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Abstract 

Human movement is inherently variable. In the performance of complex, multi-joint tasks, it is 

possible to consistently achieve an accurate outcome (i.e. low variability of the goal: VARgoal), with 

many different combinations of joint movements and patterns of muscle activation (i.e. variability 

in the elements of the movement: VARelements). It has been proposed that when the nervous system 

is challenged by acute experimental pain, VARelements might increase to search for a new, less 

painful movement strategy and then decrease if a less painful solution is found. The changes to 

VARelements found in situations of chronic musculoskeletal pain are more diverse. In chronic pain 

VARelements might be reduced, increased, not changed, or a complex interaction of these possible 

adaptations. All previous studies that investigated VARelements during pain evaluated multi-joint 

tasks (e.g. walking, pointing) that involve multiple elements. It was unclear whether VARelements 

would be altered in a similar manner for simple tasks with fewer elements and thus limited potential 

for VARelements to change.  

 

For the series of studies included in this thesis, a simple movement task was developed that 

involved radial-ulnar deviation of the wrist between two target angle regions. Kinematic data were 

collected with 3-dimensional recording systems and VARelements were considered in wrist flexion-

extension and forearm pronation-supination. The effect of pain on VARelements during performance 

of the radial-ulnar deviation task was evaluated in Studies 1-3, under various pain conditions.  

 

Study 1 investigated the influence of acute experimental pain, induced with injection of hypertonic 

saline, on VARelements during performance of the repetitive radial-ulnar deviation task. This study 

showed that, unlike that observed in more complex multi-joint systems, VARelements was reduced 

during acute pain in the simple task with limited elements that could change. The most likely 

explanation was that the motor system constrained movement in an attempt to reduce pain or exert 

greater control over joint motion. 

 

On the foundation of differences in the changes to VARelements for complex and simple tasks during 

acute pain, Study 2 investigated whether VARelements would initially increase during acute pain to 

gain exposure to different movement options in a search for a less painful solution. An experimental 

paradigm was developed where the simple task provoked moderate pain for most movements, but a 

less painful or non-painful solution was available that was likely to be experienced as a result of 

VARelements with repetition of the task. We found participants searched for, and found, a less painful 

movement strategy, but VARelements was not used as part of this search. Participants did not select 
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the strategy provided as the least painful solution by the experimental paradigm, but found a less 

painful strategy with gradual changes to wrist/forearm position over multiple repetitions to explore 

alternative movement options. The changes to VARelements when participants performed the simple 

task in Studies 1 and 2 were not consistent with the strategies observed in previous studies of multi-

joint tasks.  

 

In Study 3 participants with chronic lateral epicondylalgia (LE) and pain-free controls performed 

the radial-ulnar deviation task whilst gripping a load cell to a standardised force, which provoked 

pain for LE participants. We found no difference of VARelements between the LE group and controls 

at the start or end of the trial, but in the LE group, VARelements in the flexion-extension direction 

decreased over time. Participants with chronic LE moved the wrist into a more flexed wrist position 

and reduced VARelements to allow performance of the radial-ulnar deviation task in a less painful 

manner. 

 

Based on the results of Studies 1-3 and previous investigations, it was clear that VARelements could 

be altered during pain, but two fundamental questions remained unclear. First, what is the time-

course of changes to VARelements when acute pain is sustained, and second, are the changes to 

VARelements in acute pain and chronic pain related? To answer these questions a model of pain that 

induces acute pain that is sustained for several days was needed. 

 

Study 4 investigated whether an intramuscular injection of nerve growth factor (NGF) into an 

elbow/forearm muscle induced sustained pain that was provoked by movement and muscle 

contraction/stretch. Pain that was provoked by movement of the upper limb and by 

contraction/stretch of the injected muscle was sustained for six days. These features indicate that 

intramuscular injection of NGF induces pain that responds in a manner that is typical of clinical 

pain, and is a suitable model to study the effect of sustained lateral elbow pain on VARelements. 

 

These four studies provide insight into the relationship between VARelements and pain during a 

simple task with few elements, and offers an avenue for future work using NGF as a sustained pain 

model for LE. When challenged by pain, the motor system does not use VARelements to search for a 

less painful solution for simple tasks with less capacity to change and considers multiple factors in 

addition to minimisation of pain and injury when selecting a movement strategy. 
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1 Introduction 

Musculoskeletal conditions are a worldwide public health problem, accounting for 6.7% of the 

global burden of disease (Australian Institute of Health and Welfare [AIHW], 2014). In 2011-12 an 

estimated 6.1 million Australians (28% of the total population) were affected by musculoskeletal 

conditions such as lateral epicondylalgia (tennis elbow) and osteoarthritis of the knee (Australian 

Bureau of Statistics [ABS], 2012). Musculoskeletal conditions can have a major impact on the 

health and overall quality of life of an individual. The pain and functional limitations imposed by 

arthritis (Murphy et al. 2012), spinal pain (Linton, 2000), and neck and low back pain (Holmberg 

and Thelin, 2006) can be detrimental to a person’s self-esteem and image, leading to negative 

emotional status, anxiety, depression, and feelings of helplessness (Sheehy et al. 2006).  

Musculoskeletal conditions affect the capacity of working-age people to gain employment (Lacaille 

et al. 2007) and are the most frequent cause of sickness and absence from work (Brage et al. 2010). 

These individual factors place a high economic burden on the community due to lost productivity 

and the use of hospital and primary care services (Australian Institute of Health and Welfare 

[AIHW], 2005). As a result of their relatively high prevalence, impact on the individual and society, 

and long-lasting and generally non-fatal nature, musculoskeletal conditions have been an Australian 

National Health Priority Area since 2002 (Australian Institute of Health and Welfare [AIHW], 

2005). Although musculoskeletal conditions are diverse and can affect any region of the body, a 

consistent feature is musculoskeletal pain and impaired physical function.   

 

By definition, acute episodes of musculoskeletal pain are of “recent onset and probable limited 

duration that usually has an identifiable temporal and causal relationship to injury or disease” 

(Ready and Edwards, 1992), and typically resolve within days or weeks of onset. However, in many 

cases acute pain “persists beyond the time of healing of an injury and frequently there may not be a 

clearly identifiable cause”, and develops into a chronic musculoskeletal pain condition. In 2007 an 

estimated 3.2 million Australians were living with chronic pain, which is expected to increase to 3.8 

million people in 2020 and 5.0 million people in 2050 (Access Economics, 2007). Chronic pain 

contributed to a total economic impact of $34.3 billion in 2007, approximately 62% of which was 

related to musculoskeletal conditions (Access Economics, 2007).  

 

A visible manifestation of both acute and chronic musculoskeletal pain is that it changes the way 

we move (e.g. limping after a sprained ankle). Changes to movement patterns are likely beneficial 

in the acute phase of pain if they limit mechanical loading of painful structures (e.g. joint surfaces, 
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tendons) in an attempt to reduce pain, limit further injury, and facilitate tissue healing (Hodges and 

Tucker, 2011). However, it has been postulated that the changes to movement that present in the 

acute phase might contribute to the development of chronic musculoskeletal pain conditions if they 

are sustained past the initial period of tissue healing (i.e. beyond when adaptation is necessary 

and/or in excess of what is necessary). One way in which movement adapts to pain, which could 

have both positive and negative consequences, and that has received infrequent attention in the pain 

literature, is the potential to change movement variability. 

 

Movement variability refers to trial-to-trial variation in the patterns of muscle activation and motion 

of joints and body segments between each repetition of an otherwise consistent task (Preatoni et al. 

2013). Movement variability can be broadly classified according to two components; variability in 

the outcome of a task relative to its goal (VARgoal) and variability of the elements (e.g. muscles, 

joints; VARelements) that make up the movement. For instance, when pointing to a target it is possible 

to consistently achieve an accurate outcome (i.e. low VARgoal) with many different combinations of 

joint movements and patterns of muscle activation (i.e. VARelements). VARelements is possible because 

of the complexity and redundancy (i.e. multiple ways that a movement can be performed) of the 

nervous system and musculoskeletal system (Bernstein, 1967; Bartlett et al. 2007). 

 

Movement variability was once considered an unwanted feature of movement (Fitts, 1954). 

However, Nikolai Bernstein’s seminal work (1967) demonstrated that professional blacksmiths 

could perform a hammering task accurately despite variability in the movement patterns of the 

upper limb during the task, and challenged the belief that VARelements was detrimental to optimal 

function. Since this work, it has gradually been accepted that VARelements is a potentially beneficial 

feature of normal, healthy movement. Despite the numerous studies that have evaluated VARelements 

in non-painful and painful situations since the work of Bernstein (1967), our understanding of 

VARelements is incomplete and not straightforward. A contemporary view of VARelements is that it can 

be both beneficial and detrimental. Beneficial VARelements is thought to lie between two limits (i.e. 

between an upper limit and lower limit) (Stergiou et al. 2006) that are not fixed and likely 

influenced by a unique combination of factors, including the task goal, the environment in which 

the task is performed, and the individual who performs the task. Conversely, detrimental 

VARelements can be above (i.e. too much VARelements) or below (i.e. too little VARelements) the two 

limits of beneficial VARelements. 
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Beneficial VARelements (i.e. between the upper and lower limits) might have several positive 

consequences for the nervous system and musculoskeletal system (Table 1-1). First, VARelements 

may allow the motor system to explore different movement patterns to find the optimal strategy 

among the many options that are available (Dingwell et al. 2001; Riley and Turvey, 2002; Preatoni 

et al. 2013). Second, VARelements may facilitate the distribution of stresses more broadly between 

different tissues (e.g. muscles, joint surfaces) and thus reduce the cumulative load on specific 

tissues (Hamill et al. 1999; Srinivasan and Mathiassen, 2012). However, there might be immediate 

and long-term consequences to function if VARelements increases or decreases outside the limits. 

 

An increase of VARelements above the upper limit might reflect compromised control of the 

numerous muscles and joints/body segments involved in the task. This poor control might have 

several consequences, such as greater potential for movement error (e.g. less successful attainment 

of a task goal) and uncontrolled/excessive loading of soft tissues with the potential for tissue 

damage and acute pain. Conversely, a decrease of VARelements below the lower limit might 

compromise the ability of the nervous system to learn new skills and adapt movements in new 

contexts (Wu et al. 2014). Further, decreased VARelements might reduce the net area of joint 

structures over which normal loads are applied during repetitive tasks, thereby increasing the 

cumulative load on specific tissues, with the potential for acute pain or damage. Thus, both too 

much and too little VARelements in non-painful situations may compromise healthy distribution of 

loads and contribute to the development of acute pain and injury (e.g. through uncontrolled or 

excessive loading of soft tissues). During an episode of acute pain or injury, changes to  VARelements 

might have a beneficial or detrimental role. For instance, two related goals of the nervous system 

during acute pain are likely to be reduction of pain intensity and prevention of further injury 

(Hodges and Tucker, 2011). These two goals could potentially be achieved with several different 

beneficial changes to VARelements. First, in the presence of acute pain, an increase of VARelements may 

enable the motor system to search for a new, less painful movement strategy that has less potential 

to provoke pain and injury (Moseley and Hodges, 2006; Madeleine et al. 2008a; Hodges and 

Tucker, 2011). The hypothesis that the motor system uses VARelements to search for a less painful 

movement strategy during acute pain is based on studies that found VARelements increased when 

multi-joint tasks were performed during acute experimental pain at the low back (Moseley and 

Hodges 2006) and shoulder (Madeleine et al. 2008a). After this initial increase in VARelements 

(interpreted as the initial search for a new movement strategy), VARelements may decrease so the less 

painful pattern is used more frequently for subsequent repetitions of the task (Moseley and Hodges, 

2006). Second, the nervous system might increase VARelements to distribute stresses over a greater 
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surface area of soft tissues relative to pain-free situations. This could have the short-term benefit of 

reducing the relative frequency and likelihood that painful tissue regions are loaded during 

repetitive tasks. Although these hypotheses are elegant, it remains unclear whether the 

interpretation is accurate. 

 

Conversely, an initial increase of VARelements during acute pain/injury might be detrimental to 

function. VARelements above an upper limit of beneficial variability might reflect compromised 

control of the multiple task elements involved in a task due to poor sensory or motor processing, or 

sensorimotor integration (Brumagne et al. 2004; Dessureault et al. 2008; Malmstrom et al. 2013) or 

impaired joint stability following damage to important stabilising structures (e.g. anterior cruciate 

ligament rupture at the knee (Georgoulis et al. 2006)). Excessive VARelements could lead to 

uncontrolled motion of joints and body segments with greater potential for error and 

uncontrolled/excessive loading of soft tissues with the potential for further damage and pain. To 

minimize the potential for damage/pain as a consequence of poor sensorimotor function or impaired 

joint stability, the motor system might proactively reduce VARelements (Hamill et al. 1999). 

However, it is unclear whether the motor system uses this strategy of reduced VARelements and 

whether it is beneficial or detrimental in the short-term and long-term. 

 

These changes to VARelements during acute pain (i.e. increase or decrease) might be beneficial in the 

short-term to satisfy the immediate goals of the nervous system (e.g. reduce pain and limit the 

potential for further injury), but they might have long-term consequences. For instance, if sustained 

for an excessive period of time, they could potentially contribute to the development of chronic pain 

(Hamill et al. 1999; Heiderscheit et al. 2002). However, the relationship between altered VARelements 

in acute pain and the development of chronic/persistent pain has not been studied. Although there 

are several interpretations for the changes to VARelements in acute experimental pain, the results have 

been reasonably straightforward. That is, VARelements is increased during acute pain (Moseley and 

Hodges, 2006; Madeleine et al. 2008a). Further, as no pain models are currently available that 

induces acute nociception/pain that is sustained for up to a week, it is unclear how VARelements is 

influenced when pain does not resolve within days and is sustained. 

 

A number of studies have evaluated VARelements during chronic/persistent pain of the knee (Hamill 

et al. 1999; Heiderscheit et al. 2002; Georgoulis et al. 2006; Yakhdani et al. 2010; Cunningham et 

al. 2014), shoulder (Madeleine et al. 2008a,b; Madeleine and Madsen, 2009; Lomond and Côté 

2010) and low back (Lamoth et al. 2006; van den Hoorn et al, 2012), and the results from these 
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studies are conflicting. A commonly reported finding is that VARelements is reduced during 

chronic/persistent pain. This reduced VARelements may reflect a maladaptive process that persists 

from the acute phase of pain (Srinivasan and Mathiassen, 2012). Conversely, a reduction of 

VARelements may reduce the potential for error in control of painful and damaged joints (Côté et al. 

2005) and in doing so improve function and reduce pain (Yakhdani et al. 2010). 

 

In other situations there might be reduced VARelements of the painful joint but increased VARelements 

of functionally related non-painful joints (Lamoth et al. 2006; Madeleine and Madsen, 2009). In this 

context, increased VARelements might reflect a strategy to compensate for less variable movement of 

the painful joints, and allow maintenance of the task (Lamoth et al. 2006). However, in other 

contexts VARelements of a painful/damaged joint might be no different to healthy control participants 

(Ferber et al. 2005; Lewek et al. 2006). It is also possible that changes (i.e. increase or decrease) or 

no change to VARelements might reflect a continuum of adaptations in different phases of chronic 

pain. For instance, VARelements might be initially increased in the affected knee of participants with 

knee osteoarthritis due to poor neuromuscular control of the joint, and then reduced to a magnitude 

similar to healthy control participants (Lewek et al. 2006) or even lower (Yakhdani et al. 2010) as a 

protective strategy to reduce the potential to load the injured tissue and minimise pain during 

movement. 

 

A simple decrease, increase, or no change to VARelements in chronic pain described above occurs in a 

handful of situations. However, most studies found complex and diverse changes to VARelements 

during tasks such as running (Hamill et al. 1999; Heiderscheit et al. 2002; Cunningham et al. 2014) 

and upper limb movements (Madeleine et al. 2008a,b; Lomond and Côté, 2010). These diverse 

changes to VARelements include an increase, decrease, or no change for specific sub-phases, 

directions of movement, and kinematic parameters of the same task.  

 

Previous studies of movement variability during acute and chronic pain have provided important 

insight. However, several gaps remain and thus we have an incomplete understanding of changes to 

movement variability and the motor adaptation to pain. The overall objective of this thesis was to 

use carefully controlled experimental models to resolve important questions and uncertainties 

regarding movement variability in the context of acute and chronic pain. 
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Table 1-1. Current hypotheses regarding the potential beneficial and detrimental consequences of 

VARelements in healthy situations and during pain. 

 

Potential benefits of VARelements in normal/healthy situations 

 Allow the motor system to explore different movement options to find an optimal 

movement strategy 

 Facilitate the distribution of stresses over a greater surface area of soft-tissues  

The drivers and potential consequences of increased VARelements during pain 

Beneficial consequences 

 Facilitate a search for a new, less painful strategy to reduce pain and protect injured soft-

tissues  

 Distribute stresses more broadly to reduce the frequency that painful/damaged tissues are 

loaded  

 In chronic pain, increased VARelements of a non-painful joint/region might be a 

compensatory strategy for reduced  VARelements of a painful joint/region  

 

Detrimental consequences 

 Poor control of the muscles and joints/body segments involved in movement, which 

might contribute to:  

o Greater potential for movement error 

o Uncontrolled soft-tissue loading  

 Greater potential for tissue damage and pain if an increase of  VARelements is sustained  

The drivers and potential consequences of decreased VARelements during pain 

Beneficial consequences 

 Use a less painful movement option more frequently (if the nervous system finds a less 

painful strategy) during acute pain 

 Distribute stresses over fewer tissues to decrease likelihood that damaged tissues are 

loaded during acute pain 

 Reduce potential for error in control of damaged joints/regions during acute pain 

 

Detrimental consequences 

 Compromise the ability to learn new skills and adapt movements to new contexts  

 Reduce the surface area of soft-tissue loading and increase cumulative loading of specific 

tissues, with the potential for tissue damage and pain 
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2 Background  

2.1 Movement variability  

2.1.1 Introduction  

Variability is an intrinsic property of the nervous system that is present at all levels of 

movement organisation, from the firing rate of individual neurons (Faisal et al. 2008) to coordinated 

movements of multiple body segments involved with tasks such as reaching (Messier and Kalaska, 

1999) and walking (Preatoni et al. 2013). Variability was once considered an unwanted feature of 

the nervous system that should be minimised (Fitts, 1954). A contemporary view is that variability 

may have the potential to both positively and negatively affect normal, healthy function at different 

levels of movement organisation (e.g. from neuron firing rate to the kinematics of joints and body 

segments), at different times, and in different contexts. For example, at the level of the neuron, 

variability of neuronal firing rate may interfere with efficient and effective signal transmission 

(Faisal et al. 2008), but might also have a positive effect on function by enhancing the sensitivity of 

the neuron (Stein et al. 2005).  

Changes to the movement of body segments that occur between each repetition of a task, 

termed movement variability, is now considered a potentially important and inherent characteristic 

of normal movement that arises due to the complexity of the musculoskeletal system and the 

redundancy of its degrees of freedom (e.g. Bernstein, 1967; Riley and Turvey, 2002; Bartlett et al. 

2007). However, like neuronal variability, movement variability is also postulated to have positive 

or negative consequences for function. For instance, movement variability may be a necessary 

component to enable learning (Wu et al. 2014). Alternatively, movement variability might reflect 

poor control of movement that is the inevitable consequence of noise in sensory or motor 

processing, or sensorimotor integration (Wu et al. 2014). 

Whether movement variability is good or bad depends on the specific component of 

movement, the amount of variability, and the timing within a movement task. The following 

sections outline the need to consider each of these aspects. 

 

2.1.2 Components of movement variability 

When performing a repetitive task (e.g. pointing to a target; Figure 2-1) it is possible to 

achieve an accurate outcome on each repetition with an infinite number of potential combinations 

of joint excursions and muscle activation patterns (Preatoni et al. 2013). The variability that is 

present in the performance of any task can be broadly characterised by two components. 
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The first component is variability in the outcome of a task relative to its goal. Humans perform 

tasks to achieve a specific goal and variability of the goal (VARgoal) is minimised (if this is required 

for the task) to ensure accurate and consistent performance of the task. For example, the goal of a 

repetitive pointing task may be to touch the centre of a button on each repetition (inset, Figure 2-1). 

Depending on the task constraints/condition, this goal might not be achieved with each repetition of 

the pointing movement. VARgoal can be quantified in several ways. First, the task outcome can be 

described in a dichotomous manner with repetitions classed as “successful” (e.g. centre of button 

touched) or “unsuccessful” (e.g. centre of button not touched). Second, a continuous measure of the 

magnitude of VARgoal can be used, such as the amplitude of the end-point error during a repetitive 

pointing task (Trommershauser et al. 2005) which reflects the spatial difference in the outcome of 

the task relative to the goal.  

 

 

Figure 2-1. Upper limb pointing task towards a button. A sagittal view of several possible upper 

limb orientations to achieve a target (goal) (circles and lines define the joints and segments of the 

arm, forearm, wrist and finger). The stick diagrams with solid circles represent various segment 

interactions that maintain successful attainment of the goal, whereas the open circles and dotted line 

represent a segment interaction where the goal was not achieved. The centre of the button (i.e. the 

goal) might be touched on most repetitions (green circles) but on some movements the edge of the 

button might be touched (blue circles) or missed altogether (red circles). 

 

The second component of movement variability that must be considered is variability of the 

elements of a movement i.e. VARelements. The elements of a movement refer to the individual 
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muscles and joints (and coordination between them) that contribute to performance of a task. For 

example, in a pointing task (Figure 2-1) the coordinated activation of upper limb muscles (e.g. 

deltoid, biceps brachii) effects movement at the shoulder, elbow, wrist and joints of the hand and 

fingers. With each repetition of a task it is possible to continue to achieve the task goal, despite 

alteration in the specific patterns of muscle activation and kinematics of individual joints (and 

coordination between joints) because of redundancy in the motor system (many muscles, joint and 

control strategies available to achieve the same outcome) (Bernstein, 1967). Motor redundancy 

means that at each level of the motor system (muscles, joints, etc) and central movement 

organisation there are many more elements contributing to performance of a task than are necessary 

(Latash et al. 2002). As such, it is not necessary to maintain an identical coordination of segments 

between repetitions (i.e. no VARelements) to successfully perform a task (Preatoni et al. 2013). 

Further, there may be positive and negative consequences for VARelements. 

The relationship between VARgoal and VARelements is described in the uncontrolled manifold 

hypothesis (Scholz and Schöner, 1999). It proposes that in most situations the nervous system does 

not specify exactly how the elements (e.g. muscles, joints) involved in the goal-directed movement 

interact during the task, but does specify the attainment of the goal (Scholz and Schöner, 1999). 

That is, the nervous system aims to constrain the variation in the goal, but allows variation in the 

path to attain the goal. Further, the uncontrolled manifold hypothesis suggests that VARelements can 

be partitioned into two broad categories based on its effect on successful achievement of a task goal 

(Latash, 2012). First, “good” VARelements does not affect the outcome of the task (i.e. does not 

increase outcome variability) and is permitted by the nervous system because it provides potential 

benefits (section 2.1.3). Second, “bad” VARelements causes a deviation from the final task goal (e.g. 

end-point error) and is thus minimised by the nervous system. The uncontrolled manifold 

hypothesis is supported by the minimum intervention principle, which proposes that the nervous 

system only corrects movement that is detrimental to successful achievement of the task goal 

(Todorov, 2002). Even in this context the effect of VARelements is not straightforward. For instance, a 

specific component of VARelements may have positive consequences for some individuals, but not 

others. Results from studies on pistol shooting (Arutyunyan et al. 1969), throwing (Kudo et al. 

2000) and reaching (Messier and Kalaska, 1999) imply that “good” VARelements may be required to 

maintain accurate performance of a task for some individuals. In a study of the accuracy of pistol 

shooting (Arutyunyan et al. 1969), skilled marksmen were able to reduce errors in the final pointing 

position of the hand by using more variable movements of the arms, whereas novice marksmen 

were unable to produce such adjustments and therefore exhibited more variable end-point positions. 
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2.1.3 Beneficial effects of VARelements 

VARelements may have beneficial consequences for the nervous system and/or 

musculoskeletal system in several ways. These are outlined below. 

 

2.1.3.1 Role of VARelements in adaptation and learning 

VARelements is thought to underpin the exploration of different movement strategies, which is 

thought necessary to refine movement. For instance, it may be functionally relevant to find the 

strategy among the many available that optimises features such as energy efficiency (Anderson and 

Pandy, 2001), accurate achievement of the task goal (Kording and Wolpert, 2004), and 

musculoskeletal health (Dingwell et al. 2001; Riley and Turvey, 2002; Preatoni et al. 2013). This 

flexibility allows the nervous system to learn a novel movement (Wu et al. 2014), adapt to changes 

in the environment (e.g. walking or running on different surfaces), alter the speed at which a 

continuous task is performed (e.g. moving the fingers faster or slower), change the context of a task 

(e.g. walking on level ground to walking up an incline) (Diedrich and Warren, 1995), and respond 

to changes in an individual that may be immediate (e.g. walking with and without a heavy bag) or 

more long-term (e.g. increase in body weight). This exploration may have a specific benefit in the 

presence of acute pain, and will be discussed in more detail below (Section 2.2.3).  

 

2.1.3.2 Role of VARelements in load sharing 

VARelements may be beneficial from a musculoskeletal health perspective as it may allow 

variation of tissue loads between repetitions and distribution of stresses more broadly between 

different tissues (e.g. sharing of load between different muscles, areas of joint contact/pressure 

distribution), and thus reduce the cumulative load on any particular tissues (Hamill et al. 1999; 

Srinivasan and Mathiassen, 2012).  

 

2.1.4 Negative effects of VARelements 

VARelements may have negative consequences for the nervous system and/or musculoskeletal 

system in several ways. First, it may reflect a situation where the nervous system is unable to 

minimise “bad” VARelements (Latash, 2012), which causes a deviation from the intended movement 

trajectory and less successful achievement of the task goal. Thus, there is greater potential for error, 

which may occur due to compromised availability, quality, and/or use of sensory information, such 

as proprioception (Brumagne et al. 2004; Malmstrom et al. 2013). Second, VARelements may result in 

uncontrolled tissue loading, which may lead to a greater potential to overload specific tissues or 

joint surfaces. This potential negative consequence appears to directly contradict the earlier 
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suggestion that VARelements may have a beneficial role in load sharing (Section 2.1.3). However, it is 

currently unclear what amount of VARelements is beneficial or detrimental to load sharing in the 

nervous system, and likely needs to be balanced with other requirements (e.g. learn new 

movements, adapt to changes in the environment). Therefore the positive and negative effects of 

VARelements must be balanced by the nervous system. 

 

2.1.5 Balance between positive and negative effects of VARelements 

It has been proposed that the optimal amount of movement variability within the nervous 

system (i.e. VARelements that is beneficial to function) lies between two limits (Stergiou et al. 2006). 

This implies there are negative consequences of both too much and too little variation to normal 

function. 

VARelements above the upper limit implies that the motor system is too unstable and noisy, 

whereas VARelements below the lower limit indicates the system is too stereotypical, less likely to 

exhibit exploratory behaviour, and thus less capable of adapting to perturbations (Stergiou et al. 

2006) and more likely to overload specific tissues (Hamill, 2012). However, it is unclear what 

magnitude of VARelements should be deemed optimal, and at what point VARelements crosses an upper 

or lower limit to become too much or too little, respectively. One metric to classify VARelements as 

beneficial or detrimental to the nervous system and musculoskeletal system could be the observed 

effect on achievement of the task goal. According to the uncontrolled manifold hypothesis (section 

2.1.2), VARelements is classified as “good” if the goal continues to be achieved and “bad” if the goal 

is not achieved (Latash, 2012). It is possible that in some situations there might be an increase of 

“good” VARelements with continued achievement of the task goal, but the VARelements is excessive 

and reflects poor control of the elements, which may lead to suboptimal biomechanics (e.g. joint 

loading, muscle activation patterns) and subsequent pain and/or injury.  

Another consideration is that the amount of VARelements during pain may be detrimental or 

beneficial to the system depending on the point in time (i.e. from the initial painful insult or 

episode) at which VARelements is considered. For instance, at the onset of pain an increase of 

VARelements may be beneficial if it underlies a search for a less painful movement strategy (Moseley 

and Hodges, 2006; Madeleine et al. 2008a), but in the long-term it could be detrimental for the 

system if it were excessive and resulted in impaired control of joints and body segments during 

movement. Whether VARelements is beneficial or detrimental must be considered with respect to its 

observed effect on the movement (Davids et al. 2006), its effect on the dynamics of the system 

(Vaillancourt and Newell, 2003), and the time-point at which it is measured. 
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2.2 Altered movement variability in pain and injury 

2.2.1 Theories of the motor adaptation to pain  

A key protective function of the nervous system is its ability to detect noxious and 

potentially tissue-damaging stimuli, and then determine whether the situation may damage 

musculoskeletal tissues. In a normal physiological and adaptive situation this process requires 

activation of peripheral nociceptors situated in soft tissues (e.g. muscle, tendon, ligament), 

transmission of nociceptive signals, and integration of this information within multiple brain areas, 

which ultimately allows the perception of pain. The painful experience is influenced by contextual 

and cognitive factors (Lee and Tracey, 2013). If the nervous system concludes that a situation is, or 

may be, detrimental to the tissues and action is required, then the motor system is one of the key 

systems available to enable such action – to alter movement to reduce the potential for further pain 

or injury. The aversive nature of pain facilitates learning, which affects future decisions in selecting 

actions that will prevent potential pain and injury (Redgrave et al. 2008). 

Acute pain is defined as “pain of recent onset and probable limited duration that usually has 

an identifiable temporal and causal relationship to injury or disease” (Ready and Edwards, 1992). In 

this case the roles of motor adaptation is clear; to remove or reduce the threat to the tissues 

indicated by the nociceptive input or the potential threat. In many cases, pain that occurs following 

an acute injury might persist for several months, and no longer serves a protective role, leading to 

chronic pain (Kehlet et al. 2006; Woolf and Ma, 2007). In this context the role of input from 

peripheral nociceptors may be less important or non-existent, and the relationship between pain and 

motor adaptation becomes more complex. Chronic pain “commonly persists beyond the time of 

healing of an injury and frequently there may not be any clearly identifiable cause” (Ready and 

Edwards, 1992). Adaptation in movement may exceed what is necessary to protect the tissues, may 

be maintained beyond when it is necessary, or may be completely inappropriate (Hodges and 

Smeets, 2015). 

