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Abstract

This research presents In situ Distributed Genetic Programming (IDGP) as a framework

for distributively evolving logic while attempting to maintain acceptable average perfor-

mance on highly resource-constrained embedded networked devices.

The framework is motivated by the proliferation of devices employing microcontrollers

with communications capability and the absence of online learning approaches that can

evolve programs for them. Swarm robotics, Internet of Things (IoT) devices including

smart phones, and arguably the most constrained of the embedded systems, Wireless

Sensor Networks (WSN) motes, all possess the capabilities necessary for the distributed

evolution of logic - specifically the abilities of sensing, computing, actuation and com-

munications. Genetic programming (GP) is a mechanism that can evolve logic for these

devices using their “native” logic representation (i.e. programs) and so technically GP

could evolve any behaviour that can be coded on the device.

IDGP is designed, implemented, demonstrated and analysed as a framework for evolv-

ing logic via genetic programming on highly resource-constrained networked devices in

real-world environments while achieving acceptable average performance.

Designed with highly resource-constrained devices in mind, IDGP provides a guide

for those wishing to implement genetic programming on such systems. Furthermore, an

implementation on mote class devices is demonstrated to evolve logic for a time-varying

sense-compute-act problem and another problem requiring the evolution of primitive com-

munications. Distributed evolution of logic is also achieved by employing the Island Model

architecture, and a comparison of individual and distributed evolution (with the same and
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slightly different goals) presented. This demonstrates the advantage of leveraging the fact

that such devices often reside within networks of devices experiencing similar conditions.

Since GP is a population-based metaheuristic which relies on the diversity of the pop-

ulation to achieve learning, many, if not most, programs within the population exhibit poor

performance. As such, the average observed performance (pool fitness) of the population

using the standard GP learning mechanism is unlikely to be acceptable for online learning

scenarios. This is suspected to be the reason why no previous attempts have been made

to deploy standard GP as an online learning approach. Nonetheless, the benefits of GP

for evolving logic on such devices are compelling and motivated the design of a novel sat-

isficing heuristic called Fitness Importance (FI). FI is population-based heuristic used to

bias the evaluation of candidate solutions such that an “acceptable” average fitness (AAF)

is achieved while also achieving ongoing, though diminished, learning capacity. This trade

off motivated further investigation into whether dynamically adjusting the average perfor-

mance in response to AAF would be superior to a constant, balanced, performing-learning

approach. Dynamic and constant strategies were compared on a simple problem where

the AAF target was changed during evolution, revealing that dynamically tracking the AAF

target can yield a higher success rate in meeting the AAF.

The combination of IDGP and FI offers a novel approach for achieving online learning

with GP on highly resource-constrained embedded systems. Furthermore, it simultane-

ously considers the acceptable average performance of the system which may change

during the operational lifetime. This approach could be applied to swarm and cooperative

robot systems, WSN motes or IoT devices allowing them to cooperatively learn and adapt

their logic locally to meet dynamic performance requirements.
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1
Overview

This chapter briefly introduces the motivation of this research; specifically the need for a

framework to allow resource constrained embedded devices to evolve their logic while si-

multaneously providing utility throughout their lifetimes. The overarching focus and scope

of the thesis is then presented along with the major original contributions of this disserta-

tion. Following this, the thesis structure is presented.

1
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1.1 Motivation

Microcontrollers (MCU) are processors with vastly inferior computational capability com-

pared to that of everyday personal computers. Yet, despite their significant resource

constraints, more than 20 billion microcontrollers were sold during 2015, and the number

is expected to rise in coming years. Such processors are the preferred choice for the

embedded systems that are now ubiquitous throughout our society due to their low price,

small size and low power processing.

In recent years, MCU’s have been augmented with wireless communications tech-

nology and increasingly sensing and actuation capability. This has enabled “networked”

embedded systems such as swarm robotics, smart phones, Wireless Sensor Network

(WSN) devices and more generally, the Internet of Things (IoT).

The logic for the devices comprising these systems is represented as programs, or

code. These instructions allow the device to read sensor values and perform logic to

determine what actions or communications should be performed. Such programs are

handcrafted by professional programmers who attempt to consider the many real-world

conditions these devices will be subject to. Unfortunately, fixed logic can fail for a variety

of reasons and will typically remain broken until human intervention occurs. Excluding

failure of hardware or software bugs in the code, the most likely reason for failure is an

unanticipated change in the environmental conditions or a change in the context to expect

different performance. Predicting and adapting to such changes is a complex task since

the changes are often context or locality specific which cannot be known in advance by

the programmer.

There is however a means for automatically generating programs known as Genetic

Programming (GP). GP has been demonstrated as a mechanism for producing human-

level competitive behaviours and ideas. However, employing GP on such resource con-

strained devices would be a significant challenge. GP requires a population of programs

to be evaluated over a number of generations in order to evolve programs that can achieve

acceptable performance. However, executing a population of various programs with un-

known behaviours would be unacceptable in many situations. As such, not only must the
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issues of resource constraints be addressed, but a mechanism for achieving acceptable

performance while learning is also necessary.

This thesis attempts to address this challenge by answering the question: “Can logic

be evolved via genetic programming on highly resource-constrained networked de-

vices deployed in real-world environments while achieving acceptable average per-

formance?"

1.2 Thesis Overview

1.2.1 Thesis Question

This thesis aims to address the question:

Can logic be evolved via genetic programming on highly resource-constrained

networked devices deployed in real-world environments while achieving accept-

able average performance?

To answer this, the question is broken into the following 3 subquestions:

1. Can distributed GP be implemented on such highly-constrained embedded devices?

2. Can acceptable average performance be achieved when needed while continuing

to learn?

3. Can dynamically balancing performing and learning achieve better success at meet-

ing acceptable average performance targets during the system lifetime?

1.2.2 Thesis Outcomes

To answer the first sub-question, a framework for evolving logic on networked, yet re-

source constrained, devices was formulated. The In situ Distributed Genetic Programming

(IDGP) framework (designed and detailed in Chapter 3) was implemented and demon-

strated on arguably the most highly resource-constrained embedded class of devices

known as WSN motes. The framework was used to demonstrate cooperative evolution
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of programs across a network of devices using the Island Model to solve a time varying

sensing-actuating task and a task requiring evolution of communications, under environ-

ments subject to real-world effects. z Online learning via GP was successfully demon-

strated, however the average observed behaviour (performance) of devices however was

deemed unacceptable for many situations. To address this, and the second sub-question,

a novel heuristic called Fitness Importance (FI) was developed (see Chapter 4). FI is used

to bias the selection of candidate solutions evaluated such that an “acceptable” average

fitness (AAF) is achieved. Using FI, it was demonstrated that it is possible to continue to

learn while attaining AAF (as shown in Chapter 5). However it was also found that the

learning capacity decreases as the AAF target is increased.

This contention, captured within sub-question 3, motivated a final investigation (in

Chapter 6) into whether dynamically adjusting performance in response to AAF would be

superior to a constant balanced approach to performing-learning. Dynamic and constant

strategies of balancing learning versus performing were compared on a simple problem

where the AAF target was changed during evolution, ultimately revealing that dynamically

tracking the AAF target can indeed yield a higher success rate of meeting the AAF.

The combination of IDGP and FI offers a novel approach for achieving online learning

with GP on highly resource-constrained embedded systems. It also enables simultaneous

learning while attempting to meet an acceptable average performance which may change

throughout the operational lifetime. As such, this thesis presents a novel approach that

could be applied to small robots, WSN motes or IoT devices to allow them to cooperatively

learn and adapt their logic in order to meet dynamic performance requirements.

1.2.3 Thesis Scope and Limitations

From a broad perspective, this research is interested in evolving logic on constrained

devices and achieving acceptable performance. There are many avenues one could take

to achieve this and so some limitation of research scope is necessary.

First, Genetic Programming (GP) will be used as the logic evolving mechanism. This

is largely justified by the fact that GP can automatically generate programs and that the
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processors of embedded systems can run programs. Hence, this is an automated means

for generating logic. Other approaches will not be investigated.

Second, this thesis focusses on how highly resource-constrained devices might achieve

evolution of logic. As such WSN mote devices will be employed as representative of this

highly resource-constrained class of embedded systems and devices with significant com-

putational resources (PC-class) will not be considered.

Finally, achieving “acceptable” performance using online machine learning is by no

means a new concept. Using GP as an online machine learning mechanism to achieve

acceptable performance however has not been extensively studied. Due to the first reduc-

tion in scope limiting the learning mechanism to GP, a method for achieving “acceptable”

performance with GP will need to be addressed. Further discussion and justifications of

the thesis scope appears in 3.1 Scope.

1.3 Methodology

To address the thesis questions, a framework was designed to achieve distributed genetic

programming with consideration of the significant computational and memory constraints

of mote-class devices. Specifically, the scenario where there is less memory (RAM/ROM)

available to store a typical population of programs is considered. The literature survey on

related research was conducted to formulate considerations specific to a framework that

evolves logic on resource constrained devices. The framework was then implemented on

a collection of devices representative of the resource-constrained class of embedded de-

vices to address problems that requires logic to perform time-dependant actions based on

real-world sensor inputs. The distributed evolution capability was demonstrated through

experiments on multiple devices where devices have the same objective and also where

devices have slightly differing objectives. After the learning capability was demonstrated,

achieving acceptable performance was then be studied. “Acceptable” performance was

defined and an online learning heuristic for achieving acceptable performance was devel-

oped. Finally, the implications of applying the heuristic(s) in various modes (constant and

dynamic) was studied. Section 1.5 details which chapters relevant to each of these steps.
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1.4 Original Contributions

The overarching contribution of this thesis is a framework (IDGP) for achieving in situ

distributed evolution of logic on highly resource-constrained embedded devices and a

heuristic (FI) to bias their average performance on demand. Both the IDGP framework

and the FI heuristic can be used independently, however, together they offer a framework

for distributively evolving logic while achieving an acceptable average performance. This

combination should be applicable to swarm robotics, IoT devices such as smart phones

and WSN motes, and offer these platforms a mechanism .

A list of more specific contributions by this thesis is as follows:

• In situ Distributed Genetic Programming (IDGP) as a framework for embedded sys-

tems engineers to achieve online evolution of logic on resource-constrained devices.

• The Fitness Importance (FI) heuristic as a means of indicating “acceptable average

performance” in terms of the current population characteristics as a function of time.

• A metaheuristic for population-based learners which generates a biased population

to increase the expected fitness of the population based on an input parameter for

the desired improvement and the optimal learning population configuration.

• The extension of the IDGP framework with FI and an analysis of an implementation

of the framework on physically deployed devices.

• Demonstration and analysis of the effect of applying the Island Model with GP where

entities may have slightly different objectives.

• Demonstration that balancing learning and performing to minimally meet an accept-

able average fitness allows future increases to be more readily met.

• A hybrid (tree-based and Linear-GP) program representation which facilitates easy

crossover operations and improved human readability.

• A program ID hashed from the frequency of instructions within the program which

can be used to calculate a crude metric of diversity between programs suitable for

implementation on microcontrollers.
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1.5 Thesis Structure

Chapter 2 presents a survey of research relating to online and/or distributed genetic pro-

gramming approaches that have been applied on resource-constrained embedded sys-

tems.

Chapter 3 uses insights from this to design the In situ Distributed Genetic Program-

ming (IDGP) framework. The framework is implemented on WSN motes and validated by

evolving logic to address some challenges where real-world effects interfere. Additionally,

the distributed evolution is validated for motes with the same and similar objectives and

contrasted against local-only evolution.

Chapter 4 introduces the Fitness Importance (FI) heuristic to convey the average ac-

ceptable fitness as a function of time and a metaheuristic for generating populations with

a specified (using the φ parameter) expected average acceptable fitness. FI is then inte-

grated into IDGP framework.

Chapter 5 conducts numerous experiments to observe the responses of applying dif-

ferent values of φ at various times during evolution to gain an intuition of how learning and

performance of the devices are affected during evolution.

Chapter 6 focusses on ascertaining whether dynamic approaches to φ offer any benefit

over a constant/balanced use of φ. Empirical studies using a standard genetic algorithm

are employed for simplicity and without loss of generality to the framework.

Chapter 7 concludes the thesis with a summary and provides directions for possible

future research.
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2
Related Work: Genetic Programming on

Embedded Systems

This chapter attempts to capture relevant research employing GP (or evolution of logic)

on embedded systems. Much of the pioneering research applying GP on embedded

systems occurred in the late 80’s and early 90’s when processors were becoming small,

yet powerful enough to support GA approaches. Such processors were typically being

deployed for small robotic platforms and so relevant research is centred around attempting

to evolve useful behaviours on these robots. This is discussed in Section 2.2.

“Moore’s Law” [86] suggests that the available computational capability of comput-

ers doubles roughly every 1.5 - 2 years whilst maintaining essentially the same physical

space and power requirements. The corollary of this however is that the same computa-

tional capability can be delivered in smaller packaging, requiring less power and available

9
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at very low cost. At this end of the spectrum, computational capability is realised by micro-

controllers rather than CPUs. Philosophically the computational distinction is somewhat

arbitrary, however microcontrollers are typically identified as having program memory,

RAM, the CPU and numerous peripherals colocated on a single microchip.

By the early 2000’s, WSN motes had enough computational capability, but at the low

power required for their usage scenario, to become a viable option for performing GP

on the devices. Furthermore, networking of PC-class machines was commonplace. The

obvious synergy between the distributed capability of networks of computing elements

and distributed GA approaches inspired research into applying GP on WSN mote-class

devices. Key contributions in this area are discussed in Section 2.3.

With the remarkable continuation of “Moore’s Law” [76] and improvements in network-

ing technologies, there has been a proliferation of Internet-connected devices known as

“Internet of Things” (IoT) devices. The computational capabilities of IoT devices varies

greatly, however there will likely always be a niche for computationally contained devices

since they can generally be fabricated at a much lower cost, be lower power and hence

a smaller form factor. These are critical factors in numerous application scenarios. Re-

search employing GP on IoT-class devices has only recently been attempted (including

one based on the framework developed in this thesis) and are discussed in Section 2.4.

Section 2.1 is provided as a brief primer on some basic concepts used throughout

this thesis, namely, Genetic Algorithms, Genetic Programming, the Island Model and the

“No Free Lunch theorem". The reader with a solid understanding of these concepts may

wish to skip this section while others wishing for a more comprehensive detailing of the

concepts are referred to the many good textbooks covering these topics such as [107].

2.1 Basic Ideas and Concepts

The concepts described in this section are extensively detailed in most textbooks that

discuss genetic programming and machine learning more generally. Nonetheless, the

concepts within this section are referred to throughout this thesis and so are briefly de-

scribed for the reader’s convenience.
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2.1.1 No Free Lunch Theorem

The “No Free Lunch Theorem” (NFL) [153] essentially states that no solution finding NFL

mechanism is better than all others over all problems. In the words of [153], "Elevated per-

formance over one class of problems is exactly paid for in the performance over another

class." However, despite this, some algorithms deliver good performance across many

different types of problems, while other, highly specialised algorithms, may outperform on

a smaller subset of problems [144]. Evolutionary algorithms (EA), genetic algorithms (GA)

and genetic programming (GP) are generally considered as general problem solvers and

demonstrate useful performance across a range of problems where finding an acceptable

solution, rather than an optimal solution, is required.

Acceptable solutions often exist as subspaces within the entire search space (or so-

lution space) of all possible solutions. The technique of iteratively searching through the

search space in order to find a better solution is known as optimisation and the choice of

candidate solutions evaluated along the way is referred to as the optimisation trajectory.

Evaluating every potential solution yields the fitness landscape . However, the best opti-

miser (or solution finder) will be domain, or even problem specific, as highlighted in the

well known "No Free Lunch Theorem" [153]. For many real-world problems, the dynamic

environment causes the fitness landscape to vary with time [14], [80], [3]. As such, on-

line (in situ) approaches are a logical choice of solution finder for systems dealing with

dynamic, real world environments.

2.1.2 Evolutionary and Genetic Algorithms

Evolutionary Algorithms (EA) describe the class of optimisers (and search algorithms) EA

that employ mechanisms inspired by biological evolution. Typically they employ a popula-

tion of candidate solutions that undergo a selection process that is biased towards better

performing individuals. Successfully selected individuals either remain in the population

or contribute to the generation of the next population. Individuals of this next population

undergo a process of variation, thus exploring new potential solutions. The cycle of selec-

tion and variation continues until either an acceptable solution is found or the resources
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available for evolution (usually a time constraint) have been exhausted.

Genetic Algorithms are a subclass of Evolutionary Algorithms that use a gene rep-GA

resentation (genetic sequences, codes, strings) for each individual and ’express’ this

genetic representation in an ’environment’ to produce the phenotype. The phenotypic

performance is used by the selection process with a bias towards survival of genetic ma-

terial from individuals with greater fitness. Individuals selected as a ’parent’ for offspring

(children) in the next generation, pass on their genes through genetic operators such as

crossover which takes genetic material from two (or more) individuals in a process known

as crossover. Other genetic operators, such as mutation, are also applied to introduce

variation of the genetic sequences which ultimately lead to variation of the phenotypes.

The ability to pass on learnings that occur or desirable characteristics that are discov-

ered during the lifetime of an individual to its offspring is commonly referred to as Lamarck-

ian learning or Lamarckianism. In the early 1800s [73], the French biologist Jean-BaptisteLAMARCKIAN

LEARNING

Lamarck proposed that such a mechanism may exist to account for the adaption of ani-

mals to their environments. However standard GA is based on the“Darwinian” viewpoint

where genes that are passed onto offspring are not affected by what the phenotype does

during its life.

For further details on GA the reader is recommended to [84].

2.1.3 Genetic Programming

Genetic programming (GP) is a biologically inspired, population-based search metaheuris-GP

tic that attempts to generate computer programs that satisfy a high-level problem state-

ment. GP is essentially a genetic algorithm (GA) and employs the same basic principles

such as mutation, crossover and a selection pressure, however the concept is extended

to genetic representations of programs.

Like GA, GP can build up substructures (referred to as schemata by Holland [58])

which offers a hyper plane exploration mechanism. The advantage of GA is then achieved

through the combination of the substructures to achieve superior performance to either

of the individual structures while the population becomes a reservoir of useful schema
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which are recombined into new combinations with assumably higher and higher fitness.

This constructive progression is known as the building block hypothesis. As such, general

(domain-independent) good performance is achieved through the combination of local

search (akin to optimisation through mutation) and global search (through the crossover

and other genetic operators).

The syntactic richness offered by a program (defined by the terminal and function in-

struction set) makes GP more general than GA since it requires fewer assumptions about

the structure of possible solutions [144]. A further benefit of program representation is that

it is often more intelligible to humans compared to other approaches (such as Neural Net-

works or Support Vector Machines that use weights/numbers for thier representations).

Similarly, programs can be readily coded by humans and used by the GP process. A dis-

advantage of the rich representation is that the additional degrees of freedom can make

the fitness landscape more difficult to search, and at the extreme, this problem represen-

tation can be as bad as a needle in a haystack (NIAH) problem. Nonetheless, GP has the

potential to generate novel (human-competitive1 [71]) solutions that can be readily shared,

incorporated and built upon by other entities.

Two popular program representations are that of Linear Genetic Programming LGP

and Tree-based (Koza-style) GP.

Linear Genetic Programming (LGP) was proposed by Cramer in 1985 [23], and typ- LGP

ically directly encodes the program as a string of operations in a linear fashion. The

advantages of this are: no recursion, a one-to-one mapping on genotype to phenotype is

easy to understand and easy to implement. Program 1 is an example of how a program

may appear. Note the largely repetitive syntactic structure of “register = terminal function

terminal”.

Tree-based (Koza-style) GP (also known as hierarchical GP or standard GP) first ap-

peared in [23], however was popularised by John Koza [67,68] who demonstrated that

the (parse) tree representation of programs provided a method for a more meaningful

1GP has demonstrated an ability for devising novel solutions comparable to the creativity possessed by
human thinking through generating patentable algorithms and implementations [71].
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Program 1 LGP code representing the same equation shown in Figure 2.1.

REG1 = 4 * A
REG2 = Sin REG1
REG1 = Cos B
REG3 = 8 + REG1
REG1 = REG3 / -2
REG3 = REG2 - REG1

crossover operator. Koza’s tree-based GP is now generally regarded as Standard Ge-

netic Programming (SGP) method.

Figure 2.1 shows the representation of the same logic described in Program 1 as

a Tree-based mechanism. Despite the fact that both approaches represent exactly the

same functionality, one can see that the representations differ greatly. While Tree-based

GP offers greater flexibility in programs, this comes with the inconvenience of additional

logic required to ensure the code representation lies within the limits of what is possible

by the hardware the algorithm is running on.

sin(4A)− 8+ cos(B)
−2

+

÷

-

-2

cos4 A 8

⨉

sin

B

Figure 2.1: An example tree-based GP program representing an equation.

To allow the greater syntactic richness while maintaining reasonable simplicity in pro-

gram representation, this thesis employs a hybrid approach which extends the tree-based

representation such that nested statements form a single line of a multi-line program as
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per conventional C programs. Effectively, the interpreter parses one code tree per line

of code until an END_OF_PROGRAM instruction byte is reached (which need not be

reached - for example if an infinite loop is entered).

2.1.4 Island Model

The Island Model [154], [64] concept essentially uses multiple, isolated (island) popula- ISLAND

MODEL

tions where occasionally (as determined by the migration rate) individuals from one island

migrate to another population (island). Often an individual migrating to another population

is a copy of an individual that remains in the local population. While the genetic diversity

of a local population in isolation can decrease quickly, the diversity between populations

is likely to remain high since evolution is largely independent of other islands. As such,

a local population receives in injection of diversity each time a migrant in incorporated in

the population. Prolonging increased diversity typically yields more efficient search and

superior solution quality. Additionally, and equally important to this thesis, is that this al-

gorithm can be implemented on parallel computing elements, however it also introduces

the need for communication.

Approaches employing the Island Model typically exploit the divide and conquer (par-

allelising) approach to find a single better solution. However, the approach can also be

used to expedite learning per individual island even when islands may be solving slightly

different problems (due to variations in local conditions). This second usage is much less

studied, however of greater interest to this research.

For more detailed explanation and analysis of the Island Model, the reader is referred

to [126], [79] as suggested reading.

2.1.5 Online Learning

Online learning allows a system to dynamically change its behaviour during the system

lifetime in order to improve and/or adapt. Unlike offline learning, where the learning oc- ONLINE

LEARNING

curs before the system needs to perform, online learning has the additional challenge of

achieving performance while attempting to learn. Unfortunately performing evaluations
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that gain the most information (learning) typically have the lowest expected performance.

Conversely, evaluating potential solutions with the best expected performance gains little

or no learning. Balancing this contention is known as the Exploration Vs Exploitation (EE)EE

tradeoff and will be discussed further in the context to the Fitness Importance metaheuris-

tic presented in this work.

2.1.6 Neural Networks

Artificial Neural Networks (ANN), or Neural Networks (NN) is a biologically inspired ma-NN

chine learning approach capable of generalisation (function approximation, mapping in-

puts to desired outputs, pattern recognition and classification). Originally based on simple

models of nerve cells (neurons), each neuron aggregates inputs (typically weighted) from

other neurons and applies a function to determine whether the neuron will fire and sub-

sequently supply “excitation” to the inputs of other neurons. Through various techniques

(back-propagation being the most widely used) the network can be trained using the dif-

ference between desired output and actual output via supervised learning. NN can also

be used in an unsupervised manner for clustering, compression, filtering, etc. For a

number of decades NN were the predominant machine learning approach before being

supplanted by Support Vector Machines (SVM), Bayesian Classifiers and Reinforcement

Learning approaches which demonstrated superior performance (in some cases provably

superior) in numerous application scenarios. However, NN have their own intrinsically

desirable properties. For example, they are readily parallelisable, readily allow multi-class

and real value outputs, and can be incrementally updated with additional training samples

without the need to reprocess the entire training set

In recent years however, a class of NN known as recurrent neural networks (RNN) areRNN

being increasingly employed on more complex, time series data problems. The significant

difference from traditional NN is that outputs from neurons can ultimately feedback into

themselves through various interconnections. This provides an internal state (or memory)

that can be used to generate more complex functionality particularly suited to temporal

data such as sequences.
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Perhaps the most exciting incorporation of NN recently is as Restricted Boltzmann ma-

chines (RBMs) which are then used in the construction of Deep Belief Networks. Deep

Belief Networks and more broadly Deep learning, are receiving a lot of recent attention

as they have demonstrated [25],[85] the ability to model high-level (abstract) concepts

by constructing their own layers of lower-level abstractions (with various non-linear trans-

formations, sub-formulae) from just the very high-dimensional data input and a notion of

performance [12].

2.1.7 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique that attempts to find rules for RL

selecting actions given the current environment (state) in order to maximise a cumulative

reward. Standard RL models the environment as a set of states and uses rules to choose

an action given the current state. The transition to a new state has a reward associated

with it and is appropriated to the rules which caused the transition (and reward). Rules,

often stochastic, are employed for transitioning between states and attributing reward of

a transition. A common implementation uses an action-utility function known as a Q-

function which estimates the reward of a given state-action pair. Through experience this

estimate becomes more precise over time. This allows actions that maximise cumulative

reward to be identified and employed more frequently.

Despite its obvious application to online learning scenarios, RL has largely been ap-

plied to offline scenarios with many researchers considering online learning using RL

as not fully addressed [151]. Nonetheless, a significant amount of research has been

invested into analysis of RL for online learning. A key challenge with online learning prob-

lems is that of Exploration-Exploitation (described in Section 4.2.2). This has formulated

into an idealised problem called the "Multi-Armed Bandit" (MAB) [106] problem (described

in Section 4.2.3) which has been studied mostly by the RL community. The idealised na-

ture of the problem (maximising reward from levers with unknown payout distributions)

facilitates the easy comparison of approaches, however does not necessarily provide in-

sight into applicability of RL to real world scenarios with high dimensional inputs.
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2.1.8 Wireless Sensor Networks

More recently, microcontrollers are also featuring wireless communications and sensing

capabilities which has made them ideal for wireless sensor networks (WSN), robotics andWSN

adding sensing, computing and communication functionality to a plethora of machines

and objects. WSN devices (commonly called "motes" in the field) are often deployed as

passive sensing networks for environmental [20] and industrial applications where higher

spatiotemporal sensing resolution is needed over large areas or where it is prohibitively

expensive or too cumbersome to deploy "wired" solutions. Like other embedded solutions,

motes utilise a microcontroller for low power, though constrained, processing of logic and

for other low power peripherals such as storage and sensing. By definition they must

support wireless communications capability - most commonly in the form of a digital radio

(transceiver) chip, though increasingly the radio and microcontroller are being placed on

the same microchip which is referred to as a "System on Chip" (SoC). (see [74] for a

listing of the various radio communications technologies employed by motes). The most

common application for WSN is to sense data and wirelessly transmit the data back to

a central data sink (base). However increasingly WSN applications are additionally per-

forming actuation [6,72,129], which arguably overlaps with challenges faced in robotics

and even IoT research. Systems that perform actuation are sometimes differentiated as

Wireless Sensor and Actuator Networks (WSAN) [4], however within this thesis, WSN isWSAN

treated as inclusive of WSAN.

More recently there has been an exponential rise in the number of devices with com-

munications capability. While these devices often communicate to humans directly, it is

increasingly common for them to connect to the Internet and each other, which has re-

sulted in the concept of the "Internet of Things" (IoT). By 2020, it is estimated that 26IOT

billion IoT devices will be in operation [82].
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2.2 GP on Small Robotic Platforms

Robots, like all embedded systems, perform sense-compute-act cycles. However robots

are somewhat defined by their ability to actuate (do something physically in the world)

rather than by sensing and communicating (as with WSN) or benefits gained from in-

ternet connectivity (as with IoT). Nonetheless, the system must perform computation on

sensory signals in order to actuate appropriately. The logic to achieve this is typically

referred to as the controller (or controller-logic, controller-function, control-process) and

can be implemented via many mechanisms. Controllers evolved by GP or using GP as

a method for control, have mostly been studied within the field of Evolutionary Robotics

(ER). Within ER, approximately 40% of the implementations employ NN-based mecha-

nisms while about 30% employ GP (or "evolvable programming structures") [89].

There are many potential issues with using EA approaches to evolve controllers for

robots [81], largely due to complex, dynamic environments robots are deployed in which

is made more complex by their ability to change their environment and move themselves

within the environment. Yet, despite the dynamic environment, robots are expected to

maintain a constant level of acceptable performance and in some scenarios, this can only

be achieved through online learning.

Robotics research was the first to employ GP approaches on computationally impov-

erished platforms [45] and so has a larger body of research than GP used in WSN and

IoT contexts. The following describes key robotics research utilising GP with particular in-

terest on computationally constrained platforms and distributed evolutionary approaches.

2.2.1 SAMUEL

SAMUEL (Strategy Acquisition Method Using Empirical Learning) [45] is a complex SAMUEL

feature-rich rule-based learning system developed over a number years (1990-1997). A

brief overview of the salient features will be discussed in the following, however for a

detailed understanding, the reader is referred to [43,45,46].

SAMUEL is comprised of 3 main modules: A problem-specific module that interacts
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with the real-world environment via sensor and actuators and also assesses the real-world

performance of the system; a performance module that determines the behaviour/plan

(set of rules) that is executed in the real-world and is also responsible for credit assignment

to rules; and a learning module that evolves the rules and plans using a custom EA

approach.

At the lowest layer, the fundamental unit of logic used by the system is a condition-

action rule (also referred to as stimulus-response). A condition-action rule is a fixed IF-

THEN logic structure that trigger actions based on a combination of sensor/state values

(feature vector) matching a condition statement.

The general fixed-logic structure has the form:

IF AND(condition1, condition2, ... conditionX)

THEN AND(action1, action2, ... actionY)

An example rule could be:

IF time in [1,100] AND sonar in [0,30] AND bearing in[10,180]

THEN turn = 20

If, for example the current feature vector of (time sonar bearing) was (40 25 90), then

if this rule was "fired" (executed), it would turn the system by 20 degrees.

A key advantage of this approach, and GP more generally, is that rule sets (or pro-

grams) supplied by humans can be incorporated into the evolutionary process at any

time. Seeding the initial population for instance provides a useful mechanism for incorpo-

rating existing domain knowledge with the ability to evolve it as necessary to meet needs

specific to the real-world problem scenario.

An ensemble of these rules comprises a candidate system plan (or behaviour). Within

the learning module a population of such plans is maintained with the "best" plan available

to be used by the performance module. When a plan is being employed, the rule with

the highest expected fitness ("strength") that best matches the current feature vector is

executed. Other (lower strength) rules whose conditions also match the current conditions

are classified as being activated (but not executed). If no rules match completely, rules
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with partial matching conditions are then found and fired/activated. Periodic evaluations

of plans (whether in an internal simulation or in the real world) are then used to adjust the

"strength" of rules that fired or were activated in the period between evaluations.

As mentioned, SAMUEL employs an EA approach for evolving rules, however unlike

traditional GA approaches, SAMUEL evolves logic (both plans and condition-action rules)

through a combination of Lamarckian and Darwinian evolutionary strategies. Lamarck-

ian learning is particularly noticeable where the system is applied to learning sequential

logic[45], however even in the non-sequential implementation, rules are updated based on

the experiences of the system during a trial. This is achieved through a number of custom

operators (specialise, generalise, cover, avoid, merge, delete) that adjust condition-action

parameters based on the observed values that caused the firing of rules. For example, if

the previous rule fired due to the feature vector (40 25 90), then an updated version of the

rule after the "specialise" operator could be:

IF time = [20,60] AND sonar = [15,35] AND bearing = [45,135]

THEN turn = 20

If the more general rule was assigned credit for useful behaviour, then this operator

attempts to encode more concise representation of the distributions of conditions that are

known to work.

Feedback of real-world fitness is intermittent since real-world evaluations occur only

periodically (every nth generation). To increase the evolution rate, a simulation model of

the task environment is used to estimate the expected fitness of the plans. This approach

of being able to test solutions offline while running the current best known solution online

is referred to as "Anytime Learning" [44] . How well solutions’ performances translate into ANYTIME

LEARNING

the real world will depend on the fidelity of the simulation model, however this model can

be updated based on the results of the intermittent evaluations in real world. Additionally,

in an attempt to make solutions more robust in the real world (i.e. avoid the ’translation’

problem), noise (above what is expected in the real world) is added to the sensor mod-

els [45]. Furthermore, a consistent selective pressure for ever-improving performance is

achieved by normalising the fitnesses of plans to a baseline one standard deviation less
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than the mean payoff received by the population.

SAMUEL has been studied with respect to a number problems: navigating an au-

tonomous underwater vehicle (AUV) through a simulated environment of mines [110],

a cat-and-mouse "chasing" toy problem [43], robot navigation and obstacle avoidance

[42,111] and evasive manoeuvring in air combat simulation [46]. Through these chal-

lenges, SAMUEL demonstrated the ability to utilise human supplied solutions and evolve

new solutions and dynamically adjust behaviour during operation based on simulated and

real world feedback. Interestingly, it was pointed out that SAMUEL was not designed

for learning from tabula rasa and in fact the system would "flounder badly" in complex

environments unless given sufficient initial knowledge.

SAMUEL was implemented in ANSI C and ran on a UNIX-based PCs. However plans

could be executed directly on a robotic platform or remotely via a radio modem. Au-

tonomous behaviour was demonstrated in [42,111], where an (offline) evolved program

was ran on an "embedded PC"-class robot2 in the problem scenario of navigating a robot

through a room to a goal location whilst avoiding collisions. While the rule set was evolved

offline, some online learning occurs due to how SAMUEL uses and updates rules during

operation.

This discussion has provided a brief and simplified description of the SAMUEL learn-

ing framework. SAMUEL partially addresses many aspects of interest to this thesis. The

framework is implemented on a UNIX workstation and not an embedded system, but po-

tentially could be implemented on an embedded-PC-class system. It does not employ

any distributed computing/learning mechanisms, but one could imagine applying the Is-

land Model to the population of plans as well as the generated rules. It does not employ a

full GP approach, but rather EA is applied to sets of condition-action rules which appears

to equivalent to a constrained GP implementation. Finally, the system is not a completely

online learning system, but instead requires some seeding of logic (derived offline) after

which it can be modified (but not evolved) during runtime.

2The Nomad-200 robot used a 80486 processor running at 66 megahertz. See [19] for a detailed
description of the robot platform.
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2.2.2 Genetic Evolution of PDL Processes

PDL (Process Description Language) [124] is a tool for representing behaviours as pro- PDL

cess networks. A process network generates behaviours by representing sub-cognitive

actions, like forward motor speed and button pressed etc, as quantitive entities that are

influenced by logic (often in feedback loops) which act to drive the action quantities over

a number of iterations. PDL has been implemented in LISP, for simulation experiments,

and in C for robots [123–125] to generate dynamic emergent behaviours (typically using

"PC-like" computers). While PDL itself is not an EA approach, further explanation of how

PDL is used to generate behaviours is provided to aid understanding of how EA has been

applied.

Program 2 PDL code for a process to achieve a desired forward speed behaviour.

void up_to_default_forward_tend (void)
{

if (value(go_forward) < 10)
add_value(go_forward,1);

}

Program 3 PDL code for a reversing “reflex response” to front collisions.

void front_collision(void)
{

if ((value(bumper0) > 0) || (value(bumper1) > 0) ||
(value(bumper11) > 0) || (value(bumper2) > 0) ||
(value(bumper10)> 0))

add_value(go_forward,-80);
}

Program 2 and Program 3 are examples of behaviours using the PDL with the C lan-

guage. It can be seen in Program 2 that the desired speed (10) is not simply set with

go_forward = 10 but rather the motor speed quantity (go_forward) is iteratively incre-

mented until the desired speed is reached. An interesting outcome of this representation
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is that different behaviours can be included that influence the same action quantities, re-

sulting in complex emergent behaviours with smoother transitions between action states.

Figure 2.2 shows an example of multiple processes feed in to reveal an emergent function

which in turn self-enforces change (positive or negative) at the low layer, which ultimately

drives the emergent behaviour.

Controlled 
Quantity

Stabilisation

Negative 
Change

Positive 
Change

Self  
Enforcing

Emergent Functionality

Figure 2.2: An example PDL process configuration. Recreated from Fig. 3.11 in [124]. The
original figure description reads "Emergent functionality pattern observed in process networks.
There are two opposing forces, possibly stabilised. The processes impact a controlled quantity
that indirectly gives rise to emergent functionality. The positive process feeds on itself."

An example of this occurs with the inclusion of Program 3 which affects the same

motor speed quantity by significantly decrementing it when a sensor detects collision i.e.

add_value(go_forward,-80). Since Program 2 will push the system to a limit of forward

speed 10, when Program 3 subtracts 80, the system will suddenly reverse at speed -70.

However, in the absence of further collisions detected from the front sensors, the system

will decelerate but still travel in reverse for 70 iterations, before ramping up forward speed

back to 10. Representing this same smooth behaviour with sequential logic would be

significantly more complicated.



2.2 GP on Small Robotic Platforms 25

To achieve the additive parallel effect of process influences, the PDL architecture locks

the most recent sensor readings then executes all the processes once, summing their

effects on all action quantities, before updating the action quantities with the summed

effects. After some predefined period has lapsed, new sensor readings are read in and

the process repeated. This delay affects the rate that the sense-action loop is executed

which significantly influences the resulting behaviours which are, by definition, a function

of time.

The PDL architecture is extended to evolving behaviours on robots with online evo-

lution in [123]. This is achieved by the introduction of a process selection mechanism,

called Selectron and with a mutation operator. Selectron employs a population of PDL

processes, initially constructed with multiple instances of each process. In PDL, process

influences are typically additive so multiple instances or “clones” of a process effectively

reinforce the single process behaviour. The Selectron mechanism probabilistically clones

or deletes processes based on their contribution (positive or negative) to the average “sat-

isfaction” of the robot’s behaviour over some defined period. Note if the average “satisfac-

tion” does not change over the period then a random increase or decrease in probability

of keeping the process is performed to help overcome “dead lock” situations. The “satis-

faction” quantity is also implemented as a PDL process and is periodically updated (every

10 cycles which corresponds to about 0.5 to 1 seconds).

The “satisfaction” quantity is similar to other “motivation” quantities (also PDL pro-

cesses) which are used to implicitly guide the robot to perform useful behaviours. A good

example of this is tying the robots propensity to travel to a charging station as an inverse

square function to the remaining battery power. Thus, the lower the battery, the more the

robot is “motivated” to seek charging.

This online learning mechanism was implemented on a small wheeled robot using a

pocket PC and a LegoTechnics™ body and demonstrated rapid success in generating

primitive behaviours. This occurs by the population composition evolving to contain only

processes that positively contribute to “satisfaction”. Due to stochastic reasons however,

sometimes (about 20 percent of cases), subpopulations of good strategies die out early in

the evolution. If this occurs the system typically relies on mutations to regenerate useful
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lost processes, however in some instances, the evolutionary process is able to evolve to

a stable solution by balancing subpopulations of competing (different) processes rather

than relying on the system to evolve a single stable process.

While the evolution of logic in [123] is not strictly GP (more like evolution of human

seeded rule structures via occasional mutation), a more recent attempt to use GP on

the PDL architecture has been performed by [113]. In their experiment, they attempt to

evolve a controller for the “Back Up a Tractor-Trailer Truck” problem. Additional genetic

operators are introduced to provide the syntactic richness that GP offers, however like the

first attempt to solve this with GP [69], it is performed in a centralised offline manner using

simulation and without consideration of evolving on an embedded platform. As such, [113]

falls outside the scope of directly relevant work to this thesis though it does provide an

insight as to how [123] could be extended to use GP.

