THE UNIVERSITY OF QUEENSLAND

AUSTRALIA

Scale-up cultivation of Australian algae

New approaches to isolation, mid-scale cultivation and harvesting of

Australian wild type algal strains

Gisela Heidi Nicole Jakob
Dipl.Ing Environmental Engineering FH Amberg-Weiden

A thesis submitted for the degree of Doctor of Philosophy at
The University of Queensland in 2015

Institute for Molecular Bioscience



Abstract

Algae biotechnologies offer one possible path to addressing the forecast challenges of human
society which are the increased demands of food, fuel and water due to population growth and large
scale lifestyle change. The development of renewable algae production technologies helps to
establish a basis for sustainable development and provide options to decrease CO2 emissions to

address climate change.

Algae are increasingly recognised as a promising bioresource and the range of cultivated species
and their products is expanding. Compared to terrestrial crops, microalgae are highly biodiverse and
offer considerable versatility for a range of biotechnological applications including the production

of animal feeds, fuels, high value products and waste-water treatment.

Despite their versatility and capacity for high biomass productivity microalgae represent a relatively
unexplored bioresource both for native and engineered strains. Success in this area requires (1)
appropriate methods to source and isolate microalgae strains, (2) efficient maintenance and
preservation of parental stocks, (3) rapid strain characterisation and correct matching of strains to
applications, (4) ensuring productive and stable cultivation at scale, and (5) ongoing strain

development (breeding, adaptation and engineering).

In chapter 2 a streamlined process was developed for the isolation, identification and maintenance
of over 150 local microalgae strains as a bioresource for ongoing strain development and
biotechnological applications. 121 algal strains could be purified to the axenic level, whereas the
rest were maintained as unialgal, non-axenic cultures. All algae used in the large scale trials were
obtained as axenic cultures. A range of isolating techniques were explored. Fluorescence activated
cell sorting (FACS) proved to be a useful method for high throughput isolation and purification of
physically robust algal species, while micromanipulation was most beneficial to obtain a high
species diversity. A separate survey by Wolf et a/ (2014) optimised the nutrient requirements and

identified the highest biomass producing strains.

Eight algae isolates identified as high production strains based on lab experiments, as well as an
isolated invasive algal species and a polyculture of five morphological different strains were tested
outdoors to identify key variables limiting optimised production at pilot-scale. The results showed
that based on the maximum specific growth rates achieved in sterile laboratory systems, exposed
pond systems achieved ~30-50%, indicating limitations imposed by environmental and biological
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factors. Highest daily growth rates in open pond trials single strain trials were obtained for M.
pusillum (5_H4) (0.959 d'"), Chlorella sp. (11_HS5) (0.719 d™), Chlorococcum sp. (12_02) (0.755 d°
1), and the polyculture (0.743 d'). M. pusillum (5 H4), Scenedesmus sp. (Pinjarra001). The
polyculture trials achieved the highest optical densities (up to OD750=4). In addition to fast growth,
other variables influencing performance included the ability to grow to high densities,

autoflocculation, and resistance to predators proved important.

Polyculture trials achieved the highest maximum areal and volumetric productivity (24.3 g m? day
and 266.7 g m™ day). However the polyculture productivity values are only about 6-10 % higher
than those of the highest single strain cultivations and may have resulted from the different
cultivation timings. The polyculture growth during spring was favoured by higher mean solar
energy, higher absolute temperatures and greater temperature flux than cultivations during autumn
and winter. Nevertheless the polyculture trials are considered to be a potential alternative to single

species cultivation due to their increased robustness against invasive predatory influences.

Contamination by invasive organisms is expected and observations revealed that their impact on the
algal culture is dependent both on the cultivated species and the predatory organism. Grazing and
competition for nutrients had negative impacts on algal growth and change of algal morphology
(e.g. spines and flocculation). Positive impacts of certain grazers included reductions in bacterial
and protozoa load, providing opportunities to use “predators” as a tool to sustain algal cultures and
optimise the culture production. The flocculation of C. sorokiniana (8 C4) in the presence of a
Tetrahymena like ciliate was one of the most promising leads for the optimisation of algae

production systems in the form of a novel harvesting technology.

Chapter 4 focused on the characterisation and optimisation of a novel bioflocculation method using
the native isolated ciliate Tetrahymena. Tetrahymena is a common invader of microalgae cultures,
typically feeding on bacteria rather than on the microalgae themselves. Tetrahymena thermophilia,
a freshwater ciliate, is well studied for its ability of undergoing dramatic metabolic changes during
starvation, its secretory granule biogenesis and exocytosis. Here a locally isolated and identified
Tetrahymena culture was used as a controllable bioflocculation agent for the microalgae Chlorella
sorokiniana (8 C4). The process was triggered by adding chemical substances to the starved ciliate
leading to exocytosis of extracellular polymeric substances (EPS) which functioned as a binding
substance between the algae cells. The ratio of ciliate to algae could be reduced to as little as 1:400
cells to initiate rapid bioflocculation. Furthermore stimulators of ryanodine receptors (caffeine and
p-chlorocresol) were identified as useful triggers for exocytosis. Future experiments at larger scale
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can prove that the protocol is transferable to greater volumes which could have significant potential
for industrial scale application. The work described in this chapter has been the basis for a patent

application and has been included in a manuscript published in the journal Algal Research [1].

In conclusion, 150 native microalgae were successfully isolated, cryo-preservation applied (Bui et
al., 2013) and their nutrient media optimised (Wolf et al., 2014). The performance of 9 strains was
analysed in high rate ponds both in mono and polyculture and a novel Tetrahymena based

harvesting system identified (paper published and patent filing submitted).
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Chapter 1

1. Introduction

1.1 Microalgae as an energy solution for the future

The global economy is valued at ~$100 Tn pa [2] and is powered by the $6 Tn energy sector.
Importantly approximately 80% of global energy is used as fuels and only ~20% as electricity [3].
By 2050, the expansion of the human population to over 9 billion people and political demand for
continued global economic growth, will necessitate 50% more fuel [4], 70% more food [5] as well
as 50% more fresh water [6]. This needs to be achieved while cutting CO2 emissions by
approximately 80% (IPCC) [7] to avoid temperature rises above 2°C and maintain political, social,
fuel and climate security.

In recent years renewable electricity production systems such as photovoltaic and wind turbines
have made significant gains in supplying the electricity sector. Some limited replacement of fuels
with electricity is possible through new technology (e.g. small electric vehicles); however to meet
the required CO2 emissions reductions, renewable fuel solutions (largely biofuels) are desirable to
supply the fuel sector (80% of global energy demand). Currently, "first-generation" biofuel
production mainly relies on food crops (e.g. corn ethanol, soy) and environmentally problematic
crops (palm oil) [8], however, to avoid a future fuel vs. food scenario, it is critical to fast-track the
development of environmentally sustainable, ‘commercial-ready’ COz neutral fuel systems that do
not compete with food and water needs. The G7 nations have pledged to phase out fossil fuels to
drive this process. In parallel the UK chief scientist Sir David King and prominent economist Lord
Stern are leading an international call for a ‘Global Apollo Program’ to address this issue and
deliver renewable energy systems as cheap as coal within 10 years [9]. This is critical to enable the
global economy to uncouple from fossil fuels in a controlled manner and provide a solid basis for
sustainable long-term global economic development with significant international benefits. In
addition to providing benefits in terms of CO2 emissions reductions, renewable fuel technologies
have the potential to enhance international fuel security, as much of the world’s oil is derived from
politically volatile regions (e.g. from the Persian Gulf), which is essential to ensure stable economic

development.



The production of clean fuels for the future at a globally significant level requires a renewable
energy source that is sufficiently large to drive this process. Solar energy is by far the largest energy
source available to us, with 5500 ZJ yr'! (1 ZJ = 10" J) arriving at the Earth's atmosphere (Fig.1.1
light yellow box). 1300 ZJ yr'! of this is Photosynthetically Active Radiation (Fig.1.1 PAR green
box), able to drive photosynthesis [6]. It is worth noting that this annual level of irradiance (1300 ZJ
yr'!) dwarfs the total of all reported oil, coal, gas and uranium reserves (82.2 ZJ - Fig.1.1 Dark grey
box;) as well as annual global fuel demand (0.46 ZJ — Fig.1.1 red box) [10]. It can be calculated that
at a 2% solar to biomass conversion

SOLAR ENERGY - INCIDENT . L .
(5500 ZJ yr-1) p efficiency, which is already achievable

SOLARENERGV - EARTIE for microalgae, ~1.7% of the Earth's
SURFACE (3020 ZJ yr-1)

surface would be sufficient to supply

the current global energy demand.
'l Furthermore as the maximum
efficiency of photosynthesis is ~8%,
SOLAR ENERGY - PAR area requirements could potentially be
(1298 ZJ yr-1)

reduced through advances in biology

and engineering.

Figure 1.1: Schematic representation

LOBAL of the annual solar energy availability
ENERGY
(046 20 yr-1) ‘ in comparison to the global energy

reserves and its annual demand.

Courtesy of Ben Hankamer.

The idea of replacing fossil fuels by solar energy stored in plants was described as early as 1912. At
this time it was already proposed that fast growing plants of any kind could be found, and their
growth rates enhanced with carbon dioxide and fertilisers, and that the sun dried harvest could be
converted into gaseous fuel to run engines [11]. Algae systems have the advantage for solar driven
fuel production that they can be established on non-arable land, and conserve fresh water and arable
land for food production [10]. They therefore overcome many of the concerns related to first
generation biofuels. Best-practice algae production systems currently produce crude oil at
~$250/barrel, in weeks, and with significantly improved efficiencies and greenhouse gas emissions,
compared to $50-140/barrel and millions of years for fossil-derived sources. A sensible average
target cost is therefore about $100/barrel. For commercial deployment, algae systems must therefore

be a factor of 2-3x cheaper. Furthermore to support the energy needs of a civilized society the
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‘Energy Return on Energy Invested’ (EROEI- a measure of process efficiency), must be increased
from ~1:1 towards 10:1. To achieve this, photon conversion efficiency (PCE) must be increased
both through microalgae strain [12] [13] and systems development and energy requirements reduced
(e.g. through novel harvesting technologies). Increasing photon conversion efficiency (3x) and
energy requirements (3x) could therefore allow algae technologies to be developed with an EREOI
close to 10:1.

In addition to the major advantage of algae as solar fuels is that their light-capturing solar interfaces
can be coupled to a wide range of downstream solar-powered biochemistries. This allows the
production of high valuable products (e.g. therapeutic proteins, metabolites, vaccines and
nutraceutical production in algae, ~$1,000-10,000 kg™'; [13] [12] [14]) and mid-value intermediate
products (e.g. bio-plastics and animal feeds, ~$500-1,000 kg™!). This opens up significant market
opportunities for a range of algae-based bio-technologies which will support the development of
economically viable microalgae systems on the path to delivering urgently needed and cost

competitive CO2 neutral fuel systems.

The overall aim of this project is to advance knowledge to achieve this goal. This PhD project
describes in Chapter 2 the isolation of ~150 Australian microalgae strains using a range of
purification strategies. These were cryo-preserved (Bui) [15] to provide a firm basis for further
selection and breeding. In parallel studies [14] [16], 100 of these strains were subjected to over
23,000 robotic high-throughput nutrient optimisation experiments to define the top 10 performers
and production conditions in terms of specific growth rate. In Chapter 3 nine of these strains were
subjected to pilot scale high-rate pond trials at the Solar Biofuels Research Centre, both as part of
single strain and poly-culture trials to define the best strains and delineate the specific challenges
involved in algaculture in subtropical conditions. Finally, at the conclusion of culture growth,
improved methods of harvesting were sought to improve the energy balance of the overall process.
In Chapter 4 a novel harvesting method was developed which has potential for wide scale
application in this field. The following sections of Chapter 1 provide background to the research

conducted.

1.2  Diversity of algae

The phylogenetic biodiversity of algae is very broad. Genetically, the variability between the
different groups is much larger than for example among the terrestrial plants, owing to the fact that
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microalgae represent a much broader and more ancient phylogenetic group than the land plants
which originate from a single branch of the algal lineage [17]. In addition, algae are adapted to a
very wide range of environmental conditions (e.g. salt and fresh water conditions, pH, temperature,
light, nutrients, pathogens) and possess a short life cycle which is expected to enhance the rate of

evolution.

Algae have been divided into three main groups based on their size: macroalgae (thalli up to 30m),
microalgae (1-200um) and picoalgae (0.2-2pum) [18]. The focus of this project is on microalgae
which are currently considered to be valuable for energy and feedstock production due to their rapid
growth rates, short life cycles and large biodiversity. In recent years importance of macroalgae has
also increased as they require less complicated structures for the optimisation of light capture and
are easy to harvest. Macroalgae tend to have low oil contents are therefore less suited for biodiesel

production.

The biodiversity of photosynthetic microalgae is enormous and is as yet almost untapped. Only
about 35,000 species are as yet described and these are divided into 24 taxonomic classes [19]. Due
to the development of new taxonomic methods and modern molecular technologies, these classes
are frequently revised. The most major classes of algae are list in table 1.1. To illustrate the relation
and diversity between algae as well as fungi and protozoa, a phylogenetic tree of the eukaryotes is

given in figure 1.2.

Table 1.1: Major classes of algae and examples of delegate species

Class

Examples of common species

Bacillariophyceae (Diatoms)
Chlorophyceae (Green algae)
Rhodophyceans (Red algae)
Haptophyceae
Prasinophyceae
Cryptophyceae
Xanthophyceae
Eustigmatophyceae
Dinophyceans
Euglenopyhceans

Cyanophyceae (blue-green algae)

Skeletonema, Thalassiosira, Phaeodactylum,
Chlorella, Dunaliella, Scenedesmus, Haematococcus
Porphyridium cruentum, Galdieria

Isochrysis, Pavlova

Tetraselmis, Pyramimonas

Chlamydomonas, Rhodomonas, Chroomonas
Olistodiscus

Nannochloropsis

Crypthecodinium, Alexandrium, Gymnodinium
Euglena

Spirulina, Synechococcus, Synechocystis
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Figure 1.2: An eukaryotic phylogenetic tree among the protists (algae, fungi and protozoa, see 1.6)

which is based on ultrastructural and molecular data (Gray et al. 2004)[20]. The lineage shows

representative species corresponding to the main groups colour coded and written above.

The most commonly studied classes include the diatoms (Bacillariophyceae), green algae

(Chlorophyceae), golden-brown algae (Chrysophyceae), Prymnesiophytes, Eustigmatophytes and

cyanobacteria (blue-green algae) [21] and these are briefly described below.



Green Algae: Derived from an ancestral green flagellate (Viridiplantae), the lineage Chlorophyta
(sister phylum to Streptophyta which contains land plants) includes the majority of described green
algae species. Chlorophyta contains a large number of species and remarkable morphological
diversity. Four classes are described within the Chlorophyta including the Trebouxiophyceae and
Chlorophyceae (freshwater), the Ulvophyceae (coastal) and the Prasiophyceae (marine planktonic)
[18, 22]. They contain chlorophyll a and chlorophyll b and use starch as the primary storage

component. In certain species high lipid accumulation has been detected [21].

Diatoms: The diatoms probably include the greatest number of extant species (more than 100 000
species) of any group of microalgae [18]. Diatoms dominate salt water environments, but are also
commonly found in fresh- and brackish-water habitats. They contain high levels of fucoxanthin,
lower quantities of B-carotene, chlorophyll a and chlorophyll c. In terms of biofuel production one
of the challenges in culturing diatoms is that they require large quantities of silica which is an
expensive compound, and the resulting silica spicules can be problematic during processing. They

do however produce relatively high levels of lipids [21].

Golden-Brown algae: This class is similar to the diatoms in pigments and biochemical composition

(see above). Both diatoms and golden-brown algae, belong to the division Chromophyta.
Approximately 1000 species have been identified, primarily in fresh water habitats. Lipids and

chrysolaminarin are the major carbon storage form in this group [21].

Prymnesiophytes: This class includes around 500 species, which are primarily marine organisms.

As in the diatoms and chrysophytes, fucoxanthin imparts a brown colour to the cells. Lipids and

chrysolaminarin are, like golden-brown algae, the major storage products [21].

Eustigmatophytes: This class contains many picoplankton (only a few pm in diameter). Chlorophyll

a is the predominant form of chlorophyll and several xanthophylls act as additional photosynthetic

pigments [21].

Cyanobacteria: Cyanobacteria are gram-negative eubacteria, and therefore prokaryotic and very

different from all other classes of ‘microalgae’. Previous work classified them to the class
Phycophyta (algae), leading to them being termed “blue green algae” although strictly speaking
they are photosynthetic bacteria. Distinguishing features in this regard are their distinct gene
structure and the absence of nuclei, chloroplasts and other organelles. Approximately 2500 species

of cyanobacteria are described and include unicellular coccoid, colonial, and filamentous forms
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[18]. Photosynthetic pigments include chlorophyll a and d, blue and red phycobilins and B-carotene.
Starch is the primary storage product in blue green algae and some species produce more than 50

compounds which are toxic to vertebrates [23].

1.2.1 Classification of microalgae

Microalgae species were initially recognised and classified based on their phenotypic properties,
such as whole organism morphology, cellular anatomy and ultrastructure, metabolism and
physiology. However, a closer analysis led some microbiologists to conclude that more careful
discrimination was required. This led for example to the classification of prokaryotic blue green

algae and prochlorophytes as bacteria [24].

Correct identification of algae at least at the genus level is desirable to understand the ecology of
aquatic ecosystems and global biogeochemistry, as well as for their successful use in
biotechnological applications. Identification of algae provides the possibility of comparison
between other strains of the same or a similar genus, which helps understanding metabolism and
derivation of biochemical characteristics. Also in terms of metabolic engineering, identification
using DNA sequencing assists future work, e.g. genetic manipulation, developing primers, and

cloning.
1.2.2 Morphology and mortality
The algal body (thallus) exhibits a wide range of morphologies and the most common forms are

briefly described below [25].

Unicellular and colony forming species: Algae species may occur as solitary cells separate from

other identical cells (unicells) or as clusters of individual cells held together loosely or in highly
organised structures. Unicellular microalgae can be further subdivided into motile and non-motile
types. Motile cells possess one or more flagella for locomotion. This occurs also in colonial
arrangements, which can consist of an assembly of individual cells in which there may be either a

variable, or specific number of cells that remain constant throughout the life of the colony.

Coenocytic_forms: Coenocytic algae are essentially unicellular, multinucleated algae. Such
organisms basically consist of one large multinucleate cell, without cross walls. Examples include

species of the order Caulerpales.



Coccoid forms: Coenobium algae are arranged as colonies consisting of a fixed number of cells

with little or no specialisation. Reproduction occurs by a series of rapid cell divisions when the
organism is first formed. Once the exact cell number is attained, the organism grows in size but not
in cell number. The cells are often embedded in a mucilaginous matrix and may be motile or non-

motile. Examples include Scenedesmus or Pediastrum.

Filamentous forms: The filament is a common growth form among algae. Daughter cells remain

attached to each other following cell division and form a chain of cells which can remain
unbranched or branched. The elongated assembly of cells may consist of uniseriate (single series of
cells) or multiseriate, where individual filaments fuse together to form a larger, more complex
structure. Some diatoms for example form linear colonies, and thus can be distinguished from true
filaments. Diatoms possess their own individual walls, whereas adjacent cells of true filaments

share a wall.

Capsoid forms: Chrysocapsa is an example of a capsoid organism. The numbers in these capsoids,

which are embedded in a transparent gel, can vary and gradually increase in number over time.

Parenchymatous and pseudoparenchymatous forms: In this type of thallus (algae body)

organisation, thalli are organised into true tissues composed of several different types of cells.
Parenchymatous organisation is particularly common among the larger brown algae (e.g. observed
in giant kelps). This results from cell divisions occurring in three directions, which gives rise to

three-dimensional structures.

Flagella: Locomotion in algae is largely based on the action of flagella. A flagellum is a tail-like
projection that protrudes from the cell body of the organism. The primary distinctions used for
classification are the number of flagella, their location on the cell, and their morphology (e.g.
Euglenophyta have one to three flagella, Xanthophyta (yellow-green algae) can have two or more
for locomotion). Two major types of flagella are recognised; the smooth or acronematic and the
hairy or pleuronematic types. The smooth flagella generally moves by whiplash motion (e.g. class
of Chlorophyceae) and the hairy flagella move by a pulling motion (e.g. class of Chrysophyta or
Bacillariophyceae (Diatoms)) [26-28].

Evespot: Eyespots occur in many flagellate algae and are generally part of the chloroplast. Van Den
Hoek (1995) described the presence of an eyespot (stigma) in the classes of Chlorophyta (green

algae), Phaeophyceae (brown algae), Chrysophyceae, sometimes in Cryptophyta and Haptophyta.
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The eyespot of Euglenophyta and Eustigmatophyceae lies in the cytoplasm as well as of the
Dinophyta [29]. This eyespot can be seen in the living cell using the light microscope and appears
as a small red spot at the anterior of the cell. Due to the eye spot motile algae are able to perceive
light and to swim towards or away from it. Algae generally swim towards dim light but away from

bright light [29, 30].

1.2.3 Metabolism

Eukaryotic algae, like all photosynthetic organisms, convert solar energy into chemical energy and
biomass. In general, for such photoautotrophic growth they need an inorganic carbon source (COz)
and solar energy to carry out photosynthesis resulting in biosynthesis, with cellular energy (ATP)
and reducing power (NAD(P)H) also supplied by light (photophosphorylation). However, some
algae can also utilise organic compounds as an energy source (i.e. heterotrophic growth) for
example, by oxidation through the TCA cycle to produce ATP and NADH with COz as a waste
product, while others can use them both as an energy source and for the synthesis of new biomass
[31, 32]. When a combination of light and organic carbon is used, growth is said to be mixotrophic.
Therefore the efficiency of transforming organic and inorganic carbon sources into biomass is
dependent on light intensity, the carbon source and algal growth phase and species. Some species
such as Chlorella vulgaris [33], Haemotoccus pluvialis [34], or Arthrospira platensis (Spirulina)
[32] are capable of growing under photoautotrophic, heterotrophic and mixotrophic conditions.
They are thought to have developed this metabolic functionality as independent and simultaneous
mechanisms [35]. However other strains such as Scenedesmus acutus [31]) only grow

photoautotrophically.

Mixotrophic algae use photosynthesis as their main strategy to produce ATP and NADPH, but both
organic compounds and CO2 (for photosynthesis) may be essential. Amphitrophy, a subtype of
mixotrophy, means that organisms are able to live either autotrophically or heterotrophically,
depending on the concentration of organic compounds and light intensity available.
Photoheterotrophic metabolism occurs where light is required to use organic compounds as a
carbon source. Mixotrophic and photoheterotrophic metabolism are not well differentiated. A fine
difference in energy source requirement distinguishes growth and specific metabolite production

between both types [36].

In conclusion, complexity and inconsistency in trophic terminology of microalgae is a problem
which is compounded by overlap of many types of metabolic program capability within one single

algae that can be shifted simply by changing the environmental conditions [37]. Therefore it is
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important to define what the desired outcome is and how the metabolic process can be tuned to
achieve it. Whether conditions are favourable or adverse, the metabolic pathway of a cell is heavily
influenced by its environment. Accordingly, the environment and conditions must be quantitatively
defined when considering the use of microalgae for several desired products (lipid, biomass,

hydrogen, etc.) [38].

1.2.4 Problems in the identification of algal species

Describing algal species is still far from a routine process and relatively few people are able to
properly name or classify microorganisms such as algae and protozoa. Reasons for this include the
fact that many algae are of microscopic size, and require skills in the use of dissecting and
compound microscopes as well as further scanning or transmission electron microscopy in many
cases. Furthermore sensitive algae often do not survive collection and chemical preservation
procedures, or are altered after such procedures (e.g. loss of pigmentations, cell shrinkage, and

detachment of distinctive flagella) making recognition difficult.

In some cases algae must be cultured to get a specific expression of a particular critical taxonomic
character. For example, for identifying environmentally common coccoid green unicells, it is

necessary to have information on zoospore characteristics.

Commonly used taxonomic or identification keys for algae are normally regional and it is uncertain
to what degree such keys can be applied to more distant geographic areas. Taxonomic keys
typically illustrate only very few species of a genus as samples of a wide array of diversity.
[llustrations made by line drawing are problematic, due to their absence of colour and other details
that would be useful to make proper classification. Even with high-quality colour images on
websites or CD-ROM, more detail is often required [25]. Therefore, morphological classification is

often only reliable to the genus level.

1.2.5 Molecular sequencing approaches

The most commonly used molecular approach to classify organisms is nucleotide sequencing which
traditionally relies on the Sanger dideoxy chain-termination mechanism [39]. With sequencing
methods, a large number of independently evolving characters of algae and their interrelatedness
can be determined, with much greater sensitivity than is possible with classic morphological
techniques. Full genome sequencing is still not routine, but a number of partial sequence methods

are used for taxonomic classification [40].
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Because of its redundancy, abundance and homology across all domains of life, ribosomal DNA
(rDNA) sequencing has achieved enormous importance as a tool for discovering phylogenesis,
evolution of life and the exploration of relation and connections between organisms. Today, the
analysis of rDNA is a widely accepted method for classification of species in the universal
genealogical tree of life and for identification of closely related species. Ribosomal genes evolved
very slowly, making them useful for the molecular study of evolution more than 500 million years
ago. There are nuclear-encoded genes for the small and large ribosomal subunits (SSU and LSU
rRNA). Sequencing of the SSU like the /6S RNA (from the chloroplast) or /8S (from the nucleus,
only in eukaryotes) subunits is more useful for the analysis of divergence over long periods because
it is more highly conserved, as it is of integral importance in cellular processes. /6S and /8S
subunits also contain regions of variability which can be used to identify divergence at lower
taxonomic levels (including species-level investigations) [40]. The major advantage of rDNA genes
is that they appear in both prokaryotic and eukaryotic taxa. Variations in these positions of bases in
SSU genes can be treated as characteristics for specific algae species and phylogenetic trees. The
University of Illinois has a large array of sequences for prokaryotes and eukaryotes in their

Ribosomal Database Project (RDP) [41].

Very similar cell structures, such as coccoid, unicells or unbranched filaments are frequently the
result of parallel evolution in widely divergent algal groups and challenge basic description. Potter
et al. [42] described several coccoid picoplanktons, which appeared morphologically similar under
the light microscope as “little brown balls”. By means of /8S ribosomal DNA sequencing it was
possible to define three eukaryotic lineages: heterokont algae, haptophyte algae and green algae,
and at least four taxonomic classes [42]. The use of ribosomal DNA sequencing can also distinguish
between bacterial and chloroplast ribosomes. The presence of chloroplast /6S sequence confirms
that DNA is algal in origin and will usually give a genus level identification but unfortunately the
database of chloroplast rDNA sequences is still small and largely confined to commonly used
industrial and scientific species and is therefore not yet as useful as it will eventually become for

fine taxonomy until many more species have been examined.

Other molecular techniques are also important for the study of algal phylogeny and describing
species, due to their enhanced sensitivity. RFLP (Restriction fragment-length polymorphisms)
analysis which estimates DNA sequence dissimilarity, detects variation by nucleotide base
substitutions, deletions, or insertions [43, 44]. The main advantage of RFLP approaches is the

ability to discriminate between (and to enumerate) closely related strains.
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Another approach used to study speciation is the use of Randomly Amplified Polymorphic DNA
Analysis (RAPDs). This technique aims to synthesise many copies of anonymous DNA regions.
Therefore a variety of DNA amplification primers are used in the polymerase chain reaction (PCR).
Resolving these DNA regions by gel electrophoresis results in a fingerprint-like pattern, that is
characteristic for each organism. In DNA databases, the patterns can be compared with those
obtained from members of other species or populations. A high degree of similarity in banding
patterns indicates a close relationship. Only a small amount of DNA is required to run RAPDs. A
disadvantage of this procedure is that reproducibility can be difficult and the determination of band
homology (degree of band relatedness) needs costly or time-consuming sequencing approaches
[25].

One problem with nucleic acid PCR and sequencing is that non-target DNA may also be amplified
in addition to target DNA. Amplification of contaminants can be avoided by either the use of
monoculture samples or by usage of specific primers which are designed to amplify only the target

DNA.

In the last decade the internal transcript spacer 2 (ITS2) was identified as a highly successful tool
for DNA barcoding to identify plants and animals [45, 46]. Because /8S or 28S markers are only
suitable for higher level classification (e.g. family and genus levels) it was proposed that the ITS2
marker could be used over a wider range of genus and species classification levels [47, 48]. This is
beneficial for distinguishing even closely related species. Because it is short in length, PCR
amplification and sequencing can be successful even for degraded DNA [49, 50].

As a part of the eukaryotic nuclear rDNA cistron, for eukaryotes it is located between the 5.8S and
285 tRNA genes [51] in the genome. The delimitation of ITS2 boundaries can be achieved by
methods based on Hidden Markov Models (HMMs) [52, 53].

ITS2 for DNA barcoding is now a common tool to study algae diversity and phylogeny. Buchheim
et al. used the approach to reconstruct phylum-level phylogenies of the green algae [54], whereas
Moniz separated defined species of diatoms with a success rate up to 99.5% in the presence of
bacterial contamination [55].

This shows the potential of the barcoding approach which can help to address complex problems in

algal diversity, identification and taxonomic assessment.

1.3 Opportunities provided by screening wild type algal species

The development of any successful microalgal biofuel production system is heavily dependent upon

the selection of the best microalgae strains and production conditions for the product of choice.
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Microalgal strain collections are therefore an important resource [56]. Algae collections worldwide
contain thousands of different algal strains that can be accessed. Typically sources of microalgae
include existing collections of microalgae, commercially available either from universities or other
national and international foundations (e.g. UTEX, CCAP, SAG (Sammlung von Algenkulturen —
Georg-August Universitaet in Goettingen) and CAUP), but many companies have concluded that
there are advantages to searching for new organisms. This is because it is estimated that there could
potentially be hundreds of thousands of occurring microalgae species with a wide range of
phenotypes which are often more competitive than their counterparts from established culture
collections. In addition, local species are often adapted to local pathogens and conditions, and
finally regulations (e.g. quarantine) and intellectual property legislation may restrict the cultivation

and exploitation of non-native species, which is already the case in Australia.

The methodology of isolating microalgae from natural water sources, extensive analysis of
individual strains and development of a local algal database provides the basis for selection and
breeding for an expanded microalgal biofuels industry. It also has the advantage that collections:
- provide companies with independence from suppliers and generates in-house expertise that
can be advantageous in the future
- provide new species or the development of new strains which represent a business

opportunity, intellectual property and source of income from the possible royalties.

1.3.1 Growth characteristic for certain environments

Finding species with the right properties for specific conditions is challenging due to the large
number of available strains and their limited characterisation [21]. For large-scale algal culture
processes, a variety of desirable characteristics of algae are required some of which are shown

below in table 1.2.

