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2–MANIFOLD RECOGNITION IS IN LOGSPACE ∗

Benjamin A. Burton,†Murray Elder,‡Arkadius Kalka,§ and Stephan Tillmann¶

Abstract. We prove that the homeomorphism problem for 2–manifolds can be decided in
logspace. The proof relies on Reingold’s logspace solution to the undirected s, t-connectivity
problem in graphs.

1 Introduction

Low space complexity algorithms have recently become a focus of some research in combi-
natorial group theory, motivated in part by the emergence of non-commutative group-based
cryptosystems. Recent work includes [7, 8, 9, 18, 19, 27], with one of the earliest results
in this area being Lipton and Zalcstein’s logspace algorithm to solve the word problem
for linear groups [17]. Logspace is of interest in complexity theory, as it seems to be the
smallest amount of space that supports interesting computational phenomena, and suffices
for solving many natural computational problems.

In computational low dimensional topology the focus has been on the time com-
plexity of problems, such as deciding if a knot is the unknot, 3–sphere recognition, and the
classification of 3–manifolds. In this article we consider a far easier and classical problem,
recognition of 2–manifolds, from the point-of-view of space complexity. We prove that given
two finite 2–dimensional triangulations, one can decide whether they represent homeomor-
phic surfaces using space logarithmic in the size of the triangulations. Our result relies
on Reingold’s remarkable logspace solution to the undirected s, t-connectivity problem in
graphs. Letting L be the class of problems that can be decided in deterministic logspace,
our result is formally stated as: 1

Theorem 1. 2–manifold Recognition is in L.

Two compact, connected surfaces with (possibly empty) boundary are homeomor-
phic precisely when they have the same Euler characteristic, the same number of boundary
components and they are either both orientable or both non-orientable. This triple of in-
variants leads to the classification theorem for compact surfaces, which has roots in work of
Jordan and Möbius in the 1860s, and Dehn and Heegaard in 1907, with the first rigorous
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proof due to Brahana [5] in 1921 under the hypothesis that the compact surfaces are trian-
gulated; a modern proof with this hypothesis is due to Conway and presented by Francis
and Weeks [10]. The fact that every compact surface has a triangulation, thus completing
the classification theorem, was established by Radó [24] in 1925, and a modern proof using
the “Kirby torus trick” was recently given by Hatcher [13].

There is a remarkable gap between surfaces and higher dimensional manifolds. Man-
ifolds of dimension three were shown to be triangulated by Moise [22] in 1952, and a discus-
sion of the homeomorphism problem can be found in the recent survey by Aschenbrenner,
Friedl and Wilton [3]. Kuperberg [16] recently announced a proof that the homeomorphism
problem for closed, oriented 3–manifolds is elementary recursive. Many important algo-
rithms for 3–manifolds have been implemented [6], and many important decision problems,
such as unknot recognition [12] and 3–sphere recognition [26], have been shown to be in the
complexity class NP.

The next qualitative gap arises between dimensions three and higher. There are
compact 4–dimensional manifolds, such as the E8 manifold discovered by Freedman in
1982, that are not homeomorphic to any simplicial complex. Manolescu [20] has recently
announced that there are also such examples in dimensions five and higher. Even if one
restricts to compact, simplicial manifolds of dimension four and higher, the homeomorphism
problem was shown to be undecidable by Markov [21] in 1958 as a consequence of the
unsolvability of the isomorphism problem for finitely presented groups, which is due to
Adyan [1, 2] and Rabin[23]. In particular, for the development of algorithms in higher
dimensions one needs to restrict to special classes of manifolds, or else be content with
heuristic methods.

We remark that while a priori an algorithm that uses only logarithmic space has
no time bound, it is easy to show that logspace algorithms run in polynomial time (see for
example Lemma 4 in [9]). An important open problem is whether the class L of problems
that can be decided by a deterministic logspace algorithm is a proper subset of those that
can be decided in polynomial time.

