (95) to obtain

position weight matrices (PWMs) for 53 of the kinases in the model. For the remaining six,

we constructed PWMs using phosphorylation sites from curated data (Section 2.3.5). For a

given kinase, we scored each substrate in the training data-set by obtaining the highest scoring

potential phosphorylation site. We then ranked the substrates based on the highest-scoring site

from lowest to highest, and assigned an equal number of positive and negative substrates for
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that kinase. As very low scores indicate a protein that the kinase cannot phosphorylate, this

gives us a high-confidence negative test set for each of the kinases in the model.

We evaluated the model for each kinase for its ability to correctly predict known substrates

compared to the negative set. To score the probability of a kinase phosphorylating a query

protein, all nodes in the network were set according to the relevant data for the query protein

except for the kinase that we were inferring. Model performance was evaluated using receiver

operating characteristic (ROC) analysis by calculating the area under the ROC curve (AUC)

(122). We used 15-fold cross-validation, and performed the cross-validation 10 times with

different data-set splits. To avoid the possibility of the model gaining information about the

test data during training, we ensured that each protein interaction variable was only connected

to a kinase if, within the training fold, there were 10 (our previously defined lower bound) or

more kinase substrates interacting with that protein. The data sets used to train and test the

model are available in the supplementary material.

2.3.5 Generating position weight matrices

For most kinases we were able to obtain position weight matrices (PWMs) from the Predikin

web-server, but for kinases CSNK2A1, CSNK2A2, ATM, ATR, CSNK2B and PRKDC we

constructed PWMs based on known phosphorylation sites from Phospho.ELM and HPRD. The

PWMs were constructed by taking a seven-residue window surrounding the phosphorylation

site as described previously (81), and calculating the weight of each amino acid within each

position in the window by calculating

w(a, j) = log2f(a, j)/0.05,

where w(a, j) represents the weight of amino acid a at position j, f(a, j) represents the fre-

quency, and 0.05 represents a uniform distribution of amino acids.

2.3.6 Setting non-query kinase nodes on the basis of sequence data

We tested the ability of the model to classify for a query kinase when the remaining kinase

variables in the model were set on the basis of sequence data. The PWMs were used to scan

the sequences and ascertain the highest scoring potential phosphorylation site for each kinase.
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For each training fold during cross-validation, we calculated the median scores for the kinases’

negative sequences (the proteins they are not known to be phosphorylating). When evaluating

the model on the test fold, we took the median of the negative scores and for each test substrate,

a kinase variable was set to false if its PWM score for that sequence was below the median

PWM score, and was left un-instantiated otherwise. This will result in a rough estimate of what

kinases are not phosphorylating a query protein, with the model able to infer the probability

of the remaining kinases phosphorylating the protein.

2.3.7 Testing the effect of STRING text mining on kinases

In order to test whether the use of text mining in the STRING database could be inflating the

performance of PhosphoPICK, we repeated our cross-validation tests for each kinase as follows.

When constructing a data file of input feature vectors for some kinase K, we first re-calculated

the STRING score as described in (56) for each association involving K, omitting the text

mining score. For each substrate Sub of K in the data file, if an interaction between Sub and

K had been observed (as defined in Section 2.3.2) previously, but now was not being observed,

the interaction between Sub and K was defined as null – the Bayesian network will consider

this to be unobserved.

2.3.8 Applying model to sequence-based predictions of phosphory-

lation sites

From our curated set of kinase substrates, we identified 2,964 kinase-specific phosphorylation

sites. In order to perform a fair comparison of how PhosphoPICK can improve the performance

for predictions of novel proteins, we again performed 15 fold cross-validation with 10 data set

splits, but retained the predictions for each protein in the test set. We then took the mean

kinase scores for each protein across the 10 data set splits. In order to measure the ability of the

methods being tested to predict phosphorylation sites, we took every potential phosphorylation

site (serine/threonine or tyrosine) in the substrate set, and tested the methods’ ability to predict

known kinase-specific phosphorylation sites out of all these potential sites. We compared the

performance of Predikin, GPS 2.1 and NetworKIN with the addition of PhosphoPICK by using

two metrics: the AUC50 (an ROC curve calculated up to the first 50 false positives), and the

sensitivity calculated at the threshold that yielded the fiftieth false positive. These metrics

indicate the performance of the methods at a false-positive rate of 0.0005 (i.e. specificity of
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0.9995) for serine/threonine kinases, and a false-positive rate of 0.002 (specificity of 0.998) for

tyrosine kinases.

Predikin:

To make predictions for potential phosphorylation sites using Predikin, we used the PWMs

that we were able to download from the Predikin web-server (95). The PWMs were used

to score each potential phosphorylation site in our substrate set. For the comparison with

PhosphoPICK, we first normalised the predictions on a per-kinase basis, by taking the minimum

(min) and maximum (max) scores for each kinase. Each kinase-specific phosphorylation site

prediction (pred), was then normalised by calculating score = pred − min/max − min. We

made two comparisons by taking the product and the sum of the normalised PWM score, and

the PhosphoPICK score for the substrate.

GPS:

We downloaded the current version of the GPS predictor (GPS 2.1) and adjusted the threshold

setting to “none” so that we could make predictions for all phosphorylation sites in our set. For

cases where GPS did not have a specific selection option for a kinase, we made predictions using

the sub-family of the kinase: Akt was selected for the prediction of AKT1 phosphorylation sites,

Abl for the prediction of ABL1 sites, and CK2a for predictions of CSNK2A1 and CSNK2A2

phosphorylation sites. The only kinase we were unable to make predictions for was PRKDC. For

comparison with PhosphoPICK, we again calculated the sum and the product of the normalised

site predictions (normalisation was performed as described above for Predikin) made by GPS,

and the substrate predictions given by PhosphoPICK.

NetworKIN:

We downloaded the NetworKIN 3.0 (97) software provided for running on a local machine.

We were able to make predictions for most kinases, with the exceptions of MAPK14, AKT1,

PDPK1, PRKG1, RSK1, CSK, JAK1, JAK2, RET, CHK1, MAPKAPK2, AURKB, CSNK2B,

PLK1 and PRKDC. As described above, to combined a NetworKIN score for a kinase, we first

normalised the scores (normalisation was performed as described above for Predikin), then took

alternatively the sum and the product of the PhosphoPICK score.
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2.3.9 GO term enrichment analyses

We first obtained a background set of human proteins from UniProt (http://www.uniprot.

org) by downloading all reviewed canonical human proteins. Of this set of 20,209 proteins,

we identified 18,469 that were annotated with GO terms in the QuickGO web-service (http:

//www.ebi.ac.uk/QuickGO). Statistical significance of GO term enrichments was determined

using Fisher’s exact test, with a Bonferroni correction.

2.3.10 Transcription factor analysis

To obtain a set of putative E2F binding sites, chromatin immunoprecipitation sequencing

(ChIP-Seq) data was downloaded from the ChIP-Seq experiment matrix provided by the EN-

CODE consortium (123). We downloaded ChIP-Seq narrow peak files for TFs E2F1, E2F4 and

E2F6 in HeLa cells – the same cell type used for generating the cell-cycle data used in this study

(28). In order to map the ChIP-Seq peaks to likely gene promoter regions, we also downloaded

refSeq annotated genes of human genome 19 with a 2000 base pair region upstream of each of

the genes. If a ChIP-Seq peak overlapped with an upstream region from a gene, the TF was

considered to be targeting that gene.

2.4 Results

2.4.1 Model performance for predicting kinase substrates

We generated five BN models by grouping kinases according to their family similarities (32):

CMGC, AGC, TK, CAMK and a combined model that incorporated kinases from the CK1,

STE, atypical and other families. We tested the ability of the model to classify kinase sub-

strates with varying numbers of protein interaction connections, and under three conditions.

To gauge the level of influence that substrate abundance during the cell cycle has on prediction

performance, we evaluated a version of the model excluding the cell-cycle variables (PPI only

model), and compared the performance to the full model. When making inferences about a

kinase-substrate phosphorylation event, the model relies on the knowledge of other potential

kinases phosphorylating that substrate. However, for the majority of proteins there is little, if

any, experimental information on any known kinase-specific phosphorylation events. Therefore,

to determine whether the model could be reliably extended to the wider proteome, we tested

http://www.uniprot.org
http://www.uniprot.org
http://www.ebi.ac.uk/QuickGO
http://www.ebi.ac.uk/QuickGO
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model performance when setting non-query kinase nodes to false on the basis of their sequence

binding motifs (Section 2.3.6).

Table 2.1: Evaluation of model performance with median AUC on all kinases in the model,
as tested under three different conditions: interactions only (int. only), full model, and kinase
variables approximated using sequence data (seq. approx.). Also shown is the number of
substrates (positive test set) that were identified for each kinase. Results are shown for 15-
fold cross validation across 10 data-set splits. The best result for each kinase is highlighted
in bold. CDK, MAPK and PRKC represent a family of kinases – the average values of their
family members are included in the table. Kinases are listed according to the family-specific
BN that they were incorporated into, where the “combined” model contained kinases from
the CK1, STE, atypical and other families of kinases.

kinase substrates int. only full model seq. approx.

C
M

G
C CDK 247 0.88±0.011 0.87±0.015 0.91±0.01

GSK3B 58 0.81±0.01 0.82±0.009 0.88±0.005

MAPK 136 0.84±0.016 0.88±0.016 0.92±0.015

AKT1 79 0.89±0.007 0.89±0.004 0.91±0.001

GRK2 14 0.86±0.022 0.87±0.035 0.87±0.01

PDPK1 23 0.95±0.011 0.94±0.011 0.91±0.021

A
G

C

PRKACA 154 0.94±0.003 0.93±0.006 0.96±0.002

PRKC 394 0.73±0.005 0.86±0.006 0.82±0.006

PRKG1 26 0.86±0.014 0.86±0.009 0.90±0.01

ROCK1 21 0.80±0.006 0.80±0.01 0.79±0.011

RSK1 27 0.91±0.027 0.89±0.019 0.93±0.008

RSK2 22 0.67±0.012 0.77±0.027 0.71±0.036

ABL1 40 0.89±0.017 0.88±0.014 0.97±0.006

BTK 14 0.79±0.056 0.83±0.091 0.69±0.11

CSK 18 0.87±0.012 0.95±0.034 0.91±0.036

EGFR 38 0.84±0.01 0.84±0.016 0.95±0.001

FYN 38 0.83±0.033 0.85±0.049 0.96±0.01

HCK 16 0.94±0.01 0.96±0.032 0.95±0.046

T
K

INSR 23 0.92±0.011 0.96±0.012 0.93±0.002

JAK1 11 0.65±0.12 0.69±0.078 0.76±0.098

JAK2 17 0.95±0.013 0.95±0.026 0.97±0.036

LCK 23 0.93±0.004 0.94±0.004 0.96±0.011

LYN 39 0.76±0.028 0.77±0.028 0.87±0.02

RET 16 0.60±0.11 0.82±0.07 0.69±0.096

SRC 125 0.85±0.01 0.87±0.009 0.89±0.003

SYK 27 1.00±0.0 1.00±0.0 0.98±0.004

ZAP70 12 0.95±0.064 0.92±0.019 0.94±0.059

Continued on next page
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kinase substrates int. only full model seq. approx.

Continued from previous page

CAMK1A 12 0.22±0.074 0.75±0.075 0.56±0.083

CAMK2A 41 0.84±0.014 0.89±0.022 0.81±0.021

C
A

M
K

CAMK2G 26 0.97±0.006 0.96±0.001 0.98±0.012

CHK1 11 0.88±0.045 0.52±0.05 0.91±0.038

LKB1 17 0.86±0.023 0.90±0.054 0.88±0.03

MAPKAPK2 21 0.91±0.008 0.93±0.025 0.93±0.01

ATM 46 0.99±0.001 0.99±0.001 0.98±0.003

ATR 14 0.99±0.029 0.98±0.018 0.92±0.047

AURKB 16 0.94±0.004 0.95±0.017 0.91±0.03

C
om

b
in

ed

CSNK1A1 25 0.88±0.014 0.89±0.011 0.86±0.017

CSNK1D 13 0.64±0.13 0.69±0.074 0.63±0.147

CSNK2A1 135 0.87±0.002 0.9±0.004 0.89±0.005

CSNK2A2 67 0.96±0.001 0.96±0.005 0.95±0.004

CSNK2B 20 0.86±0.005 0.88±0.017 0.87±0.012

PAK1 27 0.59±0.03 0.58±0.043 0.49±0.029

PAK2 12 0.21±0.13 0.53±0.12 0.40±0.115

PLK1 23 0.92±0.005 0.92±0.006 0.92±0.006

PRKDC 11 0.74±0.064 0.76±0.053 0.81±0.068

The AUC results (shown in Table 2.1, with averaged ROC curves for the five models and three

conditions shown in Figure 2.2) for 10 cross-validation runs evaluated on all 59 kinases in the

model for the three different conditions demonstrate that the prediction accuracy of the full

model is quite high, with most kinases having median AUCs surpassing 0.8. The average AUC

over all of the kinases is 0.86. The generally low standard deviation indicates that these results

are consistent regardless of the breakup of training/test data that is presented to the model.

We tested three different values for maximum number of protein interactions that could be

connected to a kinase variable (25, 40 and 50), but found that increasing the number of protein

interaction events connected to the kinase variables had very little effect on the performance

of the model (Table A.2), indicating the model’s ability to make classifications based on a

relatively small number of connections to the individual kinase nodes.

When comparing the performance of the PPI only model to the full model, we found that on

average the inclusion of protein abundance data collected across the cell cycle offered modest

improvements to prediction performance. For some kinases there was a greater performance

improvement – for example a 15% increase for PRKC kinases, a nearly 10% increase for the

tyrosine kinase CSK – but for many other kinases the inclusion of cell-cycle data seemed to
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have little effect. This demonstrates that while the protein-protein interaction data provides

the main source of information for the model, the use of cell-cycle data can offer improved

prediction performance for some kinases. This performance increase occurs despite the fact

that we only have cell-cycle data for less than half of the substrates in our set: the model infers

the cell-cycle profiles for the remaining proteins. This indicates that the model, when trained

on cell-cycle data, can still be applied to query proteins that have no associated cell-cycle data.
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Figure 2.2: ROC plots showing prediction accuracy of the Bayesian network model as tested
under the three different conditions: (a) interactions only, (b) full model, and (c) kinase
variables approximated using sequence data. ROC curves represent the averaged ROC values
of the kinases within each of the five Bayesian network models. Results are shown for 15-fold
cross validation across 10 data-set splits.

Table 2.1 also shows a comparison between setting the kinase nodes with database (“full model”)

versus sequence information (“seq. approx.”). We found that for many kinases, using sequence

to set the kinase nodes actually resulted in an increase in performance. The median AUC for

the CMGC kinases went from 0.87 using database information to 0.91 using sequence, and the

median AUC for the tyrosine kinases increased from 0.88 to 0.94.

The possibility was raised that as the kinase-substrate data from HPRD and Phospho.ELM

is sourced from the literature, and the STRING database also includes text mining from the

literature, a system of circular logic could be inflating the performance values. To determine

whether such an effect was occurring, we re-ran our simulations for each kinase with the text

mining information for that kinase removed (Section 2.3.7). We found that while for some

kinases this information appeared to have a large impact on prediction capability, it was not

the case for the majority of kinases (Table A.3).
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2.4.2 Improving sequence-based prediction of phosphorylation sites

For the remainder of this paper, the results were generated using the full model, with a PPI

count of 25, and setting non-query kinase nodes on the basis of their sequence binding motifs.

We tested the ability of PhosphoPICK to complement two phosphorylation site predictors that

operate on sequence data: Predikin (95) and GPS (80). We also tested NetworKIN (97), which

combines sequence scores with a context score generated on the basis of STRING associations.

Comparisons were made by normalising the values of the methods being tested against, and

summing the PhosphoPICK prediction (Section 2.3.8). Figure 2.3 shows the AUC50 (the AUC

obtained when calculating ROC up to the fiftieth false positive) comparison for Predikin, GPS

and NetworKIN across the five BNs, where the highest false-positive rate for serine/threonine

kinases was 0.0005, and the highest for tyrosine kinases was 0.002. Individual results for each

kinase are shown in Tables A.4–A.6. The results show that across all kinase families, there is

an average increase in performance when the Predikin and GPS scores are complemented with

PhosphoPICK predictions, with largest performance increases observed with kinases from the

CMGC family. We found that the performance of GPS improved by 2-fold for predicting CMGC

sites when combined with PhosphoPICK, and that the performance of Predikin was improved

by over 6-fold. The smallest performance increases were observed with tyrosine kinases, where

we found a 15% performance increase for GPS and a 40% increase for Predikin.

We found that in most cases, PhosphoPICK was unable to improve the performance of the

NetworKIN predictions. As Figure 2.3 shows, the differences in AUC50 between classifying

phosphorylation sites with NetworKIN alone and NetworKIN+PhosphoPICK are minor. How-

ever, as the NetworKIN score is already a combination of a STRING and sequence-based score,

it is possible that a simple summing of scores cannot yield further performance increases.

2.4.3 Understanding E2F and CDK2 regulation

To evaluate the ability of the predictions made by PhosphoPICK to provide biological insights,

we used CDK2 as a case study for a proteome-wide analysis. To determine whether predic-

tions were consistent with what is known about CDK2, several GO enrichment analyses were

performed (Section 2.3.9), comparing significantly over-represented GO terms (Fisher’s exact

test, Bonferroni correction, E-value<0.05) obtained for known CDK2 substrates with those ob-

tained for the predicted substrates. We found that the known CDK2 substrates were enriched

most strongly in various terms related to the G1/S transition of the cell cycle, such as DNA
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Figure 2.3: Comparison between predicting kinase-specific phosphorylation sites with three
alternative scoring methods, and when the methods are informed by PhosphoPICK. AUC50
was calculated for each kinase as a measure of the predictive performance at low false positive
levels. Shown here are the average values for each individual BN. The comparison is made by
normalising the scores of the alternative methods to a value between 0 and 1, then summing
this value with the PhosphoPICK prediction for a substrate.

damage response and DNA repair (Table A.7). This is consistent with the role of CDK2 in the

regulation of the transition from G1 to S phase in response to DNA damage (112).

To investigate the agreement of PhosphoPICK predictions with known CDK2 substrates, we

performed a proteome-wide scoring for CDK2 and took the top 300 novel predictions, excluding

known CDK2 substrates from the set of predicted substrates. We again performed a GO

enrichment analysis, and compared the values of the prediction terms with the significant terms

that were found during the analysis on the known substrates. Table A.7 shows the GO terms

found to be significantly over-represented among known CDK2 substrates, ranked from most

significant to least significant. Over half of the terms (31/59) were found to be significantly

over-represented among the novel substrates predicted by PhosphoPICK.

CDK2 is known to be a regulator of the TF E2F1 (124), a member of the E2F family, that is

known to play a role in the G1/S transition, and DNA replication during the S phase (125–127).

The E2F family is comprised of three classes of TFs: transcriptional activators, retinoblastoma

(Rb)-dependent repressors, and Rb-independent repressors. What is currently lacking is an

understanding of what specific roles in the S phase are controlled at transcriptional level by

E2F, and at the post-translational level by CDK2.

In order to investigate what overlapping functions may exist between E2F-regulated transcrip-

tion and CDK2-mediated phosphorylation, we took ChIP-Seq data (123) for E2F1 (activator),
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Figure 2.4: Venn diagram showing overlapping targets between E2F1, E2F4 and E2F6.
CDK2 substrates within the unique E2F1 and unique E2F6 target groups had an over-
representation of GO terms relating to apoptosis and ubiquitination. CDK2 substrates within
the central (all overlapping E2F targets) group were enriched in terms relating to DNA repli-
cation and DNA repair.

E2F4 (Rb-dependent repressor), and E2F6 (Rb-independent repressor). Figure 2.4 shows a

Venn diagram of the unique and overlapping gene targets that exist among the three TFs (Sec-

tion 2.3.10). It has been shown previously that overlapping targets between E2F1 and E2F4

are enriched in DNA replication and repair GO terms (128). We found that the overlapping

targets of all three TFs are also enriched in such GO terms.

We then combined our set of predicted CDK2 substrates with known CDK2 substrates and

identified proteins from this combined set of substrates that were in the unique and overlapping

groups of E2F targets. GO enrichment tests were performed with the CDK2 substrates as the

foreground and the remainder of the TF target group as the background. This allowed us to

detect what role CDK2 plays within these TF target groups. Tables A.8–A.14 contain the GO

terms found to be significantly over-represented (E-value<0.05) among CDK2 substrates in the

TF target groups. While we found significantly over-represented GO terms in all TF target

groups, we noticed a larger number of process-specific terms among the unique E2F1 targets

(Table A.8), unique E2F6 targets (Table A.10) and the overlapping targets among all three

TFs (Table A.11). We found that CDK2 substrates among unique E2F1 targets and unique

E2F6 targets were enriched in several terms relating to the regulation of apoptosis, as well as



Chapter 2. Modelling cellular context to map kinase-substrate phosphorylation events 46

ubiquitination. Substrates in the overlapping group of targets of all three TFs were enriched

in terms relating to DNA replication and DNA damage repair.

2.5 Discussion

Protein phosphorylation is a highly regulated process, being controlled by the binding specificity

to the protein kinase catalytic site, as well as various cellular processes that further enhance the

kinase-substrate fidelity (27, 46). We have demonstrated how a probabilistic model of protein-

protein interactions and cell-cycle data can be used to accurately classify kinase substrates.

Importantly, we found that our model, when combined with sequence-operating methods, was

able to improve the accuracy of kinase-specific phosphorylation site prediction at false positive

levels below 0.002 for tyrosine kinases and below 0.0005 for serine/threonine kinases.

One potential point of concern in our current approach is that we only had access to cell-

cycle data for a single cell type, and whether this could result in a tissue-specific influence

that impeded predictions in some cell types. However, as the phosphorylation site data we

obtained from Phospho.ELM originates from multiple cell types (including, for example, HeLa

cells (129, 130), HEK 293T cells (131), MELN cells (132), and T98G glioma cells (133)),

the performance of the model across these varying cell types validates the appropriateness

of the data we used. We attribute this largely to the simple representation of the cell-cycle

data as four Boolean variables, which would be unlikely to result in a cell type-specific bias.

Somewhat counter-intuitively, we found that the cell-cycle data did not improve prediction

performance for the CDKs – kinases whose activity is strongly linked to cell-cycle progression

– while offering performance increase to other kinases. Though this work focussed on the use

of protein abundance data for representing protein cell-cycle profiles, we note that dynamic

gene-expression data across the cell-cycle also exists for human proteins (44). Further work

could investigate what influence dynamic gene-expression data can provide to kinase-substrate

prediction.

We observed some variation among the performance evaluations for the individual kinases,

indicating that the model works better on certain kinases. However, we found that the per-

formance for prediction of kinase substrates (Table 2.1) was not necessarily an indicator of

what improvement would be seen when applying the model to phosphorylation site prediction.

For example, the PhosphoPICK algorithm had excellent performance when classifying tyrosine

kinase substrates – in several cases with AUCs greater than 0.9. However, when predicting
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phosphorylation sites of tyrosine kinases using Predikin and GPS, we found that the prediction

of tyrosine kinase phosphorylation sites benefitted the least from the addition of the Phospho-

PICK score, and the score appeared to be detrimental to predictions made by NetworKIN.

The kinase family where PhosphoPICK consistently demonstrated the most powerful prediction

performance was the CMGC family - principally CDK and MAPK kinases. We found that

PhosphoPICK generally improved the prediction of phosphorylation sites for the CMGC kinases

as tested across each of the three methods, though there were some cases where PhosphoPICK

resulted in a decrease in the accuracy of NetworKIN predictions. As the kinases in these

families have very similar binding patterns, it is likely that mediating proteins captured by

the PhosphoPICK model make a greater contribution in the correct assignment of a kinase

to a substrate. These results lend support to the intuitive notion that the addition of context

information would support sequence-based predictions most powerfully when the kinase binding

patterns are less specific, or are very similar among family members – or both, as is the case

with CDK and MAPK kinases.

It was interesting to note that the putative CDK2 substrates within the overlapping E2F1, E2F4

and E2F6 targets groups were over-represented with GO terms related to DNA replication and

DNA damage repair. Considering this group of genes was itself already enriched in such terms

(when compared to the proteome), this underscores the importance that CDK2 has in regulating

DNA replication and DNA damage repair (134, 135). There are several potential responses to

DNA damage, but in some cases cells may undergo apoptosis (136, 137). We also noticed that

putative CDK2 substrates within the unique E2F1 and E2F6 target groups were both over-

represented with terms relating to the regulation of apoptosis and ubiquitination. These are

both processes that CDK2 has previously been implicated in (138, 139), and ubiquitination is

also known to play an important role in regulating apoptopic proteins (140). E2F1 is known to

be a regulator of apoptosis (141), and similarly E2F6 can negatively regulate apoptosis (142),

so it was interesting to find that the putative CDK2 substrates within the unique E2F1 and

E2F6 target groups were enriched in apoptosis and ubiquitination GO terms. These results

seem to suggest a dynamic regulatory interplay between the E2F family at the transcriptional

level, and the CDK2 kinase at the post-translational level.





Chapter 3

Cross-species differential

phosphorylation prediction: The sbv

IMPROVER species translation

challenge

3.1 Summary

In the previous chapter I demonstrated how context information such as protein-protein inter-

action networks could be used to predict phosphorylation substrates. An interesting application

that could be derived from a phosphorylation model is understanding how the phosphorylation

status of substrates change under different conditions; i.e. switching between phosphorylated

and unphosphorylated states. A dynamic representation of phosphorylation change under dif-

ferent conditions can be obtained with a method that integrates protein-protein interaction

information with condition-dependent protein expression levels.

The aim of the sbv IMPROVER (systems biology verification for Industrial Methodology for

PROcess VErification in Research) species translation challenge was to investigate whether,

after perturbing signalling pathways in rat, the effects on phosphorylation substrates can be

predicted in human (143). Challenge participants were provided with differential phosphoryla-

tion data sets (for a set of phosphoproteins), as well as gene expression data sets, as measured

under a range of conditions in rat and human epithelial cell lines. Participants were asked to

49
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design a models that could, firstly, predict phosphorylation change in rat cell lines from gene ex-

pression data, and secondly, predict phosphorylation change in human cell lines using rat data.

This challenge therefore provided a unique opportunity to investigate whether a phosphoryla-

tion model based on protein-protein interaction data could be used to predict phosphorylation

status in response to changes in gene expression levels. Furthermore, it allowed me to test

whether such a model would be able to predict phosphorylation change cross-species.

In this chapter I present a method that cross-references the protein-protein interaction networks

of the phosphoproteins analysed by sbv IMPROVER with genes found to be differentially

expressed under the same conditions as differentially phosphorylated phosphoproteins. Support

vector machine (SVM) and random forest (RF) classifiers were employed to train computational

models to predict phosphorylation status change based on the expression level of the identified

proteins. The hypothesis was that a model based on the protein-protein interaction network of a

phosphorylation substrate would predict phosphorylation status change more accurately than a

model based on randomly selected genes. I show that in 86% of the tests performed, the protein-

protein interactions models did indeed out-perform the random gene models, substantiating the

validity of the approach. Based on the challenge to predict rat phosphorylation status change

from gene expression, the method obtained an average balanced accuracy of 65% as measured

on a blind independent test set kept from the challenge participants by sbv IMPROVER. For

the first sub-challenge my method was ranked 6 of 21 participants, and 7 out of 13 for the second

sub-challenge. These results demonstrate that the PhosphoPICK method could be applied to

predicting change in the phosphorylation status of substrates based on condition-specific gene

expression levels.

3.2 Introduction

Phosphorylation is the main regulatory switch used for modulating protein function, where

change in the phosphorylation status of proteins can determine the activity of biological path-

ways. An example of such a pathway is the MAPK (mitogen-activated protein kinase) pathway,

which links extracellular signals to activity in the nucleus, and is activated by phosphorylation

(144). Understanding how the phosphorylation state of these pathways can change in response

to treatments is important for drug development and discovery, however limited availability of

data is a confounding difficulty. As a result, the development of predictive models that can

use more readily available high-throughput data such as gene expression levels to infer the

phosphorylation state of proteins is needed.
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A further consideration is the level to which observations made by such models can be translated

between species. Animal models are regularly used in a diverse range of biomedical settings,

where treatments for cancers and diseases are tested. Animal models such as mouse have proved

invaluable in gaining a greater understanding of tumour progression (145). While the purpose of

animal models is to be able to infer the response that may be seen in a human, there are severe

limitations on how much can be inferred between animal models and human. A treatment

may work in the animal model, but the results do not translate across in human clinical trials.

There are numerous reasons why translation between an animal model and human trials do not

work, but an important consideration is whether stimuli and treatments affect animal models

in comparable ways to how they affect humans.

The sbv IMPROVER Species Translation Challenge was created to probe the limits of trans-

latability of biological observations between rat and human. Of particular relevance, was the

focus of two of the challenges on predicting differential phosphorylation in response to stimuli.

Epithelial cell lines from rat and human were exposed to a series of identical treatments, with

gene expression (genome-wide) and phosphorylation levels of 16 important regulatory proteins

(kinases and transcription factors) measured under the various conditions. The first aim, or

challenge, of the competition was to create an algorithm that could predict the change of phos-

phorylation status of the given proteins based on gene expression data. The second challenge

concerned the “translatability” between rat and human – predicting phosphorylation status in

human proteins based on rat phosphorylation and gene expression data.

There are several ways that a treatment could result in differential protein phosphorylation. If

a treatment affects the expression of a kinase or a phosphatase, it is probable that the ordi-

nary phosphorylation of the kinase’s substrates will be perturbed. In the case of the kinase,

phosphorylation levels would be expected to decrease in response to down-regulation, and in

response to phosphatase down-regulation, substrate phosphorylation levels would be expected

to be higher than a control. Alternatively, if a key activator or mediator involved in regulating

kinase/phosphatase activity is differentially expressed, there is the potential for downstream

effects resulting in a change in phosphorylation levels. The aim is therefore to identify what

genes are relevant to modulating the phosphorylation of the proteins of interest – whether these

genes have a direct impact (kinases/phosphatases), or an indirect impact (activating/mediating

proteins). The PhosphoPICK algorithm presented in Chapter 2 introduced a method for using

protein-protein interaction and association networks to predict kinase substrates. A different

application of this would be to use the interaction networks to identify the proteins relevant

to determining a substrate’s phosphorylation status; changes in such proteins expression levels
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would be expected to effect the phosphorylation status of the substrate. Therefore, I hypoth-

esised that by leveraging protein-protein interaction and association networks in combination

with the data provided by sbv IMPROVER, a classification method could be trained to predict

changes in phosphorylation status from the gene expression data.

This chapter presents a method for identifying the genes most relevant to the phosphorylation

status of a phosphoprotein by cross-referencing differentially expressed genes with the protein-

protein interaction network of the phosphoprotein. By observing what genes (in the interaction

network) are differentially expressed under the same conditions that the phosphoprotein is

differentially phosphorylated, the identified gene set was used to train a machine learning clas-

sifier. I show that by incorporating these gene sets in support vector machine or random forest

classifiers, differential phosphorylation could be predicted with high accuracy as measured by

AUC. I also perform a statistical analysis to demonstrate that the use of our identified “relevant

genes” in a classifier performs significantly better than if a set of randomly selected genes are

trained on the same classifier.

A phosphoprotein classifier trained on gene expression data could be used to infer the phos-

phorylation status of the phosphoprotein under differing treatment conditions. I trained such

classifiers for the phosphoproteins in sub-challenge 1 (SC1), and used them to predict changing

phosphorylation status from the test gene expression data provided. For sub-challenge 2 (SC2)

I trained phosphoprotein classifiers on rat data, and used the classifiers to predict differential

phosphorylation in the test set of human data.

3.3 Methods

3.3.1 Data provided by sbv IMPROVER

A detailed description of the data generated for the competition is available at (146), but an

overview of the relevant data is provided here. The experiments were performed on normal

human bronchial epithelial (NHBE) and normal rat bronchial epithelial (NRBE) cell lines.

Phosphorylation levels of 16 phosphoproteins and genome-wide measurement of gene expression

were measured under 52 different stimuli, or Dulbecco’s Modified Eagle’s Medium (DME) as

a control condition. In order to divide the data into training data provided to competition

participants and hold-out data, the experiment was divided into two sets of stimuli: 26 for the

training set and 26 for the hold-out set.
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Gene expression was measured using an AffymetrixTM chip, six hours after the cells had been

exposed to a treatment. There were two or three biological replicates for each of the 52 treat-

ments, and 4 or 5 replicates for the DME control. The experiment yielded gene expression

levels for 13,841 rat genes and 20,110 human genes. Orthologs between rat and human proteins

(totalling 12,458 orthologs) were also provided to the competition participants based on HGNC

Comparison of Orthology Predictions.

Phosphorylation data was generated using the Luminex xMapTM technology (147), which uses

beads coated in antibodies that can bind specific proteins – in this case, phosphorylated pro-

teins. The phosphorylation status of the proteins was measured at two time intervals, 5 minutes

and 25 minutes. Phosphorylation signals at the two time intervals were measured in triplicates

for each stimulus, and in sextuplets for the DME control. As defined for the competition, a

phosphoprotein was considered “activated” (i.e. differentially phosphorylated) if the absolute

difference in Luminex xMapTM signal between the DME control and a treatment was greater

than 3. A distinction was not made between phosphoproteins being “down” phosphorylated or

“up” phosphorylated, however given the small number of differentially phosphorylated proteins

(61/416 of the measured rat phosphoproteins in the training data were differentially phosphory-

lated, and 35/416 of the human) it was not feasible to divide the differentially phosphorylated

proteins into two groups.

3.3.2 Additional data and classification tools

In addition to the data provided for the challenge, we sourced protein-protein interaction (PPI)

data for both human and rat from the BioGRID database (1), as well as protein-protein asso-

ciation data from the STRING database (148). BioGRID provides binary interactions between

proteins, while STRING scores associations between proteins based on multiple streams of

evidence such as gene co-expression and literature mining.

I made use of two machine learning tools that have had great success when applied to a variety

of biological problems: support vector machines (SVM) (98, 149) and random forest (RF). As

the prediction problem here is a two-class discriminatory one, I was interested in using machine

learning methods that could optimally separate the differentially phosphorylated samples from

the non-differentially phosphorylated samples. SVMs and RFs are better suited to such a task

than Bayesian networks, which are generative models. A description of SVMs is provided in

Section 1.5.2. The SVM models presented in this chapter use the radial basis kernel function,

which defines the distance between two input features x and x′ as
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ψ(x, x′) = exp(−α||x− x′||2), (3.1)

where α is a variable that can be adjusted.

RFs are based on decision classification trees. Employing a bootstrapping method, RFs con-

struct an ensemble of trees that establish classification rules as determined by training data. A

prediction on test data is made by averaging the results obtained across the ensemble of trees.

I used SVM and RF implementations from the Python machine learning toolkit (MILK, http:

//luispedro.org/software/milk/). Depending on the phosphoprotein, either the SVM or

RF classifier might provide the best performance. Therefore each phosphoprotein was trained

using both an SVM and an RF, and the optimal classifier was selected that obtained the

highest AUC from a cross-validation experiment. The classifier that was selected for each of

the phosphoproteins in SC1 and SC2 is listed in Table 3.1 and Table 3.2, respectively.

3.3.3 Predicting differential phosphorylation with gene expression

The purpose of sub-challenge 1 was to predict differential phosphorylation in the rat cell lines

using GEx data also generated from rat. I identified relevant genes to each phosphoprotein

by investigating the overlap between the protein-protein interaction and association networks

of the phosphoproteins, and the genes observed to be differentially expressed under the same

stimuli conditions that the phosphoproteins were differentially phosphorylated under.

Identification of genes relevant to phosphoproteins

To create vectors of gene expression values that could be used to train the SVM or RF, genes

relevant to a phosphoprotein of interest first needed to be identified. This was done according

to the following procedure. Firstly, the interaction network of the phosphoprotein was ex-

tracted from the BioGRID or STRING databases. As the rat BioGRID PPI network is limited

compared to the human one, the human PPI was used after converting the human proteins to

rat using the provided ortholog mappings. For the STRING database, scored associations were

converted into a binary format using a cut-off threshold: for each phosphoprotein an association

was retained if it obtained a score greater than 50%.

http://luispedro.org/software/milk/
http://luispedro.org/software/milk/
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Secondly, the phosphoprotein interaction network was cross-referenced with genes differentially

expressed under the same treatment conditions that the phosphoprotein was differentially phos-

phorylated (as defined in Section 3.3.1). To identify differential gene expression, Gaussian dis-

tributions of normalised (log-ratio of signal to control) gene expression values across treatment

conditions were constructed. Applying the cumulative distribution function with a threshold

probability γ, a gene was considered differentially expressed if the CDF-derived probability fell

below γ. The value of γ will yield differing numbers of significant genes; too few genes could

result in important information being missed, while too many could cause over-fitting of the

model. Therefore, for each phosphoprotein, different values of γ were tested to determine the

optimal value. Once the relevant gene set was identified for a phosphoprotein, feature vectors

of normalised gene expression values across the treatment conditions were constructed for use

as input features in training a classifier.

Model training and classification

Prediction accuracy of the classifiers was determined from leave-one-out cross-validation, and

measured by calculating area under the receiver operating characteristic curve (AUC). Three

of the phosphoproteins had zero or only one positive (differentially phosphorylated) samples

under any of the treatment conditions, and were excluded from the analysis. The 13 remaining

phosphoproteins were evaluated with different combinations of data source, classification tool

and γ value to determine the optimal configurations, which are listed in Table 3.1.

To determine whether the prediction accuracy of the classifiers was due to the gene selection

process, the accuracy was compared to a “random gene” model. A random gene model con-

tained the same number of genes and other model parameters, but the gene set was chosen

randomly. For each phosphoprotein, 1000 random gene models were generated, and a count

made of the number of times the random model outperformed the interactions-based model,

as measured by AUC. An empirical P-value was derived from the count divided by 1000 – the

number of tests run. The P-value was therefore an indication of the reliability of the accuracy

measure for a phosphoprotein model; i.e. a low P-value shows that the genes derived form the

interaction/association networks are enabling the model’s prediction accuracy.

Once the optimal configuration of classification method, data source and γ value was determined

for each of the phosphoproteins, the method was used to predict phosphorylation status from

the test gene expression data for SC1.
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Table 3.1: Parameters for the phosphoprotein models for predicting phosphorylation status
change in human proteins. If a phosphoprotein is marked as “N/A”, that indicates that there
were not sufficient (two or more) positive samples to train a model.

Protein Data source Classifier CDF sig. (γ)
AKT1 STRING SVM 0.00001
CREB1 STRING SVM 0.0001
FAK1 BioGRID SVM 0.001
GSK3B STRING RF 0.00001
HSPB1 N/A N/A N/A
IKBA BioGRID RF 0.0001
KS6A1 N/A N/A N/A
KS6B1 BioGRID SVM 0.001
MK03 BioGRID RF 0.001
MK09 STRING SVM 0.0001
MK14K11 N/A N/A N/A
MP2K1 BioGRID RF 0.0001
MP2K6 STRING SVM 0.001
PTN11 STRING RF 0.0001
TF65 BioGRID SVM 0.0001
WNK1 BioGRID SVM 0.001

3.3.4 Predicting human phosphorylation change from rat data

The goal of SC2 was to predict differential phosphorylation in human cell lines based on gene

expression and/or phosphorylation levels from the rat cell lines. SC2 therefore presented the

opportunity to test whether the method could work cross-species. Building on the method

presented in Section 3.3.3, my approach was to first use human data to identify genes relevant

to the human phosphoproteins, and then use the orthologous rat gene expression data to train

models on predicting human phosphorylation status change. In addition, at the completion

of SC1 participants were provided with the hold-out rat phosphorylation data. This provided

the opportunity to evaluate the impact of supplementing the gene expression models with rat

phosphorylation data in order to predict human phosphorylation status change.

Feature selection and model training

Human phosphoprotein gene sets were obtained based on the method described in Section 3.3.3,

with a few adjustments to account for predicting phosphorylation status in the human cell

line. Firstly, the human gene expression data was used to identify differentially expressed

genes. Secondly, as the human STRING association networks were much larger than their
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Table 3.2: Parameters for the phosphoprotein models for predicting phosphorylation status
change in human proteins from rat data. If a phospho-protein is marked as “N/A”, that
indicates that there were not sufficient (two or more) positive samples to train a model. “+
Phos” indicates that phosphorylation status from the gold standard rat phosphorylation data
was used.

Protein Data Source Classifier CDF Sig. (γ)
AKT1 BioGRID SVM 0.001
CREB1 BioGRID + Phos RF 0.001
FAK1 N/A N/A N/A
GSK3B BioGRID + Phos RF 1.0E-5
HSPB1 N/A N/A N/A
IKBA STRING (60) SVM 0.0001
KS6A1 BioGRID + Phos SVM 0.01
KS6B1 BioGRID + Phos SVM 0.01
MK03 STRING (70) + Phos RF 1.0E-9
MK09 N/A N/A N/A
MK14K11 N/A N/A N/A
MP2K1 BioGRID + Phos RF 0.01
MP2K6 N/A N/A N/A
PTN11 BioGRID + Phos RF 0.001
TF65 N/A N/A N/A
WNK1 N/A N/A N/A

rat counterparts, stricter cut-off thresholds of 60% or 70% were tested. For SC2 seven of the

phosphoproteins had zero or only one example of differential phosphorylation, meaning that

those phosphoproteins were excluded from the analysis.

Given a set of relevant genes for a phosphoprotein, the gene expression data from the rat or-

thologs was used to construct feature vectors for classifier training. The feature vectors could

also be extended to contain the median Luminex xMapTM signals (of protein phosphorylation

status) for the rat cells for the two time points, 5 and 25 minutes. Cross-validation evalua-

tion was used to determine if the phosphorylation data provided additional predictive power

compared to using the gene expression data alone (Table 3.2 ).

Table 3.2 details what data source, classifier algorithm and γ value were used for each of the

nine phosphoproteins in SC2. There were also parameters related to the SVM model that

were tuned. The level of flexibility allowed in the SVM margins is defined by a parameter, C,

which can be optimised. Cross-validation testing showed that setting the C value to 6 gave the

optimal prediction accuracy across the phosphoproteins. In addition, the α parameter in the

radial basis kernel function (Equation 3.1) was set to 2 after testing.



Chapter 3. Cross-species differential phosphorylation prediction 58

Table 3.3: Prediction accuracy (measured using AUC) for the phosphoprotein classifiers of
phosphorylation status change for sub-challenge 1 and sub-challenge 2. P-values represent the
observed frequency of a random-gene model outperforming the model derived from phospho-
protein protein-protein interaction networks. If a phospho-protein is marked as “N/A”, that
indicates that there were not sufficient (two or more) positive samples to train a model.

Challenge 1 Challenge 2
Kinase AUC P-value AUC P-value
AKT1 0.86 0.075 0.88 0.01
CREB1 0.93 0.080 0.85 0.08
FAK1 0.65 0.30 N/A N/A
GSK3B 0.88 0.020 0.74 0.04
HSPB1 N/A N/A N/A N/A
IKBA 0.96 0.085 0.96 0.06
KS6A1 N/A N/A 0.96 0.10
KS6B1 0.71 0.060 1.00 0.00
MK03 0.77 0.200 0.86 0.08
MK09 0.86 0.200 N/A N/A
MK14K11 N/A N/A N/A N/A
MP2K1 0.71 0.090 0.93 0.02
MP2K6 0.71 0.200 N/A N/A
PTN11 1.00 0.090 0.96 0.02
TF65 0.91 0.180 N/A N/A
WNK1 0.94 0.01 N/A N/A

As a final step, the optimised phosphoproteins were evaluated on the test gene expression and

phosphorylation data to predict phosphorylation status in the human cell lines.

3.4 Results

3.4.1 Predicting phosphorylation status change in rat cells

I evaluated the method for its ability to predict differential phosphorylation for 13 out of 16 of

the phosphoproteins. Table 3.3 contains the set of AUC values found from performing leave-

one-out cross-validation on the training data for each of the phosphoproteins, as well as the

P-value representing the probability that the AUC value could be due to chance, rather than the

set of genes included in the model. The results showed promising performance, with an average

AUC of 0.84 across the proteins for the cross-validation test. For challenge 1, all but one of the

phosphoproteins obtained P-values < 0.2, though I only found two examples of phosphoproteins

(WNK1 and GSK3B) in sub-challenge 1 where the P-values obtained statistical significance (P
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< 0.05). The average P-value across the 13 phosphoproteins was 0.14, meaning that in 86%

of tests, the interaction models out-performed the random-gene models. The fact that the

interaction models had greater accuracy for the vast majority of tests is a strong indication

that the prediction accuracy of the method is mostly due to the gene selection process.
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Figure 3.1: Comparison between prediction accuracy as measured by AUC for cross-
validation testing, and the hold-out test set kept by SBV Improver.

