
Tiled Shading - Preprint
To appear in JGT 2011

Ola Olsson and Ulf Assarsson

Chalmers University of Technology

Abstract

In this article we describe and investigate Tiled Shading. The tiled techniques,

though simple, enable substantial improvements to both deferred and forward shad-

ing. Tiled Shading has previously been talked about only in terms of deferred

shading (Tiled Deferred Shading). We contribute a more detailed description of

the technique, introduce Tiled Forward Shading (a generalization of Tiled Deferred

Shading to also apply to forward shading), and a thorough performance evaluation.

Tiled Forward Shading has many of the advantages of deferred shading, e.g.

scene management and light management is decoupled. At the same time, un-

like traditional deferred and tiled deferred shading, Full Screen Anti Aliasing and

transparency is trivially supported.

We also contribute a thorough comparison of the performance of Tiled De-

ferred, Tiled Forward and traditional deferred shading. Our evaluation shows that

Tiled Deferred Shading has the least variable worst case performance, and scales

the best with faster GPUs. Tiled Deferred Shading is especially suitable when

there are many light sources. Tiled Forward Shading is shown to be competitive

for scenes with fewer lights, while being much simpler than traditional forward

shading techniques.

Tiled shading also enables simple transitioning between deferred and forward

shading. We demonstrate how this can be used to handle transparent geometry,

frequently a problem when using deferred shading.

1 Introduction

Tiled Shading works by bucketing lights into screen space tiles. Each tile contains

a list of (potentially) affecting lights. The tiles can then be processed independently

to compute the lighting. We will describe how this technique can be used to great

advantage, when implementing both deferred and forward shading.

Tiled Shading has similarities to Tiled Rendering [FPE+89], an old technique where

the tiling is applied to geometry primitives, instead of lights. Tiled Rendering has been

unable to scale to the millions of primitives used today. Lights, in contrast, number at

most in the thousands, for even the most demanding real-time applications. For Tiled

Shading, this enables quick bucketing, and real-time performance.

Tiled Deferred Shading is not a new technique, but has been described in several

recent talks [BE08, And09, Swo09, Lau10]. In this article we describe the technique

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43392688?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

in detail, and show how it can be generalized to apply to forward shading as well. We

also contribute an in-depth comparison of the performance, comparing Tiled Forward

Shading, Tiled Deferred Shading and traditional Deferred Shading.

1.1 Definitions

Lights, in this article, are point lights with a finite range, beyond which they do not

contribute any lighting. Thus, when we refer to the light volume, this is the spherical

volume defined by the light position and influence radius. This is obviously not phys-

ically correct, but represents a very common type of lights in real-time applications.

The techniques presented can be applied to arbitrary kinds of lights, but this is beyond

the scope of this article.

In the literature it is not always clear what is meant by Deferred Shading. In this

article we mean the technique whereby all required geometry attributes are rendered

into Geometry Buffers (G-Buffers [ST90]), in a single geometry pass. The G-Buffers

contain attributes such as position, normal and material properties for each pixel. This

is followed by a lighting pass, during which the lights are applied one at a time by ras-

terizing the light volumes. Note that this is different from Deferred Lighting [AA03],

which only performs light computations in the deferred pass and adds a separate geom-

etry pass to compute final shading. This technique is also referred to as Light Pre-pass

Rendering [Eng09]. As deferred lighting has the same basic characteristics as deferred

shading, we do not evaluate this technique in this article.

We use the term Forward Shading to mean when lighting is computed in the frag-

ment (or sometimes, vertex) shader as part of the rasterization of the scene geometry.

This technique is probably still the most common in real-time applications, such as

games.

2 Tiled Deferred Shading

Recently, a technique called Tiled Deferred Shading has been discussed in the game

development community [BE08, And09, Swo09, Lau10]. The primary goal is to solve

the bandwidth problem, which is plaguing deferred shading. The problem is that each

time a fragment is affected by a light, the geometry information must be read from

the G-Buffers. Tiled deferred shading also brings other improvements over traditional

deferred shading, listed below:

• G-Buffers are read exactly once for each lit fragment.

• Common terms in the rendering equation can be factored out.

• The frame buffer is written exactly once.

• Light accumulation is done in register, at full floating point precision.