We now give an informal description of our logspace algorithms. The starting point
is a logspace algorithm which, given a single triangulation as input:

1. checks that the triangulation is a 2–manifold;

2. counts the number of connected components, c;

3. if the input is a connected 2–manifold:

(a) decides if it is orientable or non-orientable;

(b) computes the Euler characteristic, χ;

(c) counts the number of boundary components, b;

4. if there is more than one connected component, the algorithm outputs the following
data: (o1, χ1, b1), . . . , (oc, χc, bc) where oi = 0 if the i-th connected component is
orientable and 1 otherwise, χi is its Euler characteristic, and bi is its number of
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boundary components. Moreover, the algorithm outputs this data in the following
(lexicographic) order:

(a) oi < oi+1, or

(b) oi = oi+1 and χi < χi+1, or

(c) oi = oi+1, χi = χi+1, and bi ≤ bi+1.

This output is a complete invariant of the homeomorphism type of the 2–manifold,
and so the solution to the homeomorphism problem then follows by running this algorithm
simultaneously on two triangulations.

This paper is organised as follows. We give precise definitions of the complexity
class and data structures we use in §2. The algorithms to verify that an input triangulation
represents a surface and count the number of components are described in §3. The algorithm
to compute the complete invariants of a connected, triangulated surface is given in §4, and
this algorithm is then applied in §5 to compute the invariants of each connected component
of a disconnected surface.

2 Preliminaries

A deterministic logspace transducer consists of a finite state control, a read-head, and three
tapes:

1. the input tape is read-only, and stores the input string;

2. the work tape is read-write, but is restricted to using at most c log n squares, where n
is the length of the string on the input tape and c is a fixed constant; and

3. the output tape is write-only, and is restricted to writing left to right only. The space
used on the output tape is not added to the space bounds.

A transition of the transducer takes as input a letter of the input tape at the position
of the read-head, a state of the finite state control, and a letter on the work-tape. On each
transition the transducer can modify the work tape, change states, and write at most a
fixed constant number of letters to the output tape, moving to the right along the output
tape for each letter printed.

Since the position of the read-head of the input tape is an integer between 1 and n
(the length of the input), we can store it in binary on the work tape. In addition we can
store a finite number of pointers to positions on the input tape.

A problem is in deterministic logspace if it can be decided using a deterministic
logspace transducer. Since all transducers in this article will be deterministic, we will say
logspace for deterministic logspace throughout.

A key property of logspace transducers is that they can be composed together to
give new logspace transducers. Formally, let X,Y be finite alphabets, and let X∗ denote
the set of all finite length strings in the letters of X. We call f : X∗ → Y ∗ a logspace
computable function if there is a logspace transducer that on input w ∈ X∗ computes f(w).
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Lemma 2 (Lemma 2 in [9]). If f, g : X∗ → X∗ can both be computed in logspace, then their
composition f ◦ g : X∗ → X∗ can also be computed in logspace.

Proof. Let Mf ,Mg be logspace transducers that compute f and g respectively. On input
w ∈ X∗, run Mf . Each time Mf calls for the jth input letter, run Mg on w; however,
instead of writing the output of Mg to a tape, we add 1 to a counter (in binary) each time
Mg would normally write a letter. Continue running Mg until the counter has value j − 1,
at which point we return the next letter that Mg would output back to Mf .

Finally, a logspace algorithm is an algorithm that runs on a logspace transducer.
Lemma 2 implies that a logspace algorithm may assume that its input is the output of some
other logspace algorithm.

In this article we show that the following decision problem is in logspace:

Problem: 2–manifold Recognition
Instance: Two 2–dimensional triangulations T1, T2
Question: Do T1 and T2 represent homeomorphic 2–manifolds?

For a positive integer n let [n] denote the set {1, . . . , n}. A triangulation T is
specified by a list of n triangles, where each triangle t ∈ [n] has vertices labeled 1, 2, 3
(which induces an orientation on the triangle), and edges glued according to a table as
follows:

(12) (23) (31)

1 a1 b1 c1
2 a2 b2 c2
...
n an bn cn

with
at, bt, ct ∈ {∅} ∪ {(s, e) | s ∈ [n], e ∈ {(12), (21), (23), (32), (31), (13)}}.

