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Abstract 

This thesis aimed to characterise four genes identified to be involved in early nodulation in 

Glycine max (soybean). The first gene studied was a GmTIR-NBS-LRR gene, a Toll/Interleukin 

1 receptor - Nucleotide Binding Site - Leucine-Rich Repeat (TIR-NBS-LRR) suspected of 

being involved in host specificity in regards to rhizobia. Over-expression, silencing and 

histochemical promoter studies of this gene saw no phenotypic changes. This is due to the 

previously unknown existence of a transcript variant (TV) of the gene as well as the likely 

existence of alternative promoter(s) (AP). Future characterisation work will focus on 

understanding and identifying the TVs and possible APs of GmTIR-NBS-LRR.  

The remaining three early nodulation genes are involved in GA biosynthesis, a plant hormone 

whose role in nodulation is still unclear. The genes GmGA20ox a, GmGA2ox and GmGA3ox 

1a were analysed through silencing and histochemical promoter studies, over-expression and 

phytogenic analysis and histochemical promoter studies, respectably. Additionally, 

measurement of endogenous GAs in G. max roots which had yet to be reported was carried out. 

No phenotypic changes were observed following either silencing or over-expression for any of 

the GA biosynthesis genes. The histochemical promoter studies of GmGA20ox a highlighted 

likely role in facilitating infection thread formation and early nodule development in the 

cortical cells. GmGA3ox 1a appeared to be more general, but still NF dependent in its 

expression, through its widespread presence in the phloem during early nodulation.  

Successful measurement of endogenous GA has shown that independent of nodulation, GA3 is 

the more abundant bioactive GA in soybean compared to GA1. This differs from Pisum sativum 

(pea) roots where GA3 was not detected and GA1 is most abundant.  

The recent availability of G. max mutants of many of these genes through Soybase 

(http://soybase.org), coupled with the new method for measuring endogenous GA in G. max 

roots, opens up many pathways for further effective characterisation of these nodulation 

specific genes and thus, a better understanding of nodulation as a whole. 
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Advances in the Identification of 

Novel Factors Required in Soybean 

Nodulation, a Process Critical to 

Sustainable Agriculture and Food 

Security  
 

Keywords: Legume; Nodule; Nitrogen-fixation; Rhizobia; Transcriptome; RNA-seq  

 

1.1 Abstract  

Nodulation is a process of organogenesis that results from a symbiotic relationship between 

legume plants and soil-dwelling, nitrogen-fixing bacteria, called rhizobia. The rhizobia are 

housed in newly formed structures on the host roots, called nodules. Within nodules, the 

rhizobia fix atmospheric N2 into useable forms of nitrogen for the plant. This process is highly 

important to agriculture, as nitrogen is critical for plant growth and development and is 

typically the main component of fertilizers. Although fertilizers are effective, they are 

expensive and often pollute, making biological alternatives, such as legume nodulation, 

attractive for use in agriculture. Nodulation is regulated by the auto regulation of nodulation 

(AON) pathway, which enables the host plant to balance its needs between nitrogen acquisition 

and energy expenditure. Current research is elucidating the nodule development and AON 

signalling networks. Recent technological advances, such as RNA-sequencing, are 

revolutionizing the discovery of genes that are critical to nodulation. The discovery of such 

genes not only enhances our knowledge of the nodulation signalling network, but may help to 

underpin future work to isolate superior legume crops via modern breeding and engineering 

practices. Here, recent advances using the cutting-edge technique of RNA sequencing to 

identify new nodulation genes in soybean are discussed.  
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1.2 Global Use of Nitrogen Fertiliser  

Approximately half of the world’s population is directly reliant upon nitrogen fertiliser use in 

agriculture for their food supply (Peoples et al., 2009; Jensen et al., 2012; Erisman et al., 2008). 

Taking into account nitrogen fertiliser manufacture, transport and application, the fossil fuel 

consumed accounts for 50% of fossil fuel use in agriculture, and 5% of the global natural gas 

consumption annually (Crutzen et al., 2007; Canfield et al., 2010). With the rising cost of fossil 

fuels, the use of nitrogen fertiliser is becoming increasingly costly for farmers and is often too 

expensive in developing regions of the world (Ferguson et al., 2013). Not only are nitrogen 

fertilisers expensive, they are inefficient, with 30-50% of nitrogen fertiliser typically lost to 

leaching. This run off can cause the eutrophication of waterways and other significant 

environmental problems (Vance, 2001). Nitrogen contaminated drinking water can also cause 

methemoglobinaemia, or “Blue-baby syndrome”, a potentially fatal condition in infants 

(Murphy, 1991; Knobeloch et al., 2000). 

 

The global use of nitrogen fertiliser has been steadily increasing in most continents (Figure 1). 

Worryingly, this also means an increase in NOx gases, which are released when nitrogen 

fertiliser is broken down. These gases contribute to the formation of ground-level ozone, which 

causes yield reductions. Nitrous oxide (N2O) is also emitted by breakdown of nitrogen fertiliser 

(Vance, 2001; Sutton et al., 2013) and is 292 times more active as a greenhouse gas than CO2  

(Crutzen et al., 2007).  Agriculture was the main source of anthropogenic N2O emissions in 

2005, making up 60% of the global total (Reay et al., 2012). The majority of these emissions 

resulted from the application of nitrogen fertiliser (Reay et al., 2012). By 2050 it is estimated 

that global nitrogen fertiliser use will increase by 50% in an attempt to boost food production 

and support a rising population (Sutton et al., 2013). These numbers have experts calling for 

agricultural reform to diminish nitrogen fertiliser use.  
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Figure 1. Global consumption of nitrogen fertiliser displayed per continent over a forty five 

year period, 1965-2010 (consumption in nutrients; tonnes; FAOSTAT, 2013). Data obtained 

from FAOSTAT. 

1.3 Legume Crops as a Safe Alternative to Nitrogen Fertiliser  

One safe alternative to the use of nitrogen-based fertilisers is to take advantage of biologically-

fixed nitrogen. Legumes are able to form a relationship with specialised nitrogen-fixing soil 

bacteria, called rhizobia. The rhizobia convert atmospheric di-nitrogen into usable forms of 

nitrogen for the plant, whilst being housed in novel root organs, called nodules. The use of 

legumes as rotation crops is an important agricultural practice that many experts argue must be 

increased to help curb nitrogen fertiliser use (Jensen et al., 2012; Sutton et al., 2013; Ferguson 

et al., 2013). Optimizing biological nitrogen fixation processes, such as nodulation, has the 

potential to increase crop yields and enhance soil fertility whilst simultaneously reducing 

farming costs and harmful environmental impacts (Hirel et al., 2007; Peoples et al., 2009; 

Canfield et al., 2010; Ferguson et al., 2013). However, it is only with an increase in our 

knowledge of nodulation processes and its genetic basis that we can fully reach this goal.  
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1.4 Nodule Organogenesis  

The most common entry point for rhizobia invasion is the region of root where the root hairs 

are developing, called the Zone of Nodulation (ZON) (Bhuvaneswari et al., 1981; 

Bhuvaneswari et al., 1985; Calvert et al., 1984; Hayashi et al., 2012). Rhizobia attach to the 

root hair, triggering root hair deformation and curling (Yao et al., 1969; Bhuvaneswari et al., 

1981; Bhuvaneswari et al., 1981, 1985). This process involves the rearrangement of underlying 

microtubules which allow bacterial entry and the establishment of tubular structures called the 

infection threads (IT) (Gage, 2004; Ferguson et al., 2010). 

 

Occurring in parallel to rhizobia invasion are inner cellular changes which lead to nodule 

primordia formation (Ferguson et al., 2010). The ITs full of rhizobia progress towards the 

nodule primordia. The convergence of the rhizobia in the ITs and the nodule primordia is 

essential for successful nodule formation. Once the rhizobia reach the developing nodule, they 

are released from the ITs into specialised structures called symbiosomes, in which they 

differentiate into bacteroids. Using their nitrogenase enzyme complex, the rhizobia bacteroids 

catalyses atmospheric N2 into ammonia, which can be used by the plant (Udvardi et al., 1997). 

There are two different morphological types of legume nodules: indeterminate and determinate. 

Indeterminate nodules are initiated by inner cortical cell divisions, followed by divisions in the 

endodermis and pericycle, and develop persistent meristems (Bond, 1948; Libbenga et al., 

1973; Newcomb, 1976; Newcomb et al., 1979). Determinate nodules initially arise from cell 

division of the outer cortex and have transient meristems (Newcomb et al., 1979; Turgeon et 

al., 1982; Calvert et al., 1984; Mathews et al., 1989).   

 

1.5 Signalling in Nodulation  

Nodule formation is initiated via a highly-specific signal exchange between compatible 

rhizobia bacteria and legume plants (Ferguson et al., 2003; Ferguson et al., 2010; Hayashi et 

al., 2013). Flavonoids are released into the soil by the plant, attracting compatible rhizobia 

species to the host plant. They also trigger the expression of rhizobia nodulation (Nod) genes, 

which leads to the production of novel Nod Factor (NF) signals that are recognized by the host 

plant (Dénarié et al., 1996). Additional rhizobia-produced factors, such as exopolysaccharides 

(EPS) and lipopolysaccharides (LPS), are also known to be important for nodulation and in 

determining rhizobia-plant specificity.  
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Following perception of compatible partners, two main pathways are triggered within the plant: 

one involved in bacterial entry and infection and the other involved in cell divisions that lead 

to the formation of the nodule primordia (Ferguson et al., 2010). Formation of a functional 

nodule requires synchronisation between these different signalling pathways. Many of the 

genes known to act in early nodulation are conserved between different legume species, but in 

many cases these orthologous genes have different names.  

 

At the plant root periphery, LysM receptor kinases (Lotus japonicus Nod Factor Receptor 1 

and 5; LjNFR1 and LjNFR5; soybean, Glycine max NFR1α/β and GmNFR5α/β; Medicago 

truncatula MtLYK3, MtLYK4 and MtNFP; and pea, Pisum sativum SYM2A and PsSYM10), 

perceive NF from compatible rhizobia (Limpens et al., 2003; Madsen et al., 2003; Radutoiu et 

al., 2003; Arrighi et al., 2006; Indrasumunar et al., 2010; Broghammer et al., 2012). These 

receptors are reported to associate with remorin proteins (MtSYMREM1), which may help in 

assembling a specialised NF receptor complex (Lefebvre et al., 2010). Other factors, such as 

LjROP6, a Rho-like small GTPase, have also been found to interact with LjNFR5 (Ke et al., 

2012). 

 

An additional receptor kinase (MsNORK/LjSYMRK/MtDMI2/ PsSYM19) also associates 

with SYMREM1 and appears to be involved in downstream signalling and possibly also the 

perception of NF (Lefebvre et al., 2010). This receptor interacts with additional nodulation 

factors, including a coiled-coil protein (MtRPG; (Arrighi et al., 2008), a transcription factor 

(LjSIP1; Zhu et al., 2008) and a 3-hydroxy-3-methylglutaryl coenzyme reductase 

(MtHMGR1), which is involved in isoprenoid synthesis (Kevei et al., 2007). However, the 

precise roles for these factors in nodulation are not yet known.  

 

Perception of NF triggers Ca2+ fluxes, followed by the Ca2+ spiking, in root hair cells. The 

oscillation of Ca2+ in these cells is thought to initiate downstream signalling events (Felle et 

al., 1999; Wais et al., 2000; Walker et al., 2000). Ca2+ spiking events require putative 

potassium ion-channels (MtDMI1, LjCASTOR and LjPOLLUX; Ané et al., 2004; Imaizumi-

Anraku et al., 2005; Riely et al., 2007), and two nucleoporins (LjNUP133 and LjNUP85; 

Kanamori et al., 2006; Saito et al., 2007). Acting downstream of the Ca2+ spiking, and likely 

perceiving the Ca2+ signal, is a calcium and calmodulin-dependent protein kinase (CCaMK; 

MtDMI3/PsSYM9; (Lévy et al., 2004; Mitra et al., 2004; Miwa et al., 2006; Oldroyd et al., 
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2004). Novel proteins shown to interact with CCaMK include LjCIP73, which belongs to the 

ubiquitin superfamily (Kang et al., 2011), and MtIPD3/LjCYCLOPS, which regulates 

expression of NSP1 (Smit et al., 2005; Messinese et al., 2007; Yano et al., 2008). Following 

activation of CCaMK, a number of transcription factors, including Nodulation Signalling 

Pathways 1 (MtNSP1) and MtNSP2 (Kalo et al., 2005; Smit et al., 2005), Ets2 repressor factor 

(ERF), ERF required for nodulation (MtERN; Middleton et al., 2007), and Nodule Inception 

(Lj/PsNIN; Schauser et al., 1999; Borisov et al., 2003) are activated. These transcription factors 

work in combination to activate the expression of the early nodulation (ENOD) genes in the 

epidermis (e.g. MtENOD11; Hirsch et al., 2009). 

 

CCaMK activation is also believed to trigger the increase in cytokinin level in these cells. 

Hormonal changes are detected by the cytokinin receptor, LjLHK1/MtCRE1, on the cortical 

cell membrane (Gonzalez-Rizzo et al., 2006; Tirichine et al., 2007).  Activation of 

LjLHK1/MtCRE1 is thought to activate signalling within the cortical cells to initiate the 

cortical cell divisions required for the formation of the nodule (Gonzalez-Rizzo et al., 2006; 

Tirichine et al., 2007).  

 

Other components that are essential for nodule development include SCAR/WAVE proteins 

that appear to have roles in root hair deformation and rhizobia infection (LjNAP1/MtRIT1 and 

LjPIR1; Yokota et al., 2009; Miyahara et al., 2010) and flotillin proteins that initiate the 

production of ITs for bacterial progression in the root (MtFLOT 2 and 4; Haney et al., 2010). 

An ankyrin protein that may have a role in IT development (MtVAPYRIN) is also required 

(Murray et al., 2011), in addition to a number of transcription factors (e.g. MtERF1 and EFD), 

U-box proteins (e.g. LjCERBERUS/MtLIN and MtPUB1) and early nodulin proteins of 

unknown function (e.g. ENOD11 and ENOD40 reviewed in Ferguson et al., 2010). Further, a 

subunit of a signal peptidase complex (MtDNF1) that has a role in the processing of nodule 

specific cysteine-rich (NCR) proteins is an essential factor for rhizobia differentiation into 

nitrogen-fixing bacteroids in M. truncatula (Wang et al., 2010). 

 

1.6 Autoregulation of Nodulation  

The formation and maintenance of nodules is an energy-intensive process. As such, the plant 

strictly regulates the number of nodules it forms, regardless of rhizobia availability, through 

the Autoregulation of Nodulation (AON). AON acts systemically, following nodule 
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development. Root-derived CLV3/ESR-related (CLE) peptide hormones are synthesised, 

called GmRIC1 and GmRIC2 in soybean, LjCLE-RS1 in Lotus and MtCLE12/13 in Medicago 

(Okamoto et al., 2009; Mortier et al., 2010; Lim et al., 2011; Reid et al., 2011a, 2013). These 

signals are predicted to travel to the shoot, presumably via the xylem (Delves et al., 1986; Reid 

et al., 2011a), where they are thought to be perceived by an LRR receptor kinase, 

GmNARK/LjHAR1/MtSUNN/PsSYM29 (Krusell et al., 2002; Nishimura et al., 2002; Searle 

et al., 2003; Schnabel et al., 2005). Mutants lacking a functional version of 

GmNARK/LjHAR1/MtSUNN/ PsSYM29 are unable to regulate their nodule numbers and 

exhibit a super- or hyper-nodulating phenotype (Figure 2). It is possible that this receptor acts 

in conjunction with other receptor components, such as Lj/PsCLAVATA2 and/or LjKLAVIER  

(Krusell et al., 2002; Miyazawa et al., 2010). Three additional factors, two Kinase-Associated 

Protein Phosphatases, GmKAPP1 and GmKAPP2 (Miyahara et al., 2008) and a putative 

Ubiquitin Fusion Degradation protein, GmUFD1a (Reid et al., 2012) have also been shown to 

possibly interact with GmNARK as part of the AON pathway.  