• Fragments (in the same tile) coherently process the same lights.



3

The first point also benefits computations, as texture fetch and data unpacking need

only be performed once. An example of the common terms that can be factored out

is the material diffuse and specular colors, as these are the same for all lights. As can

be seen, there are major improvements to both bandwidth and compute. The Tiled

Deferred Shading algorithm is summarized in the following steps.

1. Render the (opaque) geometry into the G-Buffers.

2. Construct a screen space grid, covering the frame buffer, with some fixed tile

size, t = (x, y), e.g. 32× 32 pixels.

3. For each light: find the screen space extents of the light volume and append the

light ID to each affected grid cell.

4. For each fragment in the frame buffer, with location f = (x, y).

(a) sample the G-Buffers at f .

(b) accumulate light contributions from all lights in tile at ⌊f/t⌋

(c) output total light contributions to frame buffer at f .

The first step is an ordinary deferred geometry pass. The second and third steps are

part of the light grid construction process, which can be implemented in several ways

(see Section 6 and 7).Listing 1 and Listing 2 shows a pseudo (GLSL) implementation

of the shading process.

vec3 computeLight(vec3 position, vec3 normal, vec3 albedo,

vec3 specular, vec3 viewDir, float shininess,

ivec2 fragPos)

{

ivec2 l = ivec2(fragPos.x / LIGHT_GRID_CELL_DIM_X,

fragPos.y / LIGHT_GRID_CELL_DIM_Y);

int count = lightGrid[l.x + l.y * gridDim.x].x;

int offset = lightGrid[l.x + l.y * gridDim.x].y;

vec3 shading = vec3(0.0);

for (int i = 0; i < count; ++i)

{

ivec2 dataInd = ivec2((offset + i) % TILE_DATA_TEX_WIDTH,

(offset + i) / TILE_DATA_TEX_WIDTH);

int lightId = texelFetch(tileDataTex, dataInd, 0).x;

shading += applyLight(position, normal, albedo, specular,

shininess, viewDir, lightId);

}

return shading;

}

Listing 1: Function for light accumulation, using tiled lighting. The grid is assumed

to be stored the uniform lightGrid, which is an array of ivec2s, and the tile lists are



4

stored in a texture tileDataTex. Note how the function does not depend on anything

else; It can thus be called from either a deferred or forward fragment shader, or indeed

a compute shader. In fact, there is nothing preventing it being used from a vertex shader

either.

In this example the shading is done in a deferred fragment shader (see Listing 2).

This can be performed by drawing a full screen quad. It can equally well, or better, be

implemented using compute shaders, CUDA, Open CL or SPUs, as platform or desire

dictates.

void main()

{

ivec2 fragPos = ivec2(gl_FragCoord.xy);

vec3 albedo = texelFetch(albedoTex, fragPos).xyz;

vec4 specShine = texelFetch(specularShininessTex, fragPos);

vec3 position = unProject(gl_FragCoord.xy,

texelFetch(depthTex, fragPos));

vec3 normal = texelFetch(normalTex, fragPos).xyz;

vec3 viewDir = -normalize(position);

gl_fragColor = computeLight(position, normal, albedo,

specShine.xyz, viewDir, specShine.w,

fragPos)

}

Listing 2: Tiled deferred fragment shader example. Simply loads G-Buffer contents,

and invokes the function from Listing 1. Note that the position is reconstructed from

the depth, this is done only once for all lights.

2.1 Limitations

Deferred shading has some notable weaknesses, some of which are shared by the tiled

approach. The most important, perhaps, is when combined with Full Screen Anti Alias-

ing (FSAA). The primary issue is simply the required frame buffer size. At 1080p

(1920x1080), and with 16 times Multi Sample Anti Aliasing (MSAA), a 32-bit color

render requires almost 256Mb to store depth and color samples. For most current

graphics hardware, adding several other G-Buffers on top of this is simply not possi-

ble. Performing the deferred shading post-resolve (i.e. after AA averaging) re-creates

the aliasing, wherever shading changes quickly. It is, however, possible to compute

the shading pre-resolve, and to do so only where edges are present [Swo09, Lau10] –

provided, that is, G-buffers can be made to fit in memory.