The entry at = (s, e) in row t column (12) means that the edge (12) in t is glued to the
edge e in triangle s, whereas at = ∅ means that the edge (12) in t is not glued to anything
(i.e., it is a boundary edge); likewise for columns (23) and (31).

1 1 12 2 2

3 3 3

1 2 n· · ·

Figure 1: Input triangles.

A triangulation is given to a logspace transducer by writing the string

# a1 b1 c1 # a2 b2 c2 # . . . # an bn cn
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on the input tape using the alphabet {#, ∅, 0, 1, (12), (23), (31), (21), (32), (13)}, where ai, bi, ci
are written as either ∅ or a binary number followed by (12), (23) or (31).

Example 3. Figure 2 illustrates a triangulation of a punctured Klein bottle, and Table 1
shows the corresponding table of edge gluings. For this triangulation, the input tape of our
logspace transducer would read as follows:

# 10 (13) 11 (12) 11 (32) # 11 (13) ∅ 1 (21) # 1 (23) 1 (13) 10 (21)

1

2
3

1 2

3

1

2

31

2 3

Figure 2: Triangles for Example 3 with edges identified. Dashed line is the boundary.

Table 1: Input table for Example 3.

(12) (23) (31)

1 2, (13) 3, (12) 3, (32)
2 3, (13) ∅ 1, (21)
3 1, (23) 1, (13) 2, (21)

A triangulation of n triangles has input size N ∈ O(n log n). We will prove that
the data required to identify the homeomorphism type of the input can be output by a
transducer using O(logN) squares of the work tape. It follows that for a triangulation
with n triangles, the homeomorphism type can be computed using O(logN) = O(log n +
log logn) = O(log n) space.

It can easily be checked in logspace that the input is written in the required form –
the number n of # symbols can be computed and written in binary on the work tape by
scanning # symbols, then one can check that each binary number on the tape has value
between 1 and n. So we may assume the input is correctly specified. However, we do not
assume that the gluing instructions are consistent or give a manifold. For example, we may
have ∅ in row t column (12) but (t, (12)) may appear as a different entry in the table, which
would be inconsistent. The algorithm we describe will check this.

Note that the set ε = {(12), (21), (23), (32), (31), (13)} comes natually equipped with
an involution : ε→ ε given by (ij) = (ji).

When describing our algorithms we will refer to row t column e of the input tape,
which means the entry in row t column e of the gluing table. This can be located in logspace
by scaning the input tape from left to right counting the number of # symbols.



JoCG 7(1), 70–85, 2016 75

Journal of Computational Geometry jocg.org

Throughout this paper we make use of a deterministic logspace algorithm due to
Reingold [25] which takes input (V,E, s, t), where (V,E) is an undirected graph, s, t ∈ V ,
and returns Yes if there is an edge path from s to t, and No otherwise. We call this algorithm
REIN.

We present the algorithms in this paper using pseudocode. Note that for-loops in
the pseudocode are straightforward to implement a logspace transducer, using a binary
number on the work tape for each loop. All of our algorithms make implicit use of the fact
that logspace functions are closed under composition (Lemma 2).

3 Initial tests

3.1 Counting components of a graph

We begin with a simple tool that we call upon repeatedly in this paper: a logspace algorithm
to compute the number of connected components of an undirected graph. This algorithm
follows immediately from REIN. It operates as follows; see Algorithm 1 for the pseudocode.

Assume the graph is written on the input tape with vertices [n] and edges given
as a list E ⊆ [n] × [n]. Initialise a counter c = 1 for the component containing vertex 1.
The key idea is to iterate through the remaining vertices, and to increment c each time we
encounter the lowest-numbered vertex of some connected component.

More precisely: Algorithm 1 runs through each vertex t > 1, calling REIN to test
whether t is connected to any vertex s < t. If it is, we leave c unchanged and move to the
next vertex. If it is not, we increment c and move to the next vertex.

Algorithm 1: Count connected components.