I calculated the AUC values for each of the phosphoprotein test data sets provided after SC1,

and compare the prediction accuracy obtained from the cross-validation tests to the accuracy on

the blind test set (Figure 3.1). The method maintained a promising level of prediction accuracy,

obtaining an average AUC of 0.74 for the blind test set, down from an average AUC of 0.84
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Table 3.4: Rankings of participants in challenge 1. My entry is highlighted in bold font.
Prediction accuracy was measured with three metrics: area under the precision-recall curve
(AUPRC), Pearson correlation coefficient and balanced accuracy (BAC)

Rank Team AUPRC Pearson BAC
1 50 0.38 0.72 0.68
1 75 0.38 0.71 0.72
1 49 0.42 0.71 0.68
4 93 0.37 0.70 0.61
5 111 0.35 0.64 0.67

6 89 0.31 0.65 0.65

6 61 0.35 0.68 0.6
8 112 0.29 0.63 0.66
9 116 0.27 0.62 0.59
10 64 0.23 0.59 0.58
11 90 0.24 0.59 0.56
12 100 0.23 0.60 0.56
13 0.78 0.28 0.56 0.55
14 0.72 0.15 0.55 0.58
15 105 0.19 0.56 0.53
16 82 0.14 0.54 0.55
17 106 0.13 0.53 0.55
18 71 0.14 0.49 0.45
19 52 0.13 0.49 0.46
20 84 0.10 0.48 0.49
21 99 0.07 0.43 0.50

across the proteins for the cross-validation test. Many of the AUC values were fairly consistent

between the cross-validation and blind tests, with some notable exceptions. Interestingly, while

the prediction performance of some kinases decreased when tested on the blind test set – which

is expected – there were a few cases where the performance was observed to increase when

evaluated on the blind test set. MP2K6 was the most notable example, showing an increase in

AUC from 0.72 to 0.86. WNK1 showed the sharpest decrease in prediction performance, from an

AUC of 0.94 to a near-random value of 0.58. Surprisingly, WNK1 was also the phosphoprotein

with the most significant P-value obtained from comparing the gene-selection accuracy with the

random-gene model – this would intuitively make it the most likely phosphoprotein to maintain

a similar level of prediction accuracy on the hold-out set.

Table 3.4 shows the rankings from challenge 1, where prediction performance was measured us-

ing a variety of accuracy metrics. My method was ranked 6th place out of 21 teams that submit-

ted predictions to the competition. The ranking demonstrates that the method was nonetheless

amongst the best performing in the competition. Most importantly, as a proof of concept, the
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results demonstrate the potential for using context information such a protein-protein interac-

tion networks to inform the design of methods that can predict protein phosphorylation status

change.

3.4.2 Predicting human phosphorylation change from rat data

For sub-challenge 2, I evaluated the ability of the method to predict differential phosphorylation

in the human cell lines based on the rat data. Table 3.3 shows the AUC values (and level of

significance) for evaluating the prediction accuracy of the method through leave-one-out cross-

validation. The lack of differential phosphorylation examples in the human cell lines meant that

I was only able to obtain results for 9/16 of the phosphoproteins. I found that the prediction

performance for the 9 models was generally quite high, with all but one (GSK3B) of the phos-

phoproteins obtaining AUCs of greater than 0.85. Furthermore, for 8 of the phosphoproteins,

the AUCs I obtained were found to be significant (P < 0.05). The high level of prediction

accuracy and the confidence (based on low empirical P-values) that the performance is not due

to chance, is an indicator that the method can be used to predict human phosphorylation status

from observations made in rat cells.

For many of the phosphoproteins, the prediction accuracy observed for sub-challenge 1 was not

reflected in sub-challenge 2. KS6B1 provided a particularly stark example, with an AUC of

0.71 in sub-challenge 1, but perfect prediction accuracy (with an AUC of 1 and a P-value of 0)

for challenge 2. It is possible that the increased prediction accuracy is at least partly due to

the inclusion of rat phosphorylation data – it is certainly counter-intuitive that the prediction

accuracy for rat to human is generally higher than for sub-challenge 1 where the predictions

were only in rat. For the phosphoproteins where I did not include phosphorylation data (AKT1

and IKBA), the prediction accuracy (measured by AUC) remained almost identical between

sub-challenge 1 and sub-challenge 2 (Table 3.3).

While the competition participants were provided with the hold-out phosphorylation rat data

after SC1 was completed, the hold-out human phosphorylation data was not made available.

I was therefore unable to ascertain the prediction accuracy of the individual phosphoproteins

on the holdout data for challenge 2. Table 3.5 shows the overall rankings and accuracy metrics

that were provided by sbv IMPROVER. 13 teams entered SC2 and my method was ranked 7th.

The overall prediction accuracy of the method as measured on the test data was low compared

to SC1, with a balanced accuracy of 0.58. However this could partly be a reflection of the fact
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Table 3.5: Rankings of participants in challenge 2. My entry is highlighted in bold font.
Prediction accuracy was measured with three metrics: area under the precision-recall curve
(AUPRC), Pearson correlation coefficient and balanced accuracy (BAC)

Rank Team AUPRC Pearson BAC
1 50 0.54 0.75 0.77
2 111 0.41 0.68 0.76
3 49 0.33 0.72 0.68
4 61 0.34 0.70 0.66
5 52 0.31 0.69 0.71
6 93 0.29 0.67 0.59

7 89 0.18 0.57 0.58

7 116 0.28 0.68 0.55
9 112 0.13 0.55 0.56
10 97 0.10 0.54 0.57
11 90 0.12 0.55 0.53
12 105 0.06 0.47 0.45
13 84 0.06 0.45 0.42

that 7/16 of the phosphoproteins for SC2 did not have sufficient positive samples for training

classifiers.

3.5 Discussion

Phosphorylation is an important regulatory mechanism for controlling protein function. Being

able to predict changing phosphorylation states in proteins based on observation in gene expres-

sion level would be highly valuable; being able to infer the phosphorylation state of proteins in

human based on observations in a rodent model even more so. The sbv IMPROVER challenge

presented the opportunity to evaluate whether concepts underlying PhosphoPICK – that of

using cellular context in the form of protein-protein interaction networks to predict phospho-

rylation substrates – could be used to predict changes in protein phosphorylation status based

on gene expression. I have described in this chapter a method that can combine knowledge of

a phosphoprotein’s interaction and association networks with gene expression data to predict

the changing state of phosphorylation levels with promising accuracy. The results validate a

proof-of-concept that the interaction networks of phosphoproteins are useful features in de-

signing methods that can predict phosphorylation status change given the expression levels of

interacting proteins.
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It was noted that even the top teams were only able to achieve a balanced accuracy of 70%,

indicating that there are perhaps inherent limitations in the ability to predict phosphoryla-

tion status from gene expression (143). There were three teams that ranked first place in

sub-challenge 1: teams 49, 50 and 75. The three teams employed quite diverse methodologies

despite the similarity of their prediction accuracy on the test set. Team 49 ranked the gene

expression data in a phosphoprotein-specific manner according to a moderated t-test P-value

(143), identifying genes that underwent significant fold change in the same treatment conditions

as the phosphoproteins. They used a linear discriminant analysis (LDA) model, which was fit

to the training data by taking the top identified genes within a given fold change threshold –

the threshold was optimised through cross-validation runs. Similar to my approach, they did

not train classifiers for phosphoproteins with 1 or 0 examples of differential phosphorylation in

the training set – for those phosphoproteins, all samples in the test set were set to 0. Team 50

employed two methods; one involved the calculation of mutual information between the phos-

phorylation status of each of the 16 phosphoproteins, and differential gene expression (binarised

based on the results of a t-test). The second method employed a principal components analysis

(PCA) on the gene expression data to identify leading principal components (PCs). An LDA

model was fit to the training data as with team 49, with leave-one-out cross-validation used to

optimise the number of PCs in the model. The final prediction was a weighted average of the

scores generated from the two models. Team 75 created support vector regression models for

each of the 16 phosphoproteins, with a feature selection process to select genes that should be

included in the models. Cross-validation on the training set was used to identify the optimal

number of genes for inclusion in the models.

While these methods obtained moderately better prediction accuracy then our own method,

there are likely intrinsic limits to what can be achieved without considering additional infor-

mation about the proteins under study. This is similar to observations that have been made in

other areas of proteomics; for example it is recognised that only a small percentage of protein

abundance levels can be explained from gene expression levels alone. Rather, predicting pro-

tein abundance from gene expression benefits from additional information from the protein and

RNA level (150). Similarly, a method for predicting phosphorylation status that incorporates

additional relevant information from the protein level would provide a better description of how

phosphorylation levels can change in response to gene expression values.

The post-competition analysis also discussed the possibility that while it may be feasible to

predict human phosphorylation status from rat phosphorylation data, the current limitations in

computational tools mean that predictions do not benefit from the inclusion of gene expression

data (151). This is in agreement with our results, which found that almost all the human
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phosphoproteins benefited from the use of phosphorylation data in addition to gene expression

for predicting phosphorylation in human cell lines from rat cell lines. My results for predicting

human phosphorylation change from rat data seemed promising based on the training data,

but I was unable to determined the performance of the individual phosphoproteins on the hold-

out test data. As the data only allowed me to train models for half of the phosphoproteins,

it is difficult to gauge whether the low balanced accuracy (58%) obtained from the hold-out

evaluation performed by sbv IMPROVER is indicative of the accuracy of the trained models.

A major limitation in this study was the number of training samples available. We found that

for many of the phosphoproteins there were only a couple of positive examples of differential

phosphorylation that could be used for training. In challenge 2 there were 7 examples – nearly

half – of the phosphoproteins that did not have any examples of differential phosphorylation

associated with them. In such cases it was not possible to train and evaluate our model.

Nonetheless, even with the data limitations, the results presented in this chapter demonstrate

the potential for using methodology derived from PhosphoPICK to predict changes in protein

phosphorylation states.



Chapter 4

Prediction of kinase-specific

phosphorylation sites through an

integrative model of protein context

and sequence1

4.1 Abstract

The identification of kinase substrates and the specific phosphorylation sites they regulate is an

important factor in understanding protein function regulation and signalling pathways. Com-

putational prediction of kinase targets – assigning kinases to putative substrates, and selecting

from protein sequence the sites that kinases can phosphorylate – requires the consideration of

both the cellular context that kinases operate in, as well as their binding affinity.

We report here a novel probabilistic model for the classification of kinase-specific phosphoryla-

tion sites from sequence across three model organisms: human, mouse and yeast. The model

incorporates position-specific amino acid frequencies, and counts of co-occurring amino acids

from kinase binding sites in a kinase- and family-specific manner. We show how this model

can be seamlessly integrated with protein interactions and cell-cycle abundance profiles. When

evaluating the prediction accuracy of our method, PhosphoPICK, on an independent hold-out

set of kinase-specific phosphorylation sites, we found it achieved an average specificity of 97%

1Chapter reproduced from paper of the same name currently in submission.
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while correctly predicting 32% of true positives. We also compared PhosphoPICK’s ability,

through cross-validation, to predict kinase-specific phosphorylation sites with alternative meth-

ods, and found that at high levels of specificity PhosphoPICK outperforms alternative methods

for most comparisons made.

We investigated the relationship between experimentally confirmed phosphorylation sites and

predicted nuclear localisation signals by predicting the most likely kinases to be regulating the

phosphorylated residues immediately upstream or downstream from the localisation signal. We

show that kinases PKA, Akt1 and AurB have an over-representation of predicted binding sites

at particular positions downstream from predicted nuclear localisation signals, demonstrating

an important role for these kinases in regulating the nuclear import of proteins.

4.2 Introduction

Kinases regulate a wide variety of essential biological processes through protein phosphoryla-

tion, including transcription factor activity (152), the control of DNA damage repair pathways

(153), the progression of cells through mitosis (57), and protein import into the nucleus (154).

Knowledge of the kinases that regulate phosphorylation substrates is therefore a significant

factor in understanding the functional consequences of protein phosphorylation events. While

hundreds of thousands of phosphorylation sites have been identified across thousands of proteins

(4), the kinases that regulate these sites in most cases remain unknown. Computational meth-

ods that predict kinase-specific phosphorylation sites are therefore an important contributor to

understanding the role of phosphorylation events in biological processes (155). Such methods

contribute to the guidance of phosphorylation experiments (156) and provide information about

the likely signalling pathways that phosphorylation sites may be involved in (157).

Kinase-mediated phosphorylation is regulated by several important factors that can be lever-

aged to build predictive models. One is the sequence-level motifs surrounding phosphorylation

sites that interact with kinase binding domains. The protein sequence determines whether a

kinase can bind to the protein; previous studies have shown that local motifs surrounding a phos-

phorylation site interact with the binding domain of kinases to allow phosphorylation (25, 46).

There are numerous kinase-specific phosphorylation site predictors that take advantage of the

sequence specificity of kinases to predict kinase-specific phosphorylation sites (80, 95, 158) as

well as phosphorylation sites in a non-kinase specific manner (16, 104).
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The presence of valid kinase-binding motifs on a protein is no guarantee that a kinase will

phosphorylate a substrate however (27). The targeting of phosphorylation substrates by kinases

is subject to, and controlled by, a wide variety of processes within the cell – what may be called

the “context factors” that ensure kinase-substrate fidelity. Context factors can include proteins

that mediate the interaction between kinases and their substrates (20), activating proteins

such as cyclins (52), sub-cellular compartmentalisation (159) and the various stages within the

mitotic cell cycle (160).

We have shown previously that context information (in the form of protein-protein interaction

and association data, as well as protein abundance levels across the cell cycle) can be incorpo-

rated into a probabilistic model that maps kinases to putative substrates (161). This model

not only provides an accurate predictor of kinase substrates, but importantly, the sequence-

level prediction of kinase-specific phosphorylation sites can be greatly enhanced by the model’s

additional predictive power. While this model was able to use context alone to predict kinase

substrates, we hypothesised that the incorporation of sequence and context into a single model

would provide better explanatory power of the factors that describe kinase targets.

In this paper, we present a novel probabilistic method for predicting kinase-specific phosphory-

lation sites that incorporates position-specific amino acid frequencies and counts of co-occurring

neighbouring amino acids in a family-specific manner across three model organisms: human,

mouse and yeast. We demonstrate that this sequence model can be used as a module within a

larger Bayesian network that describes the context factors that influence how a kinase targets

a protein substrate. The seamless integration of these two domains of information – context

and sequence – allows for a comprehensive model of kinase-protein phosphorylation. We com-

pare the ability of our method, PhosphoPICK, to predict kinase-specific phosphorylation sites

against alternative phosphorylation predictors, and show that PhosphoPICK has a superior

ability to predict kinase-specific phosphorylation sites for most comparisons made.

As we now have a predictor that ably integrates the context and sequence conditions that reg-

ulate phosphorylation, we are in a position to investigate phosphorylation-dependent functions

and probe the kinases that are involved in regulating these functions. The nuclear import of

proteins is a highly-specific process, involving the binding of importin proteins to cargo pro-

teins that contain a relevant nuclear localisation signal (NLS) (162, 163). It has been shown

that the binding of importin proteins to their cargo can be controlled (promoted or inhibited)

by the presence of phosphorylation adjacent to the NLS (164). We therefore investigated the

relationship between nuclear localisation signals and phosphorylation by cross-referencing ex-

perimentally identified phosphorylation sites with predicted NLSs. We used PhosphoPICK to
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identify the most likely candidate kinases for NLS-adjacent phosphorylation sites, and per-

formed a statistical analysis to identify sites relative to NLSs that have an over-representation

of kinase binding sites. We identify several kinases as candidates to regulate phosphorylation

sites at sites downstream from the NLSs, most notably protein kinase A (PKA), Akt1 and

Aurora kinase B (AurB). We also identify kinases that regulate sites upstream from the NLS,

including cyclin dependent kinase 2 (CDK2). Gene ontology (GO) term enrichment analyses

indicate that the phosphorylation of specific sites close to the NLS by these kinases regulates

distinct biological functions.

4.3 Methods

4.3.1 Data resources

We obtained kinase-specific phosphorylation data for human and mouse from PhosphoSitePlusr,

www.phosphosite.org (4) and for yeast (Saccaromyces cerevisiae) from PhosphoGRID (73),

which is a database of in vivo phosphorylatio sites. For data collected from PhosphoSitePlusr,

we ensured that phosphorylation sites used were known to occur in vivo, but for both databases,

the kinase annotations are often informed by in vitro or in vivo experiments. We chose phos-

phorylation site data for kinases where there were greater than 5 unique kinase substrates,

resulting in 5,209 kinase-specific phosphorylation sites across 1,826 proteins for human, 956

kinases-specific phosphorylation sites across 417 proteins for mouse, and 2,219 kinase-specific

phosphorylation sites across 722 substrates for yeast. In order to have a more extensive back-

ground of phosphorylation events for training a sequence model, we also used phosphoryla-

tion sites that did not have a kinase assigned to them. We used phosphorylation sites from

PhosphoSitePlusr that were generated using low-throughput methods; similarly for Phospho-

GRID, sites were included if they were identified using more than one method, or if the single

detection method was not mass spectrometry. This resulted in an additional 5,939 phospho-

rylation sites for human, 2,865 additional phosphorylation sites for mouse and 674 additional

phosphorylation sites for yeast.

Protein-protein interaction (PPI) data was sourced from BioGRID (1), protein-protein associa-

tion data from STRING (148), and protein abundance data across the cell cycle from the work

by Olsen and colleagues (28). As the cell-cycle information was only available for human, cell-

cycle data was not incorporated into the mouse or yeast kinase models. A detailed description

of how this data was curated and processed is available in (161).
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In order to evaluate the prediction accuracy of our method on completely novel data, we created

a hold-out set for kinases for which there were more than 100 known substrates – there were

nine such human kinases. For each of the nine kinases, we selected a random set of substrates

equal to 10% of that kinase’s substrates that were not in the original set of substrates used for

developing the model (161). These substrates were excluded from all analyses and simulations,

and were used only for a final evaluation of model accuracy. This resulted in a hold-out set of

145 proteins – containing 416 phosphorylation sites specific to the nine kinases. After removing

the hold-out set, a set of 1,671 human proteins and 4,907 kinase-specific human phosphorylation

sites remained for training and testing.

In addition, we built similarity-reduced sets of the phospho-peptide sequences obtained from

PhosphoSitePlus and PhosphoGRID in order to determine whether sequence similarity could

be inflating prediction accuracy. The BLASTP program (165) was used to perform a pairwise

sequence similarity comparison of each of the phospho-peptides, using 15-residue sequences

centred on the phosphorylation site. All 15-residue pairs obtaining a BLASTP E-value under

0.05, with sequence identity of at least 30%, were retained. Similar pairs within the same

kinase category were reduced through the arbitrary removal of one of the phospho-peptides;

phospho-peptides that were similar, but phosphorylated by different kinases, were not reduced.

The similarity reduction was also applied to the background set of peptides.

4.3.2 PhosphoPICK method and workflow

Building on our existing context model, we developed a model for predicting kinase-specific

phosphorylation sites from sequence, as well as a model that incorporates this sequence model

into the context model described in our previous work.

Sequence model

We present a Bayesian network model for modelling various sequence features of a kinase binding

motif (Figure 4.1). We represent potential amino acid residues in an n length sequence motif

surrounding a phosphorylation site as discrete variables conditioned on two Boolean variables.

The first represents the event that some kinase of interest, K, binds to the site, the second

represents the event that a family member (i.e. any family member of K) binds to the site.

Each variable – R−m to R+m, where R0 represents the site for which phosphorylation is predicted

– contains three distributions of amino acid frequencies. These represent (1) the probability
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of each amino acid occurring at the position where K is seen to be phosphorylating, (2) the

amino acid frequencies for binding sites from the family members of K, and (3) the amino acid

frequency background as seen across all other phosphorylation sites in the training set.

In addition to position-specific amino acid frequencies, we included k-mers of k=2 (dimers) and

k=3 (trimers) to encode the frequency of co-occurring neighbouring amino acids. This should

allow the model to capture some paired dependencies that may exist between amino acids. In

order to avoid over-parameterising the sequence model with all possible combinations of dimers

and trimers, we only added the k-mers that were observed in some θ percentage of kinase

binding motifs from a training set. During cross-validation, the training set of kinase-binding

motifs was taken, and k-mers observed within the motifs were counted. If a k-mer occurred in

more than the θ percentage threshold of substrates, the k-mer was added to the model. We

tested three cut-offs of θ: 5, 10 and 20, and found that 5 gave the best prediction accuracy

across the full set of kinases (see Table B.1 for results across the set of human kinases, Table B.2

for mouse kinases and Table B.3 for yeast kinases). As shown in Figure 4.1, the k-mers are

represented as a series of n Boolean variables, Kmer1 to Kmern, where a k-mer is considered

to be true if it is observed in the amino acid motif surrounding the phosphorylation site. The

k-mer nodes were trained to capture the probability of each k-mer occurring within a kinase’s

binding motif, that of its family members and the background set of phosphorylation sites.

R0 R+1 R+mR-m R-1

Kinase
binds

..............

Family
binds

Kmer1 ....... Kmern

Figure 4.1: Sequence model. R nodes represent positions in a motif surrounding the phos-
phorylation site, where R0 is the potential phosphorylation site. Kmer1 to Kmern represent
the dimer and trimer configurations incorporated into the model.

It has been shown previously that varying the motif length in predicting kinase binding sites

improves prediction accuracy (80). Therefore, for each kinase we tested five different window

sizes centred around the phosphorylated residue: 7, 9, 11, 13 and 15. For each kinase we selected

the window size that gave the best prediction accuracy as measured within a cross-validation

test (Tables B.4, B.5 and B.6).
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Combined model

The combined model retains the structure of the “context” Bayesian network described previ-

ously (161), but with the sequence model incorporated into it. This model represents obser-

vations about kinase-substrate phosphorylation events, protein-protein interaction/association

events believed to be relevant to kinases encoded in the model, and cell-cycle profiles of sub-

strates as Boolean variables. A connection between a kinase and a PPI event is defined if the

protein is interacting with at least 5 of the kinase’s substrates. Up to 25 connections between

a kinase and a PPI event can be defined.

The sequence model was incorporated into the larger context model in a kinase-specific manner,

such that for each kinase the kinase target variable in the sequence model is conditioned on the

variable in the context model representing the kinase phosphorylating a substrate (Figure 4.2).

We created models based on sets of kinases as they are classified into family similarity (32).

For human, we created eight family-specific models comprising kinases from the CMGC (cyclin-

dependent, mitogen-activated, glycogen synthase and Cdc2-like), AGC (protein kinase A, G and

C families), CAMK (Ca2+/calmodulin-dependent kinase), TK (tyrosine kinase), “other”, STE,

CK1 (cell kinase 1) and atypical kinase families. For mouse, we created three models with

kinases from the CMGC, AGC and TK families; and for yeast we created four models from the

CMGC, AGC, CAMK and other kinase families.

4.3.3 Setting non-query kinase nodes

The model relies partly on the expected activity of alternative kinases that are encoded in the

Bayesian network. However, there is no experimental information on kinase binding events

for the majority of proteins, and negative evidence (a protein not being phosphorylated by a

particular kinase) is non-existent. Therefore we employ the amino acid sequence of a query

protein to estimate what kinases in the model will not bind to the protein, and can therefore

be set to false. In order to decide when kinase variables in the model should be set to false,

the following steps were followed for each non-query kinase. Within a training fold, the positive

training samples for that kinase were set aside. 75% of the substrates within the negative set

were selected randomly, and each phosphorylation site within this set was added to the training

data, while the remaining substrates were set aside as a test set.

The sequence model was trained using the selected training samples, and used to scan over

each of the substrates within the test set, with the highest score for each of the substrates



Chapter 4. An integrative model of protein context and sequence. 72

recorded. The median value of these scores was then taken as a threshold representing the

highest expected score for a protein that is not phosphorylated by the kinase. When evaluating

the model on a test substrate, for each non-query kinase node, its sequence model was used

to scan the substrate and the highest score is recorded. If the score falls below the calculated

threshold value, that kinase node is set to false, otherwise it remains unspecified.

G1M S G2

K1 K2 .................. Ki

..................P1 P2 P3 Pk

Latent
K1 binds

R0

R+m

R-m

.....
.....

Kmern

Kmer1

.....

Family
binds

Figure 4.2: PhosphoPICK Bayesian network model incorporating both context and sequence
data. The bottom layer of nodes (P 1 to P k) represent protein interactions incorporated into
the model. These are conditioned on relevant kinases (K1 to Ki), which are themselves
conditioned on a latent node incorporating variables representing the four cell cycle stages.
The K1 binds “sequence” variable is conditioned on its corresponding K1 “context” variable.

Prediction workflow

A diagram illustrating the PhosphoPICK workflow for generating a prediction is shown in

Figure 4.3. To determine the probability of a query kinase phosphorylating a given substrate,

the relevant context data are queried and the corresponding nodes in the Bayesian network are

instantiated. As there is no experimental information on kinase binding events for the majority

of proteins, and negative evidence (a protein not being phosphorylated by a particular kinase)

is non-existent, the protein sequence is used to provide an estimate of what alternative kinases

will not phosphorylate the given substrate (Section 4.3.3).
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The model is then scanned over the substrate’s amino acid sequence, and for every potential

phosphorylation site, the n length motif corresponding to the query kinase surrounding the

phosphorylation site is used to set the sequence nodes in the network. For every potential

phosphorylation site, the node representing the kinase phosphorylating a substrate is queried,

and the highest probability for the scan is taken as the score for that substrate. Separately,

the potential phosphorylation sites within the substrate are scored using the sequence model.

The final score for a kinase-specific phosphorylation site prediction is equal to the average of

the substrate score from the combined model, and the site score from the sequence model.

4.3.4 Model training

Sequence model

The nodes in the sequence Bayesian network are defined using conditional probability tables

(CPTs), which learn from training data all possible values that a variable can take, given the

set of parents it is conditioned on. If a variable does not have parents, the CPT will represent

the observed frequency from the training data of it being true. As there may be amino acids

or k-mers that do not occur in some of the training data, we added a uniform pseudo-count of

0.05 to all the amino acid and k-mer nodes, ensuring that the model does not consider some

amino acids or k-mers impossible to occur.

Combined model

The nodes in the combined model are defined using CPTs and our variation on the NoisyOR

node (161), which allows for an approximation of a CPT. The protein interaction nodes were

defined using NoisyOR variables, allowing parameters to be inferred even in the case of data

sparsity. All other variables in the combined model were defined as CPTs.

As the combined model incorporates data representing different problems – that of predicting

kinase substrates, and predicting kinase binding sites, the model was trained in two stages.

First, the set of unique substrates was presented for expectation maximisation training (121)

in order to set the parameters for the protein-interaction, cell-cycle and kinase nodes in the

network. The parameters for these variables were then locked in place. Next, the sequence

module within the network was trained using the set of phosphorylation sites contained in the

training fold, with the position-specific amino acid nodes and k-mer nodes being set as for the
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sequence model. There will be some cases in the phosphorylation site data where a kinase will

be phosphorylating a substrate, but not the site. In these cases, the node representing the

kinase binding the substrate was set to false.

E2F1

P1
P2

P3X G1M S G2

Protein sequenceProtein interactions Cell-cycle pro�le

Set context parameters Approximate kinase 
variables

K2 = false

Ki = unknown

Scan sequence

Return 
substrate score

K1 = 0.31

Potential phosphorylation
 sites

Pos 30:  R L L D S S Q  I  V
Pos 31:  L L D S S Q  I  V  I
Pos 37:  I  V  I  I  S A A Q D

Pos 43: A Q D A S A P P A

>sp|Q01094|E2F1_HUMAN
MALAGAPAGGPCAPALEALLGAGALRLLDSSQ
IVIISAAQDASAPPAPTGPAAPAAGPCDPDLLLF
ATPQAPRPTPSAPRPALGRPPVKRRLDLETDHQ
YLAESSGPARGRGRHPGKGVK....

.........

Pos 433: F G D L T P L D F
Pos 403: F  I  S L S P P H E

Score site
Pos 43 = 0.78

Return combined 
score

K1 (pos 43) = 0.54

Figure 4.3: Diagram showing the workflow involved when a kinase is queried for a protein
submitted to the model. BioGRID and STRING are queried to identify what proteins the
substrate interacts with, and the protein-interaction variables are set accordingly. If cell-cycle
data is available, it will be included also. The substrate sequence is used to estimate what
kinases in the model will not bind to the substrate, with the remainder left unspecified. The
model is then scanned across the sequence to identify the highest probability of the kinase
phosphorylating the substrate. Separately, the sequence model is used to score all potential
sites in the query substrate. The final prediction for a potential phosphorylation site is the
average of the substrate and site score.

4.3.5 Evaluating model prediction accuracy

The prediction accuracy of the models was evaluated across the 107 human kinases, 24 mouse

kinases and 26 yeast kinases using ten-fold cross-validation across ten randomised data-set

splits. The prediction accuracy of the sequence model was evaluated by its ability to correctly



Chapter 4. An integrative model of protein context and sequence. 75

classify kinase-specific phosphorylation sites out of the set of known kinase-binding sites, and

the combined model was evaluated by its ability to correctly classify kinase substrates out of

the set of substrates.

To ascertain the effect that our sequence model features have on prediction accuracy, we evalu-

ated the accuracy of a simple baseline sequence model that only contained the position-specific

amino acid nodes conditioned on the kinase variable (the family variable was excluded). We

also evaluated the prediction accuracy of the context model (the combined model excluding the

sequence information) and compared its accuracy with the combined model to ascertain what

improvement may be gained from incorporating sequence and context information into a single

model. Prediction accuracy was determined using receiver operating characteristic (ROC) and

calculation of area under the ROC curve (AUC) as a measure of overall model performance

(122). We also calculated area under the ROC curve up to the fiftieth false positive (AUC50)

as a measure of performance at low false-positive levels.

Comparisons to alternative methods

We compared the ability of the complete PhosphoPICK work-flow to predict kinase-specific

phosphorylation sites out of all potential phosphorylation sites in the substrate sequences. The

comparison was performed firstly against the sequence model only, and secondly against three

alternative methods that have a larger number of kinases available for making predictions:

GPS 2.1 (80), NetPhorest 2.0 (97) and NetworKIN 3.0 (97). We downloaded the standalone

prediction software for each of the three methods and ran the set of 1,671 proteins through

them. For NetworKIN and NetPhorest, we did not specify the sites we wanted predictions

for. We used GPS’s batch prediction system to run GPS on the protein set, selecting the “no

threshold” option.

In order to compare PhosphoPICK predictions to the alternative methods, we again did a 10x

ten-fold cross-validation run of the combined model as well as of the sequence model. As most

of the potential phosphorylation sites in the substrates were not in the set of peptides used

for training the sequence model (and therefore not part of the cross-validation run), the fully

trained sequence model was used to score potential phosphorylation sites outside of the training

set.

Due to the large number of potential phosphorylation sites being scored (∼170,000 S/T sites

and ∼30,000 Y sites), we calculated sensitivity for two stringent levels of specificity – 99.9% and
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99%. The difference in sensitivity between PhosphoPICK and each alternative was calculated

across all ten cross-validation runs.

Calculating significance of predictions

Users of the PhosphoPICK web-server are provided with an option to include empirical P-

value calculations alongside their predictions, allowing for a measure of the significance of the

predictions. To obtain empirical P-values, we first calculated proteome-wide distributions of

predictions; i.e. for all kinases, substrate predictions were obtained for every protein in the

relevant proteome (human, mouse or yeast), and site predictions were made for all potential

phosphorylation sites in the proteome. To calculate a combined P-value for a prediction, Fisher’s

method for combining probabilities was applied such that:

X = −2(ln(Pcontext) + ln(Psite)),

where Pcontext and Psite represent the P-value value calculated for a context score given to a

substrate and a motif score given to a site respectively, and X follows a Chi squared distribution

with 4 degrees of freedom.

4.3.6 Evaluation on hold-out set

When evaluating the performance of the model on the hold-out set, the full sets of training

data was used to train the model. We predicted each potential phosphorylation site (all S/T

residues for serine/threonine kinases and all Y residues for the tyrosine kinase Src) in the hold-

out sequences, and evaluated the performance of the model for each kinase by its ability to

predict the kinases’ phosphorylation sites out of all potential sites. In order to evaluate how

well the method would be expected to perform using the P-value based thresholding system on

the web-server, P-values were calculated for the predictions, and if a P-value for a prediction

fell below 0.005 the prediction was considered to be true, and false otherwise.

We calculated sensitivity, specificity, balanced accuracy (BAC) and Matthews’ correlation co-

efficient (MCC). The metrics are defined as follows, where TP is the number of true positives,

FP the number of false positives, TN the number of true negatives, and FN the number of

false negatives.
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Sensitivity:

sens. =
TP

TP + FN

Specificity:

spec. =
TN

TN + FP

Balanced accuracy:

BAC =
sensitivity

specificity

Matthews’ correlation coefficient:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

4.4 Results

4.4.1 Sequence model for classifying kinase binding sites

The sequence model was evaluated by its ability to correctly classify, on a per-kinase basis,

kinase-specific phosphorylation sites out of the set of known kinase binding sites. Table 4.1

shows results for an example set of kinases (the CMGC family of kinases), and Table 4.2

contains the averaged prediction accuracy for each of the kinase families across the three tested

species. The full set of values are available in Tables B.7, B.8 and B.9. The sequence model has

good prediction accuracy over the kinases tested, with an average AUC of 0.79 across all human

kinases. We found that 66% of kinases obtained an AUC of greater than 0.75, demonstrating

that the model works well for the majority of kinases. We noticed particularly high accuracy

for the CMGC kinases, where 17/20 of the kinases in this family obtained an AUC of greater

than 0.8 (Table 4.1); and also the atypical kinases, where all of those kinases obtained an AUC

greater than 0.8, and 3/4 greater than 0.85 (Table B.7). The worst performing family appeared

to be the tyrosine kinase family, where we found an average AUC of 0.62 – substantially

lower than the overall average (of 0.79), and much lower than the accuracy from the various

serine/threonine kinase families.
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We compared the sequence model against a baseline model that only considered the position-

specific amino acid frequencies. While the sequence model outperforms the baseline in general,

we noticed that there was substantially higher accuracy at low false-positive levels as measured

by the AUC50. In the “other” family of kinases, there was a greater than 3-fold increase in the

AUC50, and in the CMGC and CK1 families we found a greater than 2-fold increase in AUC50.

Table 4.1: Comparison of prediction accuracy across human CMGC kinases between predict-
ing kinase-specific phosphorylation sites with a baseline model that only considers position-
specific amino acid frequencies, and the sequence model. Results were generated using ten-fold
cross-validation repeated across ten randomised data-set splits. Shown are the average and
standard deviation of the AUC and AUC50 values.

AUC AUC50

Kinase Baseline Sequence model Baseline Sequence model

CDK2 0.86±0.001 0.89±0.001 0.06±0.002 0.10±0.004

CDK1 0.88±0.002 0.89±0.002 0.09±0.004 0.07±0.008

ERK2 0.86±0.002 0.86±0.001 0.05±0.004 0.07±0.010

ERK1 0.86±0.005 0.86±0.005 0.04±0.005 0.07±0.012

GSK3B 0.77±0.009 0.81±0.006 0.09±0.007 0.13±0.014

P38A 0.79±0.007 0.81±0.007 0.12±0.016 0.15±0.017

JNK1 0.83±0.005 0.87±0.004 0.08±0.013 0.15±0.014

CDK5 0.84±0.012 0.84±0.009 0.07±0.009 0.05±0.007

JNK2 0.75±0.015 0.73±0.023 0.03±0.013 0.07±0.015

CDK7 0.77±0.017 0.88±0.019 0.16±0.044 0.31±0.032

GSK3A 0.89±0.014 0.90±0.026 0.26±0.020 0.46±0.045

CDK4 0.85±0.012 0.87±0.012 0.07±0.007 0.18±0.025

P38B 0.79±0.006 0.83±0.014 0.07±0.015 0.26±0.046

HIPK2 0.81±0.016 0.86±0.013 0.23±0.030 0.38±0.043

DYRK1A 0.77±0.034 0.83±0.033 0.01±0.024 0.26±0.043

CDK9 0.78±0.011 0.83±0.015 0.04±0.022 0.32±0.030

DYRK2 0.68±0.032 0.78±0.019 0.00±0.000 0.31±0.043

ERK5 0.79±0.015 0.83±0.016 0.02±0.014 0.32±0.034

CDK6 0.80±0.019 0.86±0.009 0.07±0.016 0.18±0.030

CDK3 0.69±0.031 0.76±0.050 0.00±0.000 0.36±0.045

On the mouse kinases, the model achieved a more moderate average AUC of 0.71, reflecting

the diminished availability of positive training data when compared to human or yeast kinases.
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Similar to the results seen in the human kinases, however, the CMGC kinases performed the

best, with an average AUC of 0.79, and the tyrosine kinases were again the worst performing,

with an average AUC of 0.63.

Table 4.2: Performance comparisons between predicting kinase-specific phosphorylation
sites with a baseline model that only considers position-specific amino acid frequencies, and
the sequence model. Results were generated using ten-fold cross-validation repeated across
ten randomised data-set splits. Shown are the average and standard deviation of the AUC
and AUC50 values.

AUC AUC50
Family Baseline Sequence Baseline Sequence

Human
CMGC 0.80±0.013 0.84±0.014 0.08±0.013 0.21±0.026
AGC 0.76±0.017 0.79±0.018 0.15±0.028 0.21±0.029
TK 0.56±0.022 0.62±0.025 0.11±0.021 0.18±0.024
CAMK 0.73±0.023 0.77±0.024 0.11±0.014 0.19±0.027
Other 0.69±0.019 0.80±0.021 0.07±0.013 0.32±0.038
STE 0.71±0.031 0.79±0.052 0.23±0.049 0.38±0.053
CK1 0.75±0.020 0.86±0.025 0.12±0.019 0.30±0.031
Atypical 0.84±0.009 0.87±0.008 0.18±0.008 0.20±0.030

Mouse
CMGC 0.74±0.016 0.79±0.016 0.14±0.017 0.24±0.029
AGC 0.72±0.025 0.75±0.032 0.17±0.034 0.26±0.051
TK 0.60±0.025 0.63±0.029 0.26±0.032 0.31±0.026

Yeast
CMGC 0.67±0.028 0.76±0.028 0.11±0.007 0.32±0.030
AGC 0.79±0.020 0.85±0.025 0.24±0.027 0.46±0.034
CAMK 0.64±0.024 0.78±0.024 0.05±0.017 0.34±0.037
Other 0.74±0.017 0.84±0.023 0.10±0.010 0.35±0.035

The yeast kinase models performed quite well, achieving an average AUC of 0.81. In yeast,

the best performing kinases were from the AGC family, with an average AUC of 0.85, and an

AUC50 exceeding any other kinase family from mouse or human. We noticed that the sequence

model had a substantial increase in accuracy when compared to the baseline – particularly at

the low false-positive rates as measured by AUC50. The CAMK kinases recorded the sharpest

increase, with an average AUC50 of over 6-fold greater than the baseline model. In general,

we found that the use of k-mers offered a great advantage over the simpler representation of

position-specific amino acid frequencies, and that this was particularly noticeable at low false-

positive levels. Our results indicate that our combination of features offers a highly accurate

model for predicting kinase phosphorylation sites across diverse kinase families and species.
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In order to test whether sequence similarity within the phospho-peptides could be inflating

prediction accuracy, we re-trained the sequence model on the similarity reduced data-set. Ta-

ble B.10, Table B.11 and Table B.12 contain a comparison of the fully trained sequence model

and the model trained on the reduced data-set. For the majority of kinases, the similarity

reduction did not result in a decrease in AUC. On average, there was a negligible difference

in AUC, with an average decrease across all kinases of 0.004 seen with the reduced data set.

Similarly, differences in the average AUC50 were slight, and within the margin of error. This

demonstrates that the prediction accuracy of the sequence model is not due to homologous

phospho-peptides in the training data, and can be applied to unseen samples.

4.4.2 Kinase substrate prediction

We compared the ability of the context model to predict kinase substrates against the combined

(context plus sequence) model. Table 4.3 shows AUC and AUC50 values from the CMGC family

of kinases, with averaged results across the kinase families summarised in Table 4.4, and the full

set of results for all kinases available in Tables B.13, B.14 and B.15. The results demonstrate

that across the kinase families, the incorporation of sequence data improved the ability of the

model to predict kinase substrates. We noticed larger increases in prediction accuracy for the

human CMGC, AGC and CAMK kinase families: the average AUC50 for CMGC increased

from 0.31 to 0.43, AGC saw a similar increase from 0.21 to 0.34 and CAMK the largest – from

0.25 to 0.40. Figure 4.4 shows ROC plots, calculated up to 50 false positives (representing the

AUC50 score), for kinases from the human CAMK family. ROC plots showing the prediction

accuracy of the combined vs context model for the full set of kinases is available in Figure B.1

– Figure B.15. The ROC curves in Figure 4.4 demonstrate that the combined model is able to

provide a substantial improvement in prediction accuracy at low false-positive rates for many

of the CAMK kinases, when compared to the context model.

Table 4.3: Combined model accuracy across human CMGC kinases when compared to
the context only model. Table shows accuracy values for classifying kinase substrates with
both models as determined by 10-fold cross-validation across 10 randomised data-set splits.
Prediction accuracy is measured using median and standard deviation of the AUC and AUC50
across the data-set splits.

AUC AUC50

Kinase Context model Combined model Context model Combined model

CDK2 0.69±0.003 0.76±0.002 0.097±0.0016 0.110±0.0024

Continued on next page
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Kinase Context model Combined model Context model Combined model

Continued from previous page

CDK1 0.77±0.002 0.79±0.002 0.088±0.0035 0.101±0.0036

ERK2 0.74±0.002 0.78±0.003 0.139±0.0022 0.155±0.0047

ERK1 0.78±0.003 0.81±0.003 0.125±0.0021 0.147±0.0048

GSK3B 0.74±0.002 0.79±0.005 0.151±0.0015 0.178±0.0032

P38A 0.80±0.003 0.80±0.006 0.132±0.0012 0.167±0.0115

JNK1 0.84±0.002 0.87±0.010 0.263±0.0021 0.310±0.0097

CDK5 0.78±0.006 0.82±0.007 0.183±0.0059 0.230±0.0081

JNK2 0.83±0.008 0.89±0.022 0.216±0.0113 0.313±0.0247

CDK7 0.93±0.034 0.95±0.048 0.560±0.0117 0.705±0.0327

GSK3A 0.81±0.042 0.91±0.028 0.378±0.0258 0.610±0.0551

CDK4 0.87±0.002 0.88±0.006 0.309±0.0263 0.494±0.0219

P38B 0.78±0.071 0.75±0.058 0.198±0.0330 0.410±0.0466

HIPK2 0.89±0.033 0.98±0.054 0.365±0.0155 0.780±0.0618

DYRK1A 0.92±0.032 0.90±0.015 0.698±0.0361 0.617±0.0257

CDK9 0.96±0.045 0.90±0.043 0.548±0.0175 0.656±0.0348

DYRK2 0.63±0.038 0.91±0.010 0.363±0.0098 0.849±0.0552

ERK5 0.82±0.078 0.97±0.141 0.549±0.0270 0.709±0.1387

CDK6 0.83±0.012 0.82±0.010 0.539±0.0201 0.698±0.0172

CDK3 0.54±0.047 0.57±0.064 0.284±0.0473 0.407±0.0822

While the context information accounts for the bulk of the accuracy, there were several exam-

ples of kinases where including the protein sequence in the model greatly improved prediction

accuracy. In a few instances, prediction accuracy was increased from low or even random to a

much higher value; for example the PKCI kinase improved from an AUC of 0.50 to an AUC

of 0.77 (Table B.13), and DYRK2 obtained a huge increase from an AUC of 0.63 to 0.91 (Ta-

ble 4.3). There were also several examples of substantial accuracy gains, even when the kinase

already had moderate to high accuracy in the context model; we observed that the prediction

accuracy of GSK3A increased from 0.81 to 0.91, tyrosine kinase Syk increased from 0.81 to 0.90

and CAMK kinase Pim1 increased from 0.8 to 0.94. While there were examples of prediction

accuracy decreasing when sequence information was added, these decreases were slight, indi-

cating that the accuracy gains for incorporating sequence and context information far outweigh

any potential losses.
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Table 4.4: Performance comparisons between predicting kinase substrates with the context
Bayesian network model, and with the combined sequence & context model. Results were gen-
erated using ten-fold cross-validation repeated across ten randomised data-set splits. Shown
are the average and standard deviation of the AUC and AUC50 values.

AUC AUC50
Context Combined Context Combined

Human
CMGC 0.80±0.023 0.84±0.027 0.31±0.015 0.43±0.032
AGC 0.74±0.025 0.79±0.029 0.21±0.015 0.34±0.035
TK 0.81±0.027 0.82±0.026 0.31±0.020 0.39±0.039
CAMK 0.66±0.039 0.76±0.032 0.25±0.016 0.40±0.034
Other 0.80±0.034 0.81±0.037 0.36±0.029 0.47±0.044
STE 0.73±0.059 0.80±0.063 0.40±0.043 0.57±0.072
CK1 0.79±0.035 0.81±0.028 0.39±0.032 0.41±0.042
Atypical 0.85±0.015 0.89±0.014 0.36±0.005 0.45±0.015

Mouse
CMGC 0.73±0.011 0.79±0.020 0.38±0.009 0.45±0.035
AGC 0.48±0.033 0.63±0.043 0.20±0.015 0.31±0.056
TK 0.61±0.045 0.78±0.052 0.25±0.020 0.46±0.052

Yeast
CMGC 0.65±0.032 0.76±0.042 0.22±0.020 0.44±0.050
AGC 0.57±0.043 0.71±0.048 0.26±0.036 0.48±0.048
CAMK 0.64±0.036 0.70±0.020 0.15±0.029 0.33±0.037
Other 0.60±0.036 0.75±0.045 0.21±0.019 0.40±0.033

In general, the accuracy for mouse kinases was more enhanced by the incorporation of sequence

when compared to the accuracy for human kinases (Table B.14). We noticed that the accuracy

for mouse AGC kinases was no greater than random for context alone, with a low AUC of

0.48. However, after the incorporation of sequence data, the AUC increased to a much higher

value of 0.63 (Table 4.4). This is likely due to the size of the mouse protein-interactome,

which is much smaller than the human version. The most substantial gains were made for the

tyrosine kinases, where the average AUC for the family increase from 0.61 to 0.78 – a near 30%

increase in prediction accuracy. There was a similar increase in the AUC50, from 0.25 to 0.46,

indicating that the incorporation of the sequence model also made an important contribution

at low false-positive levels.

