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1 Introduction
The Oberwolfach problem was posed by Ringel in the 1960s and is first mentioned in
[16]. It concerns graph factorisations. A factor of a graph is a spanning subgraph and a
factorisation is a decomposition into edge-disjoint factors. A factor that is regular of degree
k is called a k-factor. If each factor of a factorisation is a k-factor, then the factorisation is
called a k-factorisation, and if each factor is isomorphic to a given graph F , then we say it
is a factorisation into F .

Let F be an arbitrary 2-regular graph and let n be the order of F . If n is odd, then
the Oberwolfach Problem OP(F ) asks for a 2-factorisation of Kn into F , and if n is even,
then OP(F ) asks for a 2-factorisation of Kn − I into F , where Kn − I denotes the graph
obtained from Kn by removing the edges of a 1-factor.

The Oberwolfach Problem has been solved completely when F consists of isomorphic
components [1, 3, 18], when F has exactly two components [29], when F is bipartite [5, 17]
and in numerous special cases. See [7] for a survey of results up to 2006. It is known that
there is no solution to OP(F ) for F ∈ {C3∪C3, C4∪C5, C3∪C3∪C5, C3∪C3∪C3∪C3},
but a solution exists for every other 2-regular graph of order at most 40 [13].

In [8], it was shown that the Oberwolfach Problem has a solution for every 2-regular
graph of order 2p where p is any of the infinitely many primes congruent to 5 (mod 24),
and for every 2-regular graph whose order is in an infinite family of primes congruent to
1 (mod 16). In this paper we extend these results as follows. We show that OP(F ) has a
solution for every 2-regular graph of order 2p where p is any prime congruent to 5 (mod 8)
(see Theorem 4.2), and we obtain solutions to OP(F ) for broad classes of 2-regular graphs
in many other cases (see Theorems 4.3 and 4.4). We also obtain results on the generalisation
of the Oberwolfach Problem to factorisations of complete multigraphs into isomorphic 2-
factors (see Theorem 5.4). Our results are obtained by constructing various factorisations
of complete graphs into circulant graphs in Section 2, and then showing in Section 3 that
these circulant graphs can themselves be factored into isomorphic 2-regular graphs in a
wide variety of cases.

2 Factorising complete graphs into circulant graphs
Let G = (G, ·) be a finite group with identity e and let S be a subset of G such that
e /∈ S and s ∈ S implies s−1 ∈ S. The Cayley graph on G with connection set S,
denoted Cay(G ;S), has the elements of G as its vertices and g is adjacent to g · s for each
s ∈ S and each g ∈ G. A Cayley graph on a cyclic group is called a circulant graph.
We use the following standard notation. The ring of integers modulo n is denoted by Zn,
the multiplicative group of units modulo n is denoted by Z∗n and, when b divides |Z∗n|, the
subgroup {xb : x ∈ Z∗n} of index b in Z∗n is denoted by (Z∗n)b.

In this section we consider factorisations ofKn for n odd (in Section 2.1) and ofKn−I
for n even (in Section 2.2) into circulant graphs. A 2-regular graph is a circulant if and
only if its components are all isomorphic. Thus, for each 2-regular circulant graph F , there
exists a factorisation of Kn (if F has odd order) or of Kn − I (if F has even order) into
F ; except that there is no such factorisation when F ∈ {C3 ∪ C3, C3 ∪ C3 ∪ C3 ∪ C3}.
Considerably less is known for factorisations into circulant graphs of degree greater than
2. Some factorisations into Cay(Zn ;±{1, 2}) and Cay(Zn ;±{1, 2, 3, 4}) are given in [4]
and [8] respectively, and some further results, including results on self-complementary and
almost self-complementary circulant graphs, appear in [2, 14, 15, 26].
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2.1 Factorising complete graphs of odd order

In this subsection we will construct factorisations of complete graphs of odd order into
isomorphic circulant graphs by finding certain partitions of cyclic groups. Problems con-
cerning such partitions have been well studied, for example see [28], and existing results
overlap with some of the results in this subsection. In particular, Theorem 2.3 below is a
consequence of Lemma 3.1 of [24].

Lemma 2.1. Let s be an integer, let p ≡ 1 (mod 2s) be prime, and let S = ±{d1, d2, . . . ,
ds} ⊆ Z∗p. Further, suppose a and b are integers such that 2abs = p − 1, let G = (Z∗p)b,
and let H = (Z∗p)bs. If d1, d2, . . . , ds represent the s distinct cosets of G/H , then there
exists a 2s-factorisation of Kp into Cay(Zp ;S).

Proof. For each x ∈ Zp let xS = {xy : y ∈ S}. Since p is prime, Cay(Zp ;xS) ∼=
Cay(Zp ;S) for any x ∈ Zp \{0}. If there is a partition of Z∗p into sets x1S, x2S, . . . , xabS
where xi ∈ Zp \ {0} for i = 1, 2, . . . , ab, then {Cay(Zp ;xiS) : i = 1, 2, . . . , ab} is the
required 2s-factorisation of Kp. We now present such a partition.

Let ω be a generator of Z∗p. Thus,H = ω0, ωbs, ω2bs, . . . , ω(2a−1)bs, and ωabs = −1 ∈
H . LetA = ω0, ωbs, ω2bs, . . . , ω(a−1)bs, so thatH = A∪−A (A is a set of representatives
for the cosets in H of the order 2 subgroup of H). Since d1, d2, . . . , ds represent distinct
cosets of G/H , it is easy to see that {xS : x ∈ A} is a partition of G. Thus, if B is a
set of representatives for the cosets of Z∗p/G, then {xyS : x ∈ A, y ∈ B} is the required
partition of Z∗p.

Note that upon putting s = 1 in Lemma 2.1 we obtain the Hamilton decomposition

{Cay(Zp ; {±1}),Cay(Zp ; {±2}), . . . ,Cay(Zp ; {±p−12 })}

of Kp. We will be mostly interested in applications of Lemma 2.1 where the connec-
tion set S is ±{1, 2}, ±{1, 2, 3}, ±{1, 3, 4} or ±{1, 2, 3, 4}. The factorisations given by
Lemma 2.1 have the property that each factor is invariant under the action of Zp. It is worth
mentioning that for S ∈ {±{1, 2},±{1, 2, 3},±{1, 3, 4},±{1, 2, 3, 4}}, the construction
given in Lemma 2.1 yields every 2s-factorisation of Kp into Cay(Zp ;S) with this prop-
erty. This follows from the results in [9] and [22], together with Turner’s result [30] that
for p prime Cay(Zp ;S) ∼= Cay(Zp ;S′) if and only if there exists an α ∈ Z∗p such that
S′ = αS.

Theorem 2.2. If p ≡ 1 (mod 4) is prime and 4 divides the order of k in Z∗p, then there is a
factorisation of Kp into Cay(Zp ;±{1, k}).