Input: Undirected graph ([n], E).
Output: Number of connected components, c.
Write a counter c = 1 (in binary) to the work tape;
for t = 2 to n do

Set b = false;
for s = 1 to t− 1 do

Run REIN on ([n], E, s, t). If REIN returns true, set b = true;
end
If b = false, increment c by 1;

end
return c;

3.2 Checking the input is a surface

Our first task is to test the validity of the input. Algorithm 2 decides whether the input
represents a surface by iterating through (t, e) for each t ∈ [n], e ∈ {(12), (23), (31)} and
checking:
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1. that the entry (t, e) or (t, e) appears at most once in the table;

2. if row t column e of the table is ∅, that neither (t, e) nor (t, e) appear in the table;

3. if row t column e of the table is (s, f) for f ∈ {(12), (23), (31)}, that row s column f
is (t, e);

4. if row t column e of the table is (s, f) for f ∈ {(21), (32), (13)}, that row s column f
is (t, e);

5. that row t column e of the table is not (t, e) or (t, e).

Algorithm 2: Check surface.

Input: Triangulation data on input tape.
Output: Yes if input is a surface, No otherwise.
for t ∈ [n] do

for e ∈ {(12), (23), (31)} do
Write a counter c = 0 to the work tape;
Scan the tape from left to right reading each entry (s, f);

If (s, f) ∈ {(t, e), (t, e)}, increment c by 1;
If c > 1, output No and stop;

Read the entry y = (s, f) in row t column e;
If y = ∅ and c 6= 0, output No and stop;
If f ∈ {(12), (23), (31)}, read the entry z in row s column f . If
z 6= (t, e), output No and stop;

If f ∈ {(21), (32), (13)}, read the entry z in row s column f . If
z 6= (t, e), output No and stop;
If y ∈ {(t, e), (t, e)}, output No and stop;

end

end
If No not printed, return Yes;

3.3 Counting the number of connected components

Next, we count the number of connected components of the input surface. To do this
we construct the face-dual graph of the surface, which is an undirected graph whose ver-
tices correspond to the triangles of the surface, and whose edges correspond to trian-
gle gluings. More precisely, the vertices of the face-dual graph are [n], and the edges
of the face-dual graph are pairs (s, t) for which (t, e) is in row s of the table for some
e ∈ {(12), (23), (31), (21), (32), (13)} (and therefore (s, e) appears in row t for some e also).

Note that the face-dual graph as defined here is a simple graph: it does not include
loops or parallel edges (which do not affect connectivity). As an example, the face-dual
graph for the punctured Klein bottle of Example 3 has vertices {1, 2, 3}, and edges {1, 2},
{2, 3}, {1, 3}.
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Algorithm 3 takes triangulation data as input and outputs the face-dual graph as
an undirected graph ([n], E′), using a simple scan through the table.

Algorithm 3: Construct the face-dual graph.

Input: Triangulation data on input tape.
Output: Face-dual graph ([n], E′).
Scan the tape counting # symbols in binary on the work tape, then store this
number n and write [n] to the output tape;
for t ∈ [n] do

for s = t+ 1, . . . , n do
Check whether (t, e) is in row s of the table for some
e ∈ {(12), (21), (23), (32), (31), (13)}. If true, write (s, t) to the output
tape;

end

end

To count components of the input triangulation in logspace, we use Algorithm 3
to construct the face-dual graph, and we count components using Algorithm 1 with this
face-dual graph as input. Call the composition of these algorithms Algorithm A.

4 Algorithm for one connected component

In this section we assume the input surface is connected and compute its homeomorphism
type. In the next section we extend this to surfaces with more than one connected compo-
nent.

4.1 Orientability

We can determine whether or not a manifold is orientable by taking its double cover, which
is connected if the manifold is non-orientable, and which has two components if the manifold
is orientable.