Neither Deferred shading, nor Tiled Deferred Shading, provides a way to han-

dle transparency. We are instead left with techniques that are approximate [KL09,

ESSL10], or expensive [Eve01]. In Section 4, we present a way to conveniently sup-

port transparency when using tiled shading.

Another issue, common to both forward shading and tiled deferred shading, is that

all lights (that cast shadows) must have their shadow maps built before the shading

pass. This is because all lights are in flight simultaneously. Storing shadow maps



5

for hundreds of lights can be prohibitive in terms of memory. In contrast, traditional

deferred shading computes all light contributions from each light, one at a time. This

means a single shadow map can be re-used for all lights.

3 Tiled Forward Shading

Tiled shading is not limited to performing deferred shading. We can also apply the

technique to traditional forward shading. We simply access the grid in the fragment

shader, and apply the relevant lights. We illustrate this in Listing This approach has

the following advantageous properties:

• Light management is decoupled from geometry.

• Light data can be uploaded to the GPU once per scene.

• FSAA works as expected.

• Common terms in the rendering equation can be factored out.

• Light accumulation is done in register, at full floating point precision.

• Same shading function as Tiled Deferred.

The traditional approach in forward shading is to find and upload a minimal set of

lights for each batch of rendered geometry. This is time consuming and imposes an

unfortunate conflict between optimal batch sizes and minimizing the number of lights.

With the tiled approach, geometry batching can be optimized separately from lighting,

and light data can be uploaded once for the entire scene.

As shading is done in its traditional place in the pipeline, there is no problem ap-

plying any FSAA scheme. Also there are no G-Buffers to worry about. Integrating

tiled shading into an existing forward shading pipeline is straightforward, owing to the

self contained nature of Tiled Shading.

The last property is also worth highlighting. As we use the same data structure for

lights, we can use the same shader functions for both deferred and forward shading (il-

lustrated in Listing 3). This enables much easier transition between the two techniques.

We also exploit this to support transparency, described further in Section 4.



6

in vec3 normal;

in vec3 position;

in vec2 texCoord;

uniform vec3 specular;

uniform float shininess;

uniform float diffuse;

void main()

{

ivec2 fragPos = ivec2(gl_FragCoord.xy);

vec3 albedo = texture2D(albedoTex, texCoord).xyz * diffuse;

vec3 viewDir = -normalize(position);

gl_fragColor = computeLight(position, normal, albedo,

specular, viewDir, shininess,

fragPos);

}

Listing 3: Tiled forward fragment shader example. Simply invokes the function from

Listing 1 with interpolated and uniform attributes.

3.1 Limitations

One drawback, compared to deferred shading techniques, is that each fragment may

be shaded more than once. When overdraw occurs, the same fragment is influenced

by several primitives, and consequently shaded for each. This overdraw problem can

be addressed by using a pre-z pass, which introduces an extra geometry pass to prime

the hierarchical/early Z buffer. This is already common practice to avoid re-processing

complex shaders, and is ultimately a trade-off between the cost of an extra geometry

pass vs the cost of the redundant shading work. For example, if there are few lights or

low scene depth complexity, it may be quicker to skip the pre-z pass.

A related problem occurs when FSAA is enabled. Along primitive edges, fragments

can also be shaded several times, up to once for each sample. Where there are shading

discontinuities, this is what yields a nice softened edge. However, if the edge is an

interior edge in a continuous mesh, this creates redundant work, whereby each sample

is shaded to a very similar (or identical) tone. This is in part a general problem for

GPUs, as triangles are becoming smaller (perhaps especially since the introduction

of tessellation units). Deferred techniques, in contrast, can analyze the samples in

the G-Buffers and compute shading only once, unless a discontinuity is found. In

principle then, deferred shading has an advantage, though efficiently implementing it

is not trivial.

4 Transparency

In real-time rendering, transparent geometry is usually handled in a separate pass. The

transparent geometry is submitted in (rough) back to front order, with alpha blend-

ing enabled. This approach is impossible with deferred shading, as only one layer is



7

represented in the G-Buffers. A separate forward pipeline must thus be maintained,

complete with light management, which, as mentioned earlier, is both complex and

costly, and increasingly so as the number of lights grow.