Table 1.2: Desirable characteristics of algae for mass culture [57]

Characteristic Advantages

Rapid growth rate Competitive advantage over non-target species; Reduces culture area
required

High product content Higher value of biomass (note: use of metabolic energy to generate

product may lead to slower growth)

Growth in extreme environments = Reduces contamination and predation (note: Limited number of species
can grow in extreme environments. Can be difficult to maintain
conditions)

Large cell size, colonial or Reduces harvesting and downstream processing costs

filamentous morphology
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Wide tolerance of environmental = Less control of culture conditions required. Growth over range of

conditions seasons and ambient weather conditions

CO; tolerance and uptake Greater potential for CO, sequestration and use of waste CO»

Tolerance of shear force Allows cheaper pumping and mixing methods to be used

Tolerance of contaminants Potential growth in polluted water and on flue gases containing high
CO,, NOx and SOx

No excretion of autoinhibitors Reduces autoinhibition of growth at high biomass densities

It is very unlikely that a single algae species will have all of the desired characteristics and a
prioritisation of key features is required. For example, algae may be selected for fresh water or salt
water conditions as well as temperature and high light tolerance or the production of specific high

value products depending on the purpose for which they are required [21].

Fast-growing, productive strains, which are adapted or optimised for the local climatic conditions
play an important role in the first generation of algal mass culture. They are already used
particularly for the production of high value products as these are most commercially viable. Fast
growth encourages high biomass productivity, increases yield per hectare and reduces harvesting
costs, all of which are important for economic biofuels production [58].[59]. Also, a fast growth
rate of microalgae assists in reducing contamination risks of large-scale microalgal production

facilities.

The properties of algae in terms of harvesting are also important. Key features affecting harvesting
include cell size, specific gravity and the ability to flocculate [60]. Some algae strains naturally
flocculate reducing the requirement for expensive flocculation agents. Strains like the cyanobacteria
Spirulina which form long spiral structures allow relatively low cost and energy-efficient
microscreen harvesting methods, which is limited to filamentous or large colonial microalgae [58].
These properties will remain particularly important until more innovative strategies for the

harvesting of dilute microalgae that have cell diameters of less than 20 um are developed.

Griffiths and Harrrison (2009) pointed out the lack of available information on lipid productive
microalgae species, especially needed to facilitate decision-making on species selection for
biodiesel production. Only a handful of well-characterised species of algae are currently considered

suitable for anything approaching scaled up conditions.

1.3.2 Metabolic engineering
As microalgal strain collections expand, it is expected that genetic manipulation will become
increasingly important for the development of high-efficiency cell lines. Although routine genetic
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manipulation currently remains limited to a few selected algal species (e.g. Chlamydomonas
reinharditii, Volvox carteri or the diatom Phaeodactylum tricornutum), the expanding interest in
algal biofuels will likely lead to the development of new techniques to engineer microalgae in order
to develop organisms optimised for high productivity and energy content to achieve their full

processing capabilities [38, 61].

Because microalgae represent a simpler system than higher plants (usually with no cell
differentiation and shorter life cycles), genetic manipulations to increase the content of selected
compounds should technically be simpler. Nevertheless, the optimisation of genetic techniques for
microalgae has not until recently been considered to be of high priority [36]. In the future it is
expected to play an increasingly important role in improving, biomass and oil, carbohydrate and

protein production [61, 62] and increasing photosynthetic efficiency [63, 64].

1.4 Microalgal isolation and purification techniques

The aim of isolating and purifiying microalgae strains is to obtain cultures of single species free of
other microorganism, whether different microalgae or contaminants (e.g. bacteria, fungi, viruses). If
cultures have no detectable contaminants they are referred as pure or axenic. This is important for
further screening, optimisation and identification of the cultures whose results would be influenced

and falsified by non-target species.

Several techniques have been developed for the isolation and identification of microalgal species
from natural water samples. Typically natural water samples have a mixture of different algal

species with contamination of bacteria, fungi and multicellular organisms.

In addition, rare species may be present at very low frequency with one or two dominant species
representing most of the biomass at a given time. Therefore isolation techniques need to provide the
opportunity for low frequency algae to grow to higher frequency without interference from other
organisms. Furthermore algal cells vary from their vulnerability to sudden, adverse chemical or
physical changes and conditions which needs to be considered when replacing their natural
environment with artificial growth medium. Analysing the composition of the original source water,
or an adaption process to gradually increased full strength medium can overcome this hurdle. Light,

temperature and pH sensitivity are further factors to be considered during isolation.
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Conventional methods including dilution plating on solid media, liquid serial dilution followed by
screening of coloured or morphological different colonies which provides the opportunity to pick
manually a variety of species and at least separate them from other algae. Micromanipulation
includes the use of a fine capillary syringe for controlled single cell selection (preferable by

microscopic resolution) [65] [66] [17].

Bacterial and fungal growth can be discouraged by antibiotic treatment for example using
Ampicillin, Kanamycin and/or Cefotaxime against gram-positive or gram-negative bacteria.
However the use of antibiotics requires the optimisation of two variables: the dose/concentration of
antibiotics and the time, (period of exposure until transfer to a medium with different type of
antibiotic or without antibiotic). These variables needs to be carefully optimised to reduce the risks
of harming and eventual losing target algal species [17]. As many algae are themselves sensitive to

these agents, this approach also reduces biodiversity.

In the last two decades, flow cytometry has been recognised and used as a powerful tool for the
study of phytoplankton ecology, especially for spatial and seasonal trends [67]. With addition of
associated functions such as fluorescence and sorting, a new alternative and attractive isolation
method has emerged, although as yet its application for sorting microalgae has been underutilised.
Fluorescence activated cell sorting (FACS) might be a useful tool to isolate new algae species from
diverse water sources or study natural population dynamics in a more efficient and time saving way,
as long as the target species survive the relatively high shear and light stress involved. Subsequent
steps can then focus on obtaining an axenic culture. Some of these techniques are explored in this
thesis; in particular, FACS and micromanipulation have proved to be useful for obtaining axenic
cultures. Once isolated, the properties and preferred growth conditions for the resultant strains need

to be defined, and samples stored using cryopreservation if possible.
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1.5  Culturing at large scale

1.5.1 Open and closed photobioreactor systems

Open pond photobioreactors: Microalgae cultivation requires large scale production for biomass;
open ponds are the oldest and simplest systems for algal culturing and have been extensively
studied. With outdoor cultivation in ponds the algae are exposed to the conditions of the external
environment at the given area, which are largely uncontrolled (temperature, lighting). The most
successful open pond systems which operate on commercial scales are high rate (raceway) ponds,
circular ponds and unmixed ponds. These types vary in form, depth, water flow and mixing systems
as well as productivity and economics. All of these types are widely used in large scale outdoor
microalgal cultivation [68] because of their relatively low construction and maintenance costs
relative to other algae production systems like complex photobioreactors (e.g. raceway pond
$250,000 ha™! [69]). Furthermore open pond cultivation systems are suitable for scale up (increasing

number of ponds) and in wastewater treatment processes.

Open ponds do however have several disadvantages. These include:
1. High contamination exposure which makes the maintenance of an axenic state impossible
and complicates the management of population dynamics during long term cultivations.
2. Low algae concentrations per litre. This reduces yields ha™! and increases harvesting and
downstream processing costs.
3. Water evaporation losses as high as 10 L per m? per day, relative to closed PBR systems
(especially in tropical or desert areas) over a large area remains a challenging problem [21,

68].

General optimisation work prior to more cost effective scale up on open ponds should be
improvement of light distribution, in mixing efficiency, reducing the mixing cost and optimisation
of the culture conditions to reduce contamination risks to improve overall biomass yield. Some
open pond systems are able to achieve up to 20 g algae biomass dry weight m d! on long term
sustained basis (although higher rates have been reported for short term studies). This already
makes them viable for some production systems involving the production of high value products
[68, 70, 71]. The main problem with open pond systems is that few options are available for
engineering improvements that alter the physics of light distribution for algal growth. Furthermore
the open nature of the pond makes it difficult to prevent or limit contamination with other

organisms.
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Closed photobioreactors: In parallel with open pond development, closed photobioreactor (PBR)
systems are being designed for microalgae mass production. Instead of being directly exposed to the

atmosphere, the cultivated microalgae are enclosed in a transparent material.

Of the closed PBR designs, the ones most commonly used are tubular PBRs [72]. Their high
flexibility of construction (straight vertical, horizontal, inclined or helical), control of gas transfer,
large surface area to volume ratio and good biomass productivities (35 to 41 g m-> d™! [58, 72] and

even 47 g m? d? [73]) makes them attractive as long as the additional cost can be justified.

Plate or flat panel PBRs consist of a transparent rectangular container (usually inclined or vertically
aligned) with a light path between 1 and 30 cm [74, 75]. As an example of successful cultivation
processes with these designs, a system in Italy used for the production of Nannochloropsis sp. and
set up under several conditions, achieved a biomass productivity up to 30 g m? d! [76]. Because of
improved mixing and sunlight capture, these systems provide higher biomass productivity and cell

density [26], and contribute to significant reductions in algae harvesting and drying costs [77].

With a closed system, the contamination risks might be reduced but not eliminated. Furthermore
cleaning and sterilisation of closed reactors after a culturing, stage remains difficult. Given
improved control of culture conditions such as temperature, light, pH, and nutrients it is, however,
possible to extend the growing season and enhance productivity. The reduction in CO2 and water

losses is also attractive.

Despite these advantages the high estimated construction cost still limits the scale up of these
systems for biofuel manufacture. One estimated capital investment for PBR is $180 m™, which is
almost seven times that required for open ponds per unit area [78]. Engineering with low cost
materials, low light-dilution, and high thermal isolation need to develop in order to decrease the

PBR costs towards ~$15 m™2.

A comparative study of systems regarding efficiency was conducted by Fernandez et al. [79]. In this
study parallel tests were conducted on open ponds, closed vertical plate and horizontal tubular
PBRs, utilising the same algae strain (Scenedesmus almeriensis) and at the same location. This
study concluded that a limiting factor for producing high biomass yield is light and therefore the
surface area to volume ratio (SVR). The higher the SVR the higher the biomass productivity.

The recent review of Posten (2009) [80] summarises the current thinking on how productivity of

PBRs can be driven up and their construction costs down.
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Still both systems facing the significant challenge of separating and dewatering the algal biomass.

The hurdles of harvesting and recent technologies are discussed more in depth under 1.7.

1.5.2 Monoculture vs. polyculture

In a polyculture, several algal species coexist. This may consist of a few tightly controlled target
species, or more commonly, refers to a broad ecological mix of species that simply happen to find
their way into the culture, typically airborne from nearly natural sources of algae, especially natural
water bodies. If biomass is the final desired product, or if the culture is aimed at bioremediation
(e.g. drawdown of nitrogen) then it may not be as important to know what algal species are present.
If a particular strain is desired for some specific property it possesses, then an uncontrolled
polyculture will not be satisfactory. Furthermore, since some natural algae are toxic (e.g. certain
cyanobacteria) uncontrolled polycultures are not without risk. Therefore if a specific target strain is
desired, a controlled polyculture may be a more desirable situation. Clear examples of side by side
comparisons between monocultures and polycultures are difficult to find in the literature, but the
proposed benefits of polycultures are largely related to robustness (since predators often target only
one or a few algal species) while the disadvantages are largely related to the loss of control over
which species are present. In this thesis, the use of controlled polycultures is explored, to see
whether these offer the same benefits over monocultures that uncontrolled natural or "wild"
polycultures are proposed to do [81]. If so, controlled polycultures may represent a viable and

robust culture system for future biotechnology applications.

1.5.3 Contamination by foreign algae species and predators

In comparison to laboratory cultures of axenic microalgal strains, industrial scale culture systems
inevitably contain other microorganisms or predators. These include other algal species which may
compete with the desired strain, potential predators (multicellular organisms such as rotifers,
protozoans, fungi or viruses) which eat or parasitise the target strain, and bacteria which compete
for nutrients, and may produce either cofactors can be beneficial to the algae (e.g. vitamins B1 and
B12) or allelopathic factors which can be inhibitory. The result is that the culture system becomes
more complex and has lower predictability. Consequently, while it is not always necessary to
eliminate other organisms, it is important to understand the effects of their presence.

In conclusion, even by providing the optimal production conditions (e.g. nutrition, temperature, pH,
light etc.) a successful and productive algae cultivation in outdoor systems can’t be guaranteed due
to contamination. Invasion and establishment of non-target organism can be highly diverse. In its

presents it may influence the desired product quality, lower the aimed production, and in worst case
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lead to costly culture crashes. Early detection and identification of invasive organisms, evaluation
of possible impact and following the appropriate counteraction is of extremely value for industrial
algae production. It is necessary to know which organism are common and likely to invade, their
preferable circumstances and what impact may occur. Hence a detailed study of contaminating
microorganism, their occurrence, warning signs, behaviour and environmental needs has to be
conducted in the same extend as the desired algae species to guarantee predictable and controllable
culture production. The following section provides informative background of the most common

invasive pond organisms.
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1.6 Pond water organisms: Protozoa and small animals (Rotifer)

1.6.1 Classification of protozoa

Protozoa ("first animals"; "primitive animals") are unicellular eukaryotes, most of them only
detectable by microscopy. In the past (around 150 years earlier), Protozoa were treated
taxonomically as a subset of the kingdom Animalia, however it is now abundantly clear that this
definition does not reflect evolutionary phylogeny and that Protozoa are not simply animals, but

contain organisms that are both separate from and included within other phyla [82].

The concept of species and phyla within the Protozoa has always been problematic and a subject of
discussion. Classification of diverse microorganisms like Protozoa in the past and still now is
mostly done via microscopy, however many crucial findings of structure of these species remained
at the cellular levels and is not visible to the naked eye. With improvement in microscopy (light,
electron) and the including use of molecular biological approaches the taxonomy (classification)
and evolutionary interrelationships of major Protozoa groups has been refined in the past decades

[82].

Generally described there are four major groups of Protozoa. The categories include ciliates
(Ciliophora), flagellates (Mastigophora), amoebas (Sarcodina) and freshwater radiolarians
(Heliozoa). Their division into several phyla is changing constantly and several systematics are
proposed. This is mostly for convenience and ease of discussion amongst specialists. However
arguments are continuing over the exact boundaries of recognised collections of protists and their

division into subkingdoms and phyla [83].

More literature about the taxonomic schemes of Protozoa is provided by Margulis et al (1990) [84]

and Corliss (2001) [82].

1.6.2 Protozoa characteristics and identification
For the sake of brevity and simplicity of morphological identification here we will discuss the 4

major groups of important Protozoa based on their locomotion:

- flagella (Zooflagellates)
- amoeboid (Sarcodina)

- radiolarian (Heliozoa)
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- ciliate (Ciliophora)

Protozoa play an essential role in the aquatic and terrestrial food webs [85-87]. They are mainly
feeders on bacteria, but can act as important herbivores [88] [89], detritivores [90], osmotrophs [91]
[92] as well as mixotrophs [93]. Bacterial communities are not only grazed by Protozoa but are also

structured by these grazers [94].

Flagellates (Zooflagellates):

The flagellates have been generally considered to be the most likely ancestors of the ciliates [95].
Flagellates vary in a wide size range between 1-450 um. They are very tolerant to changes in
salinity and apart from their distinction between marine (e.g. Euglenids, Cercozoans) and
freshwater groups (e.g. dinoflagellates, choanoflagellates), the communities seem to be very similar

[85].

Despite a number of structures in flagellates which are similar to the ciliates there are some which
are not. The movement of flagellates is an important taxonomic character involving gliding, free-
swimming and temporarily attaching to substrates [96]. These Protozoa move with whip-like
extensions called flagella (similar to algae flagella described above). Flagella usually occur in pairs
(but sometimes more) and are relatively long (often longer than the cell that carries them, and
reaching lengths of up to 50 um). In dinoflagellates, for example, a transverse flagellum is located
in the girdle and surrounds the cell whereas the other flagellum is longitudinal and emerges from
the cell. On the surface of both flagella, fibrillar hairs are present, which is not the case for ciliates

[97].

An accessible guide to common heterotrophic freshwater flagellates is provided by Jeuck and

Arndt, 2013 [98].

Amoebas: Sarcodina

These micro-aerobic amoebas have a plastic morphology using a protoplasmic flow as locomotion
(pseudopodia), sometimes with flagella but when present these are restricted to developmental
stages [99]. Most are free living in freshwater, feeding on bacteria, larger species being predatory
to algae and other Protozoa. Encountered food is then surrounded by the cell (ectoplasm) and

enveloped in a food vacuole [100].

Radiolarians: Heliozoa
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The most noticeable characteristic of Heliozoa are the axopodia. This type of pseudopod is
strengthened by tiny microtubules (axonome) that extend into solid protective rods surrounding the
cell. Locomotion is a slow constant motion of axopods, reaching out and returning in on opposite
sites. When food particles attach to the sticky surface of the tubules, it is transported to the cell body
and is engulfed. Heliozoa ingest small organisms like other Protozoa and algae and reproduce

asexually by binary fission [100].

Ciliates: Ciliophora

Ciliates are characterised by three major features: (1) the presence of cilia which are variable in
number but distributed over the body surface and derived from kinetosomes with three fibrillar
associates; (2) nuclear dimorphism — the large macronucleus and a small micronucleus which
controls the physiological and biochemical functions as well as acting as germ-line reserves; (3) the
sexual process of conjugation in which two cells fuse temporarily to exchange gametic nuclei [97]

[101].

Ciliates are heterotrophic, often responsible for consuming the majority of organic material and
bacteria in certain habitats [101]. Evolved from the flagellates, they display great diversity in shape
(e.g. spheres, cones, spheroids, cylinders) and size (10-4500 um). A complex microtubular,

microfilamentous cytoskeletion keeps the body form relatively stable.

Generally cilia are short and densely packed and organised in parallel rows used for motility and
food gathering. The precise arrangement of cilia on the cell membrane varies between species.
Ciliary movement is faster than flagellar movement, creating a distinct 2 phase asymmetrical beat
(stroke) cycle. The beats of the different ciliates around the cell are coordinated and propel the
organism in specific directions. Movements can result in distinct, complicated patterns. For instance

Paramecium normally swims forward, rotating around its axis simultaneously [102].
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The ciliate Tetrahymena

Figure 1.3: Drawing of a typical cell Tetrahymena [101].

The genus Tetrahymena (Figure 1.3), assigned to the ciliate family Tetrahymediae, includes at least
41 recognised species [101]. Its name derives from the oral apparatus made of four structures; the
undulating membrane (paroral) and three membranelles (polykinetids). Cells are oval shaped,
ranging in size between about 30-50 pm with numerous perfectly aligned ciliary rows longitudinal
to the body. Like ciliates, in general Tetrahymena have a characteristic nuclear dimorphism and
dimorphic life cycle. Because of these and other features, Tetrahymena (particular the species T.
thermophila and T. pyriformis) has been an important model system for physiological, biochemical,
and molecular research for many years [103]. It is fast and easy to grow, reaching a doubling time
less than 2 hours under optimal conditions (37 °C) and can be maintained in a vegetative form over

months and cryopreserved for years [104].

Dense core secretory granules located on the cell membrane near the cilia can be triggered to
provide a sudden explosive release of mucopolypeptides in response to extracellular cues
(exocytosis). Mucopolypeptides are also found in many higher organisms including in vertebrates
including humans (e.g. in the human immune system). This remarkable feature is highly developed

in ciliates making Tetrahymena a useful system to study this phenomena [105].

The freshwater cilated Protozoa are filter feeders mostly grazing on bacteria and metabolic waste
from other microorganisms. Nevertheless feeding on algal cells has been observed (e.g.
Micractinium sp), presumably as a last resort during food limitation since digestion of the algal cell
wall is difficult. Studies indicate that long term survival solely by ingesting algae is not possible and

Tetrahymena populations declined or became extinct in this case [106].

Factors affecting the distribution of Protozoa
Protozoa are found over a broad range of environmental habitats and conditions. Nevertheless some

factors (physical, chemical) influence successful growth and distribution of protozoa. Despite the
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supply of nutrition, the most important factor is temperature, and for autotrophic forms, light is also
a crucial variable. Apart from organisms living in extreme environments, the majority of species
increase their cell division and population at a temperature around 25 °C and can tolerate at least 30
°C, however species reproduction slows down with decreasing temperature and can stop below 6 °C
[100].

Protozoa are highly tolerant to high levels of oxygen and some species can tolerate anaerobic

conditions [107].
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1.6.3 Rotifer (a multicellular animal)

These predatory microorganisms are multicellular and therefore do not belong to the kingdom
Protozoa but rather the kingdom Animalia. The phylum Rotifera includes approximately 2000
species which are widely dispersed in all freshwaters habitats [108] [109] even including moist
habitats such as mosses and lichens [110]. Typically rotifers are divided into three classes called

Seisonidea, Bdelloidea and Monogomata [111] [112].

The class of Seisondiea is the smallest group of rotifers compromising only two marine species (.
nebaliae and S. annulatus). They are the only rotifers which reproduce strictly bisexually and show
well developed males (similar in size and morphology to females). They are very large in size (2-3
mm) and show similarities to Bdelloidea. However they have striking morphological differences to
the other two classes. Examples include a reduced corona (Latin, crown), the absence of copulatory

organ, cilia in the digestive apparatus and absence of resistant stages [113].

The class Bdelloidea includes around 460 species [114] [115]. They are distinguished by their
paired ovaries including vitellaria, pedal glands and branches in the trophi [116]. Feeding on minute
particles or microorganism is performed using their corona of either two trochal disks or a ciliated
field. Their external lorica (stiff body wall) structure remains in rings which permits shortening and
lengthening of the body by telescoping. These organisms are often detected in sediments or among
plant debris or crawling on the surfaces of aquatic plants and are capable of surviving desiccation
and rehydration, so that they can use airborne dispersal. Male rotifers are absent in the class

Bdelloidea.

The class Monogononta displays the largest group of rotifers with around 1450 species [115].
While most of them are free living and free swimming and only interacting solitarily as prey or
mates, species of mongononts have been described to form permanent colonies [117]. Monogonont
rotifers have only one gonad. Only in a few species males have been described which are, when
compared to females, structurally reduced and short living. Most species of this class feed on
microorganisms but a few are described as being parasitic. Besides the body division into three
parts (head, trunk and foot) no true segmentation is present. The corona is a ciliary organ and is
commonly modified into diverse functional types towards adaptation. In creeping forms the corona
is enlarged for gliding over surfaces whereas in attached (sessile) forms the corona can be extended

by the formation of lobes to increase the filtering efficiency [118].
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Rotifers are well adapted to a variety of habitats. Their ability to form desiccated forms
(anhydrobiosis) was described for the first time around 300 years ago (Hendrik van Bleyswijk,
1702). If the environment dries out, the organism contracts, encapsulates and enters a dormant state.
When rehydrated they resume their activity within hours [119]. In the suspended state they can
survive for months or even years. One of the longest authenticated periods of successful survival

recorded was 9 years [120].

Most of the rotifers are raptorial predators or feeding/grazing on minute particles or
microorganisms. When sufficient food is available rotifers can become very abundant and reach
densities up to 5000 individuals per litre and in open water bodies like sewage ponds even as high

as 12,000 per litre [121].

Because of their small size (ca 50-2000 um) they are easily confused with Protozoa; however they
are made of many cells and have organs like other members of the kingdom Animalia (e.g.
Daphnia, Cypris or Cyclops). Some are free swimming, others are attached at surfaces (sessile). The
typical body form of these animals is spindle-shaped or worm-like (elongated) and can be divided
into three or four regions: head (corona), neck, body (trunk) and foot. However, depending on the
species or sex, the neck and foot may be prominent or absent (Figure 1.4). With their foot rotifers
can attach themselves to surfaces. Some species (e.g. sessile species) may also possess glands

which secrete adhesives for temporary attachment [122, 123].

The skin (integument) of the rotifer can be thick and rigid like armour (loricate) or supple and
flexible (illoricate). The integument is important for identification in some genera (e.g. Brachionus,
Euchlanis) including its cuticular structures of bristles and fins. Several species show a

mucilaginous envelope around them e.g. Collotheca pleagica, Gastrophys stylifer [112].

The special anatomical features of all these animals are the corona, and the muscular mastax. The
corona located at the anterior end of rotifers is mostly (but not for all species) equipped with two
concentric rings of cilia (trochus and cingulum). There are at least seven recognised types of corona
varying in shape, placement of the mouth and distribution of cilia [124]. The corona is employed in
all species to collect food; furthermore in some free living species it might be used for locomotion.
Once the food is swept into the mouth, it will be processed by the chewing, grinding jaw-like trophi
of the mastax [125] before it leads to the stomach. In some species the mastax is enlarged and

serves as well as food storage organ.
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Figure 1.4: Schematic representation of a Brachionus rotifer [126].

Reproduction

As noted, each of the three classes of Rotifer employ different reproduction strategies. Seisonidea
reproduce bisexually and gametogenesis takes place by ordinary meiosis [112]. Bdelloidea
reproduce by asexual parthenogenesis and no males have been observed. The class of Monogononta
have evolved by alternating generations. An asexual cycle is dominant but sexual reproduction
occurs only after being triggered by specific environmental signals e.g. high population density
[109]. Unlike the mature animals, the fertilised eggs of monogononts develop a thick wall and are
capable of surviving harsh environmental conditions while resting. Furthermore resting eggs are

more easily distributed by wind or animals. And when the right condition is supplied,

parthenogenetic females hatch again.

The life cycle of rotifers is very short and without any larval stage. Within hours to a few days at

the longest the development of the animals is complete after hatching. The life span of rotifers

varies from a few days to about two to three weeks.

Foraging behavior and food source

Rotifers consume a wide variety of plant, protozoa and animal prey and may be described as
generalist feeders. They play an important role in food webs of water bodies (lakes) because of their

rapid turnover rate and metabolism. They feed largely on dead organic matter and bacteria besides
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algae, and are important prey for small carnivores such as copepods, insects and fish larvae [111]

[127].

Most of them are filter feeders or grazing on bacterial film or debris, however many are active
predators or feed on large algae (e.g. Asplanchna). They either completely engulf their prey or suck
out their contents [118]. As an example, Brachionus and Ptygura, which are usually herbivorous
process many tiny particles in rapid succession but also have been seen to consume small ciliates

[111].

Depending on the family, sessile rotifers capture food in two different ways. Water currents towards
the mouth are created by members of the family Flosculariidae (e.g., Floscularia, Ptygura,
Sinantherina). In contrast, collothecid rotifers are ambush raptors (Collotheca, Stephanoceros),
which, once the prey comes close enough to the corona, fold over and trapping their prey using long

bristles, [111].

During the screening process for food not all potential food items are consumed. Observations of
the species B. calyciflorus in various densities of suspended food particles, revealed different
mechanisms of the grazing process. Large particles are screened away from the mouth whereas
suitable particles are collected within the corona, but may be rejected later. Even particles which are
led to the oral cavity can be released [128]. This is clearly important in water bodies containing

suspended inorganic material.

Therefore rotifers can have a high clearance rate on phytoplankton. A study showed that the rotifer
K. cochlearis accounted for about 80% of the community-grazing pressure on small algae during

the year [129].

Distribution and environmental factors
Water bodies are complex habitats with constantly fluctuating abiotic (dissolved-oxygen, light
intensity, temperature, salinity and water movements) and biotic (presence or abundance of

phytoplankton and predators) factors, which influence the distribution of rotifer communities [130].

Temperature is one of the key variables and abundance of rotifers varies with the season, for
example increasing in summer [131]. High abundance of rotifers was found in waters around 17 to
30 °C [132] [133] however fail to establish at values above 30 °C [134] [135]. It has been reported

that increasing salinity has a further impact on rotifer abundance [131] [136].
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A correlation between grazing and oxygen availability was shown by Lair 1991, with rotifers

preferring to feed in zones of higher oxygen levels [137].

Less is known of the specific metabolic responses of rotifers to pH, but in B. plicatilis, swimming
activity and respiration rate did not significantly vary at pH values of 6.5-8.5 [138]. Nevertheless
motility was reduced below pH 5.6 and above pH 9, with alkaline waters depressing swimming

activity more than acidic conditions.

A high positive correlation is shown between rotifers and the presence of chlorophytes [132].
Furthermore a study showed that the presence of the algae Chlorella can aid hatching of the eggs of
Brachionus plicatitils [139].

By knowing the different variables responsible for the presence or absence of rotifers, these
organisms can be useful indicators for water quality. For example the presence of genus Brachionus

can be indicative of moderate to high levels of organic pollution [140].

1.6.4 Impacts of predatory organisms on algae cultures

Contamination of algal cultures with non-target organisms (bacteria, protozoa, fungi, rotifers) is a
known problem within industrial microalgae cultivation, especially in open pond outdoor
cultivation systems. By grazing through the culture and competing for nutrients they can
significantly reduce algal growth and productivity and in the worst case lead to destruction of the

algal culture ("culture crash") [141].

Apart from the type of algae and environmental conditions, the impact of microorganisms on the
cultivation system depends on the type and species itself. Protozoa are widely known as
bacterivores, feeding on bacteria trapped on surfaces or particles (e.g. debris or flocs). They are
abundant in active sludge and used for wastewater treatment. The larger the protozoa, the more
likely it will feed on algae and other Protozoa (algivores). When starved, Protozoa may ingest algae

even when they represent a poor food source.

As described above, rotifers are in most cases raptorial predators feeding on microorganism and
phytoplankton. They are able to alter the species composition of algae in water systems. It was
reported that the intense feeding of the rotifer Brachionus rubens caused a shift in the dominant

algal species from Scenedesmus to the spined algae, Micractinium [141]. This shift occurred most
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likely due to the inability of the rotifer to consume algae with “protective” spines which greatly

increase the effective diameter of the organism.

This and other types of defense mechanisms in algae against feeding pressure has been observed,
eventually altering the cell morphology (e.g. protective spines) or the whole community. For
instance the presence of grazing predatory organism forces some algae to initiate colony formation
as a stress response and defense mechanism. Small algae bundled together are more difficult to tear
apart or to ingest. This occurs in members of the Scenedesmaceae (Chlorophyta) [142] [143].
Mechanisms behind this concerted colony formation are not well understood but assumed to be via
chemical components released into the environment. A demonstration of Scenedesmus obliquus was
given during the exposure to a test medium previously incubated with B. calyciflorus. The algae
were shown to respond to the biological compounds released by grazing by exhibiting a logistic

dose of response chemicals, also called infochemicals [143].

Algal defenses mechanism can influence and stabilise the population fluctuations, and by doing so,

the long-term survival of both rotifer and algal populations.

Furthermore, in artificial systems of predator and prey cultivations a rapid evolution of the prey
organism has been documented resulting from the strong selection of genotypes which are more

digestion-resistant [144] [145].