The yeast kinases benefitted even more than the mouse kinases from the incorporation of

sequence, with substantial increases to prediction accuracy observed across the four yeast kinase

families (Table B.14). Prediction accuracy for yeast AGC and “other” kinases increased in AUC
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Figure 4.4: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human CAMK family of kinases. The ROC curves
are calculated up to the first 50 false positives from a 10-fold cross-validation run.

value by an average of 0.14 and 0.15 respectively, while CMGC kinases increased by an average

of 0.09. We also found that the AUC50 increased by approximately two-fold for each of the

four yeast kinase families. The results for mouse and yeast kinases indicate that the model is

able to offset the reduced availability of the context information through the sequence data.
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4.4.3 Comparisons to alternative methods

We tested the ability of PhosphoPICK (i.e. the full PhosphoPICK workflow described in section

“Prediction workflow”) to correctly classify the known kinase phosphorylation sites out of all

potential sites within our set of phosphorylation substrates. Due to the number of potential

phosphorylation sites (∼170,000 S/T sites and ∼30,000 Y sites), we tested prediction accuracy

at more stringent levels of specificity – 99.9% and 99%. We compared the prediction sensitivity

of PhosphoPICK with using sequence alone. We found that by combining the substrate score

from the combined model with the site score from the sequence model, we were consistently able

to improve prediction accuracy when compared to using the sequence model alone (Figure 4.5).
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Figure 4.5: Sensitivity comparisons for predicting kinase-specific phosphorylation sites out
of all potential phosphorylation sites in the protein training set between PhosphoPICK and
alternative classification methods. Comparisons were made by performing cross-validation
across ten data-set splits for each of the kinases. Sensitivity was calculated for all methods
at two levels of specificity: 99.9% and 99%. Comparisons were made between PhosphoPICK
and the sequence method alone, and between PhosphoPICK and three alternative predictors:
GPS, NetPhorest and NetworKIN.
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On average, the use of the combined model offered the greatest level of accuracy increase to

kinases from the CMGC family, with an average sensitivity difference of 0.12 at 99.9% specificity

and 0.27 at 99% specificity. This is consistent from our previous findings that the use of context

offers greater support to phosphorylation site prediction from CMGC kinases. The CAMK

kinases gained a similar level of sensitivity at the higher specificity threshold, though there was

a smaller average sensitivity difference of 0.22 at the 99% specificity level. The AGC and TK

kinases appeared to benefit the least, with a sensitivity difference at 99.9% specificity of 0.045

and 0.042, respectively.

We also compared the ability of PhosphoPICK to predict kinase-specific phosphorylation sites

to three alternative methods: GPS 2.1 (80), NetPhorest 2.0 and NetworKIN 3.0 (97). We

compared the prediction sensitivity of the different methods at the specificity levels described

above. Figure 4.5 shows the sensitivity difference between PhosphoPICK and the compared

methods at two levels of specificity: 99.9% and 99%. Tables B.16 and B.17 contain the full

set of comparisons for individual kinases at specificity levels 99.9% and 99%, respectively. In

addition, Figure 4.6 shows a comparison against the various methods using MCC as the com-

parison metric. We found that at the stricter level of specificity, PhosphoPICK obtained an

increased level of sensitivity over the alternatives for most comparisons made. At the 99.9%

specificity level, PhosphoPICK gained an average sensitivity increase of 9% when compared to

NetworKIN, 10% compared to GPS and 22% compared to NetPhorest. At the 99% specificity

level, PhosphoPICK gained average sensitivity increases of 6%, 18% and 35% when compared

against NetworKIN, GPS and NetPhorest, respectively. While PhosphoPICK obtained greater

prediction accuracy on average, there were some cases where PhosphoPICK performed worse

than the alternatives – for example the tyrosine kinases, where we observed an average sen-

sitivity difference against GPS of -0.014 at the 99.9% specificity level. We also noticed that

PhosphoPICK performed worse on the atypical kinases when compared to NetworKIN, with a

small difference in sensitivity at 99.9% specificity of -0.004, and a larger difference of -0.076 at

99% specificity.

4.4.4 Evaluation using the hold-out set

PhosphoPICK contains the option to calculate P-values for predictions, representing the likeli-

hood of obtaining a given prediction by chance, given how predictions are distributed over the

proteome. To estimate the level of accuracy that is to be expected from using the fully trained

model underlying the web-server, we evaluated prediction accuracy using our hold-out set of
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Figure 4.6: MCC comparisons for predicting kinase-specific phosphorylation sites out of all
potential phosphorylation sites in the protein training set between PhosphoPICK and alter-
native classification methods. Comparisons were made according to the procedure described
for Figure 4.5, with MCC as the comparison metric.

145 substrates (of the kinases listed in Table 4.5) by calculating P-values of the predictions and

considering predictions that fell below a P-value threshold of 0.005 (Section 4.3.6).

We found that PhosphoPICK was generally able to maintain a high level of specificity, with

an average specificity of 97% across the 9 kinases represented in the hold-out set (Table 4.5).

There was a diverse range of sensitivity levels (from 3% for Src to 62% for CK2A1), with an

average of 32% – well above what would be expected by chance given the percentage of false-

positive predictions. This confident prediction accuracy on completely novel data indicates that

PhosphoPICK is a reliable method for uncovering new kinase substrates and kinase-specific

phosphorylation sites.
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Table 4.5: Prediction accuracy on hold-out set for predicting kinase-specific phosphorylation
sites (below a P-value threshold of 0.005) as measured by a variety of metrics – sensitivity,
specificity, balanced accuracy (BAC) and Matthews’ correlation coefficient (MCC). Results
were generated by training the model on the full training data set, and evaluating it on the
hold-out set. Results represent the ability of PhosphoPICK to correctly predict the known
kinase-specific phosphorylation sites out of all potential sites in the set of hold-out substrates.
In total there were 14,617 S/T sites and 2,324 Y sites.

Kinase Positives Sensitivity Specificity BAC MCC

CDK2 72 0.36 0.96 0.66 0.12
CDK1 39 0.51 0.93 0.72 0.09
ERK2 55 0.22 0.98 0.60 0.08
ERK1 56 0.29 0.98 0.63 0.12
PKACA 53 0.28 0.99 0.64 0.18
PKCA 40 0.15 0.97 0.56 0.04
Akt1 15 0.4 0.98 0.69 0.09
CK2A1 52 0.62 0.95 0.78 0.15
Src 34 0.03 0.99 0.51 0.02

4.4.5 Multiple kinases regulate nuclear localisation

We predicted NLSs using the NucImport predictor (119), a tool for predicting nuclear proteins

and the location of their NLSs on the basis of protein interaction and sequence data (NucImport

does not explicitly incorporate protein phosphorylation into its predictions). The complete

human proteome (including isoforms) was run through NucImport and all proteins that were

predicted to contain a type-1 classical NLS were retained – there were 4134 such proteins. The

type-1 classical NLS contains an optimal four residue amino acid configuration of KR(K/R)R

or K(K/R)RK (166). In order to investigate phosphorylation within a window surrounding

the NLS, we defined a centre position, P0, as the third residue within the predicted NLS (in

the literature, this position is usually designated “P4” (162)), and cross-referenced the location

of the signals with known phosphorylation sites from PhosphoSitePlusr. We identified 1,830

phosphorylation sites that were within a 20 residue window around P0. These phosphorylation

sites were submitted to PhosphoPICK for analysis (predicting all human kinases), and a P-value

threshold of 0.005 was used to return results with a high level of stringency.

In order to test for kinases that were regulating specific positions in relation to the NLS, we

counted the number of predicted binding events for kinases at each position within the 20 residue

window surrounding P0. To determine whether the number of predicted kinase binding sites

near an NLS was greater than would be expected by chance, we tested for over-representation
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against all known phosphorylation sites within the set of predicted nuclear proteins. Over-

representation was tested for using Fisher’s exact test with Bonferroni correction to obtain

E-values (the P-values for the Fisher’s exact test were corrected by the total number of tests

performed; i.e. the number of kinases multiplied by the number of sites – 2,247).

Figure 4.7 shows the distribution of predicted binding sites for several kinases around the P0

position of the NLS. We found that there was higher phosphorylation activity downstream from

the NLS, where protein kinase A (PKA), aurora kinase B (AurB), and Akt1 in particular were

found to have the most significantly over-represented binding locations. At position 3 (P3), the

most significant kinase was PKA (E = 2.03e−38), which was predicted to be phosphorylating

55/144 of the phosphorylation sites at that position. AurB had a pair of highly significant

binding sites at positions 2 (E = 7.32e−30) and 3 (E = 2.4e−21).

There were fewer observations of kinases over-represented at phosphorylation sites upstream

from the NLS, though we found that cyclic dependent kinase 2 (CDK2) and protein kinase C

alpha (PKCa) were significantly over-represented at several upstream positions. At positions -4,

-5 -6 and -7, CDK2 was found to have the most significant over-representation of sites compared

to any other kinase. CDK2 was predicted to target 28/50 (E = 9.42e−13) of the phosphorylation

sites at position -4, 31/61 (E = 2.1e−13) at position -5, 27/89 (E = 6.4e−10) at position -6 and

23/88 (E = 6.0e−07) at position -7.

To investigate whether the proteins being phosphorylated at these specific sites were involved in

similar biological processes, we performed gene ontology (GO) term enrichment analyses. We

performed the tests by taking a foreground set of proteins and testing for over-representation

(Fisher’s exact test, with Bonferroni multiple correction) of terms in the foreground set against

a background comprised of our set of phosphorylated nuclear proteins. Significant terms should

therefore not simply represent general phosphorylation or nuclear functions, but functions

specifically related to the kinase being tested.

We performed GO term enrichment tests on a kinase-specific basis, identifying substrates that

were predicted to be phosphorylated within the 20 residue window surrounding P0. We also

tested substrates that were predicted to be phosphorylated at the specific sites that were iden-

tified as being over-represented for the kinase being tested (Tables B.18 – B.25). We found

that AurB substrates were enriched in the GO terms “chromosome”, “nucleosome” and “nucle-

osome assembly”. Interestingly, while the proteins phosphorylated by AurB at the P3 position

were enriched in similar GO terms, the proteins phosphorylated at P2 returned no significant

GO terms. While CDK2 substrates obtained the significant terms “chromosome”, “cell cycle”,
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Figure 4.7: Distribution of predicted kinase phosphorylation sites surrounding NLSs.
The locations of predicted NLSs were cross-referenced with phosphorylation sites from
PhosphoSitePlusr and PhosphoPICK was used to assign kinases to the sites. Count rep-
resents the number of times a kinase was predicted to phosphorylate a specific site relative
to the NLS. Over-representation of a kinase for a particular site was assessed using a Fisher’s
exact test with a Bonferroni multiple correction. (*) indicates an E-value < 0.05 and (**) an
E-value < 1.0E−10.

“nucleus” and “DNA repair”, none of its significant binding site positions were found to be be

associated with enriched GO terms.

We noticed that kinases with an over-representation of binding events at P4 consistently ob-

tained a number of significant GO terms for substrates phosphorylated at that site. In addition

to AurB mentioned above, PKA P4 substrates had 10 enriched GO terms, Akt1 had 4, AMPKA1
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and p70S6K both had 11 and p90RSK had 8. We noticed that there was also some repetition of

enriched GO terms among these kinases at P4 – the term for “fibroblast growth factor receptor

(FGFR) signalling pathway” was the most significant P4 term for each of the AGC kinases

(PKA, Akt1, p70S6K and p90RSK), and was the second most significant for AMPKA1 kinase.

To determined whether phosphorylation at P4 in general was associated with specific functions

(such as the FGFR signalling pathway) we did a GO term enrichment test with all substrates

that were phosphorylated at that position, however no GO terms were found to be significant

(Table B.26). This would indicate that the phosphorylation of the site at P4 does not by itself

correspond to a particular function, rather this is dependent on the kinase regulating the site.

4.5 Discussion

The regulation of protein function through kinase-mediated phosphorylation is a complex pro-

cess involving numerous aspects of cellular behaviour on the systems biology level, and the

binding capacity of kinases to substrates on the molecular level. We have presented here a novel

method for probabilistically modelling the sequence features that determine kinase binding at a

molecular level. We have shown that PhosphoPICK is able to leverage these two diverse types

of information and seamlessly integrate them into a model that can identify kinase substrates

with high accuracy.

A benefit of the integration of sequence and context data into a single probabilistic model is

the ability to take into account interdependance between these heterogeneous sources of infor-

mation; i.e. the likelihood of seeing certain amino acids or k-mers in a protein may change

depending on the context information, and similarly, the expectation of certain protein inter-

actions can be influenced by the protein sequence. Indeed, we have found that the combined

model can be used to query expected kinase binding sequence motifs and generate correspond-

ing sequence logos (47) based on context information presented to the model (see Section B.1

for an example).

A counter-intuitive result seen as a part of the integration of sequence and context was that

the performance seen in the sequence was not necessarily reflected in the combined model.

The tyrosine kinases were a particularly interesting example; we found that while the tyrosine

sequence models (for both human and mouse) were the least accurate amongst the sequence

models, the mouse combined model benefited greatly from the incorporation of sequence, with
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a near two-fold increase seen in the AUC50. This is an indication that while the two individ-

ual systems – sequence and context – of predicting kinase binding events may be limited by

themselves, the integration of the two can result in a much more powerful predictive model.

It was interesting to note that though the sequence model obtained the greatest accuracy (for

phosphorylation site prediction) on the human kinases, the yeast kinases in general saw the high-

est increases in prediction accuracy (particularly as measured by AUC50) when the sequence

model was incorporated into the context model. While the availability of context data (e.g.

cell cycle data) is likely a factor in the observed differences in prediction performance between

organisms, a uni-cellular organism like yeast would be expected to require less sophistication

in the regulation of kinase activity than higher organisms. Consequently, the use of context

factors is no doubt more important for understanding kinase targets in higher organisms.

For more complex organisms such as human and mouse, an additional realm of biology to

consider in relation to phosphorylation and kinase activity is tissue and cell-type specificity.

Protein phosphorylation has the potential to change substantially depending on the cell type,

and the biological processes that kinases regulate can also vary depending on cell or tissue

type. While there is limited amounts of consolidated tissue-specific phosphorylation data,

there is growing amounts of tissue-specific protein expression data (167). In addition to protein

expression data, the FANTOM consortium has profiled vast cell-type specific gene expression

atlases (168). Such data resources could make it possible to infer more probable candidate

kinases based on which ones are available in the tissue or cell type of interest. While outside

the scope of the current study, this would certainly make for an interesting avenue of exploration

in future work.

A system-wide analysis of biological mechanisms has the potential to reveal functional trends

that may not otherwise be apparent. Our analysis of the overlap of NLSs and phosphorylation

events has shown that there are several kinases that may be implicated in the regulation of

nuclear localisation through the phosphorylation of specific sites close to the NLS. Phosphory-

lation is a well-documented mechanism of nuclear localisation (154, 163, 164, 169–172). Because

classical NLSs are positively charged, introduction of a negatively charged phosphate group in

the vicinity of the NLS would in general be expected to inhibit nuclear import, as previously

demonstrated for CDK1-mediated phosphorylation at positions “P0” and “P-1” (164) (inter-

estingly, these sites correspond to our P−4 and P−5 positions, which saw the most significant

over-representation of CDK2 binding sites.). However, the effect will depend on the specific

position that is phosphorylated, and in some positions phosphorylation can stimulate nuclear

import (154, 163, 169, 170, 172, 173).
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Several of the kinases identified in our study have previously been implicated in nuclear import.

For example, the import of sex-determining factor SOX9 is regulated by PKA, whereby the

phosphorylation of two phosphorylation sites (one next to the NLS) enhances SOX9 binding

to importin β (174). Adenomatus polyposis coli (APC) is another example of a protein where

nuclear import is regulated by phosphorylation (175). In this case, APC contains two identified

NLSs and a putative PKA-mediated phosphorylation site is positioned immediately after the

second NLS, which leads to a reduction in APC nuclear localisation when the site is active. As a

key regulator during mitosis, AurB is involved in several processes such as mitotic chromosome

condensation (176), and it has also been shown to phosphorylate residues within the vicinity of

NLSs (177). The Akt kinase has been shown to be a regulator of nuclear localisation (178), and

phosphorylation by Akt is able to impair the nuclear import of p27 in vitro (179). Similarly,

CDK2 is known to be a regulator of nuclear localisation (180). While these studies confirm that

these kinases are involved in nuclear localisation, our results shed light on specific mechanisms

whereby nuclear localisation is controlled by the phosphorylation of key residues close to the

NLS.

4.6 Availability

PhosphoPICK is freely available online as a web-server, and can be used in two ways. A user can

upload protein sequences, and select any number of kinases to obtain predictions for potential

phosphorylation sites on the proteins. Significance of predictions can be gauged through the

calculation of empirical P-values, and only results below a chosen level of significance returned.

Visualisation of results is also available through a “Protein Viewer” page based on the BioJS

(181) package pViz (182). Secondly, the web-server allows for the construction of downloadable

proteome-wide sets of kinase-substrate predictions for any of the kinases and species described

in this paper. A more detailed description of the web-server workflow is available in Section B.2.



Chapter 5

PhosphoPICK-SNP: Quantifying the

effect of nsSNPs on protein

phosphorylation1

5.1 Abstract

Genome-wide association studies are identifying single nucleotide polymorphisms (SNPs) linked

to various diseases, however the functional effect caused by these variants is often unknown.

One potential functional effect, the loss or gain of protein phosphorylation sites, can be induced

through variations in key amino acids that disrupt or introduce valid kinase binding patterns.

Current methods for predicting the effect of SNPs on phosphorylation operate on the sequence

content of reference and variant proteins. However, consideration of the amino acid sequence

alone is insufficient for predicting phosphorylation change, as context factors determine kinase-

substrate selection.

We present here a method for quantifying the effect of SNPs on protein phosphorylation through

an integrated system of motif analysis and context-based assessment of kinase targets. By

predicting the effect that known variants across the proteome have on phosphorylation, we are

able to use this background of proteome-wide variant effects to quantify the significance of novel

variants for modifying phosphorylation. We validate our method on a manually curated set of

phosphorylation change-causing variants from the primary literature, showing that the method

predicts known examples of phosphorylation change at high levels of specificity.

1Chapter reproduced from paper of the same name currently pending submission.
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5.2 Introduction

The identification of genetic variants linked to disease is transforming the biomedical research

landscape. Genome wide association studies (GWAS) have been identifying numerous single

nucleotide polymorphisms (SNPs) over-represented in patients with in a wide variety of diseases

including cancer. While many SNPs are being discovered, the precise effect that they have

on resultant RNA or protein products is generally not known. One of the potential effects

of non-synoymous SNPs (nsSNPs) on protein function is the disruption of post-translational

modifications (183). As phosphorylation is the most ubiquitous modification, the potential

for phosphorylation sites to be affected by amino acid variants is high. For example, the

PhosphoSitePlusr database (184) has identified numerous sequence variants that fall within the

immediate vicinity of a phosphorylation site, and the recent analysis of cancer driver mutations

has implicated phosphorylation as being a major factor in understanding the disruption of

signalling pathways caused by amino acid variations (185).

There have been numerous examples of disease-associated naturally occurring variants that

impact the phosphorylation status of proteins. The majority of such examples have involved a

variant disrupting a phosphorylation site in the reference protein, though there have been at

least two examples of missense mutations found to introduce phosphorylation sites (186, 187).

While there have been relatively few studies experimentally determining the effect of naturally

occurring variants on phosphorylation, there are tens of thousands of nsSNPs that have the

potential to impact phosphorylation. The PhosphoSitePlusr PTMVar dataset (184) , which is

comprised of missense mutations cross-referenced to post-translational modifications, contains

over 19,000 examples of variants falling within a 15-residue window surrounding a known phos-

phorylation site. Such variants have the potential to disrupt existing phosphorylation sites,

but there will be many additional variants with the potential to introduce new phosphorylation

sites. In addition to PhosphoSitePlusr, the PTM-SNP database collates SNPs that occur in

the vicinity of a number of post-translational modifications, including phosphorylation (183).

There have also been databases developed that catalogue the predicted effect of SNPs on po-

tential phosphorylation sites. Ryu and colleagues defined the term “phosphovariant” to refer

to a mutation that impacts the phosphorylation status of an amino acid (92). To predict

examples of phosphovariants, they developed PredPhospho, a support vector machine model

that predicts kinase-specific phosphorylation sites based on the amino acid motifs surrounding

potential phosphorylation sites. Applying PredPhospho to missense mutations obtained from
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Swiss-Prot, they predicted examples of phosphovariants and incorporated them into the Phos-

phoVariant database (92). The PhosSNP database is another example of cataloging variants

predicted to modify protein phosphorylation (188). Ren and colleagues employed the GPS

2.0 software, a kinase-specific phosphorylation site predictor that uses optimised substitution

matrices (79). The GPS 2.0 predictor was applied to variants from the dbSNP database (189),

with the ones predicted to cause a change in phosphorylation status or to cause a change in

the kinase targeting the phosphorylation site, were compiled into the PhosSNP database.

Most recently, the MIMP (mutation impact on phosphorylation) method has been developed,

which uses position weight matrices and Gaussian mixture models to score the probability that

a variant will cause loss or gain of phosphorylation (84). In contrast to the other methods,

MIMP provides a prediction service rather than a database. For the purpose of consistency

with the most recently published work, we will consider two classes of “phosphovariants”:

phosphorylation-loss causing variants and phosphorylation-gain causing variants.

The current methods for predicting the effect of nsSNPs on phosphorylation, described above,

operate on the sequence content surrounding a potential phosphorylation site. While methods

based on linear motifs can predict the potential for a kinase binding site to be disrupted (190),

the presence of a valid kinase-substrate binding motif on a protein is no guarantee that a

kinase will come into contact with the protein (27). We have previously developed a method,

PhosphoPICK, for predicting kinase substrates using protein-protein interaction networks and

protein abundance across the cell cycle. The use of such context information can improve the

prediction accuracy of kinase-specific phosphorylation site prediction from sequence by over two-

fold at low false-positive levels (161). An approach that integrates cellular context information

with sequence information should therefore be able to provide a more accurate assessment of

the effect of SNPs on phosphorylation than methods that operate on sequence alone.

Building on the properties of PhosphoPICK, we present here a method for quantifying the effect

of nsSNPs on protein phosphorylation status. Taking stock of known missense mutations across

the proteome, as collected in UniProt, we use PhosphoPICK to build kinase-specific, proteome-

wide sets of predicted variant effects on phosphorylation. These sets provide a “background

distribution” that can be used to calculate a measure of significance for the predicted effect

that a novel variant has on phosphorylation loss or gain.

In order to validate our approach, we searched the literature for naturally occurring variants

causing phosphorylation loss or gain, identifying 19 such variants. By comparing the threshold

at which our method detects true positives against that of the background, we demonstrate that

our method is able to detect over 50% of the known phosphovariants within the first 2% of the



Chapter 5. Quantifying the effect of nsSNPs on protein phosphorylation 96

background distribution. This demonstrates the method’s reliability in detecting true examples

of differential phosphorylation from over one million potential phosphovariants. Applying the

method to variants in the vicinity of phosphorylation sites from the PhosphoSitePlusr PTM-

Var dataset (184), we find that the predicted phosphovariants are over-represented among the

ones with disease annotations. These results support the conclusion that our method, named

PhosphoPICK-SNP, is able to detect variants that have functional significance.

5.3 Methods

5.3.1 Data resources

Missense mutation data

We obtained the UniProt index of protein altering variants (191), which maps dbSNP variants

(189) to proteins within the UniProt database (downloaded March, 2015). This file contained

752,857 variants mapped to amino acid variants in UniProt proteins. The variants covered

89,909 protein sequences in the UniProt database.

Phosphorylation sites affected by naturally occurring variants

Through a manual search of the literature, we compiled a list of naturally occurring variants

that were found experimentally to either disrupt or introduce a phosphorylation site. For

the purpose of this work we included variants that were shown either in vivo or in vitro to

affect the phosphorylation of a specific site; although there are examples of studies showing

changing phosphorylation levels on the protein, we only recorded examples where the precise

phosphorylation site was known. Table 5.1 contains the list of identified genes, with variant and

phosphorylation site affected. We found 17 examples of phosphorylation loss and 2 examples of

phosphorylation gain in response to nsSNPs. Of the 17 loss-causing variants, 6 of the mutations

are on the phosphorylation site.

5.3.2 Building distributions of variant effects

We built distributions of predicted variant effects on phosphorylation in a kinase-specific basis

across all protein altering variants. PhosphoPICK employs two Bayesian network models to
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Table 5.1: Naturally occurring variants that have been shown through in vivo or in vitro
experiments to affect a phosphorylation site either adjacent to, or at the site of, the variant.
The effect can be to disrupt an existing phosphorylation site (loss), or introduce a new one
(gain).

Gene Variant Phos. site Effect Reference

Cyclin D1 T286R T286 loss (192)
hOG1 S326C S326 loss (193)
p53 P47S S46 loss (194)
BDNF V66M T62 loss (195)
CDKN1A D149G S146 loss (196)
hERG1 K897T T897 gain (186)
PPARγ2 P113Q S112 loss (197)
PTP-1B P387L S386 loss (198)
UBE3A T485A T485 loss (199)
PER2 S662G S662 loss (200)
MeCP2 R306C T308 loss (201)
NKX3-1 R52C S48 loss (202)
PLN R14C S16 loss (203)
ABCB4 T34M T34 loss (204)
MAF P59H T58 loss (205)
GLUT1 R223W S226 loss (206)
AR R405S S405 gain (187)
Gab1 T387N T387 loss (207)
STAT1 L706S Y701 loss (208)

make predictions. The first model classifies kinase-substrate binding sites from sequence, and

incorporates position-specific amino acid frequencies and counts of co-occurring neighbouring

amino acids within some m length window surrounding a potential phosphorylation site (paper

in submission). This model is henceforth referred to as the sequence model. Separately, a

Bayesian network model integrates the sequence model with protein-protein interaction and

association data sourced from BioGRID (209) and STRING (148), as well as protein abundance

data across the cell cycle (28), in order to calculate the probability that a kinase ordinarily

targets a given protein. This model is henceforth referred to as the combined model. When

scoring the effect of a variant we use PhosphoPICK to generate three scores: (1) Rsubstrate, the

prior probability based on the combined model that the kinase would be expected to target the

reference protein, (2) Rsite the probability according to the sequence model that the kinase will

phosphorylate the site of interest on the reference protein, and (3) Vsite the probability that the

kinase will target the site of interest on the variant protein.

Kinases within PhosphoPICK contain different optimal binding site windows that are considered
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when making a prediction for a potential phosphorylation site. Therefore, given a query kinase,

we checked for variants that fell within a window surrounding a potential phosphorylation site.

For each potential phosphorylation site, we recorded a reference peptide and a variant peptide

containing the missense mutation. We then used the sequence model to obtain the Rsite and

Vsite scores from the reference and variant peptides respectively. If the central residue for a

peptide is not a valid phosphorylation site (for example a threonine is mutated to an arginine)

it will be scored 0. We defined a score difference,

Dsite = Vsite −Rsite (5.1)

where a negative value of Dsite indicates the variant is predicted to cause decreased probability

of phosphorylation, and a positive value represents an increased probability of phosphorylation.

We calculated distributions of Dsite values in a kinase-specific manner across all potential phos-

phorylation sites that contained a missense mutation within the window for the query kinase.

A potential phosphorylation site is defined as any serine (S) or threonine (T) residue for S/T

kinases, any tyrosine (Y) residue for Y kinases, or any S/T/Y residue for dual specificity kinases.

5.3.3 Calculating variant significance

The significance of the effect on phosphorylation by a variant is calculated in a kinase-specific

manner, as described by the following procedure. Given some kinase K, an m length window

corresponding to K is centred on potential phosphorylation sites within the protein sequence,

where if the variant falls within a window, m length reference and variant peptides are retained.

Dsite is then calculated from the reference and variant peptides using Equation 5.1. The dif-

ference is then compared to the background distribution and a P-value from both tails of the

distribution is calculated – representing whether the difference is greater (increased probability

of phosphorylation) or less (decreased probability of phosphorylation) than would be expected

by chance. The P-values are calculated such that

Ploss =
1

n

n∑
i=1

I(Di ≤ Dsite) (5.2)

Pgain =
1

n

n∑
i=1

I(Di ≥ Dsite) (5.3)
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where n is the number of variants contained in the background distribution for kinase K and

I(·) is the indicator function. The final P-value representing the site, Psite, is calculated as the

minimum of Ploss and Pgain.

The Rsubstrate context score for the query protein is then retrieved. As for the Dsite scores, we

have distributions of context scores across the proteome for each kinase. We therefore calculate

an empirical P-value for the Rsubstrate score, Psubstrate, based on a count of the proteome-wide

context scores that are greater than or equal to Rsubstrate, using the same form as Equation 5.3.

We then use Fisher’s method to combine the two P-values into a combined P-value that repre-

sents the confidence of the variant effect size given both the difference in sequence scores and

likelihood that the reference protein would ordinarily be a substrate of the query kinase. Given

the P-values Psite and Psubstrate, we calculate:

X = −2(ln(Psubstrate) + ln(Psite)) (5.4)

where X follows a Chi squared distribution with 4 degrees of freedom. The combined P-

value, Pcombined, can then be derived from X. As a single phosphovariant can be scored with

all kinases available to PhosphoPICK (currently numbering 107), we correct the P-value for

multiple testing using a Bonferroni multiple correction on Psite and Pcombined to obtain Esite and

Ecombined.

5.3.4 Evaluating method accuracy on known variants

In order to calculate an estimate of the number of potential phosphorylation sites that were

affected by the presence of a nearby variation, we used a 10-fold cross-validation approach

to build a set of predicted background values. The proteins within the background set were

split into 10 partitions, where 9 of the partitions were used to construct distributions for both

the context scores and the Dsite values. These distributions were then used to evaluate and

obtain E-values for the variants in the remaining partition. For each variant the lowest E-value

was retained as representing the greatest liklihood that the mutation resulted in a change in

phosphorylation status.

To evaluate our method on its ability to detect the examples of differential phosphorylation

recorded in Table 5.1, we evaluated the known variants on our method using each of the 10

partitions from the cross-validation test to construct the background distributions. For each

variant we calculated the median of the E-values generated across the cross-validation runs;
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similar to the background, the final E-value assigned to a variant was the minimum of the

E-values for all potential kinases. As there is no obvious way to define a true negative set,

we compared to the background set the E-value thresholds at which the true positives were

identified; i.e. at each E-value threshold calculated for a true positive, we calculated the number

and percentage of variants in the background set that were also identified at that threshold. We

performed this test using both Esite and Ecombined values to understand the influence of context

on predicting phosphorylation change.

We compared our method’s ability to detect the known variants against that of the MIMP

predictor (84). We downloaded the local version of the software, and ran the background set

of protein sequences and variants through it, specifying probability and log thresholds of 0 to

enable a comparison over all thresholds.

5.4 Results
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Figure 5.1: Line-curves showing the tradeoff between the percentage of positive differential
phosphorylation examples identified and the number of variants considered (as the E-value
cut-off decreases). Comparison is made between predicting phosphorylation change using
sequence alone, and combining sequence with context. Shown is the tradeoff until all positive
examples are detected (a), as well as the tradeoff up until 10% of the background variants are
detected (b).

The experimentally determined examples of differential phosphorylation listed in Table 5.1 were

used to gauge how well our method performed in identifying real examples of phosphorylation
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gain and loss. Figure 5.1 shows a tradeoff between the percentage of known positives detected

and the background at each E-value threshold a positive was discovered at. When predicting

phosphovariants using the combined E-value, we found that the majority (over 50%) of the

known positives could be identified within the first 2% of the background distribution. We were

able to identify 79% of the experimental examples at an E-value threshold corresponding to

14% of the background. These results demonstrate that the method can identify true positive

examples of phosphovariants at high levels of specificity, which represent candidates of real

interest to biologists.

We also evaluated the use of sequence only for predicting phosphovariants (i.e. using the Esite

value), in order to determine if the incorporation of context information was providing an

increase in prediction accuracy. When using sequence alone, the majority of variants were

not detected until 7% of the background distribution was reached (Figure 5.1). Given the

combined method detected the majority of variants at 2% of the background, this represents

a 3-fold increase when using the combined E-value. As can be seen from Figure 5.1(a), at

the more liberal E-value thresholds there was less difference between sequence alone and the

combined E-values. However, these results show that the approach of combining context and

sequence information provides the greatest benefit for identifying true variants at higher levels

of specificity.

5.4.1 Estimating phosphorylation sites affected by SNPs

In order to investigate the effect of context on predicting differential phosphorylation, we used

the methods for calculating Esite and Ecombined to estimate the number of putative phosphory-

lation sites affected by the nsSNPs contained in the UniProt index of protein altering variants.

We performed two tests: firstly, we identified predicted differentially-phosphorylated sites on

the basis of Esite, where if Esite fell below 0.05 the variant was considered to cause differential

phosphorylation; i.e. a phosphovariant. In the second test, the Ecombined value was applied

as a filter, where only variants with Ecombined and Esite falling below 0.05 were classified as a

phosphovariant.

Based on our cross-validated analysis of the background distribution, we identified the variants

that were predicted to be causing differential phosphorylation. In total we found 65,203 variants

that were predicted, based on their Esite value, to cause differential phosphorylation. When

requiring that a variant obtain an E-value < 0.05 for both Esite and Ecombined, the number

dropped to 41,075. Figure 5.2 shows a histogram of the Ecombined values calculated for all the
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Figure 5.2: Histogram showing combined E-value (Ecombined) scores for all variants consid-
ered to be significantly likely (E-value < 0.05) to result in differential phosphorylation based
on sequence alone.

variants that were found to be significant based on Esite alone. While the majority maintain

a high level of significance when context is included, nearly 40% of the variants obtained an

E-value > 0.05 after context is included. These results illustrate the effect that context has in

filtering out spurious examples of phosphovariants where the kinase is unlikely to target the

query protein.

5.4.2 Comparison with alternative method

We compared the ability of the MIMP method (84) to predict the set of positives out of

the background to our combined method. As MIMP was unable to make predictions for the

two phosphorylation gain sites (due to the centre residue of the reference protein being non-

phosphorylatable) we performed the comparison using the 17 phosphorylation loss-causing vari-

ants. As can be seen from Figure 5.3, at stricter cut-off thresholds our method is able to detect

greater numbers of the true positive examples. Within 2% of the background distribution our

method is able to detect 47% of the 17 positives, however MIMP does not reach 47% until 3.6%

of the background – this corresponds approximately to an additional 17,000 variants.
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Figure 5.3: Line-curves showing a comparison of detecting experimentally confirmed phos-
phovariants between the combined PhosphoPICK-SNP method and MIMP (84). Shown is
the tradeoff until all positive examples are detected (a), as well as the tradeoff up until 10%
of the background variants are detected (b).

5.4.3 Phosphorylation loss in disease

We used our method to determine whether the variants that were most confidently predicted

to result in a change in phosphorylation status were over-represented among disease-associated

variants. We used the PTMVar database from PhosphoSitePlusr, which cross-references post-

translational modification information from PhosphoSitePlusr with variant information from

the UniProt human variation database. The PTMVar database annotates sites with the clas-

sification ‘Disease’, ‘Polymorphism’ or ‘Unclassified’. Variants that were within the vicinity of

phosphorylation sites and were annotated with either ‘Disease’ or ‘Polymorphism’ were selected.

We then counted the number of times that a variant in each of these classes was predicted to be

differentially phosphorylated with a decreased probability of phosphorylation (i.e. it obtained

an Ecombined value < 0.05 in a test for decreased probability), and counted the number of times

the variants in both classes were not predicted to be differentially down-phosphorylated.

Fisher’s exact test was used to determine the over-representation. We found that variants anno-

tated as disease-associated were significantly over-represented among the variants predicted to

result in down-phosphorylation, with a P-value of 0.0002. This indicates that while the presence

of a variant in the vicinity of a phosphorylation does not necessarily result in phosphorylation
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disruption, our method is able to detect the disease-associated variants that will have a strong

impact on phosphorylation.

5.4.4 Prediction of phosphorylation disruption in disease-associated

sites

Given that our methods is reliably able to detect phosphorylation loss events, we used it to

identify the most likely examples of phosphorylation loss in the PhosphoSitePlusr PTMVar

database that were associated with at least one of five cancer types: ovarian, breast, colorectal,

liver and pancreatic. These variants were run through our method, and variants that obtained

E-values below 0.05 for both Esite and Ecombined were retained. Table 5.2 lists top scoring

variants with their disease associations, where the variant has been mapped to the vicinity of

a phosphorylation site. The full list of variants is available in Table C.1. In total, we found 52

examples of predicted phosphorylation loss caused by variants related to ovarian cancer, 12 for

breast cancer, 8 for colorectal cancer, 19 for liver cancer and 9 for pancreatic cancer.

Table 5.2: Cancer-associated variants predicted to cause loss of phosphorylation. Variants
are listed according to the cancer or disease they are associated with. Each row contains
protein name as UniProt accession, the location of the variant and phosphorylation site, the
kinase predicted to target the site, the reference and variant scores for the peptide.

Protein Variant Phos Kinase Rsubst. Rsite Vsite Ecombined Peptide

P35222 G555A T551 Akt2 1.0 1.0 4.95E-05 9.36E-09 QDTQRRTpSMG[G/A]TQ

O
v
a
ri
a
n P26010 Y753H Y753 FAK 1.0 1.0 0.0 2.23E-08 YRLSVEI[Yp/H]DRREYSR

Q7KZI7 S197N S197 NEK6 1.0 1.0 0.0 2.3E-07 KIADFGF[Sp/N]NEFTFGN

P51813 S212R S212 GSK3B 0.998 1 0 1.33e-07 PPSSST[Sp/R]LAQYDS

P46939 M1256R T1259 MARK2 1 0.914 0.0005 4.47e-05 R[M/R]KSTpEVLP

P14859 S88F S88 DNAPK 1.0 1.0 0.0 8.6E-06 SQQPSQP[Sp/F]QQPSVQA

B
re
a
st

P43355 K278T Y276 Brk 0.998 1 0.000491 0.000103 RALAETSYpV[K/T]VLEYV

P03372 H6Y T2 VRK1 0.0492 0.0792 0.00421 0.00111 MTpMTL[H/Y]TKA

Q99490 D816Y S818 P38B 0.0186 0.587 0.000173 0.00126 CTPSG[D/Y]LSpPLSREPP

P54646 S523G S527 p90RSK 0.36 0.78 0.00501 0.00214 LTG[S/G]TLSSpVSPRLGS

P04637 E271K S269 CAMK2A 1 0.781 0.011 0.000131 NLLGRNSpF[E/K]VRVC

C
o
lo
re
ct
a
l

Q9P253 A913S S912 ERK5 0.495 0.848 0.0394 0.00475 APPPAKGSp[A/S]RAKEAE

Q9NPD5 I292M S293 CaMK4 0.832 0.524 3.21e-08 0.00785 ERK[I/M]SpLSLH

Q6ZMN7 G784R S783 CaMK4 0.792 0.454 1.52e-06 0.00954 TQSSSp[G/R]QSS

Q92953 V450I S448 ROCK1 0.326 0.845 0.00479 0.012 RAKRNGSpI[V/I]SMNL

P35222 T41A T41 GSK3A 1 1 0 2.28e-09 GIHSGAT[Tp/A]TAPSLSG

L
iv
er

P35222 S37F S37 GSK3A 1 1 0 2.28e-09 YLDSGIH[Sp/F]GATTTAP

P35222 T41A T41 IKKA 1 1 0 7.97e-09 GIHSGAT[Tp/A]TAPSLSG

P35222 S37F S37 IKKA 1 1 0 7.97e-09 YLDSGIH[Sp/F]GATTTAP

P35222 T41A T41 GSK3B 1 0.997 0 8.13e-06 IHSGAT[Tp/A]TAPSLS

Continued on next page
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Protein Variant Phos Kinase Rsubst. Rsite Vsite Ecombined Peptide

Continued from previous page

Q9BYV9 T519I T519 p70S6K 1 1 0 1.14e-08 LETRTR[Tp/I]SSSCSS

P
a
n
cr
ea

ti
c

P04637 E271K S269 CAMK2A 1 0.781 0.011 0.000131 NLLGRNSpF[E/K]VRVC

Q9BYV9 T519I S525 p70S6K 1 0.84 0.0917 0.000294 [T/I]SSSCSSpYSYAED

P56715 A135V S137 MARK2 0.848 0.987 2.83e-06 0.000418 IS[A/V]HSpPPHP

P05129 P524R Y521 Brk 0.356 0.227 0.000117 0.000629 TFCGTPDYIA[P/R]EIIA

We found several examples of predicted phosphorylation loss on the β-catenin protein (Uniprot

accession number P35222), which was a top candidate for phosphorylation loss for both ovarian

and liver cancer. The T41 phosphorylation site, which has been previously identified as a

GSK3B target (210), is a known site mutated in cancers (211). It is predicted by PhosphopICK-

SNP that the T41A mutation would abolish a GSK3B phosphorylation site at T41 (Table 5.2)

There was also an example of predicted phosphorylation loss on tumour suppressor protein p53

(Uniprot accession number P04637), which has been shown previously to lose phosphorylation

as a consequence of a P47S mutation (194). The E271K variant, which was associated with both

pancreatic and colorectal cancer (212), was found to have a significant likelihood of disrupting

the phosphorylation site at S269. The phosphorylation site at S269 is known to be an important

regulator of p53 transcriptional activity (213).

5.5 Discussion

With increasing numbers of disease-associated variants being catalogued, the need for reliable

functional annotations is only going to continue to grow. While there are many potential

functional effects of gene-coding variants on protein function, such as the perturbation of protein

structure or the disruption of one of the many post-translational modifications that proteins

undergo, phosphorylation is a high-probability target of disruption due to the ubiquitous nature

of this protein modification process. We have presented here a method for quantifying the

expected effect of nsSNPs on protein phosphorylation, and have demonstrated that it detects

experimentally confirmed examples of phosphovariants at high levels of specificity.

An advantage of our approach is the consideration of the cellular context that kinases and their

substrates operate in. We have shown that by incorporating context into the prediction of phos-

phovariants, we can identify positive examples of phosphovariants at higher levels of specificity

than if using sequence alone. There are examples of phosphovariants that represent a trivial loss

of phosphorylation; the removal of a phosphorylated serine, threonine or tyrosine residue will
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by definition cause loss of phosphorylation. A method that operates only on sequence may be

able to correctly predict such cases, but introduce false-positive predictions for cases where the

mutation occurs on a residue adjacent to the phosphorylation site. Given the small number of

trivial losses contained in our test set, the specificity increase gained by incorporating context

into predictions indicates that our method is able to predict a broader spectrum of potential

phosphovariants than by using sequence alone. In addition, when comparing our method to

an alternative method of predicting the effect of variants on phosphorylation, MIMP, we found

that we could predict positive examples of phosphorylation loss at stricter specificity levels than

the MIMP method.

While there are over 19,000 examples of missense mutations in the vicinity of a phospho-

rylation site according to the PhosphoSitePlusr PTMVar dataset (184), we found that the

mutations with the strongest propensity for causing phosphorylation loss were associated sig-

nificantly with disease annotations. While computational analysis of variants has predicted

both phosphorylation loss and gain to be associated with disease (214), this study represents

an analysis of the predicted effect of variants on experimentally determined phosphorylation

sites. However, a greater availability of phosphorylation-gain examples in response to variants

would enable a similar analysis to be performed examining the link between phosphorylation

gain and disease. There are key residues within a kinase-substrate binding motif that determine

the ability of a kinase to catalyse a phosphorylation modification (25, 46). The mutation of

these key residues can disrupt the phosphorylation site, and specific effects will depend on the

associated kinase. For example, the loss of a proline at the +1 position relative to a phosphory-

lation site in a proline-directed kinase-substrate binding motif will cause loss of phosphorylation

(194, 197, 205). However, the mutation of alternative, non-key, residues within the motif would

not be expected to disrupt the phosphorylation site the same extent. As a result, it is to be

expected that many missense mutations, even if they are in the vicinity of a phosphorylation

site, will not cause a loss of phosphorylation. Our results indicate that PhosphoPICK-SNP is

able to detect the mutations that do have an impact on phosphorylation, and therefore have a

greater likelihood of being associated with disease.