However, using Tiled Shading we can reuse the grid built for the deferred pass, and

apply a second Tiled Forward Shading pass with sorting and blending. Due to the fact

that all light information is stored in a single global structure (the grid), the rendering

pipeline can be mostly the same for both passes. This makes it vastly simpler to support

transparency, while using deferred shading for the bulk of the geometry.

in vec3 position;

in vec3 normal;

// uniforms: textures, material attributes etc...

void main()

{

// compute the needed attributes as desired

#if ENABLE_DEFERRED_OUTPUT

outputToGBuffers(position, normal, diffuse, specular ...);

#else

outputShading(position, normal, diffuse, specular ...);

#endif

}

Listing 4: The selection between forward and deferred in a shader can be controlled

with a single flag, choosing between output shader functions.

5 Algorithm Comparison

In Table 1, we summarize the the key differences and properties of the algorithms, for

easy comparison of important features of the algorithms. Note that the properties are

not independent: many depend on other, more fundamental features. They are listed in

this way nonetheless, in order to highlight important practical differences.

The most prominent property is the innermost loop structure. If this loop is over

the pixels, then lights are accessed in a sequential manner. This makes it possible to

re-use shadow maps. Conversely, when the innermost loop is over the lights, the frame

buffer data is sequentially accessed. This is what enables fetching the G-Buffer data

once, providing the large bandwidth savings of tiled deferred shading.

6 Building Tiles

When constructing the grid, our first task is to choose tile size. This choice involves

many trade offs between memory and computation. For example, smaller tiles means

more storage and bandwidth use for the grid, but less wasted computation at the light

boundaries. It is therefore not likely that there exists a single best tile size for all scene

configurations (or even for all views of the same scene).



8

Table 1: Comparison of properties of the algorithms.

Deferred Tiled Deferred Tiled Forward

Innermost loop Pixels Lights Lights

Light data access pattern Sequential Random Random

Pixel data access pattern Random Sequential Sequential

Re-use Shadow Maps Yes No No

Shading Pass Deferred Deferred Geometry

G-Buffers Yes Yes No

Overdraw of shading No No Yes

Transparency Difficult Simplea Simple

Supporting FSAA Difficult Difficult Trivial

Bandwidth Usage High Low Low

Light volume intersection Per Pixel Per Tile Per Tile

aThat is, simple to implement by applying a Tiled Forward pass reusing the light grid (described in

Section 4).

For this article we use a tile size of 32× 32, as this gives three orders of magnitude

fewer grid cells than pixels. Consequently, the time and memory spent on managing

tiles should not create a bottleneck. We did not experimentally evaluate varying the tile

size. However, 16× 16 has also been reported to work well [And09, Lau10].

6.1 Light Insertion

Next, we must insert the lights into the grid. The simplest way is to find the screen

space extents of the light bounding sphere [Len02, SWBG06], and then insert the light

into the covered grid cells. This process is simple enough to have a relatively small cost

even for hundreds of lights, if implemented on the CPU. For thousands of lights, with

high overdraw, it can be implemented on the GPU. The CPU approach is also suitable

for older hardware and APIs, which do not support compute shaders.

An interesting way to implement this, which we have not tested, might be to use

rasterization to build the grid. This would allow for easy handling of arbitrarily shaped

light volumes, e.g. spot light cones. To ensure all lights are included we must use

conservative rasterization [HAMO05], as ordinary rasterization only samples fragment

centers; and an A-Buffer, for example using per-fragment linked lists [TG10]. It is,

however, unclear how well the GPU would perform with these very small render tar-

gets, e.g. 60×34 when using tiles of size 32×32 at 1080p. A quick estimate, obtained

by performing standard deferred shading to a render target of this size, indicate that

it would be at least around five times slower, compared to the screen space bounding

sphere approach.



9

6.2 Data Structure

To facilitate look up from shaders, we must store the data structure in a suitable format.

