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Abstract. Associating time course gene expression data to biomarkers can help to 

understand disease progression or response to therapy. However, detecting 
associations between these expression profiles is not a trivial task. Often 

expression changes occur not simultaneously but delayed in time and common 

used methods to detect correlation will fail to identify these associations. We have 
developed an efficient approach, DynOmics, based on Fast Fourier Transform to 

identify  coordinated response dynamics between time course ‘omics’ experiments 

and specific biomarkers of interest while taking time shift into account. We 
applied DynOmics to a rat study investigating molecular response dynamics to 

different dosages of acetaminophen (‘paracetamol’). We show how DynOmics can 

extract relevant molecule expression profiles that enables a better understanding of 
the molecular pathways related to acetaminophen toxic dosage and renal damage. 
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Introduction 

A biological system adapts to genetic and environmental changes by dynamic 

interactions and expression changes of its components (e.g. transcripts, proteins, 

metabolites). The components involved in this adaptation form characteristic profiles 

over time and similar profiles indicate interactions of components. The challenge is to 

understand how these interactions give rise to the function and behaviour of that system. 

One way to reveal molecular responses associated to biological markers is to associate 

gene expression profiles to known measured biomarkers. The advantage is that clusters 

of molecule response profiles and potential biological function are predefined rather 

than unsupervised. The fundamental assumption is that molecules that show similar 

response profiles are co-regulated, they interact, or they are involved in the same 

biological processes or molecular functions. The challenge is to identify associations 

between profiles. Associated  molecule expression profiles often do not overlap 

directly [1], [2]. This can be the result of differences in the kinetics of expression 

between molecules that lead to profiles 

that are delayed in time (Figure 1).  

Figure 1. Representation of potential molecule 

interactions and their quantitative response. 



Proteins acting as transcription factors can regulate the expression of multiple genes. Delays occur between 
the presences of a protein to the transcription initiation of a downstream target. Proteins functioning as 

enzymes will metabolise substrates resulting in a reduction of that substrate while the quantities of the 

products increase. 

Several authors observed time delays between their expression profiles when 

integrating transcript and metabolite data [3], [4]. By incorporating time shifts, they 

could improve on the quality of biological inference. Takahashi et al. [3] studied 

transcript metabolite associations using lagged Pearson correlation. Lagged Pearson 

correlation maximises the correlation between two profiles while shifting them along 

time. However, it does not seem to be very sensitive to a small number of time points. 

Similar issues were observed using Dynamic Time Warping (DTW) [4] to identify 

multi ‘omics’ associations.  

We therefore developed an algorithm based on the Fast Fourier Transform (FFT). The 

advantage of our approach is that it is still very sensitive for low numbers of time 

points, a commonly encountered characteristic in time course experiments. It also 

enables the estimation of time delay between molecules. This information can be used 

to identify and compare clusters of delayed molecules to find differences in response 

dynamics.    

Possible applications of DynOmics include the comparison of patients’ response to 

different types of treatment, or monitoring disease progression by associating 

biomarkers to gene expression data in time course experiments. In this study, we apply 

DynOmics to acetaminophen toxicity time course data from rats. Our analysis shows 

how acetaminophen dosage has an impact on metabolism and enables a better 

understanding of acetaminophen toxicity related to liver and renal damage.  

1. Material and methods 

 DynOmics algorithm  1.1.

We developed DynOmics, an algorithm to associate molecule expression profiles 

taking delay into account, using FFT. FFT decomposes profiles into circular 

components. This circle information like the frequency (speed), the amplitude (size) 

and the phase angle (delay), can be used to compare profiles. To date, people have used 

information about the frequency to cluster cell cycle genes [5]. We developed a method 

to use the phase angle of the dominant frequency of the profiles to estimate the delay 

between profiles. This delay was then used to realign profiles and Pearson’s correlation 

was used to assess their relevance. Profiles identified as associated were then further 

analysed via gene enrichment analysis. 

 Acetaminophen toxicity data 1.2.

Acetaminophen (‘paracetamol’) is one of the most used pain relievers and fever 

reducers. However, acetaminophen overdose has severe consequences like liver and 

renal damage and liver failure. Here we examined a study performed by Bushel et al. 

[6]  to analyse the impact of acetaminophen dosage in association with biomarkers and 

gene expression in rats. Microarray gene expression data of 3316 genes were obtained 

from four male Fischer rats per dose group exposed to subtoxic levels (50 and 150 

mg/kg) and toxic levels (1500 and 2000 mg/kg) of acetaminophen. Rats were sacrificed 



to obtain the liver samples at time points 6, 18, 24, or 48 hours after treatment. In 

addition for each rat clinical chemistry measurements were taken as estimate of 

acetaminophen damage. Amongst others a biomarker for renal damage, blood urea 

nitrogen (BUN) was measured. Our analysis focused on the molecular response 

dynamics to different doses of acetaminophen in association with the BUN biomarker. 