Nonetheless, the PDL architecture has been shown as an elegant mechanism for pro-

ducing dynamic emergent behaviours and has been demonstrated on PC-class platforms.

Furthermore, an online learning approach was demonstrated by employing EA to bias the

representation of PDL processes within a population in order to achieve desirable, though

primitive, behaviours. However, similar to GPN, the logic is distributed as parallel process-

ing elements internal to the agent with no logic shared between robots during evolution.

As such, PDL is not considered a distributed evolutionary approach.

2.2.3 Automatic Induction of Machine Code - Genetic Programming

(AIM-GP) on Khepera Robots

Automatic Induction of Machine Code - Genetic Programming (AIM-GP)[96,97] (formerlyAIM-GP

Compiling Genetic Programming System or CGPS [90]) performs the direct evolution of

the machine code instructions which will be executed by the processor. This differs to

most GP implementations which typically operate on higher level virtual machine instruc-

tions. An obvious advantage of this approach is the exceptionally compact representation

of (LGP) programs and the fast execution of the code since the CPU directly executes the
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instructions rather than a virtual machine interpreting instructions. The code represen-

tation (machine code) is cleverly encapsulated within a standard C function as a casted

string. The simplicity of the LGP representation3 allows the GP engine to be implemented

with a small (32kB) memory footprint.

AIM-GP was first implemented on a PC (Sun-SPARC) and benchmarked on a clas-

sification task (determining if a presented Swedish word was a noun or not) and shown

to outperform NN approaches [91]. Following this, the approach was then applied to

the more ambitious task of evolving desirable behaviours for miniature, computationally

constrained robots, in real-time and within the real-world environment (i.e. in situ)

The Khepera robots (c.f. [18] for a detailed description of the more recent Khepera

platform) were used for numerous experiments. This mobile robot platform offered 8

range sensors on a small (6 cm wide x 5 cm heigh) cylindrical robot with 2 wheels, each

with their own controller motor. The robots were placed in various irregular environments

(90 cm x 70 cm typically) with configurations having walls, dead ends and obstacles.

The aim was then to develop logic to enable the robots to autonomously travel fast and

straight while avoiding collisions with walls, obstacles and other robots [92,93]. Subse-

quent experiments were aimed at more complex tasks such as seeking/following objects

and locations (defined by darkness) [10,95,96,98] which implicitly required the lower level

functionality of obstacle avoidance.

Various objective functions were supplied and the fitness calculated and fed back af-

ter a short 400 ms delay. The robots (whether simulated, tethered to a PC or fully au-

tonomous) maintained a population of (50) programs each of which evolves the functional

mapping of sensor values to output motor speeds (including reverse speeds). A few,

typically 4, elite programs are selected from the population and were evaluated (400 ms

after executing the logic) and then subject to a tournament selection which allows the best

performing 2 programs to breed with their offspring replacing the 2 worst performing pro-

grams in the pool. Interestingly, it was observed that the sequential nature of evaluation

could induce a motivation for programs to place the robot in a worse state than before a

3In this LGP implementation, each line of code is defined by the assignment of output which is the result
of an instruction operating on 2 operands. E.g. Motor2 = Sensor1 + Var2; Var1 = Var2 × Sensor3 ...
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program is run in order to sabotage other programs. However, it was not clear how much

detriment this competitive behaviour caused to the collective system performance. As is

common in scenarios where GP is employed, careful construction of the fitness functions

was needed to elicit evolution of desirable behaviours. For example negative fitness was

attributed to the sensor values (larger implies closer to objects, hence more likely to col-

lide) which had to be balanced with a positive fitness for moving straight and fast. Without

the correct biasing of the positive and negative feedback the robot would simply, and un-

interestingly, not move at all. Nonetheless, the approach did evolve complex behaviours,

such as backing up after collisions, and ultimately, mostly avoiding collisions altogether. It

was reported to take about 200-300 generations (equivalent) to converge to a population

where collisions were infrequent.

A later enhancement [94–96,98] of the system incorporated an "event memory" which

recorded the fitness achieved for a particular action taken given various sensor inputs. A

second simultaneous GP process was then employed to learn a fitness prediction function

that predicts the fitness of an action given the current sensor values. This process uses

the current "event memory" table as an input training data set where the differences be-

tween the predicted and actual fitnesses experienced are treated as an error that should

be minimised by symbolic regression. Interestingly, similar approaches by others [109]

coevolving NN as fitness predictors have also been shown to significantly improve the

time to evolve to a good solution by reducing the number of candidate solutions needing

to be evaluated in the real world.

The incorporation of the fitness predictor allowed the removal of the 300-400ms delay

used to provide fitness feedback for each program. While the idle delay was removed,

the fitness for a given program is still assigned 500 ms after the program is executed.

Because the rate of evaluation of programs increased by 2000 fold, the size of the "event

memory" and subsequently the program population, needed to be significantly increased

(to 10 000). The limited RAM (256 kB) permits a small population to be employed causing

less robust behaviour and more frequently getting stuck in local optima. This was demon-

strated on the tethered experiments to dramatically reduce the time required to achieve

good system performance (down to about 1.5 minutes from originally 40-60 minutes).
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An interesting discussion about the need for a "childhood" period was presented based

on experience that when the system needed exploratory motivation early in evolution to

achieve good performance later. While some of this occurs intrinsically due to the random

initial population, they did additionally introduce stochastic behaviours (noise) early on to

assist the exploration. It was observed that when the system was exposed to more diverse

situations in the early period, that this generally led to better behaviours later providing

there was a bias to retain earlier experiences in the "events table". It is possible that

providing the "events table" has a good representation of significant scenarios (i.e. the

problem space) that it does not matter when the experiences are acquired.

Further investigation is needed to understand the dynamics of the population diversity

at different stages of evolution and how this affects performance. Of particular interest

would be how this impacts on the plasticity of the system to adapt to new environments

or changed objectives. There is also no explicit analysis of meeting an "acceptable" per-

formance, however the system clearly demonstrates "desirable" behaviour in a relatively

short period. The approach does not leverage any parallel mechanisms of evolution (i.e.

no Island-model sharing of programs or events), however it is likely that it could benefit

from their application.

This research demonstrated the ability to learn desirable robot behaviours online and

in situ using simple LGP programs generated by the AIM-GP approach combined with a

coevolved fitness predictor. It is one of the few examples where GP has been deployed on

a computationally constrained platform and performed online evolution in non-simulated

environments. As such, the AIM-GP approach provides rich stimulus for the research of

this thesis.

2.2.4 Genetically Programmed Networks (GPN)

Genetically Programmed Networks (GPN) [7] are a distributed logic representation where GPN

inputs are mapped to outputs through a connected graph of processing nodes. Each

processing node within an agent’s internal processing network is a self-contained program

evolved using GP in a manner similar to graph-based GP systems (similar to Parallel
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Algorithm Discovery and Orchestration (PADO) [132]). The nodes are broadly structured

into layers in a manner similar to Neural Network (NN) topologies, with input nodes (for

sensor and other inputs), hidden nodes that take the inputs and outputs from other nodes

(including delayed outputs similar to RNN), and output nodes which supply the output of

the GPN. The connectivity topology is implicitly constructed by evolving programs that

include specific instructions (terminals) that represent the outputs from other nodes as

well as the inputs to the network. The instruction set however also includes additional

instructions (mathematical functions and terminals) that do not correspond to the inputs

or outputs of other nodes. Another GP process operates on the network of nodes (using

a separate instruction set) which performs the final transformation combining the nodes

to generate the outputs.

The generic nature of programs allows each node to represent practically any process-

ing element of any optimiser. This versatility was demonstrated by evolving functionally

equivalent implementations of distributed programs, rule-based systems and recurrent

NN by simply changing the node and network wide instruction sets.

GPN was designed primarily for developing controller logic for intelligent agents, but

has been applied for proactive aggregation protocols in WSN. The approach was empiri-

cally evaluated on the Ant [7] and Tartarus [117] problems and shown to require less eval-

uations than standard GP approaches to evolve to a near optimal fitness. While the “NN

with memory” GPN implementation (similar to a recurrent NN approach) outperformed the

distributed program (similar to GP) representation [118], the flexibility GP offers may be

beneficial over NN representations in particular application scenarios.

Similar to PDL, the logic of GPN is distributed (internally to an agent), however the

evolution of that logic occurs in a centralised manner. Hence GPN is not a distributed

evolutionary approach. Additionally, GPN is an offline learning heuristic since the final

elite solution is used as the metric of performance with no consideration of the perfor-

mance of evaluated solutions during evolution. In Figure 3 of [118], an obvious difference

exists between the elite and pool fitnesses during evolution, suggesting that if GPN was to

be applied to an online learning scenario, then a mechanism may be required to achieve

acceptable performance.
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2.2.5 Embodied Evolution (EmEvo)

Embodied Evolution (EmEvo4 ) [32,36,141,142] sets out with the objective to create a EMEVO

population of physical robots that evolve autonomously, as well as perform their tasks

autonomously, using a distributed evolutionary algorithm.

Through a mechanism called Probabilistic Gene Transfer Algorithm (PGTA), they evolve

the weights of a simple artificial neural-network architecture and demonstrate that the

agents are able to achieve some level of performance on a number of simple tasks for

small robot solution.

Each robot is effectively a member of a larger population and through sharing weights

in a decentralised manner, the robots are able to evolve novel solutions to a non-trivial

search space.

Embodied Evolution aims to achieve evolution-based learning with performance con-

siderations in the physical environment using a distributed approach. While this is a key

aspiration for this research (IDGP), Embodied Evolution is not a GP approach and fur-

thermore each agent does not evolve a local population, but rather they are themselves

members of a population searching for better solutions.

2.2.6 Distributed Agent Evolution with Dynamic Adaptation to Local

Unexpected Scenarios (DAEDALUS)

Distributed Agent Evolution with Dynamic Adaptation to Local Unexpected Scenarios

(DAEDALUS) [50,55] is a framework for achieving online learning for swarm robotics. In DAEDALUS

experiments employing DAEDALUS [51–54,56,57], the primary focus has been on navi-

gating a swarm of small mobile robots to a succession of waypoints (referred to as goals)

whilst avoiding obstacles and each other.

The control mechanism for the robot is represented by force laws5 such that the pa-

rameters of the force law dictate the attraction (or repulsion) of the robots to each other,

4Embodied Evolution is abbreviated as EE by the authors, however within this thesis EE refers to
Exploration-Exploitation and so EmEvo has been used

5Lennard-Jones force laws that model forces between molecules and atoms were employed to allow the
swarm to behave as a liquid or solid (or even gas).
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obstacles and the goals. The force laws only considered observable entities so that robots

and obstacles occluded by a nearby obstacle do not contribute to the aggregate behaviour

of a robot. The goals however were always assumed as observable.

In an attempt to avoid the undesirable behaviours during the early phases of evolu-

tion, DAEDALUS employs offline EA, in a simulated environment, to learn parameters for

the controller that will likely produce desirable behaviour (attaining goals whilst avoiding

things). The real robots are then "seeded" with a slightly mutated version of the offline-

evolved solution. It is important to note that the real environment is similar, though usu-

ally more complicated, than the simulated environment the offline solution was evolved

in. Since the robots have slightly different control behaviours, there will be variations in

the response to various real-world scenarios. This achieves online learning since if a

neighbouring robot has superior performance, then its control parameters (and potentially

epigenetic parameters such as mutation rate) will be adopted. This strategy is also em-

ployed by the DOWSN framework discussed later. The framework also allows for multiple

"species" of robots to coexist in the same environment, however exchange of genetic

material only occurs between individuals of the same species.

Interestingly, in a number of scenarios the performance of the online strategy per-

formed worse than the offline evolved logic, however the online learning did demonstrate

better behaviour in environments that were significantly different to the simulated environ-

ment used by offline evolution.

In [55], a different example problem space is investigated where L-systems6 are grown

in a resource-competitive environment. The L-systems must compete for resources until

they reach maturity and then reproduce, however the threshold at which they reach matu-

rity depends on the resource availability within the environment. Additionally, the fitness

landscape is dynamic in that the energy consumption rate is varied to discrete levels at

various stages during evolution. This means entities consume more resources while they

6A Lindenmayer system (L-system) is a formal grammar represented as a string of symbols, which when
expressed (in a genotype to phenotype sense) produces a larger string of symbols. This in turn can be
expressed and repeated such that the system appears to “grow”. It was devised by Hungarian biologist
Aristid Lindenmayer in 1968 to model the growth processes of plants and is still researched today.
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are searching for more resources. Entities can mutate the reproduction threshold pa-

rameter (which is passed on as epigenetic information to offspring) and interestingly this

responds to the changes in the fitness landscape in a reproducible manner (See Fig 6,

[55]). Despite being a simulation-only study, this is of particular interest to this thesis since

the maturity threshold is effectively a satisficing constraint (i.e. fitness above the matu-

rity threshold isn’t important), and furthermore this threshold changes over time (similar

to the study in Section 5.2.3). As such, this dynamic fitness satisficing metric could be

represented by the FI metaheuristic presented in this thesis.

While this framework does not employ genetic programming, it does offer an online

learning mechanism for resource-constrained robots and preliminary insights into achiev-

ing acceptable performance in dynamic fitness landscapes.

2.3 GP on WSN Motes

The untethered nature of the WSN motes afforded by wireless communications requires

the device to have its own power source. For reasons such as size, cost and weight,

the self-contained energy source is typically finite (i.e. a battery) or at best a small (but

renewable) energy budget. Unfortunately, wireless communications can consume signifi-

cant energy relative to other mote functions impacting on the energy budget and ultimately

longevity, and usefulness, of the devices. This contention has been a prominent research

focus of the field since before 2000 [31], with many low power communications protocols

and algorithms being developed for specific network topologies in various scenarios. Ac-

cordingly, this has somewhat biased ML approaches to be mainly applied to addressing

energy and communications related challenges [6,13,26,34,72,83,88,104].

Of the ML approaches applied to WSN, few employ CI approaches [60] and fewer

employ EA based implementations. As discussed in Section 2.1.3, this is largely due

to the significant challenges of performing EA on such highly constrained hardware and

the programmers of WSN not typically being cognisant of EA approaches suitable for

WSN. Nonetheless, evolving logic within WSN offers a promising approach for achieving

desirable adaptive behaviour of motes in real world environments.
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Within the subset of EA-based implementations on WSN devices, we focus on the ap-

proaches that employ Genetic Programming to achieve online and/or distributed evolution

of logic on the mote which is typically not mentioned in most of the survey and literature

reviews (e.g. [6]). In agreement with [59], the significant (and potentially only) published

research employing distributed GP for WSN are Johnson et al. (2005) [62], Weise et al.

(2006,2008,2009,2014) [143,145–150], Valencia et al (2007,2010) [134,137] (research

within this thesis) and Iacca (2012,2013) [59,60].

These are now discussed (excluding this research) with particular attention paid to

whether they are:

• In situ (i.e. implemented on the embedded devices)

• Distributed (in its learning mechanism)

• GP (employs genetic programming as the learning representation)

• Online learning (updates operational behaviour to achieve acceptable performance)

2.3.1 Broadcast-Distributed Parallel (BDP) Genetic Programming

The first investigation reporting GP approaches for WSN motes was [62] in 2005 where it

was recognised that the intrinsic parallel nature of EA approaches and WSN should be an

intuitive fit. Additionally, [62] identified that employing the Island-model architecture could

be one way of realising this potential fit. They proposed the Broadcast-Distributed Parallel

genetic programming model (BDP) as a framework suitable for WSN motes.BDP

BDP is essentially the Island-model architecture applied to GP (and EA more gen-

erally) where the evolution of local population is performed asynchronously with respect

to other populations. For the WSN scenario, this means each mote maintains its own

population for local evolution and broadcasts the current elite solution to neighbouring

motes (at the end of each local epoch). Motes asynchronously receive neighbouring elite

solutions, however store them in a separate "mating" population until completion of the

local epoch, after which a selection process occurs, which considers candidate solutions

from the mating list, to generate the next population. They note that exchange of genetic
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material used for crossover is roughly equal between neighbours. As has been shown by

[79]), employing the Island model can significantly reduce the time to find an acceptable

solution. It is not clear however why sharing only elite programs had no negative effects

on the genetic diversity (as observed by which would typically result in converging to a

suboptimal solution.

Various GP representations suitable for mote-class devices are also discussed. Prefix

notation using virtual machine instructions is suggested as the preferred approach as it

keeps the program code size small which is beneficial given the population of programs

is likely to be a significant RAM consideration for memory-limited devices. Additionally,

transmitting smaller programs via radio will reduce energy consumption which is another

important constraint on motes. This representation was implemented with each instruction

having exactly two operands to keep the representation simple. It is noted that bounds on

the maximum allowable size of an individual still need to be considered (which affects the

maximum nesting level) given the memory constraints of mote-class devices and the like-

lihood that there will be a fixed amount of memory for storing the population of programs.

BDP was implemented in simulation only and an analysis was conducted on the effects

of the number of motes in the network and the population size. The objective function

was a symbolic regression task ranging from a simple 3-variable version to a 10-variable

problem. Training data for the experiments were generated via a clustering algorithm

to ensure the training data was sparse and had good coverage of the search space.

This may not be possible for online and real world problems. Additionally, while BDP was

shown to evolve to an acceptable (elite) solution, there is no discussion of the acceptability

of performance during evolution (i.e. online performance) Nonetheless, the empirical

results showed that using the Island-model architecture for GP on WSN was more efficient

than the same computational resource used as a single population.

Implementation on actual motes in real environments was suggested as future re-

search, however this does not appear to have occurred. The authors also suggest inves-

tigating whether motes evolving solutions specific to local conditions would benefit from

receiving genetic material from neighbouring motes sharing similar, though different, local

conditions. The outcome of such research is likely to be relevant to real-world scenarios.
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2.3.2 Distributed Genetic Programming Framework (DGPF)

The Distributed Genetic Programming Framework (DGPF) [150] provides a flexible, open-DGPF

source infrastructure for developing logic for networks of devices. The flexibility of the

framework stems from its very modular design which clearly separates the choice of

solver, the objective function, the simulation of the devices and the simulation of the envi-

ronment. Key components of the system include: the Common Search API, Task Distribu-

tion System, Automaton Simulation and Network Simulation. The Automaton Simulation

and Network Simulation components reside within the Genetic Algorithms layer and pro-

vide an emulation of physical mote characteristics of computing and communications.

While the framework itself is programmed in Java, each mote is simulated as an au-

tomaton running a virtual machine with a fixed-sized memory architecture, asynchronous

IO, and a Turing-complete instruction set7 employed in a LGP representation (i.e. no

genome representation). The final evolved assembler-like program can be cross-compiled

into native code to run on the actual target platform as needed, however while running on

the virtual hardware, instructions can be stepped through (or back) for debugging. The

fitness score of a candidate solution (program) is determined by the average performance

of a number of repeated simulated networks of interacting automata, rather than from just

a single entity. Each simulated network is generated with a random network connectivity

topology with a guarantee of no network partitions. Communications between entities oc-

cur through receive and transmission buffers (memory transactions) subject to a number

of simulated real-world issues such as packet collision, range limitations, packet loss , etc.

Local conditions and responses can be incorporated by the user-supplied fitness function.

The Genetic Algorithms layer also provides a number of default genetic operators (and

their parameters) which can be augmented by user-defined operators if desired.

Each of these network simulations and evolutionary processes are encapsulated as

tasks that can be distributed across multiple machines via the Task Distribution System.

Additionally, load balancing processes can be used to distribute tasks according to the

available computational resources of other machines.

7Includes constants, binary and unary expressions and direct and indirect memory addressing
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Finally, the Common Search API, provides an abstraction between problem spaces

and search algorithms. This allows a single search algorithm to be benchmarked across

multiple problems, or multiple search algorithms to be tested on a particular problem or

potentially multiple search algorithms to be tested across multiple problems. Within this

context, GP can be viewed as one of potentially many search algorithms, however the

vast majority of research performed with DGPF in context to WSN has employed GP

[143–149]. These experiments demonstrated challenges with multi-objective optimisation

(such as factoring in code size, correctness, network traffic etc) on problems that have the

potential to be solved in a distributed fashion like the election problem [144,145], greatest

common denominator problem [148] and an aggregation protocol [149]. A salient point

on such problems was how easily the problem could become a needle in a stack (NIAH)

problem if no intermediate rewards were given. This serves as a reminder that EA (and

most other) approaches are not suited to all-or-nothing fitness/error feedback.

In summary, DGPF is a flexible research oriented framework for exploring using GP

for generating logic for WSN motes. It uses GP to evolve mote logic in an offline and

distributed (yet centrally coordinated) fashion using clusters of computers to simulate net-

works of motes and using. Once an acceptable solution has been evolved the logic then

can be transferred to mote class devices.

2.3.3 Distributed Optimization for WSN (DOWSN)

The Distributed Optimization for WSN (DOWSN) framework [59] was developed as an DOWSN

online, distributed optimisation process for WSNs specifically targeted to address online

dynamic problems requiring local computations on the motes (e.g. energy-aware routing,

localisation, clustering, data fusion, scheduling, security, Quality of Service).

At the core of the framework is an "Algorithms Database" (A-DB) which is populated

with a selection of optimisation algorithms. These algorithms are preferably lightweight,

memory-efficient (or fixed memory use) algorithms and so were implemented as inlined

C macros to achieve a smaller memory overhead (and faster execution time). As a proof

of concept, four of these algorithms were implemented: Random Search (RS), Intelligent
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Single Particle Optimisation (IPSO), Nonuniform Simulated Annealing (nuSA) and 3 Stage

Optimal Memetic Exploration (3SOME)[61]. Due to the simplicity of these optimisers, all3SOME

except 3SOME required only 2 candidate solutions (as n-dimensional arrays) be held in

memory; one for the current best known solution (i.e. elite) and one for the candidate

(trial) solution. 3SOME however requires an additional candidate solution in memory for

the "initial elite" which is needed for replacements when using the short distance operator

(c.f. [61]).

Each mote locally evolves (i.e. in situ evolution by the mote) by selecting an algorithm

from the A-DB at each iteration and potentially using the current elite as an input to the

optimiser to generate a candidate solution. If the trialled candidate solution demonstrates

superior performance to that of the current elite, the elite is replaced and a local search/op-

timisation is performed (e.g. gradient descent optimisation). It is important to note that

the same optimiser need not be selected each iteration, and this could potentially allow

the optimisation process to maintain search diversity or break out of a local optimum. This

was subsequently investigated [60] using the COOJA WSN simulation environment on a

set of benchmark mathematical problems and interestingly found that employing only one

algorithm (3SOME) was better than selecting a multiplicity of algorithms throughout the

evolution.

In addition to the local optimisation, DOWSN supports distributed evolutionary search

by employing an Island Model process to share elite solutions with neighbouring motes.

While elite solutions are broadcast every iteration by each mote, the receiving motes will

only probabilistically accept the incoming solution if it is better than the current local elite.

The probability of accepting a solution (if it is better than the current elite) is referred to

as the imitation rate within this framework. The Island Model was shown to unequivocally

speed up the time to evolve a good solution [60]. It also demonstrated that sharing only

elites ultimately generated superior solutions which is counter to the expected behaviour

of this mechanism as reported by [79]. Interestingly the authors claim, "DOWSN is effi-

cient even (and especially) when a small number of nodes is employed", which is possibly

due to the fast diffusion of a good solution which would quickly reduce the diversity of so-

lutions across the network and therefore narrow the search considerably thereafter (i.e.
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premature convergence). Arguably the population on each node is so small (i.e. an elite(s)

and 1 candidate solution) that it cannot be regarded as a population per se, but rather as

a single candidate solution (albeit with local optimisation) within the population of WSN.

Viewed like this, one shouldn’t be surprised that a population-based search outperforms

a single-point search and optimisation in the same number of epochs. Additionally, some

real-world robustness may be lost by maintaining only the one elite solution. Real-world

fitness landscapes are often slightly noisy and/or dynamic such that a candidate solution

could stochastically be (incorrectly) evaluated as having superior fitness to the current

elite. In this scenario, due to the replacement strategy used by DOWSN, the good solu-

tion would be lost and would need to be rediscovered. Nonetheless, the memory footprint

of this approach is significantly smaller than population-based metaheuristics, making the

framework suitable for implementation on mote-class devices.

Perhaps an even more significant advantage of the minimalistic population size is

the potential to easily parameterise how far each mote searches away from its current

best known solution into a time-dependant exploration-exploitation parameter. After some

time (which could be greatly reduced by the Island Model architecture), the behaviour of

all motes within the WSN could evolve to stable, yet good, performance which is ideal

for online learning scenarios. In these experiments, mathematical optimisation problems

were used as the objective function and the fitness of the WSN was calculated as the

average of the final elite fitness value from each of the nodes. It is important to note that

the average of the final elite fitness is not an online performance metric since it does not

take into consideration the fitness of each evaluated candidate solution during evolution.

DOWSN was implemented on TelosB motes8 using the Contiki OS9 and demonstrates

in situ, distributed, online optimisation on mote-class devices as aimed. Because it uses

an optimisation heuristic however, it may not be suitable for more complex problems that

require sense-compute-act behaviour to address them. For these problems, more sophis-

ticated algorithms that can map sensory data into time-varying actions would be required

(such as GP, NN, Reinforcement Learning).

8See [102] for a detailed description of the TelosB platform
9See [29] for a detailed description of the lightweight OS for WSN devices
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It is not clear how GP could be integrated into the DOWSN framework, however a

link can be drawn between DOWSN being a memetic framework and as a GP logic shar-

ing memetic concept. As such, the idea of using GP with DOWSN could be worthy of

investigation.

Genetic program representations would unlikely be compatible with optimisation rep-

resentations and so the A-DB would probably need to be populated with solely GP algo-

rithms instead (i.e. a GP-DB). Given the finding that a single algorithm typically outper-

formed the multiple algorithms approach [60], it is doubtful that a GP-DB would offer any

significant advantage over a single "best-of-breed" GP algorithm. Additionally the local

evolution with GP would likely need to maintain a larger population (than a single non-

elite) to maintain sufficient genetic diversity in order to realise the benefits expected from

the building block hypothesis.

2.4 GP on IoT Devices

Excluding WSN research, which is a subset of IoT systems, there are few reported im-

plementations of GP deployed on IoT-class devices. IoT devices must necessarily be

connected to the internet and common methods for achieving this include direct wired

tethering (such as ethernet connections) and increasingly wireless approaches such as

WiFi and Bluetooth. IoT devices face the same challenges present to other embedded

systems such as resource constraints, limited power and issues with communications

[129], however their internet connectivity is conducive for offloading computation (and po-

tentially evolution) to the “cloud”. Nonetheless, local evolution on these devices still offers

benefits. One potential benefit is the increased privacy gained by not sharing data that

could identify the user, or information about them, with another party (cloud service). For

wireless devices, significant energy savings can be gained by not sending data to cloud

services (particularly over 3G/4G connections) and furthermore continuous connectivity

to such services cannot be guaranteed.

Applications on IoT devices tend to employ hand-crafted logic by humans or primitive
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ML such as case-based reasoning [74]. For non-smart phone IoT devices, the most dy-

namic logic implementations have been achieved using Fuzzy Logic and NN approaches

[129], however none were found that employed GP. For smart-phones, which represent

the vast majority of IoT-class devices10, two preliminary attempts at using distributed evo-

lution on the devices has been reported and are discussed in the following.

2.4.1 Ulfsark Framework

The Ulfsark Framework [37] is an open source11 Bluetooth Peer-to-Peer (P2P broadcast ULFSARK

communication layer for distributed applications on mobile phones. The framework pro-

vides a Java-based (Java ME and Java SE) API which offers programmers a simple

interface for asynchronous data transfer of “packages” using a client-server model.

An application running on the Ulfsark framework uses a unique ID to establish a P2P

network with other devices running the same application. Using this network, they demon-

strate a distributed EA via Island Model architecture, though it could be any application

that would benefit from peer to peer communications. For the distributed EA, each phone

maintains and evolves a local population of candidate solutions and shares the best solu-

tion to another device in the network at regular generation intervals.

The EA implementation using the Ulfsark framework is demonstrated on mathemat-

ical problems (variants of the wave function and the Travelling Salesman Problem) by

successfully finding solutions. The times to reach a near optimal solution are aided by the

Island Model architecture which is readily implementable due to the Ulfsark framework.

Ulfsark demonstrates a mechanism to parallelise an offline optimisation problem since

the performance of the EA during evolution is not considered. Arguably, such tasks are

better suited to be solved by using cloud services or supercomputer clusters. Evolv-

ing phone specific behaviour however would benefit from this approach providing other

devices were mutually seeking similar phone/application behaviour. This application sce-

nario is discussed in the next section.

10This is expected to change as consumer goods such as fridges, televisions, lights, dishwashers, wash-
ing machines, garage door, etc) increasingly obtain internet connectivity as a standard capability.

11Source available at http://ulfsark.sourceforge.net

http://ulfsark.sourceforge.net
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2.4.2 The Android Genetic Programming (AGP)

The Android Genetic Programming (AGP) framework [22] is an open source12 java frame-AGP

work for evolving application behaviours on Android-based phones. It is the first re-

ported smart phone implementation employing GP to evolve application behaviours on

the phone. This first implementation [22], though based on the IDGP framework, did

not perform distributed evolution, but rather maintained a local population of programs.

It demonstrated the ability to evolve application behaviour to the user preferences in a

news reader application and was also demonstrated to evolve improved energy efficient

localisation through context-awareness.

AGP was subsequently extended [135] to a distributed evolution architecture (employ-

ing the Island Model) using bluetooth and WiFi for communications. Similar to the results

of Section 3.4.2.3 and others [79], using the Island model reduces the time to find an

acceptable solution, through the sharing of logic across multiple populations (each phone

maintained a single population).

The research also highlights an advantage of distributed GP in that it can share logic

constructs without needing to share the data they were trained on. Potentially. this helps

preserve users’ privacy whilst aiding others evolution of logic. In contrast, batch learning

approaches typically require access to the data collected by others in order to achieve

general improvements in learning. More specifically, access to a classifier’s weights or

parameters is often unhelpful for improving another classifier since the internal represen-

tations may differ between the classifiers.

The AGP research provides an initial proof-of-concept demonstrating that GP can be

used on IoT devices to enhance usefulness over time through online learning. Research

on applying EA approaches on IoT devices is still in its infancy

12Source code is available at http://sourceforge.net/projects/agpframework/

http://sourceforge.net/projects/agpframework/
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2.5 Summary of Related Work

Various works for achieving evolution (though with a focus towards GP) on embedded

systems such as small robotic platforms, WSN motes and IoT devices were reviewed. It

is clear that GP on small robotic platforms pioneered research in this field with research

dating back to the early 1990s and is still continuing today. GP on WSN motes, while less

developed, has a natural synergy with the intrinsic parallel nature of GP, and EA more

generally [59]. Research with mote-class devices started during the 2000s and received

recent research interest by this thesis and the others with some success. GP on IoT de-

vices, unsurprisingly, has received only recent attention due to IoT technology becoming

widely available within the last decade. Nonetheless, given the proliferation and antic-

ipated growth of IoT-class devices in the coming years, ML approaches (including GP)

are likely to play an important role in delivering device and application behaviours that im-

prove and adjust to users’ preferences as well as adapt to changes in the environment (or

fitness landscape) over time. Expectations of such behaviour already exist for numerous

web services like Google search, website advertising, Amazon recommendations, etc.

As can be seen from Table 2.1, many attempts to construct frameworks to achieve

evolution of logic on embedded systems have been made. Each of these approaches

demonstrated their utility by addressing the various aspects useful for evolving logic on

embedded devices, often residing within networks. The significant aspects of these at-

tempts can be categorised into the following: evolving on the embedded device hardware

(i.e. in situ), performing evolution in a distributed manner, employing GP is the logic

discovery mechanism and learning within the deployed environment while considering

performance (i.e. online learning). Whether these approaches address these aspects is

shown in Table 2.1.

Evolving logic with GP on embedded systems within networks is a desirable property

for a number of reasons. First, in situ evolution avoids the transference problem - the TRANSFERENCE

PROBLEM

brittleness of logic devised offline through simulation when placed into the real world.

Second, there is a natural synergy of the distributed nature of population-based evolution

with the “population” of agents within a network. Furthermore, employing mechanisms
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such as the Island Model are known to significantly aid in reducing the time for an indi-

vidual (population) to discover acceptable solutions. Third, computer code can represent

potentially any behaviour capable by the device. GP offers an automatic mechanism for

generating such code and a syntactic richer representation than that of traditional EA.

Approach Reference(s) In situ (CPU) Distributed GP Online

SAMUEL
[111] 713 7 4 7

[42] 713 7 4 4

PDL
[123] 414 7 7 4
[113] 7 7 4 7

AIM-GP
[10,92–96,98] Khepera Robots (MC6833115) 7 4 4

[97] PC Class16 7 4 7

GPN [7,117,118] 7 Internally 4 7

EmEvo [32,36,141,142] Handy Cricket (PIC16C715)17 4 7 4

DAEDALUS
[50–57] Handy Board 18 (MC68HC11) 4 7 4

[55]19 Simulated 4 7 4

BDP [62] 7 4 4 7

DGPF [150] 7 4 4 7

IDGP [137] Fleck3b (Atmega1281) 20 4 4 4

DOWSN
[59] TelosB (MSP430) 21 4 7 4
[60] COOJA (Simulated MSP430) 4 7 4

Ulfsark [37] Nokia 628822 4 7 7

AGP
[22] HTC Magic 23, Nexus S24(ARM) 7 4 4

[135] Nexus S 24 (ARM) 4 4 4

Table 2.1: Summary of related research. IDGP (this research) included for comparison.

This richness can be exploited to implement nearly any online learning mechanism,

as was demonstrated with Section 2.2.4. Additionally, it is easier to understand logic

represented in a familiar language like C, rather than weights of NN or support vectors,

etc. Finally, customised and adaptive logic can offer longer-term acceptable solutions or

enhanced user experiences by requiring less human in the loop intervention to maintain

or improve logic within changing environments and contexts. All of these aspects are
13Intel 80486 (Nomad-200 robot) however evolution of programs did not occur on the platform
14Intel 80186 7.91Mhz, 1MB RAM *Assumed HP 200LX as “Pocket PC” based on the year of publication
15MC68331 16 MHz, 256 kB RAM
16SUN-SPARC, Power-PC, Intel 80X86, Sony PlayStation, Java Byte-code
17PIC16C715 20 MHz, 128 bytes RAM, 4096 bytes ROM
18MC68HC11 2 MHz, 32 kB RAM
19The second problem experiment involved L-Systems
20Atmega1281 8 MHz, 8 kB RAM
21MSP430 8 MHz, 10 kB RAM
22ARM9 236 MHz,2048 kB RAM
23MSM7201A (ARM) 528 MHz, 288 MB RAM
24ARM Cortex A8 1 GHz, 512MB RAM

http://computers.mcbx.netne.net/portables/200lx/index.htm
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desirable for embedded systems and this is supported by the numerous research efforts

reviewed in this chapter that attempt to address various combinations. However, none of

these research efforts addresses all of these aspects. (Excluding this research, IDGP,

which is included for comparison purposes, and the AGP work which is also based on

the IDGP framework.) The challenge of addressing all of these aspects simultaneously

provides the motivation of this thesis.
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3
In situ Distributed Genetic Programming

Framework

This chapter details the design and evaluation of the In situ Distributed Genetic Program-

ming framework (IDGP) [136]. IDGP is a core contribution of this thesis designed to assist

embedded systems engineers in achieving distributed evolution of logic on their deployed

devices. Design considerations and an example implementation of the framework are

provided as a guide for embedded systems engineers to develop their own distributed

genetic programming implementations on embedded devices. The implementation and

evaluation of the framework revealed undesirable performance of the devices evolving

logic. This motivates the need for a mechanism to balance the exploration and exploita-

tion aspects of evaluations in real world application scenarios.

47
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This chapter details the design and evaluation of a framework for providing the ben-

eficial capabilities captured within Related Work: Genetic Programming on Embedded

Systems. These capabilities, listed in 2.5 Summary of Related Work, can be summarised

into the following objective:

Achieve distributed GP on a network of deployed constrained embedded devices

However, to ensure the framework is generally applicable (across a range of embed-

ded systems), the framework will focus on operating with WSN mote-class devices since

they typically represent the most constrained of the embedded systems. Additional spec-

ifications on the thesis scope are also presented in Section 3.1.

Within this defined scope, a framework designed to achieve distributed genetic pro-

gramming on mote-class devices and is detailed in Section 3.2. An implementation of the

framework on actual motes within a network of devices is subsequently described in Sec-

tion 3.3. The mote implementation is then evaluated on a time-varying sensing-actuation

problem (Section 3.4) and a second challenge requiring the evolution of communication

(Section 3.5). Performance, benefits and deficiencies with the implementation are dis-

cussed in Section 3.6 followed by concluding remarks in Section 3.7.

3.1 Scope

Embedded systems encompass a diverse range of devices and hardware with greatly

varying capabilities. In this section, the scope of embedded systems that the framework

must support is focussed to microcontroller-based systems with similar characteristics

to those discussed in Chapter 2. Specifically, this includes the 3 classes of embedded

systems (small robots, WSN and IoT devices), however the scope is further narrowed to

devices with communications capability as this will be essential for the requirement of

distributed evolution of logic. Wireless communications is preferred as it offers additional

autonomy and freedom for the device to move unencumbered from any tethered commu-

nications. The learning approach of the framework is limited to Genetic Programming for
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reasons identified in Section 2.1.3. A specific summary of what constitutes a “mote-class"

device and additional research directions outside the scope of this thesis are provided in

3.1.5 Scope Summary.

3.1.1 Mote-class Embedded System

As stated in Section 2.1.8, there is likely to always be a niche for computationally con-

tained devices since they can be fabricated more cheaply, run with lower power and be

smaller than their more computationally endowed counterparts. Taken to the extreme,

one can imagine nano-scale devices capable of performing sense-compute-act cycles,

and indeed significant research advances are being made towards this goal. Currently

however, energy, sensing, computation, communication and actuation capabilities at this

scale are very limited. Importantly, logic is not readily reprogrammable, the instruction set

(if there is one) is extremely limited and there is typically no general working memory (like

RAM that can be used for general computation. As such, running a GP engine on such

devices is not currently a viable option.

At the micro and millimetre scales, traditional programming techniques can be em-

ployed through the use of microcontrollers. While devices are obviously larger, they are

still sufficiently small to enable many application scenarios that simply weren’t possible a

decade or so ago. The next scale of device is the PC-class machines, and while they of-

fer significantly superior processing speeds, their size and energy requirements limit their

deployment from the application scenarios that low power microcontroller-based solutions

address. For the target embedded systems of interest to this research, microcontrollers

were the predominant processor of choice and is therefore a target processor for this

framework.

Of the embedded platforms discussed in Related Work: Genetic Programming on Em-

bedded Systems, WSN devices appear to have the strongest motivation for being small

and low cost since their utility is often coupled with their small size and ubiquity. This

is evidenced in Table 2.1, by the trend of robotic and IoT solutions typically employing
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higher performance microcontrollers (or even PC-class processors) than the microcon-

trollers employed by WSN devices from within a similar period. This is further supported

by surveys [2,30] of WSN devices showing the typical RAM and ROM for such devices

ranges from 4kB - 64kB RAM and 48kB-128kB ROM respectively1. Since the majority of

devices typically resides within these ranges, this will be used as a minimum target spec-

ification for the framework. Similarly, processor speeds of the devices surveyed ranged

from sub MHz up to 200 MHz and so this will also be treated as a minimum target range

for the framework.