Several theories attempt to explain the motor adaptation to pain and its potential role in the 

transition from acute to chronic pain. Notable examples include the vicious cycle theory (Roland, 

1986), pain adaptation theory (Lund et al. 1991), and more contemporary theories of adaptation to 

pain (Murray and Peck, 2010; Hodges and Tucker, 2011). 

The vicious cycle theory proposes that activation of muscles that are painful or that move the 

painful region increase in a stereotypical manner (Roland, 1986). A sustained increase of muscle 

activity contributes to ischaemia and accumulation of pain metabolites, and subsequent increased 

muscle activity, which leads to a self-perpetuating cycle of sustained pain. Although plausible, and 

examples have been presented (Svensson et al. 1997; Sessle, 1999), not all evidence supports this 
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hypothesis of a systematic increase of agonist muscle activity. Similar to the vicious cycle theory, 

the pain adaptation theory proposes that the nervous system attempts to reduce pain and injury, but 

rather than a systematic increase in activity, it is achieved by a combination of reduced activity of 

muscles that are painful or that produce a painful movement, and increased activity of antagonist 

muscles (Lund et al. 1991). Although there are data that support this proposal, a stereotypical 

increase or decrease of muscle activity during pain predicted by this theory is not universally 

observed. For instance, muscle activity may increase (Del Santo et al. 2007; Sessle, 1999; Svensson 

et al. 1997), decrease (Del Santo et al. 2007; Farina et al. 2005) or not change (Farina et al. 2004; 

Matre et al. 1999; Schulte et al. 2004) during experimental pain in humans. To account for the 

diverse changes to movement during pain that are not explained by the vicious cycle or pain 

adaptation theories, Hodges and Tucker (2011) developed a more contemporary theory of the 

motor adaptation to pain (Figure 2-2). This theory proposes that pain is associated with a change of 

motor behaviour that: i) involves redistribution of activity within and between muscles; ii) changes 

the mechanical behaviour of the system, such as modified movement and stiffness; iii) leads to 

“protection” from further pain or injury, or the threat/anticipation of pain or injury; iv) is explained 

by changes at multiple levels of the nervous system that may be competitive or complimentary; and 

v) that is beneficial in the short-term, but with potential long-term consequences due to altered 

loading of the tissues (Hodges and Tucker, 2011). A key premise of this theory is that the 

redistribution of muscle activity leads to a unique and flexible change of mechanical behaviour that 

is dependent on the individual person and the specific task that is performed.  

There are several ways in which the motor system may adapt mechanical behaviour to 

change loading of painful structures and protect the musculoskeletal system from further pain 

and/or injury (Hodges and Tucker, 2011). These adaptations include reduced displacement 

(Schaible and Grubb, 1993; Svensson et al. 1996; Friel et al. 2004) and velocity (Svensson et al. 

1996) of movement, changed direction of force (Tucker and Hodges, 2010), removal of the body 

part from the painful situation (Clarke and Harris, 2004), or complete avoidance of a movement or 

task for some individuals or in some situations.  

 



14 
 

 

 

Figure 2-2. The modified pain adaptation theory (Hodges and Tucker, 2011). Figure from Hodges 

and Smeets (2015). Reprinted with permission. 

 

Changes in VARelements have been reported in pain and could be involved in several ways, 

including a beneficial role in development of the motor adaptation to pain, a negative consequence 

of nociception or the perception of pain, or simply an epiphenomenon that occurs in association 

with the painful experience but does not have a beneficial or detrimental role. The following 

sections will outline data from previous studies that have investigated the effect of pain on 

VARelements, with the aim to articulate the diversity and heterogeneity of findings and interpretation 

of the studies. 

 

2.2.2 Quantification of movement variability during pain 

Studies that have investigated the influence of pain on movement variability have used 

many different methods to calculate and quantify VARelements. These methods are summarized in 

Table 2-1, and discussed in detail for studies that investigated movement variability during acute 

(section 2.2.3) and chronic (section 2.2.5) pain.
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Table 2-1. Methods used to quantify movement variability in previous studies that investigated the influence of pain on movement variability. Table 

adapted from Srinivasan and Mathiassen (2012). Reprinted with permission. 

Study Participants Task Data Movement variability metric(s) 

Cunningham et al 

(2014) 

Unilateral PFPS 

(n=20) 

Healthy controls 

(n=21) 

Running on a treadmill: 15 min 

at a self-selected speed 

Kinematics: Thigh, knee, ankle 

EMG: N/A 

Coupling angle variability between 

knee-ankle couplings quantified 

using vector coding 

Ferber et al (2005) Chronic foot pain 

(n=11) 

Healthy controls 

(n=11) 

Running on a runway: 8 trials at 

3.65 m/s 

Kinematics: Lower leg, ankle 

EMG: N/A 

Coupling angle variability between 

lower leg-ankle couplings 

quantified using vector coding 

Georgoulis et al 

(2006) 

Unilateral rupture 

of anterior cruciate 

ligament (n=10) 

Walking on a treadmill: 2 min 

walks at 100%, 120% and 80% 

of a self-selected speed 

Kinematics: Knee 

EMG: N/A  

Regularity of knee flexion-

extension angular displacement 

quantified using approximate 

entropy 

Hamill et al (1999) Unilateral PFPS 

(n=not given) 

Healthy controls 

(n=not given) 

Running on a runway: 10 trials 

at 2.5 m/s, 3 m/s and 3.5 m/s 

Kinematics: Thigh, lower leg, 

ankle 

EMG: N/A  

Coupling angle variability between 

thigh-lower leg-ankle couplings 

quantified using continuous relative 

phase 

Heiderscheit et al 

(2002) 

Unilateral PFPS 

(n=8) 

Healthy controls 

(n=8) 

Running on a treadmill: 20 s at 

fixed (2.68 m/s) and self-

selected speeds 

Kinematics: Thigh, lower leg, 

ankle 

EMG: N/A  

Other: Stride length and 

duration 

Kinematics: Coupling angle 

variability between thigh-lower leg-

ankle couplings quantified using 

vector coding 

Other: Variability of stride length 

and stride duration quantified using 

SD 
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Lamoth et al (2006) Chronic non-

specific low back 

pain (n=19) 

Healthy controls 

(n=17) 

Walking on a treadmill: 3 min 

at 12 speeds, from 0.39 to 1.94 

m/s (increments of 0.22 m/s) 

Kinematics: Trunk, pelvis 

EMG: Erector spinae 

(bilaterally: Th12, L2, L4) 

Kinematics: Coupling angle 

variability of trunk –pelvis 

couplings quantified using 

continuous relative Fourier phase  

Lewek et al (2006) Unilateral medial 

knee OA (n=15) 

Healthy controls 

(n=15) 

Walking on a runway: 10 trials 

at self-selected speed 

Kinematics: Knee 

EMG: Vastus medialis, vastus 

lateralis, hamstrings (medial, 

lateral), gastrocnemius 

(medial, lateral) 

Kinematics: Variability of the knee 

(sagital and frontal planes) 

quantified using phase angle (knee 

angle vs. angular velocity of the 

knee) 

Lomond and Cote 

(2010) 

Chronic neck-

shoulder pain 

(n=16) 

Healthy controls 

(n=16) 

Repetitive reaching at shoulder 

height: 1 Hz until exhaustion 

Kinematics: Shoulder, elbow, 

index finger-tip 

EMG: Trapezius (upper and 

lower fibres), anterior deltoid, 

supraspinatus, infraspinatus 

All: Variability quantified for each 

kinematic variable and muscle 

activation using SD expressed as a 

percentage of average calculated 

across each block    

Madeleine and 

Madsen (2009) 

Neck-shoulder 

pain (n=6) 

Healthy 

participants  

(n=12) 

Deboning: 6 trials of 35-50 s 

work cycles  

Kinematics: Head-shoulder, 

shoulder-hip, elbow-hip 

displacement 

EMG: N/A  

Kinematics: Variability for each 

kinematic variable quantified using 

SD, coefficient of variation, sample 

entropy, approximate entropy  

Madeleine et al 

(2008a) 

[acute pain 

experiment] 

Healthy 

participants (n=20)  

Simulated cutting:  

Baseline trial – 3 min of work; 

Pain trial – 3 min work during 

acute experimental pain 

 

Kinematics: Right arm, trunk  

EMG: Deltoid (anterior, 

middle), trapezius, 

infraspinatus 

Other: Duration of each cycle 

of the task  

All: Variability for each kinematic 

variable (arm and trunk: starting 

position, acceleration, range of 

motion), EMG variable, and task 

duration were quantified using SD 
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Madeleine et al 

(2008a) 

[chronic pain 

experiment] 

Chronic neck-

shoulder pain 

(n=12) 

Healthy controls 

(n=6) 

Simulated cutting: 3 trials of 3 

min work  

 

Kinematics: Right arm, trunk  

EMG: Deltoid (anterior, 

middle), trapezius, 

infraspinatus 

Other: Duration of each cycle 

of the task  

All: Variability for each kinematic 

variable (arm and trunk: starting 

position, acceleration, range of 

motion), EMG variable, and task 

duration were quantified using SD 

Madeleine et al 

(2008b) 

Experiment 1: 

Butchers with <1 

month experience 

(n=12)  

Experiment 2: 

Butchers with no 

experience (n=20) 

and experience 

(n=6) 

Simulated cutting:  

Experiment 1 – 3 trials of 3 min 

work (recorded in the 1st and 

6th month of employment 

Experiment 2 – 1 trial of 3 min 

work. 

Kinematics: Right arm, trunk  

EMG: Deltoid (anterior, 

middle), trapezius, 

infraspinatus 

Other: Duration of each cycle 

of the task 

All: Variability for each kinematic 

variable (arm and trunk: starting 

position, acceleration, range of 

motion), EMG variable, and task 

duration were quantified using SD 

Moseley and 

Hodges (2006) 

Healthy 

participants  

(n=16) 

Shoulder flexion and extension: 

Baseline – 40 movements 

Pain trials – 70 movements, 

painful stimuli delivered to the 

abdominal muscle  

Washout trials – 70 pain-free 

movements 

Kinematics: N/A 

EMG: Right deltoid (anterior, 

posterior fibres), right obliquus 

externus (OE) 

Variability in the timing of the 

onset of activity in OE relative to 

onset of activity in anterior/ 

posterior deltoid quantified using 

SD 

Van den Hoorn et al 

(2012) 

Chronic non-

specific low back 

pain (n=13) 

Healthy controls 

(n=12) 

Walking on a treadmill: 3 min 

at 12 speeds from 0.5 to 1.72 

m/s (increments of 0.11 m/s) 

Kinematics: Trunk, thorax, 

pelvis 

EMG: N/A 

Variability of the pelvis and thorax 

rotations quantified as the median 

of deviations from the mean; 

relationships between pelvis and 

thorax variability assessed by 

Pearson correlations 
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Yakhdani et al 

(2010) 

Unilateral knee 

OA (n=14) 

Healthy controls 

(n=12) 

Walking on a treadmill: 4 min 

at 7 speeds from 0.17 to 1.5 m/s 

(increments of 0.22 m/s) 

Kinematics: Knee  

EMG: N/A 

Variability of knee angular velocity 

(sagital plane) quantified using SD 

 

PFPS – patellofemoral pain syndrome; EMG – electromyography; SD – standard deviation; N/A – not applicable; Th12 – twelfth thoracic vertebra; 

L2 – second lumbar vertebra; L4 – fourth lumbar vertebra; RMS – root mean square. 
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2.2.3 Movement variability during acute pain 

 Variation in movement may change in a number of ways in acute pain, including an 

increase, decrease, or no change to VARelements and VARgoal. Changes to VARelements could be 

beneficial or detrimental to function or they could be a non-specific change that simply occurs as a 

consequence of pain but does not have any impact on function or provides no benefit or cost to the 

nervous system. 

Moseley and Hodges (2006) investigated VARelements in the timing of a postural strategy 

recorded in trials before, during, and after painful electric shocks were delivered to the low back. 

This postural strategy involves feedforward activation of the abdominal muscles in response to 

rapid arm movements that challenge the stability of the spine in predictable manner for the nervous 

system (Hodges and Richardson, 1996). Each trial involved 70 repetitions of the rapid arm 

movement. They found VARelements of the postural strategy initially increased during the first 10 

repetitions of the painful trials, but had returned to the baseline (i.e. pre-pain) levels by the final 10 

repetitions of the painful trial, and then increased in the first 10 repetitions of the post-pain trial 

(Figure 2-3). However, in a sub-group of participants, after the cessation of painful electric shocks 

there was no increase in VARelements of the postural strategy and the control strategy that was 

adopted during pain continued during the post-pain trial when painful electric shocks were not 

applied to the low back (Moseley and Hodges, 2006). Further, these participants had “unhealthy” 

beliefs about back pain, which was quantified with the Back Beliefs Questionnaire, Survey of Pain 

Attitudes, and the Pain Catastrophizing Scale. It was thought this sub-group of participants, for 

whom VARelements did not return to baseline, failed to explore new options after the resolution of 

pain by increased VARelements. Instead, they may have become “stuck” using a postural strategy with 

reduced VARelements during acute pain that persisted once the painful stimulus was removed 

(Moseley and Hodges, 2006). Thus, VARelements might respond differently for different participants; 

after resolution of acute experimental pain (Moseley and Hodges, 2006) but also during acute pain. 
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Figure 2-3. Data from Moseley and Hodges (2006). Reprinted with permission. 

 

Madeleine et al (2008a) investigated VARelements when healthy participants performed a 

standardised cutting task with the upper limb during acute experimental shoulder pain induced by 

injection of hypertonic saline. Relative motion between the right arm and trunk were expressed for 

the upper arm as anatomical flexion-extension, abduction-adduction and medial-lateral rotation, and 

for the trunk as flexion-extension, lateral flexion, and transverse rotation. Four kinematic 

parameters were determined in three-dimensions for the right arm and trunk: starting position, 

acceleration throughout the cycle, range of motion, and total area under the movement curve versus 

time. VARelements of arm and trunk movement was quantified as the standard deviation (SD) of the 

kinematic parameters. They found that variability of arm starting position in the flexion-extension 

and rotation directions was greater during acute experimental pain than the baseline (i.e. pre-pain) 

trial. Further, variability of arm range of motion and acceleration of arm movement were greater 

during acute pain than the pre-pain trial, but were not influenced by the direction of movement (i.e. 

flexion-extension, abduction-adduction, or rotation). The authors proposed that the increase of 

VARelements during acute pain might have allowed the motor system to explore alternative 

movement solutions to reduce pain (Madeleine et al. 2008a).  

An interesting qualitative observation of the data from Madeleine et al (2008a), that was not 

discussed therein, is the potential for different movement strategies used by separate sub-groups of 

participants during acute experimental pain. In some cases, it appears that approximately half of the 

participants did change VARelements between the pre-pain and pain trial, whereas the other 

participants did not change VARelements. Unlike Moseley and Hodges (2006), Madeleine et al 
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(2008a) did not consider the potential for different strategies (i.e. changes to VARelements) to be used 

by different participants.  

There are four different interpretations for the changes to VARelements in acute pain. First, 

VARelements at the onset of acute pain may be a purposeful adaptation that allows the motor system 

to experiment with different movement options and search for a new, less painful movement 

strategy (Moseley and Hodges, 2006; Murray and Peck, 2007; Madeleine et al. 2008a; Hodges and 

Tucker, 2011). This adaptation might have the short-term benefit that the nervous system acts to 

reduce pain by altering the mechanical behaviour of the body to find a new movement solution 

(Hodges and Tucker, 2011; Srinivasan and Mathiassen, 2012). If the search for a less painful 

movement strategy is successful (i.e. a less painful solution is found), the nervous system might 

decrease VARelements to improve the likelihood that the less painful solution is used more often for 

subsequent repetitions of the task (Hamill et al. 1999; Moseley and Hodges, 2006). A reduction of 

VARelements after a search might be beneficial in the short-term if the resultant movement strategy is 

less provocative of pain and reduces the potential for further pain and injury. This hypothesis is 

consistent with the recent theory of the motor adaptation to pain (Hodges and Tucker, 2011).  

Second, an increase of VARelements may allow broader distribution of stresses over different 

tissues (e.g. sharing of load between different muscles, areas of joint contact) between repetitions of 

a task. This adaptation could be beneficial in the short-term as more tissues would be loaded 

relative to pain-free situations, thus reducing the likelihood and relative frequency of loading the 

painful tissues. This interpretation implies tissues that are loaded less often (or not at all) during 

normal pain-free movement may be loaded more frequently (or start to be loaded), which might 

have negative consequences in the long-term. For instance, if tissues that are unaccustomed to 

regular loading are suddenly (i.e. with onset of pain) loaded more frequently, they may be unable to 

withstand the applied stresses, thereby leading to damage. 

Third, the increase of VARelements during pain might reflect error in performance of the task. 

An increase of VARelements may be detrimental to normal function if it surpasses an upper limit of 

optimal variability that implies the motor system is too unstable or noisy. This situation could arise 

due to compromised sensory or motor processing, or sensorimotor integration. Further, “bad” 

VARelements, as opposed to “good” VARelements (Latash, 2012) might increase during acute pain. If 

“bad” VARelements did increase, then according to the uncontrolled manifold hypothesis there would 

be an increase in “error” of the task goal. However, the effect of the observed increase of 

VARelements (whether “good” or “bad”) found in the previous studies (Moseley and Hodges, 2006; 

Madeleine et al. 2008a) on the task goal is unclear as the studies did not report whether the task 

goal was affected during pain. 
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Fourth, it is possible the increased VARelements during acute pain might reflect a situation 

where the nervous system was simply responding to a change in context in which the task was 

being performed (i.e. transition between no pain and pain, and vice versa) and that provided no real 

benefit to the nervous system or musculoskeletal system. For instance, Moseley and Hodges (2006) 

found that VARelements was increased at the start of both the pain and post-pain trials compared to 

baseline and the end of the pain and post-pain trials (Figure 2-3). If the increased VARelements was 

solely due to the presence of pain, then the increase of VARelements between the end of the painful 

trial and the start of the post-pain trial would not have been expected. Alternatively, the change in 

VARelements found between painful and non-painful trials in Moseley and Hodges (2006) could 

reflect an ongoing learning response that might occur due to the expectation of pain. 

 

2.2.4 Do all movement tasks adapt in a similar manner during acute pain? 

A consistent finding of the two studies that evaluated VARelements during acute pain is that 

VARelements was increased. Madeleine et al. (2008a) evaluated movement VARelements of the arm 

during an upper limb cutting task and Moseley and Hodges (2006) studied VARelements in the timing 

of the postural response to rapid unilateral arm movements. Although these tasks involve distinct 

regions of the body (i.e. upper limb and trunk), a common feature is the involvement of multiple 

joints and muscles (i.e. elements). For instance, the upper limb cutting task involves movement at 

the shoulder, elbow and wrist joints, and the muscles that span these joints. In these multi-joint 

tasks there is considerable redundancy of the nervous system and musculoskeletal system, which 

allows great potential for variation and thus considerable VARelements are available to alter 

movement strategy. This raises the possibility that a task that involves many elements might 

demonstrate different changes to VARelements in acute pain compared to simple tasks that involve 

fewer elements.  

Relative to multi-joint tasks, simple tasks have fewer movement options, and thus fewer 

elements for which VARelements might be increased during acute pain. Even with fewer options in a 

simple task, the motor system is expected to use the same strategy of increased VARelements to find 

an alternative solution. It is unclear whether an increase in VARelements during acute pain is limited 

to complex multi-joint systems where multiple options (i.e. muscles, joints) are available to 

maintain the goal. We do not know whether the same principles (i.e. the adaptation found during 

multi-joint tasks) can be applied to simple systems with fewer elements where there are limited 

options for variation. A theory of the motor adaptation to pain (Hodges and Tucker, 2011) assumes 

that different tasks may adapt differently, so changes to VARelements during acute pain are likely 

specific to the task and the environment in which it is performed.  
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It was the contention of this thesis that challenging the nervous system to adapt in a task 

with few available options (i.e. elements) would lead to a clearer understanding of the purpose and 

mechanism of adaptation to pain. The unique step made in this thesis is to challenge the system to 

adapt when there are limited elements.  

 

The aim of Study 1 (Chapter 4) was to investigate whether attainment of the task goal and 

VARelements changes in the presence of acute pain, and whether this variability changes over time 

with repetition of the task. 

 

The aim of Study 2 (Chapter 5) was to investigate whether VARelements would initially increase 

during acute experimental pain in the search for a new, less painful movement strategy; and if a 

less painful strategy was experienced during acute pain, to evaluate if this strategy would be 

selected more frequently than other options. 

 

2.2.5 Movement variability during chronic/persistent pain  

Several studies have evaluated movement variability in persistent/chronic musculoskeletal 

pain conditions of the neck/shoulder (Madeleine et al. 2008a; Madeleine et al. 2008b; Madeleine 

and Madsen, 2009; Lomond and Côté, 2010), low back (Lamoth et al. 2006; van den Hoorn et al, 

2012), and lower limb (Hamill et al. 1999; Heiderscheit et al. 2002; Ferber et al. 2005; Georgoulis 

et al. 2006; Yakhdani et al. 2010; Cunningham et al. 2014). In situations of chronic pain VARelements 

of the affected limb or body region might be decreased, increased, or not changed compared to 

healthy control participants and/or the unaffected limb. Changes to VARelements in chronic pain 

might be linked to an adaptation that starts in the acute phase of pain (section 2.2.3) and remains in 

(or even contribute to the transition to) a chronic musculoskeletal pain condition. The different 

changes to VARelements that have been found in chronic/persistent pain are discussed in the 

following sections. 

 

2.2.5.1 Reduced variability 

A commonly reported finding is that VARelements is reduced when people with chronic pain 

of the knee (Hamill et al. 1999; Heiderscheit et al. 2002; Georgoulis et al. 2006; Yakhdani et al. 

2010), shoulder (Madeleine et al. 2008a; Madeleine et al. 2008b; Madeleine and Madsen, 2009) and 

low back (Lamoth et al. 2006; van den Hoorn et al, 2012) perform multi-joint tasks. Closer 

inspection of the results indicates only two studies (Yakhdani et al. 2010; van den Hoorn et al. 

2012) found a simple reduction of VARelements during chronic pain and that more complex changes 
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to VARelements occurred in most studies (e.g. Hamill et al. 1999; Heiderscheit et al. 2002; Madeleine 

et al. 2008a,b). Despite these complex changes to VARelements, the breadth of change was not 

discussed in most studies. Studies that only report decreased VARelements will be discussed in this 

section. Other studies that report a combination of changes in VARelements will be discussed in 

subsequent sections. 

To investigate whether VARelements was altered in chronic knee osteoarthritis (OA), 

Yakhdani et al (2010) studied treadmill walking in participants with chronic unilateral knee OA and 

healthy controls. Participants with knee OA performed the walking task before and after joint 

replacement surgery, and the control group participated in two experimental sessions. Variability of 

knee angular velocity in the flexion-extension direction was calculated just after heel strike. 

Yakhdani et al (2010) found participants with unilateral knee OA had less VARelements of the 

affected knee than control participants before and after joint replacement surgery. Further, they 

found a positive correlation between the magnitude of knee VARelements and the number of falls 

experienced by participants in the year preceding the first experimental session. This suggests that 

reduced variability in participants with unilateral knee OA appears to reduce fall risk. They argued 

that reduced VARelements might have been a beneficial strategy to avoid falling (Hausdorff, 2007), 

rather than a sign of pain/pathology (Heiderscheit, 2002). The authors suggested that the 

relationship between reduced VARelements and reduced falls risk might involve participants paying 

more attention to the motor task and/or using greater muscle co-contraction (Yakhdani et al. 2010). 

Conversely, participants who had high knee VARelements had an increased risk of falls, which 

suggests they had poor movement control, perhaps due to compromised sensory information or less 

co-contraction (Yakhdani et al. 2010). 

Further, van den Hoorn et al (2012) evaluated movement variability of the trunk in 

participants with chronic low back pain and healthy controls during a treadmill-walking task at 

twelve speeds between 0.5 m/s and 1.72 m/s. They found trunk variability in the transverse plane 

(quantified as residual rotation) was lower in the LBP group than controls for all walking speeds. 

There are several explanations for reduced VARelements in chronic musculoskeletal pain 

conditions that are consistent with Hodges and Tucker (2011) theory of the motor adaptation to pain 

and that could potentially have positive and negative consequences. 

 

2.2.5.1.1 Positive consequences of reduced variability in chronic pain 

In chronic musculoskeletal pain conditions it might be more difficult to control the painful 

or damaged joint due to compromised sensory information (e.g. proprioception; Dessureault et al. 

2008; Malmstrom et al. 2013), altered patterns of muscle activation (Alizadehkhaiyat et al. 2007; 



25 
 

Rojas et al. 2007), and damage to important stabilising structures such as ligaments (Georgoulis et 

al. 2006). For instance, sensory feedback is important for the effective modulation and fine-tuning 

of neuromuscular control (Lamoth et al. 2006). In situations where it is more difficult to control a 

painful/damaged joint, a reduction of VARelements might be considered beneficial for several 

reasons. First, a decrease of VARelements might improve stability of painful joint(s) and thus improve 

overall function. For instance, knee OA is typically associated with pain and knee instability during 

walking (Fitzgerald et al. 2004) with buckling (or giving way) of the knee. In unilateral knee OA 

reduced VARelements appears to reduce falls risk (Yakhdani et al. 2010). Second, a decrease of 

VARelements to improve control of a painful/injured joint might be beneficial to ensure the task goal 

continues to be achieved. For instance, neuromuscular control of the upper limb might be 

compromised in chronic shoulder pain, with altered timing of muscle activation and impaired 

coordination between joints of the upper limb. If participants with poor neuromuscular control due 

to chronic shoulder pain were to perform a repetitive reaching task towards a target goal, attainment 

of the target goal might be affected. A reduction of VARelements might improve control of the upper 

limb and ensure the task is completed accurately. This idea is congruent with the “minimum 

variance model”, which predicts that the motor system activates muscles in a manner that 

minimizes end-point error of the final hand position in pointing movements (Harris and Wolpert, 

1998).  

Alternatively, a decrease of VARelements might be beneficial to minimize loading of 

painful/damaged structures, such as specific regions of tendon and joints surfaces, and enable pain-

free or less-painful performance of the task. This adaptation might be related to an adaptation that 

commences in the acute phase of pain. That is, one interpretation of increased VARelements in acute 

experimental pain (section 2.2.2) is that it reflects a search for a new, less painful movement 

strategy (Moseley and Hodges, 2006). If this interpretation is correct, once the nervous system has 

finished its search, VARelements may decrease so the less painful strategy is used more often for 

subsequent movements (Moseley and Hodges, 2006). This strategy of reduced VARelements might be 

beneficial in the short-term to reduce pain and minimise loading of injured structures to facilitate 

tissue healing.  

In some situations (e.g. recalcitrant pain or slow tissue healing), an altered movement 

pattern with reduced VARelements could remain despite resolution of pain, which may lead to long-

term pain and injury due to repeated loading of structures (Hodges and Tucker, 2011). 

Alternatively, pain and tissue damage might clearly motivate an adaptation (i.e. changed 

VARelements), but recovery of pain and resolution of tissue damage may not be a potent stimulus to 

resolve the adaptation and increase VARelements to be within ‘normal’ levels. For instance, Yakhdani 
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et al (2010) found participants who had joint replacement surgery for knee OA continued to walk 

with less VARelements of knee angular velocity in the flexion-extension direction than controls 

despite resolution of pain and normalisation of joint stability after surgery. They proposed the 

continued reduction of VARelements even after surgery to reduce pain and improve stability might 

suggest participants persisted in using the same strategy (i.e. reduced VARelements to improve 

control) even when it was no longer required. Another possibility is that VARelements was reduced 

prior to onset of OA and was not related to joint replacement surgery. 

 

2.2.5.1.2 Negative consequences of reduced variability in chronic pain 

Although it is possible that reduced VARelements might be beneficial in chronic/persistent 

pain, there are two possible situations where reduced VARelements might have negative 

consequences. 

First, if pain subsides and tissue healing resolves, it is likely ideal for VARelements to increase 

so that it is within the two limits of beneficial VARelements. For instance, Heiderscheit (2000) studied 

the gait of participants with unilateral anterior knee pain before and after the application of a 

patellar taping procedure that has been shown to reduce knee pain (Cowan et al. 2002; Callahan et 

al. 2002). They found that VARelements of the pain group was initially less than the healthy control 

group, but application of the patellar tape was associated with an increase of VARelements to the same 

magnitude of that in the controls (Heiderscheit, 2000). In some situations of recalcitrant pain and/or 

compromised tissue healing the motor system might become “stuck” using the same movement 

pattern with reduced VARelements (i.e. below the lower limit of beneficial VARelements) for an 

extended period of time (Moseley and Hodges, 2006; Srivinivasan and Mathiassen, 2012). A 

sustained period of low VARelements (i.e. that outlasts its potential benefits) could become 

problematic. For instance, if reduced variation is maintained, the same soft tissue structures would 

be consistently loaded, which may increase cumulative loading of focal sections of tendon or a joint 

complex (Hamill et al. 1999). This process of repeated loading could lead to degeneration and 

contribute to the development of an overuse injury (e.g. lateral epicondylalgia) with chronic 

musculoskeletal pain (Bartlett et al. 2007; Hamill et al. 2012). This interpretation is consistent with 

the variability-overuse hypothesis (Wheat, 2005; Bartlett et al. 2007) and loss of complexity 

hypothesis (Lipsitz et al. 2002; Hamill et al. 2012), which suggest that injury will emerge once the 

reduction of VARelements reaches a critical threshold/limit.  

