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Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability
(RMI) is suppressed in ideal magnetohydrodynamics (MHD) in Cartesian slab geom-
etry. Motivated by the presence of hydrodynamic instabilities in inertial confinement
fusion and suppression by means of a magnetic field, we investigate the RMI via
linear MHD simulations in cylindrical geometry. The physical setup is that of a
Chisnell-type converging shock interacting with a density interface with either axial
or azimuthal (2D) perturbations. The linear stability is examined in the context of
an initial value problem (with a time-varying base state) wherein the linearized ideal
MHD equations are solved with an upwind numerical method. Linear simulations
in the absence of a magnetic field indicate that RMI growth rate during the early
time period is similar to that observed in Cartesian geometry. However, this RMI
phase is short-lived and followed by a Rayleigh-Taylor instability phase with an
accompanied exponential increase in the perturbation amplitude. We examine several
strengths of the magnetic field (characterized by β = 2p

B2
r
) and observe a significant

suppression of the instability for β ≤ 4. The suppression of the instability is attributed
to the transport of vorticity away from the interface by Alfvén fronts. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4943162]

I. INTRODUCTION

The Richtmyer-Meshkov instability (RMI) occurs when a perturbed density interface separat-
ing two fluids is subject to an impulsive acceleration, usually by a shock wave.1,2 The RMI is impor-
tant in a wide variety of applications. One of the most significant applications is inertial confinement
fusion (ICF), which has been a major impetus for the study of shock-accelerated interfaces.3 In
direct-drive ICF, a capsule filled with fuel, typically deuterium and tritium, is placed at the focus
of a spherical array of lasers. The lasers heat the surface of the capsule, which drives a converging
spherical shock into the target. The goal of this shock compression is to attain sufficiently high
temperature and density at the core of the spherical capsule to initiate a fusion reaction. Here RMI
becomes a spoiler: it promotes mixing between the capsule material and the fuel. This mixing
limits the final compression of the fuel and hence the possibility of achieving energy break-even
or production.4 Lindl et al.,5 in a comprehensive review of the National Ignition Facility at the
Lawrence Livermore National Laboratory, state in the final section entitled “The Path Forward”
that: “Current evidence points to low-mode asymmetry and hydrodynamic instability as key areas
of research to improve the performance of ignition experiments on the NIF and are a central focus
of the Ignition Program going forward.” It is clear that a key bottleneck towards achieving fusion
is hydrodynamic instabilities. The RMI is also important in astrophysical phenomena especially
supernovae explosions. It has been used to account for the lack of stratification in the products of
supernova 1987A and is now a required component in stellar evolution models.6 One application
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where RMI is beneficial is in supersonic and hypersonic air breathing engines. Here the RMI may
be used to enhance the mixing of fuel and air.7 The RMI also arises in many combustion systems
where shock-flame interactions occur; the resulting instability is important in the transition from a
deflagration to a detonation.8

Nonlinear ideal magnetohydrodynamics (MHD) simulations showed that the RMI could be
suppressed in the presence of a magnetic field.9 The essential mechanism of suppression is the
transport of baroclinic vorticity, originally at the interface by the incident shock, by slow- or
intermediate-mode shocks, leaving the interface devoid of vorticity and hence suppressing the
instability. The suppression was reconfirmed in the context of incompressible MHD linear stability
analysis by Wheatley et al.,10 where it was demonstrated that Alfvén fronts were the vehicles
of vorticity transport away from the interface. A more detailed investigation followed11 in which
nonlinear MHD simulations demonstrated the RMI suppression and extended the parameter ranges
of earlier investigations. In these MHD investigations, the initial seed magnetic field was parallel to
the incident shock front. Wheatley et al.12 investigated the case where the magnetic field was paral-
lel to the interface, i.e., there was no normal component of the magnetic field at the interface, and
found oscillatory solutions with the RMI still being suppressed. In these prior MHD investigations
of RMI, the geometry was planar.

The physical configuration of relevance to ICF is one where the main incident shock is a
converging shock. So it is of interest to examine the RM instability in a converging geometry, espe-
cially in the presence of a magnetic field, and investigate the physical mechanisms of suppression,
if any. One of the early investigations of RMI in cylindrical geometry was carried out by Zhang and
Graham,13 in which they examined both the imploding (shock converging towards cylinder axis)
case and the exploding (shock moving radially outwards) case for positive and negative Atwood
ratio interfaces. Furthermore, they also examined the growth rate of small amplitude perturba-
tions via “direct numerical simulations” rather than solving the linearized Euler equations. Zhang
and Graham write in their paper: “The equations and boundary conditions of the linear theory
of RM instability in curved geometry are considerably more complicated than the equations and
boundary conditions of the linear theory of RM instability in plane geometry, and to date there
is no linear theory for the curved case.” It is not uncommon in the RMI literature to encounter
linear stability investigations via small amplitude nonlinear simulations. Our approach is different
in that we actually solve the linearized equations of motion. Lombardini and Pullin14 investigated
the RMI in cylindrical geometry with azimuthal and axial perturbations in a cylindrical geometry,
and developed a linear incompressible theory for the case of an imploding or exploding shock.
In particular, they developed a theory for the asymptotic growth rate of perturbations and further
derived a unified expression for the asymptotic impulsive growth rate in planar, cylindrical, and
spherical cases. An interesting corollary to this analysis was the clear demarcation of effects due
to geometry and baroclinic vorticity deposition. The linear analysis was complemented and verified
against compressible simulations with a small amplitude perturbation although the simulations were
actually performed with a nonlinear code. In converging geometry, the RMI is typically followed by
the Rayleigh-Taylor instability (RTI) due to the continued acceleration of the interface towards the
center of convergence. This effect was not captured in the model of Lombardini and Pullin.