Proof. Apply Lemma 2.1 with S = ±{1, k} taking G to be the subgroup of Z∗p generated
by k, and H to be the index 2 subgroup of G.

Theorem 2.3. If p ≡ 1 (mod 6) is prime such that 2, 3 /∈ (Z∗p)3 and 6 ∈ (Z∗p)3, then there
is a factorisation of Kp into Cay(Zp ;±{1, 2, 3}).

Proof. It follows from 2, 3 /∈ (Z∗p)3 and 6 ∈ (Z∗p)3 that 1, 2 and 3 represent the three
cosets of Z∗p/(Z∗p)3. Thus, we obtain the required factorisation by applying Lemma 2.1
with b = 1.

Theorem 2.4. If p ≡ 1 (mod 6) is prime such that 2, 3, 6 /∈ (Z∗p)3, then there is a factori-
sation of Kp into Cay(Zp ;±{1, 3, 4}).
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Proof. It follows from 2, 3, 6 /∈ (Z∗p)3 that 1, 3 and 4 represent the three cosets of Z∗p/(Z∗p)3.
Thus, we obtain the required factorisation by applying Lemma 2.1 with b = 1.

The primes less than 1000 to which Theorem 2.3 applies are

7, 37, 139, 163, 181, 241, 313, 337, 349, 379, 409, 421, 541, 571, 607, 631, 751, 859, 877, 937,

and the primes less than 1000 to which Theorem 2.4 applies are

13, 19, 79, 97, 199, 211, 331, 373, 463, 487, 673, 709, 769, 823, 829, 883, 907.

In the next theorem we show that there are infinitely many primes to which Theorem 2.3
applies, and also infinitely many primes to which Theorem 2.4 applies.

Theorem 2.5. There are infinitely many values of p such that p is prime, p ≡ 1 (mod 6),
2, 3 /∈ (Z∗p)3 and 6 ∈ (Z∗p)3, and there are infinitely many values of p such that p is prime,
p ≡ 1 (mod 6) and 2, 3, 6 /∈ (Z∗p)3.

Proof. Assume p ≡ 1 (mod 6). Let Fp be the field with p elements. We use standard
definitions and results from algebraic number theory, as found in [20]. The result essentially
follows from the Chebotarev Density Theorem.

Let ω be a primitive cube root of unity, λ = 3
√
2 be a cube root of 2 and ρ = 3

√
3 a cube

root of 3. Consider the following tower of fields:

M = Q(ω, λ, ρ) ⊇ L = Q(ω, λ) ⊇ K = Q(ω) ⊇ Q.

Let OK , OL denote the rings of integers of K and L respectively. We may ignore the
finitely many ramified primes. Thus let p be a prime number, sufficiently large that it is
unramified in M , let p be a prime in K extending p and P a prime in L extending p. Let
K = OK/p and L = OL/P be the residue fields. We view K as embedded in L via the
map x+ p 7→ x+P. As p ≡ 1 (mod 6), p splits in K and K = OK/p ' Fp.

Since M and L are splitting fields, M/K and L/K are Galois extensions. The Galois
group of M/K is Gal(M/K) ' Z3 × Z3 generated by the maps α : λ 7→ λω and β : ρ 7→
ρω. The Frobenius map of L/K is the map x 7→ x|L|. The Frobenius element σLp is the
element of Gal(L/K) inducing the Frobenius map on L/K. (A priori σLp could also depend
on the choice of P extending p, but this is not the case since Gal(L/K) is abelian; see [20,
III.2.1].) Define σMp ∈ Gal(M/K) analogously. Then σLp is the restriction of σMp to L by
[20, III.2.3].

By definition of L, for all sufficiently large p ≡ 1 (mod 6), 2 ∈ (Z∗p)3 if and only if
L = K. But L = K if and only if σLp is the identity map, and it follows that 2 ∈ (Z∗p)3 if
and only if σMp ∈ 〈β〉. Similarly, 3 ∈ (Z∗p)3 if and only if σMp ∈ 〈α〉 and 6 ∈ (Z∗p)3 if and
only if σMp ∈ 〈αβ〉. In summary:

2, 3 /∈ (Z∗p)3, 6 ∈ (Z∗p)3 ⇐⇒ σMp ∈ {αβ, α2β2}.
2, 3, 6 /∈ (Z∗p)3 ⇐⇒ σMp ∈ {α2β, αβ2}.

The Chebotarev Density Theorem [20, V.10.4] implies that for each θ ∈ Gal(M/K), the
set of primes p of K (unramified in M ) for which σMp = θ is infinite. Thus each of the two
conditions for σMp displayed above holds infinitely often.

It is possible to describe the primes in Theorem 2.5 more explicitly. Given p ≡
1 (mod 6), factoring the ideal pOK and taking norms, one shows there exist unique c, d ∈
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Z with d > 0, gcd(c, d) = 1, c ≡ 2 (mod 3) and 4p = (2c − 3d)2 + 27d2. Let
t(p) = (c (mod 6), d (mod 6)). There are 9 possible values for t(p): (2, 1), (2, 3), (2, 5),
(5, 0), (5, 1), (5, 2), (5, 3), (5, 4) and (5, 5). The Chebotarev density theorem implies that
each of the 9 possible t(p) values occurs “equally often” (that is, for a subset of the primes
p ≡ 1 (mod 6) of relative density 1/9). Using cubic reciprocity [19, Ch. 9] one calculates
that 2, 3 /∈ (Z∗p)3 and 6 ∈ (Z∗p)3 if and only if t(p) = (2, 1) or (5, 5), while 2, 3, 6 /∈ (Z∗p)3
if and only if t(p) = (2, 5) or (5, 1). Each case occurs for 2/9 of the primes that are
1 (mod 6).

The above applications of Lemma 2.1 have all been with b = 1. We note however that
the conditions of Lemma 2.1 are never satisfied when S = ±{1, 2, 3, 4} and b = 1. This is
because 2 is a quadratic residue when p ≡ 1 (mod 8), which means that both 1 and 4 are in
H . The factorisations of Kp into Cay(Zp ;±{1, 2, 3, 4}) in [8] were obtained by applying
Lemma 2.1 with b = 2 so that G and H have index 2 and 8, respectively, in Z∗p. Another
example where Lemma 2.1 can be applied with b 6= 1 is when p = 919, S = ±{1, 2, 3},
a = 51 and b = 3. This yields a factorisation of K919 into Cay(Z919 ;±{1, 2, 3}). Such a
factorisation cannot be obtained by applying Lemma 2.1 with b = 1 because 1, 2 and 3 are
all cubes in Z∗919.

The following lemma can be used to obtain factorisations of Kp, for certain values of
p, in which some of the factors are isomorphic to Cay(Zp ;±{1, 2, 3}) and the others are
isomorphic to Cay(Zp ;±{1, 2, 3, 4}).