3.1.2 Communications Capability

Since an objective of the framework is to achieve distributed evolution, communications

capability is implicitly required in order to distribute programs. WSN radios support the

tradeoff between lower data rates and longer range versus faster data rates and lower

range. Of the devices that support wireless communications in [30], the majority offer

data rates from 10 kbps up to 250 kbps. Therefore the developed framework should

operate with available data rates within this range.

3.1.3 Distributed Autonomous Evolution

Distributed evolution of logic does not imply that the evolved logic produces network-wide,

coordinated or emergent behaviours. Furthermore, evolving collective network behaviour

(requiring multiple entities to achieve desirable system performance) is likely to be a more

significant challenge than evolving desirable behaviours for individual entities. For this

research, the scope of interest is on embedded systems that can operate independently,

but can also utilise neighbouring or networked entities to aid evolution of logic wherever

possible. Nonetheless, achieving desirable network-wide behaviour is an interesting re-

search challenge warranting some preliminary investigation.

1with some exceptions, notably the Intel mote2 which has 256kB RAM with 32MB ROM
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3.1.4 Tree-based GP with Human Readable Program Representation

GP is one of many ML approaches that could potentially be employed for generating de-

sirable behaviours on embedded systems, however various benefits of GP were identified

in Section 2.1.3. Summarised, GP is a learning mechanism that can generate novel so-

lutions using code as the logic representation and since processors natively use code, it

can be argued that GP offers a mechanism to automatically generate any logic the device

is capable of performing. Another advantage of using code as the logic representation

is that it offers an intuitive mechanism for including human-devised logic (hence injecting

domain knowledge with human programs) which can then continue to evolve. Further-

more, the resulting evolved logic is typically more human understandable (particularly to

programmers) than most other ML representations which can be used to gain insights

about logic that generates desirable behaviour. Like most EA approaches, GP is also

readily parallelised or distributed and this has a natural synergy with the multiple entities

in WSN, IoT and swarm/cooperative robotics applications. There are many variations of

GP which could be employed. However, determining the best GP mechanism appropriate

for embedded systems is outside the scope of this thesis. Instead, the prototypical tree-

based GP with mutation and subtree crossover will suffice for the purpose of achieving

GP-based learning on resource constrained embedded devices. For these reasons, the

scope of learning metaheuristics for the framework is limited to standard tree-based GP.

3.1.5 Scope Summary

The aforementioned requirements and scope foci require a framework that can evolve

logic using Genetic Programming (GP) on “mote-class" devices. “Mote-class" is defined

as a device which employs a microcontroller with 4kB - 64kB RAM and 48kB-128kB ROM

with wireless communications supporting data transfer rates from 10 kbps up to 250 kbps.

The framework needs to support evolution of individual agent behaviours via distributed

GP, however evolution of collective, emergent or system-wide behaviours is not within

the scope of this research. Additionally, optimal configuration of the GP system will not

be investigated but rather an attempt should be made to ensure a reasonable, useful



52 In situ Distributed Genetic Programming Framework

configuration is employed. For convenience and improved understandability, programs

will be representable in standard ’C’ language format, though not necessarily encoded or

stored in this format.

3.2 Design

This section describes the design of the IDGP framework for achieving distributed genetic

programming on resource-constrained, networked devices. Since GP implementations

are typically memory intensive, memory constraints must first be considered. This is

done in Section 3.2.1. As a result, Section 3.2.2 details a method for achieving compact

program representation. For evolution of logic, a choice of selection and genetic operators

is required. How operators for the compact program representation can be achieved

are discussed in Section 3.2.3.1. Section 3.2.4 provides a guide for the execution and

evaluation of programs, while Section 3.2.5 details considerations and recommendations

for a communications subsystem.

3.2.1 Memory Considerations

The scope defined in Section 3.1 necessitates a GP engine capable of running on mi-

croprocessors with significantly constrained RAM and ROM. Unfortunately, since GP is

a population-based metaheuristic, significant RAM and ROM resources are typically re-

quired to maintain the population of candidate solutions [138]. For example, if an individual

program was 1kB (which is quite small for normal compiled programs), then a population

of 100 individuals would require at least 100kB of RAM. This would not fit within the

platform memory requirements defined in Section 3.1.5 and so a more sophisticated ap-

proach is warranted. However the framework will employ distributed evolution, and such

mechanisms (like the Island Model) can evolve solutions using a small local population

per agent, but yield the equivalent performance of one large population roughly the size

of all the small populations combined.
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Nonetheless, if the population per entity is too small, the lack of local genetic diver-

sity will often cause the evolutionary process to prematurely converge to a poor solution

[65,140]. One should also be aware that too large of a population may require an ex-

cessive number of function evaluations before the system will converge (though this is

less likely to be an issue for constrained platforms). The appropriate population size for

EA implementations is commonly determined by rule of thumb based on the complexity

or dimensionality of the problem being addressed. As a result, the population size must

be prescribed by the user since the framework has no a priori knowledge of the problem

complexity. Nevertheless, the amount of RAM required for a standard GP population is

not only a function of the number of individuals in the population but also the size of each

individual. As such, keeping the representation of individuals as small as possible will

maximise the number of individuals that can be supported within the memory constraints.

Considerations for achieving compact program representation are discussed in Section

3.2.2.

Once the appropriate program representation has been decided, how the programs

will be evolved must also be determined. The memory required will depend on the mech-

anism employed to generate a new population (discussed in Section 3.2.3). The gener-

ation of the next generation will require at least some additional memory, potentially as

much as needed for the current population unless in place substitution is employed. In

place substitution however runs the risk of prematurely reducing the population diversity.

It is possible to use other memory storage mechanisms such as flash (program memory),

however these typically have a limited number of write cycles, so this is not recommended

for embedded devices. Discussion of a basic selection of (prototypical) GP operators is

provided in Section 3.2.3.1.

A small amount of additional working memory may be required for the execution of

programs. Specifically, memory for variables used by the programs need to be supplied

by the execution process (c.f. Section 3.2.4) or virtual machine (c.f. Section 3.2.2.1).

Ideally, if the population is already in RAM, then the execution process should be able to

execute the program in place (via pointers) and not require an additional copy in memory.

Finally, the implicit memory (and processing) savings by performing in situ evolution
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should be considered. As [16] states “the world is its own best model” and so evaluating

solutions with it potentially eliminates the need to simulate the world. This is suitable for

resource-constrained platforms, however it does come at a cost. Simulations tend to ide-

alised, which often makes them faster than realtime to evaluate solutions with, though it

can introduce the “transference problem”. Additionally, parallel simulations can be con-

ducted without interference, unlike in the real world, and so this also increases the num-

ber of evaluations that can be performed within any period. Evolution typically requires

many generations before converging or evolving to good solutions. Ideally, light-weight

simulation that improves its accuracy based on the outcomes of intermittent real-world

evaluations should be employed if the device has enough resources to do so. Examples

of such approaches can be found in [96,109].

In summary, the memory constraints of microcontrollers will likely restrict the popula-

tion size. Therefore, every effort should be made to ensure the representation of individual

programs is kept as small as possible.

3.2.2 Compact Program Representation

This section provides considerations and recommendations for achieving compact pro-

gram representation. Essentially, it is recommended that a virtual machine Section 3.2.2.1

be employed to abstract physical hardware and allow the execution of high level instruc-

tion in programs represented using prefix notation (Section 3.2.2.2). Additionally, program

metadata is discussed in Section 3.2.2.3 and a novel program identifier presented as a

useful means for fast, course approximation of diversity between programs.

3.2.2.1 Virtualisation of Hardware

As discussed in Section 3.2.1, achieving compact program representation is important.

One method for achieving this is evolution of direct machine code as discussed in Section

2.2.3 since this is a one to one mapping with the instructions of the device architecture.

However, the low level representation has drawbacks with management of the program

execution. Significant care must be taken to ensure that the processor cannot execute
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code that does not yield, accesses memory it shouldn’t or execute instruction that could

halt or crash the device. Additionally, there may other (framework) services being ran on

the microcontroller that should not be interfered with by the evolved logic. Furthermore,

in networks of devices with different processors (which are becoming more common due

to convergence of communications standards), direct machine code will not be able to

be shared usefully to other devices. For these reasons it is recommended to“virtualise”

the hardware so that programs are sandboxed and can be safely terminated and cannot

access restricted operations or memory.

A process virtual machine (VM) offers a software mechanism to easily abstract the VM

sensing, computing and actuation capabilities of any platform. It can also provide a com-

pact representation of complex logic by employing high-level instructions. Each VM in-

struction, which is usually represented by only a few bytes, can potentially map many

native instructions to a single instruction. This means the number of bytes required to

represent high level complex programs is likely to be far less than the equivalent machine

code representation and furthermore such programs could run on different architectures.

Additionally, a smaller number of high level instructions are typically easily understood

than many low level instructions. There are two disadvantages with employing VMs how-

ever. Firstly, a VMs usually requires significant resources (in RAM and ROM and CPU

utilisation). Secondly, using high level instructions potentially reduces the novelty of so-

lution that will be achieved since these are likely to be used as building blocks for more

complex behaviour rather than other novel solutions emerging from tabula rasa.

However since we aim to achieve complex behaviour on networks of devices (which

may have different microcontrollers), we recommend a VM approach. A light-weight VM

can largely be implemented with an “execute” function that takes the program and iterates

over the instructions and executing the appropriate function calls that they map to.

3.2.2.2 Prefix Notation

Assuming a VM approach is adopted, the program representation needs to be decided.

How the programs are likely to be used and manipulated should be taken into account.
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Like any modern architecture, the native architecture size needs to be set. This dictates

the size of each instruction, so ideally we wish to have a small size. Typically these range

from 8-bit architectures, 16-bit, 32-bit and more recently on PC-class computers 64-bit

architectures. 8-bit architectures are becoming less common, even for microcontrollers

these are often too restrictive since it is more difficult to access memory locations larger

than the native architecture bit-width. Nonetheless, a VM is not restricted since it can

emulate wider-bit architectures. The choice of bit-architecture should reflect the maxi-

mum complexity expected for the problem but in general one should choose the smallest

possible that will meet the needs of the problem at hand.

Keith and Martin [63] suggests that a modular representation is that of a genome

interpreter that uses a prefix ordering scheme, general data support, a 2-byte node rep-

resentation, and a jump-table mechanism. This is a clean and modular approach, though

not necessarily the most efficient. We also recommend the prefix notation scheme (over

tree-based style using node pointers), since this will ensure the program size remains

small which impacts the number of programs that can be instantiated as well as the num-

ber of packets (or bandwidth) required to transmit a program. A further advantage of

prefix notation is that it can be used to guarantee syntactically correct programs. This is

possible since the instruction set and number and argument types are known for each

instruction.

To avoid the complexity of memory management of variables, we recommend fixing

the number of variables available by effectively reserving instruction numbers (or “Op

codes”) for the variables to be made available. With a case statement implementation

the size of each instruction and the number of parameters can be stored in a lookup

table so that the program tree can be quickly traversed without the need to evaluate any

instructions. This is particularly useful for conditional branching, generating a program

listings or determining the size of the code (or parts therein).

The crossover operation for standard prefix notation if fairly complicated compared to

LGP [148]. With prefix notion (or node representation) a branch needs to be identified that

can be cut and another branch inserted. However this requires type-checking before the

branches are swapped and after the swap the maximum tree depth may have exceeded.
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With LGP on the other hand, if programs are the same number of lines, one simply cuts at

the same randomly selected line and swaps the 2 portions to yield 2 offspring of exactly

the same size as the parents. Thus, LGP can avoid the computationally expensive ma-

chinery typical to tree-based representations [103] since the crossover point is between

any line and connecting fragments is always valid.

Since we wish to employ tree-based representation however due to the benefit keep-

ing complex nested functionality, we propose a hybrid light-weight representation that is

a hybrid of the 2 schemes. This linear-tree-based-hybrid representation is effectively the

same representation most programmers are accustomed to. An example of programs

represented in this form is shown in Figure 3.1, as is the result of a crossover operation

where different lines on the parent programs were used as the crossover point. The rea-

son for this is that the number of instructions within a tree (the program is effectively a

sequence of traditional tree-based programs) may differ. Therefore, ideally the crossover

point in each program should roughly be before the line number where the total cumu-

lative instructions up to that line number (summing all the trees up to the line number)

added to the other program portion would exceed the maximum program size. Put simply,

attempt to make the crossover points (line numbers) such that offspring do not exceed the

maximum program size.

The instruction set will vary based on the platform’s capabilities, and by the capabil-

ity needed to address the system objective. The choice of bit architecture will limit the

number of instructions that can be enumerated, however this is typically not an issue. A

set of low-level instructions will likely take longer to evolve useful or complex behaviours,

however it is likely to evolve more novel and possibly more efficient behaviours due to

not being seeded with high-level functionality. As stated before however, more low level

instructions will be required to represent complex behaviours, which in turn requires larger

program representation. For this reason, we recommend biases the instruction set with

instructions representing complex functionality, however including some low level mathe-

matical and logical instructions can often be enough to generate novel solutions.
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Name Bytes Purpose
Program ID 4 Unique program identifier which embeds informa-

tion on the distribution of functions within the pro-
gram

Mutation Rate 2 Specifies the mutation rate during program genera-
tion

Program Bytes 1 Specifies the length of the program in bytes
Program 1 - LMax The instructions ordered in prefix notation format

Table 3.1: IDGP Program metadata structure.

3.2.2.3 Program Metadata

In addition to the program instruction code (VM byte code), additional information (pro-

gram metadata) may be desirable to have stored with the program. This is particularly

useful for keeping any contextual information with a program if it is sent externally.

We propose as a minimal set of metadata that of Table 3.1. It is recommended that

the program metadata block be placed before the byte code since when the full data is

received, the metadata can be quickly parsed to ascertain how large the program is and

potentially whether the program will be kept or not without even assessing the byte code.

The proposed metadata block includes a program identifier which is preferably unique

to every unique program. That is, if 2 programs are identical, then they will have the same

ID and so one might wish to reject such a program since it offers no genetic diversity to

the local population. Extending this further, we propose that this ID be generated based

on the frequency of instructions within the program using a histogram representation. For

example, if we use the instruction set available to the yellow program fragment in Figure

3.1 and treat the fragment as a program, then it would have the following frequencies

of instructions as shown in Table 3.2. Note that no structural information is conveyed,

however this could make a good extension to the ID.

The difference between IDs (sum of the absolute differences for each instruction

count) can be used as a crude metric of program diversity. This implementation uses

4 bytes for the ID and is simply calculated with a single parse of the program. Thus this

is a useful, compact and easily computed unique ID that can also be used for diversity

calculations or simply ascertaining the distributions of terminals and functions.
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Figure 3.1: An example of 2 programs using the linear-tree-based-hybrid representation (top)
and how crossover and mutation can be applied to generate offspring.

An epigenetic metadata field is reserved for the mutation rate of programs when they

act as parents. This epigenetic information can enable faster learning and faster rediscov-

ery of good solutions [130] when unexpected events in the environment cause a dramatic

change to the fitness landscape, however this feature is not utilised in these experiments.

The final metadata field stores the number of bytes in the program (which typically differs

from the number of instructions due to optional data fields) and is used by the framework

for transmitting programs as multiple packets. In total, only 7 bytes (LMeta) are used for

metadata, however this information is extremely useful to receiving nodes.

3.2.3 Program Generation

3.2.3.1 Generating Random Programs

Due to the limited memory of motes, there is a tradeoff between the number of programs

that can be stored in the population and the size of the programs in that population.

This tradeoff will have an effect on the evolution performance, however this impact is

not studied here. Interestingly there is evidence to support that in many scenarios small
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Instruction Yellow Blue Magenta Green ID bits
const_int() 0 1 0 0 0-1
var_int() 1 0 2 2 2-3
steer_left() 1 0 1 0 4-5
steer_right() 0 1 0 0 6-7
steer_straight() 1 0 0 1 8-9
motor_stop() 0 0 0 1 10-11
delay(Arg1) 4 0 1 0 12-13
set_speed(Arg1) 2 2 0 1 14-15
+(Arg1,Arg2) 0 0 0 0 16-17
−(Arg1,Arg2) 0 0 0 0 18-19
×(Arg1,Arg2) 0 0 0 0 20-21
/(Arg1,Arg2) 0 0 1 0 22-23
=(Arg1,Arg2) 0 0 1 0 24-25
unused 26-31
ID (in hex) 0000B114 00008041 01401018 00004508 0-31

Table 3.2: Example instruction histogram for the code fragments in Figure 3.1 (top).

populations are still very effective [140]. Rather, the limited memory of the device is

accepted and effort made to utilise the memory to produce an acceptable population

size.

For simplicity, and without loss of generality, IDGP currently implements a user-defined

maximum program length and fixed population size to address this design decision. As

the IDGP engine is assembling the program, it uses the number of remaining instructions

to select instructions whose number of required arguments does not cause the program

to exceed the maximum program length. This approach induces a small syntactic bias

towards functions with fewer parameters and the bias is obviously greater when the max-

imum program size is nearer to the maximum number of arguments for any function.

However, as the maximum program size increases with respect to the maximum number

of arguments, the syntactic bias diminishes.

A function selection bias, represented as a discrete probability distribution function,

is used to probabilistically select instructions. This is currently user-supplied and used

to bias the generation of programs away from extremely nested programs. If all func-

tions have equal probability of being selected, the likelihood of generating deeply nested

programs becomes high while the number of generated program lines becomes low.
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Finally, a user-defined maximum nesting (depth) level constraint is also imposed. Dur-

ing program generation, the IDGP engine passes terminals into all arguments of the cur-

rent function if it reaches the maximum nesting. The combination of these constraints

and biases generate programs with a number of nested statements that is comparable

to human generated code. Section 3.2.3.1.3 elaborates on the motivation for multi-line

programs.

Figure 3.2 shows the relationship between nesting and the average lines of code per

program for any given maximum program length. This relationship is controlled by the

probability of selecting a constant P(C). While the plot indicates the theoretical relation-

ship between nesting and lines of code, the X mark near the plot indicates the achieved

program nesting and number of lines for an example of P(C)=0.5 and a program length of

42 bytes.

Figure 3.2: Relationship between nesting level and the average lines of code for generated
programs. The nesting level and number of lines for 5a (c.f. page 78) is indicated by a cross.

The memory footprint required for the gene pool is Npop multiplied by the maximum

program length, LMax. However two identically sized populations of programs are al-

located so that one population represents the current generation being executed, while

the other is used to store the programs for the next generation. This approach requires
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2×Npop×(LMax+LMeta), where LMeta is the length of any program metadata for a particular

program.2 Consideration in this manner appears somewhat novel, and we refer to the in-

vestigation of classes defined by the combination of operators used to generate portions

of a population as demographic analysis. While demographics appear to have been

little studied, the standard genetic operators of mutation, crossover and cloning/elitism

have received considerable attention.

Using the operators as previously discussed, we generate five “typical” classes and

define them as follows:

For ease of notation, the population composition is expressed as
[NE NH NC NR] NO] representing the number of individuals to be generated
in each of the following classes:

• E: Elites - no operators used. Top ranked individual is cloned NE times into
the new population unchanged

• H: High Ranked Mutants - mutation operator used on biased selection (top
few) of individuals

• C: Children - single-point crossover using biased parent selection, mutation
applied to child

• R: Random - randomly generated individuals

• O: Other - individuals supplied by “other” sources such as immigrants from
other populations via the Island Model or human-devised solutions

For reasons that will be discussed later, these are ordered by their expected (not eval-

uated) fitness. The expected fitness of “classes” is less studied since typically how ef-

fectively they explore the search space would be of interest rather than their average

(expected) fitness with respect to the rest of the population.

By including other operators, many other combinations, and hence “classes”, can be

realised. There is likely an optimal balance of class representation which maximises

2With fixed maximum program sizes it is possible to create the next generation with only 2 additional
code slots of size (LMax +LMeta) providing knowledge of which programs are to be used in generating the
next population is known/stored in memory.
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learning, however it will be problem and representation specific. Determining the appro-

priate distribution for optimal learning is typically achieved through rule-of-thumb heuris-

tics and/or insight of the specific problem. This challenge is outside the scope of this

research, however the design parameters still need to be considered and an appropriate

default learning distribution chosen.

3.2.3.1.1 Elites

The Elitist Strategy, or Elitism, introduced by De Jong, helps local search at the ex-

pense of the global search (essentially helping to remember where the local search is,

but that “memory” could have been used for further exploration instead

After it executes all (Npop) programs in the current generation, the IDGP engine ranks

these programs (step 3) according to their achieved fitness. It then copies the NE pro-

grams with the highest scores into the next generation (elitist selection).

3.2.3.1.2 Mutants of Highly Ranked

Often simple mutations can assist the speed to evolve an acceptable solution, so we

also generate NH slightly mutated programs with high rankings. This employs a strongly

biased selection operator, then followed with the mutation operation.

3.2.3.1.3 Children

Next, NC children programs are generated from a biased (fitness proportionate) se-

lection of NC parents as the single-point crossover , and recombination yields 2 children

programs for each pair of parents chosen via fitness proportionate selection without re-

moval. Fitter programs may be selected multiple times, and even selected to breed with

themselves. This may not necessarily generate a clone of itself since the crossover point

does not need to be symmetric.

This ability to create two new solutions from the same solution represents a significant

added capability of GP relative to typical Genetic Algorithms (GA) [70].
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When using prefix notation representation, crossover points need to be carefully cho-

sen to ensure the resulting programs are syntactically correct. The current implementation

uses a simple approach of cutting programs at a zero nesting level to ensure the gener-

ation of syntactically correct offsprings, whilst guaranteeing that the genetic information

from both parents is completely passed into the next generation. This is somewhat similar

to how humans “evolve” their code, by manoeuvring portions of code rather than modify-

ing a single monolithic line of code.

During the evaluation of programs, other programs may be transmitted from neigh-

bouring motes. These programs have the potential to be worse than random if their

objective is anti-correlated with the local mote’s. Communications is also not guaran-

teed and so it is unknown how many other programs will migrate to this mote within one

generation. We set an upper bound on how many others can be received within one

generation and simply drop additional other programs if the allocation has been reached.

We term the number of other programs that do arrive as Nothers. Finally, the remaining

(Npop −Nelite −Nhighrank −Nchildren −Nothers) programs are randomly generated programs.

The newly created population is then ready to be evaluated.

The genetic operations and generation of the new population scales linearly with the

number of programs in the population. The IDGP overhead for the current population size

of Npop = 21 is less than 100 ms per generation. This overhead is typically relatively small

compared to the population evaluation time. For example, with a program evaluation time

of 1 second per program, the overhead is <0.5%.

3.2.3.1.4 Others

The final class of programs is referred to as “others” indicating that they have been sup-

plied external to the local genetic operators. Mechanisms by which others can be supplied

include immigrant programs via the Island Model and potentially seeded programs pro-

vided by a user. The expected performance of programs of this class is unknown since

they do not evolve naturally within the population, however they can be a useful way to

inject domain text or inject genetic diversity from other populations.
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3.2.4 Program Execution and Evaluation

Each VM instruction runs for a set maximum time of execution before it must yield, then

there is a delay up to the next regular interval.

The evolutionary process however requires an assessment of individual (program)

fitnesses. The best indication of an individual’s fitness can be had from evaluating the

individual in the real world. However, since there is a population of individuals to be

assessed, a mechanism is needed for scheduling the evaluation of programs and so this

is discussed in Section 3.2.4.

3.2.4.1 Program Scheduling and Execution

To ensure that IDGP programs are isolated from core functionality, so that runaway pro-

grams can be safely killed if necessary and so that actuations are kept within safe ranges.

Similarly, the architecture ensures that the IDGP engine can obtain feedback about how

the system is performing, in order to evaluate IDGP-generated solutions. Development

of architectures appropriate for IDGP deployment is an ongoing research issue which will

not be addressed here.

The user policy, which includes the system fitness function and other initialisation

parameters, serves as a key input into IDGP. With the framework running on every mote,

neighbouring motes can exchange locally generated programs in a form of cooperative

evolution which may reduce the time to settle on an acceptable solution.

The genetic program engine initially generates a pool of programs in a random fashion,

biased by the function selection probabilities, as shown in step 1 of Figure 3.3. Each pro-

gram in the current generation is evaluated in turn (step 2) where the GP engine launches

a virtual machine interpreter thread to run the evolved code and another to evaluate pro-

gram fitness. The fitness evaluation thread runs in parallel with the execution thread

since fitness may need to be calculated over the execution period of the program. After a

specified evaluation period, the GP engine stops and kills the evaluation thread, to avoid

potential deadlocks in execution.
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3.2.5 Communications Subsystem

Providing a communications subsystem is essential for distributed evolution, and man-

aging communications more generally will be required for devices with wireless commu-

nications capability. The framework will need to support sharing of programs between

devices as well as other non-program data such as fitness scores and engineering data

and remote procedure calls (RPC). Additionally, it may be desirable for the devices to

evolve logic that also performs communications. As such, the communications subsys-

tem should be transparent to the evolving logic. This can be achieved by virtualising the

communications functions in a way that avoids the GP process having to evolve deal-

ing with subsystem packets. In many light-weight operating systems, this can be easily

achieved by dedicating a socket (or channel) to VM transmit and receive functions. On

the architecture side, this may be achieved via software (usually an identifier in the packet

header and a receive process which multiplexes the packets to the appropriate sockets)

or in hardware (by using a different physical channel, or MAC address filtering by the

transceiver). Furthermore, broadcast packets (rather than unicast or routed) are recom-

mended for simplicity and that other types of communications could be evolved from the

basic broadcast capability. In some circumstances non-broadcast packets may be better

suited, however in the absence of sufficient domain knowledge suggesting otherwise, we

recommend employing broadcast. Importantly however this does not imply that broadcast

is suitable for framework or RPC communications.

As with any wireless communications system, issues such medium access control,

bandwidth utilisation, and data corruption need to considered. Many of these issues are

increasingly handled with hardware and by the operating system and so will not be dis-

cussed relative to the “engineering” packets. Nonetheless, the evolved logic can impact

on these issues also and must be considered. If the evolved logic is allowed to communi-

cate freely, then this could lead to congestion and impact on the ability of the framework to

function correctly. Specifically, programs may not be shared and global fitness feedback

would also be effected. As such, it is recommended that the VM ensure that a maximum

rate of packet transmission is imposed.



3.2 Design 67

Digital radio transceivers often have a maximum packet size that can be sent. While

this size is increasing as the technology advances, having the ability to break a program

into multiple packets and reconstruct the full program on the other side may be essen-

tial in order not to restrict the program size. There are many methods for achieving this,

including some that achieve this with the transceiver hardware (which is preferable). Re-

gardless of the solution employed, it is recommended that a checksum calculation like

CRC be employed to ensure the integrity of the received program. Again, the system user

should ensure that the rate of transmission of programs will not saturate the available

bandwidth as to cause detriment to other services.

In summary, the communications subsystem needs to appropriately prioritise commu-

nications resources in the following order. Remote procedure calls should have highest

priority so that the system state can be probed and any user action (such as halting the

framework or execution of an evolved program) can be affected immediately. It should

be attempted to ensure framework messages not interfere with the communications from

evolved programs being executed and vice-versa. However, the framework should take

precedence in terms of bandwidth utilisation in order to avoid evolved programs impacting

on framework packets (such as dropping packets with global fitness information). Finally,

framework and RPC messages should not be visible to evolved logic.

3.2.6 IDGP Design Overview

The recommendations in this section culminate in the In situ Distributed Genetic Pro-

gramming (IDGP) framework which can be used to implement genetic programming on IDGP

resource-constrained platforms. Figure 3.3 provides a simplistic representation of the

IDGP framework’s core architecture. A fixed size population (Np) of compact programs

of fixed maximum size are sequentially executed simultaneously evaluated. The fitness

can be supplied externally or be local to the evaluation thread all be a combination of both

local and external (global) fitnesses. At the end of a generation, the programs, including

any received during the evaluation of programs in this generation, are ranked and various
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Figure 3.3: An overview of the In situ Genetic Programming (IDGP) Framework.

classes of programs are generated to comprise the new population. Additionally, in ac-

cordance with the GP settings supplied by the user policy, a number of programs will be

broadcasted to neighbouring nodes. Note, this may require fragmenting the program and

reconstructing it on the receiving side. The cycle is then repeated according to the user

policy. This GP process occurs on all nodes in an asynchronous manner.

3.3 Implementation on Motes

Using the framework modelled in Section 3.2, we now look to create a physical instanti-

ation of the IDGP framework. This requires first choosing the device hardware which is

described in Section 3.3.1. Upon deciding the hardware, Section 3.3.3 specifics of how

the framework is implemented (in software) on the specific architecture.

3.3.1 The Fleck3b Mote Platform

There are many WSN platforms available [2], however the CSIRO Fleck™3b platform

[114] was readily available, and importantly, it meets the criteria identified in Section 3.1.5.
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The Fleck™3b employs the Atmega1281 microprocessor running at 8 MHz with 4kB

EEPROM, 8kB SRAM, 128kB program flash. The low power microcontroller is comple-

mented with the Nordic NRF905 low power digital transceiver (<100mW during transmit,

< 43mW during receive) which enables the Fleck™3b to communicate at 50kbps across

1 km using a 915 MHz quarter-wave whip antenna. The Fleck™3b can measure many

external sensors though the ADC connector block and also measure onboard sensors

such as the power used by the mote. The platform has features 3 onboard LEDs, a red,

a green and a yellow, which are software controlled. An overview of the board layout and

functionality is shown in Figure 3.4.
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Figure 3.4: Fleck3b hardware functionality overview.
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Figure 3.5: Fleet of “Fleck cars” (circa 2008).

The Fleck™3b platform has been used for numerous research and real-world applica-

tions [20,39,47,48,99,101,115,120,137,139] though mainly for outdoor applications such

as environmental monitoring and animal tracking/monitoring.

Preliminary testing of the IDGP framework was performed with Fleck™3b devices that

were embodied in small remote control cars where the original motor controller circuitry

was replaced by the mote platform. An infrared range sensor (Sharp GP2Y0A21YK)

was attached to the front and connected into an ADC and the motors were controlled

with a specific motor controller daughterboard. The initial implementation of IDGP was

performed on these small robots and a number of behaviours were evolved. The “Fleck

cars” (shown in Figure 3.5) were trained to avoid crashing into walls, however they also

demonstrated online learning capability. This was achieved by using the range sensor as

the fitness feedback. When the behaviour of the car was desirable, the trainer could place

their hand in front of the range sensor to provide a level of fitness feedback including not

putting the hand in front (lowest fitness). Through this, one could evolve a behaviour such

as mostly driving forward, but then later retrain it to drive mostly in reverse by providing

appropriate feedback when the desirable behaviour was displayed. This investigation was



3.3 Implementation on Motes 71

not performed under experimental design and so have been omitted from this thesis. The

maintenance, due to the cheap remote control car components frequently failing, was

deemed too excessive. As such, the Fleck™3b devices had light sensors attached to

the onboard ADCs to provide sensing input, while the onboard LEDs provided actuation

capability that could affect the environment and also be sensed by the light sensors. This

configuration (shown in Figure 3.7) provided a low maintenance mote-class device with

sensing and actuating capability suitable for experimentation.

3.3.2 Program Representation

The current IDGP implementation employs a hybrid tree-based program representation

as suggested in Section 3.2.2.2, and supports the int16 type and functions with up to 3

arguments (though is easily extensible to additional types and functions with more argu-

ments). For ease of implementation each op code is passed to a switch statement and

the corresponding code called. The Prefix, Jump-Table (PJT) approach suggested in [63]

requires slightly more complexity in constructing a program, however the PJT approach is

more modular and cleaner.

The op code representation differs from typical GP C++ representation such as that

used in [63] in that variables and constants are not memory references. Instead, IDGP

directly embeds variables and constants into the code as either the variable number or

the actual constant value. The prefix notation implemented uses 1-byte instructions and

an optional 2-byte datum field if required by the instruction. Constants (signed 16-bit

integers) are currently the only instruction which use this datum field, and are therefore

represented by 3 bytes. The advantage of the datum field is that constants are directly

embedded in the program rather than pointing to an external reference which would have

to be moved with the program when it is shared. Two bits of the instruction byte are

reserved for a variable index which removes the need for the 2-byte datum field when the

variable instruction is used. When only 1 byte is used for the op code, this approach limits

programs to a maximum of 4 variables and a maximum instruction set of 64 instructions.

The obvious advantage to this representation is however an extremely compact program
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Table 3.3: Instruction Representation
Bits 0:1 2:7 8:23 (Optional)
Use VAR index Op Code Datum Field

with nearly all instructions using only a single byte. Table 3.3 shows how instructions are

formatted.

3.3.3 Program Evaluation on Fleck OS

The Fleck Operating System (FOS) [21] is a small code footprint, cooperative threaded

operating system designed for low power, embedded devices with limited ROM and RAM.

FOS was originally implemented for the Fleck™3b hardware previously described in Sec-

tion 3.3.1. FOS applications are written in C and support numerous high level functions

such as routed radio messages, sensing of onboard sensors and external sensors and

remote procedure calls via radio. The cooperative threading model allows complex pro-

grams to be written in a compact and elegant manner which is easily understood. IDGP

was implemented as a FOS application with each program running as a thread and su-

pervised (spawned and killed) by the ’evaluation thread’. Since FOS is not preemptive

threading, the evaluated programs have to explicitly yield to give control back to the ’eval-

uation thread’. This was achieved by placing yield statements between each instruction (in

the virtual machine program execution) and ensuring that all instructions either completed

or yielded within a short period.

Programs that are distributed for the Island Model are broken into fragments and

broadcast (single-hop). Once all fragments of a program are received, the program is

reconstructed and pushed into the queue of immigrant programs where it can be used by

the GP engine during construction of the next generation of programs.

3.4 Evaluation on a Sensing-Actuation Problem

To illustrate various aspects of the IDGP framework, we have devised a problem with a

known optimal solution and implemented the IDGP framework on a mote-class device
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in order to solve the problem. However, unlike many GP systems which perform evolu-

tion offline and are validated through simulation, we perform all evolution in situ (i.e. on

the physical motes). Thus experimental results are based on online performance values

rather than simulation.

The first part of this section introduces the mote class hardware platform (Section

3.3.1) and describes of the designed objective function (Section 3.4.1). The second

part of this section evaluates the IDGP framework for individual mote evolution, homo-

geneous evolution, heterogeneous evolution, and response to unexpected events (Sec-

tions 3.4.2.1-3.4.2.5).

3.4.1 LED - Photodiode “Blink3” Problem

This experiment aims to evaluate IDGP on a non-trivial WSAN application that requires the

sensing and actuation to be performed on a time-varying basis and demonstrate resilience

of logic under changed conditions.

There are a number of well known “benchmark” optimisation problems within the GP

community [70] and many in the broader optimisation community [100]. These problems

typically have well defined solution spaces and are useful for comparing differences in

optimisation techniques. However, none of these would demonstrate the capacity of the

IDGP framework to generate WSAN solutions: in isolation, based on local conditions; in

a neighbourhood of motes with the same objective but each with their own local charac-

teristics; in a neighbourhood of motes with differing objectives, and despite environmental

changes.

3.4.1.1 Time-Varying Sensing-Actuation Requirement

To demonstrate evolution of WSAN logic, a sensing-actuating objective function is de-

signed that uses the 3 onboard LEDs as the actuation capability and a light sensor (pho-

todiode) as the sensing capability. The objective is to maximise the light intensity re-

ceived by the photodiode at three time checkpoints while penalising energy usage at 6

time checkpoints. The objective is weighted so that the optimal logic (shown in Figure 3.6)
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would result in the LEDs blinking 3 times during the evaluation period of 500 ms For thisBLINK3

PROBLEM

reason, we call this the “Blink3” problem.

The light sensor (photodiode) is oriented roughly facing the onboard LED (Figure 3.7)

and is measured by the onboard 10-bit ADC. Ideally ,the photodiodes should have a rea-

sonably narrow pass band filter as shown in Table 3.4, and therefore more responsive

to some LEDs than others. In practice however, each sensor will vary slightly in its re-

sponsiveness to the same light and be effected by its orientation and distance relative to

the LEDs. The photodiode has a maximum forward voltage of 0.8 V corresponding to a

maximum ADC reading of approximately 248. The Fleck™3b wireless sensor platform

Centre Frequency Bandwidth (FWHM)
550nm (green-yellow) 70.0nm (515-585)
650nm (red) 70.0nm (615-685)

Table 3.4: Both with filter transmissivity of 75% and using the Intor T5 detector. Note that LEDs
that do not correspond to the centre frequency of the filter will still contribute to the ADC reading
however, the value is attenuated substantially compared to the matching LED colour.

has 3 different coloured LEDs - red, green and yellow. A photodiode with a filter cen-

tred around green (550nm) or red (650nm) is fed into an ADC. The photodiode is placed

to face towards the LEDs (see Figure 3.7). The photodiode measures a reading which

ideally is responsive strongly to the LED matching the filter and weakly responsive to the

other LEDs.

As each configuration will vary in position of the sensor and responsiveness of the

sensor, each configuration has been placed into a light absorbing bag and the individual

LEDs excitation voltage (ADC reading) measured and presented in Table 3.5. Note that

the filter has a 70nm (FWHM) bandwidth so some light from the orange sensor contributes

to the sensor reading of both green and red light sensors.

Basic idea is to have some minimal in situ example.

Situatedness (or embeddedness) in context to Embodied embedded cognition, refers

to the idea that physical interaction between the body and the world strongly constrain the

possible behaviours of the organism, which in turn influences (indeed, partly constitutes)

the cognitive processes that emerge from the interaction between organism and world.
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set_leds(0) set_leds(1) set_leds(2) set_leds(3) set_leds(4) set_leds(5) set_leds(6) set_leds(7)
ID - - - - - Y - G - - G Y R - - R - Y R G - R G Y
81 13.8 (5.8) 49.0 (0.98) 41.6 (0.96) 51.7 (0.92) 17.7 (4.56) 49.0 (0.97) 41.6 (1.03) 51.6 (0.97)
85 11.7 (4.7) 48.0 (0.99) 45.2 (0.97) 51.9 (0.77) 21.3 (2.55) 47.8 (0.85) 45.2 (0.90) 52.0 (0.77)
87 3.0 (3.4) 48.3 (0.91) 41.1 (1.04) 51.3 (1.09) 15.4 (3.55) 48.4 (0.92) 40.9 (1.01) 51.0 (1.03)
88 3.7 (4.6) 40.3 (0.83) 35.5 (1.10) 43.7 (0.88) 31.1 (1.52) 42.4 (0.79) 39.0 (1.01) 45.0 (0.83)
90 3.4 (4.0) 43.0 (1.19) 40.4 (1.17) 47.5 (1.09) 15.9 (3.89) 43.3 (1.12) 40.9 (1.16) 47.7 (1.15)

Table 3.5: Mean ADC readings (std) for all combinations of LEDs for the 5 nodes with no other
external light sources present. R,G,Y indicates which LEDs (red, green and yellow) were on. Note
each mean value was calculated from 200 samples taken periodically every 100 ms.

