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Abstract

Correct wiring is crucial to the proper functioning of the nervous system. Key signals guiding

growth cones, the motile tips of developing axons, to their targets are molecular gradients. The

receptors on the membrane of the growth cone bind stochastically with guidance molecules in

the environment, giving an estimate of the direction of the gradient. The growth cone then

executes biased random movements to navigate toward the chemoattractant source or away

from the chemorepellent source. This thesis addresses two questions: 1) how the positioning and

diffusion of receptors on the growth cone membrane affect the accuracy of gradient estimation,

2) how trajectories are influenced by chemical gradients.

Membrane receptors can diffuse freely on the membrane, smearing out the directional infor-

mation about the gradient. It was unknown how the positioning and diffusion of receptors

affect the estimate of the gradient. To address question (1) above, we utilise an ideal-observer

approach, assuming that the growth cone can perform maximum likelihood estimation of the

gradient based on the stochastic binding patterns with ligand molecules. The performance of

gradient sensing is measured by the Fisher Information between the binding pattern and the

gradient direction. The quality of gradient sensing decreases with higher diffusion constant of

the receptors and improves with higher concentration. We then extend to a two-dimensional

model of an elliptical growth cone with a general prior distribution. With a random uniform

distribution of receptors, the shape of the growth cone can introduce bias in the gradient esti-

mate. This bias can be corrected by a non-uniform distribution of receptors with higher density

near the minor axis of the growth cone.

Besides stochastic gradient sensing, growth cones also trace highly stochastic trajectories, and

it is unclear how molecular gradients bias their movement. We then introduce a mathematical

model of a correlated random walk based on persistence, bias and noise to describe growth

cone trajectories, constrained directly by measurements of the detailed statistics of growth

cone movements in both attractive and repulsive gradients in a microfluidic device. This

model explains the long-standing mystery that average axon turning angles in gradients in

vitro plateau very rapidly with time at relatively small values of 10-20◦. This work introduces

the most accurate predictive model of growth cone trajectories to date, and calls into question

the ability of molecular gradients alone to provide reliable guidance cues for growing axons.
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Chapter 1

Introduction

The brain is an extraordinarily complex organ that consists of billions of neurons, many of

which connect with thousands of others. Brain function relies critically on the correct wiring

among neurons during early development. Axon guidance is the process by which neurons

extend axons to each other, to muscles and to glands – their synaptic partners. Extracellular

molecular cues are the critical signals that initially direct axons to their targets before synaptic

connections can be established and refined [1–3]. One of the key signals is molecular gradients,

i.e. graded distributions of guidance cues that attract or repel axons. This thesis is concerned

with axon guidance by chemotaxis - the process in which axons follow molecular gradients to

navigate in the environment to reach their synaptic targets.

Chemotaxis is a widespread fundamental biological process commonly shared by many organ-

isms [4–7]. There are two mechanisms for detecting gradients: temporal and spatial sensing.

Organisms employing temporal sensing compare the concentration over time as they move in

the concentration field. Meanwhile, spatial sensing entails detecting differences in receptor oc-

cupancy across the organism’s surface [6]. The external gradient of ligand molecules, through

asymmetric activation of membrane receptors, is translated into an intracellular gradient of

signalling molecules, which eventually leads to movement. Due to the inherently stochastic

nature of ligand-receptor interaction, the receptor signal is noisy. Chapters 3 and 4 in this

thesis address the question of the upper limits of spatial gradient sensing.

1
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1.1 Significance

Understanding axon guidance is of great clinical interest for several reasons. On the one hand,

defective axon guidance can lead to aberrant connectivity and is believed to result in major

brain disorders [8]. For example, loss of function mutations in the axon guidance receptor

Robo3 leads to axonal midline crossing defects that underlie horizontal gaze palsy with pro-

gressive scoliosis (HGPPS), a rare brain disorder [9]. Indirectly, mutations in guidance receptor

genes or misregulation of guidance cues have been associated with many neurological disorders

such as Parkinson’s disease, autism, dyslexia and schizophrenia [10–13]. The causative links

between the molecular mechanisms that underlie abnormal connectivity and brain disorders

are immensely complex and poorly understood. Understanding axon guidance in normal de-

velopment will provide insight into how axonal miswiring might cause disease, that will help

the development of therapeutic treatment of brain disorders.

On the other hand, one of the most fundamental questions in neurobiology is understanding

mechanisms underlying the success of regeneration in the peripheral nervous system (PNS) and

the failure in the central nervous system (CNS) to promote regeneration after injury. Axon

guidance molecules play a complicated role in the central nervous system after injury, such

as promoting and inhibiting axon regeneration, modulating astrogliosis and tissue response to

injury [10]. Ultimately, it is hoped that the knowledge gained in understanding axon guidance

in vivo and in vitro will be utilised to encourage proper axon regeneration after injury.

1.2 Growth cones

A highly motile, complex structure called the growth cone is the navigator at the distal tip

of an extending neurite which will later mature into an axon or a dendrite. The growth cone

explores the molecular landscape, interprets extracellular signals and implements motility in

the appropriate direction. The motility process starts when signal molecules bind to receptors,

triggering downstream signalling events, leading the growth cone to rearrange its cytoskeletal

components and change direction [2].

Growth cones share many similar behaviours with many chemotactic eukaryotic cells, such

as leukocytes accumulating in an inflammatory response, and the slime mould Dictyostelium
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aggregating toward a cAMP source [5, 6, 14, 15]. Growth cones and eukaryotic cells also share

the major signal transduction pathways [16]. However, because growth cones are tethered to

the cell by the axon, their movements have some unique characteristics. Some of the models

applied to growth cones and other eukaryotic cells will be reviewed in this thesis.

1.3 The role of mathematical modelling in understand-

ing axon guidance

A tool that has been useful in expanding our understanding of eukaryotic and growth cone

chemotaxis is mathematical modelling. For example, the understanding of Dictyostelium and

leukocyte chemotaxis has become strikingly quantitative, with detailed hypotheses being tested

thanks to a fruitful interaction between theory and experimentation (e.g. [17–21]). Quantita-

tive modelling forces precise hypotheses instead of possibly vague qualitative predictions [22].

Mathematical models can potentially capture complex phenomena by relatively simple equa-

tions and allow a thorough examination of the consequences of particular assumptions, leading

to new insights and clarity [19, 22].

In the context of axon guidance, although much is known about the molecular mechanisms of

growth cone chemotaxis, the computational principles are still lacking. It is critical to under-

stand axon guidance quantitatively to determine the limits of guidance due to gradients. This

quantitative understanding will help predict the quality of guidance in vivo under normal and

abnormal conditions and contribute to the ability to optimise applied gradients for promoting

nerve regeneration. This thesis aims to investigate the constraints on gradient sensing and

guidance. We divide the thesis into two parts: the ultimate limits imposed by the physical

properties of receptors and the limits due to growth cone motility noise and tension. The in

vitro data give us insight into whether gradients alone are sufficient to guide axons in vivo or

what other factors might be needed for reliable guidance.

In the first half, the growth cone is modelled as an abstract idealised ‘sensing device’. This

analysis of gradient sensing can be validly applied to other chemotactic cells. The state of the

environment is never 100% certain to the growth cone. The best it can do is to assign proba-

bilities to different possible states of the environment conditioned on the sensory information
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it receives. We treat gradient sensing as a Bayesian inference problem: in this context, given

a noisy signal that is the binding pattern, the growth cone has to infer the direction of the

gradient. The positioning and movement of its ‘sensors’, the membrane receptors, can have

an effect on the accuracy of this inference process. In contrast, the growth cone’s movement

has unique characteristics not present in other systems, most importantly the constraint by

mechanical tension generated by the axon. In this thesis, we will address the following topics:

• In chapter 2, we review of the current understanding of the growth cone, the inference

framework of gradient sensing, models of growth cone motility and existing axon guidance

assays for investigating such questions.

• In chapter 3, we present an abstract model of gradient sensing by maximum likelihood

estimation by a one-dimensional growth cone with receptors that can freely diffuse on its

surface. We provide an analysis of how the random movements of receptors can affect

the quality of gradient sensing.

• In chapter 4, we extend the previous model to a two-dimensional model of a sensing device

that has some prior information about the gradient. We then apply a Bayesian analysis

to investigate the role of receptor positioning on computing the posterior distribution of

the gradient.

• In chapter 5, we next introduce a new axon guidance assay that allows us to observe mul-

tiple cells simultaneously over an extended period of time. We characterise the gradient

and the guidance responses of superior cervical ganglion axons to nerve growth factor

(NGF) gradients. This forms the basis for the next chapter.

• In chapter 6, we analyse the trajectories of growth cones in NGF gradients and develop a

phenomenological model to describe their trajectories. We explain why in vitro, turning

response saturates very quickly with time at small values and offer some new hypotheses

about in vivo guidance.

Overall, the thesis provides insights into the physical limits of sensing from receptor-ligand

binding that are applicable to all eukaryotic chemotactic systems and proposes the critical

requirements of substrate adhesion and small motility noise for reliable turning in vivo. It
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provides a unifying explanation for the general phenomenon of weak turning in many qualitative

in vitro studies and stimulates new ideas to gain a deeper understanding of axon guidance.



Chapter 2

Literature Review

At the tip of a growing axon or dendrite is a highly motile, complex structure called the growth

cone, which senses the environment and implements motility. In this chapter we will briefly

review the current knowledge of growth cone chemotaxis and the relevant culture assays and

mathematical models that will help us gain a deeper understanding of gradient sensing and

motility.

2.1 Growth cones and nervous system development

2.1.1 The chemotropic hypothesis of axon guidance

The neuroscientist Santiago Ramon y Cajal discovered growth cones in his studies of embryos

and published the first histological staining images of them in 1890 [23]. In 1910, Ross Harrison

made the landmark finding that neurons can be cultured outside the body and observed the

first living growth cones in tissue culture [23]. Images of live growth cones in vivo were first

reported by Carl Speidel in 1933 [24].

Cajal proposed the prescient ‘chemotropic hypothesis’ that growth cones lead the way for axons

to navigate through the embryo in response to attractants to reach their targets. In contrast, in

vitro studies led Paul Weiss to propose the ‘contact guidance’ hypothesis, which stipulates that

what is important in axon guidance is the mechanical properties of the local environment of the

6
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growing axon [25]. Due to the lack of direct evidence, the chemotropic hypothesis languished

until the 1960s when Roger Sperry revived the research into chemical guidance of growing and

regenerating axons [26]. He proposed that axons carry chemical tags that match them with

the target neurons with specific affinities. Based on his insightful experiments in frogs, he

also hypothesised the existence of gradients of chemical signals that explained the topographic

projection of retinal axons into the tectum [26].

In the 1980s, Andrew Lumsden and Alun Davies discovered a target-derived signal from the

whisker pad epithelium of mice that elicited and attracted the growth of neurites from inner-

vating trigeminal sensory neurons, a finding that lent support to the chemotropic hypothesis

[27]. Advances in biochemistry, molecular biology and studies of embryonic tissue in vitro and

in vivo led to the first discovery of truly chemotropic molecules. Tessier-Lavigne and colleagues

detected diffusible signals in the floor plate of chick embryos that attracted commissural axons

and later identified them as netrins [28, 29]. These findings have inspired a rapid expansion of

understanding of axon guidance that followed in recent decades.

2.1.2 The structure and dynamics of growth cones

In order to understand axonal chemotaxis, we first summarise key knowledge of the growth

cone, the major player in this process. The mammalian growth cone has a diameter of about 5-

20 µm and consists of three regions: the central (C) region rich in stable, bundled microtubules,

the peripheral (P) domain containing long, bundled actin filaments which form the filopodia

and mesh-like F-actin networks forming the lamellipodia, and the transition (T) zone between

the previous two regions [30] (Fig 2.1). This cytoskeletal network is highly dynamic. Filopodia

continuously extend and retract and lamellipodia dynamically change shape. Microtubule tips

projecting from the C-domain to the P-domain constantly add and subtract subunits at the

tip. The actin network undergoes retrograde flow and depolymerises behind the leading edge,

releasing actin subunits to the front for polymerisation [30].

Actin plays a key role in growth cone migration. The continuous treadmilling of F-actin

provides the motor to drive movement. F-actin retrograde flow is driven by the motor protein

myosin II and the push from F-actin polymerisation in the P-domain. Compression by myosin II

in the T-zone buckles the F-actin bundles. These actin fragments are recycled to the periphery
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A B

Figure 2.1: The growth cone. A. Fluorescence image of a growth cone adapted from [31].
Actin filaments (red) are stained with phalloidin and form the lamellipodium and filopodia.
Microtubules (green) are stained with anti-tubulin antibodies and form the axon and central
region of the growth cone. Between the periphery (P-domain) and centre (C-domain) is the
transitional (T) zone. B. The structure of the growth cone, adapted from [30]. The P domain
contains long, bundled actin filaments which form the filopodia and a mesh of F-actin that
forms the lamellipodia. In the C-domain, stable bundled microtubules form the axon shaft

and splay out in the growth cone.

for actin polymerisation at the leading edge [32]. The ‘clutch’ hypothesis or the ‘substrate-

cytoskeletal coupling’ model proposes the mechanism for actin dynamics to drive growth cone

advance [33]. The growth cone plasma membrane contains receptors that bind to adhesion

molecules on other cells or the extracellular matrix (ECM). Receptor clustering can lead to

persistent bonds and form large adhesive contacts with intracellular complexes. These adhesion

points stimulate actin filament polymerisation to protrude from the leading margin, stabilise

the newly extended protrusions and tether actin filaments to the substrate. This slows down

the retrograde flow that normally pulls actin rearward toward depolymerisation, providing the

tension to pull the growth cone forward. Adhesion at the back of the growth cone weakens and

the growth cone turns into the cylindrical shape of the axon [33].

The coupling to the substrate generates a tension which is critical for growth [33]. Tension in

the growth cone appears to be dependent on two main properties of the substrate: stiffness

and ECM components. Firstly, in vitro studies have shown that traction force increases on

stiffer substrates [34]. CNS and PNS neurons have different sensitivities on substrate stiffness

due to adaptation to their natural environments [34]. Secondly, detailed force measurements

have found that axons on less adhesive surfaces exert more tension [35]. Thus the substrate

can have profound impact on how growth cones respond to guidance cues. Biophysical models

have illuminated the possible impacts of tension force, axonal viscosity and adhesion to axon

outgrowth [36–38]. Our mathematical model will later reveal the importance of tension and
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make useful predictions about how different ECM environments might affect turning due to

gradients.

2.1.3 The diversity of guidance cues

The journey by which an axon extends from its cell body and travels through the embryo to

its target involves a vast number of molecules and pathways working together to ensure the

proper connections can be made [1–3, 39]. In recent decades, great progress has been made in

identifying the molecules and pathways involved in axon guidance. Although this is not a focus

of the thesis, for completion we briefly summarise the key players in the molecular processes.

In the late 1980s and early 1990s, advances in genetic and biochemical screens led to the dis-

covery of a plethora of guidance cues and their receptors. The canonical guidance cues include

Netrins/Unc-6, Slits, Semaphorins, and Ephrins [2]. Guidance molecules also include mor-

phogens, secreted transcription factors, neurotrophic factors and neurotransmitters [30]. The

diverse functions of guidance cues, their ability to combine and interact at the membrane and

intracellular levels, combined with alternative mRNA splicing and post-translational modifica-

tions of receptors and ligands, results in a vast repertoire of different signals [2].

As the growth cone traverses the developing brain, it likely detects multiple cues along its path.

The cues can be diffusible or substrate-bound [2] (Fig 2.2). For example, gradients of diffusible

netrins are crucial in the control of spinal cord development in vivo [29], while gradients of

membrane-bound ephrins are involved in the control of topographic mapping in vivo [40].

Guidance cues can be permissive/attractive to direct axons to the right target or inhibitory/re-

pulsive to prevent axons from approaching incorrect targets. While permissive extracellular

matrix proteins such as laminin or cell adhesion molecules such as the immunoglobulin super-

family (IgS) can act as adhesive molecules and chemoattractants [41], nonpermissive surface

bound molecules such as Slits and Ephrins can inhibit growth cone migration [30]. However,

the response of attraction or repulsion is not simply an intrinsic property of the cue, but the

specific receptors and the signalling pathways activated [2].

In chapters 5 and 6, we studied the responses of peripheral axons to gradients of nerve growth

factor (NGF) to characterise the trajectories, thus NGF is briefly introduced here. First stud-

ied in detail in the 1940s by Rita Levi-Montalcini and Viktor Hamburger, neurotrophic factors
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Figure 2.2: Axon guidance. The growth cone can grow on permissive substrates con-
taining a contact-mediated attractive cue or is inhibited by a repulsive/inhibitory cue. The
growth cone can be attracted by diffusible gradients of attractants (green) or repulsed by

gradients of repellents (red).

are target-derived and essential for neuronal survival and maintenance [42–44]. In mammals,

neurotrophins such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF)

and neurotrophin-3/4 (NT-3) can also have guidance properties [45]. They bind to the Trk

family of tyrosine kinase receptors, TrkA, TrkB and TrkC respectively. The neurotropic prop-

erty was not discovered until 1978, in in vitro experiments where chick dorsal root ganglion

neurons turned towards NGF from a pipette tip [46]. Since that study, NGF has been widely

used to investigate further details of growth cone chemotaxis.

2.1.4 Downstream signalling pathways of guidance cues

Guidance receptors are linked to molecular switches such as Rho-family GTPases. These in-

clude RhoA, Rac1 and Cdc42, which provide the link between upstream directional cues and

downstream cytoskeletal network [47]. They activate pathways that control the organisation

and distribution of actin filaments. It is believed that they can either increase actin polymerisa-

tion for protrusion or enhance depolymerisation and actomyosin contraction for retraction [48].
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Repulsive cues such as Semaphorin3A induces translation of GTPase RhoA, which promotes

actin depolymerisation, reducing protrusion and adhesion. Attractive cues switch off RhoA

and switch on Rac1 and Cdc42, which promotes actin filament polymerisation and formation

of adhesion points [48]. The complex crosstalk of these molecules has been a rich source of

mathematical models that can help constrain which of the many proposed interaction schemes

are consistent with observed dynamics of the proteins [49–51].

Classical second-messenger molecules such as Ca2+ and the cyclic nucleotides are also known

to play key roles in governing guidance response. Their interactions are complex and are

reviewed in [52]. Here we only emphasise the key pathways. Many studies have shown that

transient or sustained global increase in intracellular calcium concentration, i.e. depolarisation,

can slow or halt axon outgrowth [53–57] while a lowered concentration has the opposite effect

[57, 58]. Localised calcium signals can promote growth cone turning by enhancing protrusion

and stabilisation of filopodia [59–62]. However, a consistent directional guidance effect can

only happen when there is a stable asymmetry in the calcium concentration pattern across the

growth cone [60, 62, 63]. The exact identity of calcium channels that give rise to spontaneous

calcium transients in growth cones and filopodia are still elusive [62]. As they are unaffected by

voltage-dependent calcium channel (VDCC) blocking, they are probably not VDCC [64, 65].

Binding of guidance cue to the receptors activates the transient receptor potential family of

non-selective cationic channels, causing an initial influx of calcium that depolarises the neuron

sufficiently to trigger VDCCs [66, 67]. This leads to the influx of calcium via VDCC and

the release of calcium from from the endoplasmic reticulum into the cytoplasm [68]. In an

extracellular gradient of guidance cue, the asymmetric binding of ligand molecules and receptors

results in an intracellular calcium gradient. Under normal conditions, a steep intracellular

calcium gradient is likely to lead to attraction, while a shallow intracellular calcium is likely to

result in repulsion [60, 62, 69].

There are two main mechanisms for triggering release of calcium from intracellular stores:

inositol trisphosphate (IP3)-induced Ca2+ release (IICR) [70] and Ca2+-induced Ca2+ release

(CICR) [71]. It has been proposed that the method of calcium entry is the determinant of

turning: calcium entry involving both CICR and IICR leads to an attractive response, while

Ca2+ signals without store entry results in a repulsive response [72, 73].



Chapter 2. Literature Review 12

Upon entry into the cell, calcium binds to calmodulin to form a calcium/calmodulin complex

[74]. Two downstream effects are calcium/calmodulin dependent protein kinase II (CaMKII)

and calcineurin (CaN). Having a higher affinity for calcium/calmodulin, CaN responds more

strongly than CaMKII at low calcium concentration while CaMKII dominates at high calcium

levels [75]. The ratio CaMKII:CaN is the determinant of whether the guidance response is

attraction or repulsion [75].

Ca2+-dependent responses can be further modulated by the cAMP pathway. cAMP activates

and cGMP inactivates voltage-dependent Ca2+ channels [76, 77]. cAMP also enhances calcium-

induced-calcium-release from intracellular calcium stores, while cGMP inhibits it [72]. An

extracellular gradient of cAMP can promote attraction [78] whereas lowering the cAMP/cGMP

ratio can switch attraction to repulsion [79–81]. A mathematical model was developed which

can explain how the sign of the response is determined by the asymmetry in the CaMKII:CaN

ratio between the two sides of the growth cone [61, 82]. This unifying mathematical model

explains many apparently perplexing existing results and can predict guidance decisions across

a wide range of conditions, providing important insights into the mechanisms of axon guidance.

Downstream effectors shift the imbalance in endocytosis and exocytosis and lead to an attractive

or repulsive response [73]. Repulsive guidance cues induce asymmetric endocytosis on the up-

gradient side of the growth cone whereas attractive cues induce asymmetric exocytosis [69,

83]. Asymmetric Ca2+ levels result in asymmetric activation of the Rho GTPases (attractive

cues activate Rac and Cdc42, repulsive cues activate RhoA), leading to remodelling of the

cytoskeleton and turning [84].

The binding of receptors to ligand molecules not only activates existing downstream molecular

pathways but also local mRNA translation [85, 86]. This was discovered by severing the growth

cone from the cell body and observing that it continued to exhibit chemotropic responses,

indicating that the growth cone contains a semi-autonomous apparatus. The functional role of

local mRNA translation was first demonstrated in Xenopus retinal ganglion cell axons separated

from the soma. In these axons, translation inhibitors could block the attractive turning response

in a gradient of netrin-1 [87] and the chemotropic “collapse” response of growth cones to

Sema3A and Slit2 [87, 88]. Together, the above studies reveal remarkably diverse mechanisms

employed by the growth cone to navigate the complex landscape of the embryonic brain.
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2.2 A Bayesian framework for gradient sensing

One of the aims of this thesis is to gain a better understanding of gradient sensing by analysing

how a growth cone might make the best use of the information from its receptors to estimate

the state of the environment. The Bayesian inference framework has been very influential in

addressing this general task of extraction of a signal from noise [89, 90], which is the first

step in any chemotactic system. We now explain the fundamentals of Bayesian inference, the

framework that underpins the analysis in the next two chapters.

Bayesian inference provides the framework for manipulating beliefs, i.e. how to update beliefs

as new information arrives, in a consistent manner using Bayes theorem. At its core, Bayes

theorem expresses the relationship between joint and conditional probabilities. For two random

variables X and Y , the probability that X takes the value x, Y takes the value y is denoted

P (X = x, Y = y) and

P (X = x, Y = y) = P (X = x|Y = y)P (Y = y)

= P (Y = y|X = x)P (X = x)

where the first term on the right hand side is known as the conditional probability that X = x,

given that Y = y. Rearranging the equation above, we have

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)

P (Y = y)

When applied to sensory processing

P (W |D) =
P (D|W )P (W )

P (D)

where W is the state of the world and D is the data about the state of the world. P (W )

is the prior distribution of the state of the world, reflecting the observer’s beliefs before a

measurement. P (D|W ) is the likelihood function, in which the data and world state are

related in a full probability model. P (W |D) is the posterior distribution, or the updated belief

about the world after the measurement.
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Given the observation D, it is often necessary to report or act on an estimate of W that

optimally describes the data in some sense. Bayesian decision theory formalises this process of

choosing the best estimate. First, we define the loss function lD(W ∗, Ŵ ), which quantifies the

cost associating with reporting W = Ŵ when the data were actually generated by W = W ∗.

Then the average or expected loss for reporting Ŵ is:

LD(Ŵ ) = 〈lD(W ∗, Ŵ )〉p(W=W ∗|D) =

∫
lD(Ŵ ,W ∗)p(W = W ∗|D)dW ∗

The expected loss is integrated over all possible values of W ∗, weighted by their probabilities

given the data, and measures how much loss can be expected when Ŵ is chosen as the estimate.

The optimal decision procedure has to choose a Ŵ that minimises this expected loss.