Linear stability analysis in hydrodynamics has a rich history. Clearly, linear stability analysis
of several flows is considered an important precursor to nonlinear stages in the flow development,
which in turn is an important stage before turbulence ensues. Indeed, hydrodynamic RM flows
follow a similar development: very small amplitude perturbations grow linearly, until they are
comparable to the perturbation wavelength, after which nonlinear mode coupling ensues followed
by full blown turbulent mixing. It is pointed out there that RMI is not a classical hydrodynamic
instability with modal analysis, because the perturbations grow linearly (or linearly in an averaged
sense) rather than exponentially. In the original analysis by Richtmyer an initial boundary value
problem was derived, where the boundaries were formed by a reflected and a transmitted shock
emerging from the zeroth order interaction of an incident shock with a contact discontinuity. The
base state in this analysis is a self-similar solution involving a reflected shock, a transmitted shock,
and a contact discontinuity that translates at an average constant speed due to the impulse by the
incident shock. The linearized compressible inviscid equations were solved by Richtmyer, in which
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the perturbation amplitude growth rate undergoes a short transient before settling into an oscillatory
state around a constant asymptotic value. Richtmyer himself proposed an impulse model based on
an incompressible assumption to obtain the asymptotic growth rate, and this model was in reason-
able agreement with the compressible linear solution provided one took into account the post-shock
Atwood ratio and the initial compression of the interface by the incident shock. The impulse model
itself has been used by a number of researchers to get analytical or semi-analytical models in a
number of physical scenarios, and one reason for the widespread use of the impulse model is due to
the fact that the initial boundary value problem which must be solved for linear solutions is some-
what complicated. One notable mention in this regard is the work of Mikaelian who investigated
the linear RMI and RTI of incompressible flow for a chosen number of spherical concentric shells
affected by a radial implosion or explosion.15 He found analytical solutions for different numbers of
spherical shells, (N = 2,3), and presented numerical examples for imploding and exploding shells.
He concluded that for N > 3, with N − 1 interfaces in a system of N fluids, the interface coupling
or feedthrough of perturbations from one interface to another will occur. Moreover, he proposed a
theoretical model for turbulent mix in spherical geometry. In a follow-on investigation, Mikaelian16

studied the linear stability of RTI and RMI in cylindrical concentric shells. He performed numerical
simulations and illustrated the perturbation from one interface to another of possible gelatin-ring
experiments. In addition, he developed a simple model for the evolution of turbulent mix.

Another important development in the linear analysis of RM flows was due to Yang et al.17

who developed their method for the case of a reflected rarefaction wave. Moreover, they provided
a solution to the start-up problem for small times. They also examined the validity of the impulse
model for the case of the reflected rarefaction. A drawback of both the linear analysis of Richtmyer
and Yang et al. is that these require specialized numerical methods and codes, and both approaches
are somewhat restricted to the case of a single sharp interface. A purely numerical technique to
solve the linearized compressible Euler equations in planar geometry, with a time-dependent base
state for shock-accelerated density interfaces was proposed by Samtaney.18 This method is robust
enough to be applicable for interfaces that are not sharp, or for paired interfaces forming a layer.
This method was extended to linearized compressible MHD in planar geometry and was used in
the work of Wheatley et al.10 to compare the analytical growth rate of incompressible MHD with
numerical solutions stemming from linearized compressible MHD.

It is evident from an examination of the RMI literature that there is a gap in our knowledge
regarding the suppression of RMI in converging geometry in the presence of a magnetic field.
Investigations of the MHD RMI thus far have primarily addressed the case where the incident
shock propagates from a light gas to a heavy one, corresponding to a positive Atwood number
(A > 0). Consequently, the effects of cylindrical convergence on the MHD RMI should first be
investigated for the A > 0 case. Note, however, that the planar MHD RMI is also suppressed for
A < 0, as clearly illustrated in Fig. 1 of Wheatley et al.11 This is important even in the A > 0 case
because, although not studied here, the reshock of the interface after shock reflection from the axis
of convergence will correspond to a diverging MHD RMI with A < 0. It is therefore anticipated that
the reshock induced perturbation growth will also be attenuated by the presence of a magnetic field.
Clearly, there are a wealth of configurations and parameters for which the cylindrically converging
MHD RMI could be investigated. A logical first step in such an investigation is linear stability
analysis of an A > 0 interface with azimuthal and/or axial perturbations.

The paper is organized as follows: in Section II, the physical setup and the ideal MHD equa-
tions are introduced. Here we extend Samtaney’s numerical linear stability analysis18 to MHD in
cylindrical geometry. Linearizing the ideal MHD equations about a time dependent base state we
derive a set of hyperbolic equations with source terms for the perturbed quantities. These equations
are solved using an upwind technique (the details of the numerical method are relegated to the
Appendix). In Section III, we present numerical results for both hydrodynamics and MHD for
a positive Atwood ratio interface, with purely azimuthal or axial, and combined azimuthal-axial
perturbations, accelerated by a Chisnell-type shock.19 Finally, some conclusions and potential future
work are discussed in Section IV.
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FIG. 1. Schematic diagram of the physical setup: (a) (r, θ)-section with constant z and (b) (r, z)-section with constant θ.
Two fluids of densities ρ1 and ρ2 are separated by a perturbed interface located at r = R0. A Chisnell-type incident shock is
initially located at r = Rs, with Mach number Ms.

II. PHYSICAL SETUP AND EQUATIONS

A. Physical setup

A schematic of the physical setup is shown in Fig. 1 (a) for (r, θ)−section with fixed axial
coordinate z and (b) for (r, z)−section with constant azimuthal orientation θ. A cylindrical annulus
domain is confined by left and right boundaries at r = Rl and r = Rr , respectively, with zero
gradient boundary conditions. A density interface of azimuthal or axial perturbation wavenumbers
m or k is located at r = R0 that separates two fluids of densities ρ1 and ρ2. A Chisnell-type converg-
ing shock of Mach number Ms travels inwards (further discussion about the Chisnell-type shock in
Section III A), which is initialized at r = Rs. Samtaney,9 Wheatley et al.,10 and Wheatley et al.11

studied the suppression of the RMI for the case of an initial magnetic field normal to the plane
of the driving incident shock in planar geometry. It was recently made evident by the work of
Mostert et al.20 that azimuthal and spherical symmetry may be violated in cylindrical and spherical
geometry, respectively, in the presence of a magnetic field. Our intention is to examine the effect of
a magnetic field on the RMI in cylindrical geometry in which the base state is only a function of
the radial coordinate and employing any of the configurations in Mostert et al. would make the base
state in our linear stability analysis a multi-dimensional function. To retain simplicity of the base
state, our preference is to examine a magnetic field that is initially oriented along the direction of the
shock motion so that it results in a purely hydrodynamic incident shock impinging on the density
interface. This configuration also implies a somewhat unrealistic radial magnetic field because the
solenoidal constraint on the magnetic field precludes a converging purely radial field. Nevertheless,
we further justify this choice by trimming the domain of interest and cutting out the origin. At
location Rl, the field lines exit the domain radially and do not violate the solenoidal condition
outside the domain. A purely radial field inside the domain of interest may be conceivably created
by current carrying coils. We do not elaborate on such possibilities because this is beyond the scope
of the present study. An additional justification for the choice of a radial field may be made by
invoking the benefits of a reductionist approach: our approach is a natural extension of previous
studies in planar geometry by including cylindrical geometry effects in a somewhat straightforward
manner.