Program 4 The “Blink-3” objective function

fos_leds_set(0)
idleOffset = fos_power_battery_current()
delay(50)
isOdd = TRUE
WHILE program_is_executing

IF (isOdd)
fitness = fitness + fos_adc_read()

END
LEDmA = fos_power_battery_current() - idleOffset
fitness = fitness - 6 * LEDmA
isOdd = not(isOdd)
delay(100)

END

In this these we refer to this property as being “in situ”3 One of the objectives of the

framework is to work within real world domains. Hence we want to subject the nodes to

“real world” effects. This implicitly occurs since it requires actuation into the world (LED)

and sensing from the real world (photodiode).

The LEDs affect the local environment by providing illumination but are not necessar-

ily the sole influence of light in the environment. Sunlight, room lights and reflections are

just some of the “external” light sources that can contribute to the ambient light, and in

turn affect the value read by the light sensor. These “external influences” are often unpre-

dictable, however are useful for demonstrating responses to unanticipated environmental

changes. At first instance, we avoid exposing the motes to external light by placing the

3in situ is a latin phrase meaning “in place”, “in position”, “locally”, “on site” etc
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motes in a box, lined with a light absorbing material and spaced such that the effect of

the LEDs from any mote would have minimal effect on other motes’ light sensors. This

enables us to focus on the learning and performance of the IDGP framework. The light

absorbing material surrounding each mote was depressed to further reduce the influence

of light generated from neighbouring motes. Because the position and orientation of the

mote relative to the light absorbing material can affect the sensor readings, no contact with

the motes was made during the main experiments. Optimal solution fitness for each mote

was measured before each experiment and used to normalise fitnesses for subsequent

experiments.
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Figure 3.6: Sample points shown for the Blink3 objective on an optimal solution (Program 5c)

The physical set up of each mote is to have a light sensor (photodiode) connected

to an onboard 10-bit analog-to-digital converter (ADC) on the mote (known as a Fleck3)

with the photodiode roughly facing the onboard LEDs as shown in Fig 3.7. The “Blink3”

objective function is structured in such a way that the optimal solution is to blink the LED

corresponding in wavelength nearest to the pass-band of the light sensor, 3 times within

the 500 ms evaluation period as shown in Figure 3.6. With the reduced instruction set

used and optimal selection probabilities, the probability of generating the exact intended

optimal program can be calculated as 1.0E−34, however the probability of generating a

functionally equivalent program is much higher. Due to the syntactic richness of the GP

engine (multiple lines of code, nesting and a selection of functions), calculating the exact
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Figure 3.7: Fleck™3b motes with a photodiode connected to an ADC input (shown left) which
is facing the onboard LEDs (shown right)

probability of generating a random program that is functionally equivalent to an optimal

solution is intractable.

The photodiodes are passive sensors and do not draw any power from the Fleck. The

onboard LEDs consume approximately 3 mA each and can be measured by the onboard

current sensors. Note that LEDs are turned off before any program is executed and

evaluated. The penalty of the LED current draw is weighted such that a maximum fitness

is achieved by toggling only the LED that most closely matches the light sensor filter band.

ADC readings at 50 ms, 250 ms and 450 ms, and subtract the weighted current draw

at 50, 150, 250, 350 and 450 ms. This produces an objective function described in

pseudocode by Program 4. An optimal solution to this objective function is to have only

the LED corresponding to the filter on at 50, 250 and 450 ms and all LEDs off at 150 and

350. As there are 3 off-to-on LED transitions in the solution, we coin the name Blink-3 for

this objective function. A visual representation of this optimal solution is shown in Figure

3.6.

3.4.1.2 An Optimal Solution

The instruction set required by a program to achieve this optimal fitness requires only con-

stants and the delay(x) and set_leds(x) functions. The IDGP instruction set was reduced

to these 3 instructions in order to reduce the time to evolve to an acceptable solution.

To ensure programs never exceed the maximum program size (in bytes, rather than in

number of instructions), a “NOP” (no operation) instruction was introduced. The effect of
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this “NOP” instruction is typically negligible since it merely introduces a delay in the order

of microseconds.

Program 5 (a) is an optimal solution to the “Blink-3” objective where X=1 and X=4 for
motes with 550nm and 650nm pass filters respectively. Programs (b) and (c) are common
local maxima.

1: set_leds(X) 1: set_leds(X) 1: set_leds(X)
2: delay(100) 2: delay(125) 2: delay(250)
3: set_leds(0) 3: set_leds(0) 3: delay(250)
4: delay(100) 4: delay(250) 4: END
5: set_leds(X) 5: set_leds(X)
6: delay(100) 6: delay(125)
7: set_leds(0) 7: END
8: delay(100)
9: set_leds(X)

10: delay(100)
11: END

Program 5a Program 5b Program 5c

Using this instruction set, we design an optimal solution (Program 5a) to the Blink-3

objective and note that it is 10 lines and an average nesting level of 1.

3.4.2 Results and Discussion

3.4.2.1 Random Search Baseline

Uniform random selection of instructions will generate programs with a calculable distri-

bution of number of lines per program and average nesting level. Typically, the optimal

program length and average nesting is not known a priori. To construct a best case

benchmark of random search we set the instruction selection probabilities to maximise

the probability of randomly generating the known optimal solution Program 5(a). The se-

lection probabilities of 0.43 for functions and 0.57 for terminals yields programs with an

average of 10.0098 lines and an average nesting level of 1.2850. Based on these proba-

bilities we calculate the probability of exactly generating Program 5(a) to be equal to 6.57

x 10−34. While this is practically zero, the probability of generating a functionally equivalent

program is much higher. Due to the syntactic richness of the GP engine (multiple lines



3.4 Evaluation on a Sensing-Actuation Problem 79

of code, nesting and a selection of functions), calculating the exact probability of gen-

erating a random program functionally equivalent to Program 5(a) becomes intractable.

For example, since set_leds only uses the lower 3 bits of the value supplied, then one in

every 8 values will yield the exact same LED configuration with no loss of functionality.

Just considering this alone increases the probability of generating an equivalent program

to 6.92 x 10−25 Consider various combinations of the delay periods which yield function-

ally equivalent programs increases the probability of generating a functionally equivalent

optimal solution to more than 6.92 x 10−15.

We therefore establish a baseline empirically by allowing motes to generate popula-

tions of random programs (equivalent to the population used by the IDGP engine each

generation) and record the maximum fitness, pool average and standard deviation for

each population. Scores are normalised against the respective optimal fitness for each

mote. In total, over 3.5 million randomly generated programs were evaluated by the 8

motes using over 21 000 populations with 21 programs per population. The maximum

fitness found was 82.22% of the optimal solution fitness and the average fitness of a ran-

dom population (pool fitness) was 4.15% of the optimal solution fitness. This confirmed

that finding an equivalent optimal solution to the Blink-3 objective is a non-trivial problem.

We generate a curve which reflects the typical maximum (elite) program fitness after i

generations (evaluated populations) by randomly sampling the 21 000 elite scores i times

and taking the maximum fitness of those samples. The process is duplicated 10 000

times and the results averaged for each generation value. This curve and the average

pool fitness provide a comparison baseline for the experiments in Section 3.4.2 and we

refer to it as “Random”.

Using the maximum normalised scores of the 21 000 populations, we also construct a

probability density function for generating a program with a particular performance using a

single population, as shown in Figure 3.8. The large initial value at zero can be explained

by programs which have no delay instruction calls since programs such as these finish

executing before the first objective function evaluation (i.e. before 50 ms) is performed.

As such, the objective function will not execute and the program will yield a default fitness

score of zero. Following from this is the striking feature is the 3 peaks. This can be
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explained similarly by various execution durations. Since positive fitness values are only

attributed at the 3 ADC readings at 50 ms, 250 ms and 450 ms, then programs which run

for at least these periods will obtain some fitness due to noise on the ADCs which provide

some positive values even in the absence of LED light. Finally, the most important feature

of this PDF is the very low probability of generating random programs with high fitnesses.

This confirms that evolving an optimal solution to the Blink-3 objective is non-trivial and

therefore employing GP should show a clear advantage over a random search.

Figure 3.8: PDF of randomly generating a solution with a specific fitness.

3.4.2.2 Single Mote (Local) Evolution

Programs 5b and 5c are shown for interest since retrospective inspection of evolved code

commonly revealed various forms of these suboptimal programs occurring. These solu-

tion programs fitnesses for one mote are shown in Figure 3.9 with a plot of the Elite fitness

during an evolutionary run. Immediately evident are the discrete jumps typical to many

evolutionary systems. Careful inspection of the code reveals many functionally equiva-

lent solutions to Programs 5a, 5b and 5c around periods where fitnesses are close to the
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Figure 3.9: Discrete Evolution - this evolutionary run exhibits jumps in performance to discrete
levels corresponding to mostly functionally equivalent solutions of Programs 5c to Program 5b and
finally to an equivalent optimal solution of Program 5a. Such behaviour is typical to evolution of
solutions to the Blink-3 problem.

respective designed program fitnesses. Like all GA systems, such jumps in performance

occur stochastically. We repeat experiments several times to gain statistical confidence,

then normalise the results before combining them by taking the average of fitnesses at

each generation. This yields relatively smooth evolutionary trajectories, keeping in mind

that such curves are the aggregate of more discrete evolutionary runs.

To demonstrate that in situ evolution of logic can be performed in isolation, we al-

low 8 motes to evolve independently and thus without sharing programs. The mutation

rate was set to 5% and the subpopulation distribution defined as 1 elite, 3 highly ranked,

12 children, and 5 randoms i.e. [1 3 12 5]. The size of the population (21 programs)

and the distribution of subpopulations (elites, children etc) were chosen heuristically and
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do not necessarily represent the optimal learning configuration. Many heuristics can be

employed to construct a population distribution that achieves good learning, whereas op-

timising the learning configuration is still an open research question that is beyond the

scope of this research. We proceed with this population distribution and allow the motes

to evolve. Figure 3.10 shows a typical run with 8 individually evolving motes. Note that

optimal scores have been normalised to each motes’ respective optimal solution as mea-

sured before the experiment. There is an initial rapid learning phase which can be largely

attributed to learning to use the delay instruction in order to reach an evaluation point,

followed by learning to use the LEDs.

Figure 3.10: An example of typical evolution trajectories (elite and pool) from 8 individually
evolving motes.
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On average, motes will typically find a solution that achieves 70% of the optimal so-

lution within 50 generations as compared to a random search which yields an average

fitness of less than 55% of the optimal solution within an equivalent number of program

evaluations. This indicates that the framework’s GP implementation performs better than

random search, however the subpopulation distribution is probably not an optimal learn-

ing strategy. As such the evolution may converge prematurely or never reach the optimal

solution within an acceptable timeframe. Despite this, 3 out of the 8 motes in this run have

converged to the locally optimal solution by generation 1622. Due to noise in the system

such as reading fluctuations and timing differences caused by other threads, it is possible

for a mote to diverge from an optimal solution. For example, the elite program score for

mote 85 dips at generations 2219, 2331 and 2370 despite it being the same elite program

(Program 6) being evaluated before and after the fluctuation.

Inspection of the generated code revealed that the mote was using delays of up to 2

ms in the system to achieve the first 50 ms delay. However, occasionally the mote may

have less delay-causing events in other threads which then means the LED is switched

off too early. By generation 2123 the mote has evolved to a delay 50 ms before eventually

extending the delay even further.

Program 6 Evolved optimal programs for mote 85 at generations 2318-2320
1: set_leds(217)
2: set_leds(delay(55))
3: set_leds(set_leds(delay(136)))
4: set_leds(-207)
5: delay(set_leds(delay(124)))
6: delay(delay(31))
7: set_leds(-207)
8: delay(190)
9: END

3.4.2.3 Multiple Mote Homogeneous Logic

To demonstrate that cooperative evolution achieved via the Island Model provides faster

evolution towards an acceptable solution than that of evolution in isolation, we perform
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three experiments: (1) motes evolve their logic in isolation; (2) motes with a common

objective function share programs periodically via their wireless radios, referred to as dis-

tributed homogeneous evolution; and (3) motes with different objective functions share

programs periodically via their wireless radios, referred to as distributed heterogeneous

evolution. Although motes in the homogeneous experiment share a common objective

function, their perception of the environment may be different due to spatial differences

in light. In the heterogeneous experiments, both the objective functions and the environ-

mental perception of the motes can be different.

This experiment aims to explore whether motes with different objectives can still benefit

from using the Island model. The importance of this arises from the likelihood that 2

motes will neither be in exactly the same environment nor have exactly the same sensing

configuration, and as such may require slightly different solutions to obtain acceptable

performance.

We test this by constructing groups of motes, each with 2 motes per group, with 650nm

pass filters (responding mainly to red light) and 2 motes with 550nm (responding mainly

to green-yellow light) pass filters. The 4 motes are permitted to share programs amongst

each other. The mutation rate for all three experiments is 4%, and the subpopulation

distribution includes 1 elite, 3 highly ranked, 12 children and 2 random programs and 3

“other” programs, which are obtained from other motes each generation.

3.4.2.4 Multiple Mote Heterogeneous Logic

In all 3 experiments, the motes evolve for a minimum of 50 generations. We then com-

puted the aggregate normalised fitness score of each experiment for every generation in

the learning process. Individual evolution was calculated on 16 individual motes, homoge-

neous evolution on 4 runs of 4 motes and heterogeneous evolution of 6 runs of 4 motes.

Some runs were left to evolve longer than 50 generations to provide some insight as to

what may happen longer term. Figure 3.11 plots the normalised fitness scores of the 3

experiments versus generation.

The results shown in Figure 3.11 support the literature [79] in that sharing genetic
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Figure 3.11: Comparison of optimisation trajectories: evolution in isolation, Island Model (ho-
mogeneous) and Island Model (heterogeneous).

material via the Island Model facilitates faster evolution towards a good solution than

does evolution in isolation. Both the homogeneous and heterogeneous experiments reach

a fitness score of 80% within 20 generations, while the single mote evolution takes 80

generation to reach the same fitness score. This results shows that groups of motes with

similar objectives can help each other expedite evolution to reasonable performance and

still further specialise to their local fitness landscape.

However it is also possible that the system prematurely converges as the evolution

in isolation ultimately ended up with a higher fitness than the distributed homogeneous
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evolution after about 100 generations. This indicates that it might be beneficial to initially

share information, but perhaps not best to do it indefinitely since dominant solutions from

neighbouring motes will tend to end up dominating the local pool and reducing the ge-

netic diversity. Thus, despite the benefit of quick initial learning, the inherently incestuous

evolution of the homogeneous experiment limits its learning potential which supports the

findings of [79].

Interestingly, the fitness for motes in distributed heterogeneous networks is similar to

the fitness of the isolated motes by generation 100. By generation 400, the heterogeneous

evolution approach improves its fitness further (likely due to higher genetic diversity of

programs in the pool), whereas the fitness of isolated motes remains the same.

3.4.2.5 Adaptation to Dynamic Environmental Conditions

The motes in the previous experiments were placed in a box and shielded from external

light sources. Program 5a was designed with the assumption that there were no other

external light sources present. To simulate an unexpected environmental change we

place some of the motes outside the box which are then subject to other light sources,

namely sunlight through room windows and the fluorescent room lighting. The optimal

solution is dependant on the intensity of the ambient light into the photodiode and the

energy consumed by the LEDs. As the ambient light increases, turning all LEDs off all

the time becomes the optimal strategy.

Motes 85 and 207 were removed from the box after generations 51 and 52 respectively.

The elite scores reveal that the fitness exceeds that of the “known solution” for that when

the mote is in the box. It can be seen in Figure 3.12 that initially the improvement is due

to the additional ambient light, however as the fitness increases after this it is conjectured

that the mote discovers that it does not need to turn the LEDs on at all to maintain a

high fitness, and in doing so saves power and hence generates a higher fitness. Manual

analysis of various programs within the period where motes were out of the box reinforces

this conjecture with many programs simply delaying more than the evaluation period.

Interestingly, after the motes were placed back into the box, the motes almost instantly
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Figure 3.12: Adaptation to the “unexpected event” (change in fitness landscape) where the
devices (nodes) were removed from the bag and exposed to ambient lighting conditions.

returned to a fitness of that achieved before removal from the box, indicating that the

genetic material maintained some history.

3.5 Evaluation on Evolution of Comms Problem

The aim of this section is to investigate whether nodes can learn to cooperate using com-

munications to achieve an objective. As such, an objective that requires communications

to occur is devised and detailed in Section 3.5.1. The problem is tested in two Fleck3b

motes and the findings discussed in Section 3.5.2.
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3.5.1 The “PacketForwarder-RfmToLeds” Problem

This section details the design of an objective function that requires receiving of packets,

transmission of packets and actuation. The design is detailed in Section 3.5.1.1 and its

optimal solution provided in Section 3.5.1.2.

3.5.1.1 Packet Receiving-Sending Requirement

In the previous experiments, fitness was calculated and provided back to the evolution

process entirely locally on the devices. However, since networked embedded have com-

munications capability, they should, in theory, be able to learn to coordinate their be-

haviour through communications to achieve an objective that is not local to the agent (i.e.

fitness is either supplied from neighbouring devices or a system-wide objective function).

To demonstrate this we desire a problem that requires devices to communicate, yet

is well defined and preferably as simple as possible. Minimally, two devices (motes) are

needed to demonstrate communications. For simplicity, these will be enumerated as Mote

A and Mote B in this experiment.

RfmToLeds [1] is a simple radio program made popular by the TinyOS community

as a tutorial and has often been used to demonstrate wireless communications to mote

platforms. The program receives packets containing an incrementing counter, transmitted

by another mote (typically IntToRfmM[1]), and simply displays the 3 least significant bits

of the counter received using the 3 onboard LEDs.

This demonstrates receiving and actuating, however, since the packets generating the

counter would need to come from an external source, it does not demonstrate transmis-

sion of packets by the motes or communication between them. To require communication,

a base mote (connected to a PC) executes the IntToRfmM logic, generating packets at

a rate of 1 Hz. Importantly however, the packets are addressed only to Mote A (through

specify a MAC destination address in the MAC layer). All combinations of LEDs are cy-

cled through every 8 seconds. This is also used as the evaluation period for programs in

the experiment.

The LED status of Mote B is measured (via a remote procedure call transparent to
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any evolved logic) and used to calculate a fitness based on the counter value sent to

Mote A and the LED status of Mote B. Frequent periodic fitness scores are supplied

to both motes and summed locally over the execution time of 8 seconds per program.

Importantly, communications is not explicitly rewarded, but rather communications must

evolve in order to achieve the acceptable objective (LED state of Mote B given the counter

sent to Mote A).

Ideally, the system would learn to receive the counter packet at Mote A, forward this

to Mote B which in turn would receive it and set its LEDs accordingly, thus demonstrating

the evolution of primitive communication. Therefore we term this as the “PacketForwarder-

RfmToLeds” problem. Figure 3.13 provides a diagrammatic representation.

The function set is limited to {radio_tx_int(x), set_leds(x), radio_rx_int()} since all of the

essential aspects reside within this set. Based on these instructions, an optimal pair of

programs (since the motes will require different behaviours) is shown in Section 3.5.1.2.

The population structure was set to [5 3 10 2] 1] (5 elites, 3 highly ranked, 10 children, 2

randoms and 1 other). The mutation rate of set as 5% and single point crossover on code

line (tree bases).

3.5.1.2 An Optimal Solution

Programs 7a and 7b were conceived as the minimal, ideal solution for the “PacketForwarder-

RfmToLeds” objective.

Program 7 (a) and Program 7 (b) are the optimal programs for Mote A and Mote B
respectively to the “PacketForwarder-RfmToLeds” objective.

radio_tx_int(radio_rx_int()) set_leds(radio_rx_int())
end end

Program 7a “PacketForwarder” Program 7b “RfmToLeds”

Simply rewarding the devices for when the correct sequence is displayed on Mote B’s

LEDs results in the local optima of Mote B leaving its LEDs unchanged for the entire

evaluation period. This was ultimately negated by generating local negative fitness and

supplying external (global) positive scores such that the inert behaviour (Mote B leaving
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Figure 3.13: Communications topology for the “PacketForwarder-RfmToLeds” experiment.

its LEDs unchanged for the entire evaluation), would yield an overall fitness of zero. This

motivates the system to attempt to get more sequence matches during the evaluation

period.

The final evaluation function can be expressed as follows:

• subtract 80 from the mote fitness for each evaluation (over 8 seconds)

• add 80 to the mote fitness for each correct LED sequence on Mote B matching the

value sent from the base to Mote A

Therefore the optimal score is (8 × 80 − 80 × 1) = 560.
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3.5.2 Results and Discussion

The novelty supplied by GP was underestimated for this experiment and served as a

reminder of the importance of specifying the fitness function carefully. Initially, global

negative fitness feedback was supplied to both motes when Mote B’s LED status did not

match the acceptable pattern, and positive feedback supplied when it did match. While

this appears reasonable, it did not consider that the motes’ communications use the same

medium (radio frequency) as the framework that supplies the fitness feedback. Through

the GP evolution, motes were able to evolve a “denial of service” strategy by congesting

the channel, maximising packet collisions and ultimately reducing the number of received

negative fitness packets. This converged to a fitness of zero, where no positive or nega-

tive fitness was being received by the mote, however it was more optimal than the initial

condition of receiving predominantly negative fitness. One can imagine this as the equiv-

alent of a child learning that shouting when being reprimanded prevents the “negative

feedback” from being heard.

Several approaches were experimented with to address this issue. Eventually it was

determined that a combination of small, though frequent, negative feedback generated

locally with positive larger global/external feedback, allowed the motes to converge to

the optimal solution. The local frequent negative feedback is term “self deprecating” be-

haviour. This combination does not “reward” motes that congest the channel since only

positive fitness values are transmitted wirelessly.

With the updated fitness function employing both local negative and global positive

feedback, the evolution proceeded more successfully. The evolutionary trajectory of the

elite and pool fitness for both nodes is shown in Figure 3.14.

Again, the novelty of the generated solution was surprising. Both nodes were able to

achieved elite fitness scores of 640 which is higher than the expected maximum fitness

of 560 (8 × 80 − 80 × 1). This “cheating” appears to result from extra instructions during

the evaluation prolonging the mote execution process just long enough so that the fitness

accumulated occasionally receive 9 positive fitness values. Intriguingly, this strategy has

a lower average (pool) fitness than that of Program 7(a) each time this strategy becomes
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Figure 3.14: “PacketForwarder-RfmToLeds” fitness evolution

the elite and subsequently dominates the population. It was identified that this strategy

relies on the evaluation period being near the beginning and end of the evaluation of

the program. This is a risky strategy since most of the time it will not be beneficially

aligned and the program may miss one or both of the positive feedback scores and will

experience more local negative feedbacks. This causes the perpetual oscillation of both

elite and pool fitnesses (lagging in phase) as the pool and elite toggle between the 2

solutions. Eventually the conservative strategy becomes elite again, however genetics of

the risky strategy remain in the pool and eventually the conditions (timing) makes the risky

strategy become the elite again perpetuates indefinitely explaining the oscillatory nature

of the elite fitnesses displayed in Figure 3.14.

Nonetheless, the experiment did successful show the evolution of communications

between nodes and also demonstrated the framework using a combination of both local

and global fitness feedback simultaneously.

3.6 Discussion

3.6.1 Challenges of In Situ Evolution

In our solutions we were able to ensure that the system does not enter a state where it

is impossible to evolve to an acceptable solution. Since the actuation, LEDs and radio,
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cannot permanently alter the environment (including itself), an acceptable solution for

these problems always exists and therefore the GA can always potentially find one of these

solutions. In more general applications it will be important to design node hardware and

software architectures such that IDGP programs are executed and evaluated in isolation

from core functionality to ensure that evolved programs cannot hog critical resources or

cause undesirable actuations.

This raises the issue of which problems are suitable targets for IDGP implementation

as a topic for further research. In some cases it may be possible to impose constraints

during evolution to ensure solutions stay within safe behaviour. However setting con-

straints inherently reduces the solution space that can be searched meaning that better

solutions may exist that cannot be evaluated.

Evolving logic post deployment (in situ) has both opportunities and disadvantages.

In this section we discuss some of the lessons learnt from the challenges faced when

evolving logic in situ across a WSAN.

The evaluation of logic in situ avoids reliance on synthetic (simulated) models of the

environment, and there is no better representation of the environment than the environ-

ment itself. Not only does this prevent the evolution of logic being made brittle by exploit-

ing artefacts in the simulation, it also means that the mote does not need to perform any

simulation at all which is a great benefit for resource-constrained devices.

A significant disadvantage of this approach however, is that there is only one sin-

gle shared environment for all programs across all motes. It is impossible to reset the

environment back to exactly the same initial conditions prior to the evaluation of every

program. Hence, each program may leave a “footprint” which may help or hinder other

programs and this generates a credit assignment problem which can slow or even pre-

vent the system from converging to a specific fitness. Even more important is whether the

environment could be changed in a way that permanently prevents the acceptable objec-

tive to be fulfilled. Unlike offline evolution, one cannot go back in time and trial another

optimisation trajectory if the current one has failed.
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3.6.2 The Performing-Learning Paradox

Offline learnt logic can deliver immediate high performance upon deployment, however

due to unexpected changes in the environment, may not perform well over the longer term.

Online learning, on the other hand, allows the system to adapt to unexpected changes,

and so it should, in theory, be able to provide better performance than that of offline

developed logic under unanticipated environmental conditions. Unfortunately, it requires

time to learn how to achieve the acceptable performance and there is no guarantee that an

acceptable solution will be found within an acceptable timeframe. Furthermore, learning

implies that the system is not performing optimally.

Paradoxically, to achieve better performance, logic that is likely to perform worse than

the current best known solution must be executed in order to provide a chance of discov-

ering better performing solutions. To an external observer, one would see this as variation

of performance over time. Implicitly, performance is dependant on the fitness as mea-

sured within the observer’s critiquing period. Ideally then, the best current performing

logic would be executed within this critiquing period, and learning (evaluating and exe-

cuting other programs) would occur outside of this period. If performance is calculated

continuously however, the average observed performance will match the pool fitness.

Here, optimising the average (pool) performance is desirable.

For many problems satisficing is acceptable, however within that there is an additional

class where additional learning is beneficial. However the rate of learning could be im-

peded. Meet the need and maximise learning with available resources (slack). There is

little disadvantage to utilise unused resources to maximise learning.

3.6.3 Challenges of Distributed Evolution

There are many challenges with evolving logic on devices simultaneously across a net-

work. Perhaps the most important aspect is setting the fitness objective appropriately and

supplying fitness information to the motes. Section 3.5 highlights the importance of this

with the unexpected evolution of the “denial of service” strategy. The global (external)

fitness feedback needed to be altered to a combination of strong positive reinforcement
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with small, but frequent, self-provided negative reinforcement. We recommend this ap-

proach in systems where the framework and evolving code share the same communica-

tions medium. Unfortunately identifying whether the problem representation is the main

reason why a system becomes stuck in a local-minima is usually non-trivial.

In systems where motes maximise a purely local fitness, evolution is reasonably straight

forward since it is essentially many motes evolving independently of each other. Motes

can still benefit from sharing optional information (such as programs), and will often con-

verge on the same solution for a given objective. With a high selective pressure acting

on local environmental differences, speciation of logic will occur and motes will essen-

tially revert to individual evolution as demonstrated in section 3.4.2. Not to be confused

with niching which is a popular mechanism for deliberately divided a search space across

nodes. Note this requires some level of coordination (whether implicit or explicit) [17].

However, when the fitness objective requires cooperation or feedback from other motes,

the potential for information to be lost or misleading then arises. For example, in section

3.5, motes evaluate their programs asynchronously which can reward “leech programs”

which rely on the prior program to perform well. With strong elitism in the population, such

programs can easily dominate the pool. Randomisation of the order in which programs

are executed will quickly penalise leech programs, but not until after significant damage

to the pool fitness. Some form of fitness memory may be useful to reduce this effect.

The random order of programs (synchronised or not) causes a “macro-crossover” of

programs, where various combinations of programs from different subpopulations are ex-

ecuted simultaneously. For example, Mote A may be executing its elite program while

Mote B is executing a random program. For distributed evolution, the probability simul-

taneously executing programs that perform well together needs to be significantly high

otherwise good fitness genetic material could be “forgotten” (since a combination of a

good program executing with a poor program is likely to collectively result in poor perfor-

mance). Clearly, biasing the population composition and/or evaluation schedule will be

important towards achieving evolution of a good solution. As such, further investigation

into this topic is recommended.
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3.6.4 IDGP Configuration

The configuration of IDGP framework parameters impacts evolution performance (speed

to find good solutions and quality of final solution). Design considerations, such as using

homogeneous or heterogeneous nodes, are important to how the system will achieve

its purpose. The size and composition of the population directly affects both evolution

speed and performance, we require configurations that maximise performance within the

size constraints imposed by the memory limitations of the device. For some objective

functions, all acceptable solutions may be larger than the maximum program length LMax,

in which case we either increase LMax by reducing the number of programs Npop, we

increase the physical memory size, or we adopt a human coded solution which can afford

to be up to Npop times the size of an IDGP program.

Richer syntax allows more complex problems to be generated and ultimately richer

evolved behaviours. Additionally, higher level instructions allow more compact represen-

tation of logic. Ideally, IDGP programs should be as syntactically rich as possible in order

to maximise the efficiency and performance of the solution programs. This will allow more

programs (i.e. a larger population) to reside within the memory constraints of the platform,

which in turn allows for greater genetic diversity to be maintained which will assist learn-

ing. Determining the optimal instruction set and program size for a particular objective

remains an open issue for future investigation.

In this section we used a small instruction set of 3 instructions to demonstrate IDGP

for simple well-defined objectives. Subsequent experiments were however performed

using a larger instruction set of 13 instructions to solve the "PacketForwarder-RfmToLeds”

objective and demonstrated similar evolutionary trajectories.

The NFL theorem states that no solution finding mechanism is better than others over

all problems. IDGP is well suited to complex WSAN problems with no well known solu-

tion, or where adaptivity of logic is likely to be necessary. IDGP is not a solution for every

WSAN problem, and we recommend the designer to estimate whether an alternative ap-

proach, such as human-crafted logic, could produce acceptable logic more efficiently.
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3.7 Conclusion

We have presented In situ Distributed Genetic Programming (IDGP) as a framework for

the automated online creation of logic on WSAN nodes by using a light weight genetic

programming engine suitable for resource constrained sensor node devices. The in situ

evolution of logic was demonstrated on a network of physical sensor nodes which were

able to evolve their logic in order to adapt to local conditions as well as unanticipated

environmental changes. Empirical results indicate that sharing evolved logic with neigh-

bouring nodes typically provided faster learning initially, however potentially converging

prematurely.

The 3.6 Discussion however highlighted the need for being able to make the system

perform better on average. This motivates the need for a mechanism to achieve this and

motivation for developing a heuristic

In conclusion, the IDGP framework provides a method for tasking WSANs with a high

level system objective. Through continuous online evolution, nodes learn to sense, com-

municate and actuate in order to optimise for a specified objective.
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4
Fitness Importance

This chapter presents Fitness Importance (FI or Φ(t)) as an online constraint satisfaction

(satisficing) heuristic defined by the acceptable average fitness as a function of time.

The need for such a heuristic is discussed, before the heuristic is formally described.

An implementation of the heuristic, γsimple, biases the generation of the population in

such a way that the average performance meets the Fitness Importance specified, while

attempting to retain as much learning capability as possible. FI is ultimately incorporated

into the IDGP framework and the enhanced framework presented and discussed.

99
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This chapter introduces the concept of Fitness Importance (FI) as a heuristic to de-

scribe the varying importance of exhibited fitness of a learning system during its life.

Furthermore, an accompanying metaheuristic, γ, is described for generating populations

to achieve the level of fitness deemed important by FI whilst attempting to retain learning

capacity.

The motivation for the FI heuristic and how it is envisaged to be utilised are presented

in Section 4.1 with Section 4.2 detailing how it differs from existing heuristics. A definition

for acceptable average fitness AAF is provided and then used to define an analytic model

of the FI heuristic in Section 4.3. A metaheuristic for using FI to generate populations

with an AAF while attempting to retain learning capacity is then presented Section 4.4.

Challenges to implementing an ideal form of the metaheuristic are discussed.

Section 4.5 demonstrates how FI can be realised by providing a simple (non-ideal),

yet pragmatic implementation of a population generator metaheuristic called γsimple. This

is incorporated into the IDGP framework and an overview of the enhanced framework

presented.

Discussion of general issues that may arise when employing IDGP are provided in

Section 4.6 along with summary remarks in Section 4.7.

4.1 Motivation

The experiments in Chapter 3 demonstrated in situ evolution on resource constrained

embedded devices. However it was quickly realised that finding a solution, using a

population-based metaheuristic, is vastly different from being a solution. Essentially the

system was learning and not performing (at least acceptably anyway).

Nonetheless, it makes intuitive sense that learning logic (or behaviour) in situ should

be possible while achieving acceptable performance, since arguably we, and many other

biological systems, learn in our environments while “performing acceptably”. This basic

intuition largely motivates the search for a heuristic to achieve this, however it is elaborated

on in the following sections.
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4.1.1 Online Learning with a Minimum Performance Constraint

Such scenarios occur where anything above the necessary ’performance’ is deemed as

excess, and importantly, the excess has negligible cost associated with its production

otherwise it would be included in the objective function. This can commonly occur in

win/lose scenarios.

4.1.2 Inspiration from Natural Systems

Many animals, humans included, have the ability to gauge the current context and perform

to a level that is acceptable for that context. This also implies the agent has an under-

standing of what fitness is (or the objective function). Put simply, the agent understands

that acceptable performance is a satisficing target which resides on the scale of fitness

and performing above this target is no better than minimally meeting the target. However,

an important additional trait of many higher-order animals is their ability to deliberately

trade excess performance capability for online learning capacity. The following allegory

attempts to exemplify how excess performance capability can be used for learning.

4.1.2.1 Sprinter Allegory

Let us assume a fictional sprinter named Mr Bolt has the goal of being titled as the fastest

man on Earth. To achieve this title, he must consistently win the events in which he

competes, where winning a race is a satisficing objective since he would be deemed first

regardless of how much he wins by.

When he is training at the local park, he uses the fitness metric of how fast he can

run 100 m as an optimisation target. In this non-race context he understands that not

meeting the fastest time will not impact on his ultimate goal. In fact, the metric of winning

makes no sense at all - there is no race to win, no satisficing target. Nevertheless, his

speed and strategies can be optimised through unrestricted freedom to explore/play with

strategy variations. During each sprint he trials various strategies, changes to gait, stride

length, arm movements , etc.
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Through a combination of innate (seeded) abilities and optimisation (at the park), Mr

Bolt does not need to perform his current most optimal strategy in order to win at the

national heats. This affords him the luxury of performing various strategies in a context

where performance to a level of meeting the satisficing goal is important. He first applies

his optimal strategy for the first half of the race until he is significantly in front. He now

realises that he can comfortably afford to evaluate other less optimal strategies, but in a

race-context that could not be achieved at the park, while still achieving the acceptable

average performance which wins him the race (just). From this, he learnt the responses

of his fellow sprinters to various strategies in an in-race context.

Now, having qualified for the olympics, he exploits his learnings by executing his best

strategy with no variations for the entire 100 m. This results in the win and attaining the

title as the fastest person on Earth.

In this allegory, we see 3 modes of using the contextual information. At the park,

the knowledge that no performance was necessary allowed complete freedom to learn

and explore strategies. At the nationals, the knowledge that good (but not optimal) per-

formance was necessary allowed some online learning to occur while still meeting the

satisficing target (i.e. winning the race). At the Olympics, the knowledge that the best

performance was likely necessary, prevented any learning from occurring, but ensured

the satisficing target (i.e. winning the race) was met.

In each of this situations, the time to complete 100 m is a separate metric of fitness,

however the importance of what time was actually achieved varies depending on the

context.

Ideally, we wish to employ a mechanism that captures the importance of fitness in

the current context and use any excess performance capability for online learning.

4.1.3 Population-based Performance

The IDGP framework employs GP as the learning metaheuristic for generating novel logic.

GP is a population-based approach and as such not normally used for online learning.

Traditionally, GP approaches evaluate solutions in simulated environments that do not
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affect the real world (i.e. tie up resources, consume energy, move things, etc.) In this

scenario, the performance of programs during evaluation is of little interest. Instead, the

final elite solution is focussed on as a measure of performance. However, for online

population-based learning, every evaluation performed in the world contributes to the

agents observed behaviour and ultimately its performance. While it is desirable for offline

GP to have high diversity within the population for optimal learning, high diversity also

means that the average fitness evaluated will be, by definition, the pool fitness, which

is typically vastly inferior to the best (elite) solution normally deployed after an offline

learning process. Hence, it would be desirable to bias the pool fitness closer to the

elite fitness where possible. Some GP approaches can avoid explicitly instantiating a

full population, such as EDA-GP approaches. However, these are highly complex [112] in

their representations and their implementation would require computational resources far

beyond that of a small microcontroller.

Furthermore, defining a novel GP algorithm is not necessary to demonstrate the use-

fulness of the IDGP framework, since we wish to demonstrate that distributed online learn-

ing using existing prototypical GP implementations (as described in Section 3.3) is possi-

ble on mote class devices.

There appears to be no reported mechanisms for applying standard GP approaches

to online learning contexts (prior to this research). As such, to achieve the advantages

of GP discussed in Section 3.1.4 within the IDGP framework, we must attempt to devise

a mechanism to permit GP to be used online by biasing the average evaluated fitness

closer to the elite fitness rather than the pool fitness.

4.1.4 An Ideal Fitness Importance Heuristic

In the previous sections, we identified that a mechanism for conveying the importance

of fitness in the current context could allow the system to perform at an acceptable level

while achieving online learning. It was also identified that for GP to be used online, a

mechanism is needed to bias the average evaluated fitness (i.e. the pool fitness) closer

to the elite fitness. Combining these requirements, we propose the development of a
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heuristic called Fitness Importance (FI), to describe the importance of fitness over an

entity’s lifetime.

The heuristic implicitly implies that if the average evaluated fitness exceeds the cur-

rent level of importance, then excess performance capability can be traded for learning

capability. This should maximise the learning potential (while delivering acceptable per-

formance) which can then be exploited in the future should the acceptable performance

threshold be increased.

Ideally, the heuristic would be represented as a normalised (or percentage-based)

quantity representing no importance minimally as 0, and maximum importance as 1.

4.2 Related Heuristics

Achieving acceptable behaviour is certainly no new concept. In fact Humans have likely

been achieving this since the dawn of the species. Despite this, a formal definition of

satisficing was only presented by Herbert Simon in 1955 [119]. Satisficing is discussed in

Section 4.2.1 and is a useful description for the aspect of the desired heuristic to represent

acceptable performance.

4.2.1 Satisficing

The concept of satisficing was pioneered by [119] and distinguishes between requiringSATISFICING

optimality and requiring “acceptable” payoffs (satisfactory, satisficing and “good enough”

were also used as descriptions).

Expressed formally, satisficing can be described as an indicator function:

IS(s) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 , s ∈ S

0 , s ∉ S

, s ∈X (4.1)

Were a solution s from the set of all solutions X is deemed optimal (indicated by 1) if it

belongs to the set of satisficing options (i.e. an element of S), otherwise it is non-optimal

(indicated by 0). Another interpretation of the Indicator function is “success”.
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Interestingly, “aspiration” goals were also suggested which could be used in conjunc-

tion with a discrete satisficing conditions allowing the agent to pursue a payoff above the

level of satisfaction. In [119]’s use cases, he inferred that the higher fitness carries some

benefit, such as more payoff, but it may be for nothing else other than description. For

example, one could say that a person “easily won” which adds some additional informa-

tion to the result of a “win”. It does not change the payoff from winning (i.e. the reward

for meeting the satisficing condition to the agent is the same either way), however the

additional information could then be used by the agent to reinforcing internal logic more

strongly, etc.