The binary loss function has the form:

lD(Ŵ ,W ∗) = 1− δŴ ,W ∗ =

1 W ∗ = Ŵ

0 otherwise

Using this loss function, the expected loss is:

LD(Ŵ ) =

∫
lD(Ŵ ,W ∗)p(W = W ∗|D)dW ∗ = 1− P (W = Ŵ |D)

This quantity is minimised when Ŵ is chosen to be the maximum of the posterior distribution

P (W |D) or the maximum a posteriori (MAP) estimate:

Ŵ = argmax
W

P (W |D)

In the case that the prior is flat (uniform), then the MAP estimate reduces to the maximum

likelihood estimate:

Ŵ = argmax
W

P (D|W )

The Bayesian framework has made important contributions to theoretical neuroscience and

has been successful in building computational models for perception and sensorimotor control

[91]. Bayesian modelling is aimed at predicting and systematising performance data, comparing
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performance to a benchmark, instead of explaining mechanisms [92, 93]. A theoretical observer

is called an ideal observer if it can make optimal interpretations about the stimuli which give

rise to sensory inputs, meaning that it achieves the best performance averaged over all stimuli

[94].

The growth cone (or any other chemotactic cell) faces a statistical inference problem, and

Bayesian Decision Theory is a useful approach to understand the best possible performance.

A Bayesian model for axon guidance has been developed and has been successful in explaining

the chemotactic efficiency of axons in shallow gradients as a function of concentration and

gradient steepness [95]. This model analyses how a growth cone might make the best use of

information from receptors to estimate the gradient. The growth cone is considered an ideal

observer performing statistical inference by combining prior assumptions about the gradient

with likelihood information coming from its binding patterns (Fig 2.3). Given a particular

binding pattern, the growth cone infers the distribution over the gradient that gives rise to

that binding pattern.

Figure 2.3: Bayesian model of spatial gradient detection. The model growth cone
in [95]. The probability that receptors bind ligand molecules is determined by standard
Michaelis–Menten kinetics and depends on the local concentration at the receptor. The
growth cone then combines signals from individual receptors to optimally decide the gradient

direction for that binding pattern.

In [95], the prior probability of the steepness is assumed to be symmetric and concentrated

around 0. The likelihood function of each binding pattern for different concentrations and

gradient steepnesses is the product of the binding probabilities of individual receptors. For a

receptor at position ~ri, its binding probability using standard Michaelis–Menten kinetics is:

P (receptor i is bound) =
C(~ri)

C(~ri) +KD

(2.1)
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where C(~ri) is the ligand concentration at the ith receptor’s position and KD is the dissociation

constant, i.e. the concentration at which the binding probability is exactly half. Combining

this likelihood function and the prior, they derived the posterior distribution of the gradient

given a binding pattern. From the posterior probability, the maximum a posteriori estimate

of the gradient can be obtained. The performance of the estimation (which translates to the

guidance ratio) as a function of steepness µ = ∇C/C and normalised concentration γ = C/KD

can then be derived:

Performance ∝ SNR = µ

√
γ

(1 + γ)3
(2.2)

By using an assay that can generate gradients precisely, this prediction was confirmed quan-

titatively but up to an arbitrary constant by analysing growth cones’ responses when both

concentration and steepness were varied experimentally (Fig 2.4).

Figure 2.4: A Bayesian model of growth cone chemotaxis. The experimentally mea-
sured chemotactic efficiency (guidance ratio) of rat dorsal root ganglion neurites is predicted
by a Bayesian model of axon guidance. The guidance response increases linearly with the
signal-to-noise ratio in equation 2.2, which depends on the background concentration and

gradient steepness. (Image from [95])

Similar works using a flat prior investigated the role of receptor cooperativity in spatial gradient

sensing [96], the information loss during the various stages of directional sensing [97], the effect

of geometry and internal bias on gradient sensing [98] and the bias in sensing of weak gradients

by elliptical cells [99].

The presence of the prior distribution allows examining different assumptions about the initial

bias of the cell, for example: unpolarised cells newly introduced to a gradient or polarised cells
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that have been exposed to the gradient for a long time or have a spontaneous intracellular

bias toward a particular direction. It is known that the growth cone’s behaviour is dependent

on the history of previous stimulation [100]. Similarly, the response of Dictyostelium cells to

extracellular signals is strongly dependent on the initial intracellular bias [20]. Many obser-

vations are consistent with the possibility that polarised cell morphology or asymmetries in

the distribution of signalling components are ways that prior information might be represented

[6, 101–104]. We will later analyse the interactions between the likelihood function and the

prior bias for a general sensing device in chapter 4.

In all these models, it is assumed that receptors are stationary on the cell surface. However,

recent advances in single-molecule tracking techniques have allowed observing movement of

single molecules in the plasma membrane, showing that the membrane is a compartmentalised

fluid [105]. Receptors are generally in constant motion in the membrane and undergo diverse

modes of diffusion. This movement smears out the positional information in each receptor. In

chapter 3, we will extend this framework to understand how receptor diffusion can affect the

quality of gradient sensing.

2.3 Models of growth cone movement

Analysing growth cone trajectories in gradients is crucial to our understanding of axon guidance.

It is critical to investigate the key factors impacting growth cone trajectories to determine the

principles and limits of guidance due to gradients. This quantitative understanding will help

predict axon trajectories in vivo under normal and abnormal conditions, contributing to the

ability to optimise gradients for promoting nerve regeneration after injury. There is a wealth of

related mathematical models of cell motility in general and growth cone motility in particular.

In chapter 6, we will construct a model of growth cone trajectories in attractive and repulsive

gradients that has been matched to experimental data. Here a review of motility models in

other systems will be presented before focusing on growth cones.
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2.3.1 Random walk models of cell motility

A widely-used phenomenological framework in describing cell motility is random walk theory.

The beginning of random walk theory came from the observation that pollen particles undergo

Brownian motion or simple random walks, formally described by Einstein in 1905 [106]. Simple

random walks are uncorrelated and unbiased, where each step is independent of previous ones

and uniformly distributed in random directions. Przibram in 1913 demonstrated that this

model described the random motion of protozoa [107].

Furth studied the motility of protozoa in more detail and found that his data were not well

modelled by a simple random walk [108]. He considered a random walker on a lattice, and

gave directional persistence in the form of a bias towards stepping in the similar direction

as the previous step. Correlated random walks imply that consecutive steps are correlated,

which is termed persistence [109]. It is globally unbiased in the sense that there is no overall

preferred direction. Since most animals and cells have a tendency to move forward, correlated

random walks have been widely applied to model random movements in fibroblasts, amoeba

and migrating animals [110–114]. In many models, the steps are correlated via a non-uniform

distribution of turning angles between successive steps.

Paths that exhibit a consistent bias in the preferred direction are termed biased random walks.

The bias may be due to anisotropy in the environment such as gravity [115] or chemical gradients

[116, 117]. A global directional bias can be introduced by making the probability of moving in

a certain direction greater or making paths in the biased direction longer. While bacteria move

in random directions and have longer run lengths in the direction of the gradient[118, 119],

leukocytes change their direction asymmetrically in preference for directions up the gradient

while the run lengths are independent [115, 120].

Another popular type of random walk to describe motility is a Levy walk, which consists of

random walks where short jumps are separated by infrequent long steps. The step length

distribution is given by P (s) ≈ s−µ, 1 < µ < 3. The mean square displacement (MSD) in

Levy motion is super-diffusive, meaning that as a function of time t, MSD(t) ∝ tα(α > 1)

while a correlated random walk eventually reaches normal diffusion over long times. Levy

walks in marine animals have an exponentially decreasing distribution of step-lengths which

may represent an optimisation of foraging in a heterogeneous prey field [113].
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2.3.2 Random walk models of growth cone trajectories

Several random walk models have been formulated to describe the trajectories of growth cones.

The presence of the axon that tethers the growth cone to the cell body or the branch point

causes the growth cone to move in a relatively straight path. Growth cone movements were

first quantitatively analysed in [121]. The movement was separated into elongation and none-

longation elements and these were found to be almost completely independent of each other.

Katz [122] found that growth cones moved in relatively straight paths even though the instan-

taneous movements could be highly erratic. The trajectories were well-approximated by an

uncorrelated random walk with drift which represented the tendency to elongate.

Due to the tendency of axons to grow fairly straight, correlated random walks with persistence

in motion direction have been the popular choice. A common way to achieve correlation between

successive steps is through a non-uniform turning angle distribution. Pearson et al. [123] used

a correlated random walk model to describe the trajectories of rat pyramidal neurons. The

instantaneous turning angle θ is a function of the arc length s from the axon’s initiation point.

Without a gradient, the position of the growth cone is parameterised by s:

dx(s) = cos θ(s)ds

dy(s) = sin θ(s)ds

dθ(s) = DθdWθ(s)

where DθdWθ(s) is a Weiner process. The turning angles of embryonic rat hippocampal neurons

had small variance, leading to fairly straight paths. However, they did not have data with the

gradient to further develop this model. Maskery et al. [124] analysed growth cone pathfinding

patterns and found that they exhibit both deterministic (smooth forward motion) and stochas-

tic (frequent pauses and sudden directional changes) components. They simulated growth cone

contact with a repulsive cue and measured the resultant turn angle (Fig 2.5). Migration is

described by two equations representing migration in the direction of axonal outgrowth (∆yct)

and in the orthogonal direction (∆xct)

∆xct = ext

∆yct = eyt + ∆yavg
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Figure 2.5: A model of contact-mediated repulsion in [124]. The schematic of
growth cone movement adapted from [124]. An angular region of size 2δ centred around
the filopodium that contacts the repulsive cue defines the constraint region that the growth
cone cannot migrate into. The turning angle is φ. The determinism ratio Ψ is defined as
tan−1(π/2 − φ). In the stochastically dominated region φ < −90◦ and the growth cone
collapses. In the edge of stability region, deterministic and stochastic motions are balanced
and guidance is achieved. In the deterministically dominated regime, the growth cone largely

migrates forward without much guidance influence.

ext and eyt are drawn from independent and normal random distributions with zero means and

constant standard deviations, and ∆yavg is the average speed in the y direction. Filopodia

extend and retract randomly at some constant rates. When a filopodium contacts the target,

repulsion is elicited. To model the effect of a contact-dependent repulsive cue at angle θc, they

blocked migration within a small region around the direction of contact θc±δ. The determinism

ratio Φ is defined as

Φ = tan−1(π/2− φ)

where φ is the final turning angle. If Φ � 0, the growth cone is stochastically dominated, or

it frequently reverses irrespective of the cue. If Φ � 0, the growth cone is deterministically

dominated or it travels forward with little influence by the gradient. They found that only

if stochastic and deterministic elements are comparable (i.e. Φ ≈ 0) can the growth cone
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be guided properly. Although it is an interesting conceptual model, it has not been directly

compared to experimental data.

Odde et al. [125] analysed the motion of neonatal rat growth cones and found that the exper-

imentally sampled trajectories could be well described by:

xt = φxxt−1 + ax,t + θax,t−1

yt = φyyt−1 + ay,t + θay,t−1

where φx, φy are constants and ax,t, ay,t are Gaussian distributed random noise terms. However,

they had a very limited data set of 6 growth cones and did not have gradient conditions.

In another model that simulates axon growth in the tadpole spinal cord [126], the axon growth

angle depends on the tendency to turn towards the gradient angle and noise. The position of

the growth cone at timestep n is (xn, yn) and the heading direction of the nth step is θn. With a

gradient pointing in the x direction, the growth cone’s position is governed by three equations:

xn+1 = xn + ∆ cos(θn)

yn+1 = yn + ∆ sin(θn)

θn+1 = (1− γ)θn + µ(ȳ − yn) + ξn

where ξ is a random variable uniformly distributed in the interval [−α, α], ∆ is a fixed step size,

γ represents the tendency to align with the gradient. The parameter ȳ represents the position

of an attractor with strength µ. The parameters were found to match the empirical spatial

distribution of axons and tortuosities. The noise term is small (α = 2−5◦), leading to straight,

realistic looking paths. This model was based on data from anatomical images of axons in

the spinal cord while the growth process was not recorded. Thus important information about

actual growth cone movements was lacking.

2.3.3 Models based on ligand-receptor binding or filopodial activity

Other models include possible mechanisms of how trajectories are achieved. In an early model

of the retino-tectal projection [127], inspired by Sperry’s hypothesis, Gierer proposed that
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retinal as well as tectal tissues contain gradients in two directions and retinal axons originating

at coordinates u, v interact with tectal tissue at position x, y to generate a potential p(x, y, u, v).

The trajectory of each axon will follow gradient descent of this function to reach the position

of minimal potential. Due to the lack of precise measurements of gradients in vivo and the

unknown form of the function p, this hypothesis has not been confirmed.

Buettner and colleagues’ models in the 1990s aimed to describe dynamics of in vitro growth

cones from measurements of growth cone movements on different substrates [128–130] . The

growth cone is modelled as a circular disk with filopodial sticks. Filopodia extend and retract

with a constant rate, switching between these two phases according to a gamma distribution.

Buettner et al. studied how filopodial initiation, growth and collapse influence the probability of

contacting a target cell [128]. The motion of the growth cone is modelled as a two-step process

in which it wanders randomly until it contacts an attractive cue that triggers filopodial dilation.

The growth cone then retracts its other filopodia and flows along the filopodium that contacts

the cue. On uniform regions of the substrate, the growth cone moves with a velocity that

decreases exponentially with time but fluctuates and occasionally resets. Filopodial dilation

is governed by an extension and retraction rate and is initiated when sufficient filopodia have

contacted the cue. This model qualitatively described growth cone behaviours in vitro; however,

more quantitative measurements of movement statistics were not made.

Li et al. simulated trajectories by assuming the turning angle of the growth cone is in pro-

portion to the angle between the neurite and the resultant filopodial tension [131]. Filopodia

are randomly initiated and exert tension on the main body of a growth cone. When the

forces pulling the growth cone apart exceeds a certain threshold, the growth cone bifurcates.

The model could generate qualitatively realistic-looking neuronal morphology although a more

quantitative comparison with data was lacking.

To simulate growth cone movements in gradients, another set of models has concentrated on

how asymmetric receptor binding across the growth cone might be used as a turning signal.

Aeschlimann [132] proposed a model in which filopodia act as both sensors and motors, pulling

the growth cone in different directions. The axon stretches or, above some force threshold,

lengthens through inelastic extension. Filopodia contact guidance cue molecules, leading to an

elevation in intracellular calcium. The probability of initiating a filopodium at any location is

determined by the calcium concentration. The asymmetric binding on the growth cone surface
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results in an asymmetric calcium and filopodia distribution, leading to movements biased in

the gradient direction.

In a similar model [133], Goodhill et al. considered an idealised growth cone consisting of a two-

dimensional semi-circular body from which one-dimensional filopodia extend and retract. Both

the surface of the growth cone body and the filopodia are covered with receptors at random

locations. The growth cone is divided into bins of equal size. The probability of generating a

new filopodium is a function of receptor binding in each bin. As a new filopodium is generated,

the oldest filopodium is retracted, maintaining a constant number of filopodia. The growth

cone then moves a constant small distance, mostly in the forward direction but with a slight

deviation to the side with more filopodia. This model aimed to explain the rapid turning in

steep gradients and more gradual turning in shallow gradients. In both this model and the

previous one, the statistics of growth cone movements in this model was not compared with

experimental data.

The work of Xu et al. [134] is an extension of the model in [133]. At each timestep, the growth

cone’s movement is a combination of the current heading and a gradient signal from receptors.

The gradient signal requires spatial and temporal averaging of the stochastic receptor-binding

signal. Once a receptor-binding density as a function of angle around the growth cone has

been calculated, the growth cone picks the direction in which this is maximum and calculates a

weighted average with the current direction. This model explains well the different chemotactic

efficiency of explants of thousands of cells at different guidance molecular concentrations. How-

ever, the aim was to simulate the behaviour of populations of thousands of neurites, instead of

individual ones.

In a recent model [135], it was assumed that sensors on the filopodia of the growth cone can

detect the gradient direction. The growth cone then sums all the gradient estimation vectors

from its sensors and changes its position by that vector. However, it is not clear in this model

how the sensors (supposedly receptors) can detect the gradient itself. The model is slightly

unrealistic in that it is an entirely deterministic model of growth cone trajectories.
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2.3.4 Models based on the concentration field’s effect on velocity

A third group of models considers the possibility that the velocity of the growth cone is influ-

enced by gradients. van Ooyen and colleagues developed a model whereby the velocity of the

growth cone is influenced by the attractive gradient from the target cells and the chemoattrac-

tant and chemorepellant released from other growth cones and itself [136, 137]. In [136, 138],

state vectors that represent the position or velocity of objects that interact with the concen-

tration fields of chemotactic molecules are coupled to diffusion equations that describe the

concentration fields of diffusible chemoattractants and chemorepellents.

Mortimer et al. [139] examined the possibility that growth rate is a function of gradient.

Instead of sensing the gradient from the receptor binding across the growth cone, in shallow

gradients, axons sense the gradient along the axon shaft and grow faster up than down the

gradient. This model captures the chemotactic performance of explants growing in a gradient

over a long time.

However none of these models has been closely compared with the details of experimentally

measured trajectories in gradients. In particular, parameters such as variability in step sizes,

the distribution of instantaneous turning angles, and straightness of real paths, have not been

addressed. Thus the question of whether there is a model that can adequately capture all

these characteristics of real trajectories remains open. Without such a model, it is difficult to

determine if trajectories observed in vivo are in fact consistent with gradient guidance.

2.4 Assays for studying axon guidance

In order to build and test a quantitative model of growth cone trajectories in gradients, we

needed a culture assay that can allow us to gather a large amount of data from many growth

cones in a reproducible condition. Here we therefore review previous chemotaxis assays.

Understanding axon guidance requires a combination of in vivo studies in different animals

models and in vitro studies with more controlled environments to exclude confounding factors.

It is desirable to produce gradients in in vitro cell cultures that can mimic the gradient of

proteins that axons encounter in vivo. Although the shape and nature of in vivo gradients are
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difficult to measure accurately, in vitro cultures are useful to create a controlled environment to

study the mechanisms and responses to guidance cues. A number of assays have been developed

towards this aim (reviewed in [140], [141]). Axon guidance assays can be divided into two main

categories: diffusible and substrate-bound gradients. Here we only focus on the assays most

commonly used and relevant to axon guidance.

2.4.1 Diffusion-based chemotaxis assays

Diffusion-based assays were first developed in the 1960s to study chemotaxis in a wide range

of cell types (Fig 2.6). The early assays, including the Boyden, Zigmond and Dunn chambers,

use two compartments separated by a porous membrane or by small channels [142–144]. The

source chamber contains a higher concentration of chemotactic cue which diffuses into the

sink chamber. The gradient due to the passive diffusion will have a directional effect on the

cells growing nearby. The Boyden chamber, developed in 1962, consists of two compartments

containing chemoattractant solutions of different concentrations separated by a filter membrane

[142]. A gradient will form across the membrane by diffusion. Cells or axons respond to the

gradient and actively migrate through the pores in the membrane. Widely used in the study

of chemotaxis of leukocytes and fibroblasts, the Boyden chamber assay is useful in screening

large numbers of cells and potential chemotactic factors [145–148]. By plating the cells in the

upper chambers, this assay was used to separate cell bodies and axons to study the lysate of

axons only. The axons were attracted towards nerve growth factor in the lower chamber while

the somas were too large to go through the pores [149, 150]. However, the process of migration

cannot be viewed in real-time and the gradient cannot be quantified precisely.

The Zigmond chamber consists of two wells of a chemotactic factor separated by a narrow

space, sealed by a coverslip on which cells are growing. Diffusion between the two wells creates

a gradient [143]. However, the gradient decays over time and disappears in roughly 90 minutes,

limiting its use to only fast-responding cells [151–153]. The Dunn chamber works in a similar

fashion and is made of two concentric circular wells containing two different concentrations of

a chemotactic cue on a slide [144]. The two wells, one of which contains cells, are separated by

a circular bridge and sealed by a coverslip where the cells can move from one well to the other.

All three assays suffer from the same disadvantage that the gradient is unstable and decays

over time.
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Figure 2.6: Diffusion-based chemotaxis assays. A-C. In the Boyden, Dunn and Zig-
mond chambers, the chemotactic factor diffuses from the source chamber to the sink chamber
generating a gradient on which cells move. D. In the pipette assay, the chemotactic agent is
released from a micropipette near the growth cone. E. The optical uncaging technique uses
a laser pulse to release the guidance molecules from a lipid vesicle. F. In the collagen assay,
an explant of cells is place in a collagen gel near a block of agar containing the chemotactic
factor. G. The printing assay uses a pump to print out lines of different concentrations of a
chemotactic factor on collagen gel. The cue then diffuse throughout the gel creating a stable

gradient that can last for days.

Unlike previous assays, the micropipette assay relies on diffusion or ejection of the chemotactic

factor from a small pipette tip. The precursor of the micropipette assay was developed as early

as the 1880s, when Pfeffer observed bacterial chemotaxis by inserting a capillary containing a

chemotactic cue into a bacterial solution and finding accumulation of bacteria at the tip of the

capillary [154]. Methods in the 1970s relied on gravity to transfer the chemical from the pipette
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[155]. The first study using the pipette assay showed the chemotactic effect of NGF on chick

dorsal root axons [155]. To deliver small volumes with more control, the improved technique

used compressed gas with a timer-driven gate to eject the guidance cue in a pulsatile fashion

[78, 80]. This method allows manipulation by bath application of extra factors and has been

very widely used in studying axon guidance [61, 79, 156, 157].

Optical uncaging of caged molecules (a light-sensitive version of the molecule) or encapsulated

molecules in lipid vesicles is an alternative method to create local sources of guidance molecules

with precise temporal and spatial resolution near or inside the growth cone [158–160]. This

method has led to important understanding of the role of local elevations of calcium and

IP3 in steering growth cones [59, 161]. Recent methods allow manipulating the number of

molecules released and have put a lower bound on the minimum number of Netrin-1 and

Sema3A molecules required to achieve guidance [162]. However, only one axon can be observed

per experiment, severely limiting the throughput of these techniques.

In the three-dimensional collagen gel assay, the cells of interest are grown in a tissue culture

matrix made from extracellular matrix components such as collagen, laminin or matrigel. A

gradient is generated by diffusion of a chemotactic factor secreted from cells or tissue in a gel

block or by printing the cue directly on the gel [163–167]. A putative cue is determined to be

attractive or repulsive based on the final distribution and lengths of axons. The classical 3D

coculture assay using an explant of cells as the source of the factor of interest produces poorly

quantified gradients. A 3D quantitative assay was designed to generate precise, reproducible

and stable gradients. Lines of increasing concentration of a guidance cue are printed on a thin

collagen gel where explants are embedded. The guidance molecules diffuse throughout the gel

creating a smooth gradient that can last for days [166]. This study reveals extremely high

sensitivity of dorsal root ganglion neurons to NGF gradients of very shallow steepness [166].

2.4.2 Substrate-bound chemotaxis assays

The second category of assays involves substrate-bound cues (Fig 2.7). The first studies using

substrate-bound molecules appeared in 1970s using UV irradiation of neuronal culture sub-

strates to denature proteins [168]. The patterned dishes showed the permissivity of laminin for

axonal growth [169]. The stripe assay was developed by Friedrich Bonhoeffer and colleagues
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Figure 2.7: Substrate-bound chemotaxis assays. A. In the stripe assay, the chemotactic
factor is sucked through the patterns of a PDMS block or a silicon matrix and adheres to a
substrate. The PDMS block is then removed and cells are grown on the substrate. B. Laser-
assisted patterning uses a microscope laser to crosslink a protein of interest in a block of gel
with high precision. C. Microcontact printing uses a PDMS stamp soaked in the chemotactic

factor to print the pattern on a substrate.

to study axon guidance in the context of the development of topographic maps in the chick

retino-tectal system [170–173]. The assay uses a silicon matrix of channels filled with protein

solution to create striped carpets on the culture substrate [174]. The stripe assay led to the

discovery of new guidance cues and mechanisms in the thalamic, olfactory and hippocampal

systems [175–177].

Patterning of the substrate can also be achieved by ink-jet printing [178]. Discontinuous gradi-

ents can be achieved by changing the number of drops per point [179]. Microcontact printing

uses an engraved stamp soaked in the cue to print patterns on a substrate through contact.

A gradient can be created by varying the spacings of stripes on the stamp. Using this tech-

nique, a study revealed growth cones of chick temporal retinal axons stop at distinct zones in

ephrinA5 gradients of different steepnesses [180]. Continuous substrate-bound gradients can

also be produced by microfluidic mixers which allow proteins to be adsorbed with non-uniform

density to the substrate [181].