In some circumstances, both rotifers and protozoa can be useful. Rotifers are themselves feed for
higher organisms and can act as a high value product [146]. In particular, as long as the target alga
is not eaten they can actually be useful in restricting bacterial numbers. As protozoa are large
organisms relative to bacteria they are easily identified and quantified. There is also the possibility
that Protozoa may contribute useful nutrients or cofactors to the culture or otherwise change the

physical factors to benefit the algal system.
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1.7  Downstream processing and harvesting

1.7.1 Hurdles in dewatering of algae

Although some algae production systems use immobilised cells [147] [148], most require
suspension of the algae in a nutrient medium. Since the mixing required for this is energy intensive,
it represents a substantial drain on the energy balance of the culture if bioenergy/biofuels are a
desired product. Consequently, algae possessing small cells which stay in solution easily are highly
desirable in the production scenario. However, once an algal culture has grown successfully, this
trait becomes problematic because harvesting small cells is more energy intensive. Harvesting is a
key issue for a systems energy balance and is considered by some to be the most problematic area
of algal biofuel production, thereby limiting the commercial use of microalgae. It is estimated that
20-30% of the costs of producing microalgal biomass is due to harvesting costs [149] [36], some

estimations are as high as 50% [150].

Algae suspensions, even at culture completion are very dilute at a cell density of around 0.25 g L™!
to 1.5 g L1 [151] [149]. Algae cells are very small (most algae cells below 30 um, often ~5-10 um
and some as small as 1-2 um). Typically they often have a similar density to the growth medium,
together with a negative surface charge on the algae, which results in a stably dispersed algal
suspension, especially during growth phase. An important parameter which describes the ability for
a colloid to stay in suspension is the zeta potential and this is dependent on several factors including
pH and ionic strength. Further background can be found from Borowitzka and Moheimani (2013)
[152].

Sawayama et al. (1999) estimate that conventional methods (sedimentation and centrifugation) have
a harvesting energy requirement of 1 MJ kg™ of dry biomass, which is greater than the energy cost
of harvesting wood at 0.7-0.9 MJ kg' [153]. Apart from energy balance, effective harvesting
systems must be able to process large volumes, be highly reliable, flexible for different species and
growing systems, and be cost effective. They must also be suitable to the species (e.g. size, surface

charge etc.) [154].

Harvesting of biomass typically requires one or more solid-liquid separation steps [149] [155]:
e Step 1: Bulk harvesting - separation of biomass form the bulk suspension, the aim is to reach
up to 2-7% solid matter, depending on biomass concentration technologies e.g. flocculation,

flotation or gravity sedimentation
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e Step 2: Thickening - Further concentration of the slurry by centrifugation, filtration or
ultrasonic aggregation. This is a more energy intensive step, so minimising the volume

treated is a key requirement.

1.7.2 Current algae harvesting methods
Most biological work on microalgae system has been on species selection for biofuel production,
with a particular focus on yield and biomass composition, rather than on recovery.

The main current methods of harvesting are summarised in Table 1.3:

Table 1.1: Comparison of microalgal harvesting methods [156].

Advantages Disadvantages Dry solids
output conc’
(%)
Centrifugation Can handle most algal types with rapid High capital and operational costs 10-22
efficient cell harvesting
Filtration Wide variety of filter and membrane types Highly dependent on algal species; best suited to 2-27
available large algal cells. Clogging or fouling an issue
Ultrafiltration  Can handle delicate cells High capital and operational costs 1.5-4
Sedimentation Low cost, potential for use as a first stage to  Algal species specific. best suited to dense non- 0.5-3
reduce energy input and cost of subsequent motile cells. Separation can be slow. Low final
stages concentration
Chemical Wide range of flocculants available, price Removal of flocculants, chemical contamination 3-8
flocculation varies although can be low cost
Flotation Can be more rapid than sedimentation. Algal species specific. High capital and operational 7

Possibility to combine with gaseous transfer cost

No single method is suited for all microalgae, especially since the design and operation of the
downstream process in a microalgal biofuel production process has to be considered. These
technologies are well summarised by Molina Grima et al. (2003) and Christenson et al. (2011)
[149] [157]. Here, only flocculation is discussed in detail, since the work in this thesis examines

flocculation as a harvesting strategy.

Flocculation is a particularly suitable method of harvesting for algal cultures because it enables
either airlift (dissolved air flotation) followed by skimming or else utilises gravity thickening to
concentrate the biomass. It is potentially applicable to large quantities and to a wide range of
species and is best suited to be used as a dewatering or initial concentration step. It is also

applicable both to batch and continuous harvesting approaches [158].

Flocculation requires aggregation of algal cells which were previously well separated and which, in
suspension, have similar surface charge and therefore generally tend not to approach each other
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closely nor aggregate. It increases the particle size and therefore the rate of settling or flotation. The
act of bringing together the algal cells into aggregates or flocs therefore requires a means to reduce
the electrostatic repulsion between cells and the substitution of some physical or chemical attraction

between them.

Types of flocculation

Flocculation can be induced chemical, physical or biological.

Chemical flocculants are typically either highly charged inorganic ions (AI**, Zn**, Fe*") which

eliminate surface charge and encourage ionic interactions, or else synthetic (polyacrylamide) or
organic polymers (chitosan, cationic starch), which not only neutralise, but entangle and draw the

cells together [157] [159].

Such flocculants are typically added anew for each harvest and usually remain in the biomass after
it is harvested. There is an expense associated with their storage and distribution and with any
removal which is required [160]. Especially inorganic flocculants can be toxic preventing the
recycling of growth media and the use for further feedstock applications (e.g. aquaculture) [161]

[162].

Changing the pH to low or high values can also contribute to flocculation (e.g. increasing pH to 11-

12 induces flocculation in Chlorella [163]. This works for some, but not all species, for example it
did not produce flocculation in Chlamydomonas [164]. It may require the addition of considerable
amounts of pH-altering compounds to alter the pH (e.g. relatively large amounts of NaOH) which is
considered as uneconomic and can cause cell damage and death which can harm the quality of the

biomass [162].

A purely physical flocculation method (electro-coagulation-flocculation) uses electric current to

13* or Fe*" ions to act similarly to exogenously added salts, but with much lower material

generate A
requirements. This has a much lower power consumption than centrifugation and utilises less
chemical mass than exogenous aluminium or iron. Since it works best under high salt conditions, it

is particularly attractive for marine algal strains [165].

Electrolytic flocculation is also possible using non-sacrificial anodes; here algae which move
towards the anode lose their negative charge and aggregate. It has the disadvantage that the

electrodes are prone to fouling [158].
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Biological flocculation ("bio-flocculation") involves using one organism to flocculate another. In

the case of auto-flocculation, there is only one species involved, but this requires the potential for
self-flocculation to be present in the target algal species and is therefore not a generally applicable
method. Microalgae may flocculate in response to environmental stress e.g. changes in nitrogen, pH
and dissolved oxygen, and if possible this may provide a viable route for recovery of a specific
strain. An auto-flocculating strain can be used as a flocculant for a non-flocculating strain [166], but
this requires a substantial input of biomass from the flocculating strain, which may not necessarily
be of any other interest as a product (thereby diluting value of final product), nor may it be a rapidly
growing strain. However, it should be mentioned that a simultaneous cultivation of both non-
flocculating and flocculating algae species might overcome this hurdle and improve harvesting
[167], as the presence of strain diversity can cause aggregation as defense mechanism against

predatory organisms.

In addition to using algae, other microorganisms, typically bacteria or fungi, can be used as
flocculants. This is usually because they produce filamentous hyphae in the case of fungi, or else
because they secrete extracellular polymeric substances (EPS) which act as a naturally produced
polymer, acting similarly to exogenously added polymers [168] [169]. These systems typically take
a long time for flocculation to occur (e.g. overnight) which is problematic for algal harvesting
where biomass losses due to techno-economic considerations as well as the potential for extended

respiration to impact on the quality of the recovered biomass.

Finally, other macro-organisms (e.g. crustaceans or fish e.g. brine shrimp or tilapia [157]) can be
used to harvest algae, especially if the biomass represented by the harvesting organism is more
valuable in its own right than the raw algal biomass. The inevitable losses in energy caused by
progress up the food chain however, is not likely to make these methods viable for large scale
biofuel production. However, naturally occurring predatory microorganisms (protozoa, rotifers) in
open outdoor system may be useful for biomass aggregation when algae forming aggregates to

avoid grazers [170] [171].
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Chapter 2

The development of any successful microalgal production system is heavily dependent upon the
selection of the best microalgae strains and production conditions for the product of choice.

Microalgal strain selections are therefore an important resource.

Sources of microalgae include existing collections, but there are advantages to searching for new
organisms because many more strains of microalgae exist than have been identified and classified in

the literature to date.

The identification of local strains with suitable characteristics for mass production which are often
more competitive than their counterparts from established culture collections is recognised as an
important strategy for obtaining cost-effective algal products. In addition, local species are often
adapted to local pathogens and conditions.

This chapter describes the development of a high throughput pipeline for the rapid isolation and
purification of a wide range of Australian wild type strains, their subsequent maintaining by
cryopreservation, taxonomic identification and the characterisation of top biomass production

candidates for further scale up.

The work is presented in the word format that it was published in the Journal of Petroleum &

Environmental Biotechnology, 2013.
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Abstract

Resource limitation is an escalating concern given human expansion and development. Algae are
increasingly recognised as a promising bioresource and the range of cultivated species and their
products is expanding. Compared to terrestrial crops, microalgae are very biodiverse and offer
considerable versatility for a range of biotechnological applications including the production of
animal feeds, fuels, high value products and waste-water treatment. Despite their versatility and
capacity for high biomass productivity on non-arable land, attempts to harness microalgae for
commercial benefit have been limited. This is in large part due to capital costs and energy inputs
remaining high, the necessity of identifying ‘suitable’ land with proximal resource and
infrastructure availability and the need for process and strain optimisation. Microalgae represent a
relatively unexplored bioresource both for native and engineered strains. Success in this area
requires (1) appropriate methods to source and isolate microalgae strains, (2) efficient maintenance
of motherstocks, (3) rapid strain characterisation and correct matching of strains to applications, (4)
ensuring productive and stable cultivation at scale, and (5) ongoing strain development (breeding,
adaptation and engineering). This article illustrates a survey and isolation of over 150 local
microalgae strains as a bioresource for ongoing strain development and biotechnological

applications.

Keywords: Microalgae, Bioresource, Motherstocks
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2.1 Introduction

The global population is projected to increase from its current level of ~7 billion up to ~9 billion
by 2050 [1]. This, together with unprecedented levels of lifestyle change in developing countries
and policies designed to alleviate poverty (though global effect on addressing hunger appears to
have recently stalled [2]), is by 2050 forecast to result in the requirement of ~70% more food [3]
and ~50% more fuel [4], as well as ~50% more fresh water [5] and an increasing amount of

chemical feedstocks. To supply these resources while simultaneously reducing global COp

emissions requires a transition away from fossil fuels, and towards renewable systems. The scale of
this challenge should not be underestimated, given the urgent need for a very significant CO2
emission reduction in this decade if we are to stay within the so called ‘safe limit’ (2°C) defined by
the Intergovernmental Panel on Climate Change [6]. This is an ambitious target given recent claims

that 80% of remaining fossil fuels must be left in the ground to prevent progressing past this

threshold [7].

Fuel, food and water resources are all inextricably connected within our production-consumption
cycles. For example, high levels of fertiliser use and water desalination are already required to
support our existing population and will likely have to increase to provide food and water security.
This in turn requires increased fuel consumption. More efficient means for utilising biological
systems as sustainable bioresources to produce food, fuel chemical feedstocks and high value
products are becoming increasingly important as consuming ancient fossil fuels becomes more

controversial, and the necessity of CO7 emission reductions becomes more widely represented in

global policy.

Microalgae production systems are positioned at the nexus of these challenges as many species
have high efficiencies relative to conventional crops in terms of using solar energy to drive the

conversion of CO» to biomass (stored chemical energy). This biomass can subsequently be used to

produce a broad range of downstream products. It has been widely stated that microalgae have the
advantage that they can be produced on a proportion of non-arable land (non- arable land is ~25%
of global surface area vs. ~3% arable land area [8,9]) and in many cases can use saline and waste
water streams. This theoretically opens up the opportunity to extend global photosynthetic capacity
beyond arable lands and assist with a transition from the current food vs fuel position [10,11] to a
more sustainable ‘food and fuel’ future. However the simplicity of the concept has not progressed
to commercial reality despite a significant international research effort. This is primarily due to

the many interconnected challenges of optimising biology and engineering parameters for high
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efficiency production and integrating these into commercially viable systems. Newly emerging
strategies for high efficiency microalgae production [12,13] may contribute significantly to a food
and fuel future but they are not the panacea that some have promoted. Opposing opinions that
microalgal production systems lack the appropriate production strains suitable to overcome the
challenges of economic and environmental sustainability for competitively priced biofuel
production may be valid at the present time, but such arguments are insubstantial given the early
stage of technology maturity, the rapid ongoing development in the field currently, and the large
microalgae biodiversity (~350,00 species) and advanced genetic engineering techniques that can be
tapped for strain optimisation [14-16]. Exploiting such a large biological resource is clearly an
advantage but also presents a considerable undertaking, and high-throughput processes for strain
isolation and maintenance are certainly required to increase the efficiency of traditionally laborious
methods. This article describes the establishment of native Australian microalgae collections in
terms of bioresource potential, and summarises the purification and cryopreservation protocols
developed to efficiently isolate over 150 native strains from a range of water sources for ongoing

strain development in a broad range of applications.

Founding a microalgae strain library

International microalgae collections such as the Culture Collection of Algae and Protozoa (CCAP),
Culture Collection of Algae at Gottingen University (SAG) and the University of Texas (UTEX)
algae collection already offer a valuable resource for the provision of microalgae reference,
research and breeding stocks. However international strain collections have their limitations and
would benefit from augmentation with complementary local native strain collections which can
offer a number of advantages. First, indigenous species are less likely to trigger local quarantine
regulations (e.g. some imported strains are considered invasive ‘weed’ species or contain
compounds undesirable for introduction into natural ecosystems). Second, indigenous species are
generally more adapted to local climate conditions (e.g. light and temperature) and local biology
(e.g. competitors and predators). Third, if correctly maintained and preserved (e.g. cryopreserved)
wild type collections of indigenous species can be prevented from adapting to laboratory
conditions (i.e. low selection pressures) which over time can result in a loss of culture
robustness and suitability for large scale outdoor mass cultivation. Fourth, many strain collections
are encumbered with intellectual property restrictions which specific local strain collections can
avoid, although governments, national parks and private land owners can exert certain rights over
commercially interesting strains isolated in such owned areas. The establishment of a
phenotypically broad collection of local strains provides both a motherstock suited for further

strain development and optimisation, and an improved understanding of competitor species that can
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invade aspiring monocultures of local or imported species. The aim of this article is to assist

others with the establishment of similar local collections.

2.2 Methods

Capturing a broad range of phenotypic diversity from natural water sources requires collection
from a broad range of environmental conditions. In this study, saline and fresh water sources, as
well as photoautotrophic and mixotrophic environments were sampled. Sampling from extreme
environmental conditions is possible and can reveal extremophile species which continue to yield
significant potential. ‘Moderate’ extremophiles like Dunaliella or some Tetraselmis strains
(growing in hyper saline ponds) or Arthrospira (growing in alkaline ponds) are relatively easy to
cultivate using these methods, but ‘extreme’ extremophiles generally require more advanced

facilities (e.g. 60°C cultivation systems) that are not discussed here.

Isolation of strains from water samples is indelibly influenced by the isolation process design, and
furthermore both passive analytical screens (e.g. productivity and compositional monitoring) and
active biological response screens (e.g. selection pressure applied through cultivation) can be used
to guide the strain selection processes and the subsequent development of databases of strain
characteristics. A flow diagram of the strategies used for microalgae isolation is shown in Figure

2.1.

In the strategy presented here the collection of crude water samples was followed by microscopic
analysis (Figure 2.1 Native water samples) and subsequent incubation of the sampled species both
in ‘sterile source water’ (to maintain species diversity) and in ‘nutrient enriched water’ samples
supplemented with artificial medium for selection of the most adaptable species (Figure 2.1
Pretreatment). Following incubation several isolation techniques were employed including
micromanipulation (Figure 2.1 Microman.), fluorescence activated cell sorting (Figure 2.1
FACS) and dilution (Figure 2.1 Dilution). Once isolated the method of choice for long-term
storage was cryopreservation (Figure 2.1 Cryo) while serial cultivation on agar plates and in
liquid media (Figure 2.1 Serial) was used for storage of sensitive strains. These isolates were
identified via 18S [17,18] and 16S ribosomal sequencing [19] in conjunction with morphological
classification (Figure 2.1 Identification) [20,21]. They were subjected to further screening to
improve cultivation conditions and identify species for specific traits of interest (Figure 2.1
Screening) and to evaluate commercial cultivation capacity (Figure 2.1 Scale-up) to assist with
strain selection and development for specific biotechnological applications. Each method step is

described below.
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Water samples

500 mL samples were collected from a broad range of local water sources in the east and south of
Australia (Table 2.1). At the location site, samples were taken between the water surface and 10
cm depth. Samples from biofilms on plant and rock surfaces were also obtained. The samples were
processed immediately after arriving in the laboratory, however storage time between collection
and processing ranged between 20 min to one day, depending on the distance. Filtration through a
coarse strainer (I mm mesh size) was performed as a pre-treatment to remove larger dirt and debris
particles but avoiding any algal species alteration.

Microscopic analysis (Nikon Ti-U fitted with a Nikon Digital Sight DS- U2, Smp colour head;
200x and 400x magnification) was performed prior to further treatment to record microorganism
diversity and provide an initial basis for morphological classification (e.g. Figure 2.1 Native water

samples).

Pre treatment

Sterile source water cultivation: The ‘sterile source water’ strategy was used to maintain maximum
biodiversity. Although original water samples were non-sterile, the source water was sterilised (0.2
um Supor® Membrane Syringe Filter, Acrodise® 32 mm, Pall Life Sciences) to produce a natural
water supply for subculture. Sterile technique was practiced throughout the purification process to
preserve initial biodiversity and prevent further contamination. The microalgae were cultivated
(100 rpm, C10 Platform Shaker, New Brunswick Scientific; illumination at 10 to 100 pE m™ s’!

cool white fluorescent light, relative to cell density) to increase the microalgae concentration.

Nutrient enriched water based cultivation: In this scenario water samples were enriched with
nutrients to favour the selection of strains capable of fast nutrient uptake and fast growth. For
nutrient enrichment, TP medium (TAP media [22] without acetate) was added to base water at a
1:3 enrichment ratio with subsequent cultivation for 4-7 days. Following initial enrichment and
isolation, strains were transitioned to a range of fully artificial media including TP, TP +250 mM
NaCl, TP +500 mM NacCl, TP + vitamins (3.9 uM thiamine, 7.5 nM cyanocobalamin, and 0.16 uM
biotin, and these same vitamin concentrations were maintained as constant for all vitamins
included media in this work, denoted as +V), TAP+V, 3NBBM+V [23], BG11+V for
cyanobacteria [23], and DM+V for diatoms [23]. TAPY (TAP + 0.35% yeast extract) was used to
encourage growth of contaminating microorganisms to confirm establishment of axenic cultures.

Reagents were supplied by Sigma-Aldrich, Chem-Supply and Amresco.
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Figure 2.1: Flow chart of the isolation, maintenance and analysis connected to the

establishment of a mid-size microalgae strain collection for biotechnological applications
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Isolation

Fluorescence activated cell sorting (FACS): FACS offers a rapid isolation technique to purify
microalgae from the original sample or from contaminants. FACS has become increasingly
popular in freshwater and marine ecology studies [24-26], and for these isolation procedures
[27,28] due to the efficacy and high throughput aspects of this process. Success in this approach
relies on several factors including the algal cell density and composition of the sample. Dominating
species are more likely to be successfully obtained, and therefore the algal diversity of purified
cells can be compromised. The size and shape of individual algae cells also has an influence on the
success rate of sorting, and the survival rate differs from species to species because of sensitivity to
physical stress. Fragile diatoms for example had lower survival rates than chlorophytes. For FACS
analysis 5 mL samples of the sterile source water and nutrient enriched water based cultivations
were pre-filtered (40 um, Nylon Cell strainer, BD Falcon) into a FACS tube and analysed in a BD
FACS Aria unit (BD Biosciences). The samples were then probed with a laser to detect individual
‘events’ corresponding to specific particles (e.g. algae cells or bacteria). The resultant dot plots
present individual algae cells as population clusters (Figure 2.2a) which can be analysed in
terms of parameters such as forward and side scatter (which represent cell size and granularity). In
addition chlorophyll fluorescence was monitored (488 nm excitation wavelength, 695 = 40 nm
transmitting filter) to distinguish between bacteria and dead/stressed algal cells (low fluorescence)
and healthy algae cells (high fluorescence). This is achieved through the application of gating
thresholds (Figure 2.2a delineated regions) which define different subpopulations based on size
and fluorescence (e.g. P1-P6).

In order to maximise species diversity it is important to select cells and discrete regions to avoid

oversampling dominant species, a process that is simplified by FACS.

Single or multiple events (e.g. individual or multiple cells) with different cell size and chlorophyll
content were sorted into 96 well plates at a gating setting of one or more events per well (Figure
2.2b), containing 150 uL of solid agar media, 150 pL of liquid media, or 150uL solid agar media
topped with 50 pL liquid media (media as defined above). After sorting, microalgal growth was
monitored via inverted microscope (Figure 2.2c), and success rates were ranked for each strain on
the basis of colony formation and contamination status. Using a setting of three sorting events per
well into liquid media yielded the highest success rate of single species recovery (>63%). Using a
lower events/well setting or sorting on solid agar media resulted in a lower success rate (<10%) and
less diverse algae populations constant with [29] who also reported a relationship between sorting

success, culture media and culture vessel size of the micro well plate.
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Collection sites

Collected samples

Isolation techniquo

Axenic isclates

Australia, QLD, rast TAP Enrichment 12 Chiorellasp,
Brisbane, Nursery 1 +FACS Chiorella sorokiniana, Micractinium pusillum

Australia, QLD, NE
Towneville, pond

Australia, QLD, Gold
coast, fish tank

Australia, QLD,
D'Aguilar, river

Australia, GLD, Central
coast lake (2)

Australia, NSW, Yanga,
storm water

Australia, QLD, TAP Enrichment L
Australia, QLD, SE Micro-

Townsville, port, salt manipulation, No confirmed identificalions
seaside pond FACS

| ]
| [Pt
sp., , Ankistrodesmus sp., Chiorella sp.
HEEER
R R R e e
HEERER

Ankistrodesmus sp . Chlorella sp |
Scenedesmus abundans

Table 2.1: Statistical analysis of algae isolation success from crude water samples. Collection sites,

water characteristics, the number of water samples and strains isolated to increasing levels of purity

are provided, together with their ability to utilise acetate, storage characteristics and species

identification.
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Micromanipulation: Micromanipulation is a laborious but powerful technique which allows the
manual targeting of specific cells within a complex mixture. This is useful for sensitive strains and
to increase biological diversity. Individual target cells were identified by microscopy (Olympus BX
41, 100x magnification) and extracted with a micromanipulator MM33 (Maerzhauser Wetzlar).
Replaceable glass capillaries (Drummond Scientific, length 3.5”, outer diameter 1.14 mm, inner
diameter 0.53 mm) were used to select and transfer the cell into either sterile source water or
nutrient enriched water as defined above. Individual cells were directly selected from these water
samples (Figure 2.3). An alternative strategy involved spreading the microalgae sample (50ul) onto

agar and selecting cells after they had settled [29].

Dilution technique: Dilution either in liquid or solid media can be used as an alternative
technique to resolve and purify individual algae strains. Achieving effective dilution on solid
media [30] involves streaking of a small volume of the original sample onto agar plates (TP or
original sterile water source media) with an inoculation loop in a three- or four phase streaking
pattern. Plates were then incubated (conditions as above) until colonies appeared (some
originating from a single isolated cell) which could then be manipulated individually. Re-
streaking was repeated until pure cell colonies were observed. In parallel, liquid serial dilution
was performed using 96 well plates.

Enriched as well as untreated water samples were serially diluted (4:1) through 48 wells filled

with 500 pl of the appropriate medium. Samples were incubated under low light conditions (~50

nE m-2 s-1 cool white fluorescent light) and examined daily (Nikon Ti-U inverted microscope).

bl

369?14 0-A

T

Figure 2.2: FACS isolation process. (A) FACS dot plot based upon laser excitation (y-axis) and
forward scatter (x-axis) of cell mixtures which facilitates population analysis and selection of
defined regions (P1-P6) for sorting; (B) 96 well plates containing purified algae; (C) microalgal

isolate growth in individual wells monitored at 100x magnification.

60



Figure 2.3: Micromanipulation setup. Cells are imaged on agar plates. The insert shows individual

cells at the tip of the needle used for aspiration (needle ID 0.53 mm)

Maintenance

Enrichment and maintenance of established isolates: Established isolates were enriched further
with artificial media and incubated in larger volumes (10 mL) to increase cell number and
concentration. For some microalgal isolates a stepwise increase of the concentration of artificial
medium was found to be beneficial and was applied, with growth monitored microscopically and

by optical density (OD75()) measurements. For long term storage triplicate samples of each isolate

were cryopreserved using 3-5 x 100 cells per cryo-vial using a refined two-step freezing protocol
developed for microalgae [31]. The final volume (1 mL containing 6.5 % DMSO and 0.2 M
sucrose (Sigma-Aldrich, Chem-Supply)) was stored at -80°C for at least 4 hours before being

transferred to -196°C for long-term storage in liquid Ny vapour phase. Strains that could not be

efficiently cryopreserved were maintained through serial cultivation using both liquid and solid

media.

Analysis
Screening: Screening for desirable properties is an ongoing process that can be repeated once a

microalgal collection has been established. The isolates can be re-screened for a variety of
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applications, and where breeding is not possible, rapidly advancing methods for engineering
microalgae can enable further advancement. The screening characteristics used here are therefore
illustrative only. The principles, however are universal — very specific screens are usually time
consuming so early rapid screening for indicative traits can be utilised first, followed by specific
screening on a smaller subset of parameters. The isolates obtained in this work were initially
screened on the basis of biomass productivity, and have already been subjected to a rigorous set of

secondary screens and this work will be reported in the near future.

Identification: Only a subset of ~20% of strains, which performed well in early screens, were
selected for full identification (though this is clearly flexible). Identification consisted of
morphological investigation (Olympus BX42 and Nikon Ti-U, 200x and 400x magnification)
[20,21] and molecular classification by rDNA analysis. For the latter, DNA was isolated according
to [32] though a 10 min sonication step was required to break open the cell walls of numerous wild
type strains. Both18S and 16S ribosomal DNA analysis was performed. The amplification of 18S
rDNA and its sequencing was outsourced to the Australian Genome Research Facility (AGRF).
The analysis of 16S rDNA was performed in house using two ‘universal’ primers [19] that
specifically target cyanobacteria and eukaryotic photosynthetic plastids. PCR amplicons were
sequenced at AGRF. Sequences were aligned wusing nucleotide BLAST (NCBI,
http://blast.ncbi.nlm.nih.gov/Blast.cgi) against the ‘nucleotide collection (nr/nt)’ database.

2.3 Results and Discussion

To establish this subset of our local microalgae strain library, water samples were sourced from 17
locations which included rainforest water sources, creeks, ponds and rivers, brackish/saline seaside
ponds and river outlets, as well as artificial systems such as rainwater tanks, plant nurseries and
fish tanks (Table 2.1). Clearly the biodiversity recovered from any biodiscovery program is
dependent upon the biodiversity of the original water samples. The number of species recovered
from a given water sample may be related to the trophic status of the source (i.e. oligo-, meso- or
eutrophic) [33]. It has been previously reported [34] that oligotrophic conditions can have a
higher level of species biodiversity for algae and while eutrophic water sources may contain more
algae, species biodiversity is often lower as fewer species tend to dominate. Our observations
supported this, and isolation processes yielded more isolates from eutrophic water sources. To
prevent the isolation of multiple isolates of the same strain, no more than one species was taken
from each water sample unless it was morphologically distinct. It is possible, however, that the

same species was isolated from different water samples taken across SE Qld.
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In this study the 17 locations sampled, initially yielded a total of 167 non-axenic isolates. Of these
~95% were Chlorophytes (e.g. Chlorella, Chlorococcum, Scenedesmus and Chlamydomonas), ~4%
cyanobacteria (e.g. Anabaena and Merismopedia) and diatoms (e.g. Navicula), and ~1% were
unidentified cell types. 104 strains were recovered using the sterile source water approach and 63
were obtained using the nutrient enrichment water method. Although source and treatment specific,
the fact that the sterile source water approach generally yielded a greater biodiversity suggests that
it may be the better standard method for the establishment of bio-diverse local microalgae culture
collections. For the isolation of fast growing strains higher levels of nutrient enrichment were

beneficial.

120 of the initial non-axenic strain samples were recovered using FACS, 42 using
micromanipulation, and 5 by dilution. This clearly shows the benefit of using FACS as a platform
for developing local microalgae strain collections as it could, in our case, sort and dispense single
cells into ~500 individual plate wells per hour, a variable percentage of which can grow into axenic
populations. Along with flow cytometry approaches, isolation of more fragile strains using micro
manipulation gives a biodiverse population of isolated strains from a given environmental sample.
Using a combination of FACS and micromanipulation yielded an average of approximately 10 +7
strains per water sample. Using a FACS setting of 3 sorting events instead of 1 per well resulted
in only slightly higher bacterial contamination levels, but increased the success rates of
recovering algal cell isolates. Despite this it was noted that the survival rate of sorted algae cells
rose when 3 events per well were used and so this is suggested as a sensible starting point for FACS
purification. It was also noted that the use of 96 well plates instead of 384 well plates improved
species recovery, with 150 pL solid agar media topped with 50 pL liquid media being the preferred

media configuration.

Of the 167 non-axenic isolates, 121 were purified to the axenic level. This was confirmed by
microscopic investigation of cultures supplemented with acetate and yeast extract as a carbon
source to encourage heterotrophic growth and demonstrating the absence of contamination.
Antibiotic treatment in some cases was able to assist with the production of axenic cell lines, but
in many cases proved toxic to the algae themselves and so was of limited utility. Overall
approximately 90% of the 121 axenic strains were purified from bacteria simply by using FACS
or through repeated subcultivation on carbon-free agar media. The remaining 46 non-axenic
isolates could not be successfully purified from contaminating bacteria. This may indicate the
presence of either strong adhesion of the bacteria to the algae cells or the presence of endogenous

bacteria. The observation that most of the non-axenic algae cultures visibly exhibited a white
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biofilm around the cells, suggests that the former was predominantly the case. Furthermore
certain species having complex shapes (e.g. constricted symmetrical arrangements, spiral twisted,
colonial or filamentous) such as the Chlorophyte Staurastrum proved more difficult to purify
from bacterial contamination. Whether these strong interactions between the bacteria and algae
are simply physical or represent a form of symbioses remains to be established, however it is
commonly noted in our open pond trials and by others that in healthy and relatively stable raceway
pond systems many bacteria and algae can coexist effectively. Indeed one benefit to their presence
may be that the bacteria use the dissolved oxygen in the culture produced through the
photosynthetic reactions of microalgae. The importance of this is that dissolved oxygen levels
become increasingly inhibitory to algae photosynthetic processes. A further benefit of bacterial
interactions might be the synthesis of essential vitamins required by certain algae (e.g. Vitamin

B12 [35]), as well as some other beneficial compounds [36].