The magnetic field is characterized by its non-dimensional strength using the plasma beta
β = 2p/B2

r , evaluated at R0, where p is the initial pressure ahead of the shock and Br is the radial
component of magnetic field strength. Five parameters characterize the problem: the Mach number
Ms of the incident Chisnell shock, the Atwood number A = (ρ2 − ρ1)/(ρ2 + ρ1), the azimuthal or
axial perturbation wavenumbers m or k, the plasma β at the interface and the distance ratio Rs/R0.
Our numerical results are completely determined by these five parameters (Ms, A,m or k, β,Rs/R0).
To limit the scope of our investigation, our simulation domain is chosen to be Rl = 10−5,Rr = 1.9,
and we fix Ms = 2.0, A = 0.667 (this Atwood ratio corresponds to, for example, an air-SF6 interface
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which is a common combination used in several previous RMI investigations) and Rs/R0 = 1.2/1.0
and mainly study the cases of different perturbation wavenumbers m or k, and plasma β.

B. Governing equations

The time-scale for diffusion is much longer than the convective time scale in RMI. Hence we
neglect viscous, thermal, and plasma resistivity effects. Hence, the governing equations are those of
ideal MHD written below in conservation form in cylindrical coordinates:

∂U
∂t
+

1
r
∂(rF(U))

∂r
+

1
r
∂G(U)
∂θ

+
∂H(U)
∂z

= S, (1)

where U ≡ U(r, θ, z, t) = {ρ, ρur , ρuθ, ρuz,Br ,Bθ,Bz,e}T is the solution vector, ρ is the density, (ρur ,
ρuθ, ρuz) is the momentum, (Br ,Bθ,Bz) is the magnetic field, e is the total energy per unit volume.
These equations are already expressed in non-dimensional form by choosing a reference density,
pressure, and length scale (for example, see Wheatley et al.12 for the non-dimensionalization). F(U),
G(U), and H(U) are the fluxes of mass, momentum, magnetic flux, and energy in the r , θ, and z
directions given as

F =



ρur

ρu2
r + p̃ − B2

r

ρuruθ − BrBθ

ρuruz − BrBz

0
urBθ − uθBr

urBz − uzBr

(e + p̃)ur − (B · u)Br



,G =



ρuθ

ρuruθ − BrBθ

ρu2
θ + p̃ − B2

θ

ρuθuz − BθBz

uθBr − urBθ

0
uθBz − uzBθ

(e + p̃)uθ − (B · u)Bθ



,

H =



ρuz

ρuruz − BrBz

ρuθuz − BθBz

ρu2
z + p̃ − B2

z

uzBr − urBz

uzBθ − uθBz

0
(e + p̃)uz − (B · u)Bz



,

(2)

where p̃ = p + 1
2 (B · B) is the sum of gas and the magnetic pressures. S is a source term arising in

cylindrical coordinates, given by

S = −1
r


0,B2

θ − ρu2
θ − p̃, ρuruθ − BrBθ,0,0,uθBr − urBθ,0,0

T
. (3)

To close the system we use the perfect gas equation of state so that e = p
γ−1 +

1
2 (B · B) + 1

2 ρ(u · u),
where γ is the ratio of specific heats fixed at 5/3. Finally, we have the solenoidal constraint on the
magnetic field, i.e., ∇ · B = 0.

The initial magnetic field has an inverse radial dependence. Close to the origin, large numerical
errors are encountered owing to a lack of analytical cancellation of a term proportional to r−3 in the
radial momentum equation. These errors are eliminated by rewriting the radial component of the
magnetic field as Br = B∗r + B1

r where B∗r =
β
r

is a curl-free portion of the magnetic field. The ideal
MHD equations are rewritten as

∂Ũ
∂t
+

1
r
∂(r F̃(Ũ))

∂r
+

1
r
∂G̃(Ũ)
∂θ

+
∂H̃(Ũ)
∂z

= S̃, (4)
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where Ũ = {ρ, ρur , ρuθ, ρuz,B1
r ,Bθ,Bz, ẽ}T . Also, the modified fluxes and source terms are

F̃ = {ρur , ρu2
r + p̃t − BrB1

r , ρuruθ − BrBθ, ρuruz − BrBz,0,urBθ − uθBr ,urBz

− uzBr , (ẽ + p̃t + B∗rB1
r)ur − (B.u)Br}T ,

(5)

G̃ = {ρuθ, ρuruθ − BrBθ, ρu2
θ + p̃t − B2

θ, ρuθuz − BθBz,uθBr − urBθ,0,uθBz

− uzBθ, (ẽ + p̃t + B∗rB1
r)uθ − (B.u)Bθ}T ,

(6)

H̃ = {ρuz, ρuruz − BrB,ρuθuz − BθBz, ρu2
z + p̃t − B2

z,uzBr − urBz,uzBθ

− uθBz,0, (ẽ + p̃t + B∗rB1
r)uz − (B.u)Bz}T ,

(7)

S̃ = −1
r
{0,B2

θ − ρu2
θ − p̃t + B∗rB1

r , ρuruθ − BrBθ,0,0,uθBr − urBθ,0, ,0}T , (8)

where ẽ = p
γ−1 +

1
2 ((B1

r)2 + B2
θ + B2

z) + 1
2 ρ(u2

r + u2
θ + u2

z) and p̃t = p + 1
2 ((B1

r)2 + B2
θ + B2

z).
To examine the linear stability of a converging shock interacting with a perturbed interface, we

linearize the ideal MHD equations by splitting the solution into a base and perturbed solutions as
Ũ(r, θ, z, t) = Ů(r, t) + ϵÛ(r, t)ei(mθ+kz), where m and k denote the azimuthal and axial perturbation
wavenumbers and i ≡

√
−1. The time dependent base state is a function of the radial coordinate, and

comprises of shocks and a contact discontinuity. Details of the base state are presented later. Substi-
tuting the base and perturbed solutions into the governing equations, we get the partial differential
equations governing the base and perturbed states as follows:

∂Ů
∂t
+

1
r
∂

∂r
(rF(Ů)) = S̊, (9a)

∂Û
∂t
+

1
r
∂

∂r
(r M(Ů)Û) + 1

r
imN(Ů)Û + ikP(Ů)Û = Ŝ, (9b)

S̊ =



0

−1
r
[B̊2

θ − ρ̊ů2
θ − p̊t + B∗r B̊1

r]
−1

r
[ ρ̊ůrůθ − B̊r B̊θ]

0
0

−1
r
[ůθ B̊r − ůr B̊θ]

0
0



, Ŝ =



0

−1
r
[2B̊θ B̂θ − 2 ρ̊ůθûθ − ρ̂ů2

θ − p̂t + B∗r B̂1
r]

−1
r
[ ρ̊ůrûθ + ρ̂ůrůθ + ρ̊ûrůθ − B̊r B̂θ − B̂r B̊θ]

0
0

−1
r
[ûθ B̊r + ůθ B̂r − ûr B̊θ − ůr B̂θ]

0
0



, (10)

where M(Ů), N(Ů), and P( ◦U) are, respectively, the Jacobians of the fluxes F̃,G̃, and H̃ with
respect to the base state. We note here that Eqs. (9a)–(10), derived from ideal MHD equations, are
scale-free and as such one may choose the radial domain extent arbitrarily.