Lemma 2.6. Let p be prime, let H be the subgroup of Z∗p generated by {−1, 6}, and
let d be the order of 2H in Z∗p/H . If there exist nonnegative integers α and β such that

d = 3α+4β, then there is a factorisation ofKp into α(p−1)
2d copies of Cay(Zp ;±{1, 2, 3})

and β(p−1)
2d copies of Cay(Zp ;±{1, 2, 3, 4}).

Proof. It is sufficient to partition Z∗p into α(p−1)
2d 6-tuples of the form ±{x, 2x, 3x} and

β(p−1)
2d 8-tuples of the form ±{x, 2x, 3x, 4x}. Since d = 3α+ 4β, there is a partition

{{2ri−1H, 2riH, 2ri+1H} : i = 1, . . . , α}∪
{{2ri−1H, 2riH, 2ri+1H, 2ri+2H} : i = α+ 1, . . . , α+ β}

of {H, 2H, . . . , 2d−1H}. But 6 ∈ H implies 2ri−1H = 3 · 2riH for i = 1, 2, . . . , α + β.
Thus, we can rewrite our partition of {H, 2H, . . . , 2d−1H} as

{{Hi, 2Hi, 3Hi} : i = 1, . . . , α} ∪ {{Hi, 2Hi, 3Hi, 4Hi} : i = α+ 1, . . . , α+ β},

where Hi = 2riH for i = 1, . . . , α+ β.
Since −1 ∈ H , for i = 1, . . . , α, Hi ∪ 2Hi ∪ 3Hi can be partitioned into |H|2 6-tuples

of the form ±{x, 2x, 3x}, and for i = α + 1, . . . , α + β, Hi ∪ 2Hi ∪ 3Hi ∪ 4Hi can be
partitioned into |H|2 8-tuples of the form ±{x, 2x, 3x, 4x}. If R is the set of all α |H|2 of
these 6-tuples and S is the set of all β |H|2 of these 8-tuples, thenR∪S is a partition of the
subgroup G = H ∪ 2H ∪ · · · ∪ 2d−1H of Z∗p. Thus, if g1, g2, . . . , gt (t = p−1

d|H| ) represent
the cosets of Z∗p/G, then

{giR : R ∈ R, i = 1, . . . , t} ∪ {giS : S ∈ S, i = 1, . . . , t}
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is a partition of Z∗p into tα |H|2 = α(p−1)
2d 6-tuples of the form ±{x, 2x, 3x} and tβ |H|2 =

β(p−1)
2d 8-tuples of the form ±{x, 2x, 3x, 4x}. This is the required partition of Z∗p.

Notice that any 6-factorisation of Kp into Cay(Zp ;±{1, 2, 3}) given by Lemma 2.1
can also be obtained via Lemma 2.6. For if 1, 2, 3 represent the three distinct cosets ofG/H
(where G = (Z∗p)b and H = (Z∗p)3b, and p − 1 = 6ab), then it follows that {−1, 6} ⊆ H
and 2H has order 3 in G/H . This means that if H ′ is the subgroup of Z∗p generated by
{−1, 6}, thenH ′ ≤ H and 3 divides the order d of 2H ′ in Z∗p/H ′. Thus, we can obtain our
6-factorisation of Kp into Cay(Zp ;±{1, 2, 3}) by applying Lemma 2.6 with α = d

3 and
β = 0. Similarly, any 8-factorisation of Kp into Cay(Zp ;±{1, 2, 3, 4}) given by Lemma
2.1 can be obtained by applying Lemma 2.6 with α = 0 and β = d

4 .
However, Lemma 2.6 gives us additional factorisations such as the following. When

p = 101 we have H = ±{1, 6, 14, 17, 36}, and 2H has order d = 10 in Z∗p/H . Taking
α = 2 and β = 1, we obtain a factorisation of K101 into 10 copies of Cay(Zp ;±{1, 2, 3})
and 5 copies of Cay(Zp ;±{1, 2, 3, 4}). Of course, 101 is neither 1 (mod 6) nor 1 (mod 8),
so there is neither a 6-factorisation nor an 8-factorisation of K101.

2.2 Factorising complete graphs of even order

In this section we construct factorisations of K2p − I where the factors are all isomor-
phic to Cay(Z2p ;±{1, 2}) or all isomorphic to Cay(Z2p ;±{1, 2, 3, 4}). We do this by
considering K2p − I as a Cayley graph on a dihedral group and partitioning its con-
nection set to generate the factors. The dihedral group D2p of order 2p has elements
r0, r1, r2, . . . , rp−1, s0, s1, s2, . . . , sp−1 and satisfies

ri · rj = ri+j , ri · sj = si+j , si · rj = si−j , si · sj = ri−j

where arithmetic of subscripts is carried out modulo p.

Lemma 2.7. If p ≥ 3 is prime, then

Cay(D2p ; {r±i, sj , si+j}) ∼= Cay(Z2p ;±{1, 2})

for all i ∈ Zp \ {0} and all j ∈ Zp.

Proof. An isomorphism is given by

r0 ri r2i r3i . . . r(p−1)i sj si+j s2i+j s3i+j . . . s(p−1)i+j
↓ ↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓ . . . ↓
0 2 4 6 . . . 2p− 2 2p− 1 1 3 5 . . . 2p− 3

Lemma 2.8. If p ≥ 5 is prime, then

Cay(D2p ; {r±i, r±2i, sj , si+j , s2i+j , s3i+j}) ∼= Cay(Z2p ;±{1, 2, 3, 4})

for all i ∈ Zp \ {0} and all j ∈ Zp.
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Proof. An isomorphism is given by

r0 ri r2i r3i . . . r(p−1)i sj si+j s2i+j s3i+j . . . s(p−1)i+j
↓ ↓ ↓ ↓ . . . ↓ ↓ ↓ ↓ ↓ . . . ↓
0 2 4 6 . . . 2p− 2 2p− 3 2p− 1 1 3 . . . 2p− 5

Theorem 2.9. For each odd prime p, there is a factorisation of K2p − I into Cay(Z2p ;
±{1, 2}).

Proof. The required factorisation is F = {Xi : i ∈ Zp \ {0}} where

Xi = Cay(D2p ; {r±2i, si, s−i})

for i ∈ Zp \ {0}. Note that Xi = X−i so |F| = p−1
2 as required. Lemma 2.7 guarantees

that Xi
∼= Cay(Z2p ;±{1, 2}) for each i ∈ Zp \ {0}. Also, r0 is the identity of D2p and

each element of D2p \ {r0, s0} occurs in exactly one Xi. Thus, F is a factorisation of
Cay(D2p ;D2p \ {r0, s0}) ∼= K2p − I where the 1-factor I is Cay(D2p ; {s0}).