 

Once the root-derived CLE peptide signal has been perceived, a novel Shoot-Derived Inhibitor 

(SDI) is produced which travels to the roots, presumably via the phloem, where it inhibits 

further nodulation (Ferguson et al., 2010; Reid et al., 2011b).  Although SDI has yet to be 

identified, it has been shown to be NF dependent, heat stable, small (<1KDa) and unlikely to 

be a protein or RNA (Lin et al., 2010; Lin et al., 2011).  

 

Nodulation is not only regulated by the number of nodulation events, but also in response to 

environmental factors such as stress (e.g. ethylene), soil acidity and soil nitrate (e.g. Carroll et 

al., 1985; Lorteau et al., 2001; Ferguson et al., 2005a; Ferguson et al., 2005b; Ferguson et al., 

2011; Lin et al., 2012; Ferguson et al., 2013). This gives the host plant the ability to regulate 

nodule development in response to its surrounding environment, thus optimizing nodulation 

and nitrogen-fixation under a variety of growing conditions.  
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Figure 2. Root systems of wild-type (WT) and supernodulating mutant (nod++) soybean plants 

exhibiting mature nodule structures as a result of a symbiotic relationship with Bradyrhizobium 

japonicum. 

1.7 The New Generation of Gene Discovery: RNA-seq  

The identification of factors acting in the development and control of legume nodules has 

considerably increased our understanding of these processes. Moreover, it has provided novel 

targets for breeding and engineering programs dedicated to generating superior crop species. 

Recent technological advances have significantly increased the speed and efficiency with 

which new molecular components can be discovered. This includes new, high-throughput 

sequencing technology that has enabled the genomes of many legume species to be assembled 

in recent years, including soybean, L. japonicus, M. truncatula, chickpea and pigeon pea 

(Cannon et al., 2009; Schmutz et al., 2010; Young et al., 2011; Varshney et al., 2012; 2013).  

Similarly, next-generation RNA-sequencing (RNA-seq) technology enables the complete 

transcriptome of a given plant sample to be determined. This includes establishing the 

expression of both known and unknown genes in a sample. This cannot be achieved using other 

techniques, such as microarrays.  

 

Soybean is one legume species that has recently been subjected to a number of RNA-seq studies 

seeking to identify new factors required for nodulation within its transcriptome. Indeed, 

soybean is often used as a model legume species (Ferguson et al., 2009; Ferguson et al., 2013), 

as it has had its complete genome sequenced (Schmutz et al., 2010), with gene atlases and gene 

expression databases also being publically available (Libault et al., 2010a; Libault et al., 2010b; 

Severin et al., 2010). It is also amenable to a number of molecular approaches, including 
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Agrobacterium rhizogenes-mediated transformation (e.g., Kereszt et al., 2007; Lin et al., 

2011), that are essential for follow-up research aimed at confirming and functionally 

characterising the role of candidate genes in nodulation. In addition, a number of mutant and 

TILLING populations are also available, which can considerably assist genetic studies (Carroll 

et al., 1985; Bolon et al., 2011; Cooper et al., 2008; Batley J et al., 2013). Physiologically, 

soybeans are also excellent for scientific purposes, being fast growing, high yielding, amenable 

to grafting and of appropriate size for most field and laboratory studies (Ferguson, 2013). 

 

Soybean research is highly applicable to other legume crops including pea, lentil, chickpea, 

bean, peanut, lucerne, clover and faba bean (Rispail et al., 2010). Soybean is also an important 

crop in its own right, with production of ~250 million tonnes globally in 2011, accounting for 

50% of the world’s oilseed production. It generates 200 kg N ha-1 in aboveground biomass 

each growing season with 58-68% of its nitrogen content resulting from symbiotic nitrogen 

fixation (Salvagiotti et al., 2008; Peoples et al., 2009; Jensen et al., 2012). As a rotation crop, 

or “green manure”, soybean can be ploughed back into the soil whether their seed has been 

harvested or not. This provides farmers with some flexibility and helps to replenish the soil 

nitrogen content, as in addition to the aboveground biomass, the roots and nodules contain 30-

60% of the overall plant nitrogen content (Mahieu et al., 2007; McNeill et al., 2008). 

 

Three separate studies have reported using RNA-seq to identify differentially-expressed genes 

in the transcriptome of rhizobia-inoculated soybean roots (Libault et al., 2010a; Hayashi et al., 

2012; Barros de Carvalho et al., 2013). The genes identified represent candidates required for 

nodule development. An additional study used RNA-seq to determine the transcriptome of 

soybean leaves to identify differentially-expressed gene candidates acting in AON (Reid et al., 

2012).  

 

The work of both Libault et al. (2010a) and Hayashi et al. (2012) focused on the early stages 

of nodulation, with samples harvested 48 hours post inoculation Libault et al. (2010a) focused 

on root hairs and stripped roots, enabling a tissue-specific analysis to be conducted. In contrast, 

Hayashi et al. (2012) focused on the ZON of the tap root, enabling nodulation-specific 

transcripts to be concentrated by removing transcripts found throughout the remaining portion 

of the root system that are not specifically nodulation related. These studies both identified a 

number of new nodulation gene candidates. One such candidate, GmNMNa, has already been 
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followed up and confirmed to be involved in the regulation of rhizobia infection (Libault et al., 

2011).  

 

Barros de Carvalho et al. (2013) also investigated the transcriptome of soybean root tissue; 

however, these authors focused their study on whole root systems harvested 10 days after 

rhizobia inoculation. The expression data from these samples showcase genes involved later in 

the nodulation pathway, including those involved in nodule maturation and growth.  

 

To identify novel components functioning in the AON pathway, Reid et al. (2012) used RNA-

seq to determine the transcriptome of soybean leaves. Leaf tissue was collected from soybean 

shoots fed with xylem sap taken from soybean plants that were either nodulating or non-

nodulating. This led to the identification of the putative ubiquitin fusion degradation protein, 

GmUFD1a, whose product may interact with GmNARK in the regulation of legume 

nodulation.  

 

1.8 Conclusion  

Collectively, the four abovementioned datasets have led to the identification of numerous new 

gene candidates potentially having roles in the development and regulation of soybean nodules. 

The confirmation and subsequent functional characterization of these genes aids in the 

understanding of the signalling mechanisms involved in legume nodulation. Moreover, the 

identification of critical nodulation genes could one day help to benefit the isolation of superior 

cultivars for use in agriculture and help to reduce the over-application of nitrogen fertilisers in 

agriculture. 
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1.10 RNA-seq identifies a nodulation specific TIR-NBS-LRR 

A high throughput RNA-seq study has revealed several early nodulation genes which are up-

regulated in G. max roots in the ZON within 48 hours of inoculation with WT B. japonicum 

and not expressed after inoculation with the NF deficient mutant nodC- (Hayashi et al., 2012). 

These genes include one encoding a Toll/Interleukin 1 receptor - Nucleotide Binding Site - 

Leucine-Rich Repeat (TIR-NBS-LRR; TNL): GmTIR-NBS-LRR (Glyma12g03040; Hayashi et 

al., 2012).  

TNLs are well-known to be involved in plant defense, but in the nodulation process at least 

two soybean TNL genes; Rj2 and Rfg1, are known to enforce symbiosis specificity. Rj2 restricts 

nodulation specific B. japonicum strains and Rfg1 does so with Sinorhizobium fredii strains 

(Yang et al., 2010). It is possible that GmTIR-NBS-LRR plays a similar role. 

Here we investigated the role of GmTIR-NBS-LRR through promoter studies utilising the 

histochemical GUS staining method, gene silencing and over-expression techniques. All three 

studies are facilitated by hairy root transformation using Agrobacterium rhizogenes strain 

K599.  

1.11 The role of plant hormones in nodulation 

The roles of plant hormones in nodulation are often complex and intertwining. Cytokinin is 

known to be involved in nodulation and is vital to it. Its roles in nodulation are diverse and 

include; regulating cell division in the cortex, regulating auxin levels and an involvement in 

nodule maturation (reviewed in Ferguson et al. (2014)). Interestingly, cytokinin has recently 

been reported to also have a negative role in nodulation, acting in AON pathway to control 

nodule numbers (Sasaki et al., 2014). Auxin, gibberellins (GAs) and brassinosteroids also all 

appear to have a role in nodulation: however, the exact nature of their roles is often unclear 

(Ferguson and Mathesius, 2003; Ferguson et al., 2005a; Ferguson and Mathesius, 2014; 

Bensmihen, 2015). Conversely, abscisic acid, jasmonic acid, ethylene and salicylic acid are 

plant hormones which are suspected to be inhibitory to nodule formation (Oldroyd et al., 2001; 

Suzuki et al., 2004; Stacey et al., 2006; Biswas, 2008; Ferguson and Mathesius, 2014). New 

techniques in gene identification such as RNA-seq, as well as improved methods for measuring 

endogenous levels of hormones, open up new avenues with which to explore how these 

important plant signals are utilised in nodulation. 
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1.12 The three GAs biosynthesis pathways; plants, fungi and bacteria 

Bioactive GAs are involved in many plant development processes, including stem elongation, 

leaf expansion, flower and seed development and seed germination. While only five GAs are 

considered to be bioactive, namely GA1, GA3, GA4, GA5 and GA7, hundreds of GAs have been 

identified in plants. These non-bioactive GAs are precursors or deactivated metabolites of the 

bioactive GAs. GAs are also found in fungi and bacteria, though their biosynthesis pathway 

differs from each other and that found in plants. GA1 is the bioactive GA which has been found 

in the greatest variety of plant species, followed by GA4 which is thought to be the major 

bioactive GA in Arabidopsis thaliana, whilst GA3 and GA7 seem to be less common 

(Yamaguchi, 2008; Davies, 2010). 

Three enzyme classes are used throughout the GA biosynthesis pathway, terpene synthases 

(TPSs), cytochrome P450 monooxygenases (P450s) and 2-oxoglutarate-dependent 

dioxygenases (2ODDs). The pathway begins with geranylgeranyl diphosphate (GGDP) that is 

converted into ent-kaurene by two TPSs, ent-copalyl diphosphate synthase (CPS) and ent-

kaurene synthase (KS). Here, fungi and plants differ in their biosynthesis pathway as fungi 

possess a bifunctional CPS/KS, rather than separate CPS and KS (Rojas et al., 2001; Figure 

1-1). In plants, the ent-kaurene is metabolised by a P450, ent-kaurene oxidase (KO), producing 

ent-kaurenonic acid converted by P450 ent-kaurenoic acid oxidase (KAO) into GA12 (Nelson 

et al., 2004). GA12 is a precursor to both GA4 and GA1; it is converted by three 2ODDs, GA 

20-oxidase (GA20ox), GA 3-oxidase (GA3ox) and GA 13-oxidase (GA13ox). GA20ox 

converts GA12 through several oxidations to GA15, GA24 and finally GA9 where GA3ox 

converts GA9 to the bioactive GA4. In the case of GA12 becoming GA1, GA13ox first converts 

GA12 to GA53, from there GA20ox converts GA53 through GA44, GA19 and GA20 before GA3ox 

converts GA20 into bioactive GA1. GA3ox also converts GA20 into GA5 and from there, into 

either GA6 or bioactive GA3 (Spray et al., 1996; Itoh et al., 2001; Appleford et al., 2006; Figure 

1-1).  

In fungi, P450s, not 2ODDs, act at as GA3oxs, GA20oxs and GA13oxs, rather than 2ODDS, 

as in plants. GA12 is converted to GA14 by GA3ox, then into GA4 by GA20ox (Hedden et al., 

2001; Tudzynski et al., 2002). Recently, GA4-desaturase was shown to be a 2ODDs; it is 

responsible for deactivation of GA4 into GA7 (Bhattacharya et al., 2012). GA7 is then converted 

into GA3 by a GA13ox, another P450 (Hedden et al., 2001; Tudzynski et al., 2003). GA1 is 

produced by conversion of GA4 by GA13ox (Figure 1-1; Hedden et al., 2001; Tudzynski et al., 

2003).  
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In plants, deactivation of both bioactive and non-bioactive GAs is primarily carried out by 

another 2ODD class, GA 2-oxidases (GA2ox). GA2oxs are separated into three classes. Class 

I and Class II are separated by phylogenetic relationships (Lee et al., 2005) and both use C19-

GAs as substrates, while Class III uses only C20-GAs (Lee et al., 2005; Schomburg et al., 2003).  

GA2oxs are responsible for the conversion of GA12 to GA110, GA9 to GA51, GA4 to GA34, GA53 

to GA97, GA30 to GA29 and GA1 to GA8 (Thomas et al., 1999). A P450 has also been shown to 

deactivate GA4, GA9 and GA12 in rice, by epoxidising the 16, 17-double bond of non 13-

hydrosylated GAs (Zhu et al., 2006). 16, 17-dihydrodiols occur in many plant species, thus it 

is suggested that 16α,17-epoxidation is a general GA deactivation mechanism (Zhu et al., 2006; 

Yamaguchi, 2008). Gibberellin methyltransferases (GAMTs) have been found in Arabidopsis 

to deactivate both bioactive and non-bioactive GAs, though it is not yet known how they act in 

the pathway (Varbanova et al., 2007).  

The multiple 2ODDs involved in GA biosynthesis in plants are encoded by a multigene family. 

The individual genes are differentially regulated depending on different environmental and 

developmental cues (Yamaguchi, 2008). GA3ox genes AtGA3ox1 and AtGA3ox2 are not 

required for reproductive development, but do play both distinct and overlapping roles in 

vegetative development (Mitchum, Yamaguchi, Hanada et al. 2006; Mitchum et al., 2006). As 

the major biosynthesis factors in the pathway, the 2ODDs also act a key regulator. It is the 

expression of the 2ODDs, rather than earlier pathway components, which affects the level of 

bioactive GA present in the system (Croker et al., 1999; Huang et al., 1998; Fleet et al., 2003). 

Plants required that GA biosynthesis is tightly regulated as the optimum level of GA present in 

a given tissue is vital to normal growth and development (Bhattacharya et al., 2012). In 

contrast, as fungi mostly use GA to manipulate plant behaviour, their biosynthetic pathway 

does not seem to possess such tight regulation (Bhattacharya et al., 2012).   