In particular, we asked whether different delays in gene expression can be attributed to 

different acetaminophen dosages and whether those delayed genes are involved in 

relevant molecular pathways with respect to renal damage and acetaminophen 

metabolism.  

 Data pre-processing, modelling and analysis 1.3.

Data were pre-processed as described in [6]. The low number of time points and high 

noise hampered the identification of associations of biomarker to the gene expression 

data. Therefore, we used the spline modelling from the R package lmms [7] to 

summarise the profiles for each dose group separately and interpolated 14 time points 

regularly spaced between 6 and 48 hours. Lmms models profiles depending on their 

variance structure ranging from simple linear models to spline models taking subject-

specific intersect and slope into account.  Profiles that could only be modelled by a 

linear model were removed prior to analysis leaving 401 genes for 50, 910 for 150, 644 

for 1500, and 960 for 2000 mg/kg for subsequent DynOmics analysis. Genes were 

termed ‘associated’ if the absolute Pearson correlation of the realigned profiles was 

above 0.9. Enrichment analysis of associated genes was performed using QIAGEN’s 

Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). 

2. Results 

  DynOmics in comparison to other methods on simulated data 2.1.

We compared DynOmics to various proposed methods to associate profiles 

(DTW4Omics [4], Pearson and lagged Pearson correlation) on simulated data sets with 

either 7 or 14 time points, different noise levels (~𝛮(0, 𝜎2);  𝜎 = 0.1, 0.2, 0.3, 0.5) and 

different delays in the profiles. For all methods we called profiles associated when the 

Pearson correlation coefficient was above 0.9. Only DTW4Omics provides a p-value 

from a permutation test for associations of aligned profiles and an association was 

called when the FDR adjusted p-value was less than 0.05. For 14 time points and low 

noise levels (𝜎 = 0.1, 0.2, 0.3), all methods had very high sensitivity and specificity 

(>0.94) with the exception of Pearson’s correlation (sensitivity<0.5). For 7 time points 

we observed more differences between the methods. Best performance was observed 

for DynOmics with sensitivities decreased when the level of noise increased (0.98, 

0.94, 0.88, 0.65 respectively). Lagged Pearson was at least 9% less sensitive in all 

noise scenarios compared to DynOmics (0.89, 0.79, 0.7, 0.51). DTW4Omics (0.6, 0.56, 

0.5, 0.26) and Pearson (0.35, 0.32, 0.29, 0.16) showed poor sensitivity. Overall, 

specificity was stable and high (>0.9) for all methods when noise level increased. To 

summarise, DynOmics showed high sensitivity and specificity for a low number of 

time points compared to other methods, an important advantage as time course 

experiments usually include a small number of time points.  

http://www.qiagen.com/ingenuity


 Expression dynamics in response to renal damage induced by acetaminophen  2.2.

Having established that DynOmics was competitive to other existing approaches, we 

next investigated molecular response to different dosages of acetaminophen in the 

acetaminophen toxicity study. The aim was to detect associations between the BUN 

biomarker for renal damage and time course gene expression data. We observed that 

BUN quantity changed temporarily over time for all dosages (Figure 2), with 

differences in the rate of change. The rate of change increased with increasing 

acetaminophen dosage, indicating severe renal damage with higher dosage and faster 

molecular responses. This temporary response indicates only transient renal 

dysfunction or damage. Due to the temporary change of the BUN marker we expected 

to identify associated genes that are involved in renal damage but also in the 

metabolism of acetaminophen.  

 

Figure 2. Renal damage marker expression 

profiles.  Presented is the quantity of the BUN 

renal damage marker in dependency of time  

after varying dosages of acetaminophen. 
Points indicate the mean response of the 

biological replicated measurements and error 

bars the 95% confidence interval.  

 

 

Application of the DynOmics algorithm to the level of BUN of varying dosage 

of acetaminophen resulted in different numbers of associated genes to the renal damage 

marker BUN.  Using a correlation threshold of 0.9, we obtained 68 (22) positive 

(negative) correlated profiles for 50, 495 (80) for 150, 440 (75) for 1500 and 345 (118) 

for 2000 mg/kg acetaminophen. Here positive associations indicated the same trend as 

BUN in Figure 2, therefore these genes were up-regulated. Accordingly, negative 

associated genes to BUN indicated a down-regulation. Histograms of the predicted 

delays separated by dosage and correlation indicated that some delays occurred more 

often than others (Figure 3). We also observed that these prevalent delays are different 

for subtoxic (50 and 150 mg/kg) and toxic dosage (1500 and 2000 mg/kg) of 

acetaminophen. Moreover, patterns varied between positive (Figure 3A) and negative 

(Figure 3B) correlated profiles, suggesting different molecular response dynamics and 

interactions, with potential different biological implications. 

 

Figure 3. Histograms of predicted delays of the associated gene expression profiles A) positive correlated 

profiles and B) negative correlated profiles to the renal damage marker BUN. The x-axis presents the delay in 

standard units where 1 unit refers to 3.2 hours. Negative (positive) delay indicates the BUN marker changed 
expression prior to (after) the associated gene.  