5.6 Availability

The PhosphoPICK-SNP web-service takes as input protein sequences in Fasta format, and

information defining the mutation occurring in the proteins. This follows the format used for

missense mutations in Tables 5.1 and 5.2, for example S523G. Users choose which kinases to
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make predictions for, and select an E-value threshold for returning results; results that obtain

both Esite and Ecombined values below the threshold will be returned. The output is an interactive

table of results which details the context score provided to the protein (Rsubstrate), the reference

and variant scores (Rsite and Vsite) obtained from the potential phosphorylation peptide, the

Ecombined value and the peptide itself. More comprehensive information regarding the variant

is available in a downloadable tab-delimited text file of the results.





Chapter 6

Conclusion

6.1 Summary

The regulation of much of the molecular functions that proteins are involved in is determined

by complex sets of factors. Kinase-mediated protein phosphorylation is a prime example of this,

where the determinants of kinase targets can be seen at multiple levels. At the sequence level,

protein substrates must contain amino acid sequences suitable to binding by a kinase’s catalytic

domain. At the cellular level a wide array of processes – localisation, expression, mediating

and activating proteins – all contribute towards ensuring kinase-substrate fidelity. The main

hypothesis of this thesis was that computational methods for predicting phosphorylation would

benefit from a computational framework that can seamlessly integrate the context and sequence

determinants of protein phosphorylation. Such a framework would not be unique however, but

have the capacity to translate to additional post-translational modifications or protein functions

that are regulated through motifs and cellular context.

I this thesis I have proposed a novel computational framework, based on probabilistic graphi-

cal modelling, for integrating the sequence and context factors that regulate phosphorylation.

Chapter 2 showed how protein context, in the form of protein-protein interaction and associ-

ation networks, as well as protein abundance across the cell cycle, could be incorporated into

a Bayesian network model that predicts kinase substrates. The model, named PhosphoPICK,

showed reliable prediction accuracy, with an average AUC of 0.86 across the 59 human kinases

tested. An important question at this point was, do the kinase-substrate predictions provide

additional predictive power to a sequence-operating method of phosphorylation prediction?

By complementing kinase-specific phosphorylation site predictions from existing methods with

109
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PhosphoPICK substrate scores, I found that PhosphoPICK could indeed improve the prediction

accuracy of sequence-operating predictors. For some kinases the improvement was substantial:

in particular, when the PhosphoPICK model complemented scores from the Predikin and GPS

methods, it improved the prediction of CMGC kinase phosphorylation sites by over two-fold.

This was therefore a demonstration that the context model could be used to supplement se-

quence methods of phosphorylation prediction, and improve prediction accuracy.

While Chapter 2 showed that the PhosphoPICK context model could supplement independent

sequence models, the main question of the thesis was how to integrate context and sequence

information – diverse data types – into a single model of phosphorylation. Chapter 4 presented

a probabilistic model of kinase-binding motifs, that incorporates position-specific amino acid

frequencies and k-mer frequencies in a way that captures motif sequence context in a kinase-

and family-specific manner. The chapter demonstrated how this sequence model could be in-

corporated into the context model presented in Chapter 2. This seamless integration of features

meant that the context information had the capacity to influence the model’s expectation of

the sequence, and vice versa. Importantly, the combination of context and sequence was found

to greatly increase the prediction accuracy of the model when applied to kinase-substrate pre-

diction, with an average 50% increase in prediction accuracy at low false-positive levels (as

measured by AUC50). This result was a validation of the driving hypothesis behind the the-

sis, that phosphorylation prediction methods would gain increased accuracy using a combined

model of context and sequence, rather than considering them in isolation. The power of this

approach was seen clearly in the improved prediction accuracy of PhosphoPICK compared to

alternative methods GPS, NetPhorest and NetworKIN. A comparison of kinase-specific phos-

phorylation site prediction showed that PhosphoPICK obtained an average sensitivity increase

of between 9 and 22% at a 99.9% specificity level; a substantial improvement.

Chapter 4 further demonstrated that the PhosphoPICK methodology is generalisable across

species, after it was applied to kinases from mouse and yeast. I found that the combined model

was particularly effective with mouse, greatly increasing its prediction accuracy from context

alone. The size of available mouse protein-protein interaction networks is much smaller than

in human, which indicated a major advantage of the combined model: When one aspect of

the data is more limited, such as mouse protein-protein interaction networks, the sequence

module within the Bayesian network has the capacity to compensate for the uncertain context

information.

One of the potential uses for a model of phosphorylation is to understand how the phospho-

rylation status of proteins or specific sites can be altered. I have shown at two levels how the
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theory underpinning PhosphoPICK, or the algorithm itself, can be used to predict changes in

protein phosphorylation status from gene expression, and the effect of SNPs on phosphoryla-

tion, respectively. In Chapter 3 I investigated the feasibility of applying the PhosphoPICK

method from Chapter 2 to predicting changes in protein phosphorylation status from gene

expression. The sbv IMPROVER species translation challenge, which provided participants

with gene expression and phosphorylation data collected under various treatment conditions,

presented a unique opportunity to evaluate whether PhosphoPICK could be used to predict

protein phosphorylation change. Chapter 3 detailed a method to identify genes that explain

the changing phosphorylation status of phosphoproteins in response to treatments. By cross-

referencing the protein-protein interaction networks of phosphoproteins with genes differentially

expressed under the same treatment conditions as differentially phosphorylated proteins, a can-

didate set of genes could be identified. Using the expression of these genes as input features

into SVM and RF classifiers, phosphorylation status change could be predicted from gene ex-

pression with promising accuracy. From the first sub-challenge in the competition, the method

was able to predict phosphorylation status change in rat cells from rat gene expression with

an average AUC of 0.74 on a blind hold-out set, and an average AUC of 0.86 as measured by

cross-validation on training data. The method was also ranked 6 out of 21 in the competition,

further demonstrating the utility of the approach. These results were an indicator that the

PhosphoPICK approach can be extended to predict protein phosphorylation status change in

response to treatment conditions.

Building on from the methods for predicting kinase targets (at both the substrate level, and

site level) presented in Chapter 4, Chapter 5 showed how PhosphoPICK could be used to

analyse the effect of amino acid variations on phosphorylation sites. Non-synonymous single

nucleotide polymorphisms (nsSNPs) have the capacity to cause loss or gain of phosphoryla-

tion through the modification of key amino acids that determine kinase binding affinity. The

studies that have identified examples of phosphorylation change resulting from nsSNPs have

invariably found them in the context of disease-associated variants, highlighting the importance

of identifying the variants that do cause loss or gain of phosphorylation. Chapter 5 presented

a method that uses PhosphoPICK to construct a background of variant effects, based on score

differences between a reference and variant peptide according to the sequence model, across

missense mutations collected in the UniProt database. Comparing a novel variant against the

background allowed a level of significance, as determined by an empirical P-value to be calcu-

lated. Combining this with context scores generated by the combined PhosphoPICK Bayesian

network model, the method was able to score the effect of a variant based not only on the

difference in sequence scores caused by the mutation, but the prior belief of the query kinase
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targeting the protein. Comparing this “combined score” with using sequence alone, as well

as an alternative method, MIMP, I demonstrated that PhophoPICK is able to identify true

positive examples of phosphovariants at higher threshold stringency than either MIMP or the

sequence method alone. This demonstrates that just as predicting phosphorylation sites under

ordinary circumstances benefits from the combination of context and sequence, understanding

the effect of amino acid variants on phosphorylation also benefits from protein context.

6.2 A framework for modelling biological systems

An overarching goal in this work was to design a method that could integrate the sequence

and context factors that regulate phosphorylation. This is a concept that is not unique to

phosphorylation – there are many biological processes that rely on a combination of linear

motifs and interacting proteins to maintain specificity. The method that has been presented

here should be considered a framework that could be applied to different biological processes,

with alternative post-translational modifications being an obvious choice for candidate studies.

There are many different types of post-translational modifications that proteins can undergo;

these can involve structural change to the protein (such as proteolytic cleavage), chemical mod-

ifications like phosphorylation, or the linkage of an additional protein. SUMO (short ubiquitin-

like modifier) is a modification involving the addition of the small SUMO protein to a lysine

residue on a protein, and is involved in the regulation of a diverse range of molecular functions

(215). The importance of SUMOylation can be seen in its regulation of protein promyelocytic

leukemia (PML) nuclear body (NB) formation. The PML-NB is an important sub-nuclear

compartment, found in many tissues, and appears to have a highly dynamic role in regulating

an array of processes, including DNA repair and transcription, in response to cellular stresses

(216, 217). The importance of the PML-NB is illustrated by the link between its aberrant

function and leukaemia, as well as tumours (216). A critical regulatory component of PML-NB

is SUMO: PML-NB function is regulated by SUMO (218), and the SUMOylation of PML-

NB proteins is required for their localisation to the nucleus, and the correct formation of the

PML-NB (219).

There are four SUMO protein paralogues that can be covalently attached to a lysine residue on

a substrate protein (220). The process of SUMOylation follows a cascade of enzymes, whereby

an activating enzyme (E1) first activates the SUMO protein, which is then transferred to a

substrate protein by the E2 enzyme. The conjugation of the SUMO protein to the substrate is
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often performed by the E2 enzyme in conjunction with the ligase enzyme, E3. The regulation of

SUMO targets is complex, and involves a combination of context and sequence characteristics, as

for phosphorylation. SUMOylation by specific SUMO paralogues is regulated by factors such as

sub-cellular location and cell-cycle stage (221); in addition, SUMOylation can occur in response

to cellular stress (222). The binding of SUMO to a target protein is known to occur within

a set of well-defined motifs – some of which are phosphorylation-dependent. The best known

consensus motif for SUMO is the ψKXE motif, where K is the SUMOylated lysine residue, ψ

is a hydrophobic residue and X is any amino acid (223). An example of a phosphorylation-

dependent motif follows the form ψKXEXXSpP, where Sp is the phosphorylation site (224).

Even more so than the predictors that have been built for phosphorylation, the existing methods

for predicting protein SUMOylation sites operate primarily on sequence motif data (225–229).

There are parallels that can be made between phosphorylation and SUMOylation; the modifi-

cations are both regulated by the presence of valid motifs and context factors. These parallels

are a strong indication that the modelling framework presented in this thesis could feasibly be

applied to the SUMO modification. While the number of known protein SUMOylation sites is

small compared to phosphorylation, there are sufficient to train and evaluate a predictive model,

with over 850 sites currently recorded in the PhosphoSitePlusr database (184). Furthermore,

the protein-protein interaction and association databases used in this thesis, BioGRID (209)

and STRING (148), should provide the context information necessary to form the basis of a

SUMOylation predictor that follows the framework underlying PhosphoPICK. Based on the

results presented in this thesis, a SUMOylation predictor that captures the sequence and con-

text conditions that determine SUMOylation would be expected to gain substantial increases

in prediction accuracy over the methods that operate on sequence alone.

There are many more examples of PTMs, and motif-based PTM predictors that could be given.

Sequence-operating methods have been developed for a variety of post-translational modifica-

tions, such as methylation (230, 231), glycosylation (232) and acetylation (233). This thesis has

illustrated the power of leveraging not only the sequence information intrinsic to proteins, but

the context that the proteins operate in, for predicting kinase-substrate phosphorylation events.

But more than that, it has presented a computational framework to enable a comprehensive

modelling of the complex factors that regulate the diversity of protein modifications.
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Table A.1: Model prediction accuracy (measured using AUC) when varying STRING thresh-
olds are used to add protein interactors to the model.

kinase 40 60 80

CDK1 0.86±0.004 0.87±0.004 0.75±0.004

CDK2 0.89±0.004 0.91±0.004 0.79±0.006

CDK5 0.92±0.006 0.96±0.004 0.74±0.018

C
M

G
C

CDK7 0.92±0.022 0.91±0.029 0.83±0.029

GSK3B 0.87±0.006 0.88±0.005 0.83±0.011

MAPK1 0.86±0.003 0.89±0.004 0.8±0.004

MAPK3 0.88±0.006 0.90±0.011 0.78±0.014

MAPK8 0.90±0.009 0.92±0.008 0.84±0.009

MAPK9 0.89±0.05 0.94±0.043 0.65±0.083

MAPK14 0.94±0.003 0.95±0.008 0.89±0.005

AKT1 0.88±0.002 0.91±0.001 0.91±0.004

GRK2 0.87±0.01 0.87±0.01 0.43±0.13

PDPK1 0.91±0.012 0.91±0.021 0.75±0.027

PRKACA 0.97±0.003 0.96±0.002 0.58±0.009

PRKCA 0.77±0.006 0.76±0.005 0.55±0.007

PRKCB 0.86±0.017 0.86±0.011 0.55±0.045

A
G

C

PRKCD 0.85±0.008 0.86±0.012 0.56±0.011

PRKCE 0.82±0.024 0.83±0.027 0.52±0.107

PRKCG 0.90±0.014 0.90±0.01 0.55±0.035

PRKCH 0.54±0.113 0.52±0.098 0.54±0.13

PRKCT 0.91±0.028 0.93±0.031 0.39±0.103

PRKCZ 0.90±0.011 0.90±0.009 0.47±0.025

Continued on next page
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kinase 40 60 80

Continued from previous page

PRKG1 0.90±0.013 0.90±0.01 0.81±0.011

ROCK1 0.89±0.01 0.79±0.011 0.29±0.042

RSK1 0.93±0.009 0.93±0.008 0.77±0.026

RSK2 0.71±0.048 0.71±0.036 0.36±0.066

ABL1 0.96±0.003 0.97±0.006 0.90±0.004

BTK 0.72±0.106 0.69±0.11 0.52±0.104

CSK 0.89±0.04 0.91±0.036 0.57±0.088

EGFR 0.94±0.032 0.95±0.001 0.93±0.004

FYN 0.94±0.002 0.96±0.01 0.82±0.017

HCK 0.95±0.023 0.96±0.046 0.82±0.059

T
K

INSR 0.95±0.015 0.93±0.017 0.92±0.033

JAK1 0.75±0.124 0.76±0.098 0.52±0.143

JAK2 0.92±0.034 0.97±0.036 0.83±0.085

LCK 0.97±0.01 0.96±0.011 0.93±0.014

LYN 0.86±0.024 0.87±0.02 0.82±0.016

RET 0.68±0.073 0.69±0.096 0.55±0.083

SRC 0.87±0.004 0.89±0.003 0.86±0.003

SYK 0.98±0.007 0.98±0.004 0.89±0.009

ZAP70 0.95±0.06 0.94±0.059 0.58±0.1

CAMK1A 0.60±0.081 0.56±0.083 0.61±0.1

C
A

M
K

CAMK2A 0.85±0.01 0.81±0.021 0.53±0.031

CAMK2G 0.99±0.006 0.98±0.012 0.70±0.046

CHK1 0.92±0.041 0.91±0.038 0.91±0.036

LKB1 0.96±0.022 0.88±0.03 0.73±0.056

MAPKAPK2 0.93±0.007 0.93±0.01 0.89±0.02

ATM 0.97±0.005 0.98±0.003 0.98±0.004

ATR 0.93±0.033 0.92±0.047 0.72±0.105

AURKB 1.00±0.002 0.91±0.03 0.93±0.015

C
om

b
in

ed

CSNK1A1 0.86±0.025 0.86±0.017 0.41±0.048

CSNK1D 0.63±0.143 0.63±0.147 0.41±0.041

CSNK2A1 0.87±0.004 0.89±0.005 0.69±0.008

CSNK2A2 0.95±0.007 0.95±0.004 0.60±0.012

CSNK2B 0.88±0.012 0.87±0.012 0.37±0.04

PAK1 0.54±0.023 0.49±0.025 0.52±0.021

PAK2 0.38±0.127 0.40±0.115 0.39±0.128

PLK1 0.92±0.004 0.92±0.006 0.89±0.012

PRKDC 0.81±0.07 0.81±0.068 0.63±0.131
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Table A.2: Model prediction accuracy (measured using AUC) for varying numbers of inter-
action connections to kinase variables in Bayesian network models.

kinase 25 40 50

CDK1 0.87±0.004 0.87±0.003 0.86±0.004

CDK2 0.91±0.004 0.89±0.006 0.88±0.007

CDK5 0.96±0.004 0.96±0.004 0.96±0.001

C
M

G
C

CDK7 0.91±0.029 0.92±0.021 0.91±0.035

GSK3B 0.88±0.005 0.87±0.008 0.87±0.007

MAPK1 0.89±0.004 0.88±0.004 0.87±0.004

MAPK3 0.90±0.011 0.86±0.016 0.83±0.017

MAPK8 0.92±0.008 0.92±0.009 0.92±0.011

MAPK9 0.94±0.043 0.94±0.044 0.94±0.043

MAPK14 0.95±0.008 0.95±0.009 0.95±0.008

AKT1 0.91±0.001 0.90±0.002 0.90±0.002

GRK2 0.87±0.01 0.88±0.027 0.89±0.022

PDPK1 0.91±0.021 0.91±0.021 0.91±0.021

PRKACA 0.96±0.002 0.95±0.002 0.95±0.002

PRKCA 0.76±0.005 0.76±0.006 0.77±0.005

PRKCB 0.86±0.011 0.85±0.011 0.85±0.011

A
G

C

PRKCD 0.86±0.012 0.86±0.011 0.86±0.011

PRKCE 0.83±0.027 0.84±0.024 0.84±0.028

PRKCG 0.90±0.01 0.91±0.014 0.91±0.01

PRKCH 0.52±0.098 0.55±0.013 0.57±0.13

PRKCT 0.93±0.031 0.90±0.042 0.92±0.037

PRKCZ 0.90±0.009 0.90±0.011 0.90±0.011

PRKG1 0.90±0.01 0.89±0.015 0.91±0.008

ROCK1 0.79±0.011 0.80±0.011 0.79±0.011

RSK1 0.93±0.008 0.94±0.01 0.94±0.012

RSK2 0.71±0.036 0.70±0.029 0.70±0.031

ABL1 0.97±0.006 0.97±0.006 0.97±0.006

BTK 0.69±0.11 0.77±0.088 0.76±0.1

CSK 0.91±0.036 0.91±0.028 0.91±0.046

EGFR 0.95±0.001 0.95±0.001 0.95±0.001

FYN 0.96±0.01 0.96±0.008 0.96±0.007

HCK 0.95±0.046 0.94±0.029 0.94±0.034

T
K

INSR 0.93±0.017 0.92±0.023 0.94±0.024

JAK1 0.76±0.098 0.71±0.101 0.74±0.13

JAK2 0.97±0.036 0.96±0.042 0.92±0.033

LCK 0.96±0.01 0.97±0.009 0.96±0.009

LYN 0.87±0.02 0.86±0.022 0.86±0.016

Continued on next page
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kinase 25 40 50

Continued from previous page

RET 0.69±0.096 0.72±0.09 0.67±0.05

SRC 0.89±0.003 0.89±0.003 0.88±0.004

SYK 0.98±0.004 0.98±0.004 0.87±0.003

ZAP70 0.94±0.059 0.96±0.055 0.93±0.058

CAMK1A 0.56±0.083 0.58±0.09 0.57±0.1

C
A

M
K

CAMK2A 0.81±0.021 0.82±0.017 0.81±0.019

CAMK2G 0.98±0.012 0.98±0.011 0.99±0.009

CHK1 0.91±0.038 0.92±0.037 0.91±0.04

LKB1 0.88±0.03 0.89±0.034 0.89±0.031

MAPKAPK2 0.93±0.01 0.93±0.011 0.93±0.007

ATM 0.98±0.003 0.97±0.001 0.97±0.004

ATR 0.92±0.047 0.97±0.053 0.95±0.049

AURKB 0.91±0.03 0.93±0.024 0.93±0.021

C
om

b
in

ed

CSNK1A1 0.86±0.017 0.89±0.016 0.87±0.02

CSNK1D 0.63±0.147 0.61±0.113 0.64±0.05

CSNK2A1 0.89±0.005 0.89±0.006 0.86±0.003

CSNK2A2 0.95±0.004 0.96±0.004 0.95±0.004

CSNK2B 0.87±0.012 0.87±0.015 0.88±0.013

PAK1 0.49±0.025 0.57±0.058 0.49±0.026

PAK2 0.40±0.115 0.49±0.099 0.43±0.127

PLK1 0.92±0.006 0.92±0.005 0.94±0.018

PRKDC 0.81±0.068 0.77±0.047 0.80±0.071

Table A.3: Comparison of model prediction accuracy (measured using AUC) between using
STRING with all data sources (normal) and when STRING text mining influence for a test
kinase has been removed.

kinase normal text mining removed

CDK1 0.87±0.004 0.76±0.004

CDK2 0.91±0.004 0.88±0.005

CDK5 0.96±0.004 0.94±0.015

C
M

G
C

CDK7 0.91±0.029 0.89±0.027

GSK3B 0.88±0.005 0.82±0.008

MAPK1 0.89±0.004 0.84±0.005

MAPK3 0.90±0.011 0.73±0.014

MAPK8 0.92±0.008 0.91±0.012

MAPK9 0.94±0.043 0.92±0.02

MAPK14 0.95±0.008 0.94±0.01

Continued on next page
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kinase normal text mining removed

Continued from previous page

AKT1 0.91±0.001 0.89±0.003

GRK2 0.87±0.01 0.86±0.024

PDPK1 0.91±0.021 0.76±0.026

PRKACA 0.96±0.002 0.96±0.003

PRKCA 0.76±0.005 0.65±0.007

PRKCB 0.86±0.011 0.63±0.022

A
G

C

PRKCD 0.86±0.012 0.66±0.012

PRKCE 0.83±0.027 0.72±0.066

PRKCG 0.90±0.01 0.87±0.016

PRKCH 0.52±0.098 0.54±0.132

PRKCT 0.93±0.031 1.00±0.008

PRKCZ 0.90±0.009 0.86±0.008

PRKG1 0.90±0.01 0.88±0.005

ROCK1 0.79±0.011 0.50±0.012

RSK1 0.93±0.008 0.86±0.018

RSK2 0.71±0.036 0.44±0.054

ABL1 0.97±0.006 0.94±0.006

BTK 0.69±0.11 0.70±0.13

CSK 0.91±0.036 0.80±0.058

EGFR 0.95±0.001 0.92±0.008

FYN 0.96±0.01 0.91±0.019

HCK 0.95±0.046 0.79±0.058

T
K

INSR 0.93±0.017 0.80±0.042

JAK1 0.76±0.098 0.73±0.11

JAK2 0.97±0.036 0.92±0.053

LCK 0.96±0.011 0.97±0.006

LYN 0.87±0.02 0.87±0.018

RET 0.69±0.096 0.65±0.135

SRC 0.89±0.003 0.88±0.004

SYK 0.98±0.004 0.94±0.016

ZAP70 0.94±0.059 0.88±0.128

CAMK1A 0.56±0.083 0.59±0.056

C
A

M
K

CAMK2A 0.81±0.021 0.66±0.015

CAMK2G 0.98±0.012 0.92±0.036

CHK1 0.91±0.038 0.96±0.03

LKB1 0.88±0.03 0.88±0.034

MAPKAPK2 0.93±0.01 0.83±0.01

ATM 0.98±0.001 0.96±0.007
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kinase normal text mining removed

Continued from previous page

ATR 0.92±0.047 0.94±0.048

AURKB 0.91±0.03 0.85±0.022

C
o
m

b
in

ed
CSNK1A1 0.86±0.017 0.69±0.049

CSNK1D 0.63±0.147 0.62±0.105

CSNK2A1 0.89±0.005 0.88±0.004

CSNK2A2 0.95±0.004 0.93±0.006

CSNK2B 0.87±0.012 0.81±0.013

PAK1 0.49±0.025 0.50±0.022

PAK2 0.40±0.115 0.38±0.12

PLK1 0.92±0.006 0.93±0.018

PRKDC 0.81±0.068 0.82±0.044

Table A.4: Comparison between classifying phosphorylation sites using Predikin, and clas-
sifying phosphorylation sites when Predikin score is combined with PhosphoPICK predictions
using two methods – sum and product. Comparisons were made using AUC50 (area under
an ROC curve calculated up to the first 50 false positives), and sensitivity (predicted true
positives/total true positives) at the threshold that yielded the fiftieth false positive. In case
of a tie, an arbitrary order is used to determine the top fifty false positives.

AUC50 Sensitivity

Kinase Predikin Combined Predikin Combined

Sum Product Sum Product

CDK1 0.018 0.060 0.061 0.030 0.090 0.090

CDK2 0.009 0.065 0.068 0.017 0.116 0.124

CDK5 0.006 0.115 0.084 0.013 0.160 0.120

C
M

G
C CDK7 0.000 0.009 0.000 0.000 0.059 0.000

GSK3B 0.010 0.028 0.018 0.025 0.042 0.025

MAPK1 0.004 0.012 0.014 0.010 0.030 0.030

MAPK3 0.005 0.017 0.019 0.035 0.035 0.043

MAPK8 0.006 0.056 0.064 0.018 0.091 0.091

MAPK9 0.011 0.150 0.024 0.036 0.286 0.071

MAPK14 0.015 0.022 0.021 0.021 0.053 0.053

AKT1 0.018 0.048 0.046 0.048 0.114 0.095

GRK2 0.000 0.029 0.000 0.000 0.080 0.000

PDPK1 0.206 0.182 0.103 0.286 0.262 0.143

A
G

C

PRKACA 0.008 0.051 0.041 0.018 0.076 0.058

PRKCA 0.013 0.012 0.013 0.019 0.019 0.023

PRKCB 0.000 0.032 0.050 0.000 0.063 0.079

PRKCD 0.025 0.053 0.045 0.048 0.071 0.060
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Kinase Predikin Combined Predikin Combined

Continued from previous page

PRKCE 0.027 0.038 0.000 0.038 0.038 0.000
A

G
C

PRKCG 0.000 0.017 0.025 0.000 0.050 0.075

PRKCH 0.058 0.058 0.000 0.083 0.083 0.000

PRKCT 0.000 0.140 0.000 0.000 0.400 0.000

PRKCZ 0.000 0.068 0.073 0.000 0.103 0.103

PRKG1 0.000 0.088 0.085 0.000 0.128 0.128

ROCK1 0.000 0.077 0.073 0.000 0.130 0.130

RSK1 0.000 0.058 0.055 0.000 0.091 0.091

RSK2 0.000 0.000 0.000 0.000 0.000 0.000

ABL1 0.012 0.060 0.056 0.022 0.089 0.111

BTK 0.002 0.020 0.000 0.048 0.048 0.000

CSK 0.000 0.000 0.000 0.000 0.000 0.000

EGFR 0.062 0.118 0.119 0.107 0.161 0.161

FYN 0.016 0.018 0.009 0.049 0.033 0.016

HCK 0.011 0.000 0.000 0.032 0.000 0.000

T
K

INSR 0.049 0.172 0.160 0.094 0.226 0.189

JAK1 0.000 0.000 0.000 0.000 0.000 0.000

JAK2 0.027 0.008 0.000 0.030 0.030 0.000

LCK 0.062 0.134 0.146 0.099 0.225 0.239

LYN 0.043 0.027 0.030 0.088 0.035 0.053

RET 0.000 0.000 0.000 0.000 0.000 0.000

SRC 0.024 0.037 0.038 0.045 0.072 0.072

SYK 0.204 0.193 0.182 0.283 0.245 0.226

ZAP70 0.201 0.235 0.023 0.280 0.400 0.040

CAMK1A 0.177 0.180 0.000 0.333 0.333 0.000

C
A

M
K

CAMK2A 0.000 0.059 0.031 0.000 0.118 0.044

CAMK2G 0.000 0.044 0.000 0.000 0.095 0.000

CHK1 0.090 0.138 0.000 0.105 0.158 0.000

LKB1 0.205 0.448 0.000 0.308 0.538 0.000

MAPKAPK2 0.023 0.224 0.192 0.031 0.281 0.219

AURKB 0.056 0.124 0.037 0.081 0.243 0.081

co
m

b
in

ed

CSNK1A1 0.000 0.047 0.033 0.000 0.104 0.083

CSNK1D 0.000 0.000 0.000 0.000 0.000 0.000

PAK1 0.004 0.014 0.000 0.026 0.053 0.000

PAK2 0.028 0.027 0.000 0.057 0.057 0.000

PLK1 0.000 0.029 0.029 0.000 0.051 0.051
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Table A.5: Comparison between classifying phosphorylation sites using Predikin, and clas-
sifying phosphorylation sites when GPS score is combined with PhosphoPICK predictions
using two methods – sum and product. Comparisons were made using AUC50 (area under
an ROC curve calculated up to the first 50 false positives), and sensitivity (predicted true
positives/total true positives) at the threshold that yielded the fiftieth false positive. In case
of a tie, an arbitrary order is used to determine the top fifty false positives.

AUC50 Sensitivity

Kinase GPS Combined GPS Combined

Sum Product Sum Product

CDK1 0.000 0.022 0.019 0.000 0.059 0.040

CDK2 0.000 0.070 0.068 0.000 0.137 0.137

CDK5 0.000 0.094 0.087 0.000 0.173 0.147

C
M

G
C CDK7 0.291 0.323 0.526 0.389 0.333 0.778

GSK3B 0.015 0.015 0.018 0.042 0.034 0.034

MAPK1 0.006 0.035 0.035 0.015 0.049 0.049

MAPK3 0.008 0.039 0.039 0.009 0.087 0.087

MAPK8 0.000 0.043 0.043 0.000 0.109 0.109

MAPK9 0.017 0.099 0.098 0.0357 0.179 0.179

MAPK14 0.020 0.051 0.053 0.021 0.104 0.094

AKT1 0.073 0.265 0.265 0.114 0.352 0.352

GRK2 0.080 0.204 0.613 0.111 0.370 0.815

PDPK1 0.3940 0.388 0.496 0.476 0.429 0.667

PRKACA 0.010 0.102 0.099 0.026 0.174 0.174

PRKCA 0.005 0.021 0.021 0.013 0.032 0.039

PRKCB 0.005 0.040 0.040 0.016 0.047 0.047

A
G

C

PRKCD 0.027 0.070 0.080 0.047 0.094 0.118

PRKCE 0.147 0.158 0.060 0.192 0.192 0.077

PRKCG 0.125 0.149 0.020 0.125 0.200 0.025

PRKCH 0.156 0.153 0.000 0.167 0.167 0.000

PRKCT 0.000 0.040 0.108 0.000 0.400 0.200

PRKCZ 0.148 0.190 0.196 0.172 0.207 0.241

PRKG1 0.159 0.164 0.110 0.231 0.231 0.180

ROCK1 0.073 0.125 0.131 0.152 0.152 0.174

RSK1 0.254 0.160 0.162 0.273 0.182 0.182

RSK2 0.711 0.653 0.138 0.778 0.778 0.222

ABL1 0.235 0.270 0.276 0.311 0.378 0.378

BTK 0.230 0.232 0.050 0.286 0.286 0.190

CSK 0.245 0.370 0.090 0.500 0.500 0.286

EGFR 0.221 0.339 0.333 0.339 0.482 0.464

FYN 0.086 0.053 0.062 0.115 0.098 0.098
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Kinase GPS Combined GPS Combined

Continued from previous page

HCK 0.195 0.028 0.001 0.290 0.065 0.032
T

K

INSR 0.121 0.249 0.282 0.170 0.302 0.358

JAK1 0.368 0.368 0.082 0.368 0.368 0.263

JAK2 0.116 0.122 0.083 0.212 0.212 0.182

LCK 0.091 0.229 0.221 0.141 0.352 0.296

LYN 0.216 0.198 0.212 0.263 0.333 0.351

RET 0.464 0.461 0.195 0.571 0.571 0.429

SRC 0.077 0.086 0.089 0.126 0.212 0.167

SYK 0.288 0.458 0.452 0.434 0.585 0.585

ZAP70 0.533 0.557 0.305 0.720 0.760 0.480

CAMK1A 0.653 0.647 0.000 0.667 0.667 0.000

C
A

M
K

CAMK2A 0.021 0.117 0.146 0.074 0.221 0.235

CAMK2G 0.005 0.083 0.024 0.048 0.238 0.143

CHK1 0.148 0.202 0.051 0.211 0.263 0.105

LKB1 0.722 0.706 0.511 0.769 0.769 0.538

MAPKAPK2 0.044 0.344 0.348 0.093 0.375 0.375

ATM 0.033 0.148 0.146 0.088 0.221 0.221

ATR 0.000 0.025 0.019 0.000 0.054 0.054

AURKB 0.112 0.178 0.169 0.162 0.243 0.243

CSNK1A1 0.341 0.227 0.200 0.354 0.271 0.229

co
m

b
in

ed

CSNK1D 0.016 0.012 0.000 0.056 0.056 0.000

CSNK2A1 0.016 0.055 0.052 0.031 0.094 0.100

CSNK2A2 0.039 0.187 0.195 0.069 0.276 0.302

CSNK2B 0.066 0.069 0.074 0.094 0.094 0.094

PAK1 0.023 0.025 0.000 0.026 0.026 0.0

PAK2 0.108 0.102 0.018 0.200 0.200 0.057

PLK1 0.093 0.296 0.299 0.128 0.462 0.462
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Table A.6: Comparison between classifying phosphorylation sites using NetworKIN, and
classifying phosphorylation sites when NetworKIN score is combined with PhosphoPICK pre-
dictions using two methods – sum and product. Comparisons were made using AUC50 (area
under an ROC curve calculated up to the first 50 false positives), and sensitivity (predicted
true positives/total true positives) at the threshold that yielded the fiftieth false positive.
In case of a tie, an arbitrary order is used to determine the top fifty false predictions. The
specificity at this threshold is 0.9995 for serine/threonine kinases, and 0.998 for the tyrosine
kinases.

AUC50 Sensitivity

Kinase NetworKIN Combined NetworKIN Combined

Sum Product Sum Product

CDK1 0.031 0.034 0.034 0.056 0.061 0.061

CDK2 0.125 0.159 0.159 0.242 0.274 0.274

CDK5 0.047 0.173 0.169 0.080 0.240 0.240

C
M

G
C CDK7 0.109 0.000 0.000 0.222 0.000 0.000

GSK3B 0.008 0.045 0.045 0.017 0.067 0.067

MAPK1 0.051 0.081 0.076 0.104 0.129 0.129

MAPK3 0.047 0.049 0.052 0.096 0.078 0.087

MAPK8 0.004 0.013 0.013 0.036 0.018 0.018

MAPK9 0.024 0.017 0.000 0.036 0.036 0.000

GRK2 0.018 0.000 0.000 0.037 0.000 0.000

PRKACA 0.046 0.067 0.065 0.093 0.111 0.115

PRKCA 0.015 0.011 0.010 0.026 0.016 0.013

PRKCB 0.000 0.064 0.064 0.000 0.079 0.079

A
G

C

PRKCD 0.000 0.000 0.000 0.000 0.000 0.000

PRKCE 0.000 0.000 0.000 0.000 0.000 0.000

PRKCG 0.039 0.025 0.003 0.077 0.026 0.026

PRKCH 0.040 0.040 0.000 0.083 0.083 0.000

PRKCT 0.176 0.176 0.176 0.200 0.200 0.200

PRKCZ 0.017 0.000 0.000 0.034 0.034 0.034

ROCK1 0.032 0.019 0.019 0.065 0.065 0.065

RSK2 0.054 0.000 0.029 0.111 0.000 0.111

ABL1 0.090 0.060 0.060 0.178 0.111 0.089

BTK 0.023 0.000 0.000 0.048 0.000 0.000

EGFR 0.135 0.161 0.161 0.250 0.268 0.268

FYN 0.068 0.050 0.048 0.131 0.082 0.082

T
K

HCK 0.047 0.000 0.000 0.097 0.000 0.000

INSR 0.072 0.092 0.119 0.151 0.132 0.170

LCK 0.118 0.125 0.125 0.169 0.155 0.155

LYN 0.106 0.088 0.086 0.175 0.158 0.158

SRC 0.043 0.047 0.046 0.081 0.095 0.095

Continued on next page
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Kinase NetworKIN Combined NetworKIN Combined

Continued from previous page

SYK 0.020 0.023 0.023 0.058 0.077 0.077

ZAP70 0.120 0.065 0.000 0.200 0.080 0.000

C
A

M
K

CAMK1A 0.203 0.227 0.133 0.333 0.333 0.333

CAMK2A 0.072 0.031 0.007 0.147 0.118 0.015

CAMK2G 0.138 0.123 0.114 0.238 0.238 0.238

LKB1 0.113 0.278 0.278 0.231 0.308 0.308

ATM 0.100 0.101 0.101 0.204 0.204 0.204

ATR 0.040 0.000 0.000 0.081 0.000 0.000

co
m

b
in

ed

CSNK1A1 0.008 0.010 0.014 0.021 0.021 0.021

CSNK1D 0.000 0.000 0.000 0.000 0.000 0.000

CSNK2A1 0.062 0.053 0.052 0.102 0.109 0.102

CSNK2A2 0.071 0.100 0.101 0.273 0.327 0.282

PAK1 0.026 0.011 0.000 0.053 0.026 0.000

PAK2 0.388 0.386 0.378 0.400 0.400 0.400

Table A.7: Gene ontology (GO) term enrichment analysis for known CDK2 substrates and
predicted substrates. The first two columns in the table show GO terms and their descriptions
that were found to be significantly over-represented (Fisher’s exact test, Bonferroni correction,
E-value<0.05) in known CDK2 substrates, with the E-values shown in the third column. The
terms are ordered from most to least significant. The final column contains the E-values for the
terms that were found when performing the same enrichment test on the top 300 predictions
for PhosphoPICK. If a value is listed as “N/A”, then the term was not identified with any
protein in the set of predictions.

GO term Description Substrates PhosphoPICK

GO:0005654 nucleoplasm 4.38e-20 8.74e-144

GO:0007049 cell cycle 3.62e-14 4.18e-125

GO:0000278 mitotic cell cycle 9.35e-12 6.95e-214

GO:0005634 nucleus 9.91e-11 8.22e-78

GO:0000082 G1/S transition of mitotic cell cycle 2.92e-10 1.95e-126

GO:0005515 protein binding 1.94e-08 2.00e-52

GO:0045893 positive regulation of transcription, DNA-templated 4.09e-07 0.155

GO:0006974 cellular response to DNA damage stimulus 3.70e-06 4.55e-25

GO:0007050 cell cycle arrest 4.92e-06 0.0010

GO:0006978 DNA damage response, signal transduction by p53 class 1.08e-05 259.34

mediator resulting in transcription of p21 class mediator

GO:0031625 ubiquitin protein ligase binding 1.94e-05 0.08

GO:0006260 DNA replication 2.86e-05 1.10e-59

GO:0051726 regulation of cell cycle 3.10e-05 1.80e-28

Continued on next page
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GO term Description Substrates PhosphoPICK

Continued from previous page

GO:0008285 negative regulation of cell proliferation 4.83e-05 524.32

GO:0019901 protein kinase binding 7.20e-05 2.76e-09

GO:0000083 regulation of transcription involved in G1/S transition

of mitotic cell cycle

7.82e-05 8.14e-13

GO:0000079 regulation of cyclin-dependent protein serine/threonine

kinase activity

8.54e-05 1.69e-19

GO:0005730 nucleolus 0.0001 7.06e-34

GO:0005667 transcription factor complex 0.0001 0.0007

GO:0003700 sequence-specific DNA binding transcription factor ac-

tivity

0.0002 390.26

GO:0005737 cytoplasm 0.0003 1.43e-21

GO:0000307 cyclin-dependent protein kinase holoenzyme complex 0.0003 1.84e-06

GO:0000785 chromatin 0.0003 5.75e-15

GO:0006281 DNA repair 0.0003 8.41e-37

GO:0051301 cell division 0.0003 6.49e-72

GO:0071850 mitotic cell cycle arrest 0.0004 N/A

GO:0031571 mitotic G1 DNA damage checkpoint 0.0006 210.79

GO:0050681 androgen receptor binding 0.0007 179.82

GO:0008134 transcription factor binding 0.0007 1.06e-12

GO:0030521 androgen receptor signaling pathway 0.001 811.58

GO:0008284 positive regulation of cell proliferation 0.002 4.85

GO:0030308 negative regulation of cell growth 0.003 506.21

GO:0000086 G2/M transition of mitotic cell cycle 0.003 2.82e-26

GO:0003682 chromatin binding 0.003 1.35e-08

GO:0071158 positive regulation of cell cycle arrest 0.004 41.04

GO:0043433 negative regulation of sequence-specific DNA binding

transcription factor activity

0.004 97.84

GO:0006351 transcription, DNA-templated 0.004 114.1

GO:0006357 regulation of transcription from RNA polymerase II pro-

moter

0.004 247.83

GO:0003713 transcription coactivator activity 0.005 284.81

GO:0006977 DNA damage response, signal transduction by p53 0.007 5.06e-56

class mediator resulting in cell cycle arrest

GO:0008156 negative regulation of DNA replication 0.009 57.94

GO:0043550 regulation of lipid kinase activity 0.009 55.29

GO:0045944 positive regulation of transcription from RNA poly-

merase II promoter

0.01 0.001

GO:0006270 DNA replication initiation 0.01 1.14e-22

Continued on next page



Appendix A. Chapter 2 supplementary material 127

GO term Description Substrates PhosphoPICK

Continued from previous page

GO:0000122 negative regulation of transcription from RNA poly-

merase II promoter

0.01 0.01

GO:0007265 Ras protein signal transduction 0.01 46.02

GO:0001836 release of cytochrome c from mitochondria 0.01 N/A

GO:0005829 cytosol 0.01 4.07e-42

GO:0003677 DNA binding 0.01 1.34e-12

GO:0044212 transcription regulatory region DNA binding 0.02 270.76

GO:0043234 protein complex 0.02 0.007

GO:0004860 protein kinase inhibitor activity 0.02 614.09

GO:0000790 nuclear chromatin 0.03 2.24e-09

GO:0007369 gastrulation 0.03 701.09

GO:0045892 negative regulation of transcription, DNA-templated 0.03 2.06

GO:0045668 negative regulation of osteoblast differentiation 0.03 701.09

GO:0006355 regulation of transcription, DNA-templated 0.04 133.62

GO:0043353 enucleate erythrocyte differentiation 0.045 108.82

GO:0090344 negative regulation of cell aging 0.045 N/A

Table A.8: Gene ontology (GO) term enrichment analysis for CDK2 substrates within
unique E2F1 targets.

GO term Description E-value

GO:0051439 regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 2.81e-11

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

2.81e-11

GO:0051436 negative regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

2.81e-11

GO:0031145 anaphase-promoting complex-dependent proteasomal 2.81e-11

ubiquitin-dependent protein catabolic process

GO:0006977 DNA damage response, signal transduction by 2.23e-10

p53 class mediator resulting in cell cycle arrest

GO:0000082 G1/S transition of mitotic cell cycle 7.79e-10

GO:0000278 mitotic cell cycle 9.90e-09

GO:0005654 nucleoplasm 1.62e-08

GO:0002474 antigen processing and presentation of peptide antigen via MHC class I 7.40e-08

GO:0002479 antigen processing and presentation of exogenous 7.40e-08

peptide antigen via MHC class I, TAP-dependent

GO:0042590 antigen processing and presentation of exogenous peptide antigen via MHC

class I

2.20e-07

GO:0006521 regulation of cellular amino acid metabolic process 2.39e-07

Continued on next page
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GO term Description E-value

Continued from previous page

GO:0043066 negative regulation of apoptotic process 8.78e-07

GO:0000502 proteasome complex 1.42e-06

GO:0000209 protein polyubiquitination 2.35e-06

GO:0042981 regulation of apoptotic process 8.43e-06

GO:0010467 gene expression 1.78e-05

GO:0016032 viral process 4.70e-05

GO:0016071 mRNA metabolic process 0.0003

GO:0006915 apoptotic process 0.0003

GO:0016070 RNA metabolic process 0.0004

GO:0034641 cellular nitrogen compound metabolic process 0.0009

GO:0022624 proteasome accessory complex 0.0015

GO:0005634 nucleus 0.0088

GO:0005829 cytosol 0.0130

GO:0000079 regulation of cyclin-dependent protein serine/threonine kinase activity 0.0151

GO:0005637 nuclear inner membrane 0.0300

Table A.9: Gene ontology (GO) term enrichment analysis for CDK2 substrates within
unique E2F4 targets.

GO term Description E-value

GO:0007049 cell cycle 3.29e-16

GO:0000278 mitotic cell cycle 8.16e-14

GO:0051301 cell division 3.39e-11

GO:0007067 mitotic nuclear division 3.39e-11

GO:0005819 spindle 6.60e-07

GO:0031145 anaphase-promoting complex-dependent proteasomal 6.21e-05

ubiquitin-dependent protein catabolic process

GO:0005654 nucleoplasm 6.41e-05

GO:0007094 mitotic spindle assembly checkpoint 7.82e-05

GO:0019901 protein kinase binding 0.0001

GO:0051439 regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 0.0005

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

0.0005

GO:0005856 cytoskeleton 0.0016

GO:0005829 cytosol 0.0039

GO:0005524 ATP binding 0.0042

GO:0000082 G1/S transition of mitotic cell cycle 0.0062

GO:0005737 cytoplasm 0.0067

GO:0008283 cell proliferation 0.0072

Continued on next page
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GO term Description E-value

Continued from previous page

GO:0000086 G2/M transition of mitotic cell cycle 0.0072

GO:0007080 mitotic metaphase plate congression 0.0078

GO:0000922 spindle pole 0.0133

GO:0007059 chromosome segregation 0.0185

GO:0030496 midbody 0.0430

GO:0051436 negative regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

0.0430

Table A.10: Gene ontology (GO) term enrichment analysis for CDK2 substrates within
unique E2F6 targets.