Second, it has been proposed that in non-painful situations VARelements facilitates the 

distribution of stresses across multiple tissues (e.g. tendon, ligament) (Hamill et al. 1999). This 

implies that a sustained period of reduced VARelements during pain leads to stresses being applied 
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across fewer tissues near the painful region. In this context, reduced VARelements during pain might 

lead to stress shielding, where greater loads are imposed on some tissues (or specific regions of 

tissues), while other tissues are subject to less loading (Haraldsson et al. 2005). As mechanical 

loading is essential for the health of musculoskeletal soft-tissues, such as tendons, a reduction of 

applied stresses to focal tissue regions might contribute to structural weakening of the tissues and 

lead to further pain and injury (Wang, 2006; Langberg et al. 2007). For instance, stress shielding is 

thought to contribute to degenerative changes in the common extensor tendon of participants with 

chronic lateral epicondylalgia (i.e. tennis elbow) (Regan et al. 1992; Haraldsson et al. 2005; 

Arnoczky et al. 2007). 

 

2.2.5.2 Reduced VARelements of the painful joint and increased VARelements of the unaffected joint  

In some situations there might be reduced VARelements of the painful joint/region in 

chronic/persistent pain, but with a concomitant increase in VARelements of the non-painful joints that 

are involved in the task (Lamoth et al. 2006; Madeleine and Madsen, 2009). For example, in a study 

similar to van den Hoorn et al (2012) (see section 2.2.5.1), VARelements of the thoracic, lumbar and 

pelvic regions were quantified for transverse rotation and trunk flexion-extension in participants 

with non-specific low back pain and healthy controls during a treadmill-walking task (Lamoth et al, 

2006). Participants with low back pain had reduced VARelements of lumbar transverse rotation and 

increased VARelements of thoracic flexion-extension movement compared to controls. 

In another study, male slaughterhouse workers with chronic neck/shoulder pain and healthy 

controls performed a manual deboning task that involved multiple cuts and typically lasted 35-50 

seconds (Madeleine and Madsen, 2009). VARelements of upper limb movements were quantified as 

the standard deviation (SD) and coefficient of variation (CV) for vertical displacement of relative 

movement between the head-shoulder, shoulder-elbow, and elbow-hip. Participants with 

neck/shoulder pain had less CV of head-shoulder and shoulder-hip displacement and increased SD 

of elbow-hip displacement than healthy controls. These data indicate VARelements was reduced for 

segments that involved motion of the painful neck/shoulder region (i.e. head-shoulder and shoulder-

hip), and increased for movement of non-painful segments. 

As discussed above (section 2.2.5.1), it is possible the reduction of VARelements at the painful 

joint/region reflected an increase in stability to improve function, to ensure maintenance of the goal, 

and/or to minimise loading of painful structures to reduce pain and allow tissue healing. These 

explanations do not incorporate the increase of VARelements found for the non-painful joint/region 

that were functionally related to the painful joint/region.  
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There are four possible explanations for the increased VARelements found in Lamoth et al. 

(2006) and Madeleine and Madsen (2009). First, in both studies the increased VARelements for non-

painful joints might be a strategy to compensate for more rigid and less variable movement patterns 

of the painful joint. For instance, Lamoth et al (2006) suggested the increase of VARelements in the 

thoracic region might have been a strategy to compensate for the reduced VARelements of the lumbar 

region. Second, it might reflect a strategy to distribute stresses over a broader surface area (e.g. 

different muscles, areas of joint contact) between repetitions of the task (Hamill et al. 1999). This 

strategy could have a beneficial effect if it reduces the frequency with which stresses are applied to 

injured structures (Cunningham et al. 2014). Third, an increase of VARelements in chronic 

musculoskeletal pain conditions might suggest the motor system retains flexibility to explore 

alternative movement patterns, as for non-painful situations. A similar change of VARelements might 

be used during acute experimental pain to search for a new, less painful strategy (Moseley and 

Hodges, 2006), but has not been observed in chronic pain. Fourth, increased VARelements might 

reflect a situation where the motor system has greater difficulty controlling movement of the painful 

region (Lomond and Côté, 2010). In this context, the nervous system is unable to effectively adapt 

to poor neuromuscular control, perhaps due to compromised proprioception (Brumagne et al. 2004) 

or altered patterns of muscle activation (Cunningham et al (2014). 

 

2.2.5.3 No change to variability during chronic pain  

Two studies found VARelements of the affected lower limb was not affected in 

chronic/persistent pain (Ferber et al. 2005; Lewek et al. 2006). For instance, Lewek et al (2006) 

measured knee movement variability during gait in participants with unilateral medial knee OA and 

healthy controls, and studied whether it was influenced by muscle activity, frontal plane laxity, and 

pain. Knee VARelements was assessed in the sagittal plane (i.e. knee flexion-extension) and frontal 

plane (i.e. knee abduction-adduction) with phase angle (i.e. knee angle vs. angular velocity of the 

knee) during early stance. The authors hypothesised that the affected knee would have less 

VARelements of frontal/sagittal plane motion during walking than the unaffected knee and both knees 

of healthy control participants. Further, they expected that pain, frontal plane joint laxity, and 

muscular co-contraction during walking would provide insight into the mechanism underlying 

alteration in knee motion variability. In the frontal plane (i.e. abduction-adduction) there was no 

difference in VARelements between the affected knee and the control group. However, within the OA 

group VARelements in the frontal plane of the affected knee was less than the unaffected knee. 

Further, in the frontal plane there was a significant relationship between the magnitude of 

VARelements in the affected knee, and knee joint laxity and co-contraction of the medial muscles. In 
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the sagittal plane (i.e. flexion-extension), VARelements was not different between the affected and 

unaffected knees, or the control participants.  

The authors proposed that in unilateral knee OA, an initial increase in laxity of the affected 

knee was associated with increased VARelements, which might reflect inadequate neuromuscular 

control of the knee. However, as OA progresses, the motor system might use a protective strategy 

of greater co-contraction of the medial leg muscles to reduce VARelements. A reduction of VARelements 

in this context might have the benefit of improving control of the knee and minimising pain during 

gait. In an attempt to explain these results in the context of their own data, Yakhdani et al (2010) 

suggested that VARelements is initially increased in the affected knee of participants with knee OA, 

and is then actively reduced to that of healthy participants (Lewek et al. 2006) or even lower 

(Yakhdani et al. 2010).  

 

2.2.5.4 Altered VARelements for some features of movement, but not others  

The majority of studies that investigated VARelements in chronic pain found diverse changes 

that were not consistent for all features of movement. As discussed above, most studies evaluated 

VARelements during complex, multi-joint tasks with multiple elements. These multi-joint tasks (e.g. 

walking, running, reaching), and the elements that are involved, are described and quantified in a 

number of ways. A task will often include several phases of movement. For instance, running tasks 

are often described according to the stride cycle i.e. from the initial contact of one foot (often heel 

strike) until the subsequent initial contact of the same foot. The stride cycle can be further divided 

into a stance phase (i.e. while the foot is in contact with the ground) and swing phase (i.e. while the 

foot does not contact with the ground). In studies of chronic pain and VARelements, these phases have 

been sub-divided even further. For instance, in Hamill et al (1999) the stance phase was sub-divided 

into four sub-phases based on key events that occurred at the foot in the frontal plane (foot contact 

to neutral position, neutral position to maximum eversion, maximum eversion to neutral position, 

neutral position to toe off). Another way to describe the movement (or element) is with kinematic 

parameters. For example, Madeleine et al (2008a,b) quantified VARelements for several kinematic 

parameters of upper limb movement during a standardised cutting task, including the starting 

position of the upper limb joints in three-dimensional space, range of motion of each joint, and 

acceleration throughout the cycle of each joint. The direction in which movement of a joint or body 

region occurs is also used as a descriptor. For example, movement of the hip/thigh during running 

has been analysed in flexion-extension, abduction-adduction, and medial-lateral rotation 

(Heiderscheit et al. 2002). 
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Each of these features (i.e. characteristics and directions) within an entire movement cycle 

or within specific phase(s) are ‘elements’ that can vary between repetitions of a task. Given the 

multiple ways movement can be quantified and described, it is not surprising that VARelements of 

these features do not change in a uniform or stereotypical manner. The complex changes to 

VARelements (i.e. not a simple decrease, increase, or no change) of these features of movement in 

chronic pain are discussed below. 

Hamill et al (1999) were one of the first to evaluate changes to VARelements in chronic pain. 

They studied variability in the coordination between different lower limb segments during running 

in participants with patellofemoral pain syndrome (PFPS) and healthy controls. VARelements was 

analysed over the entire stride cycle, and divided into the swing phase and four sub-phases of stance 

based on foot movements (i.e. foot contact to neutral position, neutral position to maximum 

eversion, maximum eversion to neutral position, neutral position to toe off). Coupling angle 

variability was calculated for four segment-direction pairs: thigh flexion/extension – tibial rotation, 

thigh rotation – tibial rotation, thigh abduction-adduction – tibial rotation, and tibial rotation – foot 

eversion/inversion. This resulted in twenty combinations for which variability was compared 

between the two groups. Participants with PFPS had a clear reduction of VARelements during terminal 

stance (i.e. neutral position to toe off sub-phase) and the swing phase of running for several 

couplings (Figure 2-4). 

 

Figure 2-4. Data from Hamill et al. (1999). Reprinted with permission. 
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Based on these select comparisons, the authors proposed that coordinative VARelements was 

reduced in PFPS, which might reflect an inflexible pattern of coordination between joints/segments 

of the lower limb. They suggested this could be a beneficial adaptation that allowed participants to 

walk with reduced pain. Alternatively, the decreased VARelements could be detrimental if it increased 

the load applied to soft tissues, which if repeated may result in degenerative changes. That is, 

reduced VARelements in chronic pain may compound the original issue of pain/pathology due to 

localised application of stress to the tissues. 

VARelements was either increased or not changed during other sub-phases of stance for most 

other couplings. Despite the diverse changes for the numerous comparisons, the authors focused 

their interpretation and discussion on the comparisons for which VARelements of the PFPS group was 

less than controls. Hamill et al. (1999) did not consider instances when VARelements was greater in 

the PFPS group than the healthy control group, such as the coupling between thigh abduction-

adduction and tibial rotation for the ‘maximum eversion to neutral position’ sub-phase. Further, it 

appears that there is a lack of statistical tests performed on the data to determine differences 

between groups (i.e. no mention of statistical testing within the article), and the lack of error bars 

(or other measures of within-group variability) in figures, makes it difficult to interpret the data in 

more detail (Figure 2-4). 

Heiderscheit et al (2002) also studied variability in the coordination between different lower 

limb segments during running in participants with PFPS and healthy controls. VARelements was 

analysed over the entire stride cycle, and divided into five sub-phases that each contained a 

functional event in the stride cycle: mid-stance, toe-off, swing acceleration, swing deceleration, 

heel-strike. Coupling angle variability was calculated for four segment-direction pairs: thigh; 

flexion/extension – tibial rotation, thigh rotation – tibial rotation, tibial rotation – ankle 

eversion/inversion, tibial flexion/extension – ankle eversion/inversion, tibial flexion/extension – 

ankle, and plantarflexion/dorsiflexion. This resulted in thirty combinations for which VARelements 

was compared between the two groups. There were no differences in VARelements between the 

affected lower limb in the PFPS group and the unaffected lower limb or either limb of the control 

group when the couplings were compared across the entire stride cycle. Further, despite 

comparisons being made between the PFPS group and controls for thirty phase/coupling 

combinations, VARelements was reduced in the PFPS group for only one (i.e. thigh rotation – tibial 

rotation coupling for the phase that contained heel strike) phase/coupling combination. No other 

phase/coupling combinations were different between the two groups. The authors suggested the 

lack of further differences in joint coordination between groups might have been due to the limited 
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pain experienced by participants with PFPS at the fixed (group mean: 2.4/10) and preferred (group 

mean: 1.9/10) running speeds. 

In another study of coupling variability of lower limb segments during running, 

Cunningham et al (2014) investigated VARelements of female recreational runners who had PFPS and 

healthy controls when they ran on a treadmill for 15 minutes at a self-selected pace. Participants in 

the PFPS group were included if they reported >3/10 pain (on a 0-10 VAS) when running during 

the previous week, and during the treadmill running protocol during the experimental session. 

Although the participants ran for 15 minutes, data were analysed from one 10-second epoch for the 

PFPS group when participants reported the highest pain rating, but when their fatigue rating was 

<14 on the 15-point Borg Scale (6 = ‘no exertion’; 20 = ‘exhaustion’ (Borg, 1982)). The average 

time period for the PFPS epoch was the 11th minute of running, so this was chosen for the control 

group analysis. Variability of the coupling angle of six knee-ankle combinations were calculated 

over (i) the entire stride cycle, (ii) the stance phase and swing phase, individually, and (iii) over five 

phases of the stride cycle. Of the 48 coupling angle variability measures that were calculated, 46 of 

them were greater for the PFPS group, but only 7 of these couplings were statistically significant. 

The authors noted that the increased VARelements observed in this study suggest the PFPS group that 

reports with greater pain intensity may exhibit coordinative structures different than that observed 

previously in Heiderscheit et al (2002). This suggests that contrary to Hamill (1999) and 

Heiderscheit (2002), VARelements in PFPS was increased or not changed. Clearly, the diverse results 

from these studies indicate that changes to VARelements in chronic pain are not straightforward. A 

limitation of Cunningham et al. (2014) was the concomitant presence of pain and fatigue (Borg: 

PFPS group = 12.4 ± 0.8; control group = 12.2 ± 0.9) for the epoch of the running task that was 

chosen for analysis. This fatigue rating on the 15-point Borg scale reflects 70% effort and is 

described as a “somewhat hard – steady pace” (Borg, 1982). Although the fatigue ratings were not 

different between the two groups, it is unclear whether the differences in VARelements between the 

groups were due to the specific effect of knee pain experienced by PFPS participants during the 

running task or the combined effect of pain and fatigue. 

A notable difference between these studies that evaluated changes to VARelements in chronic 

PFPS is the potential role of pain. In Heiderscheit et al (2002) participants reported low pain (1.9/10 

and 2.4/10 when running at the preferred and fixed speeds, respectively), whereas participants 

reported moderate pain (4.3/10) during the running task in Cunningham et al (2014). Conversely, 

Hamill et al (1999) did not report whether participants experienced pain during the running task. 

The preceding discussion has focussed on changes to VARelements in chronic pain conditions 

of the lower limb (Hamill et al. 1999; Heiderscheit et al. 2002; Cunningham et al. 2014). Diverse 
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changes to VARelements for different features of movement in chronic neck/shoulder pain have also 

been observed (Madeleine et al. 2008a; Madeleine et al. 2008b). For example, in Madeleine et al. 

(2008a) participants with chronic neck/shoulder pain and healthy control participants performed a 

standardised cutting task with the upper limb that represented a common work task in the meat 

industry. Three 3-minute trials of the task were performed with a 5-minute break between each trial. 

Relative motion between the right arm and trunk were expressed for the upper arm as anatomical 

flexion-extension, abduction-adduction and medial-lateral rotation, and for the trunk as flexion-

extension, lateral flexion, and transverse rotation. Four kinematic parameters were determined in 

three-dimensions for the right arm and trunk: starting position, acceleration throughout the cycle, 

range of motion, and total area under the movement curve versus time. VARelements of arm and trunk 

movement was quantified as the standard deviation (SD) of the kinematic parameters. They found 

SD of arm acceleration was less for the patients than controls in the flexion-extension and rotation 

directions. However, no other parameters were different between the two groups. 

Madeleine et al (2008b) conducted a study with the same protocol (i.e. task, arm/trunk 

recordings, and quantification of VARelements). They studied people who had worked for 6 months at 

a meat processing plant and compared workers who had developed neck/shoulder pain in that time 

and those who did not experience pain. It was found that SD of starting position was less in the 

presence of pain compared to participants without pain. Despite the numerous features of 

movement that were recorded, this was the only feature of movement that was different for 

participants with pain. 

As introduced above (section 2.2.5.1) the conclusions of many studies that evaluated 

VARelements in chronic pain did not discuss the diverse changes to VARelements that are evident on 

close inspection of the data. Rather than a stereotypical and predictable decrease of VARelements for 

all features of movement, changes to VARelements in chronic pain (i.e. increase, decrease) are specific 

to the direction of movement and kinematic parameter that is measured within specific phases of a 

task. It is likely these changes to VARelements (i.e. decrease or increase) for specific movement 

features have the same possible positive and negative consequences to function as discussed above. 

However, it is inviting to speculate why VARelements might change for some features of movement 

but not others.  

One possible explanation for the specificity of changes to VARelements in chronic pain might 

relate to the capacity of a task element (e.g. flexion-extension movement in the middle phase of a 

task) to undergo a change in VARelements. That is, some elements of a task might be tightly 

constrained by the nervous system and not able to change, whereas other elements might be more 

flexible and able to increase or decrease according to the requirements of the system. Chronic pain 
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might induce different effects on specific elements of movement, which could influence whether 

VARelements does or does not change. Another possible explanation is that specific changes to 

VARelements might relate to the functional requirements of separate features of movement for 

specific phases and whether the changes to VARelements would be beneficial or detrimental to the 

nervous system and musculoskeletal system. In the context of running in participants with PFPS, 

changes to VARelements might relate to the loads that are applied to soft tissues during different 

movement phases. For instance, VARelements may be reduced during the initial or final sub-phase of 

stance (Hamill et al. 1999; Heiderscheit et al. 2002) as this is when most stress is applied to the 

patellofemoral joint and is likely to be most painful (Teng and Powers, 2014). This implies that 

during chronic pain, changes to VARelements depend on the effect on pain/pathology and function. 

Further, for the cutting task in Madeleine et al (2008a), it might have been beneficial to decrease 

VARelements of arm acceleration, but not other kinematic parameters, to optimise or maintain 

function. This might relate the minimum jerk theory (Flash and Hogan, 1986), which proposes that 

upper limb movements are optimised according to smoothness of acceleration during the task. 

 

2.2.5.5 Change in variability with repetition of the task 

Most studies did not assess changes to VARelements between the start and end of the trials. 

Lomond and Côté (2010), however, studied a repetitive reaching task performed by participants 

with chronic neck/shoulder pain and healthy controls. Participants in both groups performed the 

task until they could no longer maintain the correct frequency (i.e. one movement per second), or 

reported high pain (>8/10 on an 11-point NRS) or excessive fatigue (>8/10 on an 11-point Borg 

scale). VARelements of the upper limb joints (in this case the shoulder, elbow, and fingertip) were 

calculated in three movement directions (i.e. anterior-posterior, medio-lateral, superior-inferior) at 

the start (first 30 seconds) and end (final 30 seconds) of the trial. Participants with chronic 

neck/shoulder pain had greater VARelements of the shoulder in the anterior-posterior and superior-

inferior directions than healthy controls, but VARelements also changed with repetition of the task. 

Shoulder VARelements in the anterior-posterior direction decreased in both groups between the start 

and end of the trial, and superior-inferior elbow VARelements increased with repetition. These data 

suggest VARelements can change in the short-term (i.e. within several minutes of performing an 

experimental task) for participants with chronic musculoskeletal pain, in addition to changes of 

VARelements in the transition from acute to chronic pain. 

There are several possible explanations for the change in VARelements of certain kinematic 

parameters with repetition of the reaching task. The reduction of shoulder VARelements in the 

anterior-posterior direction may reflect an adaptation in which participants learnt, through repetition 
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of the task, to decrease VARelements in an attempt to reduce pain and/or minimise loading of 

painful/injured tissues. However, this decrease of VARelements was also found in the healthy control 

group, which suggests the decrease of VARelements was not due to pain. Further, the increase of 

shoulder VARelements in the superior-inferior direction might suggest people with chronic 

neck/shoulder pain retain the flexibility to explore different movement options like non-painful 

(Dingwell et al. 2001) and painful (Moseley and Hodges, 2006; Madeleine et al. 2008a) situations. 

However, as participants in both groups experienced fatigue during the task, it is unclear whether 

the changes to VARelements between the start and end of the task were due to fatigue or 

pain/pathology. It is unlikely that pain was the sole factor in the change to VARelements because it 

was found for both groups, which suggests that fatigue may have been the main driver for the 

change to VARelements.  

 

2.2.5.6 Summary of findings from chronic pain 

As discussed in the preceding sections, changes to VARelements in chronic/persistent pain are 

diverse. There might be a simple reduction of VARelements (Yakhdani et al. 2010; van den Hoorn et 

al. 2012), reduced VARelements of the painful joint and increased VARelements of functionally-related 

non-painful joints (Lamoth et al. 2006; Madeleine and Madsen, 2009), no change to VARelements 

(Lewek et al. 2006), altered VARelements for some features of movement but not others (Hamill et al. 

1999; Heiderscheit et al. 2002; Madeleine et al. 2008a,b; Cunningham et al. 2014), and changed 

VARelements with repetition of a task (Lomond and Côté, 2010). Whether these potential changes (or 

lack of changes) to VARelements are beneficial or detrimental to function are likely influenced by the 

context in which the task is performed. Further, the possible changes to VARelements probably 

depend on the extent of control the nervous system imposes on the specific element, and the effect 

that changed VARelements of the element will have on pain and function.  

Although these studies of complex multi-joint tasks during chronic musculoskeletal pain 

provide important insight, interpretation is limited by two factors. First, the reporting of pain within 

the studies was unclear. Of the 12 studies that evaluated VARelements during chronic pain, 9 reported 

pain intensity at inclusion in the study, and 6 reported pain intensity during performance of the 

task(s). Further, when studies did report pain intensity, in some cases the pain intensity during 

performance of the task was low. For instance, the average pain intensity experienced by 

participants with PFPS during performance of the walking task was 2.4 ± 1.0 /10 (fixed speed) and 

1.9 ± 0.9/10 (preferred speed) in Hamill et al (1999), and 1.9/10 in Heiderscheit et al (2002). 

Changes to VARelements in chronic pain might be different if the task provokes more pain (e.g. 4.3/10 

pain in Cunningham et al. (2014)). Second, two studies reported fatigue during performance of the 
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tasks (Lomond and Côté, 2010; Cunningham et al. 2014) and no other studies indicated whether 

fatigue was recorded. As discussed above, it is unclear whether the changes to VARelements in 

chronic pain that were observed in these studies were due to the specific effect of pain, or the 

combined effect of pain and fatigue. 

 

2.2.6 Do all movement tasks adapt in a similar manner during chronic 

/persistent pain? 

As discussed in the previous sections, VARelements may change in several ways during 

chronic/persistent pain. A common feature of studies that investigated the effect of chronic pain on 

VARelements is the evaluation of tasks that involved multiple joints and muscles (i.e. elements), such 

as walking and reaching. As discussed above, multi-joint tasks have considerable redundancy of the 

nervous system, musculoskeletal system and motor control strategies, which allows great potential 

for variation, and thus considerable VARelements are available to alter movement strategy. The 

different changes to VARelements found in previous studies might be explained by the capacity of a 

specific task element to be varied. However, this has not been the focus of studies in the past. One 

way to consider this possibility is to study a simple motor task. Simple tasks have fewer movement 

options, and thus fewer elements for which variability can be altered during chronic/persistent pain. 

A key issue to enable resolution of these questions was to identify a chronic musculoskeletal pain 

condition that provided an ideal model to understand the relationship between movement variability 

and chronic pain. Lateral epicondylalgia (‘tennis elbow’) was identified as a viable option and the 

basis for selection of this condition is discussed in the following sections. 

 

The aim of Study 3 (Chapter 6) was to investigate whether VARelements changes for participants 

with chronic lateral epicondylalgia, and whether this variability changes over time with repetition 

of the task. 

 

2.3 Lateral epicondylalgia 

2.3.1 Introduction  

Lateral epicondylalgia (LE) (or tennis elbow) is a musculoskeletal condition characterized 

by pain over the lateral epicondyle of the humerus during gripping and other manual tasks that 

require movement of the wrist, hand and fingers. It is a common condition that has an annual 

incidence of 4-7 cases per 1000 patients in general practice (Hamilton 1986; Smidt et al. 2006) and 

1-3% within the general population (Allander, 1974; Kivi, 1983; Walker-Bone et al. 2004; Shiri et 
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al. 2006). An acute episode of LE typically transitions to a chronic musculoskeletal pain condition 

(Smidt et al. 2006). It has been estimated that 5-10% of patients develop recalcitrant symptoms and 

eventually undergo surgical intervention (Boyd and McLeod, 1973; Coonrad and Hooper, 1973; 

Nirschl and Pettrone, 1979; Baker et al. 2000). This concurs with other data from randomised 

clinical trials that indicate 89% of individuals report recovery by one year regardless of treatment 

(Smidt et al. 2006), leaving ~10% with recalcitrant symptoms. 

 

2.3.2 Pathophysiology 

Lateral epicondylalgia is relatively simple to diagnose clinically; but, it has a complex 

pathophysiology. Coombes et al. (2009) proposed that LE comprises three inter-related 

components: i) local tendon pathology; ii) sensory system changes (including proprioceptive 

deficits, hyperalgesia and changes in processing of pain/nociceptive inputs); and iii) motor system 

impairments (Figure 2-5). It is likely that each case of LE will have a unique contribution from each 

component of the model, and this reflects the heterogeneous nature of this clinical population 

(Coombes et al. 2009). 

 

 

Figure 2-5. An integrated model of lateral epicondylalgia (Coombes et al. 2009). Reprinted with 

permission. 

 

2.3.2.1 Local tendon pathology 

Lateral epicondylalgia is an overuse injury in which the ability of the common extensor 

tendon, particularly the extensor carpi radialis brevis (ECRB) musculotendinous unit to heal via 

natural processes is compromised (Nirschl 1992; Fredberg and Stengaard-Pedersen, 2008). The 

pathophysiology is thought to be degenerative, rather than inflammatory, because of the presence of 
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degenerative changes of the deep and anterior fibres of the common extensor tendon at its 

attachment to the lateral epicondyle of the humerus (Regan et al. 1992; Connell et al. 2001) and the 

consistent absence of inflammatory cells in histological studies (Alfredson et al. 2000; Benjamin et 

al. 2006; Fredberg and Stengaard-Pedersen, 2008). In normal circumstances, tendons are 

strengthened by uniform functional mechanical loading during muscle activation and movement 

(Wang, 2006; Langberg et al. 2007) that alters their composition and structure (Wang et al. 2000; 

Cook and Purdam 2009). Non-uniform loading of the common extensor tendon contributes to 

degeneration and structural weakening of the tendon which makes it more susceptible to overload 

and explains the degenerative changes found in chronic LE (Regan et al. 1992; Haraldsson et al. 

2005; Arnoczky et al. 2007). 

 

2.3.2.1.1 How do the local tendon changes relate to variability? 

As discussed earlier (section 2.1.3), VARelements may provide a benefit for the 

musculoskeletal system by distributing stresses between different soft-tissues with the potential to 

reduce cumulative tissue load (Hamill et al. 1999). No studies have yet considered the potential 

association of VARelements and chronic LE. A biologically plausible mechanism for the development 

of chronic LE is that decreased VARelements during repetitive upper limb tasks may contribute to 

non-uniform loading of the common extensor tendon and the degenerative changes that are 

implicated in this condition. It is also possible that VARelements is within normal limits prior to the 

onset of the degenerative tendon changes associated with LE, and changes only once pain and/or 

degenerative changes of the tendon are present. Finally, VARelements might be no different to healthy 

individuals and unrelated to LE. Changes to VARelements have been identified in chronic 

musculoskeletal pain conditions of the knee (Hamill et al. 1999; Heiderscheit et al. 2002; 

Georgoulis et al. 2006; Lewek et al. 2006; Yakhdani et al. 2010; Cunningham et al. 2014), shoulder 

(Madeleine et al. 2008a,b; Madeleine and Madsen, 2009; Lomond and Côté, 2010), and low back 

(Lamoth et al. 2006; van den Hoorn et al. 2012) and these changes have been implicated in the 

underlying pathology (see section 2.2.4). As no studies have evaluated VARelements in chronic LE it 

remains unclear whether this critical feature of healthy movement is related to onset or persistence 

of this common and costly problem. 

 

2.3.2.2 Sensory system changes  

Changes to the sensory elements of the peripheral and central nervous systems have been 

identified in chronic LE and theories have been proposed to explain their likely contribution to the 

development and maintenance of pain (Wright, 1999).  
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2.3.2.2.1 Proprioception of the elbow 

Proprioception is a critical component of the sensory system that allows individuals to sense 

the relative position of joints and limbs in static and dynamic situations (Proske et al. 2000), and 

provide a sense of effort and weight perception (Gandevia, 1996). Ongoing proprioceptive 

information is important for the effective modulation and fine-tuning of neuromuscular control 

(Lamoth et al. 2006). However, in situations of acute and chronic pain, proprioceptive information 

may be compromised. Two studies have evaluated proprioception in participants with LE compared 

to controls (Dessureault et al. 2008; Juul-Kristensen et al. 2008). In Juul-Kristensen et al (2008), 

proprioceptive ability at the elbow was quantified as i) absolute error and ii) variable error, for joint 

position sense and threshold to detect a passive movement. Absolute error and variable error of 

threshold to detect a passive movement were greater in the affected elbow of LE participants than 

controls, and there was a tendency toward a greater absolute error of joint position sense compared 

to controls. Interestingly, differences between the affected and unaffected elbows in the LE group 

were not significant. In Dessureault et al (2008) proprioceptive acuity of effort and weight 

perception were evaluated with a weight discrimination task. They found proprioception was 

decreased in the affected arm of the LE group, which the authors suggested could affect force 

perception during functional tasks. A reduced ability to perceive force during tasks could have 

detrimental consequences to the musculoskeletal system, such as the potential for overload of 

specific soft tissues with subsequent pain and injury. These data indicate that altered proprioception 

in LE concurs with studies in other clinical populations, such as whiplash at the neck (Sterling et al. 

2003) and low back pain (Brumagne et al. 2004). 