Following work of Davenport [10, Theorem 5] and Weil, a special case of a result due
to Moroz [23] yields the following. If p ≡ 1 (mod 4) is prime and p > 8× 106, then there
exists an integer x such that x, x + 1, x + 2, x + 3 represent all four distinct cosets of
Z∗p/(Z∗p)4. A computer search using PARI/GP [25] verifies in a few minutes that such an x
also exists for all p < 8×106 with p ≡ 1 (mod 4), with the exceptions p = 13 and p = 17.
Thus, we have the following result.

Lemma 2.10. If p ≡ 1 (mod 4) is prime with p /∈ {13, 17}, then there exists an x ∈ Z∗p
such that x, x+ 1, x+ 2 and x+ 3 represent all four distinct cosets of Z∗p/(Z∗p)4.

Theorem 2.11. If p ≡ 5 (mod 8) is prime, then there is a factorisation of K2p − I into
Cay(Z2p ;±{1, 2, 3, 4}); except that there is no factorisation of K26 − I into Cay(Z2p ;
±{1, 2, 3, 4}).

Proof. We first observe that there is no factorisation of K26 − I into graph Cay(Z2p ;
±{1, 2, 3, 4}). If such a factorisation exists, then we can assume without loss of gener-
ality that the vertex set is Z26 and that Cay(Z26 ;±{1, 2, 3, 4}) is a factor. But no edge
of Cay(Z26 ;±{7}) (for example) occurs in a complete subgraph of order 5 in Cay(Z26 ;
±{5, 6, 7, 8, 9, 10, 11, 12, 13}). Since Cay(Z26 ;±{1, 2, 3, 4}) contains a complete sub-
graph of order 5, it follows that there is no factorisation of K26 − I into graph Cay(Z2p ;
±{1, 2, 3, 4}).

Let p ≡ 5 (mod 8) be prime with p 6= 13. By Lemma 2.10, there exists an x ∈ Z∗p such
that x, x + 1, x + 2 and x + 3 represent all four distinct cosets of Z∗p/(Z∗p)4. By Lemma
2.8,

Cay(D2p ; {r±1, r±2, sx, sx+1, sx+2, sx+3}) ∼= Cay(Z2p ;±{1, 2, 3, 4}).

Now let H = (Z∗p)4 act on the subscripts of the connection set {r±1, r±2, sx, sx+1, sx+2,
sx+3} and consider the collection S1, S2, . . . , S p−1

4
of subsets of D2p thus formed.
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We show that {Cay(D2p ;Si) : i = 1, 2, . . . , p−14 } is a factorisation of K2p − I into
Cay(Z2p ;±{1, 2, 3, 4}). If h ∈ H , then

Cay(D2p ; {r±h, r±2h, shx, sh(x+1), sh(x+2), sh(x+3)}) ∼= Cay(Z2p ;±{1, 2, 3, 4})

by Lemma 2.8 (indeed this is true for any h ∈ Z∗p) so it remains only to verify that we
have a decomposition of K2p − I . To do this we observe that S1, S2, . . . , S p−1

4
partitions

D2p \ {r0, s0} (r0 is the identity in D2p and Cay(D2p ; {s0}) is a 1-factor in K2p). We
have Hx ∪H(x+ 1) ∪H(x+ 2) ∪H(x+ 3) = Zp \ {0}. Also, since p ≡ 5 (mod 8) we
have −1 ∈ (Z∗p)2, −1 /∈ (Z∗p)4 and 2 /∈ (Z∗p)2 (by the law of quadratic reciprocity). Thus,
{±h : h ∈ H} ∪ {±2h : h ∈ H} = Zp \ {0}. So S1, S2, . . . , S p−1

4
does indeed partition

D2p \ {r0, s0} and we have the required decomposition.

3 2-factorisations of circulant graphs
In this section we present various results on 2-factorisations of circulant graphs, beginning
with a couple of known results. Lemma 3.1 was proved independently in [4] and [27], and
is a special case of a result in [6]. Lemma 3.2 was proved in [8].

Lemma 3.1. ([4, 27]) If n ≥ 5 and F is any 2-regular graph of order n, then there is a
2-factorisation of Cay(Zn ;±{1, 2}) into a copy of F and a Hamilton cycle.

Lemma 3.2. ([8]) If n ≥ 9 and F is a 2-regular graph of order n, then there is a 2-
factorisation of Cay(Zn ;±{1, 2, 3, 4}) into F with the definite exceptions of F = C4∪C5

and F = C3 ∪ C3 ∪ C3 ∪ C3 ∪ C3, and the following possible exceptions.

(1) F = C3 ∪ C3 ∪ · · · ∪ C3 when n ≡ 3, 6 (mod 9), n ≥ 21.

(2) F = C4 ∪ C4 ∪ · · · ∪ C4 when n ≡ 4 (mod 8), n ≥ 20.

(3) F = C3 ∪ C3 ∪ · · · ∪ C3 ∪ C4 when n ≡ 1 (mod 3), n ≥ 19.

(4) F = C3 ∪ C4 ∪ C4 ∪ · · · ∪ C4 when n ≡ 7 (mod 8), n ≥ 23.

We now obtain results on 2-factorisations of Cay(Zn ;±{1, 2, 3}), but first we need
some definitions and notation. For eachm ≥ 1, the graph with vertex set {0, 1, . . . ,m+2}
and edge set {{i, i + 1}, {i + 1, i + 3}, {i, i + 3} : i = 0, 1, . . . ,m − 1} is denoted by
J1,2,3
m . If F is a 2-regular graph of orderm, and there exists a decomposition {H1, H2, H3}

of J1,2,3
m into F such that

(1) V (H1) = {0, 1, . . . ,m+ 2} \ {m,m+ 1,m+ 2},
(2) V (H2) = {0, 1, . . . ,m+ 2} \ {0, 2,m+ 1}, and

(3) V (H3) = {0, 1, . . . ,m+ 2} \ {0, 1,m+ 2},

then we shall write J1,2,3
m 7→ F . Notice that for i = 1, 2, 3, the subgraph Hi of J1,2,3

m

contains exactly one vertex from each of {0,m}, {1,m+ 1} and {2,m+ 2}.

Lemma 3.3. If n ≥ 7 and F is a 2-regular graph of order n such that there exists a
decomposition J1,2,3

n 7→ F , then there exists a 2-factorisation of Cay(Zn ;±{1, 2, 3}) into
F .
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Proof. For each i ∈ {0, 1, 2}, identify vertex i of J1,2,3
n with vertex n + i. The resulting

graph is Cay(Zn ;±{1, 2, 3}) and the 2-regular graphs in the decomposition J1,2,3
n 7→ F

become the required 2-factors.

Lemma 3.4. If F and F ′ are vertex-disjoint 2-regular graphs and there exist decomposi-
tions J1,2,3

|V (F )| 7→ F and J1,2,3
|V (F ′)| 7→ F ′, then there exists a decomposition J1,2,3

|V (F )|+|V (F ′)| 7→
F ∪ F ′.