GO term Description E-value

GO:0000278 mitotic cell cycle 4.61e-16

GO:0051439 regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 5.02e-16

GO:0031145 anaphase-promoting complex-dependent proteasomal 5.02e-16

ubiquitin-dependent protein catabolic process

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

5.02e-16

GO:0051436 negative regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

5.02e-16

GO:0000082 G1/S transition of mitotic cell cycle 8.36e-10

GO:0006977 DNA damage response, signal transduction by 5.50e-09

p53 class mediator resulting in cell cycle arrest

GO:0042590 antigen processing and presentation of exogenous peptide antigen via MHC

class I

3.28e-08

GO:0006521 regulation of cellular amino acid metabolic process 3.28e-08

GO:0002479 antigen processing and presentation of exogenous 3.28e-08

peptide antigen via MHC class I, TAP-dependent

GO:0005654 nucleoplasm 7.04e-08

GO:0002474 antigen processing and presentation of peptide antigen via MHC class I 1.14e-07

GO:0000502 proteasome complex 6.81e-07

GO:0000209 protein polyubiquitination 6.81e-07

GO:0042981 regulation of apoptotic process 2.47e-06

GO:0005829 cytosol 4.09e-05

GO:0016071 mRNA metabolic process 4.44e-05

GO:0016032 viral process 4.44e-05

GO:0016070 RNA metabolic process 7.97e-05

GO:0034641 cellular nitrogen compound metabolic process 0.0001

GO:0022624 proteasome accessory complex 0.0001
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GO term Description E-value
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GO:0007094 mitotic spindle assembly checkpoint 0.0004

GO:0005680 anaphase-promoting complex 0.0004

GO:0010467 gene expression 0.0006

GO:0070979 protein K11-linked ubiquitination 0.0011

GO:0043066 negative regulation of apoptotic process 0.0015

GO:0007049 cell cycle 0.0044

GO:0051301 cell division 0.0156

GO:0006915 apoptotic process 0.0232

GO:0044281 small molecule metabolic process 0.0324

GO:0030163 protein catabolic process 0.0432

Table A.11: Gene ontology (GO) term enrichment analysis for CDK2 substrates within
overlapping E2F1, E2F4 and E2F6 targets.

GO term Description E-value

GO:0000278 mitotic cell cycle 1.02e-34

GO:0006260 DNA replication 3.13e-25

GO:0005654 nucleoplasm 2.35e-24

GO:0000082 G1/S transition of mitotic cell cycle 2.47e-21

GO:0007049 cell cycle 8.60e-21

GO:0005634 nucleus 5.73e-14

GO:0006271 DNA strand elongation involved in DNA replication 1.04e-12

GO:0007067 mitotic nuclear division 9.91e-09

GO:0006281 DNA repair 4.87e-08

GO:0051301 cell division 8.35e-08

GO:0006270 DNA replication initiation 2.91e-07

GO:0032201 telomere maintenance via semi-conservative replication 1.40e-06

GO:0000722 telomere maintenance via recombination 5.61e-06

GO:0005515 protein binding 7.18e-06

GO:0000775 chromosome, centromeric region 7.29e-06

GO:0031145 anaphase-promoting complex-dependent 1.36e-05

proteasomal ubiquitin-dependent protein catabolic process

GO:0003677 DNA binding 1.50e-05

GO:0051439 regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 2.79e-05

GO:0051436 negative regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

2.79e-05

GO:0000777 condensed chromosome kinetochore 9.98e-05

GO:0005694 chromosome 0.0001

GO:0000723 telomere maintenance 0.0001
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GO term Description E-value
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GO:0017111 nucleoside-triphosphatase activity 0.0003

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

0.0004

GO:0006974 cellular response to DNA damage stimulus 0.0007

GO:0000776 kinetochore 0.0009

GO:0005524 ATP binding 0.0010

GO:0006297 nucleotide-excision repair, DNA gap filling 0.0011

GO:0007094 mitotic spindle assembly checkpoint 0.0011

GO:0051726 regulation of cell cycle 0.0019

GO:0008283 cell proliferation 0.0037

GO:0005819 spindle 0.0054

GO:0000083 regulation of transcription involved in G1/S transition of mitotic cell cycle 0.0104

GO:0006302 double-strand break repair 0.0204

GO:0003690 double-stranded DNA binding 0.0409

Table A.12: Gene ontology (GO) term enrichment analysis for predicted CDK2 substrates
overlapping with E2F1 and E2F4 targets but not E2F6 targets.

GO term Description E-value

GO:0007049 cell cycle 6.26e-20

GO:0000278 mitotic cell cycle 2.33e-15

GO:0000082 G1/S transition of mitotic cell cycle 8.67e-11

GO:0051301 cell division 2.05e-10

GO:0007067 mitotic nuclear division 7.50e-08

GO:0005634 nucleus 6.05e-06

GO:0006260 DNA replication 7.18e-06

GO:0005515 protein binding 1.97e-05

GO:0031145 anaphase-promoting complex-dependent proteasomal 4.91e-05

ubiquitin-dependent protein catabolic process

GO:0006977 DNA damage response, signal transduction by 0.0001

p53 class mediator resulting in cell cycle arrest

GO:0051439 regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 0.0005

GO:0048015 phosphatidylinositol-mediated signaling 0.0005

GO:0005654 nucleoplasm 0.0007

GO:0005694 chromosome 0.0020

GO:0007051 spindle organization 0.0057

GO:0051437 positive regulation of ubiquitin-protein ligase activity involved in mitotic cell

cycle

0.0057

GO:0051726 regulation of cell cycle 0.0127
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GO term Description E-value
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GO:0006281 DNA repair 0.0152

GO:0006974 cellular response to DNA damage stimulus 0.0152

GO:0005874 microtubule 0.0215

GO:0005876 spindle microtubule 0.0351

GO:0005667 transcription factor complex 0.0351

GO:0043066 negative regulation of apoptotic process 0.0432

Table A.13: Gene ontology (GO) term enrichment analysis for predicted CDK2 substrates
overlapping with E2F1 and E2F6 targets but not E2F4 targets.

GO term Description E-value

GO:0019905 syntaxin binding 0.0119

GO:0042770 signal transduction in response to DNA damage 0.0119

GO:0006974 cellular response to DNA damage stimulus 0.0375

GO:0006281 DNA repair 0.0375

Table A.14: Gene ontology (GO) term enrichment analysis for predicted CDK2 substrates
overlapping with E2F4 and E2F6 targets but not E2F1 targets.

GO term Description E-value

GO:0000278 mitotic cell cycle 9.44e-09

GO:0007049 cell cycle 8.01e-05

GO:0051301 cell division 0.0004

GO:0007067 mitotic nuclear division 0.0021

GO:0000082 G1/S transition of mitotic cell cycle 0.0028

GO:0000775 chromosome, centromeric region 0.0238

GO:0005654 nucleoplasm 0.0296

GO:0005694 chromosome 0.0360

GO:0007059 chromosome segregation 0.0371
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Table B.1: Sequence model accuracy across human kinases when different percentages of ki-
nase phosphorylation peptides were used to determine the set of k-mers added to the sequence
model. Table shows median AUC and AUC50 values for classifying kinase phosphorylation
sites with the sequence model as determined by 10-fold cross-validation across 10 randomised
data-set splits. Kinases are grouped according to their family, with the average prediction
accuracy for each family shown.

AUC AUC50

Kinase 5% 10% 20% 5% 10% 20%

CDK2 0.89±0.001 0.89±0.001 0.89±0.001 0.100±0.004 0.105±0.003 0.086±0.003

CDK1 0.89±0.002 0.89±0.001 0.89±0.002 0.071±0.008 0.081±0.011 0.105±0.009

ERK2 0.86±0.001 0.86±0.001 0.87±0.002 0.067±0.010 0.063±0.007 0.084±0.009

ERK1 0.86±0.005 0.85±0.005 0.84±0.005 0.066±0.012 0.035±0.006 0.036±0.007

GSK3B 0.81±0.006 0.80±0.007 0.80±0.007 0.132±0.014 0.137±0.011 0.107±0.007

P38A 0.81±0.007 0.81±0.007 0.80±0.007 0.151±0.017 0.150±0.018 0.131±0.017

JNK1 0.87±0.004 0.85±0.005 0.84±0.005 0.155±0.014 0.074±0.013 0.082±0.014

CDK5 0.84±0.009 0.85±0.009 0.84±0.011 0.050±0.007 0.086±0.011 0.054±0.011

C
M

G
C

JNK2 0.73±0.023 0.71±0.022 0.71±0.018 0.068±0.015 0.054±0.011 0.055±0.007

CDK7 0.88±0.019 0.78±0.017 0.76±0.018 0.310±0.032 0.270±0.018 0.235±0.052

GSK3A 0.90±0.026 0.88±0.017 0.85±0.022 0.458±0.045 0.351±0.041 0.219±0.033

CDK4 0.87±0.012 0.85±0.012 0.83±0.014 0.179±0.025 0.055±0.017 0.065±0.021

P38B 0.83±0.014 0.81±0.014 0.81±0.014 0.260±0.046 0.217±0.040 0.105±0.049

HIPK2 0.86±0.013 0.84±0.017 0.84±0.017 0.380±0.043 0.224±0.031 0.229±0.034

DYRK1A 0.83±0.033 0.80±0.039 0.81±0.030 0.260±0.043 0.147±0.070 0.041±0.035

CDK9 0.83±0.015 0.80±0.010 0.78±0.011 0.320±0.030 0.227±0.056 0.057±0.018

DYRK2 0.78±0.019 0.76±0.024 0.72±0.029 0.306±0.043 0.197±0.061 0.000±0.006

ERK5 0.83±0.016 0.81±0.011 0.82±0.009 0.317±0.034 0.148±0.034 0.073±0.026

CDK6 0.86±0.009 0.85±0.011 0.82±0.011 0.183±0.030 0.163±0.026 0.029±0.010

Continued on next page

133



Appendix B. Supplementary material for Chapter 4 134

Kinase 5% 10% 20% 5% 10% 20%
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CDK3 0.76±0.050 0.76±0.050 0.66±0.059 0.357±0.045 0.357±0.045 0.000±0.036

Average 0.84±0.014 0.82±0.014 0.81±0.015 0.21±0.026 0.157±0.027 0.09±0.02

PKACA 0.89±0.003 0.89±0.003 0.89±0.003 0.120±0.008 0.126±0.007 0.126±0.007

PKCA 0.84±0.001 0.83±0.002 0.83±0.002 0.133±0.009 0.129±0.006 0.109±0.008

Akt1 0.92±0.004 0.91±0.004 0.91±0.005 0.181±0.017 0.169±0.014 0.167±0.008

PKCD 0.70±0.009 0.69±0.009 0.68±0.010 0.043±0.006 0.026±0.006 0.027±0.005

PKG1 0.86±0.027 0.86±0.026 0.87±0.026 0.203±0.020 0.226±0.014 0.201±0.021

p90RSK 0.80±0.010 0.77±0.012 0.74±0.015 0.173±0.037 0.024±0.021 0.035±0.013

PKCE 0.67±0.017 0.65±0.020 0.64±0.020 0.100±0.006 0.098±0.015 0.092±0.022

PKCZ 0.63±0.020 0.59±0.027 0.56±0.029 0.143±0.029 0.014±0.011 0.015±0.014

PKCB 0.71±0.019 0.67±0.022 0.65±0.023 0.127±0.028 0.110±0.019 0.136±0.020

A
G

C

RSK2 0.71±0.023 0.72±0.023 0.69±0.028 0.124±0.017 0.095±0.022 0.069±0.016

ROCK1 0.76±0.012 0.75±0.011 0.74±0.010 0.146±0.032 0.110±0.025 0.136±0.019

PDK1 0.84±0.018 0.84±0.018 0.85±0.019 0.499±0.024 0.450±0.015 0.414±0.011

PKCT 0.77±0.041 0.78±0.030 0.80±0.026 0.125±0.047 0.070±0.045 0.089±0.044

PKCG 0.65±0.024 0.62±0.026 0.63±0.026 0.108±0.064 0.037±0.013 0.027±0.013

p70S6K 0.83±0.010 0.82±0.013 0.80±0.014 0.284±0.029 0.155±0.026 0.114±0.016

SGK1 0.83±0.018 0.82±0.017 0.83±0.022 0.328±0.011 0.270±0.030 0.258±0.025

Akt2 0.87±0.012 0.89±0.018 0.87±0.020 0.159±0.020 0.169±0.026 0.101±0.034

GRK2 0.86±0.014 0.84±0.014 0.77±0.017 0.529±0.033 0.371±0.028 0.144±0.015

ROCK2 0.77±0.015 0.69±0.033 0.76±0.020 0.171±0.002 0.175±0.003 0.140±0.011

PKCI 0.81±0.023 0.73±0.043 0.78±0.027 0.160±0.049 0.198±0.066 0.227±0.055

PKCH 0.90±0.026 0.85±0.028 0.83±0.037 0.561±0.038 0.345±0.051 0.327±0.065

PKN1 0.79±0.058 0.79±0.058 0.65±0.095 0.202±0.108 0.202±0.108 0.150±0.103

Average 0.79±0.018 0.77±0.021 0.76±0.022 0.21±0.029 0.162±0.026 0.141±0.025

Src 0.56±0.006 0.57±0.007 0.55±0.005 0.102±0.005 0.081±0.007 0.084±0.007

Abl 0.62±0.009 0.60±0.011 0.60±0.012 0.149±0.016 0.124±0.010 0.108±0.013

Fyn 0.59±0.009 0.57±0.011 0.56±0.012 0.121±0.009 0.067±0.014 0.084±0.010

Lck 0.53±0.012 0.54±0.011 0.54±0.013 0.063±0.016 0.050±0.014 0.062±0.015

Lyn 0.48±0.016 0.48±0.016 0.47±0.017 0.048±0.012 0.053±0.011 0.061±0.014

EGFR 0.56±0.023 0.53±0.022 0.54±0.021 0.050±0.018 0.024±0.010 0.054±0.016

Syk 0.81±0.018 0.82±0.016 0.80±0.015 0.266±0.025 0.308±0.024 0.290±0.019

InsR 0.69±0.026 0.67±0.029 0.67±0.028 0.352±0.025 0.177±0.017 0.156±0.022

T
K

JAK2 0.58±0.028 0.52±0.029 0.52±0.033 0.155±0.030 0.107±0.025 0.072±0.025

FAK 0.67±0.050 0.50±0.033 0.40±0.017 0.360±0.067 0.071±0.039 0.041±0.014

Ret 0.54±0.023 0.52±0.018 0.52±0.015 0.193±0.025 0.166±0.020 0.166±0.021

Arg 0.67±0.036 0.53±0.041 0.66±0.034 0.154±0.017 0.070±0.040 0.193±0.030

Brk 0.60±0.021 0.53±0.034 0.49±0.032 0.197±0.007 0.079±0.044 0.066±0.018
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kinase 5% 10% 20% 5% 10% 20%
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ALK 0.57±0.032 0.57±0.032 0.50±0.031 0.000±0.000 0.000±0.000 0.000±0.000

Btk 0.71±0.033 0.70±0.028 0.70±0.031 0.311±0.053 0.205±0.047 0.152±0.043

PDGFRB 0.61±0.033 0.60±0.019 0.51±0.017 0.255±0.040 0.143±0.033 0.047±0.019

JAK3 0.81±0.032 0.72±0.046 0.72±0.056 0.398±0.063 0.158±0.054 0.161±0.051

Hck 0.58±0.025 0.51±0.032 0.50±0.029 0.089±0.017 0.063±0.017 0.057±0.017

Pyk2 0.62±0.033 0.62±0.033 0.45±0.076 0.173±0.019 0.173±0.019 0.000±0.000

Average 0.21±0.0246 0.59±0.025 0.56± 0.026 0.181±0.024 0.112±0.023 0.098±0.019

CAMK2A 0.68±0.011 0.67±0.011 0.64±0.011 0.119±0.012 0.093±0.014 0.084±0.014

Chk1 0.71±0.017 0.70±0.020 0.69±0.022 0.062±0.022 0.055±0.014 0.060±0.019

AMPKA1 0.72±0.016 0.74±0.018 0.75±0.018 0.079±0.014 0.087±0.012 0.094±0.013

MAPKAPK2 0.78±0.019 0.79±0.014 0.80±0.016 0.141±0.028 0.089±0.015 0.076±0.021

PKD1 0.76±0.010 0.75±0.010 0.74±0.012 0.088±0.012 0.089±0.016 0.063±0.016

LKB1 0.81±0.009 0.80±0.011 0.79±0.015 0.579±0.018 0.497±0.005 0.486±0.010

C
A

M
K

MSK1 0.86±0.032 0.83±0.061 0.79±0.048 0.333±0.076 0.259±0.076 0.109±0.050

Chk2 0.62±0.020 0.61±0.023 0.59±0.021 0.027±0.010 0.018±0.008 0.017±0.007

Pim1 0.84±0.025 0.84±0.029 0.74±0.026 0.353±0.031 0.249±0.054 0.042±0.033

AMPKA2 0.86±0.028 0.82±0.028 0.81±0.033 0.116±0.037 0.051±0.018 0.057±0.021

MARK2 0.80±0.024 0.73±0.042 0.75±0.030 0.245±0.002 0.267±0.022 0.237±0.047

CAMK1A 0.83±0.016 0.83±0.016 0.82±0.019 0.423±0.065 0.423±0.065 0.345±0.062

DAPK3 0.67±0.035 0.55±0.054 0.49±0.038 0.194±0.065 0.000±0.016 0.000±0.013

CaMK4 0.79±0.032 0.79±0.032 0.71±0.085 0.000±0.000 0.000±0.000 0.000±0.000

PKD2 0.80±0.054 0.80±0.054 0.81±0.108 0.075±0.040 0.075±0.040 0.016±0.017

CAMK2D 0.83±0.041 0.83±0.041 0.81±0.095 0.250±0.000 0.250±0.000 0.176±0.036

Average 0.77±0.024 0.75±0.029 0.73±0.037 0.193±0.027 0.156±0.023 0.117±0.024

CK2A1 0.93±0.001 0.93±0.001 0.93±0.001 0.386±0.004 0.374±0.004 0.374±0.004

PLK1 0.78±0.007 0.76±0.009 0.73±0.010 0.121±0.016 0.102±0.014 0.091±0.010

AurB 0.79±0.010 0.78±0.009 0.77±0.010 0.086±0.010 0.077±0.018 0.035±0.005

AurA 0.74±0.012 0.74±0.016 0.74±0.015 0.101±0.012 0.038±0.018 0.015±0.012

PLK3 0.66±0.039 0.61±0.032 0.61±0.020 0.212±0.039 0.040±0.014 0.000±0.000

O
th

er

IKKA 0.69±0.013 0.67±0.015 0.62±0.011 0.241±0.046 0.077±0.028 0.029±0.009

IKKB 0.75±0.021 0.68±0.016 0.63±0.016 0.374±0.022 0.176±0.016 0.123±0.017

TBK1 0.76±0.032 0.73±0.026 0.68±0.027 0.296±0.041 0.218±0.036 0.098±0.030

CK2A2 0.91±0.036 0.85±0.022 0.82±0.020 0.441±0.063 0.188±0.057 0.021±0.015

IKKE 0.96±0.011 0.95±0.015 0.90±0.024 0.690±0.088 0.408±0.043 0.203±0.048

TTK 0.82±0.036 0.66±0.033 0.65±0.037 0.355±0.057 0.049±0.012 0.067±0.020

NEK6 0.78±0.021 0.78±0.021 0.76±0.026 0.309±0.035 0.309±0.035 0.160±0.050

NEK2 0.76±0.041 0.68±0.064 0.69±0.036 0.493±0.064 0.386±0.052 0.283±0.093

Average 0.80±0.021 0.76±0.022 0.73±0.02 0.32±0.038 0.19±0.027 0.12±0.024
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kinase 5% 10% 20% 5% 10% 20%
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PAK1 0.70±0.013 0.66±0.018 0.65±0.020 0.038±0.009 0.005±0.003 0.011±0.006

Cot 0.84±0.020 0.80±0.018 0.80±0.026 0.502±0.086 0.462±0.077 0.459±0.088

MST1 0.75±0.042 0.69±0.032 0.65±0.041 0.204±0.028 0.055±0.022 0.000±0.000

S
T

E

ASK1 0.82±0.021 0.70±0.028 0.69±0.035 0.392±0.061 0.142±0.059 0.135±0.055

MKK4 0.90±0.038 0.79±0.014 0.79±0.018 0.642±0.029 0.534±0.009 0.544±0.009

MST2 0.72±0.052 0.66±0.072 0.64±0.073 0.192±0.047 0.124±0.038 0.121±0.037

PAK2 0.73±0.074 0.53±0.069 0.45±0.048 0.360±0.078 0.087±0.049 0.000±0.000

MKK7 0.96±0.084 0.96±0.084 0.84±0.051 0.799±0.054 0.807±0.057 0.629±0.006

MEK1 0.72±0.050 0.72±0.050 0.66±0.041 0.466±0.009 0.468±0.007 0.478±0.009

Average 0.79±0.044 0.73±0.043 0.69±0.039 0.40±0.044 0.30±0.036 0.26±0.023

CK1A 0.78±0.009 0.75±0.009 0.73±0.013 0.195±0.011 0.097±0.018 0.085±0.016

C
K

1 CK1D 0.90±0.006 0.88±0.008 0.87±0.009 0.232±0.029 0.131±0.023 0.045±0.018

CK1E 0.87±0.018 0.82±0.026 0.76±0.018 0.415±0.059 0.188±0.050 0.023±0.020

VRK1 0.87±0.068 0.83±0.075 0.65±0.045 0.348±0.027 0.353±0.030 0.346±0.045

Average 0.86±0.025 0.82±0.029 0.75±0.021 0.30±0.03 0.19±0.03 0.12±0.025

ATM 0.95±0.002 0.95±0.002 0.95±0.002 0.277±0.017 0.267±0.011 0.308±0.015

A
ty

p
ic

al ATR 0.86±0.009 0.86±0.008 0.85±0.012 0.114±0.014 0.102±0.009 0.114±0.009

DNAPK 0.86±0.005 0.86±0.004 0.85±0.005 0.170±0.012 0.161±0.010 0.147±0.011

mTOR 0.81±0.017 0.77±0.014 0.77±0.016 0.220±0.040 0.091±0.018 0.077±0.019

Average 0.87±0.008 0.86±0.007 0.85±0.009 0.195±0.021 0.155±0.012 0.162±0.014

Table B.2: Sequence model accuracy across mouse kinases when different percentages of ki-
nase phosphorylation peptides were used to determine the set of k-mers added to the sequence
model. Table shows median AUC and AUC50 values for classifying kinase phosphorylation
sites with the sequence model as determined by 10-fold cross-validation across 10 randomised
data-set splits. Kinases are grouped according to their family, with the average prediction
accuracy for each family shown.

AUC AUC50

Kinase 5% 10% 20% 5% 10% 20%

ERK2 0.83±0.006 0.83±0.006 0.83±0.005 0.194±0.017 0.220±0.016 0.241±0.017

ERK1 0.82±0.010 0.80±0.011 0.80±0.012 0.164±0.021 0.131±0.013 0.118±0.015

CDK5 0.80±0.013 0.78±0.013 0.76±0.014 0.167±0.016 0.145±0.013 0.093±0.010

C
M

G
C CDK1 0.79±0.013 0.77±0.013 0.78±0.015 0.184±0.030 0.160±0.026 0.138±0.021

JNK1 0.78±0.014 0.76±0.014 0.76±0.017 0.219±0.040 0.169±0.027 0.173±0.025

P38A 0.74±0.017 0.72±0.015 0.69±0.018 0.226±0.028 0.202±0.031 0.117±0.021

CDK2 0.74±0.034 0.69±0.033 0.68±0.023 0.340±0.033 0.154±0.042 0.075±0.014

GSK3B 0.83±0.021 0.77±0.020 0.71±0.021 0.414±0.049 0.152±0.035 0.108±0.020

Continued on next page



Appendix B. Supplementary material for Chapter 4 137

Kinase 5% 10% 20% 5% 10% 20%
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Average 0.79±0.016 0.77±0.016 0.75±0.016 0.239±0.029 0.167±0.025 0.133±0.018

PKACA 0.81±0.007 0.79±0.006 0.79±0.006 0.245±0.014 0.242±0.015 0.251±0.009

PKCA 0.72±0.010 0.70±0.013 0.69±0.012 0.253±0.016 0.198±0.018 0.192±0.013

Akt1 0.81±0.011 0.82±0.011 0.81±0.010 0.383±0.047 0.413±0.052 0.348±0.060

PKCD 0.75±0.028 0.64±0.051 0.68±0.029 0.113±0.037 0.068±0.025 0.080±0.021

A
G

C p90RSK 0.87±0.013 0.81±0.020 0.90±0.009 0.216±0.037 0.175±0.044 0.371±0.041

RSK2 0.79±0.042 0.79±0.042 0.68±0.087 0.283±0.085 0.283±0.085 0.280±0.084

PKG1 0.66±0.042 0.66±0.042 0.36±0.043 0.000±0.000 0.000±0.000 0.000±0.000

p70S6K 0.88±0.029 0.88±0.029 0.76±0.045 0.394±0.062 0.394±0.062 0.326±0.078

PKCZ 0.69±0.095 0.69±0.095 0.47±0.108 0.286±0.114 0.286±0.114 0.071±0.110

PKCE 0.54±0.043 0.54±0.043 0.47±0.033 0.444±0.102 0.444±0.102 0.000±0.066

Average 0.75±0.032 0.73±0.035 0.66±0.038 0.262±0.052 0.25±0.052 0.192±0.048

Src 0.61±0.012 0.55±0.016 0.54±0.018 0.267±0.013 0.191±0.020 0.178±0.016

Fyn 0.64±0.018 0.63±0.013 0.66±0.015 0.307±0.027 0.253±0.037 0.335±0.038

T
K Abl 0.52±0.042 0.42±0.040 0.49±0.039 0.151±0.008 0.135±0.013 0.111±0.026

Lyn 0.65±0.027 0.66±0.028 0.65±0.028 0.286±0.029 0.298±0.026 0.247±0.025

Lck 0.64±0.060 0.53±0.072 0.64±0.050 0.271±0.056 0.177±0.066 0.265±0.070

Syk 0.71±0.014 0.60±0.029 0.61±0.022 0.601±0.024 0.299±0.073 0.336±0.026

Average 0.627±0.029 0.56±0.033 0.60±0.029 0.314±0.026 0.226±0.039 0.245±0.033

Table B.3: Sequence model accuracy across yeast kinases when different percentages of ki-
nase phosphorylation peptides were used to determine the set of k-mers added to the sequence
model. Table shows median AUC and AUC50 values for classifying kinase phosphorylation
sites with the sequence model as determined by 10-fold cross-validation across 10 randomised
data-set splits. Kinases are grouped according to their family, with the average prediction
accuracy for each family shown.

AUC AUC50

Kinase 5% 10% 20% 5% 10% 20%

CDC28 0.93±0.001 0.93±0.001 0.93±0.001 0.295±0.012 0.297±0.013 0.346±0.009

CTK1 0.70±0.008 0.69±0.008 0.69±0.007 0.434±0.000 0.432±0.001 0.432±0.000

MCK1 0.83±0.009 0.80±0.011 0.74±0.016 0.348±0.024 0.230±0.022 0.127±0.025

C
M

G
C PHO85 0.71±0.018 0.64±0.014 0.61±0.013 0.172±0.010 0.113±0.023 0.043±0.013

SSN3 0.74±0.057 0.67±0.051 0.63±0.041 0.295±0.064 0.027±0.016 0.000±0.000

HOG1 0.79±0.047 0.73±0.040 0.67±0.040 0.301±0.052 0.099±0.031 0.080±0.028

KNS1 0.93±0.038 0.83±0.032 0.69±0.065 0.591±0.056 0.333±0.085 0.083±0.055

SLT2 0.68±0.037 0.58±0.062 0.40±0.040 0.271±0.048 0.215±0.060 0.000±0.032

FUS3 0.54±0.035 0.54±0.035 0.53±0.052 0.217±0.004 0.217±0.004 0.048±0.040

Continued on next page



Appendix B. Supplementary material for Chapter 4 138

Kinase 5% 10% 20% 5% 10% 20%
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Average 0.76±0.028 0.71±0.028 0.65±0.03 0.325±0.03 0.218±0.028 0.129±0.022

TPK1 0.95±0.003 0.95±0.003 0.95±0.003 0.383±0.011 0.336±0.017 0.391±0.010

TPK3 0.81±0.036 0.76±0.033 0.71±0.039 0.595±0.058 0.426±0.040 0.359±0.048

A
G

C YPK1 0.74±0.043 0.68±0.061 0.62±0.046 0.443±0.087 0.327±0.073 0.167±0.078

PKH2 0.75±0.037 0.75±0.037 0.72±0.100 0.250±0.003 0.250±0.003 0.040±0.048

PKH1 0.98±0.006 0.98±0.006 0.88±0.026 0.750±0.000 0.750±0.000 0.500±0.037

PKC1 0.88±0.024 0.84±0.052 0.85±0.037 0.346±0.045 0.338±0.067 0.228±0.088

Average 0.85±0.025 0.83±0.032 0.79±0.042 0.461±0.034 0.405±0.033 0.281±0.051

SNF1 0.78±0.014 0.71±0.014 0.66±0.015 0.162±0.032 0.023±0.009 0.022±0.010

C
A

M
K FRK1 0.75±0.021 0.70±0.043 0.60±0.047 0.424±0.048 0.367±0.087 0.019±0.015

PSK2 0.74±0.047 0.58±0.026 0.51±0.029 0.413±0.055 0.016±0.013 0.004±0.014

DUN1 0.85±0.013 0.83±0.018 0.79±0.023 0.379±0.012 0.256±0.015 0.182±0.050

Average 0.78±0.024 0.71±0.026 0.64±0.029 0.345±0.037 0.167±0.031 0.057±0.023

CKA1 0.89±0.005 0.89±0.006 0.88±0.006 0.313±0.015 0.294±0.017 0.212±0.010

CKA2 0.91±0.007 0.91±0.007 0.90±0.007 0.355±0.017 0.314±0.011 0.251±0.013

O
th

er

MPS1 0.86±0.016 0.84±0.014 0.83±0.015 0.231±0.036 0.142±0.025 0.111±0.017

PTK1 0.67±0.015 0.64±0.025 0.56±0.024 0.139±0.020 0.047±0.010 0.029±0.010

PTK2 0.89±0.046 0.76±0.037 0.64±0.024 0.755±0.065 0.263±0.043 0.000±0.011

IPL1 0.91±0.009 0.91±0.008 0.92±0.012 0.276±0.018 0.298±0.028 0.236±0.020

BUD32 0.73±0.063 0.70±0.072 0.49±0.052 0.385±0.071 0.335±0.064 0.000±0.000

Average 0.84±0.023 0.81±0.024 0.74±0.02 0.351±0.035 0.242±0.028 0.12±0.012
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Table B.4: Sequence model accuracy for varying window sizes in human kinases, where kinases are grouped according to family.
Table shows accuracy values for classifying kinase phosphorylation sites with the sequence model as determined by 10-fold cross-
validation across 10 randomised data-set splits. Prediction accuracy is shown using median and standard deviation of the AUC and
AUC50 across the data-set splits. Varying window sizes were applied to determine the optimal window size on a kinase-specific basis.
The window size determined for a kinase is highlighted through bold text. Optimal window size was determined primarily through
AUC50 as a measure of the model’s accuracy at low false-positive rates. If accuracy did not increase through increasing window size,
the lower window size was chosen.

AUC AUC50

Kinase 7 9 11 13 15 7 9 11 13 15

CDK2 0.89±0.001 0.89±0.001 0.89±0.001 0.89±0.001 0.89±0.001 0.066±0.008 0.073±0.003 0.088±0.006 0.100±0.004 0.100±0.006
CDK1 0.89±0.002 0.89±0.001 0.89±0.001 0.89±0.001 0.89±0.002 0.071±0.008 0.053±0.008 0.055±0.005 0.045±0.004 0.059±0.007
ERK2 0.87±0.001 0.87±0.001 0.87±0.002 0.86±0.002 0.86±0.001 0.048±0.006 0.040±0.003 0.046±0.007 0.044±0.005 0.067±0.010
ERK1 0.87±0.003 0.86±0.004 0.86±0.004 0.86±0.004 0.86±0.005 0.034±0.011 0.045±0.009 0.042±0.012 0.059±0.014 0.066±0.012
GSK3B 0.72±0.006 0.80±0.005 0.81±0.007 0.81±0.006 0.81±0.008 0.031±0.004 0.096±0.008 0.127±0.014 0.132±0.014 0.117±0.013
P38A 0.83±0.005 0.83±0.005 0.82±0.004 0.81±0.006 0.81±0.007 0.091±0.020 0.142±0.017 0.145±0.016 0.135±0.015 0.151±0.017
JNK1 0.87±0.004 0.87±0.005 0.86±0.004 0.85±0.005 0.87±0.004 0.092±0.018 0.123±0.021 0.134±0.015 0.118±0.012 0.155±0.014
CDK5 0.85±0.007 0.85±0.009 0.84±0.009 0.84±0.008 0.84±0.007 0.016±0.007 0.037±0.007 0.050±0.007 0.027±0.006 0.026±0.010

C
M
G
C

JNK2 0.79±0.009 0.77±0.012 0.72±0.016 0.69±0.022 0.73±0.023 0.045±0.012 0.049±0.014 0.051±0.013 0.048±0.013 0.068±0.015
CDK7 0.70±0.031 0.76±0.024 0.84±0.022 0.89±0.018 0.88±0.019 0.094±0.039 0.254±0.067 0.326±0.052 0.307±0.040 0.310±0.032
GSK3A 0.85±0.023 0.90±0.022 0.89±0.022 0.90±0.028 0.90±0.026 0.281±0.032 0.405±0.034 0.446±0.033 0.438±0.031 0.458±0.045
CDK4 0.87±0.008 0.87±0.009 0.88±0.010 0.86±0.012 0.87±0.012 0.085±0.015 0.078±0.008 0.098±0.024 0.099±0.015 0.179±0.025
P38B 0.83±0.005 0.86±0.010 0.86±0.008 0.85±0.012 0.83±0.014 0.097±0.019 0.168±0.022 0.226±0.034 0.222±0.047 0.260±0.046
HIPK2 0.84±0.011 0.85±0.011 0.86±0.010 0.85±0.010 0.86±0.013 0.206±0.029 0.222±0.032 0.245±0.039 0.300±0.039 0.380±0.043
DYRK1A 0.76±0.021 0.78±0.020 0.83±0.026 0.84±0.029 0.83±0.033 0.000±0.013 0.107±0.017 0.206±0.028 0.248±0.038 0.260±0.043
CDK9 0.77±0.011 0.79±0.009 0.80±0.013 0.83±0.015 0.84±0.015 0.220±0.031 0.275±0.023 0.287±0.039 0.320±0.030 0.306±0.039
DYRK2 0.73±0.023 0.76±0.028 0.79±0.021 0.80±0.019 0.78±0.019 0.066±0.015 0.159±0.032 0.242±0.053 0.297±0.050 0.306±0.043
ERK5 0.73±0.027 0.79±0.024 0.82±0.020 0.83±0.017 0.83±0.016 0.000±0.000 0.043±0.020 0.257±0.045 0.272±0.038 0.317±0.034
CDK6 0.83±0.012 0.84±0.014 0.83±0.014 0.84±0.014 0.86±0.009 0.075±0.018 0.077±0.027 0.093±0.030 0.138±0.029 0.183±0.030
CDK3 0.76±0.039 0.77±0.039 0.73±0.031 0.77±0.051 0.76±0.050 0.000±0.000 0.065±0.005 0.152±0.035 0.235±0.003 0.357±0.045

PKACA 0.89±0.003 0.89±0.003 0.89±0.003 0.89±0.003 0.89±0.003 0.112±0.007 0.112±0.008 0.120±0.008 0.115±0.009 0.111±0.006
PKCA 0.81±0.004 0.83±0.003 0.83±0.003 0.84±0.001 0.84±0.001 0.118±0.006 0.120±0.005 0.107±0.009 0.133±0.009 0.123±0.009
Akt1 0.88±0.003 0.87±0.003 0.92±0.004 0.92±0.004 0.92±0.003 0.071±0.012 0.077±0.008 0.170±0.014 0.181±0.017 0.186±0.013
PKCD 0.69±0.007 0.70±0.004 0.71±0.006 0.70±0.009 0.69±0.008 0.032±0.011 0.039±0.007 0.038±0.009 0.043±0.006 0.034±0.008
PKG1 0.84±0.020 0.86±0.027 0.86±0.027 0.84±0.026 0.83±0.027 0.202±0.023 0.203±0.020 0.208±0.022 0.209±0.020 0.216±0.023
p90RSK 0.83±0.016 0.81±0.016 0.81±0.014 0.81±0.011 0.80±0.010 0.065±0.010 0.073±0.015 0.131±0.031 0.161±0.037 0.173±0.037
PKCE 0.68±0.015 0.65±0.014 0.65±0.015 0.63±0.015 0.67±0.017 0.085±0.013 0.097±0.013 0.096±0.004 0.096±0.000 0.101±0.006
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Kinase 7 9 11 13 15 7 9 11 13 15
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PKCZ 0.57±0.016 0.61±0.020 0.62±0.021 0.63±0.020 0.61±0.022 0.021±0.011 0.067±0.026 0.098±0.029 0.143±0.029 0.138±0.026
PKCB 0.72±0.022 0.71±0.019 0.68±0.016 0.70±0.017 0.73±0.016 0.099±0.025 0.127±0.028 0.099±0.025 0.122±0.029 0.116±0.023

A
G
C

RSK2 0.70±0.024 0.66±0.022 0.68±0.020 0.71±0.023 0.67±0.025 0.071±0.025 0.044±0.019 0.084±0.026 0.124±0.017 0.140±0.025
ROCK1 0.79±0.008 0.77±0.005 0.78±0.007 0.76±0.012 0.75±0.014 0.127±0.030 0.109±0.039 0.133±0.029 0.146±0.032 0.155±0.027
PDK1 0.84±0.018 0.81±0.012 0.78±0.011 0.78±0.011 0.78±0.012 0.499±0.024 0.476±0.014 0.472±0.017 0.465±0.017 0.461±0.016
PKCT 0.77±0.041 0.71±0.035 0.70±0.039 0.67±0.047 0.62±0.050 0.125±0.047 0.124±0.040 0.124±0.039 0.124±0.036 0.124±0.037
PKCG 0.61±0.022 0.63±0.022 0.65±0.029 0.64±0.029 0.65±0.024 0.000±0.025 0.004±0.050 0.035±0.059 0.067±0.054 0.108±0.064
p70S6K 0.79±0.015 0.79±0.014 0.82±0.008 0.83±0.010 0.82±0.009 0.037±0.010 0.117±0.023 0.228±0.027 0.284±0.029 0.271±0.024
SGK1 0.83±0.018 0.78±0.019 0.84±0.016 0.81±0.016 0.81±0.017 0.328±0.011 0.324±0.005 0.299±0.005 0.292±0.005 0.295±0.002
Akt2 0.84±0.019 0.82±0.012 0.85±0.014 0.87±0.012 0.85±0.013 0.162±0.034 0.151±0.026 0.141±0.021 0.159±0.020 0.120±0.029
GRK2 0.80±0.013 0.82±0.013 0.85±0.015 0.86±0.016 0.86±0.014 0.301±0.038 0.410±0.036 0.468±0.031 0.510±0.031 0.529±0.033
ROCK2 0.77±0.015 0.71±0.018 0.67±0.016 0.65±0.011 0.69±0.009 0.171±0.002 0.171±0.002 0.174±0.002 0.173±0.002 0.171±0.002
PKCI 0.81±0.023 0.80±0.021 0.80±0.018 0.82±0.017 0.80±0.018 0.160±0.049 0.162±0.048 0.158±0.048 0.158±0.051 0.170±0.047
PKCH 0.86±0.024 0.86±0.023 0.87±0.022 0.89±0.023 0.90±0.026 0.388±0.052 0.378±0.050 0.484±0.049 0.488±0.033 0.560±0.039
PKN1 0.76±0.048 0.79±0.058 0.74±0.054 0.69±0.063 0.68±0.057 0.140±0.079 0.202±0.108 0.158±0.090 0.202±0.103 0.258±0.130

Src 0.55±0.006 0.56±0.006 0.56±0.006 0.57±0.006 0.57±0.008 0.082±0.004 0.102±0.005 0.082±0.007 0.096±0.006 0.087±0.006
Abl 0.62±0.012 0.62±0.009 0.61±0.008 0.62±0.011 0.63±0.011 0.132±0.014 0.149±0.016 0.132±0.015 0.134±0.012 0.142±0.012
Fyn 0.59±0.009 0.60±0.013 0.59±0.016 0.59±0.017 0.60±0.018 0.121±0.009 0.108±0.007 0.114±0.010 0.108±0.014 0.116±0.019
Lck 0.54±0.012 0.55±0.012 0.53±0.012 0.54±0.017 0.56±0.016 0.044±0.009 0.032±0.009 0.063±0.016 0.042±0.015 0.039±0.014
Lyn 0.45±0.010 0.46±0.016 0.45±0.019 0.46±0.019 0.48±0.016 0.000±0.002 0.027±0.009 0.027±0.010 0.041±0.010 0.048±0.012
EGFR 0.51±0.017 0.50±0.019 0.51±0.024 0.56±0.023 0.54±0.026 0.022±0.009 0.032±0.012 0.036±0.012 0.050±0.018 0.030±0.013
Syk 0.73±0.016 0.74±0.015 0.77±0.020 0.79±0.018 0.81±0.018 0.174±0.019 0.178±0.023 0.216±0.024 0.235±0.026 0.266±0.025
InsR 0.68±0.024 0.69±0.026 0.64±0.020 0.63±0.014 0.64±0.016 0.229±0.014 0.351±0.025 0.349±0.022 0.346±0.020 0.340±0.017

T
K

JAK2 0.52±0.014 0.53±0.021 0.52±0.021 0.56±0.024 0.58±0.028 0.086±0.019 0.153±0.033 0.140±0.027 0.135±0.024 0.156±0.030
FAK 0.58±0.056 0.69±0.046 0.65±0.049 0.67±0.045 0.67±0.050 0.206±0.039 0.286±0.054 0.316±0.056 0.307±0.063 0.360±0.067
Ret 0.41±0.024 0.44±0.022 0.46±0.019 0.49±0.016 0.54±0.023 0.149±0.027 0.159±0.031 0.162±0.031 0.195±0.035 0.192±0.024
Arg 0.57±0.027 0.57±0.041 0.52±0.036 0.63±0.037 0.67±0.036 0.107±0.008 0.046±0.017 0.036±0.020 0.122±0.021 0.154±0.017
Brk 0.57±0.019 0.57±0.014 0.56±0.020 0.53±0.021 0.60±0.021 0.204±0.017 0.192±0.011 0.198±0.005 0.194±0.003 0.197±0.007
ALK 0.40±0.029 0.57±0.032 0.54±0.030 0.46±0.027 0.45±0.024 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.006
Btk 0.68±0.034 0.71±0.033 0.67±0.045 0.67±0.044 0.65±0.038 0.315±0.055 0.311±0.053 0.320±0.057 0.307±0.053 0.297±0.058
PDGFRB 0.64±0.031 0.61±0.034 0.62±0.032 0.64±0.031 0.61±0.033 0.165±0.013 0.162±0.031 0.154±0.031 0.206±0.036 0.255±0.040
JAK3 0.71±0.028 0.78±0.030 0.80±0.032 0.81±0.032 0.78±0.032 0.259±0.041 0.362±0.045 0.381±0.063 0.398±0.063 0.369±0.063
Hck 0.55±0.027 0.51±0.023 0.49±0.025 0.49±0.032 0.58±0.025 0.086±0.013 0.078±0.015 0.072±0.017 0.041±0.020 0.089±0.017
Pyk2 0.55±0.041 0.62±0.033 0.56±0.025 0.58±0.026 0.44±0.026 0.000±0.000 0.173±0.019 0.157±0.023 0.011±0.017 0.000±0.000

Continued on next page
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Kinase 7 9 11 13 15 7 9 11 13 15
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CAMK2A 0.73±0.011 0.74±0.010 0.72±0.009 0.68±0.011 0.69±0.012 0.069±0.015 0.056±0.006 0.100±0.013 0.119±0.012 0.112±0.013
Chk1 0.69±0.023 0.67±0.030 0.68±0.023 0.68±0.022 0.71±0.017 0.048±0.012 0.046±0.011 0.055±0.013 0.058±0.020 0.062±0.022
AMPKA1 0.65±0.021 0.68±0.021 0.72±0.016 0.70±0.013 0.73±0.015 0.053±0.017 0.065±0.018 0.079±0.014 0.070±0.016 0.076±0.012
MAPKAPK2 0.81±0.020 0.79±0.020 0.78±0.019 0.78±0.021 0.77±0.023 0.080±0.026 0.082±0.027 0.141±0.028 0.132±0.020 0.121±0.017
PKD1 0.70±0.018 0.71±0.018 0.76±0.010 0.73±0.011 0.70±0.011 0.016±0.010 0.021±0.012 0.088±0.012 0.087±0.017 0.085±0.021
LKB1 0.82±0.008 0.81±0.008 0.81±0.009 0.82±0.010 0.81±0.009 0.504±0.022 0.532±0.015 0.561±0.018 0.569±0.017 0.579±0.017