 

2.3.2.2.2 Pain free grip 

Pain-free grip reflects the amount of force that can be generated at the point at which pain is 

perceived during gripping with the affected upper limb (Coombes et al. 2009). This measure is 

recommended as a critical component of diagnosis of LE (Bisset et al. 2006). Participants are 

instructed to gradually increase grip force until they experience the first onset of lateral elbow pain, 

at which point they stop gripping. Typically, pain-free grip force of the affected upper limb in LE is 

reduced by 43-64% relative to the unaffected side (Abbott et al. 2001; Vicenzino et al. 2001; Sran et 

al. 2002; Paungmali et al. 2004; Bisset et al. 2006). Gripping is thought to be painful for 

participants with chronic LE as a result of activation of the ECRB muscle. In normal situations (i.e. 

in the absence of pain), gripping involves coordinated activation of the wrist/finger extensor 

muscles (ECRB, extensor carpi radialis longus (ECRL), extensor carpi ulnaris (ECU), and extensor 
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digitorum (ED)) and wrist flexor muscles (flexor carpi radialis (FCR), flexor carpi ulnaris (FCU)) to 

counteract wrist flexion moments caused by activation of finger flexor muscles (i.e. flexor 

digitorum superficialis (FDS), flexor digitorum profundus (FDP)), to optimize the muscle length for 

producing force (i.e. the length-tension relationship) (Snijders et al. 1987; Shimose et al. 2011) and 

to stabilize wrist position (Snijders et al. 1987; Johanson et al. 1998). ECRB attaches to several 

structures around the elbow, including the lateral epicondyle, intermuscular septum, lateral 

collateral ligament and annular ligament, via the common extensor tendon (Stoeckart et al. 1989; 

Milz et al. 2004). When ECRB is activated during gripping under normal circumstances (i.e. in the 

absence of pain or degenerative changes), the extensive attachments of the common extensor 

tendon allows distribution and dissipation of stresses across a broad area and limits its susceptibility 

to overload (Coombes et al. 2009). However, if the cellular organization of the common extensor 

tendon is disrupted due to non-uniform loading, stresses would be applied over a smaller region of 

tendon when ECRB is activated during gripping. This could explain the characteristic pain caused 

by gripping in LE. This provocation may underpin a number of changes in motor system function in 

LE. A prime example is that the motor system may attempt to reduce pain with gripping by 

alteration of wrist position. Bisset et al (2006) found that participants with unilateral chronic LE 

performed a gripping task in a less extended wrist position (i.e. 11° less extension) than pain-free 

control participants. The optimal wrist posture for maximal grip force in healthy participants is 

reported to be slight extension; wrist flexion was shown to reduce maximal force development as a 

consequence of the effect of wrist position on the length-tension properties of the finger flexor 

muscles (Mogk and Keir, 2003). It is inviting to speculate that people with LE might grip in a more 

flexed wrist position to reduce painful loading of the damaged common extensor tendon as a result 

of activation of ECRB and other wrist extensor muscles.  

 

2.3.2.2.3 Mechanical hyperalgesia 

Mechanical hyperalgesia (i.e. enhanced sensitivity to mechanical stimuli that are painful) is 

consistently found in participants with unilateral LE. A standard method to assess the presence of 

mechanical hyperalgesia is to test pressure pain thresholds (PPT). PPT testing involves application 

of pressure via a probe at a constant rate, and the participant is instructed to press a button when the 

pressure sensation first changes to one of pressure plus pain, at which point the application of 

pressure is ceased. PPTs over the lateral epicondyle of the affected elbow are usually 45-54% less 

than the unaffected elbow of participants with LE (Wright et al. 1994; Vicenzino et al. 2001; Sran et 

al. 2002; Pienimaki et al. 2002). Interestingly, mechanical hyperalgesia of both the affected and 

unaffected upper limbs has been found in participants with unilateral LE (Slater et al. 2005; Ruiz-
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Ruiz et al. 2011; Coombes et al. 2012). Bilateral mechanical hyperalgesia, along with provocation 

of symptoms from regions that are spatially distant from the affected elbow (e.g. cervical spine, 

neural tissues of the upper limb) are characteristic of secondary hyperalgesia, which is defined as 

enhanced sensitivity to painful stimuli over an area extending beyond the injured segment (Graven-

Nielsen, 2006).  

 

2.3.2.2.4 How might the sensory system changes relate to VARelements? 

Changes to the sensory system in chronic LE might influence VARelements when people with 

chronic LE perform tasks with the upper limb. For instance, impaired proprioception in chronic LE 

(Dessureault et al. 2008; Juul-Kristensen et al. 2008) might lead to uncontrolled joint/segment 

motion and inefficient loading of soft-tissues of the upper limb (see section 2.1.4). Further, the 

sensitivity of the pain system in chronic LE (Bisset et al. 2006; Coombes et al. 2012) is likely to 

influence VARelements. Although there is no direct evidence that links sensory changes in chronic LE 

to VARelements, there is a large body of evidence that indicates VARelements is altered in other chronic 

musculoskeletal pain conditions of the neck/shoulder, low back, and lower limb (see section 2.2.5 

for a detailed discussion). Thus, we contend it is likely that VARelements will be affected in chronic 

LE compared to healthy control participants due to sensory changes. However, it is unclear whether 

the sensory changes would directly influence VARelements, or whether the sensory changes represent 

an intermediate step, whereby compromised sensory information contributes to poor motor output, 

with ensuing changes to VARelements. It is therefore critical to consider both the sensory and motor 

impairments in chronic LE to better understand their impact on movement control. 

 

2.3.2.3 Motor system impairments 

There is considerable evidence of changes to the motor system in chronic LE. These 

changes might occur at any point along the motor pathway (e.g. cortical, subcortical, patterns of 

muscle activation), and contribute to functional limitations (e.g. altered fine motor control of the 

hand and fingers, reduced upper limb strength). These potential changes are outlined below. 

 

2.3.2.3.1 Changes at the motor cortex 

Transcranial magnetic stimulation (TMS) has been used to measure the excitability 

(Dessureault et al. 2008; Schabrun et al. in press) and organization (Schabrun et al. in press) of 

motor cortical cells that project to the forearm muscles in participants with chronic LE and healthy 

controls. TMS applied over the motor cortex allows indirect stimulation of cells that elicit 

excitatory and inhibitory responses in muscles activated by the specific cortical area that is 
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stimulated. These responses are recorded via electromyography (EMG) of the target muscles. 

For instance, in Dessureault et al (2008) TMS was applied over the primary motor cortex to 

assess four measures of corticomotor excitability (i.e. resting motor threshold, stimulus-response 

curve, silent period, and maximum evoked potential). Muscle activity of the extensor carpi radialis 

(ECR) muscle was recorded bilaterally with surface electrodes. The Grooved Pegboard Test (GPT) 

was used to measure manual dexterity. The GPT requires participants to insert 25 pegs into 

randomly positioned slots as quickly as possible. There were no differences between arms or groups 

for any measure of corticomotor excitability or manual dexterity. There was a correlation between 

the resting motor threshold and manual dexterity in the LE group (but not the control group), which 

indicates that lower motor thresholds were associated with better performance on the GPT. The 

authors did not offer insight into a potential mechanism that relates corticomotor excitability to fine 

motor control of the upper limb in participants with chronic LE. 

Schabrun et al. (in press) investigated the excitability and organization of the primary motor 

cortex in participants with chronic LE and healthy controls. EMG was recorded from ECR and ED 

with surface electrodes. The cortical representations of ECRB and ED were more excitable, less 

separated, and contained fewer discrete TMS-evoked peaks in participants with chronic LE than 

healthy controls. They proposed that the less discrete (i.e. less separated) representations of ECRB 

and ED might reflect greater overlap and blurring of the spatial territory of each muscle. Less 

separation between the cortical representations of the ECRB and ED, and fewer peaks within the 

representations, could lead to dysfunctional muscle activation patterns of the forearm muscles and 

contribute to the motor dysfunction found in chronic LE (Schabrun et al. in press). 

 

2.3.2.3.2 Changes to muscle activation 

Patterns of muscle activation can be measured with recordings of the electrical activity of 

muscles (i.e. EMG) using surface electrodes placed on the skin overlying target muscles or with 

fine-wire electrodes that are inserted into muscles via the skin. Several studies have evaluated 

simple tasks such as wrist extension (Rojas et al. 2007), gripping (Alizadehkhaiyat et al. 2007), and 

gripping whilst performing isometric wrist flexion-extension movement (Blanchette and Normand, 

2011) and found diverse changes to activation patterns of the forearm muscles in chronic LE. 

In Alizadehkhaiyat et al. (2007), participants with chronic LE and healthy controls 

performed a constant gripping task at 50% of their maximal voluntary contraction (MVC) until 

exhaustion. Muscle activity was recorded from ECR, ED, FCU, and FDS with surface electrodes. 

The root-mean-squared (RMS)-amplitude of activation for each muscle was calculated over 5-

second intervals and normalized to the starting amplitude. Alizadehkhaiyat et al. (2007) found the 
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amplitude of ECR activity in the LE group was less than controls, whereas activation amplitude of 

the other muscles was similar in both groups. The authors suggested the decrease of ECR activity 

might be a protective strategy that occurs due to pain, but did not propose why the strategy would 

be protective. The intensity of the constant gripping task (i.e. 50% MVC) would likely provoke pain 

in approximately half of the participants. It is unclear whether the constant gripping task was 

painful as pain scores were not reported, and indirect calculation is not possible as pain-free grip 

values are not reported. Despite this lack of information, one possibility is that activity of ECR was 

decreased in participants with LE to limit painful loading of the common extensor tendon, as 

discussed above (section 2.3.2.2.2).  

Activation of ECR was also reduced in Rojas et al (2007). In this study, activity of the wrist 

extensor muscles (i.e. ECR, ED and ECU) were recorded with surface electrodes during a resisted 

wrist extension task. The activity of each muscle was normalized with respect to the sum of the 

activity of individual muscles during the task. Participants with LE had less contribution of ECR 

and greater contribution of ECU during the wrist extension task. Rojas et al. (2007) did not suggest 

why these altered patterns of muscle activation may have been present. It is tempting to speculate 

that ECR was activated less for participants with LE to reduce loading of the damaged common 

extensor tendon and limit pain. Further, the greater contribution of ECU might be a compensatory 

mechanism to maintain wrist extension force despite the reduced activation of ECR. As pain 

intensity was not recorded during the wrist extension task, it is unclear whether the altered 

activation pattern of the forearm muscles reduced pain.  

Conversely, activation of ECRB might not change for participants with LE. For instance, in 

Blanchette and Normand (2011), participants with LE performed a gripping task whilst doing 

isometric wrist flexion and extension. They found the amplitude of ECRB activation was no 

different between the affected and unaffected upper limbs in participants with LE. However, there 

is evidence of sensory and motor deficits of both the affected and unaffected upper limbs of 

participants with chronic LE compared to healthy controls (Heales et al. 2013). Therefore, as there 

was no healthy control group in Blanchette and Normand (2011), it is impossible to determine if 

there were deficits of both the affected and unaffected limbs that could explain the lack differences 

in activation of ECRB. That is, it is possible that activation of ECRB was altered in the affected 

upper limb, but ECRB activation was similarly altered in the unaffected upper limb.  

Two studies evaluated a single-handed backhand tennis stroke (Kelley et al. 1994; Bauer 

and Murray, 1998). Kelley et al. (1994) recorded muscle activity from five forearm muscles 

(ECRB, ECRL, ED, FCR, and pronator teres (PT)) with intramuscular fine-wire electrodes during 

the single-handed backhand tennis stroke. The stroke was divided into six phases (preparation, early 
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acceleration, late acceleration, ball impact, early follow through, late follow through) for analysis. 

Muscle activity was normalized to the peak signal recorded during a maximal manual muscle test. 

There were complex changes to the patterns of forearm muscle activation between the two groups. 

Compared to controls, the LE group had greater activation of ECRL and FCR for the preparation 

phase, greater activation of ECRB, ECRL and PT during ball impact, and greater activity in ECRB 

and PT for early follow through. There were no differences between the groups for the early 

acceleration or the late follow through phases. The differences in patterns of muscle activation for 

differences phases of the tennis stroke might relate to different functional requirements of each 

phase. For instance, greater activation of the wrist extensor muscles might be required at the ball 

impact phase relative to the preparation and follow-through phases. 

 

 

Figure 2-6. Data from Kelley et al. (1994). Reprinted with permission. 

 

In Bauer and Murray (1999), participants with LE and healthy age-matched controls 

performed a single-handed backhand tennis stroke at three ball speeds (low 11.94 m/s, medium 

17.13 m/s, high 22.95 m/s) and three racquet head locations (central, long axis, torsional). EMG 

was recorded from ECRB, FCU and triceps brachii with surface electrodes. They found ECRB was 

activated for a longer duration and with greater amplitude in the LE group for each ball speed and 

each racket location compared to healthy controls. 

The altered muscle activation patterns in participants with chronic LE during the various 

tasks can be interpreted in two ways. First, reduced activation of the wrist/finger extensor muscles 

that attach to the common extensor tendon (i.e. ECRB, ED and ECU) could be a beneficial 

adaptation in chronic LE. For instance, activation of the wrist/finger extensors during various tasks 

in chronic LE likely result in elbow pain due to ineffective transmission of stresses within the 



45 
 

common extensor tendon. Therefore, reduced activation of the wrist/finger extensors could 

minimize stresses within the tendon and limit provocation of pain. Alternatively, reduced (or 

increased) activation of the wrist/finger extensor muscles and altered activation of other forearm 

muscles could be a detrimental adaptation. Altered patterns of forearm muscle activation might 

contribute to stress shielding of the common extensor tendon (i.e. disruption of beneficial 

mechanical loading of tendon), which could lead to further degenerative changes. Second, greater 

activation of ECRB (and other wrist/finger extensors) could be a beneficial adaptation. For instance, 

there was greater activation of ECRB during the ball impact phase of a backhand tennis stroke for 

participants with chronic LE compared to controls (Kelley et al. 1994; Bauer and Murray, 1998). 

This strategy might prevent forceful wrist flexion at ball impact, thereby reducing the potential for 

further damage or provocation of pain due to stretch of the common extensor tendon and/or muscle 

fibres. Alternatively, greater (and longer) activation of the wrist/finger extensor muscles could be 

detrimental if it increases stress in the damaged common extensor tendon and provokes pain (Bauer 

et al. 1999). 

The potential beneficial and detrimental consequences of alterations to patterns of forearm 

muscle activation must be considered in the context of the effect on pain and function. A limitation 

of studies that investigated changes to forearm muscle activation in participants with chronic LE is 

that they did not report the pain intensity participants experienced during the tasks. Therefore, we 

do not know the relationship between pain intensity and the observed changes to patterns of forearm 

muscle activation in chronic LE and thus not in a position to determine if these changes are 

beneficial or detrimental. Further, there is significant heterogeneity between the studies, such as the 

muscles that were recorded, the method of normalization of muscle activity (e.g. maximal signal 

recorded during MVC, muscle activity at the start of the contraction), and the tasks that were 

studied (e.g. gripping, wrist extension, backhand tennis strokes). For these reasons, it is difficult to 

conclude with certainty what effect the changes to forearm muscle activation will have on pain and 

function. Despite these factors, it is clear that activity of the forearm muscles can be altered in 

chronic LE, which might have implications for VARelements. 

 

2.3.2.3.3 Altered fine motor control 

Despite the changes to activation patterns of the forearm muscles in participants with LE, 

only two studies have evaluated whether deficits of fine motor control are also present (Skinner and 

Curwin, 2007; Dessureault et al. 2008). In Skinner and Curwin (2007), fine motor control of both 

upper limbs was examined in participants with LE and healthy controls. Two measures of dexterity 

were used. First, the Purdue pegboard test required participants to place as many pins into small 
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pinholes as possible over a 30 s period in three trials. Participants in the LE group placed 5 fewer 

pins over the three trials. Second, the Complete Manual Dexterity Test required participants to use 

their fingers to turn over medium-sized cylindrical blocks and then reach forward to place each 

block consecutively into one of 60 wells. The total time to complete four trials of the test was 

recorded. Participants in the LE group were 51.03 seconds slower to complete the four trials than 

the control group. These data suggest participants with LE have impaired fine motor control. 

Interestingly, there was no difference between the affected and unaffected upper limbs for either 

task. However, as noted above, bilateral sensory and motor deficits are found in LE, which might 

explain why both upper limbs were affected for the tests of fine motor control. The authors 

suggested the mechanisms underlying the decrease in fine motor control in LE might relate to 

cortical reorganisation of the sensory and motor areas. This proposal is congruent with data that 

shows smudging of the cortical representation of back muscles in low back pain (Tsao et al. 2010) 

and less discrete localisation of cortical representations of upper limb muscles in chronic LE 

(Schabrun et al. in press), that are discussed above. 

As discussed above (section 2.3.2.3.1), Dessureault et al (2008) used the GPT to measure 

manual dexterity in participants with chronic LE and healthy controls. Contrary to Skinner and 

Curwin (2007), this study did not find any differences in manual dexterity between groups or arms. 

However, as noted above participants who had a lower motor thresholds of the ECRB muscle 

performed better on the GPT. The authors noted the differences between performed of the GPT in 

their study and performance on the Purdue pegboard test in Skinner and Curwin (2007). They 

suggested one possible explanation for the differences in findings might be the properties of the 

Purdue and GPT themselves. Though both tests involve rapidly placing pegs in the pegboard, the 

GPT requires a degree of peg manipulation, whereas the Purdue test involves more hand transport 

and distance with less peg manipulation (Dessureault et al. 2008). 

 

2.3.2.3.4 Reaction time and speed of movement  

Two studies (Pienimaki et al. 1997; Bisset et al. 2006) investigated reaction time and speed 

of movement with several tests in participants with chronic LE and healthy controls. These tests 

included simple reaction time (SRT), and the reaction time (RT) and speed of movement (SOM) to 

move to a target with one choice (RT1, SOM1) or two choices (RT2, SOM2). Both studies found 

delayed reaction time and reduced speed of movement in the affected arm of participants with 

chronic LE compared to controls. However, the deficits reported in Pienimaki et al (1997) were 

more pronounced than those found in Bisset et al (2006). Bisset et al (2006) suggested these 

differences might relate to the younger and predominantly female group of participants with chronic 
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LE who also had symptoms for longer than the participants in Pienimaki et al (1997). 

 

2.3.2.3.5 Muscle strength deficits 

Although gripping is a provocative manoeuvre for participants with chronic LE, several 

studies have tested maximal grip strength. Maximal grip strength of the affected upper limb of 

participants with chronic LE can be reduced (Slater et al. 2005; Alizadehkhaiyat et al. 2007) or not 

different (Bisset et al. 2006) compared to healthy controls. There are several possible explanations 

for the reduced maximal grip strength in this context. First, pain elicited during the gripping task 

might be the limiting factor. That is, it might be possible to grip to the same extent with both the 

affected and unaffected upper limbs, but participants stop gripping with the affected upper limb 

prematurely due to the presence of pain. Conversely, the maximal force-generating capacity of the 

forearm muscles in the affected upper limb might become weaker due to disuse secondary to pain. 

The lack of differences in maximal grip strength found in Bisset et al (2006) suggests the presence 

of pain/pathology in the affected upper limb of participants with chronic LE might not always affect 

the capacity to generate maximal force.  

In addition to deficits of grip strength, generalized strength deficits of wrist flexion 

(Alizadehkhaiyat et al. 2007) and extension (Slater et al. 2005; Alizadehkhaiyat et al. 2007), elbow 

flexion and extension (Coombes et al. 2012b) and abduction, internal rotation and external rotation 

of the shoulder (Alizadehkhaiyat et al. 2007) have been found in the affected upper limb of LE 

participants compared to pain-free controls. As discussed above, the generalised strength deficits of 

the upper limb in participants with chronic LE might relate to provocation of pain during the task or 

a long-standing process of disuse secondary to elbow pain. These strength deficits of the upper limb 

might remain for several months despite attenuation or resolution of pain (Alizadehkhaiyat et al. 

2008). This suggests pain might be a potent stimulus to induce upper limb strength deficits in 

chronic LE, but resolution of pain might not be an effective stimulus for strength to return to 

normal. Alternatively, weakness of upper limb muscles might predispose people to LE. 

 

2.3.2.3.6 How might the motor system changes relate to variability? 

The preceding sections have discussed the diverse changes to the motor system found in 

chronic LE, such as altered excitability and organization of cells in the motor cortex that project to 

the forearm muscles (Dessureault et al. 2008; Schabrun et al. in press), altered pattern of forearm 

muscle activation during simple (Alizadehkhaiyat et al. 2007; Rojas et al. 2007) and complex 

(Kelley et al. 1994; Bauer and Murray, 1998) tasks, and the alterations to fine motor control 

(Skinner and Curwin, 2007) and strength deficits (Slater et al. 2005; Alizadehkhaiyat et al. 2007; 
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Coombes et al. 2012b) that might impact on functional activities. There is likely a complex 

interplay between changes at different organizational levels of the motor system that might aim to 

maintain function, limit loading of painful structures, and minimize pain. For instance, although 

central control mechanisms are thought to contribute to altered movement variability during pain, 

no studies to date have specifically investigated the link between changes to movement variability 

and central (cortical) involvement or correlates of pain adaptations. 

 The diverse changes to the motor system in chronic LE might impact on VARelements in 

several ways. For instance, skilled movements of the upper limb require coordinated activation 

patterns of the forearm muscles. As these activation patterns can be altered in chronic LE, there 

might be uncontrolled motion of the upper limb with an associated increase of VARelements. If 

VARelements becomes excessive, it could lead to uncontrolled loading of soft tissues with the 

potential for further pain and injury. In response to uncontrolled motion, the motor system might 

reduce VARelements as a protective mechanism. However, if reduced VARelements is maintained for an 

excessive period of time, the same soft tissues may be loaded repeatedly, which might contribute to 

degeneration and further pain/injury. 

 From the perspective of maintenance of functional tasks, both too much and too little 

VARelements might contribute to impairments. For instance, excessive VARelements might imply 

uncontrolled joint motion, which could lead to poor performance in tasks that require fine motor 

control, such as the Purdue pegboard test (Skinner and Curwin, 2007). Conversely, too little 

VARelements in participants with chronic LE could explain difficulties learning a novel task that 

requires effective coordination of the upper limb muscles (e.g. Purdue pegboard test). For instance, 

in non-painful situations VARelements was found to be beneficial in motor learning and adaptation 

(Wu et al. 2014). 

 

2.3.3 Transition from acute lateral elbow pain to chronic LE 

 Studies of the pathophysiological changes associated with lateral elbow pain have focused 

on participants with chronic LE.  However, no studies have evaluated whether similar changes are 

found in acute lateral elbow pain, or how they evolve over time in the transition to chronic LE.  It is 

the contention of this thesis that better understanding of the motor adaptation associated with acute 

lateral elbow pain will lead to a better understanding of how and why acute lateral elbow pain 

transitions to a chronic musculoskeletal pain condition. One possibility to address the issue of the 

specific role of nociception/pain in the development of motor deficits, without the confounding 

effect of tissue damage and any associated psychological factors, is to examine the effects of an 

experimental model of sustained elbow pain. Ideally, an experimental model of elbow pain would 
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induce pain that is sustained for several days to replicate the ongoing aspect of pain/nociception at 

the start of acute LE, and that is provoked by contraction/stretch of the forearm muscles and 

functional activities that involved the upper limb. An adequate model of sustained elbow pain is not 

currently available.   

A model of sustained elbow pain would also be of benefit to investigate the possible 

relationship between changes to VARelements in acute pain and changes in chronic/persistent pain. It 

is unclear how VARelements is altered when acute pain is sustained for several days, weeks, and 

months in the transition to a chronic musculoskeletal pain condition. As no studies have evaluated 

VARelements in the transition from acute to chronic pain, whether the variation contributes to the 

transition to chronicity/persistence of pain remains speculative. Investigation of the relationship 

between changes to VARelements and the transition from acute to chronic pain could be addressed 

with longitudinal studies, with participants recruited immediately after they sustain an acute injury 

and then assessed at specific time-points over a certain period (e.g. 3-6 months post-injury).  

Interpretation of such a study would be challenging because of the potential heterogeneity of the 

participants in terms of injury, healing, and other factors such as psychosocial features. Therefore, 

other models in which nociceptive input can be controlled may be more ideal.  

A priority is to develop an experimental model of sustained pain.  Potential models of 

sustained elbow pain are introduced in Chapter 3 and steps towards development of a suitable 

model are discussed in Chapter 7. 

 

The aim of study 4 (Chapter 7) was to investigate the development of an experimental model that 

induces pain that is sustained for several days and provoked by movement and muscle 

contraction. 
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2.4 Aims 

The specific aims of this thesis were:  

1. To investigate whether the goal of a simple task could be maintained during acute 

experimentally induced pain (Studies 1 and 2) and in those with chronic musculoskeletal 

pain (Study 3). 

2. To investigate whether VARelements would increase for a simple task performed during 

acute experimental pain, and whether VARelements changes over time with repetition of 

the task (Study 1). 

3. To investigate whether VARelements would initially increase during acute experimental 

pain in the search for a new, less painful movement strategy (Study 2). 

4. If a less painful strategy was experienced during acute pain, to evaluate if this strategy 

would be selected more frequently than other options (Study 2). 

5. To investigate whether participants with chronic LE perform a simple task that provokes 

elbow pain with altered VARelements and in a different wrist position than healthy controls 

(Study 3). 

6. To investigate whether pain intensity during a simple task affects wrist position and the 

magnitude of VARelements in participants with chronic LE (Study 3). 

7. To characterise the parameters of an experimental model of pain that induces sustained 

pain for several days, and that is provoked by movement and muscle contraction    

(Study 4). 
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3 Methods 

The overall objective of this thesis was to investigate the effect of pain on movement variability 

during performance of a simple movement task. This chapter provides details and rationale for 

selection of the task (section 3.1), the equipment used to record movement (section 3.2), the 

analysis and quantification of movement and VARelements (section 3.3), and the models of 

experimental and clinical pain (section 3.4) that were used in this thesis. 

 

3.1 Development of an experimental model to evaluate movement 

variability 

3.1.1 Introduction  

As discussed in Chapter 2, previous studies that consider the influence of pain on movement 

variability during dynamic motor tasks have focused on multi-joint tasks (e.g. pointing (Lomond 

and Côté, 2010), cutting (Madeleine et al. 2008a), and walking (Hamill et al. 1999)). As these 

movement tasks involve multiple elements (i.e. muscles, joints) the nervous system has great scope 

to vary the combinations of joint movements and muscle activation patterns (i.e. VARelements) used 

to complete the task. It is unclear whether VARelements is altered in a similar manner when simple 

tasks, with fewer elements and therefore fewer alternative movement strategies, are performed 

during pain.  

 

3.1.2 Essential criteria of the simple movement task 

To address the aims of this thesis (section 2.4) a “simple” movement task that could be used 

for Studies 1-3 was required. This simple task needed to fulfil three essential criteria: 

 

Criterion 1: The simple movement task needed to have few ‘elements’ (i.e. muscles, 

joints), with substantially fewer options than the multi-joint tasks that have been used in 

previous investigations of movement variability during pain; and  

 

Criterion 2: The primary motion of the task should occur at one joint only, but with 

potential for movement in secondary directions at the same joint or joint complex.  

 

A repetitive task that involved wrist radial-ulnar deviation fulfilled Criteria 1 and 2. 

Relative to a multi-joint task such as pointing (Lomond and Côté, 2010) radial-ulnar deviation 
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involves fewer elements (Criterion 1) and involves movement at the wrist joint in one plane (i.e. 

radial-ulnar deviation) and has capacity for movement in secondary motion planes (i.e. wrist 

flexion-extension, forearm pronation-supination) (Criterion 2).  

 

Criterion 3: The potential for movement in secondary directions (i.e. flexion-extension 

and pronation-supination) needed to be equally likely in all movement directions (i.e. 

flexion vs. extension; pronation vs. supination) 

 

Criterion 3 was important because we wanted to determine whether a change in movement 

during pain was a purposeful adaptation by the nervous system. It was necessary to minimise the 

potential impact of other factors (e.g. restriction from passive structures, or bias secondary to 

gravity) that could influence movement. If these factors were not controlled then it would be 

difficult to delineate whether changes to movement during pain were due to a purposeful change by 

the motor system, or primarily due to these other factors.  

Criterion 3 was fulfilled by having the wrist supported in mid-position between pronation 

and supination during performance of the radial-ulnar deviation task (Figure 3-1). This position was 

ideal because the potential for movement in secondary motion planes was equally likely in both 

directions (i.e. flexion vs. extension, and pronation vs. supination) for two reasons. First, as this 

position is not at the end of range of motion for neither pronation nor supination, there was no bias 

by restriction of passive structures (e.g. ligaments, joint capsule). Second, as the directions of 

secondary motion (i.e. flexion-extension and pronation-supination) were not aligned with the 

gravity vector, there was no bias for movement to occur in one direction compared to the other (e.g. 

greater flexion range of motion (ROM) than extension, or vice versa), as would occur if the 

direction of secondary motion was aligned with the gravity vector such that gravity pulled the joint 

in one direction. 

Repetitive wrist radial-ulnar deviation movement with the forearm supported midway 

between pronation and supination fulfilled Criteria 1-3 of the simple movement task. To ensure the 

task was standardised between participants, conditions, and experiments, Criteria 4-7 were 

developed. Pilot testing was done to evaluate several features of the simple task. The following 

sections discuss Criteria 4-7 and the results of the pilot trials.  
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Figure 3-1. Experimental setup showing the position of the upper limb from the side view (A) and 

top view (B). As participants performed the repetitive radial-ulnar deviation task, there was 

unconstrained motion of the wrist/forearm in flexion-extension and pronation-supination. 

 

3.1.3 Pilot trials of the simple task protocol 

Pilot testing involved three participants (age = 22 ± 1 years (mean ± SD)) who each 

performed three trials of the radial-ulnar deviation task. Participants sat in an upright posture with 

the forearm resting on a table and supported in mid-position between pronation and supination. The 

elbow was positioned at approximately 90° flexion (Figure 3-1). The forearm was secured with an 

adjustable clamp at the wrist/forearm. This position allowed unconstrained wrist motion and 

forearm pronation-supination but prevented movement of the more proximal segments of the upper 

limb that could affect performance of the radial-ulnar deviation task. A similar upper limb setup has 

been used previously in studies that investigated variability in muscle activation (Bawa et al. 2000; 

Birch et al. 2000).  