Bioactive molecules can be covalently immobilised on surfaces using photoimmobilisation.

High-resolution gradients can be created by varying the intensity or the number of rastering
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scans of the laser to modulate the density of the molecule [182–184]. Another similar method

exploits photobleaching of fluorescently tagged molecules to bind them to glass substrates via

the generation of free radicals with sub-cellular resolution. This method was used to create a

gradient of immobilised laminin peptides that could elicit axon guidance [185]. This method

can be extended to more than one guidance cue by increasing the number of fluorescent tags

and laser lines [185].

These patterning methods have recently been extended to three-dimensional assays. In the

three-dimensional photolithographic patterning technique known as two-photon laser scanning

lithography scans, a microscope laser scans over the regions of interest of a non-adhesive hy-

drogel soaked in a cell adhesion molecule resulting in its crosslinking to the hydrogel. This can

create precise adhesive microenvironments to guide cell migration [186].

2.4.3 Microfluidics assays

Although the assays mentioned above have been useful in identifying new guidance cues and

signalling molecules, they are not suitable for a more quantitative analysis largely because of

their irreproducibility. Axonal response is often only characterised in a binary fashion (guidance

vs. no guidance). A more quantitative understanding requires a stable, known concentration

field and data from many growth cones under the same condition. In order to develop a

quantitative analysis of growth cone movements in diffusible gradients, we developed a new

microfluidic device based on the design in [181], which will be discussed in detail in Chapters 5

and 6. In this section, we describe the general principles of microfluidics and some results that

have come from this technology.

Microfluidics is a new class of technologies that can overcome many of the shortcomings of

previous assays. The term “microfluidics” refers to micron to millimetre sized devices that can

process microscopic volumes of fluid through a series of channels and chambers [187]. They are

becoming valuable tools for studies at the single-cell level for a variety of cell types, including

neutrophils [188, 189], bacteria [190, 191], viruses [192, 193], cancer cells [194, 195], stem cells

[196, 197], sperm [198, 199] and neurons [200, 201].

In general, the first step to building a microfluidic chip involves drawing the design using

computer software. The design is printed out and used to create a photomask. This is placed
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Figure 2.8: Microfluidic assays. A silicon master is patterned using photolithography.
PDMS is poured on the master and peeled off after it has solidified. The PDMS stamp is

attached on a glass or plastic substrate by surface activation using plasma.

over a silicon substrate coated with a thin layer of photoresist. When exposed to UV light,

the photoresist will harden only in areas patterned on the mask and the rest will be washed

away, leaving the pattern on the master mould. PDMS (Polydimethylsiloxane) is poured on the

master and peeled off and bonded on plastic or glass (Fig 2.8). PDMS is optically transparent,

biocompatible, permeable to gases and can be sterilised using standard techniques [201].

Stable concentration profiles can be created by using solutions of different concentrations flow-

ing at a constant speed through microscopic channels. The solutions split and mix in different

proportions to form a gradient which can be maintained indefinitely and is not subject to de-

cay through diffusion. The microscopic flows are laminar, stable and maintain a concentration

gradient across the chamber. The physics of laminar flow is well understood and the gradient

can be predicted using modelling software, allowing the design of complex gradients.

Microfluidic technology presents an advantage over conventional in vitro techniques tradition-

ally used in studying chemotaxis. They offer the ability to precisely control and create stable,

reproducible gradients and to observe multiple cells simultaneously over long periods of time.
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Microfluidics is cheap because the volume of expensive media can be limited [201]. Microflu-

idic devices are also capable of creating multiple gradients with user-defined spatiotemporal

distribution.

Microfluidics has made valuable contributions to studying axon guidance. A flow-based mi-

crofluidic device revealed that axons of rat hippocampal neurons were oriented toward higher

concentration of substrate-bound laminin [181]. Bound gradients of netrin-1 and brain-derived

neurotrophic factor (BDNF) can polarise the initiation and turning of hippocampal neurons

[202]. In another study, embryonic Xenopus spinal neurons were repelled by linear gradients

of soluble BDNF and responded to the gradient’s slope instead of the absolute concentration

[203]. Whitesides et al. designed the devices that have been used for many biological applica-

tions, such as experiments on chemotaxis of human neutrophils, cancer cells and Dictyostellium

[204]. We will later utilise this design for our study of superior cervical ganglion neurons in

nerve growth factor gradients.
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Abstract

Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes.

Many eukaryotic cells perform spatial sensing, i.e. detect gradients by comparing spatial dif-

ferences in binding occupancy of chemosensory receptors across their membrane. In many

theoretical models of spatial sensing, it is assumed for simplicity that the receptors concerned

do not move. However, in reality, they undergo diverse modes of diffusion, and can traverse

considerable distances in the time it takes such cells to turn in an external gradient. This

sets a physical limit on the accuracy of spatial sensing, which we explore using a model in

which receptors diffuse freely over the membrane. We find that the Fisher information carried

in binding and unbinding events decreases monotonically with the diffusion constant of the

receptors.

32
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3.1 Introduction

Chemotaxis, involving movements that are oriented relative to chemical gradients, is an im-

portant and widespread phenomenon among eukaryotic cells. This mechanism is critical to

neuronal growth cones navigating to their targets in the developing nervous system [5, 30],

neutrophils migrating to the site of inflammation [14] and sperm cells swimming towards an

egg [205]. In the first steps of chemotaxis, ligand molecules in the environment bind to mem-

brane chemoreceptors, activating them and triggering downstream signalling events [4]. In

spatial sensing, cells estimate the external concentration difference across their spatial ex-

tent, a comparison whose corruption by noise from the stochastic nature of ligand binding, and

downstream signalling has been well studied [95, 96, 206–209]. In order to interpret information

about binding, cells need to have information about the positions of the receptors concerned.

These are generally in constant motion in the membrane, which is itself a highly complex

structure that is compartmentalized on multiple scales [105, 210]. Receptors undergo diverse

modes of diffusion, including fast and slow diffusion, confinement and drift [211–214]; further,

differential fluidity of membrane lipids can affect the lateral movement of proteins embedded

in it [105], and the diffusive properties of receptors can also be influenced by oligomerization

or association with the membrane skeleton [211, 215]. Since movement of receptors due to

diffusion represents a smearing out of the spatial information they can provide about local

concentration, diffusion will reduce the accuracy of gradient sensing. However, the importance

of this depends on exactly how much information is lost; a quantity that has not previously

been calculated. Receptor diffusion also poses a challenge that cannot be addressed by previous

models of gradient sensing which assume immobile receptors and a fixed binding probability

for each receptor [96]. Snapshot measurements are no longer sufficient for the cell to infer the

gradient as it has lost the information of how long each receptor has been unbound and where

it has been, therefore the binding probability of the receptor. This requires the cell to integrate

over time to estimate the gradient.

Here we model the effects of receptor diffusion on a one-dimensional ‘cell’, under the assumption

that it is only bound receptors that signal and thus reveal their locations, leaving the cell

uncertain about the locations of unbound receptors. We extend a previous model [216] which

assumed that the cell has knowledge of the amount of time the receptors are bound and where

the bindings happen. We compare the accuracy of gradient sensing for receptors which are
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Figure 3.1: Schematic of sensing model. Ligand molecules bind to, and unbind from,
receptors with transition rates r+ and r−, where r+ = r−γ and γ is proportional to the ligand
concentration. The cell collects information about bound receptors over an integration time

T .

mobile versus immobile. We show analytically how receptor diffusion reduces the accuracy of

gradient sensing, and demonstrate that the reduction increases monotonically with the diffusion

constant.

3.2 Model

3.2.1 Immobile receptors

Previous models of gradient sensing assume receptors are immobile [95, 96, 99, 206, 217].

Each receptor has a fixed probability of binding with ligand molecules that depends on the

local ligand concentration at the receptor’s position. This gives a probability distribution

over possible binding patterns. It allows the cell to estimate the gradient from a snapshot

measurement of the binding pattern of all the receptors at a single instance. However, if

the assumption of immobility is not imposed, each receptor will have changing probability of

binding that depends on its motion of through the concentration field. This requires the cell to

integrate information over time to sense the gradient. Endres [218] proposes a different model

in which the cell integrates information over time from the binding and unbinding sequences to

infer the gradient. It was later adopted by [216] to derive the upper limit on the information the

cell can obtain assuming it knows both the unbound time and the number of bound/unbound
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transitions. We expand our current model based on that original model in [216] to examine

the effects of receptor mobility.

We first describe the original model in [216] (Fig 3.1). The cell is represented as a one-

dimensional array of uniformly distributed receptors whose binding and unbinding provide

information about the concentration field that the cell experiences. The receptor state is

modelled as a continuous time, two-state Markov process. The transition rate from bound

to unbound is r− and the transition rate from unbound to bound is r+ = Ck+, where C is

the local concentration of ligand at the location of the receptor. The dissociation constant is

Kd = r−/k+. Writing γ = C/Kd for the dimensionless concentration, we have the relationship

between the on- and off-rates: r+ = γr−. The cell has N receptors at positions normalized

by the cell diameter ~x = (x1, x2, ..., xN) ∈ [−0.5, 0.5] and the linear concentration field is

γ(x) = γ0 × (1 + µx) with µ being the gradient, or the fractional change of the concentration,

that the cell has to estimate.

It was assumed in [216] that all receptors start out unbound. The times of binding and

unbinding events were written as t+ji and t−ji, where j is the jth receptor and i is the ith transition.

Similarly, the positions of the receptors at those times were denoted x+ji and x−ji. The cell was

assumed to know about the timings and positions of the binding/unbinding events of the

receptors via downstream signalling mechanisms that were not specified.

This implies that binding and unbinding are Poisson processes with rates r− and r−γ(x). For

a Poisson process with rate r, the probability density of an event happening at a particular

time t after another event at time 0 is r exp(−rt). Therefore, the probability density for the

jth receptor to remain bound from t+ji to t−ji is

Pb(t
+
ji, t
−
ji) = r− exp

(
−r−(t−ji − t+ji)

)
and denoting γj = γ(xj), the probability density of it being unbound from t−ji to t+j,i+1 is

Pu(t
−
ji, t

+
j,i+1) = r−γj exp

(
−r−(t+j,i+1 − t−ji)γj

)
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Therefore, the likelihood of observing a time series
{
t+ji, t

−
ji

}
given concentration γ(xj) at the

location of receptor j is:

L(TBj , T
U
j , γj) ∝ r

M∗
j

− (r−γj)
Mj exp

(
−r−TBj − r−TUj γj

)
(3.1)

where Mj is the number of unbound-bound transitions, and M∗
j is the number of bound-

unbound transitions (which is equal to Mj or Mj − 1 because each binding event apart from

the last one must be followed by an unbinding event), TUj , T
B
j are the total time unbound and

bound respectively for receptor j. The maximum likelihood approach is the optimal unbiased

estimation and calculates the value of the parameter of interest that maximises the likelihood

of observing the data. Recalling that γj = γ0(1 + µxj) where µ is the gradient and setting

the derivative of the loglikelihood to zero, the maximum likelihood estimate of the gradient is

given by:

µMLE =

∑
j

(
−r−γ0xjTUj +Mjxj

)∑
j

Mjx2j
(3.2)

This equation implies that the association between the receptor position and its unbound time

carries gradient information, similar to a previous result that found unbound intervals carry

concentration information [218]. As time increases, the variance of this estimate approaches

the limit set by the Fisher Information:

var(µMLE) ≥
〈
−∂

2 logP

∂µ2

〉−1
=
〈∑

j
Mjx

2
j

〉−1
(3.3)

As the average time it takes the receptor to become bound is 1/γr− and the average time

the receptor remains bound is 1/r−, during the integration time T , the average number of

unbound-bound transitions will approximately be:

〈Mj〉 ≈
T(

1
r−

+ 1
γ0r−

) =
Tr−γ0
γ0 + 1

Hence the Fisher Information can be approximated as:

I =

〈
−∂

2 logP

∂µ2

〉
≈
(∑

j

Tr−γ0
γ0 + 1

x2j

)−1
(3.4)
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3.2.2 Mobile receptors

We now consider the more realistic case in which receptors are free to diffuse on the cell surface,

starting from uniform randomly distributed initial positions. For simplicity, we consider the

case that receptors continuously diffuse and ignore periods of confinement or drift. As unbinding

events are independent of the receptor’s position, their probability remains unchanged from

above.

Binding events are treated as a Cox process, i.e. a inhomogeneous Poisson process whose

intensity is also stochastic.

Consider a single receptor (thus temporarily ignoring subscript j) that starts from initial posi-

tion x(0) = x0 and diffuses freely by Brownian motion independently of the binding (although

the binding is not independent of the motion). In this case, the binding rate λ(t) is a function

of the random position x(t) of the receptor at time t: λ(t) = r−γ0(1 + µx(t)). We utilise the

concept of the Brownian bridge: i.e., Brownian motion fixed at two ends x(t−i−1) = x−i−1 and

x(t+i ) = x+i . According to the Cox process, the conditional density of a binding event at t+i

given the unbinding time t−i−1 and the path ωi = (x−i−1...x
+
i ) of the receptor is:

p(t+i |t−i−1, ωi) = λ(x+i ) exp

(
−
∫
ωi

λ (x(t)) dt

)
(3.5)

where the first term accounts for the binding at t+i and the second for the absence of binding

over the time period (t−i−1, t
+
i ). Marginalizing over the unknown trajectory ωi, the conditional

likelihood given only the positions (x−i−1, x
+
i ) at the unbinding and binding times is:

P (t+i |t−i−1, x−i−1, x+i ) = λ(x+i )E
[
exp

(
−
∫
ωi

λ (x(t)) dt

)]
(3.6)

where λ(x) = r−γ0(1 + µx) is the binding rate, and the expectation is taken with respect to

the diffusion bridge but subject to the boundary condition −0.5 < x < 0.5, as the receptors

can only diffuse on the cell. We now proceed to find the expectation terms in the expression
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above:

E
[
exp

(
−
∫
ωi

λ (x(t)) dt

)]
=E

[
exp

(
−
∫
ωi

r−γ0 (1+µx(t)) dt

)]
= exp

(
−r−γ0(t+i − t−i−1)

)
E
[
exp

(
−r−γ0µ

∫
ωi

x(t)dt

)]
(3.7)

The receptors undergo Brownian motion: x(t) = x0 +
√
DW (t), where W (t) is a standard

Brownian motion and D is the diffusion constant. Only paths that satisfy the condition −0.5 <

x(t) < 0.5 contribute to the expectation. We assume that the concentration is sufficiently high

such that the probability of paths beyond this boundary is very small (i.e.
〈
t+i+1 − t−i

〉
D =

D
γr−
� R2 and R is the radius of the cell). This assumption implies that including such paths

does not affect the calculation. We discretize t into n intervals of δt = (t+i − t−i−1)/n:

∫
ω

xsds = limn→∞
∑n

k=1
xkδt

For brevity, we write a = x−i−1, b = x+i , t1 = t−i−1, t2 = t+i . The distribution of x(t) at time

t ∈ (t1, t2) is normal with mean:

a+
t− t1
t2 − t1

(b− a)

and the covariance between x(s) and x(t) with s < t is

D
(t2 − t)(s− t1)

t2 − t1

Therefore xk’s are the components of a multivariate normal vector with mean:

~X =

[
a+

δt

t2 − t1
(b− a), ....a+

(n− 1)δt

t2 − t1
(b− a), b

]

and n× n covariance matrix:

Γkl = D
1

t2 − t1
k(n− l)(δt)2 k < l
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We know that the sum of the components of a multivariate normal vector has a univariate

normal distribution with mean

α =
∑
k

Xk = na+
n(n+ 1)/2

t2 − t1
(b− a) ≈ n(a+ b)/2

and covariance

β2 =
∑
k,l

Γk,l = δt2n2(n+ 1)2/12(t2 − t1) ≈ Dn2(t2 − t1)/12

Therefore
∫
ω
xsds is also a normal random variable with mean (x+i + x−i−1)(t

+
i − t−i−1)/2 and

variance D((t+i − t−i−1)3/12. Thus exp
(
−r−γ0µ

∫
ω
xsds

)
follows a log-normal distribution with

mean m and variance v:

m = exp(β2/2 + α)

= exp

(
r2−γ

2
0µ

2D(t+i − t−i−1)3

24
−
r−γ0µ(x+i + x−i−1)(t

+
i − t−i−1)

2

)
v = (exp(β2)− 1) exp(β2 + 2α)

The likelihood of a full observation
{
t+i , t

−
i , x

+
i , x

−
i

}
:

L(t−i , x
−
i , t

+
i , x

+
i ...x0)

∝
M∏
i=1

r−exp
(
r−(t−i−t+i ))λ(x+i

)
E

exp

−∫
ωi

λ(x(t))ds


∝ exp

(
M∑
i=1

r2−γ
2
0µ

2D(t+i − t−i−1)3

24
−
r−γ0µ(x+i + x−i−1)(t

+
i − t−i−1)

2

)
×

M∏
i=1

(1 + µx+i ) (3.8)

The maximum likelihood estimate of the gradient is:

µMLE =

Mj ,N∑
i,j

(
−r−γ0(x+ji + x−j,i−1)(t

+
ji − t−j,i−1)/2 + x+ji

)
Mj ,N∑
i,j

(
−r2−γ20D(t+ji − t−j,i−1)3/12 + x+2

j,i

) (3.9)

A caveat of this calculation is that it assumes the cell knows the time series and locations of each

receptor individually. That is, a pair of unbinding and binding events can be associated with
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each other, even though the receptor may have mingled with other receptors in the meantime.

This is a reasonable assumption when diffusion is not too large or receptor density is low, such

that the receptors are far enough apart and move sufficiently small distances for the cell to be

able to distinguish between them after their unbinding period.

The Fisher information for this case is:

I=

〈
−∂

2 logP

∂µ2

〉
=

〈
Mj ,N∑
i,j

(
−r2−γ20D

(t+ji−t−j,i−1)3

12
+x+2

j,i

)〉
(3.10)

As expected, we can see that as D increases, the Fisher Information decreases and when D = 0,

this expression reduces to equation 3.3. This expression cannot be calculated analytically but

needs to be approximated. In order to approximate the first term, we recall that 〈Mj〉 ≈

Tr−γ0/(γ0 + 1) and t+ − t− is an exponentially distributed variable with mean 1/(r−γ0), thus

〈(t+ − t−)3〉 = 6/(r−γ0)
3. Thus

〈
−

Mj ,N∑
i,j

r2−γ
2
0

D(t+i − t−i−1)3

12

〉
≈ − TND

2(γ0 + 1)
(3.11)

We adopt the approach of [219] to approximate the second term as follows:

〈
Mj ,N∑
i,j=1

x+2
ji

〉
≈

N∑
j

∫ T

0

r− 〈bj(t)〉x2j(t)dt (3.12)

with

〈bj(t)〉 =
r−γ(xj(t))

r− + r−γ(xj(t))
≈ r−γ0
r− + r−γ0

This approximation leads to:

I =

〈
−∂

2 logP

∂µ2

〉
≈ TND

2(γ0 + 1)
+

〈
N∑
j

∫ T

0

r−γ0
1 + γ0

xj(t)
2dt

〉
(3.13)

We now need to calculate 〈x(t)2〉 subject to the boundary condition −0.5 < x(t) < 0.5. We

employ the reflection principle to calculate this term. For a freely diffusing receptor without

any boundary condition, the probability density function of x(t) given the initial position x0
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is:

p(x0, 0;x, t) =
1√

2πDt
exp

(
−(x− x0)2

2Dt

)
If the receptor is reflected back when it reaches the boundary ±0.5, then the probability density

function of x(t) is equal to that of a Brownian motion starting at x0 plus those of its reflections

across the boundary.

p(x0, 0;x, t) =
1√

2πDt

[
exp

(
−(x− x0)2

2Dt

)
+

∞∑
n=−∞

exp

(
(n− x0 − x)2

2Dt

)]

We assume the receptors cannot diffuse too much while being unbound, thus we include only

two reflection terms, the mean square displacement is:

∫ T

0

〈x(t)2〉dt =
√
DT/2π exp(−(1.5− x0)2

2DT
)(0.5− x0) + exp(−(0.5− x0)2

2DT
)(−1.5 + x0)

+ exp(−(0.5 + x0)
2

2DT
)(−0.5 + x0)− exp(−(0.5− x0)2

2DT
)(0.5 + x0)

+ exp(−(1.5 + x0)
2

2DT
)(0.5 + x0)− exp(−(0.5 + x0)

2

2DT
)(1.5 + x0))

+ 1/2(−(DT + (−1 + x0)
2)erf(

−1.5 + x0√
2DT

) + (DT + (1 + x0)
2)erf(

1.5 + x0√
2DT

)

− (erf(
0.5 + x0√

2DT
) + erf(

0.5− x0√
2DT

))(2x0 + 1))

These approximations are good as long as D
γr−
� R2. Diffusion constants of relevant receptors

such as epidermal growth factor receptor (EGFR) and platelet derived factor receptors (PDFR)

are of order 10−2µm2/s while the dissociation constants are of order 10−1s, suggesting that this

approximation is valid at Kd and higher concentrations [220–224].

We plot the quality of the approximations as a function of D in Fig. 3.2. Here, we used

a discrete approximation to diffusion by initializing the positions of the receptors as uniform

random numbers between -0.5 and 0.5 and, at each time step, making each move left or right

a fixed amount
√
D, being ‘reflected’ if it hits -0.5 or 0.5. The probability of being bound at

each time step is r−γ(x(t)), if currently unbound, and the probability of becoming unbound is

r−, if currently bound. Each simulation is 20000 timesteps, the actual length of each timestep

is arbitrary (we set it to 0.02 second). The off-rates of 0.001-0.01 per timestep are equivalent

to 0.05-0.5/s. The unit of the diffusion constant is R2/t, with R being the radius of the cell

(5 µm) and t being the duration of each timestep. In a real cell with dimensions of R = 5µm
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Figure 3.2: Diffusion reduces information. Comparison of Fisher Information as a func-
tion of the diffusion constant D between simulations and the approximation in equation 3.13
(r− = 0.002, γ0 = 10). The faster the receptors diffuse, the less information the measurement

contains.

and receptor diffusion constant of 10−2µm2/s, in a few minutes, the receptors will have a mean

square displacement on the order of R2. In our simulations, after 20000 timesteps, for example,

with a diffusion constant of 10−4, the mean square displacement of each receptor is 2R2, the

same order of magnitude as real receptors. Thus, the parameters are biologically plausible.

The approximations of the Fisher Information are within 20% of the empirical values, taken to

be the variance of the maximum likelihood estimates over 2000 trials lasting 20000 timesteps.

The quality of the approximation worsens as D increases because the estimation of 〈x(t)2〉 only

included two reflection terms, whereas higher order terms might become more significant in

that regime. The Fisher Information is the inverse of the variance of the estimates (Eq. 3). For

example, if the Fisher Information I = 400 for a gradient of 10 %, this means the lower limit

on the variance is 0.0025 and the estimates will be a normal distribution with mean 10 % and

standard deviation of 5%. Recalling that the Fisher Information sets the limit on how accurate

the estimate of the gradient can be (Eq. 3), Fig 3.1 implies that when receptor diffusion is

taken into account, the cell has to integrate over a longer time to achieve the same accuracy

as without receptor diffusion.
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Figure 3.3: Information increases with concentration. The Fisher Information as
a function of the normalized concentration γ0 with r− = 0.005. The solid lines represent
simulations and the dashed lines represent approximations in equation 3.13. As γ0 increases,

more binding and unbinding events happen, resulting in greater Fisher information.

3.3 Delayed signalling

Fig 3.3 and 3.4 show that as the concentration or the off-rate increases, more binding and

unbinding events will happen, so that the measurement contains more information.

So far, we have assumed that as soon as the receptors become bound, they start signalling

immediately. However, in reality it takes time for the receptor to change its conformational

state or for the downstream cytosolic molecules to be recruited to the activated receptor.