We have chosen to use three arrays, as depicted in Figure 1. The Light Grid contains

an offset to and size of the light list for each tile. The Tile Light Index Lists contains

light indices, referring to the lights in the Global Light List. This data structure can

Global Light List:

Tile Light Index Lists: 0 0 6 3 0 6 4 …

0

1

1

3

4

3

7

1

66

1

67

2

69

2

…

…

…

…

L0 L1 L2 L3 L4 L5 …L6

4

offset

size

Light Grid:

Figure 1: Grid data structure.

easily be stored on the GPU as constant buffers or textures. The index list lengths vary

with light overdraw, and can become relatively large. It is thus suitable for storing in a

texture.

6.3 Depth Range Optimization

Standard deferred shading implementations often use the Stencil Optimization [AA03].

This technique uses an approach analogous to shadow volumes, but with light volumes,

to create a stencil mask. The mask lets through only fragments that are actually inside

the light volume. This can offer substantial performance improvements where the light

is large on screen, but only affects a few fragments (for example a light in the middle

of an empty corridor).

Tiled shading can make use of a similar technique, using the depth buffer to com-

pute a min and max Z value for each grid tile. These bounds are then used when adding

lights to the grid, to exclude lights that cannot affect the geometry in the tile. Note that

tiles that span a depth discontinuity can have a quite large difference between min and

max depth. The tiled techniques will therefore always cull somewhat less work than

the stencil optimization (this is shown in Figure 3).

Computing the tile min/max depth requires access to the Z buffer before the grid is

constructed. This is not a problem if a pre-z or deferred pass is performed. The min/-

max operation is suitable for implementation on the GPU, using a parallel reduction



10

per tile. The result can be read back to the host for CPU grid building, or the grid can

be constructed entirely on the GPU. Note that if the CPU is used, the process cannot

be completely pipelined with most current APIs.

When rendering transparent geometry (using the tiled forward approach), this ge-

ometry is not represented in the depth buffer. We can thus only use the farthest Z value,

to reject lights that are hidden by the opaque geometry. We could, if needed, render

the transparent geometry to a separate depth buffer with reversed depth test, to find

the nearest depth value. This would allow us to reject any light completely in front of

all transparent geometry. In scenes where the transparent geometry lies close to the

opaque, for example shallow water, this could be a useful optimization.

7 Single Kernel Tiled Deferred Shading

In past presentations on tiled deferred shading [And09, Lau10], the whole process of

grid building and lighting application is performed in a single DirectX 11 compute

shader. This works by launching one thread group per tile, with one thread per fragment

in the tile. Each thread group then independently tests all lights. The six frustum planes

for the tile are constructed and then tested against each light bounding sphere. The light

list for the tile is built in local, on chip, memory, and the threads involved then switch

to lighting the fragments in the tile.

Treating each tile independently leads to a lot of redundant calculations. For ex-

ample, all tiles in a column or row share planes. Also, consider a tile which has at

least two opposite neighbors that are affected by a light. This tile must also be affected

by the light, without needing any plane tests at all. The approach also requires atomic

operations and thread group synchronization, making it unsuitable for older hardware.

An advantage for the single kernel approach is that the process is self contained, and

hence simple to implement and integrate. Storing the light index list in shared memory

saves some bandwidth, but is not a large improvement as these lists are relatively small.

8 Performance Evaluation

Performance was measured on a PC with an Intel Core 2 Quad at 2.5GHz, using either

an NVIDIA GTX 280 or GTX 480 GPU (as indicated). The frames were rendered at

full HD resolution, 1920x1080. The following variations were implemented:

1. TiledForward - Tiled Forward Shading, using the light grid from the pixel

shader. Uses the CPU to build the grid, and OpenGL for everything else.

2. TiledForward-PreZ - As above, with pre-z pass and depth range optimization

(min-max reduction implemented in CUDA).

3. Deferred - Standard deferred shading.

4. Deferred-Stencil - As above, with stencil optimization to cull unaffected frag-

ments within light volumes.



11

5. TiledDeferred - Tiled Deferred Shading, using CUDA to build the grid, compute

depth range and lighting.

We evaluated several flavors of Tiled Deferred Shading, but we only report results

for the best performing version. This was an implementation of the process outlined in

Section 2 and 6, using multiple CUDA kernels.