The experimental task involved repeated radial-ulnar deviation of the wrist between two 

target angle regions (Figure 3-2) that were displayed on a computer screen positioned 

approximately 60 cm in front of the participant. Participants were instructed to move as accurately 

as possible between an ulnar deviation target angle region and a radial deviation target angle region 

(Figure 3-2). Different angles for the ulnar and radial target angle regions were used in the pilot 

trials to determine what ROM could be consistently achieved. The positions of the target angle 

regions were calculated from each participant’s maximum radial deviation ROM and ulnar 

deviation ROM.  
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Each trial was performed at a different rate in time with a metronome (Trial 1: 120 beats per 

minute (bpm), Trial 2 = 90 bpm, Trial 3 = 60 bpm). Note, Trial 1 and Trial 2 were performed in one 

pilot session, and Trial 3 was performed by the same participants in another pilot session. Different 

movement rates (i.e. 120 bpm, 90 bpm, and 60 bpm) were tested because it was identified that it 

might affect the magnitude of VARelements, the ease with which participants could move between the 

radial and ulnar target angle regions, and the number of repetitions that could be sustained with 

consistent performance of the simple task. For instance, walking/running at different speeds during 

pain influences VARelements (Heiderscheit et al. 2002; van den Hoorn et al. 2012). The trials were 

performed until participants verbally reported they could no longer maintain the correct movement 

rate or radial-ulnar deviation ROM due to perceived fatigue. Participants were given a break of at 

least 2 minutes between trials to ensure they felt their perceived fatigue had resolved and they could 

perform the next trial of the task at the correct rate and ROM. A bi-axial electrogoniometer (SG65, 

Biometrics Ltd., Newport, UK) was used to measure radial-ulnar deviation and flexion-extension 

motion of the wrist for the trials performed at 120 bpm and 90 bpm. Detailed information about the 

electrogoniometer is provided in Section 3.2.2.  

 

 

Figure 3-2. Information shown on the feedback screen during the radial-ulnar deviation task. The 

red line represents three complete repetitions of the radial-ulnar deviation task. Participants were 

instructed to perform the task in such a way that they terminated movement in both directions (i.e. 

ulnar to radial, and radial to ulnar) within the target angle regions (i.e. between the dotted lines).  
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Criterion 4: Performance of the task in the absence of pain needed to involve between-

repetition VARelements in secondary directions of movement. 

 

To allow investigation of whether there was an increase, decrease, or no change of 

VARelements during pain it was necessary to determine the magnitude of VARelements in secondary 

movement planes when the simple task was performed in the absence of pain. It was expected that 

VARelements would be present in the secondary movement planes (i.e. flexion-extension and 

pronation-supination) during the radial-ulnar deviation task. However, prior to this thesis, the 

radial-ulnar deviation task had not been used to study movement variability. Therefore, it was 

unclear how much VARelements would be present in wrist flexion-extension and forearm pronation-

supination, both in the absence of pain and during pain. The magnitude of VARelements in the wrist 

flexion-extension direction was evaluated during pilot testing. Recording of VARelements in forearm 

pronation-supination during pilot testing was not possible due to limitation of the 

electrogoniometers used in the trials (section 3.2.2). 

It was decided a priori that wrist flexion-extension angle would be calculated for the first 50 

repetitions at the times that the wrist crossed the neutral position of the radial-ulnar deviation 

motion when moving from ulnar deviation to radial deviation. The data were analysed offline. To 

quantify VARelements in the pilot trials SD of the wrist flexion-extension angle, and absolute range of 

motion of the wrist angle (i.e. the difference between the maximum and minimum wrist flexion-

extension angle recorded over the 50 repetitions) were calculated. The magnitude of VARelements 

(i.e. SD (absolute range of motion)) for each trial is as follows: Trial 1 (120 bpm) = 2.9° (12.6°); 

Trial 2 (90 bpm) = 3.0° (14.0°). These data suggest that VARelements was similar when quantified by 

SD and absolute range of motion. Thus, the different rates at which the simple task was performed 

did not affect VARelements and did not contribute heavily to our decision-making for the final 

protocol of the task.  

 

Criterion 5: Participants needed to move through a specific joint angle on all repetitions 

of the task while moving through a consistent and repeatable ROM.  

 

It was important to develop a repetitive radial-ulnar deviation task where the wrist 

consistently crossed the neutral radial-ulnar position (i.e. a discrete joint position) when moving 

through a consistent and repeatable ROM. The neutral position was chosen as it is a standard and 

repeatable position in the radial-ulnar deviation range that would be consistently crossed by all 

participants. 
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It was important for Criterion 5 to be met for two reasons. First, it allowed measurement of 

VARelements (position in directions other than the primary movement direction) at a consistent joint 

position (in the primary movement plane) for all repetitions of each condition (e.g. both with and 

without pain) in Studies 1-3. Second, it would allow a transient painful stimulus to be applied at a 

consistent joint position (in the primary plane of motion) during performance of the task in Study 2. 

It was possible participants would not move their wrist into enough ulnar deviation range 

and consistently cross the neutral radial-ulnar deviation neutral position if the ulnar deviation target 

was set too close to the neutral position. This would pose a large problem, as we needed participants 

to consistently cross neutral to allow calculation of VARelements at a standardised radial-ulnar 

deviation angle. Thus careful selection of the radial-ulnar deviation angles for the target angle 

regions was critical. It was unclear what ROM was achievable and would enable completion of 

sufficient repetitions to enable adaptation to occur with pain and derive a clear measure of 

VARelements, but that ensured the neutral radial-ulnar position was crossed consistently. It was found 

that a radial deviation target range set at 80-100% of maximum radial deviation ROM and an ulnar 

deviation target range set at 20-40% of maximum ROM in the ulnar deviation direction could be 

achieved during the radial-ulnar deviation task for all participants during pilot testing. The targets 

were standardised to a percentage of maximal range, rather than absolute ROM, to account for 

differences in the maximal range that was achievable by each participant. 

The total ROM was biased towards movement into radial deviation (i.e. 80-100% maximum 

ROM) than ulnar deviation (i.e. 20-40% maximum ROM) as the focus of the simple task was 

movement from ulnar deviation towards radial deviation. On questioning after the pilot trials, 

participants reported that it was easier to move between the radial and ulnar targets when the task 

was performed at 90 bpm than trials at 120 bpm. 

Other positions of the ulnar target were trialled. When the target was set in greater ulnar 

deviation ROM (e.g. 40-60% maximum ulnar deviation ROM), participants had difficulty 

maintaining the correct frequency of movement and were unable to consistently achieve the radial 

deviation target angle region. An ulnar target range set to 10-30% of maximum ulnar deviation 

ROM was also piloted, but participants did not move far enough into ulnar deviation to reach the 

ulnar target and the amount of undershoot meant the radial-ulnar neutral was not consistently 

crossed.  

Further pilot testing of the specific experimental protocols for Study 2 (i.e. acute pain 

induced with electrical stimulation) and Study 3 (i.e. participants with chronic LE) at the time of 

data collection showed that participants did not consistently reach the radial deviation target set to 
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80-100% of maximum ROM. For this reason, a radial deviation target of 60-80% was used for 

Studies 2-3. 

 

Criterion 6: A sufficient number of repetitions of the simple task needed to be performed 

to allow calculation of VARelements but that could be sustained with consistent performance 

of the task. 

 

The number of repetitions required to achieve stable task performance and allow calculation 

of VARelements depends on the task, the individual participant, and the parameter that is studied 

(Preatoni, 2010; Preatoni et al. 2013). We needed to determine the number of repetitions of the 

simple task that could be sustained with consistent performance, but provided sufficient repetitions 

to allow calculation of VARelements (Hamill and McNiven, 1990). Trials were performed at 120 bpm 

and 90 bpm (as described above). Trial 3 at 60 bpm was trialled on a separate day as it was 

identified after the initial pilot session that a slower movement rate (i.e. 60 bpm) might allow 

participants to complete more repetitions that at 120 bpm and 90 bpm, and thus could be useful for 

Studies 1-3. In all trials participants were asked to report when they first considered that they would 

not be able to sustain performance of the task in a consistent manner (which we considered to 

provide a subjective perception of fatigue). Participants performed more repetitions of the radial-

ulnar deviation task at the correct movement rate and range of motion when it was performed at 120 

bpm (71 ± 4 repetitions (mean and SD)) and 90 bpm (69 ± 6 repetitions) than when it was 

performed at 60 bpm (53 ± 11 repetitions). Based on these trials we decided that trials performed at 

either 120 bpm or 90 bpm would allow performance of a greater number of repetitions before 

stoppage of the task.  

 

Criterion 7: The task needed to provoke pain when performed by participants with 

chronic LE. 

 

Criterion 7 was important so that we could study the interaction between chronic clinical 

pain and VARelements during the simple task in Study 3. It was predicted that repetitive radial-ulnar 

deviation movement would provoke pain when performed by participants with chronic LE in Study 

3 as people with chronic LE commonly report pain with movement of the wrist and forearm 

(Vicenzino, 2003). Further, radial-ulnar deviation movement in a vertical direction against gravity 

is primarily generated by activation of ECRB, ECRL and FCR (Standring, 2005). Of particular 

interest, the common extensor tendon, to which ECRB and ECRL attach, is implicated in the 
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development and persistence of chronic LE (Nirschl, 1992; Fredberg and Stengaard-Pedersen, 

2008). It was likely that activation of ECRB and ECRL during performance of the radial-ulnar 

deviation task would provoke pain in participants with chronic LE. However, it was unclear 

whether this task would provoke pain of sufficient intensity to find changes to VARelements. For 

instance, it has been proposed that low pain intensity in participants with chronic knee pain (1.9/10) 

might explain the lack of differences in VARelements of lower limb joint coordination compared to 

healthy controls (Heiderscheit et al. 2002). This suggests that more intense pain might be required 

to observe a change in VARelements during chronic pain (Cunningham et al. 2014). Gripping with the 

fingers is a provocative manoeuvre in participants with chronic LE (Coombes et al. 2009). Thus, it 

was possible to induce more intense pain during the radial-ulnar deviation task with the addition of 

a gripping component. Pilot testing in participants with chronic LE (n=4) found the repetitive 

radial-ulnar deviation task with the fingers relaxed (i.e. as for the other pilot trials discussed above) 

provoked pain of low intensity (0.6 ± 0.9 /10 (mean ± 95% CI)). When the radial-ulnar deviation 

task was performed whilst gripping a small load cell it provoked pain intensity of 3.2 ± 1.9 /10. This 

variant of the simple task (i.e. radial-ulnar deviation with a gripping component) was used in Study 

3. 

 

3.1.4 Final protocol of the simple movement task derived from pilot testing 

 The following parameters were used for the repetitive radial-ulnar deviation task based on 

the results of pilot testing: 

 Movement rate: 90 bpm 

 Range of motion:  

Radial deviation target = 80-100% maximum radial deviation ROM (Study 1) 

               = 60-80% maximum radial deviation ROM (Studies 2-3) 

Ulnar deviation target  = 20-40% of maximum ulnar deviation ROM (Studies 1-3) 

 Number of repetitions: ≤ 60 to ensure participants maintain the correct movement rate and 

move between radial and ulnar deviation target regions. 

 

3.1.5 Alternatives to the radial-ulnar deviation task that were considered 

during development 

Although repetitive radial-ulnar deviation was selected as the simple movement task for 

these studies, repetitive wrist flexion-extension (Figure 3-3) also fulfilled Criteria 1-2 of a simple 

movement task in this thesis and a protocol could have been devised to satisfy Criteria 4-7.  
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Figure 3-3. Wrist flexion-extension, an alternative simple movement task that was considered for 

the studies in this thesis. 

 

A wrist flexion-extension task could be performed with the forearm supported in pronation, 

supination, or neutral. In this context, the primary motion would be wrist flexion-extension and 

secondary movement directions would be wrist radial-ulnar deviation and forearm pronation-

supination. However, none of the three possible forearm positions (i.e. pronation, supination, or 

neutral) satisfy Criterion 3, i.e. the potential for movement in secondary directions needed to be 

equally likely in all movement planes. If a wrist flexion-extension task was performed with the 

forearm in a pronated or supinated position, movement in the secondary directions could only occur 

in the opposite direction (i.e. supination or pronation, respectively) and movement in the pronation-

supination plane would not be equally likely in both directions. If wrist flexion-extension was 

performed with the forearm in neutral rotation then there would be freedom to move into both 

pronation and supination, and movement would be equally likely in both directions. However, in a 

neutral forearm position, the wrist radial-ulnar deviation plane is aligned with the gravity vector. 

Thus, the wrist would naturally move into a relative ulnar deviation position due to gravity and this 

would influence VARelements in the radial-ulnar deviation plane. For these reasons a wrist flexion-

extension task was not selected. In contrast, the radial-ulnar deviation task with the forearm midway 

between pronation and supination did satisfy Criteria 1-8 and was used for Studies 1-3 in this thesis 

(section 3.1.1). 

 

3.2 Recording wrist/forearm movements 

3.2.1 Introduction 

Several motion analysis systems were used to record wrist/forearm movements to suit the 

requirements of each study. The following sections describe the rationale and parameters used for 

each system. 
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3.2.2 Electrogoniometers 

In Studies 1 and 3 an electrogoniometer (SG65, Biometrics Ltd., Newport, UK) was used to 

provide participants with real-time feedback of radial-ulnar deviation movement during the 

movement task. The electrogoniometer consists of two endblocks (i.e. rigid pieces of composite 

plastic that were attached to the participant’s hand and forearm) connected by a composite wire that 

has a series of strain sensors mounted around its circumference (SG65, Biometrics Ltd, Newport, 

UK). These sensors measure the change in strain along the length of the composite wire as the 

relative position of the two endblocks changes with movement. The changes in strain are converted 

to angular data to describe the direction and magnitude of joint movement. The electrogoniometer 

has an accuracy of ± 2° measured over a range of ± 90° for movement in a single plane (Biometrics, 

2002). 

To record wrist radial-ulnar deviation movement the two endblocks of the electrogoniometer 

were attached to the skin either side of the wrist joint (Figure 3-4). The endblocks were placed on 

the ulnar border of the forearm and hand. As the electrogoniometers are sensitive to two directions 

of motion, the different orientations made no difference to the recordings – in each set up a different 

channel was aligned to the direction of primary motion. The signal from the electrogoniometer was 

recorded at 100 Hz using a Power1401 Data Acquisition system and Spike2 software (Cambridge 

Electronical Design, Cambridge, UK).  

Although the electrogoniometer was suitable to provide feedback of radial-ulnar deviation 

position, it was not used to provide data for detailed analysis of wrist kinematics for two reasons. 

First, although the electrogoniometer can record movement in the wrist radial-ulnar deviation and 

flexion-extension directions, it was unable to record movement in rotation (i.e. forearm pronation-

supination). Second, the accuracy of the electrogoniometer (i.e. ± 2°) was deemed unacceptable for 

the studies in this thesis, as more accurate measures of joint angle (i.e. wrist flexion-extension and 

forearm pronation-supination) to calculate VARelements, which occurred in the sub-degree range. 

Subsequently, an additional system with greater resolution and the potential to measure movement 

in 3-dimensions was required. 

 

3.2.3 Vicon-Nexus 3-dimensional motion analysis 

 In Studies 1 and 3 movements of the wrist and forearm were recorded by an 8-camera 3-D 

motion analysis system (T040, Vicon Motion Systems Ltd. Oxford, UK) at a sampling rate of 200 

Hz. This system has an accuracy of <1 mm (T040, Vicon Motion Systems Ltd, Oxford, UK). 

Clusters of four non-collinear markers were attached to the dorsum of the hand between the 2nd and 

3rd metacarpals (Studies 1 and 3; Figure 3-4) and the palmar surface of the forearm immediately 
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proximal to the wrist joint (Study 3 only; Figure 3-4). The clusters were placed to ensure they did 

not restrict motion of the wrist and forearm during the radial-ulnar deviation task. Although the 

Vicon-nexus system could provide accurate measurements of wrist/forearm motion in Studies 1 and 

3, it was not suitable for Study 2 because it could not be integrated with Matlab 7.14 (The 

Mathworks, Natick, MA, USA) to allow delivery of painful electrical stimuli (see Chapter 5). 

Further, the Vicon-nexus system was not used to provide feedback of radial-ulnar deviation position 

during the task (i.e. instead of using the electrogoniometers) because the system could not provide 

real-time feedback of joint angles which was critical for the task in Studies 1 and 3. 

 

Figure 3-4. Experimental setup for Studies 1 and 3 showing the position of the upper limb from the 

side (A) and top (B) view for performance of the radial-ulnar deviation task. Note the hand cluster 

(but not the forearm cluster) was used to record movement in Study 1.  

 

3.2.4 SK7 SHAKE sensor 

In Study 2 a small motion sensor (SK7 SHAKE, SNMH Engineering Services, Dublin, 

Ireland) was attached to the ulnar border of the right hand to measure wrist radial-ulnar deviation 

and flexion-extension, and forearm pronation-supination. The motion sensor signal was recorded at 

a sampling rate of 100 Hz using a data acquisition system (PCI-6035E, National Instruments, TX, 

USA) and Matlab. The SK7 SHAKE sensor contains a triple axis linear accelerometer with a 

configurable full range scale of ±6 g and an output resolution of 1 mg (SK7 SHAKE User Manual, 

2006). This system was used, rather than the electrogoniometer or Vicon-nexus, as it allowed real-

time recording and analysis of movement data within Matlab. Further, it was necessary to use 
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Matlab for data collection and analysis as the protocol used for Study 2 required delivery of painful 

electrical stimuli to the elbow as participants moved through a specific angle during the movement 

task in Study 2 (see Chapter 5 for details).  

 

3.3 Analysis and quantification of movement variability 

3.3.1 Introduction  

VARgoal and VARelements can be represented in several ways. Conventional measures of 

variation, such as SD or CV have primarily been used to quantify VARelements (Riley and Turvey, 

2002), but over the last fifteen years more complex non-linear measures have been used (e.g. 

continuous relative phase (Hamill et al. 1999), sample entropy (Hamill et al. 2000), and Lyapunov 

exponents (Rosenstein et al. 1993)). The ultimate choice of which measure of VARelements to use 

depends on the research question and the task that is studied (Hamill et al. 2000). Several linear and 

non-linear measures were used to quantify VARgoal and VARelements in this thesis. These include 

linear measurement of between-repetition standard deviation and nonlinear measures to quantify the 

mean distance between successive repetitions (delta angle, sum of path length). Average vector 

length was calculated to quantify change of wrist/forearm position between the non-painful and 

painful trials in Study 2. Each measure is discussed in detail in the following sections. 

 

3.3.2 Data extracted from the kinematic recordings 

Wrist/forearm angles in three dimensions (i.e. wrist radial-ulnar deviation, wrist flexion-

extension, and forearm pronation-supination) were extracted from the movement recordings at 

discrete points during the radial-ulnar deviation movement cycle. To calculate VARgoal, wrist 

radial-ulnar deviation angle was calculated at the point of maximum displacement in the ulnar and 

radial deviation directions for each repetition. VARelements was calculated from recordings of motion 

in planes other than that of the primary task (i.e. flexion-extension and pronation-supination). For 

each repetition the wrist flexion-extension and forearm pronation-supination angle was determined 

as the wrist crossed the neutral radial-ulnar position when moving from the ulnar target towards the 

radial target (Figure 3-5).  
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Figure 3-5. Data extracted from the kinematic recordings in Studies 1-3. An example of successful 

and unsuccessful attainment of the task goal (A) and VARelements of forearm pronation-supination 

(B) when performing the repetitive movement task between the radial deviation (*) and ulnar 

deviation (#) target regions. A: White circles indicate when the radial deviation target angle region 

was achieved and black circles indicate when the target region was not achieved. In Study1 the 

absolute error (x) was calculated for each repetition where the goal was not achieved. The error was 

zero for repetitions where the wrist terminated in the radial target region. B: Grey circles indicate 

forearm pronation-supination positions when the wrist passed through the radial-ulnar deviation 

neutral position. Delta angle (δ) was calculated as the absolute difference in position between 

consecutive repetitions. The standard deviation was also calculated to quantify VARelements in a 

linear manner over all repetitions. 

 

VARelements was calculated at the neutral radial-ulnar deviation position for three reasons. 

First, as noted above (section 3.1.3) the neutral position is a standard and repeatable position in the 

radial-ulnar deviation range that would be consistently crossed by all participants. Second as the 
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neutral position is located in the middle range for all directions of motion, it is also the position with 

greatest potential to identify VARelements in flexion-extension and pronation-supination. Third, pain 

intensity will likely be consistent throughout the entire radial-ulnar deviation range of motion 

during the repetitive movement task. Thus, the potential relationship between pain intensity and 

magnitude of VARelements (section 2.2.5.6) will not influence VARelements in the studies in this thesis. 

It is possible that VARelements of flexion-extension and pronation-supination is inherently changed 

throughout the radial-ulnar deviation task, and should be considered when interpreting the results of 

Studies 1-3 with respect to previous studies in the literature. Overall, the benefits outweigh the 

limitation of calculating VARelements at the neutral radial-ulnar position for the studies in this thesis. 

 

3.3.3 Successful attainment of the task goal 

Two measures were used to quantify VARgoal and quantify the extent to which participants 

were able to maintain accurate and consistent performance of the task during pain. First, proportion 

of success, represented as the proportion of repetitions (0-100%) within each trial in which the 

participant successfully terminated radial deviation movement within the radial deviation target 

angle region. Second, the total absolute error (in degrees) was calculated as the sum of the 

difference between the peak angle of radial deviation and the lower border of the radial target angle 

region for all repetitions in which the radial deviation movement failed to terminate within the 

target region. The absolute error was zero for repetitions where the wrist radial deviation movement 

terminated in the radial target region.  

 

3.3.4 VARelements: Standard deviation  

Linear VARelements was quantified by the SD of wrist/forearm angle, which reflects the 

variance of wrist/forearm angle about an average position (Riley and Turvey, 2002). It is a useful 

measure to quantify the magnitude of VARelements in performance of a specific task at a discrete 

point in time (Slifkin and Newell, 1998; Riley and Turvey, 2002). As VARelements was to be 

quantified at a discrete wrist position (i.e. neutral radial-ulnar deviation crossing), SD was an 

appropriate measure for the simple task. Although SD was appropriate to quantify VARelements over 

an entire trial or part of a trial (e.g. repetitions 1-20 of a 60-repetition trial), it does not provide 

information about the structure or detail of VARelements, such as how it changes over time between 

each repetition of a task. 
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3.3.5 VARelements: Delta angle  

Delta angle refers to the absolute difference of wrist/forearm angle (in the secondary planes 

of motion) at the time of neutral crossing (in the primary motion plane) between consecutive 

repetitions of the simple movement task (e.g. between repetitions 1 and 2, 2 and 3, etc.). Delta 

angles were calculated for each trial for each participant (Figure 3-5B) and then represented as sum 

of delta angle, or average delta angle. Delta angle was used to quantify VARelements in wrist flexion-

extension and forearm pronation-supination. 

 

3.3.6 VARelements: Sum of path length 

Sum of path length is similar to delta angle in that it measures the absolute difference in 

wrist/forearm angle between consecutive repetitions. To calculate sum of path length it is first 

necessary to calculate the absolute difference of wrist/forearm angle in the secondary motion planes 

at the time of neutral crossing (in the primary motion plane), between consecutive repetitions of the 

radial-ulnar deviation task (Figure 3-6). It differs from delta angle because it takes into account the 

‘distance’ each repetition is from the preceding repetition in a two-dimensional movement map (i.e. 

forearm pronation-supination angle plotted against wrist flexion-extension angle). Therefore, this 

measure takes into account changes in wrist/forearm position that occur concomitantly 

 

Figure 3-6. Calculation of sum of path length. The forearm pronation-supination angle was plotted 

against the wrist flexion-extension angle for the 60 repetitions of the Baseline trial (black), and the 

60 repetitions of the Experimental trial (red). Large circles represent repetition 1, small circles 

represent repetitions 2-59, and squares represent repetition 60 for both trials. Lines were plotted 
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between consecutive repetitions of each trial. The length of individual lines (within each trial) was 

calculated and summed to give ‘sum of path length’. 

 

3.3.7 Change in movement strategy: Average vector length 

To quantify change of movement strategy in Study 2, vectors were constructed between the 

average wrist/forearm configuration (i.e. in 2-D space derived from the flexion-extension and 

pronation-supination planes) of repetition of the task performed in a non-painful state (baseline 

trial), and the position in that 2-D space during each repetition (n=60) of a painful trial in which 

acute elbow pain was induced with electrical stimulation (Figure 3-7). Each sixty-repetition trial 

was divided into 6 x 10-repetition epochs (i.e. epochs 1-6) and the average vector length was 

calculated for each epoch. Average vector length during each epoch of the painful trial relative to 

the non-painful baseline trial was used to represent whether participants altered wrist/forearm 

position during pain. It enables insight into whether a new strategy was selected during pain 

compared to non-painful trials. 

 

Figure 3-7. Calculation of vector lengths. The forearm pronation-supination angle was plotted 

against the wrist flexion-extension angle for the 60 repetitions (small black circles) and average 

(large black circle) of the Baseline trial, and the 60 repetitions of the Experimental trial (small red 

circles). Vectors (blue lines) were plotted between the average wrist/forearm position in the 

Baseline trial and each repetition in the Experimental trial. The length of each vector was 

calculated.  
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3.4 Experimental and clinical pain models 

3.4.1 Introduction 

Experimental models that stimulate nociceptive afferents can be used to induce short-term 

pain of a predictable duration with no long-term consequences (Graven-Nielsen, 2006). These 

models provide a method to study the isolated effect of nociceptive stimulation on human motor 

control in the absence of confounding factors such as local tissue damage, inflammation, and 

psychological factors (e.g. long-term fear avoidance) that could contribute to movement changes 

observed in chronic pain conditions (Graven-Nielsen, 2006). Although ultimately it is necessary to 

understand the interaction between each of these factors in determination of the motor control 

changes in pain, we argue that it is also important to understand the independent contribution of 

each factor. As the interest of this thesis was the interaction between nociceptive afferent 

stimulation and movement variability, the experimental pain methods used in Studies 1, 2 and 4 are 

appropriate. For the studies that used experimental models to induce pain, healthy volunteers 

between 18-40 years of age and with no major circulatory, orthopaedic, musculoskeletal, or 

neurological conditions that could affect upper limb function, were included. To study the 

interaction between chronic pain and movement variability in Study 3 participants with chronic LE 

and a healthy control group for comparison were recruited. 

 

3.4.2 Acute pain: Injection of hypertonic saline 

 Injections of hypertonic saline were first used as a model of short-term deep-tissue pain in 

the 1930s (Kellgren, 1938; Lewis, 1938). Since then, hypertonic saline injections have been used 

extensively to study the interaction between acute pain and sensorimotor function, with no reported 

long term sequelae after more than 6000 injections across more than 130 studies (Graven-Nielsen, 

2006). This model can be used to induce short-lasting, reversible pain in a variety of contexts and 

experimental paradigms. For instance, it can be injected into many body tissues including tendon 

(Gibson et al. 2006), muscle (Tucker et al. 2014), fascia (Deising et al. 2012), fat pad (Bennell et al. 

2004), and ligament (Tsao et al. 2010). Further, the intensity and duration of the pain can be tailored 

to the individual experiment by altering the volume, concentration, method of administration (e.g. 

single bolus, repeated injections, continuous infusion), and infusion rate of the injection(s) (Jarvik 

and Wolff, 1962). The quality of the pain is comparable to acute clinical muscle pain with 

participants typically describing the induced pain as ‘aching’, ‘cramping’, ‘boring’, ‘drilling’, ‘taut’, 

‘tight’, ‘spreading’ and ‘radiating’ when they complete the McGill Pain Questionnaire (Graven-

Nielsen, 2006). Despite the many studies that have used hypertonic saline as a model of acute pain, 
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the exact mechanism by which it induces pain is not well understood. It is known that hypertonic 

saline is a non-specific model (Cairns et al. 2003) that excites both A-delta and C afferent fibres 

(Kumazawa and Mizumura, 1977; Hoheisel et al. 2005) when injected into muscle. 

Many typical motor behaviours observed in people with clinical musculoskeletal pain have 

been replicated with injection of hypertonic saline. For instance, maximal wrist extension force is 

reduced in a model of lateral elbow pain following injection of hypertonic saline into the ECRB 

muscle belly (Slater et al. 2005), and muscle activation of a postural response is delayed with 

injection into the longissimus muscle at the low back region (Hodges et al. 2003). However, the 

relationship between pain and movement is unclear. Unlike musculoskeletal pain conditions where 

pain intensity generally increases during muscle contraction/stretch and functional activities, Tsao 

et al (2010) found pain intensity decreased during contraction and stretch after hypertonic saline 

was injected into the lumbar erector spinae muscle, but not after injection into the lumbar 

interspinous ligament. 

In Study 1 acute elbow pain was induced with an injection of hypertonic saline to study the 

effect of nociception and acute pain on movement variability. Participants received a bolus injection 

of hypertonic saline (0.3 ml, 5% NaCl) into the origin of the common extensor tendon near its 

attachment to the lateral epicondyle of the humerus.  

The hypertonic saline model of acute pain was used to induce acute pain in Study 1 for four 

reasons. First, injection of hypertonic saline induces tonic, moderate pain of known duration. Slater 

et al. (2003) studied the pain response evoked after injection of hypertonic saline into the ECRB 

muscle belly, the origin of the common extensor tendon near its attachment to the lateral 

epicondyle, and the supinator muscle. Pain lasted for approximately 10 minutes after hypertonic 

saline was injected into the common extensor tendon (Slater et al. 2003). This duration of pain 

ensures there is sufficient time for participants to complete all 45 repetitions during the painful trial 

of Study 1. Second, hypertonic saline has the benefit of inducing acute pain without damaging 

muscle fibres. A model that included delayed onset muscle soreness (DOMS) of the wrist extensor 

muscles could have been used for Study 1. Slater et al (2003) found an experimental model of pain 

that combined DOMS, induced with repeated eccentric wrist extension contractions of the forearm 

muscles, and hypertonic saline injection into ECRB induced more intense pain (6.94 ± 0.7) than 

after a single hypertonic saline injection (6.08 ± 0.5). Notwithstanding the small difference in pain 

intensity between the two models (i.e. 0.86/10) the combined DOMS-saline model was not 

appropriate for Study 1 because the damage to contractile elements of muscle fibres by eccentric 

contractions (Paulsen et al. 2012) can directly influence function, which precludes investigation of 

the independent effects of pain/nociceptive stimulation. Third, unlike acute musculoskeletal 
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conditions, factors other than pain such as local tissue damage and psychological factors (e.g. fear 

avoidance of movement) that could underpin the movement changes are not seen after hypertonic 

saline injection. The lack of confounding factors is beneficial because it allowed us to study the 

specific effect of nociceptive stimulation and acute pain. Fourth, in Study 1 we wanted to probe the 

immediate changes to movement variability associated with acute pain, which is not possible with 

acute musculoskeletal conditions. 