C
A
M
K

MSK1 0.77±0.033 0.80±0.028 0.83±0.027 0.85±0.031 0.86±0.032 0.187±0.046 0.193±0.072 0.238±0.077 0.313±0.082 0.333±0.076
Chk2 0.56±0.022 0.59±0.027 0.61±0.023 0.59±0.020 0.62±0.020 0.000±0.000 0.009±0.007 0.018±0.009 0.017±0.007 0.027±0.010
Pim1 0.69±0.021 0.75±0.031 0.85±0.025 0.84±0.024 0.84±0.025 0.180±0.055 0.277±0.046 0.324±0.045 0.338±0.035 0.352±0.032
AMPKA2 0.75±0.026 0.79±0.031 0.84±0.028 0.86±0.028 0.85±0.029 0.004±0.006 0.038±0.016 0.051±0.017 0.116±0.037 0.118±0.040
MARK2 0.75±0.026 0.80±0.024 0.76±0.022 0.76±0.032 0.74±0.031 0.243±0.008 0.245±0.002 0.247±0.019 0.245±0.004 0.247±0.013
CAMK1A 0.82±0.021 0.81±0.016 0.83±0.016 0.76±0.018 0.74±0.018 0.397±0.067 0.396±0.067 0.423±0.064 0.426±0.044 0.425±0.064
DAPK3 0.44±0.033 0.60±0.059 0.68±0.038 0.66±0.038 0.67±0.035 0.000±0.000 0.005±0.012 0.068±0.034 0.089±0.054 0.194±0.065
CaMK4 0.78±0.018 0.79±0.032 0.74±0.028 0.70±0.027 0.65±0.036 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
PKD2 0.83±0.040 0.75±0.045 0.83±0.037 0.79±0.039 0.80±0.054 0.000±0.000 0.000±0.003 0.029±0.016 0.051±0.026 0.075±0.040
CAMK2D 0.73±0.031 0.70±0.033 0.71±0.038 0.80±0.034 0.83±0.041 0.144±0.019 0.240±0.004 0.245±0.002 0.250±0.000 0.250±0.000

CK2A1 0.92±0.001 0.93±0.001 0.93±0.001 0.93±0.001 0.93±0.001 0.316±0.004 0.356±0.003 0.374±0.004 0.386±0.004 0.370±0.004
PLK1 0.78±0.012 0.76±0.012 0.78±0.010 0.78±0.008 0.78±0.007 0.098±0.010 0.093±0.012 0.077±0.016 0.087±0.014 0.121±0.016
AurB 0.79±0.010 0.77±0.008 0.76±0.009 0.77±0.011 0.77±0.010 0.086±0.010 0.075±0.010 0.067±0.011 0.084±0.011 0.073±0.008
AurA 0.74±0.012 0.74±0.010 0.73±0.011 0.75±0.011 0.72±0.014 0.101±0.012 0.093±0.013 0.082±0.019 0.079±0.017 0.070±0.015
PLK3 0.65±0.032 0.64±0.037 0.64±0.041 0.62±0.039 0.66±0.039 0.031±0.020 0.020±0.025 0.066±0.023 0.140±0.031 0.212±0.039

O
th

er

IKKA 0.68±0.019 0.64±0.014 0.64±0.011 0.66±0.012 0.69±0.013 0.040±0.012 0.060±0.016 0.110±0.024 0.131±0.028 0.241±0.046
IKKB 0.62±0.013 0.68±0.013 0.73±0.010 0.76±0.018 0.75±0.021 0.026±0.006 0.135±0.014 0.243±0.030 0.313±0.026 0.374±0.022
TBK1 0.73±0.029 0.76±0.032 0.77±0.030 0.76±0.032 0.74±0.032 0.162±0.018 0.182±0.023 0.269±0.031 0.296±0.041 0.298±0.041
CK2A2 0.88±0.021 0.86±0.019 0.86±0.024 0.89±0.026 0.91±0.036 0.241±0.040 0.391±0.069 0.389±0.061 0.426±0.059 0.441±0.063
IKKE 0.96±0.015 0.97±0.012 0.96±0.010 0.96±0.012 0.96±0.011 0.206±0.027 0.489±0.080 0.663±0.087 0.669±0.090 0.690±0.088
TTK 0.61±0.025 0.72±0.026 0.82±0.031 0.82±0.036 0.81±0.047 0.045±0.019 0.098±0.025 0.266±0.026 0.355±0.057 0.351±0.052
NEK6 0.84±0.016 0.80±0.015 0.79±0.020 0.82±0.015 0.78±0.021 0.095±0.032 0.190±0.057 0.173±0.053 0.230±0.056 0.309±0.035
NEK2 0.72±0.032 0.69±0.032 0.66±0.051 0.68±0.045 0.76±0.041 0.144±0.022 0.371±0.070 0.356±0.046 0.463±0.054 0.493±0.064

PAK1 0.73±0.007 0.70±0.013 0.66±0.014 0.70±0.014 0.69±0.012 0.023±0.004 0.038±0.009 0.023±0.009 0.037±0.007 0.038±0.008
Cot 0.82±0.014 0.80±0.017 0.81±0.020 0.84±0.020 0.83±0.025 0.496±0.091 0.500±0.088 0.500±0.089 0.502±0.086 0.497±0.088
MST1 0.73±0.028 0.77±0.028 0.76±0.025 0.74±0.040 0.75±0.042 0.115±0.001 0.118±0.001 0.161±0.016 0.165±0.018 0.205±0.028

S
T
E

ASK1 0.73±0.018 0.78±0.022 0.79±0.017 0.82±0.020 0.82±0.021 0.251±0.055 0.313±0.056 0.362±0.056 0.377±0.059 0.392±0.061
MKK4 0.88±0.030 0.86±0.035 0.89±0.042 0.90±0.038 0.87±0.040 0.601±0.004 0.602±0.007 0.618±0.018 0.646±0.029 0.652±0.035
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MST2 0.75±0.055 0.65±0.052 0.65±0.047 0.70±0.052 0.72±0.052 0.123±0.035 0.161±0.038 0.161±0.037 0.159±0.037 0.192±0.047
PAK2 0.72±0.056 0.76±0.060 0.79±0.068 0.75±0.073 0.73±0.074 0.035±0.019 0.080±0.035 0.180±0.042 0.289±0.068 0.360±0.078
MKK7 0.96±0.084 0.98±0.089 0.98±0.088 0.96±0.083 0.96±0.084 0.547±0.016 0.719±0.034 0.736±0.045 0.747±0.053 0.799±0.057
MEK1 0.71±0.050 0.73±0.056 0.72±0.050 0.74±0.044 0.75±0.032 0.497±0.040 0.485±0.011 0.466±0.010 0.476±0.009 0.476±0.006

CK1A 0.76±0.014 0.76±0.014 0.77±0.013 0.78±0.011 0.78±0.009 0.058±0.010 0.066±0.012 0.100±0.014 0.166±0.013 0.195±0.011

C
K
1 CK1D 0.85±0.007 0.86±0.010 0.87±0.008 0.88±0.007 0.90±0.006 0.047±0.017 0.128±0.028 0.118±0.026 0.183±0.030 0.232±0.029

CK1E 0.82±0.021 0.82±0.018 0.83±0.021 0.83±0.019 0.87±0.018 0.157±0.027 0.205±0.056 0.303±0.055 0.346±0.047 0.415±0.059
VRK1 0.54±0.024 0.68±0.022 0.77±0.026 0.81±0.051 0.87±0.068 0.265±0.011 0.266±0.006 0.342±0.031 0.345±0.017 0.348±0.027

ATM 0.95±0.002 0.95±0.001 0.95±0.001 0.95±0.002 0.95±0.001 0.233±0.015 0.270±0.016 0.273±0.014 0.277±0.017 0.275±0.015

A
ty
p
ic
a
l

ATR 0.90±0.007 0.88±0.007 0.86±0.009 0.85±0.011 0.82±0.012 0.106±0.008 0.106±0.014 0.114±0.014 0.103±0.010 0.099±0.016
DNAPK 0.87±0.004 0.87±0.004 0.87±0.005 0.86±0.005 0.86±0.005 0.125±0.008 0.132±0.010 0.159±0.010 0.155±0.010 0.170±0.012
mTOR 0.69±0.015 0.74±0.016 0.76±0.018 0.77±0.020 0.81±0.017 0.113±0.034 0.156±0.040 0.184±0.039 0.186±0.040 0.220±0.040

Table B.5: Sequence model accuracy for varying window sizes in mouse kinases, where kinases are grouped according to family.
Table shows accuracy values for classifying kinase phosphorylation sites with the sequence model as determined by 10-fold cross-
validation across 10 randomised data-set splits. Prediction accuracy is shown using median and standard deviation of the AUC and
AUC50 across the data-set splits. Varying window sizes were applied to determine the optimal window size on a kinase-specific basis.
The window size determined for a kinase is highlighted through bold text. Optimal window size was determined primarily through
AUC50 as a measure of the model’s accuracy at low false-positive rates. If accuracy did not increase through increasing window size,
the lower window size was chosen.

AUC AUC50

Kinase 7 9 11 13 15 7 9 11 13 15

ERK2 0.85±0.006 0.84±0.006 0.83±0.007 0.83±0.007 0.83±0.006 0.165±0.019 0.163±0.022 0.224±0.024 0.224±0.024 0.222±0.028
ERK1 0.82±0.006 0.81±0.009 0.82±0.009 0.82±0.009 0.82±0.010 0.102±0.015 0.152±0.018 0.147±0.021 0.147±0.021 0.164±0.021
CDK5 0.81±0.006 0.80±0.012 0.77±0.010 0.77±0.010 0.72±0.009 0.141±0.014 0.128±0.014 0.172±0.013 0.172±0.013 0.184±0.014

C
M
G
C CDK1 0.79±0.013 0.79±0.017 0.78±0.016 0.78±0.016 0.76±0.017 0.184±0.030 0.171±0.023 0.165±0.020 0.165±0.020 0.138±0.011

JNK1 0.73±0.012 0.78±0.014 0.74±0.018 0.74±0.018 0.71±0.023 0.187±0.029 0.219±0.040 0.222±0.024 0.222±0.024 0.202±0.020
P38A 0.73±0.018 0.72±0.026 0.70±0.020 0.70±0.020 0.74±0.017 0.184±0.023 0.136±0.018 0.180±0.017 0.180±0.017 0.226±0.028
CDK2 0.76±0.025 0.77±0.030 0.77±0.034 0.77±0.034 0.74±0.034 0.110±0.024 0.192±0.022 0.314±0.041 0.314±0.041 0.340±0.033
GSK3B 0.67±0.018 0.76±0.021 0.85±0.020 0.85±0.020 0.83±0.021 0.106±0.020 0.196±0.032 0.391±0.059 0.391±0.059 0.414±0.049

PKACA 0.81±0.007 0.79±0.009 0.79±0.009 0.78±0.008 0.78±0.008 0.245±0.014 0.182±0.012 0.149±0.016 0.163±0.012 0.180±0.013
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PKCA 0.70±0.014 0.72±0.010 0.69±0.007 0.71±0.010 0.71±0.013 0.146±0.012 0.253±0.016 0.251±0.021 0.239±0.015 0.244±0.014
Akt1 0.80±0.019 0.81±0.022 0.81±0.011 0.81±0.014 0.81±0.020 0.187±0.027 0.222±0.042 0.383±0.047 0.373±0.059 0.358±0.052
PKCD 0.75±0.028 0.74±0.033 0.72±0.037 0.65±0.041 0.69±0.046 0.113±0.037 0.087±0.032 0.098±0.034 0.097±0.040 0.052±0.031

A
G
C p90RSK 0.87±0.013 0.80±0.013 0.76±0.012 0.73±0.016 0.76±0.016 0.216±0.037 0.236±0.044 0.237±0.037 0.241±0.049 0.290±0.031

RSK2 0.79±0.042 0.75±0.051 0.68±0.069 0.64±0.073 0.60±0.067 0.283±0.085 0.286±0.086 0.284±0.085 0.284±0.085 0.284±0.085
PKG1 0.66±0.042 0.66±0.040 0.56±0.035 0.58±0.024 0.67±0.024 0.000±0.000 0.000±0.001 0.000±0.000 0.000±0.000 0.000±0.004
p70S6K 0.81±0.035 0.79±0.039 0.84±0.033 0.88±0.029 0.86±0.035 0.393±0.062 0.396±0.064 0.391±0.039 0.394±0.062 0.377±0.074
PKCZ 0.64±0.076 0.66±0.070 0.69±0.098 0.63±0.087 0.69±0.095 0.087±0.041 0.134±0.055 0.137±0.057 0.277±0.111 0.286±0.114
PKCE 0.51±0.032 0.53±0.039 0.55±0.049 0.55±0.052 0.54±0.043 0.251±0.072 0.222±0.066 0.324±0.087 0.432±0.100 0.444±0.102

Src 0.54±0.016 0.57±0.014 0.61±0.012 0.60±0.014 0.57±0.011 0.160±0.019 0.215±0.022 0.267±0.013 0.273±0.012 0.248±0.013
Fyn 0.64±0.018 0.66±0.016 0.66±0.015 0.62±0.013 0.63±0.014 0.307±0.027 0.284±0.031 0.262±0.034 0.265±0.025 0.283±0.039

T
K Abl 0.52±0.042 0.39±0.039 0.38±0.023 0.38±0.030 0.40±0.029 0.151±0.008 0.155±0.004 0.154±0.005 0.151±0.007 0.166±0.005

Lyn 0.58±0.027 0.61±0.022 0.64±0.021 0.65±0.027 0.64±0.031 0.191±0.025 0.281±0.025 0.279±0.026 0.286±0.029 0.248±0.028
Lck 0.65±0.040 0.64±0.056 0.64±0.060 0.64±0.070 0.62±0.070 0.199±0.060 0.193±0.059 0.270±0.056 0.228±0.059 0.186±0.048
Syk 0.65±0.035 0.71±0.025 0.69±0.023 0.72±0.015 0.71±0.014 0.261±0.025 0.311±0.025 0.411±0.055 0.576±0.037 0.601±0.024

Table B.6: Sequence model accuracy for varying window sizes in yeast kinases, where kinases are grouped according to family.
Table shows accuracy values for classifying kinase phosphorylation sites with the sequence model as determined by 10-fold cross-
validation across 10 randomised data-set splits. Prediction accuracy is shown using median and standard deviation of the AUC and
AUC50 across the data-set splits. Varying window sizes were applied to determine the optimal window size on a kinase-specific basis.
The window size determined for a kinase is highlighted through bold text. Optimal window size was determined primarily through
AUC50 as a measure of the model’s accuracy at low false-positive rates. If accuracy did not increase through increasing window size,
the lower window size was chosen.

AUC AUC50

Kinase 7 9 11 13 15 7 9 11 13 15

CDC28 0.93±0.001 0.93±0.001 0.93±0.001 0.93±0.001 0.93±0.001 0.243±0.008 0.242±0.008 0.234±0.010 0.262±0.013 0.295±0.012
CTK1 0.72±0.011 0.70±0.012 0.70±0.012 0.70±0.008 0.71±0.009 0.418±0.001 0.417±0.002 0.421±0.002 0.434±0.000 0.430±0.002
MCK1 0.73±0.021 0.79±0.014 0.80±0.012 0.82±0.007 0.83±0.009 0.141±0.020 0.209±0.027 0.261±0.026 0.324±0.016 0.348±0.024

C
M
G
C PHO85 0.66±0.013 0.70±0.013 0.72±0.018 0.71±0.023 0.71±0.018 0.097±0.014 0.094±0.023 0.124±0.010 0.154±0.010 0.172±0.010

SSN3 0.69±0.053 0.72±0.051 0.76±0.042 0.73±0.052 0.74±0.057 0.044±0.027 0.204±0.051 0.230±0.052 0.296±0.063 0.295±0.064
HOG1 0.66±0.042 0.66±0.046 0.70±0.049 0.75±0.046 0.79±0.047 0.042±0.015 0.048±0.027 0.063±0.024 0.208±0.065 0.301±0.052
KNS1 0.88±0.031 0.92±0.024 0.93±0.028 0.92±0.032 0.93±0.038 0.268±0.023 0.431±0.044 0.506±0.047 0.521±0.055 0.591±0.056
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SLT2 0.61±0.030 0.62±0.043 0.61±0.036 0.63±0.032 0.68±0.037 0.008±0.016 0.059±0.002 0.089±0.030 0.263±0.041 0.271±0.048
FUS3 0.54±0.025 0.54±0.035 0.51±0.031 0.45±0.025 0.47±0.029 0.108±0.036 0.217±0.004 0.220±0.002 0.222±0.000 0.222±0.000

TPK1 0.95±0.003 0.95±0.003 0.95±0.004 0.94±0.004 0.93±0.005 0.355±0.017 0.383±0.011 0.373±0.010 0.360±0.010 0.382±0.013
TPK3 0.72±0.045 0.74±0.034 0.78±0.039 0.76±0.032 0.81±0.036 0.206±0.046 0.309±0.062 0.440±0.071 0.525±0.074 0.595±0.058

A
G
C YPK1 0.76±0.037 0.80±0.039 0.80±0.045 0.74±0.043 0.68±0.037 0.241±0.052 0.303±0.076 0.352±0.091 0.443±0.087 0.398±0.083

PKH2 0.74±0.054 0.75±0.037 0.72±0.053 0.68±0.048 0.64±0.048 0.240±0.004 0.250±0.003 0.250±0.000 0.250±0.000 0.249±2.776e-17
PKH1 0.95±0.020 0.96±0.014 0.97±0.007 0.98±0.006 0.96±0.010 0.738±0.003 0.745±0.003 0.749±0.002 0.750±0.000 0.750±0.000
PKC1 0.88±0.024 0.89±0.017 0.87±0.010 0.90±0.016 0.87±0.020 0.346±0.045 0.269±0.058 0.192±0.044 0.228±0.044 0.232±0.045

SNF1 0.73±0.013 0.73±0.013 0.74±0.020 0.76±0.018 0.78±0.014 0.040±0.009 0.040±0.009 0.078±0.027 0.153±0.035 0.162±0.032

C
A
M
K FRK1 0.68±0.026 0.68±0.026 0.68±0.027 0.73±0.021 0.75±0.021 0.181±0.038 0.181±0.038 0.371±0.050 0.404±0.050 0.424±0.048

PSK2 0.71±0.027 0.71±0.027 0.73±0.040 0.73±0.047 0.74±0.047 0.374±0.044 0.374±0.044 0.393±0.049 0.402±0.050 0.413±0.055
DUN1 0.87±0.012 0.87±0.012 0.85±0.013 0.85±0.015 0.87±0.015 0.273±0.016 0.273±0.016 0.379±0.012 0.374±0.011 0.358±0.009

CKA1 0.90±0.003 0.90±0.003 0.90±0.003 0.89±0.005 0.89±0.005 0.200±0.019 0.210±0.013 0.248±0.014 0.287±0.018 0.313±0.015
CKA2 0.92±0.005 0.91±0.006 0.91±0.006 0.91±0.006 0.91±0.007 0.154±0.015 0.199±0.011 0.276±0.015 0.334±0.014 0.355±0.017

O
th

er

MPS1 0.83±0.013 0.83±0.016 0.83±0.020 0.86±0.015 0.86±0.016 0.078±0.017 0.122±0.017 0.155±0.032 0.174±0.033 0.231±0.036
PTK1 0.61±0.015 0.63±0.017 0.62±0.020 0.67±0.013 0.67±0.015 0.024±0.011 0.050±0.009 0.048±0.011 0.088±0.013 0.139±0.020
PTK2 0.79±0.027 0.81±0.034 0.86±0.045 0.86±0.042 0.89±0.046 0.302±0.049 0.419±0.033 0.517±0.049 0.640±0.049 0.755±0.065
IPL1 0.91±0.009 0.89±0.013 0.87±0.013 0.83±0.012 0.83±0.016 0.276±0.018 0.200±0.027 0.232±0.041 0.158±0.031 0.139±0.027
BUD32 0.61±0.076 0.63±0.070 0.72±0.070 0.73±0.063 0.74±0.069 0.020±0.029 0.177±0.044 0.315±0.067 0.385±0.071 0.310±0.071
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Table B.7: Comparison of prediction accuracy across human kinases between predicting
kinase-specific phosphorylation sites with a baseline model that only considers position-specific
amino acid frequencies, and the sequence model. Kinases are grouped according to their
family, with the average prediction accuracy for each family included. Results were generated
using ten-fold cross-validation repeated across ten randomised data-set splits. Shown are the
average and standard deviation of the AUC and AUC50 values.

AUC AUC50

Kinase Baseline Sequence model Baseline Sequence model

CDK2 0.86±0.001 0.89±0.001 0.06±0.002 0.10±0.004

CDK1 0.88±0.002 0.89±0.002 0.09±0.004 0.07±0.008

ERK2 0.86±0.002 0.86±0.001 0.05±0.004 0.07±0.010

ERK1 0.86±0.005 0.86±0.005 0.04±0.005 0.07±0.012

GSK3B 0.77±0.009 0.81±0.006 0.09±0.007 0.13±0.014

P38A 0.79±0.007 0.81±0.007 0.12±0.016 0.15±0.017

JNK1 0.83±0.005 0.87±0.004 0.08±0.013 0.15±0.014

CDK5 0.84±0.012 0.84±0.009 0.07±0.009 0.05±0.007

C
M

G
C

JNK2 0.75±0.015 0.73±0.023 0.03±0.013 0.07±0.015

CDK7 0.77±0.017 0.88±0.019 0.16±0.044 0.31±0.032

GSK3A 0.89±0.014 0.90±0.026 0.26±0.020 0.46±0.045

CDK4 0.85±0.012 0.87±0.012 0.07±0.007 0.18±0.025

P38B 0.79±0.006 0.83±0.014 0.07±0.015 0.26±0.046

HIPK2 0.81±0.016 0.86±0.013 0.23±0.030 0.38±0.043

DYRK1A 0.77±0.034 0.83±0.033 0.01±0.024 0.26±0.043

CDK9 0.78±0.011 0.83±0.015 0.04±0.022 0.32±0.030

DYRK2 0.68±0.032 0.78±0.019 0.00±0.000 0.31±0.043

ERK5 0.79±0.015 0.83±0.016 0.02±0.014 0.32±0.034

CDK6 0.80±0.019 0.86±0.009 0.07±0.016 0.18±0.030

CDK3 0.69±0.031 0.76±0.050 0.00±0.000 0.36±0.045

Average 0.80±0.013 0.84±0.014 0.078±0.013 0.21±0.026

PKACA 0.89±0.003 0.89±0.003 0.10±0.005 0.12±0.008

PKCA 0.82±0.004 0.84±0.001 0.10±0.004 0.13±0.009

Akt1 0.91±0.005 0.92±0.004 0.23±0.014 0.18±0.017

PKCD 0.67±0.011 0.70±0.009 0.05±0.007 0.04±0.006

PKG1 0.86±0.019 0.86±0.027 0.25±0.035 0.20±0.020

p90RSK 0.74±0.022 0.80±0.010 0.05±0.010 0.17±0.037

PKCE 0.59±0.015 0.67±0.017 0.07±0.018 0.10±0.006

PKCZ 0.55±0.022 0.63±0.020 0.01±0.007 0.14±0.029

PKCB 0.64±0.025 0.71±0.019 0.11±0.018 0.13±0.028

A
G

C

RSK2 0.68±0.031 0.71±0.023 0.08±0.012 0.12±0.017

ROCK1 0.71±0.008 0.76±0.012 0.15±0.023 0.15±0.032

PDK1 0.85±0.020 0.84±0.018 0.46±0.009 0.50±0.024
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PKCT 0.80±0.025 0.77±0.041 0.11±0.037 0.12±0.047

PKCG 0.62±0.023 0.65±0.024 0.01±0.007 0.11±0.064

p70S6K 0.78±0.013 0.83±0.010 0.11±0.026 0.28±0.029

SGK1 0.83±0.018 0.83±0.018 0.28±0.045 0.33±0.011

Akt2 0.82±0.023 0.87±0.012 0.11±0.036 0.16±0.020

GRK2 0.73±0.014 0.86±0.014 0.09±0.028 0.53±0.033

ROCK2 0.78±0.015 0.77±0.015 0.13±0.012 0.17±0.002

PKCI 0.82±0.017 0.81±0.023 0.28±0.049 0.16±0.049

PKCH 0.83±0.027 0.90±0.026 0.32±0.059 0.56±0.038

PKN1 0.77±0.021 0.79±0.058 0.29±0.148 0.20±0.108

Average 0.76±0.017 0.79±0.018 0.154±0.028 0.21±0.029

Src 0.53±0.004 0.56±0.006 0.07±0.004 0.10±0.005

Abl 0.58±0.011 0.62±0.009 0.11±0.007 0.15±0.016

Fyn 0.54±0.011 0.59±0.009 0.10±0.008 0.12±0.009

Lck 0.54±0.014 0.53±0.012 0.05±0.009 0.06±0.016

Lyn 0.50±0.017 0.48±0.016 0.08±0.011 0.05±0.012

EGFR 0.54±0.015 0.56±0.023 0.06±0.005 0.05±0.018

Syk 0.78±0.018 0.81±0.018 0.27±0.020 0.27±0.025

InsR 0.61±0.030 0.69±0.026 0.21±0.020 0.35±0.025

T
K

JAK2 0.50±0.018 0.58±0.028 0.10±0.016 0.16±0.030

FAK 0.44±0.025 0.67±0.050 0.09±0.030 0.36±0.067

Ret 0.43±0.026 0.54±0.023 0.17±0.027 0.19±0.025

Arg 0.66±0.039 0.67±0.036 0.15±0.022 0.15±0.017

Brk 0.56±0.016 0.60±0.021 0.15±0.026 0.20±0.007

ALK 0.49±0.021 0.57±0.032 0.04±0.020 0.00±0.000

Btk 0.60±0.036 0.71±0.033 0.14±0.044 0.31±0.053

PDGFRB 0.59±0.017 0.61±0.033 0.09±0.043 0.25±0.040

JAK3 0.63±0.040 0.81±0.032 0.19±0.053 0.40±0.063

Hck 0.51±0.026 0.58±0.025 0.08±0.022 0.09±0.017

Pyk2 0.64±0.027 0.62±0.033 0.00±0.021 0.17±0.019

Average 0.56±0.022 0.62±0.025 0.11±0.021 0.18±0.024

CAMK2A 0.64±0.011 0.68±0.011 0.10±0.011 0.12±0.012

Chk1 0.69±0.022 0.71±0.017 0.07±0.017 0.06±0.022

AMPKA1 0.75±0.019 0.72±0.016 0.10±0.014 0.08±0.014

MAPKAPK2 0.79±0.016 0.78±0.019 0.08±0.020 0.14±0.028

C
A

M
K PKD1 0.75±0.015 0.76±0.010 0.08±0.014 0.09±0.012

LKB1 0.77±0.013 0.81±0.009 0.47±0.003 0.58±0.018

MSK1 0.76±0.044 0.86±0.032 0.10±0.049 0.33±0.076
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Chk2 0.59±0.023 0.62±0.020 0.03±0.008 0.03±0.010

Pim1 0.72±0.018 0.84±0.025 0.01±0.010 0.35±0.031

AMPKA2 0.81±0.031 0.86±0.028 0.07±0.024 0.12±0.037

MARK2 0.80±0.024 0.80±0.024 0.26±0.020 0.24±0.002

CAMK1A 0.86±0.015 0.83±0.016 0.41±0.017 0.42±0.065

DAPK3 0.47±0.035 0.67±0.035 0.00±0.010 0.19±0.065

CaMK4 0.76±0.028 0.79±0.032 0.00±0.000 0.00±0.000

PKD2 0.84±0.038 0.80±0.054 0.02±0.011 0.07±0.040

CAMK2D 0.72±0.022 0.83±0.041 0.00±0.000 0.25±0.000

Average 0.73±0.023 0.77±0.024 0.11±0.014 0.19±0.027

CK2A1 0.93±0.002 0.93±0.001 0.36±0.005 0.39±0.004

PLK1 0.72±0.010 0.78±0.007 0.07±0.013 0.12±0.016

AurB 0.77±0.010 0.79±0.010 0.05±0.008 0.09±0.010

AurA 0.73±0.016 0.74±0.012 0.02±0.012 0.10±0.012

PLK3 0.55±0.019 0.66±0.039 0.00±0.000 0.21±0.039

O
th

er

IKKA 0.53±0.010 0.69±0.013 0.00±0.005 0.24±0.046

IKKB 0.52±0.017 0.75±0.021 0.01±0.010 0.37±0.022

TBK1 0.59±0.038 0.76±0.032 0.04±0.016 0.30±0.041

CK2A2 0.81±0.015 0.91±0.036 0.08±0.022 0.44±0.063

IKKE 0.82±0.038 0.96±0.011 0.09±0.015 0.69±0.088

TTK 0.60±0.025 0.82±0.036 0.05±0.016 0.35±0.057

NEK6 0.77±0.020 0.78±0.021 0.08±0.033 0.31±0.035

NEK2 0.63±0.024 0.76±0.041 0.00±0.019 0.49±0.064

Average 0.69±0.019 0.8±0.021 0.066±0.013 0.32±0.038

PAK1 0.69±0.012 0.70±0.013 0.03±0.007 0.04±0.009

Cot 0.79±0.022 0.84±0.020 0.48±0.098 0.50±0.086

MST1 0.61±0.035 0.75±0.042 0.00±0.014 0.20±0.028

S
T

E

ASK1 0.64±0.048 0.82±0.021 0.14±0.047 0.39±0.061

MKK4 0.86±0.012 0.90±0.038 0.54±0.035 0.64±0.029

MST2 0.64±0.035 0.72±0.052 0.12±0.035 0.19±0.047

PAK2 0.64±0.031 0.73±0.074 0.00±0.000 0.36±0.078

MKK7 0.78±0.032 0.96±0.084 0.54±0.004 0.80±0.054

MEK1 0.83±0.039 0.72±0.050 0.50±0.115 0.47±0.009

Average 0.71±0.031 0.79±0.052 0.228±0.049 0.38±0.053

CK1A 0.70±0.014 0.78±0.009 0.08±0.014 0.19±0.011

C
K

1 CK1D 0.84±0.008 0.90±0.006 0.07±0.019 0.23±0.029

CK1E 0.72±0.027 0.87±0.018 0.05±0.021 0.42±0.059
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VRK1 0.72±0.032 0.87±0.068 0.29±0.022 0.35±0.027

Average 0.75±0.02 0.86±0.025 0.124±0.019 0.30±0.031

ATM 0.95±0.002 0.95±0.002 0.37±0.014 0.28±0.017

A
ty

p
ic

al ATR 0.86±0.008 0.86±0.009 0.14±0.009 0.11±0.014

DNAPK 0.83±0.008 0.86±0.005 0.13±0.005 0.17±0.012

mTOR 0.72±0.019 0.81±0.017 0.08±0.003 0.22±0.040

Average 0.84±0.009 0.87±0.008 0.18±0.008 0.20±0.029

Table B.8: Comparison of prediction accuracy across mouse kinases between predicting
kinase-specific phosphorylation sites with a baseline model that only considers position-specific
amino acid frequencies, and the sequence model. Kinases are grouped according to their
family, with the average prediction accuracy for each family included. Results were generated
using ten-fold cross-validation repeated across ten randomised data-set splits. Shown are the
average and standard deviation of the AUC and AUC50 values.

AUC AUC50

Kinase Baseline Sequence model Baseline Sequence model

ERK2 0.81±0.006 0.83±0.006 0.27±0.011 0.19±0.017

ERK1 0.78±0.011 0.82±0.010 0.19±0.018 0.16±0.021

CDK5 0.73±0.013 0.80±0.013 0.09±0.015 0.17±0.016

C
M

G
C CDK1 0.76±0.022 0.79±0.013 0.17±0.018 0.18±0.030

JNK1 0.74±0.019 0.78±0.014 0.13±0.018 0.22±0.040

P38A 0.67±0.021 0.74±0.017 0.10±0.022 0.23±0.028

CDK2 0.76±0.020 0.74±0.034 0.10±0.020 0.34±0.033

GSK3B 0.70±0.018 0.83±0.021 0.07±0.011 0.41±0.049

Average 0.74±0.016 0.79±0.016 0.14±0.017 0.24±0.029

PKACA 0.78±0.006 0.81±0.007 0.22±0.014 0.25±0.014

PKCA 0.67±0.014 0.72±0.010 0.15±0.011 0.25±0.016

Akt1 0.82±0.015 0.81±0.011 0.34±0.049 0.38±0.047

PKCD 0.71±0.014 0.75±0.028 0.13±0.024 0.11±0.037

A
G

C p90RSK 0.90±0.015 0.87±0.013 0.31±0.048 0.22±0.037

RSK2 0.80±0.056 0.79±0.042 0.29±0.087 0.28±0.085

PKG1 0.70±0.023 0.66±0.042 0.12±0.049 0.00±0.000

p70S6K 0.82±0.032 0.88±0.029 0.18±0.062 0.39±0.062

PKCZ 0.61±0.050 0.69±0.095 0.00±0.000 0.29±0.114

PKCE 0.38±0.028 0.54±0.043 0.00±0.000 0.44±0.102

Average 0.72±0.025 0.75±0.032 0.17±0.034 0.26±0.051
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Src 0.52±0.021 0.61±0.012 0.17±0.024 0.27±0.013

Fyn 0.66±0.018 0.64±0.018 0.33±0.030 0.31±0.027

T
K Abl 0.49±0.035 0.52±0.042 0.15±0.025 0.15±0.008

Lyn 0.66±0.023 0.65±0.027 0.25±0.026 0.29±0.029

Lck 0.72±0.030 0.64±0.060 0.32±0.046 0.27±0.056

Syk 0.57±0.023 0.71±0.014 0.33±0.041 0.60±0.024

Average 0.60±0.025 0.63±0.029 0.26±0.032 0.31±0.026

Table B.9: Comparison of prediction accuracy across yeast kinases between predicting
kinase-specific phosphorylation sites with a baseline model that only considers position-specific
amino acid frequencies, and the sequence model. Kinases are grouped according to their
family, with the average prediction accuracy for each family included. Results were generated
using ten-fold cross-validation repeated across ten randomised data-set splits. Shown are the
average and standard deviation of the AUC and AUC50 values.

AUC AUC50

Kinase Baseline Sequence model Baseline Sequence model

CDC28 0.93±0.001 0.93±0.001 0.30±0.003 0.29±0.012

CTK1 0.75±0.009 0.70±0.008 0.47±0.004 0.43±0.000

MCK1 0.69±0.026 0.83±0.009 0.06±0.009 0.35±0.024

C
M

G
C PHO85 0.64±0.014 0.71±0.018 0.06±0.010 0.17±0.010

SSN3 0.54±0.035 0.74±0.057 0.00±0.000 0.29±0.064

HOG1 0.62±0.034 0.79±0.047 0.07±0.022 0.30±0.052

KNS1 0.78±0.038 0.93±0.038 0.01±0.008 0.59±0.056

SLT2 0.56±0.039 0.68±0.037 0.00±0.011 0.27±0.048

FUS3 0.51±0.055 0.54±0.035 0.00±0.000 0.22±0.004

Average 0.67±0.028 0.76±0.028 0.11±0.007 0.32±0.03

TPK1 0.94±0.004 0.95±0.003 0.39±0.013 0.38±0.011

TPK3 0.63±0.040 0.81±0.036 0.19±0.014 0.60±0.058

A
G

C YPK1 0.63±0.018 0.74±0.043 0.03±0.024 0.44±0.087

PKH2 0.77±0.028 0.75±0.037 0.07±0.046 0.25±0.003

PKH1 0.91±0.013 0.98±0.006 0.55±0.024 0.75±0.000

PKC1 0.87±0.014 0.88±0.024 0.19±0.039 0.35±0.045

Average 0.79±0.02 0.85±0.025 0.24±0.027 0.46±0.034

SNF1 0.68±0.011 0.78±0.014 0.01±0.004 0.16±0.032

T
K FRK1 0.57±0.032 0.75±0.021 0.00±0.000 0.42±0.048

PSK2 0.59±0.026 0.74±0.047 0.12±0.043 0.41±0.055

DUN1 0.73±0.027 0.85±0.013 0.07±0.020 0.38±0.012
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Average 0.64±0.024 0.78±0.024 0.05±0.017 0.34±0.037

CKA1 0.90±0.003 0.89±0.005 0.18±0.014 0.31±0.015

CKA2 0.91±0.006 0.91±0.007 0.17±0.014 0.36±0.017

O
th

er

MPS1 0.82±0.017 0.86±0.016 0.09±0.021 0.23±0.036

PTK1 0.58±0.014 0.67±0.015 0.00±0.005 0.14±0.020

PTK2 0.66±0.019 0.89±0.046 0.00±0.000 0.75±0.065

IPL1 0.91±0.010 0.91±0.009 0.28±0.017 0.28±0.018

BUD32 0.39±0.049 0.73±0.063 0.00±0.000 0.39±0.071

Average 0.74±0.017 0.84±0.023 0.10±0.01 0.35±0.035

Table B.10: Comparison of prediction accuracy across human kinases between predicting
kinase-specific phosphorylation sites using the sequence model trained on the full data-set,
and when the model is trained on the similarity-reduced data-set. Prediction accuracy is
calculated on the similarity-reduced data-set. If a kinase could not be trained on the reduced
data-set due to too few positive training samples it was marked as “N/A”. Kinases are grouped
according to their family, with the average prediction accuracy for each family included.
Results were generated using ten-fold cross-validation repeated across ten randomised data-
set splits. Shown are the average and standard deviation of the AUC and AUC50 values.

AUC AUC50

Kinase Full set Reduced set Full set Reduced set

CDK2 0.89±0.001 0.89±0.001 0.10±0.003 0.10±0.009

CDK1 0.89±0.002 0.90±0.001 0.08±0.008 0.09±0.007

ERK2 0.86±0.002 0.86±0.002 0.07±0.011 0.06±0.007

ERK1 0.85±0.005 0.85±0.002 0.06±0.010 0.05±0.008

GSK3B 0.81±0.006 0.81±0.004 0.14±0.016 0.13±0.007

P38A 0.81±0.008 0.80±0.007 0.14±0.015 0.11±0.022

JNK1 0.86±0.005 0.86±0.006 0.17±0.016 0.16±0.023

CDK5 0.84±0.010 0.83±0.008 0.04±0.004 0.03±0.006

C
M

G
C

JNK2 0.72±0.023 0.71±0.017 0.05±0.012 0.02±0.013

CDK7 0.86±0.022 0.85±0.023 0.23±0.038 0.25±0.060

GSK3A 0.89±0.028 0.91±0.023 0.46±0.050 0.45±0.052

CDK4 0.87±0.012 0.86±0.010 0.18±0.025 0.15±0.029

P38B 0.83±0.014 0.84±0.014 0.26±0.045 0.27±0.022

HIPK2 0.85±0.015 0.85±0.009 0.34±0.046 0.27±0.044

DYRK1A 0.83±0.033 0.84±0.027 0.26±0.045 0.27±0.065

CDK9 0.82±0.017 0.80±0.017 0.34±0.033 0.31±0.033

DYRK2 0.78±0.019 0.80±0.028 0.31±0.042 0.28±0.066

ERK5 0.82±0.017 0.84±0.024 0.31±0.034 0.34±0.036
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CDK6 0.85±0.009 0.83±0.012 0.17±0.027 0.09±0.033

CDK3 0.73±0.057 0.66±0.061 0.28±0.054 0.14±0.012

Average 0.84±0.015 0.83±0.015 0.198±0.027 0.178±0.027

PKACA 0.89±0.003 0.89±0.002 0.12±0.007 0.11±0.004

PKCA 0.84±0.001 0.83±0.002 0.12±0.009 0.13±0.006

Akt1 0.91±0.004 0.91±0.003 0.18±0.018 0.18±0.012

PKCD 0.70±0.009 0.69±0.007 0.04±0.007 0.04±0.009

PKG1 0.84±0.026 0.82±0.013 0.12±0.023 0.07±0.018

PKCB 0.71±0.020 0.70±0.029 0.12±0.022 0.12±0.021

PKCE 0.66±0.018 0.64±0.025 0.06±0.006 0.02±0.012

p90RSK 0.78±0.011 0.76±0.012 0.16±0.036 0.19±0.041

PKCZ 0.62±0.020 0.64±0.034 0.13±0.026 0.14±0.022

ROCK1 0.74±0.012 0.73±0.016 0.15±0.030 0.09±0.024

GRK2 0.86±0.015 0.85±0.011 0.52±0.034 0.51±0.044

A
G

C

RSK2 0.72±0.021 0.72±0.028 0.11±0.014 0.11±0.021

PDK1 0.79±0.024 0.75±0.026 0.35±0.023 0.32±0.014

p70S6K 0.82±0.010 0.83±0.021 0.26±0.029 0.25±0.052

PKCG 0.65±0.023 0.62±0.025 0.11±0.064 0.13±0.042

PKCT 0.77±0.045 0.75±0.020 0.14±0.052 0.14±0.002

SGK1 0.81±0.020 0.77±0.020 0.27±0.009 0.23±0.029

Akt2 0.86±0.015 0.84±0.021 0.19±0.023 0.20±0.015

ROCK2 0.76±0.015 0.77±0.019 0.18±0.000 0.18±0.071

PKCH 0.88±0.030 0.89±0.034 0.51±0.047 0.49±0.074

PKCI 0.81±0.022 0.80±0.034 0.16±0.049 0.16±0.064

PKN1 N/A N/A N/A N/A

Average 0.78±0.017 0.77±0.019 0.19±0.025 0.181±0.028

Src 0.55±0.006 0.55±0.006 0.09±0.004 0.08±0.009

Abl 0.62±0.009 0.62±0.011 0.14±0.015 0.15±0.012

Fyn 0.59±0.009 0.57±0.012 0.12±0.010 0.12±0.008

Lck 0.53±0.013 0.50±0.016 0.06±0.013 0.05±0.013

EGFR 0.55±0.023 0.52±0.011 0.04±0.015 0.06±0.020

InsR N/A N/A N/A N/A

Lyn 0.48±0.016 0.48±0.021 0.03±0.008 0.02±0.008

Syk 0.81±0.018 0.81±0.013 0.28±0.027 0.27±0.019

T
K

JAK2 0.57±0.027 0.55±0.021 0.14±0.027 0.14±0.016

Ret 0.50±0.027 0.53±0.026 0.12±0.026 0.18±0.036

PDGFRB 0.61±0.033 0.63±0.048 0.26±0.040 0.26±0.051

Hck 0.53±0.028 0.54±0.023 0.07±0.018 0.11±0.023
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Btk 0.74±0.039 0.73±0.024 0.28±0.046 0.20±0.025

FAK 0.67±0.050 0.63±0.032 0.36±0.067 0.35±0.067

Arg 0.67±0.037 0.67±0.033 0.16±0.018 0.18±0.054

JAK3 0.82±0.031 0.79±0.035 0.40±0.062 0.33±0.072

Brk 0.60±0.021 0.61±0.045 0.20±0.007 0.19±0.052

ALK 0.57±0.033 0.55±0.069 0.00±0.000 0.00±0.006

Pyk2 0.62±0.033 0.61±0.091 0.18±0.019 0.18±0.062

Average 0.61±0.025 0.60±0.03 0.163±0.023 0.160±0.03

CAMK2A 0.66±0.011 0.63±0.026 0.11±0.011 0.10±0.022

Chk1 0.70±0.018 0.68±0.011 0.04±0.019 0.03±0.013

AMPKA1 0.72±0.015 0.70±0.018 0.09±0.014 0.09±0.017

MAPKAPK2 0.77±0.019 0.78±0.011 0.09±0.026 0.12±0.013

Chk2 0.62±0.020 0.63±0.026 0.03±0.010 0.02±0.011

C
A

M
K PKD1 0.77±0.011 0.76±0.020 0.07±0.013 0.06±0.021

LKB1 0.73±0.013 0.73±0.026 0.41±0.027 0.43±0.035

MSK1 0.85±0.026 0.84±0.047 0.36±0.085 0.41±0.055

CAMK1A 0.81±0.018 0.79±0.022 0.37±0.037 0.24±0.002

Pim1 0.85±0.024 0.87±0.012 0.39±0.036 0.40±0.032

CaMK4 0.79±0.036 0.80±0.054 0.00±0.000 0.00±0.000

DAPK3 0.67±0.035 0.71±0.028 0.19±0.065 0.22±0.052

AMPKA2 0.86±0.030 0.87±0.021 0.13±0.040 0.14±0.025

MARK2 0.76±0.029 0.67±0.021 0.10±0.001 0.01±0.017

PKD2 0.79±0.054 0.79±0.025 0.08±0.042 0.08±0.027

CAMK2D 0.83±0.041 0.84±0.035 0.25±0.000 0.25±0.100

Average 0.76±0.025 0.76±0.025 0.169±0.026 0.16±0.028

CK2A1 0.93±0.001 0.93±0.002 0.38±0.003 0.38±0.003

PLK1 0.78±0.007 0.77±0.009 0.12±0.016 0.12±0.016

AurB 0.79±0.010 0.78±0.008 0.07±0.010 0.06±0.009

AurA 0.75±0.013 0.74±0.012 0.11±0.013 0.11±0.016

PLK3 0.66±0.039 0.66±0.025 0.22±0.040 0.21±0.044

O
th

er

IKKA 0.69±0.013 0.68±0.015 0.24±0.046 0.23±0.030

IKKB 0.75±0.021 0.75±0.015 0.37±0.022 0.37±0.017

TBK1 0.79±0.034 0.81±0.014 0.31±0.043 0.33±0.053

CK2A2 0.91±0.036 0.92±0.022 0.44±0.063 0.48±0.030

IKKE 0.96±0.011 0.95±0.016 0.69±0.088 0.68±0.038

TTK 0.84±0.038 0.84±0.026 0.38±0.061 0.41±0.041

NEK6 0.78±0.021 0.78±0.016 0.32±0.035 0.33±0.028

NEK2 0.76±0.041 0.77±0.029 0.49±0.065 0.50±0.050
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Kinase Full set Reduced set Full set Reduced set
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Average 0.80±0.022 0.80±0.021 0.32±0.039 0.324±0.029

PAK1 0.69±0.013 0.67±0.013 0.04±0.010 0.03±0.009

Cot 0.82±0.024 0.80±0.061 0.43±0.083 0.37±0.054

S
T

E

MST1 0.75±0.042 0.75±0.027 0.20±0.028 0.21±0.029

ASK1 0.79±0.024 0.77±0.045 0.36±0.056 0.40±0.053

MKK4 0.82±0.068 0.83±0.015 0.44±0.067 0.42±0.005

MST2 0.70±0.046 0.62±0.029 0.14±0.034 0.09±0.048

PAK2 0.73±0.074 0.77±0.082 0.36±0.078 0.37±0.094

MKK7 0.93±0.152 0.94±0.093 0.76±0.114 0.80±0.121

MEK1 0.63±0.067 0.67±0.086 0.31±0.006 0.29±0.088

Average 0.76±0.057 0.76±0.05 0.339±0.053 0.332±0.056

CK1A 0.77±0.009 0.77±0.010 0.19±0.011 0.17±0.015

C
K

1 CK1D 0.90±0.006 0.90±0.006 0.23±0.029 0.23±0.033

CK1E 0.87±0.018 0.87±0.032 0.42±0.059 0.43±0.066

VRK1 0.87±0.058 0.89±0.032 0.39±0.021 0.32±0.023

Average 0.85±0.023 0.86±0.02 0.306±0.03 0.288±0.034

ATM 0.95±0.002 0.95±0.002 0.29±0.017 0.28±0.015

A
ty

p
ic

al ATR 0.86±0.009 0.86±0.008 0.12±0.014 0.11±0.016

DNAPK 0.86±0.005 0.85±0.006 0.17±0.012 0.19±0.011

mTOR 0.81±0.018 0.78±0.021 0.22±0.038 0.17±0.039

Average 0.87±0.008 0.86±0.009 0.201±0.02 0.186±0.02

Table B.11: Comparison of prediction accuracy across mouse kinases between predicting
kinase-specific phosphorylation sites using the sequence model trained on the full data-set,
and when the model is trained on the similarity-reduced data-set. Prediction accuracy is
calculated on the similarity-reduced data-set. If a kinase could not be trained on the reduced
data-set due to too few positive training samples it was marked as “N/A”. Kinases are grouped
according to their family, with the average prediction accuracy for each family included.
Results were generated using ten-fold cross-validation repeated across ten randomised data-
set splits. Shown are the average and standard deviation of the AUC and AUC50 values.