Proof. Let r and s be the respective orders of F and F ′, let {H1, H2, H3} be a decom-
position J1,2,3

r 7→ F and let {H ′1, H ′2, H ′3} be a decomposition J1,2,3
s 7→ F ′. Apply the

translation x 7→ x + r to the decomposition {H ′1, H ′2, H ′3} to obtain a decomposition
{H ′′1 , H ′′2 , H ′′3 } of a copy of J1,2,3

s having vertex set r, r + 1, . . . , r + s+ 2 (H ′′i being the
translation of H ′i for i ∈ {1, 2, 3}). It is clear that D = {H1 ∪H ′′1 , H2 ∪H ′′2 , H3 ∪H ′′3 }
is a decomposition J1,2,3

r+s 7→ F ∪ F ′. Properties (1)-(3) in the definition of J1,2,3
r 7→ F

ensure that Hi and H ′′i are vertex-disjoint for i ∈ {1, 2, 3}, and that

(1) V (H1 ∪H ′′1 ) = {0, 1, . . . , r + s+ 2} \ {r + s, r + s+ 1, r + s+ 2},
(2) V (H2 ∪H ′′2 ) = {0, 1, . . . , r + s+ 2} \ {0, 2, r + s+ 1}, and

(3) V (H3 ∪H ′′3 ) = {0, 1, . . . , r + s+ 2} \ {0, 1, r + s+ 2}.

Lemma 3.5. For each m ≥ 4, J1,2,3
m 7→ Cm.

Proof. For m ∈ {4, 5, 6}, H1, H2, H3 are as defined in the following table.

m H1 H2 H3

4 (0, 1, 2, 3) (1, 3, 6, 4) (2, 4, 3, 5)

5 (0, 1, 2, 4, 3) (1, 3, 5, 7, 4) (2, 3, 6, 4, 5)

6 (0, 1, 2, 5, 4, 3) (1, 3, 5, 8, 6, 4) (2, 4, 7, 5, 6, 3)

For m ≥ 7 and odd

• H1 contains the edges {0, 1}, {1, 2}, {0, 3}, {m − 2,m − 1} and {i, i + 2} for
i ∈ {2, 3, . . . ,m− 3},

• H2 contains the edges {1, 3}, {m− 2,m}, {m,m+ 2}, {m− 1,m+ 2}, {i, i+ 1}
for i ∈ {4, 6, . . . ,m− 3} and {i, i+ 3} for i ∈ {1, 3, . . . ,m− 4}, and

• H3 contains the edges {2, 3}, {m−2,m+1}, {m−1,m}, {m−1,m+1}, {i, i+1}
for i ∈ {3, 5, . . . ,m− 4} and {i, i+ 3} for i ∈ {2, 4, . . . ,m− 3}.

For m ≥ 8 and even

• H1 contains the edges {0, 1}, {1, 2}, {3, 4}, {0, 3}, {2, 5}, {m − 2,m − 1} and
{i, i+ 2} for i ∈ {4, 5, . . . ,m− 3},
• H2 contains the edges {1, 3}, {1, 4}, {3, 5}, {m−2,m}, {m,m+2}, {m−1,m+2},
{i, i+ 1} for i ∈ {5, 7, . . . ,m− 3} and {i, i+ 3} for i ∈ {4, 6, . . . ,m− 4}, and

• H3 contains the edges {2, 4}, {m−2,m+1}, {m−1,m}, {m−1,m+1}, {i, i+1}
for i ∈ {2, 4, . . . ,m− 4} and {i, i+ 3} for i ∈ {3, 5, . . . ,m− 3}.
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Lemma 3.6. For m = 8 and for each m ≥ 10, J1,2,3
m 7→ C3 ∪ Cm−3.

Proof. For m ∈ {8, 10, 11}, H1, H2, H3 are as defined in the following table.

m

8 H1 = (4, 6, 7) ∪ (0, 1, 2, 5, 3)
H2 = (7, 8, 10) ∪ (1, 3, 6, 5, 4)
H3 = (2, 3, 4) ∪ (5, 7, 9, 6, 8)

10 H1 = (7, 8, 9) ∪ (0, 1, 2, 4, 5, 6, 3)
H2 = (1, 3, 4) ∪ (5, 7, 6, 9, 12, 10, 8)
H3 = (2, 3, 5) ∪ (4, 6, 8, 11, 9, 10, 7)

11 H1 = (8, 9, 10) ∪ (0, 1, 2, 4, 5, 7, 6, 3)
H2 = (1, 3, 4) ∪ (5, 6, 9, 11, 13, 10, 7, 8)
H3 = (2, 3, 5) ∪ (4, 6, 8, 11, 10, 12, 9, 7)

For m ≥ 12 and even

• H1 consists of the 3-cycle (m− 3,m− 2,m− 1) and the (m− 3)-cycle with edges
{0, 1}, {0, 3}, {1, 2}, {2, 4}, {m − 5,m − 4}, {i, i + 1} for i ∈ {4, 6, . . . ,m − 6}
and {i, i+ 3} for i ∈ {3, 5, . . . ,m− 7},
• H2 consists of the 3-cycle (1, 3, 4) and the (m − 3)-cycle with edges {5, 7}, {m −
5,m− 2}, {m− 4,m− 3}, {m− 2,m}, {m,m+ 2}, {m− 1,m+ 2}, {i, i+ 1}
for i ∈ {5, 7, . . . ,m− 7} and {i, i+ 3} for i ∈ {6, 8, . . . ,m− 4}, and

• H3 consists of the 3-cycle (2, 3, 5) and the (m− 3)-cycle with edges {4, 6}, {4, 7},
{m − 2,m + 1}, {m − 3,m}, {m − 1,m}, {m − 1,m + 1} and {i, i + 2} for
i ∈ {6, 7, . . . ,m− 4}.

For m ≥ 13 and odd

• H1 consists of the 3-cycle (m− 3,m− 2,m− 1) and the (m− 3)-cycle with edges
{0, 1}, {0, 3}, {1, 2}, {2, 4}, {3, 6}, {4, 5}, {5, 7}, {m − 5,m − 4}, {i, i + 1} for
i ∈ {7, 9, . . . ,m− 6} and {i, i+ 3} for i ∈ {6, 8, . . . ,m− 7},

• H2 consists of the 3-cycle (1, 3, 4) and the (m − 3)-cycle with edges {5, 6}, {m −
5,m− 2}, {m− 4,m− 3}, {m− 2,m}, {m,m+ 2}, {m− 1,m+ 2}, {i, i+ 1}
for i ∈ {6, 8, . . . ,m− 7} and {i, i+ 3} for i ∈ {5, 7, . . . ,m− 4}, and

• H3 consists of the 3-cycle (2, 3, 5) and the (m− 3)-cycle with edges {4, 6}, {4, 7},
{m − 2,m + 1}, {m − 3,m}, {m − 1,m}, {m − 1,m + 1} and {i, i + 2} for
i ∈ {6, 7, . . . ,m− 4}.