The location of hypertonic saline injection, into the common extensor tendon at its 

attachment to the lateral epicondyle of the humerus, was chosen in Study 1 for two reasons. First, 

the pathophysiology of chronic LE involves degeneration of the common extensor tendon, 

particularly at its attachment to the lateral epicondyle (i.e. the location for injection in Study 1). 

Second, pain intensity is greater (5.9 ± 0.6/10) and lasts longer (587.9 ± 33.4 seconds) after 

injection of hypertonic saline into the common extensor tendon near its attachment to the lateral 

epicondyle compared to an injection into the ECRB muscle belly (Pain intensity = 5.3 ± 0.6/10; 

Duration = 469.6 ± 443 seconds) (Slater et al. 2003). The duration and intensity of pain induced 

with hypertonic saline allowed sufficient time for participants to perform 45 repetitions of the 

simple movement task whilst experiencing moderate pain. 

 

3.4.3 Acute pain: Cutaneous electrical stimulation 

Electrical stimulation has been used extensively (e.g. Gasser and Erlanger, 1929; Moseley 

and Hodges, 2006; van Ryckeghem et al. 2012) as a non-invasive method to induce intermittent 

acute experimental pain. The electrical stimulation can be applied cutaneously via surface 

electrodes (Moseley and Hodges, 2006; Kurniawan et al. 2010) or via intramuscular electrodes 

(Laursen et al. 1997; Niddam et al. 2002). Care must be taken, however, to avoid stimulation of 

nerves (afferent or efferent) or muscle fibres as this can elicit muscle contraction (Graven-Nielsen, 

2006), which would affect movement variability in our studies. To avoid the stimulation of motor 

activity the stimulating electrodes can be placed on the skin overlying bone (Moseley and Hodges, 

2006). 

One aim of Study 2 was to determine whether a less painful movement strategy would be 

selected more frequently than more painful options during the radial-ulnar movement task. Thus, 

we needed to provoke pain at a specific point (i.e. neutral radial-ulnar deviation angle) during the 

wrist movement task, with an intensity that could be externally determined and varied depending on 

the individual participant’s movement. In Study 2 pain was experimentally induced with cutaneous 

electrical stimulation via a pair of surface electrodes (interelectrode distance ~10 mm) placed on the 

skin overlying the lateral epicondyle of the right elbow. Conversely, the two requirements of 
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experimental pain in Study 2 could not be met with other pain models, such as hypertonic saline or 

exercise-induced DOMS. 

 

3.4.4 Chronic pain: Lateral epicondylalgia (‘tennis elbow’) 

The aim of Study 3 was to investigate whether movement variability was altered in 

participants with chronic LE compared to healthy controls. Participants with chronic LE were 

included in Study 3 if they met four inclusion criteria (Coombes et al. 2012a). 

1. Unilateral elbow pain for longer than 6 weeks; 

2. Worst pain intensity in the past week ≥3 on an 11-point numerical rating scale (0 = no pain; 

10 = worst pain imaginable; NRS) 

3. Reduced pain-free grip force (<50% compared to the unaffected arm) 

4. Pain over the lateral epicondyle of the humerus provoked by at least two of; i) gripping, ii) 

palpation; or iii) resisted wrist/middle finger extension. 

 

Participants were excluded if they had any of the following: 

1. Received physiotherapy treatment in the preceding three months; 

2. Received corticosteroid injection in the preceding six months; or  

3. If participants reported any major circulatory, musculoskeletal, or neurological conditions 

that affected upper limb function. 

 

A healthy control group who had no history of LE were matched to those in the LE group 

for age (±5 years), sex, and hand-dominance. Control participants were excluded if they reported 

any major circulatory, musculoskeletal, or neurological conditions that affected upper limb 

function.  

 

3.4.5 Sustained pain: Intramuscular injection of nerve growth factor  

 Nerve growth factor (NGF) is a neurotophin, vital for the development of nerves in humans 

(Lewin and Mendell, 1993). In the late 1980’s NGF was identified as a potential treatment for 

diabetic neuropathy, but in a series of clinical trials (Petty et al. 1994; Apfel et al. 2000), 

participants reported side effects including hyperalgesia at the injection site and generalised muscle 

soreness (Apfel et al. 2000). As a consequence of these side effects, intramuscular and 

subcutaneous injections of NGF as a treatment for diabetic neuropathy were abandoned. However, 

it was realised that these side effects could be taken advantage of to investigate the mechanisms 

underlying peripheral and central sensitization. Pain secondary to NGF injection is thought to 
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involve sensitisation of both peripheral nociceptors and central neurons, which have been studied in 

rodent models. NGF sensitizes high threshold mechanosensitive muscle nociceptors (Hoheisel et al 

2005; Mann et al. 2006), which, under normal conditions do not respond to weak, everyday stimuli 

(e.g. muscle contraction and stretch) and require tissue-threatening stimulation to be activated 

(Mense, 2009). There is also evidence of sensitised central mechanisms, such as sensitization of 

dorsal horn neurons (Hoheisel et al. 2007; Taguchi et al. 2008), distinct areas of referred pain 

(Andersen et al. 2008) and spreading hyperalgesia (Hayashi et al. 2013) following intramuscular 

injection of NGF. 

A consistent finding of human studies is that intramuscular injection of NGF induces 

spreading mechanical hyperalgesia at the injection site that lasts for up to 14 days (Andersen et al. 

2008; Svensson et al. 2003). There have also been reports of mild muscle pain during gait (i.e. 

muscle contraction) that lasts 3 days after injection into tibialis anterior (Andersen et al. 2008; 

Hayashi et al. 2013). Similar reports of mild pain have been reported following injection into the 

masseter (Svensson et al. 2008) and trapezius (Gerber et al. 2011) muscles, and thoracolumbar 

fascia (Deising et al. 2012). It is unclear whether movement and muscle contraction at different 

amplitudes and intensities provokes different pain intensities.  

Identification of the parameters of experimental pain induced with injection of NGF might 

be beneficial for future studies. For instance, an experimental model of sustained pain could be used 

to evaluate whether similar changes to the sensory and motor systems are found in acute lateral 

elbow pain and chronic LE (sections 2.3.2.2 and 2.3.2.3). Such a model might provide insight into 

the mechanisms underlying the transition of acute lateral elbow pain to sustained pain, and then into 

a chronic musculoskeletal pain condition. Further, an experimental model of sustained pain could 

allow investigation of the potential relationship between VARelements in acute and chronic/persistent 

pain, which is currently poorly understood. 

To be of benefit as a model of experimental pain in future studies, the NGF model would 

need to induce pain that is sustained for up to a week and that is provoked in a consistent manner by 

contraction and stretch of the upper limb muscles and functional activities of the upper limb.  
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Table 3-1. The benefits and drawbacks of the experimental pain models used in Studies 1, 2, and 4. 

 

 

Acute pain: Injection of hypertonic saline  

Benefits 

 Used extensively (>6000 injections in >130 studies) with no reported long-term sequelae 

(Graven-Nielsen, 2006) 

 Can be injected into many body tissues: tendon (Gibson et al. 2006), muscle (Tucker et al. 

2014), fascia (Deising et al. 2012), fat pad (Bennell et al. 2004), and ligament (Tsao et al. 

2010) 

 The intensity and duration of induced pain may be moderated by altering the volume, 

concentration, method of administration (e.g. bolus, continuous infusion), and infusion 

rate (Jarvik and Woolf, 1962) 

 The quality of induced pain is comparable to acute clinical muscle pain (Graven-Nielsen, 

2006) 

 

Drawbacks 

 Cannot be used to model sustained pain because the induced pain ceases within ~5 

minutes of the saline insertion into the tissue  

 Pain intensity decreases or does not change during muscle contraction/stretch following 

injection (Tsao et al. 2010), unlike musculoskeletal pain conditions where pain intensity 

typically increases during these manoeuvres  

Acute pain: Cutaneous electrical stimulation 

Benefits 

 Is a non-invasive method of inducing acute pain (i.e. does not involve an injection) 

 Can externally determine pain intensity (i.e. can quickly increase/decrease stimulus 

intensity during the investigation) and apply painful stimuli at specific points within an 

individual participants movement 

 Referred pain to regions away from stimulating electrodes is not expected  

 Very controlled “on” and “off” times for the stimulus  

 

Drawbacks 

 Muscle contraction can be elicited if stimulating electrodes are placed within or overlying 

muscle (Graven-Nielsen, 2006), but can be avoided by placing electrodes on the skin 

overlying bones (Moseley and Hodges, 2006) 

Sustained pain: Intramuscular injection of nerve growth factor 

Benefits 

 Can be used to induce sustained muscle pain (Gerber et al. 2011) and mechanical 

hyperalgesia (Hayashi et al. 2013) that lasts for approximately one week 

 

Drawbacks 

 Does not induce pain of moderate-high intensity at the dosages tested thus far, unlike 

hypertonic saline 

 Does not induce pain immediately after injection 

 Limited evidence of pain response when injected into tendon or ligament 
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4 Does movement variability increase or decrease when 

simple wrist task is performed during acute wrist 

extensor muscle pain? 

4.1 Abstract 

Purpose: The goal of complex tasks can be maintained despite variability in the movements of the 

multiple body segments involved in the task (VARelements). This variability increases in acute pain 

and may enable the nervous system to search for less painful/injurious movement options. It is 

unclear whether VARelements increases when pain challenges simple tasks with fewer movement 

options, yet maintain successful attainment of the goal. We hypothesised that during acute pain 

related to a simple movement: 1) The task goal would be maintained; 2) VARelements would be 

increased; and 3) if VARelements increased during pain, it would decrease over time. 

 

Methods: Movements of the right wrist/forearm were recorded with a 3-dimentional motion 

analysis system and during a repetitive radial-ulnar deviation task between two target angle ranges 

(the task goal). We measured success of attaining the goal (repetitions that reached the target range 

and total absolute error in degrees), and variability in the motion of wrist flexion-extension and 

forearm pronation-supination (VARelements). Fourteen healthy participants performed the task in one 

session before, during, and after wrist extensor muscle pain induced with hypertonic saline, and in 

another session without pain. 

 

Results: The task goal was maintained during acute pain. However, VARelements in other motion 

planes either reduced (pronation-supination) or did not change (flexion-extension). Thus, variability 

of task elements is constrained, rather than increased, in simple tasks.  

 

Conclusions: These data suggest the nervous system adapts simple tasks with limited degrees of 

freedom by reduction of VARelements rather than the increase observed for more complex tasks. 
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4.2 Introduction 

Flexibility or variability in the performance of voluntary and postural tasks is thought to 

underpin the exploration of different movement strategies (Dingwell et al. 2001; Riley and Turvey, 

2002). In complex multi-joint tasks (e.g. pointing to a target) it is possible to achieve an outcome 

that is accurate and consistent (i.e. high probability of successful achievement of a task objective: 

the goal) with many different combinations of joint excursions and muscle activation patterns (i.e. 

high variability of the “elements”: VARelements). The uncontrolled manifold hypothesis (Scholz and 

Schöner, 1999) suggests the nervous system allows the elements of a task to vary, provided this 

variability does not compromise successful completion of the task (i.e. lower goal attainment). 

VARelements can be partitioned into two components (Latash, 2012); “bad” variability leads to 

reduced success in attaining a goal, while “good” variability does not affect the goal, and may have 

the benefit of a broader distribution of stresses between tissues (e.g. muscles, joint surfaces) with 

the potential to reduce cumulative tissue load (Hamill et al. 1999). In the presence of acute pain, 

increased VARelements may also enable the nervous system to explore new movement options and 

find a more optimal solution that has less potential to provoke pain/injury (Moseley and Hodges, 

2006; Madeleine et al. 2008a; Hodges and Tucker, 2011). Consistent with these hypotheses, the 

goal of an upper limb task is maintained despite changes in muscle activation/movement of the 

trunk or shoulder (VARelements) during pain in those regions (Moseley and Hodges, 2006; Madeleine 

et al. 2008a). Although considerable variability of the elements is possible without compromising 

goal attainment in multi-joint movements it is unclear whether VARelements increases when pain 

challenges simple tasks that involve a simple joint complex.  

Relative to multi-joint tasks, simple tasks have fewer movement options, and thus fewer 

elements for which variability can be increased, yet maintain successful attainment of the task goal. 

Although variability of this limited number of elements could still be increased, it is not known 

whether this occurs. If a simple wrist radial-ulnar movement becomes painful, in order to achieve a 

specific intended movement (i.e. the task goal), fewer segments/options are available to 

compensate. As such VARelements is limited to joint motion in planes other than that of the primary 

task (i.e. flexion-extension or pronation-supination). It has previously been hypothesised that acute 

pain motivates the nervous system to increase VARelements and search for less painful movement 

strategies (Moseley and Hodges, 2006; Madeleine et al. 2008a; Hodges and Tucker 2011). Even 

with fewer options in a simple task, the nervous system is expected to use the same strategy of 

increased VARelements to find an alternative solution. For instance, a recent study (Singh et al. 2010) 

found the motor system increased VARelements during a simple force-matching task with few 

elements (i.e. application of pressure with middle and index fingers to match a target force) to 
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maintain successful completion of the task when one of the elements (i.e. index finger) was 

fatigued. However, it is unclear whether an increase in VARelements during acute pain is limited to 

complex multi-joint systems where multiple options (i.e. muscles, joints) are available to maintain 

the goal. When few options are available in a simple task, VARelements might not change during pain.  

If VARelements increases with acute pain in a simple system, then it follows that after this 

initial increase (i.e. the searching), VARelements would decrease and return to the amount of 

variability present at baseline (i.e. before pain) if a new less painful strategy is found, or if a better 

option is not available. Such time-dependent change in VARelements has been observed in a multi-

joint system (Moseley and Hodges, 2006). However, it is unclear whether adaptation in VARelements, 

if present, shares this time-dependency in simple wrist movements. 

We studied a simple, repetitive wrist movement (radial-ulnar deviation) between target 

angle regions with and without experimental muscle pain to test the hypotheses that: 1) The task 

goal would be maintained during pain; 2) this would be accompanied by increased VARelements; and 

3) if VARelements increased during pain, it would be greatest at the onset of pain and decrease over 

time. This study focused on the magnitude of movement variability, not the structure of variability. 

 

4.3 Methods 

4.3.1 Participants 

Fourteen healthy volunteers (6 females and 8 males; age 24.5 ± 3 years (mean ± SD)) with 

no history of upper limb pain or dysfunction attended two testing sessions approximately 2 months 

apart. All participants were right-handed. Participants were excluded if they reported any major 

circulatory, orthopaedic, musculoskeletal, or neurological conditions that affected upper limb 

function. However, all participants met the inclusion criteria for each session and none were 

excluded, and there was no change in general health status between sessions. Informed consent was 

obtained from all participants. All procedures were approved by the Institutional Medical Research 

Ethics Committee (Project number: 2004000654) and conformed to the Declaration of Helsinki. 

 

4.3.2 Measurements 

A cluster of four reflective markers was attached to the dorsum of the right hand between 

the 2nd and 3rd metacarpals (Figure 4-1) to represent wrist/forearm flexion-extension and pronation-

supination. Movements of the cluster were recorded by an 8-camera 3D motion analysis system 

(T040, Vicon Motion Systems Ltd. Oxford, UK) at a sampling rate of 200 Hz. An 

electrogoniometer (SG65, Biometrics Ltd., Newport, UK) was attached to the ulnar surface of the 
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hand and distal end of the forearm to provide feedback of radial-ulnar deviation position during the 

experimental tasks (Figure 4-1a). The electrogoniometer signal was recorded at 100 Hz using a 

Power1401 Data Acquisition system and Spike2 software (Cambridge Electronical Design, 

Cambridge, UK). The motion system was synchronized by remotely starting the recording within 

Spike2 software. 

 

 

Figure 4-1. Experiment setup showing the position of the upper limb from the side view (A) and 

top view (B). Note the dashed line indicating the neutral position of the wrist and forearm.   

 

4.3.3 Procedures 

Participants sat in an upright posture with their right forearm resting on a table and 

supported in mid-position between pronation and supination with the elbow in approximately 90° 

flexion (Figure 4-1). The forearm was secured with an adjustable clamp immediately proximal to 

the wrist. This position allowed unconstrained wrist motion and forearm pronation-supination but 

prevented movement of the upper limb that could affect performance of the radial-ulnar deviation 

task.      

Prior to the experimental trials the neutral position of the wrist and forearm, and the 

maximal ROM for radial and ulnar deviation, were recorded. The neutral position was measured 
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using a handheld goniometer with the wrist and forearm in the mid position of flexion and 

extension, radial and ulnar deviation, and forearm pronation and supination (Figure 4-1).  

 

Figure 4-2. Data extracted from the kinematic recordings – Study 1. An example of successful and 

unsuccessful attainment of the task goal (A) and VARelements of forearm pronation-supination (B) 

when performing the repetitive movement task between the radial deviation (*) and ulnar deviation 

(#) target regions. A: White circles indicate when the task was performed accurately and black 

circles indicate when it was not. The absolute error (x) was calculated for each repetition. B: Grey 

circles indicate forearm pronation-supination positions when the wrist passed through the neutral 

angle in the direction of ulnar to radial deviation. Delta angle (δ) was calculated as the absolute 

difference in position between consecutive repetitions. The standard deviation was also calculated 

to quantify the variability in a linear manner over all repetitions. 

 

The experimental task involved repeated radial-ulnar deviation of the wrist between two 

target angle regions (Figure 4-2a) that were displayed on a computer screen positioned 

approximately 60 cm in front of the participant. Participants were instructed to move as accurately 

as possible from a target angle region 20-40% of their maximal ulnar deviation range to 80-100% of 

their maximal radial deviation range (Figure 4-2a) in time with a metronome (90 beats per minute). 
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The targets were standardised to a percentage of maximal range, rather than absolute range of 

motion, to account for differences in the maximal range that was achievable by each participant. 

Emphasis was placed on reaching the target angle region in the radial deviation direction. 

Participants practiced the task at the start of each session until it was completed at the correct 

frequency and between the two target angle regions. Data from this practice period were not 

analysed. Forty-five repetitions were recorded in each condition (see below) which started and 

finished with the wrist and forearm in the neutral position. Pilot testing (n=3) indicated that 45 

repetitions at a rate of 90 beats per minute could be completed easily without any perception of 

fatigue of the forearm muscles and was a comfortable rate to perform the task.   

In one experimental session the movements were performed within three conditions; before, 

during and after experimental pain was induced by injection of hypertonic saline (0.3 ml, 5% NaCl) 

into the common extensor tendon near its attachment to the lateral epicondyle of the right humerus 

(Figure 4-1a). The common extensor tendon gives rise to the ECRL and ECRB muscles, which, 

along with FCR, produce radial deviation of the wrist (Standring 2005). It was expected that acute 

wrist extensor muscle pain would stimulate the nervous system to search for a new, less painful 

movement solution. Similar changes to motor control of the wrist following injection of hypertonic 

saline into the common extensor tendon have been found previously, such as reduced maximal wrist 

extension force (Slater et al. 2003). The location for injection was identified by palpation of the 

elbow at rest and during a gentle wrist extensor muscle contraction. The needle (25G x 25 mm) was 

directed in an antero-medial direction towards the cubital fossa. The radial-ulnar deviation task in 

the trial during pain was initiated once the participant reported a pain intensity of ≥2 on an 11-point 

numerical rating scale (NRS) (0 = no pain; 10 = worst pain imaginable). In the other experimental 

session, three sets of movements were performed as for the pain session, but the middle condition 

was performed without experimental pain. This session was included to determine how much 

VARelements could be expected by repetition of the movements, but in the absence of pain. 

Participants were asked at the end of each 45-repetition trial whether they perceived any sense of 

fatigue in the forearm or wrist. 

 

4.3.4 Additional experiment 

 The extent to which the pronation-supination position of the forearm could be changed, yet 

still maintain the goal (the target range in the radial-ulnar deviation direction) of the simple task 

was studied in two healthy participants. These participants performed two blocks of 10 repetitions 

that started with the wrist/forearm in neutral flexion-extension and neutral pronation-supination, 

and moved incrementally toward the limit of pronation (block 1) or supination (block 2) with each 
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repetition. The pronation-supination position at the peak radial deviation position was calculated for 

each repetition and is presented in Figure 4-3. These data show that pronation-supination angle 

could deviate by more than 15° in either direction from neutral and the participant retained the 

ability to move the wrist to the target angle range for radial deviation. 

 

Figure 4-3. Data from an additional experiment – Study 1. Two additional participants who 

performed 20 repetitions of the simple task towards the radial deviation target range (*) at different 

positions of forearm pronation-supination. Each data point represents the forearm pronation-

supination position at the time of peak radial deviation range for each repetition. The data show that 

variation in the angle of the forearm between ~20° pronation and ~10° supination plane was 

possible without compromising the potential to complete the radial deviation task. 

 

4.3.5 Data analysis 

Data was analysed within each condition for repetitions 1-15 and 26-40. Data are reported 

from 13 (of 14 participants) as one participant felt faint following the injection of hypertonic saline 

and withdrew from the study. 

For analysis of successful attainment of the goal radial-ulnar deviation angle data recorded 

with the electrogoniometers were analysed offline using Spike2 software. Successful attainment of 

the goal was measured in two ways. First, proportion of success represented the proportion of 

repetitions within each of the three conditions in which the participant successfully moved their 

wrist to the radial deviation target angle region (Figure 4-2a). Second, the total absolute error (in 

degrees) was calculated as the sum of the difference between the peak angle of radial deviation and 

the lower limit of the target angle region for all repetitions in which the radial deviation angle failed 

to terminate within the target region (Figure 4-2a). Data were normalised to the maximum 
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proportion of success and maximum total absolute error across conditions within each session for 

each participant. 

VARelements was quantified as variability in the motion of the wrist/forearm in the planes 

other that of the primary task (i.e. wrist flexion-extension and forearm pronation-supination), and 

was calculated from the reflective marker cluster attached to the hand using Matlab 7.14 (The 

Mathworks, Natick, MA, USA). The instantaneous angle of the wrist/forearm in flexion-extension 

and pronation-supination for each repetition (in each condition) was calculated at the point where 

the wrist angle passed through the zero position of the radial-ulnar angle when moving from the 

target region in the ulnar direction towards the target region in the radial deviation direction (Figure 

4-2b). The “zero”/neutral position of radial-ulnar deviation was chosen as it is a standard and 

repeatable position in the radial-ulnar deviation range of motion that was consistently crossed by all 

participants, and by virtue of its location in the middle range for several directions of motion it is 

also the position with greatest potential for movement to be modified in other planes. VARelements 

was quantified in two ways: i) as the standard deviation of the angle and ii) as the sum of the 

absolute difference in angle (sum of delta angle), of wrist flexion-extension or wrist/forearm 

pronation-supination at radial-ulnar zero position between consecutive repetitions (Figure 4-2b). 

The latter measure quantifies the total VARelements between consecutive repetitions. Data were 

normalised to the maximum values recorded across conditions within each session for each 

participant.  

Data were normalised to maximum for several reasons. First, this method allows 

comparison between the two testing sessions, which was an important factor in our analysis and 

interpretation. Second, it reduces variation between individual participants. 

 

4.3.6 Statistical analysis 

Statistical analysis was performed using Statistica 9 (Statsoft, Tulsa, OK, USA). According 

to a Kolmogorov-Smirnov test all data were normally distributed (all p > 0.20). Pain intensity 

during the start and end of the painful trial was compared using a Student’s t-test for dependent 

samples. The proportion of success and total absolute error of successful attainment of the goal, 

and the standard deviation and sum of delta angle of VARelements, were compared between sessions 

(pain vs. control), between conditions (pre-pain vs. pain vs. post-pain [pain session]; trial 1 vs. 2 vs. 

3 [control session]) and between repetitions (early [reps 1-15] vs. late [reps 26-40]) using repeated-

measures analysis of variance (ANOVA). Post-hoc testing was undertaken using Fisher’s least 

significant difference test. Significance level was set at p < 0.05. Data are presented as mean ± 95% 

confidence intervals (1.96 * SD) throughout the text and figures. 
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4.4 Results 

Pain measures 

Pain intensity did not differ between the early phase (initial 15 repetitions) and late phase 

(final 15 repetitions) of the painful trial (p = 0.66), with an average pain intensity of 4.9 ± 0.8 and 

5.1 ± 0.9, respectively. No participants reported fatigue of the forearm or wrist during either testing 

session.  

 

 

Figure 4-4. Group data for attainment of the goal and VARelements. Group mean and 95% confidence 

intervals during the session with experimental pain (black circles) and control session (white 

circles) for successful attainment of the goal, represented by proportion of success (A) and total 

absolute error (B), and VARelements, represented by sum of delta angle for forearm pronation-

supination (C) and wrist flexion-extension (D). Note the reduction of variability in the pronation-

supination direction during pain. Asterisk (*) indicates significant difference (p < 0.05) between 

bracketed items. 
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Does attainment of the goal change during an experimental session, with or without wrist extensor 

muscle pain? 

Consistent with our first hypothesis, attainment of the goal in the radial deviation direction 

was not affected by pain. Neither the proportion of success (Main effect: condition: F = 1.58, p = 

0.228; Interaction: session × condition × repetitions: F = 1.58, p = 0.189) (Figure 4-4a) nor the total 

absolute error (Main effect: condition: F = 0.59, p = 0.565; Interaction: session × condition × 

repetitions: F = 1.08, p = 0.356) (Figure 4-4b) changed between conditions during the session in 

which movement was performed with pain or the control session without pain.  

 

Does variability of the elements (VARelements) change during pain despite maintenance of the 

primary task? 

 Contrary to the second hypothesis, VARelements expressed as sum of delta angle in the 

pronation-supination direction was less when wrist radial-ulnar deviation was performed in the 

presence of wrist extensor muscle pain (Interaction: session × condition: F = 4.82, p = 0.017) than 

that during trials before (post-hoc: p = 0.024) and after pain (post-hoc: p = 0.020) (Figure 4-4c). 

There was no difference in sum of delta angle of pronation-supination motion between the three 

conditions during the experimental session without pain (all post-hoc: p > 0.100) (Figure 4-4c). Sum 

of delta angle in the flexion-extension direction did not change between conditions regardless of 

whether the experimental session involved pain or not (Interaction: session × condition: F = 1.43, p 

= 0.258) (Figure 4-4d). 

When data were analysed as the standard deviation of the angle in pronation-supination, 

there was a tendency for a reduction of variability of pronation-supination angle but this was not 

significant (Main effect: condition: F = 1.30, p = 0.291; Interaction: session × condition: F = 2.71, p 

= 0.087). Consistent with the pronation-supination data, there was no change in variability of 

flexion-extension with pain (Interaction: session × condition: F = 1.00, p = 0.382). 

When the initial and final 15 repetitions of each condition were compared, VARelements 

expressed as sum of delta angle in pronation-supination was less at the start than the end (Main 

effect: repetitions: F = 16.05, p = 0.002). This increase in VARelements over repetitions was 

consistent for both sessions and all conditions (Interaction: session × condition × repetitions: F = 

0.82, p = 0.450) (Figure 4-4c). However, there was no change between the initial and final 15 

repetitions when variability data were analysed as standard deviation (Main effect: repetitions: F = 

0.08, p = 0.782). VARelements of flexion-extension also increased from the start to the end of the 

repetitions in each condition when data were analysed as sum of delta angle (Main effect: 

repetitions: F = 46.89, p < 0.001) and standard deviation (Main effect: repetitions: F = 7.20, p = 
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0.020) and was consistent for both sessions and all conditions for both sum of delta angle 

(Interaction: session × condition × repetitions: F = 0.81, p = 0.456) (Figure 4-4d), and standard 

deviation (Interaction: session × condition × repetitions: F = 0.25, p = 0.784). 

 

4.5 Discussion 

The results of this study of a simple joint complex showed that during acute experimental 

pain successful attainment of the task goal was maintained; however, unlike more complex multi-

joint systems (Moseley and Hodges, 2006; Madeleine et al. 2008a), the variability in the manner in 

which the goal was achieved (i.e. movements in other planes and other joints; VARelements) was 

reduced. The initial reduction and subsequent recovery of VARelements of forearm pronation-

supination contrasts evidence of an early increase in VARelements during pain (Moseley and Hodges, 

2006; Madeleine et al. 2008a) and subsequent reduction of VARelements over time (Moseley and 

Hodges, 2006) when a complex multi-joint task was performed during and after acute pain. 

Although the nervous system appears to take advantage of variability of the multiple options 

available to achieve a goal in complex multi-joint movements, variability is constrained in a simple 

radial-ulnar deviation task with limited capacity for alternative options despite the potential to vary 

movement in other planes.  

In support of our first hypothesis, participants continued to achieve the goal of the simple 

task despite acute pain. This observation concurs with some (Ingham et al. 2011), but not all 

previous (Boudreau et al. 2007; Salomoni and Graven-Nielsen, 2012; Salomoni et al. 2013) data of 

tasks that have been performed with feedback of the goal available to the participants. The failure of 

participants to successfully maintain the task goal in some previous studies might be explained by 

differences in the nature of the target or the manner in which feedback was provided. We asked 

participants to repetitively radially deviate their wrist to terminate within a target angle region, 

which by its nature allowed some scope for the wrist radial deviation position to change between 

repetitions, provided it was within the target region. Other work has evaluated the ability to 

consistently achieve a target peak acceleration of a finger movement (Ingham et al. 2011) and a 

sustained force (Boudreau et al. 2007; Salomoni and Graven-Nielsen, 2012; Salomoni et al. 2013). 