Therefore there might be a delay between ligand binding and the initiation of the signalling

cascade. It has been suggested that bound receptors slow down significantly so that the cell

can pinpoint exactly where the extracellular signal is coming from [105]. Whether this has

any benefit for gradient sensing is not clear. By calculating the Fisher information in the case

that the receptors can still move freely after being bound, we find that the cell gains no extra

information about the gradient if the bound receptors are immobilized. We now consider the

consequence of a time delay between the binding event and the report of the location, implying

that the latter does not reflect exactly where the receptor was at the time of binding. We denote

the positions at which the transduction pathways for receptor i are activated and inactivated
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Figure 3.4: Information increases with off-rate. The Fisher Information as a function
of the off-rate r− with γ0 = 10.

as y−i , y
+
i . Now, instead of knowing exactly where the binding and unbinding events occur on

the surface, the cell only has access to partial information about these locations, represented

by Gaussian distributions x+ ∼ N (y+, σy), x
− ∼ N (y−, σy). If we assume that the time delay

td is constant (a stochastic delay is also possible), then the uncertainty in the location of the

binding/unbinding events will be σy =
√
Dtd. We can now examine how this extra noise adds

to the uncertainty of the gradient estimate. The conditional probability of binding now has an

expectation taken over all possible paths with all



Chapter 3. Receptor diffusion in gradient sensing 45

P (t+i |t−i−1, y−i−1, y+i , σy)

= EP (x+i ,x
−
i−1)

[
λ(x+i )EP (ω)

[
exp

(
−
∫ t+i+1

t−i

λ (x(t)))dt

)]]

∝
∫

exp

(
r2−γ

2
0µ

2D(t+i −t−i−1)3

24
−r−γ0µ

(x+i +x−i−1)(t
+
i −t−i−1)

2

)
× γ0(1 + µx+i ) exp

(
−

(x+i − y+i )2 + (x−i−1 − y−i−1)2

2Dtd

)
dx+i dx

−
i−1

= exp(−C(y+i + y−i−1) + C2Dtd))γ0(1 + y+i µ− CDtdµ)

× exp

(
r2−γ

2
0µ

2D(t+i − t−i−1)3

24

)

where C = r−γ0µ(t+i − t−i−1)/2

The Fisher Information is now

Idel=I−

〈∑
i,j

(
−
r2−γ

2
0(t+j,i − t−j,i−1)2

2
+r−γ0(t

+
j,i − t−j,i−1)

)
Dtd

〉
≈ I

where I is the Fisher Information given in equation 3.10 since
〈
(t+j,i − t−j,i−1)2/2

〉
≈ 1/(r−γ0)

2

and
〈
t+j,i − t−j,i−1

〉
≈ 1/(r−γ0). This means the delay in signalling does not add any noise to

gradient sensing. Thus surprisingly, in this framework, confining the cytoplasmic signal to

the precise place where the extracellular signal was received (i.e. immobilizing the receptor

following binding) is not substantially beneficial to the cell.

3.4 Discussion

The lipid bilayer that forms cell membranes has been investigated intensively. The traditional

view of the membrane as a homogeneous fluid has been challenged and replaced by a more

sophisticated model incorporating heterogeneous microdomains [105]. Membrane receptors

display complex behaviour, including hop diffusion, drift and confinement [105]. In a gradient,

receptors can have differential binding rate of ligand, changing diffusion constants among dif-

ferent populations of receptors or undergo redistribution [17, 225, 226]. The non-uniformity in
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motion has been hypothesized to be due to the existence of lipid rafts or the compartmental-

ization actin-based membrane-skeleton ‘fences’ and anchored transmembrane protein ‘pickets’.

These microdomains might serve as signalling platforms where the activated receptor can inter-

act with cytosolic signalling molecules recruited to the cell membrane. Receptors might change

their affinity with lipid rafts upon ligand binding and activate different signalling pathways

depending on whether they are in a lipid raft or not. Thus receptor lateral diffusion allows

the cell to have more flexibility to regulate receptor signalling. However, the impact of this

lateral mobility is to reduce the positional information that receptors carry about the signal

they receive from the environment.

The lateral diffusion of receptors can vary depending on receptor and cell type. However,

well-known receptors in chemotaxis such as EGFR in human mammary epithelial cells, TrkA

in growth cones and PDGF in fibroblasts have diffusion constants of the order of 10−10cm2/s

[213, 221, 227]. In the typical time that it takes cells to respond to chemical gradients, i.e.,

around a few minutes, the mean square displacement of receptors can be comparable to cell

size (several micrometers). These parameter ranges suggest that diffusion of receptors can

contribute to a significant loss of information during that integration time.

Here we investigated the role of this receptor diffusion in spatial gradient sensing, exploring

for simplicity the simple scenario in which receptors diffuse freely without periods of drift or

confinement. We modelled the cell as a one dimensional array of independent chemoreceptors

whose bindings with ligand molecules depend on their stochastic positions on the cell surface.

We considered the regime of fast diffusion of the ligand molecules, and thus neglected rebinding

of particles. We assumed that only bound receptors signal their positions to the cell, with the

timings of the bindings also being known, either precisely or after a time delay. One possible

biological signalling mechanism is a non-uniform distribution of signalling molecules such that

the concentration is proportional to the distance from the receptor to the cell centre. However,

there has not been experimental evidence to support this speculation. We also assume that

when receptors are bound, downstream effectors are constantly activated. This might lead to

further downstream reactions that produce signalling molecules in an accumulative manner.

The bound time can then be estimated by the accumulated concentration of this end product.

We derived an approximation to the Fisher Information about the concentration gradient, and

showed the approximation error to be small given a long integration time. One caveat with
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the model is that the cell has to associate times and positions with particular receptors. If

the receptors are sparse and far apart, then this would be straightforward. However, if in

a typical binding time the receptors can cross, then this is harder. It may be that the cell

carries out a simpler computation that will underperform the maximum likelihood estimate.

Alternatively, receptors may signal constitutively, and so provide a means of being tracked.

The gradient measurement comes from a quantity that depends on both the unbound intervals

and the receptor position (Eq 2). If the receptors can move and the cell only takes snapshot

measurements, the cell has completely lost the information of how long each receptor has

been unbound or where it has been. Receptor diffusion therefore necessitates integration of

information over a time window, which is not necessary when the receptors are assumed to be

immobile.

Interestingly, in another model [228], Iyengar and Rao found that there is a phase transition

in the strategies as a function of receptor density and efficiency. At low receptor density, the

optimal strategy is freely diffusing receptors. At higher density, the optimal solutions are either

static receptors on a regular lattice grid or a mix of freely diffusing receptors and clusters. The

model however assumes that each receptor can sample the environment directly at regular time

intervals. Our model is more flexible in that the receptors do not sample the gradient itself

but have to infer it from sequences of binding and unbinding events. We also do not impose

measurements at regular intervals or known locations of receptors at all time.

Using both simulations and the analytical approximations, we found that receptor diffusion can

cause a substantial reduction in the quality of gradient sensing. This quality reduces roughly

linearly with the diffusion constant of the receptors. This is intuitive because the cell knows less

about where the receptors have been before they became bound. Consistent with a previous

paper [216], the performance increases with ligand concentration and the unbinding rate. This

is to be expected, because the higher these parameters, the more binding/unbinding events

occur and the more information the measurement contains. This model also assumes that

the cell has infinite precision in measuring the binding delay. A more realistic mechanism for

measuring time intervals by the production of second messenger molecules has been discussed

in more detail in [216]. We have not considered the issue of noise coming from downstream

signalling. We investigate the optimal possible performance only limited to noise due to ligand

binding.
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We also considered a more realistic model in which the binding events are not registered imme-

diately by the cell, but only after a time delay. By the time the bound receptors start signalling,

they will have moved to another position, implying that the cell will have lost precise knowl-

edge as to where the binding events happened. However, this does not substantially affect the

information the measurement carries. The information about the gradient is in the unbound

time and the positions where the receptors become bound and unbound. As the time delay is

constant, the unbound time is unchanged. The locations of the receptors have some more un-

certainty however, we expect that due to unbiased random motions, the discrepancies between

the actual and signalled positions will cancel each other out, thus not affecting the estimate.

Amongst other things, this implies that immobilization is unlikely to serve the purpose of pre-

serving the signal, and might rather have a different effect such as facilitating the interactions

between the bound receptors and the cytosolic molecules or other membrane-bound proteins.
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The influence of receptor positioning

on chemotactic information

Apart from formatting, this chapter is identical to H. Nguyen, P. Dayan, G.J. Goodhill, ”The

Influence of Receptor Positioning on Chemotactic Information,” Journal of Theoretical Biology,

vol 360, pp. 95-101, 2014.

Abstract

Chemotaxis, or gradient following, is important in many biological systems, but suffers from

noise. How receptors are positioned on the cell or sensing device influences the quality of the

inferences they can support about the gradient, suggesting that their configuration might be

optimised. We show that for an elliptical sensing device, inhomogeneous receptor placement

could be a potential approach for cells to eliminate bias in the posterior distribution of the

gradient direction. We use information theory to calculate the mutual information between the

gradient and the binding pattern, thus finding the optimal receptor arrangement for gradient

sensing.

49
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4.1 Introduction

Many biological systems rely on chemotaxis. These include neutrophils migrating to sites of

inflammation [14], the slime mold Dictyostelium discoideum hunting for food [6], and neuronal

growth cones navigating to find their targets in the developing nervous system [5, 30]. The

ability of such sensing devices to detect chemical gradients depends sensitively on unavoid-

able stochastic fluctuations due to the limited numbers of receptors, intracellular signalling

molecules, and ligand molecules available in the gradient itself [206, 207]. Detecting a gradient

can thus be seen as a paradigmatic problem of reasoning in the face of uncertainty [95]. Here

we focus on noise due to receptor binding fluctuations.

A powerful approach for analysing such problems is to consider the optimal statistical inference

that an ideal observer would perform [95–97, 217, 229, 230]. This involves combining available

information with prior assumptions. However a critical unanswered question is the extent

to which some spatial distributions of receptors admit better gradient detection than others.

Starting from the familiar model of the sensing device (hereafter ‘cell’) as a two-dimensional

ellipse with receptors distributed on the surface, we derive the mutual information between

the gradient and binding pattern as a target quantity to maximise in order to achieve optimal

inference.

A recent theoretical analysis shows that with a uniformly distributed set of receptors, an

elliptical cell can make incorrect inferences about the gradient when the concentration and

the gradient steepness are low [99]. Surprisingly, the cell has a strong bias to infer that the

gradient is parallel to the minor axis, regardless of the actual gradient direction. This is because

equal spacing of receptors on a non-circular surface leads to highly unequal variances in the

estimates of the x and y components of the gradient. Here we show that this can be overcome

by a nonuniform placement of receptors so that the inference is free of biases due to the shape

of the cell.

4.2 Model

We consider the cell as estimating the gradient ~µ of a spatial function C(~r) = C0 exp(~µ~r).

Receptor positions ~r are relative to the ‘standard’ length scale 10µm and the gradient ~µ is
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Figure 4.1: Schematic problem representation. The orange dots represent receptors. The
axes of the coordinate system are the two eigenvectors of the ‘receptor ellipse’ matrix S =∑

i ~ri~r
T
i

C0K
(C0+K)2

(blue) which might or might not coincide with the axes of the actual cell

(red). The two axes of the ‘receptor ellipse’ determines the properties of gradient estimation.

dimensionless. We assume that the information available about C consists of independent

binary random variables bi representing the bound and unbound states of a set of n receptors

located at positions ~ri ∈ R2, i = 1...n. Standard Michaelis-Menten kinetics implies the binding

probability of each receptor is

P (bi = 1) =
C(~ri)

(Kd + C(~ri))

with Kd being the dissociation constant. The likelihood function of the complete binding state

is:

Lb(~µ, C0) =
n∏
i=1

(
C(~ri)

Kd + C(~ri)

)bi ( Kd

Kd + C(~ri)

)1−bi

whose logarithm is

lnLb(~µ, C0) =
n∑
i=1

bi ln

(
C(~ri)

Kd

)
−

n∑
i=1

ln

(
Kd + C(~ri)

Kd

)

The cell should combine likelihood information with its a priori estimate of the gradient. The

prior has two components: the first is the direction φ = ∠~µ, which is conventionally represented

as a von Mises distribution as in [97]:

P (φ) =
exp(κ cos(φ− δ))

I0(κ)
,
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where δ is the prior bias of the cell regarding the gradient direction, κ is the strength of bias,

and I0(κ) is the modified Bessel function of the first kind. This prior could be determined by

previous measurements, as in a filtering scheme, or by an intrinsic bias. The second component

is the strength s = |~µ| of the gradient. For convenience, we considered a simple, half-Gaussian

form for this P (s) = 2
√
β/πH(s) exp(−βs2), where β parameterizes the uncertainty. This

favors small gradients, a conclusion invited by the exquisite sensitivity of many sensing systems

[95, 231]. However, its precise form is not expected to influence the results very strongly,

provided it is smooth and covers the range of relevant values. We consider these two components

to be independent, making the overall prior P (s, φ) = P (s)× P (φ).

Expanding the likelihood function to second order around 0 in ~µ:

lnLb '
∑
i

bi ln
C0

K
+ n ln

K

C0 +K
+ ~µ∆b~r −

1

2
~µTS~µ (4.1)

where

∆b~r =
n∑
i=1

(~ribi −
C0

C0 +K
), S =

∑
i

~ri~r
T
i

C0K

(C0 +K)2
(4.2)

leads to the maximum likelihood estimate (MLE)

~µML = S−1∆b~r

This formula is more general than that derived in [96] since it does not assume a circular cell

or a uniform distribution of receptors on the cell’s surface. The average binding probability

E[bi] at each receptor is:

E[bi] =
C0exp(~µ~r)

K + C0exp(~µ~r)
≈ C0

C0 +K
+

C0K

(C0 +K)2
~µ~r,

and therefore

E[~µML
b ] =

C0K

(C0 +K)2
(~rT~r)S−1~µ = ~µ,

confirming that the expectation of ~µML over all possible binding patterns is the actual gradient.

In the large n limit, the properties of the MLE ensures that ~µML → N (~µ, S−1). S−1 is the

covariance matrix of the maximum likelihood estimate and only depends on the positions of

the receptors, not the shape of the cell. We call S the ‘receptor matrix’ as it ultimately encodes
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information about the receptor arrangement. As S is a symmetric matrix it can be diagonalised,

implying that there exists a coordinate system defined by the two eigenvectors of S (shown

in Fig. 4.1) such that the two orthogonal components of ~µML are uncorrelated, and their

variances are the eigenvalues of the matrix S−1. Henceforth, we will define all angles relative

to this coordinate system, with x, y axes identified with the first and second eigenvectors of

S−1. Note that these axes will in general be different from the axes of the elliptical cell.

We define 1/σ2
1 and 1/σ2

2 to be the corresponding eigenvalues of the matrix S−1 and

Z1

Z2

 =

µML
x σ2

1

µML
y σ2

2

 =

∑σ2
1bi(ri cosϕi − C0

K+C0
)∑

σ2
2bi(ri sinϕi − C0

K+C0
)


where ri, ϕi are the positions of the receptors in polar coordinates, and thus recover the familiar

Gaussian approximation for the likelihood function [96]:

P (~Z|s, φ) =
1

2πσ1σ2
exp

[
−(Z1 − sσ2

1 cosφ)2

2σ2
1

− (Z2 − sσ2
2 sinφ)2

2σ2
2

]

4.3 Eliminating bias

For certain receptor distributions for which σ1 6= σ2, the variances in µML
x and µML

y can differ,

causing the cell consistently to estimate the gradient direction

φ̃ = tan−1
(
µML
x

µML
y

)

parallel to its minor axis at low concentration or gradient steepness, as seen in [99]. At first

glance, this result might be counter-intuitive. However, if σ1 � σ2, equivalent to a ‘receptor

ellipse’ elongated in the x direction, the cell can much more easily detect the asymmetry in

the concentration in the x direction (low variance) than in the y direction (high variance).

The inequality in variances leads to bias in the MLE due to the highly nonlinear nature of the

function tan−1. Therefore, at shallow gradients the estimated direction of the gradient has a

tendency to favor the minor axis (the y direction). The estimated direction also has higher
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Figure 4.2: The blue ellipse is the receptor ellipse as defined in Fig. 4.1, the green ellipse
represents the confidence ellipsoid of the maximum likelihood estimates ~µML of the gradient
and the black line is the true gradient. The actual cell is not shown. The bias of the cell to
estimate the gradient direction φ̃ along the minor axis of the receptor ellipse can be explained
by the unequal variances 1/σ2x and 1/σ2y . If the true direction points in the x axis, the variance

of the ML estimates φ̃ can be large. If the true direction is parallel to the y axis, the variance
is much lower. In both cases, φ̃ strongly favors values close to ±π/2.

variance if the true gradient is in the x direction than if it is in the y direction as illustrated in

Fig. 4.2.

For simplicity we assume that the cell is only interested in the gradient direction rather than its

magnitude. In order to find the maximum a posteriori (MAP) estimate for the actual gradient

direction φtrue, we seek to solve φ̂MAP = arg maxφ P (φ|~Z) where

P (φ|~Z) ∝
∫
P (~Z|s, φ)P (s)P (φ)ds

∝ 1√
A

exp(
B2

4A
− C)(1− erf(− B

2
√
A

)) (4.3)

where

A = 1/2(σ2
1 cos2 φ+ σ2

2 sin2 φ) + β

B = Z1 cosφ+ Z2 sinφ

C =
Z2

1

2σ2
1

+
Z2

2

2σ2
2

− κ cos(φ− δ)
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Figure 4.3: Numerical comparison of the posterior distribution of the gradient direction φ
given the maximum likelihood estimate φ̃ for σ1 = 3, σ2 = 7 (row 1) and σ1 = σ2 = 5 (row 2),
using the same prior P (s, φ) ∝ exp(0.5 cos(φ+π/2)) exp(−2s2). The maximum and minimum
in each plot from left to right are (0.06, 0.25), (0.05, 0.34), (0.19, 0.99), (0.08, 0.26), (0.06,
0.30), (0.02,0.50). The black lines represent the maximum a posteriori estimates. The first
row shows a clear nonuniform quality in the posterior distributions given different φ̃. The
posterior distribution is sharper when φ̃ aligns with σ1 (φ̃ = 0 or π) than when φ̃ aligns with

σ2 (φ̃ = π/2 or 3/2π).

Denoting

φ̃ = tan−1
(
Z1/σ

2
1

Z2/σ2
2

)
as the maximum likelihood estimate of the gradient direction and |Z| =

√
Z2

1 + Z2
2 representing

the asymmetry in the receptor occupancy, we numerically calculate P (φ|φ̃, |Z|) for different

values of |Z|. Figure 4.3 shows the relationship between φ̃ and the posterior estimate of the

gradient direction at three values of |Z| = 0.5, 2 and 7, for σ1 = 3, σ2 = 7 (row 1), which we

loosely call the ‘elliptical’ case and σ1 = 5, σ2 = 5 (row 2), the ‘circular’ case. The black lines

represent the maximum a posteriori estimates for each case. The prior distribution for all cases

is

P (s, φ) ∝ exp(0.5(φ+ π/2)) exp(−2s2).

For the elliptical case, the posterior is influenced by three factors: the bias due to the inequality

between σ1 and σ2 represented by the term A in Eq. 3, the prior represented by the last term



Chapter 4. Receptor positioning in gradient sensing 56

of C, and the data captured by the term B. Since A is minimized when φ = 0 or π, there

is a strong bias for the posterior distribution to peak at 0 or π (aligned with the direction of

σ1), which can overwhelm the prior when |Z| is weak (column 1). As |Z| becomes stronger,

this tendency remains, and although φMAP follows φ̃ more closely (column 3), the cell is more

precise at estimating gradient directions pointing along the minor axis of the receptor ellipse

than along the major axis, consistent with the results in [99]. The posterior is more sharply

peaked when φ̃ = 0 or π because when B is maximum, A is minimum, and vice versa. If

φ̃ = π/2 or 3π/2, the maxima and minima of B and A are ‘in phase’, therefore reducing the

variance. At lower values of |Z| (column 1 and 2), there are discontinuities in φMAP around

φ = π/2 and 3π/2. The graph in column 2 shows the intermediate case between the two

extremes of the estimates being dominated by the shape bias (column 1) and dominated by

the binding observation.

In contrast, the circular case does not have the bias due to the shape (row 2). If |Z| is weak, the

gradient estimates are dominated by the prior. When |Z| is large, the maximum a posteriori

estimates become almost equal to the maximum likelihood estimates φ̃ (row 2, column 3). The

posterior distribution is more sharply peaked when φ̃ is near the prior mean 3π/2, meaning

that the data agree with the prior knowledge.

The estimation problem can be visualized using numerical simulations. Recalling that Z1, Z2

are Gaussian random variables with means sσ2
1 cosφtrue, sσ

2
2 sinφtrue and variances σ2

1 and σ2
2

respectively, and arbitrarily setting the prior mean δ = −π/2, we can visualize the distribution

of all MAP estimates for various combinations of parameters (Fig. 4.4). The red plots are the

posterior distribution P (φ|~Z) weighted by the empirical probability density P (~Z|strue, φtrue).

For σ1 6= σ2 (columns 1-4, row 1), when the prior κ is weak and the gradient s is shallow,

the estimates are strongly biased toward the minor axis of the ‘receptor ellipse’ S (cf [99]).

The discontinuities of φMAP at angles parallel to the major axis of the ‘receptor ellipse’ are

also observed, consistent with row 1 of Fig. 4.2. When the gradient is stronger (row 2), the

estimates follow the true gradient more faithfully, and the performance is better when the true

gradient is aligned with the minor axis than when it is aligned with the major axis (row 2,

column 1 vs 3). Even when the prior is strong and the true gradient is shallow (row 3), the

estimates can still be strongly influenced by the cell’s bias towards the minor axis. When the
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Figure 4.4: The distribution of MAP estimates for different gradient magnitudes and gradi-
ent direction priors. The x and y axes are defined by the matrix S as in Fig. 4.1. As the prior
over s plays little role, we assume the same prior P (s) = 2

√
2/π exp(−2s2) and δ = −π/2

for all cases. Columns 1-4: σ1 6= σ2. Columns 5-6: σ1 = σ2. The red plot is the distribution
P (φposterior|strue, φtrue), arbitrarily scaled for easy visualization.

prior and the gradient are both strong (row 4), the estimates represent a compromise between

the true gradient, the prior and the minor axis.

Meanwhile, when σ1 = σ2 (columns 5-6), this bias towards the minor axis is eliminated. Note

that it is not the case that there is a certain strength of receptor heterogeneity that is required

to overcome the bias imposed by cell shape, rather any receptor arrangement that satisfies

σ1 = σ2 is a solution. The distribution of the estimates then becomes a compromise between

the prior directional bias and the measurements. If the actual gradient is shallow and the prior

over the direction is weak (row 1), the estimates can fluctuate greatly however, the estimates

stay centred around the true gradient direction. If the prior is strong (row 3), the measurements

contribute little to the estimates. The estimates become more accurate when the prior is weak

and the gradient is steep (row 2).

We now focus on the special case σ1 = σ2 = σ, since it avoids the bias coming from the spatial

arrangement of the receptors. In the next section, we will show that by arranging receptors in

such a way that σ is maximized, the cell maximizes the information about the gradient from

its binding patterns. This optimization is subject to the constraint that the receptors have to
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Figure 4.5: Some numerical examples of receptor distributions of 30 receptors on the
surface of an elliptical cell that approximately satisfies the conditions σ1 = σ2 and∑
r2i cos(ϕi) sin(ϕi) = 0. This was found by minimizing the determinant of the matrix S

subject to the condition σ1 = σ2, using the command fmincon in MATLAB. The bottom
right is the receptor probability density on the edge of the cell with major axis 0.83 in the x
direction and minor axis 0.3. More receptors cluster around the minor axis of the cell because
the receptors near the major axis contribute a large amount to σ1 but little to σ2. This

distribution is independent of the prior bias or the actual gradient direction.

be on the cell surface. We know that the covariance of ~µML is the matrix S−1 with eigenvalues

1/σ2
1 and 1/σ2

2 from Eq. 2. Imposing σ1 = σ2 implies that the diagonal terms of S must be

equal: ∑ C0Kdr
2
i cos2 ϕi

(C0 +Kd)2
=
∑ C0Kdr

2
i sin2 ϕi

(C0 +Kd)2

and maximizing σ requires maximizing the eigenvalue of S or maximizing S11S22 − S2
12. Thus

the cross correlation term vanishes: Σr2i cosϕi sinϕi = 0. Recalling the ellipse equation x2/a2+

y2/b2 = 1, we can easily see that

σ2
1

a2
+
σ2
2

b2
=

nC0Kd

(C0 +Kd)2
(4.4)

which leads to

σ1 = σ2 =
nC0Kd

(C0 +Kd)2
a2b2

a2 + b2
.

Three example receptor arrangements that satisfy the above conditions are shown in Fig. 4.5.