Lemma 3.7. Let n ≥ 7 and let F be a 2-regular graph of order n. If ν3(F ) ≤ ν5(F ) +∑n
i=7 νi(F ) where νm(F ) denotes the number of m-cycles in F , then there exists a 2-

factorisation of Cay(Zn; ±{1, 2, 3}) into F .

Proof. If n ≥ 7 and F is a 2-regular graph of order n such that ν3(F ) ≤ ν5(F ) +∑n
i=7 νi(F ), then F can be written as a vertex-disjoint union of 2-regular graphs G1, G2,

. . . , Gt where each Gi is isomorphic to either

• Cm with m ≥ 4, or
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• C3 ∪ Cm−3 with m = 8 or m ≥ 10.

By Lemmas 3.5 and 3.6 we have a decomposition J1,2,3
|V (Gi)| 7→ Gi for i = 1, 2, . . . , t.

Applying Lemma 3.4 we obtain a decomposition J1,2,3
n 7→ F , and from this we obtain the

required 2-factorisation of Cay(Zn; ±{1, 2, 3}) into F by applying Lemma 3.3.

We can obtain an analogue of Lemma 3.7 for Cay(Zn ;±{1, 3, 4}) by using simi-
lar methods, but we will require F to have girth at least 6. The graph with vertex set
{0, 1, . . . ,m+3} and edge set {{i, i+1}, {i+1, i+4}, {i, i+4} : i = 0, 1, . . . ,m−1} is
denoted by J1,3,4

m . We write J1,3,4
m 7→ F when there exists a decomposition {H1, H2, H3}

of J1,3,4
m into a 2-regular graph F such that

(1) V (H1) = {0, 1, . . . ,m+ 3} \ {m,m+ 1,m+ 2,m+ 3},
(2) V (H2) = {0, 1, . . . ,m+ 3} \ {0, 3,m+ 1,m+ 2}, and

(3) V (H3) = {0, 1, . . . ,m+ 3} \ {0, 1, 2,m+ 3}.

Notice that for i = 1, 2, 3, the subgraph Hi of J1,3,4
m contains exactly one vertex from each

of {0,m}, {1,m + 1}, {2,m + 2} and {3,m + 3}. It is clear that the proofs of Lemmas
3.3 and 3.4 can be easily modified to give the following two results.

Lemma 3.8. If n ≥ 9 and F is a 2-regular graph of order n such that there exists a
decomposition J1,3,4

n 7→ F , then there exists a 2-factorisation of Cay(Zn ;±{1, 3, 4}) into
F .

Lemma 3.9. If F and F ′ are vertex-disjoint 2-regular graphs and there exist decomposi-
tions J1,3,4

|V (F )| 7→ F and J1,3,4
|V (F ′)| 7→ F ′, then there exists a decomposition J1,3,4

|V (F )|+|V (F ′)| 7→
F ∪ F ′.

Lemmas 3.8 and 3.9 allow us to obtain 2-factorisations of Cay(Zn ;±{1, 3, 4}) via the
same method we used in the case of Cay(Zn ;±{1, 2, 3}), providing we can find appropri-
ate decompositions of J1,3,4

m . We now do this.

Lemma 3.10. For m = 6, m = 7 and each m ≥ 9, J1,3,4
m 7→ Cm.

Proof. For m ∈ {6, 7, 9, 10}, H1, H2, H3 are as defined in the following table.

m H1 H2 H3

6 (0, 1, 5, 2, 3, 4) (1, 2, 6, 9, 5, 4) (3, 6, 5, 8, 4, 7)

7 (0, 1, 2, 3, 6, 5, 4) (1, 4, 7, 10, 6, 2, 5) (3, 4, 8, 5, 9, 6, 7)

9 (0, 1, 2, 3, 7, 6, 5, 8, 4) (1, 4, 7, 8, 12, 9, 6, 2, 5) (3, 4, 5, 9, 8, 11, 7, 10, 6)

10 (0, 1, 2, 3, 6, 9, 5, 8, 7, 4) (1, 4, 8, 9, 13, 10, 7, 6, 2, 5) (3, 4, 5, 6, 10, 9, 12, 8, 11, 7)

For m ≥ 11 and odd

• H1 contains the edges {0, 1}, {0, 4}, {1, 2}, {2, 3}, {3, 7}, {5, 6}, {m− 3,m− 2},
{m− 5,m− 1}, {m− 4,m− 1} and {i, i+ 4} for i ∈ {4, 5, . . . ,m− 6},

• H2 contains the edges {1, 4}, {1, 5}, {2, 5}, {2, 6}, {4, 7}, {m,m+3}, {m−1,m+
3}, {m− 2,m− 1}, {m− 3,m}, {i, i+1} for i ∈ {7, 9, . . . ,m− 4} and {i, i+3}
for i ∈ {6, 8, . . . ,m− 5}, and
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• H3 contains the edges {3, 4}, {3, 6}, {4, 5}, {m−1,m}, {m−2,m+1}, {m−1,m+
2}, {m−4,m}, {m−3,m+1}, {m−2,m+2}, {i, i+1} for i ∈ {6, 8, . . . ,m−5}
and {i, i+ 3} for i ∈ {5, 7, . . . ,m− 6}.

For m ≥ 12 and even

• H1 contains the edges {0, 1}, {0, 4}, {1, 2}, {2, 3}, {3, 6}, {4, 7}, {5, 6}, {5, 9},
{m− 5,m− 2}, {m− 4,m− 3}, {m− 4,m− 1}, {m− 2,m− 1}, {i, i+ 1} for
i ∈ {7, 9, . . . ,m− 7} and {i, i+ 3} for i ∈ {8, 10, . . . ,m− 6},

• H2 contains the edges {1, 4}, {1, 5}, {2, 5}, {2, 6}, {4, 8}, {m − 6,m − 2}, {m −
5,m−4}, {m−5,m−1}, {m−3,m−2}, {m−3,m}, {m−1,m+3}, {m,m+3},
{i, i+ 1} for i ∈ {6, 8, . . . ,m− 8} and {i, i+ 3} for i ∈ {7, 9, . . . ,m− 7}, and

• H3 contains the edges {3, 4}, {3, 7}, {4, 5}, {5, 8}, {6, 9}, {m − 6,m − 5}, {m −
4,m}, {m−3,m+1}, {m−2,m+1}, {m−2,m+2}, {m−1,m}, {m−1,m+2}
and {i, i+ 4} for i ∈ {6, 7, . . . ,m− 7}.

Lemma 3.11. For each m ≥ 14, J1,3,4
m 7→ C8 ∪ Cm−8.