Equations (9a) and (9b), governing the base and perturbed state, respectively, are both hyper-
bolic partial differential equations. These are numerically solved with an explicit time marching
upwind procedure. The details of the numerical method are given in the Appendix.

III. LINEAR STABILITY RESULTS

In this section, we present results from linear stability simulations. We begin by examining
the time dependent radially varying base state solution, followed by the perturbed quantities for
hydrodynamics and MHD: both of these are presented first for purely azimuthal perturbations
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(m , 0, k = 0), for purely axial perturbations (m = 0, k , 0), and combined axial-azimuthal pertur-
bations (m , 0, k , 0). In particular, we focus on vorticity in the domain as we consider the bar-
oclinic vorticity to be the dominant mechanism driving the instability of the interface. We also
present comparisons with nonlinear simulations. In all cases, except when specified otherwise, the
radial domain is discretized with 1600 cells. As briefly shown for a specific case in Section III E,
differences in growth rates between employing 1600 or 8000 cells are small.

A. Base state solution

The time-dependent base state equations are independent of perturbed state variables; the
azimuthal, m, and axial perturbation, k wavenumbers. Besides, choosing B̊r to be inversely propor-
tional to radius, the induction equation is satisfied identically and decoupled from the other equations.

The base state is examined by plotting the density profiles at time t = 0.0 (initial condition) and
t = 0.552 in Fig. 2. At t = 0, the r-dependent flow field behind the initialized circularly converging
gas-dynamic shock is computed based on the approximate analysis by Chisnell19 and is dubbed
the “Chisnell-type” shock. Chisnell’s analysis provides the radial variation of the density, radial
velocity, and pressure behind the shock as a function of radius. It turns out that at t = 0 the density
profile is a mildly increasing function of radius just behind the shock (see Fig. 2), whereas the
radial velocity and pressure decrease in magnitude behind the shock front (not shown). Specifying
a constant state behind the shock, while convenient, leads to disturbances which are best avoided.
An alternative to this so-called Chisnell-type shock would be to employ a circular Riemann problem
to drive a shock onto the interface. Although this latter method is also convenient, it results in extra
waves, i.e., a contact and rarefaction wave, in addition to a shock. The reflected waves from the
shock-density interface may subsequently interact with the contact and can be re-reflected and affect
the results of the linear analysis. Hence the circular Riemann problem is not our choice to induce the
incident shock. The Chisnell-type incident shock (labeled “IS”) is perhaps the cleanest technique
for generating a single radially moving shock. IS moves radially towards the contact discontinuity
(labeled as “CD”) and refracts into a transmitted shock and a reflected shock (labeled as “TS” and
“RS”).

The density spacetime diagram illustrates the wave diagram of the base state more clearly. The
density interface (CD) is a vertical line in Fig. 3 indicating that it is stationary until it interacts
with the incident Chisnell-type shock (IS). Then, the IS bifurcates into a transmitted shock (TS)
and a reflected shock (RS). The IS provides an impulse to the CD accelerating it which is seen
between the two shocks RS and TS. Although the CD appears to be a straight line in the spacetime
diagram, the second time derivative is in fact non-zero. We note that at t = 0.552, the transmitted
shock is about to leave the domain and therefore, all the results are generated until this time. In
Fig. 4 the base velocity ůr of the CD is plotted, where it shows that as the CD approaches the
origin it decelerates. As discussed later, this deceleration (or negative acceleration) is responsible
for a Rayleigh-Taylor (RT) phase of the instability of the interface. Hence, the interface is subject

FIG. 2. Density profiles of base state at t = 0.0 (initial conditions) and t = 0.552. IS denotes the incident shock, TS denotes
the transmitted shock, RS denotes the reflected shock, and CD is the contact discontinuity.
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FIG. 3. Spacetime diagram of density field of the base state. IS denotes the incident shock, TS denotes the transmitted shock,
RS denotes the reflected shock, and CD is the contact discontinuity.

to an impulsive acceleration by the IS (resulting in the RMI) and a continuous acceleration phase
due to geometric effects (resulting in the RTI). Fig. 5(a) shows the impulsive acceleration of the
interface by the interaction with the incident shock; while the magnified portion in Fig. 5(b) is the
acceleration of the interface as it moves towards the origin. We demarcate the RMI from the RTI
phase at t ≈ 0.21 in our simulations.

B. Evolution of the perturbations

In this section, the results for hydrodynamics (HD) (i.e., β = ∞), and MHD (i.e., finite β) are
presented. Following Lombardini and Pullin14 we non-dimensionalize the time scale using 1/(a0K)
as our reference time scale, where a0 is the unshocked sound speed ahead of the incident shock,
K = m/R0(k) for purely azimuthal (axial) modes. The perturbation growth rate ḣ is normalized by
the theoretical growth rate ḣ∞ expressed as

ḣ∞ =
FMsh

+
0∆W (1 + K A+)

R0
, (11)

where ∆W is the impulsive change in the interface velocity, A+ is the post-shock Atwood number,
FMs is a parameter depending on Mach number of the incident shock (FMs = 0.85 for our cases).14

h+0 the initial perturbation amplitude, which in linear stability cancels out, is chosen as unity for
convenience.

1. Solution details for hydrodynamics

We begin our discussion with the hydrodynamics case followed by MHD results.

FIG. 4. Time history of radial velocity ůr at CD.
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FIG. 5. Time history of (a) acceleration of CD, (b) acceleration of CD with approximate demarcation of RMI and RTI phases.

a. Purely azimuthal perturbations. We now examine the case of purely azimuthal perturbations,
in which there is no variation of the solution in the z direction. The scaled growth rate history
is plotted in Fig. 6 for different perturbation wavenumbers m = 16,64,128,256. The growth rate
for the largest wave number case m = 256 in hydrodynamics is similar to the Cartesian geometry
case until about scaled time a0tm/R0 ≈ 30. The growth rate increases from zero and then oscillates
around unity; this is the asymptotic growth rate one would attain in Cartesian geometry. However, in
our cylindrical case, as the interface approaches the origin, the RTI manifests itself and we observe
an exponential increase in magnitude of the growth rate. The onset of RTI and its distinction from
the RMI phase is most evident for the largest wavenumber (m = 256), while the distinct separation
between RMI and RTI for smaller wavenumber is not very clear and for the lowest perturbation
wave number (m = 16) the RTI lasts only a short time. In all cases, the exponential growth during
the RTI results in a phase reversal of the amplitude. The spatial variation of the perturbed radial
and azimuthal components of the velocity, perturbed pressure, and z-component of the vorticity are
plotted in Fig. 7 at t = 0.552. The radial velocity component shows a large negative peak at the
interface location (the average position of the interface in the base state solution is superimposed
on the perturbed radial velocity). This magnitude of this peak corresponds to the growth rate of
the interface amplitude. During the refraction of the incident shock at the interface, vorticity is
deposited because of the baroclinic source term, and is the essential driving mechanism of the
RMI, as discussed by Hawley and Zabusky21 and Samtaney and Zabusky.22 The z-component of the
vorticity ω̂z =