Rhizobia have been shown to produce and secrete bioactive and non-bioactive GAs into their 

surrounds when in liquid culture (Atzorn et al., 1988; Marcassa, 2014). Multiple strains of 

Rhizobium phaseoli, including nodulation mutants, produce predominantly GA1, GA4 and GA9 

and in some strains GA20 in liquid culture (Atzorn et al., 1988). B. japonicum strains E109, 

USDA110 and SEMIA5080 produce GA3 in liquid culture, but all at differing levels to each 

other, with E109 producing the greatest amount of GA3 and SEMIA5080 the least (Boiero et 

al., 2007).    
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Figure 1-1 - Gibberellin biosynthesis pathways of plants (green), fungi (purple) and bacteria (orange) and shared 
pathway components (blue). Unconfirmed components are highlighted by * and proposed pathway steps are 

highlighted by a dashed arrow. Bioactive GAs are highlighted by a glow around the chemical structure. 
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While the GA biosynthesis pathway is mostly known for plants and fungi, it remains unclear 

in bacteria. The most studied microorganism in GA biosynthesis is B. japonicum, which has 

been shown to possess a diterpenoid biosynthetic operon that contains genes proposed to be 

involved in GA biosynthesis (Tully et al., 1993; Morrone et al., 2009; Hershey et al., 2014). It 

is known that B. japonicum contains separate CPS and KS genes, similar to the system found 

in plants, rather than a bifunctional CPS/KS found in fungi (Morrone et al., 2009). Similar to 

other rhizobacteria, the operon in B. japonicum contains only three P450s, differing from the 

four found in Gibberella fujikuroi but producing the same GA3 (Morrone et al., 2009). The 

operon also contains a short chain alcohol dehydrogenase, which indicates that, like fungal GA 

biosynthesis, it is possible that few or even no 2ODDs are involved in GA biosynthesis in B. 

japonicum (Morrone et al., 2009). Given that B. japonicum shares some similarities in GA 

biosynthesis to both plants and fungi, it is suggested that the bacterial GA biosynthesis pathway 

has its own composition, thus resulting in three differing biosynthesis pathways.  

 

Recent work by Méndez et al. (2014) has enabled the proposal of the GA biosynthesis pathway 

present in B. japonicum bacteroids. Given that this work did not demonstrate a production or 

even presence of GA3, as was found in the liquid culture of B. japonicum by Boiero et al. 

(2007), it is likely that the biosynthesis pathway in bacteroids differs to that of the free-living 

bacterium (Méndez et al., 2014). This is possibly due to the low O2 environment of the nodule 

interior which induces specific GA biosynthesis enzymes (Méndez et al., 2014). It has been 

suggested that bacteroids do not produce bioactive GAs directly, instead they secret GA9 into 

the plant tissue, possibly to then be converted via the plant biosynthesis pathway into bioactive 

GAs (Méndez et al., 2014).  

The B. japonicum bacteroid biosynthesis pathway to GA9 differs only from plants in that GA9 

then also converted to GA9 17-nor-16-one (Figure 1-1; Méndez et al., 2014). The exact 

components which act in the bacteroid biosynthesis pathway to convert GAs from one to 

another are not known; this presents another possible difference in the bacteroid pathway 

(Méndez et al., 2014). However, it is currently assumed given what is known about the 

presumed GA biosynthesis operon and the fungal biosynthesis pathway, that P450s take the 

role of GA20ox and GA3ox (Méndez et al., 2014).  It is not yet known if the bacteroid pathway 

to GA53 is similar to that in plants, disregarding the P450/ODD difference. However, given the 

similarities in the GA9 pathway, it is proposed to be similar (Figure 1-1). If the plant pathway 

to GA53 is similar to that of bacteroids, then the pathway to GA20 is also similar. Both bacteroids 
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and plants process through GA53 to GA44 then GA19 to GA20; however, it has not been shown 

that bacteroids continue from GA20 to bioactive GA1 or GA5 (Méndez et al., 2014). 

1.13 A possible role for GA in nodulation 

Endogenous GA levels in the roots and nodules of various legume species have been measured 

in the past; however, these studies were conducted using the technology of the time, which was 

often unreliable. Therefore, few studies have made use of techniques such as high performance 

liquid chromatography (HPLC) or ultra performance liquid chromatography (UPLC) coupled 

with mass spectrometry (MS) (Hayashi et al., 2014).  

 

Studies of endogenous GA in both Phaseolus lunatus (lima bean) and Vigna unguiculata 

(cowpea) were conducted using a combination of HPLC and gas chromatography-mass 

spectrometry. P. lunatus nodules were found to contain GA1, GA3, GA19, GA20, G29 and GA44. 

The presence of GA4 was specifically investigated in these nodules but it was not found (Dobert 

et al., 1992a). In V. unguiculata nodules, GA4, GA7, GA17 and GA53 were specifically not found 

to be present while GA20, GA44, GA29, GA1 and GA19 were found in respective descending 

order of abundance. It is also likely, though not definitive, that GA3 was present also (Dobert 

et al., 1992b).  

 

GA1 is the main bioactive GA present in P. sativum (pea) roots, with GA20 also found to be 

present (Yaxley et al., 2001). In the taproot tip GA20, GA1, GA29 and GA8 were found. GA3 

and GA4 were not found in any root samples (Yaxley et al., 2001). GA19, GA20, GA1, GA29 and 

GA8 have also been found in P. sativum roots via Gas Chromatography/Mass Spectrometry 

using Selected Ion Monitoring (GC/MS-SIM) (Weston et al., 2009).  

 

 In contrast to V. unguiculata and P. lunatus, P. sativum was found to not possess either GA3 

in its roots or nodules, while all three species were devoid of GA4. It is hypothesised that the 

differences in presence of bioactive GA types is related to the development of indeterminate or 

determinate nodules, as V. unguiculata and P. lunatus both form determinate nodules, whilst 

P. sativum forms indeterminate nodules (Hirsch, 1992).  

 

The most recent work measuring endogenous GA levels in G. max roots, amazingly some 33 

years ago, was by Williams et al. (1982) via thin layer chromatography (TLC). It was shown 

that GA levels were higher in nodules than in the roots. 
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Little other work has been carried out to measure GA levels in soybean roots, and certainly no 

modern techniques have been used. Here, we measure the endogenous GA levels in soybean 

roots 16 hours post-inoculation (hpi) and 6 days post-inoculation (dpi), inoculated either with 

WT B. japonicum (USDA110) or its NF deficient mutant nodC-. 

 

As mentioned above, tight regulation of GA levels is important in maintaining normal growth 

and development. This seems to be especially true in nodulation and has been demonstrated 

through the study of GA biosynthesis mutants and through application of GA and GA inhibitors 

(Ferguson et al., 2005a; Ferguson et al., 2011; Ferguson et al., 2014; Maekawa et al., 2009). 

These studies suggest that GA is not an absolute promoter or inhibitor of nodulation, but that 

optimal concentrations of the hormone differ by plant species and growth conditions.  

The results of Maekawa et al. (2009) showed that high concentrations of exogenous GA3 can 

have a negative effect on nodule number in Lotus japonicus. Similarly, combined application 

of GA3 and Uniconazole P (Uni P), a GA biosynthesis inhibitor, minimised the negative effect 

of the exogenous GA3, presumably because the total GA concentration was not elevated to high 

inhibitory levels. High GA concentration not only inhibited nodule number, but the number of 

infection threads formed per plant.  

In P. sativum the na mutant has reduced GA content of the whole plant and forms few to no 

nodules, with those that form being aberrant (Ferguson et al., 2005a). Application of exogenous 

GA3 at concentrations of 10-6 M to na plants restored the WT phenotype. Not only this but 

small doses of GA3, 10-9 M and 10-6 M, to the NA plants resulted in increased nodule number 

with 10-9 M leading to a higher increase. Application of an exceedingly high concentration of 

GA3, 10-3 M, saw reduced nodule number for both na and NA plants as compared to the 

numbers obtained at 10-6 M (Ferguson et al., 2005a). Double mutants of na and supernodulating 

mutants sym28, sym29 and nod3 produced aberrant nodules in supernodulating numbers 

(Ferguson et al., 2011). This suggests that low endogenous GA is not completely inhibitory of 

nodule initiation, but higher concentrations are needed for successful nodule development 

(Ferguson et al., 2011).  

Lievens et al. (2005) utilised exogenous application of GA biosynthesis inhibitor chlormequat 

chloride (CCC) on Sesbania rostrata at various stages post- and pre-inoculation to determine 

when GA is required for nodule development. CCC applied pre-inoculation resulted in almost 

complete inhibition of nodulation while applications 1, 2, 3 and 4 dpi had progressively less 
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inhibition. Application of 10-5 M exogenous GA3 post-inoculation and CCC treatment showed 

partial rescue of nodulation (Lievens et al., 2005).  

These physiological studies lead Hayashi et al. (2014) to conclude that GA is required not only 

at specific levels for successful nodulation, levels which differ depending on legume species, 

but it is also involved in both nodule initiation and nodule maturation. 

The high throughput RNA-seq study by Hayashi et al. (2012) identified several GA 

biosynthesis genes which are up-regulated in G. max roots in the ZON. These genes include a 

GA20ox (GmGA20ox a, Glyma04g42300.1), GA3ox (GmGA3ox 1a, Glyma15g01500.1) and 

GA2ox (GmGA2ox, Glyma02g01330.1) (Hayashi et al., 2012, 2014).  

This thesis aims to further build on the current knowledge of early nodulation genes as well as 

the role of GA in nodulation. Molecular techniques such as silencing, over-expression and 

promoter studies will be carried out to characterise the early nodulation genes GmGA20ox a, 

GmGA3ox 1a, GmGA2ox and GmTIR-NBS-LRR. Additionally, endogenous GA levels in 

soybean roots will be studied for the first time using modern techniques.  
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Chapter 2 General Methods 

2.1 Plant and rhizobia growth 

All experiments were untaken utilising either WT soybean (G. max (L.) Merr. cv. Bragg) or 

supernodulating mutant variety nts382. Plants were either grown in temperature controlled 

glass houses or environmentally-controlled growth cabinets (L/D = 16/8 h; T = 28/25°C and 

70% humidity). Seeds were surface sterilised with 70% ethanol for 20 seconds and rinsed with 

water 6 times before being planted in sterile grade 2 vermiculite. Plants were watered and given 

B&D nutrient solution (Broughton et al., 1971) three times a week, as well as 1 mM KNO3.  

All rhizobia inoculations were using either Bradyrhizobium japonicum strain USDA110 or NF 

deficient mutant strain nodC-. Cultures were grown in YMB medium (Vincent, 1970) at 28°C, 

shaking, for 3 days. Cultures were diluted to an OD600 ≈ 0.1 with water before being used for 

inoculation.  

Transformation of soybean by the hairy root method was carried out as described in Kereszt et 

al. (2007). This includes growing transformed plants in growth cabinets inside well-sealed 

seedling trays with lids. Plants were inoculated approximately 1 week following the transfer of 

plants from growth trays into pots.  

2.2 Histochemical β-glucuronidase (GUS) staining for promoter studies 

Plants were grown and transformed using the hairy root method as stated in chapter 2.1. Three 

controls were used for this study regardless of which gene was the focus. A positive control 

was used in the form of a β-glucuronidase (GUS) vector carrying the 35S promoter derived 

from the cauliflower mosaic virus (CaMV), it was termed p35S::GUS. A negative control in 

the form of a GUS vector including no promoter to drive the GUS gene was used, it was termed 

no promoter::GUS. These two control vectors were created by Ms Dongxue Li (CILR, The 

University of Queensland). The third control differed depending on the gene in question.  

The  pGmTIR-NBS-LRR::GUS vector carried a 2620 kb promoter fragment located directly 

upstream of GmTIR-NBS-LRR and cloned via primers; 5’- 

aagcttATTGAAACTATGGTTGAGTTCCCATC-3’with restriction enzyme HindIII and 5’-

agatctACCATGATTGTATTGTAGTAGCACTGC-3’ with restriction enzyme BglII. The 

pGmGA3ox 1a::GUS vector carried a 2926 kb promoter fragment located directly upstream of 

GmGA3ox 1a and cloned via primers; 5’-ggtaccTTTCCACTTTGCTATGTTGCTCAATTA-

3’ with restriction enzyme BamHI and 5’-
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agatctACCATAATAGTGTGGAACAAATAGTGACCA-3’ with restriction enzyme BglII. 

The pGmGA20ox a::GUS vector carried a 2648 kb promoter fragment located directly 

upstream of GmGA20ox a and cloned via primers; 5’-

ggtaccTTTCCACTTTGCTATGTTGCTCAATTA-3’ with restriction enzyme HindIII and 5’-

agatctACCATCGTCTCACGTTAATTGTGTT-3’ with restriction enzyme BglII. Plants were 

transformed using a GUS vector carrying the gene of interest’s promoter, but were then 

inoculated with nodC- B. japonicum.  

Following harvest (which occurred at various time points), roots were vacuum infiltrated on 

ice with 0.5% paraformaldehyde for 30 minutes. Roots were then washed twice in 100 mM 

sodium phosphate buffer before being shaken for 30 minutes in clean 100 mM sodium 

phosphate buffer at room temperature. Roots were then immersed in GUS solution (final pH 7, 

5 ml 100 mM potassium ferricyanide, 5 ml 100 mM potassium ferrocyanide, 200 ml 0.5 M 

sodium phosphate buffer, 1 ml Triton-X, 10 ml 0.5 M EDTA in 1 L MiliQ water) for 24 hours 

at 37°C for staining. Post staining, roots were fixed through an ethanol gradient, being shaken 

for 1 hour at 10%, 25%, 50% and 70% ethanol with each concentration being changed to fresh 

solution after 30 minutes. Samples were then kept at 4°C.  

2.3 Endogenous GA content analysis of plants and rhizobia 

Plants were grown as per chapter 2.1. Following this, the plants were harvested at various time 

points with the appropriate amount of root being excised and frozen in liquid nitrogen. Roots 

samples were pooled to create multiple biological replicates, samples were then ground whilst 

frozen and freeze dried at -80°C, 100 µbar for 48 hours.  Samples were then handled by Dr 

Dana Tarkowska (Palacky University and Institute of Experimental Botany ASCR) who 

analysed the samples using the technique described in Urbanová et al. (2013). 

2.4 Vector Construction – promoter::GUS fusion 

Two promoter::GUS vectors, utilising the binary vector pCAMBIA1305.1 (GenBank: 

AF354045) and containing either the promoter of GmGA3ox 1a or GmTIR-NBS-LRR, were 

constructed by Dr Satomi Hayashi (CILR, University of Queensland) as described in Hayashi 

(2014). However, these vectors contained a double 35S promoter driving a hygromycin 

resistance gene, which were bidirectional causing over-expression of the GUS gene. Ms 

Dongxue Li (CILR, The University of Queensland) created a modified pCAMBIA1305.1 

vector which contained no 35S promoters. In this study the promoter of both genes was excised 

from the original pCAMBIA1305.1 vectors by double digest and ligated into the modified 
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pCAMBIA1305.1 vector with T4 DNA ligase (New England Biolabs). Following promoter 

sequence verification, the new vectors were electroporated into A. rhizogenes K599 and 

selected via antibiotic resistance to rifampicin and kanamycin. A. rhizogenes carrying either of 

the binary vectors was then used in hairy root transformation as described in chapter 2.1.  
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Chapter 3 Characterisation of a Nodulation Specific TIR-NBS-LRR  

3.1 Abstract 

The GmTIR-NBS-LRR gene is nodulation-specific in its expression and thought to be involved 

in host range specificity as other TNL G. max genes are. Through over-expression, RNAi and 

histochemical promoter studies we aimed to further characterise this gene. No phenotypic 

changes occurred in any of the experiments, which was likely due to the TVs and possible APs 

of the gene whose existence was unknown at the time of vector construction. Investigation into 

the nature of the TVs will allow for clearing characterisation of this gene moving forward.  
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3.2 Introduction 

Control of legume host specificity in nodulation is a process that shares its mechanisms with 

plant defence (Yang et al., 2010). Both symbiotic and pathogenic bacteria use surface 

polysaccharides or secreted proteins to evade or suppress host defences (D'Haeze et al., 2004; 

Jones et al., 2008; Deakin et al., 2009; Soto et al., 2009). Such polysaccharides have also been 

identified as being involved in infection thread formation (Jones et al., 2008). NF also plays a 

significant role in host range as its strain-specificity allows for recognition by the compatible 

Nod-factor receptor (NFR) (Geurts et al., 1997; Perret et al., 2000; Limpens et al., 2003; 

Radutoiu et al., 2003; Radutoiu et al., 2007). Introducing the Lotus japonicus NFR1 and NFR5 

genes into Medicago truncatula allowed the modified plant to nodulate with L. japonicus’ 

symbiont (Radutoiu et al., 2003; Radutoiu et al., 2007). 