AUC AUC50

Kinase Full set Reduced set Full set Reduced set

ERK2 0.83±0.006 0.83±0.009 0.19±0.017 0.19±0.019

ERK1 0.82±0.010 0.83±0.019 0.16±0.021 0.18±0.030

CDK5 0.79±0.013 0.79±0.011 0.15±0.016 0.13±0.032

C
M

G
C CDK1 0.79±0.013 0.78±0.018 0.19±0.031 0.17±0.026

JNK1 0.77±0.014 0.78±0.020 0.22±0.040 0.26±0.039
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Kinase Full set Reduced set Full set Reduced set
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P38A 0.74±0.017 0.73±0.021 0.23±0.028 0.21±0.025

CDK2 0.74±0.034 0.76±0.031 0.34±0.033 0.34±0.044

GSK3B 0.83±0.021 0.83±0.016 0.41±0.045 0.36±0.037

Average 0.79±0.016 0.79±0.018 0.237±0.029 0.229±0.031

PKACA 0.81±0.007 0.81±0.007 0.25±0.014 0.24±0.023

PKCA 0.72±0.010 0.70±0.014 0.25±0.016 0.25±0.027

Akt1 0.82±0.012 0.80±0.022 0.40±0.049 0.43±0.037

PKCD 0.75±0.028 0.73±0.043 0.11±0.037 0.11±0.026

A
G

C p90RSK 0.87±0.014 0.82±0.019 0.24±0.041 0.22±0.035

RSK2 0.76±0.043 0.79±0.040 0.17±0.050 0.00±0.000

PKG1 0.66±0.042 0.68±0.015 0.00±0.000 0.00±0.000

p70S6K 0.88±0.029 0.89±0.033 0.39±0.062 0.39±0.063

PKCZ 0.69±0.095 0.68±0.057 0.29±0.114 0.29±0.086

PKCE 0.54±0.043 0.53±0.057 0.44±0.102 0.44±0.089

Average 0.75±0.032 0.74±0.031 0.254±0.049 0.237±0.039

Src 0.59±0.012 0.57±0.014 0.24±0.014 0.22±0.020

Fyn 0.64±0.019 0.63±0.013 0.31±0.027 0.30±0.024

T
K Abl 0.52±0.041 0.49±0.036 0.15±0.008 0.15±0.038

Lyn 0.65±0.027 0.65±0.016 0.29±0.030 0.28±0.027

Lck 0.65±0.064 0.64±0.044 0.31±0.065 0.30±0.061

Syk 0.71±0.014 0.70±0.024 0.60±0.024 0.57±0.055

Average 0.63±0.03 0.61±0.024 0.318±0.028 0.302±0.038

Table B.12: Comparison of prediction accuracy across mouse kinases between predicting
kinase-specific phosphorylation sites using the sequence model trained on the full data-set,
and when the model is trained on the similarity-reduced data-set. Prediction accuracy is
calculated on the similarity-reduced data-set. If a kinase could not be trained on the reduced
data-set due to too few positive training samples it was marked as “N/A”. Kinases are grouped
according to their family, with the average prediction accuracy for each family included.
Results were generated using ten-fold cross-validation repeated across ten randomised data-
set splits. Shown are the average and standard deviation of the AUC and AUC50 values.

AUC AUC50

Kinase Full set Reduced set Full set Reduced set

CDC28 0.93±0.001 0.93±0.001 0.30±0.012 0.30±0.010

CTK1 0.53±0.012 0.68±0.018 0.15±0.000 0.16±0.014

MCK1 0.83±0.009 0.81±0.015 0.35±0.024 0.33±0.041

C
M

G
C PHO85 0.71±0.018 0.69±0.023 0.17±0.010 0.18±0.013
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Kinase Full set Reduced set Full set Reduced set
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SSN3 0.73±0.058 0.74±0.051 0.29±0.064 0.29±0.066

HOG1 0.79±0.046 0.82±0.024 0.30±0.052 0.35±0.030

KNS1 0.93±0.038 0.95±0.038 0.59±0.056 0.68±0.088

SLT2 0.68±0.037 0.69±0.041 0.27±0.047 0.28±0.029

FUS3 0.54±0.035 0.54±0.046 0.22±0.004 0.22±0.065

Average 0.74±0.028 0.76±0.028 0.293±0.03 0.31±0.04

TPK1 0.96±0.002 0.96±0.002 0.38±0.012 0.38±0.015

TPK3 0.80±0.038 0.82±0.034 0.57±0.062 0.62±0.047

A
G

C YPK1 0.76±0.049 0.74±0.061 0.49±0.095 0.49±0.068

PKH2 0.74±0.037 0.74±0.040 0.25±0.003 0.25±0.074

PKH1 0.98±0.006 0.98±0.030 0.75±0.000 0.75±0.075

PKC1 0.88±0.024 0.88±0.040 0.35±0.045 0.37±0.062

Average 0.85±0.026 0.85±0.034 0.464±0.036 0.476±0.057

SNF1 0.78±0.014 0.78±0.019 0.16±0.032 0.16±0.027

T
K FRK1 0.75±0.021 0.74±0.043 0.42±0.048 0.42±0.054

PSK2 0.74±0.047 0.74±0.035 0.41±0.055 0.45±0.066

DUN1 0.85±0.013 0.85±0.013 0.38±0.012 0.35±0.051

Average 0.78±0.024 0.78±0.027 0.34±0.037 0.35±0.049

CKA1 0.89±0.005 0.90±0.007 0.31±0.015 0.32±0.019

CKA2 0.91±0.007 0.91±0.004 0.36±0.017 0.36±0.023

O
th

er

MPS1 0.86±0.016 0.86±0.021 0.23±0.036 0.22±0.038

PTK1 0.67±0.015 0.67±0.024 0.14±0.020 0.15±0.012

PTK2 0.89±0.046 0.87±0.028 0.75±0.065 0.75±0.087

IPL1 0.91±0.009 0.91±0.016 0.28±0.018 0.29±0.023

BUD32 0.73±0.063 0.78±0.043 0.39±0.071 0.40±0.059

Average 0.86±0.023 0.84±0.021 0.351±0.035 0.355±0.037

Table B.13: Combined model accuracy across human kinases when compared to the context
only model. Kinases are grouped according to their family, with the average prediction accu-
racy for each family included. Table shows accuracy values for classifying kinase substrates
with both models as determined by 10-fold cross-validation across 10 randomised data-set
splits. Prediction accuracy is shown using median and standard deviation of the AUC and
AUC50 across the data-set splits.

AUC AUC50

Kinase Context model Combined model Context model Combined model

CDK2 0.69±0.003 0.76±0.002 0.097±0.0016 0.110±0.0024
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Kinase Context model Combined model Context model Combined model
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CDK1 0.77±0.002 0.79±0.002 0.088±0.0035 0.101±0.0036

ERK2 0.74±0.002 0.78±0.003 0.139±0.0022 0.155±0.0047

ERK1 0.78±0.003 0.81±0.003 0.125±0.0021 0.147±0.0048

GSK3B 0.74±0.002 0.79±0.005 0.151±0.0015 0.178±0.0032

P38A 0.80±0.003 0.80±0.006 0.132±0.0012 0.167±0.0115

JNK1 0.84±0.002 0.87±0.010 0.263±0.0021 0.310±0.0097

CDK5 0.78±0.006 0.82±0.007 0.183±0.0059 0.230±0.0081

C
M

G
C

JNK2 0.83±0.008 0.89±0.022 0.216±0.0113 0.313±0.0247

CDK7 0.93±0.034 0.95±0.048 0.560±0.0117 0.705±0.0327

GSK3A 0.81±0.042 0.91±0.028 0.378±0.0258 0.610±0.0551

CDK4 0.87±0.002 0.88±0.006 0.309±0.0263 0.494±0.0219

P38B 0.78±0.071 0.75±0.058 0.198±0.0330 0.410±0.0466

HIPK2 0.89±0.033 0.98±0.054 0.365±0.0155 0.780±0.0618

DYRK1A 0.92±0.032 0.90±0.015 0.698±0.0361 0.617±0.0257

CDK9 0.96±0.045 0.90±0.043 0.548±0.0175 0.656±0.0348

DYRK2 0.63±0.038 0.91±0.010 0.363±0.0098 0.849±0.0552

ERK5 0.82±0.078 0.97±0.141 0.549±0.0270 0.709±0.1387

CDK6 0.83±0.012 0.82±0.010 0.539±0.0201 0.698±0.0172

CDK3 0.54±0.047 0.57±0.064 0.284±0.0473 0.407±0.0822

Average 0.80±0.023 0.84±0.027 0.31±0.015 0.43±0.032

PKACA 0.65±0.002 0.68±0.003 0.060±0.0004 0.064±0.0027

PKCA 0.69±0.002 0.71±0.004 0.070±0.0017 0.086±0.0046

Akt1 0.78±0.002 0.81±0.004 0.181±0.0037 0.225±0.0035

PKCD 0.65±0.004 0.65±0.008 0.116±0.0023 0.135±0.0053

PKG1 0.83±0.010 0.84±0.020 0.335±0.0064 0.421±0.0342

p90RSK 0.88±0.004 0.88±0.010 0.242±0.0083 0.334±0.0205

PKCE 0.70±0.009 0.76±0.012 0.030±0.0051 0.205±0.0255

PKCZ 0.71±0.005 0.68±0.012 0.136±0.0084 0.199±0.0182

PKCB 0.68±0.009 0.76±0.018 0.166±0.0121 0.194±0.0214

A
G

C

RSK2 0.77±0.006 0.82±0.016 0.290±0.0041 0.364±0.0378

ROCK1 0.84±0.008 0.89±0.016 0.392±0.0097 0.571±0.0458

PDK1 0.94±0.029 0.97±0.030 0.402±0.0171 0.767±0.0231

PKCT 0.80±0.013 0.78±0.011 0.225±0.0056 0.312±0.0499

PKCG 0.72±0.027 0.79±0.011 0.199±0.0325 0.270±0.0474

p70S6K 0.89±0.018 0.91±0.030 0.398±0.0035 0.502±0.0234

SGK1 0.83±0.015 0.87±0.028 0.254±0.0139 0.342±0.0209

Akt2 0.84±0.049 0.80±0.029 0.119±0.0212 0.237±0.0614

GRK2 0.88±0.014 0.68±0.050 0.323±0.0113 0.385±0.0874

ROCK2 0.48±0.061 0.66±0.067 0.181±0.0195 0.193±0.0194
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Kinase Context model Combined model Context model Combined model
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PKCI 0.50±0.112 0.77±0.114 0.101±0.0604 0.541±0.0872

PKCH 0.72±0.042 0.98±0.053 0.376±0.0294 0.738±0.0460

PKN1 0.46±0.102 0.58±0.085 0.130±0.0507 0.330±0.0777

Average 0.74±0.025 0.79±0.029 0.21±0.015 0.34±0.035

Src 0.75±0.002 0.78±0.002 0.062±0.0018 0.063±0.0023

Abl 0.85±0.003 0.86±0.005 0.153±0.0026 0.171±0.0043

Fyn 0.78±0.005 0.81±0.007 0.110±0.0018 0.118±0.0048

Lck 0.84±0.004 0.85±0.007 0.172±0.0082 0.190±0.0089

Lyn 0.77±0.010 0.83±0.010 0.104±0.0031 0.169±0.0188

EGFR 0.76±0.010 0.84±0.017 0.110±0.0143 0.145±0.0253

Syk 0.81±0.015 0.90±0.009 0.324±0.0060 0.444±0.0354

InsR 0.82±0.019 0.87±0.007 0.378±0.0182 0.456±0.0263

T
K

JAK2 0.83±0.019 0.84±0.018 0.422±0.0111 0.476±0.0209

FAK 0.81±0.033 0.83±0.040 0.295±0.0291 0.533±0.0554

Ret 0.91±0.001 0.91±0.003 0.493±0.0127 0.598±0.0558

Arg 0.77±0.068 0.74±0.044 0.400±0.0391 0.434±0.0757

Brk 0.81±0.038 0.81±0.042 0.613±0.0624 0.556±0.0583

ALK 0.80±0.104 0.76±0.120 0.296±0.0183 0.375±0.1237

Btk 0.79±0.010 0.81±0.013 0.469±0.0223 0.654±0.0304

PDGFRB 0.86±0.010 0.89±0.021 0.532±0.0125 0.764±0.0482

JAK3 0.71±0.050 0.73±0.033 0.511±0.0549 0.606±0.0430

Hck 0.84±0.090 0.79±0.054 0.291±0.0205 0.389±0.0408

Pyk2 0.84±0.014 0.76±0.037 0.243±0.0458 0.320±0.0555

Average 0.81±0.027 0.82±0.026 0.31±0.02 0.39±0.039

CAMK2A 0.67±0.015 0.69±0.011 0.057±0.0108 0.153±0.0212

Chk1 0.77±0.008 0.78±0.007 0.161±0.0028 0.172±0.0128

AMPKA1 0.76±0.010 0.79±0.009 0.132±0.0111 0.217±0.0064

MAPKAPK2 0.81±0.007 0.83±0.013 0.302±0.0062 0.365±0.0313

PKD1 0.68±0.009 0.70±0.018 0.145±0.0086 0.197±0.0177

LKB1 0.86±0.009 0.97±0.005 0.446±0.0073 0.840±0.0089

C
A

M
K

MSK1 0.78±0.057 0.72±0.031 0.354±0.0399 0.433±0.0538

Chk2 0.86±0.009 0.89±0.011 0.314±0.0154 0.382±0.0172

Pim1 0.80±0.039 0.94±0.068 0.422±0.0231 0.564±0.0522

AMPKA2 0.31±0.075 0.64±0.024 0.000±0.0000 0.291±0.0295

MARK2 0.88±0.058 0.91±0.060 0.478±0.0236 0.608±0.0464

CAMK1A 0.72±0.082 0.61±0.056 0.495±0.0482 0.283±0.0429

DAPK3 0.71±0.063 0.88±0.036 0.442±0.0155 0.825±0.0776

CaMK4 0.43±0.060 0.62±0.046 0.226±0.0396 0.424±0.0050
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PKD2 0.42±0.081 0.62±0.081 0.000±0.0000 0.284±0.0693

CAMK2D 0.16±0.046 0.57±0.038 0.000±0.0000 0.332±0.0495

Average 0.66±0.039 0.76±0.032 0.25±0.016 0.40±0.034

CK2A1 0.73±0.003 0.77±0.002 0.116±0.0013 0.156±0.0043

PLK1 0.81±0.010 0.82±0.007 0.143±0.0055 0.131±0.0067

AurB 0.78±0.014 0.85±0.010 0.183±0.0139 0.168±0.0177

AurA 0.73±0.011 0.74±0.015 0.175±0.0104 0.198±0.0136

PLK3 0.89±0.026 0.84±0.025 0.419±0.0230 0.688±0.0414

O
th

er

IKKA 0.84±0.023 0.81±0.022 0.515±0.0052 0.583±0.0093

IKKB 0.89±0.005 0.87±0.019 0.322±0.0075 0.530±0.0323

TBK1 0.99±0.004 0.99±0.001 0.735±0.0329 0.752±0.0320

CK2A2 0.83±0.071 0.75±0.056 0.324±0.0162 0.625±0.0500

IKKE 0.78±0.135 0.85±0.125 0.557±0.1298 0.554±0.1165

TTK 0.69±0.107 0.71±0.108 0.201±0.0920 0.579±0.1296

NEK6 0.55±0.011 0.67±0.058 0.447±0.0042 0.321±0.0415

NEK2 0.93±0.028 0.91±0.036 0.552±0.0404 0.762±0.0805

Average 0.80±0.034 0.81±0.037 0.36±0.029 0.47±0.044

PAK1 0.76±0.025 0.73±0.011 0.191±0.0104 0.182±0.0121

Cot 0.84±0.103 0.85±0.116 0.159±0.0380 0.593±0.1458

MST1 0.63±0.047 0.65±0.036 0.436±0.0289 0.307±0.0396

S
T

E

ASK1 0.88±0.109 0.94±0.118 0.681±0.0982 0.784±0.1428

MKK4 0.70±0.033 0.90±0.036 0.428±0.0445 0.868±0.0556

MST2 0.85±0.038 0.84±0.046 0.780±0.0466 0.697±0.0595

PAK2 0.66±0.053 0.80±0.051 0.143±0.0488 0.423±0.0513

MKK7 0.65±0.094 0.85±0.129 0.375±0.0615 0.820±0.1301

MEK1 0.60±0.026 0.60±0.026 0.451±0.0057 0.455±0.0114

Average 0.73±0.059 0.80±0.063 0.40±0.043 0.57±0.072

CK1A 0.76±0.019 0.78±0.016 0.290±0.0236 0.204±0.0333

C
K

1 CK1D 0.75±0.051 0.83±0.031 0.315±0.0278 0.379±0.0544

CK1E 0.80±0.055 0.95±0.037 0.364±0.0592 0.560±0.0664

VRK1 0.85±0.014 0.68±0.028 0.583±0.0184 0.493±0.0157

Average 0.79±0.035 0.81±0.028 0.39±0.032 0.41±0.042

ATM 0.83±0.011 0.86±0.013 0.242±0.0042 0.302±0.0054

A
ty

p
ic

al ATR 0.90±0.024 0.89±0.027 0.391±0.0081 0.478±0.0161

DNAPK 0.92±0.003 0.93±0.005 0.314±0.0050 0.404±0.0120

mTOR 0.75±0.020 0.88±0.011 0.504±0.0037 0.624±0.0275

Average 0.85±0.015 0.89±0.014 0.36±0.005 0.45±0.015
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Table B.14: Combined model accuracy across mouse kinases when compared to the context
only model. Kinases are grouped according to their family, with the average prediction accu-
racy for each family included. Table shows accuracy values for classifying kinase substrates
with both models as determined by 10-fold cross-validation across 10 randomised data-set
splits. Prediction accuracy is shown using median and standard deviation of the AUC and
AUC50 across the data-set splits.

AUC AUC50

Kinase Context model Combined model Context model Combined model

ERK2 0.73±0.010 0.77±0.012 0.269±0.0030 0.280±0.0113

ERK1 0.73±0.013 0.70±0.014 0.301±0.0064 0.341±0.0141

CDK5 0.61±0.015 0.70±0.017 0.329±0.0076 0.246±0.0333

C
M

G
C CDK1 0.79±0.013 0.79±0.013 0.413±0.0061 0.496±0.0234

JNK1 0.71±0.009 0.76±0.015 0.414±0.0048 0.453±0.0428

P38A 0.72±0.011 0.80±0.027 0.350±0.0189 0.446±0.0445

CDK2 0.86±0.003 0.92±0.047 0.608±0.0223 0.724±0.0795

GSK3B 0.69±0.015 0.86±0.016 0.377±0.0044 0.576±0.0331

Average 0.73±0.011 0.79±0.02 0.38±0.009 0.45±0.035

PKACA 0.45±0.022 0.61±0.009 0.107±0.0044 0.128±0.0209

PKCA 0.44±0.020 0.54±0.014 0.070±0.0102 0.118±0.0217

Akt1 0.73±0.006 0.83±0.012 0.141±0.0154 0.459±0.0443

PKCD 0.65±0.028 0.61±0.029 0.270±0.0141 0.296±0.0441

A
G

C p90RSK 0.28±0.052 0.61±0.020 0.000±0.0000 0.222±0.0020

RSK2 0.49±0.021 0.58±0.079 0.346±0.0056 0.427±0.0852

PKG1 0.19±0.052 0.41±0.067 0.000±0.0000 0.167±0.0500

p70S6K 0.42±0.094 0.65±0.094 0.287±0.0865 0.292±0.0965

PKCZ 0.56±0.020 0.74±0.039 0.435±0.0051 0.490±0.0829

PKCE 0.55±0.016 0.76±0.070 0.385±0.0101 0.489±0.1074

Average 0.48±0.033 0.63±0.043 0.20±0.015 0.31±0.056

Src 0.79±0.012 0.85±0.011 0.311±0.0039 0.362±0.0068

Fyn 0.64±0.011 0.78±0.031 0.151±0.0273 0.553±0.0550

T
K Abl 0.41±0.025 0.62±0.036 0.176±0.0086 0.211±0.0517

Lyn 0.83±0.044 0.81±0.033 0.460±0.0269 0.595±0.0354

Lck 0.81±0.114 0.94±0.162 0.434±0.0521 0.731±0.1625

Syk 0.18±0.062 0.68±0.037 0.000±0.0000 0.332±0.0000

Average 0.61±0.045 0.78±0.052 0.26±0.02 0.46±0.052
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Table B.15: Combined model accuracy across yeast kinases when compared to the context
only model. Kinases are grouped according to their family, with the average prediction accu-
racy for each family included. Table shows accuracy values for classifying kinase substrates
with both models as determined by 10-fold cross-validation across 10 randomised data-set
splits. Prediction accuracy is shown using median and standard deviation of the AUC and
AUC50 across the data-set splits.

AUC AUC50

Kinase Context model Combined model Context model Combined model

CDC28 0.63±0.003 0.76±0.003 0.148±0.0033 0.274±0.0082

CTK1 0.46±0.021 0.48±0.027 0.041±0.0119 0.079±0.0188

MCK1 0.73±0.038 0.84±0.034 0.303±0.0104 0.427±0.0264

C
M

G
C PHO85 0.83±0.012 0.81±0.012 0.449±0.0207 0.396±0.0387

SSN3 0.54±0.018 0.85±0.035 0.176±0.0180 0.667±0.0531

HOG1 0.85±0.003 0.79±0.020 0.463±0.0121 0.551±0.0375

KNS1 0.41±0.044 0.77±0.054 0.000±0.0000 0.500±0.0573

SLT2 0.78±0.116 0.79±0.135 0.211±0.0710 0.571±0.1434

FUS3 0.66±0.040 0.71±0.055 0.161±0.0299 0.500±0.0667

Average 0.65±0.033 0.76±0.042 0.22±0.02 0.44±0.05

TPK1 0.75±0.007 0.73±0.006 0.349±0.0092 0.333±0.0138

TPK3 0.16±0.026 0.70±0.045 0.000±0.0000 0.583±0.0472

A
G

C YPK1 0.46±0.033 0.74±0.033 0.000±0.0000 0.390±0.0367

PKH2 0.41±0.131 0.44±0.125 0.236±0.0953 0.097±0.0462

PKH1 0.84±0.048 0.84±0.048 0.820±0.0513 0.818±0.0456

PKC1 0.81±0.015 0.81±0.029 0.129±0.0609 0.665±0.0991

Average 0.57±0.043 0.71±0.048 0.26±0.036 0.48±0.048

SNF1 0.64±0.018 0.72±0.027 0.183±0.0149 0.217±0.0244

C
A

M
K FRK1 0.57±0.085 0.68±0.021 0.109±0.0350 0.301±0.0387

PSK2 0.80±0.016 0.77±0.023 0.143±0.0408 0.488±0.0643

DUN1 0.55±0.025 0.61±0.014 0.150±0.0243 0.328±0.0187

Average 0.64±0.036 0.70±0.021 0.15±0.029 0.33±0.036

CKA1 0.76±0.033 0.77±0.024 0.253±0.0177 0.280±0.0192

CKA2 0.79±0.018 0.78±0.011 0.226±0.0074 0.307±0.0257

O
th

er

MPS1 0.80±0.020 0.79±0.017 0.372±0.0069 0.397±0.0082

PTK1 0.42±0.025 0.62±0.023 0.036±0.0140 0.165±0.0249

PTK2 0.54±0.066 0.99±0.084 0.201±0.0605 0.888±0.0651

IPL1 0.71±0.056 0.72±0.100 0.373±0.0234 0.371±0.0462

BUD32 0.21±0.037 0.60±0.054 0.000±0.0000 0.426±0.0424

Average 0.60±0.036 0.75±0.045 0.21±0.019 0.40±0.033
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Table B.16: Sensitivity differences for kinases at 99.9% specificity, where kinases are
grouped according to their family, with the average sensitivity difference for each family in-
cluded. The sensitivity difference between PhosphoPICK and each alternative method was
measured for predicting kinase-specific phosphorylation sites out of all potential phosphory-
lation sites in our set of substrates. If we were unable to identify predictions for a kinase, it
was marked as “N/A”.

Sensitivity difference between PhosphoPICK and alternative

Kinase Sequence model GPS NetPhorest NetworKIN

CDK2 0.0009±0.0031 0.0371±0.0126 0.0205±0.0126 -0.0329±0.0126

CDK1 0.0625±0.0057 0.0920±0.0115 0.0684±0.0115 -0.0523±0.0115

ERK2 0.0166±0.0132 0.0238±0.0111 0.0151±0.0111 -0.0746±0.0111

ERK1 0.0341±0.0193 0.0606±0.0197 0.0312±0.0197 -0.0512±0.0197

GSK3B 0.0558±0.0114 0.0240±0.0161 0.0473±0.0161 0.0085±0.0161

P38A 0.0405±0.0186 0.1230±0.0202 0.1500±0.0202 0.1390±0.0202

JNK1 0.0624±0.0311 0.1680±0.0253 0.1800±0.0253 0.1090±0.0253

CDK5 0.0161±0.0161 0.0500±0.0168 -0.0145±0.0168 -0.1270±0.0168

C
M

G
C JNK2 -0.0143±0.0293 0.0171±0.0229 0.0457±0.0229 -0.0114±0.0229

CDK7 0.0160±0.0408 -0.1840±0.0408 -0.0240±0.0408 -0.1440±0.0408

GSK3A 0.1120±0.0176 0.3820±0.0474 0.3240±0.0474 0.3820±0.0474

CDK4 0.1520±0.0307 0.1740±0.0307 0.3040±0.0307 0.3040±0.0307

P38B 0.1830±0.0660 0.2610±0.0660 0.3720±0.0660 0.3720±0.0660

HIPK2 0.1300±0.0812 N/A 0.5050±0.0723 0.4380±0.0723

DYRK1A 0.3200±0.0400 0.440±0.0327 N/A N/A

CDK9 0.0407±0.0452 N/A N/A N/A

DYRK2 0.4870±0.0875 N/A N/A N/A

ERK5 0.2140±0.0714 0.1140±0.0857 0.3520±0.0857 0.1620±0.0857

CDK6 0.2830±0.0428 0.3500±0.0373 0.4500±0.0373 0.3830±0.0373

CDK3 0.2250±0.0935 N/A 0.5620±0.0839 0.3120±0.0839

Average 0.1220±0.0382 0.1330±0.0310 0.1990±0.0365 0.1250±0.0365

PKACA 0.0398±0.0121 0.0587±0.0095 0.0180±0.00947 -0.1070±0.0095

PKCA 0.0104±0.0064 0.0367±0.0138 0.0033±0.0138 -0.0004±0.0138

Akt1 0.0732±0.0222 N/A 0.0098±0.0147 -0.0098±0.0147

PKCD 0.0156±0.0124 0.0156±0.0124 0.0267±0.0124 0.0267±0.0124

PKG1 0.0533±0.0371 0.0400±0.0359 0.1730±0.0359 0.0400±0.0359

p90RSK 0.0632±0.0268 0.2130±0.0415 0.1610±0.0415 0.1340±0.0415

PKCE 0.0025±0.0075 -0.0225±0.0075 0.1020±0.0075 0.0275±0.0075

PKCZ 0.0178±0.0133 -0.0244±0.0306 0.1310±0.0306 0.0867±0.0306

PKCB 0.0103±0.0235 0.0538±0.0179 0.0538±0.0179 0.0795±0.0179

RSK2 0.0968±0.0323 -0.0226±0.0355 0.1710±0.0355 -0.0226±0.0355

A
G

C ROCK1 0.0260±0.0180 -0.0200±0.0390 0.0800±0.0390 0.0200±0.0390

PDK1 0.0276±0.0207 -0.0552±0.0442 0.2900±0.0442 -0.0207±0.0442

Continued on next page
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Kinase Sequence model GPS NetPhorest NetworKIN

Continued from previous page

PKCT 0.0000±0.0000 -0.0708±0.0458 0.0542±0.0458 -0.0708±0.0458

PKCG 0.0231±0.0188 -0.1040±0.0517 0.0885±0.0517 0.0500±0.0517

p70S6K 0.0636±0.0370 0.1940±0.0411 0.1330±0.0411 -0.0182±0.0411

SGK1 -5e-14±0.0421 0.2230±0.0414 0.0692±0.0414 -0.1230±0.0414

Akt2 0.2000±0.0516 0.0333±0.0683 0.1000±0.0683 0.1000±0.0683

GRK2 0.0026±0.0079 0.4890±0.0376 0.4630±0.0376 0.1740±0.0376

ROCK2 0.0000±0.0000 N/A 0.1820±0.0000 0.0909±1.39e-17

PKCI -0.0167±0.0333 N/A 0.0500±0.0553 0.1330±0.0553

PKCH 0.2330±0.0745 0.3070±0.0680 0.7070±0.0680 0.5070±0.0680

PKN1 0.0500±0.0764 N/A N/A N/A

Average 0.0451±0.0261 0.0747±0.0356 0.1460±0.0339 0.0522±0.0339

Src 0.0081±0.0079 -0.0152±0.0084 -0.0011±0.0084 -0.0187±0.0084

Abl 0.0176±0.0164 -0.0228±0.0130 0.0327±0.0130 0.0438±0.0130

Fyn 0.0056±0.0124 0.0022±0.00667 0.0022±0.0067 -0.0200±0.0067

Lck 0.0260±0.0114 -0.0151±0.0207 0.0260±0.0207 -0.0699±0.0207

Lyn -0.0020±0.0163 -0.0863±0.00961 0.0314±0.0096 -0.0078±0.0096

EGFR 0.0122±0.0100 -0.1860±0.0143 0.0184±0.0143 -0.1240±0.0143

Syk 0.1160±0.0329 -0.0047±0.0357 0.2740±0.0357 0.2740±0.0357

InsR 0.0343±0.0308 0.2460±0.0343 0.3600±0.0343 0.3310±0.0343

T
K

JAK2 0.0000±0.0000 0.0129±0.0214 N/A N/A

FAK 0.1190±0.0519 0.3750±0.0791 N/A N/A

Ret 0.0370±0.0331 -0.3110±0.0474 N/A N/A

Arg 0.2000±0.0408 0.0182±0.0408 0.1090±0.0408 -0.0727±0.0408

Brk 0.0000±0.0000 0.0000±0.0000 0.1430±0.0000 -0.0714±1.39e-17

ALK 0.0000±0.0000 -0.2220±0.0000 N/A N/A

Btk -0.1380±0.0462 -0.2310±2.78e-17 0.0000±0.0000 -0.0769±1.39e-17

PDGFRB 0.0261±0.0288 0.1610±0.0552 0.1610±0.0552 0.1170±0.0552

JAK3 0.0312±0.0576 0.1500±0.0800 N/A N/A

Hck 0.0850±0.0391 -0.2150±0.0391 0.0850±0.0391 0.0850±0.0391

Pyk2 0.2290±0.1140 0.0857±0.1140 N/A N/A

Average 0.0424±0.0289 -0.0136±0.0326 0.0955±0.0214 0.0300±0.0214

CAMK2A 0.0397±0.0191 0.0159±0.0159 0.0450±0.0159 -0.0697±0.0159

Chk1 0.0102±0.0137 -0.0204±0.0241 N/A N/A

AMPKA1 0.0511±0.0195 0.0170±0.0266 -0.0255±0.0266 -0.0894±0.0266

MAPKAPK2 0.0364±0.0253 -0.0545±0.0396 N/A N/A

PKD1 0.0511±0.0217 -0.0319±0.0238 0.0957±0.0238 0.0532±0.0238

LKB1 0.0290±0.0097 0.1840±0.0207 0.5970±0.0207 0.3660±0.0207

C
A

M
K

MSK1 0.3000±0.0856 N/A N/A N/A

Continued on next page
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Kinase Sequence model GPS NetPhorest NetworKIN

Continued from previous page

Chk2 0.0560±0.0215 -0.056±0.0307 N/A N/A

Pim1 0.0609±0.0651 N/A 0.2700±0.0696 0.1390±0.0696

AMPKA2 0.2120±0.0288 0.2060±0.0395 0.2060±0.0395 0.2650±0.0395

MARK2 0.1080±0.0534 N/A N/A N/A

CAMK1A 0.0222±0.0667 0.4440±0.0000 0.4440±0.0000 0.4440±0.0000

DAPK3 0.4310±0.0705 0.2850±0.0846 0.5150±0.0846 0.2300±0.0846

CaMK4 0.0500±0.0829 -0.2000±0.0829 -0.2000±0.0829 -0.0750±0.0829

PKD2 0.2250±0.0500 N/A 0.2250±0.0500 -0.0250±0.0500

CAMK2D 0.2120±0.0800 N/A 0.3380±0.0800 0.4630±0.0800

Average 0.1180±0.0446 0.0717±0.0353 0.2280±0.0449 0.1550±0.0449

CK2A1 0.0206±0.0036 0.0714±0.0052 0.0775±0.0052 -0.0435±0.0052

PLK1 0.0284±0.0120 0.0157±0.0118 N/A N/A

AurB 0.0480±0.0148 -0.0040±0.0104 N/A N/A

AurA 0.0056±0.0208 -0.0056±0.0299 -0.0056±0.0299 -0.0611±0.0299

PLK3 0.1320±0.0516 N/A N/A N/A

O
th

er

IKKA 0.0759±0.0371 0.0241±0.0438 0.2310±0.0438 0.0387±0.0438

IKKB 0.0333±0.0282 0.2130±0.0345 0.3130±0.0345 0.2860±0.0345

TBK1 0.1690±0.0462 N/A N/A N/A

CK2A2 0.1880±0.0559 0.6130±0.0468 0.5500±0.0468 0.1750±0.0468

IKKE -0.0889±0.1430 N/A N/A N/A

TTK 0.2440±0.1660 N/A 0.481±0.1650 0.4810±0.1650

NEK6 0.1800±0.0748 0.1000±1.39e-17 N/A N/A

NEK2 -0.2420±0.1310 0.1170±0.0667 0.1170±0.0667 0.0333±0.0667

Average 0.0610±0.0605 0.1270±0.0277 0.2520±0.0560 0.1300±0.0560

PAK1 0.0107±0.0143 0.0179±0.0080 0.0357±0.0080 -0.1790±0.0080

Cot 0.0778±0.0509 0.4830±0.1290 N/A N/A

MST1 0.1180±0.0372 N/A 0.2650±0.0395 0.1740±0.0395

S
T

E

ASK1 0.1070±0.0659 N/A N/A N/A

MKK4 0.3120±0.1010 N/A 0.7750±0.1220 0.1500±0.1220

MST2 0.1500±0.0500 N/A 0.2630±0.0673 0.0403±0.0673

PAK2 0.1690±0.0576 0.1920±0.1050 0.4230±0.1050 0.3460±0.1050

MKK7 0.0500±0.0829 -0.0250±0.0500 0.8500±0.0500 0.4750±0.0500

MEK1 0.0000±0.0000 0.2000±2.78e-17 0.4000±5.55e-17 -0.2000±2.78e-17

Average 0.1110±0.0511 0.1740±0.0584 0.4300±0.0560 0.1150±0.0560

CK1A 0.0133±0.0109 -0.0267±0.0133 0.1510±0.0133 0.1400±0.0133

C
K

1 CK1D 0.0216±0.0162 0.1860±0.0351 0.2410±0.0351 0.1860±0.0351

CK1E 0.0652±0.0446 -0.0565±0.0516 0.4220±0.0516 0.0739±0.0516

VRK1 0.2640±0.0636 0.4360±0.0545 N/A N/A
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Average 0.0910±0.0338 0.1350±0.0387 0.2710±0.0334 0.1330±0.0334

ATM 0.0866±0.0223 0.0779±0.0312 0.1420±0.0312 -0.0616±0.0312

A
ty

p
ic

a
l

ATR 0.0885±0.0167 0.1180±0.0161 0.0689±0.0161 -0.0623±0.0161

DNAPK 0.0242±0.0146 -0.0088±0.0176 0.1230±0.0176 0.1120±0.0176

mTOR 0.0526±0.0235 0.1950±0.0443 N/A N/A

Average 0.0630±0.0193 0.0955±0.0273 0.1110±0.0216 -0.0040±0.0216

Table B.17: Sensitivity differences for kinases at 99% specificity, where kinases are
grouped according to their family, with the average sensitivity difference for each family
included. The sensitivity difference between PhosphoPICK and each alternative method was
measured for predicting kinase-specific phosphorylation sites out of all potential phosphory-
lation sites in our set of substrates. If we were unable to identify predictions for a kinase, it
was marked as “N/A”.

sensitivity difference between PhosphoPICK and alternative

Kinase Sequence model GPS NetPhorest NetworKIN

CDK2 0.0406±0.0081 0.0878±0.0242 -0.0023±0.0242 0.0023±0.0242

CDK1 0.1850±0.0270 0.3290±0.0144 0.1510±0.0144 -0.0318±0.0144

ERK2 0.1030±0.0173 -0.0570±0.0303 0.0355±0.0303 -0.1180±0.0303

ERK1 0.1070±0.0244 -2e-15±0.0268 0.1120±0.0268 -0.1290±0.0268

GSK3B 0.0775±0.0147 0.0814±0.0233 0.0581±0.0233 -0.0349±0.0233

P38A 0.0910±0.0256 0.0748±0.0304 0.3160±0.0304 0.0743±0.0304

JNK1 0.2250±0.0309 0.3530±0.0361 0.4820±0.0361 0.0824±0.0361

CDK5 0.0548±0.0207 0.1060±0.0308 -0.1350±0.0308 -0.3130±0.0308

C
M

G
C JNK2 0.2400±0.0343 0.1110±0.0469 0.3110±0.0469 -0.2890±0.0469

CDK7 0.4360±0.0631 0.1880±0.0256 0.3880±0.0256 0.2280±0.0256

GSK3A 0.2530±0.0459 0.4180±0.0668 0.4180±0.0668 0.3000±0.0668

CDK4 0.4370±0.0471 0.4130±0.0466 0.7610±0.0466 0.6740±0.0466

P38B 0.2830±0.0678 0.2940±0.0434 0.5720±0.0434 0.5100±0.0434

HIPK2 0.3100±0.0700 N/A 0.8400±0.0539 0.5730±0.0539

DYRK1A 0.3730±0.0680 0.5270±0.0200 N/A N/A

CDK9 0.3960±0.0598 N/A N/A N/A

DYRK2 0.6190±0.0763 N/A N/A N/A

ERK5 0.5240±0.1280 0.3430±0.1490 0.6760±0.1490 0.0095±0.1490

CDK6 0.5170±0.0522 0.6070±0.0133 0.8070±0.0133 0.4400±0.0133

CDK3 0.1750±0.0612 N/A 0.0625±0.0839 -0.1880±0.0839

Average 0.272±0.0471 0.242±0.0392 0.344±0.0439 0.105±0.0439

PKACA -0.0031±0.0163 -0.0938±0.0184 -0.0548±0.0184 -0.1390±0.0184

PKCA 0.0263±0.0099 0.0230±0.0158 0.0304±0.0158 -0.0437±0.0158

Akt1 0.0458±0.0155 N/A -0.0856±0.0264 -0.0268±0.0264

PKCD 0.0789±0.0153 -0.0322±0.0246 0.0122±0.0246 -0.0433±0.0246
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PKG1 0.0900±0.0473 -0.0667±0.0365 0.200±0.0365 -0.0333±0.0365

p90RSK 0.1500±0.0457 0.2110±0.0372 0.1320±0.0372 0.1580±0.0372

PKCE 0.1950±0.0245 0.1130±0.0301 0.2120±0.0301 0.0125±0.0301

PKCZ 0.0578±0.0178 0.0133±0.0267 0.0800±0.0267 -0.0089±0.0267

PKCB 0.0872±0.0515 0.1900±0.0576 0.0615±0.0576 0.2670±0.0576

RSK2 0.1900±0.0488 0.1740±0.0413 0.2390±0.0413 0.0774±0.0413

A
G

C ROCK1 0.3120±0.0634 0.1020±0.0648 0.3420±0.0648 0.0220±0.0648

PDK1 0.1480±0.0269 0.0448±0.0269 0.1480±0.0269 -0.0241±0.0269

PKCT 0.0958±0.0267 -0.0833±0.0527 0.0833±0.0527 -0.2080±0.0527

PKCG 0.3310±0.0734 0.1620±0.0985 0.3150±0.0985 0.3150±0.0985

p70S6K 0.1640±0.0545 0.1580±0.0182 0.0364±0.0182 0.0667±0.0182

SGK1 0.1190±0.0607 0.0423±0.0607 0.0808±0.0607 -0.1120±0.0607

Akt2 0.1930±0.0629 -0.0800±0.0653 -0.2800±0.0653 -0.0133±0.0653

GRK2 0.2320±0.0349 0.4500±0.0299 0.7130±0.0299 0.1610±0.0299

ROCK2 0.0909±1.39e-17 N/A 0.1820±0.0000 -0.2730±5.55e-17

PKCI 0.4170±0.1180 N/A 0.4250±0.1260 0.4250±0.1260

PKCH 0.1670±0.1090 0.4330±0.0683 0.6330±0.0683 0.3000±0.0683

PKN1 0.0833±0.1540 N/A N/A N/A

Average 0.1490±0.0489 0.0977±0.0430 0.1670±0.0441 0.0419±0.0441

Src 0.0403±0.0117 -0.0929±0.0163 0.0131±0.0163 -0.0364±0.0163

Abl 0.0319±0.0199 -0.0995±0.0294 0.0560±0.0294 0.0560±0.0294

Fyn 0.0411±0.0186 -0.0011±0.0256 0.0433±0.0256 -0.1120±0.0256

Lck 0.0795±0.0279 -0.1600±0.0253 0.0726±0.0253 -0.2420±0.0253

Lyn 0.0333±0.0197 -0.2220±0.0197 0.0529±0.0197 -0.0647±0.0197

EGFR 0.0449±0.0327 -0.3370±0.0345 -0.0306±0.0345 -0.3370±0.0345

Syk 0.2860±0.0642 0.0140±0.0599 0.6420±0.0599 0.2520±0.0599

InsR 0.0429±0.0263 0.0143±0.0367 0.3290±0.0367 0.0429±0.0367

T
K

JAK2 0.1290±0.0289 0.0774±0.0214 N/A N/A

FAK 0.3190±0.0763 0.5750±0.0673 N/A N/A

Ret 0.1040±0.0363 -0.2070±0.0602 N/A N/A

Arg 0.4830±0.0972 0.2770±0.1070 0.2770±0.1070 0.0046±0.1070

Brk 0.4930±0.0500 0.5430±0.0350 0.6860±0.0350 0.1140±0.0350

ALK 0.4560±0.1160 0.2330±0.1160 N/A N/A

Btk 0.4150±0.0923 0.1620±0.0803 0.4690±0.0803 0.2380±0.0803

PDGFRB 0.2090±0.0543 0.2090±0.0543 0.2520±0.0543 -0.0522±0.0543

JAK3 0.2870±0.0893 0.1380±0.0545 N/A N/A

Hck 0.5000±0.0316 0.1300±0.0400 0.5300±0.0400 0.2300±0.0400

Pyk2 0.3860±0.0915 0.2430±0.0915 N/A N/A
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Average 0.2310±0.0518 0.0787±0.0513 0.2610±0.0434 0.0072±0.0434