1
r
∂(r ûθ)
∂r
− 1

r
imûr is a vortex sheet (VS) for a sharp interface and visible as a large

peak in Fig. 7(d). In this case with zero magnetic field, the position of the VS coincides with the
position of the interface. This can also be seen as the large gradient in ûθ at the interface in Fig. 7(b).

After the primary interaction of the shock at the interface, secondary waves propagate along
the azimuthal direction. These secondary interactions are manifested in our linear simulations as the

FIG. 6. Time history of scaled growth rate in hydrodynamics for azimuthal perturbation wavenumber m = 16,64,128,256.
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FIG. 7. Profiles of perturbed variables in hydrodynamics at t = 0.552: (a) r -component of velocity, (b) θ-component of
velocity, (c) pressure, (d) z-component of vorticity. The azimuthal perturbation wavenumber is m = 256.

oscillations of the fields between the interface and the reflected/transmitted shocks. The wavelength
of these oscillations decreases with increasing azimuthal wavenumber m. The secondary interac-
tions also leave a signature on the growth rate in the form of oscillations before the RTI overwhelms
the RMI growth rate (see Fig. 6).

b. Purely axial perturbations. We plot the scaled growth rate history for different perturbation
wavenumbers k = 16,64,128,256 in Fig. 8. Similar to the case of purely azimuthal perturbations,
the growth rate for purely axial perturbations exhibits an initial rapid increase, after which the
perturbation growth rate oscillates around a constant value for a short duration followed by the
exponential increase in the magnitude of the growth rate because of the RTI. The onset of RTI is
clear for the largest wavenumber (k = 256), although for a smaller one (k = 16), the demarcation

FIG. 8. Time history of scaled growth rate in hydrodynamics for axial perturbation wavenumber k = 16,64,128,256.
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FIG. 9. Profiles of perturbed variables in hydrodynamics at t = 0.552: (a) r -component of velocity, (b) z-component of
velocity, (c) pressure, (d) θ-component of vorticity. The axial perturbation wavenumber is k = 256.

between RMI and RTI is not so apparent. For the highest axial wave number (k = 256) the per-
turbed radial and azimuthal components of the velocity, perturbed pressure, and θ-component of
the vorticity ω̂θ = ikûr − ∂ûz

∂r
are plotted in Fig. 9 at t = 0.552. The behavior of these fields is very

similar to those observed for the azimuthal case. The peak vorticity magnitude is coincident with
the mean interface position and the peak magnitude of the radial velocity (also on the interface)
corresponds to the growth rate of the perturbation amplitude. The secondary waves are manifested
as oscillations between the interface and the reflected/transmitted shocks.

c. Combined azimuthal-axial perturbations. We now examine a combination of three dimen-
sional azimuthal and axial perturbations. Following Ref. 14, the time scale is non-dimensionalized

by R0/(a0K), where the combination of two wavenumbers K =

(m2 + k2R2

0) is used in 3D modes.
The growth rate is non-dimensionalized by the same factor given in Equation (11).

The time histories of normalized growth rate in the hydrodynamics case for different combina-
tions of axial/azimuthal wavenumbers (k,m) = (16,16), (64,64), (128,128), (256,256) are plotted in
Fig. 10. The overall behavior of growth rate is similar to that seen for purely axial and azimuthal
wave numbers. One interesting feature is that after the onset of RTI, the same total axial/azimuthal
combination with the larger azimuthal contribution has a larger growth of the RTI. This is also
evident by comparing the purely axial (k = 256) and azimuthal perturbations (m = 256) in Figures 6
and 9: the growth rate is larger during RTI for the azimuthal case than the corresponding axial one
with the same wave number.

2. Solution details of MHD

Several values of β characterizing the strength of the magnetic field are examined. Here we
present the details of the solution for β = 4 for purely azimuthal and purely axial perturbations. A
discussion of varying β will be presented later in Section III E.
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FIG. 10. Time history of scaled growth rate in HD for 3D perturbation wave numbers k =m = 16,64,128,256.

a. Purely azimuthal perturbations. In Fig. 11, we plot the time history of scaled growth rate in
MHD for different perturbation wavenumbers m = 16,64,128,256. For the two largest wavenumber
case (m = 256,128), the growth rate increases initially and then reduces because of the magnetic
field. During the time duration of the linear simulation, the growth rate eventually reduces and
oscillates around a small value below zero. Recall that in Cartesian geometry, the growth rate at the
interface is suppressed by the magnetic field and it oscillates around the asymptotic value zero (see
Ref. 18 for examples). We conjecture that, at the late time stage for these cases, vorticity is being
continually generated at the accelerating interface, and MHD waves remove it continuously from
the interface. This probably results in a small residual growth rate. For the smaller wavenumber
cases (m = 64,16), the time duration of the simulation is insufficient for any large suppression to
occur. In all these cases, the onset of RTI is not clearly demarcated from the RMI phase.

Because the suppression is largest for the highest wavenumber, as one may intuitively expect,
we now examine the solution details and elucidate the suppression mechanisms for m = 256. The
perturbed r- and θ-components of velocity, r- and θ-components of magnetic field, z-component
of vorticity, and z-component of current density ĵz (defined as ĵz = 1

r
∂(r B̂θ)
∂r
− 1

r
imB̂r) are plotted

in Fig. 12. Wheatley et al.,10 in analysis of impulsively accelerated interfaces in the context of
incompressible MHD, concluded that Alfvén fronts transport vorticity away from the interface and
constitute the main mechanism for the RMI suppression. A similar behavior is observed in our
linear simulations. Fig. 12(e) shows two dominant vortex sheets which coincide with Alfvén fronts
evident in the current density in Fig. 12(f). As in the planar case, these Alfvén fronts transport
vorticity away from the interface and hence stabilize the interface.

b. Purely axial perturbations. The time history of scaled growth rate in MHD is plotted in
Fig. 13, for different perturbation wavenumbers k = 16,64,128,256. For the two largest wavenum-
ber case (k = 256,128), the growth rate increases initially followed by a reduction because of the
magnetic field. During the time duration of the investigation, the growth rate eventually reduces and

FIG. 11. Time history of scaled growth rate in MHD for azimuthal perturbation wavenumbers m = 16,64,128,256. The
initial plasma beta is β = 4 at the interface R0= 1.0.
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FIG. 12. Profiles of perturbed variables in MHD: (a) r -component of velocity, (b) θ-component of velocity, (c) r -component
of magnetic field, (d) θ-component of magnetic field, (e) z-component of vorticity, (f) z-component of current density. The
perturbation wavenumber is m = 256 and the initial plasma beta is β = 4 at the interface R0= 1.0.

oscillates around a small value below zero. The behavior is very similar to that observed for the
azimuthal perturbations. For the smaller wavenumber cases (k = 64,16), the time duration of the
simulation is insufficient for significant suppression to occur. In all these cases, the onset of RTI is
not clearly demarcated from the RMI phase.