Recall that each triangle has a fixed orientation determined by the corner labels
1, 2, 3. The double cover is given by a set of 2n triangles {t, t′ | t ∈ [n]} with a gluing table
constructed from the original table as follows:

1. the rows of the table are {t, t′ | t ∈ [n]} and the columns are {(12), (23), (31)};

2. if row t column e of the original table contains ∅, then write ∅ in rows t, t′ column e
of the new table;

3. if row t column e of the original table contains (s, f) with f ∈ {(12), (23), (31)}, then
write (s′, f) in row t column e and (s, f) in row t′ column e of the new table;

4. if row t column e of the original table contains (s, f) with f ∈ {(21), (32), (13)}, then
write (s, f) in row t column e and (s′, f) in row t′ column e of the new table.
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Table 2 illustrates the double cover of the punctured Klein bottle from Example 3.

Table 2: Double cover data for Example 3.

(12) (23) (31)

1 2, (13) 3′, (12) 3, (32)
2 3, (13) ∅ 1, (21)
3 1′, (23) 1, (13) 2, (21)
1′ 2′, (13) 3, (12) 3′, (32)
2′ 3′, (13) ∅ 1′, (21)
3′ 1, (23) 1′, (13) 2′, (21)

We can easily describe a logspace algorithm to produce this double cover gluing
table from the original input; see Algorithm 4 for the details. To test the orientability of
the original input triangulation, we now compose this with Algorithm A from Section 3.3:
Algorithm 4 constructs the double cover, and Algorithm A tests whether the double cover
has one or two components.

4.2 Euler characteristic

For a triangulation of a surface S we have χ(S) = |V | − |E| + n, where V and E are the
vertex set and edge set of S respectively, and where n is the number of triangles.

Let x be the number of edges of triangles that are not glued to any other edge,
i.e., the number of ∅ symbols on the input tape. Then the number of edges is |E| =
(3n − x)/2 + x = (3n + x)/2, since the remaining 3n − x triangle edges are identified in
pairs. We can compute n and x, and hence |E|, in logspace by counting the number of #
and ∅ symbols on the input tape.2

It remains to compute |V |. We do this by tracking the identifications of individual
vertices of triangles. For this we construct an undirected graph K, which we call the vertex
identification graph, as follows. The graph K has vertex set

W = {wt,1, wt,2, wt,3 | t ∈ [n]},

where wt,i represents vertex i of triangle t. Note that the graph K has |W | = 3n vertices
overall. In the punctured Klein bottle from Example 3, these vertices are

W = {w1,1, w1,2, w1,3, w2,1, w2,2, w2,3, w3,1, w3,2, w3,3}.

The edge set of the graph K is F = {(wt,i, ws,j) | wt,i, ws,j are identified directly},
where by “identified directly” we mean that some edge triangle t is glued to some edge
of triangle s in a way that maps vertex i of triangle t to vertex j of triangle s. For the

2Note that addition and division by two are both logspace computable.
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Algorithm 4: Construct the double cover of a triangulation.

Input: Triangulation data on input tape.
Output: Triangulation data for the double cover, with triangles ordered as

1, . . . , n, 1′, . . . , n′.
for t ∈ [n] do

Write # to the output tape;
for e ∈ {(12), (23), (31)} do

If row t column e of the input table is ∅, write ∅ to the output tape;
If row t column e of the input table is (s, f) with f ∈ {(12), (23), (31)},
write s′ f to the output tape;
If row t column e of the input table is (s, f) with f ∈ {(21), (32), (13)},
write s f to the output tape;

end

end
for t ∈ [n] do

Write # to the output tape;
for e ∈ {(12), (23), (31)} do

If row t column e of the input table is ∅, write ∅ to the output tape;
If row t column e of the input table is (s, f) with f ∈ {(12), (23), (31)},
write s f to the output tape;
If row t column e of the input table is (s, f) with f ∈ {(21), (32), (13)},
write s′ f to the output tape;

end

end

punctured Klein bottle example, this edge set is

F = {{w1,1, w2,1}, {w1,2, w2,3},
{w2,1, w3,1}, {w2,2, w3,3},
{w1,1, w3,2}, {w1,3, w3,3},
{w1,2, w3,1}, {w1,3, w3,2}}.