CAMK2A 0.0302±0.0132 -0.2680±0.0218 -0.0221±0.0218 -0.1040±0.0218

Chk1 0.1140±0.0410 0.0449±0.0363 N/A N/A

AMPKA1 0.0723±0.0255 -0.0447±0.0322 0.0617±0.0322 -0.0872±0.0322

MAPKAPK2 0.2480±0.0400 0.0250±0.0561 N/A N/A

PKD1 0.1040±0.0461 0.1280±0.0404 0.1700±0.0404 -0.0638±0.0404

C
A

M
K LKB1 0.1190±0.0521 0.2030±0.0541 0.5210±0.0541 0.1750±0.0541

MSK1 0.2000±0.0789 N/A N/A N/A

Chk2 0.1560±0.0496 -0.0700±0.0361 N/A N/A

Pim1 0.2870±0.0758 N/A 0.3780±0.0675 0.2480±0.0675

AMPKA2 0.3410±0.0634 0.1650±0.0353 0.3410±0.0353 0.2240±0.0353

MARK2 0.2830±0.0764 N/A N/A N/A

CAMK1A 0.0000±0.0000 0.4440±0.0000 0.4440±0.0000 -0.1110±0.0000

DAPK3 0.6540±0.0788 0.4310±0.0510 0.8920±0.0510 -0.1080±0.0510

CaMK4 0.4750±0.0500 -0.1250±0.0000 0.1250±0.0000 0.1250±0.0000

PKD2 0.1380±0.1180 N/A 0.0500±0.1000 -0.0750±0.1000

CAMK2D 0.2250±0.0750 N/A 0.3500±0.0750 0.3500±0.0750

Average 0.2150±0.0552 0.0848±0.0330 0.3010±0.0434 0.0520±0.0434

CK2A1 -0.0009±0.0070 0.0206±0.0073 0.0575±0.0073 -0.0348±0.0073

PLK1 0.0873±0.0203 0.0725±0.0229 N/A N/A

AurB 0.1290±0.0260 -0.0080±0.0208 N/A N/A

AurA 0.0778±0.0408 0.0556±0.0329 0.1110±0.0329 0.1110±0.0329

PLK3 0.4730±0.0649 N/A N/A N/A

O
th

er

IKKA 0.2690±0.0530 0.1860±0.0229 0.4540±0.0229 -0.0074±0.0229

IKKB 0.3380±0.0377 0.5380±0.0324 0.6640±0.0324 0.3130±0.0324

TBK1 0.4960±0.0631 N/A N/A N/A

CK2A2 0.3440±0.0504 0.4250±0.0375 0.4250±0.0375 0.2370±0.0375

IKKE 0.0833±0.0756 N/A N/A N/A

TTK 0.3440±0.2440 N/A 0.5750±0.2270 0.4500±0.2270

NEK6 0.1300±0.0458 0.0000±0.0000 N/A N/A

NEK2 0.3170±0.1280 0.7000±0.1190 0.6170±0.1190 0.2830±0.1190

Average 0.2370±0.0659 0.2210±0.0329 0.4150±0.0684 0.1930±0.0684

PAK1 0.1050±0.0168 -0.0536±0.0179 0.0000±0.0179 -0.2320±0.0179

Cot 0.1330±0.0619 0.4170±0.1300 N/A N/A

MST1 0.2410±0.0412 N/A 0.3740±0.0176 0.1920±0.0176

S
T

E

ASK1 0.3070±0.0848 N/A N/A N/A

MKK4 0.3620±0.0375 N/A 0.7750±0.1220 -0.1000±0.1220

MST2 0.5060±0.0813 N/A 0.6810±0.0187 0.2370±0.0188
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PAK2 0.2850±0.0913 0.4460±0.0462 0.5230±0.0462 0.2920±0.0462

MKK7 0.0250±0.0750 0.0000±0.0000 0.8750±0.0000 0.0000±0.0000

MEK1 0.1200±0.0980 0.1200±0.0980 0.5200±0.0980 -0.0800±0.0980

Average 0.2320±0.0653 0.1860±0.0583 0.5350±0.0458 0.0441±0.0458

CK1A 0.0378±0.0218 0.0100±0.0265 0.1990±0.0265 0.0211±0.0265

C
K

1 CK1D 0.2920±0.0315 0.5220±0.0343 0.4950±0.0343 0.1700±0.0343

CK1E 0.3040±0.0802 0.2610±0.0550 0.6520±0.0550 0.2170±0.0550

VRK1 0.3090±0.0833 0.4270±0.0582 N/A N/A

Average 0.2360±0.0542 0.3050±0.0435 0.4490±0.0386 0.1360±0.0386

ATM 0.0895±0.0258 0.0959±0.0203 0.2350±0.0203 -0.1250±0.0203

A
ty

p
ic

al ATR 0.3690±0.0499 0.2480±0.0405 0.3300±0.0405 -0.1790±0.0405

DNAPK 0.1560±0.0343 0.0659±0.0269 0.3960±0.0269 0.0769±0.0269

mTOR 0.3840±0.0591 0.4890±0.0542 N/A N/A

Average 0.2500±0.0423 0.2250±0.0355 0.3200±0.0292 -0.0756±0.0292

Table B.18: Gene ontology (GO) term enrichment analysis for predicted Akt1 substrates.
Shown are all positions that the kinase was found to be significantly over-represented at.

position GO term Description E-value

All GO:0019901 protein kinase binding 0.0007

2 N/A N/A N/A

3 GO:0010907 positive regulation of glucose metabolic process 0.013

3 GO:0002053 positive regulation of mesenchymal cell proliferation 0.013

4 GO:0008543 fibroblast growth factor receptor signaling pathway 0.0017

4 GO:0019901 protein kinase binding 0.002

4 GO:0007173 epidermal growth factor receptor signalling pathway 0.022

4 GO:0032000 positive regulation of fatty acid beta-oxidation 0.007

5 GO:0090343 positive regulation of cell ageing 0.006

6 GO:0005158 insulin receptor binding 0.003

6 GO:0010907 positive regulation of glucose metabolic process 0.006

6 GO:0032000 positive regulation of fatty acid beta-oxidation 0.037
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Table B.19: Gene ontology (GO) term enrichment analysis for predicted AMPKA1 sub-
strates. Shown are all positions that the kinase was found to be significantly over-represented
at.

position GO term Description E-value

All GO:0019901 protein kinase binding 0.0001

All GO:0008543 fibroblast growth factor receptor signaling pathway 0.001

All GO:0005829 cytosol 0.001

All GO:0048011 neurotrophin TRK receptor signaling pathway 0.003

All GO:0008286 insulin receptor signaling pathway 0.003

All GO:0097149 centralspindlin complex 0.006

All GO:0005158 insulin receptor binding 0.022

All GO:0005737 cytoplasm 0.026

All GO:0007173 epidermal growth factor receptor signaling pathway 0.036

All GO:0006302 double-strand break repair 0.037

All GO:0007049 cell cycle 0.039

All GO:0007265 Ras protein signal transduction 0.042

All GO:0005515 protein binding 0.048

3 GO:0010907 positive regulation of glucose metabolic process 0.014

3 GO:0002053 positive regulation of mesenchymal cell proliferation 0.014

4 GO:0019901 protein kinase binding 4.26e-05

4 GO:0008543 fibroblast growth factor receptor signaling pathway 0.0004

4 GO:0007173 epidermal growth factor receptor signaling pathway 0.0008

4 GO:0048011 neurotrophin TRK receptor signaling pathway 0.0011

4 GO:0038095 Fc-epsilon receptor signaling pathway 0.0014

4 GO:0048015 phosphatidylinositol-mediated signaling 0.0016

4 GO:0008286 insulin receptor signaling pathway 0.0029

4 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 0.007

4 GO:0005158 insulin receptor binding 0.023

4 GO:0010907 positive regulation of glucose metabolic process 0.029

4 GO:0005829 cytosol 0.036

Table B.20: Gene ontology (GO) term enrichment analysis for predicted AurB substrates.
Shown are all positions that the kinase was found to be significantly over-represented at.

position GO term Description E-value

All GO:0005694 chromosome 1.47e-05

All GO:0000786 nucleosome 0.0003

All GO:0006334 nucleosome assembly 0.011

Continued on next page
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position GO term Description E-value

Continued from previous page

All GO:0043065 positive regulation of apoptotic process 0.02

2 N/A N/A N/A

3 GO:0005694 chromosome 7.59e-08

3 GO:0000786 nucleosome 1.17e-06

3 GO:0006334 nucleosome assembly 2.49e-05

3 GO:0046982 protein heterodimerization activity 0.011

4 GO:0019886 antigen processing and presentation of 0.0007

exogenous peptide antigen via MHC class II

4 GO:0007018 microtubule-based movement 0.003

4 GO:0097149 centralspindlin complex 0.022

4 GO:0051256 mitotic spindle midzone assembly 0.022

4 GO:0005874 microtubule 0.032

Table B.21: Gene ontology (GO) term enrichment analysis for predicted CDK2 substrates.
Shown are all positions that the kinase was found to be significantly over-represented at.

position GO term Description E-value

All GO:0005694 chromosome 5.68e-05

All GO:0007049 cell cycle 0.0008

All GO:0005634 nucleus 0.011

All GO:0006281 DNA repair 0.022

-4 N/A N/A N/A

-5 N/A N/A N/A

-6 N/A N/A N/A

-7 N/A N/A N/A

Table B.22: Gene ontology (GO) term enrichment analysis for predicted p70S6K substrates.
Shown are all positions that the kinase was found to be significantly over-represented at.

position GO term Description E-value

All GO:0048011 neurotrophin TRK receptor signalling pathway 0.0002

Continued on next page
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position GO term Description E-value
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All GO:0008286 insulin receptor signalling pathway 0.003

All GO:0007173 epidermal growth factor receptor signalling pathway 0.003

All GO:0008543 fibroblast growth factor receptor signalling pathway 0.013

All GO:0019901 protein kinase binding 0.037

3 GO:0010907 positive regulation of glucose metabolic process 0.008

3 GO:0008286 insulin receptor signalling pathway 0.01

4 GO:0008543 fibroblast growth factor receptor signalling pathway 2.78e-05

4 GO:0007173 epidermal growth factor receptor signalling pathway 6.85e-05

4 GO:0008286 insulin receptor signalling pathway 0.0002

4 GO:0038095 Fc-epsilon receptor signalling pathway 0.0027

4 GO:0048015 phosphatidylinositol-mediated signalling 0.0027

4 GO:0019901 protein kinase binding 0.018

4 GO:0048011 neurotrophin TRK receptor signalling pathway 0.031

4 GO:0005158 insulin receptor binding 0.033

4 GO:0090343 positive regulation of cell ageing 0.036

4 GO:0010907 positive regulation of glucose metabolic process 0.036

4 GO:0004871 signal transducer activity 0.049

5 GO:0006974 cellular response to DNA damage stimulus 0.0005

5 GO:0090343 positive regulation of cell ageing 0.0079

5 GO:0031465 Cul4B-RING E3 ubiquitin ligase complex 0.0079

5 GO:0006281 DNA repair 0.049

6 GO:0010907 positive regulation of glucose metabolic process 0.003

6 GO:0032000 positive regulation of fatty acid beta-oxidation 0.015

6 GO:0045725 positive regulation of glycogen biosynthetic process 0.025

6 GO:0043548 phosphatidylinositol 3-kinase binding 0.025

6 GO:0048011 neurotrophin TRK receptor signalling pathway 0.032

6 GO:0046326 positive regulation of glucose import 0.038

6 GO:0008286 insulin receptor signalling pathway 0.048

Table B.23: Gene ontology (GO) term enrichment analysis for predicted p90RSK substrates.
Shown are all positions that the kinase was found to be significantly over-represented at.

position GO term Description E-value

All GO:0019901 protein kinase binding 0.0002

All GO:0045087 innate immune response 0.003

All GO:0048011 neurotrophin TRK receptor signalling pathway 0.018

Continued on next page
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position GO term Description E-value
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All GO:0038095 Fc-epsilon receptor signalling pathway 0.033

All GO:0006974 cellular response to DNA damage stimulus 0.033

3 GO:0010907 positive regulation of glucose metabolic process 0.018

3 GO:0019901 protein kinase binding 0.0196

3 GO:0002053 positive regulation of mesenchymal cell proliferation 0.02

3 GO:0042169 SH2 domain binding 0.02

4 GO:0008543 fibroblast growth factor receptor signalling pathway 0.0012

4 GO:0007173 epidermal growth factor receptor signalling pathway 0.0027

4 GO:0019901 protein kinase binding 0.0033

4 GO:0048015 phosphatidylinositol-mediated signalling 0.0042

4 GO:0008286 insulin receptor signalling pathway 0.0077

4 GO:0006974 cellular response to DNA damage stimulus 0.027

4 GO:0010907 positive regulation of glucose metabolic process 0.041

4 GO:0005158 insulin receptor binding 0.042

-5 N/A N/A N/A

Table B.24: Gene ontology (GO) term enrichment analysis for predicted PAK1 substrates.
Shown are all positions that the kinase was found to be significantly over-represented at.

position GO term Description E-value

All GO:0019901 protein kinase binding 1.1e-05

All GO:0006915 apoptotic process 0.0003

All GO:0050731 positive regulation of peptidyl-tyrosine phosphorylation 0.014

-2 N/A N/A N/A

3 GO:0010907 positive regulation of glucose metabolic process 0.016

3 GO:0002053 positive regulation of mesenchymal cell proliferation 0.018

4 GO:0019901 protein kinase binding 3.8e-05

4 GO:0032000 positive regulation of fatty acid beta-oxidation 0.0003

4 GO:0005158 insulin receptor binding 0.0078

4 GO:0048015 phosphatidylinositol-mediated signalling 0.01

4 GO:0010907 positive regulation of glucose metabolic process 0.013

4 GO:0032467 positive regulation of cytokinesis 0.014

4 GO:0008286 insulin receptor signalling pathway 0.017

Continued on next page
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position GO term Description E-value
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4 GO:0051256 mitotic spindle midzone assembly 0.039

4 GO:0097149 centralspindlin complex 0.039

4 GO:0008543 fibroblast growth factor receptor signalling pathway 0.041

Table B.25: Gene ontology (GO) term enrichment analysis for predicted PKA substrates.
Shown are all positions that the kinase was found to be significantly over-represented at.

position GO term Description E-value

All GO:0004871 signal transducer activity 3.33e-05

All GO:0048011 neurotrophin TRK receptor signalling pathway 0.0001

All GO:0007165 signal transduction 0.0005

All GO:0005737 cytoplasm 0.0017

All GO:0005515 protein binding 0.004

All GO:0043065 positive regulation of apoptotic process 0.01

All GO:0019901 protein kinase binding 0.029

All GO:0007399 nervous system development 0.049

2 GO:0042301 phosphate ion binding 0.0302

3 N/A N/A N/A

4 GO:0008543 fibroblast growth factor receptor signalling pathway 0.0001

4 GO:0007173 epidermal growth factor receptor signalling pathway 0.0003

4 GO:0019901 protein kinase binding 0.0006

4 GO:0032000 positive regulation of fatty acid beta-oxidation 0.002

4 GO:0048015 phosphatidylinositol-mediated signaling 0.0073

4 GO:0048011 neurotrophin TRK receptor signalling pathway 0.0087

4 GO:0008286 insulin receptor signalling pathway 0.013

4 GO:0060397 JAK-STAT cascade involved in growth hormone signalling pathway 0.019

4 GO:0042593 glucose homeostasis 0.032

4 GO:0005829 cytosol 0.034

5 GO:0097149 centralspindlin complex 0.015

5 GO:0048008 platelet-derived growth factor receptor signaling pathway 0.049

5 GO:0090399 replicative senescence 0.049
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Table B.26: Gene ontology (GO) term enrichment analysis for substrates predicted to con-
tain an NLS and a phosphorylation site at the specific position relative to the NLS.

position GO term Description E-value

-10 GO:0005694 chromosome 0.0017

-10 GO:0000786 nucleosome 0.024

Continued on next page

position GO term Description E-value

Continued from previous page

-9 GO:0005730 nucleolus 0.045

-8 N/A N/A N/A

-7 N/A N/A N/A

-6 N/A N/A N/A

-5 N/A N/A N/A

-4 N/A N/A N/A

-3 N/A N/A N/A

-2 N/A N/A N/A

-1 N/A N/A N/A

0 N/A N/A N/A

1 N/A N/A N/A

2 N/A N/A N/A

3 GO:0005694 chromosome 0.0039

4 N/A N/A N/A

5 GO:0006974 cellular response to DNA damage stimulus 0.0025

5 GO:0008274 gamma-tubulin ring complex 0.015

5 GO:0097149 centralspindlin complex 0.015

6 GO:0048011 neurotrophin TRK receptor signaling pathway 0.025

7 GO:0000786 nucleosome 5.31e-10

7 GO:0006334 nucleosome assembly 2.02e-08

7 GO:0032982 myosin filament 1.53e-05

7 GO:0005694 chromosome 2.90e-05

7 GO:0005859 muscle myosin complex 0.0001

7 GO:0046982 protein heterodimerization activity 0.0007

7 GO:0030016 myofibril 0.002

7 GO:0016459 myosin complex 0.015

7 GO:0000146 microfilament motor activity 0.019

7 GO:0042742 defense response to bacterium 0.019

7 GO:0005925 focal adhesion 0.041

7 GO:0030049 muscle filament sliding 0.041

8 GO:0000786 nucleosome 1.98e-07

8 GO:0006334 nucleosome assembly 2.42e-06

Continued on next page
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position GO term Description E-value
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8 GO:0005694 chromosome 0.00027

8 GO:0046982 protein heterodimerization activity 0.0087

8 GO:0042742 defense response to bacterium 0.009

9 GO:0006334 nucleosome assembly 8.68e-08

9 GO:0000786 nucleosome 2.12e-07

9 GO:0005694 chromosome 0.0004

10 N/A N/A N/A



Appendix B. Supplementary material for Chapter 4 175

CDK1 CDK2 CDK3 CDK4

CDK5 CDK6 CDK7 CDK9

DYRK1A DYRK2 ERK1 ERK2

ERK5 GSK3A GSK3B HIPK2

JNK1 JNK2 P38A P38B

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.2

0.4

0.6

0.8

0.00

0.25

0.50

0.75

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.0

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Method Combined Context

ROC curves (up to 50 false positives) for predicting CMGC substrates

Figure B.1: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human CMGC family of kinases. The ROC curves
are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.2: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human AGC family of kinases. The ROC curves
are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.3: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human TK family of kinases. The ROC curves are
calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.4: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human CAMK family of kinases. The ROC curves
are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.5: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human ’other’ family of kinases. The ROC curves
are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.6: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human STE family of kinases. The ROC curves are
calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.7: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human CK1 family of kinases. The ROC curves are
calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.8: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the human atypical family of kinases. The ROC curves
are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.9: ROC plots showing the prediction accuracy of the combined and context models
for predicting kinases substrates from the mouse CMGC family of kinases. The ROC curves
are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.10: ROC plots showing the prediction accuracy of the combined and context
models for predicting kinases substrates from the mouse TK family of kinases. The ROC
curves are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.11: ROC plots showing the prediction accuracy of the combined and context
models for predicting kinases substrates from the mouse AGC family of kinases. The ROC
curves are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.12: ROC plots showing the prediction accuracy of the combined and context
models for predicting kinases substrates from the yeast CMGC family of kinases. The ROC
curves are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.13: ROC plots showing the prediction accuracy of the combined and context
models for predicting kinases substrates from the yeast AGC family of kinases. The ROC
curves are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.14: ROC plots showing the prediction accuracy of the combined and context
models for predicting kinases substrates from the yeast ’other’ family of kinases. The ROC
curves are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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Figure B.15: ROC plots showing the prediction accuracy of the combined and context
models for predicting kinases substrates from the yeast CAMK family of kinases. The ROC
curves are calculated up to the first 50 false positives from a 10-fold cross-validation run.
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B.1 Identifying expected sequence motifs from context

As the Bayesian network combined two diverse types of information, we were interested in

observing what the model “expects” from a kinase binding motif in response to the protein

interaction and cell-cycle data that is presented to it. To do this we took the full set of human

proteins from Uniprot (canonical plus isoforms) and obtained their relevant context information.

For each protein, we first set the context parameters in the Bayesian network: the protein

interaction nodes, cell-cycle nodes and kinase nodes (except the kinase being queried). We used

the most probable explanation (MPE) form of inference to determine the most likely value for

the query kinase phosphorylating the substrate, as well as the expected values of the dimer and

trimer nodes. If the model at this point did not believe the query kinase to be phosphorylating

the protein, the protein was discarded. Otherwise, we then used the expected values of the

k-mer variables to set their respective nodes, and queried each of the position-specific amino

acid nodes, inferring the probability of each potential amino acid.
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Figure B.16: Comparison of sequence logos for PKA kinase. Left logo shows amino acid
probabilities expected by the combined model for PKA binding sites when context information
for a query substrate indicates that PKA will target the protein. Right logo was made using
peptides from actual PKA phosphorylation substrates. Logo generated using WebLogo3 (47).

For each position in the motif, we then took the sum of probabilities for each amino acid across

the samples predicted to be phosphorylated by the kinase. This resulted in a position-specific

matrix of counts across the 20 amino acids for the kinase. In order to visualise the position-

specific amino acid counts we used WebLogo 3 (47) to generate sequence logos from the count

matrix.

Figure B.16 shows a sequence logo generated from the probability distributions of amino acids

from proteins predicted to be PKA substrates, based only on context data being provided to
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the model. We compared this to a sequence logo generated from actual PKA substrates from

PhosphoSitePlusr. The comparison shows that there is a high level of similarity between

the expected amino acids, given the context information, and the amino acid frequencies from

actual PKA substrates. This demonstrates that the model is able to have a prior expectation

about what binding site to expect on a protein sequence, before actually seeing the sequence.

B.2 Web-server workflow

Uniprot reviewed (Swissprot) proteins were downloaded for human (July, 2014), mouse (Febru-

ary, 2015) and yeast (February, 2015). The full set of canonical and isoform proteins were

downloaded for the three species. For each kinase, the combined model was trained on the full

set of training data. Each protein in the relevant proteome was submitted to the model and

the probability of it being a substrate of the kinase was queried. The kinase predictions for

each substrate were stored in an SQLite3 database.

When a user uploads a Fasta file of protein sequences, they are submitted for a BLASTP query

against the proteome of the chosen species (human, mouse or yeast). If an exact match is

made for a protein in the database, that protein is retrieved. We also wanted to allow for users

to submit isoforms or homologs that are not in the database; i.e. such proteins would obtain

a substrate prediction based on the closest relative protein in the database. Therefore, if an

exact match is not made, proteins in the database that obtain an E-value < 0.001, and have

a sequence identity of at least 90% will be considered. The highest E-value is taken, and all

proteins in the database that obtain the E-value are returned. Once proteins in the database

have been identified from the BLASTP search, the requested kinase predictions are retrieved.

The user’s sequences are then scanned using the sequence model and each potential phospho-

rylation site is scored. If the user has requested that their predictions be thresholded according

to P-value, only the results that fall below the chosen P-value threshold will be returned. The

output is an interactive table of results for each potential phosphorylation site in the user’s

submitted proteins for each kinase that was queried. Users can filter their results by providing

a list of protein names, or protein names and sites. The results can also be downloaded as a

tab-delimited text file. The results for each protein can be viewed separately by clicking on a

desired protein to be redirected to the “Protein Viewer” page, which presents an interactive

view of the protein annotated with predicted phosphorylation sites.
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In addition to submitting protein sequences for analysis, the option exists to download proteome-

wide sets of kinase-substrate predictions. Similar to the submission page, users are able to select

sets of kinases from either human, mouse of yeast, though instead of uploading protein sequence,

there is an option to choose between downloading predictions for the set of Swissprot canonical

or isoform proteins. P-values for predictions can also be calculated.

Results visualisation

In order to create a way for visualising the potential kinase binding sites on a protein, we

implemented a “Protein Viewer” page. This was based on the BioJS (181) package pViz

(182), which allows the zoomable visualisation of an amino acid sequence with multiple rows

of annotations on specified positions on the sequence. For a protein, the visualisation consists

of a row of annotations representing potential phosphorylation sites for each kinase that a user

queries. Phosphorylation site predictions are presented as coloured circles, where the shade of

the circle indicates the strength of the context prediction and the size of the circle indicates the

strength of the sequence prediction for that site. When a user clicks on a site, an information

box is displayed showing the details of that prediction.
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Table C.1: Variants are listed according to the cancer or disease they are associated with.
Each row contains protein name as UniProt accession, the location of the variant and phos-
phorylation site, the kinase predicted to target the site, the reference and variant scores for
the peptide.

Cancer Protein Variant Phos. Kinase Rsubst. Rsite Vsite Ecombined Peptide

Ovarian P35222 G555A T551 Akt2 1 1 4.95e-05 9.36e-09 QDTQRRTpSMG[G/A]TQ

P26010 Y753H Y753 FAK 1 1 0 2.23e-08 YRLSVEI[Yp/H]DRREYSR

Q7KZI7 S197N S197 NEK6 1 1 0 2.3e-08 KIADFGF[Sp/N]NEFTFGN

P51813 S212R S212 GSK3B 0.998 1 0 1.33e-07 PPSSST[Sp/R]LAQYDS

P46939 M1256R T1259 MARK2 1 0.914 0.0005 4.47e-05 R[M/R]KSTpEVLP

P43355 K278I Y276 Brk 0.998 1 0.000979 0.000103 RALAETSYpV[K/I]VLEYV

P18846 L71I S72 MSK1 1 0.0525 0.00138 0.000107 RKILKD[L/I]SpSEDTRGR

P35222 G555A T556 Akt2 1 0.0694 7.46e-09 0.000108 RTSMG[G/A]TpQQQFVE

Q96BY6 T1347M T1347 CAMK2D 0.681 0.351 0 0.00011 CFLHIMK[Tp/M]ISYETLI

Q13009 S170F S170 PKCA 1 0.982 0 0.00013 SFKKKR[Sp/F]KSADIW

Q9BQQ3 R106C S109 MAPKAPK2 0.486 0.999 0.00399 0.000331 SF[R/C]RASpEQVWH

Q08999 P547A T541 CDK7 1 0.21 0.0142 0.000577 ACCLEVVTpFSYKP[P/A]G

Q96KQ7 S119F S118 CDK2 0.711 0.964 0.00256 0.0013 ATKSFPSp[S/F]PSKGG

P50747 S83N S83 MARK2 0.321 0.87 0 0.00131 SASG[Sp/N]EPAG

O94988 R648Q S650 AMPKA1 0.207 0.978 0.0507 0.00132 FMR[R/Q]RSpSSLGS

O94988 R648Q S651 AMPKA1 0.207 0.942 0.0156 0.00132 MR[R/Q]RSSpSLGSY

Q96KQ7 S119F S119 CDK5 0.091 0.806 0 0.00154 KSFPS[Sp/F]PSKGG

O75182 S130L S126 IKKB 0.0176 0.979 0.000183 0.0016 NIQSPLTSpQEN[S/L]HNH

Q13136 R137Q S138 MARK2 0.214 0.752 7.89e-09 0.00199 RHE[R/Q]SpLRMT

Q8N9Q2 T47R T47 CK2A1 1 1 0 0.002 VLDVSS[Tp/R]SSEDSD

Q96D09 F508C S512 PKG1 0.98 0.975 0.0982 0.00226 [F/C]RSTSpPFGI

P55209 K276Q T269 MST1 0.458 0.267 0.0983 0.00233 WKKGKNVTpLKTIKK[K/Q]

P04198 P358L S355 CDK6 0.000617 0.55 0.000508 0.00236 KKIKSEASpPR[P/I]LKSV

Q2M1Z3 N776T S778 CDK4 0.0007 0.959 0.037 0.00246 VGGPG[N/T]LSpPPLPPAP

P20338 A208T S204 MAPKAPK2 0.0707 0.953 0.00571 0.00268 LRQLRSpPRR[A/T]Q

Q14149 V872I T874 GRK2 0.995 0.982 0.14 0.00279 QTATD[V/I]STSpSNIEES

Q14149 V872I S875 GRK2 0.995 0.999 0.167 0.00291 TATD[V/I]STSSpNIEESV

Q14686 S1349A S1349 CDK2 0.538 0.939 0 0.0031 SPGRQN[Sp/A]KAPKLT

Q04206 E127Q S131 ATR 0.889 0.87 0.0366 0.0032 L[E/Q]QAISpQRIQT

Q86UR5 R1113W S1116 Akt1 0.473 0.991 0.024 0.00324 DRA[R/W]SASpTNCLRP

O75182 S130L T125 IKKB 0.0176 0.924 0.00019 0.00438 LNIQSPLTpSQEN[S/L]HN

O75182 S130L S130 IKKB 0.0176 0.921 0 0.00447 PLTSQEN[Sp/L]HNHGDGA

Q14517 S157P S150 NEK6 0.00491 0.00376 0.000213 0.00461 NDLRPLFSpPTSYSV[S/P]

Q92610 T1024N S1027 PKCG 0.42 0.885 0.0502 0.00488 QSFH[T/N]PNSpLRKHIRN

Q92766 S1140F S1140 ERK5 0.404 0.795 0 0.00567 ASSPEAA[Sp/F]PTEQGPA

Q15361 S240W S240 ATR 0.00249 0.949 0 0.00612 AMPEG[Sp/W]QAGRE

A0PJX4 Q132H S130 DNAPK 0.0411 0.995 0.0237 0.00672 CLRPKEPSpQ[Q/H]PIRFS

Q8TDJ6 L964P S960 CaMK4 0.865 0.804 0.316 0.00742 PHSSSpIAN[L/P]

Continued on next page
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Protein Variant Phos. Kinase Rsubst. Rsite Vsite Ecombined Peptide

Continued from previous page

P12235 R188K Y187 ALK 0.827 0.754 5.87e-08 0.0075 GIIIYp[R/K]AAY

P08151 R637Q S640 PKD1 0.205 0.855 0.0074 0.00754 VT[R/Q]RASpDPAQA

P62995 R62G S64 AurB 0.102 0.998 0.00645 0.00762 R[R/G]SSpRRH

O94988 R648Q S650 CAMK1A 0.0375 0.0134 9.08e-06 0.00912 FMR[R/G]RSpSSLGS

Q86VZ2 S240R T247 PKCG 0.206 0.751 0.0191 0.00996 [S/R]RGRCLKTpYTGHKNE

P17020 S129Y S129 RSK2 0.00935 0.82 0 0.0105 GRRLPQ[Sp/Y]LSQEGD

P09848 V971L Y974 Lyn 0.0304 0.961 0.163 0.0107 RALK[V/L]KAYpFSISWS

Q15047 S504C S504 GSK3B 0.174 0.928 0 0.011 SVGSGH[Sp/C]SPTSPA

P20930 R2018K S2017 P38B 0.000651 0.0439 6.53e-06 0.0115 QLQSADSSp[R/K]HSGIGH

Q9BQQ3 R106C S104 PKCD 0.0198 0.892 0.0153 0.0121 ASVRFCSpF[R/C]RASE

O60237 G422V S421 CaMK4 0.734 0.316 2.35e-05 0.0122 RRFSSp[G/V]LFN

Q8WXG6 R1643W S1646 PKD2 0.000201 6.86e-05 5.97e-08 0.0125 RTPP[R/W]PVSpS

Q8IWI9 S645R S645 ERK2 0.013 0.802 0 0.0128 STKNTPV[Sp/R]PGSTFPD

P18583 S1782F S1780 p70S6K 0.00452 0.903 0.0084 0.0132 SMPERASpE[S/F]SSEE

Q14653 E137K T135 DNAPK 0.138 0.893 0.0187 0.0137 GGGSTSDTpQ[E/K]DILDE

Q9NQL9 S382R S381 AMPKA1 0.098 0.945 0.268 0.0151 LARSQSp[S/R]PFLP

O14717 G155V S150 P38B 0.000301 0.0272 3.02e-06 0.0164 QYQEFLLSpPTSL[G/V]IP

Q9NUQ6 I136K S135 CaMK4 0.515 0.204 0.00342 0.0182 EKKISp[I/K]LEE

Q96AV8 S160R S160 CDK3 1.08e-05 5.36e-06 0 0.0192 KFLARYP[Sp/R]YPLSTEK

P78312 V259M S261 mTOR 0.00387 0.955 0.0271 0.0212 RSPPS[V/M]SSpASSGSGS

Q9BTC0 S660N S660 DNAPK 0.00101 0.967 0 0.022 PGRLGAM[Sp/N]AAPSQPN

P30533 Q244K S242 PKG1 0.706 0.656 0.0731 0.0237 LRRVSpH[Q/K]GY

P52948-2 R538H T536 CDK6 2.12e-06 0.234 0.0634 0.0237 TPTHYKLTpP[R/H]PATRV

Q9BYJ9 V200I T202 PKCE 0.0236 0.771 0.0258 0.0249 VSSSA[V/I]KTpVGSVVSS

Q8N3K9 T2592I T2592 PLK1 0.000765 0.842 0 0.0263 SFSLVKA[Tp/I]SVTEKSE

P50052 R350Q S353 p90RSK 0.000294 0.586 0.0953 0.0317 SMSC[R/Q]KSSpSLREMET

Q86UR5 R1113W S1116 AMPKA1 0.0404 0.604 0.0128 0.0336 RA[R/W]SASpTNCLR

Q6W4X9 T1911M T1911 GSK3B 0.0328 0.882 0 0.0347 SPSSFS[Tp/M]AKTSTS

Q8N4N8 R110C T113 SGK1 0.17 0.976 0.000545 0.0352 [R/C]TATpKWV

P18583 S1782F S1782 CK2A1 0.994 1 0 0.0391 PERASE[Sp/F]SSEEKD

Q5M775 S312P S312 CK1A 0.323 0.985 0 0.0395 HGNALRT[Sp/P]GSSSSDV

Q9ULE3 S310A S310 mTOR 0.00139 0.885 0 0.0427 PPPPLPS[Sp/A]PPPSSVN

Q9UL68 S237R S237 CK2A1 0.998 1 0 0.0438 NSLEDD[Sp/R]DKNENL

O94988 R648Q S650 AurA 0.0837 0.963 0.0028 0.0456 R[R/Q]RSpSSL

Q9ULE3 S310A S310 GSK3B 0.00684 0.921 0 0.0465 PPPLPS[Sp/A]PPPSSV

Breast P14859 S88F S88 DNAPK 1 1 0 1.95e-06 SQQPSQP[Sp/F]QQPSVQA

P14859-5 S111F S111 DNAPK 1 1 0 8.66e-06 SQQPSQP[Sp/F]QQPSVQA

P43355 K278T Y276 Brk 0.998 1 0.000491 0.000103 RALAETSYpV[K/T]VLEYV

P03372 H6Y T2 VRK1 0.0492 0.0792 0.00421 0.00111 MTpMTL[H/Y]TKA

Q99490 D816Y S818 P38B 0.0186 0.587 0.000173 0.00126 CTPSG[D/Y]LSpPLSREPP

P54646 S523G S527 p90RSK 0.36 0.78 0.00501 0.00214 LTG[S/G]TLSSpVSPRLGS

P43487 E16D T13 CK2A2 0.0196 0.135 0.021 0.00259 DTHEDHDTpST[E/D]NTDE

Q9NTX9 S95G S95 CK2A1 1 1 0 0.00313 ADEDSA[Sp/G]DLSDSE

Q9NTX9 S95G S95 CK1D 0.697 0.993 0 0.00354 NADEDSA[Sp/G]DLSDSER

P54646 S523G S529 p90RSK 0.36 0.693 0.175 0.00412 G[S/G]TLSSVSpPRLGSHT

P43487 E16D S14 CK2A2 0.0196 0.02 0.0116 0.00597 THEDHDTSpT[E/D]NTDES

O14681 T319A S326 CDK6 1.96e-05 0.451 0.0093 0.00642 [T/A]SAEKFPSpPHPSPAK

Q96RK0 E104K S105 JNK1 0.00186 0.98 0.182 0.0112 PGATCP[E/K]SpPGPGPPH

Q702N8 L929H S925 PKD2 0.000176 6.29e-05 1.54e-08 0.0134 SKASERSSpVQL[L/H]ASC

Q9H8V3 T833P T833 PKCA 0.699 0.951 0 0.0173 SRAIKK[Tp/P]SKKVTR

Q9NTX9 S95G S93 CK1D 0.697 0.953 0.0528 0.0178 KENADEDSpA[S/G]DLSDS

Q86UP2 T1316P T1316 GRK2 0.19 0.736 0 0.0304 NSDVSPE[Tp/P]ESSEKET

Q86UP2 T1316P S1319 GRK2 0.19 0.678 0.000182 0.0357 VSPE[T/P]ESSpEKETMSV

Colorectal P04637 E271K S269 CAMK2A 1 0.781 0.011 0.000131 NLLGRNSpF[E/K]VRVC

Q9P253 A913S S912 ERK5 0.495 0.848 0.0394 0.00475 APPPAKGSp[A/S]RAKEAE

Q9NPD5 I292M S293 CaMK4 0.832 0.524 3.21e-08 0.00785 ERK[I/M]SpLSLH

Q6ZMN7 G784R S783 CaMK4 0.792 0.454 1.52e-06 0.00954 TQSSSp[G/R]QSS

Q92953 V450I S448 ROCK1 0.326 0.845 0.00479 0.012 RAKRNGSpI[V/I]SMNL

Q6ZMN7 G784R S781 CaMK4 0.792 0.171 1.38e-05 0.0131 AATQSpSS[G/R]Q

Q92729 R856C S853 CDK1 0.0472 0.903 0.0725 0.0164 LGGSpPR[R/C]

P17936 T7M T7 PKACA 0.311 0.903 0 0.0205 QRARP[Tp/M]LWAAA

Q9BTA9 S475L S475 CDK2 0.055 0.919 0 0.0275 ISTPPV[Sp/L]SQPKVS

Liver P35222 T41A T41 GSK3A 1 1 0 2.28e-09 GIHSGAT[Tp/A]TAPSLSG

P35222 S37F S37 GSK3A 1 1 0 2.28e-09 YLDSGIH[Sp/F]GATTTAP

P35222 T41A T41 IKKA 1 1 0 7.97e-09 GIHSGAT[Tp/A]TAPSLSG

P35222 S37F S37 IKKA 1 1 0 7.97e-09 YLDSGIH[Sp/F]GATTTAP

P35222 T41A T41 GSK3B 1 0.997 0 8.13e-06 IHSGAT[Tp/A]TAPSLS

Continued on next page
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Continued from previous page

P35222 S37F S37 JNK1 1 0.984 0 1.33e-05 YLDSGIH[Sp/F]GATTTAP

P35222 T41A S45 GSK3A 1 0.11 1.16e-06 2e-05 GAT[T/A]TAPSpLSGKGNP

P35222 S37F T40 GSK3A 1 1 0.923 2.14e-05 SGIH[S/F]GATTTAPSLS

P35222 T41A T41 JNK1 1 0.961 0 2.15e-05 GIHSGATp[T/A]TAPSLSG

P35222 T41A S47 GSK3A 1 0.0535 1.43e-06 2.48e-05 T[T/A]TAPSLSpGKGNPEE

P35222 T41A T40 GSK3A 1 1 0.965 2.95e-05 SGIHSGATp[T/A]TAPSLS

P35222 S37F S33 CK2A2 1 0.0545 0.00319 4.62e-05 QQQSYLDSpGIH[S/F]GAT

P35222 T41A T40 JNK1 1 0.896 0.0106 4.69e-05 SGIHSGATp[T/A]TAPSLS

Q13950 V203F T205 Pim1 1 1 0.0302 4.7e-05 TLTIT[V/F]FTpNPPQVAT

Q9Y6B2 S8C S2 MSK1 0.717 0.799 0.00184 7.28e-05 MSpEMAEL[S/C]E

Q9Y463 K47N S42 CAMK1A 0.981 0.948 0.00136 8.16e-05 FRDATSpAPLR[K/N]

P35222 T41A S47 IKKA 1 0.882 0.21 0.000184 T[T/A]TAPSLSpGKGNPEE

P35222 S37F T40 JNK1 1 0.896 0.198 0.000188 SGIH[S/F]GATTTAPSLS

P04083 E139V T132 CK2A2 0.431 0.773 0.494 0.000875 AAMKGLGTpDEDTLI[E/V]

Q92997 S188G S188 CK1D 0.999 0.954 0 0.00164 SSELETT[Sp/G]FFDSDED

Q8IXF0 T461I S458 p70S6K 0.27 0.964 0.00343 0.00173 PEKTSESpSE[T/I]SDS

Q8IXF0 T461I S464 GRK2 0.998 0.999 0.175 0.00208 ESSE[T/I]SDSpESDSKDT

Q8IXF0 T461I S459 p70S6K 0.27 0.927 0.00059 0.00262 EKTSESSpE[T/I]SDSE

Q8IXF0 T461I T461 GRK2 0.998 0.763 0 0.00273 KTSESSE[Tp/I]SDSESDS

P27816 S867G S867 MSK1 0.0005 0.00983 0 0.0057 RPKSTST[Sp/G]SMKKTTT

Q8IXF0 T461I T461 CK2A1 0.998 1 0 0.0212 TSESSE[Tp/I]SDSESD

O14647 E167G S165 CK1D 0.282 0.962 0.0494 0.0265 DEQEQGTSpA[E/G]SEPEQ

O43347 L308Q T304 NEK6 8.54e-05 6.19e-05 8.07e-11 0.0291 PGSTPSRTpGGF[L/Q]GTT

Q01081 R202H S206 PAK1 0.0227 0.915 0.0301 0.0359 [R/H]RSRSpRDRG

Q9Y463 K47N S49 PKG1 0.51 0.454 0.000119 0.0395 LR[K/N]LSpVDLI

Q9Y463 L48F S49 PKG1 0.51 0.454 0.00388 0.0398 LRK[L/F]SpVDLI

Pancreatic Q9BYV9 T519I T519 p70S6K 1 1 0 1.14e-08 LETRTR[Tp/I]SSSCSS

P04637 E271K S269 CAMK2A 1 0.781 0.011 0.000131 NLLGRNSpF[E/K]VRVC

Q9BYV9 T519I S525 p70S6K 1 0.84 0.0917 0.000294 [T/I]SSSCSSpYSYAED

P56715 A135V S137 MARK2 0.848 0.987 2.83e-06 0.000418 IS[A/V]HSpPPHP

P05129 P524R Y521 Brk 0.356 0.227 0.000117 0.000629 TFCGTPDYIA[P/R]EIIA

P05129 P524R T518 LKB1 1 0.156 0.000956 0.00106 TTRTFCGTpPDYIA[P/R]E

P16333 R63W S66 CDK3 0.000153 0.000188 4.82e-05 0.00365 KNSA[R/W]KASpIVKNLKD

O95954 R446W S449 PKD1 0.184 0.982 0.0623 0.00366 LR[R/W]AVSpVPLTL

Q6P0Q8 K1420N S1418 CAMK1A 0.145 0.0533 0.00125 0.00433 AALAASpE[K/N]KLA

Q8NEV4 R1358L S1355 PKCB 0.831 0.995 0.0408 0.00473 VFIQSpKY[R/L]G

Q9UQ35 R2530Q S2532 AurB 0.413 0.993 0.00288 0.00483 E[R/Q]RSpSSS

Q9NZ56 R446Q S450 RSK2 0.0283 0.934 0.107 0.00676 KR[R/Q]PEPSpLSRGSR

O95935 P122L S121 CDK1 0.0235 0.821 0.00407 0.0343 PKGSp[P/L]AR
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