We now examine the solution for k = 256 for which the suppression of the instability is the
largest. The θ-component of vorticity and θ-component of current density ĵθ = ik B̂r − ∂(r B̂z)

∂r
are

plotted in Fig. 14. The two vortex sheets evident in the vorticity plot are coincident with the Alfvén
fronts seen in current density. The interface, devoid of the large initial baroclinic vorticity, loses the
main driving mechanism of the instability and perturbation growth is significantly suppressed.

c. Combined azimuthal-axial perturbations. The time histories of normalized growth rate in the
MHD case for different combinations of axial/azimuthal wavenumbers (k,m) = (16,16), (16,64),
(16,128), (16,256), (64,16), (128,16), (256,16), (256,256) are plotted in Fig. 15. For these cases, we

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

130.102.82.139 On: Mon, 14 Mar 2016 06:49:53



034106-14 Bakhsh et al. Phys. Fluids 28, 034106 (2016)

FIG. 13. Time history of scaled growth rate in MHD for axial perturbation wavenumber k = 16,64,128,256. The initial
plasma beta is β = 4 at the interface R0= 1.0.

chose the plasma beta to be β = 2 at the interface R0 = 1.0. While the instability is suppressed
for these wavenumber combinations, the suppression is still somewhat less than that observed for
β = 4 for purely axial or azimuthal perturbations. Another noteworthy feature can be distinguished
by comparing the (k,m) = (16,128), (128,16) combinations. Both show similar overall behavior,
but the oscillations associated with transverse reverberations in the higher azimuthal wavenumber
persist while those in the higher axial wavenumber are nearly absent.

d. Vorticity spacetime evolution. To further elaborate on the vorticity evolution and distinguish
between the MHD and hydrodynamics cases, we plot the vorticity space-time diagram for pertur-
bation wavenumber m = 256 in Fig. 16. In hydrodynamics, the vorticity is confined to the interface
and undergoes a sign change in keeping with the phase change associated with the RTI phase.
Moreover, the vorticity on the interface increases in magnitude as time progresses. In MHD, on the
other hand, the dominant vorticity is on Alfvén waves which straddle the interface in the spacetime
diagram. There is also some evidence of weak secondary vorticity in the spacetime diagram but this
is of little consequence for the growth of the instability.

C. Effect of converging geometry

Here we exclusively focus on the effect of converging geometry on high wave number pertur-
bations. It is evident that for large radius, high wave number perturbations should effectively behave
similarly to those in Cartesian geometry. Furthermore, as the mean interface translates radially
inwards, the effect of converging geometry on axial and azimuthal wave number perturbations
is expected to be different because in the axial case the wavelength of perturbation remains the
same, whereas the wavelength decreases for the azimuthal case. We plot the normalized growth
rate (scaled by their appropriate value of ḣ∞) for 2D perturbations in the planar and cylindrical

FIG. 14. Profiles of perturbed variables in MHD: (a) θ-component of vorticity, (b) θ-component of current density. The
perturbation wavenumber is k = 256 and the initial plasma beta is β = 4 at the interface R0= 1.0.
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FIG. 15. Time history of scaled growth rate for 3D perturbations MHD for different wave number combinations for β = 2.

cases, for hydrodynamics in Figure 17(a), and for MHD in Figure 17(b). The wavenumber for
2-D perturbations in planar geometry is k = 256, and in cylindrical geometry for purely azimuthal
(axial) modes is m(k) = 256. The effect of numerical diffusion is evident upon scrutiny in the planar
case: this is manifested as a small decrease in the asymptotic growth rate. To mitigate the effects
of numerical diffusion in this comparison, we choose a higher resolution of 6400 cells for the
simulations discussed here. The planar case shows the characteristic growth rate development: early
time oscillations until it settles down to a constant growth rate. The first peak in the growth rate
is the same for planar and cylindrical cases (both axial and azimuthal). For scaled time beyond 40,
the growth rate changes due to the effect of RTI in converging geometry. This effect is larger for the
azimuthal case during the exponential increase in the RTI phase of the instability development. The
MHD case investigated is for β = 4. Here we observe the same growth rate pattern in both planar
and cylindrical cases for scaled time up to 20. The planar case growth rate oscillates about an
asymptotic value of zero indicating almost complete suppression of the instability. In cylindrical
geometry, the growth rate for both axial and azimuthal perturbations is nearly the same until scaled
time of about 40. We observe a decrease in the period for the azimuthal case. In the cylindrical
case, the oscillations occur about a mean value smaller than zero indicating a residual growth due to
incomplete suppression during the RTI phase.

An important measure is the ratio of amplitude to wavelength of the perturbation to estimate
the time duration during which the linear stability analysis is valid. Generally, conventional wisdom
suggests that as long as the perturbation amplitude to wavelength is smaller than 0.1 linear analysis
is a valid approximation. However, one notes that in linear analysis, the initial amplitude of the
perturbation gets scaled out. We can, nonetheless, estimate the factor by which an initial pertur-
bation amplitude will change. Defining the factor χ(t) = h(t)

λ(t)/
h(0)
λ(0) , where h(t) is the perturbation

amplitude and λ(t) is the perturbation wavelength at time t. This definition accounts for the fact
that the perturbation wavelength changes for azimuthal perturbations. This amplification measure
can be estimated by the growth rate of the perturbations at the interface. For hydrodynamics: in the

FIG. 16. (a) Spacetime diagram of vorticity ω̂z for hydrodynamics. (b) Spacetime diagram of vorticity ω̂z for MHD. The
perturbation wavenumber is m = 256 and the plasma beta is β = 4 for MHD.
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FIG. 17. Time history of scaled growth rate of planar and cylindrical geometries for k = 256 and m = 256. (a) Hydrodynamics
case and (b) MHD case for β = 4.