Of the 121 axenic cultures 57 were successfully cryopreserved using the method of Bui et al
(47% success rate) [31]. Strains having a diameter of 3 to 50 um were effectively recovered
although some of the very large strains proved difficult. While acceptable this step of the process
would clearly benefit from improvement. Critical parameters include the optimisation of light level
as high light can result in oxidative damage, as well as in the optimisation of nutrient conditions for

specific strains.

Of the 64 strains that could not be cryopreserved 24 were lost during serial subcultivation. One
reason for this is that the standard media used may not be sufficiently specific to the needs of

individual species. Ongoing research is therefore required to optimise media composition.

Initial species identification was based on morphological classification but was refined through
ribosomal sequencing, which was carried out primarily to obtain an approximate idea of the algal
genus, and to differentiate different strains from each other (i.e. that they truly represented different
species or at least different strains). The aim of this work was not to undertake a complete

phylogenetic description of the isolates, which is a task that awaits further study.

Ribosomal sequence analysis can be based on 18S rDNA and 23S rDNA analysis (derived from the
nuclei of eukaryotes), or on 16S rDNA analysis (derived from chloroplasts and mitochondria)
present in both eukaryotic microalgae and prokaryotic cyanobacteria. In this study 18S rDNA
analysis was used as the primary rDNA analysis method but was supplemented with 16S rDNA

analysis, contributing to the expansion of this resource. The 18S rDNA sequencing approach has
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the advantage that corresponding databases (e.g. NCBI) are more advanced than those for 16S
rDNA, making it possible to achieve a higher quality of strain identification. Furthermore the 18S
rDNA approach can currently enable identification to the species level in many cases. In
practice our analysis typically yielded sequence identities of >95% but less than 100%,
suggesting that while closely related to some strains in the online database, many of these wild

isolates have not been previously catalogued.

Exact matches occurred at low frequency and in some cases two or more hits with a similar
identity greater than 95% were noted. Theoretically the combined use of 18S and 16S rDNA
sequence analysis may facilitate improved identification and could also resolve the origin of
specific plastids within a given species, contributing not only to species identification but the
evolutionary relationships between specific nuclear and plastid genomes.

The rDNA sequences of a selection of strains which were intended for further study (chapter 3) is
given in table 2.2. Because these sequences were not added to the public database, the

corresponding author and supervisor Prof Ben Hankamer (b.hankamer(@imb.uqg.edu.au) can be

contacted for any strain inquiry.

Strain rDNA Sequence (forward)
Chlorella sp. CCAGATTAGCCTGCATGTCTAAGTATAAACTGCTTTATACTGTGAAAC
(20 _G10) TGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTACT

ACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCC
GACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGGCTC
TGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTC
GTGCCGGCGATGTTTCATTCAAATTTCTGCCCTATCAACTTTCGATGG
TAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGG
TTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGA
AGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTAGTG
ACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATG
AGTACAATCTAAACCCCTTAACGAGGATCAATTGGACGAAGATGTCT

GCTGGGAAAAAA
Chlorella TTAGATTAGCATGCATGTCTAAGTATAAACTGCTTTATACTGTGAAAC
sorokiniana TGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTACT
(15_E4) ACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCC

GACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGGCTC
TGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTT
GCGCCGGCGATGTTTCATTCAAATTTCTGCCCTATCAACTTTCGATGG
TAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGG
TTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGA
AGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTAGTG
ACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATG
AGTACAATCTAAACCCCTTAACGAGGATCAATTGGAGAGAAAAGTCC
TGGTATAATA
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Chlorella
sorokiniana
(12_A9)

TAAGATTAGCCTGCATGTCTAAGTATAAACTGCTTTATACTGTGAAAC
TGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTACT
ACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCC
GACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGGCTC
TGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTT
GCGCCGGCGATGTTTCATTCAAATTTCTGCCCTATCAACTTTCGATGG
TAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGG
TTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGA
AGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTAGTG
ACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATG
AGTACAATCTAAACCCCTTAACGAGGATCAATTGGAGGGCAAGTCTG
GTAAAA

Chlorella sp.
(11_H5)

ATAGATTAGCATGCATGTCTAAGTATAAACTGCTTTATACTGTGAAAC
TGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTACT
ACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCC
GACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGGCTC
TGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTT
GTGCCGGCGATGTTTCATTCAAATTTCTGCCCTATCAACTTTCGATGG
TAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGG
TTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGA
AGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTAGTG
ACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATG
AGTACAATCTAAACCCCTTAACGAGGATCAATTGGAGGGAGAAATTC
TGGGTAATATT

Chlorella sp.
(10_B9)

GGGCTAGATGTACTCGTTCTTTTACCTTACCTGATAAGGCCCAGTATT
GTTATTTATTGTCACTACCTCCCTGTGTCAGGATTGGGTAATTTGCGC
GCCTGCTGCCTTCCTTGGATGTGGTAGCCGTTTCTCACGCTCCCTCTCC
GGAATCGAACCCTAATCCTCCGTCACCCGTTACCACCATGGTAGGCCT
CTATCCTACCATCGAAAGTTGATAGGGCAGAAATTTGAATGAAACAT
CGCCGGCACAAGGCCATGCGATTCGTGAAGTTATCATGATTCACCGC
GAGTCGGGCAGAGCCCGGTCGGCCTTTTATCTAATAAATACGTCCCTT
CCAGAAGTCGGGATTTACGCACGTATTAGCTCTAGATTTACTACGGGT
ATCCGAGTAGTAGGTACCATCAAATAAACTATAACTGATTTAATGAG
CCATTCGCAGTTTCACAGTATAAAGCAGTTTATACTTAGACATGCATG
GCTTAATCTTTGAGACAAGCATATGACTACTGGCAGGATCAACCAGT
AGAGACACGCTGAGTCGGAGACACGCAGGGATGAGATGGGCTGGAA
AAAAATC

Chlorococcum

Sp.
(12_02)

ATTTGATGGTACCTCCTACTTGGATAACCGTAGGAAATCTAGAGCTAA
TACATGCGTAAATCCCGACTTCTGGAAGGGACGTATTTATTAGATAAA
AGGCCAGCCGGGCTTGCCCGACCTTAGGCGAATCATGATAACTTCAC
GAATCGCATGGCCTTGTGCCGGCGATGTTTCATTCAAATTTCTGCCCT
ATCAACTTTCGATGGTAGGATAGAGGCCTACCATGGTGGTAACGGGT
GACGGAGGATTAGGGTTCGATTCCGGAGAGGGAGCCTGAGAAACGG
CTACCACATCCAAGGAAGGCAGCAGGCGCGCAAATTACCCAATCCCG
ACACGGGGAGGTAGTGACAATAAATAACAATACTGGGCATTTATGTC
TGGTAATTGGAATGAGTACAATGTAAATATCTTAACGAGTATCCATTG
GAGGGCAAGTCTGGTAAAA
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Chlorella
sorokiniana
(8 C4)

GCCAGATTCGCATGCATGTCTAAGTATAAACTGCTTTATACTGTGAAA
CTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTAC
TACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCC
GACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGGCTC
TGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTC
GCGCCGGCGATGTTTCATTCAAATTTCTGCCCTATCAACTTTCGATGG
TAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGG
TTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGA
AGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTAGTG
ACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATG
AGTACAATCTAAACCCCTTAACGAGGATCAATTGGAGGGCAAAGTGA
CTGGTAAAAAA

Chlorella
sorokiniana
(7_B6)

CCTAGATTAGCATGCATGTCTAAGTATAAACTGCTTTATACTGTGAAA
CTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACCTAC
TACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAATCCC
GACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGGCTC
TGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGCCTT
GCGCCGGCGATGTTTCATTCAAATTTCTGCCCTATCAACTTTCGATGG
TAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGGG
TTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGGA
AGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTAGTG
ACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGAATG
AGTACAATCTAAACCCCTTAACGAGGATCAATTGGACGAAGATAACA
TCTGTTGTAAAA

Micractinium
pusillum
(5 _H4)

GGTCCAGATTAGCCATGCATGTCTAAGTATAAACAGCTTTATACTGTG
AAACTGCGAATGGCTCATTAAATCAGTTATAGTTTATTTGATGGTACC
TACTACTCGGATACCCGTAGTAAATCTAGAGCTAATACGTGCGTAAAT
CCCGACTTCTGGAAGGGACGTATTTATTAGATAAAAGGCCGACCGGG
CTCTGCCCGACTCGCGGTGAATCATGATAACTTCACGAATCGCATGGC
CTCGTGCCGGCGATGTTTCATTCAAATTTCTGCCCTATCAACTTTCGAT
GGTAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAG
GGTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAG
GAAGGCAGCAGGCGCGCAAATTACCCAATCCTGACACAGGGAGGTA
GTGACAATAAATAACAATACTGGGCCTTTTCAGGTCTGGTAATTGGA
ATGAGTACAATCTAAACCCCTTAACGAGGATCATTCGACGTTTTTTTA
AAAAAAAATA

Scenedesmus
sp. (1_C4)

GTAGATTAGCATGCATGTCTAAGTATAAACTGCTTATACTGTGAAACT
GCGAATGGCTCATTAAATCAGTTATAGTTTATTTGGTGGTACCTTCTT
ACTCGGAATAACCGTAAGAAAATTAGAGCTAATACGTGCGTAAATCC
CGACTTCTGGAAGGGACGTATATATTAGATAAAAGGCCGACCGGGCT
CTGCCCGACCCGCGGTGAATCATGATATCTTCACGAAGCGCATGGCCT
TGCGCCGGCGCTGTTCCATTCAAATTTCTGCCCTATCAACTTTCGATG
GTAGGATAGAGGCCTACCATGGTGGTAACGGGTGACGGAGGATTAGG
GTTCGATTCCGGAGAGGGAGCCTGAGAAACGGCTACCACATCCAAGG
AAGGCAGCAGGCGCGCAAATTACCCAATCCTGATACGGGGAGGTAGT
GACAATAAATAACAATACCGGGCATTTCATGTCTGGTAATTGGAATG
AGTACAATCTAAATCCCTTAACGAGGATCCATTGGACGAGTTTTCGGT
AAAATCTC
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Table 2.2: Molecular classification of the 10 top biomass production candidates. The table shows
the result of the 18S ribosomal DNA analysis which was aligned against the ‘nucleotide collection

(nr/nt)’ database and the strain with the closest match identified.

2.4 Conclusion

In this paper we have demonstrated a streamlined process for microalgae recovery from a broad
range of water sources and used this to conduct a mid-scale survey of species native to
Australian waters. Typically the water sources collected yielded ~10 strains of microalgae per
sample, of which approximately half could be effectively cryopreserved to minimise maintenance
costs and genetic drift, with most of the remainder being amenable to traditional subculture.
Through the use of rDNA sequence analysis and morphological examination the resultant isolates
were identified, either to the genus or species level providing a solid basis to assist the international
research community with the establishment of multiple local strains collections to maximise
microalgae species recovery as a breeding stock for cell lines beneficial for a wide range of
biotechnological applications including the production of food, fuel, chemical feedstocks, high
value products and for applications for wastewater treatment and bioremediation. Although there
are already large international algae collections, the benefit of local strains collections include the
establishment of robust, well adapted and locally derived breeding stocks that are often without
the IP encumbrance associated with commercial strain collections. These can be used for the
development of improved cell lines for a wide range of biotechnological applications. At a
time when the global population is expanding from ~7 to ~9 billion people by 2050 and food, fuel
and water demands are predicted to increase by 70%, 50% and 30% respectively the importance
of establishing such diverse stocks becomes apparent. The ongoing exploration of the diversity
of microalgal biology is already yielding advances in high performance wild types with
commercial potential and genetic characteristics that could enable improvements for engineered
strains. Initial screens focused on biomass productivity as a primary criteria (being a critical
economic driver for commercialisation) but ongoing strain development will require further
screens for a range of other useful characteristics including oil composition and profile, predator
resilience, flocculation and other traits that enhance harvestability (e.g. floatation or

sedimentation), and capacity for wastewater systems and bioremediation.

68



Acknowledgements

The authors would like to thank Eugene Zhang and Lou Brillault for their support in maintaining
the microalgae collection. BH gratefully acknowledges the financial support of the Australian
Research Council (LP0883380) as well as from a National and International Research Alliance
Project (NIRAP) grant supported by Queensland State Government and project partners (KBR,
Neste Oil, Siemens, Cement Australia, The University of Queensland, University of Bielefeld and

Karlsruhe Institute of Technology).

69



2.5

N R

10.

I1.

12.

13.

14.

15.

16.

17.

References

Population Reference Bureau (2009) World Population Data Sheet.

Food and Agriculture Organization of the United Nations (2012) Economic growth is
necessary but not sufficient to accelerate reduction of hunger and malnutrition. The State of
Food Insecurity in the World.

Food and Agriculture Organization of the United Nations (2009) How to Feed the World in
2050.

International Energy Agency (2010) World Energy Outlook 2010

OCED (2012) OECD Environmental Outlook to 2050: The Consequences of Inaction.
Stocker TF (2013) The Closing Door of Climate Targets. Science 339: 280-282.

Climate Commission (2013) The Critical Decade 2013: Climate Change Science, Risks
and Responses.

Food and Agriculture Organization of the United Nations (2010) FAO Statistical Yearbook
2010.

Central Intelligence Agency (2013) The World Factbook.

Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, et al. (2009) Food Versus
Biofuels: Environmental and Economic Costs. Hum Ecol 37: 1-12.

Gomiero T, Paoletti MG, Pimentel D (2010) Biofuels: Efficiency, Ethics, and Limits to
Human Appropriation of Ecosystem Services. J Agric Environ Ethics 23: 403-434.
Vasudevan V, Stratton RW, Pearlson MN, Jersey GR, Beyene AG (2012)
Environmental Performance of Algal Biofuel Technology Options. Environ Sci Technol
46: 2451-2459.

Stephens E, Ross IL, Hankamer B (2013) Expanding the microalgal industry-- continuing
controversy or compelling case? Curr Opin Chem Biol 17: 444-452.

Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35: 308-
326.

Larkum AW, Ross IL, Kruse O, Hankamer B (2012) Selection, breeding and engineering of
microalgae for bioenergy and biofuel production. Trends Biotechnol 30: 198-205.
Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the
production of algal biofuels. Nature 488: 329-335.

Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, et al. (1999) Biochemical
Taxonomy and Molecular Phylogeny of the Genus Chlorella Sensu Lato (Chlorophyta). J
Phycol 35: 587-598.

70



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

de-Bashan LE, Trejo A, Huss VA, Hernandez JP, Bashan Y (2008) Chlorella sorokiniana
UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing
ammonium from wastewater. Bioresour Technol 99: 4980-4989.

Stiller JW, McClanahan (2005) Phyto-specific 16S rDNA PCR primers for recovering
algal and plant sequences from mixed samples. Molecular Ecology Notes 5: 1-3.

Entwisle TJ, Sonneman JA, Lewis SH (1997) Freshwater Algae in Australia A Guide to
Conspicuous Genera. Sainty & Associates Australia.

Hallegraeff GM, Bolch CJS, Hill DRA, Jameson I, Leroi JM, et al. (2010) Algae of
Australia: Phytoplankton of Temperate Coastal Waters. ABRS, Canberra & CSIRO
Publishing Melbourne, Canberra, Melbourne 432.

Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the
photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci
USA 54: 1665-1669.

CCAP (2012) Culture Collection of Algae and Protozoa.

Reckermann M (2000) Flow sorting in aquatic ecology. Sci Mar 64: 235-246.

Cellamare M, Rolland A, Jacquet S (2010) Flow cytometry sorting of freshwater
phytoplankton. J Appl Phycol 22: 87-100.

Crosbie ND, Teubner K, Weisse T (2003) Flow-cytometric mapping provides novel
insights into the seasonal and vertical distributions of freshwater autotrophic picoplankton.
Aquat Microb Ecol 33: 53-66.

Andersen RA (2005) Algal Culturing Techniques. Academic Press London UK.

Pienkos, PT (2008) Update on Algal Biofuel Research at NREL. 2nd Algae Biomass
Summit. Seattle, WA, USA.

Sieracki M, Poulton N, Crosbie, N (2005) Automated Isolation Techniques for
Microalgae, in Algal Culturing Techniques, Anderson RA Elsevier Academic Press London
UK 101-116.

Anderson RA, Kawachi M (2005) Traditional Microalgae Isolation Techniques. Algal
Culturing Techniques Anderson RA Elsevier Academic Press London 83-100.

Bui TVL, Ross IL, Jakob G, Hankammer B (2013) Impact of Procedural Steps and
Cryopreservation Agents in the Cryopreservation of Chlorophyte Microalgae. Plos One,
8(11).

Oey M, (2009) Chloroplasts as bioreactors: high-yield production of active bacteriolytic

protein antibiotics. Potsdam, Univ., Dissertation.

71



33.

34.
35.

36.

Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, et al. (2008)
Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production.
BioEnergy Research 1: 20-43.

Rawson DS (1956) Algal Indicators of Trophic Lake Types. Limnol Oceanogr 1: 18-25.
Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire
vitamin B12 through a symbiotic relationship with bacteria. Nature 438: 90-93.

Gonzalez LE, Bashan Y (2000) Increased Growth of the Microalga Chlorella vulgaris
when Coimmobilized and Cocultured in Alginate Beads with the Plant- Growth-Promoting

Bacterium Azospirillum brasilense. Appl Environ Microbiol 66: 1527-1531.

72



Chapter 3

Pilot scale cultivation of microalgae mono and polycultures

3.1 Introduction

The previous chapter described the isolation and characterisation of over 150 microalgae strains. In
parallel studies these were subjected to extensive nutrient optimisation trials which were designed to
identify the best production conditions for each strain and identify those strains yielding the highest
growth rates [1]. Although mainly Chlorophytes, the isolated species encompass a range of cell size,
morphology and presumably, metabolic diversity. All strains in this collection can be used freely in
outdoor bioreactor cultures in Australia, free of quarantine restrictions, while the presence of the
nutrient dataset enables a choice of different nutrient regimes to be studied. Initial experiments were
focussed primarily on growth rate. Based on the laboratory data, the top 8 strains in terms of growth
rate were selected for further evaluation regarding their suitability for outdoor culture under pilot
scale conditions. The focus of work presented in this chapter was to test their performance in high
rate ponds (HRPs) and to identify key parameters affecting their production. This is important as
under operational pilot scale conditions algae are exposed to a different range of stresses relative to
lab conditions, including fluctuations in temperature, pH, nutrient supply, predation and cross

contamination.

The experiments described here examine very few characteristics of importance to large scale algal
culture. The SBRC facility should enable, in the future, examination of many other variables of
interest, including complex polyculture work to assess the impact of specific organisms on the mix
of algal species across the seasons. Metagenomic methods would be particularly appropriate as
culture complexity increased. As the necessary regulatory controls are put in place, it is expected that
genetically modified organisms may provide opportunities for large scale production of natural

products and recombinant proteins.

The first set of experiments described here focus on single species trials using the best nutrient
conditions identified by Wolf et al [1] for their production. This allows species-specific growth
responses to the environmental conditions to be monitored and evaluated under outdoor production
conditions. The second set of experiments focus on evaluating the performance of mixed populations
of these species (polycultures) and to test the performance of the individual species within them. This

approach aims to identify key variables that require optimisation for high performance production
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conditions both in HRPs and more advanced flat panel on tubular photobioreactors (see figure 3.2).
Furthermore the trials identified potential factors affecting flocculation which is an important strategy

with potential for dewatering processes and is discussed further in chapter 4.

3.2 Material and Methods

Choice of algae

Our previously established microalgae strain collection contains over hundred microalgae strains and
was recently increased with over 150 native Australian species collected from eastern and southern
Australia [2]. The development of an advanced high-throughput screening system [3] [1] enabled the
classification of these native strains according to their growth performance and nutrient preference.
From this classification, 8 strains exhibiting the highest biomass productivities, based on maximum
growth rate (umax) and morphologic diversity, were chosen for further experiments in medium scale

HRP systems (Figure 3.1, a-h).

Indigenous Microalgae strain Pinjarra 001

A local microalgae species indigenous to the Pinjarra Hills site was isolated by nutrifying an HRP
system and running it without adding inoculum. Over 2 weeks several microorganisms established
themselves in the system and a particular microalgae species was found to be dominating the culture.
The alga was isolated and inoculated in a new HRP system and re-nutrified every 3 to 4 weeks. The
culture was monitored over one year by weekly optical density measurements (OD7s0 and ODeso) as

well as pH and conductivity measurements (Figure 3.1, 1).
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Figure 3.1: Microscopic imaging (x400) of the highest biomass producing strains, Micractinium
pusillum (5_H4) (a), Desmodesmus intermedius (1_C4) (b), Chlorella pyrenoidosa (10 _B9) (c),
Chlorella sp. (11 _HS5) (d), Chlorella sorokiniana (12_A9) (e), Chlorella sorokiniana (8 C4) (f),
Chlorococcum sp. (12_02) (g), Chlorella sorokiniana (15_E4) (h) and the indigenous microalgae

strain Scenedesmus sp. (Pinjarra 001) (i).

Design of Nutrient Media

The individual optimal nutrient requirements as determined by the automated screening [1] were
reformulated on the basis of elemental equivalence for the use of agricultural grade nutrients as would
be necessary in commercial scale systems. For polyculture experiments, a medium representing a
compromise between each of the determined optimum media was determined and urea was used as

the nitrogen source (Table 3.1).
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Table 3.1: Optimised media compositions for each algal strain used for the monoculture open pond

cultivation experiments and the compromised medium for polyculture cultivations.

» . Df'smodesr.nus Micraf'ﬁnium Chfo.re.”a Ch.'or.ei.‘a Chiorococcum Ch.‘m"e:‘.fa Ch.‘o're'ﬁn Chiorella sp. Compmr.nised
Fertiliser chemical intermedius pusillum sorokiniana | pyrenoidosa sp. (12.02) sorokiniana | sorokiniana (11_HS) media
(1_c4) {5_H4) (8_c4) {10_B9) - (12_A9) (15_E4) - (polyculture)
Formula MW [g/mol] c[mM] c[mM] c[mM] c[mM] ¢ [mM] c [mM] c [mM] c[mM] c[mM]
(NH;).50,4 132.14 3.3209 5.9995 14.9623 9.1281 0.6282
CH4N,0 60.07 2.8439 3.3397 2.8361
Ca(NO;); 164.1 1.0941 1.0941 1.0941 0.5471 0.5471 0.5471 0.5471 0.5471 1.0941
KNO, 101.11 11.5290 0.0158 0.0788 2.0119 0.0158 0.0158
K250, 174.26 0.0423 0.0085 1.0802
KH2PO,4 136.09 9.9563 9.9563 1.9913 1.9913 9.9563 1.9913 1.9913
NHgH,PO, 115.04 2.0280 2.0280
Mgs0, 120.37 1.5838 1.5838 1.5838 3.1675 1.5838 1.5838 1.5838 1.5838 1.5838
FeS0, 151.91 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019
MnSO, 151 0.0303 0.0303 0.0606 0.0303 0.0303 0.0303 0.0303 0.0303 0.0303
CuS0, 159.61 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102 0.0102
ZnS0, 161.45 0.1415 0.2830 0.1415 0.1415 0.1415 0.1415 0.2830 0.1415 0.1415
Na;B;0,5 340.46 0.0139 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278 0.0278
Na;MoO, 205.92 6.83E-03 6.83E-03 6.83E-03 6.83E-03 6.83E-03 6.83E-03 6.83E-03 0.0068 0.0068
Nacl 58.44 1.7112 1.7112 1.7112 17112 1.7112 1.7112 42779 1.7112 1.7112
CoCl, 6H,0 237.929 1.66E-03 1.66E-03 1.66E-03 1.66E-03 1.66E-03 1.66E-03 1.66E-03 0.0017 1.66E-03
Na,5e0, 172.94 4.18E-05 4,18E-05 4,18E-05 4.18E-05 4.18E-05 4,18E-05 4.18E-05 0.000042 4,18E-05
VOSO,H,0 163 2.30E-06 2.30E-06 2.30E-06 2.30E-06 2.30E-06 2.30E-06 2.30E-06 0.000002 2.30E-06
Na,5i0;5H,0 | 212.14 3.60E-02 3.60E-02 3.60E-02 3.60E-02 3.60E-02 3.60E-02 3.60E-02 0.036036 3.60E-02
Medium precipitation

In large scale algal cultivation expensive chemicals like EDTA were greatly minimised relative to the
artificial conditions in the automated screening process, to provide a scenario that was as
economically realistic as possible. Therefore media precipitation could not be completely avoided,
and this has an effect upon nutrient availability (e.g. phosphate) although this is arguably not at a

level significant to experimental results.

Pre-cultivation of inoculum in hanging bag systems

Inoculation volumes (up to 20 L), for inoculating the open ponds, were established from motherstock
cultures (maintained on agar TAP medium at 120 u£ m? s™!, 23 °C, sub-cultivated to fresh media on
a monthly basis) into liquid TP medium (Tris-Phosphate medium, 25 mL) and grown to
approximately 2 L volumes of dense culture (OD750 = ~2). The culture was subsequently transferred
into gamma sterilised hanging bag culturing systems (Pure Biomass, USA) growing for one to two
weeks up to 20 L culture volume, targeting an OD7s0 of up to 3 (constant illumination, 310 mE m? s
I, ~25 °C using TLD 58W/840, cool white, Philip fluorescent lights, RT, ~0.5 L min' sterile air
sparging). The pH was monitored and regulated to maintain neutrality on a daily basis by addition of
filter sterilised NaOH (5 M). 48 hours before inoculation into open pond systems, the hanging bags

were transferred to a partially shaded outdoor area (~0.5 L min™' air sparging, pH 7), to acclimatise
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cells to outdoor environmental conditions i.e. day and night cycles, fluctuating temperature and

sunlight-irradiation.

Pond design and Control Systems

The Solar Biofuels Research Centre (SBRC, www.solarbiofuels.org/sbrc) provides an advanced

system testing facilities in a subtropical climate (University of Queensland, Brisbane, Australia)
(Figure 3.2) System monitoring, controlling and basic culture analysis was performed in the on-site

laboratory.

Figure 3.2: SBRC Pilot plant overview with algae bioreactor in the front and the laboratory facility
in the back (a), hanging bag pre-cultivation system for algae inoculum (b), open pond cultivation

system (c).
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High Rate Ponds (HRPs) were designed by Kellogg Brown & Root Pty Ltd Australia (KBR) through
consultation with Professor Ben Hankamer and Doctor Evan Stephens. Continuous mixing of the
algae cultivation solution was performed mechanically by a non-conventional paddle wheel system
(four swinging blades, adjustable frequency), resulting in standardised water flow velocity of ~ 20
cm s, culture depth dependent), gas sparger (perforated PVC T-piece, 0.5 mm hole diameter) and
micro-bubble diffuser (MBD 600, Point Four Systems Inc., bubble size 100-500 micron). Due to the
shape of ponds, a volumetric equation (Equation 3.1) was established to allow pond volume to be

simply determined from culture depth (measured at centre point of longitudinal length).

Equation 3.1:
Depth (mm) = (0.4953 x Volume (L)) + 6.052
or

Volume (L) = (Depth (mm) — 6.052) / 0.4953

The HRPs were physically aligned along a north south axis to ensure the maximum solar energy

illumination to reactor surface area during the day.

Set up of sensors, probes for pond culture

All HRPs were equipped with sensors as required for online measurements, mounted on the south
facing end of the HRPs to minimise shading. Sensors for culture monitoring included temperature
(temperature sensor, WKU-361-00DU Electrotherm (Germany), pH (pH sensor POLILYTE Plus
ARC 120, Hamilton, Switzerland) and dissolved oxygen (O: sensor, VISIFERM DO, Hamilton,

Switzerland). The individual values were recorded on a 1-minute timescale.

Weather station

During the time of cultivation a weather station containing a pyranometer (Pyranometer CMP11,
Kipp & Zonen, Germany), a solar irradiance sensor (Sunshine sensor BF5, Delta-T Devices Ltd,
United Kingdom) and a climatic sensor unit (Clima Sensor US, Adolf Thies GmbH & Co. KG,
Germany) was used to monitor and record global radiation (W m), PAR total and diffuse (uE m? s’
1, wind speed and direction (m s!, ©), ambient temperature (°C), humidity (%), atmospheric pressure

(hPA) and precipitation (mm h').

Control units (CUs) and Software
Two control units and software used for controlling and monitoring the different parameters were

designed at the Karlsruhe Institute of Technology (KIT). A process control unit (SIMATIC S7-1200,
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Siemens, Germany) provided the interface between all sensors connected to the HRPs, the mass flow
controllers and magnetic valves to an external desktop computer. The maximum capacity of a CU
was 16 sensors (6 using analogue and 10 using digital data communication). Sensor signals and other
process parameters were sent to LabView based bioprocessing software (BioProCon, Karlsruhe

Institute of Technology, Germany) in the on-site laboratory for data recording and operator control.

Each control unit was provided with mass flow controllers (1179B and 1579A, MKS Instruments,
USA) and a ‘set up agent box’ equipped with magnetic valves (5 in total, 1 valve per HRP) for the
control of pH by the addition of alkali. One mass flow controller for air and two for CO2 were used
for each set of two HRPs (airflow divided between two reactor systems). When opened, a magnetic
valve of the ‘set up agent box’ regulated the inlet of alkali which was connected and supplied via tube

from a storage container (2 L, pressurised with approximately 0.5 bar) to the culturing system.

pH control

The pH of the HRPs in these experiments was maintained through the sparging of an air mixture with
variable CO2 concentration for lowering pH as well as liquid ammonium hydroxide (8 % v/v,
Industrial Cleaners Pty Ltd) for raising pH (setpoint: pH 7, upper/lower limits: + 0.2/ - 0.5). The pump
in the set up agent box was switched on for 10 s per pH unit deviation from the setpoint, before being
switched off for 100 s to allow for mixing and culture equilibration. CO2 was supplied at a working
concentration of 1 % CO2 and 99 % air mixture when pH value was within the operational range and
to a maximal concentration of 3%. CO2 input concentrations were allowed to drop to 0 % when pH

levels decreased.

Inoculation

The starting optical density of the inoculated HRP system was targeted to an optical density of OD7s0
= 0.1 (0.25 for polyculture) in a volume of ~ 192 L (100 mm depth). For the highly flocculating
culture of Chlorococcum sp. (12_02) optical density was difficult to measure, so as dense a culture

as practical was targeted.