It is important not to confuse satisficing with satisfiability. Satisfiability (in computer

science) usually refers to whether a set of sentences in propositional logic is satisfiable.

Constraint satisfaction however does have similarities to satisficing in that constraints CONSTRAINT

SATISFAC-

TIONcan be viewed as multiple satisficing conditions that need to be met simultaneously in

order to be feasible.

This pioneering perspective describing “acceptable” payoffs as different from a “aspi-

ration” goals has provided a foundation for the developed heuristics. However, satisficing

does not describe the intent of deliberately sacrificing performance for additional learn-

ing. Hence, this alone cannot address the needs for the meeting a target fitness while

performing online learning with GP.

4.2.2 Exploration-Exploitation (EE)

It is not immediately obvious how acceptable performance is achieved using population-

based approaches in online learning contexts. As with all search heuristics, potential

solutions (program logic in the context to this thesis) with unknown performance need to

be evaluated in order for knowledge to be gained (i.e. for learning to occur). However, in

an in situ online learning context, the fitness of solutions evaluated in the real world

is the perceived performance of the system, mirroring the adage “it’s what you do that

defines you.”1. Therefore, at each moment a fundamental choice needs to be made:

1From the movie “Batman Begins” (2005) Warner Bros. Entertainment Inc.
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either to perform an evaluation that has been previously evaluated and hence will have

a high chance of performing similarly well (this is known an exploitation), or to take a

chance evaluating something new and potentially perform worse, in the hope of finding

better solutions (this is known an exploration).

If only previously evaluated solutions are reevaluated, then little, or no, learning occurs,

however the performance is likely to be predictable. This is known as a “pure exploita-

tion” strategy. If only previously unevaluated solutions are evaluated, then learning occurs,

however the performance will likely be unpredictable. This is a “pure exploration” strategy.

If a combination of evaluated and unevaluated solutions are evaluated, then some learn-

ing can occur, which will result in unpredictable performance, but superior solutions which

have been learnt can be exploited and this is likely to continue to increase over time as

learning occurs. Striking the balance between exploration and exploitation is known as the

Exploration Exploitation (EE) tradeoff and has been well studied in Reinforcement Learn-EE

ing (RL) research using the Multi-Armed Bandit (MAB) problem [28,66,128,131] which is

discussed in the following section.

EE is commonly discussed in an offline search context where it refers to the allocation

of resources used for search intensification (exploitation) and diversification (exploration)

phases. In this scenario, the fitness of the evaluations is not the performance metric, but

rather the number of evaluations required to find a solution.

For this research however, EE is used in the online learning context.

4.2.3 Multi-Armed Bandit (MAB)

“ Bandit problems embody in essential form a conflict evident in all human action:

information versus immediate payoff. ”

- Peter Whittle (1989)

The Multi-armed Bandit Problem (MAB) problem first originated as an idealised exper-MAB

iment for analysis in sequential design problems by [106]. It has since been refined into a

generic problem reflecting common real-world EE challenges along with many variations
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to highlight specific aspects of interest [78]. In recent times the problem has typically been

used for benchmarking advances in RL algorithms.

The MAB problem name originates from the colloquial term of the ’One-armed bandit’

referring to a slot (or poker) machine which have one lever (one-armed) and takes your

money (like a bandit). The idealised MAB problem is one where there are K levers (or

machines) and each one has its own payoff ri(t) where i is the machine number and

ri(t) is the return based on a unique probabilistic (usually Gaussian) distributions with an

average payout of µi and a standard deviation of σi.

Ideally, the machine with the highest mean would be continually sampled as this would

maximise the expected average reward. However, since the payout by each machine is

probabilistic, a number of samples may be needed to “learn” accurately enough about

each machine as to determine which lever has the best underlying payout distribution.

Given a finite number of evaluations, where one lever is selected at each time step t over

the duration T where t = [0..T ], then the ideal payoff is one that maximises:

T

∑
t=0

rs(t)(t) (4.2)

This turns out to be a very challenging task, nonetheless effective strategies that con-

verge on the optimal machine have been developed [38],[152] under certain conditions.

In practice however, simple algorithms like the ε-greedy are often employed. The

ε-greedy approach exploits the lever believed to have the best long-term return with prob- ε-GREEDY

ability 1-ε, otherwise (with ε probability) it chooses a lever at random. The ε parameter,

where 0 < ε < 1, is a tuning parameter, which can be fixed or dynamically updated (sched-

uled or respond adaptively based on heuristics [133]) throughout the run.

Rather than maximising payoff, solving the MAB problem can alternately be viewed

as attempting to minimise bad choices resulting in “potential” losses. The concept of

regret is defined as the lost potential gain due to not taking the globally optimal action REGRET

for a particular play during the run. The cumulative regret is often referred to as the loss

function. For the standard MAB problem, regret grows at least logarithmically with the LOSS FUNC-

TION

number of plays [9].
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This and other methods for addressing the MAB problem [8,11,33,49,116,122,127] fo-

cus on the objective of maximising the cumulative payout and/or minimising the regret.

However there appears to be no consideration of achieving satisfactory average perfor-

mance, nor maximising learning given the need to meet a satisficing constraint. As such,

these heuristics cannot be used to achieve acceptable performance with GP in online

learning scenarios.

4.2.4 Performance Metrics for Learning Algorithms

One can consider performance of a machine learning algorithm from 2 perspectives. One

is from the perspective of how “good” a learning algorithm is with respect to various quali-

ties, usually in context to how other algorithms perform, or against an idealised algorithm.

Frommberger [35] suggests the following performance measures for learning systems:

• Guaranteed convergence to the optimal

• Time to converge to the optimum

• Time to reach near-100% success.

• Time to reach near-optimality

• Minimal regret

• Success rate of attaining acceptable performance

• Optimality of solution

• Robustness of the learning process

• Avoiding forbidden states during learning

• Number of parameters required by the learner

Frommberger [35] however cautions that “All of the given performance measures have

their application in certain scenarios, and which one to focus on will generally depend

on the task at hand”. The task at hand for this thesis is achieving desirable average

performance during operation using the IDGP framework (as identified in Section 3.6.2).

This goal-oriented focus is the other perspective, which focusses on whether a goal can

be or is being achieved and not on whether it could have been done more efficiently
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or more optimally. Of the performance metrics previously listed, only the success rate

of attaining acceptable performance is a true goal-oriented metric. The other metrics,

while no doubt beneficial to have optimised, may or may not be significant to whether

the system’s performance is or was acceptable. Frommberger’s performance metrics

were clearly envisaged from the perspective of benchmarking learning algorithms as they

implicitly apply after learning has finished. When a system is deployed however, the

current or achievable performance will be of interest.

“Local online performance” is proposed by De Jong [24] as a practical population

based learning performance metric. It is a function of the sum of weighted fitnesses from

all evaluations that have occurred up to the current generation. Specifically, it is defined

as:

xe(s) =
1

Te

∑
t=1

ct

.
Te

∑
t=1

ct.ue(at) (4.3)

where ue(at) is the performance of the population a at time t (i.e. pool fitness), which is

weighted by ct and averaged over the time period Te (i.e. from the start of evolution to

the current epoch). ct is provided as function to bias the performance measure based

on time (e.g. one could weight later performance over initial performance), however [24]

employed uniform weighting such that ∀t ∶ ct = 1 resulting in the local online performance

being equal to the mean of all the evaluations.

Success rate of attaining acceptable performance is a practical real-world perfor- SUCCESS

RATE

mance metric since it does not require knowledge of the optimal solution or even its

fitness, but rather, only the determination of whether a goal has been reached or not

[35]. Success rate employs a success function, S(a, b), which is used to represent this

binary outcome of 1 (for success) if the condition a ⩾ b is satisfied, otherwise the result is

0. Note that condition b which defines success or not is context specific and can in fact be

supplied via the Fitness Importance heuristic. Formally, success if defined as:

S(a, b) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if a ⩾ b

0 otherwise
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Success rate of attaining acceptable performance will be used as the online perfor-

mance metric for this research. Specifically, the average performance within a generation

meeting or exceeding the acceptable performance criteria

4.3 FI Analytic Model

Fitness Importance (FI) is a context information sharing heuristic that describes the de-FI

sired level of performance of a population of programs. The desired performance can be

expressed in either absolute terms as a target average fitness score to be achieved by

the population or as a relative fitness to the current population’s performance character-

istics. Since it is common for EA performance to be measured in absolute terms, FI will

be discussed in absolute terms as an acceptable average fitness before the relative (to

the current population characteristics) definition of the Fitness Importance Function (Φ) is

detailed.

4.3.1 Acceptable Average Fitness

Implicitly, performance is dependant on the fitness as measured within the observer’s

critiquing period. To an observer with a short critiquing window observing sequential

evaluations of programs from a population, performance would vary over time. If the

critiquing window is aligned to the epoch (period of evaluation of all programs within the

population), then arguably the pool fitness can become the observed fitness. This is

particularly the case where the fitness effect of programs in the environment is additive

over time. In this case, optimising the average (pool) performance is desirable. However,

when an acceptable fitness threshold is introduced, optimising the average performance

is no longer optimally desirable since further fitness improvement does not yield more

success but rather potentially reduces the exploration that could have been achieved.

Fitness Importance is defined by the threshold of acceptable fitness relative to the

current population’s performance capacity. However, it is also possible to consider the
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effect of FI in absolute terms as an acceptable average fitness threshold. Specifically,

Faccept(x) = Fpool(Φ(x), x) (4.4)

where Faccept(x) is the Acceptable Average Fitness (AAF) function which can be ex- AAF

pressed as a pool fitness (average population fitness) for generation x given a desired

FI of Φ(x). If ∀x,Faccept(x) = K where K is a constant (absolute fitness), then we further

simplify the notation to Faccept.

4.3.2 Fitness Importance Function, Φ

Having motivated the need for FI and demonstrated its potential utility in managing the ex-

ploration/exploitation tradeoff, we now formally present the model for Fitness Importance.

This thesis proposes that Φaccept(t) could be a more practical and pragmatic method

for setting acceptable performance since it is calculated relative to the known-to-be-

achievable fitnesses of the current generation (i.e. Felite(g) and Fpool(g)).

The absolute value of Faccept can be expressed in terms of Φaccept by Equation 4.5

which readily serves to provide a sanity check about whether the acceptable performance

is realistically immediately achievable, in that if Φd(g) ≤ 1 then it is likely that it can indeed

be obtained.

Φd(g) =
Faccept(g) − Fpool(g)

Felite(g) − Fpool(g)
(4.5)

If Faccept is constant then providing evolution/learning is occurring, then Φ will decrease

over generations, hence having a constant Φ or φ makes less sense,

In practical implementations it is easy to set Φ so that the next generation target perfor-

mance is achieved with a maximal allocation of learning whilst meeting the performance

constraint. Leaving it at this value will continue to meet the performance requirement (so

long as it remains unchanged) and keep learning (at a rate that is not optimal however)

A Genetic Algorithm (GA) is a population-based heuristic learning mechanism that

successively applies genetic operations on a population. Let the set of all possible unique

populations be P = {p1, p2, .., pNP} where pi is an arbitrary unique population. Note that
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the syntactic richness of the instruction set may mean the number of unique programs,

NP , is practically infinite.

Let g represent the generation number of the population generated by the genetic

algorithm. Note that time can be quantised into discrete units defined by the time taken to

evaluate all programs within a population of a particular generation. For simplicity we use

the generation as our timebase. i.e. Φ(g).

We introduce the short notation of φaccept to represent a constant Φ(g) at a particular

period of interest which expresses the acceptable performance improvement as a per-

centage of the difference between the elite and pool fitnesses without FI applied. If we

express the elite and pool fitnesses as functions of φ and g, i.e. Felite(φ, g) and Fpool(φ, g)

respectively, then the elite and pool fitnesses without FI applied are obviously Felite(0, g)

and Fpool(0, g).

E(Fpool(φd, g)) =Fpool(0, g)

+ φaccept[Felite(0, g) − Fpool(0, g)] (4.6)

The difference between the elite and the pool at every generation dictates the extent of

what can be exploited. We define the exploitation potential function at generation g as

F∆ep(0, g) = Felite(0, g) − Fpool(0, g) (4.7)

and so equation (4.6) becomes,

E(Fpool(φd, g)) =Fpool(0, g) + φacceptF∆ep(0, g) (4.8)

The achieved performance improvement φachieved, can be expressed in terms of the

current elite and pool fitnesses as

φachieved =
Fpool(φaccept, g) − Fpool(0, g)

F∆ep(0, g)
(4.9)

Ideally φd = φachieved, however practical considerations, explained in the next section, can
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prevent this from occurring.

A value of 0 corresponds to no importance being placed on the current fitness of

the system, but it provides optimal learning potential (i.e. it should provide the minimum

time to discover an optimal solution). It is worth noting however that φ = 0 does not

mean that the fitness of the system is also 0. In fact, φ = 0 represents the conventional

GP approach for maximising exploration. A value of 1 for φ however corresponds to

a maximum importance of fitness, meaning that the system should perform as best as

possible with the current knowledge of programs and their fitnesses. To achieve this, the

program with the highest expected fitness (i.e. E1) should be exploited. This is similar to

offline evolutionary approaches where the best solution evolved offline is placed into the

online environment and then not altered. Setting φ = 1 at generation g renders Fpool(g) =

Felite(g), but it also prevents any exploration (learning), because of the lack of diversity in

the program population. FIF

The FI function Φ(t) is defined to lie in the range 0 ≤ Φ(t) ≤ 1. Φ(t) = 0 indicates that

the importance of fitness is minimal and thus there are no penalties for executing poor

performing logic. This provides an opportunity for maximum exploration.

While Fpool(φ, g) provides an instantaneous 2 performance measure, NAP provides a

definition for a longterm performance metric. We now wish to analytically explore the im-

pact of FI on longterm performance, however to achieve this we need to better understand

how the pool fitness varies over time in the absence of FI being applied.

The longterm pool and elite fitnesses are tied to the optimisation trajectory of the pop-

ulation. As stated in Equation 4.31, GA uses selection and genetic operators on a pop-

ulation to generate a new population which hopefully has a high chance of discovering a

program with higher fitness than the current elite program. If we assume G(φ, p) produces

new populations in a deterministic manner (i.e. no stochasticity is involved) and the envi-

ronment is not dynamic in the short term (i.e. the fitness metric is constant and there is

no noise in measuring fitness), then the population at generation g can be described in

2Fpool(φ, g) is calculated over the duration of the evaluation time for a generation of programs. However,
as we quantise time into generations, this measure occurs in 1 unit of time in our timebase.
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terms of an initial population pi as:

p(i, g) = G(G(....G(G(pi))...)) (4.10)

where the genetic operator G is applied successively g − 1 times, thus p(i,1) = pi, p(i,2) =

G(pi) and so on. The set of all optimisation trajectories under non-stochastic operations

and in a non-dynamic environment would therefore be a function of the set of possible

initial populations, P , and therefore there must also be NP possible optimisation trajecto-

ries.

In the real world, changing environmental conditions and stochastic processes em-

ployed by G result in the actual number of possible optimisation trajectories being more

than NP and not deterministic on pi alone. As the effects of environment and stochas-

ticity increase, the optimisation trajectory dependance on pi becomes less significant.

The IDGP framework employs a number of stochastic processes (random program gen-

eration, mutations, random crossover points, fitness proportionate parent selection), and

combined with real-world dynamics such as sampling noise, thermal variation and other

potential environmental variations, the optimisation trajectory dependance on pi is as-

sumed to be very weak. Hence, we remove the dependance on pi from the notation, i.e.

p(i, g) ≃ p(g). Non-deterministic processes include: syntactic biases, such as instruction

set and programming language syntax, and procedural biases such as the population

composition, genetic operators, and changes to the environment.

We now introduce L to describe the fitness improvement rate during evolution. L can

be thought of as how much is “learnt” between generations and as such is defined as the

derivative of the elite and pool fitnesses with respect to generation, g.

Lelite(φ, g) =
d

dg
Felite(φ, g) (4.11)

and similarly for the pool learning rate,

Lpool(φ, g) =
d

dg
Fpool(φ, g) (4.12)
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The elite and pool fitnesses start to deviate from the Felite(0, g) curve at generation k

where FI is applied. FI reduces the population size used for exploration and increases

the number of elites which exploit the known good solutions. We term the population

pool used for exploration as pool∗. With φ = 0, the population size of pool∗ is Npop − 1 as

one program is used to facilitate the elitism mechanism. When φ = 1, the population size

of pool∗ is 0. With the current defined Gsimple(pi) function, when 0 < φ < 1, pool∗ has a

population size of approximately 1 + (1 − φ)(Npop − 1).

Since Felite(φ, g) = MAX(Fpool(φ, g)), any improvement is the result of learning occur-

ring in pool∗. Hence, increasing φ will reduce the size of pool∗ and its learning rate. This

reduced fitness is represented by a learning rate scaling function, λelite(φd, g), such that,

Felite(φd, g) =Felite(0, k)

+ λelite(φd, g)∫
g

k
Lelite(0, x)dx (4.13)

Similarly the reduced population pool∗ fitness can be expressed as

Fpool∗(φd, g) =Fpool(0, k)

+ λpool∗(φd, g)∫
g

k
Lpool∗(0, x)dx (4.14)

However, of most interest is the calculation of the new pool, Fpool(φd, g) which repre-

sents the post-FI performance. The new pool is a composition of φ elite programs and

(1 − φ) pool∗ programs and so can be expressed in the previously defined terms as

Fpool(φd, g) =φFelite(φ, g) + (1 − φ)Fpool∗(φ, g) (4.15)
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We rearrange this equation, to highlight the salient contributions to the post-FI perfor-

mance.

Fpool(φd, g) =Fpool(0, k) + φ[Felite(0, k) − Fpool(0, k)]

+ φλelite(φd, g)∫
g

k
Lelite(0, x)dx

+ (1 − φ)λpool∗(φd, g)∫
g

k
Lpool∗(0, x)dx (4.16)

Effectively, the new pool deviates at the point Fpool(0, k) with an immediate perfor-

mance improvement of φ[Felite(0, k) − Fpool(0, k)] as described in the instantaneous sec-

tion. Note, when g = k, Eq. (4.17) reduces to Eq. (4.6). However, when g > k, the pool

performance continues to improve with the new pool learning rate of

Lpool(φ, g) =φλelite(φd, g)Lelite(0, g)

+ (1 − φ)λpool∗(φd, g)Lpool∗(0, g) (4.17)

Lpool(φ, g) will exhibit non-linear behaviour, even if λelite(φd, g) and λpool(φd, g) are con-

stants, since Lpool(φ, g) depends on both pool and elite learning rates. This makes deter-

mining NAP a difficult problem. Equation 4.16 can be simplified as:

Fpool(φd, g) =Fpool(0, k) + F∆ep(0, k)

+ ∫

g

k
Lpool(φ,x)dx (4.18)

We now consider the relationship between the learning rate reduction factor λ and

fitness importance more closely. It is well known that reduction in diversity reduces the

learning potential of the population. At the extreme, setting φ = 1 will completely remove

learning capability, leading to Lpool(g)∣φ=1 = 0. Populations are composed solely of the

elite program from the previous generation, effectively limiting performance variation due

to learning.

However, by selecting the elite from the previous generation, we typically maximise the

probability of good performance of the current generation since the probability is low that
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any variation due to genetic operations will result in a phenotype with higher performance

than the previous elite program. Consider the long term effect of φ through an example.

Each generation includes 20 program that run sequentially. A node runs the programs for

5 generations using the IDGP framework and ranks the programs according to fitness. In

a normal GP approach, achieving a solution with optimal fitness would require on average

100 generations. In our example, we apply a φ = 0.5 at generation 6. In response, the

node sets half of its population to the current elite program, while it continues to perform

genetic operations on the remaining 10 programs to learn new behaviour. This results

in a step increase in performance so that the observed performance during generation

6 is midway between the elite program performance at generation 5 and pool fitness at

generation. This step increase comes at the cost of an increase in convergence time

towards the optimal solution. Instead of converging after 95 generations, we hypothesise

that the logic now requires on average 2 x 95 = 190 generations to converge. This stems

from the subpopulation size that is effectively used for learning being halved 3.

Generalising the example above, we hypothesise that the learning rate after applying

φ is reduced by a factor of (1 − φ). As such, over time the learning rate reduction factor

should tend towards (1 − φ). i.e.,

λ = 1 − φ (4.19)

Experiments were performed to validate this hypothesis using empirical results ob-

tained via a parameter sweep of φ and k with 20 repeated experiments of the Blink-

3 problem for each φ ∈ {0,0.05,0.15,0.4,0.5,0.7,0.95,1} applied starting at generations

k ∈ {5,10,15,25,50,250}. The results obtained from 1 month of evolution were stored to

log files and the analysis of this data is discussed in the remainder of this section.

3Section 5.3.2 will empirically test this hypothesis on the impact of learning rate upon applying φ.
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Figure 4.1: λelite∗ for various values of φaccept showing that the Learning Reduction factor can be estimated more accurately later
during evolution. The analytic model suggests that λelite∗ = 1 − φ, however due to the stochastic and discrete nature of an evolutionary
population performance, the trend is hard to see until close to convergence.
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Figure 4.1 shows the evolution of λelite∗(φaccept, g) for various values of φaccept. Each

individual line represent the smoothed average of the final 20 generations of each run

where φaccept was applied at generation k. Since λelite∗(φaccept, g) is a function of how much

is learnt since FI was applied, the initial calculations of λ after k fluctuate significantly with

noise. However, the cumulative nature of the integral of the learning rate means that the

variation decreases over time, and provides a better insight to what the underlying real

value of λelite∗(φaccept, g) converges. There is a variation in the convergence value of λ

that is most pronounced for smaller values of φ.

To examine the relationship further, Figure 4.2 plots λ versus φ. While each of points

in the figure refers to an individual run, the solid line is the (1-φ) line. It is clear that this

function does capture the trend in the relationship between λ and φ, and it does so more

accurately for larger values of φ.

The post-FI pool performance will contain φ elite programs while the remainder of the

population will have fitnesses that tend to the average program fitness, regardless of the

method used. As expected, Figure 4.3 shows the learning rate of the diminished size

learning population generally trends downward as φ is increased (during the runs where

0 < φg < 1). Counterintuitively, for some low values of φ however there are occurrences

where better learning occurs with a smaller learning population. This implies that despite

the reduction in population size used for learning, the learning rate has actually increased.

However, any improvement in the elite will be magnified by the size of the elite population

portion in pool∗, and so while the learning rate of the pool is reduced, the amplification of

any improvement by the number of elites more than compensates for the reduced learning

rate (at least while φ < 0.95 for this particular problem). Figure 4.4 shows the full population

learning rate

The acceptable effect of FI is that it will increase the pool fitness of future generations

to reside above the current pool fitness by at least the percentage (φaccept) of the difference

between the current elite and pool fitnesses. This is expressed as Equation 4.20 for any

generation g > k, where k is the generation at which φ is applied.
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Figure 4.2: This figure shows λelite Vs φ. Also shown is the line of 1−φ. There is good correlation

with this indicating that Felite(φ, g) = (1 − φ)∫
g

x=k
Felite(0, x)dx is reasonable assumption.

Fpool(φd, g) = Fpool(0, k)+

φaccept[Felite(0, k) − Fpool(0, k)] + ∫
k+n

x=k
L(φd, x)dx (4.20)

Note that Equation 4.20 is the general form of Equation 4.6. The main difference

is that Equation 4.6 only captures the expected step increase in pool fitness, while the

generalised Equation 4.20 also includes the additional improvement in fitness (learning)
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Figure 4.3: λpool∗ for various values of φ.

that occurs in the generations that follow the application of φd

In order to deliver the acceptable increase in pool performance (as per eq. 4.6), FI bi-

ases the population diversity by increasing the number of elite programs in the population

to approximately φacceptNpop. This provides the minimum acceptable pool performance of

φacceptFelite(g), while the remainder of the population is configured for optimal searching.

If the learning rate after applying FI L(φd, g) ≥ 0, then the performance achieved at gener-

ation g will be higher than at generation k+1. However, for specific cases where devolving

can occur to significant changes in the environment, L(φd, g) may be negative, resulting

in a lower fitness at generation g than generation k+1. However, in most cases where the

environment does not drastically change, the learning rate will remain positive, yielding a

monotonically increasing fitness after applying φd.

With this expanded definition of learning rate, we can revisit the projected pool fitness

as a function of the performance gain and reduced learning after applying FI. Let the

fitness exploitation potential, which is the difference between Felite(0, g) and Fpool(0, g), as
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Figure 4.4: λpool shows the learning rate reduction in the population including the Elites. The

calculation requires division by (1−φ) so as φ increases, small stochastic changes become highly
magnified leading to “noisy” calculated values. This is particularly evident for φ = 1 (bottom right).

F∆ep(g). This describes how much fitness can be potentially exploited by FI at generation

g. Assume Fpool(g) is a monotonically increasing function. Applying FI after generation k

results in a step increase in fitness by φdF∆ep(k) as of generation k + 1, representing an

immediate performance gain. Using the revised definitions with Equation 4.20 yields:

Fpool (φd, g) = φd [Felite (0, k) + (1 − φd)Lelite (0, k)]

+ (1 − φ) [Fpool (0, k) + (1 − φd)Lpool (0, φd)] (4.21)

More detailed derivation of Equation 4.21 can be found in Appendix B.

Equation 4.21 quantifies the step performance gain and the reduction in learning rate

when φ is applied. Achieving an appropriate balance between performance and learning

is highly depend on the time on the application scenario, so the next section explores this

relationship for the maximum performance scenario.
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4.3.3 Application Scenarios

The target application scenarios are a subset of the real world problems as discussed in

Section 4.1.1.

Achieving an appropriate balance between learning and performance is a highly application-

specific problem that depends on the window of time for evaluating performance and on

the level of required performance. We consider six different application scenarios, as

shown in Table 4.1.

# Problem Type Time Performance FI Description
1 Maximum Online

learning
unbounded none φ = 0 Continuous learning with an infinite time

observation window
2 Constrained

perpetual learning
unbounded minimum

threshold
0 < φ ≤ 1 Continuous learning that imposes a minimum

requirement on performance while learning
3 Maximum perpetual

performance
unbounded maximum 0 < φ ≤ 1 Require maximum aggregated performance over

an infinite time window
4 Offline learning bounded none φ = 0 Maximise learning in a finite time window to exploit

it later
5 Constrained learning bounded minimum

threshold
0 < φ ≤ 1 Maximise learning in a finite time window while

meeting some minimal performance threshold
6 Maximum

performance
bounded maximum 0 < φ ≤ 1 Maximise aggregated performance over a given

time window

Table 4.1: Learning problem type

The first application scenario simply aims to maximise the learning capacity of the

system for an infinite duration, and it represents a maximum online learning application

corresponding to the minimum FI value of 0.

The second and third application scenarios also observe the system over an infinite

time window, but they place constraints on the system’s performance. The constrained

perpetual learning scenario aims to maximise learning while delivering a minimum level

of user-defined performance, while the maximum perpetual performance requires that the

system’s aggregated performance over time reaches its highest possible levels. Both of

these scenarios significantly benefit from setting FI to a value greater than 0 in order to

deliver the acceptable level of performance.

Scenarios 4, 5, and 6 all have a bounded time window. Scenario 4 allows a system

to maximise learning within the bounded time window, in anticipation of exploiting the

evolved behaviour beyond the time window. This is the offline learning scenario. Similarly

to maximum online learning, this scenario uses a FI of 0. Scenarios 5 and 6 resemble
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scenarios 2 and 3 above, except that they use a bounded time window for evaluating

learning and performance.

Previous work, such as [50], have explored in situ evolution (scenarios 1 and 4) for

online learning in the real-world. Significant research efforts have been made for max-

imising performance within a bounded time interval, such studies on the bandit problem.

To the best of our knowledge, we are the first to propose a method that allows the system

to meet a minimum performance criteria while maximising learning (scenarios 2 and 5).

4.3.4 FI Performance Metrics

4.3.4.1 Normalised Average Performance

Symbols
Symbol Description
pi Unique population i where 1 ≤ i ≤ NP

P Set of all possible unique populations p1, p2, ..., pNP
g Generation number where g ≥ 1
G(pi) G(pi)↦ p′i
p′i(g) Population at generation g given the initial population pi
φg,n Desired Fitness Importance from generation g to g + n
Fpool(pi, g) Pool Fitness at generation g, given the initial population pi
F∆ep(pi, g) Exploitation Potential defined by Felite(pi, g) − Fpool(pi, g)
Lpool(g, n) Pool Learning Rate defined by Fpool(pi, g) − Fpool(pi, g − 1)
Lelite(g, n) Elite Learning Rate defined by Felite(pi, g) − Felite(pi, g − 1)

Table 4.2: Symbols

In Section 5.2 we saw the effect of applying FI on the pool fitness in response to a

desired immediate performance improvement. However, if we consider performance over

period of time during evolution, then it is likely that the performance will vary over that

period due to learning and/or changes to the environment. An external observer will see

the performance resulting from the execution of every program in the pool. Extending this

to a period of time described by multiple generations, an external observer would also

see every program across every generation in the period of interest. Recall that the pool

fitness represents the average fitness of sequentially run programs during a particular
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generation. Since all generations have the same number of programs, the average of all

pool fitnesses provides the average fitness of all programs during the period of interest.

For our toy-problem, we know an optimal program and can therefore execute it to de-

termine the optimal fitness. This fitness score varies from node to node due to differences

in hardware and can also vary in time due to temperature and other varying environmental

factors. In most real-world problems, the optimal fitness may not be calculable or known,

but for convenience of comparing performance across multiple nodes, the fitnesses is

normalised to the fitness of the optimal program (recorded at some time before the exper-

iments were conducted). We define the Normalised Average Performance, FNAP (i, n) as NAP

the average pool fitness across generations i through to i + n − 1. i.e.

FNAP (i, n) =
1

n

i+n−1

∑
g=i

Fpool(g) (4.22)

This definition of NAP considers that the long term performance of an online learning

system depends on the mean of the system’s observed performance over the observation

time window of length n. For a learning system that aims to maximise performance over

an entire bounded time window, NAP represents the observed system’s performance

over the whole time, where i = 0 and n = window length. For a similar learning system

that requires maximising performance over the remainder of the time window, i is set

to the current point in time, while n is set to window length − i. The following sections

demonstrate the utility of this NAP definition further.

NAP(i, n) =
1

n

i+n−1

∑
g=i

Fpool(Φ(g), g) (4.23)

4.3.4.2 FI Success Rate Metric

The Success Function S(Φachieved(x),Φ(x)) defines ’success’ as achieving the desired

fitness importance, Φ(g), at generation g.

The success rate is defined by the fraction of evaluations that meet the criteria of

’success’. For this research, the Success Rate of Satisficing Psuccess(k, g) is defined as

the percentage of generations in which Φachieved(x) > Φdesired(x) where k ≤ x ≤ g. This can
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be expressed relative to Fitness Importance as:SUCCESS

RATE OF

SATISFICING

Psuccess(k, g) =
k − g

g

g

∑
x=k

S(Φachieved(x),Φ(x)) (4.24)

However, Fitness Importance can be expressed in terms of absolute fitnesses as:

Φ(x) =
Faccept(x) − Fpool(0, x)

F∆ep(0, x)
and Φachieved(x) ≈

Fpool(φ(x), x) − Fpool(0, x)

F∆ep(0, x)

Through substitution the success condition can be expressed follows:

S(Φachieved(x),Φ(x)) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if Fpool(φ(x), x) ⩾ Faccept(x)

0 otherwise

This now allows the success function to be expressed in terms of absolute fitnesses as:

P (k, g) =
k − g

g

g

∑
x=k

S(Fpool(φ(x), x), Faccept(x)) (4.25)

Hence, performance can be measured as the percentage of generations from k to g in

which the achieved pool fitness equalled or exceeded the acceptable average fitness

(AAF).

The maximum value of P (g) = 1 occurs when ∀g ∶ Fpool(φachieved, g) ⩾ Faccept(g) and

conversely the minimum occurs when success is never obtained, i.e. P (g) = 0 when

∀g ∶ Fpool(φachieved, g) < Faccept(g).

Note that Faccept is an absolute value which can be set independently of the current

fitnesses (Fpool(g) and Felite(g)). Unlike Φ(g) which can theoretically be obtained for all

generations, an a priori value for Faccept(g) could easily lie outside of an achievable fitness,

i.e. Faccept(g) > Felite(g).

Online evolution provides a mechanism to adapt (converging and reconverging) to dy-

namic environments and time-varying fitness functions. Figure 4.5 illustrates typical elite

and pool fitness curves for an evolutionary run. The vertical axis represents the fitness

while the horizontal axis represents time (measured by generation number). Suppose
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Figure 4.5: Expected evolutionary trajectories (of pool and elite fitnesses) with IDGP in a
scenario where the fitness landscape suddenly changes (at T3).

there exists some minimum performance threshold, at some point, T1 , the evolution-

ary search may find solutions which satisfy this constraint. Once a solution has been

discovered, one could potentially exploit this solution to deliver acceptable performance,

providing the environment and fitness objective remain constant. If we allow the evolu-

tion to continue, the elite will exceed the minimum acceptable threshold and potentially at

some point, T2, the average (pool) fitness may exceed the minimum acceptable threshold.

In most problem scenarios, the pool fitness will be significantly less than the elite fitness

and often the pool fitness will asymptote much earlier than that of the elite.

T3 represents a point in time where an unexpected event occurs in the environment

or there has been a change in the fitness metric, which results in a large drop in elite

and pool fitness. The extent of the drop is inversely correlated with the diversity of the

population prior to the event. With high population diversity the system is likely to experi-

ence a lesser drop in fitness. The system may drop below an acceptable fitness, however

the evolutionary process will allow the fitnesses to reconverge to a new solution which
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hopefully meets or exceeds the acceptable performance under these new conditions. Re-

convergence may lead to the elite programs reaching acceptable fitness again (at T4), and

potentially the pool fitness reaching an acceptable fitness once again at time T5.

The concept of FI is to provide a means to manipulate the evolutionary trajectories

above, in particular, when the elite fitness exceeds an “acceptable fitness” threshold.

Whenever the elite fitness is below the acceptable threshold (i.e. the convergence phase),

the GP engine should maximise learning by setting FI to zero which will allow for the

fastest possible evolution to an acceptable performance. 4 Starting at T1, values of FI

above zero can be considered which should cause the pool fitness to increase quickly

towards the elite fitness, but it also limits subsequent fitness improvements.

Figure 4.6 illustrates this effect through an example from empirical experiments on a

simple evolutionary problem, whose full details are explained in Section 5.2. It shows the

trajectories of the pool fitness for a range of FI values, all applied at generation 41 for

the remainder of the evolutionary run. One can see the immediate performance gains

for all non-zero value of FI at generation 41. However, because of the reduced fitness

improvement with the application of FI, it is clear that there is a crossover point at which

exploiting via FI yields worse performance than not applying FI in the long term. The

impact of Fitness Importance is largely dependant on where the system is within the

search space and the optimisation trajectory that it is travelling along. Identifying the

appropriate value of FI and the appropriate time at which to apply it is a challenging

problem that we explore in this paper.

4.4 Population Generator Metaheuristic

FI is a heuristic that supplies domain-specific knowledge, namely what level of average

fitness is acceptable. This information is then used by a metaheuristic which attempts to

generate a population that will meet the AAF while attempting to maximise learning given

the performance requirement.

4In exceptional cases that require immediate performance improvements even if performance is less
than the acceptable threshold, the FI can be set higher during the convergence phase.
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Figure 4.6: FI, FI = 0,0.2,0.4,0.5,0.6,0.8,1.0, is applied to idealised the pool and elite fitness
curves to demonstrate the complex trade-off for performance and learning over time.

With the acceptable pool fitness defined, we now describe a population manipulation

mechanism that, at minimum, generates a population with an expected average fitness

as in Equation 4.8 while attempting to retain the maximum learning potential.

As is with most genetic algorithms, the initial state of the In situ Distributed Genetic

Programming framework can begin with randomly generated entities or seeded entities

provided by a user. Specifically for this implementation we start by constructing a popula-

tion of random programs.

Using a supplied fitness function (or performance evaluation metric), each program

is evaluated in turn and the performance (or score) for each program is recorded. Note

that external to the system, the performance appears as a function of the aggregate of

performances across all programs in the population.

The next generation population is constructed from a number of subpopulations, here-

after termed as classes. Classes are defined by various operations such as (but not lim- CLASSES

ited to) cloning, mutation, crossover on programs from the previous generation or other

sources (such as programs from other nodes, human-devised (injected) programs, or

even randomly generated programs).

The expected performance for programs in each subpopulation can be calculated

based knowledge of the programs’ previous performance and knowledge of the effect



130 Fitness Importance

of the operations on the performance of programs. For example, the expected perfor-

mance of an elite (clone operation, which means the program is copied unaltered) in the

next generation will be the same as the performance from the previous generation (in

the absence of any other knowledge about changes in the environment). In contrast,

the expected performance of generated children (“Children Subpopulation”, defined by

crossover and mutation operations on a set of probabilistically biased selected programs)

will typically be less than the performance of either parent. However the expected learning

potential for “Children” programs will be greater than that of “Elite” programs since “Chil-

dren” programs will provide more knowledge about the fitness landscape than evaluating

a program that has been tested recently.

Based on the expected performance and expected learning capability, subpopulations

are constructed and selected to generate a total population which maximises the learning

capability given an acceptable expected performance constraint. We term this acceptable

expected performance constraint as the “Fitness Importance”, since it reflects the level of

importance of performance (fitness) over the importance of optimal learning. Since the

optimal performance that can be achieved given the current knowledge of programs and

their fitnesses is to use the best performing program for the entire population and presum-

ably a population configuration is known for optimal learning, we then normalise “Fitness

Importance” to range from 0 to 1, where 0 signifies a population of optimal learning is ac-

ceptable, 1 signifies an optimal performing population is acceptable, and values between

these limits signify an optimal performing population given the constraint of expected per-

formance being a scalar portion of the expected optimal performance. We achieve an

acceptable expected performance (as defined by the “Fitness Importance” parameter) by

increasing the size of the “Elite” subpopulation and scaling the remaining subpopulations

over the fixed population size. The specific implementation is explained in Section 4.3.

Finally, the new population is constructed from the subpopulations and the evolution-

ary process of evaluated and constructing new populations repeated. This evolutionary

process allows continual (life long) optimisation and learning to occur simultaneously. At

any point in time, the “Fitness Importance” may be varied to bias the system to either

better performing or faster learning as acceptable.
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The IDGP engine maintains a population structure of a 5 subpopulations, defined by a

set of genetic operations as per Table 4.3. Let Q be the set of subpopulation types, noting

that the number of subpopulation types, NQ, need not be limited to that of Table 4.3.

Q = {E,H,C,R,O, ...} (4.26)

Table 4.3: Expected Fitness for Specific Demographics
Copy Mutate Crossover Generate Import

Elite 4

High Rank 4 4

Child 4 4

Random 4 4 4 4

Other 4

←Ð ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯Ð→

Higher Expected Performance Lower Expected Performance
Lower Learning Capability Higher Learning Capability

Let the demographic sizes be NE elite programs, NH highly ranked programs with

mutation, NC children programs generated through crossover and mutation, NR randomly

generated programs and NO "other" externally generated programs. In the absence of FI,

the size of each subpopulation is constant, although typically NE ≠ NH ≠ NC ≠ NR ≠ NO.