Type III secretion systems (T3SS) are also common to both symbiotic and pathogenic bacteria. 

In rhizobia that possess T3SS, effectors called nodulation out proteins (Nops) are delivered 

into the host cells (Deakin et al., 2009). If the correct R gene is not present in the plant then the 

effectors can disrupt the host’s defence and metabolism by acting on the cytoskeleton or 

intracellular signalling (Cornelis, 2000). Intriguingly, T3SSs are compulsory for diseases but 

not for determining the symbiotic host range, which is dependent on genotype (Yang et al., 

2010). It is presumed that legumes possess a T3SS recognition mechanism that allows 

nodulation to progress when compatible effectors are recognised (Yang et al., 2010). 

Understanding of the various methods of compatible rhizobia recognition by the plant may 

allow for the modification of superior nitrogen-fixing bacteria to carry preferred T3SSs or 

similar in order to out-compete inferior but highly competitive native rhizobia in the field 

(Yang et al., 2010). B. japonicum USDA110 has been shown to possess genes which are known 

to form a T3SS (Göttfert et al., 2001; Kaneko et al., 2002a,b). It is unknown how Nops are 

involved in nodulation; however, it is proposed that the legume plant must possess the correct 

R gene to recognise and respond to the cocktail of effectors (Skorpil et al., 2005).  

Plant defence can also involve a gene-for-gene interaction between pathogen avirulence (Avr) 

genes and plant resistance (R) genes. The R gene recognises its specific Avr counter-part and 

triggers a hypersensitive response intended to halt pathogen growth. Many R genes are from 

the NBS-LRR gene family and either carry a TIR domain or a coiled-coil (CC) domain 

(Ameline-Torregrosa et al., 2008). The NBS domain is responsible for binding and ATP and 

GTP hydrolysis (Tameling et al., 2002) while the LRR is normally involved in protein-protein 

interactions and likely responsible in part for the specificity of the R gene (Kobe et al., 1995; 
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Leister et al., 2000). Lastly, the TIR domain interacts with effector molecules (Axtell et al., 

2003). TNL genes Rj2 and Rfg1 are known to enforce symbiosis specificity, Rj2 with 

nodulation specific B. japonicum strains and Rfg1 with S. fredii (Yang et al., 2010). Both Rj2 

and Rfg1 enforce specificity by inhibiting nodulation by various strains. It does not appear that 

they act by allowing nodulation of a compatible strain, thus they act to negatively-regulate 

nodulation by incompatible rhizobia (Yang et al., 2010).  

It is possible that the GmTIR-NBS-LRR gene plays a similar role to Rj2 or Rfg1. This gene was 

identified to be highly NF dependently up-regulated in an RNA-seq study carried out by 

Hayashi et al. (2012). Quantitative reverse-transcription PCR (qRT-PCR) analysis identified 

maximum expression at 24 hpi and a tapering off of expression at 48 hpi onwards (Figure 3-1). 

qRT-PCR analysis of the gene’s expression in multiple tissues of G. max found that it was 

almost exclusively nodule specific with highest expression found at 3 wpi (Figure 3-2; Hayashi 

et al., 2012). This indicates that GmTIR-NBS-LRR plays a role in early nodulation, possibly in 

symbiont recognition, but also possibly has a role in the mature nodule.  

In this chapter characterisation of GmTIR-NBS-LRR is carried out through molecular studies, 

including the use of the over-expression and RNA interference (RNAi) vectors created by 

Hayashi (2014; Table 3-1). Additionally, a modified version of the promoter::GUS vector 

pGmTIR-NBS-LRR::GUS is used in a histochemical study to determine the cell specific 

expression of this TNL gene (Table 3-1).  
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Figure 3-1 - qRT-PCR measurement of expression of GmTIR-NBS-LRR, 

0, 12, 24, 48 and 96 hpi with either WT (red line) or nodC- (blue line) B. 

japonicum (Hayashi, 2014). 

Figure 3-2 - qRT-PCR analysis of expression of GmTIR-NBS-LRR 

in various tissues of G. max (Hayashi et al. 2012). 



27 | P a g e  

 

 

 

Table 3-1 Primers and restriction enzyme sites of the constructs made by Dr Satomi 

Hayashi (CILR). Lowercase letters represent the RE site, bold letters represent the start 

codon of the GUS gene, underlined letters represent the nucleotide added to the sequence 
in order to keep a distance between the promoter and translational start site (Hayashi 

2014). 

Construct Primers Restriction 

Enzyme Site 

GmTIR-NBS-LRR over-

expression 

5’-ctcgagTGCTACTACAATACAATCATGGCAAATG-3’ XhoI 

5’-ggtaccTGCTAGTTAACCTGAGACCATAAGATGTTT-3’ KpnI 

GmTIR-NBS-LRR RNAi 

(S) 5’-ctcgagAACTTACTGGGCTTAACTATCTTCACATTG-3’ XhoI 

(S) 5’-ggtaccTAGTAGATTGTTTAATGTGTGCTGGGAGAG-3’ KpnI 

(A) 5’-tctagaACTTACTGGGCTTAACTATCTTCACATTG-3’ XbaI 

(A) 5’-aagcttAGTAGATTGTTTAATGTGTGCTGGGAGAG-3’ HindIII 

pGmTIR-NBS-LRR::GUS 
5’- aagcttATTGAAACTATGGTTGAGTTCCCATC-3’ HindIII 

5’-agatctACCATGATTGTATTGTAGTAGCACTGC-3’ BglII 
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3.3 Methods 

3.3.1 GmTIR-NBS-LRR RNAi 

Supernodulating nts382 plants were grown, inoculated with B. japonicum USDA110 and 

transformed as outlined in chapter 2.1. Silencing of GmTIR-NBS-LRR was done utilising the 

GmTIR-NBS-LRR RNAi vector created by Dr Satomi Hayashi (CILR, The University of 

Queensland; Hayashi, 2014), chapter 3.2. Supernodulating plants were used to magnify the 

possible effects of gene silencing. Plants were harvested at 3 wpi with nodule number and root 

weight recorded on an individual root basis.  

3.3.2 GmTIR-NBS-LRR over-expression 

Supernodulating nts382 plants were grown, inoculated with B. japonicum USDA110 and 

transformed as outlined in chapter 2.1. Over-expression of GmTIR-NBS-LRR was done 

utilising the GmTIR-NBS-LRR over-expression vector created by Dr Satomi Hayashi (CILR, 

The University of Queensland; Hayashi, 2014), chapter 3.2. Supernodulating plants were used 

to magnify the possible effects of over-expressing the gene. Plants were harvested at 3 wpi 

with nodule number and root weight recorded on an individual root basis.  

3.3.3 GmTIR-NBS-LRR promoter study 

A pGmTIR-NBS-LRR::GUS vector was created as described in chapter 2.4 utilising the 

following primers and restriction enzymes to excise the promoter, digest the modified 

pCAMBIA1305.1 vector and verify the sequence;  

5’- aagcttATTGAAACTATGGTTGAGTTCCCATC-3’with restriction enzyme HindIII and 

5’-agatctACCATGATTGTATTGTAGTAGCACTGC-3’ with restriction enzyme BglII.  

Plants were originally grown under growth lights on the laboratory bench, this lead to 

unsuccessful development of hairy roots most likely due to excess heat generated from the 

lighting. Newly transformed plants were then grown under glasshouse conditions; however, 

this led to unsuccessful hairy root formation most likely due to insufficient humidity. 

Successful growth and transformation was finally achieved through following growth and 

transformation conditions detailed in chapter 2.1. After multiple attempts at germinating the 

supernodulating nts382 seeds without success, the sterilisation step detailed in chapter 2.1 was 

removed. Controls are described in chapter 2.2. Plants were then harvested at 12 hpi, 48 hpi or 

3 wpi and root were subjected to histochemical staining as described in chapter 2.2. 

Supernodulating plants were used to obtain an increased number of infection events.   
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3.4 Results 

3.4.1 GmTIR-NBS-LRR RNAi 

When comparing GmTIR-NBS-LRR RNAi silenced hairy roots to control roots, no significant 

differences were found (p>0.05) (Figure 3-3). To gain an accurate portrayal of nodule number, 

nodule number/root fresh weight was examined to account for root size. 

 

Figure 3-3 - Comparison of nodule number of control and 

GmTIR-NBS-LRR RNAi silenced hairy root transformed 

supernodulating nts382 soybean mutants. Nodule number is 

analysed on an individual root fresh weight basis. Confidence 

intervals were used in the formation of error bars. This graph 

shows no significant difference and the transformed roots 

(P>0.05). 
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3.4.2  GmTIR-NBS-LRR over-expression 

When comparing 35S::GmTIR-NBS-LRR over-expressing hairy roots to control roots, no 

significant differences were found (p>0.05) (Figure 3-3). To gain an accurate portrayal of 

nodule number, nodule number/root fresh weight was examined to account for root size. 

 

 

3.4.3 GmTIR-NBS-LRR promoter study 

Supernodulating hairy root plants transformed with the GmTIR-NBS-LRR::GUS vector did 

not show any GUS staining at any time point (results not shown). Control over-expressing hairy 

roots transformed with the 35S::GUS vector did show GUS staining in all cell types (results 

not shown). 

  

Figure 3-4 - Comparison of nodule number of control and 

35S::GmTIR-NBS-LRR hairy root transformed supernodulating 

nts382 soybean mutants. Nodule number is analysed on an individual 

root fresh weight basis. Confidence intervals were used in the 

formation of error bars. This graph shows no significant difference 

and the transformed roots (P>0.05). 



31 | P a g e  

 

3.5 Discussion  

After the conclusion of the above studies, it was discovered by Hayashi (2014) that the 

sequence for GmTIR-NBS-LRR which had been obtained from Phytozome 

(http://phytozome.jgi.doe.gov/pz/portal.html) and subsequently used to construct the over-

expression and RNAi vectors, and to inform the proposed promoter region for the 

promoter::GUS vector, had been re-annotated. Originally it was thought that GmTIR-NBS-LRR 

had a 3781 bp genomic sequence, 2667 bp CDS and a protein sequence 888 amino acids long. 

The new annotation, now named Glyma12g03040.2 in the Phytozome database, contains an 

additional exon, 834 bp long. This means that the previously predicted stop codon is actually 

positioned in an intron. 

Further investigation by Hayashi (2014) found that an additional transcript variant (TV), 

Glyma12g03040.3, is transcribed. This sequence is truncated due to its transcription through 

the 2nd intron which produces a premature stop codon. The protein sequence of 

Glyma12g03040.3 is only 543 bp long. This TV lacks the LRR domain but does possess the 

TIR and NBS domains. The primers originally used by Hayashi et al. (2012) to measure 

expression of the GmTIR-NBS-LRR gene by qRT-PCR amplified all three transcripts. New 

primers measuring Glyma12g03040.1/2 and Glyma12g03040.3 separately found 

Glyma12g03040.3, transcription levels to be 50 fold lower than that of Glyma12g03040.1/2.  

It is quite common for TNLs to have multiple transcript variants (Zhang et al., 2003; Zhang et 

al., 2007). Truncated genes, alternative splicing (AS) and alternative promoters (AP) are all 

possible methods or combinations of methods for achieving the various variants (Xin et al., 

2008). TNLs often have alternative transcripts which lead to truncated genes containing only 

the TIR-NBS domains (Jordan et al., 2002). The results of the over-expression, RNAi and 

promoter::GUS studies, coupled with the new information from Hayashi (2014), point to 

GmTIR-NBS-LRR likely possessing both AS and AP.  

Over-expression of one variant might not affect change at the phenotypic level as ratios of TV 

are often important to achieving a working complex. The RPS4 gene, a TNL in A. thaliana, 

requires both its full transcript and its truncated alternative transcripts to convey full resistance 

to the Pseudomonas syringae pv tomato strain DC3000 (Zhang et al., 2003). Additionally, the 

GmTIR-NBS-LRR sequence in the over-expression vector does not possess the newly 

discovered fifth exon and so is unlikely to be producing a functional product. Thus, seeing no 

phenotypic change in nodulation is due to ineffective over-expression of the target gene. Once 
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the TVs of GmTIR-NBS-LRR are better understood, over-expression of the gene could be 

repeated after varying the up-regulated sequence. 

Similarly, as there was no knowledge of the TVs prior to the creation of the RNAi vector, the 

sequence used targets only the Glyma12g03040.1/2 sequence as it is located in the 4th exon. As 

the truncated Glyma12g03040.3 stop prematurely in the 2nd exon, its transcript abundance 

would likely have been unaffected. Truncated TVs can convey some degree of resistance in 

defence related TNLs, it is possible that the unaffected truncated transcript, coupled with the 

impact of using supernodulating plants, was able to compensate for the possibly silenced 

Glyma12g03040.1/2 transcript, thus resulting in no phenotypic change to nodule number.  

It is often the case that gene with transcript variants also have AP (Xin et al., 2008). An AP 

can change tissue specificity, developmental activity, transcription activity and the presence of 

TV. Given that no GUS staining was observed in roots transformed with the pGmTIR-NBS-

LRR::GUS vector, it is possible that GmTIR-NBS-LRR also possesses APs. This lack of 

knowledge when altering the pGmTIR-NBS-LRR::GUS vector likely resulted in a lack of 

functional promoter sequence being included in the vector. Once more is known about the 

likely nature of the GmTIR-NBS-LRR promoter, multiple pGmTIR-NBS-LRR::GUS vectors 

containing various lengths of sequence can be created and used to identify the possible APs.  

A fast neutron mutant for GmTIR-NBS-LRR is now available in the SoyBase database 

(http://soybase.org; Grant et al., 2010). Phenotypically characterising this mutant will provide 

great insight not just into the role of GmTIR-NBS-LRR in nodulation but also to its various TVs 

and how they might interact. Over-expression of the differing GmTIR-NBS-LRR transcripts in 

this mutant of could provide a wealth of knowledge as to how these transcript interact and to 

the existence of additional variants.  