All chemicals were separately pre-dissolved in RO (reverse osmosis) water prior to addition into
larger volumes. Previous to the algae inoculation, the media was mixed in the HRP in approximately
3/4 of the final volume using RO water. The mixing speed was adjusted (35-50 Hz dependent upon
culture depth in order to attain a stable mixing velocity), and the sequence of nutrient chemicals
added. After approximately 10 minutes of mixing and dissolving, the pH of the medium was adjusted

with ammonium hydroxide (ammonium 8% (v/v)) and the aeration with the COz/air mixture was
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established until a stable value of ~ 7 was achieved. The EDTA chelated iron sulphate mixture which
had been previously neutralised was added last. The pond volume was topped up to its final amount
after inoculation with the algae broth. Inoculation of the open ponds was performed in the afternoon
between ~ 3-5 pm to mitigate photoinhibition during the adaptation period of the highly diluted
cultures. The amount of inoculum was calculated from its OD7s0 value of the pre-cultivation and

added to the pond to achieve a desired starting OD.

For the polyculture experiment inoculation of an equal cell number of each strain was the aim.
Therefore cells per mL were counted in duplicates (heamocotymeter, Mallassez bright line, 0.2 mm
depth) for each of the five strains and the cell number per unit volume was calculated. Because of its
strong flocculation, cell counting of the strain Chlorococcum sp. (12_02) was unreliable and generally
low compared to the other species. Therefore the whole inoculum volume available was distributed
between the ponds and flasks, on the percentage of the original value needed. The volumes of the
strains were pre-mixed before adding into the pond bioreactor systems to ensure time-simultaneous
inoculation for all algae species. 2 litres of polyculture from each pond was taken after 10 minutes

mixing for indoor flask cultivation (this minimised variability between pond and flask experiments).

Regular Troubleshooting of airflow, pressure, valves and pH tubes

PH setup agent tubes degraded over time due to ammonium usage and resulted in an outage of pH
control during the experiment until fixed. BioProCon software occasionally experienced issues with
the main server and control unit connection which consequently had an influence on the control of
air and CO2 flow and ammonium hydroxide regulation. Periodic heavy storm weather in the area
during the storm season also occurred and these storm events were responsible for unpredictable
power outages which had a similar influence on the experiments (especially when occurring during

periods when the facility was unattended).

Sampling and Measurements

Water depth level in pond cultures was taken to monitor evaporation and precipitation. The depth
level was maintained as constant as possible by topping up with RO water after evaporation, and
where culture volume increased (and was consequently diluted) due to rainfall, measurements were
recorded based on ‘actual’ volume and also calculated to a value for a ‘standard’ volume equivalent.
Careful sampling due to cross contamination between ponds (contaminated gloves disposed, hands
washed and disinfected before each sampling) was a standard operating procedure. Conductivity was

measured manually from the collected samples (Sharp EC WP Waterproof C66). pH of starter
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cultures and of the polyculture flask experiment was measured by using a pH probe (MARTINI
Instrument pH 55).

Microscopy

Algae culture samples were microscopically observed once daily (Olympus BX41 microscope, 200-
400x magnification) and pictures were taken by using an inverse-Microscope (Nikon Ti-U
(magnification x200, x400). Visual analysis of the culture gives information about culture behaviour
in terms of cell morphology and general health, aggregation, and the presence of contaminants like

predators or foreign algae species.

Growth parameter determination

Absorbance (A= 680nm and A>= 750nm) of 1 mL algae culture (diluted at higher cell densities up to
a 1:20 ratio) were measured in triplicates twice a day for single strain experiments and three times
daily in polyculture experiments, using 1 cm path length plastic cuvettes (PG Instruments T60 UV-
Visible Spectrophotometer— Software: UV Win).

Dry-weight biomass

The volumetric biomass yield Yvoi (g L) was determined via triplicate sampling of 5 mL filtered
culture (100u mesh size filter, Millpore) for non-flocculating algae, coarse strainer ~ 1 mm mesh size
for flocculating algae) into pre-weighed tubes (5 mL Polystyrene Round-Bottom Tube, BD Falcon™)
and centrifuged (10 min x 2890 g). Pre-filtration of the samples was done to remove larger non-algae
biomass which could lead to falsification of the results. After carefully discarding the supernatant,
the pellet was dried in the oven for 3 days at 70 °C (Labec oven ODWF36, LABEC Laboratory
Equipment Pty Ltd, Australia) and cooled down to room temperature overnight. Tubes including dry
biomass were weighed on a precision balance (Shimadzu AUW220D) to 6 decimal places and dry
weight biomass (DW) was determined by subtracting the weight of the empty tube.

Determination of growth rates and productivity

The specific growth rate u expressed in unit time (t') was calculated based on the optical density
values (OD7s50) during the logarithmic state (Equation 3.2) determined for each cultivation
individually [4]. The maximum specific growth rate (Lmax) represents the maximum specific growth

rate over the most productive 24-hour period [4].

Equation 3.2: u = (In OD7500+1 — In OD750.0) X (tn-1 — tn)™!
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To determine volumetric Pvor (g L' d') and areal Paral (g m™ d!) biomass productivities, the
volumetric biomass yields Yvol (g L) over the time of the cultivation were used (equation 3.3 and
3.4). The values represent the daily biomass increase of the pond reactor volume or pond reactor

illuminated culture surface area (m?).

Equation 3.3: Pyot = (Yvol, 2 — Yvo, 1) X (t2— t1)™!

Equation 3.4: Pareal = (YVOL 22— Yvol, tl) X (t2 - tl)_l X (Ailluminated area)_1
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3.3 Results

Table 3.2 provides the primary results from both singles species (monoculture) and mixed species
(polyculture) cultivation experiments, including productivity values as maximum specific growth rate
per hour considering illumination period only (umax hr! Day only), maximum specific growth rate
considering light and dark periods i.e. daily average (umax hr'! Day/Night), and maximum specific
growth rate per day (umax day™), as well as maximum volumetric (Pvol) and areal (Parea) productivities.
As cultivations were performed as batch experiments, maximum productivity values are the most
important values to serve as target values (under similar conditions) for future investigation in semi-
continuous production regimes. Most relevant parameters for each cultivation experiment are also

listed.

It should be noted that due to sharing of facilities with other staff, that equipment limitations did
impact upon data acquisition in some cases. Also, due to site specific issues including power outages
and network disruptions, some interruption to both measurement and control capacity was

experienced during the course of the project.

To compare the energy input for each cultivation the mean value of global radiation and PAR total
was calculated of the first 14 days (~336 hrs) and presented in the table. For the duration of the
polyculture trial the data of daily solar exposure was obtained online from the closest available

weather station data of Brisbane (www.bom.gov.au).

Additional detail to that presented in table 3.2 is provided in figures 3.3-3.50 which are associated

with each of the subsequent sections describing the cultivated strains individually.
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3.3.3 Single species experiments

Autumn Cultivations:

Chlorococcum sp. (12_02) cultivation data and conditions are illustrated in figure 3.3 A and 3.3 B.
The cultivation was inoculated at a starting OD7s0 of 0.1, and the resulting growth curves based upon
optical density and dry weight measurements are presented in figure 3.3 A (a-c). After an adaptation
period of approximately 18 hours, this species transitioned into a rapid growth stage with a short

logarithmic phase before entering the stationary phase at ~90 hours under the conditions tested.

For figure 3.3 A (a-b) both OD-based growth curves have a similar pattern, and the OD7s0/680 ratio
was relatively stable which suggests that cellular chlorophyll levels remained relatively constant.
Significant OD fluctuation events were detected at 66 and 138 hours as can be seen in figure 3.3 A
(a) which impact upon growth results. Given that this strain is generally observed in a largely auto-
flocculating state, this affects the reliability in OD values being representative. Additionally, for the
dry weight values used to calculate biomass g L™! (Figure 3.3 A, c), error margins were substantial
and the high early values are counterintuitive. Consequently the confidence in these values is low. In
light of these points, both actual recorded maximum values and values averaged over the logarithmic
phase are presented in table 3.2 for p, but for dry weight values averaged over the logarithmic phased

the values were negative.

There was a singular significant rainfall event which occurred around 90 hours (Figure 3.3 B, d) at
the end of the log phase. This did have a short effect upon pH which otherwise remained entirely
within the range of 6.8-7.3 and predominantly was well maintained within 7.0-7.1 (Figure 3.3 B, c).
The predicted pattern of CO2 input was observed with a maximum of ~ 0.65 L min™! (Figure 3.3, ¢).
No dissolved oxygen and conductivity data are available for this cultivation of Chlorococcum sp.

(12_02) due to equipment limitations.
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Figure 3.3 A: Culture performance and cultivation conditions of Chlorococcum sp. (12_02): display
of the growth curve based on optical density a) linear and b) logarithmic. c¢) growth curve of
Chlorococcum sp. (12_02) based on biomass density. d) total and diffuse photosynthetically active

radiation easured over the time course of the experiment.
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Figure 3.3 B: Culture performance and cultivation conditions of Chlorococcum sp. (12_02): display
of the a) global solar radiation. b) pond culture and ambient temperature over the time course of
cultivation, fluctuation during day and night cycle. ¢) measured pH of the algal culture and dependent

COz input. d) precipitation occurrence measured over the time course of the experiment.
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Microscopic monitoring during the cultivation of Chlorococcum sp. (12_02) revealed the cell
development and culture shifts over the time course of the cultivation. Images are provided at 48,

240, and 360 hrs at low (x200) and high (x400) magnification.

Microscopic images on day 2 (48 hrs) showed some single cell algae (with low numbers that were

motile), interspersed with algae flocs. Debris and fungi contamination was clearly visible (Figure

3.4).

Figure: 3.4: Chlorococcum sp. (12_02) pond
culture 48 hours after inoculation showing
algae flocs and single cells. Fungi

contamination is indicated by a red arrow.

Microscopic images on day 10 (240 hrs) showed a dramatic increased number of algae flocks and
single cells including motile fast swimming cells (daughter cells, emerging out of bigger non motile
algae cells) (Fig. 3.5) (supplementary data video 3.1). A decreased fungi population was visible with
no further evidence of impact on the culture. Besides a few small motile Paramecium like predator

organisms (not visible in the picture) no other contaminants were detected.

| Figure 3.5: Chlorococcum sp. (12_02) pond
| culture 240 hours after inoculation showing

V.. | increased density of alga cells and flocs.

88



Microscopic images on day 15 (360 hrs) shows numerous large sized algae cells which are
accumulated into flocks up to 100 um in size (example shown in supplementary data video 3.2). An
increased number of small oval shaped (motile and non-motile) cells are distributed throughout the
culture (Fig. 3.6, a, b). Besides the few small motile Paramecium like predator organisms, rod shaped

bacteria were detected (not shown in pictures).

Figure 3.6: Chlorococcum sp. (12_02) pond culture 360 hours after inoculation a) x200 and b) x400

magnification.

In summary: Chlorococcum sp. (12_02) appeared to be a highly auto-flocculating strain. Two two
cell morphologies were observed; large round cells mostly aggregated in flocs and small motile cells
dispersed throughout the culture. Chlorococcum sp. (12_02) proved to be robust in that it exhibited
low levels of predatory organisms which seemed to have no major influence on the culture. Only

bacterial contamination was observed during the time of the cultivation.
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Scenedesmus sp. (Pinjarra 001): Cultivation data and conditions are illustrated in figure 3.7 A and
figure 3.7 B. The cultivation was inoculated at a starting OD7s0 of 0.2, and the resulting growth curves
based upon optical density and dry weight measurements are presented in figure 3.7 A (a, b) and
figure 3.7 B (a). This species did not exhibit any observable lag phase and transitioned immediately
into a logarithmic growth phase up until ~90 hours (similarly to Chlorococcum sp. 12_02).
Subsequently this strain tended to continue to grow, albeit slowly, and an actual stationary phase was
not observed during the cultivation period. From previous cultivations it has been observed that this
strain is capable of slowly increasing in cell density towards OD7s0 values of between 3-4 however
light penetration becomes severely limiting and cells tend to settle to the bottom of the HRP where
respiration ensues (data not shown). Thus while this strain is not the fastest growing of those
cultivated during this project, it is extremely robust to both local environmental conditions and

biological challenges.

The pH of the system remained mostly stable at 7 except for a sustained but small increase at ~17-46
hours (pH = 7.2) which was accompanied by an increase in CO2 delivery to amend the pH (Figure
3.7 B, c¢). The dissolved oxygen shows a distinct circadian rhythm which decreased constantly in

value from 140 hours until the end of the cultivation (Figure 3.7 B, d).
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Figure 3.7 A: Culture performance and cultivation conditions of Scenedesmus sp. (Pinjarra 001):

Display of the growth curve based on optical density a) linear and b) logarithmic.
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Figure 3.7 B: Culture performance and cultivation conditions of Scenedesmus sp. (Pinjarra 001):
Display of the a) growth curve based on biomass density. b) pond culture and ambient temperature
over the time course of cultivation, fluctuation during day and night cycle. ¢) measured pH of the

algal culture and dependent CO2 inputand d) display of conductivity and dissolved oxygen.
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Microscopic monitoring of the Scenedesmus sp. (Pinjarra001) culture provided additional insights
into culture performance. Images are provided at 48, 240 and 360 hrs at low (x100) mid (x200) and
high (x400) magnification.

Microscopic images on day 2 (48 hrs) showed a healthy culture containing cells which are oval
shaped (some appear thinner, some thicker) with pointed ends and mostly clustered in stacks of 2 — 6
algae cells (Figure 3.8, a). Occasionally rotifer predators morphologically similar to Brachionus are

seen swimming through the culture (Figure 3.8, b).

Figure 3.8: Scenedesmus sp. (Pinjarra001) pond culture 48 hours after inoculation (x400

magnification). a) cell morphology of Scenedesmus sp. (Pinjarra001). b) example of a rotifer

organism detected.

Microscopic images on day 10 (240 hrs) showed a denser healthy green culture containing more
single cell algae. Rotifers can be frequently observed in the culture (Figure 3.9, rotifer indicated by a

red arrow). However, no algae cells are seen to be consumed by the predator.

Figure 3.9: Scenedesmus sp. pond culture 240

hours after inoculation.
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Microscopic images on day 12 (288 hrs) showed a similar picture as to that seen on day 10 (240

hours). The algae cell morphology shifted almost entirely towards single cells that had less pointed
ends. (Figure 3.10, a, b).

Figure 3.10: Scenedesmus sp. pond culture 288 hours after inoculation.

In summary: Scenedesmus sp. (Pinjarra001) appeared to be either thin longitudinal and thin with
pointed ends or thicker and ovoid in appearance. The morphology of up to 6 clustered cell changed
during the cultivation period. Rotifer predators (morphologically similar to Brachionus) were
frequently detected but had no noticable influence on the algae culture or cell morphology. No further

contaminants were detected within the culture despite some debris flocs.
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Micractinium pusillum (5_H4) cultivation data and conditions are illustrated in figure 3.11 (A-B).
The cultivation was inoculated at a starting OD7s0 of 0.1, and the resulting growth curves based upon
optical density and dry weight measurements are presented in figure 3.11 A (a, b) and figure 3.11 B,
(a). This species experienced a short lag phase to ~24 hours and then transitioned into a logarithmic
growth phase up until ~96 hours. Similar to Scenedesmus sp. Pinjarra001 this strain tended to continue
in growth at a slow rate and a true stationary phase was not observed during the cultivation period.
At the cessation of the cultivation OD7s0 values of between 3-4 had already been achieved. It appeared

to be a robust strain, and faster growing than the indigenous Scenedesmus.

There were 2 short pH disruptions between 200-240 hours due to an outage of the COz regulation but
the increase was minor. Due to a system fault no CO2 data were recorded. The conductivity measured
throughout the cultivation remained between 4.43 and 4.01 mS. M. pusillum (5 _H4) which is

considerably higher than the media used for the other strains in this project.

Rainfall levels were very low except for one higher rainfall event (4.5 mm h'') occurring after 283
hours (Figure 3.11 C, b). The pH of the system remained predominantly between 6.9 - 7.02 (Figure
3.11C, a).
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Figure 3.11 A: Culture performance and cultivation conditions of M. pusillum (5_H4): display of the

growth curve based on optical density a) linear and b) logarithmic.
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Figure 3.11 B: Culture performance and cultivation conditions of M. pusillum (5 _H4): display of the
a) growth curve based on biomass density. b) total and diffuse photosynthetically active radiation and
¢) global solar radiation. d) pond culture and ambient temperature over the time course of cultivation,

fluctuation during day and night cycle.
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Figure 3.11 C: Culture performance and cultivation conditions of M. pusillum (5_H4): display of the
a) measured pH of the algal culture and dependent COz input. b) precipitation occurrence measured

over the time course of the experiment. c¢) display of conductivity and dissolved oxygen.
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Microscopic monitoring of the M. pusillum (5_H4) culture provided additional insights into culture
performance. Images are provided at 72, 192 and 312 hrs at medium (x200) and high (x400)

magnification.

Microscopic images on day 3 (72 hrs) showed mainly a single cell morphology containing low
chlorophyll pigmentation and poor motility (Figure 3.12, a). Fungi contamination was observed in

the pond (Figure 3.12, b) but with little evidence of significant negative impact on the algal

population.

Figure 3.12: M. pusillum (5_H4) pond culture 72 hours after inoculation a) algal cells with dispersed
debris b) visible fungi bodies/branches within the algal culture (example indicated by a red arrow).

Microscopic images on day 8 (192 hrs) showed a much denser green culture of algal cells which
generally clustered in groups of 3-4 cells. Increased levels of bacterial contamination were visible.
The fungi population initially observed was no longer detectable at this time point. Small numbers of
green flagellates (similar in morphology to Chlamydomonas) were also evident. Notably these created
empty cell circle around themselves presumably through their motility (Figure 3.13, a, b, examples
are indicated by red arrows) (supplementary data video 3.3). Ciliates Tetrahymena sp. (morphological

identified) were observed grazing through the culture.
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Figure 3.13: M. pusillum (5_H4) pond culture 192 hours after inoculation. Increased growth of algae
culture on day eight including a small predator organism forming “holes” in the algae cell colonies.

a) x200 and b) x400 magnification.

Microscopic images on day 13 (312 hrs) showed M. pusillum (5 _H4) dominating the culture and a
decreased appearance of contaminating microorganisms compared to previous time points (Figure.
3.14). Green flagellates were present but in significantly lower numbers. The ciliate population
Tetrahymena sp. remains constant in the culture, and furthermore some small Paramecium were also

occasionally seen.

Figure 3.14: M. pusillum (5_H4) pond culture

312 hours after inoculation.
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In summary: M. pusillum (5 _H4) cells were round in appearance with spines during the growth and
stationary phase (not readily apparent in the microscopic images shown). The spherical clusters of 3-
4 cells may be indicative of cell division, and a healthy culture. At day 3, the culture contained fungi
bodies which reduced in number as the algae culture density increased. This suggests that they were
not seriously pathogenic to the algae. An increased number of bacterial cells on day 8 and fewer
predatory flagellates and ciliates organism (possibly grazing mostly on bacteria) also had no

detectable influence on the steady growth of the algae culture.
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Chlorella sp. (11_H5) cultivation data and conditions are illustrated in figure 3.15 (A-C). The
cultivation was inoculated at a starting OD7s0 of 0.2, and the resulting growth curves based upon
optical density and dry weight measurements are presented in figure 3.15 A (a, b) and figure 3.15 C
(a). This species experienced a short lag phase to ~24 hours and then transitioned into a logarithmic
growth phase up until ~114 hours. At this point there was a notable decrease of OD most likely due
to the occurrence of high levels of foaming and biofouling. It is unknown as to if the logarithmic
phase could have been further sustained if these issues could be addressed. This strain did enter a

distinct stationary phase at OD7s0 of ~2.

There was a significant rainfall event during the first three days (2.4 — 5.4 mm h™") (Figure 3.15 C, b)
however pH was well maintained. The pH of the system remained stable at around 7 with only a slight
drop to 6.8 at round 77 hours as the rainfall ceased. The conductivity measured throughout the

cultivation slightly fluctuated between 2.3 and 2.7 mS (Figure 3.15 C, ¢).

Chlorella sp. (11 _HS5) proved to be robust in that it exhibited low levels of bacterial and predator
contamination and ranked no.8 of the nine strains in terms of maximum growth rate under the

conditions tested.
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Figure 3.15 A: Culture performance and cultivation conditions of Chlorella sp. (11 _HS5): display of

the growth curve based on optical density a) linear and b) logarithmic.
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Figure 3.15 C: Culture performance and cultivation conditions of Chlorella sp. (11_HS5): display of

the a) measured pH of the algal culture and dependent CO: input. b) precipitation occurrence

measured over the time course of the experiment. ¢) display of conductivity and dissolved oxygen.
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Microscopic monitoring of the Chlorella sp. (11_HS5) culture provided additional insights into culture
performance. Images are provided at 168, 192, 360 and 475 hrs at low (x100) mid (x200) and high

(x400) magnification.

Microscopic images on day 7 (168 hrs) showed single cell algae interspersed with many flocs of

debris, high amount of bacteria as well as fungi contamination (Figure. 3.16).

| Figure 3.16: Chlorella sp. (11_H5) pond
culture 168 hours after inoculation showing
algal cells with dispersed debris, bacteria and
fugi.

Microscopic images on day 8 (192 hrs) showed a denser and more healthy green culture containing
a high amount of bacteria, debris and fungi contamination which was trapping algae. (Figure. 3.17,
a, b). Small motile ciliates could be detected as well as a small number of elongated fast moving

ciliates (morphological similar to Amphileptus [5]) grazing around the flocks.

Figure 3.17: Chlorella sp. (11 _HS5) pond culture 192 hours after inoculation. a) showing algae cells

and flocs of debris (x200 magnification). b) single cell morphology of dispersed algal cells (x400

magnification).
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Microscopic images on day 15 (360 hrs) showed besides many single cell algaec an increased
flocculation of algae. The predator load was increasing in both their number and type’s e.g.
morphological identified ciliates similar to Amphileptus and flagellates (Figure 3.18, c, d) similar to
Chlamydomonas. The ingestion of cells by the flagellates was clearly visible (Figure 3.18, c, d)
(supplementary data video 3.4).

Figure 3.18: Chlorella sp. (11_HS5) pond culture 360 hours after inoculation showing increased
flocculation of the algal cells a) and b). Flagellates similar morphology to Chlamydomonas with
ingested algae cells ¢) and d).

Microscopic images on day 20 (475 hrs) show a similar picture to day 15, however the flocculation
amount and size of Chlorella sp. (11 _HS5) increased drastically whereas single cell numbers
decreased. Many different predators could be observed which were described on day 15. Of note was
the high number of a particular ciliate type not detected on previous days, which established itself in
the culture and is morphologically and behaviourally very similar to the ciliate Cyclidium (locomotion
by “jumping”) (Figure. 3.19, d) (supplementary data video 3.5). This ciliate type and the ciliate

described as Amphileptus (Figure 3.19, c) were the two dominating protozoa detected grazing around
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the algae flocs (supplementary video 3.6 and 3.7). A one off observation of the ciliate morphological
similar to the genus Didinium (blue arrow) and pseudopodia similar to Actinosphaerium (red arrow)

was observed grazing on an algal floc (Figure 3.19, b) (supplementary data video 3.8).
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Figure 3.19: Chlorella sp. (11_HS5) pond culture 475 hours after inoculation showing flocculation of
algae cells a). b) Grazing predators similar to Didinium (blue arrow) and Actinosphaerium (red
arrow). ¢) close up image of a ciliate similar to Amphileptus. d) close up image of a ciliate similar to

Cyclidium.

In summary: Chlorella sp. (11 _HS5) appeared to be highly sensitive to the impact of predators. The
highest diversity of protozoa was detected within this cultivation, however no predator species were
directly detected ingesting the algae as was shown during the cultivation of C. sorokiniana (8 C4).
The single cell morphology of Chlorella sp. (11 _HS5) shifted to an aggregated state with increased
predator load. This leads to the assumption of a high impact from the protozoa on the behaviour and

growth of the algae.
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Desmodesmus intermedius (1_C4) cultivation data and conditions are illustrated in figure 3.20 (A-
C). The cultivation was inoculated at a starting OD7s0 of 0.1, and the resulting growth curves based
upon optical density and dry weight measurements are presented in figure 3.20 A (a, b) and figure
3.20 B (a). This species exhibited a short lag phase to ~18 hours and then transitioned into a
logarithmic growth phase up until ~92 hours. At this point there was a slowing of growth but growth

did continue until ~250 hours.

Besides the steady increase in optical density, D. intermedius (1 _C4) did not correspond in an increase
of dry weight. The disparity between both growth curves may be explained by changes in cell
morphology (clusters of 2-5 cells to ovoid single cells), increase of cell size and volume but not
necessarily an accumulation of biomass, as well as increasing amount of cell debris along the
cultivation period. These factors mentioned change light scattering parameters, governing optical

density.

There were no perturbing rainfall events during the cultivation period and the pH was well
maintained. The conductivity and dissolved oxygen measured throughout the cultivation remained
between 2.32 and 2.81 mS and 7.1 and 10.3 mg L' respectively. D. intermedius (1_C4) proved to be

robust in that it exhibited low levels of bacterial and predator contamination.
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Figure 3.20 A: Culture performance and cultivation conditions of D. intermedius (1 _C4): display of

the growth curve based on optical density a) linear and b) logarithmic.
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Figure 3.20 B: Culture performance and cultivation conditions of D. intermedius (1 _C4): display of
the a) growth curve based on biomass density. b) total and diffuse photosynthetically active radiation
and c) global solar radiation. d) pond culture and ambient temperature over the time course of

cultivation, fluctuation during day and night cycle.
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Figure 3.20 C: Culture performance and cultivation conditions of D. intermedius (1 _C4): display of
the a) measured pH of the algal culture and dependent CO: input. b) precipitation occurrence

measured over the time course of the experiment. ¢) display of conductivity and dissolved oxygen.
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Microscopic monitoring of the D. intermedius (1 _C4) culture provided additional insights into culture
performance. Images are provided at 96, 144 and 288 hrs at low (x100) mid (x200) and high (x400)

magnification.

Microscopic images on day 4 (96 hrs) showed single cell algae interspersed with algae flocs. Rod

shaped bacteria were clearly visible in the culture (indicated by red arrow (Figure 3.21, a, b).

Figure 3.21: D. intermedius (1_C4) pond culture 96 hours after inoculation. Bacteria cells are

indicated by a red arrow.

Microscopic images on day 6 (144 hrs) showed a denser and visibly healthier culture containing
less single cell algae interspersed mostly with clusters/stacks of 2-5 algae which may be indicative of
cell division. Spines typical of healthy D. intermedius (1 _C4) cells were clearly visible as was cell
debris which may be due to cell death or cell division. Rod shaped bacteria and other predatory

organisms were not visible in the culture at this stage (Figure 3.22, a, b).

~ :. I 'd' . et .

Figure 3.22: D. intermedius (1 _C4) pond culture 144 hours after inoculation
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Microscopic images on day 12 (288 hrs) showed single ovoid algal cells without clusters or
aggregation. No spines could be seen on the cells. High amounts of cell debris were visible in the

culture (Figure 3.23, a, b). Negligible numbers of predatory organisms were detected except for the

occasional small and fast swimming Paramecium.

Figure 3.23: D. intermedius (1 _C4) pond culture 288 hours after inoculation

In summary: D. intermedius (1 _C4) appeared to be either ovoid or spiny in appearance during the
growth phase and clusters of 2-5 cells may be indicative of cell division, though stress responses
cannot be excluded. At day 4, the culture contained rod shaped bacteria which reduced in number as
the algae culture density increased. This suggest that they were not seriously pathogenic to the algae.
Foam was observed on the culture surface at the end of the cultivation period (Day 13 - 312 hrs) and

coincided with the stationary phase.
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Chlorella sorokiniana (8_C4) cultivation data and conditions are illustrated in figure 3.24 (A and B).
The cultivation was inoculated at a starting OD750 of 0.16, and the resulting growth curves based upon
optical density and dry weight measurements are presented in figure 3.24 A (a, b) and figure 3.24 B
(a). This species experienced a longer lag phase up until ~42 hours and then transitioned into a

logarithmic growth phase up until ~144 hours. There was a continuance of slower growth until ~250

hours (OD750 = ~2.0).

The pH of the system mainly remained between 6.8 - 7.16 (Figure 3.24 B, c). This was supported by
the fact that the CO: input stayed stable at a maximum of 0.3 to 0.5 L min™' (Figure 3.24 B, c). The
conductivity measured throughout the cultivation remained between 1.35 and 1.71 mS. The dissolved
oxygen was measured at the beginning of the cultivation between 8 — 9 mg L! increasing constantly
after 114 hours. A noticeable drop of dissolved oxygen to 6.7 mg L™ was visible after 90 hours (Figure
3.24 B, d).

C. sorokiniana (8 C4) did exhibit extreme flocculation after 144 hours (supplementary data video

3.9).
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Figure 3.24 B: Culture performance and cultivation conditions of C. sorokiniana (8 C4): display of

the growth curve based on optical density a) linear and b) logarithmic.
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Figure 3.24 B: Culture performance and cultivation conditions of C. sorokiniana (8 _C4): display of
the a) growth curve based on biomass density. b) pond culture and ambient temperature over the time
course of cultivation, fluctuation during day and night cycle. ¢) measured pH of the algal culture and
dependent CO: input. d) precipitation occurrence measured over the time course of the experiment.

e) display of conductivity and dissolved oxygen.
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Microscopic monitoring of the C. sorokiniana (8 _C4) culture provided additional insights into culture
performance. Images are provided at 96, 144 and 288, 408 and 432 hrs at low (x100) mid (x200) and
high (x400) magnification.

Microscopic images on day 4 (96 hrs) showed healthy, low in numbers single cell algae cells.

(Figure 3.25). Amoeba organisms were visible in the culture

=T = T
P - - :

Figure 3.25: C. sorokiniana (8_C4) pond culture

96 hours after inoculation.
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Microscopic images on day 6 (144 hrs) showed a much denser culture containing single cell algae
interspersed with thick algae flocs. Coccoid shaped bacteria, mostly together in clusters were visible.
Within the algae flocs a transparent substance (e.g. debris) was present between the cells. Predatory
amoeba organisms (supplementary data video 3.10) and a very high number of the ciliate type
Tetrahymena sp. moved between the algae cells. (Figure 3.26, c). Tetrahymena sp. movement was

very fast and occasionally they were seen connected to pairs (Figure 3.26, d indicated by a red arrow)

(supplementary data video 3.11).

Figure 3.26: C. sorokiniana (8 _C4) pond culture 144 hours after inoculation a) dense algae floc of
C. sorokiniana (8_C4). b) dispersed algal cells including bacteria contamination. c) fast moving
ciliates presumably Tetrahymena (indicated by a red arrow), d) connection occurring between ciliate

cells (indicated by a red arrow).
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Microscopic images on day 12 (288 hrs) showed an increased aggregation of algal cells forming big

flocs. No previous detected ciliate could be seen in the culture. Occasionally small cells with flagella

were visible (Figure 3.27).