A)   B) 



 Biological relevance of shifts and correlation 2.3.

The biological implication of delayed responses is important to understand signalling 

pathways and malfunctions. Information obtained can be used to understand the 

molecular processes involved in renal damage caused by acetaminophen or the 

detection of potential renal damage prior to the actual event. Therefore, we further 

investigated the significant enriched pathways (p-value <0.05) or functions from the 

toxicity list using IPA (Table 1). Associated genes for 2000 and 1500 mg/kg were 

separated into positive or negative associations to the renal damage marker BUN. We 

also investigated whether changes in BUN quantity occurred before (negative delay), 

after (positive delay) or simultaneously (no delay) to gene expression changes.  

 

Table 1. Significant enriched toxicology functions and pathways of associated genes to the BUN renal 

damage marker identified by DynOmics for at least one dose group. The table indicates the number of genes 
associated their direction and delay.  ‘+ corr’ and ‘- corr’ indicate the number of genes positively or 

negatively correlated to BUN.  A negative (positive) delay indicates that the BUN marker changes prior to 

(after) the change in gene expression, ‘No Delay’ indicates that BUN and associated gene changes 
simultaneously. Dosages without associated genes to the according IPA Tox List were not listed. 

Dosage 

in mg/kg 

IPA Tox List # of 

genes  

+ corr - corr - delay No 

delay 

+ 

delay 

2000 Xenobiotic Metabolism 

Signalling 

14 9 5 1 6 7 

1500 18 13 5 7 7 4 

150 20 17 3 16 1 3 

50 1 1 - - - 1 

2000 NRF2-mediated 
Oxidative Stress 

Response 

14 12 2 2 7 5 

1500 17 13 4 4 10 3 

150 19 17 2 16 - 3 

50 4 3 1 1 - 3 
2000 Renal Necrosis/Cell 

Death 

16 15 1 8  4 4 

1500 20 18 2 5 9 6 

150 19 16 3 17 1 1 
50 2 1 1 1 - 1 

2000 Long-term Renal Injury 

Anti-oxidative Response 
Panel (Rat) 

3 3 - 2 - 1 

1500 3 3 - - 3 - 
150 2 2 - 2 - - 

2000 Increases Renal Damage 4 3 1 1 2 1 

1500 2 2 - 1 1 - 

 

The xenobiotic metabolism was clearly activated through dosages of acetaminophen. 

Differences in the response dynamics were observed for high and low dosages. While 

molecules with a high dosage reacted prior to or simultaneous to the renal damage 

marker indicating a fast detoxification of the drug, 150 mg/kg dosage showed late 

response. 

Increased metabolism of acetaminophen can lead to the toxic byproduct N-acetyl-p-

benzoquinone imine (NAPQI) [8]. NRF2 has been shown to play an important role in 

the regulation of NQO1 which metabolises the hepatotoxic acetaminophen intermediate 

NAPQI [9]. Majority of molecules involved in the NRF2-mediated oxidative stress 

response for toxic dosage of acetaminophen were positively correlated with the renal 

damage marker and occurred simultaneously, indicating the activation of the NRF2 

cascade to regulate presence of NAPQI. However, changes for 150 mg/kg occurred 

later than changes in the BUN renal damage marker which indicated a delayed 

response due to less presence or slower accumulation of NAPQI. The number of genes 

identified to be associated to our renal damage marker and known to play a role in 



‘Renal Necrosis/Cell Death’ and ‘Long-term Renal Injury Anti-oxidative Response 

Panel (Rat)’ decreased with decreasing dosage, indicating less severe damage for lower 

dosages. The majority of profiles were positively associated but dynamics varied across 

the marker. Genes known to increase renal damage only occurred for toxic dosage of 

acetaminophen.  

3. Conclusion and future work 

Associated molecular events often do not change simultaneously but are delayed in 

time. We presented our method DynOmics as a useful and important tool to identify 

time delayed associations and to understand pathophysiological events.  

In this case study we showed gene expression changes caused by acetaminophen and 

associated to renal damage showed different response dynamics depending on the 

dosage. Our approach enabled the identification of relevant activated pathways and 

genes that were delayed in time, giving insights into acetaminophen metabolism. These 

associations would have been not detected when performing an analysis not taking time 

shifts into account. This information can be used for early detection of acetaminophen 

over-dosage and prevention of renal damage.  

We are currently investigating the application of DynOmics to detect associations 

between multiple time course ‘omics’ data sets (transcriptomics, proteomics, 

metabolomics, etc.) to understand molecular interactions between multiple molecular 

functional levels. We will use the information on whether molecules are positively and 

negatively correlated and on whether they are delayed in time to build and compare 

directed molecular networks in order to visualise and understand disease at a molecular 

level. DynOmics is implemented in R and will be made available on CRAN for easy 

access and use. 
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