Differences in the precision required to achieve the specific goal(s) and constraints of the task may 

explain the difference in results. 

In a system with few degrees of freedom there are limited options available to vary the 

performance of a task while maintaining the goal. The only options available to the nervous system 

in our task would be modification of wrist/forearm variability in flexion-extension and/or 

pronation-supination. Contrary to our second hypothesis, VARelements of forearm pronation-
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supination was reduced when the simple task was performed during acute pain. On the basis of data 

from more complex systems (Moseley and Hodges, 2006; Madeleine et al. 2008a) we predicted an 

increase in VARelements to enable the nervous system to search for a new, less painful movement 

strategy (Hodges and Tucker, 2011). There are several possible explanations why VARelements of 

forearm rotation reduced, rather than increased, in our simple task.  

First, it is assumed that the nervous system searches for new less painful/injurious strategies 

to complete the task. It is possible that the alternative movement options available in our simple 

system (e.g. performance of the movement in a more flexed wrist angle) might not reduce 

provocation of pain and thus not present any advantage to the nervous system. In other tasks in 

which there is a greater range of combinations of joint excursions and muscle activation patterns 

available (Moseley and Hodges, 2006; Madeleine et al. 2008a), the potential to find a less 

provocative solution is more likely.  

Second, it is reasonable to speculate that the nervous system uses an alternative solution for 

our simple task that involved constraint of forearm pronation-supination variability. This may have 

acted to minimize acute pain. Similar constraint has been observed for clinical conditions. For 

instance, participants with chronic knee pain exhibit constrained movement variability during gait 

(Hamill et al. 1999; Heiderscheit et al. 2002) and this variability increases with resolution of knee 

pain (Heiderscheit, 2000). Studies of complex movements during acute pain show that VARelements 

of the painful segment (amongst the multiple segments that are available; e.g. back or shoulder in 

an upper limb movement task) is reduced and VARelements of other non-painful segments are 

increased to compensate (Moseley and Hodges, 2006) to enable successful completion of the task. 

In our study, no other segments were available, and although we postulated that participants might 

increase VARelements in other planes (i.e. wrist flexion-extension, forearm pronation-supination) to 

enable maintenance of the goal, they did not, and instead reduced VARelements of pronation-

supination. Thus, data from the present study imply that VARelements of a painful part is reduced in 

acute pain and the nervous system does not appear to exploit other ways of using the segment to 

find a less provocative solution. It is also possible that constraint of VARelements in pronation-

supination minimised the area of acute wrist extensor muscle pain by reduction of spreading of the 

injected hypertonic saline. 

Third, it could be speculated that it may not be mechanically possible to maintain successful 

attainment of the goal if VARelements increased in other movement planes, and this may have 

precluded augmented variability in those planes to find a less painful solution. The nervous system 

may have prevented an increase of “bad” VARelements to maintain accurate completion of the task as 

proposed by the uncontrolled manifold hypothesis (Scholz and Schöner, 1999). However, our 
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additional experiment in two participants confirmed that it was possible to increase pronation by 

approximately 20° and supination by approximately 10° (Figure 4-3) and comfortably maintain the 

radial target angle region. This suggests the nervous system had the capacity to change the position 

of the forearm and increase VARelements to facilitate a search for a less painful/injurious solution, but 

chose not to. 

Fourth, pain interferes with proprioception and this may have influenced the performance of 

the task (Malmstrom et al. 2013). Although reduced proprioception may be expected to increase 

VARelements, it is also possible that in view of less reliable information about joint position the 

nervous system might increase constraint of the task. Consistent with this proposal, people with 

back pain have been shown to ignore proprioceptive information from the back muscles (Brumagne 

et al. 2004), and other studies show reduced use of spinal movement for postural adjustments (Mok 

et al. 2007). This alternative requires further consideration.  

We hypothesized that if VARelements of forearm pronation-supination and/or wrist flexion-

extension increased during pain, then VARelements would be greatest at the beginning of the painful 

trial and subsequently decrease over repetitions in conjunction with the establishment of a new 

strategy for performing the simple task. As VARelements of forearm rotation reduced, rather than 

increased, at the start of the painful trial, a further reduction towards the end of the painful trial is 

unlikely to have benefited the nervous system. There was a general trend for increased VARelements 

between the start and finish of the trials, but this was present for both the painful and non-painful 

trials. This time-dependent change in VARelements may suggest a generalised learning effect within 

each 45-repetition trial that is disrupted during the break between trials. 

These data have possible clinical implications. The mechanisms by which the nervous 

system alters movement of the wrist/forearm during pain is relevant when considering the 

mechanisms that may underpin overuse-type injuries, that present in systems with limited degrees 

of freedom, such as lateral epicondylalgia (tennis elbow). If wrist/forearm variability is decreased in 

the acute stage of tennis elbow in a manner consistent with the present study, this could contribute 

to the transition to chronic tennis elbow by increasing cumulative tissue load as reduced VARelements 

limits the sharing of load between structures. The model of hypertonic saline-induced acute pain has 

been used extensively and mimics several aspects of acute clinical pain (e.g. delayed muscle 

activation (Hodges et al. 2003)). However, the pain is short lasting (typically <5 minutes) and is not 

worsened by contraction/stretch (Tsao et al. 2010)). 

Some limitations of the present study require consideration. We considered the magnitude of 

VARelements at the point where the wrist passed through the neutral radial-ulnar deviation position. 

Other methods of analysis consider the entire time-series to evaluate coordination variability 
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between movement planes (Heiderscheit et al. 2002; Peters et al. 2003) and the temporal structure 

of repetitive movements (Preatoni et al. 2010). However, the method used in this study provided 

evidence of an effect of pain that answered the question posed in the study. There may have been a 

small learning effect that carried between the pain session (performed first) and the control session 

without pain. However, any learning effect was likely to be minimal given the two-month gap 

between the two sessions. As the variability data was normalised to the maximum values recorded 

during each session for each participant, this would minimise the effect of any changes between 

sessions. Some recent work suggests that changes to variability of muscle activation (Fedorowich et 

al. 2013) and force (Svendsen and Madeleine, 2010) may be gender-specific. Although these 

studies evaluated changes to variability due to fatigue, and not acute pain, whether gender affected 

the variability reported here requires further investigation with a sample selected to specifically 

address that issue. 

 

4.6 Conclusion 

Contrary to earlier data, which suggest that acute pain stimulates the nervous system to 

increase VARelements during the performance of complex multi-joint tasks, we found decreased 

VARelements when a simple task involved movement at one joint complex. This may suggest that the 

nervous system adapts to acute pain by altering the magnitude of VARelements in a manner that is 

specific to the task (i.e. simple vs. complex) that is performed. 
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5 Has interpretation of the motor adaptation to pain been 

too simplistic? 

5.1 Abstract 

Purpose: Movement variability (VARelements) is increased during acute pain in complex tasks with 

multiple elements, but is reduced in simple tasks when the induced pain has little direct relationship 

to movement. We investigated whether participants searched for a less painful solution during acute 

experimental elbow pain and whether this was associated with increased VARelements. 

 

Methods: In three experiments (Control, Pain 5-1, Pain 5-0), participants performed two trials 

(Baseline, Experimental trial) of 60 wrist radial-ulnar movements. Wrist/forearm 3-D motion was 

recorded. In all experiments flexion-extension angle range during the task was determined in a 

Baseline trial. In the Control experiment the Baseline and Experimental trials were identical. In the 

Experimental trial of the Pain 5-1 and Pain 5-0 experiments, elbow pain was induced by electrical 

stimulation when the wrist crossed radial-ulnar neutral. Stimulation intensity was determined by 

wrist flexion-extension angle. Pain 5-1: painful stimulation (~5/10) for two-thirds flexion-extension 

range, and less painful (~1/10) for one-third. Pain 5-0: painful stimulation (~5/10) for two-thirds 

flexion-extension range and no pain for one-third. The percentage of movements performed in the 

less/non-painful flexion-extension range was recorded. Sum of path length between successive 

repetitions in the Baseline and Experimental trials quantified VARelements. Average vector lengths 

between the average wrist/forearm angle of Baseline and wrist/forearm angle for each repetition of 

the Experimental trial quantified change in movement strategy during pain. Sum of path lengths and 

average vector lengths were calculated for six 10-repetition epochs. 

 

Results: Average vector length was greater in the Pain 5-1 experiment than that in the Control 

experiment for epochs 2-6 and in the Pain 5-0 experiment than epoch 5 of the Control experiment, 

indicating a change in movement strategy. Although the new wrist/forearm position was perceived 

as less painful, this did not correspond to the externally determined solution region with less intense 

painful electrical stimulation. Interestingly, three different movement strategies were used by 

participants during the painful trial, and involved either no change, or a small or large change of 

wrist/forearm position. Participants who did not change wrist/forearm position during pain used the 

externally determined solution region more often than those who had a large change, but did not 

experience a greater reduction in pain intensity. 
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Conclusions: Participants searched for, and found, a less painful movement strategy during pain, 

but it was not the solution with complete or near complete pain reduction. 

 

 

5.2 Introduction 

Theories of the motor adaptation to pain (Roland, 1986; Lund et al. 1991; Murray and Peck, 

2007; Hodges and Tucker, 2011) posit that movement is altered by the nervous system to reduce 

pain and protect structures (e.g. muscle, ligament) from further pain or injury. The motor system 

may adapt movement in several ways, such as reduced amplitude (Schaible and Grubb, 1993; 

Svensson et al. 1996) and velocity (Svensson et al. 1996), altered movement variability (Moseley 

and Hodges, 2006; Madeleine et al. 2008a; Study 1), or removal of the body part from the painful 

situation (Clarke and Harris, 2004). For isometric tasks that involve application of force against a 

fixed sensor, during pain the force may be reduced (Hug et al. 2014) or applied in a different 

direction (Tucker and Hodges, 2010; Hug et al. 2013) relative to non-painful trials. Although the 

adaptation to pain seems clear, it is unclear how and why the nervous system selects a particular 

movement strategy (e.g. a specific direction of knee extension force during acute pain (Tucker and 

Hodges, 2010)) from the many options that are available.  

It has been proposed that the motor system undertakes a purposeful search for a less painful 

strategy by experimenting with different movement patterns (i.e. motion of body segments/joints 

and muscle activity; “elements”), and may take advantage of between-repetition variability of these 

elements (VARelements) in that search (Moseley and Hodges, 2006; Madeleine et al. 2008a; Hodges 

and Tucker, 2011). However, there is little evidence of a search or the role of VARelements. Although 

VARelements is increased during acute pain in complex tasks involving multiple elements, with the 

potential advantage to search for new less painful solutions when pain is related to the movement 

(Moseley and Hodges, 2006; Madeleine et al. 2008a), VARelements is reduced in simple tasks when 

pain is induced tonically such that the pain intensity has little direct relationship to the movement 

(Study 1). It is also unclear whether amplitude of pain reduction is the only factor considered in 

selection of a new movement strategy. It is plausible that if a potential movement solution achieves 

pain relief but is associated with a “cost” (e.g. greater energy demand), then this may influence the 

ultimate selection of a movement solution. 

Several questions remain unanswered. First, there is little direct evidence whether changes 

to movement during pain reflect a purposeful search for a less painful solution. Second, it is unclear 

whether VARelements is used to facilitate the search when pain is related to the task. Third, it has not 
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been questioned whether the search aims to simply achieve pain relief or if other factors are 

considered. 

To investigate these questions we studied a standardized task that required wrist radial-ulnar 

deviation movement between two target regions. This task goal can be achieved despite variation in 

the alignment of the wrist/forearm in the other movement planes (flexion-extension, pronation-

supination) (Study 1). An experimental paradigm was developed where the task provoked 

moderately painful stimulation as the wrist moved through the middle of the radial-ulnar range of 

motion, but a less painful or non-painful solution (i.e. specific wrist alignment in the flexion-

extension plane) was provided that was within the range in which the participant would be expected 

to be exposed through normal between-repetition VARelements in repetition of the task. We 

hypothesized that: (i) participants would continue to successfully achieve the goal of reaching the 

radial deviation target angle region during pain; (ii) VARelements would initially increase to gain 

exposure to a variety of movement options in the search for a new less painful solution; and (iii) if 

participants experienced a substantially less painful solution (determined by the experimental 

paradigm) this strategy would be selected more frequently than other options. 

 

5.3 Methods 

5.3.1 Participants 

Three experiments (Control, Pain 5-1, Pain 5-0) were conducted using separate pain 

protocols and different groups of participants. Ten volunteers (6 females; age 28 ± 4 years (mean ± 

SD)) participated in a Control experiment. Twenty-one volunteers (11 females; age 24 ± 6 years 

(mean ± SD)) participated in the Pain 5-1 experiment (2 of these participants also participated in 

the Control experiment). Six volunteers (4 females; age 22 ± 4 years (mean ± SD)) participated in 

the Pain 5-0 experiment (none had participated in the Control or Pain 5-1 experiments). Different 

groups of volunteers were included in the Pain 5-1 and Pain 5-0 experiments because it was critical 

that participants were naive regarding the pain stimuli and potential movement strategies. All 

participants were naïve to the purpose of the study. Participants were excluded if they reported any 

major circulatory, orthopaedic, musculoskeletal or neurological conditions that affected upper limb 

function. Informed consent was obtained from all participants. All procedures were approved by the 

Institutional Medical Research Ethics Committee and conformed to the Declaration of Helsinki. 
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5.3.2 Procedures 

Participants sat upright with their right forearm resting on a table and supported in the mid-

position between pronation and supination with the elbow in approximately 90° flexion. The 

forearm was secured with an adjustable clamp applied to the mid region of the forearm which 

allowed unconstrained wrist motion and forearm pronation-supination but prevented movement of 

the upper limb that could affect performance of the radial-ulnar deviation task. 

A motion sensor (SK7 SHAKE, SNMH Engineering Services, Dublin, Ireland) was attached 

to the ulnar border of the right hand to measure radial-ulnar deviation and flexion-extension of the 

wrist, and forearm pronation-supination. The motion sensor signal was recorded at a sampling rate 

of 100 Hz using a data acquisition system (PCI-6035E, National Instruments, TX, USA) and Matlab 

7.14 (The Mathworks, Natick, MA, USA). The SK7 SHAKE sensor contains a triple axis linear 

accelerometer with a configurable full range scale of ±6 g and an output resolution of 1 mg (SK7 

SHAKE User Manual, 2006). 

Prior to the experimental trials, the neutral position of the wrist and forearm, and the 

maximal range of motion for radial and ulnar deviation, were recorded. The neutral position was 

measured using a handheld goniometer with the wrist and forearm in the mid position of flexion 

and extension, radial and ulnar deviation, and pronation and supination. 

The experimental task involved repeated radial-ulnar deviation of the wrist between two 

target angle regions that were displayed on a computer screen positioned approximately 60 cm in 

front of the participant. Participants were instructed to move from a target angle region between 20-

40% of their maximal ulnar deviation range to a target angle region between 60-80% of their 

maximal radial deviation range in time with a metronome set to 90 beats per minute (1 movement = 

movement from ulnar to radial target and return to ulnar target). Emphasis was placed on movement 

to the target angle region in the radial deviation direction. Participants practiced the task at the start 

of the session until it was performed at the correct frequency with successful attainment of the ulnar 

and radial targets for ~10 consecutive repetitions. Participants were explicitly told that the goal of 

the task was to terminate the radial deviation wrist movement within the radial target angle region 

and maintain the beat of the metronome. Data from the familiarisation period were not analysed. 

Two trials (i.e. “Baseline” and “Experimental” trial) of sixty repetitions were recorded for each 

experiment. Each trial started and finished with the wrist at the 20% ulnar deviation position, and 

neutral wrist flexion-extension and forearm pronation-supination. Participants were advised that 

each trial involved 60 repetitions and that they would be told to stop at the end of each trial. In the 

Control experiment the Baseline and Experimental trials were identical. 
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5.3.3 Painful electrical stimulation of the elbow 

Cutaneous electrical stimulation was applied to the elbow during the Experimental trial of 

the Pain 5-1 and Pain 5-0 experiments to elicit experimental pain. This non-invasive method has 

been used extensively for experimental induction of pain (e.g. Gasser and Erlanger, 1929; Moseley 

and Hodges, 2006; van Ryckeghem et al. 2012) as it permits application of a stimulus of known 

intensity and duration (Handwerker et al. 1993) and is largely free of the confounding effects of 

stimulus habituation or sensitization (McMahon and Koltzenburg, 2005). A pair of surface 

electrodes (inter-electrode distance ~10 mm) was placed on the skin overlying the lateral 

epicondyle of the right elbow. The electrodes were placed over bone to avoid muscle contraction. 

Electrical stimuli were applied with increasing intensity (0–10 mV; 1-mV increments) until 

participants verbally rated pain intensity of 8/10 on an 11-point numerical rating scale (NRS) 

anchored with ‘no pain’ at 0 and ‘maximum pain imaginable’ at 10. A rating of 8/10 on the NRS 

was defined as the ‘maximum stimulus’ for each participant. Fifteen stimuli of variable stimulus 

intensity (range: 0 mV to ‘maximum stimulus’; order randomized) were then delivered to the 

elbow. Participants rated their pain on the NRS after each stimulus. The pain rating was plotted 

against the stimulus intensity and a quadratic function fitted to determine the stimulus intensities to 

be used to elicit the desired pain intensity for the painful trials (Figure 5-1). 

 

 

Figure 5-1. Representative data for the intensity of pain induced with electrical stimulation. Plot of 

pain rating (11-point numerical rating scale; 0-10) versus stimulus intensity (0-10 mV) reported by 

a representative participant from the Pain 5-1 experiment in the pre-movement (white circles) and 

post-movement (black circles) trials. A quadratic function was fitted to the pre-movement data to 

determine the stimulus intensities that would be used to elicit the desired pain intensity for the 

painful Experimental trial. 
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An experimental paradigm was developed where a moderately painful stimulus (~5/10 on 

the NRS) was delivered to the elbow during each repetition of the wrist movement task, but a less 

painful stimulus (~1/10 on the NRS: Pain 5-1 experiment) or no stimulus (0/10 on the NRS: Pain 5-

0 experiment) was delivered if the participant used a radial-ulnar deviation movement strategy with 

a specific alignment in the wrist flexion-extension movement plane. Several steps were undertaken 

to specify the characteristics of the less or non-painful movement strategy. First, when moving from 

the ulnar deviation target to the radial deviation target, the angle of the wrist in the flexion-

extension plane was calculated as it passed through radial-ulnar neutral for each repetition of the 

Baseline trial. The difference (in degrees) between the maximal wrist flexion and maximal wrist 

extension angles recorded during this Baseline trial was defined as the ‘baseline flexion-extension 

range’ and divided into 3 equal regions (Figure 5-2). In the second 60-repetition trial (i.e. 

Experimental trial) painful electrical stimuli were applied to the elbow as the wrist crossed the 

neutral radial-ulnar deviation position. For wrist radial-ulnar deviation movements performed with 

the wrist aligned in two of the three regions of the flexion-extension plane (middle region and either 

the region in the more flexed or extended direction (randomly selected)), or outside of the baseline 

flexion-extension range’ (i.e. greater flexion or extension wrist angles), the painful stimulus was 

applied at an intensity expected to evoke pain of 5/10 on the NRS when the wrist crossed the 

neutral radial-ulnar deviation position (Figure 5-2). A less painful stimulus (~1/10 on the NRS; 

Pain 5-1) or no stimulus (i.e. no pain; Pain 5-0) was delivered if the wrist was aligned within the 

remaining region of wrist flexion-extension allocated as the less/non-painful flexion-extension 

region. Participants were advised prior to the Experimental trial that they “may or may not receive 

painful electrical stimuli as you perform the task” and were unaware a less or non-painful 

movement strategy was available. After every 20 repetitions in the Experimental trial, participants 

were asked to verbally rate the average pain they experienced over the preceding 20 repetitions 

using the NRS. Participants were asked at the end of each 60-repetition trial whether they perceived 

any fatigue in the forearm or wrist during the task (i.e. “Did you experience any fatigue in your 

upper limb during the task?”). No participants reported experiencing fatigue during the task. 
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Figure 5-2. Calculation of the experimentally determined less/non-painful regions for the Pain 5-1 

and Pain 5-0 experiments. The region in the flexion (*) or extension (#) direction was randomly 

assigned to be the experimentally determined solution region. 

 

Additional measures were made after the completion of the Experimental trial to determine 

whether habituation or sensitization to the electrical stimuli developed during the experiments. 

Immediately after the completion of the Experimental trial, participants performed 5 repetitions of 

the radial-ulnar deviation task within each flexion-extension region (n=3) and either direction 

outside the ‘baseline flexion-extension range’ as electrical stimuli were delivered to the elbow as 

per the movement trials. After each 5-repetition block the participants rated the intensity of pain 

they had experienced for each region on the NRS. We then delivered the same fifteen stimuli of 

variable stimulus intensity (range: 0 mV to ‘maximum stimulus’; order randomized) that were used 

at the start of the experiment and asked participants to rate their pain on the NRS after each 

stimulus. The pain rating was plotted against the stimulus intensity for each stimuli and a quadratic 

function fitted to the data (Figure 5-1). 

Absence of habitation or sensitization would be demonstrated if: (i) the pain intensity 

reported during the start (i.e. repetitions 1-20) of the Experimental trial was not different to the pain 

intensity recorded when participants performed 5 repetitions of the radial-ulnar deviation task 

within the moderately painful flexion-extension regions after the Experimental trial; and (ii) there 

was no difference in the stimulus intensities required to elicit 5/10 and 1/10 pain before and after 

the movement trials. 

 

5.3.4 Data analysis 

Successful attainment of the task goal was calculated as the percentage of repetitions (0-

100%) within each trial in which the participant successfully terminated radial deviation movement 

within the radial target angle region. For the Control experiment, data are reported from 9 of 10 
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participants as the data for ‘successful attainment of the task goal’ for one participant was >2 

standard deviations below the group mean and considered an outlier. 

The angle of the wrist/forearm in flexion-extension and pronation-supination was calculated 

at the point at which the wrist passed through the neutral radial-ulnar deviation position when 

moving from the ulnar target towards the radial target (Figure 3-5b). For comparison of the 

frequency of movement using the “less/non-painful movement solution” we calculated the 

percentage of repetitions within each trial (Baseline and Experimental trial) in which the wrist 

crossed the neutral radial-ulnar deviation position with wrist alignment in the flexion-extension 

region designated for less/no pain. 

To calculate VARelements between repetitions, vectors were constructed between the 

wrist/forearm configuration of successive repetitions (e.g. 1-2, 2-3, …) in the Baseline and 

Experimental trials (Figure 5-3a,d,g). The length of each vector represents the distance of the 

wrist/forearm between successive repetitions of the radial-ulnar deviation task, and indicates the 

‘path’ taken within the ‘movement map’ (i.e. plot of flexion-extension vs. pronation-supination) for 

subsequent repetitions of the task. Each sixty-repetition trial was divided into 6 x 10 repetition 

epochs and the sum of the path length calculated for each epoch. The sum of path lengths during 

each epoch of the Baseline and Experimental trials were used to represent between-repetition 

VARelements to determine whether VARelements was increased as part of the search for a new, less 

painful movement strategy during pain. 

To investigate whether wrist/forearm angle was altered during the Experimental trial relative 

to Baseline, vectors were constructed between the average wrist/forearm configuration (i.e. 

combined flexion-extension and pronation-supination position) of the Baseline trial and the position 

of the wrist/forearm during each repetition (n=60) of the Experimental trial, when the wrist crossed 

neutral radial-ulnar deviation (Figure 5-3c,f,i). The length of each vector represents the distance of 

the wrist/forearm (at the time of crossing the neutral radial-ulnar deviation position) during the 

Experimental trial from the average position during Baseline. Deviation from this average position 

was used to determine whether a different movement solution was selected in the Experimental trial 

relative to Baseline. Each 60-repetition trial was divided into 6 x 10-repetition epochs (i.e. epochs 

1-6) and the average vector length calculated for each epoch. Average vector length for each epoch 

of the Experimental trial was used to represent the change of wrist/forearm position. 
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Figure 5-3. Two-dimensional movement maps that depict the three distinct movement strategies 

used by participants in the Pain 5-1 and Pain 5-0 experiments: ‘no change’ (a-c), ‘small change’ (d-

f), and ‘large change’ (g-i). In all plots (a-i) black and red circles/lines are used for the Baseline and 

Experimental trials, respectively. The forearm pronation-supination angle was plotted against the 

flexion-extension angle for the 60 repetitions of each trial. The lines in each group of sub-plots 

represent different analyses. To represent ‘sum of path length’ lines were plotted between 

consecutive repetitions of each trial starting with repetition 1 (large triangles) and ending with 

repetition 60 (large squares) (a,d,g). To represent ‘spread of wrist/forearm angles’ lines were plotted 

between the mean wrist/forearm position (large circles) and the 60 repetitions (small circles) for 

each trial (b,e,h). To represent ‘average vector length’ vectors (blue lines) were plotted between the 

mean wrist/forearm position of the Baseline trial and the 60 repetitions of the Experimental trial 

(c,f,i). Note that different scales are used for the axes of the three movement strategies, but a scale 

bar is shown in the top left corner of each sub-plot that represents 2° in each direction (i.e. 

pronation-supination, flexion-extension). Green shaded areas represent the experimentally 

determined less painful movement strategy.  
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5.3.5 Statistical analysis  

Statistical analysis was performed using Statistica 10 (Statsoft, Tulsa, OK, USA). Pain 

intensity during movements performed at the beginning (repetitions 1-20) and end (repetitions 41-

60) of the Experimental trial were compared between experiments (Pain 5-1 vs. Pain 5-0) using 

repeated measures analysis of variance (ANOVA). The habituation/sensitization data were 

compared with a t-test for dependent samples (two tails). Successful attainment of the task goal 

(percentage of repetitions in which participants terminated radial deviation within the target angle 

region) was compared between Trials (repeated measure - Baseline vs. Experimental trial) and 

Experiments (between-subject factor - Control vs. Pain 5-1 vs. Pain 5-0) with repeated measures 

ANOVA. The sums of path lengths were compared between Trials (repeated measure - Baseline vs. 

Experimental trial) and Epochs (repeated measure - Epoch 1-6) and Experiments (between-subject 

factor - Control vs. Pain 5-1 vs. Pain 5-0) with repeated measures ANOVA. Average vector lengths 

were compared between Epochs (repeated measure - Epoch 1-6) and Experiments (between-subject 

factor - Control vs. Pain 5-1 vs. Pain 5-0) with repeated measures ANOVA. The percentage of 

repetitions in which participants experienced the solution that was externally determined by the 

experimental paradigm to be less/non-painful was compared between Trials (repeated measure - 

Baseline vs. Experimental trial) and Experiments (between-subject factor - Pain 5-1 vs. Pain 5-0) 

with repeated measures ANOVA. Post hoc testing was undertaken using Fisher’s least significant 

difference test. Significance was set at p < 0.05. Data are presented as mean ± 95% CI throughout 

the text and figures. 

 

5.4 Results 

Did pain intensity change from the start to the end of the Experimental trial? 

Pain intensity was less at the end than the start of the painful Experimental trial (Main 

effect: Epoch: p = 0.01) for the Pain 5-1 experiment (start: 4.3 ± 0.7; end: 3.2 ± 0.7; mean pain 

reduction of 1.1 ± 0.5) and Pain 5-0 experiment (start: 4.3 ± 1.1; end: 3.7 ± 1.7; mean pain 

reduction of 0.6 ± 1.7). There was no evidence of habituation or sensitization to the painful stimuli 

during the Pain 5-1 experiment to explain the change in reported pain. When participants rated the 

pain intensity elicited by electrical stimuli delivered to the elbow at a variety of intensities before 

and after the movement trials (Figure 5-1) the stimulus intensities required to elicit pain of 5/10 

(pre: 3.3 ± 0.7 mV; post: 2.8 ± 0.5 mV; p = 0.31) and 1/10 (pre: 0.6 ± 0.2 mV; post: 0.7 ± 0.2 mV; p 

= 0.14) before and after the movement trials did not differ. In the Pain 5-0 experiment there was no 

difference in the stimulus intensity required to elicit 5/10 pain (pre: 3.2 ± 1.3 mV; post: 3.7 ± 1.6 
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mV; p = 0.15). Further, when participants rated their pain intensity during movements performed 

after completion of the Experimental trial, for the Pain 5-1 experiment participants rated pain of 4.4 

± 0.4 when passing through the moderate pain regions and 0.6 ± 0.3 when passing through the less 

painful region. For the Pain 5-0 experiment participants rated pain of 4.3 ± 0.4 when passing 

through the moderate pain regions and 0.0 ± 0.0 when passing through the non-painful region.  

 

Was attainment of the task goal affected by experimental elbow pain? 

Contrary to our first hypothesis, participants did not maintain successful performance of the 

task during pain as consistently as they did during the baseline condition. Although the task goal 

was achieved consistently during the Control experiment without pain (Baseline = 86 ± 10%; 

Experimental trial = 88 ± 6%; post hoc: p = 0.53), the goal was achieved less frequently 

(Interaction: Experiment × Trial: p = 0.03) during the Experimental trial than Baseline for the Pain 

5-1 (Baseline = 90 ± 3%; Experimental trial = 80 ± 6%; post-hoc: p = 0.001) and Pain 5-0 (Baseline 

= 95 ± 3%; Experimental trial = 82 ± 9%; post-hoc: p = 0.02) experiments. 

 

Did VARelements increase to search for a new movement solution?  

During the painful Experimental trials, VARelements, measured as sum of path length, was 

greater during the middle/end of the trial (Interaction: Experiment × Epoch: p = 0.01; Pain 5-1 

experiment epochs 3,4,6: post-hoc: p < 0.025; Pain 5-0 experiment epoch 3-6: post-hoc: p < 0.001; 

Figure 5-4) than the start (epoch 1), but this was not specific to the Experimental trial; the sum of 

path length was also greater during the middle/end epochs of the Baseline trials performed in the 

absence of pain (Main effect: Trial: p = 0.57; Interaction: Experiment × Trial × Epoch: p = 0.77). 