Carrying out an RNase protection assay would likely grant further insight into the complex 

transcription of GmTIR-NBS-LRR, allowing for mapping of transcription start sites, studying 

of intron-exon junctions, alternative promoters and identifying small transcript differences 

(Emery, 2007).   
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Chapter 4 Examining Gibberellins’ Role in Nodulation  

4.1 Abstract 

This chapter examines the role of GA in nodulation through molecular and physiological 

studies. Silencing of GmGA20ox a showed no difference in nodule number, likely due to 

redundancy amongst GA20-oxidases. Histochemical GUS staining of both GmGA20ox a and 

GmGA3ox 1a confirmed the specificity of GmGA20ox a and more general nature of GmGA3ox 

1a. Both sets of results align with previous qRT-PCR analysis of the expression of the two 

genes. GmGA20ox a was shown to be expressed in the cortex of the infection site and 

associated root hairs in the early stages of nodulation; developing nodules showed expression 

in the nodule primordium and cortex while mature nodules had greatly reduced expression in 

the inner cortex of the nodule. GmGA3ox 1a was expressed during early nodulation in the 

phloem of all roots, including in the elongation zone of the root tip. Later this expression was 

greatly reduced and concentrated in phloem that is extending into developing lateral roots. 

GmGA3ox 1a was expressed in the nodule primordium of developing nodules, faintly in the 

vascular of older, still developing nodules and sporadically in the scleroid layer of mature 

nodules. These histochemical results support the theory that GA is important in early 

nodulation events and in the development of emerging nodules, but not so important in mature 

nodules. GmGA2ox was classified as a Class II GA2-oxidase by phylogenetic analysis. GA 

produced by rhizobia in culture is unlikely to affect the GA content of inoculated roots. 

Endogenous GA levels were successfully measured in G. max roots and it was found that GA3 

is the most abundant bioactive GA in whole roots.   
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4.2 Introduction 

A high throughput RNA-seq study revealed several GA biosynthesis genes which are up-

regulated in G. max roots in the ZON behind the developing root tip within 48 hours of 

inoculation with B. japonicum (Hayashi et al., 2012). These same genes are not induced when 

the plants are inoculated with nodC- rhizobia. . Thus, it is highly likely that these genes are 

specifically involved in GA production as a response to rhizobia-produced Nod factor and 

successful infection events. These genes include those encoding a GA20ox (GmGA20ox a, 

Glyma04g42300.1), GA3ox (GmGA3ox 1a, Glyma15g01500.1) and GA2ox (GmGA2ox, 

Glyma02g01330.1) (Hayashi et al., 2012; Hayashi, 2014). A similar GA20ox (SrGA20ox1) 

was found in S. rostrata to be up-regulated 8 hpi and shown to be NF dependent (Lievens et 

al., 2005). GmGA20ox a and GmGA3ox 1a were both found by qRT-PCR to be most highly 

up-regulated at 12 hpi with a major decrease in expression at 48 hpi (Figure 4-1). The 

expression of GmGA3ox 1a increased again at 96 hpi. GmGA2ox’s expression shows its 

greatest increase in expression at 24 hpi with its major decrease also occurring at 48 hpi similar 

to GmGA20ox a and GmGA3ox 1a (Hayashi, 2014; Figure 4-1). GmGA2ox also has a slight 

increase in expression at 96 hpi in the same way that GmGA3ox 1a increases. 

Both GA20oxs and GA3oxs are involved in the biosynthesis of bioactive GA4, GA1 and GA3 

(Figure 1-1). Class I and II GA2oxs are involved in the deactivation of GA9, GA4, GA20 and 

GA1 (Figure 1-1). It is proposed that GmGA20ox a and GmGA3ox 1a are up-regulated at 12 hpi 

to provide an increase in endogenous GA and that 12 hours later at 24 hpi, GmGA2ox is up-

regulated in order to tightly control the level of endogenous GA (Hayashi, 2014).  

GmGA20ox a was shown through qRT-PCR of various G. max tissues to be nodule-specific 

(Figure 4-2; Hayashi et al., 2012). Interesting, it seems that after the initial reduction in 

expression at 96 hpi, expression increases again in 1 week-old nodules or 1 week post-

inoculation (1 wpi). However, expression at 3 wpi is extremely low (Hayashi et al., 2012). In 

roots, GmGA3ox 1a expression was specific to inoculated tissue, but not specific to roots over 

all. GmGA3ox 1a showed more general expression than GmGA20ox a, as it was found in the 

stem, shoot tip and trifoliate (Figure 4-2; Hayashi et al., 2012). Similar to GmGA20ox a, 

GmGA3ox 1a’s expression is up-regulated at 1 wpi; dissimilarly, it is still up-regulated at 3 

wpi, but at less than half the expression level of 1 wpi (Hayashi et al., 2012). 

 To carry out a histochemical promoter::reporter gene assay of both GmGA20ox a and 

GmGA3ox 1a, GUS vectors were constructed by Dr Satomi Hayashi (Hayashi, 2014). 
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Approximately 2-3 kb upstream of the translation start site of each gene was selected as the 

promoter region, amplified and cloned into the binary vector pCAMBIA 1305.1 (GenBank: 

AF354045; Hayashi, 2014; Table 4-1). These constructs were then electroporated into A. 

rhizogenes strain K599 and could then be used for hairy root mediated soybean transformation 

(Kereszt et al., 2007; Hayashi, 2014). 

It was later discovered that the pCAMBIA 1305.1 vector’s CaMV35Sx2 promoter which is 

used to induce hygromycin resistance, was also inducing increased GUS expression 

independent of the GmGA20ox a or GmGA3ox 1a promoter (Hayashi, 2014). This led to 

inaccurate results. Ms Dongxue Li (CILR, The University of Queensland) removed the 

CaMV35Sx2 promoter from the pGmGA20ox a::GUS construct so that only the GmGA20ox a 

promoter was driving GUS expression (Hayashi, 2014).  

 

Figure 4-1 - qRT-PCR measurement of expression of GmGA2ox, GmGA20ox a and GmGA3ox 1a 0, 12,

24, 48 and 96 hpi with either WT (red line) or nodC- (blue line) B. japonicum (Hayashi, 2014). 



36 | P a g e  

 

 

 

An RNAi vector was contrasted by Dr Hayashi to silence GmGA20ox a (Hayashi, 2014). A 

344 bp region of the coding sequence was amplified with two primer sets, sense (S) and anti-

sense (A), each with differing restriction enzyme (RE) sites (Table 4-1). These two target 

sequences were amplified and cloned into the pKannibal vector (GenBank: AJ311873.1; 

Wesley et al., 2001; Hayashi et al., 2014). The RNAi construct was excised from the pKannibal 

vector and subsequently ligated into the phosphatase-treated binary integration vector 

p15SRK2 (Kereszt et al. unpublished; Hayashi 2014). This construct was then transferred into 

A. rhizogenes K599 via tri-parental mating and could then be used for hairy root mediated 

soybean transformation (Kereszt et al., 2007; Hayashi, 2014). 

 

 

Figure 4-2 - qRT-PCR analysis of expression of GmGA20ox a and 

GmGA3ox 1a in various tissues of G. max (Hayashi et al. 2012). 



37 | P a g e  

 

Table 4-1 - Primers and restriction enzyme sites of the constructs made by Dr Satomi 

Hayashi (CILR). Lowercase letters represent the RE site, bold letters represent the start 

codon of the GUS gene, underlined letters represent the nucleotide added to the sequence 

in order to keep a distance between the promoter and translational start site (Hayashi 

2014). 

Construct Primers Restriction 

Enzyme Site 

pGmGA20ox a::GUS 
5’-ggtaccTTTCCACTTTGCTATGTTGCTCAATTA-3’ HindIII 

5’-agatctACCATCGTCTCACGTTAATTGTGTT-3’ BglII 

pGmGA3ox 1a::GUS 
5’-ggtaccTTTCCACTTTGCTATGTTGCTCAATTA-3’ BamHI 

5’-agatctACCATAATAGTGTGGAACAAATAGTGACCA-3’ BglII 

GmGA20ox a RNAi 

(S) 5’-ctcgagCACATGATCAAATGGACACTTTCT-3’ XhoI 

(S) 5’- ggtaccTTCTTCAAACAAGTCCCTATAATGCAAC-3’ KpnI 

(A) 5’-tctagaGCACATGATCAAATGGACACTTTCT-3’ XbaI 

(A) 5’-aagcttCTTCAAACAAGTCCCTATAATGCAAC-3’ HindIII 

 

A nodulation study was conducted using WT Bragg control hairy roots and GmGA20ox a RNAi 

hairy roots (Hayashi, 2014). No significant difference in nodule number was found between 

the two groups. When expression of GmGA20ox a was measured via qRT-PCR in both control 

and GmGA20ox a RNAi hairy roots, no expression data could be obtained repeatedly. This was 

due to the low transcript abundance of GmGA20ox a in whole roots. As discussed above, this 

gene is highly expressed in the ZON but not in the whole root itself, which was the tissue 

sampled (Hayashi, 2014).  

Here, we aimed to continue to characterise these early nodulation GA biosynthesis genes and 

investigate the role of GA in nodulation as a whole. The GmGA20ox a RNAi vector mentioned 

above was used to transform nts382 supernodulating plants to determine, if an overall increase 

in gene expression would amplify the effect of silencing. The new GmGA20ox a::GUS 

construct, without the interfering CaMV35Sx2 promoter was used to transform G. max plants 

and study the expression of the gene at various times post inoculation. The pGmGA3ox 

1a::GUS construct altered to remove the interfering CaMV35Sx2 promoter was used in a 

similar histochemical promoter::reporter gene assay. A vector to over-express GmGA2ox was 

constructed and used to study the possible physiological differences that increased GmGA2ox 

expression causes.  

Additionally, to study the role of GA at the hormone level, whole root tissue, inoculated with 

WT or nodC- B. japonicum was harvested and the endogenous GA level measured by Dr Dana 

Tarkowska (Palacky University and Institute of Experimental Botany ASCR). Further to this 

initial study, the ZON was harvested from plants inoculated with WT or nodC- B. japonicum 
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and the endogenous GA level measured as it is hypothesised that the greatest difference in GA 

level will be seen when comparing the ZONs. In order to examine the possible role of B. 

japonicum in affecting the level of GA measured, whole roots inoculated with WT or nodC- B. 

japonicum or a mock inoculation were harvested and the GA level measured. In addition, the 

in vitro levels of GA from WT and nodC- B. japonicum and a mock culture were measured.  
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4.3 Methods 

4.3.1 GmGA2ox Phylogenetic Analysis  

GmGA2ox’s amino acid sequence was obtained from Phytozome 

(http://www.phytozome.net/soybean). All other amino acid sequences were obtained through 

NCBI (http://www.ncbi.nlm.nih.gov/). The amino acid sequences of multiple GA2-oxidases 

were compared to generate a phylogenetic tree. GenBank accession numbers of proteins 

investigated are in parentheses: A. thaliana; AtGA2ox1 (CAB41007), AtGA2ox2 

(CAB41008), AtGA2ox3 (CAB41009), AtGA2ox4 (AAG51528), AtGA2ox6 (AAG00891), 

AtGA2ox7 (AAG50945), AtGA2ox8 (CAB79120), Lactuca sativa; LsGA2ox1 (BAB12442), 

Oryza sativa; OsGA2ox1 (BAB40934), OsGA2ox2 (BAC16751), OsGA2ox3 (BAC16752), 

OsGA2ox4 (AAU03107), OsGA2ox5 (BAC10398), OsGA2ox6 (CAE03751), Phaseolus 

coccineus; PcGA2ox1 (CAB41036), P. sativum; PsGA2ox1 (AAF08609), PsGA2ox2 

(AAD45424), Spinacia oleracea; SoGA2ox1 (AAN87571), SoGA2ox2 (AAN87572), and 

SoGA2ox3 (AAX14674). Pairwise identities were found through alignment using Geneious. 

The alignment was used to generate a phylogenetic tree using Genebee 

(http://www.genebee.msu.su/services/phtree_reduced.html). 

4.3.2 GmGA2ox over-expression 

To examine GmGA2ox’s possible role in nodulation, an over-expression study was conducted. 

The GmGA2ox gene sequence of 1071bp was retrieved from Phytozome 

(http://www.phytozome.net/soybean). The sequence was amplified from soybean nodule 

cDNA using the following primers; 5’-ccgcggATGGTTGCCCCTTGTCCAACATC-3’ with 

restriction enzyme SacII and 5’-tctagaTCAGGGAGAAGCAGGTGCGAGAT-3’ with 

restriction enzyme XbaI. Following ligation with T4 DNA ligase (New England Biolabs) into 

the pGEM-T (Promega) cloning vector, the sequence of the gene was verified. Post 

verification, the gene was excised by double digest using the restriction enzymes SacII and 

XbaI, similarly the binary vector pORE (AY562538) underwent double digest of by SacII and 

XbaI. GmGA2ox was then ligated with T4 DNA ligase (New England Biolabs) into pORE. 

Following additional sequence verification, the GmGA2ox over-expression vector was 

electroporated into A. rhizogenes K599 and selected via antibiotic resistance to rifampicin and 

kanamycin. A. rhizogenes carrying either of the binary vectors was then used in hairy root 

transformation as described in chapter 2.1. A vector of pORE carrying no soybean genes was 

similarly electroporated into A. rhizogenes K599 and used to transform plants via hairy root 

transformation to act as a control.  
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WT Bragg plants were transformed, inoculated with USDA110 and grown as in chapter 2.1. 

Plants were checked for nodulation 3 wpi but no nodules formed on the control or 

overexpressing plants. Plants were re-inoculated with fresh rhizobia. 3 wpi. The plants were 

harvested but both treatments still failed to nodulate. The plants were also now too old to 

attempt a third inoculation and produce reliable results.  

4.3.3 GmGA20ox a RNAi 

Supernodulating nts382 plants were grown, inoculated with USDA110 and transformed as in 

chapter 2.1, utilising the GmGA20ox a RNAi vector created by Dr Satomi Hayashi (CILR, The 

University of Queensland; Hayashi, 2014), chapter 4.2 Supernodulating plants were used to 

magnify the possible effects of gene silencing. Plants were harvested at 3 wpi with nodule 

number and root weight recorded on an individual root basis.  

4.3.4 GmGA20ox a promoter study 

The pGmGA20ox a::GUS vector described in chapter 4.2, created by Dr Satomi Hayashi 

(CILR, The University of Queensland; Hayashi, 2014), was used in hairy root transformation 

as described in chapter 2.1 of supernodulating nts382 plants.  

Plants and B. japonicum were grown as described in chapter 2.1, with controls as described in 

chapter 2.2. Plants were then harvested at 16 hpi, 24 hpi, 48 hpi, 1 wpi or 3 wpi and underwent 

histochemical staining as described in chapter 2.2. Supernodulating plants were used as per 

chapter 3.3.1. 

4.3.5 GmGA3ox 1a promoter study 

A pGmGA3ox 1a::GUS vector was created as described in section 2.4 utilising the following 

primers and restriction enzymes to excise the promoter, digest the modified pCAMBIA1305.1 

vector and verify the sequence;  

5’-ggtaccTTTCCACTTTGCTATGTTGCTCAATTA-3’ with restriction enzyme BamHI and 

5’-agatctACCATAATAGTGTGGAACAAATAGTGACCA-3’ with restriction enzyme BglII. 

WT Bragg plants were grown and transformed as described in chapter 2.1, with controls as 

described in chapter 2.2. Plants were harvested at 12 hpi, 48 hpi or 3 wpi and underwent 

histochemical staining as described in chapter 2.2. 

4.3.6 Endogenous GA levels in whole roots 

WT Bragg plants were grown as outlined in chapter 2.1 and were inoculated with either 

USDA110 or nodC- B. japonicum, either 16 hours or 4 days prior to harvest. At 14 days-old 
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the plant’s tap root was harvested. Root tips, considered to be the newest 1 cm of root, were 

removed prior to freezing. Chapter 2.3 details the rest of the procedure that followed.  