Proof. For m ∈ {14, 15, 16, 17}, H1, H2, H3 are as defined in the following table.

m

14 H1 = (0, 1, 2, 3, 7, 8, 5, 4) ∪ (6, 9, 13, 12, 11, 10)
H2 = (8, 11, 14, 17, 13, 10, 9, 12) ∪ (1, 4, 7, 6, 2, 5)
H3 = (7, 10, 14, 13, 16, 12, 15, 11) ∪ (3, 4, 8, 9, 5, 6)

15 H1 = (0, 1, 2, 3, 6, 5, 8, 4) ∪ (7, 10, 14, 13, 9, 12, 11)
H2 = (1, 4, 7, 8, 9, 6, 2, 5) ∪ (10, 11, 14, 18, 15, 12, 13)
H3 = (8, 11, 15, 14, 17, 13, 16, 12) ∪ (3, 4, 5, 9, 10, 6, 7)

16 H1 = (0, 1, 5, 6, 2, 3, 7, 4) ∪ (8, 9, 10, 11, 15, 14, 13, 12)
H2 = (1, 2, 5, 9, 6, 7, 8, 4) ∪ (10, 13, 16, 19, 15, 12, 11, 14)
H3 = (3, 4, 5, 8, 11, 7, 10, 6) ∪ (9, 12, 16, 15, 18, 14, 17, 13)

17 H1 = (0, 1, 2, 3, 7, 6, 5, 4) ∪ (8, 9, 13, 16, 12, 15, 14, 10, 11)
H2 = (1, 4, 8, 12, 9, 6, 2, 5) ∪ (7, 10, 13, 14, 17, 20, 16, 15, 11)
H3 = (3, 4, 7, 8, 5, 9, 10, 6) ∪ (11, 12, 13, 17, 16, 19, 15, 18, 14)

For m ≥ 18 and even

• H1 consists of the 8-cycle (0, 1, 5, 6, 2, 3, 7, 4) and the (m − 8)-cycle with edges
{8, 9}, {9, 10}, {10, 11}, {8, 12}, {m−5,m−1}, {m−4,m−3}, {m−3,m−2},
{m − 2,m − 1} {i, i + 1} for i ∈ {12, 14, . . . ,m − 6} and {i, i + 3} for i ∈
{11, 13, . . . ,m− 7},
• H2 consists of the 8-cycle (1, 2, 5, 9, 6, 7, 8, 4) and the (m − 8)-cycle with edges
{10, 13}, {11, 12}, {m− 6,m− 2}, {m− 5,m− 2}, {m− 4,m− 1}, {m− 3,m},
{m− 1,m+ 3}, {m,m+ 3} and {i, i+ 4} for i ∈ {10, 11, . . . ,m− 7}, and

• H3 consists of the 8-cycle (3, 4, 5, 8, 11, 7, 10, 6) and the (m − 8)-cycle with edges
{9, 12}, {9, 13}, {m− 4,m}, {m− 3,m+ 1}, {m− 2,m+ 1}, {m− 2,m+ 2},
{m− 1,m}, {m− 1,m+ 2}, {i, i+ 1} for i ∈ {13, 15, . . . ,m− 5} and {i, i+ 3}
for i ∈ {12, 14, . . . ,m− 6}.
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For m ≥ 19 and odd

• H1 consists of the 8-cycle (0, 1, 2, 3, 7, 6, 5, 4) and the (m − 8)-cycle with edges
{8, 9}, {8, 11}, {9, 13}, {10, 11}, {10, 14}, {12, 15}, {12, 16}, {m − 4,m − 1},
{m− 3,m− 2} and {i, i+ 4} for i ∈ {13, 14, . . . ,m− 5},

• H2 consists of the 8-cycle (1, 4, 8, 12, 9, 6, 2, 5) and the (m − 8)-cycle with edges
{7, 10}, {7, 11}, {10, 13}, {11, 15}, {m− 4,m− 3}, {m− 3,m}, {m− 2,m− 1},
{m− 1,m+ 3}, {m,m+ 3}, {i, i+ 1} for i ∈ {13, 15, . . . ,m− 6} and {i, i+ 3}
for i ∈ {14, 16, . . . ,m− 5}, and

• H3 consists of the 8-cycle (3, 4, 7, 8, 5, 9, 10, 6) and the (m − 8)-cycle with edges
{11, 12}, {11, 14}, {12, 13}, {m− 4,m}, {m− 3,m+ 1}, {m− 2,m+ 1}, {m−
2,m+2}, {m− 1,m}, {m− 1,m+2}, {i, i+1} for i ∈ {14, 16, . . . ,m− 5} and
{i, i+ 3} for i ∈ {13, 15, . . . ,m− 6}.

Lemma 3.12. J1,3,4
24 7→ C8 ∪ C8 ∪ C8.

Proof. Take

H1 = (0, 1, 2, 3, 6, 5, 8, 4) ∪ (7, 10, 9, 12, 13, 14, 15, 11) ∪ (16, 17, 18, 19, 23, 22, 21, 20),

H2 = (1, 4, 7, 8, 9, 6, 2, 5) ∪ (10, 11, 12, 15, 16, 13, 17, 14) ∪ (18, 21, 24, 27, 23, 20, 19, 22), and

H3 = (3, 4, 5, 9, 13, 10, 6, 7) ∪ (8, 11, 14, 18, 15, 19, 16, 12) ∪ (17, 20, 24, 23, 26, 22, 25, 21).

The following result is an analogue of Lemma 3.7 for 2-factorisations of Cay(Zn ;
±{1, 3, 4}).

Lemma 3.13. If n ≥ 9 and F is a 2-regular graph of order n with girth at least 6, then
there exists a 2-factorisation of Cay(Zn ;±{1, 3, 4}) into F .

Proof. If n ≥ 9 and F is a 2-regular graph of order n with girth at least 6, then F can
be written as a vertex-disjoint union of 2-regular graphs G1, G2, . . . , Gt where each Gi is
isomorphic to either

• Cm with m = 6, 7 or m ≥ 9,

• C8 ∪ Cm−8 with m ≥ 14, or

• C8 ∪ C8 ∪ C8.

By Lemmas 3.10, 3.11 and 3.12 we have a decomposition J1,3,4
|V (Gi)| 7→ Gi for i = 1, 2, . . . , t.

Applying Lemma 3.9 we obtain a decomposition J1,3,4
n 7→ F , and from this we obtain the

required 2-factorisation of Cay(Zn; ±{1, 3, 4}) into F by applying Lemma 3.8.

4 2-factorisations and the Oberwolfach Problem
In this section we use results from the preceding sections to obtain results on the Ober-
wolfach Problem (and an additional result on 2-factorisations of Kn − I into a number
of specified 2-factors and Hamilton cycles). We will also use the following corollary of
Lemma 3.2 which was proved in [8].
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Lemma 4.1. ([8]) If there exists a factorisation ofKn or ofKn−I into Cay(Zn ;±{1, 2, 3,
4}), then OP(F ) has a solution for each 2-regular graph F of order n, with the exception
that there is no solution to OP(C4 ∪ C5).

Theorem 4.2. If p ≡ 5 (mod 8) is prime, then OP(F ) has a solution for every 2-regular
graph F of order 2p.