A -

Microscopic images on day 17 (408 hrs) showed a decrease of the aggregation. More algae flocs

but smaller in size were present including many single cell algae interspersed. (Figure. 3.28, a, b).
T TR T TR T T i T
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Microscopic images on day 18 (432 hrs) at the end of the experiment the culture contained mostly
of thick but healthy looking algae aggregations, increased in density and size with clearly less single

cells in between (Figure. 3.29, a, b). Occasionally Chlamydomonas like flagellates and Tetrahymena

ciliates were visible without notable impact on the algae culture.

Figure 3.29: C. sorokiniana (8 _C4) pond culture 432 hours after inoculation.

In summary: C. sorokiniana (8 C4) appeared to be susceptible to a range of bacteria and predators
(amoebae, flagellates and ciliates). However a healthy culture developed throughout the cultivation
with no significant grazing impact of the predators detected. A high amount of the ciliate Tetrahymena
(morphological identified) was observed after 144 hours and was no longer detected after 288 hours.
Starting from day 6 (144 hrs) the algal cells showed increased flocculation which intensified and

persisted until the end of the cultivation.
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Winter Cultivations

Chlorella pyrenoidosa (10_B9) cultivation data and conditions are illustrated in figure 3.30 (A and
B). The cultivation was inoculated at a starting OD7s0 of 0.1, and the resulting growth curves based
upon optical density measurements are presented in figure 3.30 A (a-b). This species experienced a
short lag phase up until ~18 hours and then transitioned into a logarithmic growth phase up until ~114

hours. There was a continuance of slower growth until ~310 hours (OD7s0 = ~1.8).

Rainfall levels were low overall with the highest rainfall event (31.4 mm h') occurring after 364
hours (Figure 3.30 B, e). The pH of the system remained between 6.9 - 7.1 (Figure 3.30 B, d) except
for a pH spike of 7.4 at 326 hours. The CO: input remained stable at a maximum around 0.3 L min’!
except for several spikes (0.6 L min") between 60-100 hours to regulate pH during the growth phase
and at 325 hours which was corresponding to the pH peak due to a set up agent fault (Figure 3.30 B,

d). No dissolved oxygen and conductivity data are available for the cultivation.

C. pyrenoidosa (10_B9) was observed to start dying after 300 hours indicated by the drop of OD7s0

and ODeso. No biomass dry weight data is available for this cultivation.

2
o

-1.0

* b
= -0.8 @ 2
= 5 S
7]
= 0.6 3 ﬁ\
s | = B
g 1.0': ﬂ ——— 00530 - 0.4 15. %
g. 0.5 ) —— OD750 0.2 ?_n —=— ODggo
i oD ;
1 J = 750/680 - - —— ODy5¢
0.0 — T 0.0 0.1 T T T T
0 100 200 300 400 0 100 200 300 400

Processtime [hr] Processtime [hr]

Figure 3.30 A: Culture performance and cultivation conditions of C. pyrenoidosa (10_B9): display

of the growth curve based on optical density a) linear and b) logarithmic.
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Figure 3.30 B: Culture performance and cultivation conditions of C. pyrenoidosa (10_B9): display

of the a) total and diffuse photosynthetically active radiation and b) global solar radiation. c¢) pond

culture and ambient temperature over the time course of cultivation, fluctuation during day and night

cycle. d) measured pH of the algal culture and dependent CO:z input. e) precipitation occurrence

measured over the time course of the experiment.
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Microscopic monitoring of the C. pyrenoidosa (10_B9) culture provided additional insights into
culture performance. Images are provided at 119 and 403 hrs at low (x200) and high (x400)

magnification.

Microscopic images on day 5 (119 hrs) showed healthy single cell algae species with no predatory

organisms detected. Larger oval shaped non-target algae cells were visible (examples indicated by a

red arrow), however not dominating the culture (Figure. 3.31, a, b). Visible foam development on the

4 il Y ~ { - "

Figure 3.31: C. pyrenoidosa (10_B9) pond culture 119 hours after inoculation.

Microscopic images on day 12 (403 hrs) showed a very dense and healthy green culture. Besides a
minor number of oval to sickle shaped algal cells, no other contaminating organisms were detectable.
(Figure. 3.32, a, b).
T
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Figure 3.32: C. pyrenoidosa (10_B9) pond culture 403 hours after inoculation.

119



In summary: C. pyrenoidosa (10_B9) appeared to be robust in that it exhibited low levels of bacterial
or predator contamination. Non-target algal cells established themselves from day 5 of the cultivation,
however no major impact on the growth of C. pyremoidosa (10 _B9) was detected and no
outcompeting of the target algae occurred. Foam was observed on the culture surface at the end of
the logarithmic phase of the cultivation (day 6, 142 hours) assuming from algae protein released
during cell division. Furthermore no cross contamination from the culture C. sorokiniana (15_E4)
with Tetrahymena like ciliates was detected despite the proximity to other ponds where Tetrahymena

populations had established.
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Chlorella sorokiniana (15_E4) cultivation data and conditions are illustrated in figure 3.33 (a-d).
The cultivation was inoculated at a starting OD7s0 of 0.1, and the resulting growth curves based upon
optical density measurements are presented in figure 3.33 (a-b). This species experienced a short lag
phase up until ~18 hours and then transitioned into a logarithmic growth phase up until ~71 hours.
There was a continuance of slower growth until ~260 hours (OD7s0 > 2.0). At ~312 hours the
cultivation went into gradual decline. No dissolved oxygen and conductivity data are available for

the cultivation.

During the cultivation the pH experienced several peaks of up to pH = 8 (Figure 3.33, ¢). This is due
to a system fault of the set up agent system (breaking of the ammonia dispenser increased set up agent

flow into the culture).
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Figure 3.33: Culture performance and cultivation parameters of C. sorokiniana (15_E4): display of
the growth curve based on optical density a) linear and b) logarithmic. c) measured pH of the algal
culture and dependent CO: input. d) pond culture and ambient temperature over the time course of

cultivation, fluctuation during day and night cycle.
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Microscopic monitoring of the C. sorokiniana (15_E4) culture provided additional insights into
culture performance. Images are provided at 119 and 403 hrs at mid (x200) and high (x400)

magnification.

Microscopic images on day 5 (119 hrs) showed round single cell algae interspersed with some debris

Figure 3.34: C. sorokiniana (15_E4) pond culture 119 hours after inoculation.

Microscopic images at the end of the experiment on day 14 (403 hrs) showed besides a denser
algae culture a high amount of debris flocs and possible fungi contamination (Figure 3.35, a, b). Some
algae were trapped within the debris flocks. A high amount of the ciliate protozoa Tetrahymena
(morphological identified, indicated by a red arrow) was visible grazing throughout the culture
(Figure 3.35, ¢) (supplementary data video 3.12). Occasionally tiny fast swimming Paramecium were

observed.
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Figure 3.35: C. sorokiniana (15_E4) pond culture 403 hours after inoculation.

In summary: C. sorokiniana (15_E4) appeared to be round single cell algae in appearance with a
relatively constant amount of debris within the culture. During the cultivation a high amount of
ciliates established themselves in the algae broth similar to predator organisms found during the
cultivation of 8 C4. However no flocculation occurred and no significant evidence of negative impact

on the algal population from the contaminants was found.
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Chlorella sorokiniana (12_A9) cultivation data and conditions are illustrated in figure 3.36 (A and
B). The cultivation was inoculated at a starting OD7s0 of 0.1, and the resulting growth curves based
upon optical density measurements are presented in figure 3.36 A (a-b). This species experienced a
lag phase up until ~23 hours and then transitioned into a logarithmic growth phase up until ~ 71 hours.
There was a continuance of slower growth until ~260 hours (OD7s0 > 2.0). At ~312 hours the

cultivation went into gradual decline.

The pH of the system remained stable between 6.9 - 7.1 with an insignificant single peak of 7.2 at
around 90 hours. This is supported by the fact that the CO2 input remained stable (Figure 3.36 B, b,
maximum of 0.3 — 0.6 L min"). No conductivity data are available for the cultivation. The dissolved
oxygen measured throughout the cultivation showed a strong circadian rhythm mainly between 95 -
120 % saturation, with a maximum of 136% at around 164 hours. A noticeable drop of dissolved O2

can be seen at around 157 hours down to 64% saturation.
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Figure 3.36 A: Culture performance and cultivation conditions of C. sorokiniana (12_A9): display

of the growth curve based on optical density a) linear and b) logarithmic.
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Figure 3.36 B: Culture performance and cultivation conditions of C. sorokiniana (12_A9): display
of the a) pond culture and ambient temperature over the time course of cultivation, fluctuation during
day and night cycle. b) measured pH of the algal culture and dependent CO2 input. c) display

dissolved oxygen.
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Microscopic monitoring of the Chlorella sorokiniana (12_A9) culture provided additional insights
into culture performance. Images are provided at 119 and 403 hrs at low (x200) and high (x400)

magnification.

Microscopic images on day 5 (119 hrs) showed a dense culture of variably sized single oval shaped

algal cells. No predator or other contaminants were visible in the culture (Figure 3.37, a, b). A small

amount of debris was present between the cells.

Figure 3.37: C. sorokiniana (12_A9) pond culture 119 hours after inoculation.

Microscopic images at the end of the experiment on day 14 (403 hrs) showed a denser and healthy
green culture containing same size single cell algae. More debris was dispersed in the culture. Single
cell contaminants with flagella were detected in the culture, noticeable by creating an empty cell

circle around themselves (Figure 3.38, a, b).

Figure 3.38: C. sorokiniana (12_A9) pond culture 403 hours after inoculation.
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In summary: C. sorokiniana (12_A9) appeared to be an ovoid cell type with slightly different sizes
during the growth phase and uniform size in the stationary phase. The culture showed only minor
predator contamination of flagellates which seemed to be of no harm or influence on the culture
growth. Furthermore no cross contamination from the culture C. sorokiniana (15 _E4) with

Tetrahymena like ciliates was detected despite their side by side arrangement of the ponds.
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Spring Cultivations

3.3.4 Multiple species (polyculture) experiments

Following the monoculture experiments, two parallel polycultures were established. These contained
equal cell density of Desmodesmus intermedius (1_C4), Micractinium pusillum (5 _H4),
Chlorococcum sp. (12_02), Chlorella sorokiniana (12_A9) and Chlorella sp. (11 _HS5). Cultivation
data for both ponds and conditions are illustrated in figure 3.39 (A and B). The cultivation was
inoculated at a starting OD7s0 of 0.1, and the resulting growth curves based upon optical density and
biomass dry weight measurements are presented in figure 3.39 A, (a-d) and figure 3.39 B, (a). These
cultures both rapidly transitioned into a logarithmic growth phase up until ~ 94 hours. There was a
continuance of slower growth until ~312 hours and both cultures achieved high optical density (OD7so

= ~3-4).

The weather conditions during the time of cultivation stayed mostly sunny and hot and heavy rainfall
occurred only during the last 3 days (~ 281 — 335 hours). The pH of the two ponds remained mainly
between 6.9 — 8, except for two pH peaks of 9.5 at ~ 160 hours and 229 hours which was due to a
control system fault (Figure 3.39 B, c¢). This is supported by the fact that the CO2 input remained
stable except for the outage at 136 and 215 hours and an increased input of CO2at 162 and 232 hours
to stabilise the pH (Figure 3.39, ¢) COz average min ~ 0.029-0.169 and max ~ 0.3 L min™!). Towards
the end of the cultivation the average pH maximum slightly increased resulting in a simultaneous
increase of CO2 input to the culture. The conductivity of both ponds was measured throughout the
cultivation period and started between 1.18 (pond 1) and 1.0 mS (pond 2) and as expected declined
throughout the experiment to 0.92 (pond 1) and 0.86 mS (pond 2), as the nutrients were depleted. The
dissolved oxygen values measured were overall higher in pond 1 and reached its maximum of 277 %
saturation on day 4 and was declining towards the end of the cultivation. In pond 2 dissolved oxygen
measurements remained lower at a maximum of 170 % saturation during the day and remained stable
over the time period over cultivation. The minimum pO: saturation dropped in pond 1 to 76 % and in

pond 2 to 66 % during the night time.
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Figure 3.39 A: Culture performance and cultivation conditions of the polyculture pond duplicates:
display of the growth curve based on optical density in pond 1 (a) linear, b) logarithmic) and pond 2
(c) linear, d) logarithmic).
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Figure 3.39 B: Culture performance and cultivation conditions of the polyculture pond duplicates:
display of the a) growth curves of pond duplicates based on biomass density. b) pond culture and
ambient temperature over the time course of cultivation, fluctuation during day and night cycle. c)
measured pH of the algal culture and dependent COz input. d) dissolved oxygen and e) display of

conductivity of both systems.
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Cultivation Data from parallel Flasks experiment

Duplicate polyculture flasks (5 litre Erlenmeyer flasks, culture volume 2 litre, indoor cultivation, air
permeable sealed, shaken, no additional COz input) established from the outdoor pond cultivations
had the same starting OD7s0 of 0.1. Cultivation data and conditions for both flasks are illustrated in
figure 3.40 (A and B). The resulting growth curves based upon optical density and biomass dry weight
measurements are presented in figure 3.40 A (a, d) and figure 3.40 B (a). These cultures experienced
a logarithmic growth phase up until ~46 hours. Although they did exhibit higher than expected

maximum growth rates, they did not achieve high optical density before entering the stationary phase.

The culture temperatures of the two flasks ranged between 25 to 28.5 °C (Figure 3.40, b). [llumination
was at 24 hours per day and light intensity remained constant at 400 uE m™2s™!. The pH of the two
flasks cultures remained between 6.9 to 7.8 (Figure 3.40, c¢). The conductivity of both flasks was

measured throughout the cultivation period and stayed constant between 1.08 and 0.93 mS.

A high amount of debris and flocculation of the morphologically distinct Chlorococcum sp. (12_02)

strain as well as many kinds of predators were observed which influenced growth of the culture.

The polyculture in the flask experiment proved to be somewhat robust against the high levels of
predator contamination in that no culture crash occurred during the time of cultivation. However
growth and productivity was significantly reduced by the lower levels of COz in the flasks and by the

increased activity of the predatory microorganisms present.
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Figure 3.40 A: Culture performance and cultivation conditions of the polyculture flask duplicates:
display of the growth curve based on optical density in flask 1 (a) linear, b) logarithmic) and flask 2

(c) linear, d) logarithmic).
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Figure 3.40 B: Culture performance and cultivation conditions of the polyculture flask duplicates:
display of the a) growth curves of flask duplicates based on biomass density. b) flask culture
temperature over the time course of cultivation. ¢) measured pH of the flask culture. d) display of

conductivity.
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Strain distribution and shifts in populations

Microscopy open pond culture

Monitoring via microscopic observation of the communal populations in open pond polycultures
provided additional insights into culture performance and was conducted at 10 am and 3:30 am each
day. Images in figure 3.40-45 are provided at the time points 70.5, 142.5, 190.5, 238.5, 262.5 and
334.5 hours at low (x200) and high (x400) magnification.

Microscopic images on day 3 (70.5 hrs) allowed the detection of all algae species in both ponds due

to their morphological diversity. Furthermore no major culture shifts and strain dominance was

observed (Fig 3.41, a, b).

Figure 3.41: Pond polyculture 70 hours after inoculation. a) pond 1, b) pond 2. Algae cells of different
species are indicated by coloured arrows: 1 C4 red, 12_A9 blue, 12 02 black, 5 H4 orange, 11 _HS5

green.

Microscopic images on day 6 (142.5 hrs) showed a more dense and healthy culture in both ponds,
which contained a high amount of small coccoid algal cells indicating Chlorella sp. (11 _HS5) as one
of the dominating strains, consistent with its previously reported fast growth rate. Chlorococcum sp.
(12_02) showed the anticipated flocculation, as well as big algal cells which disaggregated and
released small motile cells. A slightly higher amount of Chlorococcum sp. (12_02) was observed in
pond 1 compared to pond 2. M. pusillum (5 H4) and C. sorokiniana (12_A9) were present in
moderate numbers. D. intermedius (1 _C4) cells were identified based upon their characteristic 2-5
algae cell cluster morphology and the presence of spines on the cells, appeared to be on the decline.
Apart from a few small ciliates, no major predatory organisms were present in the culture. (Figure.
3.42).
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Figure 3.42: Pond polyculture 142 hours after inoculation. a, b) pond 1, ¢, d) pond 2.

Microscopic images on day 8 (190.5 hrs) showed a divergence of the population in the two ponds
with fast motile algal cells including Chlorococcum sp. (12_02) more prevalent in pond 1. In contrast
in pond 2 less motile cells were observed. Both ponds contained Chlorella sp. (11 _HS) and M.
pusillum (5_H4) (distinctly growing in 3-4 cell spherical clusters) which appeared to be increasing in
numbers since the previous time point. C. sorokiniana (12_A9) and D. intermedius (1 _C4) were
present but appeared to be reducing in number compared to the previous time point. Predatory
organisms were almost undetectable except for small numbers of Paramecium. The pattern observed
appears to correspond with the relative growth rate of the species, and due to the low number of

predators may have been relatively unaffected by them (Figure. 3.43).
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Figure 3.43: Pond polyculture 190 hours after inoculation. a, b) pond 1, ¢, d) pond 2.

Microscopic images on day 10 (238.5 hrs) showed an increasing pattern of the dominant Chlorella
sp. (11_HS5)and 5 HS5 cells in pond 1. The motile Chlorococcum sp. (12_02) cells were also common
but decreased slightly compared to the previous time point that remained mostly in a self-aggregating
state. D. intermedius (1 _C4) was detectable but low in numbers and C. sorokiniana (12_A9) could
only be seen sporadically. Pond 2 showed an approximately similar cultural behaviour except for the

fact that D. intermedius (1 _C4) was clearly less present than in pond 1 (Figure. 3.44).
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Figure 3.44: Pond polyculture 238 hours after inoculation. a, b) pond 1, ¢, d) pond 2.

Microscopic images on day 11 (262.5 hrs) showed the presence of Chlorella sp. (11 _HY),
Chlorococcum sp. (12_02) and M. pusillum (5 _H4) in both pond cultures. C. sorokiniana (12_A9)
and D. intermedius (1 _C4) could hardly be detected anymore. Many motile Chlorococcum sp.
(12_02) cells were observed in pond 1 but these had decreased dramatically in pond 2 compared to
the previous time point. Consequently M. pusillum (5 _H4) seems to dominate the pond 1 culture,
while Chlorella sp. (11_HS5) was the most common species in pond 2. Overall no predators were
detected except for infrequently grazing rotifers in pond 2, likely due to the high amount of Chlorella
sp. (11_HS) in the culture (Figure. 3.45).
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Figure 3.45: Pond polyculture 262 hours after inoculation. a, b) pond 1, ¢, d) pond 2.

Microscopic images on day 12 (286.5 hours), day 13 (310.5 hours) and day 14 (334.5 hours) show
the same pattern of strain dominance in both ponds with Chlorella sp. (11_HS), M. pusillum (5_H4)
and Chlorococcum sp. (12_02) being the most prevalent. No further predators capable of influencing
the culture were detected (Figure. 3.46).
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Figure 3.46: Pond polyculture 286 hours after inoculation. a, b) pond 1. ¢, d) pond 2.
In summary: during the open pond trials the initial relative cell density of the inoculated species
were maintained for approximately 2 to 3 days. After this Chlorella sp. (11_HS), Chlorococcum sp.
(12_02) and M. pusillum (5_H4) quickly emerged as the most dominant species presumably due to
their rapid growth rate rather than a negative effect due to predation. Although the ratio between these
3 strains differed slightly between the two ponds, a similar pattern emerged for both ponds with ~80%
of the culture biomass composed of the top three strains. At the end of the experiment the final ratio
between the algal cell numbers was estimated for 11-HS and 5-H4 with 35%, Chlorococcum sp.
(12_02) with 20 %, followed by D. intermedius (1 _C4) and C. sorokiniana (12_A9) with only ~
5%.Very few predators were detected during the cultivation time which could have influenced growth

or culture crash.
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Microscopy flask culture

Microscopy was also performed on the flask trials to evaluate the effect of the different parameters
on the productivity of the culture which was run in parallel with the pond experiments. Conditions in
the flask cultures differed from the pond cultures in that the temperature range was more tightly
controlled and the flasks were not supplied with additional CO2, so CO2 was only available via passive
diffusion from ambient levels. Overall as a result, biomass productivity in the flasks was much lower
due to COz2 limitation and predator grazing. Furthermore this strategy allowed us to try to identify
predators in the culture as part of an ongoing program to protect against them. Microscopic
monitoring was conducted at 10 am and 3:30 am each day and images are provided at 70.5, 142.5,

190.5, 238.5 and 262.5 hour time points at low (x200) and high (x400) magnification.

Microscopic images on day 3 (70.5 hrs) showed an approximately equal mixture of all five algal
strains. Many motile algal cells were present indicating Chlorococcum sp. (12_02) growth. A high
amount of debris was also visible which may be due to cell death, or cell division of Chlorococcum

sp. (12_02). At this time point no predatory organisms were observed (Figure 3.47).
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Figure 3.47: Flask polyculture duplicates 70 hours after inoculation: flask 1 (a) and flask 2 (b)

Microscopic images on day 6 (142.5 hrs)

Many algae aggregation flocs deriving from Chlorococcum sp. (12_02) and cell debris were observed.
Other algae species were found to be trapped in flocs of debris. Single algal cells of Chlorella sp.
(11_HS5) were seen to be interspersed between larger cells of M. pusillum (5 _H4) and D. intermedius
(1_C4). C. sorokiniana (12_A9) was almost undetectable. Grazing predators were attached onto flocs
via their tails (ciliate morphologically similar to Vorticella) (Figure 3.48, b indicated by a red arrow).
Many other small motile ciliates were also observed within the culture. Long spines deriving from D.

intermedius (1_C4) cells are visible (Figure 3.48, d)
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Figure 3.48: Flask polyculture duplicates 142 hours after inoculation. Both cultures show very

similar culture development therefore different pictures are used to illustrate all main findings. Flask
1 (a) culture at x200 magnification and (b) culture at x400 magnification with grazing predators
marked by a red arrow. Flask 2 (c) close up picture of an algae cell cluster, (d) x400 magnification
illustrating the algal cell diversity, long spines deriving deriving from D. intermedius (1 _C4) can be
seen.

Microscopic images on day 8 (190.5 hrs)

Small motile cells of Chlorococcum sp. (12_02) decreased as did Chlorella sp. (11_HS5) cells. Larger
cell types of D. intermedius (1 _C4), and C. sorokiniana (12_A9) as well as M. pusillum (5 H4)
(clustered in groups of 3-4 cells) were more prevalent. Interestingly the decrease in populations of
the small Chlorococcum sp. (12_02) and Chlorella sp. (11_H5) cells may have been caused both by
CO2 limitation in the flasks and predation by the ciliate. This clearly suggests that predation can have
a significant effect on a polyculture consisting of these species but that this was masked under the
outdoor conditions in which algae growth rates were high (due to higher light and CO2 availability)
and predator numbers were lower, potentially influenced by lower night time temperatures (Figure

3.49).
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Figure 3.49: Flask polyculture duplicates 190 hours after inoculation. Flask 1 (a) and (c), flask 2 (b)

and (d). Both flasks cultures developed very similar to each other. Panel (c) represents a onetime

observed round ciliate.

Microscopic images on day 10 (238.5 hrs) clearly shows a decrease of Chlorella sp. (11_H5) cells
throughout the culture. A higher amount of single cells of M. pusillum (5 _H4) was observed and these
exhibited protective spines. Many D. intermedius (1 _C4) cells were present in stacks of 2-4 cells
which also had spines (Figure 3.50, a). Furthermore many flocs containing Chlorococcum sp. (12_02)
and other debris were observed. Many ciliate predators (morphologically similar to Tetrahymena,
Figure 3.50 b, and Vorticella, Figure 3.50, c, indicated with a red arrow) were seen to be attached on
the flocs as well as grazing throughout the liquid sample. They contained small round algae cells
(most likely Chlorella sp. (11 _HS5) but also presumably small motile cells of 12 02. These
observations suggest that 11 _HS5 was susceptible to predation and that the presence of predators may

have induced the production of protective spines for some species.
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Figure 3.50: Flask polyculture 238 hours after inoculation.

Microscopic images on day 11 (262.5 hrs) and day 14 (335 hrs) (Figure 3.51 a, b) showed a similar

pattern to the previous time point.
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Figure 3.51: Flask polyculture 335 hours after inoculation.

Summary: Over the first 2 to 3 days of the culture approximately similar cell concentrations were
observed for the inoculated species. Although the small motile Chlorococcum sp. (12_02) species
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were initially present their occurrence decreased as the cultivation period progressed. However the
Chlorocoocum sp. (12_02) which was present as flocs was able to sustain itself. Chlorella sp. (11
HS5) which grew well at the beginning, decreased quite rapidly most likely due to a limitation on
growth rate because of the lack of CO: and simultaneous predation by a diverse range of
microorganism. Interestingly Chlorella sp. (11 _HS5) was not eradicated completely and continued to
be present in the culture in moderate numbers. Overall D. intermedius (1 _C4) proved to be the
dominating strain under the flask trial conditions. It grew healthily and its 2-4 cell clusters presented
spines which appeared to protect it from predation as these species were not detected inside the
predators themselves. M. pusillum (5 H4) was present mostly as single cells but in lower numbers
and appeared to develop protective bristles. C. sorokiniana (12_A9) cells were observed but in low

numbers.

Predatory organisms were grazing throughout the culture, influencing culture growth by keeping the
density low. It was seen that they mostly consumed the small round cells of Chlorella sp. (11_HS5)
and presumably the small motile cells of Chlorococcum sp. (12_02). Dense flocs derived from natural
flocculation of Chlorococcum sp. (12_02) cells as well as debris accumulation. Furthermore the flocs
showed to trap other non-flocculating algae species within them which made clear cell distinguishing
difficult. At the end of the experiment the final ratio between algal cells was estimated based on their
morphology to be 35 % D. intermedius (1 _C4) , with around 20% M. pusillum (5 _H4) and Chlorella
sp. (11_HS, ) 15% Chlorococcum sp. (12_02) and 10% C. sorokiniana (12_A9) .
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3.4 Discussion

It has long been known that maximum achievable growth rates of algae in controlled laboratory
conditions are higher than those achievable in field trials where both environmental and biological
factors impede production, despite the often higher levels solar energy input. Biomass productivity
has been identified as one of the primary drivers for commercial feasibility in techno-economic
analysis [6]. Consequently the identification of strains which could serve as suitable production
candidates [2] and strategies to maximise their final productivity in field conditions remains one of
the foremost challenges for this emerging industry. Dependent on species, climate and operation,
open pond cultivation productivities can range from 5 — 50 g m? d™! [7-10]. Schenk et al (2008)
reported possible productivities of 10-25 g m™ d-! in raceway ponds operated with a water depths of
15-20 cm [11]. Furthermore an average of 19-25 g m™ d-! can be reportedly achieved in well managed
ponds, with an achieved peak up to 40 g m™ d!' [12]. Maximum achieved growth rates of the pond
trials in this study ranging from 11 g m? d! to 24 g m? d'!, which were within the range of the
generalised standards reported in the literature. Nevertheless longer term studies need to be performed
to obtain annual mean values for true comparison.

In this study maximum specific growth rates of ~30-50% of those achieved in previous laboratory
screens under controlled conditions [1] were achieved. Productivity (volumetric and areal) and

specific growth rate maxima are illustrated in figure 3.52.
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Figure 3.52: Comparison of (a) the maximum volumetric and areal productivities of tested strains;

and (b) maximum specific growth rates achieved in open pond experiment trials versus the laboratory
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screen conditions presented in Wolf et al [1]. Clearly for all algae species tested, a much higher

growth rate was achieved in closed sterile systems with constant conditions of light and temperature.

Scaling up of production compared to small scale laboratory trials inevitably increases costs which
incurs limitations at the pilot plant scale which may be more easily circumvented at laboratory scale.
Due to this, both equipment limitations and time constraints occur as a function of the sharing of
facilities with other staff and experimentation needs. Thus not all experiments could be replicated as
widely as desired and certain anomalies in the data must be identified at the outset. Most notably
these are the pmax values for Chlorococcum sp. (12_02), and the pmax [hr'] (day only) values for C.
sorokiniana (12_A9) and indoor polyculture flasks. For Chlorococcum sp. (12_02) this is largely due
to the effect of its frequent auto-flocculation upon optical density measurements, and while dry weight
measurements in this case were ineffective due to high error levels, this strain is still considered as
one of the high performance strains in terms of potential growth. In contrast the auto-flocculation can
have positive effects in terms of reducing energy and cost of harvesting and attributes some degree
of protection and resilience against predation which is also an important trait for commercial
production. Thus this remains an interesting production candidate for further investigation.
Conditions in the flask trials varied from those in open pond systems by lower levels of available
COgo, shorter light path, optimal light levels that do not lead to photoinhibition, higher levels of energy

for mixing, and more optimal temperature levels and lower temperature flux.

While the cultivations conducted in this project were performed in a batch production regime it is
known that semi-continuous production is a more promising strategy for commercial systems. Thus
the output data is interpreted in terms of maximum potential in a semi-continuous production regime
where frequent harvesting is performed to maintain cultures in the logarithmic growth phase. In this
regard, the suitability of strains for further investigation is considered on the basis of maximum
potential growth performance (e.g. doubling times quicker than once per 2 days), continued growth
to high density culture (e.g. cultures that maintain reasonable productivity above an OD7s0 of 2), and
stability/robustness of cultures with regard to environmental (e.g. seasonal variability) and biological
challenges (e.g. predation). Strains that achieved highest growth rates were M. pusillum (5 H4),
Chlorella sp. (11_HS5), and Chlorococcum sp. (12_02), and the cultivations which achieved continued
growth at higher optical densities were M. pusillum (5 _H4), Scenedesmus sp. (Pinjarra001), and the
polycultures.

In each cultivation non-target microorganisms were detected but diversity, load and impact varied

significantly. Earlier incidence or a greater degree of bacterial contamination will establish itself in
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each system regardless of whether open or closed bioreactors are used. In open pond systems,
different types of bacteria are always present and were detected in higher numbers for example during
the cultivation of D. intermedius (1 _C4) and M. pusillum (5_H4) but these do not necessarily have a

high negative impact on the culture growth, despite competing for nutrition.

The invasion of protozoan organisms can occur when favourable environmental factors are present.
Besides the right growth conditions (pH, temperature, nutrition), protozoa are attracted by either the
bacterial load or the algae itself as potential food sources in the culture solution. As an example,
Tetrahymena ciliates established themselves in the pond cultivation of C. sorokiniana (15 E4) but
none of these species were detected in cultivations of C. pyrenoidosa. (10 _B9) and C. sorokiniana
(12_AD9), leading to the assumption that a certain condition must have been preferred. Debris flocs to
which bacteria adhere could have been one of the differences which was more prevalent within the
C. sorokiniana (15_E4) culture. But despite many bacteria being observed in the cultivation of D.
intermedius (1 _C4) no notable other protozoa were detected during this cultivation. It may be that the
growth condition, type of bacteria or the algae itself (with its pointed morphology and spines on the

cells) displayed a less preferable environment for protozoa.