We found these numerically; however, extra insight into appropriate arrangements comes from

finding the maximum entropy (i.e., least specified) distribution P (ϕ) satisfying the constraints:

∫ 2π

0

r(ϕ)2(cos2 ϕ− sin2 ϕ)P (ϕ)dϕ = 0 (4.5)
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or

∫ 2π

0

ab(cos2 ϕ− sin2 ϕ)

(a sinϕ)2 + (b cosϕ)2
P (ϕ)dϕ = 0 (4.6)

The resulting distribution is

P (ϕ) = C exp

[
ν(cos2 ϕ− sin2 ϕ)

(a sinϕ)2 + (b cosϕ)2

]
(4.7)

where C and ν are constants such that
∫
P (ϕ) = 1. ν < 0 if a > b and ν > 0 if a < b. This

probability density is illustrated in the bottom right of Fig. 4.5. More receptors are distributed

near the minor than the major axis.

4.4 Optimizing the Mutual Information

A canonical way to quantify the quality with which the receptors constrain the estimate of the

gradient is via the mutual information between the gradient direction estimate and the binding

pattern, defined as:

I(φ, ~Z) =

∫
logP (φ|~Z)P (φ, ~Z)dφd~Z −

∫
logP (φ)P (φ)dφ

The second term is fixed, so we wish to maximize the first term, which can be written:

∫
logP (φ, ~Z)P (φ, ~Z)dφd~Z −

∫
logP (~Z)p(~Z)d~Z (4.8)

We consider the general case of both gradient direction and magnitude, and also compare with

the mutual information for just direction. By defining

s̃ =

√(
Z1

σ2
1

)2

+

(
Z2

σ2
2

)2

and simplifying Eq. 3, the joint probability of the binding pattern and the gradient is:



Chapter 4. Receptor positioning in gradient sensing 60

P (φ, ~Z) =

∫
P (~Z|s, φ)P (s)P (φ)ds

=

√
β

2π2σ2I0(κ)
√

2σ2 + 4β
erfc

(
− s̃σ cos(φ− φ̃)√

2σ2 + 4β

)

× exp

(
(s̃σ cos(φ− φ̃))2

2σ2 + 4β
− s̃2

2
+ κ cos(φ− δ)

)
(4.9)

The joint entropy between the gradient direction and binding pattern can be approximated as

follows:

∫
logP (φ, ~Z)P (φ, ~Z)dφd~Z ≈ log

( √
2β

2π2e
√

2σ2 + 4βσ2I0(κ)

)
+
κI1(κ)

I0(κ)
(4.10)

The quality of this approximation falls when β increases or when σ decreases (data not shown).

However, when σ is greater than 5 and β less than 8, the error between the approximation and

the exact integral is less than 7% and quickly approaches 0 as σ increases or β decreases.

We then obtain an approximation for P (~Z)

P (~Z) =

∫ 2π

0

∫ ∞
0

P (~Z|s, φ)P (s)P (φ)dsdφ

=

√
β

2π5/2σ2Io(k)

∫ ∫
exp(κcos(φ− δ)− βs2)

× exp

[
−(Z1 − sσ2 cosφ)2 + (Z2 − sσ2 sinφ)2

2σ2

]
dsdφ

=

√
β

2π5/2σ2Io(k)
exp

(
− Z2

1

2σ2
1

− Z2
2

2σ2
2

)∫
exp(κ cos(φ− δ))

× exp(Z1s cosφ+ Z2s sinφ− s2(σ
2

2
− β))dsdφ (4.11)

With s̃ =
√
Z2

1 + Z2
2/σ, Z1 = σs̃ cos φ̃, Z2 = σs̃ sin φ̃ and Iν being the modified Bessel function

of the first kind of order ν

P (~Z) =

√
β

2π5/2σ2Io(k)
exp(− s̃

2

2
)

×
∫

exp(σss̃ cos(φ− φ̃) + κ cos(φ− δ)− s2(σ
2

2
− β))dsdφ (4.12)
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Defining

α = arctan
κsin(ψ − δ)

sη + κ cos(ψ − δ)
, γ = κ cos(φ̃− δ),

the integral can be written as:

∫ ∫
exp(

√
σ2s̃2s2 + κ2 + 2σs̃sγ cos(φ− φ̃+ α))× exp(−s2σ2/2− βs2)dsdφ

=

∫ ∞
0

2πIo(
√
σ2s̃2s2 + κ2 + 2σs̃sγ) exp(−s2(σ

2

2
+ β))ds

≈ 2π

∫ ∞
0

Io(σs̃s+ γ) exp(−s2(σ
2

2
+ β))ds

≈ 2π

∫
(I0(γ)I0(σs̃s) + 2I1(γ)I1(σs̃s)) exp(−(

σ2
1

2
+ β)s2)ds

=

√
4π3

2σ2 + 4β
exp(

σ2s̃2

4σ2 + 8β
)× [I0(γ)I0(

σ2s̃2

4σ2 + 8β
) + 2I1(γ)I1/2(

σ2s̃2

4σ2 + 8β
)] (4.13)

using the following integral:

∫ ∞
0

e−αx
2

Iν(βx)dx =

√
π

2
√
α
exp(

β2

8α
)Iν/2(

β2

8α
)

and the identity:

I0(x+ a) =
∞∑

k=−∞

Ik(x)I−k(a) ≈ I0(x)I0(a) + 2I1(x)I1(a)

for small a. Putting all the terms back together, we have:

P (~Z) =

∫ ∫
P (~Z|s, φ)P (s)P (φ)dsdφ

≈
√
β

π
√

(2σ2 + 4β)σ2Io(κ)
exp(− s̃

2

2
+

s̃2σ2

4σ2 + 8β
)

× [I0(γ)I0(
s̃2σ2

4σ2 + 8β
) + 2I1(γ)I1/2(

s̃2σ2

4σ2 + 8β
)] (4.14)

When κ < 0.4, this approximation is accurate within 2% of the true value of P (Z) for a wide

range of parameters.
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Figure 4.6: The mutual information between the binding pattern and the gradient (dashed
line) or only the gradient direction (solid line). The former yields twice as much information.

Transforming to polar coordinates, i.e. d~Z = σ2s̃ds̃dφ̃ and by numerical examination, we make

the following approximations:

∫
logP (~Z)p(~Z)d~Z ≈ lnK +K(A1 + A2 + A3 + A4) (4.15)

where

K =

√
β

π
√

2σ2 + 4βσ2I0(κ)
(4.16)

A1 =
−
(

1
2σ2 − 1

4σ2+8β

)2
(

1
2σ2 ( 1

2σ2 − 1
2σ2+4β

)
)3/2 (κ2 + 8)π

8
(4.17)

A2 =
σ2
√

2σ2 + 4β

2
√
β

(3k4 + 16k2)π

64
(4.18)

A3 =
(κ2 + 8)π

32

√
1

2σ2+4β(
1

2σ2 − 1
2σ2+4β

)3/2
− (κ2 + 8)π

16

[ψ(1/2)− ln(2β/σ2
1) + log(π)]

( 1
2σ2+4β

( 1
2σ2 − 1

2σ2+4β
))1/2

(4.19)

A4 ≈
1.08κ2π 1

4σ2+8β√
β

σ4(2σ2+4β)

(
1
σ2 − 1

2σ2+4β
+ 2

√
β

σ2
√

2σ2+4β

) (4.20)
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with the constant 1.08 inA4 derived from numerical approximation. For the range of parameters

we tested (κ < 0.4, σ ∈ (3, 15), β ∈ (1, 8)), the difference between the LHS and RHS of Eq. 16

is less than 3%.

Having obtained all component probabilities P (φ, s, ~Z), P (~Z), P (φ, s), we can contrast the

mutual information calculated above with that in the case when the cell must estimate both

the gradient steepness and gradient direction:

I(s, φ; ~Z) =

∫
P (φ, s, ~Z) log

(
P (φ, s, ~Z)

P (φ, s)P (~Z)

)
dsdφd~Z (4.21)

As σ increases, the cell obtains more information about the gradient from each measurement

(Fig. 4.6). This result makes sense intuitively because σ represents the ‘strength’ of the data,

therefore the greater σ, the more information the measurement contains. σ is a function of the

cell dimension and number of receptors, implying that the larger the cell or the more receptors

the better. The joint estimation of both the gradient steepness and direction yields twice

as much information as the direction estimate alone. The mutual information is also greater

when the prior distribution is broader. This is consistent with previous results in [97], where

the mutual information for a fixed gradient steepness was calculated and was found to decrease

as κ is higher and approaches 0 in the limit κ→∞. Our calculation however is more general

as it treats the gradient steepness also as an unknown. The general case σ1 6= σ2 is beyond

the scope of this paper. However, by discretizing Z1, Z2 to calculate the entropies, numerical

calculations show that there exists an optimal combination of (σ1, σ2) such that the mutual

information I(φ, ~Z) is maximized. In Fig. 4.7, we illustrate this with one example of a cell with

minor axis a = 0.3 and major axis b = 0.83 (to ensure the same area as a cell of diameter 1)

with 4000 receptors at ligand concentration of Kd. Different arrangements of receptors result

in different combinations of (σ1, σ2) that can satisfy Eq. 4, and the pair that gives the greatest

amount of information about the gradient is (7, 17.8). This result implies that the quality of

gradient sensing can be dependent on cell shape, though the lack of a formula for the general

case σ1 6= σ2 means that it is hard to address this analytically. However, in the case that the

goal of the cell is to avoid bias at all cost by imposing σ1 = σ2, a highly elongated cell will be

at a disadvantage compared to a circular cell of the same area because σ is constrained by the

minor axis.
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Figure 4.7: The numerically calculated mutual information between the binding pattern
and the gradient directions for different combinations of (σ1, σ2) for the same cell shape
(a = 0.3, b = 0.83) and 4000 receptors at ligand concentration Kd. There exists an optimal

pair (σ1 = 7, σ2 = 17.8) which results in the greatest mutual information.

4.5 Discussion

We have formulated gradient detection as an optimization problem, addressing in particular the

question of how receptors should be arranged in order to maximize the amount of information

that the sensing device can gain about the gradient. The previous works we built on [95, 97–

99, 230] derived the posterior distribution of the gradient by assuming a uniform distribution of

receptors on the sensing device, and a large enough number of receptors such that the Gaussian

approximation holds for the magnitude and the direction of the gradient. In contrast, we use the

mutual information instead of Fisher information, which makes our approach more suitable to

analyse the case of a finite or small number of receptors (thousands or fewer). We have derived

a formula for the mutual information given a weak prior for the gradient. We also found good

approximations for calculating the entropies with errors of less than 10% over a broad range of

parameters. Our formulation is more general than [98], where the authors derived the mutual

information for a fixed gradient magnitude.

The analysis presented here should apply to all cell types with independent receptors regardless



Chapter 4. Receptor positioning in gradient sensing 65

of their distribution. This distribution of receptors depends on the particular cell type. In Dic-

tyostelium and neutrophils, receptors are known to be uniformly distributed during chemotaxis

[232, 233]. Meanwhile, in spatial gradients of epidermal growth factor, endocytosed receptors

accumulate on the upgradient end of the mammary carcinoma cell [234]. There is some ev-

idence that growth cone receptors redistribute in response to chemotactic gradients. When

exposed to a GABA gradient (a neurotransmitter acting as a chemoattractant), receptors on

neuronal growth cones cluster on the up-gradient side [226]. In growth cones that are undergo-

ing attraction towards brain derived neurotrophic factor (BDNF), trkB receptors for BDNF are

associated with lipid rafts that become localised to the side of the growth cone that is closest

to the source of BDNF [235]. These results however do not affect the general findings in this

chapter.

Although several theoretical and experimental works show that receptor cooperativity can play

a significant role in chemotaxis [96, 236–238], the assumption of independent receptors is a still

a useful simplification that has been widely used in many theoretical works [98, 99, 216, 239].

Cooperativity is difficult to analyze in the general framework in this paper. Without the

assumption of symmetric distribution of receptors over the cell surface, it is intractable to

apply the Ising chain framework used to study cooperativity in [98].

We postulate that by imposing the ‘receptor ellipse’ to be circular, the cell can overcome the

bias caused by its elliptical shape, which is particularly useful when the gradient is shallow.

It can also maximize the information from each measurement by maximizing σ, or the radius

of the ‘receptor circle’. This is a general result that is independent of our choice of the prior

distribution. The case σ1 6= σ2 is beyond the scope of this paper, but it offers the enticing

prospect that the cell might adjust its shape (whilst leaving the receptor distribution uniform)

to adapt itself to exploit prevailing gradient conditions optimally.



Chapter 5

Axon Guidance Studies Using a

Microfluidics-Based Chemotropic

Gradient Generator

Apart from formatting, this chapter is identical to Z. Pujic, H. Nguyen, N. Glass, J. Cooper-

White, G.J. Goodhill, ”Axon guidance studies using a microfluidics-based chemotropic gradient

generator,” in Chemotaxis: Methods and Protocols (Methods in Molecular Biology) (T. Jin and

D. Hereld, ed.), Springer.

Abstract

Microfluidics can be used to generate flow-driven gradients of chemotropic guidance cues with

precisely controlled steepnesses for indefinite lengths of time. Neuronal cells grown in the

presence of these gradients can be studied for their response to the effects exerted by the cues.

Here we describe a polydimethylsiloxane (PDMS) microfluidics chamber capable of producing

linear gradients of soluble factors, stable for at least 18 hours, suitable for axon guidance studies.

Using this device we demonstrate turning of superior cervical ganglion axons by gradients of

nerve growth factor (NGF). The chamber produces robust gradients, is inexpensive to mass

produce, can be mounted on a tissue culture dish or glass coverslip for long term timelapse

microscopy imaging, and is suitable for immunostaining.

66
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5.1 Introduction

For the brain to develop correctly it must be wired up correctly. To achieve this, growing axons

must navigate reliably to their targets and make synaptic connections. Understanding how this

navigation occurs is important since axon miswiring may underlie many mental disorders [8],

and it is also critical for axons to be able to reform appropriate connections after injury. Due to

the enormous complexity of the developing brain, it is often desirable to study these mechanisms

in vitro since it is possible to exclude confounding factors. An important cellular process often

required to accomplish correct guidance is the detection, by the growth cones at the tips of

developing axons, of gradients of diffusible chemotropic cues within the developing tissues. The

in vitro study of axon guidance by diffusible gradient cues ideally requires the generation of

temporally and spatially stable gradients with precisely controllable characteristics, that can be

applied to a large number of individual axons, and allow timelapse imaging. However few assays

used for axon guidance studies currently achieve these goals. Collagen gel explant coculture

assays [28] produce gradients which are poorly characterized and decay with time, while more

sophisticated efforts to produce gradients with known steepnesses in collagen gels [166] are

expensive to set up and limited to shallow gradients. The widely used “growth cone turning”

or “pipette” assay [78, 240] has a low throughput, limited gradient stability, and little control

over gradient steepness. The Dunn chamber can be effective for axon guidance studies, but as a

passive device suffers from transients and gradient decay [241] . Many of these limitations can

be overcome by using microfluidic technologies [141, 187]. Gradients of diffusible factors can

be generated dynamically and therefore sustained at a particular steepness and concentration

regime almost indefinitely. The number of isolated cells exposed to the gradient is generally

greater than that for other assays, and the gradient can be defined with greater precision.

Recent advances in microfluidics chamber design have employed innovative approaches which

demonstrate that the approach is both powerful and versatile. For instance, microfluidically

generated gradients of diffusible Slit-1 or Netrin-1 were able to elicit turning in hippocampal or

dorsal root ganglion neurons [242]. Flow-based approaches can cause shear stresses which are

damaging for growth cones, which are less robust than cell bodies. Various methods have been

used to minimise this problem, such as culturing cells in a 3D hydrogel [242], using micro-well

structures [203], or using a permeable membrane separated the fluid-flow driven gradient from

the cells [243]. Here we describe a simple and easy to produce flow-based microfluidics chamber
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which can generate stable linear gradients despite using a flow rate low enough to be suitable

for axon guidance studies.

5.2 Materials

To minimize the blockage of PDMS chambers by dust and other particulates, prepare all

materials and solutions in a clean, dust-free environment. Where possible, work in laminar flow

hoods to ensure that a minimal amount of dust and particulates are present. Use ultrapure

water (deionized to attain 18 MΩ cm at 25 C) and filter all aqueous solutions with 0.2 µm

filters.

5.2.1 Microfluidics

1. AutoCad software (Autodesk, Australia).

2. Photoplate (Konica, Minolta, New South Wales, Australia)

3. Silicon wafers (M.M.R.C. Pty Ltd, Malvern, Vic, Australia).

4. Photolithography: A clean room with a spin coater, level hotplates, mask writer or photo-

plotter, mask aligner (EVG, St. Florian, Austria) or UV flood source and a fume hood.

5. Photolithography chemicals: Ti Prime (MicroChemicals, Ulm, Germany), SU-8 2050 and

SU-8 2100 (MicroChem, Westbrough, MA), Propylene glycol monomethyl ether acetate (PG-

MEA; Sigma-Aldrich, Australia) and Trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich)

(see Note 1).

6. Chamber testing: Epifluorescence microscope or confocal microscope and 10 – 63X objectives

(see Note 2). 7. Optical profiler (Wyko NT1100,Veeco, Plainview, NY).

8. PDMS mixture: Combine polydimethylsiloxane (PDMS) base elastomer (Sylgard 184, Dow

Corning, Midland, MI) and silicon elastomer curing agent in a 10:1 (m/m) ratio in a 50 mL

plastic tube. Mix for one hour either with a wooden tongue depressor or a rotary mixer.
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9. Fluorescent dextran: Aqueous 10 mg/mL of 40 kDa dextran conjugated to tetramethylrho-

damine (Life Technologies, Australia). Store 10 µL aliquots at -80 C (see Note 2).

10. Tubing: Polyethylene tubing I.D. 0.58 mm, O.D. 0.965 mm (Intramedic Clay Adams Brand,

Becton Dickinson Co.). Cut to length as required. Store in 70% ethanol. Air dry in laminar

flow hood and rinse with filtered PBS prior to use.

11. Metal connectors: These can be made by cutting the metal needle from a 23 gauge syringe

and smoothing down any rough metal burrs on a wetstone.

12. Syringe connectors: 23 Gauge syringes (Terumo Medical Corp., NSW Australia) with the

bevelled-tip cut off with a pair of metal snips. The rough edges are smoothened on a wetstone.

13. Syringes: 100, 250 or 500 µL glass syringes (SGE Analytical Science, NSW Australia) or 1

mL plastic syringes (Terumo Medical Corp.).

14. Microfluidics pump (e.g., Harvard Apparatus Ultra, SGE Analytical Science).

15. 0.75 mm corer (Harris Uni-Core, Ted Pella, CA, USA).

16. Plasma cleaner (e.g., PDC-002, Harrick Plasma, NY, USA).

17. (3-Aminopropyl)triethoxysilane (APTES; Sigma-Aldrich).

5.2.2 Tissue Culture

1. Laminar flow hood and tissue culture incubator with 5% CO2 at 37 C.

2. Leibovitz’s L-15 medium: Add 5 mL of 45% glucose to 500 mL L-15 (Life Technologies).

Store at 4 C.

3. Petri dishes: 35 mm wide, tissue-culture treated Petri dishes (Sigma-Aldrich).

4. Trypsin solution: Add 0.5 mL 2.5% trypsin to 2.5 mL calcium- and magnesium-free Hanks

balanced salt solution. Prepare immediately before use.

5. Superior cervical ganglion (SCG) Growth Medium (SGM): 1X OptiMem-1 (Life Technolo-

gies) containing 1X penicillin/streptomycin, 10 µg/mL mouse laminin, 4% (v/v) fetal calf

serum, 2% B-27 supplement (Life Technologies) (see Note 3).
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6. Fixative: 4% paraformaldehyde in 1X phosphate buffered saline (PBS) (see Note 4).

7. H Solution: 6 nM NGF in SGM, equivalent to 20 × Kd (see Note 5).

8. Blocking solution: 4% normal goat serum in PBS.

9. Primary antibody: 1:1000 mouse anti-neuron specific β-tubulin class III antibody (BD

Biosciences, Australia) in blocking solution. Add Triton X-100 to 0.05%.

10. Secondary antibody: 1:1000 goat anti-mouse Alexa 488 conjugated IgG (BD Biosciences,

Australia) in blocking solution.

5.3 Methods

5.3.1 Shear Stress Determination

An important consideration when designing any microfluidics chamber with liquid flow is the

potential for significant shear stress on the cells in the growing chamber. Various methods

have been used to minimise this problem, such as culturing cells in a 3D hydrogel [242], using

micro-well structures [203], or using a permeable membrane separating the fluid-flow driven

gradient from the cells [243]. Using the chamber design in Fig 5.1A, we found no correlation

between the final direction of axons and the fluid flow direction (i.e., no bias in neurite growth)

due to liquid flow rates up to 200 µL/hr (data not shown). Assuming the Poiseuille model

[244], the shear stress τ is calculated as follows:

τ = −12
µQ

wh2
w � h

where Q is the flow rate (m3 s-1), µ is the fluid viscosity (Pa.s) and h (m) and w (m) are the

channel height and width, respectively. According to this equation, a flow rate of 200 µL/hr

caused shear of 1.7 N/m−2. Since shear is not dependent on position within the growth chamber,

and since the cells are all in contact with the growth chamber floor, the shear is uniform across

all cells. Little is currently known about how much shear stress can be tolerated by neurons of

different type or on different substrates. Morel et al. [243] found that at 5 × 10−2 N/m2, the

growth cones of rat DRG neurons displayed damage, but that at 5 × 10−4 Nm−2, damage due
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to the shear stress was undetectable. Wang et al. [203] found that at 0.72 × 10−2 N−2, Xenopus

spinal neurons undergo collapse, but that at 4.5 × 10-4 N−2, they did not. Consequently, the

shear stress in our device at 200 µL/hr falls well below that of the detrimental value of 5 ×

10−2 N/m2 used by Morel et al., and is only about 2-fold above that found to be damaging

for Xenopus spinal neurons by Wang et al. This suggests that the shear stress in our device

is in a domain which, at least for rat SCG cells grown on plastic, is still conducive to growth.

However, we note that the no-slip boundary condition for viscous fluid flow states that the

velocity profile in a rectangular channel is parabolic [245], implying that the shear stress in the

thin layer in which axons are growing may be significantly less than the value calculated above.

5.3.2 Microfluidics Chambers

5.3.2.1 Microfluidics Chamber Design

Draft the chamber design using AutoCad software and plot it onto the photoplate. Fig 5.1A

illustrates the design used for the photomask for the first layer of lithography. In order to

reduce the shear stress on neurons growing in the growth chamber, the design shown in Fig

5.1A is two-layered. The first layer consists of the entire pattern shown in Fig 5.1A with a

height of 50 µm. The second layer is 100 µm thick and deposited over only the growing region.

This means that although the fluid mixing occurs in channel heights of 50 µm, the cells are

growing in a region with a 150 µm height. Since shear goes as 1/h2, the reduction in shear

stress to the cells is considerable. Therefore, a relatively fast flow rate in the mixing channels

using only a small expenditure of fluid can be used to establish the gradient quickly.

5.3.2.2 Microfluidics Chamber Fabrication

Fabricate chamber molds using standard SU-8 multilayer photolithography techniques as fol-

lows:

1. Clean silicon wafers using a plasma cleaner with a power of 200 W at a pressure of 200

mTorr for 5 minutes.
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2. Immediately after cleaning the wafers, coat them with Ti Prime by spin-coating at 3000

rpm for 30 s, followed by a two minute bake at 110oC. Then allow the wafers to cool to room

temperature.

3. Next, deposit a layer of SU-8 2050 on the wafers by spin-coating, according to the manufac-

turer’s recommendations. To achieve an approximately 50 µm thickness, spin the SU-8 at 500

rpm followed by 1500 rpm for 10 and 30 seconds, respectively.

4. The wafers are then soft baked at 65oC and 95oC for 3 minutes and 9 minutes, respectively.

5. After allowing the wafers to cool to room temperature, expose them in the mask aligner to

a dose of 175 mJ/cm2. Fig 5.1A shows the pattern that was used.

6. Perform a post-exposure bake at 65oC and 95oC for 2 minutes and 7 minutes, respectively,

and then allow the wafers to cool to room temperature.

7. Apply a second layer of photoresist, this time SU-8 2100, by spin-coating at 500 rpm followed

by 3000 rpm for 10 and 30 seconds, respectively. This allows for an approximate additional

height of 100 µm.

8. The wafers are then soft baked at 65oC and 95oC for 5 minutes and 30 minutes, respectively.

9. Next align and expose a second mask using the mask aligner at a dose of 250 mJ/cm2. The

second mask is designed to increase the height of the growth chamber and exit hole regions of

the devices.

10. When the wafers return to room temperature, develop them in PEGMA for approximately

15 minutes.

11. Verify the height of the mold using the optical profiler. The lowest and highest features

should measure around 50 µm and 150 µm, respectively.