We tried using a full screen quad in OpenGL, computing the lighting in the frag-

ment shader. However, this approach was substantially slower. For comparison we also

ported the single kernel method used in [Lau10] to CUDA. We optimized their depth

min/max reduction by using a warp-parallel SIMD reduction (similar to warpReduce

in [Har08]) within each warp and only atomic operations between warps. This sped up

the reduction by a factor of six for a 16× 16 tile on our GTX280. After this optimiza-

tion, performance is very close to our chosen implementation, with a small advantage

for the reported version.

The light model is a fairly ordinary Blinn-Phong model with diffuse and specular

reflections. To facilitate this model, the G-Buffers are: Depth, Normal, Diffuse Color,

Specular Color and Shininess and Emissive and Ambient.

Each buffer, except depth, store four 16-bit floating point values per fragment.

However we also tested using 32 bits, to investigate the impact of G-Buffer size on

performance (see Tables 2 and 3). The depth buffer always stores a scalar 32 bit float-

ing point value.

We implemented the 32-bit G-Buffers to explore how varying the balance between

compute and bandwidth affect the outcome. The expected behavior is that more band-

width use will favor tiled deferred, whereas increasing compute demand favors tra-

ditional deferred. Changing the light model or packing the G-Buffers would have a

similar impact.

As test scene we choose the Robots scene from the BART suite [LAM01]. We

choose this scene rather than a, perhaps better looking, game scene because it will

allow our experiments to be repeated. The BART suite is freely available, whereas

most game data is not.

We augmented the scene with point lights, and created two variations, with differing

light distributions (for reference, the main street is 29.1 units wide):

• Many Static Lights - 924 lights evenly spaced along the animation paths of the

robots, with random sideways offsets. The lights have a range of 12.5 units.

• Few Dynamic Lights - One light attached to each of the 11 robots. The lights

have a range of 40 units.

8.1 Tiled Deferred Shading Performance

Overall, the results confirm that Tiled Deferred Shading is much less variable, with

smaller differences between best and worst case performance. This is seen in Figure 2

and Tables 2 and 3.

Traditional deferred shading is usually bandwidth limited. Thus we expect frame

times to scale linearly with G-Buffer size. This was confirmed in our experiments, as

can be seen in Tables 2 and 3. The tiled deferred variants are much less affected.



12

40

60

80

100

120

140

T
im

e
 (

m
s
)

TiledFwd

TiledFwd-PreZ

Deferred

Deferred-Stencil

TiledDeferred

0

20

40

60

80

100

120

140

0 50 100 150 200 250

T
im

e
 (

m
s
)

Frame Number

TiledFwd

TiledFwd-PreZ

Deferred

Deferred-Stencil

TiledDeferred

Figure 2: Frame times over the animation sequence in the scene with many static lights, mea-

sured on an NVIDIA GTX280 GPU. The animation is sampled at 5 fps. The peaks correspond

to times when the camera is looking through a great many lights. Note that the tiled forward

version is clipped, in order to make the presentation clearer. It plateaus at around 400ms, with a

similar shape to the others. The thumbnails below the graph show frames 0, 86, 186 and 259.

Tables 2 and 3 also shows results from a GTX480. This new GPU roughly doubles

the (attainable) compute capabilities, whereas bandwidth only grows by about 30%.

This also favors the tiled techniques, almost doubling their performance on the new

architecture. Traditional deferred only improves by about the expected 30%.

Notice that traditional deferred with stencil optimization is fairly competitive, when

we use 16-bit G-Buffers. However, with fatter G-Buffers, or increasing compute/band-

width ratio in the GPU, performance quickly falls behind the tiled techniques. This

may not be enough to outweigh the advantages, such as being able to share shadow

map storage between lights.

In Figure 3, we show how the number of lighting computations (i.e. number of

lighting function invocations) performed each frame for the different techniques. As

expected, the stencil optimization is the most efficient at culling work, as it is performed

at a per-fragment level. TiledFwd is worst, but is substantially improved by the addition

of pre-z pass and depth range optimization. Notice the clear similarity to the frame

time curves shown in Figure 2. This implies that (perhaps unsurprisingly) there is a

reasonably fixed cost per lighting operation, albeit with quite different scales.



13

Table 2: Average frame times in milliseconds for the scene with many lights. Min and max

frame times are also shown. Results for 16-bit and 32-bit G-Buffers are shown, for both the

GTX280 and GTX480 GPUs. Note that G-Buffers are not used for forward shading; thus only

one value is needed for these techniques.