Hence, the total number of programs in the population Npop, within the IDGP framework

is Γ(φ = 0) = NE +NH +NC +NR +NO = ∑
S∈Q

NS

Each subpopulation will have an expected fitness E(FsubpopE), ...,E(FsubpopO) and an

expected learning potential which we will investigate further in section 5.3. Thus the

expected pool fitness can be expressed as,

E(Fpool(0, g)) = ∑
S∈Q

1

NS

E(FsubpopS(0, g)) (4.27)

Let Γ be the set comprised of the NΓ unique population structures γx that can be

generated from the various combinations of subpopulation sizes where (4.4) is satisfied.

Γ = [γ1, γ2, ...γNΓ
] (4.28)

Let the population fitnesses given a specific population structure γx and specific instance
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of a population pi be Fpool∣pi, γx Note that the subpopulations generated with the same

population demographics but from different population instances will likely have different

fitnesses. i.e. Fpool∣pi, γx ≢ Fpool∣pj, γx

Given the current population, pi, it is possible to exhaustively compute the expected

fitnesses for the entire set of possible population structures and identifying those which

produce an expected performance improvement to satisfy φaccept. This set is defined as,

Υ(φaccept, pi) = { γx ∣ x ∈ N,E(Fpool∣pi, γx) ≥ E(Fpool(φd, g)) } (4.29)

Within this set of population structures Υ(φaccept, pi) that satisfy the performance con-

straint, there will be a structure(s) that provide optimal exploration (i.e. fastest evolu-

tion towards the optimal solution). Unfortunately, finding the optimal population structure

that meets the performance constraint with maximal learning capability is an extremely

challenging problem and beyond the scope of this research. The number of possible

population structures, NΓ, which must be assessed scales exponentially with increasing

population size Npop (depending on the number of subpopulations NQ employed). Specif-

ically,

NΓ =
(Npop − 1)!

(NQ − 1)!((Npop − 1) − (NQ − 1))!
=

(Npop − 1)!

(NQ − 1)!(Npop −NQ)!
(4.30)

Let us assume that a function Θ(φaccept, pi) exists which generates the optimal learning

population structure that meets the acceptable expected performance. G(φaccept, pi) can

then use this function to produce the appropriate subpopulation sizes that it must generate

with its selection and genetic operations specific to each subpopulation type.

Given the difficulty in finding the optimal Γ, we return to a variant of our simple heuristic

of biasing the population with elite programs. However, instead of directly manipulating

the population, we manipulate the population structure to be biased by elites and attempt

to redistribute the remaining structure as per an “optimal” learning population structure
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that mimics a scaled version of the φ = 0 pool structure. We term this function that gen-

erates populations according to this structure as Gsimple(φaccept, pi). Gsimple(φaccept, pi) sub-

sequently employs Θsimple(φaccept) to generate a population structure with 1 ≤ NE ≤ Npop

elite programs used to achieve the acceptable pool fitness (performance), and the re-

maining distribution of subpopulation types scaled and quantised in an iterative manner

starting using a ceiling function. Note, we order the remaining subpopulations by high-

est expected fitness (in this case highly ranked) before iteratively applying the scaling

and ceiling functions until we reach the subpopulation with the lowest expected fitness or

until Npop programs have been allocated. This introduces a bias to keep programs with

higher predictable expected performance, and removes programs with low predictability

in performance (lower expected performance). This bias tends to make the achieved

performance improvement greater than the acceptable performance improvement. i.e.

φachieved > φaccept.

After all the programs within a population have been executed and their fitnesses

calculated, IDGP then performs selection and genetic operations, G, given φaccept on pi),

on that population to generate the new population. By applying the genetic operation(s)

G to pi which generates a new population, pj, which is also a member of P.

pj = G(pi), pi, pj ∈ P (4.31)

Note that G(0, pi) is the best available learning strategy, as it uses all the available

resources towards exploration. Let k be the generation at which FI is applied, implying

we desire to have the pool fitness improve by φaccept[Felite(0, k) − Fpool(0, k)] above what

would have been the pool fitness without applying FI. To achieve the acceptable change in

pool fitness G(φaccept, pj) must generate an alternate population with an expected average

fitness of that inEquation 4.8. A simple heuristic to achieve this is to replace a fraction

(φaccept) of the pool programs with elite programs. Thus the new population consists of

φaccept elite programs and 1 − φaccept non-elite programs, which we will call pool∗. Let us

select which programs to replace such that the unaffected programs in pool∗ preserve

the average program fitness of Fpool(0, k). This generates a population with an expected
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performance of φacceptFelite(0, k) + (1 − φaccept)Fpool(0, k) which can be rearranged to (4.8)

and hence delivers the minimum acceptable performance gain.

However, selecting which programs to replace based on preserving the pool fitness

does not necessary provide optimal learning capability. To achieve good learning, it is im-

portant to maintain diversity in the population, which is implicitly achieved through the right

combination of “subpopulations”, each of which is defined by selection and genetic opera-

tions. This is however beyond the scope of this research and unnecessary to demonstrate

that a desired average fitness can be achieved while learning by judiciously selecting the

(sub)population composition.

4.5 Integrating FI into the IDGP Framework

We extend the IDGP Framework with FI as shown in Figure 4.7. Note that FI function can

be computed locally or supplied externally. IDGP is currently implemented for memory and

resource constrained low-power wireless sensor network devices. Each physical device

locally runs a C-based GP-engine to perform in situ evolution, however the framework

allows for programs to be shared wirelessly between neighbouring nodes (using the Island

Model) which can aid evolution as well as allow distributed and cooperative evolution.

The user policy, which includes the initial program code (often random programs),

fitness function, and fitness importance, serves as an input to this framework. IDGP then

employs a traditional elitist mechanism in conjunction with genetic operations to provide

genetic diversity in the population which facilitates learning. FI is then used by the IDGP

engine to generate populations with an expected average fitness which meets a relative

acceptable performance criteria. This is the responsibility of the population generator

function as described in section 4.4. For ease of implementation, a computationally simple

algorithm termed Gsimple is employed and is described in the following section.
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Figure 4.7: An overview of the In situ Genetic Programming (IDGP) framework extended to
use the Fitness Importance heuristic. Note, the population generation is the same build order as
shown in Figure 3.3.

4.5.1 Using Gsimple to achieve desired performance

The number of possible population structures that could be employed scales exponentially

with respect to the population size as described in Equation 4.30. Specifically for when

NQ = 5, the set of possible population structures, NΓ(x), scales with population size x as

NΓ(x) = x(x − 1)(x − 2)(x − 3)/4! = x4 − 6x3 + 11x2 − 6x/24.

Ideally, the expected fitness for all possible population structures would be computed,

however this is unlikely to be practical for computationally constrained devices with any

significant population size. To demonstrate FI however, one only needs to show that the

desired average performance (AAF) can be achieved and that learning can still occur.

Since the elite subpopulation has the highest expected performance, increases in this

subpopulation will rapidly shift the entire population performance towards meeting the

desired performance. The remaining subpopulations could then be distributed as per a

typical ’optimal’ learning distribution. An additional advantage of this approach is that is

also computationally simple to generate and so we term this approach as Gsimple.

Due to the significant RAM limitations of the devices used for the demonstration, a
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small population size Npop = 21 is employed. Determining the optimal learning pop-

ulation distribution is outside of the scope of this thesis and not essential to demon-

strating the functionality of using FI. As such, we will assume that the subpopulation

sizes {NE,NH ,NC ,NR,NO} of {1,3,12,2,3} respectively correspond to a reasonably good

learning population. Let us also assume that the respective expected fitnesses for indi-

viduals of each population are {47,45,27,5,3}.

The “simple” subpopulation distribution generator function γsimple creates subpopula-

tion distributions by linearly increasing the number of elites from φ = 0 to φ = 1 and scaling

the remaining subpopulation distributions. Table 4.4 illustrates the Θsimple(φaccept) popu-

lation generator with Npop unique discrete distributions corresponding to 1 ≤ NE ≤ Npop.

Since Θsimple(φaccept) employs elites until the average fitness is achieved, it follows that

φachieved ≥ φaccept. However what the impact is to learning is unclear and will be investi-

gated further in Chapter 5 and Chapter 6.

NE Θsimple(φaccept) φachieved φaccept
1 EHHHCCCCCCCCCCCCRROOO 0.000 0.00
2 EEHHHCCCCCCCCCCCCRROO 0.095 0.05
3 EEEHHHCCCCCCCCCCCRROO 0.139 0.10
4 EEEEHHHCCCCCCCCCCRROO 0.182 0.15
5 EEEEEHHHCCCCCCCCCCRRO 0.277 0.20
6 EEEEEEHHHCCCCCCCCCRRO 0.320 0.25
7 EEEEEEEHHHCCCCCCCCRRO 0.364 0.30
8 EEEEEEEEHHCCCCCCCCRRO 0.368 0.35
9 EEEEEEEEEHHCCCCCCCCRO 0.459 0.40
10 EEEEEEEEEEHHCCCCCCCRO 0.502 0.45
11 EEEEEEEEEEEHHCCCCCCRO 0.545 0.50
12 EEEEEEEEEEEEHHCCCCCRO 0.589 0.55
13 EEEEEEEEEEEEEHHCCCCCR 0.684 0.60
14 EEEEEEEEEEEEEEHHCCCCR 0.727 0.65
15 EEEEEEEEEEEEEEEHCCCCR 0.732 0.70
16 EEEEEEEEEEEEEEEEHCCCR 0.775 0.75
17 EEEEEEEEEEEEEEEEEHCCC 0.866 0.80
18 EEEEEEEEEEEEEEEEEEHCC 0.909 0.85
19 EEEEEEEEEEEEEEEEEEEHC 0.952 0.90
20 EEEEEEEEEEEEEEEEEEEEH 0.996 0.95
21 EEEEEEEEEEEEEEEEEEEEE 1.000 1.00

Table 4.4: Subpopulation distributions generated using γsimple linearly increasing numbers of
elites, NE , then iteratively scaling and quantising the remaining subpopulations

.
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4.6 Discussion

This section discusses opportunities and challenges for using Fitness Importance with

the IDGP framework for evolving logic in situ and online.

4.6.1 Slack: Excess Energy and Time

The paradigm of learning and performing highlights 2 important points. Firstly, “excess

energy” and “excess time” must be present to facilitate non-critical periods where learning

can occur. If the best known performance is always demanded of a system, then there

is no opportunity for variation from the current best solution and hence learning cannot

occur. The second important point is that performance is not the same as fitness. Perfor-

mance is the perceived fitness over a period where the system behaviour matters to the

perceiver.

For all problems we can make the very general claims that:

• a problem must come into existence at some point in time or is identified at some

point in time

• once the problem is known it will take some finite amount of time to devise a solution

• once an acceptable solution is believed to have been found, it could be applied

immediately or further time could be spent devising an even better solution

There will be a class of problems where it makes most sense to generate solutions

by interacting with the world directly (i.e. in situ) and not via a simulation of the world

(i.e. in silico). Therefore, regardless of whether a solution is devised offline or online, the

real-world will be used for feedback during the generation of the solution. Providing the

same solution generating mechanism is used, then the time to generate an acceptable

solution should be the same for either approach. We will continue to employ evolutionary

algorithms (though not evolutionary programming) as the solution generating mechanism.

For the problems used in this analysis we can think of in situ evolution being equivalent to
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requiring each evaluation taking a finite period of time and, most importantly, evaluating a

solution affects the success rate of the system when FI is greater than zero.

Let us suppose that a problem presents itself at some specific time, g0. For conve-

nience we will quantise time into discrete periods, namely generations, corresponding to

the period of evaluation of the population for the respective generation. Additionally, let gi

correspond to the point in time immediately after the completion of the evaluation of the

ith generation. Hence the period over which the first generation is evaluated is g = 1 which

occurs between g0 and g1.

Let us additionally assume that we are keen to deploy a solution when it becomes

available. More specifically, that we have the flexibility to wait for an acceptable solution

to be evolved but not so much as to be able to wait for evolution to an optimal solution. Let

gstart be this point in time after an acceptable solution has become available. Similarly,

let gfinish be the point in time when solving the problem is no longer of interest or the

importance of performance is once again zero (i.e. Φ(g) = 0 where g ⩾ gfinish).

Thus, for the given problem, we have a fixed period of utility from tstart and tfinish

defined by when Φ > 0. The importance of fitness during the period of utility will be lifted

such that success over the time epoch of one generation requires the pool fitness to be

between Fpool(gstart) and Felite(gstart). This means that success is known to be achievable

as it will less than the current known elite, but also not so trivial that any population can

achieve success. The lower limit of Fpool(gstart) is a logical bound since in theory this will

be the observed performance of the optimal learning population and so without any loss

of learning potential, this level of performance can be achieved. Setting an acceptable

performance target lower than this will tend to be trivial to achieve providing the fitness

landscape remains constant.

For experiments where the FI function changes during the period of utility, the change

will be limited to only one occurrence. Where the fitness landscape also changes, we will

coincide the change of fitness importance to the same generation that the change in the

fitness landscape occurred.

In summary, we wish illustrate scenarios where using the FI metaheuristic provides
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benefit (in terms of success rate) over the offline and pure learning approaches. Practi-

cally, we need to set a start time, even if the timing is somewhat arbitrary. In an attempt to

construct a fair comparison, we will employ only one method for solution finding, namely

genetic evolution, and allow all approaches to evolve for the same number of generations

before the importance of fitness is increased from 0. This will occur at generation, gstart,

at which the importance will be lifted such that success requires a pool fitness that lies be-

tween the Fpool(gstart) and Felite(gstart). Furthermore, gstart will be set prior to convergence

(i.e. Felite nearing Foptimal, if known) such that online learning can provide benefit.
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4.6.2 Practicalities of Online Learning

Practical implementations of online learning will need to consider various real world con-

straints. For an acceptable solution we need to know:

• how to prevent the system from entering a state where it is impossible to evolve to

an acceptable solution

• whether it will converge to an acceptable behaviour within an acceptable period

• whether it is possible to evolve an acceptable solution given the IDGP configuration

constraints such as memory footprint, computational ability, available energy and

syntactic richness of the instruction set.

• that it will not perform any actions outside of what is acceptable (safe evolution)

In more general applications it will be important to design node hardware and soft-

ware architectures such that IDGP programs are executed and evaluated in isolation from

core functionality to ensure that evolved programs cannot hog critical resources or cause

undesirable actuations. This raises the issue of which problems are suitable targets for

IDGP implementation as a topic for further research. In some cases it may be possible to

impose constraints during evolution to ensure solutions stay within safe behaviour - in a

sense “sandboxed learning”. However setting constraints inherently reduces the search-

able solution space, meaning that better solutions may exist yet are never evaluated.

The general intuition from the “No Free Lunch Theorem” [153] leads us to believe that

it is unlikely that one learning (optimisation) technique will be better than all others for all

online learning problems.

The “No Free Lunch Theorem” [153] states that no solution finding mechanism is better

than others over all problems and it follows that IDGP is a solution for a niche of prob-

lems. We recommend the designer to estimate whether an alternative approach, such as

human-crafted logic, could produce acceptable logic more efficiently.

IDGP is well suited to distributed systems with complex multi-objective problems with

no well known solution, or where adaptivity of logic is likely to be necessary during the life
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of the system. FI is useful to problem scenarios that exhibit excess energy and time which

can be exploited to learn with reduced or without penalty. We expect the combination of

IDGP and FI to be useful to many future pervasive computing scenarios.

4.6.3 Challenges of In situ Evolution

The evaluation of logic in situ avoids reliance on synthetic (simulated) models of the en-

vironment, and there is no better representation of the environment than the environment

itself. Not only does this prevent the evolution of brittle logic by exploiting artefacts in the

simulation, it also means that the system does not need to perform any simulation at all

which is a great benefit for resource-constrained devices. However, a significant disad-

vantage of this approach is that there is only a single shared environment for all programs

across all motes. It is impossible to reset the environment back to exactly the same ini-

tial conditions prior to the evaluation of every program. Hence, each program may leave

a “footprint” which may help or hinder other programs, generating a credit assignment

problem which can slow or even prevent convergence. Even more important is whether

the environment could be changed in a way that permanently prevents the acceptable

objective to be fulfilled. Unlike offline evolution, one cannot go back in time and trial an-

other optimisation trajectory if the current one has failed. These are inherent drawbacks

of online learning. FI provides a means to control the learning/performing balance within

a dynamic physical environment.

4.7 Conclusion

This chapter described the phenomena that the importance of fitness can vary over time

i.e. something can be “fit” even when that “fitness” is not appreciated as performance.

“Fitness Importance” (FI) was devised as the metaheuristic for decoupling the fitness

function from desired performance for online learning. This allows various levels of aver-

age system performance to be minimally met, while allowing ongoing evolution towards

finding higher fitness solutions.
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An analytical model of how FI impacts learning and performing was presented and

then finally demonstrated through an implementation of a simple population biasing algo-

rithm called γsimple. γsimple manipulates the number of elites evaluated per generation in

order to meet an acceptable performance as specified by Fitness Importance Function.

This demonstrated the first implementation and example of a mechanism for responding

to FI. Future research on more complex implementations are recommended in order to

achieve greater learning capacity and/or more reliably meeting the minimal performance

criteria.



5
Constant FI Parameter Management

Strategies

This chapter describes and analyses experiments where FI is set to a constant value at

various times during evolution. The experiments are performed on motes deployed in real

world environments (as opposed to simulation) to gain an intuition of how learning and

performance are affected during in situ evolution on this class of device.

143
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5.1 Introduction

The problem scenario where learning is desirable whilst simultaneously achieving accept-

able average fitness has previously been enumerated as Table 4.1Learning Problem Type

5 and characteristics of this problem type are discussed in Section 4.3.3. Fitness Impor-

tance (FI) will be varied, and the FI control parameter φ will be set to a non-zero constant

during the evolutionary run and the effects on meeting acceptable fitness analysed. Per-

formance of the strategies (detailed in Section 6.2.5) is measured via the success rate,

P (g) over a finite period, which is essentially is the portion of generations that the average

fitness exceeded a required fitness score (c.f. Equation 4.24). In addition to the achieved

performance during the interval, the elite fitness of the final generation is considered as

a measure towards the system’s potential to meet future increases in acceptable fitness

requirements.

5.2 Instantaneous Performance Control

With the definition of FI and a mechanism for generating populations with the expected

acceptable performance, we now demonstrate the application of FI on a simple prob-

lem evolving under real-world environmental conditions. The immediate impact of FI is

analysed and discussed.

5.2.1 Experimental Setup

We demonstrate the effects of FI in this section with 3 experiments using a time-varying,

light-sensing and light-actuating problem referred to as the “Blink3” problem which has

been studied in detail in Section 3.4 and published in [137].

An empirical study using 3.5 million randomly generated1 programs found a maximum

fitness of only 82.22% of the optimal solution fitness and the average fitness of a random

population (pool fitness) of 4.15% of the optimal solution fitness. The “Blink3” problem is

1Not necessarily unique, however the likelihood of the same program being generated randomly is ex-
tremely low (1.0E−34) due to the multiple choices of instructions available at each step during construction.
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subject to a number of real-world conditions such as local, global and temporal variations

in environmental conditions as well as noise on the sensor reading. This was a deliberate

decision to evaluate online in situ evolution under real-world conditions.

A baseline of learning and performing was established by setting FI to 0 for the entire

evolution up to 500 generations with this repeat for 50 runs. Each experiment where the

value of FI was altered had 20 repeated runs and so average elite and pool performances

at each generation were calculated from 20 points.

5.2.2 Analysis

Because of changes in the surrounding environment, the achieved pool fitness at the next

generation, k + 1, after φd is applied (at generation k), may deviate from Fpool(φd, k + 1).

Extending equation (4.9) to the next generation k + 1, the achieved fitness importance,

φachieved(k + 1), that accounts for such deviations is:

φachieved(k + 1) =
Fpool(φd, k + 1) − Fpool(k)

Felite(k) − Fpool(k)
(5.1)

Ideally the difference between φd and φachieved(k + 1) is kept minimal, such that maxi-

mum diversity is maintained while achieving an acceptable average fitness. Hence, when

φaccept = 0.5 at generation k, it indicates the desire for the expected average fitness to lie

exactly half way between the average fitness of a standard GA, Fpool(0, k + 1), and the

average fitness of using only the current elite solution Felite(k + 1).

In practice, the application of FI is best suited to occur at the end of the evaluation

of a generation of programs so that the knowledge of distribution of fitnesses for the

subpopulations can be used to generate a new population with an acceptable expected

performance. Within the current implementation, there is only one population and so if

FI is used to alter the structure of the population, then Fpool(φaccept, g) can be calculated,

however Fpool(0, g) cannot, unless of course φaccept = 0.

Using Eq.5.1 and given that E(Fj)∣φ=0 and E(Fj)∣φ=1 can be estimated based on the
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generation prior to FI being applied, then the expected fitness becomes:

E(Fj)∣φj =

NEj

∑
k=1

E(fEkj) +

NHj

∑
k=1

E(fHkj) +

NCj

∑
k=1

E(fCkj) +

NRj

∑
k=1

E(fRkj) +

NOj

∑
k=1

E(fOkj) (5.2)

where fSnj is the fitness from the nth highest ranked program in the subpopulation S for

generation j.

5.2.3 Impact on Learning and Performance

FI extends the IDGP framework (see Figure 3.3) to balance performance and learning

during the life of the nodes by altering the number of elites in the program. Experiments

we performed, such as Figure 5.2, to investigate various aspects and effects of the FI

parameter have also highlighted a number open questions for online learning systems.

In many real world systems the importance of the system’s performance varies over

time. In Chapter 4 we introduced the “Fitness Importance” (FI) parameter Φ(t) as a

time varying function to reflect the acceptable balance between system performance (as

defined by the population fitness) and learning potential (as defined by improvement of the

population elite) at any point in time. Typically, Φ(t) will be application specific, possibly

not known in advance, and even potentially a function of local events and sensed data.

The practical use of FI is as an input to the subpopulation distribution generator γ which

attempts to bias the distribution of programs in the population in order to achieve a pool

performance which is φ of the way between the pool fitness of a population designed

to achieve optimal learning and a pool fitness composed entirely of the elite program

(optimal performing based on current knowledge). The improved system performance

however comes at a price of decreased learning potential due to a reduced pool diversity.
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Figure 5.1: Evolution of system performance (pool fitnesses) and learning capability (elite fit-
nesses) with fixed FI.
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To explore the effects of FI applied at the start of an evolutionary run, we conducted

an experiment with various values of FI set at generation 0. Figure 5.1 plots the results

of these experiments. We can observe that the plot Φ(g) = 0 exhibits the fastest learning,

yet the slowest improvement in pool performance. Conversely, the Φ(t) = 1 population

distribution outperforms all other distributions immediately but never improves since no

learning can occur. Both of these observations confirm the conjectures in section 4.1.3.

However, the marginal difference in learning rates between Φ(t) = 0 and Φ(t) = 0.2 in-

dicates that the population distribution for Φ(t) = 0 may not necessarily be the optimal

learning configuration.
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Figure 5.2: Cooperative evolution of system performance (pool fitnesses) and learning capability
(elite fitnesses) with various values of FI.
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Figure 5.2 shows the cooperative evolution of 8 nodes which then all simultaneously

subject to the same FI. The resulting elite and pool curves are averaged producing the

lines shown. Random search (best found so far) is shown to provide a baseline. Since

a random pool is generated every generation, Fpool(random, g) is close to constant. By

generation 11, FI > 0.5 can produce a pool fitness greater than the best random search

solution for the same number of evaluations. i.e.

Fpool(0.5, g) > Felite(random, g), g > 11 (5.3)

From Figure 5.2 we see that when FI=0, the average elite fitness increases from an

initial 25% of the optimal solution fitness to about 70%. The average pool fitness increases

from an initial 4% to about 37%. This clearly performs outperforms random search for an

equivalent number of program evaluations which is also provided as a reference.

To understand the impact varying FI has on learning, we allow the nodes to evolve for

11 generations with φaccept = 0.0 then change FI to another value for 10 generations, before

returning FI back to 0 for the remaining generations. We use φaccept = 0.3,0.5,0.7,1.0 as

the alternate values of FI for the period between generations 11 and 21 as the input into

the subpopulation distribution function γ.

Figure 5.2 shows the aggregate elite and pool fitnesses for each run where φaccept was

altered between generations 11 and 21. As expected, the pool fitness immediately im-

proves in response to the acceptable FI. The actual immediate performance improvement

φachieved achieved by taking the ratio of the pool fitness at generation 12 and the difference

between the elite fitness at generation 11 and the pool fitness at generation 12. φachieved

is calculated and shown in Table 5.1. Because the system is in a period of rapid learning,

the pool fitness is also rises. Hence even when φaccept = 0, the pool still improves yielding

an equivalent φachieved of 0.043. Since the current subpopulation distribution generator (γ)

does not take into consideration the learning occurring within the current population, the

resulting subpopulation distributions typically generate higher than expected performance

(evidenced by the positive error between φachieved and φaccept).

The pool gain over any period is a complex function of the population distribution and
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the optimisation trajectory through the search space.

To illustrate this, imagine we have identical 2 systems, A and B, in exactly identical

states. The pool size is 10 programs with average program fitness of 50% of optimal.

We now change the population distribution of system A to E X X X X X X X X X and

the other (system B) to E E E E E E E E E X where E is reserved for elite programs

and X is reserved for a program that explore the solution space (whether it be mutation,

crossover, random or some other method). Let us say that the probability of X being a

solution that is 100% fit is 90%, however the average fitness of X remains 50%. System

A will almost certainly (99.99999%) find the optimal solution and therefore the elite will

be 100%, but the pool fitness will be 55% (an improvement of 5%). System B will have

a 90% chance of finding the optimal solution. If it does, then the pool fitness will rise to

95% (an improvement of 45%). In this situation, system B may be the more favourable

configuration since there is a high chance of the system becoming near optimal. However,

if we change the probability of X being the optimal solution to say 1%, then system A has

a 8.64% chance of finding an optimal solution while system B has only a 1% chance. In

this situation one might prefer an So here the 8.64% chance of a system improvement of

5% over a 1% chance of 45% improvement.

Unfortunately, the probability of finding solutions is not normally available in advance,

even knowledge of what the optimal fitness is, is often not known. However, it is clear

that varying the population distribution based on FI impacts on the optimisation trajectory

which in turn affects the evolution of the system (performance and learning) which will

likely feedback into the FI.

The graph (in Figure 5.2) of FI=1 during generations 11 to 21 is an extreme exam-

ple which highlights both the benefit and disadvantage of non-zero FI. The system (pool)

performance more than doubles as a result of the application of FI, improving from ap-

proximately 26% (OSF) at generation 11 to 59% (OSF) at generation 12. However, at

generation 21, the pool fitness has remained constant since no learning is occurring,

while lesser FI allow the pool fitness to improve throughout the same period. For example

the pool fitness for FI=0.5 improves by nearly 8% in the same period. If this learning trend

was linear (although it clearly isn’t in this case), then the FI=0.5 pool performance would
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eventually exceed the pool performance for FI=0 after about another 10 generations or

so. In that situation, the learning configuration has the advantage of continual optimisa-

tion while performing better than the system with a fixed FI of 1. This demonstrates that

worse performance in the near term allows learning which results in better performance in

the long term. Hence, fixing FI high for an extended period of time is not recommended.

Interestingly, the subpopulation distribution generated by FI = 0.5 for generations 11-

21 provides a higher gain in the elite performance than when FI is set to 0, indicating that

the subpopulation distribution for FI=0 may not yield optimal learning during this period.

However, the learning rate in this period is influenced by a number of factors. One impor-

tant factor is the current elite performance, which is actually higher for FI=0 than FI=0.5

throughout the period. In essence the FI=0 curve is ahead of the FI=0.5 curve and given

the typical tapering of the curve, one would expect the slope to be less when the elite

fitness is higher. The standard error of the mean during this period is typically about 2%

of the optimal solution fitness during this period. The elite gain for FI=1 is practically zero

as expected.

φaccept φachieved φachieved − φaccept Pool Gain % Elite Gain %
0.0 0.043 0.043 4.1 5.9
0.3 0.391 0.091 4.7 6.1
0.5 0.507 0.007 7.8 8.7
0.7 0.719 0.019 3.0 3.4
1.0 1.025 0.025 -0.7 -0.7

Table 5.1: Note gains are represented as percentages of the optimal solution fitness during the
period when the FI was altered.

As expected, the system fitness increases as better programs are found and the ge-

netic material within the population improves. This can be seen in Figure 5.3 during the

initial period where φaccept = 0 (and the packet index is less than 410).

5.2.4 Discussion

In scenarios where immediate performance improvement is required, we have demon-

strated that FI can be used to deliver an instantaneous performance gain. However it
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Figure 5.3: As the Fitness Importance is varied, the performance of the nodes, as measured by
the average normalised fitnesses of all programs within a generation, responds accordingly. The
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by the simple γ function (refer to Table 4.4).

clear that setting φaccept > 0 has a negative effect is on learning capability which would

impact on long term performance and is the focus of the next section.

The results also showed that the range of φachieved can go beyond the φaccept range of

0 ≤ φachieved ≤ 1. We attribute this deviation to changes in the environment which can be

more or less favourable to the current logic. Section 4.6.3 elaborates on this issue.

The negative impact on average fitness could be interpreted as a result of applying a

poorly chosen φ value that does not sensibly balance the exploration-exploitation into the

future.
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5.3 Long Term Performance Effects

The previous section has described the use of FI in delivering an acceptable instanta-

neous performance gain, highlighting the constrained evolution scenario that requires a

minimum performance guarantee. This greedy approach for providing an immediate step

increase in performance may come at the cost of reduced long-term performance. In con-

trast with constrained learning applications, maximum performance applications need to

achieve the best aggregate performance over a longer time window into the future. The

approach in section 5.2 represents a special case of performance maximisation over a

window of a single time step into the future. This section presents the generalised analy-

sis for applying FI to maximise the expected performance across any future time window.

This section is organised as follows. Section 4.3.4.1 defines the average pool fitness

across multiple generations as a performance metric for a future period. Section 4.3 an-

alytically derives FI and future pool performance as a function of the current elite fitness,

pool fitness, and the pool fitness learning rate. With this analysis in place, Section 5.3.2

empirically explores these relationships through extensive experimental evaluation. The

results show the effects on Normalised Average Performance (NAP) when applying vari-

ous FI values at various generations. This reveals the best choice for the value of FI and

when it should be applied are not deterministic for individual runs. While individual runs

exhibit variations, there is a clear average long term trend. Section 5.3.2 demonstrates an

example predictor function which can be used to select an appropriate value of FI online

to maximise NAP over a bounded future period with high probability.

5.3.1 Empirical Evaluation

Because FI is a metaheuristic that relays the importance of instantaneous performance it

is hard to quantify whether a different strategy would result in better lifetime performance.

We now use FI to maximise NAP (k,φ) over 500 generations. In other words, the

application requirement is to learn a solution and to have the best possible performance

over the entire period of 500 generations.



154 Constant FI Parameter Management Strategies

Equation 4.23 can be partitioned into the period prior to φ being applied and the period

after φ has been applied as follows:

NAP(i, n) =
1

k

k

∑
g=1

Fpool(0, g) +
1

n

n

∑
g=k+1

Fpool(Φ(g), g) (5.4)

where k + n = 500. This equation clearly shows that FNAP is a function of φ, k, Fpool(0, k)

and Felite(0, k). In order to reduce this equation into a two-variable optimisation problem,

we use the results from our 1-month long experiment. Figure 5.4 show the averages for

Fpool(k) and Felite(k) for all the runs. We use these averages in equation 5.4 in Matlab to

find the optimal k and φ for this problem. We seek to find the values for φ and k (when to

apply FI) over 500 generations which maximise Normalised Average Performance (NAP).
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Figure 5.4: Average elite and pool fitness as a function of generation. The 25th and 75th
percentiles are also shown.

Figure 5.5 shows the achieved NAP for various values of φ and k with the standard

deviations shown in Figure 5.6. As expected, there is a general trend of higher NAP as

φ and k increase as a result of exploiting learnt logic. Due to the relative simplicity of the

Blink-3 problem, applying high values of φ at early generations also yield high NAP, where

the bulk of learning appears to occur in the first few generations.

To further explore the learning potential, we also investigate the variance of the elite

program fitness as a proxy for the learning potential. The combination of Felite(0, g) and
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Figure 5.5: A snapshot of the Normalised Average Performance (NAP) after generation 500.
Higher NAP is achieved as a result of exploiting learnt logic later in the evolution (after good
solutions have been discovered) but not so late in the run that it cannot exploit the good solutions
over many generations. As such, there is a “sweet spot” for values of φ and k which are unlikely
to be knowable in advance.

its variance significantly influence the NAP obtained. By definition, the elite variance

concerns the fitness of the program that could be exploited. A higher variance in the elite

fitness implies that the expected performance level (NAP value) is less predictable. Thus,

exploiting too early can be risky.
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rate is between evolutionary runs.
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Training Error Weights R̄2 (σ) ¯error (σ)

ABS(
500−k

∑
g=k+1

error) 1 0.265 (0.24) 28.94 (26.60)

ABS(
500−k

∑
g=k+1

error) 1
g :

1
g :1 0.265 (0.24) 22.33 (22.05)

ABS(
500−k

∑
g=k+1

error

Fpool(g)
) 1 0.265 (0.24) 43.52 (37.07)

0.265 (0.24) 28.17 (27.65)

Table 5.2: Goodness of fit for log curve prediction

Our results in Figure 5.7 show that the variance of the elite program fitness increases

with increasing φ and k. Note that we generate this graph was generated from 120 runs

where φ=0, providing high confidence in the repeatability of the results. The standard de-

viation for normalised elite fitness with φ = 0 dips from an initial random population, which

is the result of early learning typically producing similar elite fitnesses by generations 10-

20. Thus exploiting from here on will give similar long term outcomes (thus lower NAP500

variance). After this dip, the variance in elite fitnesses ruses due to stochastic processes

allowing some runs to learn quickly whilst other runs learn little.

5.3.2 Setting FI Online

The previous section has explored empirically how to select the fitness importance φ and

the generation at which to apply it k by retrospectively observing experimental data. In

this section, we investigate if and how φ and k can be set online during the evolutionary

process.

We can say how well our prediction function works (measured by curve fit error against

a post-processed curve or final Normalised Average Performance, NAP, error) for every

(8x6x20=960) run and how well it compares to a post-processed curve fit. Table A.1

shows the goodness of fit for log and exponential curves with various error weighting

schemes as predictors of fitness given the fitness information prior to FI being applied.

The best fit curve (i.e. least error across all k and φ combinations for predicting fitness

values after FI was applied) is obtained by the exponential curve with uniform weighting
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of error.

For our problem, individual runs exhibit discrete fitness improvements depending on

the initial population and evolution trajectory so far. However, the average of many runs

tends to produce a relatively smooth asymptotic curve as illustrated in Figure 5.4. This

curve form is typical of many convergence curves [75], and can be expressed well by a

number of functions. We chose to investigate curves of the forms alog(bg)+c and a10−
1
bg+c.

y = − a√
bg+c

+ d could also have been used for example.

For most real world problems the fitness curves will not be known a priori. However,

knowledge of how the pool and elite fitnesses are likely to progress is essential for the

appropriate choice of FI if FI is to be applied for a number of generations. While absolute

knowledge of the optimisation trajectory is not possible for stochastic evolution in uncon-

strained environments, we wish to test if it is possible to predict how the fitnesses will

evolve during evolution given the fitness values prior to when FI is to be applied.
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Figure 5.8 shows the average curve fitting error for the 20 experiments at each (φ, g)

combination. This figure shows 2 significant trends. The first is that there is less error for

the prediction curves that are calculated later (higher generation). This is most likely due

better curve fitting resulting from fitting against more data points, and secondly that there

is less learning opportunity available, so the variation in the final result will be lower.

The second trend is that the higher the FI, the more predictable the future fitness

curves are. Again, the learning potential has decreased (though for different reasons

from the first trend) which reduces the variability of the final fitness.

Using a typical curve fit function, we aim to capture the evolutionary trajectory so far

and to project the expected trajectory into future generations by running a series of simu-

lation experiments. For each defined by (φ, k), we curve fit for both elite and pool fitness

curves using an exponential function form 2 F0,pool = a.10−
b
g +c in order to obtain the param-

eters a, b, andc, where 1 < g <= k. We then extend the best fit (least error) curves into the

future up to g = 500 and calculate the expected NAP(k + 1, k +n) where k +n = 500. Figure

5.9 shows the NAP results for our predictions of 20 repeated experiments of applying FI

(φ ∈ {0,0.05,0.15,0.4,0.5,0.7,0.95,1}) at a range of generations (k ∈ {5,10,15,25,50,250}).

The measured average NAP across the 20 experiments achieved at each (φ, k) is shown

by the squares. Notably in the top 3 plots, where FI is applied early, the maximum post-FI

NAP (NAP(k,500 − k)) is not achieved by merely exploiting the elite solution solely, but

through a combination of learning and exploiting. Learning potential decreases quickly

due the rapid initial learning which means that by generation 25, exploiting the current

elite with φ = 1 becomes a good strategy for maximising NAP from that point.

The blue circles show the predicted average NAP at each (φ, k) for each of the curves

in which the actual result of NAP was measured. Note that for each k there are 160 runs

with φ = 0 leading up to this generation after which 8 different values for φ are tested in 20

experiments. The green diamonds are the result of taking the 160 optimisation trajectories

for Fpool(0, g) where g <= k and projecting them forward to estimate Fpool(φaccept, g) where

k < g < 500, which is then used to calculate the average predicted NAP500
k (k). The average

provides a better indication of the average predicted NAP, however does not have ground

2(and similarly for Felite(0, g))
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truth to be compared against. It can be seen that the predictive power for high φ is good

which is expected as error is caused by the inability to predict the learning rate. Thus

as high φ reduces the learning capability, it will improve the predictability. When FI is

applied later in the evolutionary run, more accurate prediction is achieved for 2 reasons:

(1) there are more data points available which enhances the curve fitting; and (2) the

fitness is typically higher which implies the learning capacity is lower, which also reduces

uncertainty in prediction.

While predicting Normalised Average Performance (NAP) into the future would be

ideal for setting φ online, it is also relevant to look at how the predictor ranks the con-

sidered φ values relative to the ground truth. If the predictor function does not correctly

forecast the NAP, yet successfully determines one value of φ should perform better than

all the others, then the online algorithm can use this value of φ with a high likelihood that

it is the better choice.
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Figure 5.9: Predicted NAP versus the empirically measured NAP (N=20) with (φ ∈

{0,0.05,0.15,0.4,0.5,0.7,0.95,1}) applied generations (k ∈ {5,10,15,25,50,250}).
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Figure 5.10: Predicted (blue) versus achieved (red) rankings (N=160) of performance of individ-
uals in the next generation after FI is applied at various generations. The good correlation provides
reassurance that the expected effect of FI reflects the actual performance impact likely to occur.

Figure 5.10 shows the average ranking of FI values that the predictor function provides

if FI was to be applied at various generations. Each subgraph is the result of 160 runs

(20 experiments for each φ ∈ {0,0.05,0.15,0.4,0.5,0.7,0.95,1}) applied at generations (k ∈

{5,10,15,25,50,250}) for the actual runs (red) and the predicted rankings (blue) based on

the predicted NAP generated from the curve fitting of the corresponding Fpool(0, g) prior to

k.