Protozoa can have a negative impact on the cultivated algae species as was observed during the
cultivation of Chlorella sp. (11 _HS5). Overall the bacterial load was very high throughout the time of
this cultivation resulting in contamination of many different types of protozoan. Furthermore the
morphology of Chlorella sp. (11 _HS5) is a small and coccoid cell, which is presumably more sensitive
to predator attack (easy to ingest). Thus while Chlorella sp. (11 _HS5) was considered one of the top
production candidates from a growth performance perspective, it’s sensitivity to predation and
potential for rapid culture decline somewhat attenuate it’s commercial suitability, at least in
monoculture cultivations. Shifting from single cell morphology into a colonial (e.g. Scenedesmus sp.)
or flocculation (e.g. Chlorococcum sp.) state might be a possible defence strategy against the grazing

pressure.

The single species cultivation trial of the nine top growing strains showed a diverse behaviour of the
target species and non-target microorganism establishment, resulting from almost none to a very high
impact on the whole system. The knowledge of the sensitivity and robustness of each algae strain
towards a fluctuating multi-microorganism environment is an essential basis for further improvement

in open mass cultivation.
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Polyculture

It has previously been reported that algae polycultures can achieve increased growth rates and dry-
biomass yields compared to cultures of single-strains and can exhibit increased robustness against
adverse environmental factors [13]. This research project aimed to investigate this phenomena by
using a mixture of five morphologically distinct strains. The use of a defined polyculture with fixed
proportions of inoculum instead of random natural colonisation facilitates explanations of the
resultant culture trajectory in terms of the specific characteristics of each algal subtype and is thus a

more tractable system to investigate than a complex natural ecosystem.

The primary hypothesis tested was whether the fastest growing species would dominate the culture
under outdoor conditions and secondarily to identify other factors which favoured any dominance by
slower growing strains. Furthermore we aimed to establish whether the combined productivity of all
species lead to higher yield overall compared to productivity of pure cultures of the fastest growing

strains.

Overall between all open cultivations tested, both pond polycultures ranked highest in terms of their
maximum areal and volumetric productivity and are considered to be a potential alternative to single
species cultivation, though the cultivation timing in the spring season resulted in higher mean solar
energy as well as higher absolute temperatures and greater temperature flux. Thus while further
investigation is certainly warranted, it is suggested that long term (i.e. over 1 year) parallel

cultivations should be conducted in order to discern the real benefits.

Despite the overall high performance of the polycultures, the monoculture of the strain M. pusillum
remained the top candidate in terms of specific growth rate. This may indicate that rapid exponential
growth is restrained by slower growing strains in the algae mixture due to shared access to light, CO2,
and nutrients. The relatively good performance of the polycultures can be explained in two ways.
First that the culture is dominated by the fastest growing organisms lending to high productivity
values; and secondly that all species in the culture contribute to the total growth rate and that
collectively biological challenge from predation is constrained by the complex ecosystem of
predation resistant strains which provides smaller fast growing strains like Chlorella sp. (11_HS)
which are susceptible to predation in monoculture, a somewhat protected environment in relation to

biological challenge.

148



Microscopy Polyculture:

Due to their morphological differences, the abundance of each of the strains of the polycultures could
be tracked via microscopic imaging making it possible to determine whether the fastest growing
strains dominated, or whether the overall culture performance was due to significant biomass

contributions of many species.

A similar cell distribution trend in both polycultures was revealed. At the start point approximately
equal numbers of all strains were present and this was maintained within the first 2-3 days. However
as the culture proceeded it was noted that the fastest growers M. pusillum (5_H4). Chlorococcum sp.
(12_02) and Chlorella sp. (11 _HS5) dominated the culture. This is in line with the top three maximum

growth rate strains in monoculture as noted above.

Within the flask cultivation D. intermedius (1 _C4) and Chlorococcum sp. (12_02) and C. sorokiniana
(12_A9) were the leading species in the culture which appeared to be the result of selection pressure
from predators. With no additional CO: input in the flask polycultures, growth of the algae was
limited. Furthermore the constant culture temperature (25.0 — 28.5 °C) which was generally warmer
and more stable than the outdoor pond cultivations, potentially enhanced growth of other
microorganisms and bacteria which were competing for nutrition and made the algae subject to

predator attack.

This was experienced in previous outdoor cultivation trials. When night time temperature dropped it
was observed that predator levels declined. Similarly, predatory organisms were more prevalent in

the algal culture at temperatures constantly above 16 °C (e.g. during summer season, data not shown).

Consequently the lower temperature flux experienced indoors for the flask experiments allowed us to
assess the effect on predator survival and its corresponding influence on algae attack and dominance.
While two variables were adjusted simultaneously in this experiment the flask trials represented a
low productivity regime in which the effects of predators might be considered to be at the high end
of that observed in the field trials.

Predator impact

It is known that the selection pressure of predators on microalgae populations is at least partially
dependent upon the cell size of the algae. This can be confirmed by several observations. For example
Chlorella sp. (11 _H5) showed a high sensitivity for predation as a monoculture. During the flask

polyculture experiment Chlorella sp. (11 _HS5) as well as the small motile cells of Chlorococcum sp.
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(12_02) were decreasing in numbers with increased predator presence. Evidence is demonstrated by
protozoa which readily ingest algae e.g. Vorticella like organism in the polyculture or, Tetrahymena
like ciliates during the cultivation of C. sorokiniana (8 C4). Furthermore in-house trials of isolated
rotifers, obtained from pond cultivations were fed and successfully maintained with the algal strains
of Chlorella sp. (11_HS5), C. sorokiniana (8 _C4) and C. pyrenoidosa. (10_B9) (Supplementary data
video 3.13 and 3.14).

Large algae less affected

In the polycultures the strain C. sorokiniana (12_A9) showed a higher presence in flask trials than in
open pond cultivations despite its slow growth performance. One reason could be the fact that it was
not outcompeted by fast growers and further, its larger cells size makes it less susceptible to predator
attack. Despite larger cell size which can help algae to survive, the high variety of shapes illustrate

an important strategy of grazing defence.

Protective spines
The presence of protective spines or bristles like those seen on M. pusillum (5 _H4) and D. intermedius
(1_C4) appears to make them less vulnerable to a range of predators. However an extraordinarily

high degree of variability in morphological characteristics in cultures of M. pusillum is known [14].

Depending on the culture conditions Micractinium morphology contains both cells forming colonies
and solitary Chlorella-like simple coccoids and therefore can exhibit a surprising morphological
similarity to Chlorella vulgaris. Bristle formation can be induced or intensified by grazing pressure
of predators which serves as protection against feeding activity e.g. the rotifer Brachionus [15]. In
contrast it has been observed that Micractinium loses its bristles in a monoculture condition and
becomes morphologically similar to Chlorella species in a monoculture condition [16]. Observations
during the experiments showed both morphological appearances of M. pusillum (5 H4), solitary cells

and colonies. However reasons behind the change during the experiments are not confirmed.

During the adaptation stage and when highly diluted in open ponds, single cells were seen including
the presence of bristles. With continuing growth and increasing density of the culture, both
morphological stages colonial and single cells were present, however almost no bristles were detected
on the cells, suggesting the species is losing its protective spines when crowded. However no further

contaminants despite smaller ciliates were detected.
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Within the flask culture M. pusillum (5 H4) was mostly solitary and long needle shaped bristles
formations were detected around the cells. This agrees with the literature that bristle formation and
its intensity is dependent upon grazing pressure. D. intermedius (1 _C4) cell morphology always
showed stacks of 2-4 cells including spines and the length of spines seemed to increase during the
flask cultivation most likely a defense reaction against protozoa similar to M. pusillum (5 _H4).
Nevertheless spines, bristles or ridge shapes don’t protect successfully against all predatory

organisms; for examples they are not effective obstacles for amoeba [17].

Auto-flocculation of general single cell morphology algae species has been observed as a result of
grazing pressure shown clearly during the monocultivation of Chlorella sp. (11 _HS5) and partially
during the flask polyculture. Algae flocs and debris particles provide a “hiding place” for small algae.
Protozoa grazing along debris flocs searching for bacteria and algae might be likely to reach algae
trapped along the outside of the flocs. This explains why almost no small coccoid algae cells are seen
on the debris. However not all cells can be accessed and with decreasing grazing pressure, the algae
species can establish their cell numbers again. With flocculation, a higher chance of the survival
might be achieved but due to light limitation the growth and productivity is limited and should be
avoided in commercial production. Therefore it is important to study these responses and the

underlying mechanisms.

Types of predatory organisms observed

A diversity of predator species were observed during the time of pond cultivation trials which showed

different impact on the algae cultures.

An example of the predatory organisms observed are:

- Ciliates (morphologically similar to Vorticella, Tetrahymena, Stylonychia, Paramecium),

- Flagellates (morphologically similar to Peranema (supplementary video 3.15 and 3.16) and
Chlamydomonas),

- Heliozoans (morphologically similar to Actinophryida (supplementary video 3.16),

- Rotifers (morphologically similar to Rotaria sp. and Brachionus),

- Amoeba (morphological similar to Paramoeba),

- Fungi

Predators generally have preferred food sources which can include algae, but also bacteria or other
microorganisms. Rotifers (e.g. Rotaria) can also negatively influence algae production systems. With
the right conditions they can lead to the loss of the entire culture within days [15], however they were

observed coexisting within the culture of Scenedesmus sp. (Pinjarra001) with no observable negative
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effect upon the algae population. A long term experiment with the local algae (data not shown)
showed a stable culture over one year without culture crash (monthly re-nutrification). Rotifers lived
within the culture but had no impact on its stability and did not seem to ingest the algae. Furthermore
no other foreign microorganism were microscopically detected, assuming the predator had a positive
influence by keeping the culture “clean”. Therefore paradoxically, appropriate co-cultivation of

"predators" can actually be used as a tool to sustain algal cultures.

Chlamydomonas-like microorganisms (flagellates) and small fast swimming Paramecium were in
almost every open pond algae culture detected. They do not seem to attack algae but are more attracted
in the presence of heavy bacteria-loaded cultures. For example M. pusillum (5 H4) showed
Chlamydomonas-like organisms within the culture which were overgrown over time. The bacterial
load within the culture increased with the disappearance of these microorganisms simultaneously,

which indicates a potential beneficial impact.

Coexistence of ciliates and algae was especially observed during C. sorokiniana (15_E4) cultivations
with almost no grazing impact on the culture. However the same Tetrahymena like organism
(morphologically identified) observed in the C. sorokiniana (15_E4) culture seemed to be responsible
for heavy aggregation of the algae C. sorokiniana (8 C4) indicating the chance of an inducible

bioflocculation effect (see chapter 4).
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3.5 Conclusion and outlook

Microalgal production facilities can provide a habitat for a wide variety of undesirable competitors,
predators, and pathogens, especially in more exposed systems. Microorganism contaminants of an
algae culture include other indigenous algae species, bacteria, parasites (virus, fungus) or predators
(protozoans, aquatic invertebrates). These organisms can be detrimental for algae growth and in some
cases can lead to full culture crashes. Species of the phylum Rotifera in particular can reportedly have
a massive impact on algae cultures. To overcome this challenge, it is important to observe rotifer
behaviours, habitat and prey preferences, as well as the mechanisms of predation (e.g. algae
morphological constraints) and to analyse microalgal defense strategies (morphological, behavioural
and chemical). Long term microscopic monitoring of algae cultures, predator occurrence and

behaviour will be an integral part of each experiment.

It is very important to monitor the first signs of invasion by a predator and to conduct continuing
investigations into population dynamics. Frequent observation is not only crucial to optimise
production of the desired algae culture but also to monitor for predators and their impact on the
culture, to understand warning signs, predict culture shifts and lethal culture crashes. Using
observations from previous experiments we can discuss and develop future strategies to counteract

culture loss.

A diverse variety of predators can be present in an algae production culture. The type of predator will
determine the effect on the algae; in some cases it even can be beneficial (e.g. if used to clear
unwanted contaminating algae). From previous and future experiments it will be possible to analyse
which predators are most common and dominant in the culture and what impact they have. Using this

information it can be determined how to act against them and optimise the culture production.

From previous cultivation experiments of the best production strains, both effective and poor defense
mechanisms were observed depending on the algal species. Small single cell green algae benefit from
their fast growth rates but are more vulnerable to predation. Larger and more morphologically diverse
species are less readily predated. Each predator can only consume a limited amount of algae so it
should be possible to predict the impact of a given predator population on the algal culture at any
time. Therefore complex modeling systems can potentially be used to predict acceptable levels of

predators in a culture. This modeling can be validated against experimental results.
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The ability to influence or control predators is very useful. Several possible mechanisms could be
used for this, but not all will be equally practical. For example, temperature is a physical variable that
has been observed to affect rotifer invasion. Biological mechanisms could include algae responses
(e.g. mucous production), hormonal effects on rotifer reproduction or viability, while chemical

conditions (e.g. pH) or treatments to poison predators while leaving algae unaffected, may be useful.

One of the most interesting of these mechanisms was the observed flocculation of C. sorokiniana
(8 _C4) in the presence of a Tetrahymena like ciliate. This finding was further investigated (Chapter
4) to identify underlying mechanisms and has also led to a patent application describing a novel bio-

flocculation process.
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Chapter 4

Current harvesting and downstream technologies remaining expensive and representing a critical

challenge for economically feasible commercial algae production systems.

Flocculation of algae cells offers a cheaper dewatering solution. It enables to use airlift or gravity to
increase the biomass density and is applicable to large quantities.
However to reduce significant costs, the dewatering process needs to be rapid and highly controllable

and the agent to induce bioflocculation inexpensive and required in low quantities.
The work presented displays a controllable and rapid flocculation mechanism using a wild type ciliate

Tetrahymena and is presented in the word format that it was accepted by the Journal Algal Research,

2015.
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Abstract

Microalgae offer a promising route to the production of high-value products, foods, animal feeds, and
biofuels. Efficient algal dewatering strategies are therefore important for minimising energy and
costs. Bio-flocculation is a potentially low-cost, low-energy harvesting strategy which can be
facilitated by the microbial production of extracellular polymeric substances (EPS), but must be
inducible since productive algal culture generally requires cells to be in suspension. Here we show
that algal bio-flocculation can be controllably induced using the protozoan Tetrahymena. As little as
1:400 starved Tetrahymena to algal cells can be used to initiate rapid bio-flocculation. We
demonstrate that stimulators of ryanodine receptors (caffeine and p-chlorocresol) trigger exocytosis
in Tetrahymena and that inexpensive physicochemical stimuli (ammonium ions, shifts in pH and
salinity) can also be effective. We suggest that triggered EPS secretion by protozoans in the starved
state may explain apparently spontaneous bioflocculation of algae in both natural and artificial

systems.

Highlights

o Tetrahymena is an efficient bioflocculant for algal cultures

e Bioflocculation can be controllably induced by inexpensive inducers
e A 1:400 Tetrahymena to algae cell ratio is sufficient to induce flocculation

e Biomass concentration can be efficiently dewatered >20-fold

Keywords

Microalgae, bioflocculation, exocytosis, Protozoa, Tetrahymena
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4.1 Introduction

Microalgae provide a promising low-carbon emission biotechnology for the manufacture of foods,
fuels and high value products. Forecasts by international peak organisations suggest that by 2050, a
global population ~ 9 billion will require 70% more food [1], 50% more fuel [2], 50% more water [3]
and ~50-80% CO2 emissions reductions [4] to maintain political, social, food, fuel, water and climate
security. Algae biotechnologies are positioned at the nexus of these challenges as they tap into the
huge solar energy resource (~2600x global energy demand), and use CO: to produce food, fuels and

clean water by expanding photosynthetic capacity onto non-arable land.

A significant challenge for energy- and cost-efficient algal biotechnology is dewatering, since the
cells need to be kept in suspension in nutrient media during growth, but the resultant dilute solutions
impose a significant energy burden on processes used to extract the biomass, while the equipment
required represents additional cost and maintenance. Consequently, both cost effectiveness and

energy balance benefit from simple and inexpensive dewatering techniques.

Flocculation enables gravity settling or flotation and has long been attractive as a dewatering
technique, the major disadvantage being the need to add (and then recover) significant and expensive
quantities of extrinsic flocculants such as minerals or synthetic polymers. Several mechanisms are
commonly advanced: algal surface charge can be neutralised by flocculant ions, enabling cells to
approach each other in stabilised aggregates; cells can be swept from the culture by mineral
precipitations; and soluble polymers can act either as electrostatic patches or as bridges between cells
[5]. Bridging effects can also be due to naturally occurring microbially produced polymers known as
extracellular polymeric substances (EPS), which lead, through electrostatic, hydrophobic and
physical interactions to biologically mediated flocculation (‘bioflocculation’), typically encountered
in activated sludge treatment in wastewater systems [6]; as well as being important for membrane
fouling and biofilm formation [7] and potentially for a range of useful environmental applications
including bioremediation [8]. EPS is a generic term and does not define the polymer chemistry, but
typically EPS are carbohydrate, protein, lipid or mixed chemistries of these, displaying complex
interactions with local environment (More et al. 2014). It is not the case that EPS always enhances
flocculation — the specific chemistry and the ratio of EPS to biomass is important [8], while some

algae secrete an extracellular EPS layer around the cell to maintain a biofilm.

Although some algal species flocculate spontaneously due to specific cell-cell interactions,

unmanaged flocculation is a significant disadvantage during the growth stage and the number of
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species available for use are limited. Bioflocculation has also been explored by mixing different
species, one of which tends to flocculate and is used to capture the other (non-flocculating) strain [9].
For particular strains this can be a successful strategy; however, it requires the growth of significant
quantities of the ‘pro-flocculation’ strain, which may not be intrinsically valuable, could reduce
product quality, and can significantly add to capital and operating costs. It would therefore be
advantageous to have a controllable, low energy flocculant strain which did not require for
flocculation a comparable cell ratio to the target strain. Bacterial and fungal biomass types have been
used as sources of EPS for bioflocculation [10] [11] [12] [13] [14] but typically require substantial
flocculation times (up to 24h) and significant amounts of biomass to be mixed in or grown on carbon

sources in the culture.

Lee et al. (2010) [15] estimated that with bacterial flocculation, a cost as low as AU$0.13 per tonne
of biomass could be attained, with an energy requirement (mainly for mixing) of ~0.9 kWh per tonne
of dry biomass flocculated in the particular system they investigated. They concluded that
bioflocculation was a realistic prospect in terms of cost and energy balance but noted the extensive
time (~20h) required for effective flocculation using bacterial biomass, and subsequently moved to

electroflocculation [15].

Spontaneous algal bioflocculation occurs both in natural water bodies and in artificial bioreactor
systems, but the reasons remain poorly understood. Many microorganisms produce EPS but the nature
of the organisms, the timing of the events and in particular the biochemical signals responsible for

inducing this spontaneous bioflocculation have till now been obscure [5].

In the course of outdoor pilot plant production at the Solar Biofuels Research Centre (SBRC) in
Brisbane Australia, we observed variable flocculation between different high rate pond cultures of a
Chlorella species, which we tentatively attributed to the presence of a ciliate (subsequently identified
as a Tetrahymena species). However, since the simple presence or absence of the ciliate did not

correlate straightforwardly with flocculation, some additional factor was clearly required.

Exocytosis in Tetrahymena is a well-studied phenomenon which is readily demonstrated using the
polyanionic dye Alcian blue [16] [17]. The secreted material consists largely of granule lattice (Grl)
proteins packaged in ~1um mucocysts or dense core granules, which are triggered by the addition of
the dye and this results in the formation of a mucous gel in the medium around the cell [18] [19].
Typically this gel condenses, forming a mucous, Alcian blue-stained proteinaceous capsule around

the cell, from which it eventually escapes. As such, this capsule comprises a type of EPS.
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Consequently, although bacteria and fungi are the best known sources of EPS, protozoans such as
Tetrahymena can also contribute to the overall EPS load in natural water bodies and in human systems
such as wastewater [20] management systems. Although the biological advantage of exocytosis for
Tetrahymena has not been well established, one suggestion is that it forms a substrate upon which
bacteria grow (or are trapped) and which then provides a food source for the Tetrahymena. We
observed that this extracellular polymer also traps algal cells quite effectively and therefore can act

as a bioflocculant.

This suggested that it was the triggering of exocytosis in recently starved Tetrahymena which initiated
bioflocculation in our algal cultures and prompted investigation of whether Tetrahymena could be
suitable for controllable algal dewatering and if so, what conditions could efficiently and cost-
effectively induce this. We show that Tetrahymena offers a controllable, rapid, low-energy and cost-
effective harvesting technology. Furthermore, the requirement for Tetrahymena (and presumably
similar protozoans such as Paramecium) to be specifically in a starvation state, and then to receive
an appropriate physicochemical signal, provides a two-step mechanism for EPS secretion and (given
the modest protozoan cell density required) an explanation for why spontaneous bioflocculation

occurs both in natural water bodies and algaculture systems.
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4.2 Materials and Methods

Algae growth

The Australian wild type strain Chlorella sorokiniana (8 C4) was obtained from our laboratory's
internal culture collection and was previously isolated from a fresh water habitat in Queensland,
Brisbane [21]. This algae strain was cultivated in Tris acetate phosphate (TAP) medium [22]
incubated in a 250mL Erlenmeyer flasks filled with 100mL medium (continuous shaking at 120 rpm,
light intensity 400uE, C10 orbital platform shaker New Brunswick Scientific). It was used as a model

organism for the flocculation experiments described here.

Isolation of Tetrahymena sp.

The protozoan Tetrahymena sp. was identified to the genus level by morphological comparison to
taxonomic keys [23]. It was observed in previous open pond reactor experiments at the Solar Biofuels
Research Centre (Brisbane QLD) together with cultivated algae C. sorokiniana (data not shown).
Identification of nuclear DNA using fluorescent staining was performed using Sybr Green
(Invitrogen; 0.05x stock concentration and 30 min dark incubation at room temperature), followed by
fluorescence microscopy on an Olympus BX-51 microscope equipped with a Semrock GFP-4050A

filter set. Excitation was conducted using an Exfo X-Cite 120 epi-lamp.

The Tetrahymena sp. was isolated by using a liquid dilution series technique in modified Neff's
Medium [24] complemented with cefotaxime (0.66mM). Modified Neff's medium contains 0.25%
proteose peptone, 0.25% yeast extract, 0.5% glucose and 33.3uM FeCls and was used to maintain the
stock cultures only. For reaching log phase and high cell densities the Tetrahymena culture was
transferred into Super Proteose Peptone (SPP) medium containing 2% proteose peptone, 0.1% yeast

extract, 0.2% glucose and 33.3uM FeCls [25] and cultivated for 1-2 days.

Tetrahymena species identification by DNA sequencing

The cytochrome-c oxidase subunit 1 (cox1) gene was used to identify the species of Tetrahymena.
The cox1 gene was amplified from genomic DNA using the cox1 primers and PCR protocol described
by Chantangsi et al. [26]. A single amplicon resulted, which was sequenced in both directions (from
each PCR primer) using Sanger sequencing with BigDye terminator v3.1 kit by the Australian
Research Genome Facility (AGRF; http://www.agrf.org.au) using each PCR primer. The cox1 gene
sequence was then searched against the NCBI nucleotide database using BLAST and the top hits were

163



aligned with the sequence using ClustalW analysis (MacVector) and subjected to manual inspection.

All variant bases were rechecked against the sequence chromatogram.

Tetrahymena culturing and starvation

Flocculation experiments were conducted with Tetrahymena undergoing starvation. To reach
starvation phase, S0mL of Tetrahymena culture grown to log phase was centrifuged (1 min @ 600g)
and washed twice in starvation buffer (0.15mM sodium citrate, 0.ImM NaH2POs4, 0.1 mM NaHPOs4,
0.1 mM MgClz and 0.5 mM CacCl.) and finally re-suspended in 25mL volume of the same buffer [17].
Tetrahymena were incubated approximately 24 hours before use to ensure cells were in the starvation

phase but still healthy.

Induction of exocytosis with Alcian Blue

Exocytosis in Tetrahymena was triggered with Alcian blue following the protocol of Turkewitz et al.
(2000). Alcian blue (stock concentration 1 %) was added at a ratio of 1:40 to a suspension of starved
Tetrahymena (typically 0.5-1 x10° cells mL™), to yield a final concentration of 0.025 %. After 1
minute the Tetrahymena cells were pelleted by low speed centrifugation (600g, 1 min) and the Alcian
blue supernatant discarded. The cell pellet was then resuspended in starvation medium prior to further

analysis or addition to algal suspensions.

Bioflocculation screening assays

The suitability of different inexpensive alkaline chemicals NH4OH, NaOH, and neutral chemicals
NH4Cl (pH=7), (NH4)2SO4 (pH=7), and NaCl as inducers of Tetrahymena-mediated algal flocculation
was initially tested by visual screening in separate 12 well assay plates, except for NH4OH which was

tested in small bottles to prevent cross-contamination by volatile ammonia.

The first 10 wells were filled with algae cultures of C. sorokiniana in TAP medium and starved
Tetrahymena culture, mixed together via pipette. Subsequently the test chemical in a range of
concentrations was added individually to a series of wells. The final concentrations of chemical per
well were, in succession, 5, 10, 30, 50, 100, 150, 300, 450 600 and 1000mM. The final algae
concentration was set to OD750= ~1.0 (~10° cells/mL) and the cell ratio of Tetrahymena to algae was
set at 1:250 in a final volume of 0.6mL. The remaining two wells of each plate were used for controls;
one with algae and chemical alone (300mM) without Tetrahymena, and the second with algae and

Tetrahymena without added chemical.
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The plate was immediately incubated on an orbital microwell plate shaker (Talboys, Incubating
Microplate Shaker, Model 1000MP) at 200 rpm for 30 sec to ensure homogenous cell distribution.
Subsequent mixing was reduced to 160 rpm and continued for 1 hour to enhance floc formation.

Plates were photographed at intervals to guide later experiments.

Tetrahymena behaviour and floc formation was assayed under an inverted microscope (Nikon Ti-U,
x200 and x 400 magnification) and high resolution photomicrographs taken with an Olympus BX-51
upright microscope using differential interference contrast (DIC x200, x400 and x600 magnification)

microscopy.

Bioflocculation settlement assays

For quantification of settling rates a spectrophotometric settling assay was used. A spectrophotometer
Varian Cary 50 UV-Visible equipped with 18 measuring slots was used to conduct the settlement
assays. The cell concentration was measured using the optical density at 750nm and 680nm (OD7s0,

ODeso), however resulting ODeso curves were similar to OD7s0 and are not displayed here.

For all assays the algae-Tetrahymena-chemical ("ATC") mixtures were prepared in 2ml
microcentrifuge tubes. Each component (400ul) was added in succession for a final volume of 1.2
ml. The tube was then inverted 5 times and mixed continuously on a RSM6DC rotary shaker (approx.
10 rpm) for 30 min. The concentration of algae prior to mixing with Tetrahymena culture was

0OD750=3.0, leading to a final OD750=1.0 in the reaction mixture.

After the 30 min pre-incubation, the samples were transferred to 10 x 4 x 45 mm polystyrene cuvettes
(Sarstedt, Germany) by gentle pouring and the OD7s0 of each cuvette was immediately measured for
time point t=0 min of the settlement. Further measurements were taken at 5, 10, 15, 20, 30, 45 and 60
min. During the settlement period the samples remained at the same spectrophotometer position, kept
in the dark at room temperature. The OD7s0 was then plotted against time to estimate the rate of

settlement. The recovery efficiency was calculated as follows:

OD75(t)

——F—1-100
0D750(to)

recovery efficiency(%) = [1

where OD7s0(t) is the turbidity at the time of the clarified zone and OD7s0(to0) the turbidity of the initial

culture. For to the OD750 of the control algae-Tetrahymena ("AT") at time point t=0 min was used.
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In contrast to a settlement assay performed in an Imhoff cone or a measuring cyclinder, cuvettes have
a short settlement path and the OD7s0 never falls below ~80% of its initial value even when settlement
is complete. Consequently the cuvette assay gives only a relative recovery efficiency. For absolute

recovery efficiencies, a settlement assay in a measuring cylinder was used (described below).

Algae-Tetrahymena ratio optimisation

To identify the minimum cell density of Tetrahymena required to efficiently flocculate the algae (a
critical factor for cost of scale-up), different ratios of Tetrahymena to algae were tested (in triplicate)
in the presence of a constant concentration of each chemical (300mM). The Tetrahymena to algae
cell ratios used were 1:1000, 1:500, 1:400, 1:250, 1:125, 1:62.5 and 1:32.25. Tetrahymena cell
dilutions were calculated from the algae and ciliate cell count and added to the algae culture before

each chemical (chemicals tested were NH4OH, (NH4)2SO4 (pH=7) and NaCl).

Settlement controls were performed in parallel for each chemical, by testing each ratio of algae to
Tetrahymena without a chemical trigger ("AT"), algae and chemical only ("AC"), Tetrahymena and
chemical only ("TC") and the natural settlement of the untreated algae C. sorokiniana (i.e. local strain

8_C4).

Chemical concentration optimisation

Based on the result of the algae-Tetrahymena ratio experiments, the optimisation of chemical
concentration was subsequently conducted with a cell ratio of 1:125. Five chemicals identified as
effective flocculation inducers during microwell plate screening assays were analysed at different
concentrations for flocculation and settlement efficiency. The concentration ranges for each chemical
were: (NH4)2SO4 and NH4OH (300, 150, 100, 50, 30, 10 and 5 mM), NaCl (1000, 300, 150, 100, 50
and 30 mM), caffeine (30, 10, 5, 2.5, 1, 0.5, 0.1 mM) and 4-chloro-3-methylphenol (2.5, 1, 0.75, 0.5,
0.25, 0.1 and 0.05 mM).

Measuring cylinder assay

To test the results and reproducibility of the previous experiments in a larger volume, a flask trial of
Tetrahymena mediated algae bioflocculation triggered by sodium chloride was conducted. Three
identical 500 mL culturing flasks were prepared with a mixture of algae, Tetrahymena and NaCl to a
final volume of 100 mL. The final algae OD7s0 was close to OD7s50=1.0 and the Tetrahymena to algae
ratio was 1:125. NaCl was added to the algae-Tetrahymena mixture to a final concentration of 100

mM. The flasks were immediately incubated on an orbital shaker (continuous shaking at 80 rpm, light
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intensity 100pE, C10 orbital platform shaker New Brunswick Scientific) for 30 min. Although this
pre-incubation was performed for uniformity, flocculation was visible in the flasks within 1-2

minutes.

After the 30min incubation time the cultures were transferred into three 100 mL cylindrical flask by
gentle pouring, to avoid possible floc disruption. The settlement was then observed. A time lapse

movie over 30 min (1 picture per second) was recorded (supplemental data).