GPU GTX280 GTX480

G-Buffer Depth 16-bit 32-bit 16-bit 32-bit

TiledDeferred 15.7 17.2 7.87 10.4
min / max 7.05 / 33.3 8.82 / 34.8 4.19 / 15.9 6.91 / 18.2

TiledFwd 148 43.0
min / max 26.5 / 410 11.0 / 107

TiledFwd-PreZ 45.5 30.1
min / max 12.1 / 125 9.31 / 72.4

Deferred 38.3 82.1 26.8 51.3
min / max 14.0 / 90.0 27.7 / 197 9.36 / 64.3 18.2 / 121

DeferredStencil 18.4 28.3 12.2 20.2
min / max 8.1 / 39.1 12.4 / 64.8 4.98 / 26.6 9.55 / 43.8

Table 3: Average frame times in milliseconds for the scene with few lights. Min and max frame

times are also shown. Results for 16-bit and 32-bit G-Buffers are shown, for both the GTX280

and GTX480 GPUs. Note that G-Buffers are not used for forward shading; thus only one value

is needed for these techniques.

GPU GTX280 GTX480

G-Buffer Depth 16-bit 32-bit 16-bit 32-bit

TiledDeferred 5.55 7.06 3.34 6.34
min / max 3.00 / 7.13 5.20 / 9.44 2.36 / 4.48 4.68 / 8.98

TiledFwd 9.08 4.03
min / max 3.39 / 21.1 1.39 / 9.95

TiledFwd-PreZ 8.39 5.46
min / max 5.53 / 14.4 3.22 / 9.82

Deferred 6.55 12.8 4.17 9.36
min / max 3.86 / 10.6 6.65 / 22.7 2.12 / 7.41 5.29 / 15.5

DeferredStencil 6.20 10.6 3.65 8.05
min / max 3.90 / 9.30 6.03 / 16.9 1.65 / 5.81 4.07 / 12.4



14

8.2 Tiled Forward Shading Performance

Tiled Forward scales much worse with increasing light overdraw, but the performance

curves have the same overall shape (see Figure 3). In fact, TiledFwd-PreZ is close

to a factor four, and a constant offset, slower than TiledDeferred. Since they ought

to perform the same number of lighting computations, the hardware is not utilized as

efficiently. One factor may be fragments belonging to different tiles being packed into

the same warp (SIMD unit), causing divergence. Also, along the edges of triangles,

there can be many pixel quads that are not full, i.e. up to three of the four fragments are

outside the triangle (a 2x2 pixel quad is the basic unit handled by fragment shaders),

wasting up to 3/4 of computational resources. Furthermore, early Z cull is conserva-

tive. Thus, there will be fragments that are shaded, but finally discarded by the Z test,

pre-z pass notwithstanding.

On the GTX480, the TiledFwd technique improves by up to four times for the

worst cases. This brings performance closer to expectations, given the high number

of lighting computations. The TiledFwd-PreZ only shows modest improvement. It is

unclear why it does not improve as much as TiledFwd.

One scenario where tiled forward shading should work well is when scene depth

complexity is low, and most light volumes are overlapping to the geometry. The is be-

cause lights overlapping the geometry nullifies the effect of depth range optimizations,

as these optimizations are designed to cull lights that do not overlap the geometry. This

description would match a Real Time Strategy (RTS) game pretty well, assuming a top

down view and lots of action on, or near, the terrain.

200

250

300

350

400

450

500

ig
h
ti
n

g
 C

o
m

p
u

ta
ti
o
n

s
 (

M
ill

io
n

s
) TiledFwd

TiledFwd-PreZ / 
TiledDeferred
Deferred

Deferred-Stencil

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250

L
ig

h
ti
n

g
 C

o
m

p
u

ta
ti
o
n

s
 (

M
ill

io
n

s
)

Frame Number

TiledFwd

TiledFwd-PreZ / 
TiledDeferred

Deferred

Deferred-Stencil

Figure 3: Lighting computations each frame, that is the number of times the lighting function

is executed, over the animation sequence in the scene with many static lights. This value corre-

sponds to light volume overdraw for deferred shading, measured using occlusion queries. For

TiledFwd-PreZ and TiledDeferred, this is simply the tile size multiplied by the total length of the

Tile Light Lists. TiledFwd suffers from geometry overdraw; we measured this using a simple

shader, outputting the light counts for each pixel with additive blending enabled.