Again, the later FI is applied and the higher the FI applied, the more predictable the

outcome. Figure 5.10 highlights that precise estimation of NAP is not necessary to reliably

select a FI that maximises the NAP over the remaining generations. This is possible since

the ranking relationship between the different FI curves tends to hold even if the predicted

NAPs are incorrect. This provides further reassurance that the effect of FI based from the

FI formula reflects what actual impact that is likely to occur.

When looking at Figure 5.10, it is important to remember if one wishes to apply FI

early, that a relatively high φ value of 0.7 to 0.95 is a good strategy for maximising NAP
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after that point, however if the objective is to maximise NAP across the whole evolutionary

duration of 500 generations, then it is not a good strategy to apply so early (c.f. parameter

sweep results).

5.4 Conclusion

It became evident balancing φ to maximise the average performance over a finite period

may be possible using predictions of elite and pool fitnesses based on the exponential

curve fitting of previous fitness values. Despite the predicted NAP being fairly inaccurate,

the ranking of the predicted performances for each φ is reasonably consistent with the

achieved rankings and thus provides a good method for choosing an appropriate φ at

any generation. While this technique worked reasonably well for the ‘Blink3” problem,

how it performs on other problem scenarios and other optimisation parameters remains

unknown.

Of particular future interest is how this approach scales to multiple, or distributed sys-

tems with global and local goals in real-world scenarios. A tradeoff was evident where

the reduction in diversity of the population to obtain higher expected fitness reduced the

learning potential of the system. Mitigating this effect will be the subject of future research.

For a system with limited domain knowledge or computational capacity, determining FI

dynamically is a challenging problem. In some cases, it may be too difficult to ascertain

FI automatically; however we have shown a process for predicting the optimisation trajec-

tory, which can guide what value of FI to set and when to apply it. Alternately, domain

knowledge of the problem could also be programmed in to automatically adjust FI.
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6
Dynamic FI Management Strategies

The chapter investigates the dynamic management of FI to determine whether it can

achieve better performance as measured by the success rate in meeting acceptable av-

erage fitness (AAF) over a finite number of generations.

Two dynamic φ-management strategies are designed, implemented and compared to

less dynamic constant-φ-management strategies. One dynamic φ-management strategy,

φtrack attempts to minimally meet the AAF while maximising learning capability, while a

second more simplistic approach, φgreedy, uses the elite whenever its expected perfor-

mance meets the AAF, otherwise it reverts to a pure learning approach.

Performance for the φ-management strategies is experimentally determined using

standard GA on the Concat-V problem. Analysis revealed that the dynamic φ-management

strategies outperformed non-dynamic φ-management strategies, demonstrating that dy-

namic (continuous) utilisation of the FI heuristic can meet AAF targets more successfully.

165
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6.1 Introduction

In Constant FI Parameter Management Strategies, it was demonstrated that changing φ to

a new constant value during evolution impacted the acceptable average fitnesses (AAF).

The effect was dependant on the value of φ and also when it was applied. In this chapter,

the effect of altering φ in a dynamic manner (potentially every generation) in response to

an AAF target will be investigated.

For this investigation, a solution that satisfices the AAF per generation most regularly

will be considered the superior performing algorithm. It is important to understand that

solution that attempt to optimise the average fitnesses over an evolutionary run may in

fact achieve very poor performance by not utilising the contextual information about AAF

provided by the FI heuristic. Solutions for such problems are effectively equivalent to the

finite-time multi-armed bandit problem [15] and are not what the FI heuristic, or the control

parameter φ, were designed to address.

To investigate whether dynamically changing φ to meet an AAF target is better than a

non-dynamic approach, both non-dynamic and dynamic strategies must first be defined.

Section 6.2.1 details the non-dynamic approaches, which effectively employs a constant φ

value throughout the entire evaluation period. While in Section 6.2.2, the implementations

of the dynamic φ-management strategies are described.

The results of performance achieved by the various strategies are detailed in Sec-

tion 6.3 with further discussions of the potential benefits and issues with dynamic φ-

management in Section 6.4. Some brief conclusions of the outcomes are then presented

in Section 6.5.

6.2 Methodology

The aim of this chapter is to determine whether dynamic use of φ outperforms a non-

dynamic use of φ (i.e. as a constant value). As such, a representation of both constant

and dynamic φ-management strategies must be developed (or supplied). These are found

in Section 6.2.1 and Section 6.2.2 respectively.
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Ideally, the strategies should be compared via problem that exhibits various levels of

AAF since one would expect the dynamic strategies to respond by attempting to meet the

new AAF target occurs. In contrast, whether the constant φ strategies meet the new tar-

get would depend on their current average fitness when the change occurred. Figure 6.1

depicts hypothesised evolutionary trajectories of a dynamic approach against constant φ

strategies. If the hypothesised average fitness (pool) evolutionary trajectories are rep-

resentative of their actual behaviour (shown as dotted lines), then the dynamic strategy

(φtracking) should demonstrate the best success rate in meeting the AAF targets (defined

by Faccept1 where gstart ≤ g ≤ gchange, and Faccept2 where gchange ≤ g ≤ gfinish). Note that the

success rate performance metric is a function of the both the fitness function defined in

Section 6.2.3 and of FI, Φ(g) which is detailed in Section 6.2.5.1.

Figure 6.1: Hypothesis of the expected evolutionary trajectories for various φ-management
strategies.
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Unlike previous chapters, a standard GA is employed for simplicity of analysis and to

avoid confounding unrelated issues arising from in situ distributed genetic programming

on motes. The configuration details of the GA are supplied in Section 6.2.4).

As previously mentioned, the performance of the strategies will be measured with a

success rate metric. This is defined in Section 6.2.5.

6.2.1 Constant FI Parameter Management Strategies

The parameter φ can be used each generation to bias the construction of a new population

towards one where the expected average (pool) fitness is :

E[Fpool(φ, g)] = Fpool(0, g) + φ[Felite(0, g) − Fpool(0, g)] (6.1)

Typically1 the value of φ ranges between 0 ≤ φ ≤ 1 producing a corresponding expected

average fitness that lies between the fitnesses of the optimal learning population (i.e.

standard pool fitness) and that of the current elite fitness, i.e.

Fpool(0, g) ≤ E[Fpool(φ, g)] ≤ Felite(0, g) (6.2)

The effect of a changing φ from zero to a constant value was shown in Chapter 5

and importantly it was identified that the benefit of immediate improvement of the average

fitness came at the expense of a reduced learning capability. Nonetheless, employing φ

can increase the average fitness which could meet various AAF targets due to the higher

pool fitness and the continued learning.

The simplest management of φ is to keep it constant throughout the entire evolutionary

run. However, depending on the constant value employed, the evolutionary trajectories of

the average fitnesses will be markedly different. As such, a number of constants will be

employed. The various constants are introduced in order of their naivety to the FI.

1φ can be specified outside of the range of [0,1], however it makes little practical sense
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6.2.1.1 Pure Exploration Strategy

Arguably the most naive strategy to managing φ is to keep it set to zero throughout the

entire evolution. This is effectively equivalent to not using φ at all and so the system

reverts to one of normal evolution with no regard to FI. This approach will ideally employ

an optimal learning population each generation. When employing this strategy, one relies

on the population fitness of the learning metaheuristic to rise to meet the acceptable

average fitness (AAF). There will be scenarios where this approach is acceptable and

even sensible; for example when:

• The AAF is easily obtainable by the majority classes in the population generation.

For example if the expected fitness of even randomly generated programs is higher

than the AAF. (i.e. Faccept ≲ E[Frandom]) then it follows that all members of the popu-

lation are likely to have an expected fitness Faccept or better. However, if acceptable

fitness is so readily achieved, then it is probable that the problem is trivial, or the

solution finder is extremely effective at (or biased to) finding fit solutions.

• The converged pool fitness exceeds the AAF, i.e. lim
g→∞

Fpool(g, φ = 0) > Faccept, and

sufficient time has already passed such that Fpool(g, φ = 0) > Faccept. This is likely

to be less trivial than the previous scenario since it requires learning. However

if a maximal learning approach can achieves the AAF, then it is still likely to be

reasonably trivial or that the difference between the elite and pool fitnesses (i.e.

F∆ep(φ, g)) is small. In the latter case, the FI heuristic will be of little use since it

exploits the difference between the elite and pool fitnesses.

• A final scenario where a pure exploration strategy could be employed is one where

there will never be any importance to perform. As such the AAF is left undefined.

Once could also interpret this as the system’s behaviour is always ’acceptable’ re-

gardless what evaluations occur which effectively equates to the offline learning

scenario.
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6.2.1.2 Pure Exploitation Strategy

Exploitation implicitly requires prior knowledge so that it may be exploited. In this context,

some knowledge of evaluated candidate solution fitnesses is necessary. Unless a priori

knowledge is externally supplied before evolution commences (i.e. solution seeding), then

this strategy must evaluate at least some candidates to work out which solution to exploit.

Despite being a “pure exploitation” strategy, some learning occurs from the evaluation and

ranking of the first (randomly generated) population. This is effectively a random search

(with the initial population size) and then exploiting the best found solution from generation

2 onward.

As with all the constant-φ strategies, the first biasing of the population generation

occurs after the first generation. One would imagine though that it would be better to

exploit a solution forevermore after a solution that meets the AAF has been found. This

however requires using FI context information in a dynamic manner (i.e. checking if it

was met each generation). An approach similar to this is presented in the dynamic φgreedy

strategy in Section 6.2.2.1.

For any non-trivial problem this is likely to have extremely poor performance and so is

omitted from the experiment. The performance can be determined however as the elite

fitness of the random search at generation 1, i.e. Frandom(1) and assuming that value for

the entire evolutionary run.

6.2.1.3 Constant FI Parameter Strategy

Intuitively, a constant φ value within the range 0 < φ < 1 would provide better performance

than the extremes of the pure exploration (φ = 0) and pure exploitation (φ = 1) since it

facilitates continued improvement though online learning and also biases the average

evaluated fitness above the usual pool fitness.

After the evaluation of the first generation, φ = k will attempt to raise the pool fitness

to k% of the way between the estimated pure learning pool fitness and that of the current

elite fitness. However, this improvement will come at the detriment to the learning rate.

The complex interplay of increased pool performance and reduction in learning rate will
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generate unique optimisation trajectories depending on the value of k employed. As such,

a number of values for will be explored, specifically:

k ∈ {0.10,0.20,0.30,0.40,0.50,0.60,0.65,0.70,0.75,0.80,0.90}

6.2.2 Dynamic FI Parameter Management Strategies

The objective of the dynamic φ-management strategies is to use the contextual informa-

tion provided by FI to meet the AAF more frequently. Ideally, these algorithms will monitor

the AAF, and set φ accordingly so that it is met while continuing to learn so that future

increases in AAF are readily met (faster). If a portion of the population have fitnesses that

exceed the AAF then φ necessary to achieve the AAF will be less than 1. Recall that it is

necessary that φ < 1 in order for learning to occur.

If no individuals have a fitness above the AAF (as one might expect initially) then the

best strategy is simply to maximise the learning rate, i.e. φ = 0. However, in this scenario,

when the first individual in the population has a fitness equal to or above the AAF, then

it may require setting φ = 1 to achieve the desired AAF. This would then prevent further

learning and if the AAF was subsequently increased, then it would need to revert back to

pure learning. This strategy is described further in Section 6.2.2.1. Alternatively, φ could

be set less than 1, and while it would not achieve the AAF immediately, in time it hopefully

would with the benefit of continued learning. The interplay of pool fitness improvement

and decreased learning rate complicate the decision of what value of φ (less than 1) is

appropriate. A strategy, φtrack, that attempts to achieve this is detailed in Section 6.2.2.2.

6.2.2.1 Greedy Strategy

Attempting to maximise the success rate of meeting AAF with online learning has similari-

ties with the goal of attempting to maximise payoff in online learning scenarios. The subtle

difference being that AAF is a satisficing metric which can change over time. Neverthe-

less, many algorithms have been developed for such problems, in particular the studied

MAB problem has been studied extensively. Surprisingly, often simple, greedy (short-term

gain focussed) strategies perform quite well, and in some cases, optimally [77]. In this
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context, a greedy approach would use whatever value of φ necessary meet the current

AAF without regard to the longer term aspects such as possible increases in AAF. In

most situations, this myopic approach will result in φ being set to 1 when any individual in

the population has a fitness that meets the current AAF. Hence this will also prevent any

learning, so should the AAF be increased a later time, then this approach will no longer

be able to meet the AAF and should return to the pure learning strategy.

Therefore, this strategy will be defined by:

φgreedy =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if Felite ⩾ AAF

0 otherwise

Summarised, this strategy exploits the best solution whenever its expected fitness can

meet the current AAF, otherwise it will simply revert to pure learning.

6.2.2.2 Dynamic FI Tracking Strategy

The idealised dynamic φ-management strategy would minimally raise φ to meet the cur-

rent AAF target and thereby retaining maximal learning potential given the satisficing con-

straint. However, this does not address the situation where it is required to set φ = 1 in

order to meet the AAF target. i.e. when Felite = Faccept. If this occurs it will prevent the

system from learning, requiring φ = 1 forevermore. To avoid this, and ensure at least some

learning can occur at all times, it is necessary to limit φ such that φ < φmax where φmax < 1.

In order to achieve good exploitation, it is beneficial to set φmax close to 1, however

doing so will likely cripple the learning rate. Furthermore, when the system is transitioning

from a population generated with φ > 0, it means that the fitness of the pool as if φ = 0

needs to be estimated. Stochastic effects, plus errors in estimation, mean that the system

can overshoot the AAF (and lose diversity which negatively impacts on learning) and also

undershoot (which negatively impacts on the success rate).

A detailed explanation of these issues and the mechanisms to address them are found

in Appendix D. The resulting dynamic φ-management strategy, φtrack, attempts to control
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φ to achieve a pool fitness that tracks the AAF. However, to address various practical

issues, the parameters described in Table 6.1 were needed.

φmax Limits φ so that some population diversity is always retained for learning
ζ Bias to ensure Fpool will likely be above Faccept despite stochastic variation
α Dampens rate at which φ increases to avoid oscillation and maintain diversity
β Dampens rate at which φ decreases to avoid oscillation and maintain success

Table 6.1: φ-tracking strategy parameter descriptions

Some exploration of suitable values for these parameters will be necessary to achieve

desirable behaviour.

6.2.3 Problem Selection and Description

“ Problems of interest tend to fall somewhere between the Onesmax problem and the

Needle-in-a-haystack problem. ”

- Adam Prügel-Bennett [105]

We seek a simple, well-studied fitness function that is sufficient to show the benefit of

employing FI. This way, the mechanisms responsible for performance can be studied in

detail without requiring significant investment into understanding intricacies of the prob-

lem. There are a plethora of well studied fitness functions (problems) for benchmarking

in evolutionary computation research. However, perhaps the most quintessential “simple”

problem is the OneMax Problem and is described in Section 6.2.3.1.

Unfortunately the OneMax is best handled with any number of hill-climbing approaches

(incremental learners) and not aided by schemata searching operators like crossover.

Since incremental search works well, the GA population tends to be dominated with mu-

tations of an elite solution. This means that Felite and Fpool are usually fairly similar, leaving

little for φ to exploit (c.f. 4.3 FI Analytic Model).

A variation of the problem, known as the Concatenated-V problem, however, has re-

ported superior performance with GA, and furthermore exhibits a more significant diver-

gence between elite and pool fitnesses which can be exploited. The Concatenated-V

problem, which is ultimately used as the problem to benchmark the various φ-management
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strategies on, is detailed in Section 6.2.3.2. However, since it is a variant of the OneMax

problem, the OneMax problem will first be described.

6.2.3.1 The OneMax Problem

The OneMax [108] problem is defined by a binary string (bit string) of a specified length,ONEMAX

PROBLEM

N , where fitness is simply determined as the sum of digits within the string (i.e. the number

of 1’s in the string). Thus, with the objective to maximise fitness, the optimal solution is

simply a string composed entirely of ones. The fitness landscape of the OneMax objective

function for N = 7 is shown in Figure 6.2.
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Figure 6.2: The OneMax objective function fitness landscape for N = 7

Formally, the OneMax objective function can be defined by attempting to maximise:

Fonemax(X) =
N

∑
i=1

xi (6.3)

where X = {x1, x2, . . . , xN} is a bit-vector composed of xi ∈ {0,1}.

Unfortunately the extremely simple nature of this problem does not demonstrate the

utility of GA well [105] and since incremental search works well, GA tends to revert into
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a hill climber by gaining benefit predominantly from mutation only. This biases the pop-

ulation towards local search behaviour, meaning the population is largely similar and so

mostly similar performing. As such there is typically little difference between the elite and

pool fitnesses, leaving little to be exploited by using FI. Hence, while the OneMax problem

is ideally simple and well studied, it is not suitable for demonstrating the utility of FI.

6.2.3.2 The Concatenated-V Problem

The Concatenated-V problem [105] is a simple variant of the OneMax problem which CONCATENATED-

V PROBLEM

while remains simple to describe, is better suited to be solved by the prototypical imple-

mentation of GA over simple hill-climber solvers, etc. As per the OneMax problem, the

optimal solution remaining as a string composed entirely of ones. For example, when

N = 7, the optimal solution is X = {1,1,1,1,1,1,1} (expressed in decimal as 127) has the

unique optimum fitness of 4, as shown in Figure 6.3.

However, an important difference from the OneMax problem, is that there are a num-

ber of local maxima that many solvers (including hill-climbers) can easily get stuck on.

One such local optima is the bit string of all zeros (expressed in decimal as 0 in Figure

6.3), which in contrast with the OneMax problem was the lowest fitness possible. This lo-

cal optima is extremely difficult for many optimisers to escape from and get “across” to the

all-ones global optimal. The difference in fitness landscape arises from the bit string being

subdivided into a M blocks (substrings) each of a fixed length k such that N = Mk. The

fitness is the summation of the partial fitnesses gained from each of the blocks, which

in turn is described by a V-shaped function (hence its name of Concatenated-V ). This

V-shape function, shown in Figure 6.4 is generated by taking the absolute value of the

number of ones within the block subtracted from k−1
2 where k is odd and k ≥ 3.

Expressed formally, the Concatenated-V objective function is :

FCV (X) =

M−1

∑
i=0

FB(Xi) =

M−1

∑
i=0

RRRRRRRRRRR

k − 1

2
−

k

∑
j=1

xki+j

RRRRRRRRRRR

(6.4)

where X = {X0,X1, ...,XM−1} = {x1, x2, . . . , xN} and xi ∈ {0,1} and N =Mk where M is the
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Figure 6.3: Concatenated-V objective function fitness landscape for M = 1, k = 7 (∴N = 7)

Table 6.2: Distribution of fitness scores
in the Concatenated-V block landscape
for k = 7. p(FB) is the probability of fit-
ness FB(XR) occurring given a random
bit string, XR.

Fitness Occurrences p(FB)

0 35 0.2734375

1 56 0.4375000

2 28 0.2187500

3 8 0.0625000

4 1 0.0078125

number of blocks each of size k bits.

For the specific parameters of M = 100 and k = 7, [105] claim that a hill-climber will

achieve an expected final fitness of 366 ± 5 with a low probability (5 × 10−19) of finding the

optimal all-ones solution (of fitness 400). Furthermore, they show that standard GA with

crossover outperforms the hill-climbing technique meaning that the problem is both hard,

but suited for GA to solve.

Since N =Mk, the number of possible states in the landscape is 2N = 2700 ≈ 5 × 10210.

Within this landscape, there is one optimal solution (all ones) with a fitness of 400 and

hence the probability of randomly selecting the optimal solution is ≈ 5×10−210. Conversely,

there is one minimum fitness solution with a fitness of 0.



6.2 Methodology 177

0

1

2

3

4

F
B
(X

)=

∣ ∣ ∣ ∣ ∣k
−

1

2
−

k ∑ j
=

1

x
k
i
+

j.∣ ∣ ∣ ∣ ∣

Number of ones in the block

V−shaped fitness generator for the Concatenated−V problem

0 1 2 3 4 5 6 7
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in the block. The block fitnesses are combined to generate the Concatenated-V fitness score.

Given the block size of k = 7, there are 5 discrete fitness scores possible occurring with

the distributions shown in Table 6.2 for a randomly generated string. The Central Limit

Theorem (CLT) states that the sum of M independent random variables taken from identi-

cal and independent distributions (i.i.d) will asymptotically approach a Normal distribution

with a mean of µBM and standard deviation of σB
√
M where µB and σB are the mean

and standard deviation of the i.i.d’s. The fitness, FCV of a random bit string, X, composed

of substrings {X0,X1, ...,XM−1} is essentially the sum of random variables pulled from M

samples of FB(X) (hence i.i.d).

Using the probabilities of the block fitnesses, p(FB), from Table 6.2 the expected fit-

ness (mean) is computed as µB = 1.09375 with a standard deviation of σB = 0.896 (to

3 decimal places). Thus, the distribution of FCV fitnesses for random bit strings XR will

approach the Normal distribution of Equation 6.5 as M becomes large (≳ 30).

FCV (XR) =
M−1

∑
i=0

FB(XRi) ≈ N (µBM,σB
√
M) (6.5)
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For completeness we compute the expected fitness for a random string using Equation

6.5 with M = 100 as µCVR = E[FCV (XR)] = µBM = 109.375 with a standard deviation of

σCVR = σB
√
M = 8.965 (to 3 decimal places).

This choice of the Concatenated-V problem is motivated by its simplicity to describe,

that it has been studied by others, that the optimal solution is known and the fitness land-

scape readily calculable. Importantly, the problem is sufficiently challenging such that a

standard genetic algorithm (the solver employed in this investigation) can outperform ran-

dom search and basic hill-climbing strategies. This exploits the genetic variation gained

by the crossover operator which is known to typically be “destructive” to to fitness more

often than not. This creates a larger variation in the fitness of individuals, which in turn

creates a larger difference between the pool and elite fitnesses. This difference makes

the Concatenated-V problem well suited to demonstrate FI and so will be employed for

the comparison of φ-strategies. Prior studies employing this problem [105] used the pa-

rameters of M = 100 and k = 7. This study will also use these parameter settings, resulting

in a problem dimensionality of N = 700.

6.2.4 Solver Selection and Description

The following section explains the choice of employing a basic Genetic Algorithm as an

prototypical population-based learning optimiser whose characteristics can be influenced

by the population generator function.

6.2.4.1 Selection of GA as the Solver

A basic Genetic Algorithm (GA) with elitism is employed as the solver for the experiments

in this chapter. The main justification for this choice, rather than Genetic Programming

(GP) or within the IDGP implementation, is it simplifies analysis by avoiding confounding

unrelated issues generated from other aspects such as environmental effects of being in

situ and the complexities of being distributed and GP on motes (see Section 3.6). Further-

more, prior research on this problem by others [105] employed GA, so an understanding

of how GA performs on the problem already exists in the literature.
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The φ control parameter (through the population generator) employs various operators

to construct a biased population to achieve a desired average fitness for the next gener-

ation. This mechanism is applicable to both GA and GP since they are both population-

based evolutionary algorithms that employ the standard operators of selection, mutation

and crossover2. As such, conclusions drawn about φ-management from the experiments

employing GA will equally apply to GP, thereby remaining relevant to the IDGP framework.

6.2.4.2 GA Settings

Any number of GA settings could be employed to demonstrate the utility of φ providing the

following statements hold true:

1. A population generated with Γ(φ = a), should demonstrate superior learning capa-

bility over a population generated with Γ(φ = b) where a < b.

2. The average fitness of a population generated with Γ(φ = a), i.e. E[Fpool∣Γ(φ =

a)], should demonstrate inferior performance (average fitness) over a population

generated with Γ(φ = b) where a < b.

This implies that the population generator function Γ is a monotonic function (at least

in ideal form). However, it does not imply that Γ(φ = 0) has to be the optimal learning

population configuration in order to use φ (however, that is the ideal case).

Nonetheless, the key to achieving approximate monotonic learning/performance be-

haviour with the γsimple population generator is for the user to provide a good “pure learn-

ing” Γ(φ = 0) population structure. In this context, population structure refers to whether

elitism is employed and how many elites are copied, whether mutation and crossover

are applied and in what combinations and proportion of the population they are applied

to, and whether randomly generated (or immigrated for distributed GA) candidates are

added and in what proportion. Typically for GA, users determine a good (though unlikely

optimal) population structure by using heuristics, trial and error or another optimisation

process.

2Cloning due to Elitism is included as it can be achieved with these standard operators.
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For these experiments, the GA population structure will be kept close to an archetypal

“standard” GA implementation. Elitism is employed keeping the best solution between

generations. A proportion of the top performing individuals are cloned and have mutation

only applied, implemented as random bit-flipping of a percentage of genes specified by a

constant mutation rate. Children are the result of single-point crossover on two parents

selected via fitness proportionate selection and then having mutation. Random programs

will also be generated and included.

6.2.4.2.1 Population Size

One of the first considerations is often population size. Some advocate the use small pop-

ulation sizes, particularly in the face of computational constraints such as those expected

within this thesis, whilst others suggest near optimal sizes can be achieved for specific

problems [40]. Generally, where computational capability exists, it is recommended [27],

[5] that the population size be up to the order of the dimensionality of the problem, i.e.

N,2N,N logN or dynamically as a function of the variance [41] or error [121] of the pop-

ulation fitness.

Within the IoT scenarios that the IDGP framework is directed at however, it is expected

that the population size will be restricted due to the constraints on the computing capability

of each entity. Additionally, the population size for optimal learning is not essential to

demonstrating the characteristics of applying FI, which is the focus of this experiment and

so a population size of 50 was chosen.

6.2.4.2.2 Number of Generations

For the specific parameters of M = 100 and k = 7 on the Concatenated-V problem, [105]

state that a hill-climber will achieve an expected final fitness of 366± 5 with a probability of

finding the optimal all-ones solution (fitness of 400) as 5 × 10−19.

For 100 evolutionary runs employing a basic GA, the final fitness was 369 ± 6 after

5000 generations, with little progress occurring after this (see Figure 6.6). As such, the

evolutionary run was set to 5000 generations.
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Setting Symbol Value
Problem dimensionality N 700
Population size Npop 50
Population Structure Γ(φ = 0) [1 3 43 3]
Mutation rate µ 2.5%
Crossover Single Point
Max generations gfinish 5000

Table 6.3: GA “pure learning” configuration and settings.

6.2.4.2.3 Mutation Rate

For the OneMax problem, [87] state that the optimal mutation rate is proportional to the

size of the representation, N . i.e. 1
N . However the empirical results of various mutation

rates used on the Concat-V-change problem shows that the suggested mutation rate,
1

700 ≈ 0.0014, does not yield optimal learning performance.

The elite trajectories for a variety of mutation rates were tested revealing that mutation

rates around 0.40% - 2% do well for the first period before the landscape changes and

the high mutation rate of 3% and 4% do well for the second period from g = 2501 on. The

selection of an optimal mutation rate or population size is not essential to this study, and

so the generally good performance gained from a mutation rate of 2.5% (shown as the

dotted black line) with a population size of 50 was ultimately employed.

6.2.4.2.4 Population Structure

In 6.2.4, a population is defined as the composition of subpopulations (classes), that were

generated by a combination of genetic operators (i.e. a population generator). Recalling

using γsimple requires a difference between the pool and elite fitnesses to exploit, a variety

of population structures were evaluated over the period of 5000 generations and repeated

100 times for each structure. Figure 6.5 shows the average elite and pool fitnesses af-

ter 5000 generations from the experiments. While conversely, the GA configuration and

parameter settings for the “pure learning” (φ = 0) configuration are shown in Table 6.3.

(φ = 0)

Using these operators, four ’classes’, or classes, are generated with each new popu-

lation created, similar to those discussed in Chapter 4 (specifically Section 3.2.3.1) with
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the notable exception of the ’other ’ deme since all individuals are evolved locally (not a

distributed approach) with no immigration from other populations.

We will use the previously defined notation for population structures defined by classes.

This is evident by comparing Figure 6.5 with Figure 6.7 which shows that the same

learning population structures used on the differing objective functions of Concatenated-

V and Concat-V-changed, yielded significantly different performance. From analysis of

these graphs, the population structure of [1 3 43 3] was determined as achieving reason-

able performance on both problems and so was chosen as the ’optimal’ learning configu-

ration. Figure 6.6 shows the optimisation trajectories for a standard evolutionary learning

approach.
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Figure 6.5: Mean (N = 100) elite and pool fitnesses for a variety of population structures at
g = 5000 for the Concatenated-V problem. The 95% confidence intervals are indicated with the
bars. Note that the elite fitnesses are also shown on the pool fitness plot to highlight how the
pool fitness becomes closer to the elite fitness with the removal of ’randoms’ from the population
structure.
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Figure 6.6: Average (n=100) elite and pool evolutionary trajectories for the standard learning
configuration on the Concatenated-V problem. Note that the AAF threshold of 350 is exceeded,
on average, after 1215 generations (about a quarter of the 5000 generation evolutionary run).

6.2.5 Evaluation

6.2.5.1 Fitness Importance Function for this Experiment

Traditionally, a description of the fitness function from which the fitness landscape can be

derived, would suffice for describing a particular problem. However, this thesis postulates

the decoupling of achievable fitness from the contextual information of how important

achieving a particular level of fitness is. When FI is considered, the problem changes from

one which focusses on achieving the best possible fitness within the constraints (such as

convergence time or optimality of solution), to one that attempts to achieve an acceptable

average fitness within the current context. Therefore, within this framework, to completely

describe a “problem” requires both the fitness function, F (t), and its representation by the

solver, as well as the acceptable average fitness (AAF) to be known.

For a given fitness function, the fitness landscape will be a result of the problem repre-

sentation employed by the solver. Therefore the choice of solution finder can significantly

effect how easy (or difficult) it will be to find a solution.

The problem type of interest to this research is one where learning is desired whilst
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Figure 6.7: Mean (N = 100) elite and pool fitnesses for a variety of population structures at
g = 5000 for the Concat-V-Change objective function landscape. The 95% confidence intervals
are indicated with the bars. Note that the elite fitnesses are also shown on the pool fitness plot.
Unlike in Figure 6.5 however, the exclusion of ’randoms’ from the population structure has a
significant deleterious effect on the best solution obtained during the run.

simultaneously demonstrating an acceptable average fitness. This problem type has pre-

viously been enumerated as Learning Problem Type 5 and characteristics of this problem

type are discussed in Section 4.3.3. The φ-management strategies to be evaluated in this

chapter will be studied within the context of this "learning while performing" problem class.

The prototypical GA performance on the fitness landscape described in Section 6.2.3

and shown in Figure 6.6.

For simplicity, the change in acceptable fitness is limited to the minimal case of one

permanent change of the acceptable fitness occurring half way through the evaluation

period after the initial non-zero setting of acceptable fitness (i.e. the acceptable fitness

will be zero until the importance of performing is realised, after which at some point it is
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then changed to another value).

Similar to the dynamic fitness landscape, the simplest variation from a constant AAF

is one that changes from one constant AAF to another constant AAF. Again, even though

the change is minimal, it still becomes dynamic in nature since the value changes during

the evolution of the system.

The timing and the new acceptable value of the change will likely effect the success

rate that can be achieved. For simplicity, the single change will occur half way through the

evaluation period at gchange = 501, and the increased value will be an absolute fitness value

as per the constant acceptability scenario. Once again, this value must be well considered

otherwise the value may be achieved trivially or conversely impossible to achieve. Ideally

the value should be readily discoverable by the elite and not readily achievable by the

(standard learner, φ = 0) pool fitness. Since the value is absolute and the actual elite and

pool fitnesses at generation 501 cannot be known a priori, the expected values of the elite

and pool at generation 501 are used instead to determine the new absolute acceptable

average fitness. The mean elite and pool fitnesses at generation 501 (c.f. Figure 6.6) are

369 and 350 respectively, resulting in a mean exploitation potential of E[∆ep(501)] ≈ 19.

Some consideration of the dynamic fitness landscape is also necessary as the value

should be achievable within the changed landscape also otherwise little insight will be

gained.

With these considerations in mind, the first AAF, Faccept1, is set to be 343 for the period

gstart ≤ g ≤ gchange. The second AAF, Faccept2, is set to 365 for the interval gchange ≤ g ≤ gfinish.

6.2.5.2 Performance Metric and Evaluation Period

The success rate performance metric, Psuccess(g), corresponds to the rate at which the

average fitness over each generation meets the AAF.

In an attempt to construct a fair comparison approaches, we will employ only one

method for solution finding, namely genetic evolution, and allow all approaches to evolve

for the same number of generations before the importance of fitness is increased from 0.

This will occur at generation, gstart, at which the importance will be lifted such that success
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requires a pool fitness that lies between the Fpool(gstart) and Felite(gstart). Furthermore,

gstart will be set prior to convergence (i.e. Felite nearing Foptimal, if known) such that online

learning can provide benefit.

Using the four application scenarios, two FI strategies are compared with the con-

ventional strategies of offline evolution and online evolution. (i.e. 0 ≤ φ ≤ 1) one with

a constant FI, φ = 0.5, and the other with a dynamic FI such that φtracking ≥ φdesired at

each generation. ( Learning Strategy (φ = 0,∀g), an Offline Learning Strategy (φ = 0 until

Felite(g) ≥ Faccept and then φ = 1 from then on) to that the FI strategies (0 ≤ φ ≤ 1) of φ = 0.5

and φtracking (where φ = φdesired at each generation).

In this experiment, Faccept(g) starts at 0 (i.e. Φ = 0) at generation 1, and remains zero

up to and including generation gaccept1 − 1 which is the 749th generation. At generation

gaccept1 (150th), Faccept(g) steps up to Faccept1 and remains constant until the end of the

experiment (in the constant performance scenario) or is set to a higher constant of Faccept2

at generation gaccept2 (500th). The value of Faccept1 is selected randomly from the uniform

distribution across the range Fpool(149) ⩽ Faccept1 ⩽ Felite(149). All strategies are compared

using the same Faccept1 and share the same evolutionary trajectory up to generation 149.

Note that the optimal learning strategy is employed for g < Faccept1 since there is no penalty

for not performing.

After generation gaccept1 the evolutionary trajectories will diverge due to the different

metaheuristic strategies being evaluated. The population structure is set using the “sim-

ple” subpopulation distribution generator function Γsimple(Φstrategy) where Φstrategy is 0, 0.5,

1 or tracking. Some divergence will occur due to the stochastic nature of the mutation and

crossover operators of evolution.

Generating a reasonable value for the second value of Faccept is less straightforward

however, since the evolutionary optimisation trajectories may have significantly diverged

by gaccept2 . Further complicating matters is that the fitness landscape may change at

the same generation (gchange = gaccept2) for the changing landscape scenario. We will

assume that while the fitness landscape has changed, the meaning (or units) of fitness

has not. For example, if the fitness score was say profit in dollars, then even though

the challenge (fitness landscape) may change, an amount before or after the change will
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have the same utility. Within this in mind, then it can make sense to desire a higher

acceptable average fitness relative to Faccept1. However how much higher is achievable

is dependant on the fitness landscape. A conservative approach would be to choose

Faccept1 ⩽ Faccept2 ⩽ Felite(749), which in an unchanging fitness landscape, would guarantee

the acceptable performance level was higher but achievable. However, this scenario is

of trivial interest since Psuccess_rate = 1 could be achieved without any additional learning

after gaccept1. A less-conservative, and more interesting scenario, would be to raise the

acceptable fitness by some factor regardless of knowing whether the target is achievable

or not at that point in the future, i.e. Faccept2 = aFaccept1 where a > 1, but hoping that

learning will enable Faccept2 to be achieved. This would be akin to an investor demanding

a 10% improvement on daily profit next year compared to the current year’s daily profit,

and if that isn’t achieved then deeming it not to be a success. One can see how this

approach could easily generate a Faccept > Felite(749), which while extremely unlikely to be

achievable at generation 750, may be achievable later due to learning or changed fitness

landscape. This challenge is also a more compelling illustration of the potential usefulness

of the FI heuristic, since it may require learning to occur in order to achieve success

when the second acceptable fitness threshold is set. For this reason we will employ the

scaling factor approach, setting a = 1.1 thereby requiring a modest 10% performance

improvement from that set at generation 750.

6.2.5.3 Evaluation Period

Practically, we need to set a start time, even if the timing is somewhat arbitrary.

Even in the offline scenario, one can still observe the time-dependent change of im-

portance of performance from very low (pre-deployment) to very high (post-deployment).

This temporal variation of the importance of performance is necessary for the Fitness

Importance heuristic to be useful.

For all problems we can make the very general claims that:

• a problem comes into existence or is identified before a solution can be applied

• it will take some finite amount of time to devise or identify a solution that can be
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applied

• a devised solution could be applied immediately or further time could be spent de-

vising a "better" solution

In this analysis, the problem is assumed to present itself at time t = 0 and for con-

venience time will be quantised into discrete periods (generations) corresponding to the

time taken to evaluate all individuals within a generation. i.e. we will use g = 1,2,3... as

our time basis. Additionally, let gi correspond to the point in time immediately after the

completion of the evaluation of the ith generation and before the i + 1th generation, with

the special case of g0 which occurs before the first generation g = 1 but obviously does

not follow any generation. Hence the period over which the nth generation is evaluated is

g = n which occurs between the specific times of gn−1 and gn.

As discussed in Section 4.3.3, there will be a class of problems where it makes most

sense to generate solutions by interacting with the world directly (i.e. in situ) and not via

a simulation of the world (i.e. in silico). Therefore, regardless of whether a solution is

devised offline or online, the real-world will be used for feedback during the generation of

the solution. Providing the same solution generating mechanism is used, then the time to

generate an acceptable solution should be the same for either approach. We will continue

to employ evolutionary algorithms (though not evolutionary programming) as the solution

generating mechanism. For the toy problems used in this analysis we can think of in situ

evolution being equivalent to requiring each evaluation taking a finite period of time and,

most importantly, evaluating a solution affects the success rate of the system when FI is

greater than zero.

Let us suppose that a problem presents itself at some specific time, g0. Let us addi-

tionally assume that we are keen to deploy a solution when it becomes available. More

specifically, that we have the flexibility to wait for an acceptable solution to be evolved but

not so much as to be able to wait for convergence to an optimal solution. Let gstart be this

point in time after an acceptable solution has become available. Similarly, let gfinish be

the point in time when solving the problem is no longer of interest or the importance of

performance is once again zero (i.e. Φ(g) = 0 where g ⩾ gfinish).
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Thus, for the given problem, we have a fixed period of utility from tstart and tfinish

defined by when Φ > 0. The importance of fitness during the period of utility will be lifted

such that success over the time epoch of one generation requires the pool fitness to be

between Fpool(gstart) and Felite(gstart). This means that success is known to be achievable,

as it will less than the known current elite, but also not so trivial that any population can

achieve success. The lower limit of Fpool(gstart) is a logical bound since in theory this will

be the observed performance of the optimal learning population and so without any loss

of learning potential, this level of performance can be achieved. Setting an acceptable

performance target lower than this will tend to be trivial to achieve providing the fitness

landscape remains constant.

For experiments where the FI function changes during the period of utility, the change

will be limited to only one occurrence. Where the fitness landscape also changes, we will

coincide the change of fitness importance to the same generation that the change in the

fitness landscape occurred.