Proof. The case p = 13 is covered in [13]. For p 6= 13, Theorem 2.11 gives us a fac-
torisation of K2p − I into Cay(Z2p ;±{1, 2, 3, 4}) and the result then follows by Lemma
4.1.

Theorem 4.3. Let P be the set of primes given by p ∈ P if and only if p ≥ 7 and neither
4 nor 32 is in the subgroup of Z∗p generated by {−1, 6}. Then P is infinite and if p ∈ P ,
then OP(F ) has a solution for every 2-regular graph F of order p satisfying ν3(F ) ≤
ν5(F ) +

∑n
i=7 νi(F ) where νm(F ) denotes the number of m-cycles in F .

Proof. Let p be prime such that p ≡ 1 (mod 6), 2, 3 /∈ (Z∗p)3 and 6 ∈ (Z∗p)3. Theorem 2.5
says that there are infinitely many such p. We shall show that p ∈ P , which shows that P
is also infinite. We have−1 ∈ (Z∗p)3, and this together with the fact that 6 ∈ (Z∗p)3 implies
that the subgroup of Z∗p generated by {−1, 6} is a subgroup of (Z∗p)3. Since it follows
from 2 /∈ (Z∗p)3 that 4, 32 /∈ (Z∗p)3, neither 4 nor 32 is in the subgroup of Z∗p generated by
{−1, 6}. That is, p ∈ P .

Now let p be an arbitrary element of P and let G be the subgroup of Z∗p generated
by {−1, 6}. The condition that neither 4 nor 32 is in G implies that the order d of 2G
in Z∗p/G is neither 1, 2 nor 5, and so there exist non-negative integers α and β such that
d = 3α + 4β. Thus, by Lemma 2.6 there is a factorisation of Kp in which each factor is
either Cay(Zp ;±{1, 2, 3}) or Cay(Zp ;±{1, 2, 3, 4}).

Let F be a 2-regular graph of order p satisfying ν3(F ) ≤ ν5(F )+
∑n
i=7 νi(F ). Lemma

3.7 gives us a 2-factorisation of Cay(Zp ;±{1, 2, 3}) into F , and Lemma 3.2 gives us
a 2-factorisation of Cay(Zp ;±{1, 2, 3, 4}) (the facts that p is prime and that ν3(F ) ≤
ν5(F )+

∑n
i=7 νi(F ) imply that F is not amongst the possible exceptions listed in Lemma

3.2). The result follows.

Theorem 4.4. Let P be the set of primes such that p ∈ P if and only if p ≡ 1 (mod 6)
and 2, 3, 6 /∈ (Z∗p)3. Then P is infinite and if p ∈ P , then OP(F ) has a solution for every
2-regular graph F of order p with girth at least 6.

Proof. By Theorem 2.5, P is infinite. If p ∈ P , then Theorem 2.4 gives us a factorisation
of Kp into Cay(Zp ;±{1, 3, 4}), and the result then follows by applying Lemma 3.13 to
each factor (7 /∈ P so Lemma 3.13 can indeed be applied).

For each odd prime p, the following theorem states there is a 2-factorisation of K2p− I
into p−1

2 prescribed 2-factors and p−1
2 Hamilton cycles.

Theorem 4.5. If p is an odd prime and G1, G2, . . . , G p−1
2

are 2-regular graphs of order
2p, then there is a 2-factorisation {F1, F2, . . . , Fp−1} of K2p − I such that Fi ∼= Gi for
i = 1, 2, . . . , p−12 and Fi is a Hamilton cycle for i = p+1

2 , p+3
2 , . . . , p− 1.

Proof. By Theorem 2.9 there is a factorisation of K2p − I into Cay(Zp ;±{1, 2}). By
Lemma 3.1, each copy of Cay(Zp ;±{1, 2}) can be factored into any specified 2-regular
graph of order 2p and a Hamilton cycle. The result follows.
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5 Isomorphic 2-factorisations of complete multigraphs
The complete multigraph of order n and multiplicity s is denoted by sKn. It has s distinct
edges joining each pair of distinct vertices.

Lemma 5.1. If p is an odd prime and S = ±{d1, d2, . . . , ds} ⊆ Z∗p, then there exists a
2s-factorisation of sKp into Cay(Zp ;S).

Proof. The required factorisation is given by {Cay(Zp ;ωiS) : i = 0, 1, . . . , p−32 } where
ω is primitive in Zp and ωiS = {ωis : s ∈ S}.

Theorem 5.2. If p is an odd prime and F is any 2-regular graph of order p satisfying
ν3(F ) ≤ ν5(F ) +

∑n
i=7 νi(F ), where νm(F ) denotes the number of m-cycles in F , then

there exists a 2-factorisation of 3Kp into F .

Proof. The cases p = 3 and p = 5 are trivial so assume p ≥ 7. By Lemma 5.1 there exists
a 6-factorisation of 3Kp into Cay(Zp ;±{1, 2, 3}), and by Lemma 3.7 each such 6-factor
has a 2-factorisation into F .

Theorem 5.3. If p is an odd prime and F is any 2-regular graph of order p, then there
exists a 2-factorisation of 4Kp into F .

Proof. The cases p = 3 and p = 5 are trivial. Since solutions to OP(C7) and OP(C3∪C4)
exist, the case p = 7 can be dealt with by taking four copies of these 2-factorisations of
K7. So we may assume p ≥ 11. By Lemma 5.1 there exists an 8-factorisation of 4Kp

into Cay(Zp ;±{1, 2, 3, 4}), and by Lemma 3.2 each such 8-factor has a 2-factorisation
into F ; except in the case where F is one of the listed exceptions or possible exceptions
in Lemma 3.2. These are easily dealt with as follows. Since p is prime the only relevant
exceptions are F = C3 ∪ C3 ∪ · · · ∪ C3 ∪ C4 where the number of copies of C3 is at least
5, and F = C3 ∪C4 ∪C4 ∪ · · · ∪C4 where the number of copies of C4 is odd and at least
5. However, it is known that for each such F , there is a 2-factorisation of Kp into F ; the
former case is covered in [11], and the latter case is covered in [21]. Thus, by taking four
copies of these 2-factorisations of Kp, we obtain the required 2-factorisations of 4Kp.

Theorem 5.4. Let p be an odd prime and let F be a 2-regular graph of order p. If λ ≡
0 (mod 4), then there exists a 2-factorisation of λKp into F . Moreover, if F satisfies
ν3(F ) ≤ ν5(F ) +

∑n
i=7 νi(F ), where νm(F ) denotes the number of m-cycles in F , then

the result also holds for λ = 3 and for all λ ≥ 6.

Proof. For the given values of λ, it is trivial to factorise λKp such that each factor is either
3Kp or 4Kp, and with each factor being 4Kp when λ ≡ 0 (mod 4). Thus, the result follows
by Theorems 5.2 and 5.3.
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