4.3.7 Endogenous GA levels in the ZON 

WT Bragg [lants were grown as in 2.1 and were inoculated with either USDA110 or nodC- B. 

japonicum, either 18 h or 36 h prior to harvest of 6 day-old plants. Only the ZON, representing 

the 5 cm section of root located 1 cm behind the root cap was harvested. The samples were 

then treated as described in chapter 2.3.  

4.3.8 Endogenous GA levels in whole roots examining rhizobia’s effect 

WT Bragg plants were grown as in 2.1 and were inoculated with either USDA110 or nodC- B. 

japonicum or a mock inoculation consisting of YMB diluted with water. Inoculation took place 

either 18 h or 36 h prior to harvest of 6 day-old plants. The plant’s tap root was harvested, 

excluding root tips, considered to be the newest 1 cm of root. Chapter 2.3 details the rest of the 

procedure followed.  

4.3.9 GA levels present in B. japonicum culture  

B. japonicum strains USDA110 and nodC-, as well as mock culture containing no bacteria but 

simply YMB were grown as in Chapter 2.1. Samples of each culture type were not diluted but 

centrifuged at 8,000 rpm for 20 min at 4°C. The supernatant was kept and freeze-dried at -

80°C, 100 µbar for 48 h. Samples were then handled by Dr Dana Tarkowska (Palacky 

University and Institute of Experimental Botany ASCR), who analysed the GA content using 

the technique described in Urbanová et al. (2013). 
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4.4 Results 

4.4.1 GmGA2ox Phylogenetic Analysis  

GmGA2ox was found via phylogenetic analysis to be most closely related to Class II GA2-

oxidases of other species, having 56.0%, 48.8%, 45.7%, 43.1%, 76.7% and 58.3% pairwise 

identity to AtGA2ox4, AtGA2ox6, OsGA2ox1, OsGA2ox2, PsGAox2 and SoGA2ox2 

respectively (Figure 4-3). When amino acid sequences of multiple GA2-oxidases were 

analysed, and a phylogenetic tree was generated using Genebee, GmGA2ox was found to 

cluster with other Class II GA2-oxidases (Figure 4-3).  

4.4.2 GmGA2ox over-expression 

The GmGA2ox over-expression hairy root plants and the corresponding control failed to 

nodulate. As a result, it was not possible to assess the effects of GmGA2ox over-expression on 

nodulation. 
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Figure 4-3 - Unrooted phylogenetic tree of known GA2-oxidases generated using Genebee  

(http://www.genebee.msu.su/services/malign_reduced.html). GenBank accession numbers of proteins are in 

parentheses: A. thaliana; AtGA2ox1 (CAB41007), AtGA2ox2 (CAB41008), AtGA2ox3 (CAB41009), 

AtGA2ox4 (AAG51528), AtGA2ox6 (AAG00891), AtGA2ox7 (AAG50945), AtGA2ox8 (CAB79120), L. 

sativa; LsGA2ox1 (BAB12442), G. max; GmGA2ox, O. sativa; OsGA2ox1 (BAB40934), OsGA2ox2 

(BAC16751), OsGA2ox3 (BAC16752), OsGA2ox4 (AAU03107), OsGA2ox5 (BAC10398), OsGA2ox6 

(CAE03751), P. coccineus; PcGA2ox1 (CAB41036), P. sativum; PsGA2ox1 (AAF08609), PsGA2ox2 

(AAD45424), S. oleracea; SoGA2ox1 (AAN87571), SoGA2ox2 (AAN87572), and SoGA2ox3 (AAX14674). 
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4.4.3 GmGA20ox a RNAi 

Nodule number/root fresh weight was examined to account for root size. When comparing 

GmGA20ox a RNAi silenced hairy roots to control roots, no significant differences were found 

(p>0.05) (Figure 4-4).  

4.4.4 GmGA20ox a promoter study 

Three controls were used in the histochemical analysis of GmGA3ox 1a expression, including; 

no promoter::GUS plants and 35S::GUS plants (results not shown) as described in chapter 2.2. 

The third control consisted of plants transformed with the pGmGA20ox a::GUS vector but 

inoculated with nodC- B. japonicum, which therefore did not nodulate.  

Neither the no promoter::GUS nor nodC- inoculated control saw GUS staining in any tissue, at 

any time point (Figure 4-5). At 16 hpi GUS staining was seen at the sites of developing nodules 

and in the root hairs associated with those developing nodules. The GUS staining was not 

present in the epidermis but was present in the cortex (Figure 4-6). 

Figure 4-4 - Comparison of nodule number of control and GA20ox a RNAi 

silenced hairy root transformed supernodulating nts382 soybean mutants. 

Nodule number is analysed on an individual root fresh weight basis. Confidence 

intervals were used in the formation of error bars. This graph shows no 

significant difference and the transformed roots (P>0.05). 
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GUS staining was observed exclusively in nodule related tissues, in tissues that were the site 

of early nodule development, in root hairs that were associated with a developing nodule and 

within nodules themselves (Figure 4-5 and Figure 4-6). 1 week old nodules had GUS staining 

present in the nodule primordia whilst mature nodules of 3 weeks of age had no staining in the 

infection zone, but faint staining in the inner cortex of the nodule at the north and south 

positions within the nodule, not the entire inner cortex (Figure 4-6). No staining was observed 

at the site of developing lateral roots (results not shown) or in the root tip. 
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Figure 4-5 - Photos of G. max hairy roots 

carrying the GmGA20ox a::GUS vector  

inoculated with B. japonicum strains 

USDA110 or the non-nodulating mutant 

nodC- and harvested at 12 hpi, 48 hpi, 

approximately 1 wpi or 3 wpi. No 

promoter::GUS roots shown are 

representative of all no promoter::GUS 

roots from all time points in regards to a 

lack of visible GUS staining, not in root or 

nodule development. nodC- roots shown 

are representative of nodC- from all time 

points. A) no promoter::GUS nodule 4 

wpi with USDA110. B) GmGA20ox 

a::GUS root 4 wpi with nodC-. C-J) 

GmGA20ox a::GUS  roots/nodules 

inoculated with USDA110 and harvested 

at:  C & D) 16 hpi. E) 24 hpi. F) 48 hpi. 

G) 1 wpi. H) 1 wpi. I) 4 wpi. J) 4 wpi  
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Figure 4-6 - Photos of G. max hairy roots carrying the GmGA20ox  a::GUS vector  inoculated with 

B. japonicum strains USDA110, harvested at 16 hpi, 24 hpi, 48 hpi, 1 wpi or 4 wpi. A) Transverse of 

root 16 hpi; p – pericycle, e – epidermis, x – xylem, ph – phloem, c - cortex. B) Close up of  root hairs

(rh) with infection thread (it) 16 hpi. C)  Transverse of root 24 hpi. D) Transverse of root 48 hpi; dn 

– developing nodule. E) Longitudinal section of nodule approximately 1wpi; oc – outer cortex, p –

periderm, np – nodule primodrium, sl – scleroid layer. F)  Longitudinal section of nodule 4 wpi; oc 

– outer cortex, p – periderm, in – infected zone, sl – scleroid layer, ic – inner cortex, vs – vascular 

strand.   
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4.4.5 GmGA3ox 1a promoter study 

Three controls were used in the histochemical analysis of GmGA3ox 1a expression; no 

promoter::GUS plants and 35S::GUS plants (results not shown) as described in chapter 2.2. 

The third control consisted of plants transformed with the pGmGA3ox 1a::GUS vector but 

inoculated with nodC- B. japonicum, which therefore did not nodulate.  

Neither the no promoter::GUS nor nodC- inoculated control saw GUS staining in any tissue, at 

any time point. The GUS staining observed in GmGA3ox 1a::GUS transformed roots was 

exclusively in the vasculature at 12 and 48 hpi, further, expression was localised to the phloem 

and not present in the xylem (Figure 4-7). This phloem expression continued into the elongation 

region of the root tip. At 12 hpi the expression of GmGA3ox 1a::GUS is much greater and 

wider spread than expression at 48 hpi (Figure 4-8). Although expression was exclusively in 

the phloem at 12 hpi, expression could be seen all along the root, including in lateral roots and 

at the junction between root and lateral root (Figure 4-8). However, at 48 hpi expression was 

greatly reduced and was seen only at the site of developing lateral roots were it concentrated 

in the phloem extending into the developing root (Figure 4-7).  

Despite roots being harvested at 3 wpi, nodules that were less than 3 week old could still be 

observed, however their exact age is unknown. In developing nodules likely less than a week 

old, GUS staining could be observed in the nodule primordium (Figure 4-8 and Figure 4-7). 

Nodules that were not fully mature showed no staining in the nodule primordium but did show 

GUS in the vasculature of the nodule. Mature nodules showed very faint GUS staining which 

was sporadically present in the scleroid layer (Figure 4-7).  
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Figure 4-7 - Photos of G. max hairy 
roots carrying the GmGA3ox 

1a::GUS vector  inoculated with B. 

japonicum strains USDA110 or the 

non-nodulating mutant nodC- and 

harvested at 12 hpi, 48 hpi, 

approximately 1 wpi or 3 wpi. No 

promoter::GUS roots shown are 

representative of all no 

promoter::GUS roots from all time 

points in regards to a lack of visible 

GUS staining, not in root or nodule 

development. nodC- roots shown 

are representative of nodC- from all 

time points. A) no promoter::GUS 

roots 12 hpi with USDA110 B) 

GmGA3ox::GUS roots 12 hpi with 

nodC-. C-K) GmGA3ox::GUS 

roots/nodules inoculated with 

USDA110 and harvested at: C & D) 

12 hpi. E-I) 48 hpi. J) 

Approximately 1wpi. K) 3 wpi.  
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Figure 4-8 - Photos of G. max 

hairy roots carrying the 

GmGA3ox 1a::GUS vector  

inoculated with B. japonicum

strain USDA110, harvested 

at 12 hpi, 48 hpi, 

approximately 1 wpi or 3 

wpi. A) Longitudinal section 

of root tip 12 hpi; rm –

region of maturation, re –

region of elongation, rd –

region of division, rc – root 

cap.  B) Cross section of root 

12 hpi; e – epidermis, x –

xylem, ph – phloem.  C) 

Cross section of root and 

lateral root (lr) 48 hpi. D) 

Cross section of root 48 hpi; 

c – cortex, x – xylem, ph –

phloem. E) Cross section of 

nodule approximately 1 wpi, 

vb – vascular bundle, np –

nodule primodrium. F) 

Cross section of nodule 3 

wpi; vs – vascular strand, iz 

– infection zone, sl – scleroid 

layer. G) Cross section of 

nodule 3 wpi with close up of 

nodule scleroid layer (sl).  
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4.4.6 Endogenous GA levels in whole roots – 14 days old 

When examining whole roots, endogenous GA3 levels were at least 15 times higher than that 

of GA1 or GA4 (Figure 4-9). Levels of GA4 were found to significantly double at 4 dpi 

regardless of inoculation treatment; however, no significant difference was found between 

inoculation treatments at either time point. GA1 levels decreased significantly at 4 dpi with 

USDA110; however, no significant difference was found between treatments or between time 

points for nodC- treated roots.   

The GAs involved in the GA1 biosynthesis pathway were examined together. GA44 and GA29 

were present at much greater levels than any of the other GAs in this pathway with GA29 having 

at least double the level of even GA44 (Figure 4-10). While the high levels of GA29 at both 18 

hpi and 4 dpi were virtually unchanged, at 4 dpi with nodC- the level significantly increased by 

approximately 10 pg/mg dw. The levels of GA19, GA20 and GA1 were all similar to each other 

when comparing levels of the same treatment type, the level of GA1 at 4 dpi with USDA110 is 

an exception as it was significantly lower than the same GA20 level but not GA19 (Figure 4-10). 

The level of GA53 significantly reduced at 4 dpi, regardless of inoculum. GA44’s levels for 

nodC- vs USDA110 have opposing patterns as expression increased at 4 dpi with nodC- but 

decreased at 4 dpi with USDA110 when compared to their earlier 18 dpi counterparts.   

GA5 in the GA3 biosynthesis pathway follows a very similar pattern to that of GA44, the level 

of the GA increased at 4 dpi in nodC- inoculated roots by approximately 39% and 50% 

respectively and decreased in both GAs by approximately 40% at 4 dpi in USDA110 inoculated 

roots (Figure 4-11). GA3 was present at significantly higher levels in USDA110 inoculated 

roots at both time points with the level significantly increasing between 18 hpi and 4 dpi.  

Within the GA4 biosynthesis pathway, GA51 was found at the highest levels across all 

treatments, at least twice as high as GA15, the next most abundant GA (Figure 4-12). GA51 

increased in abundance at 4 dpi regardless of inoculum. Levels of both GA24 and GA9 decreased 

by at least 50% at 4 dpi in USDA110 inoculated roots but had no difference in level between 

time points for nodC- inoculated roots. GA34 saw no change in level across any of the 

treatments. GA15 had consistent levels when inoculated with USDA110 but saw an increase in 

level between 18 hpi and 4 dpi with nodC- (Figure 4-12).  
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Figure 4-9 –Average pg/mg dw of bioactive endogenous GAs in whole G. max roots treated with B. 

japonicum strains USDA110 or the non-nodulating mutant nodC- and harvested 18 hpi or 4 dpi. Error 

bars represent standard error. Different lowercase letters of the same colour represent a significant 

difference between treatment averages for the same GA type. Different uppercase letters of the same 

bracketing – (), {}, [] or none – represent a significant difference between averages of different GA types 

of the same treatment (inoculum and time point). (Student’s t-test; P≤0.05). 
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Figure 4-10 - Average pg/mg dw of endogenous GAs involved in GA1 biosynthesis, in whole G. max

roots treated with B. japonicum strains USDA110 or the non-nodulating mutant nodC- and harvested 

18 hpi or 4 dpi. Error bars represent standard error. Different lowercase letters of the same colour 

represent a significant difference between treatment averages for the same GA type. Different 

uppercase letters of the same bracketing – (), {}, [] or none – represent a significant difference between 

averages of different GA types of the same treatment (inoculum and time point). (Student’s t-test; 

P≤0.05).    
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Figure 4-11 - Average pg/mg dw of endogenous GAs involved in GA3 biosynthesis, in whole G. max

roots treated with B. japonicum strains USDA110 or the non-nodulating mutant nodC- and harvested 

18 hpi or 4 dpi. Error bars represent standard error. Different lowercase letters of the same colour 

represent a significant difference between treatment averages for the same GA type. Different 

uppercase letters of the same bracketing – (), {}, [] or none – represent a significant difference between 

averages of different GA types of the same treatment (inoculum and time point). (Student’s t-test; 

P≤0.05). 
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Figure 4-12 - Average pg/mg dw of endogenous GAs involved in GA4 biosynthesis, in whole G. max roots 

treated with B. japonicum strains USDA110 or the non-nodulating mutant nodC- and harvested 18 hpi or 

4 dpi. Error bars represent standard error. Different lowercase letters of the same colour represent a 

significant difference between treatment averages for the same GA type. Different uppercase letters of the 

same bracketing – (), {}, [] or none – represent a significant difference between averages of different GA 

types of the same treatment (inoculum and time point). (Student’s t-test; P≤0.05). 
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4.4.7 Endogenous GA levels in ZON 

GA44 increases significantly and to the same level in both nodC- and USDA110 inoculated 

roots at 36 hpi (Figure 4-15). GA20 and GA29 both increase significantly and similarly in both 

treatments at 36 hpi (Figure 4-15). GA1 at 18 hpi in nodC- and 36 hpi in USDA110 inoculated 

roots has a large variation in the data resulting in a large standard error (Figure 4-14). As a 

result, the level of GA1 at all time points and across both treatments is statistically similar. The 

level of GA3 does not change between 18 and 36 hpi in nodC- inoculated roots but does decrease 

between 18 and 36 hpi in USDA110 inoculated roots. At 18 hpi in USDA110 inoculated roots, 

GA3 is significantly more abundant than at any other time point in any treatment. GA3 is 

significantly more abundant in USDA110 18 hpi roots than GA1 (Figure 4-13).  