12. Next silanize the molds to prevent PDMS adhesion. Clean the freshly processed masters

using an oxygen plasma cleaner and then place them in a vacuum desiccator with several drops

of Trichloro(1H,1H,2H,2H-perfluorooctyl)silane for approximately 20 minutes.

13. Pour enough PDMS mixture onto the silicon master to cover it to a depth of about 4 mm.
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14. Place the mold with PDMS into a vacuum chamber and apply vacuum for 2 hours to degas

the PDMS (see Note 6). During degassing, minute bubbles will form in the low air pressure

and rise to the top of the liquid PDMS. After 2-3 hours, the PDMS will appear completely

transparent.

15. Bake (cure) the mold for at least 2 hours at 80 C. Baking at higher temperatures for slightly

shorter times will also lead to curing.

16. Using a scalpel, carefully cut around the chamber, taking care to avoid damaging the

lithographed pattern on the silicon wafer. Gently pull the chamber out of the mold.

17. Cover the channel side of the chamber with Scotch magic tape to protect the channels from

airborne dust which can lead to clogging during later stages.

18. Using a 0.75 mm corer, core holes into the PDMS where fluid or cells can be introduced.

The corer should have an external diameter slightly smaller than that of the metal connecting

tubes. Make sure the PDMS “noodle” is pushed out of the holes and the corer goes all the way

through the PDMS.

19. To bond the PDMS chamber to a plastic tissue-culture petri dish, plasma treat the petri

dish (using 100 W at a pressure of 380 mTorr for 30 seconds) and then pour enough APTES

solution (5% APTES in 70% ethanol) into the dish to cover the bottom surface and leave for 5

minutes. Meanwhile, plasma treat the PDMS chamber with high power for 40 seconds. Make

sure the PDMS chamber is placed into the plasma cleaner so the channels side is face-up,

otherwise the plasma will not properly treat the surface. Discard the APTES solution from the

petri dish, wash thoroughly with water, and allow it to air dry or blow dry. Press the PDMS

chamber onto the APTES-treated petri dish. Make sure to press the channel-side surface of

the PDMS onto the dish. If bonding of PDMS chambers onto glass is required, plasma treat

the glass and the chamber at the same time and gently press the chamber on glass (see Note

7).

20. Bake the dish for 30 minutes at 65 C. Although the bond forms within a few seconds,

baking will increase bond strength. After baking, the chamber is ready to be used for tissue

culture, otherwise chambers can be prepared ahead of time and stored at room temperature

(see Note 8).
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21. Fill the plate with filtered PBS and penicillin/streptomycin and degas in the vacuum

chamber for 5 minutes. Take out the chambers at least 15 minutes before injecting cells into

them to allow the solution to fill up all the channels to avoid air bubbles.

5.3.3 Tissue Dissociation

1. Cut out the superior cervical ganglia (SCG) from P0-P3 rat pups into about 2 mL Leibovitz

medium in a Petri dish kept on ice. Leave in trypsin for 30 minutes at 37 C in a 15 mL tube.

Use a sterilised flame polished glass Pasteur pipette to gently triturate the cells by aspirating

up and down slowly (see Note 9).

2. Stop the trypsin by filling the tube with Leibovitz medium to 15 mL. Centrifuge at 190 rcf

for 5 min at 4 C. Discard the supernatant carefully and then repeat with 15 mL Leibovitz, then

15 mL OptiMem and then with 0.5 mL filtered SGM containing 0.3 nM NGF. Suck out most

of the solution to leave 50 µL of solution per SCG. Very gently resuspend the cells. Using the

microfluidics pump or pumping by hand with a short length of polyethylene tubing connected

to a metal connector, aspirate the solution at 1 µL/s and then inject into a test chamber

through the outlet with the chambers fully immersed in PBS/PS. Make sure there is no air

bubble in the injected solution or in the chambers. Adjust the cell density so that 20 – 100

cells enter the growth chamber. Very low density often leads to poor growth and very high

density makes imaging difficult.

5.3.4 Growth in the Gradient

1. Leave the cells in the incubator for at least 1 hour to allow cells to adhere to the substrate

before setting up the flow.

2. Cut two lengths of polyethylene tubing approximately 60 cm (see Note 10). Connect a

metal connector to one end of each tube (Fig 5.1B). Connect the other end of each tube to

a syringe connector and connect, via a Luer lock, to a 250, 500 or 1000 µL glass syringe or

a plastic 1 mL syringe (the size of the syringe limits the duration of the experiment). Insert

the syringes into the microfluidics pump. The syringes contain H solution (SGM with a high

concentration of guidance cue (in our case NGF), equivalent to 20 × Kd) and L solution (SGM
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Figure 5.1: A schematic of the microfluidics chamber channels. A. The two input holes
separately receive SGM containing NGF (H solution) or SGM only (L solution). The media
are combined in the mixing channels and enter the growth chamber and eventually leave
through the exit hole. The heights of the growth chamber and exit hole are 150 µm, while
all other regions of the device are 50 µm. Scale bar = 1 mm. B. Two syringes mounted on
a Harvard Apparatus infusion pump via syringe connectors. The polyethylene tubing enters
the PDMS chamber (see panel C). C. A completed PDMS chamber bonded to a 35 mm tissue
culture grade Petri dish. Metal connector tubes are used to connect the polyethylene tubing

to the chamber.

with no guidance cue). Make sure there are no air bubbles in the tubing and that there is no

air in the syringes. To generate a linear gradient, the flow rates of both syringes have to be the

same (5 µL/hr each). To increase the throughput, four chambers can be run in parallel, with

8 syringes on 2 PhD Harvard pumps.

3. Pump out a small amount of solution then quickly put the metal pins of the H and L tubes

into the appropriate inlets (Fig 5.1C; see Note 11). Turn on the flow to 5 µL/hr. Gradients

should establish within 5 minutes.

4. Place the chambers into a tissue culture incubator (with the pump outside). After 2-4

hours, neurites will start to grow from the cell bodies. At this point, the cells may be used for

live imaging by moving the chambers and pump(s) to an incubated inverted microscope. The

tubing can be attached to the incubator door higher than the plate so that air bubbles will rise

and not enter the chambers. Otherwise incubate the chambers overnight. Make sure there is

enough solution in the syringes for the desired duration of the experiment.
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Figure 5.2: A. A gradient of 40 kDa dextran-tetramethylrhodamine in the growth chamber
of the PDMS chamber shown in Fig. 5.2B. B. The relative fluorescence of 40 kDa dextran-
tetramethylrhodamine in a transverse section through the gradient in Fig. 5.2A. (A.U. =

arbitrary units).

5.3.5 Quantification of Guidance

1. The chambers can be used for in vitro imaging of growth cone guidance using time-lapse

microscopy. The chambers should be housed in an inverted microscope with environmental

control including temperature (37 C) and a 5% CO2 atmosphere. Images can be obtained using

phase contrast microscopy at 1 minute intervals for up to 4 hours. The degree of guidance

can be estimated for each growth cone from the time-lapse data using the definition of the

turning angle shown in Fig 5.3B [241]; however, other definitions of turning can also be used

[203, 246]. 2. If, following growth of neurites in the growing chamber, the axons need to be

immunostained, then gently remove the tubing from the microfluidics chamber and examine the

growing chamber. Neurites should be visible under phase contrast microscopy (see Note 12 and

5.3A). Fill a 1 mL plastic syringe with fixative and, with a short length of polyethylene tubing

(and using the appropriate connectors) pump through the fixative into the exit hole at 1 µL/s

for 60 seconds. Replace the fixative in the syringe with PBS and pump through at the same

flow rate for 5 min to remove all fixative. Pump through blocking solution and then primary

antibody at the same flow rate for 60 seconds. Leave the primary antibody solution in for 15

min without flow. Pump through the appropriate fluorophore labelled secondary antibody at

the same flow rate for 60 seconds and leave without flow for 15 min. Finally, wash with PBS

for 5 min (see Notes 13 and 14).
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Figure 5.3: A. Phase contrast image, obtained with a 20X objective, of an SCG neuron
grown in a microfluidics chamber with an NGF gradient (gradient direction is shown by the
black triangle). The white arrow indicates direction of fluid flow. White arrowheads indicate
growth cones with filopodia. Scale bar = 10 µm. B. Definition of initial angle and turning
angle in short-term turning assay. The reference axis is perpendicular to the direction of flow,
which is the gradient direction. The initial direction is defined as the tangential direction of
the 15 µm neurite segment. The initial angle is defined as the angle between initial direction
and the reference axis. The turning angle is defined as the angle between the line connecting
the growth cone before and after the assay and the initial direction. C. Turning angles of
axons grown either in a gradient of NGF (n = 190 axons) compared to those grown in an NGF
plateau control (n = 110 axons) using a flow rate of 10 µL/hr. Axons grown in the gradient
display a positive turning response of 12 ± 1.4 compared to 2.1 ± 2.0 (mean ± S.E.M.) for

those grown in a plateau of NGF (p = 0.033, t-test).

3. Photograph neurites at 20X using fluorescence microscopy for the appropriate fluorophore.

5.4 Notes

1. Chamber design: A comprehensive description of the concepts used in the design of our

chamber can be found in Campbell et al. [247]. The dimensions of the design were modified

to suit the diffusion constant of nerve growth factor.

2. To test whether the chamber is capable of generating a gradient, a fluorescently labeled dex-

tran, of a molecular weight roughly equivalent to the guidance cue being studied, can be used

to visualize the gradient. 40 kDa-dextran fluorescently labelled with tetramethylrhodamine

has a molecular weight similiar to that of nerve growth factor. To visualize the gradient, set up

a gradient as in section 3.4.2, however exclude the guidance cue and instead, include the fluo-

rophore in the H solution. L solution should contain no fluorophore. The exact concentration

of the fluorophore in the H solution is not important as long as it is high enough to provide an
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image of the gradient using a relatively short exposure (e.g., 1 second) (5.2A and 5.2B). Time

lapse-imaging of the chamber can be used to assess the stability of the gradient.

3. This is also suitable for the growth of dorsal root ganglion neurons from newborn rat pups

up to about postnatal day 7 of age.

4. 4% paraformaldehyde in PBS can be stored at -20 C for several months and should be

thawed to room temperature before use. It produces sufficient fixation for the visualization of

axons, however we find it unsuitable for the fixation of finer cellular detail such as filopodia.

5. The dissociation constant (Kd) of NGF for its high affinity receptor, TrkA, is about 0.3 nM

[95].

6. When PDMS is mixed or poured, tiny bubbles will be generated which, if not removed, will

become incorporated into the microfluidics chamber during curing.

7. If PDMS chambers do not adhere to glass or plastic substrates, the plasma oxidation

conditions should be optimized. Determine optimal oxidation time, ionization strength and O2

pressure within the plasma cleaner. For our Harrick Expanded Plasma Cleaner, typical values

are 380-410 mTorr O2 pressure, 30 W power and 30 – 50 s ionization time.

8. Contamination by bacterial and fungal cells may be reduced by spraying the chambers with

70% ethanol following by irradiation with short-wavelength UV for several hours. Once dried,

the chambers may be used for tissue culture.

9. Poor cell growth can also be due to poor trituration. Optimise the trypsin concentration

and incubation time. Optimise the size of the flame-polished pipette bore. Holes which are too

large will result in poor dissociation. Holes which are too small will result in high cell death.

Ganglia should dissociate into cells within 2 minutes of trituration.

10. The length of both tubes has to be enough so that the microfluidics chamber can be placed

in a tissue culture incubator with the microfluidics pump outside the incubator.

11. A major problem which will be encountered when using microfluidics is the accidental

introduction of air bubbles into the chamber. This can occur mostly as a result of poor connec-

tions where the metal connector tubes are inserted into the chambers. The metal connectors

can be sealed by making a small amount of PDMS with curing agent and spreading about 10
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µL around the insertion site followed by curing at 65C. Then fill the plate with filtered PBS to

immerse both the chambers and connector pins in solution and degas. Use the tubing to suck

solution through the connector pin to fill up all the channels and pins with PBS. However we

find that the best solution is to ensure that coring achieves clean defect-free holes which are

less likely to leak and inject into the chambers while they are immersed in solution.

12. If neuronal cell growth is poor, it may be necessary to perform PDMS extraction prior to

bonding to the substrate. This is done in order to remove unpolymerized PDMS monomers

from the PDMS chamber which may cause cell toxicity. Numerous PDMS extraction techniques

exist. We have found the following to improve neuronal cell growth: Following removal of the

PDMS from the mold, immerse chambers for 200 mL for 1 hour into each of the following;

100% pentane, 100% acetone and then 100% ethanol. PDMS will swell significantly while in

the pentane and acetone, and care should be taken to ensure the liquid volume is significantly

larger than the PDMS volume. Do not delay in transferring chambers from one solution to

the next otherwise cracking of the PDMS will occur. After PDMS have soaked in the ethanol,

bake at 65 C for 2 hours and proceed with bonding to the substrate. Discard the used solutions

according to institutional guidelines.

13. Image quality of the immunostained cells will be better with a glass substrate.

14. We find that a high solution (H) of 20 - 40 Kd and a low solution (L) of 0 Kd elicited

the strongest turning responses in SCG axons whereas a very high solution of H = 200 Kd

abolishes the turning (5.3C shows turning of growth cones in a gradient using nerve growth

factor with L = 0 nM, H = 20 Kd nM). If no turning is observed, these parameters should be

optimized.
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A mathematical model explains

saturating axon guidance responses to

molecular gradients

Apart from formatting and the abridged Methods section, this chapter is identical to H. Nguyen,

P. Dayan, Z. Pujic, J. Cooper-White, G.J. Goodhill, “A mathematical model explains saturat-

ing axon guidance responses to molecular gradients” resubmitted to eLife.

Abstract

Correct wiring is crucial for the proper functioning of the nervous system. Molecular gradients

provide critical signals to guide growth cones, which are the motile tips of developing axons, to

their targets. However in vitro growth cones trace highly stochastic trajectories, and exactly

how molecular gradients bias their movement is unclear. Here we introduce a mathematical

model based on persistence, bias and noise to describe this behaviour, constrained directly

by measurements of the detailed statistics of growth cone movements in both attractive and

repulsive gradients in a microfluidic device. This model provides a mathematical explanation

for why average axon turning angles in gradients in vitro saturate very rapidly with time at

relatively small values. This work introduces the most accurate predictive model of growth

80
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cone trajectories to date, and deepens our understanding of axon guidance events both in vitro

and in vivo.

6.1 Introduction

For the brain to function correctly, it must be wired correctly. Indeed, many neurodevelopmen-

tal disorders are likely the result of wiring defects [10, 248–250]. Axon guidance, where axons

grow and navigate to their targets, occurs primarily via the sensing of molecular cues in the

environment. A critical mechanism by which such cues act is believed to be concentration gradi-

ents, causing axons to be attracted or repelled in particular directions [5, 30]. However, despite

major advances in understanding which molecules are involved in this process [1–3, 251], an

accurate quantitative model describing how axon trajectories are influenced by such guidance

cues is still lacking.

In vivo, axon trajectories may potentially be influenced by many cues. In vitro assays allow

individual influences, such as that from the concentration gradient of a single guidance factor,

to be isolated and quantified. A substantial mystery posed by in vitro axonal chemotaxis assays

is the relatively weak turning produced, even over long periods of time. The naive prediction

that axons would promptly turn until they become fully aligned with the gradient turns out not

to be true. In an early study of chemotactic responses of chick sensory neurons to a gradient of

nerve growth factor in a diffusion chamber, only 60% of nerve tips were preferentially directed

towards the gradient direction after 46 hours of growth [46]. The growth cone turning assay

over 1-2 h produces average turning angles typically ranging from 10-25◦, with high variability

[80, 156, 157, 252, 253]. A similarly weak response is observed in the Dunn chamber [241, 254–

257]. More recent studies using microfluidic technologies over timescales ranging from hours

to days have also elicited average axon turning angles only up to 10-15◦ [203, 243, 258, 259].

Why average turning angles are so small, and what this means for axon guidance in vivo, are

unclear.

One of the key properties of in vitro axon growth that might explain this mystery is that it is

often very straight [121, 122]. Axons are under mechanical tension from the pull of the growth

cone [260, 261], and this tension stimulates the elongation of the axon by stretching [262,

263]. Traction forces generated in the growth cone arise from the coupling of the continuous



Chapter 6. Mathematical model of growth cone trajectories 82

retrograde flow of actin to the substrate through adhesion receptors [264–266]. For reasons

which are not clear, axons tend not to bend and follow the highly random movements of their

growth cones. Rather, they usually form a straight line between their tip and a location where

they are firmly attached to the substrate (i.e. a focal adhesion [267]). We call such locations

anchor points; they can be at the soma, at a branch point, or at some other seemingly sporadic

location along the axon. Although it is not clear how this tension leads to elongation, the

growth cone advances largely in the stretch direction along the axon, resulting in relatively

straight paths.

To determine quantitatively what effect this might have on axonal trajectories requires math-

ematical modelling. Growth cone movements were first analyzed in detail in [121, 122]. Sub-

sequently, various phenomenological models have been built that differ as to how they treat

stochasticity, and mechanisms for directional preference, namely turning or growth rate mod-

ulation. One set attempted to fit the dynamics of growth cone movement to a random walk

with drift [123–125, 129]. Li et al. simulated trajectories by assuming the turning angle of

the growth cone is in proportion to the angle between the neurite and the resultant filopodial

tension [131]. In [126], the axon growth angle depends on the tendency to turn towards the

gradient angle and noise. The noise term is small (2-5◦), leading to straight paths that resem-

ble axon growth in the tadpole spinal cord. Another set of models has concentrated on how

asymmetric receptor binding across the growth cone might be used as the basis of a turning

signal [133, 134, 139], but without considering the consequence for whole trajectories. A third

group of models considers the possibility that the velocity of the growth cone is influenced

by an attractive gradient from the target cells, and chemoattractants and chemorepellants re-

leased from other growth cones and itself [136, 137]. However none of these models has been

closely compared with the details of experimentally measured trajectories in gradients, and

parameters such as variability in step sizes, the distribution of instantaneous turning angles,

and straightness of real paths, have not been addressed. Thus the question of whether there is

a model that can adequately capture all these characteristics of real trajectories remains open.

Without such a model, it is difficult to determine if trajectories observed in vivo are in fact

consistent with gradient guidance.

Here we present a new computational model for axonal trajectories based on the combined

influence of anchor points, a tendency to turn towards the gradient direction, and random
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noise. We found that the gradient had no effect on the step sizes, thus we only model the

turning angles. Critically, the model predicts rapid near saturation of average turning angles

with time. To test this model quantitatively we then introduce a new microfluidics assay for

studying axonal response to gradients, and using timelapse imaging characterize the behavior

of axons over several hours of growth in both attractive and repulsive gradients. We find

that our model fits the behavior observed very closely. We then investigate by simulation

the effect of increasing the number of anchor points, and find that this increases the average

fidelity of turning but at the cost of higher variability. Together, this work both explains why

turning response to gradient saturates so rapidly and reveals the quantitative principles that

are required to reproduce accurately in vitro axonal trajectories in response to chemotactic

gradients. The model identifies straightness as a limiting factor on how much axons can turn

and suggests that the frequency of anchor points plays a key role in the axonal turning response

to a gradient.

6.2 Materials and Methods

Microfluidics chamber fabrication, primary superior cervical ganglion

(SCG) cell culture and gradient measurement

See Chapter 5.

We added another condition: To generate a repulsive gradient, KT5720 (Alexis Biochemicals),

a specific inhibitor of protein kinase A (PKA), was added into both the high and low solutions

at a concentration of 70 nM.

Tracking growth cone trajectories

After the onset of the gradient, the axons were imaged every 5 min for 6 hours using Zeiss Zen

software. After data acquisition, axons of 30 µm length, growing in all directions, that did not

branch or retract in at least 80 minutes, were chosen for measurements. All axons were tracked

manually using customized MATLAB software (The MathWorks) for as long as possible until
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they branched or retracted. A 5 min time interval was chosen because, for smaller intervals,

variability in identifying the centre of the growth cone was larger than the net movement

between frames. The point where the axon attaches to the cell body or the main branch was

considered the anchor point.

The straightness index

The straightness index S is the inverse of tortuosity, and compares the overall net displacement

G of a path with the total path length T [268]. Consider a walk that starts at location (x0, y0),

and after n steps of lengths lj (j = 1...n) finishes at (xn, yn). The straightness index is given

by:

S =
G

T
=

√
(xn − x0)2 + (yn − y0)2∑n

j=1 lj

This index is between 0 and 1, where 1 corresponds to movement in a straight line and 0

corresponds to a walk that returns to the origin. The closer this index is to 1, the straighter

the trajectory is. Obviously S depends on the time interval used for tracing, but can be used

to compare conditions which all have the same time interval.

Modelling growth cone trajectories

All parameters of the model are summarized in Table 6.1. We consider a model which is a

discretized random walk in which we separate the length and directions of the steps (Fig 6.1A).

We discretized the axons at a timestep of 5 minutes, and, based on hypotheses we test later,

only explicitly modelled the turning angles of the steps or ’bearing changes’. ∆θ(t), the ‘bearing

change’ at time t depends on the current bearing of the growth cone θ(t), the angle φ(t) of the

vector connecting the growth cone to its anchor point, the gradient direction Ψ and the noise

ξ according to Equation (6.1):

∆θ(t) = a∠(φ(t), θ(t)) + b∠(Ψ, θ(t)) + ξ,

where two parameters a and b scale the contributions of the first term representing persistence

and the second term representing the bias due to the gradient. The symbol ∠(x, y) denotes the
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Symbol Meaning
θ GC’s current bearing
φ GC’s overall angle
Ψ Gradient direction
∆θ Bearing change
ψturn Turning angle after 80 minutes
a Persistence strength
b Bias strength
ξ Noise in bearing change
σ Standard deviation of ξ
s Step size every 5 minutes
L Distance from origin to GC
S Straightness index
r Anchoring rate

Table 6.1: Summary of model parameters (GC: growth cone).

angle difference x−y constrained to take values from −π to π. It is positive for an anticlockwise

turn to get from y to x. As the bearing is biased by the gradient direction, the overall growth

cone angle φ(t) will also be biased by the gradient, coupled through the above equation.

We first assume there is only one fixed anchor point where the axon initially grew out of the

cell body or the main branch. We will later relax this assumption and allow the growth cone

to put down new anchor points along its path. We denote the rate of anchor point deposition

as r, which is the inverse of the average number of steps per new anchor point.

We first assume an initial direction of φ(0) = θ(0) = π/2, a gradient direction of Ψ = 0 and a

fixed step size s every 5 minutes. In the idealized noiseless case (ξ = 0) as t→∞, the equation

reaches a steady state when ∆θ = 0, i.e.:

∆θ(t) = a(φ(t)− θ(t)) + b(0− θ(t)) = 0.

This gives:

θ(t) =
a

a+ b
φ(t) = αφ(t)
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with α = a
a+b

. Defining L to be the distance of the growth cone from its original position, and

using the geometry in Fig 6.1.A, we have:

tan(φ(t+ 1)) =
L sinφ(t) + s sin(αφ(t))

L cosφ(t) + s cos(αφ(t))

≈ tan(φ(t)) +
s sin(αφ(t))

L cosφ(t)
− L sinφ(t)s cos(αφ(t))

L2 cos2 φ(t)

The approximation above is due to s � L and φ(t) → Ψ = 0 as t → ∞. Using the Taylor

expansion f(x0 + δx) ≈ f(x0) + δxf ′(x0) and d tan−1(x)/dx = 1/(x2 + 1), we invert both sides

of the above equation to obtain:

φ(t+ 1) ≈ tan−1(tanφ(t) +
s sin(αφ(t))

L cosφ(t)
− L sinφ(t)s cos(αφ(t))

L2 cos2 φ(t)
)

≈ φ(t) + (
s sin(αφ(t))

L cosφ(t)
− L sinφ(t)s cos(αφ(t))

L2 cos2 φ(t)
) cos2 φ(t)

≈ φ(t) + s/L (sin(αφ(t)) cosφ(t)− cos(αφ(t)) sinφ(t))

≈ φ(t) + s sin((α− 1)φ(t))/L

At t→∞, ∆θ(t)→ 0, meaning the growth direction stops changing, thus φ(t) ≈ 0 and L ≈ st

due to geometry (even for the a = 0 case), so the above equation can be simplified as

dφ(t)

dt
≈ (α− 1)φ(t)

t

dφ(t)

φ(t)
≈ (α− 1)dt

t

lnφ(t) = (α− 1) ln t+ const

Therefore, the long-term turning behaviour of axons in the model is given by the power law

φ(t) ∝ t(α−1).
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Figure 6.1: Model set-up and the noiseless case. A, The axon starts growing from the
soma (black segment) at initiation angle φ(0). At each time point the bearing is θ(t), and the
bearing change between t and t + 1 is ∆θ(t). φ(t) is the angle of the vector connecting the
current position of the growth cone with the anchor point. Ψ is the fixed gradient direction.
B. The turning angle ψturn at time t is the angle between the initial direction of growth, and
the line joining the initial and current positions of the growth cone. C. Simulation of the
growth cone angle using equation (6.1) in the noiseless case (ξ = 0) with the same a = 1 and

different values of b. The dashed line is the power law φ(t) ∝ t
−b
a+b . In the long time limit, this

law accurately describes the angle of the growth cone. D. Simulations of the trajectories for
different combinations of a and b in the absence of noise. Larger b leads to stronger turning.
When a = 0, the growth cone very rapidly aligns with the gradient. The persistence term

(a > 0) leads to incomplete turning.