Algorithm 5 constructs this graph in logspace, simply by walking through the gluing
table for the input triangulation. Note that, as it is presented here, Algorithm 5 writes each
edge to the output tape twice; if desired this can easily be avoided using a lexicographical
test.

Two vertices of K are in the same connected component of K if and only if the
corresponding triangle vertices are identified in the input triangulation, and so |V | is the
number of connected components of the graph K. Algorithm 1 with input K = (W,F )
computes this number, and from this we can now compute the Euler characteristic χ(S) of
the input surface.
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Algorithm 5: Construct the vertex identification graph K = (W,F ).

Input: Triangulation data on input tape.
Output: The graph K = (W,F ).
for t ∈ [n] do

for i ∈ {1, 2, 3} do
Write wt,i to the output tape;

end

end
for t ∈ [n] do

for e = (ij) ∈ {(12), (23), (31)} do
Read the entry y = (s, (pq)) in row t column e;
If y 6= ∅, write (wt,i, ws,p) and (wt,j , ws,q) to the output tape;

end

end

4.3 Number of boundary components

To count the number of boundary components in our surface, we build another auxiliary
graph K ′, which we call the boundary identification graph. This begins with the vertex
identification graph K, and introduces additional edges that join together different paths
in K that correspond to vertices on the same boundary component of the surface.

More precisely, this graph K ′ has vertex set W ′ = W as described above. The edge
set of K ′ is

F ′ = F ∪ {(wt,i, wt,j) | edge (ij) of triangle t is not glued to anything}.

For the punctured Klein bottle example, this edge set is

F ′ = {{w1,1, w2,1}, {w1,2, w2,3},
{w2,1, w3,1}, {w2,2, w3,3},
{w1,1, w3,2}, {w1,3, w3,3},
{w1,2, w3,1}, {w1,3, w3,2},
{w2,2, w2,3}}.

Algorithm 6 shows how the graph K ′ is constructed.

We can analyse the structure of the vertex identification graph K and the boundary
identification graph K ′:

• K is a disjoint union of cycles and paths, with one cycle for each internal vertex of
the surface, and one path for each boundary vertex of the surface.

• K ′ is a disjoint union of cycles, with one cycle for each internal vertex of the surface,
and one cycle for each boundary component of the surface.
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Algorithm 6: Construct the boundary identification graph K ′ = (W ′, F ′).

Input: Triangulation data on input tape.
Output: The graph K ′ = (W ′, F ′).
for t ∈ [n] do

for i ∈ {1, 2, 3} do
Write wt,i to the output tape;

end

end
for t ∈ [n] do

for e = (ij) ∈ {(12), (23), (31)} do
Read the entry y = (s, (pq)) in row t column e;
If y 6= ∅, write (wt,i, ws,p) and (wt,j , ws,q) to the output tape;
If y = ∅, write (wt,i, wt,j) to the output tape;

end

end

Moreover, the number of boundary vertices of the surface is equal to the number of boundary
edges; that is, the number of ∅ symbols in the gluing table for the input triangulation.
Therefore counting boundary components becomes a simple matter of counting boundary
edges and counting components of K and K ′. Algorithm 7 gives the details.

Algorithm 7: Count the number of boundary components.

Input: Triangulation data on input tape.
Output: Number of boundary components, b.
Compose Algorithms 5 and 1 to find k, the number of connected components
of K;
Compose Algorithms 6 and 1 to find k′, the number of connected components
of K ′;
Count the number of ∅ symbols on the input tape, and store this as the integer
x;
Write b = k′ − k + x to the output tape;

We summarise this section in the following statement.

Proposition 4. There is a logspace algorithm, Algorithm B, which given a triangulation
of a connected surface S as input, computes (o, χ, b) where o = 0 if S is orientable and 1 if
nonorientable, χ = χ(S) is the Euler characteristic of S, and b is the number of boundary
components of S.