To analyse the recovery after 30 min, the settlement layers were divided into 10mL fractions and
optical density (OD7s0, ODeso) measured. Cell density was also measured by microscopy from the

top, middle and bottom fractions, using a haemocytometer.

Pre-triggering assay

To test for the ability of Tetrahymena to flocculate algae when exocytosis was induced before the
addition to the algae suspension, plate assays were conducted using either NaCl or p-chloro-m-cresol
as a triggering agent. Starved Tetrahymena were prepared at a concentration of 1.2 million cells mL"
!in starvation medium. An aliquot of 5x stock of either NaCl or p-chloro-m-cresol was added to the
Tetrahymena suspension at a ratio of 1:4 resulting in a final concentration of 100mM (NaCl) or
0.5mM (p-chloro-m-cresol) which resulted in triggering exocytosis of the Tetrahymena. At various
times (5 s to 10 min) after initiation of exocytosis, 100 uL aliquots were added in triplicate to
successive wells of a 12-well plate, each of which contained ImL of a suspension of C. sorokiniana
adjusted to OD7s0 = 1.0 (2.2 x 10° cells). This resulted in a Tetrahymena-to-algae ratio of 1:236.
Following addition to the well, the plates were incubated with gentle shaking (80 rpm) at room

temperature for 40 min to allow flocculation to proceed. Finally plates were photographed for semi-

quantitative scoring.
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4.3 Results and Discussion

The observation at the Solar Biofuels Research Centre that only some outdoor cultures of C.
sorokiniana flocculated (despite being ostensibly identical in composition) prompted an investigation
of what factors might differ between them. Both cultures contained low concentrations of ciliated
protozoans but it was found that the flocculating cultures contained cells which appeared to be
stressed, as shown by a different morphology, faster movement, and by more extensive ingestion of
algae. These ciliates also died rapidly after flocculation was initiated. The actual initiation of
flocculation appeared to be triggered by the addition of small amounts of ammonium hydroxide,
which was dosed into the systems as a pH-amendment and nitrogen source. The ciliated protozoan
was tentatively identified as a Tetrahymena species (later confirmed upon isolation and subculture).

Subsequent amplification of the cox1 gene was used to confirm that it was in fact Tetrahymena. The
nearest species was strain RA9 (GenBank EF070322) which was isolated in Singapore from guppy

skin, and the nearest named species is Tetrahymena tropicalis [26].

Although Tetrahymena can and do ingest Chlorella, they do not appear able to effectively digest
them, and normally live on bacteria in the culture. We hypothesised that as the Tetrahymena in the
algal culture exhausts the supply of bacteria, they enter a starved state and become primed for
exocytosis, in which case the trigger for exocytosis may have been the ammonium ion itself, the ionic
strength or the resultant pH change, although neither pH shifts nor ammonium ion have previously

been reported as inducers (also known as "secretagogues") for Tetrahymena exocytosis.

Evidence that exocytosis of Tetrahymena was responsible for the algal flocculation was sought by
isolating the protozoan as an axenic culture, by confirming its identity and ability to undergo

exocytosis, and then by confirming its bioflocculation activity with algae.

Tetrahymena acts as a bioflocculant for algae and other single celled organisms

The isolation and identification of an axenic culture of Tetrahymena is described in the Methods
section. Upon transfer to starvation medium, cells became thinner and moved more rapidly (Figure
4.1 a,b). The polyanionic dye Alcian blue is typically used to trigger exocytosis in starved
Tetrahymena (Turkewitz 2004). We confirmed that this locally isolated Tetrahymena strain also

responds to Alcian blue treatment, when starved, by inducing exocytosis (Figure 4.1 d,e).

Next, the ability of Tetrahymena exocytosis to trap and flocculate algae was demonstrated using

Alcian blue as the inducer. Alcian blue-treated Tetrahymena were pelleted after 1 min treatment and
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resuspended in a solution of algae at a cell ratio of 1:125. Microscopic examination (Figure 4.2 a,b)
clearly shows that the exopolymeric mucous capsules act as a bioflocculant for the algal species (C.

sorokiniana) from which the Tetrahymena sp. was isolated.

We also confirmed that ammonium hydroxide treatment, suspected of acting as a flocculation inducer
in our large scale pond cultures, could trigger exocytosis in Tetrahymena, which has not previously
been reported. Microscopy (Figure 4.2 c¢) reveals flocs that are similar, though not identical to, flocs
generated by Alcian blue treatment of Tetrahymena. Small scale assays (Figure 4.2 d) show that as
low as 30mM ammonium hydroxide in TAP medium produces flocculation in algae if Tetrahymena
is present. In contrast, even up to 300mM NH4OH no flocculation is observed if Tetrahymena is
absent. Although high (pH >11) or low (pH <4) pH can produce algal flocculation, these assays were
conducted in buffered medium to rule out algal flocculation attributable primarily to pH effects [27,
28].

Other algal species are also effectively captured (data not shown) indicating that the observed
aggregation is not dependent on the actual algal species utilised. Not only did this explain the
flocculation behaviour of the bioreactor cultures, but suggested that Tetrahymena sp. could be used

as an economical and controllable bioflocculant.

A contribution of protists such as Tetrahymena to the formation of biofilms and flocs in wastewater
systems has been previously postulated in wastewater treatment [29] [30] while Arregui et al. 2007
[20] showed that Tetrahymena triggered with Alcian blue were capable of flocculating latex beads
after several days co-incubation. However the use of Tetrahymena for the specific flocculation of
algae as described here is outstanding, both in the ability to regulate the process using exocytosis
inducers and in its rapidity. To our knowledge, Tetrahymena, or other protists known to secrete
extracellular polymeric substances such as Paramecium (Klauke et al. 1998), have not, to date, been
used deliberately to produce a controlled flocculation of crop biomass such as microalgae, yeast or

bacteria.
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Figure 4.1: Tetrahymena sp. isolated from outdoor algal cultures in which spontaneous flocculation occurred.
Non-starved (a) and starved (b) Tetrahymena cells are shown. Starved Tetrahymena are significantly thinner
than non-starved cells, and swim more rapidly. The unique nuclear dimorphism of Tetrahymena is visualised
by fluorescence microscopy using Sybr Green (c). Both nuclei are clearly visible in the cell centre, and
secretory granules can be seen at the outer plasma membrane. Starved Tetrahymena sp. treated with the cationic
dye Alcian blue (d). The exocytosis of extracellular polymer (normally transparent but here stained with Alcian
blue) leads to the formation of a loose network around the cell, which in response to cell movement eventually
creates a tight capsule around the cells, and also binds cells together in flocs (d). Over time the trapped ciliate

breaks through the capsule leaving an empty protein shell in the culture (e).
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Figure 4.2: Flocculation of algae by Tetrahymena in response to exocytosis. Panel (a) shows the entrapping
of C. sorokiniana in EPS produced by Alcian blue-initiated exocytosis of Tetrahymena. At higher
magnification (b) it can be seen that the algae are held together primarily by the extracellular Tetrahymena
polymer rather than by cell-cell interactions. Alcian blue carried over from the treatment stains the EPS a pale
blue. In Panel (c) EPS produced by exocytosis of Tetrahymena treated with 30mM ammonium hydroxide
generates a similar flocculation of C. sorokiniana, though here the EPS is unstained. In Panel (d) a series of
well assays demonstrates that the flocculation of C. sorokiniana in TAP medium only occurs in the presence
of Tetrahymena (cell ratio 1:250; assays recorded at 30min). No flocculation occurs in wells containing only
algae with 300mM ammonium hydroxide (i). Slight flocculation occurs when algae and Tetrahymena are
present without an inducer (ii). Robust flocculation occurs in the presence of algae, Tetrahymena and

ammonium hydroxide at 30mM (iii) 50mM (iv) 300mM (v) or 450mM (vi).

Identification of inducers

Since Alcian blue is not a feasible inducer (secretogogue) for industrial scale applications, we
searched for easily produced conditions that would trigger exocytosis but which would still be cost-
effective at large scale and yet would not compromise subsequent biomass treatment. It has also been
previously noted that exocytosis can also occur under high salt conditions (150mM [31]. We
confirmed this using a screening assay in 24 well plates (Figure 4.3), demonstrating that as little as

75mM NaCl was sufficient to initiate flocculation.
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Figure 4.3: Representative microwell plate assay for NaCl as an inducer of exocytosis in starved Tetrahymena
leading to algal bioflocculation. Each compound was tested and compared over times from 1 to 60 min; the
panel shown is at 10 min. The concentrations of NaCl shown on each well are the final concentrations in the
well. Slight flocculation of algae occurs in the presence of starved Tetrahymena alone (probably due to basal
exocytosis) but is dramatically increased over S0mM NaCl. The ratio of Tetrahymena to algae was 1:250. The

final cell density of algae was 2.5x10® cell mL™.

Although sodium hydroxide was also effective at triggering exocytosis, ammonium hydroxide
produced bioflocculation at concentrations as low as 30mM, while ammonium chloride and
ammonium sulphate were also effective at 50mM, lower than that observed for NaCl. High pH (e.g.
NaOH) is capable of producing flocculation of algae even without the presence of Tetrahymena [32]

[27], but the resulting flocs were better formed when Tetrahymena was present (data not shown).

Microscopic investigation of the flocs suggested that both the reagent and the ratio of Tetrahymena
to algae led to variation in the properties of the flocs with those produced by ammonium hydroxide
being tighter and more dense than flocs produced by NaCl. Although not fully quantified to date, this
suggests that flocs with different properties may be preferred for specific harvesting methods; for
example, less dense flocs may be better suited for dissolved air flotation while denser flocs may be

preferred for settling methods.
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Figure 4.4: Floc development by Tetrahymena triggered with NaCl. Panel a shows C. sorokiniana in its natural
non-flocculating state. After adding NaCl to a final concentration of 100mM to a 1:125 mixture of
Tetrahymena and C. sorokiniana, algal cells immediately adhere to the EPS around the ciliate (b).
Tetrahymena-Chlorella flocs then rapidly increase in size due to the aggregation of smaller flocs (¢ and d).
Tetrahymena cells releasing EPS are indicated with red arrows. At this salt concentration, the Tetrahymena do

not survive long and disintegrate so that the final flocs appear to contain mainly algal cells (d).

Bioflocculation settling assays

Quantitative settling assays of bioflocculation were conducted using a spectrophotometer to measure
biomass settling in a cuvette, following the triggering of exocytosis. Both OD7s0 (measuring light
scattering) and ODeso (scattering as well as chlorophyll absorbance) were used to follow the settling
of C. sorokiniana 8 C4 in spectrophotometer cuvettes. Without mixing, this organism settles at a
recovery of ~3-4% h™!. An algal cell suspension containing the inducer but without Tetrahymena was
used as a control for flocculation activity not attributable to Tetrahymena. The settlement response
can be divided into two phases. Triggering of exocytosis is rapid, occurring in milliseconds [33]
producing an immediate drop in OD7s0 as the initial flocs form rapidly, followed by a slow decrease

as the flocs accumulate more algae and also sink slowly.
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Figure 4.5: Settling assays to determine effective ratios of Tetrahymena to C. sorokiniana in the presence of
three inducers of flocculation: (a) NaCl (300mM), (b) ammonium sulphate (300mM), and (¢) ammonium
hydroxide (300mM). Panel (d) shows the effect of the same chemical additions in the absence of Tetrahymena.
Panel (e) is a control for OD7so due to Tetrahymena alone while panel (f) shows the settling of starved

Tetrahymena in the presence of algae but without addition of an inducer.

Effect of Tetrahymena to algae ratio

The feasibility of using Tetrahymena as an algal bioflocculant depends on achieving a suitable effect
with a relatively small amount of Tetrahymena biomass. Consequently, the effect of a variable ratio
of Tetrahymena to algae was tested using suitable exocytosis-inducing conditions derived from
screening assays (Figure 4.5). It was found that for all triggering stimuli examined, flocculation is
satisfactory at ratios of 1:400 to 1:60, but that high Tetrahymena ratios (1:30 and above) inhibit
flocculation while ratios below 1:500 become ineffective. Microscopic inspection of the flocs
suggested that high Tetrahymena:algae ratios lead to small tight flocs largely consisting of
Tetrahymena EPS, with the exclusion of much of the algal biomass. Subsequently, a ratio of 1:125

was routinely used in these experiments.

Mechanism of induction

The mechanism by which these agents trigger exocytosis is still under investigation; although not
specifically identified in Tetrahymena, the final exocytosis process in the ciliate Paramecium
involves mobilisation of internal calcium stores [34] which is thought to be mediated by ryanodine

(RyR) receptors which are calcium channels. The small molecule 4-chloro-3-methylphenol (p-chloro-
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m-cresol) is an agonist for these receptors while caffeine acts as a sensitiser to potentiate channel

activation and both have been shown to promote exocytosis in Paramecium (Plattner 2013).

We confirmed in microplate assays (data not shown) that these agonists also produce immediate
exocytosis in Tetrahymena leading to bioflocculation of algae, thereby supporting a ryanodine
receptor-mediated exocytosis in Tetrahymena. The mechanism by which changes in pH, salinity and
ammonium ion affect exocytosis (presumably also via RyR activation) is under investigation, but the
demonstration here of both a highly specific receptor based mechanism and a simple bioassay,
suggests that there are excellent prospects for the identification of more potent agonists that will prove
feasible to use at very low concentrations for algal harvesting. We are currently exploring a range of
stimuli both physical (thermal, electrical) and chemical (osmotic, pH, calcium ionophores and other
compounds) to achieve this. There is also potential for genetic modification of the exocytosis system
to allow sensitive artificial control, for example by linking RyR receptors to a different biological

triggering system such as light (optogenetics).

Effect of inducer concentration

The minimum effective concentration of the inducing stimulus was then examined (Figure 4.6). It
was shown that flocculation was induced effectively, if not optimally, at 100mM NaCl, 50mM
(NH4)2S04, 50mM NH4OH, 30mM caffeine and 0.5mM p-chloro-m-cresol.
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Figure 4.6: (a-e) Flocculation settlement experiments testing various inducer concentrations at a constant Tetrahymena

Time [min] Time [min]

to algae ratio (1:125) over a 60 min time course. Panel (f) shows the appearance of cuvettes including settled Algae-

Tetrahymena culture at different NaCl concentrations (as shown on figure) after 60 min.
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Figure 4.7: Comparison of the recovery efficiency of each tested chemical over time using its optimised concentration
(a). The graph shows the highest recovery efficiency of 82% is achieved with p-chloro-m-cresol (0.5mM) after one hour.

In panel (b) the effective concentration range of each chemical is compared using settlement data at 30min.

We were particularly interested in the use of sodium chloride since many algal strains grow in saline
conditions. Seawater has a salinity of ~600mM, most of which is due to NaCl. Since as little as 30mM
NaCl will trigger exocytosis, the simple addition of starved Tetrahymena to a saline algal culture was
found to be sufficient to induce exocytosis and bioflocculation. For saline-tolerant strains, this avoids
the need to add a specific trigger compound to induce flocculation and is consequently of great
practical utility. Using a salt-tolerant Tetraselmis strain we confirmed that effective flocculation could

be induced in this way.

The use of ammonium compounds is also of interest as ammonium hydroxide can be used as an
industrial nitrogen source and pH modulator while ammonium sulphate is a typical nutrient reagent.
This is relevant because not only must flocculation be induced upon harvesting, but the prevention of

spontaneous flocculation during culture is also important.

Naturally it is unlikely that algae are uniquely susceptible to Tetrahymena-induced bioflocculation;
consequently the application of this technique may extend well beyond the field of algaculture.
Nonetheless, biomass harvesting is not such an energy- and cost-dependent issue for many other
applications as it is for algae, especially in the case of biofuel systems where the net energy balance

is a crucial variable and where harvesting imposes a significant energetic load.

Effectiveness of dewatering

Following the formation of algal flocs, aeration of the culture with fine bubbles leads to flotation of
the flocs on the surface of the culture (Figure 4.8A) (see supplementary data video 4.1), indicating
that dissolved air flotation could be a viable method for industrial applications of this technique.

Conversely, as already shown, flocs readily settle (Figure 4.8B) so that dewatering can also be
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achieved using gravity, as long as an effective method is available to remove the settled flocs from
the supernatant. We examined the effectiveness of bulk floc settling at laboratory scale using
measuring cylinder assays under standard conditions (1:125 ratio of Tetrahymena to algae, with
100mM NaCl as an inducer of flocculation). For settlement experiments, triplicate 100mL samples
were allowed to settle for 30min following floc induction, and the supernatant collected in 10mL
fractions down to the floc zone. The biomass contained in the resultant fractions (floc and supernatant)
was then measured using OD7s0 measurements and cell counting. Time lapse video (exemplified in
the supplementary data video 4.2) was also collected to illustrate the process. It was shown that 30min
settling allowed harvesting of >95% of the biomass in the culture which was therefore concentrated

~20x. It is likely that this could be substantially improved at industrial scale.
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Figure 4.8: Flotation or gravity settling as methods for floc harvesting. A: Flotation of biofloc in an algal photobioreactor
as a result of air bubbling (see supplementary data video 4.1). B: Gravity settling in graduated cylinders, comparing a
non-flocculated with a flocculating culture. C: After 30min settling, the bulk of the biomass was present in the bottom
10mL of the flask, representing 1/10% of the flask volume. D: Settlement of a C. sorokiniana culture flocculated with
Tetrahymena and 100 mM NacCl. Images of one cylinder at different time points are shown. Flocs sink rapidly and biomass
accumulation is already visible after 1 minute. After 5 minutes the culture has significantly cleared in the first 90 mL and

sedimentation process is nearly complete by 15min (see supplementary data video 4.2).

Feasibility of pre-triggering exocytosis or co-culture

Using the method described above, the inducer is added to the entire algal culture, to initiate floc
formation. A preferable approach would be to pre-trigger a small volume of Tetrahymena culture,
which can then be added to the bulk algal culture. Figure 4.9 shows that this approach is effective for
two inducers, NaCl and p-chloro-m-cresol. In the case of NaCl, flocculation is less complete if
initiated too soon after addition of exocytosis, but after 30 sec full flocculation is apparent. The final
concentration of inducers in the algal suspension is 9.1mM for NaCl or 4.5 uM p-chloro-m-cresol
respectively and demonstrates that final effective inducer concentrations can be very low, minimising

material costs. Further work will establish the limits of this approach.

p-chloro-m-cresol
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Figure 4.9: Plate assay for flocculation of C. sorokiniana using pre-triggered Tetrahymena with either p-
chloro-m-cresol (0.5mM) or NaCl (100mM) and diluted 10-fold into the algal suspension at 5 s, 30 s, 2 min or

10 min after triggering exocytosis. Representative wells are shown.

Similarly, it is realistic to grow Tetrahymena alongside algae in a culture, allowing starvation at the

point of harvesting, as long as the growth of Tetrahymena can be independently regulated and other
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organisms do not interfere. This offers the possibility of a very low energy system since only the
inducer would need to be mixed in. In the case of a low molecular weight compound such as p-chloro-
m-cresol this would be assisted by diffusion, reducing the mixing energy. Conversely, in situations
where protozoan exocytosis needs to be suppressed, the availability of specific RyR antagonists (e.g.

procaine) may achieve this.

4.4 Conclusion

The use of protozoan exocytosis systems as a bioflocculant method for microalgal biotechnology

systems has not been previously reported.

It is expected that this approach will be especially advantageous for algal applications, as energy
efficiency is most critical in biofuel systems, and large scale cultures which exclude intrinsically
expensive methods such as centrifugation. However, we anticipate that this approach is equally
applicable to non-algal systems, including yeast, bacteria and cells from multicellular organisms
grown in culture, such as mammalian cell suspension cultures. The main benefits of this system stem

from the fact that:

1. Relatively little Tetrahymena biomass is needed to effectively flocculate algae, and
Tetrahymena biomass is effectively used in the algal product.

2. Subsequent gravity settling leads to effective dewatering

3. The Tetrahymena biomass does not detrimentally affect the properties of the subsequent
harvested biomass

4. The process is highly controllable and rapid

5. Flocculation triggers exist which are practical to employ at commercial scales

6. Other inducers may exist which are even more effective, or which may be engineered using
genetic modification techniques

7. Pre-triggering or growth in situ may be possible, further reducing material requirements

8. For algae grown in saline culture the medium itself is sufficiently saline to trigger exocytosis

and bioflocculation

The result is a bioflocculation-based harvesting system that is potentially inexpensive and low in
energy inputs. We expect that for large scale algaculture, this will provide a way to reduce energy

and capital costs which will bring the prospect of cost-effective algal biofuels one step closer.
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Chapter 5

Discussion and Conclusion

Considering the rise of human population (to >9 billion) and the continue global economic growth,
by 2050 we will require 50% more fuel [1], 70% more food [2], 50% more fresh water [3] and CO2

emission cuts of ~80% [4] to maintain political, social, fuel and climate security.

Due to high biomass yields and potential for CO2 neutral fuel production [5], the development of
commercially viable microalgae production systems is a promising option to tap into the huge energy

resource of the sun and provide a path to a more sustainable future.

This challenging goal requires the identification of optimum microalgae production conditions.
However this is a complex multidimensional space problem with many interdependent variables
which is currently occupying a global research effort. Species selection, nutrient and CO2 supply, the
removal of oxygen, pH and temperature profiles are all known to be crucial variables requiring
optimisation. Technical issues including system design, batch versus continuous cultivation, mono-
versus polyculture and protection or resistance against external environmental factors (e.g.

microorganism competition and predation) complicate industrial scale realisation.

I first focused on the sampling, isolating and successful maintenance of a reasonably broad biological
diversity set of Australian microalgae (Chapter 2). This provided experience of handling a broad
species diversity, helped to identify opportunities and avoided "locking in" system designs to suit
only a small selection of common strains. Sampling sources included fresh water, brackish water and
marine systems to obtain as broad and diverse a range of species and abilities as possible. An overview
of the species identified from the different water sources is given in table 5.1. Ideally extreme
conditions (e.g. extreme salinity, temperatures etc.) would have been desirable to test but these were

beyond the practical scope of the work.
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Table 5.1: Summary of identified microalgal species, isolated from the major categories of

freshwater, brackish and saltwater habitat.

Freshwater Brackish water Saltwater

Ankistrodesmus sp.
Anabaena sp.
Aulacoseira sp.
Chlamydomonas sp.,
Chlorella sp.
Chlorella sorokiniana

Chlorococcum sp., Chlorell
orella sp.

Coleast ]
oteastrum sp Chlorella sorokiniana

Closterium sp.

Micractinium pusillum
Desmodesmus sp. Mi ini P Chlorella sp.

i } icractinium sp. ..
Desmodesmus intermedius P Chlorella sorokiniana

Navicula pelliculosa sp.
Scenedesmus sp.

ISOLATED AND IDENTIFIED

Elakatothrix sp.
Euglena sp.
Micractinium pusillum
Micractinium sp.
Merismopedia sp.
Nannochloris sp.
Scenedesmus sp.,
Scenedesmus abundans

ALGAL SPECIES

Staurastrum sp.
Stichococcus sp.

Although clearly the full complex multidimensional space of species distribution is not been covered
as this is beyond the scope of the PhD thesis, the results provided in chapter 2 demonstrate a
streamlined process for microalgae recovery, and have resulted in a library of local algal strains for

ongoing work, many of which are cryo-preserved [6].

Experience was gained in a range of algae purification methods including fluorescence activated cell
sorting (FACS), micromanipulation and dilution techniques. Here the rapid isolation principle of
FACS proves to be the most effective high-throughput method for physically robust and tolerant algal
strains. The laborious technique of micromanipulation, on the other hand, has benefits for the targeted
isolation of a higher species diversity. Almost half of the collection of around 150 maintained cultures

were successfully preserved using cryo-preservation techniques reported in Bui et al (2013) [6].
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With the focus on optimising microalgae production, the next phase of reducing the complexity of
this multidimensional space was to analyse optimal nutrient conditions for each microalgae strain
(Wolf et al. 2014) [7]. This identified the highest biomass producing strains at the optimal nutrient

conditions, enabling selection of high biomass producing strains.

It was anticipated that the process of scaling up from laboratory to pilot scale culture systems would
reveal differences in growth and culture complexity. To analyse this we selected the top 20 strains
based on the maximum growth rates and of these chose the top eight most morphologically diverse
for trials at pilot scale to sample a broad phylogenetic diversity to track their relative performance in
polyculture. Furthermore we included an indigenous microalgae species which dominantly

established itself in trials of open ponds containing only nutrified water at the pilot plant SBRC.

Many factors impact on the performance of microalgae exposed to the natural environment at pilot
scale including CO:2 supply, oxygen levels, pH and temperature fluctuation, mono- versus
polycultivation or contamination by other non-target microorganism (indigenous algae, predators,
bacteria, fungi and viruses). Of the six HRPs constructed (displayed in figure 3.2, a), not all were
available for every trial, as other experiments were being conducted simultaneously. There is also
some variation expected between bioreactors, as physical mechanisms such as mixing, wind, splash,
local heating or shear stresses which can impact on algal performance can vary between systems.
These factors are not present or tightly controlled in the laboratory. Consequently in chapter 3 we
first conducted single species trials in open pond systems using optimum nutrient conditions. The aim
of this experiment was to compare the performance of the strains under these conditions and analyse
whether there were other additional factors affecting optimum productivity that we had not yet
considered. For example the effect of light and temperature fluctuation and its effect on specific
species appearance and the complex interplay between each of these. Furthermore resulting
competition and predation by foreign species (both algal and non-algal), led to inhibition or assistance
in growth, as well as other effects such as aggregation of the target algal cells.

Based on these studies I found the top production candidates to be M. pusillum (5 H4), Chlorella sp.
(11_HS5), and Chlorococcum sp. (12_02). Besides their fast growth rates they were able to attain high
cell densities and could be harvest using simple technologies (e.g. settlement). Furthermore especially
M. pusillum (5 H4) and Chlorococcum sp. (12_02) show strong resistance against foreign
microorganisms which limits the potential of most fast growing microalgae tested. This has therefore
confirmed predation as another major factor that must be considered in the multidimensional space

complexity.
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The effect of polycultures was also tested. The rationale behind the use of polycultures is that different
strains offer advantages at different times during culture evolution. However, it is also possible that
historical effects could occur — for example the order of dominance of a strain could lead to
elimination of other strains or chance dominance of particular strains. Most polycultures are systems
where no attempt is made to control strain distribution, and the strains present are seeded from natural
populations. This results in complex, poorly characterised assemblies of natural strains.
Consequently, even when they perform well, it is difficult to demonstrate why this is the case. |
therefore tested the effect and growth performance of a defined polyculture by mixing five
morphologically different selected strains, which enabled tracking of the different subpopulations.
This provided two key findings. First the polyculture outperformed all but one of the monoculture
trials in terms of growth rate and productivity. Second, strains which are fast growing under
laboratory conditions, but which result in poor monoculture performance due to grazing pressure by
contaminant organisms, show strong growth and dominance within the polyculture. Possibly
defenceless algal species find protective niches between species which do have protective
mechanisms until grazing pressure diminishes. These findings require further study in defined

systems such as those described here.

Future investigation and optimisation of algal pond cultivation towards optimised and profitable
production need to be considered to strengthen the findings above. Some experimental difficulties
could be resolved with better equipment and experimental design, for example monitoring the
relationship between cell number, biomass and optical density. In so doing, flow cytometry would be
a highly efficient tool for monitoring algal cell cycles, viabilities, strain-distribution and shifts,
especially for polycultures, would give clearer insight on the culture behaviour and possibilities for
predicting future changes. Work completed in the laboratory as these experiments were being
conducted shows how optical density can be related to biomass via flow cytometry measurements
[8]. Furthermore to confirm the observed findings and eliminating possible variables, the open pond
experiments (mono- and polyculture) should be repeated in triplicates and under all seasonal weather

conditions.

Interestingly predation also correlated with aggregation for example in cases of Chlorella sp. (11_HS5)
and C. sorokiniana (8 _C4). This is important because the aggregation of algae greatly affects
productivity due to light limitation. It needs to be suppressed during the growth cycle, but it also
provides the basis for the most cost effective harvesting techniques which are also important from an

economic perspective to developing high-efficiency microalgae production systems.
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The large scale open pond trials revealed the presence of culture aggregation under specific
conditions. This phenomenon was further investigated as a possible harvesting mechanism. Chapter
4 is therefore focused on the issue of aggregation which affects productivity and harvesting, both of

which are economically important to the development of economic systems for scale up.

It was shown that Tetrahymena, a ciliate protozoan present as a natural contaminant in the cultures,
could be used to flocculate and dewater microalgae in a very efficient and controllable manner. The
idea of using a protozoan as microalgae flocculant was only once identified during the review process
of this publication. Sathe et al. (2015) reported effective flocculation using the flagella organism
Peranema, however the procedure differs to those of the ciliate Tetrahymena for example in terms of
trigger mechanism, binding substance and possible limitation to microalgae only [9]. The promising
nature of the use of protozoan exocytosis as a bioflocculant has not been previously reported and
resulted in the submission of a patent application. Chapter 4 reports experiments carried out to
demonstrate and characterise this effect, including the derivation of techniques to establish its basic

feasibility as a practical system.

Importantly, besides the relatively low ratios (1:400) of ciliate organism needed relative to algal cells,
a range of inexpensive triggers (ammonium ion, shifts in pH and salinity) in low concentrations can
be used, including ryanodine receptors (caffeine and p-chlorocresol). As such this technique opens
up a range of harvesting opportunities from wastewater to biofuel production systems and could

replace or complement current expensive methods.

Consequently we regard the Tetrahymena mechanism as being more promising. Industrial scale
microalgal cultures urgently need effective and inexpensive harvesting techniques especially for
biofuel applications where the energy expended in harvesting is a large part of the overall energy
input to the process. The low energy input, rapidity of flocculation and high level of control attainable

with Tetrahymena make it a very promising candidate for such a harvesting mechanism.

In addition to development of a novel harvesting technique which could provide significant benefits
in terms of economic return on energy balance of microalgae systems, an understanding of the factors
affecting flocculation also proved to be critical for defining variables to improve biomass yield. For
example, given the knowledge of how Tetrahymena can be used for algal bioflocculation, preventing

or limiting contamination by Tetrahymena and other ciliated protozoans could result in more uniform
188



open pond cultures with a better light distribution and ultimately better productivities.

The unexpected interactions between Tetrahymena and one of the top producing algal strains
Chlorella sorokiniana (8 C4) demonstrate the complexity of large scale outdoor cultures and
illustrate the ongoing need to understand the evolution of ecosystems within algal production reactors.
There are many opportunities with the current system to explore and model these interactions and

their likely effects on bioreactors.

In summary, the present project has provided a library of Australian microalgae strains and
streamlined techniques for their isolation, nutrient optimisation and management. The process of
scaling the growth of these strains to large scale outdoor cultures has provided opportunities to
redefine key issues for production strains, and explore the role of culture composition through the use
of defined polycultures. Finally, investigation into the origins of culture bioflocculation has led to a
new understanding of the role of ciliated protozoans in algal reactors and shown how they can be

used to assist with the economically and energetically important step of dewatering.
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