GA6 follows a similar pattern between 18 and 36 hpi in both nodC- and USDA110 inoculated 

roots as it significantly increases at 36 hpi (Figure 4-15). GA5 does not change significantly 

across treatments or time point (Figure 4-15). GA19 levels do not change significantly in nodC- 

roots across time points but does significantly increase at 36 hpi in USDA110 roots compared 

to the levels at 18 hpi (Figure 4-14).  
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Figure 4-13 - Average pg/mg dw of bioactive endogenous GAs in ZON of G. max roots 

treated with B. japonicum strains USDA110 or the non-nodulating mutant nodC- and 

harvested 18 hpi or 36 hpi. Error bars represent standard error. Different lowercase 

letters of the same colour represent a significant difference between treatment averages 

for the same GA type. Different uppercase letters of the same bracketing – (), {}, [] or 

none – represent a significant difference between averages of different GA types of the 

same treatment (inoculum and time point). (Student’s t-test; P≤0.05). 
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Figure 4-14 - Average pg/mg dw of endogenous GAs involved in GA1 biosynthesis, in 

ZON of G. max roots treated with B. japonicum strains USDA110 or the non-nodulating 

mutant nodC- and harvested 18 hpi or 36 hpi. Error bars represent standard error. 

Different lowercase letters of the same colour represent a significant difference between 

treatment averages for the same GA type. Different uppercase letters of the same 

bracketing – (), {}, [] or none – represent a significant difference between averages of 

different GA types of the same treatment (inoculum and time point). (Student’s t-test; 

P≤0.05). 
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Figure 4-15 - Average pg/mg dw of endogenous GAs involved in GA3 biosynthesis, in 

ZON of G. max roots treated with B. japonicum strains USDA110 or the non-nodulating 

mutant nodC- and harvested 18 hpi or 36 hpi. Error bars represent standard error. 

Different lowercase letters of the same colour represent a significant difference between 

treatment averages for the same GA type. Different uppercase letters of the same 

bracketing – (), {}, [] or none – represent a significant difference between averages of 

different GA types of the same treatment (inoculum and time point). (Student’s t-test; 

P≤0.05). 
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4.4.8 Endogenous GA levels in whole roots – 6 days old 

GA1 levels in nodC- inoculated roots appear to be highly elevated compared to both mock and 

USDA110 inoculated roots. However, due to the high error in this data, the 18 hpi levels of 

mock, USDA110 and nodC- are all statistically similar. At 36 hpi both nodC- and USDA110 

inoculated roots have statically similar levels of GA1. The level of GA1 at 36 hpi is significantly 

increased in USDA110 roots compared to 18 hpi (Figure 4-17).  

In 6 day old whole roots, GA3 was more abundant in USDA110 inoculated roots than GA1 at 

both 18 hpi and 36 hpi (Figure 4-16). At 18 hpi the mock inoculated roots had a statically 

similar level of GA3 to the USDA110 roots; however, there was no increase in the mock roots 

at 36 hpi. nodC- inoculated roots had a much lower level of GA3 at 18 hpi compared to 

USDA110, but increased to a statically similar level at 36 hpi. GA3 was highly elevated at 36 

hpi in USDA110 inoculated roots, compared to previous time points and both mock and nodC- 

inoculated roots. (Figure 4-16).  

GA44 was at a statistically equal level at 18 hpi in all three treatments and increased 

significantly and similarly across treatments at 36 hpi (Figure 4-18). GA6 was significantly 

lower in nodC- inoculated roots at both 18 and 36 hpi compared to USDA110 and mock 

inoculated roots. In mock inoculated roots the level of GA6 does not significantly change 

between time points; however, in USDA110 inoculated roots there is a significant decreased 

between 18 and 36 hpi (Figure 4-18).  
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Figure 4-16 - Average pg/mg dw of bioactive endogenous GAs in whole G. max roots treated 

with a mock inoculation or B. japonicum strains USDA110 or the non-nodulating mutant nodC-

and harvested 18 hpi or 36 hpi. Error bars represent standard error. Different lowercase letters 

of the same colour represent a significant difference between treatment averages for the same 

GA type. Different uppercase letters of the same bracketing – (), {}, [] or none – represent a 

significant difference between averages of different GA types of the same treatment (inoculum 

and time point). (Student’s t-test; P≤0.05). 
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Figure 4-17 - Average pg/mg dw of endogenous GAs involved in GA1 biosynthesis in whole G. max

roots treated with a mock inoculation or B. japonicum strains USDA110 or the non-nodulating 

mutant nodC- and harvested 18 hpi or 36 hpi. Error bars represent standard error. Different 

lowercase letters of the same colour represent a significant difference between treatment averages 

for the same GA type. Different uppercase letters of the same bracketing – (), {}, [] or none –

represent a significant difference between averages of different GA types of the same treatment 

(inoculum and time point). (Student’s t-test; P≤0.05). 
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Figure 4-18 - Average pg/mg dw of endogenous GAs involved in GA3 biosynthesis in whole G. 

max roots treated with a mock inoculation or B. japonicum strains USDA110 or the non-

nodulating mutant nodC- and harvested 18 hpi or 36 hpi. Error bars represent standard error. 

Different lowercase letters of the same colour represent a significant difference between 

treatment averages for the same GA type. Different uppercase letters of the same bracketing –

(), {}, [] or none – represent a significant difference between averages of different GA types of the 

same treatment (inoculum and time point). (Student’s t-test; P≤0.05). 
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4.4.9  GA levels in B. rhizobium culture supernatant  

When comparing the nodC- culture to the USDA110, most GA levels were statistically similar. 

Exceptions to this were GA53 and GA8 which were lower in USDA110 and GA3 which was 

higher in USDA110 (Figure 4-20 and Figure 4-21). The only GAs which exceeded 0.5 pg/mg 

dw in the B. japonicum cultures were GA44, GA20 and GA8, with none of these being greater 

than 1 pg/mg dw (Figure 4-20). The mock culture was only significantly lower than the B. 

japonicum cultures in GA5. GA44, GA29, GA19, GA1, GA8, GA6 and GA3 were all found in 

significantly greater quantity in the mock culture. The concentration of GA1 was found to be 

significantly greater than that of GA3 in all three cultures (Figure 4-19).  

 



65 | P a g e  

 

 

 

  

Figure 4-19 - Average pg/mg dw of bioactive GAs found in the freeze-dried supernatant 

of centrifuged culture containing either a mock culture of YMB or YMB inoculated B. 

japonicum strains USDA110 or the non-nodulating mutant nodC-. Error bars represent 

standard error. Different lowercase letters of the same colour represent a significant 

difference between treatment averages for the same GA type. Different uppercase letters 

of the same bracketing – (), {}, [] or none – represent a significant difference between 

averages of different GA types of the same treatment (inoculum and time point). 

(Student’s t-test; P≤0.05). 
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Figure 4-20 - Average pg/mg dw of GAs in involved in GA1 biosynthesis found in the 

freeze-dried supernatant of centrifuged culture containing either a mock culture of YMB 

or YMB inoculated B. japonicum strains USDA110 or the non-nodulating mutant nodC-. 

Error bars represent standard error. Different lowercase letters of the same colour 

represent a significant difference between treatment averages for the same GA type. 

Different uppercase letters of the same bracketing – (), {}, [] or none – represent a 

significant difference between averages of different GA types of the same treatment 

(inoculum and time point). (Student’s t-test; P≤0.05). 
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Figure 4-21 - Average pg/mg dw of GAs in involved in GA3 biosynthesis found in the 

freeze-dried supernatant of centrifuged culture containing either a mock culture of YMB 

or YMB inoculated B. japonicum strains USDA110 or the non-nodulating mutant nodC-. 

Error bars represent standard error. Different lowercase letters of the same colour 

represent a significant difference between treatment averages for the same GA type. 

Different uppercase letters of the same bracketing – (), {}, [] or none – represent a 

significant difference between averages of different GA types of the same treatment 

(inoculum and time point). (Student’s t-test; P≤0.05). 
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4.5 Discussion  

4.5.1 GA2ox discussion  

GmGA2ox was found to have the most sequence similarity to Class II GA2-oxidases of other 

species. Class II and class I GA2-oxidases use C19-GAs as substrates as opposed to class II 

GA2-oxidases which can use C20-GAs (Yamaguchi, 2008). As GmGA2ox is a class II GA2-

oxidase it can be assumed that it has a role in the later stages of the GA biosynthesis pathway, 

rather than an earlier role which would involve interacting with C20-GA substrates. Thus, 

GmGA2ox likely converts GA9 to GA51, GA4 to GA34, GA20 to GA29 or GA1 to GA8 as these 

are all C19-GAs.    

When considering GmGA2ox’s class II classification and the endogenous GA levels measured 

in the 14 day old whole root samples, we can begin to narrow down the likely role of GmGA2ox 

in the GA biosynthesis pathway. As the expression of GmGA2ox varies post inoculation, 

increasing at 12 hpi, drastically increased at 24 hpi and largely decreasing at 48 hpi followed 

by a slight increase again at 96 hpi, it would be expected that the GA substrate acted upon by 

this GA2-oxidase would similarly vary in level dependent upon inoculation type and time post 

inoculation. Therefore, it is unlikely that GmGA2ox acts on GA4 to produce GA34 as the level 

of GA34 does not change at all, no matter the treatment type.  

Additionally, GA4’s levels follow the same pattern over time regardless of inoculation type, 

this differs from GmGA2ox’s expression pattern which is inoculum dependant. Although it is 

unlikely that GmGA2ox uses GA4 as a substrate, it is difficult to narrow down its likely 

substrate any further as it is unknown what time frame should be considered to be reasonable 

between detecting a change in gene expression to expecting a change in endogenous GA level. 

Future experiments which harvest inoculated root tissue at multiple time points and use the 

same pooled root samples for both qRT-PCR measurement of gene expression and UPLC 

MS/MS measurement of endogenous GA level would give a better idea of the relationship 

between gene expression and GA level.  

4.5.2 GA2ox Over-expression 

To gain insight into GmGA2ox’s role in nodulation, the hairy root transformation to over-

express GmGA2ox requires repeating. This experiment failed to produce results due to a failure 

of the plants to nodulate. When carrying out the appropriate qRT-PCR confirmation of 

GmGA2ox’s expression level, it is advised to simultaneously measure the expression level of 

GmGA20ox a and GmGA3ox 1a to test whether these genes’ expression changes in response 



69 | P a g e  

 

to changes in GmGA2ox’s expression. As previous studies have shown the importance of GA 

in nodulation lies in its level being kept at certain thresholds for different species and stages of 

nodule development (Ferguson et al., 2005a; Ferguson et al., 2011; Ferguson et al., 2014; 

Maekawa et al., 2009; Hayashi et al., 2014), it is inferred that an increase in GmGA2ox would 

lead to a decrease in bioactive GA production. This could possibly trigger an increase in the 

expression of GmGA20 a and GmGA3ox 1a to compensate.  

4.5.3 GA20ox RNAi  

GA20-oxidases have a high level of redundancy within A. thaliana and O. sativa (Xu et al., 

1995; Sakamoto et al., 2004). Given G. max’s duplicated genome, it is highly likely that 

redundancy also exists for GmGA20ox a. It is possible that it was due to redundancy that no 

phenotypic changes were observed in GmGA20ox a silenced hairy roots. It is also possible that 

silencing of GmGA20ox a was not successful. Recently, a fast neutron mutant for GmGA20ox 

a was added to the SoyBase database (http://soybase.org; Grant et al., 2010). It is therefore 

recommended that future studies of GmGA20ox a utilise this resource, rather than repeat this 

silencing experiment or attempt to silence multiple GA20-oxidases at once. Characterising the 

mutant’s phenotype would hopefully point to GmGA20ox a’s role in nodulation. Further hairy 

root transformation could be utilised in the mutant to more easily allow for the silencing of an 

additional GA20-oxidase.  

4.5.4 GmGA20ox and GmGA3ox promoter studies 

The lack of GUS staining in the nodC- inoculated control for both pGmGA3ox 1a::GUS and 

pGA20ox a::GUS confirms the expression pattern measured through qRT-PCR by (Hayashi et 

al., 2012; Figure 4-2), neither gene is expressed in response to inoculation with B. japonicum 

in the absence of NF. This further confirms that both genes are nodulation specific in their root 

expression.  

In pGmGA20ox a::GUS transformed roots, the expression of GmGA20ox a was very nodule 

specific. GmGA20ox a is highly likely to be involved in the formation of the infection thread 

in the root hair given its strong expression in this cell during the early stages of nodulation. GA 

is known to play a role in cell elongation (Tanimoto, 2005) so it is possible that GmGA20ox a 

facilitates the elongation of the infection thread. It is proposed, given GmGA20ox a’s 

expression in the inner cortex of the root at the early stages of nodulation 16-48 hpi, that 

GmGA20ox a plays a role in cortical cell division of the developing nodule. GmGA20ox a’s 

role within maturing nodules seems to be in cell division of the nodule primordium. Within the 
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mature nodule GmGA20ox a is again working in the cortical cells specifically the inner cortex, 

however its reduced expression indicates a great reduction in expression and therefore role in 

these cells. As the expression is in the northern and southern inner cortical cells, it is again 

likely that GmGA20ox a’s role is in few remaining cell divisions required for a mature nodule.  

Unlike in pGmGA20ox a::GUS transformed roots, GUS staining in pGmGA3ox 1a::GUS 

transformed roots was not observed in the root hair at any time point.  Thus it is unlikely that 

GmGA3ox 1a plays a major role in the formation of infection threads or root hair curling.   

GmGA3ox 1a is not nodule specific in its expression. The widespread expression observed at 

12 hpi in the phloem lends itself to the idea that GmGA3ox 1a plays a role in changes to the 

root in response to nodulation, but not actually involved in nodule development. The rapid 

decrease in staining at 48 hpi coupled with its clustering in the phloem extending into 

developing lateral roots is peculiar as there is no similar expression seen in the phloem of 

developing nodules, despite the similarity in the development of these two organs in their early 

stages. It is unclear what this staining pattern is indicating about GmGA3ox 1a’s role in 

nodulation. GA is known to promote cell and root elongation, however, only within a small 

range of concentrations, similar to the way GA can promote or inhibit nodulation dependant 

on concentration (Tanimoto, 2012). As such, it is possible that GmGA3ox 1a’s expression is 

greatly up-regulated in order to increase the GA concentration of the roots and promote root 

elongation in response to nodulation. Assuming that increased gene expression correlates with 

increased endogenous GA level, the rapid decrease in expression is likely due to needing to 

tightly control the concentration of the GA produced. With this in mind it follows that newly 

formed lateral roots would display higher GmGA3ox 1a expression than the rest of the root 

system as new GA would be needed in these new cells.  