5 More than one connected component

We now assume the output to Algorithm 1 is c > 1. We will compute the following data:

(o1, b1, χ1), . . . , (oc, bc, χc),
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where oi = 0 if the i-th connected component is orientable and 1 otherwise, bi is its number
of boundary components, and χi is its Euler characteristic. Moreover, we output this data
in lexicographic order:

• oi < oi+1, or

• oi = oi+1 and χi < χi+1, or

• oi = oi+1, χi = χi+1, and bi ≤ bi+1.

The pseudocode is shown below, and followed by a discussion of the meta-algorithm.

Algorithm 8: Outputs the triangulation data for the i-th connected component
only.

Input: Triangulation data on input tape with n triangles; integer i ≤ n
Output: Triangulation data for the connected surface which is the i-th

connected component of the input surface.
Initialise counters t = 1 and c = 1 (in binary) on the work tape;
while c < i do

Increment t by 1;
Set b = false;
for s = 1 to t− 1 do

If REIN([n], E, s, t) returns true, set b = true;
end
If b = false, increment c by 1;

end
for s = t to n do

if REIN([n], E, s, t) returns true then
Write # to the output tape;
for e ∈ {(12), (23), (31)} do

Read the entry y = (u, f) in row s column e;
if y = ∅ then

Write ∅ to the output tape;
end
else

Initialise counter u′ = 0;
for x = t to s do

If REIN([n], E, x, t) returns true then increment u′ by 1;
end
Write (u′, f) to the output tape;

end

end

end

end
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Here is the meta-algorithm. Assume we have checked that the input is a surface,
computed the number of triangles n and counted the number of connected components
c > 1. Then using the algorithms described above, we compute the number of boundary
components b and Euler characteristic χ(S) for the entire (disconnected) surface S. Note
that the number of boundary components (and connected components) is at most n.

The Euler characteristic for a connected surface is at most 2. We compute a lower
bound on χ for each connected component as follows. If S =

⋃c
i=1 Si are the connected

components, we have χ(S) =
∑c

i=1 χ(Si) so for one component we have χ(Si0) = χ(S) −∑
i 6=i0

χ(Si). This is minimised when the negative term on the left is maximised, and
since the maximum Euler characteristic for any connected surface is 2, we have χ(Si0) ≥
χ(S)− 2(c− 1).

We then iterate through all possible triples (o, x, χ) for o ∈ {0, 1}, 0 ≤ x ≤ b, χ(S)−
2(c − 1) ≤ χ ≤ 2 (which is a finite list), in the order given above. For each such triple
(o, χ, x), we run through each connected component of S and compute (oi, χi, bi), and if
(oi, χi, bi) = (o, χ, x) then we write this triple to the output.

This meta-algorithm repeatedly uses Algorithms A and B above. It also requires a
logspace algorithm for extracting the i-th connected components of the input surface. We
present such a procedure in Algorithm 8 which takes as input an integer i and triangulation
data for a surface with possibly many connected components, and outputs the triangulation
data for only the i-th connected component.

Algorithm 8 is a straightforward extension of Algorithm 1 (which just counts con-
nected components). We draw attention to the final loop over the counter x, which is used
to reindex the triangles on the output tape so that they are numbered consecutively as
1, 2, . . . , k, where k is the number of triangles in the i-th component.

6 Concluding remarks

The main result of this paper is in fact stronger than presented in the statement of The-
orem 1 (that 2–manifold recognition is in L): the proof gives a logspace algorithm for the
function problem to compute the homeomorphism type (essentially a “normal form”) of a
given 2–manifold. This is in contrast to problems on some groups, such as braid groups
with at least four strands, where there is a logspace solution to the word problem [4, 14, 17]
but no known logspace algorithm for computing a normal form.

It was stated in the introduction that unknot recognition and 3–sphere recognition
are both in NP. At the time of writing it is known that these two problems are in co-NP
modulo the Generalised Riemann Hypothesis due to work of Kuperberg [15] and Hass and
Kuperberg [11], but it is unknown whether or not they are in P. The current algorith-
mic frameworks seem unlikely to support logspace algorithms for these problems, and a
significant breakthrough in this direction would likely require a completely new approach.
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