6.3 Results

Table 6.4 shows the success rate for the various φ-management strategies calculated

over the period before and after gchange (i.e. generation 500), as well as the performance

over the whole period. Note the performance is not calculated on the first 150 generations

where φ = 0 since the success rate during that period is trivially 100%. Results from the

random search algorithm illustrate that the success objective is nontrivial. Shaded cells

correspond to which strategies exhibited the best result for a particular metric. Note there

are multiple shaded Felite scores since they are note statistically significantly different

from the best result of 371.3 ± 0.9 (based on a 95% confidence interval). The following

subsections detail the results of the four φ-management strategies.
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φ-Strategy Psuccess(150,500) Psuccess(501,1000) Psuccess(150,1000) FElite(1000)

random search 0.000 0.000 0.000 ± 0.000 342.4
pure learning 0.564 0.003 0.234 ± 0.017 371.2
const-φ=0.10 0.687 0.021 0.296 ± 0.020 371.3
const-φ=0.20 0.719 0.044 0.322 ± 0.025 371.2
const-φ=0.30 0.738 0.077 0.350 ± 0.031 371.1
const-φ=0.40 0.764 0.110 0.380 ± 0.035 370.6
const-φ=0.50 0.766 0.164 0.412 ± 0.042 370.3
const-φ=0.60 0.823 0.214 0.465 ± 0.045 369.6
const-φ=0.65 0.813 0.246 0.480 ± 0.048 369.0
const-φ=0.70 0.818 0.240 0.478 ± 0.048 368.2
const-φ=0.75 0.819 0.234 0.476 ± 0.048 367.6
const-φ=0.80 0.835 0.216 0.471 ± 0.047 366.6
const-φ=0.90 0.791 0.099 0.384 ± 0.038 361.6
const-φ=1.00 0.000 0.000 0.000 ± 0.000 108.36

greedy 0.978 0.533 0.716 ± 0.030 364.9
tracking 0.934 0.727 0.812 ± 0.038 369.6

Table 6.4: Mean (N=100) success rates for the φ-management strategies. Shaded cells are
within the 95% confidence interval of the best result for that measurement. The confidence interval
is shown for the whole period performance. The average final elite fitness is also shown.

6.3.1 Pure Learning (Exploration) Strategy

Whether or not the pool fitness ultimately exceeds the desired AAF will strongly influence

the success rate. Realistically, if lim
g→∞

Fpool(g, φ = 0) > Faccept(g), then there is a reasonable

chance that the problem is somewhat trivial since a maximally learning population can

achieve the acceptable performance. Such a situation is reflected by the first level of

AAF since all φ-management strategies during the period 150 ⩽ g ⩽ gchange. As expected,

the pure learning strategy performs the worst of all strategies since knowledge of desired

fitness was not exploited to improve the success rate.

A much more likely scenario is where lim
g→∞

Fpool(g, φ = 0) << Faccept, which would result

in the acceptable fitness never being achieved and a success rate of zero. The second

AAF level is somewhat demonstrative of this, yielding a dismal Psuccess(501,1000) = 0.003.

While the pure learning strategy performs poorly against the success rate metric it
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does yield an equal highest3 exploitation potential, indicating, as expected, that this strat-

egy provides the best exploration.

6.3.2 Constant FI Parameter Strategy

The main advantage of a constant-φ strategy is that it provides improved average fitness

while retaining the ability to adapt and improve through learning. In an ideal scenario

where only the rate of learning was impeded by exploitation, the average fitness would

ultimately converge to:

Fpool(g, φ = x) = Fpool(g, φ = 0) + xF∆ep(g, φ = 0) (6.6)

when 0 < x < 1 and g is large.

From Table 6.5 we see that Fpool(1000, φ = 0) = 352.3 and we calculate F∆ep(g, φ =

0) = 18.9. By substituting these values into Equation 6.6 we can calculate the achieved

φactual(φ = 0,1000) for the various strategies. If Equation 6.6 was true, it would mean

that changing φ had no impact on the learning rate and therefore F∆ep(g, φ = 0) could be

proportionately exploited by φ. As such, then one would expect φactual(1000) = φ. However,

we can see from Table 6.5 that this is not case for higher values of φ which is likely due to

the reduction learning rate (manifested by a lower FElite) caused by the loss of population

diversity.

This should in theory improve the chance of meeting the AAF, however with no appre-

ciation of Φ, knowledge of what the AAF is over time is not exploited. As such there will be

instances where the AAF could have been met but was not because φ was too low, and

conversely situations where the AAF was easily met and therefore there was lost learning

potential.

This could in turn keep the pool fitness lower than the AAF and generate an accumu-

lating regret (lost performance compounded with time.

3within the 95% confidence interval of the highest average
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6.3.3 Greedy Strategy

The greedy strategy performed well against the first AAF since in most runs Felite(150, φ =

0) > Faccept(150) and so the success metric could be met for the complete duration up to

gchange. However, this approach fails to exploit the learning potential during periods where

the AAF is being met, in this case during the period 150 ⩽ g < gchange. This results in less

exploitation potential at generation gchange (344.740 as compared with 351.636 generated

by the tracking strategy). This means that learning must occur until the new threshold is

reached, which impacts the success rate during the start of the second period. As such

Psuccess(501,1000) for the greedy strategy is much less than that of the tracking strategy.

(c.f. Table 6.4).

φ-Strategy FElite(500) Fpool(500) FElite(1000) Fpool(1000) φactual(φ = 0,1000)

random search 342.370 109.703 342.370 109.696 -12.84
const-φ=0.00 369.080 350.581 371.240 352.346 0.00 (+0.00)
const-φ=0.10 368.870 353.346 371.260 355.741 0.18 (+0.08)
const-φ=0.20 368.160 354.642 371.190 357.271 0.26 (+0.06)
const-φ=0.30 367.440 355.369 371.060 359.246 0.37 (+0.07)
const-φ=0.40 366.110 355.739 370.620 360.079 0.41 (+0.01)
const-φ=0.50 364.670 356.202 370.310 361.573 0.49 (-0.01)
const-φ=0.60 363.370 357.363 369.570 363.380 0.59 (-0.01)
const-φ=0.65 362.380 357.370 368.960 363.552 0.60 (-0.05)
const-φ=0.70 360.490 356.271 368.180 363.812 0.61 (-0.09)
const-φ=0.75 359.960 356.485 367.620 364.127 0.63 (-0.12)
const-φ=0.80 358.530 356.028 366.560 363.931 0.62 (-0.18)
const-φ=0.90 353.690 352.787 361.590 360.617 0.44 (-0.46)

greedy 344.740 344.740 364.860 363.340 0.58
tracking 365.090 351.636 369.610 365.057 0.67

Table 6.5: Elite and pool fitnesses (N=100) for the φ-management strategies after each AAF
target period. The final column shows the average “actual φ” observed for each strategy based on
the pool fitness achieved of the pure learning strategy at generation 1000 with the variation from
the ideal behaviour (shown in parenthesis) where applicable.

6.3.4 FI Tracking Strategy

The φtracking strategy demonstrates the best performance for the second AAF threshold

and best overall average success rate. It also demonstrates on average a higher final elite
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fitness (and higher exploitation potential) suggesting this strategy is more likely to meet

increased AAF in the future. The enhanced exploitation potential available to this strategy

was in fact exploited at gchange which ultimately produced the improvement that resulted in

this strategy achieving superior performance.

6.4 Discussion

The purpose of this chapter was to determine whether dynamically managing the perfor-

mance to minimally meet the AAF (and hence maximise learning rate) would provide a

better success at meeting a rise in AAF a later time. Intuitively, it felt that the φ-tracking

strategy would outperform all other approaches, including the other dynamic strategy of

φ-greedy, since it was “designed” to minimally meet the AAF and so should therefore

maximise learning and improve the potential to meet subsequent increases in AAF.

Interestingly however, φ-greedy performed reasonably well, even outperforming the

φ-tracking strategy during the first AAF period. This makes φ-greedy a compelling choice

since it is parameterless and simple to implement.

Essentially 3 strategies for manipulating φ were compared: a constant φ value (includ-

ing 0), a greedy approach to meeting AAF (greedy strategy) and a dynamic balancing

strategy (φ-tracking). The experiment was somewhat contrived in that the AAF selected,

in particular the second level from g > gchange was selected in the knowledge that a pure

learning configuration would perform poorly. Surprisingly the simple and somewhat naive

’greedy’ strategy performed quite well. Given this approach requires no parameters and

is easily implemented, such a strategy may be well suited in various scenarios.

This however does not discount the need for enhanced balancing of exploration and

exploitation, particularly when it is possible to have prolonged periods where the AAF can

be satisfied.

The exploitation potential, ∆ep, which arises from the difference in fitnesses between

the elite and population average (pool fitness), was identified as a key aspect in the control

of exploration-exploitation. Other aspects such as the rate of change of the elite and pool

fitnesses can also be used to effect the acceptable average fitness, however their impact
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is typically far less than that of exploiting ∆ep.

The value of ∆ep and whether it can be exploited to achieve acceptable performance

depends on the:

1. Problem type

2. Problem representation

3. Definition of acceptable fitness

4. Evolutionary trajectory

The tracking strategy performance depends critically on the parameters chosen. These

will be problem dependant and it would be unlikely that the optimal values could be known

a priori. Since FI reduces the population size used for exploration, this creates an increase

in selection pressure since the number offspring permissible is reduced. Clearly asking

the impossible of Faccept > Foptimal would guarantee acceptable performance is never ob-

tained and so this study restricts the range of acceptable fitness to 0 ≤ Faccept ≤ Foptimal.

However, in many real world scenarios Foptimal will not be known or even attainable, and

so arbitrarily assigning Faccept could unknowingly be above what is actually possible to

achieve. This is a significant drawback of using absolute fitness values for an acceptabil-

ity constraint and highlights the attractiveness of the relative acceptability constraint that

can be specified with the Fitness Importance hueristic.

6.5 Conclusion

FI is a useful metaheuristic only when there is a significant difference between the best

achievable solution (elite fitness) and that of the average solution (pool fitness). In many

real world applications, desired acceptable performance will rarely be specified in terms

relative to the ongoing system performance. i.e. Asking the system to perform at 50% of

its capability, regardless of what the current capability is. More likely, desired performance

will be specified in absolute fitness terms or in relative terms to a performance capabil-

ity of a specific point in time (i.e. Asking to perform at 70% of the Elite performance as
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measured at generation 100). For these scenarios, a FI tracking mechanism will be desir-

able since it has the potential to minimally meet the desired performance when possible,

and maximise learning capacity into the future. This has been demonstrated with the

dynamic φ-management strategies φtrack and φgreedy which were shown to outperform the

non-dynamic φ-management strategies. The greedy approach, with its simple implemen-

tation of exploiting 100% when achieving acceptable performance is possible, performed

as well as with the more complex algorithm which attempted to balance FI in a continuous

manner. Regardless of which strategy is employed, it is likely that dynamic φ-management

will be necessary to utilise the Fitness Importance heuristic in real world applications and

further research into such strategies across various scenarios is recommended.
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7
Conclusion

7.1 Summary and Conclusions

This thesis provided a mechanism for achieving online genetic programming (GP) on

highly resourced-constrained, wirelessly networked devices in order to achieve accept-

able behaviour. A survey of related research (Chapter 2) revealed that previous research

had each only addressed various subsets of this challenge, however it also highlighted

the promising benefits of each of the aspects.

Specifically, it highlighted that learning in the target environment (i.e. in situ) could al-

leviate the need for simulating the real world and avoid the ‘transference” problem where

logic evolved with simulation breaks when it is deployed in the real world. It also sug-

gested the rich representation offered by GP could potentially automatically generate any

logic the devices are capable of since programs are the native logic representation on
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such devices. Furthermore, it was identified that GP implementations could effectively

implement numerous other learning mechanisms such as recurrent neural networks and

rule-based logic.

Approaches that employed distributed evolution demonstrated benefits of higher di-

versity throughout evolution, typically evolving faster and to better final solutions (e.g. the

runs shown in Figure 3.11). Furthermore, as per [79], even though the population locally

on an individual node is small (due to device resource/memory constraints), employing

the Island Model demonstrated evolutionary trajectories on the individual consistent with

much larger population sizes. As such, for networked devices, the limitation on local

population sizes need not necessarily significantly hinder the learning rate.

These aspects were considered within the scope (Section 3.1) of the most resource

constrained class of embedded systems known as Wireless Sensor Network (WSN) “motes”.

Requiring a solution that worked on such highly constrained devices was justified by the

argument that if it could be achieved on such a constrained class of device, then it would

also be applicable to embedded systems with greater resources.

Chapter 3 presented In situ Distributed Genetic Programming (IDGP) as a framework

for achieving distributed evolution using GP on highly resource-constrained devices. The

design (Section 3.2) of the framework provided various considerations for embedded sys-

tems engineers to develop their own distributed GP implementations on networks of em-

bedded devices. The framework was then implemented (Section 3.3) for the Fleck3b

mote - a prototypical highly resource-constrained WSN device.

The mote implementation was evaluated using local time-varying sensing-actuation

problem (Section 3.4) and employs distributed evolution for faster learning. A second

experiment scenario (Section 3.5) demonstrated multiple devices coordinating by evolv-

ing simple communications in order to meet a global objective. The surprise that de-

vices in the initial communications experiment evolved a “denial-of-service” attack to pre-

vent negative fitness feedback served as a cautionary tale of how important the correct

specification of the objective function is and that GP can generate novel solutions, often

unimagined by the user.
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However, while in situ distributed evolution on resource-constrained devices was suc-

cessfully demonstrated, it was evident that the population-based nature of GP resulted in

undesirable behaviour most of the time while evolution was occurring. Ideally the opposite

of this, i.e. desirable behaviour most of the time, would be much preferred. This motivated

defining an acceptable average fitness (AAF) (Section 4.3.1) as a measure of acceptable

performance for population-based learners. However, since AAF is a target expressed

in absolute fitness terms, it may or may not be achievable with the current population,

specifically if the AAF target is higher than the elite fitness. Therefore, an additional,

representation, φ, was devised to express the AAF relative to the current population char-

acteristics as a percentage value between the pool fitness and the elite fitness. This is

a more pragmatic approach since 100% corresponds to the best (elite solution) fitness

available within the current population, while 0% is the average (default) fitness of the

population.

Fitness Importance (FI) or Φ(g) (Chapter 4) was then presented as a heuristic to con-

vey the AAF (or desired φ) as a function of time or, more specifically in this thesis, as a

function of the generation epoch. FI provides contextual information about the importance

of demonstrating a level of desired average fitness which is additional to the standard

fitness information supplied by a fitness function. FI can be viewed as a satisficing con-

straint on the average fitness. However, unlike typical use of a satisficing constraint, which

would simply focus on meeting the target AAF, FI is used by a population generator meta-

heuristic (Section 4.4) to attempt to minimally meet the AAF target in order to maximise

the learning capacity for continued evolution (given the constraints resulting from meeting

the AAF target). This provides the potential benefit of immediately meeting a subsequent

increase in AAF and thereby avoiding the period where the new AAF target is not being

met while the necessary learning occurs.

FI was integrated into IDGP framework (Section 4.5) by employing a simple implemen-

tation of a population generator that biases the average evaluated performance within a

generation by evaluating the elite solution enough times so that the desired average fit-

ness is achieved. Furthermore, it redistributes the remaining evaluations as a reduced
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learning population. Importantly, the reduced learning population retains a scaled rep-

resentation of the diversity of “classes” within the population where population classes

are defined by the combination of selection and genetic operators used to generate new

solutions. Namely, the classes employed were elites, mutations of highly ranked solu-

tions, children (crossover and mutation with fitness proportion-biased parent selection),

randoms and “others” (injected programs shared from other devices via the Island Model

or potentially human-devised logic).

In Chapter 5, numerous experiments were performed to observe the response of ap-

plying a constant values of φ at various times during evolution, and gain an intuition of

how learning and performance were affected during evolution. It became evident that

the benefit of immediate improvement in the average fitness came at the expense of the

learning capacity of the system. It was hypothesised that for scenarios where there were

increases in the AAF target over time, that dynamically adjusting φ to minimally meet the

AAF target would be superior to simply applying a constant-φ approach for a balanced

learning-performing approach.

In Chapter 6, an experiment was devised to empirically determine whether such a sce-

nario exists. A simple, yet complex enough objective function such that GA outperforms

standard hill climbing techniques, was employed to benchmark both constant-φ and dy-

namic φ-management strategies. Two discrete AAF levels were designed as targets (the

second higher than the first) over a finite number of generations with the performance

metric as the rate at which the AAF was successfully met over the evolutionary run. It was

found that the dynamic φ-management strategies, which exploited the additional context

of AAF provided by the FI heuristic, did outperform the constant-φ strategies for the de-

vised problem.

It was hypothesised that minimally meeting the AAF would perform better than a simple

“greedy” approach of employing the elite to meet the AAF when possible and switching

to a pure learning strategy when it was not possible. Surprisingly, the “tracking” approach

was not shown to outperform the “greedy” approach with any statistical significance for

the devised problem, however this does not discount the possibility that in other problems

it could.
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In conclusion, this thesis has provided a framework to achieve in situ learning us-

ing distributed genetic programming on highly resourced-constrained, networked devices.

Furthermore, it provided heuristic to describe, and metaheuristic to achieve, acceptable

online performance with population-based learners. The additional investigations of the

use of the Fitness Importance heuristic demonstrated the challenges and benefits of bal-

ancing learning and performance with population-based approaches. The combination

of In situ Distributed Genetic Programming with Fitness Importance provides a novel ap-

proach towards simultaneously achieving life-long learning and acceptable average per-

formance on resource-constrained embedded systems. As such, this could be used by

a variety of networked embedded systems, including robotic swarms, WSN motes and

IoT devices, to cooperatively evolve their logic in order to meet dynamic performance

requirements in real world environments.

7.2 Future Research

Deliberately this thesis employed the near-simplest scenarios to investigate various as-

pects of the framework and heuristics. Applying IDGP and FI to “real” problems that are

more likely to be on the "near-most complex" side of the problem spectrum is however an

obvious next step for this research. In such situations it will probably be pragmatic to seed

the evolution with human devised solutions to gain immediate performance by leveraging

the domain knowledge of the user. However, seeding populations is also likely to reduce

the novelty of solutions found and so striking the right balance of injecting domain knowl-

edge with allowing the system to devise its own novel approaches would be a worthwhile

investigation. Furthermore, many “real” problems are likely to have dynamic fitness land-

scapes, caused by dynamic and unpredictable changes in the environment. In this thesis

however, FI was only investigated in context to a dynamic AAF target and not with respect

to a dynamic fitness function. Considering this produces 4 distinct problem scenarios, of

which only 1 has been explicitly investigated:

1. Constant fitness function with a constant AAF (implicitly studied in this thesis)
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2. Constant fitness function with a dynamic AAF (studied in this thesis)

3. Dynamic fitness function with a constant AAF

4. Dynamic fitness function with a dynamic AAF

How the existing φ-management strategies perform under these other conditions will be

interesting to observe.

There is substantial opportunity for developing significantly more sophisticated φ-management

strategies. The effectiveness of φ-management strategies is greatly affected by the char-

acteristics of the populations generated by the population generator, γ. This thesis pro-

vided a basic implemented of γ that ensures the pool fitness is raised to the required level,

however it must, by its design, overshoot the target performance and this decreases the

learning capability more than neccessary. Ideally, a population generator should generate

a population that exactly and minimally meets the AAF target with a complete population

that maximises the learning capacity (unlike γsimple which effectively reduces the learning

population size). Finding such a population is N-P hard however and so as the population

size increases, search metaheuristics will need to be employed. Additionally, one should

try to preserve the “anytime-algorithm” nature of supplying a biased population.

Another obvious research direction is investigating the applicability of IDGP and/or FI

to global (network-wide) objective functions. In this research, only a two-device problem

was investigated for cooperative evolution. How FI and IDGP scale as N increases for

global objective function is unknown. Preliminary consideration suggests it would require

much higher φ per device to allow coordination of cooperation since uncoordinated eval-

uations from a network of populations with high diversity will result in good solutions from

some devices being evaluated (globally) with bad solutions from other nodes. There are

also likely to be a number of options for coordinating and/or changing how populations

are represented that could be better suited to global network objective functions.

In retrospect, it was realised that a number of the related work approaches could be im-

plemented with, or benefit from employing, FI and its accompanying population generator.

As an example, online approaches that use incremental learning, say applying mutation

only and sharing elites, are effectively equivalent to employing a φ that is close to 1. For
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example, with a population size of 100 candidate solutions, φ = 0.99 would evaluate the

current elite 99 times plus one other candidate solution generated by applying mutation

only to a highly ranked individual (assuming γsimple as the population generator). As such,

many strategies could be implemented by simply employing the appropriate population

generator and population classes (defined with the combinations of genetic and selection

operators). Demonstrating that the equivalent functionality of existing frameworks could

be implemented as a specific instance of IDGP and FI would these frameworks to be ex-

tended with an additional EE control mechanism. How such frameworks would behave as

FI is varied would be intriguing and potentially reinvigorate research on a number of the

frameworks.

This thesis provides rich grounds for many avenues of research and, as autonomous

systems such as robots, Internet of Things, and even logic on smart phones increase in

their ubiquity, the opportunity grows for distributed evolution of logic via frameworks such

as In situ Distributed Genetic Programming.
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A
Mathematical Nomenclature
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Symbol Description
pi Unique population i where 1 ≤ i ≤ NP

NP Number of unique populations
P Set of all possible unique populations p1, p2, ..., pNP
g Generation number where g ≥ 1
G(pi) The set of genetic operations which transforms the current pop-

ulation into the next generation population. G(pi) ↦ p′i(2), ...
G(p′i(g))↦ p′i(g + 1)

p′i(g) Optimisation trajectory (as successive populations) given the initial
population pi assuming G is deterministic and the environment is
not dynamic. Note pi = p′i(1)

N Problem dimension
Npop(pi) Number of programs in population pi
NE(pi) Number of elite programs in pi
NH(pi) Number of “high-ranked” (mutated elite) programs in pi
NC(pi) Number of “children” (biased selection + mutation + crossover) in

pi
NR(pi) Number of “random” programs in pi
NO(pi) Number of “other” (externally sourced) programs in pi
NQ Number of subpopulation types
Φ(t) Fitness Importance function. Typically where 0 < Φ(t) < 1
φaccept acceptable instantaneous Fitness Importance 0 < φaccept < 1
φachieved Achieved instantaneous performance improvement ratio. Note

φachieved may be < 0 or > 1
Fpool(φ, k, g) Pool Fitness at generation g, given φ was applied at generation k
F∆ep(φ, g) Fitness Exploitation Potential defined by Felite(φ, g) − Fpool(φ, g)
Lpool(g) Pool improvement rate defined by Lpool(φ, g) = d

dgFpool(φ, g)

Lelite(g) Elite improvement rate defined by Lelite(φ, g) = d
dgFelite(φ, g)

Q Set of subpopulation types {E,H,C,R,O,...}
Γ Set of all unique population structures of size NP

Υ(φaccept, pi) Set of subpopulation types that provide an acceptable perfor-
mance given a particular population

Table A.1: Symbols



B
Derivation of the Reduction of Learning

Rate due to φ > 0

When the Fitness Importance (FI) heuristic is applied at generation k, the new population

pool∗ is composed of φ elite programs and 1 − φ pool programs. This effectively reduces

the population size available for learning which in turn reduces the learning rate.

Let us define the new post-FI elite and pool fitnesses in terms of the pre-FI elite and

pool fitnesses and their respective post-FI reduced learning rates.

Felite(φd, g) = Felite(0, k) + λelite∫
g

k
Lelite(0, g)

Fpool(φd, g) = Fpool(0, k) + λpool ∫
g

k
Lpool(0, g)
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Thus the new population structure, post-FI, will have a fitness of

Fpool∗(φd, g) = φFelite(φd, g) + (1 − φ)Fpool(φd, g)

= φ[Felite(0, k) + λelite∫
g

k
Lelite(0, g)] + (1 − φ)[Fpool(0, k) + λpool ∫

g

k
Lpool(0, g)]

= φFelite(0, k) + φλelite∫
g

k
Lelite(0, g) + (1 − φ)Fpool(0, k) + (1 − φ)λpool ∫

g

k
Lpool(0, g)

Fpool∗(φd, g) − φFelite(0, k) − (1 − φ)Fpool(0, k) = φλelite∫
g

k
Lelite(0, g) + (1 − φ)λpool ∫

g

k
Lpool(0, g)

if the elite and pool learning rates are effected by the same proportion such that λelite =

λpool = λ, then

Fpool∗(φd, g) − φFelite(0, k) − (1 − φ)Fpool(0, k) = λ[φ∫
g

k
Lelite(0, g) + (1 − φ)∫

g

k
Lpool(0, g)]

Fpool∗(φd, g) − [φFelite(0, k) + (1 − φ)Fpool(0, k)]

φ∫
g

k
Lelite(0, g) + (1 − φ)∫

g

k
Lpool(0, g)

= λ (B.1)

Equation (B.1) can be interpreted in the following way: The numerator of the LHS

describes the fitness improvement since FI was applied because

φFelite(0, k) + (1 − φ)Fpool(0, k) = Fpool(φaccept, k) (B.2)

The denominator of equation (B.1) represents the amount of learning that would have

occurred with the new population structure pool∗ if there was no reduction in learning rate.

i.e. if φ = 0

Lpool∗(0, g) = φLelite(0, g) + (1 − φ)Lpool(0, g) (B.3)

Substituting equations (B.2) and (B.3) back into equation (B.1), we discover that λ
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describes the proportion that the φ = 0 learning rate is diminished by when φ = φaccept

λ =
Fpool∗(φd, g) − Fpool∗(φd, k)

∫

g

k
Lpool∗(0, g)

λ =
∫

g

k
Lpool∗(φaccept, g)

∫

g

k
Lpool∗(0, g)

(B.4)

Q.E.D.
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C
Estimation of Expected Pool Fitness

We can estimate Fpool0(g) if we know the φd that was used to generate the observed pool

Fpoold(g) and elite Felited(g) as :

Fpool(g) ≈ φd[Felited(g − 1) − Fpool0(g − 1)] + Fpool0(g − 1)

Fpool(g) ≈ φdFelited(g − 1) + (1 − φd)Fpool0(g − 1)

Fpool(g) − φdFelited(g − 1) ≈ (1 − φd)Fpool0(g − 1)

Fpool0(g − 1) ≈
Fpool(g) − φdFelited(g − 1)

1 − φd
(C.1)

If Fpool0(g) ≈ Fpool0(g−1) and Felited(g) ≈ Felited(g−1) then we can express the estimated

pool fitness if FI wasn’t applied in terms of only the current generation fitnesses as:

Fpool0(g) ≈
Fpool(g) − φdFelited(g)

1 − φd
(C.2)
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Unfortunately, the 1−φd term on the denominator of Equation C.1 and Equation C.2 re-

sults in a discontinuity and worse it exponentially amplifies any variations in the numerator

as φd approaches 1. Intuitively, this makes sense since we are attempting to predict Fpool0

with increasingly less representation of the learning pool (since the typical pool population

is being increasingly replaced by the elites).

Therefore the predicted Fpool0 as φd approaches 1 rapidly becomes erroneous with any

small variation with the achieved pool fitness compared to the desired pool fitness or error

in elite fitness used. Even for a modest variation of the achieved elite or pool fitness from

what was expected, means reconstructing the likely pool fitness without φ becomes very

erroneous as the φ used to generate the population approaches 1. See Figure C.1

The loss of accuracy about the pool is exacerbated by the averaging of the fitnesses

to obtain the pool fitness. In practice is may be better to keep the learning population

separate and monitor that pool for an estimation of the pool, but never-the-less even this

estimation will become skewed and erroneous as the learning population size decreases

(as φ approaches 1).

Note that Fpool(g) ≥ φdFelited(g − 1) is necessary to ensure the fitness remains positive.

This can readily be verified since Fpool(g), φd and Felited(g − 1) are all known.
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FE(g − 1) = FE(g) , Fpoola= Fpoold

FE(g − 1) = 1.01 × FE(g ) , Fpoola= Fpoold

FE(g − 1) = FE(g) , Fpoola= 0.99 × Fpoold

FE(g − 1) = 1.05 × FE(g ) , Fpoola= Fpoold

FE(g − 1) = FE(g) , Fpoola= 0.95 × Fpoold

Figure C.1: Variations in the achieved pool fitness, Fpoola from the desired pool fitness, Fpoold ,
as well as variations in the achieved Elite fitness, Felite(g) from that of the previous generation,
can significantly affect the error in estimation of Fpoolφ=0 . Variations of approximately 1% and 5%
are shown.
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D
Design of the Acceptable Average Fitness

(AAF)-Tracking Strategy

The main disadvantage of the φgreedy strategy arises from the lack of learning during ex-

tended periods where the Acceptable Average Fitness (AAF) is met, but no learning oc-

curs. Unfortunately, the point at which a solution is first discovered that can meet the AAF

is typically when Felite = Faccept.

Assuming Fpool(0, g) << Felite(0, g), then based on Equation 4.3.2, φ will need to be

close or equal to 1 in order to meet the AAF at that point. This in turn will permit little or no

diversity in the population for learning and as a consequence Fpool(x ≈ 1, g) ≈ Felite(0, k)

where k is the first generation where Felite(0, k) ≥ Faccept(0, k)

Therefore in order to permit some learning, the solution finder must necessarily keep

φ < 1. We term this upper limit as φmax . While φmax < 1, it should ideally be close to 1
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otherwise it will suffer the disadvantage of the constant-φ strategy in that the maximum

obtainable fitness is limited by φ c.f. Equation 6.6. Through implementing the φmax pa-

rameter, learning can be achieved during long periods and the major shortfall of the offline

strategy avoided.

Ideally learning will occur such that after some period Fpool(φmax, g) >> Faccept. If this

occurs however, then it is likely that a lower φ value would have sufficed to meet the AAF

and hence more learning could have been achieved. The appropriate value of φ that

should minimally achieve the AAF (ignoring any learning which may or may not occur) is

calculable from Equation 4.6 as:

φaccept =
Faccept(g + 1) − Fpool(0, g)

Felite(g) − Fpool(0, g)
(D.1)

The AAF, Faccept(g + 1), and the current elite fitness Felite(g) are known, however unfor-

tunately Fpool(0, g) is not measured and only Fpool(x, g) is known, where x was the value

of φ used in generation g. An estimation of Fpool(0, g) can be determined however (c.f.

Appendix C - note that the φd = φaccept in this case since the desired value is one which

achieves acceptable performance) and used to estimate an appropriate value for φaccept.

Naively, one could expect that calculating the φd that would achieve the desired fit-

ness in the next generation (if possible, i.e. the Felite > Faccept) and setting φ = φd would

achieve the optimal performance. However, targeting to meet the minimum acceptable

performance based on a algorithm with stochastic characteristics generates an expected

fitness with a deviation spread around the target fitness. If this spread was gaussian for

instance, then roughly half of the time the desired fitness would not be met. Clearly this

is unacceptable and so another parameter, ζ, is introduced to bias the expected fitness

such that even with stochastic variation, the average fitness achieved will typically be

above Faccept. Intuitively, the ζ parameter effectively causes the system to overshoot the

required AAF and so is referred to as overshoot parameter. The overshoot parameter is

designed to add a percentage of available ∆ep since the degree to which it is possible to

overshoot the acceptable fitness is not known a priori. For instance you cannot guarantee

that 1.2Fpool will ever be attainable, however Fpool + 1.2∆ep is obtainable by setting φ = 0.2.
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As previously mentioned, the achieved fitness may differ from the desired fitness due

to the stochastic characteristics of the solution finder employed (EA). Additionally, there

will be some error in the φd employed since it is based on an estimation of Fpool(0, g) (c.f.

Appendix C, Equation D.1). Finally, a further error due to the rounding bias arising from

the discrete nature of the population size is introduced when constructing the population

with Γsimple(Φstrategy). These errors can cause the achieved fitness to undershoot and

overshoot the desired fitness. As the φ applied approaches 1, the error in estimation of

Fpool(0, g) increases exponentially (as seen in Figure C.1), which could lead to overesti-

mation of the required φaccept. High values of φ will significantly impact the diversity of the

population, which apart from reducing learning potential of the population, also reduces

the exploitation potential, ∆ep. Since the estimation of Fpool(0, g) is dependant on ∆ep,

this can feedback into the error is estimating an appropriate value for φaccept and generate

an erratic (unstable) control of φ. To counter the oscillation generated via this feedback

mechanism, a parameter is needed to dampen the rate at which φ can be changed. Due

to the binary nature of the success rate performance metric, it may be beneficial to bias

the controlling mechanism to be able respond faster to the need for increases in φ rather

than decreases in it. This will be problem specific and largely depend on how important

longer term learning is over short term performance losses. In any case, the amount that

φ can either increase or decrease is limited by α and β respectively.
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E
Usefulness of Randoms

One could argue that if the world changed catastrophically, then evolved / niched pop-

ulations wouldn’t provide an optimal search strategy and you’d be better off reinitialising

the GP process - i.e. starting with a new random population. Having a few randoms con-

stantly in the population structure could be a sanity check to ensure that the population

isn’t performing worse than random (e.g. specialisation to a behaviour which is now bad)

and at very least it offers the promise of always injecting fresh genetic material.

The situation where randoms become as good (or even better) than niched populations

could arise in Nature when resources become abundant. For example, with the Blink3

problem when the nodes are outside of the bag suddenly a random program that doesn’t

turn the LEDs on at all becomes fitter than previous solutions evolved to achieve good

performance in the bag. For Blink3 this is due to the power savings made from no LEDs

while still achieving high levels of light into the photodiodes from ambient light. With a
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heavily niched population (i.e. low diversity) one could easily imagine that all solutions

likely turn a LED on since this was critically important inside the bag where no ambient

light is present. Outside of the bag, all solutions perform well, however better solutions

won’t evolve until a child or mutant ’learn’ to switch the LED off early and keep it off. In

this situation it would be faster to have a random program present which does nothing

with the LEDs to shift the population.
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2 Randoms−[1 2 45 2] − Pool

2 Randoms−[1 2 45 2] − Elite

No Randoms−[1 2 47 0] − Pool

No Randoms−[1 2 47 0] − Elite

bal 2 Randoms−[1 24 23 2] − Pool

bal 2 Randoms−[1 24 23 2] − Elite

bal No Randoms−[1 25 24 0] − Pool

bal No Randoms−[1 25 24 0] − Elite

balc 1 Randoms−[1 24 24 1] − Pool

balc 1 Randoms−[1 24 24 1] − Elite

balc 3 Randoms−[1 23 23 3] − Pool

balc 3 Randoms−[1 23 23 3] − Elite

balc No Randoms−[1 24 25 0] − Pool

balc No Randoms−[1 24 25 0] − Elite

balcr 23 Randoms−[2 2 23 23] − Pool

balcr 23 Randoms−[2 2 23 23] − Elite

balmcr 16 Randoms−[2 16 16 16] − Pool

balmcr 16 Randoms−[2 16 16 16] − Elite

balmr 16 Randoms−[2 23 2 23] − Pool

balmr 16 Randoms−[2 23 2 23] − Elite

mb 1 Randoms−[1 46 2 1] − Pool

mb 1 Randoms−[1 46 2 1] − Elite

mb 2 Randoms−[1 45 2 2] − Pool

mb 2 Randoms−[1 45 2 2] − Elite

mb no Randoms−[1 47 2 0] − Pool

mb no Randoms−[1 47 2 0] − Elite

rb 47 Randoms−[1 1 1 47] − Pool

rb 47 Randoms−[1 1 1 47] − Elite

Figure E.1: For the "Concat-V-abundance@2500" objective function, it is beneficial to include
"Random" individuals in the population.

The hypothesis that injecting random individuals throughout online evolution was ex-

plored empirically by devising an objective function which simulated a dramatic environ-

ment / fitness function half way through the lifetime of the system. Figure E.1 shows the

averaged (N=100) elite and pool responses of population structures with differing con-

centrations of random programs when evolved against the “Concat-V-abundance@2500”

objective function.

The “Concat-V-abundance@2500” objective function is essentially the standard Concatenated-

V (k=7, M=100) problem up to generation 2500 (where M is number of k-sized blocks con-

catenated together). By generation 2500, many populations have discovered reasonable

fitnesses and the diversity of the populations have decreased. After generation 2500, the
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block function (k=7) changes to a success function based on whether the number ones

within the block equal 3 (the success function is also scaled by a constant). A block in a

randomly generated individual has a 27.34375% probability of achieving the optimal block

fitness.

In this scenario, having a few randoms clearly provides superior learning and perfor-

mance to that of having no random individuals in the population. Employing 3 randoms

however is not significantly better than not employing random individuals, while employing

significant numbers of randoms performs poorly across the entire objective function (as

expected).

This experiment demonstrates that scenarios can exist where it is useful to have ran-

dom individuals generated throughout the life of the system. This does not imply how-

ever that such a strategy is necessarily beneficial in real world online problem scenarios.

Whether this is true warrants further investigation.
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224 φ-Tracking Parameter Sweep

ζαβφmax Psuccess(150,500) Psuccess(501,1000) Psuccess(150,1000)
dt00999999 0.575 0.206 0.359
dt10020290 0.812 0.484 0.620
dt10020295 0.814 0.529 0.646
dt10020296 0.807 0.526 0.642
dt10020297 0.807 0.529 0.643
dt10020298 0.807 0.529 0.643
dt10020299 0.817 0.528 0.647
dt20050199 0.923 0.706 0.795
dt20070199 0.935 0.682 0.786
dt20080199 0.937 0.688 0.791
dt25050199 0.933 0.717 0.806
dt25070199 0.939 0.711 0.805
dt30010390 0.834 0.522 0.651
dt30010395 0.836 0.562 0.675
dt30010396 0.839 0.574 0.683
dt30010397 0.841 0.579 0.687
dt30010398 0.839 0.572 0.682
dt30010399 0.839 0.572 0.682
dt30020190 0.883 0.630 0.735
dt30020195 0.886 0.642 0.743
dt30020196 0.889 0.686 0.770
dt30020197 0.889 0.690 0.772
dt30020198 0.891 0.700 0.779
dt30020199 0.892 0.680 0.768
dt30020290 0.880 0.600 0.715
dt30020295 0.889 0.648 0.748
dt30020296 0.885 0.668 0.758
dt30020297 0.890 0.674 0.763
dt30020298 0.889 0.672 0.761
dt30020299 0.891 0.675 0.764
dt30030190 0.900 0.598 0.723
dt30030195 0.903 0.668 0.765
dt30030196 0.910 0.679 0.774
dt30030197 0.910 0.704 0.789
dt30030198 0.909 0.691 0.781
dt30030199 0.912 0.706 0.791
dt30030297 0.909 0.706 0.790
dt30030298 0.912 0.701 0.788
dt30030299 0.908 0.713 0.793
dt30030398 0.906 0.667 0.765
dt30030399 0.906 0.689 0.779
dt30040198 0.924 0.706 0.796
dt30040199 0.923 0.704 0.794
dt30040298 0.920 0.708 0.796
dt30040299 0.921 0.716 0.800
dt30040398 0.919 0.701 0.791
dt30040399 0.919 0.693 0.787
dt30050197 0.934 0.727 0.812
dt30050198 0.933 0.708 0.801
dt30050199 0.934 0.726 0.812
dt30050298 0.931 0.708 0.800
dt30050299 0.929 0.715 0.803
dt30050399 0.929 0.709 0.800
dt30060199 0.938 0.690 0.792
dt30060299 0.936 0.707 0.802
dt30070198 0.940 0.711 0.806
dt30070199 0.940 0.713 0.807
dt30070298 0.938 0.687 0.791
dt30070299 0.938 0.694 0.794
dt30999999 0.875 0.595 0.711
dt35040199 0.922 0.728 0.808
dt35040299 0.924 0.694 0.789
dt35050199 0.933 0.723 0.810
dt35060299 0.934 0.684 0.787

Table F.1: Parameter sweep of tracking strategy performances
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