In the mature nodule, faint GmGA3ox 1a expression was seen in the scleroid layer. The scleroid 

layer consists of cells with thicker cell walls, GA actually inhibits cell wall thickening 

(Tanimoto, 2005), it is possible that here GmGA3ox 1a’s is involved in maintaining the proper 

amount of cell thickening. Similarly, GA is often found in the region of elongation to inhibit 

root thickening, despite GmGA3ox 1a being expressed in this tissue, as its expression is 

nodulation dependant it is unlikely that that is a role for GmGA3ox 1a.  
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As both GmGA20ox a and GmGA3ox 1a are nodulation specific in their expression it was 

originally hypothesised that these biosynthesis genes may work in the same stream of the GA 

biosynthesis pathway. However, following the GUS expression study results which highlighted 

that GmGA20ox a, which is positioned up-stream in the biosynthesis pathway, is expressed 

solely in nodule related tissue but GmGA3ox 1a, whose role is down-stream, is expressed in 

tissue unspecific to nodulation, it seems less likely that they work in the same stream of the 

pathway.  

It is speculated that other non-nodulation specific GA20-oxidases and GA3-oxidases work in 

the same stream as GmGA20ox a and GmGA3ox 1a. Other nodulation-specific GA20-oxidases 

and GA3-oxidases would likely have been identified through the RNA-seq study carried out 

by Hayashi et al. (2012). Thus it is possible that non-nodulation specific GA20-oxidases and 

GA3-oxidases are being expressed in similar cell types to GmGA20ox a and GmGA3ox 1a with 

the expression of these two nodulation specific genes acting as the limiting step in the 

biosynthesis.  

4.5.5 Endogenous GA levels in whole roots – 14 day old 

When considering the levels of endogenous GA present in whole roots of G. max post 

inoculation, GA3 emerges as the main bioactive GA present. Both P. lunatus (lima bean) and 

V. unguiculata (cowpea) were found to possess GA3 in their nodules (Dobert et al., 1992a; 

Dobert et al., 1992b) though it is unclear in both cases if GA3 is the most abundant bioactive 

GA present. Neither GA3 nor GA4 were found in P. sativum (pea) root tissue (Yaxley et al., 

2001). GA3 was not only present at much higher levels compared to the other bioactive GAs, 

but was more abundant in USDA110 inoculated roots and increased in concentration over time.  

Neither GA29 nor GA6, the two GAs along the GA3 biosynthesis pathway which divert substrate 

from the biosynthesis of GA3, increased in abundance over time when inoculated with 

USDA110, despite GA3’s level increasing. This could indicate that the level of GA3 being 

produced does not require negative regulation at 4 dpi as an increase in level of either catabolite 

would indicate. However, when examining GA29 and GA6 levels in nodC- inoculated roots, 

their levels do significantly increase at 4 dpi; this may be as a response to the lack of nodulation 

occurring and therefore a need to keep the GA3 level from increasing.  

The level of endogenous GA4 found does increase 4 dpi, however this increase occurs 

independent of inoculum type. It would therefore seem likely that GA4’s increase is related to 

root growth and development, rather than to nodulation. The metabolite GA51, a product of 
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deactivated GA9, a GA4 precursor, follows the same abundance pattern as GA4. GA51 increases 

in abundance at 4 dpi regardless of inoculum type.  

4.5.6 Endogenous GA levels in whole roots – ZON and Whole Root 

The GA content of B. rhizobium culture was examined to determine the likelihood of 

measurement of endogenous root GA, particularly GA3, being affected by rhizobia produced 

GA. GA3 was of particular interest as it is not usually found in high concentrations in plant 

tissue comparative to GA1 and GA4. None of the GAs measured were found in great quantity 

in either the USDA110 or nodC- cultures and for the most part the GA concentration in these 

cultures was lower than that of the mock culture containing just YMB. This was highly 

unexpected as previous studies had shown GA3 production by B. japonicum (Boiero et al., 

2007). This experiment should be repeated with the inclusion of a water control to confirm the 

validly of the result from the mock culture. In the inoculated cultures, the concentration of GAs 

was quite low, particularly that of GA3. It is unlikely that the measurement of endogenous GA 

in inoculated roots is greatly affected by the GA produced by rhizobia in culture.  

The extent to which rhizobia produced GAs may be measured concurrently with endogenous 

root GAs, resulting in misleading results was tested. A harvest of whole roots inoculated with 

a mock culture containing no rhizobia was tested alongside a nodC- treatment and USDA110 

inoculation. It was hypothesised that GA levels in mock roots would be very similar to GA 

levels in nodC- roots but both would differ from the levels found in USDA110 inoculated roots 

if it is true that endogenous GA increases during nodulation. It was also thought that if rhizobial 

GA production did affect the measurement of GA in the root, that the mock inoculated roots 

would have much lower GA levels than either the nodC- or USDA110 roots.  

Similar levels of GA were found in all three treatments for GAs: GA20, GA44, GA53, GA29 and 

GA5.  This could be explained by considering the possibility that the mock or nodC- were 

contaminated with nodulating rhizobia or that USDA110 plants did not receive viable 

USDA110 and therefore were not undergoing changes associated with nodulation. However, 

this assumption does not hold true when considering GA1 and GA3 levels at 36 hpi which are 

much greater in both nodC- and USDA110 roots than mock inoculated roots. Further to this, 

GA3 was significantly more abundant in USDA110 roots than nodC- roots at both 18 and 36 

hpi. It may well be that levels of intermediate GAs do not change in response to nodulation due 

to a possible increase in their metabolism. Thus, the only GA levels that increased absolutely 

during nodulation are bioactive GA3 and GA1. For this to hold true it must be accepted that 
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either the nodC- inoculated roots were contaminated with nodulating rhizobia or that an 

increase in bioactive GA is not NF dependant but a response to the rhizobia’s surface proteins. 

This theory, however, is at odds with the clear NF dependent up-regulation of GmGA20ox a 

and GmGA3ox 1a seen in both the qRT-PCR of Hayashi et al. (2012) and the histochemical 

promoter study conducted in this thesis (sections 4.4.4 and 4.4.5). It is possible that the 

biosynthesis genes in question are involved in the production of GA4, which was not measured 

in this study.  

These results confirm what was seen in the previous whole root experiment with 14 day old 

roots, GA3 is more abundant than bioactive GA1 in G. max whole roots independent of rhizobia 

exposure. Further analysis of the material produced from this study of 6 day old whole roots 

may enable the measurement of GA4 which may also be less abundant than GA1 as was seen 

in the 14 day old root experiment. When comparing patterns of GA level changes between the 

whole root samples of 14 day old roots and 6 day old roots, it must be remembered that, 

although both contain a ZON, the proportion of ZON to non-ZON root tissue is much smaller 

in the older roots.  

In both the 6 day old whole roots and the ZON samples, the GA1 measurements were varied 

between biological replicates, resulting in a large standard error. It is therefore difficult to 

suggest, how GA1 may be involved in nodulation with great confidence. Additional biological 

replicates should likely be added to future experiments where GA1 is intended to be measured. 

Given the difficultly with measuring endogenous GA in G. max roots in the past (Hayashi, 

2014), it is possible that GA1 is particularly difficult to measure accurately.   

When examining the levels of multiple GAs in the ZON no differences were found between 

the nodulating USDA110 and the non-nodulating nodC- inoculated roots, exceptfor a higher 

level of GA19 36 hpi and GA3 18 hpi in USDA110 inoculated roots.  

It was expected that when examining the ZON, differences in GAs’ concentrations between 

nodC- and USDA110 inoculated roots would be amplified if GA plays a major role in early 

nodulation. However, very few major differences were observed between the two treatments. 

GA19 increased significantly between 18 and 36 hpi and was significantly higher in 

concentration in USDA110 roots at the 36 hpi time point. Conversely, GA3 was most highly 

concentrated in 18 hpi USDA110 roots and decreased to levels statically equal to nodC- at 36 

hpi. GA3’s high concentration at 18 hpi is supported by the very low concentration of GA6 at 

the same time point. As GA6 is produced to decrease GA3 production through diversion of GA5, 
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GA3’s precursor, it follows that its concentration would be low when a high concentration of 

GA3 is needed and increase when the concentration of GA3 requires lowering. This pattern of 

concentration was seen here.  

Conversely, GA1 is most abundant at 36 hpi and very scarce at 18 hpi. Despite this, the 

difference between GA1 and GA3 in the ZON at 36 hpi is not statically significant due to the 

GA1 measurement possessing a large standard error.  

It may be that in the ZON GA3 plays a role at 18 hpi and GA1 a role at 36 hpi. This specificity 

could explain the vast differences in results of GA and GA biosynthesis inhibitor studies if 

different concentrations of different GAs are required at different points of both root and nodule 

development. GA29 is highly increased at 36 hpi in the ZON in both nodC- and USDA110 roots. 

The increase in GA29, being a metabolite of the GA1 and GA3 precursor GA20, in the ZON of 

both nodC- and USDA110 inoculated roots indicates that the concentration of both GA1 and 

GA3 is being regulated regardless of nodulation. 

It is recommended that this ZON study is repeated and expanded to include further time points 

and a use of qRT-PCR to analyse the gene expression of the GA biosynthesis genes GmGA20ox 

a, GmGA3ox 1a and GmGA2ox. This would enable further conclusions to be drawn about the 

timing and relationship between gene expression and endogenous GA level. Additionally, 

some plants from each treatment should be grown for 2 wpi to be used as a sample of quality 

control. If the nodC- plants nodulate, then the samples harvested are not a representation of 

non-nodulating plants. Likewise, if USDA110 inoculated plants do not nodulate, then the 

samples were not representative of nodulating tissue.  

Assuming all treatments were executed correctly, GA44 is almost certainly involved in root 

growth and development, independent of nodulation as in the ZON and 6 day old whole root 

experiment, all treatments, including the mock inoculation treatment, have a drastic but equal 

increase in endogenous GA44 content at 36 hpi.  

Recently, fast neutron mutants for GmGA20ox a, GmGA3ox 1a and GmGA3ox 1b have been 

added to the SoyBase database (http://soybase.org; Grant et al., 2010). In order to further 

understand not only the role of these individual genes in nodulation but the role of GA in 

general, endogenous GA levels in these mutants’ roots should be measured. In addition to the 

characterisation of the mutants’ physiology, the genes’ expression levels should be measured 

via qRT-PCR, as well as the expression levels of related early nodulation genes, such as 
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GmGA2ox, whose expression may be altered where the mutated genes’ expression is also 

abnormal.   

Ultimately, the results of this study have led further credence to the role of GA in nodulation 

proposed by Hayashi et al. (2014) through the histochemical promoter analysis, that GA is 

necessary in the early stages of nodulation including infection thread formation and in the 

development of the nodule itself. However, GA does not play an important role in the mature 

nodule. Additionally, this study has established that GA3 is more abundant in G. max whole 

roots than GA1.   
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Chapter 5 General Discussion and Future Directions  

This is the first study to measure the endogenous level of GA in soybean roots using reliable, 

modern techniques. The findings open up many avenues to further explore the role that GA 

plays in nodulation and root development. Importantly, being able to measure endogenous GA 

allows studies to examine what is actually occurring in the root, rather than to make inferences 

based on gene expression or application studies.  

To understand how direct the relationship is between gene expression and endogenous GA 

content, a more detailed time course study could be conducted. By comparing the ZON of 

USD110 inoculated plants with nodC- inoculated plants via a combination of GA 

measurements and qRT-PCR studies (to measure GmGA20ox a, GmGA3ox 1a and GAGm2ox 

expression) at the same time points, it may be possible to establish a time window for the 

relationship between gene expression and GA content. Constructing a pGAGm2ox::GUS 

vector would allow for greater insight into which cell types this gene is acting and whether it 

is likely to be working down-stream of either of GmGA20ox a or GmGA3ox 1a.  

Recently, fast neutron mutants for GmGA20ox a, GmGA3ox 1a and GmGA3ox 1b have been 

added to the SoyBase database (http://soybase.org; Grant et al., 2010). These mutants will be 

an invaluable resource in researching GA’s role in nodulation. Not only will the mutants be 

able to be phenotypically characterised, but the creation of double or even triple mutants could 

lead to a better understanding of whether and how these GA biosynthesis genes work within 

the same stream of the GA biosynthesis pathway.   

Now that a successful method for measuring endogenous GA content of soybean roots has been 

established through collaboration, it could be capitalised on to measure the root GA content of 

the fast neutron mutants. If similar GAs are reduced in both GmGA20ox a and GmGA3ox 1a 

mutants then it is likely that they work within the same stream of the GA biosynthesis pathway.  

Measuring endogenous GA levels allows for the role of GA biosynthesis genes to be better 

understood, as an unchanged GA level may indicate a level of redundancy or that the gene in 

question is not essential for GA biosynthesis. Comparing differences in GA levels of mutant 

plants to WT, coupled with the phenotypic analysis of the mutant plants, will allow for further 

conclusions to be made about the role of GAs in nodulation. 

Neither over-expressing nor silencing of the GmTIR-NBS-LRR gene resulted in a phenotypic 

change to nodulation. Given that this gene is now known to be transcribed in multiple ways, it 
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is clear that a new approach needs to be taken to its characterisation. A fast neutron mutant for 

GmTIR-NBS-LRR has also been added to the SoyBase database (http://soybase.org; Grant et 

al., 2010). Phenotypically characterising this mutant will provide great insight into the role of 

GmTIR-NBS-LRR in nodulation. Over-expression studies in this mutant of the differing 

GmTIR-NBS-LRR transcripts could provide insight into the role of these transcripts and their 

importance.  

Inoculating a GmTIR-NBS-LRR mutant that has been transformed to over-express one of the 

various TVs, with different strains of rhizobia (and B. japonicum in particular) would allow for 

testing of the theory that GmTIR-NBS-LRR is involved in modulating host specificity.  

Particularly for GmGA20ox a and GmTIR-NBS-LRR, the use of a mutant is a much more robust 

system than the use of hairy root transformation. Despite hairy root transformation being a 

flexible and useful tool, the transformation is inconsistent and differs on an individual root 

basis. The use of a mutant will give a much more consistent basis for future studies. One 

advantage of the hairy root transformation method is that only the roots and nodules are 

manipulated in their gene expression, genes which are expressed in other tissues are not 

affected. When considering the GmGA20ox a and GmTIR-NBS-LRR genes, they are expressed 

almost exclusively in the roots and nodules, therefore hairy root transformation has no 

advantage over the use of a mutant in this case.   

This study further confirms the mechanism for GA’s role in nodulation proposed by Hayashi 

et al. (2014) in which GA is vital for early nodulation events including the formation of the 

infection thread and for in the development of the nodule, but that its role subsides in the mature 

nodule. It has also provided a basis upon which to build in the investigation of the role of 

multiple early nodulation genes, including three within the GA biosynthesis pathway; 

GmGA20ox a, GmGA3ox 1a and GmGA2ox and GmTIR-NBS-LRR. Showing that bioactive 

GA3 is the most abundant bioactive GA in whole G. max roots is an exciting result as it differs 

greatly from many other legume species. This establishes a basis for examining the role of GA 

in nodulation from a newly improved physiological perspective.  
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