planar case χ(t) is estimated to be χ(0.5) ≈ 48; for axial perturbations, the peak in χ is attained at
t ≈ 0.26 and is χ(0.26) ≈ 22, and χ(0.5) ≈ −10; whereas for azimuthal perturbations, peak value is
χ(0.28) ≈ 31 and χ(0.5) ≈ −32. For the MHD simulations: in the planar case χ(t) is estimated to
be χ(0.5) ≈ 2.4; for axial perturbations, the peak magnitude is χ(0.5) ≈ 1.5; for azimuthal pertur-
bations, peak magnitude is χ(0.5) ≈ 2.5. Using these amplification estimates of the perturbation
amplitude, and given the initial amplitude magnitude, one can estimate the time duration of validity
of the linear simulations. In the hydrodynamics case, if the initial amplitude to wavelength ratio
is smaller than 2 × 10−3 (planar case), 4.5 × 10−3 (axial perturbations), and 3.7 × 10−3 (azimuthal
perturbations), the final amplitude to wavelength ratio will be smaller than 0.1, and hence linear
stability results will be approximately valid during the entire time duration of the simulation.
In the MHD case, we estimate that if the initial amplitude to wavelength ratios is smaller than
4 × 10−2 (planar case), 6.7 × 10−2 (axial perturbations) and 4 × 10−2 (azimuthal perturbations), the
final amplitude to wavelength ratio will be smaller than 0.1, and conclude that linear stability results
will be approximately valid during the entire time duration of the simulation. Moreover, for the
converging MHD cases the amplitude actually reduces during the RTI phase but never exceeds in
magnitude the asymptotic value attained in the planar case.

D. Effect of magnetic field strength

We now examine the effect of initial magnetic field strength characterized by the non-dimensional
parameter β. The time history of scaled growth rate in MHD for plasma beta β = ∞(HD),256,64,4,2
is shown in Fig. 18, 2-D perturbations of azimuthal wavenumber m = 256, Fig. 18(a), and axial
wavenumber k = 256, Fig. 18(b). The 3D perturbations case we chose were β = ∞(HD),16,4,2,1
and the perturbation wavenumbers are k = m = 256, Fig. 18(c). As expected the smallest β ≤ 4,
(largest magnetic field) has the strongest suppression of the instability for both the azimuthal and axial
perturbation cases. Interestingly, the weakest magnetic field case (β = 256) halts the exponential
increase in the magnitude of the growth rate during the RTI phase. We observe a second frequency
related to the speed of the Alfvén fronts. The Alfvén speed is proportional to β−

1
2 . Comparing the

time histories in Figure 18 for β = 256 to β = 64, we observe the first local minimum shift from
t ≈ 128 to t ≈ 64 representing a period halving, and comparing β = 64 to β = 4 we observe roughly
a decrease by a factor of four in the period of the oscillations. We further point out that even though
growth rates for the azimuthal and axial cases seem remarkably similar, there are subtle differences.

E. Comparison between linear and nonlinear simulations

Nonlinear simulations for RMI are performed using the ideal MHD equations expressed in strong
conservation form. The numerical method is a predictor-corrector unsplit method in cylindrical coor-
dinates, and is similar to that developed by Samtaney9 and Samtaney et al.23 A seven-wave linearized
Riemann solver method is used to compute the fluxes; and the solenoidal condition on the magnetic
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FIG. 18. Time history of scaled growth rate in MHD for plasma beta β =∞(HD),256,64,4,2 at the interface for (a) m = 256,
k = 0, (b) m = 0, k = 256, and (c) β =∞(HD),16,4,2,1 for m = 256, k = 256. (a) Purely azimuthal perturbations m = 256.
(b) Purely axial perturbations k = 256. (c) 3D perturbations m = 256, k = 256.

field is maintained by a projection technique. The nonlinear simulation is conducted on a grid extend-
ing azimuthally from θ = 0 to 2π/128 with periodic boundary conditions applied at these bounds.
In the radial direction, the grid extended from r = 0.3 to 1.9. The boundary conditions applied at
these bounds are identical to those applied in the linearized simulations. The Chisnell-type shock is
initialized at Rs = 1.2 and the initial interface location is R0 = 1, as for the linearized simulations. The
computational grid has 3000 (8000) cells in the radial direction for m = 16 (m = 128) and 128 cells in
the azimuthal direction. Examining a snapshot of density and vorticity for wavenumber m = 16 and
magnetic field β = 4 in the nonlinear simulation, shown in Fig. 19(a), shows clear evidence of vorticity
on MHD shock fronts and none on the interface. These observations are similar to those in Wheatley
et al.11 for the Cartesian case. For this case, a comparison of the perturbation growth rate between linear
and nonlinear simulations is shown in Fig. 19(b). Further comparisons of the nonlinear growth rate
of a single mode interface in the linear and nonlinear simulations are shown for wavenumber m = 16
and a lower value of the magnetic field β = 16 in Fig. 19(c), and for a higher wavenumber m = 128 in
Fig. 19(d). The linear simulations performed here had the same number of radial cells as the nonlinear
simulations. In Fig. 19(d), we also plot the growth rate for linear simulations using 1600 cells. The
difference in linear simulations at 1600 and 8000 cells is relatively small and one may consider this as
a rudimentary convergence test (further discussion on convergence is in the Appendix).

The initial amplitude of the interface in the nonlinear simulation is chosen to be 5% of the
wavelength, i.e., 1

20
2π
m

. In the nonlinear case, the perturbation amplitude is compressed by the
incident shock. In linear theory, the amplitude of perturbation is arbitrary and the compression
by the incident shock is not part of the linear theory. The growth rate comparison is performed
after the incident shock passage over the perturbed interface. The nonlinear and linear growth rates
show satisfactory agreement at early times. As nonlinear effects become important, the agreement
worsens at late times for the low wavenumber cases (m = 16) particularly for the weaker magnetic
field case (β = 16).
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FIG. 19. (a) Density and vorticity snapshot in nonlinear simulation. (b)-(d) Comparison of nonlinear growth rate between
linear and nonlinear simulations. (a) Nonlinear simulation, m = 16, β = 4. (b) m = 16, β = 4. (c) m = 16, β = 16. (d) m =

128, β = 16.