6.3 Results

A correlated walk model of growth cone trajectories

We modelled 3 basic influences on the direction of axon growth: a tendency to grow straight, the

effect of a chemotactic gradient, if present, and random movement noise. In a fixed coordinate

system with arbitrary zero angle direction, we define θ(t) as the bearing of the growth cone

at time step t, φ(t) as the angle of the vector connecting the growth cone to its anchor point,
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and Ψ as the gradient direction (terminology is summarized in Table 6.1). We define ‘bearing

change’ as ∆θ(t), the change in θ(t) at time step t, distinct from ‘turning angle’ ψturn, the total

change in θ from the initial direction of growth over long periods of time. For simulations we

identify each timestep as 5 minutes of real time. The model (Fig 6.1) is then

∆θ(t) = a∠(φ(t), θ(t)) + b∠(Ψ, θ(t)) + ξ, (6.1)

where a scales persistence to move in the same direction as the overall direction of the axon, b

scales the bias due to the gradient, and ξ is random noise in the bearing changes. The symbol

∠(x, y) denotes the signed angle between the unit vectors with angles x and y, and constrains

the resultant angle to be between −π and π. The step size is the distance moved after one time

step, and will later be estimated empirically.

We consider first the noiseless case (ξ = 0) in long- and finite-time regimes, and then consider

the effects of noise. Figure 6.1C shows the results of setting ξ = 0, with a fixed step size of

s = 3µm, and simulating the model for long times with the same a = 1 and different values of b

(0.1, 0.2 and 0.3). Turning angles rapidly saturate, which can be understood analytically (see

Methods): in the t→∞ limit, the growth cone angle follows a power law with respect to time

φ(t) ∝ t(α−1) or log(φ(t)) = const + (α− 1) log(t) (Fig 6.1C). This relationship generally holds

for t > exp(4) ≈ 4 h, meaning that for long times, the rate of change of angle decreases and

this rate is determined by the power law exponent b/(a+ b). Since comparison with empirical

data (see later) shows that the biologically relevant regime is b� a, the exponent is generally

small. Thus, while ultimately axons in the model do eventually align with the gradient, this

process takes an exceedingly long time. This explains the slow and decreasing change in the

turning angle over time in the noiseless case.

The finite t regime of this equation is difficult to solve analytically, since φ(t) depends on the

entire history of growth cone movements. Simulations using different combinations of a and b

are shown in Fig 6.1D. For the cases of a 6= 0, after 150 time steps (12.5 h of real time), the

resultant turning angle was far from completely aligned with the gradient. Although the bias

term bent the trajectory in the direction of the gradient, there was a straightening effect due to

the persistence term, constantly pulling the growth cone towards the overall growth direction

of the axon. As expected, the pull due to the gradient increased with larger b (Fig 6.1D). Thus,

the persistence term prevented the axon from completely aligning with the gradient. Also
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Figure 6.2: Model results with noise. A. Long term behaviour of growth cones: Simu-
lation of 9 axons with fixed growth rate and noise in bearing changes (ξ ∝ N (0, π/4) radians)
starting at φ(0) = 90 subject to the gradient direction Ψ = 0 with persistence a = 1 and bias
b = 0.1 (blue), b = 0.2 (red), b = 0.3 (black) after 150 steps (12.5 hours of real time). B. The
trajectories with the same parameters without noise. C. The turning angles over time (mean
± SEM) of 1000 axons for different values of b (0.1, 0.2, 0.3) and a = 1. D. Straightness

(mean ± STD) decreases as the noise variance increases.

apparent is that without noise, the trajectories were all very straight (with straightness index

(see Methods) greater than 0.98). Thus, the microscopic constraint imposed by the persistence

term leads to the macroscopic phenomenon of incomplete turning.

When we introduced Gaussian noise into the bearing changes (in radians) (ξ ∼ N (0, σ), σ =

π/4) with the same parameters and initial conditions as above for 1000 axons, the behavior was

qualitatively similar: after an initial period of relatively rapid turning, turning angles tended

to an almost steady state which was not aligned with the gradient even after a long time.

However the average final turning angle was even less than that of the noiseless case. This is

because the noise created more random wandering of the growth cone, further reducing the

directional effect of the gradient (Fig 6.2A-B). After 20-40 minutes, for b = 0.1, the turning
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angle distribution of the population was 7±25◦ (mean ± std). Assuming a normal distribution

of turning angles, this means that many of the axons were no longer roughly perpendicular

to the gradient, and thus only continued to turn extremely slowly. Therefore over time the

influence of the gradient on the whole population of axons weakened. The persistence term

also created a resistance against large turns due to the gradient. Increasing b/a increased the

turning angle, but did not alter its rapid saturation with time (Fig 6.2C). Lastly, we examined

the effect on the straightness by varying the standand deviation of the noise σ from 0 to π

radians. As the steps became more noisy, the paths became less straight (Fig 6.2D).

In summary, the noiseless case generated very straight axons and growth cone angles that

followed power laws with respect to time in the long time limit. Similarly, in the noisy case,

the rate of change of the average turning angle was initially rapid and then slowed down even

more rapidly with time. In both cases, the persistence term was a limiting factor on how

much and how fast the axons could turn. Thus, this model captures, at least qualitatively, the

behavior that axons turn only slightly in gradients, and even for long times do not generally

become completely aligned with the gradient.

Stable gradient generation for guidance assays

Having established the basic behaviour of the model, we then asked whether it could reproduce

in detail real axon trajectory statistics. We therefore analyzed the trajectories of superior

cervical ganglion neurons in a new microfluidics device (Fig. 6.3A-C). This device generated

linear gradients, by the mixing of high and low solutions of a chemotropic factor. The gradient

was visualized using 40 kDa dextran-tetramethylrhodamine (Fig 6.3D), and gradients were

stable for at least 20 hours (Fig 6.3E,F).

SCG neurons were guided in the microfluidic assay

We measured the response to nerve growth factor (NGF) gradients of axons from dissociated

P1-P3 SCG neurons. We chose this model system because almost 100% of these neurons express

the NGF receptor TrkA ([269, 270]).
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Figure 6.3: The microfluidic assay. A, The design of the chamber: the two solutions
were pumped into the inlets and mix in the mixing channels before flowing into the growth
chamber where the cells are plated. The mixing channels were of height 50 µm and width
50 µm. Scale bar 1 mm. B,C, Photo of the experimental setup: two glass syringes attached
to a Harvard pump injected the solutions into the chamber bonded on a 35mm plastic plate.
D, Two solutions, one of which contained 0.1% (v/v) dextran fluorescently labelled with
tetramethylrhodamine, were used to visualize the gradient. Brighter regions indicate higher
concentrations. Scale bar 200 µm. E, F. Line-scan measurements of fluorescence intensity
across the device show a linear gradient which persists for at least 20 hours (t = 0h (E) and

t = 20h (F)). The shaded errorbars show standard deviations across 10 chambers.

Three conditions were investigated: a control without flow or gradient, an attractive gradient

of nerve growth factor (NGF) and a gradient of NGF with added KT5720, which converts

attraction to repulsion by lowering levels of cAMP in the growth cone ([80]). Cells were

injected into the growing chambers and grown for 2 hours before gradient onset. In the control

condition, cells were grown over several hours with 0.3 nM NGF. In the NGF gradient condition,

two solutions of concentrations 0 nM and 10 nM NGF were pumped into the growing chamber

through the two inlets. Previous work using Scatchard analysis estimated that Kd = 0.9± 0.3

nM [271] and showed that SCG neuronal outgrowth is severely inhibited at the saturating

NGF concentration of 40 nM [272]. Given the healthy growth in our assay, it is clear the
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Figure 6.4: Turning in microfluidic gradients. A. Images of a representative axon
initially almost perpendicular to the gradient at the beginning and end of the measurement
after 80 min. Scale bar 20 µm. The red dots are the positions of the growth cone. B,
Summary of turning angles in the 3 conditions (mean ± SEM): control 0.2 ± 2.1◦ (n=120),
NGF gradient (0-10 nM) 9.3± 1.9◦ (n=143), NGF gradient (0-10 nM) + KT5720 −8.8± 2.2◦

(n=112). *: p < 0.01 t-test in both cases. C. The means (red) and standard deviations (blue)
of turning angles of 143 axons over time for the attractive case.

concentration in the gradient condition was below saturation point. We analyzed trajectories

for 300 axons per condition. These were obtained from 23 individual chambers in the control

case, 27 chambers in the NGF gradient case, and 24 chambers in the NGF gradient plus KT5720

case. In most experiments, 2 chambers were run in parallel, so the total numbers of experiments

in each case were 12, 15 and 13 respectively. For the measurement of turning angles we selected

only axons that started growing between 70◦ and 110◦ relative to the gradient (when present).

An asymmetric concentration field of guidance cue across the growth cone leads to turning

[80, 156, 157, 252] and axons growing in this range experienced between 94% (i.e. sin 70◦) to

100% (i.e. sin 90◦) of the maximum possible concentration difference across the growth cone.

Thus we expected the impact of the gradient would be strongest on these axons (Fig 6.4A).

We tracked the growth cones every 5 minutes for as long as possible until they collapsed or

branched or collided with other cells, axons or the edges of the chamber. The SCG axons were

clearly attracted in the NGF gradient (Fig 6.4B). When the protein kinase A inhibitor KT5720

was added to the high and low solutions at concentration 70 nM, attraction was converted into

repulsion as previously described [61, 80] (Fig 6.4B). These results confirm that the gradient in

the microfluidic assay elicited a guidance response in SCG axons. From the timelapse imaging

data, we then selected the subset of axons that did not branch or retract following growth for

several hours in the attractive NGF gradient, and measured the turning angles of the population

over time. The average turning angle reached the steady state quickly and did not increase

significantly with time, matching the prediction of the model (Fig 6.4C).
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The gradient did not affect axon branching

One possible way that the gradient could affect the axons is by causing biased branching (c.f.

[273]), or changes in branching rates. To test whether the NGF gradient changed the branch

extension and retraction rates, we compared the number of branches per cell after 5 hours of

growth and did not detect any difference (p = 0.9 Kolmogorov–Smirnov test, Fig 6.5A). We

measured the intervals between successive branching events in the same cell in each condition

and did not find any difference in the branching rate (p = 0.7 Kolmogorov–Smirnov test,

Fig 6.5B). Similarly, the lifetimes of the branches were unaffected by the gradient (p = 0.2

Figure 6.5: The gradient did not affect branch extension and retraction rates. A.
Histogram of the number of cells with different numbers of branches after 5 hours of growth.
The number (mean ± std) of branches per neuron in the control condition was 4.2±1.8 (n=324
cells) and in the gradient condition was 4.4±1.9 (n=297 cells), p = 0.9 Kolmogorov–Smirnov
test. B, The distribution of interval times between two successive branching events of the
same cell. The interval (mean ± std) in the control condition was 23.1 ± 22.8 min (n=315
intervals) and in the gradient condition was 24.1 ± 23.5 min (n=287 intervals), p = 0.7 KS
test. C. Branch lifetime (mean ± std) in the control condition was 87 ± 79 min (n=245
branches) and in the gradient condition was 92 ± 81 min (n=213 branches), p = 0.2 KS
test. D. Histogram of the number of branches pointing up the gradient vs down the gradient

(p = 0.8, KS test).
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Figure 6.6: Flow did not affect step statistics. A. Axons growing in different directions
were grouped into four quadrants. B. Growth cones’ step sizes in different quadrants. n values
refer to the number of steps in each quadrant. There was no significant difference between
the quadrants (p = 0.7 Kruskal-Wallis test). C. Grow cones’ bearing changes in different

quadrants (p = 0.4 Kruskal-Wallis test).

Kolmogorov–Smirnov test, Fig 6.5C). We counted the number of branches pointing up and

down the gradient per cell and did not find any difference (p = 0.8 Kolmogorov–Smirnov test,

Fig 6.5.D). Thus the gradient had no effect on axon branching and retraction.

Flow did not affect the statistics of steps

To test whether fluid flow in the chamber biased the statistics of the steps, axons growing in the

gradient condition with fluid flow were divided into 4 quadrants with different relative angles to

the fluid flow: 2 quadrants growing perpendicular to the flow, one quadrant growing with the

flow, and the other growing against the flow (Fig 6.6A). Comparing the distribution of bearing

changes between the 4 quadrants, and with axons from the control condition without any flow,

showed no influence of the flow (p = 0.7 in Fig 6.6B and p = 0.4 in Fig 6.6C, Kruskal-Wallis

test). The means of the bearing changes in quadrants 2 and 4 were non-zero, and the bearing

changes accumulated over time to result in a non-zero average turning angle of the population.

However, these differences in means were very small (approximately 1◦), and there were no

significant statistical difference among the distributions. Therefore, the positive turning angles

in the NGF gradient (and negative turning angles in the NGF gradient + KT5720) were due

to the effect of the gradient, not bias from the flow.
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Growth cone trajectories were generally straight

Axon growth is shown in Videos 1-3 and Fig 6.7A-C. The growth cone often wandered quite

randomly, but nevertheless usually the axon segment remained very straight from the growth

cone to the cell body or last axon branch point (Fig 6.7A-C). This implies that often the entire

axon segment was pulled sideways across the substrate (as can be seen directly in the movies).

Thus despite the irregular trajectory of the centre of the growth cone, the tension force on

the growth cone from the axon was usually pointing directly back to the last anchor point,

consistent with the assumptions of the model. To quantify this further, we measured the angle

of this 20 µm segment and the angle to the anchor point φ and found them to be almost the

same (Fig6.7E). Thus we can understand the term φ as the tension due to the most distal

segment.

The trajectories (i.e. the locus of the centre of the growth cone) in three conditions are plotted

in Figs 6.8, 6.9, 6.10. Note that these paths are not the same as the final image of the axon,

which generally pointed straight back from the final position of the growth cone to the anchor

point. Visually, the paths appear mostly straight with occasional large turns, consistent with a

long tail for the bearing change distribution. The mean straightness index for the trajectories

was S = 0.72. (Fig 6.11A).
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Figure 6.7: Axons were dragged by growth cones. A-C. Timelapse images of 3
example growth cones. Red arrows point to the putative anchor points and green arrows
point to the growth cones. Time is shown in hours and minutes. D. We measured the angle
of the neck of the growth cone (the last 20 µm, black line) and the overall growth cone angle
(blue line) after one hour from the start of the experiment. E. The two angles were highly

correlated, due to the straightness of the axon.
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Figure 6.8: Trajectories of 300 axons growing over 80 minutes in the control
condition, ordered by the initial angle. The red segments indicate the initial direction
of the axon and the blue segments show the traces of the growth cones’ trajectories. Scale

bar = 100 µm.
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Figure 6.9: Trajectories of 300 axons growing over 80 minutes in the NGF gradi-
ent, ordered by the initial angle. Only axons in the box were selected for turning angle
measurements as they were almost perpendicular to the gradient, hence most affected by it.

Scale bar = 100 µm.
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Figure 6.10: Trajectories of 300 axons growing over 80 minutes in the NGF
gradient with 70 nM KT5720 added, ordered by the initial angle. Only axons in

the box were selected for turning angle measurements. Scale bar = 100 µm.

Step size and bearing change distributions were similar across con-

ditions

There was little correlation between the bearing change magnitude and step size (Fig 6.11B).

The distribution of bearing changes in radians was well fitted by a mixture of a von Mises and a
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Figure 6.11: Trajectories were straight with step sizes and bearing changes in-
dependent of each other A. Distribution of straightness indices of all paths with mean
straightness of 0.72. B. There was no correlation between bearing change and step size (R2 =
0.1, p = 0.7). C. The distribution of bearing changes (blue) in radians in the control condition

can be fitted to a mixture of two von Mises distributions (red) P (x) = 0.5 exp(3 cos(x))
2πI0(3)

+ 0.03.
D. Step sizes in the control, attractive and repulsive gradients conditions were similar and
well-fitted by the gamma distribution P (x) ∝ x2 exp(−x/24) (red). E. Step sizes of individual
growth cones (blue) can be described by gamma distributions (red) (9 examples shown). F.
This distribution of the average step sizes (blue) of individual growth cones was well-fitted
by a Gaussian distribution N (0.7, 0.24) (red). G. Mean square displacement and standard
deviation of 300 growth cones growing over 100 mins in the control condition was super-linear,
indicating that growth cone trajectories were straighter than predicted by a simple random
walk. H. Autocorrelation of bearing changes (mean ± STD) showed that successive bearing

changes were anti-correlated.

uniform distribution (−π < x < π) (Fig 6.11C). That is there was a great deal of randomness in

bearing changes, but with a peak in probability near the forward direction. Thus growth cones

tended to move in a straight line instead of turning uniformly randomly. This is inconsistent
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with the assumptions of several previous models [124, 125, 129].

Accumulating across all the growth cones, the distributions of step sizes over 5 min were

statistically indistinguishable across the three conditions (Kruskal-Wallis test p = 0.35), and

were well fitted by a gamma distribution (Fig 6.11D). That is, the most likely step size was

around 0.5 µm/min, but the distribution had a long tail, so that longer step sizes were also

seen. The distribution of step sizes for each individual growth cone were also well fit by gamma

distributions (Fig 6.11E). However, individual growth cones had idiosyncratic mean values.

The distribution of these mean values could be well fitted by a Gaussian distribution (Fig

6.11F).

Nevertheless, the mean square displacement was clearly not linear, implying that a simple

random walk is not suitable to describe the movement (Fig 6.11G). Successive steps were anti-

correlated (Fig 6.11H), which was not accounted for in a previous model [123]. This helps the

paths remain relatively straight: if successive steps were positively correlated, the paths would

become more bent over time. Due to large noise in the bearing changes, bearing changes more

than one step apart were uncorrelated.

Turning angles over time were well predicted by the model

Having established the key statistics of steps from the data, we now asked if the simple model

in equation (6.1) could replicate the observed trajectories and explain the phenomenon of

saturated turning. We sampled the mean speed vmean of each growth cone from a truncated

Gaussian distribution of mean 0.7 µm/min and standard deviation 0.24 µm/min. At each time

point (5 minute interval), the growth cone sampled a step size from the gamma distribution

Γ(4/u, vmean ∗ u/4) where u was a uniform random number. The bearing changes evolved

according to equation (6.1). We found that the random noise ξ in bearing changes (in radians)

could be well fit by the mixture von Mises distribution

P (ξ) = c
exp(d cos(ξ))

2πI0(d)
+ (1− c)

where c and d are parameters to be fit. This distribution is not necessarily the same as that

of the bearing changes in Fig 6.11F. As the bearing change is the sum of three random terms,
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Figure 6.12: Model captured key statistics of trajectories. A. The evolution of
simulated turning angles (mean ± STD) of n=5000 growth cones over time in the attractive
gradient condition. B. Simulated turning angles after 16 steps (80 min) had mean 9.8◦ and
standard deviation of 24.2◦, similar to the empirical data in red in Fig 6.4B. C. Distribution of
simulated step lengths (blue), fitted with the empirical distribution (red). D. Straightness of
simulated trajectories (mean 0.75, blue), compared with empirical distribution (red) (p = 0.2,
t-test). E. Simulated bearing changes (blue) fitted with the mixture of von Mises distributions
given in Fig. 6.11D (red). F. Mean square displacement of simulations (blue) and data (red).

G. Autocorrelation of simulated bearing changes.

its distribution is broader than the distribution of the noise term. To estimate the four free

parameters a, b, c, d, we input the initiation angles φ(0) and used the model to generate the

distribution of turning angles ψturn. We then estimated the likelihood function that the turning

angle data was generated from the model with the given parameters L(ψturn|a, b, c, d, φ(0)).

We found the values of a, b, c, d that maximized the likelihood (the parameters mostly likely

to have generated our empirical turning angle data) were a = 0.7, b = 0.09, c = 0.75, d = 6.

The statistics over 5000 simulated trajectories using these parameters are shown in Fig 6.12,
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Figure 6.13: Simulated trajectories from 3 conditions. A. control, B. NGF gradient,
C. NGF gradient + KT5720.

and some example trajectories are shown in Fig. 6.13. Similarly, we fitted the model to the

control data and repulsive gradient and found b = 0.002 and b=-0.08 respectively, with other

parameters remaining at very similar values as before. Notably, the simulated turning angles

changed little over time (Fig 6.12A), consistent with our preliminary prediction and the data

(Fig 6.1E, 6.4C). Thus, with realistic step sizes and bearing change noise distributions, the

model was able to capture the phenomenon of saturated turning with quantitatively accurate

means and variances over time. The distribution of turning angles and step sizes also closely

matched the real data (Fig 6.12B, C). The simulated straightness distribution was also very

similar to the real distribution (p = 0.2, t-test) (Fig 6.12D). The model also captured the

distribution of bearing changes, the mean square displacement and the anticorrelation between

successive bearing change, which was a consequence of the persistence term straightening the

paths (Fig 6.12D-F). If successive steps were positively correlated, the paths would become

more bent over time. This correlation was rapidly lost beyond one time lag because of the

large noise.

Unlike previous models, we did not assume constant steps or a uniform distribution of bearing
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changes but rather derived these from empirical data. The model was then able to predict the

evolution of the average turning angle over time, the straightness profile and the anticorrelation

in bearing changes. Most importantly, it could explain the phenomenon of slow and saturated

turning, due to a weak bias term relative to the persistence term. A microscope factor in

each step led to a macroscope phenomenon of limited, variable turning and straight paths.

This often overlooked feature of axon growth turned out to be critical in our model in limiting

the overall turning. We also found little difference between the attractive and repulsive case,

indicating that attractive and repulsive gradients employed similar mechanisms and could not

reduce the variability of axon trajectories.

Multiple anchor points achieved sharp turns but also increased vari-

ability

The in vitro data we have presented here was well-fitted by assuming the only anchor point is

where the axon emerges from the soma or the branch point. However the in vivo environment

is much more complex, and axons may establish anchor points with the substrate at multiple

positions as they extend. We therefore investigated in the model what effect this would have

on turning angles. We assumed that at each timestep, the probability of that point becoming

a new anchor point was fixed, while leaving the evolution at each step as before. The average

number of anchor points per timestep (i.e. 5 min) is denoted by r.

We analyzed two cases: anchoring probabilistically at each time step (Fig 6.14A-C), and an-

choring at regular intervals (Fig 6.14D-F). We simulated the trajectories for T = 150 timesteps

with the same parameters as Fig 6.2A (a = 1, b = 0.1, ξ = 0 or ξ ∼ N (0, π/4) radians). In both

cases, more anchor points led to sharp turns in the trajectories and larger mean turning angle

(Fig 6.14G), since the growth cone now was more free from its initial position. However, it

increased the variability in the turning (Fig 6.14G). Given the same rate of anchoring, whether

the growth cone put down new anchor points probabilistically or regularly made little differ-

ence to the mean turning. We compared the mean square final angle 〈φ(T )2〉 which is the sum

of the bias 〈φ(T )〉2 and the variance (φ(T )). Ideally the growth cone should completely align

with the gradient, i.e. φ(T ) = 0. Fig 6.14H shows the bias/variance trade off. Although more
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Figure 6.14: More variability with more anchor points. A-C. Trajectories of growth
cones with probability of putting down a new anchor r= 0.01, 0.05, 0.1 at each timestep
and the same parameters as Figure 6.2A (a = 1, b = 0.1, T = 150 timesteps). The black
plots are without noise in the bearing changes, the blue plots are with noise ξ ∼ N (0, π/4)
radians in the bearing changes and the red dots are the anchor points. More anchor points
lead to higher variability but also stronger turning. The means and standard deviations of
turning angles and the values for the noiseless versus the noisy case in brackets for r= 0.01,
0.05, 0.1 are 32±9◦ (30 ± 36◦), 55±8◦ (49 ± 57◦) and 67±5◦ (60 ± 56◦) respectively. D-F.
Trajectories of growth cones with the same rate of putting down new anchor points as A-C
but at regular intervals. The means and standard deviations of turning angles and the values
for the noiseless versus the noisy case in brackets are 27◦ (24 ± 17◦), 57◦ (54 ± 51◦), 69◦

(66 ± 51◦). G. The means and standard deviations of turning angles after 150 timesteps as
a function of the anchoring rate at regular intervals in the noiseless and the noisy case. H.
The mean square of the final growth cone angle (in degrees) 〈φ(T )2〉 for different anchoring
rates r after 150 steps. 〈φ(T )2〉 is the sum of the bias term 〈φ(T )〉2 and the variance term
var(φ(T )). Although more anchor points add more variance to the final angle (red curve),
they achieve stronger turning φ(T ) ≈ 0 (black curve). I. The evolution of φ(t) over time, for
the case of anchoring at regular intervals and no noise in the movement (ξ = 0). With more
anchor points, φ(t) also follows the power law but with steeper slope, meaning that φ(t)→ 0

at a faster rate than the case without anchor points.

anchor points introduced larger variance in the final angle, they achieved greater turning, i.e.

smaller φ(T ).