15

8.3 Fewer Lights

When rendering fewer lights (i.e. the scene with 11 dynamic lights), the situation is

quite different, see Table 3. One important factor is that the total frame time is smaller,

and consequently, a larger proportion is spent rendering the model into the G-Buffers.

This favors the forward shading approach, especially on the GTX480 using 32-bit G-

Buffers, when compared to the deferred techniques.

However, tiled deferred is still the technique which scales best across platforms and

G-Buffer depth. It has the fastest worst case performance in all tests performed. The

worst case performance is arguably the most important metric for real-time applica-

tions, as a stable frame rate is very important for the perceived quality.

At the same time, it is clear that tiled forward shading offers very competitive

performance on the GTX 480. Remember that forward shading supports both AA and

transparency, and may therefore be a good choice if not so many lights are used.

References

[AA03] Jukka Arvo and Timo Aila. Optimized shadow mapping using the stencil

buffer. journal of graphics, gpu, and game tools, 8(3):23–32, 2003.

[And09] Johan Andersson. Parallel graphics in frostbite - current & future. SIG-

GRAPH Course: Beyond Programmable Shading, 2009.

[BE08] Christophe Balestra and Pål-Kristian Engstad. The technology of un-

charted: Drake’s fortune. Game Developer Conference, 2008.

[Eng09] Wolfgang Engel. The light pre-pass renderer: Renderer design for effi-

cient support of multiple lights. SIGGRAPH Course: Advances in real-

time rendering in 3D graphics and games, 2009.

[ESSL10] Eric Enderton, Erik Sintorn, Peter Shirley, and David Luebke. Stochastic

transparency. In I3D ’10: Proceedings of the 2010 ACM SIGGRAPH

symposium on Interactive 3D Graphics and Games, pages 157–164, New

York, NY, USA, 2010. ACM.

[Eve01] Cass Everitt. Interactive order-independent transparency. NVIDIA White

Paper, 2001.

[FPE+89] Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather,

David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Is-

rael. Pixel-planes 5: a heterogeneous multiprocessor graphics system us-

ing processor-enhanced memories. In SIGGRAPH ’89: Proceedings of

the 16th annual conference on Computer graphics and interactive tech-

niques, pages 79–88, New York, NY, USA, 1989. ACM.

[HAMO05] J Hasselgren, T Akenine-Möller, and L Ohlsson. Conservative raster-

ization. In Matt Pharr and Randima Fernando, editors, GPU Gems 2,

chapter 42, pages 677–690. Addison-Wesley Professional, Reading, MA,

2005.



16

[Har08] Mark Harris. Optimizing parallel reduction in cuda. NVIDIA CUDA

Sample, 2008.

[KL09] Scott Kircher and Alan Lawrance. Inferred lighting: fast dynamic light-

ing and shadows for opaque and translucent objects. In Sandbox ’09:

Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games,

pages 39–45, New York, NY, USA, 2009. ACM.

[LAM01] Jonas Lext, Ulf Assarsson, and Tomas Möller. A benchmark for animated

ray tracing. IEEE Computer Graphics and Applications, 21:22–31, 2001.

[Lau10] Andrew Lauritzen. Deferred rendering for current and future rendering

pipelines. SIGGRAPH Course: Beyond Programmable Shading, 2010.

[Len02] Eric Lengyel. The mechanics of robust stencil shadows. Gamasutra, 2002.

[ST90] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of

3-d shapes. SIGGRAPH Comput. Graph., 24(4):197–206, 1990.

[SWBG06] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus Gross. Gpu-

based ray casting of quadratic surfaces. In Proceedings of Eurographics

Symposium on Point-Based Graphics, 2006.

[Swo09] Matt Swoboda. Deferred lighting and post processing on playstation 3.

Game Developer Conference, 2009.

[TG10] Nick Thibieroz and Holger Grün. Oit and gi using dx11 linked lists. Game

Developer Conference, 2010.