IV. CONCLUSION

In this paper, linearized ideal MHD equations with a time-dependent base state with disconti-
nuities have been solved numerically. The numerical linear stability analysis is performed in cylin-
drical geometry, with purely azimuthal or axial perturbations at a positive Atwood number interface
that interacts with a Chisnell-type imploding shock. In hydrodynamics, the Richtmyer-Meshkov
instability is driven by the baroclinic vorticity deposited by the incident shock on the interface,
followed by Rayleigh-Taylor instability which dominates the growth rate. The transition from RMI
to RTI in cylindrical geometry is accompanied by a phase change in the perturbation amplitude.
Moreover, this transition between RMI and RTI is most evident for the highest wavenumbers
investigated, and not so clearly demarcated for low wavenumbers. The growth rate during the RMI
phase is proportional to the wavenumber (m or k) and agrees well, for large wave numbers, with
the asymptotic growth rate ḣ∞ of Lombardini and Pullin. For the MHD cases, the suppression of
the instability is most evident for large wavenumbers and magnetic field strengths characterized by
β = 4 or less are sufficient to suppress the growth rate at the interface. There is a residual small
growth rate associated with the RTI. The mechanism of suppression is the transport of vorticity
away from the density interface by two Alfvén fronts.

The present research can be further extended in many aspects, such as linear stability in spher-
ical geometry, simulating flows with multiple interfaces, applying other magnetic field configura-
tions, and including negative Atwood ratio interfaces.
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APPENDIX: NUMERICAL METHOD

In this section, we describe the numerical method that solves the ideal MHD Eq. (9), following
the method originally developed by Samtaney.18

We use the method-of-lines approach for the time discretization by rewriting Eq. (9a) as
∂Ů
∂t
= R(Ů), and adopting the third order TVD Runge-kutta time discretization approach as

Ů0 = Ůn,

Ů1 = Ů0 + ∆tR(Ů0),
Ů2 =

3
4

Ů0 +
1
4

Ů1 +
∆t
4

R(Ů1),

Ů3 =
1
3

Ů0 +
2
3

Ů2 +
2∆t
3

R(Ů2),
Ůn+1 = Ů3,

(A1)

where ∆t is the time step and Ůn is the solution at time step n. The perturbed state equation (9b) is
similarly updated.

A finite volume method is adopted for the spatial discretization in which we define the solution
vectors at the centroids of the subintervals indexed as j. The fluxes are computed at the faces
indexed as j ± 1

2 and then used to update the solution at the centroids.
The Jacobian matrix M(Ů) is singular and hence we adopt the seven wave method to compute

the fluxes.23 Denoting the remaining seven variables and their fluxes by an over-bar, we express the
flux of the base state and perturbed quantities as

F̄(Ů)��� j+ 1
2
=

1
2
(F̄( ¯̊UL, j+ 1

2
, B̊r) − F̄( ¯̊UR, j+ 1

2
, B̊r)) − 1

2

7
k=1

αkrk, (A2)

[M̄(Ů) ¯̂U]��� j+ 1
2
=

1
2
(M̄j+ 1

2

¯̂UL, j+ 1
2
+ M̄j+ 1

2

¯̂UR, j+ 1
2
) − 1

2
�
M̄
�
j+ 1

2
( ¯̂UR, j+ 1

2
− ¯̂UL, j+ 1

2
), (A3)

where
�
M̄
�
= M̄+ − M̄−, lk and rk are the left and right eigenvectors of M̄ (M̄ is M after deleting the

row/column corresponding to B̊r), αk = lk · ( ¯̊UR, j+ 1
2
− ¯̊UL, j+ 1

2
). At each side of interface j + 1

2 , both

the base state and the perturbed quantities ( ¯̊UL/R, j+ 1
2

and ¯̂UL/R, j+ 1
2
) are obtained by fitting linear

profiles and slope limiting. In the seven-wave method, the contribution B̂r with other variables is
considered by including the following term to the RHS of Eq. (9b):

C(Ů, B̂r) = [0, γ B̊1
r + B∗r , B̊θ, B̊z, ůθ, ůz, (γ B̊1

růr + B̊θůθ + B̊zůz)]T 1
r
∂(r B̂1

r)
∂r

. (A4)

At the final stage of each time step, maintaining the solenoidal property of the magnetic field
requires updating the perturbed variables B̂θ and B̂z as follows:

• For purely azimuthal perturbation:

B̂θ

�
j
=

i
m

∂

∂r
(r B̂1

r)
����� j
≈ i

m

r B̂1
r

�
j+1 − r B̂1

r

�
j−1

2∆r
. (A5)

• For purely axial perturbations:

B̂z

�
j
=

i
kr j

∂

∂r
(r B̂1

r)
����� j
≈ i

kr j

r B̂1
r

�
j+1 − r B̂1

r

�
j−1

2∆r
. (A6)

All of B̂1
r , B̂θ, and B̂z in Eqs. (A5) and (A6) are at the same time step.

In combined axial/azimuthal perturbation simulations, numerical solutions may not satisfy
∇ · B = 0 because of discretization errors. We employ a projection technique outlined below to
ensure the solenoidal property of the magnetic field. The projection method requires the solution of
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the following Poisson equation:

∇2ζ = ∇ · B,
ζ |Rl
= ζ |Rr = 0.

(A7)

For finite volume approximation, the discretization of Equation (A7) is written as

1
r j

(rζ)| j+ 1
2
+ (rζ)| j− 1

2
− (r j+ 1

2
+ r j− 1

2
)ζ j

(∆r)2 − (m2

r2
j

+ k2)ζ j

=
1
r j

(rB1
r)| j+ 1

2
− (rB1

r)| j− 1
2

∆r
+ i(m

r j
Bθ, j + kBz, j),

(A8)

r j((rζ)| j+ 1
2
+ (rζ)| j− 1

2
− (r j+ 1

2
+ r j− 1

2
)ζ j) − (∆r)2(m2 + r2

j k
2)ζ j

= r j∆r((rB1
r)| j+ 1

2
− (rB1

r)| j− 1
2
) + (∆r)2i(mr jBθ, j + kr2

jBz, j).
(A9)

The above tridiagonal system is solved using the standard Thomas algorithm. The corrected mag-
netic field is Bc = B − ∇ζ and is divergence free. Each component is updated as follows:

Bc
r | j± 1

2
= B1

r | j± 1
2
− ∂ζ

∂r
| j± 1

2
,

Bc
θ | j = Bθ | j − im

r j
ζ | j,

Bc
z | j = Bz | j − ikζ | j .

(A10)

Numerical convergence. In this paper, we have not presented detailed results on numerical
convergence and order of accuracy of the proposed method. Numerical convergence tests of this
method, performed by Gao,24 show second order accuracy for smooth initial conditions. The
method proposed here is very similar to that developed by Samtaney18 for Cartesian slab geometry,
which exhibits second order convergence for smooth flows and convergence rates between one and
two for flows with shocks. In Section III E, linear simulations for m = 128, β = 16 (Fig. 19) show
a small difference in the growth rate at two mesh resolutions of 1600 and 8000 radial cells. Other
such convergence tests were also performed for other parameters and showed little difference in the
growth rate at mesh resolutions of 1600 and 3200 radial cells.
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