Fig 6.14I shows that in the case without movement noise (ξ = 0) and regular anchoring, the
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growth cone angle φ(t) also followed a power law in the large t limit, similarly to the case without

anchoring (Fig 6.1C). However, the exponent of this power law was larger, demonstrated by

a steeper slope between log(t) and log(φ(t)), meaning that the growth cone aligned with the

gradient faster with more anchor points. Thus, increasing the rate of anchoring leads to stronger

turning, but increases the variance of the responses.

6.4 Discussion

Here we presented a model of axon trajectories in gradients and helped resolve the mystery of

why axon turning angles in gradients saturate over time in vitro, revealing an important factor

limiting axon turning. We found that the movement of the growth cone was strongly influenced

by the axon’s tendency to maintain a straight trajectory forward, limiting the directional effect

of the gradient and preventing the axon from aligning with the gradient even after a long time.

Our model predicted that, averaged over a large population of axons, the initial rate of turning

drops rapidly over a short period of time (20- 40 minutes). The model shows that adding more

anchor points can give the growth cone more flexibility and produce larger average turning,

but also increases the variability. Thus we predict that different substrates, producing different

densities of anchor points, could result in different trajectories for the same gradient conditions.

The application of forces to axons can induce rapid elongation without axonal thinning, and

thus stretch can stimulate growth [274]. Furthermore, stretch can also regulate the mode of

growth. When axons are tightly bound to a sticky substrate, stretching only happens at the

tip and axons elongate by tip growth. In contrast if axons grow relatively unattached to the

substrate, they will lengthen by stretching due to the pull of the growth cone [37, 275], which

appears to be the case in our experimental condition. The tension along the axon will cause

stimulation of growth in the existing direction producing straighter trajectories. The stiffness

of axons is also important [276], and stiffer axons will likely have higher persistence due to

their more limited ability to bend.

This tension results from cytoskeletal coupling with adhesive interactions to the substrate and

is critical to growth cone migration [277, 278]. Although anchor points are an abstraction in

our model, their biological implementation may be focal adhesions. Only at these points is

the axon firmly attached to the substrate. There a number of ways in which anchor points



Chapter 6. Mathematical model of growth cone trajectories 107

could be investigated experimentally in future work. Axons could be stained for proteins such

as integrins ([267]) to test whether their distribution is strongly localized to particular points

along the axon. We also predict that applying force orthogonal to the direction of axon growth,

for instance by using a pipette to puff liquid at different locations along the axon, would cause

a deflection of the axon of a size related to the distance from the nearest anchor point. A

similar experiment was performed using a glass needle to tow axons [37]. It was observed that

the distal region of the axon was free of the substrate while the proximal region was firmly

attached. In addition, it could be possible to determine the internal stress field of an axon, as

has been done for growth cones [265]: we would expect the stress to in general be different on

the two sides of an anchor point. The density of anchor points will depend on the components

of the extracellular matrix (ECM). In our experiments, on laminin, they appeared to be rare.

This might be because adhesion points are expensive to produce and the axon can grow faster

when it is not attached to the substrate [275]. However the biological factors governing when

new anchor points are generated are unknown.

Tension is also dependent on cell type and two main properties of the substrate: stiffness and

ECM components. Our data comes from peripheral nervous system (PNS) neurons growing on

a laminin substrate that is hard rather than gel-like, and other cell types of different substrates

might have different behaviours. Central nervous system (CNS) and PNS neurons have dif-

ferent sensitivities to substrate stiffness due to adaptation to their natural environments [34],

and traction force in vitro increased on stiffer substrates [34]. Substrates with different ECM

components differentially promote growth cone motility and point contact formation. For ex-

ample, growth cones are more highly motile and neurites extend more rapidly on laminin than

fibronectin because point contacts have higher turnover rate [279].

Overall our work suggests that without many anchor points, cues additional to gradients may

be necessary for axons to reliably find their targets in vivo (unless the motility noise is for some

reason much lower in vivo than in vitro). These could include mechanical cues and axon-axon

interactions. To understand such interactions, it is important to generate assays with realistic

substrates suitable for different cell types. Recent 3D culture models, in which cells are grown

with a protein scaffold, can capture some aspects of the tissue environments instead of hard

surfaces [280]. It will be interesting to see how different ECM properties lead to changes in

trajectories and whether they can facilitate more reliable turning.
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In conclusion, we have presented a simple mathematical model which gives accurate quantita-

tive predictions of the properties of axonal trajectories in a microfluidics-based in vitro gradient

assay. The model identifies the key importance of anchor points in controlling turning, and

provides an explanation for why axonal turning in gradients in vitro tend to saturate rapidly

at small turning angles. This model provides a predictive framework which can be used to

test whether axonal trajectories observed in vivo can be explained purely in terms of gradient

guidance, or whether additional guidance mechanisms are also required.



Chapter 7

Discussion and Conclusions

The aim of this thesis was to develop mathematical models that would lead to a better un-

derstanding of axon guidance in chemical gradients. I first presented a theoretical analysis of

gradient sensing by receptors using a statistical framework, and then built a model of growth

cone trajectories based on experimental data from microfluidic devices. Here we review the

main findings of the models developed and suggest directions for future work.

7.1 Summary of findings

In chapters 3 and 4, we treated gradient sensing as a statistical inference computation that

combines some prior knowledge about the gradient with sensory information coming from the

receptor binding patterns. We assumed the growth cone acts as an ‘ideal observer’ that can

optimally combine these two sources of information to derive the maximum a posteriori estimate

of the gradient direction.

The first model developed in chapter 3 investigated the role of receptor diffusion in gradient

sensing by a one-dimensional ‘growth cone’. We assumed the prior distribution of the gradient

is flat. Decisions about the gradient direction are made on the basis of noisy information from

stochastic binding interactions between receptors and ligand molecules integrated over some

measurement time. We assessed the potential quality of gradient sensing by calculating the

Fisher Information between the gradient direction and the measurement. We assumed that

109
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the receptors only signal when bound and can diffuse freely on the cell membrane. The main

results were:

• The potential quality of gradient sensing declines with increasing diffusion constant of

the receptors. This result is intuitive because faster diffusion smears out positional infor-

mation from receptors to a larger extent.

• The amount of information receptors can carry about the gradient increases with con-

centration of the ligand molecules. As found in [216], a higher concentration means more

unbound and bound periods, i.e. more sampling within the measurement period, thus

results in more information.

• The faster the kinetics of the binding, the better the receptors can sense the gradient, for

the same reason as above.

• Although the receptors only signal when bound, only unbound times carry information

about the ligand concentration. This is because only the binding rate, not the unbinding

rate, depends on ligand concentration.

• Even if the receptors take time to change their conformation after binding and only start

signalling after some delay, whether the receptors become immobilised and can still move

freely when bound makes little difference to the potential quality of sensing. This is

because the unbound times remain unchanged and uncertainties about receptor positions

cancel each other out due to random, unbiased motion.

In chapter 4, we extended the model to a two-dimensional growth cone with fixed receptors. We

used the Bayesian framework developed in [95] to incorporate priors that represent prior bias

in the gradient estimation. We assumed an elliptical sensing device with randomly distributed

receptors. The main results were:

• The quality of the sensing depends on the positions of the receptors, not the shape of the

cell because the receptors sense and estimate the gradient.

• On an elliptical cell with uniformly randomly distributed receptors, the gradient sensing

will be biased in the minor axis direction because of the unequal variances in the estimate
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of the x and y components of the gradient. This leads to a biased distribution of the

estimated angle.

• Eliminating this bias requires a non-uniform distribution of receptors, with more receptors

near the minor axis and fewer near the major axis. The quality of the sensing is maximised

when the receptors are farther away from the cell centre as the concentration change over

the spatial extent of the receptors becomes larger.

In chapters 5 and 6, we described a novel microfluidic device that can generate stable linear

gradients. Based on the data of superior cervical ganglion neuronal growth cones growing in a

linear gradient of nerve growth factor, we found that:

• Growth cone movement was extremely variable and noisy. The presence of the gradient

did not reduce this variability or change the statistics of the steps.

• The axons had a strong tendency to grow straight, thus growth cone trajectories were

fairly straight. This tendency limited the amount of turning of growth cones due to

the gradient. We speculated that this persistence to grow straight is due to the tension

from the pull of the growth cone. The tension depends the nature of cell adhesion on

the substrate and the cell type. Changing any of these factors will likely change the

properties of the trajectories.

• We built a mathematical model in which the growth cone’s random movement has the

persistence to grow straight forward and is biased by the gradient. We first assumed there

was only one anchor point where the axon is fixed on the substrate and then relaxed this

assumption to allow the growth cone to put down more anchor points along its path.

• In our model, if the growth cone puts down more anchor points, it can achieve greater

turning but the trajectory will be much more noisy. This is because the trajectory is

‘reset’ more frequently and becomes less constrained by the initial growth direction and

history. This finding implies that stereotypical axon paths in vivo could only be achieved

with multiple anchor points along the trajectory and small motility noise.
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7.2 Discussion

Chapters 3 and 4 extended the previous framework of applying Bayesian inference in axon

guidance and can apply to other chemotactic systems. Eukaryotic cells employ spatial gradient

sensing meaning that the external gradient is detected by an asymmetric receptor activation

pattern on the cell surface. They are all subject to the constraint imposed by stochastic ligand

binding with moving receptors. The question of receptor diffusion has been underappreciated

in existing models and the analysis showed that it can play an important role.

Ours is a more realistic model of receptors that only signal when they are bound. The diffusion

of receptors necessitates the integration of receptor binding information over some measurement

time. This is in contrast with other models that assume receptors are stationary and the cell

can take a snapshot measurement of the binding pattern at one instant to infer the gradient.

When receptors can diffuse, snapshot measurements no longer suffice to estimate the gradient

because the receptors have been moving through different regions of the concentration field and

lost their positional information. In order to estimate the gradient optimally, the sensing device

sums up the total unbound times from all its receptors weighted by their average positions in

the unbound period. The direction of this resultant vector is the estimate of the gradient

direction. Interestingly, we found that if the gradient information comes from integrating over

time instead of a snapshot, then the performance goes up with concentration. This result

appears to contradict experimental results that showed a peak performance at an intermediate

concentration [95]. However, it has been proposed in [216] that this is possibly due to a limit

on production of downstream signalling molecules.

We also challenged the claim that bound receptors slow down or become immobilised to gain

more precise spatial information beneficial for concentration sensing [105]. Our analysis points

out that the random movements of the receptors cancel each other out and on average, the

quality of gradient sensing does not improve whether the bound receptors become immobilised

or not. The ligand concentration gradient information lies in the unbound periods.

In this work, we did not address other complex aspects of receptor behaviour such as endocy-

tosis or clustering and such behaviours can be interesting targets for future analysis. It has

been suggested in [281] that endocytosis and recycling can increase the rate at which indepen-

dent concentration measurements can be made, increasing the quality of gradient estimation.
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Another study [282] used Monte-Carlo simulations of ligand receptor binding and found that

“apparent” affinity of the ligand for the receptor decreases with clustering. This implies a

higher dissociation constant, which is beneficial when the ligand concentration is high and

detrimental when it is low, inferred from the chemotactic performance curve in Fig 2.4B.

We used Michaelis-Menten model of receptor dynamics with the assumption that the ligand-

receptor interactions are not limited by diffusion of ligands but the binding and unbinding

rates. The seminal work by Berg and Purcell in 1977 [206] has inspired many theoretical

models into the limits of gradient sensing due to ligand diffusion [207, 283, 284]. In their

classic work, they considered a model in which a spherical cell infers the ligand concentration

from time-averaged occupancy of a single receptor. Ligand molecules bind to the receptor

then unbinds and diffuses away. The precision of this estimation depends on the diffusion

constant of the ligand, the true concentration, the mean receptor occupancy, the integration

time and the receptor-ligand binding cross section. Bialek and Setayeshgar extended this result

by considering the association and dissociation rates between ligand molecules and receptors

[207]. In our models, we ignored the diffusion of ligand molecules, assuming that the interactions

are in the reaction-limited regime, meaning that the molecules diffuse much faster than binding

kinetics.

We were unable to solve the optimal receptor positioning for a general elliptical cell. However,

limited to a case of a circular receptor ring (
∑
r2x =

∑
r2y), we found that the receptors are

optimally placed to maximise
∑
r2i with ri being the distance of the ith receptor to the cell

centre. We also found that the prior and likelihood interact in complex ways. Our results agree

with a previous study in [99], showing the bias in an elliptical distribution of receptors and the

dependence of gradient sensing on the number of receptors, the size of the receptor ring and

the ligand concentration [95, 98].

Chapter 4 extended the previous results by incorporating the prior information, allowing a more

general treatment in polarised cells. In other chemotactic systems, polarised cells tend to be

significantly more sensitive to a chemoattractant gradient [285]. In polarised Dictyostelium, G-

proteins are distributed asymmetrically with a higher concentration at the leading than trailing

edge [285]. An interpretation of this is that polarised cells are already primed for a particular

gradient direction. In our statistical framework, this polarisation encodes an asymmetric prior

distribution. Bound receptors recruit and activate G-proteins resulting in downstream activity
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that might represent the posterior distribution Alternatively, the distribution of signalling

molecules prior to exposure to the gradient might encode the prior information. We expect

that growth cones newly introduced to the gradient will have a uniform distribution of signalling

molecules that represents a flat prior, while growth cones that have been exposed to a gradient

for a long time will have a localised distribution. ‘Primed’ growth cones will be more responsive

to gradients in the same direction of their initial bias but less responsive to gradients in the

opposite directions. These hypotheses will be interesting to test in the future.

The model in chapter 6 is built based on the assumption that growth cone movement depends

on three factors: persistence, bias and noise. The model derives some aspects from empirical

data such as step sizes being independent on the gradient and distribution of turning angles.

Without any direct measurement of anchor points, the model makes the minimalist assumption

that there is only one stationary anchor point and can match the data well. The noise term

can come from measurement noise from stochastic ligand-receptor binding and randomness in

the actin polymerisation process. However, the source of this noise term is still not clear.

This work highlights the importance of tension in growth cone trajectories. The growth cone’s

behaviour is slightly counter-intuitive. It is being pulled by tension from the axon but it is this

tension that stimulates growth and elongation through some little understood mechanosensing

mechanism. Some progress has been made in revealing the mechanisms underlying this process

[286]. Through the coupling with the substrate, the retrograde flow of actin within the growth

cone drives its movement forward. Thus, the growth cone’s movement depends critically on

the physical properties of adhesion on the substrate. Future work should investigate the role

of adhesion to substrate in axon guidance in more detail and suggestions will be described in

the section 3.3.

Adhesion sites provide the coupling between the extracellular matrix and the intracellular

actin cytoskeleton. Two broad categories of adhesion sites are “focal complexes” associated

with lamellipodia and filopodia that support protrusion and traction and “focal adhesions” that

provide more stable and longer term anchorage [267]. Smaller contact points or focal complexes

that provide short term attachment to the substrate are highly dynamic leading to the motile

movements of the growth cone. We hypothesise that anchor points are focal adhesions, or stable

adhesion contacts made up of integrin clusters and macromolecular complexes. On a laminin

substrate such as the one used in our experimental set up, such focal adhesions appeared to be
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rare as visually, the axon was only attached to the substrate at very few points. Methods to

visualise the anchor points in moving axons would be very useful to characterise this dynamics

in more detail. Existing methods relying on imaging focal adhesion kinases that are present in

adhesion complexes have provided important insights on the dynamics of such contact points

and their role in growth cone motility [279]. However, our study indicates that imaging focal

adhesions along the axon can also be critical to gain a more complete picture.

The model also predicts that with more anchor points and high motility noise, the trajectories

will have less persistence to grow straight and can curve back on themselves. However, this

phenomenon is rarely observed in vivo, suggesting that motility noise in vivo is small. In vivo

growth cones often follow stereotypical well-defined paths that can sometimes include drastic

turns, for example retinotectal projections in the zebrafish [287] or commissural growth cones

crossing the midline [288]. It is still unclear why in vitro turning is so different from in vivo,

but other factors such as physical barriers, cell cell interactions and the highly complex ECM

environment might be at play. Through expression of cell surface adhesion molecules and release

short and long-range signal cues, cell-cell interactions can serve as intermediate guideposts in

axon guidance and scaffolds for growth [289]. Adhesion molecules in the ECM might either

provide guidance directly or cooperate with diffusible guidance cues to achieve more accurate

guidance. Such possibilities are discussed in the next section.

Our work gives some insight for researchers in this field because it provides a detailed analysis

of guided trajectories that has been lacking. Traditionally, guidance data is provided in a

binary manner (turning left/right) however, the detailed statistics were lacking. It stimulates

new thinking about the critical role of adhesion points and how to manipulate them to regulate

guidance.

7.3 Future directions

7.3.1 Combination of multiple cues

A striking feature of axon guidance is the vast repertoire of guidance signals due to the com-

binations of ligand molecules, receptors, and downstream signalling pathways. Growth cones
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navigating in the developing embryo are likely to be exposed to and integrate multiple guidance

cues along their paths. The use of multiple signalling systems gives more flexibility in regulating

guidance responses to a limited number of guidance cues, possibly increases the chemotactic

accuracy and reduces noise. The rules by which growth cones respond to multiple factors are

still unknown.

Dudanova and Klein [290] classify interactions between guidance cues into two types. First,

different cues might act independently. For example, Ret and EphA4 receptors binding with

glial-cell-derived neurotrophic factor and EphirinAs ligands act independently in motor axon

projection to the vertebrate hindlimb [204]. Second, two types of receptors might interact in a

non-additive manner due to crosstalk between signalling pathways, by suppressing or enhancing

each other [290]. One of the best-known examples of the complex interaction between multiple

guidance cues is in axonal growth cones that cross the nervous system midline and change their

responsiveness to Slit and Netrin. Slit acts primarily as a chemorepellent while Netrin can act

as an attractant or repellent depending on the cellular context. DCC and UNC-5 receptors

bind to netrins and Robo receptors bind to Slit. Growth cones that have crossed the midline

become repelled by the Slit and simultaneously lose attraction to netrin. Activation of the Slit

receptor Roundabout (Robo) silences the attractive effect of netrin-1 through the formation of

a Robo/DCC receptor complex [291].

As in vivo studies have been difficult, in vitro assays will prove greatly helpful by creating

precisely controlled microenvironments to observe cell response to different combinations of

guidance cues. Cao and Shoichet [292] found a synergistic effect between NT-3 and NGF in

chick DRG neurons at E9 by observing that a significantly shallower gradient was required to

guide axonal growth cones. However, they did not find any synergistic effect between NGF and

BDNF. Furthermore, spinal neurons were guided by a concentration gradient of NT-3 in the

presence of NGF but not by a gradient of BDNF in the presence of NGF [293]. The authors

hypothesized that BDNF and NGF share common cytosolic signalling paths while NT-3 and

NGF use two separate pathways for guidance. The gradients in this paper took a long time to

develop (30-36h) while the DRGs extended axons within 12 hours. The assay was thus limited

to observing long term effects.

The combinatorial effect has been poorly examined in vitro, due to the lack of appropriate

experimental assays. Compared to classical cell culture methods, microfluidic devices allow
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much more refined spatial and temporal control over the guidance cue profiles and are ideal for

studying combinations of guidance cues. Few experiments have been done to investigate this

phenomenon but they have given interesting results. When the growth cone is presented with

opposing gradients of BDNF and substrate-bound laminin, the polarity of guidance response

of a growth can be modulated by manipulating the mean concentration of a BDNF gradient

[203]. Sloan et al. [259] discovered that commissural axons exhibited higher sensitivity to the

guidance cues when exposed to combined Shh and Netrin-1 gradients compared to each alone

and can turn in response to shallower gradients that were individually unable to guide axons.

This might be useful as growth cones can be guided by shallow gradients in the spinal cord

where the steepness of a single cue is insufficient.

New patterning techniques such as double-cue stripe assays have contributed to a deeper un-

derstanding of the retino-tectal topographic map. Using novel double-cue (receptor/ligand)

stripe substrates, Gebhardt et al. shows that proper topographic guidance requires both fiber-

target and fiber-fiber chemospecificity in nasal-temporal axons growing in a tectum where both

the axons and the target tissues express gradients of both ligands and receptors [294]. Future

microfluidics assays will be useful in investigating these interactions in further detail.

7.3.2 Substrate and turning

This thesis has revealed the critical role of adhesion to the substrate on axon trajectories. It is

well known that adhesion to the substrate can influence cell movements [168]. This tethering

of actin filaments to the adhesive sites, hence the substrate, counteracts the retrograde flow

of actin. Myosin II motors in the actin network exert tension that pulls the growth cone

forward. A major player in this process is the integrin receptors. In addition to providing

force transmission to the ECM, integrin-mediated adhesions are also believed to be important

for mechanosensing. Integrin engagement initiates the assembly of macromolecular complexes

consisting of clustered integrins, adaptor proteins and other signalling molecules that link to

the cytoskeleton. The nature of these adhesion points differ on different substrate. On laminin,

point contacts are highly dynamic, leading to motile and rapidly extending growth cones. On

fibronectin, there are fewer contacts on the growth cone but they are more stable, leading to

reduced motility [279].



Chapter 7. Conclusion 118

Our study also only investigated one particular cell type on a laminin plastic substrate, and

there are likely differences in other systems. The recent study [34] on the different response

of PNS and CNS neurons on different substrates indicates that the microfluidic environment

might be very different from the natural environment and a softer, more realistic substrate is

to be desired. Growing neurons on glial cells might be a more realistic environment although

it will require a different labelling technique such as fluorescent labelling. Similar detailed

analysis should be done in other cell types (PNS versus CNS) on different substrates (soft and

hard) patterned with different molecules (laminin, fibronectin, poly-lysine) to identify whether

the model can predict their trajectories.

By testing different cell types on different substrate stiffness and ECM components, we can

have a clearer picture of the role of ECM. Novel technologies that permit an integrative ap-

proach allowing controlling of stiffness, protein patterning and soluble gradients will be of great

interest in the future. The substrate stiffness can be controlled by adjusting the crosslinker

concentration in a polymer, for example polyacrylamide [295]. The rate of neurite extension

was inversely correlated to the mechanical stiffness of agarose gels [295]. A recent paper investi-

gated the complex interactions between the ECM and molecular gradients on neurite guidance

[296]. In this work, neurite outgrowth is modelled by a partial different equation whose pa-

rameters are the guidance molecule concentration and diffusion constant in the collagen gel.

They experimentally demonstrated that outgrowth and turning were influenced by the phys-

ical properties (composition and stiffness) of the 3D ECM scaffold in a microfluidic device.

This will help achieve a more complete understanding of growth cone behaviour in response to

mechanical and biochemical stimuli.

7.4 Conclusion

In conclusion, the positioning and diffusion of receptors on neuronal growth cones can have

substantial effect on the quality of spatial gradient sensing. We have introduced a theoretical

model of how growth cones move in attractive and repulsive gradients to match experimental

data. It provides a unifying explanation for weak turning in vitro and suggests other conditions

that must exist in vivo for reliable turning to occur. The interaction of diffusible gradient and

substrate properties will be an exciting direction to pursue in the future.
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[176] B. Knöll, K. Zarbalis, W. Wurst, and U. Drescher, “A role for the EphA family in the

topographic targeting of vomeronasal axons.,” Development, vol. 128, no. 6, pp. 895–906,

2001.



Bibliography 136
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