Taken together, contrary to our second hypothesis, this implies that VARelements was not increased in 

the presence of pain. There was no change in sum of path length between epochs in the Control 

experiment (post-hoc: p > 0.20). Sum of path length was greater in the Pain 5-0 experiment than the 

Pain 5-1 and Control experiments for epoch 5 (post-hoc: p < 0.035), but there were no differences 

between experiments for any other epoch (post-hoc: p > 0.08).  
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Figure 5-4. Group data for VARelements, measured with sum of path length. Group mean and 95% CI 

of sum of path length of 10-repetition epochs for the Control (white), Pain 5-1 (black), and Pain 5-

0 (grey) experiments. Asterisk (*) indicates significant difference (p < 0.05) between bracketed 

items. 

 

Was movement changed during pain?  

As expected, the wrist/forearm position, as measured by average vector length, did not 

change between the initial and final epoch during the Experimental trial of the Control experiment 

in the absence of pain (Interaction: Experiment × Epoch: p = 0.05; post-hoc: p > 0.10; Figure 5-5). 

That is, the wrist/forearm configuration in the flexion-extension and pronation-supination directions 

remained consistent throughout the Control experiment.  

Although average vector length was initially (i.e. epoch 1) unchanged between the three 

experiments (post-hoc: p > 0.50), as the trial progressed, average vector length was greater in the 

Pain 5-1 than Control experiment for epochs 2-6 (post-hoc: p < 0.05), and greater at the end (epoch 

6) than start (epochs 1-4) of the Experimental trial (post-hoc p < 0.04). That is, consistent with our 

hypothesis, wrist/forearm alignment in the flexion-extension and pronation-supination directions 

was changed in the Experimental trial, but this was achieved by progressively shifting the alignment 

away from the position used in the Baseline trial. Similarly, average vector length was greater for 

epoch 5 of the Pain 5-0 experiment than epoch 5 of the Control experiment (post-hoc: p = 0.03), 

and average vector length was greater in epoch 5 than epochs 1-3 (post-hoc: p < 0.02) during Pain 

5-0, again providing evidence of a modified movement solution.  
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Figure 5-5. Group data for change of wrist/forearm position, measured with average vector length. 

Group mean and 95% CI of average vector length of 10-repetition epochs for the Control (white), 

Pain 5-1 (black), and Pain 5-0 (grey) experiments. Asterisk (*) indicates significant difference (p < 

0.05) between bracketed items. 

 

Was the experimentally determined less/non-painful option selected during the painful 

Experimental trials? 

During the painful Experimental trials, the solution that was externally determined by the 

experimental paradigm to be less/non-painful was experienced (i.e. at least one repetition of the 

movement used the non/less painful solution) by 19 of the 21 participants in the Pain 5-1 

experiment, and all 6 participants in the Pain 5-0 experiment. However, contrary to our third 

hypothesis, the experimentally determined less/non-painful movement solution was not used more 

frequently during the painful Experimental trial than the Baseline trial in either the Pain 5-1 

(Baseline = 27 ± 4%, Experimental trial = 21 ± 10%) and Pain 5-0 (Baseline trial = 29 ± 11%, 

Experimental trial = 31 ± 17%) experiments (Main effect: Experiment: p = 0.14; Main effect: Trial: 

p = 0.34; Interaction: Experiment × Trial: p = 0.23). 

 

What strategies were adopted to modify movement solution? 

As our data showed that participants adapted movement during pain, but did not take 

advantage of between-repetition VARelements, we undertook additional qualitative and quantitative 

analysis to investigate the strategies used to change movement. Our major consideration was how 

the position of the wrist/forearm in the flexion-extension and pronation-supination directions was 

modified during the painful Experimental trial relative to Baseline as they attempted (not always 

successfully) to maintain achievement of the goal in the radial-ulnar deviation direction. 

Observation of the two-dimensional ‘movement maps’ (i.e. forearm pronation-supination vs. wrist 
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flexion-extension) generated for each participant revealed three distinct patterns of adaptation as 

shown in Figure 5-3. The first strategy involved wrist/forearm movement in the same region of map 

space during the Baseline and painful Experimental trials with little overall change in vector length. 

Participants who used a second strategy initially moved in the same map region during the painful 

condition but gradually moved to a new distinct region as the Experimental trial progressed with 

small advances with each repetition. A third strategy involved a large initial change in movement 

strategy where participants moved to a different map region during the painful trial on either the 

first or second repetition.  

To quantify each strategy and measure the similarity/difference between map regions used 

by each participant for the Baseline and painful Experimental trials an Experimental-Baseline ratio 

was calculated by dividing the average vector length for the Experimental trial (i.e. average vector 

length of the 60 repetitions in the Experimental trial relative to the mean position in the Baseline 

trial) by the average vector length for the Baseline trial (i.e. average vector length of the 60 

repetitions in the Baseline trial relative to the mean position in the Baseline trial). Participants were 

sub-grouped according to the Experimental-Baseline ratio: <1.5 = ‘no change’ of movement 

strategy; 1.5 – 4 = ‘small change’ of movement strategy; >4 = ‘large change’ of movement strategy. 

In the Pain 5-1 experiment, 8 participants had ‘no change’, 9 participants had a ‘small change’, and 

4 participants had a ‘large change’. Data of pain intensity, attainment of the task goal, VARelements, 

average vector length, and selection of the less/non-painful region for each sub-group in the Pain 5-

1 experiment are shown in Table 5.1. In the Pain 5-0 experiment, 2 participants had ‘no change’, 3 

participants had a ‘small change’, and 1 participant had a ‘large change’. In the Control experiment, 

all participants had ‘no change’ in movement strategy, which was expected given the Baseline and 

Experimental trials were identical and performed in the absence of pain. 

To determine whether movement strategy influenced the frequency with which participants 

experienced the experimentally determined solution during the Experimental trial relative to 

Baseline the three sub-groups were compared with a one-way ANOVA (Factor of sub-group: No 

change vs. Small change vs. Large change). Participants who had ‘no change’ of movement strategy 

used the experimentally determined solution region more frequently than participants who had a 

‘large change’ in strategy (Main effect: Sub-group: P = 0.036; post-hoc: p = 0.014) but not 

participants who had a small change of strategy (post-hoc: p = 0.085). 

Next, to determine whether movement strategy influenced the change of pain intensity 

between the start and end of the Experimental trial the sub-groups were compared with a one-way 

ANOVA (Factor of sub-group: No change vs. Small change vs. Large change). There was no 

difference in pain reduction between the three sub-groups (Main effect: Sub-group: P = 0.173). 



101 
 

 

Table 5-1: Movement data for each sub-group in the Pain 5-1 experiment 

 

 Movement change during pain 

 ‘No change’ ‘Small change’ ‘Large change’ 

Experimental-Baseline ratio 1.28 (0.11) 2.60 (0.45) 5.80 (1.28) 

Pain intensity (NRS score: 0-10) 

     Start (repetitions 1-20) 

     End (repetitions 41-60) 

     Mean pain reduction 

 

4.6 (1.0) 

3.1 (1.1) 

-1.6 (0.7) 

 

4.0 (1.0) 

2.7 (0.9) 

-1.3(1.0) 

 

4.5 (2.0) 

4.4 (2.4) 

-0.1 (0.6) 

Attainment of the task goal (%) 

     Baseline trial 

     Experimental trial 

 

87 (6) 

85 (9) 

 

90 (5) 

74 (9) 

 

94 (5) 

85 (12) 

VARelements: Sum of path length (a.u.) 

     Baseline trial 

     Experimental trial 

 

186.5 (36.7) 

165.8 (29.7) 

 

157.1 (20.8) 

184.4 (39.4) 

 

94.2 (54.7) 

141.0 (72.7) 

Average vector length (a.u.) 

     Baseline trial 

     Experimental trial 

 

3.2 (0.5) 

4.1 (0.5) 

 

3.5 (0.4) 

8.9 (1.8) 

 

2.1 (1.6) 

11.3 (6.7) 

Less/non-painful region (%) 

     Baseline trial 

     Experimental trial 

 

30 (8) 

37 (18)* 

 

25 (7) 

15 (10) 

 

30 (6) 

13 (5) 

Data presented as mean (95% confidence interval). 

Experimental-Baseline ratio – average vector length for the Experimental trial divided by the 

average vector length for the Baseline trial. Pain intensity – reported for the start and end of the 

Experimental trial, and the mean pain reduction during the trial. Attainment of the task goal – 

percentage of repetitions in which participants terminated radial deviation movement within the 

target angle region. Less/non-painful region – percentage of repetitions in which participants 

experienced the solution that was externally determined by the experimental paradigm to be 

less/non-painful. 

* P<0.05 for comparison between the ‘No change’ sub-group and ‘Large change’ sub-group;  

a.u. – arbitrary units; NRS – 11-point numerical rating scale (NRS, 0 = no pain, 10 = maximum 

pain imaginable) 
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5.5 Discussion 

We hypothesised that participants would continue to achieve the task objective during pain, 

would use VARelements to search for, and find, a less painful movement strategy, and if an option 

was provided that gave a large reduction in pain, this solution would be used more frequently than 

other movement solutions. Our data show that participants did seek a new solution and achieved a 

reduction in pain, but despite the substantial or complete pain reduction possible with the movement 

strategy externally provided by the experimental paradigm, this option was not selected and 

participants resolved to a solution with a more modest pain reduction. This observation has 

important implications for understanding the movement adaptation in the presence of nociceptive 

stimulation and pain. We consider the most plausible interpretation of our data is that factors in 

addition to reduction of pain are considered by the nervous system for the selection of a new 

movement solution. 

 

The effect of experimental elbow pain on the task goal 

In the present study the goal to reach the radial deviation target angle region was attained 

less often (~10% decrease) when pain was experienced in the Pain 5-1 and Pain 5-0 experiments 

than the Control experiment. This concurs with observations for some (Boudreau et al. 2007; 

Salomoni and Graven-Nielsen, 2012; Salomoni et al. 2013) but not all previous studies (Ingham et 

al. 2011; Study 1). There are four possible explanations for the difference between studies. First, the 

pain modality may be relevant. For instance, performance of the same radial-ulnar deviation task 

used here was maintained when acute elbow pain was induced by injection of hypertonic saline into 

the common extensor tendon at the elbow in an earlier study (Study 1). Hypertonic saline induces 

tonically maintained pain without clear relationship to movement, which contrasts the clear phasic 

relationship with the movement in the present study. Movement related pain may be more 

disruptive secondary to greater distraction from the task goal, or participants may have tolerated 

poorer task performance as a consequence of adaptation in the movement strategy. Although the 

radial-ulnar deviation range of motion was not related to pain intensity, participants might have 

anticipated a reward (i.e. reduced pain) from reduced radial deviation. Second, the emphasis placed 

on the goal attainment by the experimental paradigm is likely to be a determinant. Accurate task 

performance was emphasized as a critical aspect of the experimental paradigm by Ingham et al. 

(2011) who found no reduction in task accuracy with pain, but simply indicated as a target in the 

current study with no emphasis on importance of maintenance of goal. Third, the perceived 

cost/benefit of goal attainment differs between studies. If attainment of the goal was provocative of 

pain, this might reduce goal attainment (e.g. reduced maintenance of tongue force against a pad 
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coated with capsaicin (Boudreau et al. 2007)). Other work has specifically addressed the impact of 

benefits and/or costs associated with successful attainment, or non-attainment, of the task goal. 

Kurniawan et al (2010) manipulated goal attainment by providing participants with a reward (i.e. 

monetary reward) and penalty (i.e. painful electric stimuli) for accurate and inaccurate, respectively, 

pointing to a small target area in a repetitive pointing task. We encouraged participants to achieve 

the goal, but provided no explicit reward. In the absence of explicit benefit or cost participants in 

our study may have lacked motivation to maintain the task goal. 

 

Did participants use VARelements to find a new movement solution during painful trials?  

It has been proposed that by taking advantage of VARelements, the nervous system might find 

an alternative movement solution that is less provocative of pain, and then once exposed to this 

option, may choose to use this solution more frequently to reduce pain (Moseley and Hodges, 

2006). Consistent with this hypothesis several studies of multi-joint tasks have identified an initial 

increase in VARelements of various features of movement between repetitions (Moseley and Hodges, 

2006; Madeleine et al. 2008a). Although our data show increased VARelements (quantified by sum of 

path length) over time in the Pain 5-1 and Pain 5-0 experiments, this was similar for the painful 

Experimental trial and the non-painful Baseline trial and thus does not support the hypothesis in the 

current paradigm. A plausible explanation is that simple movements involving few options (as 

opposed to the multiple available degrees of freedom in complex multi-joint tasks) may lack 

sufficient flexibility to increase VARelements between repetitions. In a previous study of radial-ulnar 

deviation we showed a contrary reduction of VARelements with pain (Study 1). However, that study 

involved tonic pain that was not clearly related to movement which may have precluded a search 

for a strategy to reduce pain (Study 1). 

 

Did participants use a new movement solution during painful trials?  

Despite the lack of increased VARelements in the present study, participants found a new less 

painful movement solution. When painful electrical stimuli were applied throughout the 

Experimental trial in the Pain 5-1 and Pain 5-0 experiments, wrist/forearm position changed 

relative to Baseline in association with reduced pain intensity between the start and end of the trial. 

This involved three distinct patterns of adaptation to movement in the flexion-extension and 

pronation-supination directions; a large initial change in position, a progressive change in position, 

or a greater utilization of the experimentally provided less/non-painful position. 

Instead of systematically using between-repetition VARelements to search for a less painful 

solution, movement strategy gradually changed over multiple repetitions to explore alternative 
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movement options; ultimately resolving to one that was less painful. This interpretation supports the 

hypothesis that the motor system searches for a new, less painful movement strategy during pain 

(Moseley and Hodges, 2006; Madeleine et al. 2008a; Hodges and Tucker, 2011), but VARelements 

was not used as part of this search. It is possible that changes to movement during pain would be 

different for movement-related stimulation of nociceptors within muscles/tendons/ligaments in 

contrast to the pain applied externally to the skin via surface electrodes in the Pain 5-1 and Pain 5-0 

experiments. However, the major benefit of the pain model used in these experiments was that pain 

of specific intensities could be applied based on specific movements, and allowed us to answer the 

questions posed in this study. 

Despite exposure to the externally determined movement alternative associated with 

complete/major pain reduction, most participants (63%) did not select this movement strategy. 

Instead, they achieved a lesser pain reduction using an alternative solution. In the Pain 5-1 and Pain 

5-0 experiments a sub-group (37%) of participants used a similar movement strategy (i.e. 

wrist/forearm flexion-extension and pronation-supination position) in the Baseline and painful 

Experimental trials, and did use the less painful externally determined solution region during the 

Experimental trial. Despite these participants experiencing the solution region more frequently than 

those who had a ‘large change’ in strategy, these participants did not experience a larger benefit in 

terms of pain reduction. 

 

Why didn’t most participants select the movement strategy that was externally provided by the 

experimental paradigm to substantially/completely reduce pain?  

It was hypothesized that participants would use the externally determined solution provided 

in the experimental paradigm that gave a large benefit in terms of pain relief. Although participants 

selected an option that was less painful, it was generally not the solution provided by the 

experimental paradigm. However, as discussed above, some participants did select the solution 

provided by the experimental paradigm, but did not experience a greater reduction in pain than 

other strategies. There are several possible reasons why the less painful solution we provided was 

not used more often. First, to maintain this experimentally applied solution, it would be necessary 

for participants to “realize” that pain could be reduced and which movement plane (i.e. radial-ulnar 

deviation, flexion-extension, or pronation-supination) determined the intensity of electrical 

stimulation. Participants were not informed that pain could be modified by movement strategy. 

Earlier work has shown that participants can change movement strategy if they are explicitly made 

aware of the manipulation of the task (change in load sharing between limbs when efficiency of one 

limb is reduced (Hu and Newell, 2011)), but they do not modify their strategy if the same 
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manipulation is applied without their knowledge (Hug et al. 2014). Thus, despite exposure to the 

benefit (i.e. reduced pain) of the experimentally applied solution, failure to repeatedly use this 

solution might be explained by failure to interpret the implicit relationship between movement and 

pain. Further, participants may have failed to learn the relationship between movement and pain in 

the experimental paradigm because the adaptation was not intuitive for the nervous system. Other 

studies with simpler solutions to reduce pain have found successful adoption of an adapted 

movement strategy when acute pain is induced with electrical stimulation at the end-point of a 

repetitive pointing task (Kurniawan et al. 2010). Taken together, these results suggest participants 

may require explicit feedback about the pain and task to successfully adapt to acute pain, or the 

solution that is provided may need to be more intuitive or natural for the nervous system (e.g. 

gradual change in pain over a range of motion, rather than an abrupt step change in pain).  

Second, factors other than pain might be considered in selection of the preferred option for 

movement. An inherent assumption of the motor adaptation to pain is that during a painful episode 

the main priority of the nervous system is to seek a reduction in pain intensity. However, the results 

of this study and others (Tucker and Hodges, 2010; Hug et al. 2014) suggest otherwise. For 

instance, when acute pain was induced in the infrapatellar fat pad of the knee with injection of 

hypertonic saline, knee extension force was not applied in a direction that would be expected to 

consistently minimize loading of the fat pad, and thus minimize pain (Tucker and Hodges, 2010). 

Further, Hug et al (2014) investigated changes to muscle activation and stress (measured with 

electromyography and elastography, respectively) during acute pain induced by injection of 

hypertonic saline. They found muscle activation and stress did not change for tasks with few 

elements (i.e. the number of muscles and joints that may be used to perform the task), but were 

reduced during a task with more elements. Thus, it is likely that absolute reduction of pain intensity 

is not the sole consideration of the nervous system in a painful situation. The nervous system may 

prioritize other factors involved with movement such as optimization of end point error (Kording 

and Wolpert, 2004), energy usage of muscles (Anderson and Pandy, 2001), the ‘principle of 

minimal interaction’ (Feldman et al. 2007), and muscle force (Pandy et al. 1995). For instance, in 

non-painful situations it might be beneficial for the nervous system to minimize energy 

consumption to ensure muscles can meet the energy requirements for subsequent movements 

(Conley and Lindstedt, 2002; Todorov, 2002). Further, the “minimum variance model” predicts that 

the motor system activates muscles in a manner that minimizes end-point error of the final hand 

position in pointing movements (Harris and Wolpert, 1998). It is unclear how the nervous system 

balances these different factors (e.g. energy consumption, end-point error), and whether the weight 

or importance of each factor is altered in situations of acute pain or injury. 
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Third, the perceived benefit of an adaptation might be linked to the amplitude of the change 

in movement. By design, the experimentally applied solution for pain reduction was within the 

flexion-extension range of motion used by participants to perform the task in the non-painful 

Baseline trial. Our data of average vector length show that during pain the preferred solution for 

most participants (67%) was further from the mean wrist/forearm movement strategy than during 

the Baseline trial. The nervous system might perceive small adaptation as being insufficient, and 

more extreme adaptations may be preferred to interpret that sufficient action had been taken. Data 

from other studies of pain in the absence of injury (Hodges et al. 2013) or when pain is anticipated 

but without noxious input (Moseley et al. 2004; Tucker et al. 2012) highlight that changes to 

movement exceeds the adaptation required to protect the body part. Thus, despite the potential for 

greater pain reduction with adoption of the experimentally applied solution that was within the 

Baseline range of motion used to perform the task, this solution may not have been perceived as a 

sufficient change of strategy and a more extreme option may have been preferred, despite the lesser 

pain reduction. 

 

5.6 Conclusion 

This study found that participants searched for, and found, a less painful movement strategy 

during acute elbow pain, but VARelements was not used as part of this search. Although the new 

movement strategy was less painful, participants did not uniformly select the experimentally 

determined strategy that would provide a substantial or complete reduction of pain. This suggests 

the nervous system may consider factors in addition to reduction of pain when selecting a new 

movement solution. 
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6 Movement variability in chronic lateral epicondylalgia: 

Friend or foe? 

 

6.1 Abstract 

Purpose: Changes to VARelements in chronic pain have been considered during complex, multi-joint 

tasks, and results have been contrasting; e.g. reduced shoulder VARelements during reaching vs. 

increased knee VARelements during walking. These differences may be explained by the capacity of a 

specific element of a task to be varied. That is, some elements of a task may be tightly constrained 

by the nervous system and not able to change, whereas other may be more flexible. One way to 

consider this possibility is to study simple motor tasks that have few ‘elements’ and limited capacity 

to change (e.g. radial-ulnar deviation). We investigated whether participants with chronic LE had 

altered VARelements relative to pain-free controls during a radial-ulnar deviation task, and whether 

pain intensity in LE participants affected wrist position and VARelements. 

 

Methods: Twenty participants with chronic LE and twenty healthy controls performed 60 

repetitions of the radial-ulnar deviation task that provoked moderate pain for participants with LE. 

Movements of the affected wrist/forearm were recorded with a 3D motion analysis system. 

Participants verbally rated their pain intensity (0-10) after every 20 repetitions. Control participants 

did not report pain. VARelements was measured as the standard deviation (SD) and delta angle of 

motion in flexion-extension and pronation-supination. Pain intensity and VARelements data were 

compared between the start (repetitions 1-20) and end (repetitions 41-60) of the trial, and between 

Groups with repeated measures ANOVA. Linear regression analysis was used to assess the 

relationship between pain intensity, wrist flexion-extension position, and SD of wrist flexion-

extension, and the change in these three factors, in the LE group. 

 

Results: There was no main Group effect, which indicates no difference in VARelements between LE 

and Controls. SD of flexion-extension decreased between the start and end of the trial for the LE 

group, but not for Controls. In LE participants, lower pain intensity at the start was related to a 

more flexed wrist position and greater SD of flexion-extension. A greater change of wrist position 

into flexion was correlated with greater change in SD, and minimised pain provocation. 
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Conclusions: Participants with chronic LE moved the wrist into a more flexed wrist position and 

reduced VARelements to allow performance of the task in a less provocative manner.  

 

 

6.2 Introduction 

The goal of motor tasks can be maintained despite variability in the multiple degrees of 

freedom (e.g. motion of body segments/joints and muscle activity) involved in the task. Variation in 

these elements of a task (VARelements) might be important to explore different movement options 

(Dingwell et al. 2001) and distribute stresses between tissues (e.g. muscles, tendons) to reduce 

cumulative loading (Hamill et al. 1999). 

When the nervous system is challenged by acute pain it has been argued that VARelements 

may increase to search for a less painful solution and then decrease once a less painful strategy is 

identified (Moseley and Hodges, 2006). However, it is not yet clear what happens to VARelements 

during complex, multi-joint tasks if pain becomes persistent/chronic. For example, decreased 

VARelements has been observed in chronic knee (Hamill et al. 1999; Heiderscheit et al. 2002), 

neck/shoulder (Madeleine et al. 2008a; Madeleine et al. 2008b; Madeleine and Madsen, 2009) and 

low back (Lamoth et al. 2006; van den Hoorn et al, 2012) pain. Yet, other studies report increased 

VARelements in chronic knee (Cunningham et al. 2014) and neck/shoulder pain (Lomond and Côté, 

2010), and unchanged VARelements in chronic knee (Yakhdani et al. 2010) and foot pain (Ferber et 

al. 2005). Apart from differences in the methods used to quantify VARelements these differences 

between studies may be explained by three factors. 

First, the capacity of a specific task element to vary might underpin the degree of changes to 

VARelements. That is, some elements of a task may be restricted by the motor system depending on 

the underlying biomechanical constraints, and have limited capacity to change, whereas other 

elements may be more flexible. For instance participants with chronic neck/shoulder pain 

demonstrate reduced VARelements for some features of an upper limb task (e.g. acceleration in the 

flexion-extension and rotation directions) but not others (e.g. acceleration in the abduction-

adduction direction; range of motion in any direction) (Madeleine et al. 2008a). Second, consistent 

with other motor adaptation to pain (Hodges and Tucker, 2011), VARelements might be influenced by 

the intensity of pain experienced during the task (Heiderscheit et al. 2002). However, this 

relationship has not yet been explored. Third, VARelements can change over time with repetition of a 

task (Lomond and Côté, 2010). In that study both “fatigue” and neck/shoulder pain increased over 

the trial period, and either may have contributed to the decrease in VARelements. To investigate the 

potential roles of task complexity, pain intensity and fatigue, than may each affect VARelements in 
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people with chronic pain, we studied a simple repetitive wrist radial-ulnar deviation movement that 

would provoke pain in participants with chronic lateral epicondylalgia.  

Lateral epicondylalgia (LE) is a musculoskeletal condition characterised by lateral elbow 

pain provoked during gripping and manual tasks that require movement of the wrist and forearm 

(Coombes et al. 2009a). People with chronic LE adopt a more flexed wrist position (Bisset et al. 

2006) and have reduced activation of the extensor carpi radialis (ECR) muscle (Alizadehkhaiyat et 

al. 2007) during gripping, which might be beneficial to reduce painful loading of the common 

extensor tendon at the elbow. VARelements has not been considered in this chronic pain population.  

We aimed to determine whether participants with chronic LE relative to pain-free 

participants demonstrate; (i) altered VARelements during a task that involves radial-ulnar deviation 

movement (VARelements were considered in flexion-extension and pronation-supination directions); 

(ii) whether LE participants performed the task in a different position of the wrist in the flexion-

extension direction; (iii) whether pain intensity affected VARelements and wrist flexion-extension 

position in participants with chronic LE; and (iv) whether VARelements and wrist flexion-extension 

position changed over time with repetition of the task. We hypothesised that people with chronic 

LE would perform the radial-ulnar deviation task in a more flexed wrist position and with less 

VARelements than pain-free controls. 

 

6.3 Methods 

6.3.1 Participants 

Twenty participants with chronic LE participated in this study. Participants were recruited 

with newspaper advertisements and included if they had unilateral elbow pain for longer than 6 

weeks, pain intensity ≥3 on an 11-point numerical rating scale within the preceding week (NRS: 0 = 

no pain; 10 = worst pain imaginable), reduced pain-free grip strength (<50% compared to the 

unaffected upper limb), and pain over the lateral epicondyle of the humerus provoked by at least 

two of the following manoeuvres; gripping, palpation, or resisted wrist/middle finger extension 

(Coombes et al. 2012a). Participants were excluded if they had bilateral upper limb pain, 

physiotherapy treatment in the preceding three months, or corticosteroid injection in the preceding 

six months. Twenty participants with no history of LE were recruited using the same strategy into a 

control group. Participants in either group were excluded if they reported any major circulatory, 

musculoskeletal (other than LE in the chronic LE group), or neurological conditions that affected 

upper limb function. Participants in the LE and control groups were matched for age (±5 years), 

sex, and hand-dominance. The matched upper limbs (i.e. according to hand-dominance) of the 

control group, relative to the LE group, are referred as the ‘control matched affected’ and ‘control 
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matched unaffected’ upper limbs. Written informed consent was obtained from all participants prior 

to testing. Data collection was completed during one testing session for each participant. 

Demographic data for all participants are detailed in Table 6-1. All procedures were approved by 

the Institutional Medical Research Ethics Committee and conformed to the Declaration of Helsinki.  

 

6.3.2 Assessment of pain and disability in chronic LE 

 Participants in the LE group completed the ‘Patient rated tennis elbow evaluation’ (PRTEE), 

which allowed quantification of pain and disability (Rompe et al. 2007). Responses were scored on 

a series of 11-point Likert scales to give a total score that ranged from 0 (no pain or functional 

limitation) to 100 (worst imaginable pain with a very significant functional limitation). In addition, 

an 11-point NRS was used for participants to rate the intensity of the worst pain they had 

experienced over the preceding week. Scores for the PRTEE and 11-point NRS are shown in Table 

6-1. 

 

6.3.3 Grip force testing 

Participants performed a series of unilateral gripping tasks for both upper limbs. Grip force 

was measured using a load cell (Futek, Irvine, CA, USA), and recorded using a Power1401 Data 

Acquisition system at 100 samples/s with Spike2 software (Cambridge Electronic Design, 

Cambridge, UK). Participants were seated with the upper limb supported in 90° shoulder flexion, 

with elbow extended and forearm pronated. 

Three maximal voluntary contractions (MVC) with standardised strong verbal 

encouragement were recorded for the unaffected upper limb of participants with LE and both upper 

limbs for control participants (unaffected upper limb measured first for all participants). Force was 

increased over ~3 seconds then held at the maximum for ~2 seconds before returning to rest. Each 

trial was separated by 1 minute to limit possible effects of fatigue. The maximum force achieved 

during the three MVC trials was used to calculate the target gripping force for control participants 

in the radial-ulnar deviation task. 

Participants in the LE group performed three pain-free grip trials with their affected upper 

limb. Pain free grip is a highly reliable (ICC > 0.97; Stratford and Levy, 2004) clinical outcome 

measure for LE that correlates more strongly with disability and perceived improvement of 

symptoms than maximal grip strength (Stratford and Levy, 2004; Coombes et al. 2009a). Force was 

gradually increased until participants reported the first onset of pain, at which point they stopped 

gripping. Each trial was separated by 1 minute to limit possible effects of fatigue and sustained pain 

provocation from the previous trial. The average pain-free grip force recorded from the three 
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repetitions was used as the target force in the radial-ulnar deviation task for participants in the LE 

group. 

 

Table 6-1. Participant characteristics and grip force.  

 
Lateral Epicondylalgia 

(n = 20) 

Control 

(n = 20) 

Sex: Female 8 (40%) 8 (40%) 

Age in years 51 (4) 49 (4) 

Right arm dominant  18 (90%) 18 (90%) 

Dominant arm symptomatic 16 (80%) n/a 

Symptom duration (weeks) 29.8 (17.1) n/a 

PRTEE (score/100) 33.7 (6.7) n/a 

Worst pain during the past week  

(NRS score 0-10) 
5.1 (0.7) No pain 

 
LE     

Affected 

LE 

Unaffected 

Control 

Matched 

Affected 

Control 

Matched 

Unaffected 

Grip force (N) 84 (18)* 295 (28) 279 (29) 275 (32) 

Data presented as number (% of group) or mean (95% confidence interval). 

Grip force is reported for pain-free grip for LE Affected, and maximal voluntary contractions for 

LE Unaffected, Control Matched Affected, and Control Matched Unaffected. 

* P<0.05 for comparison between LE Affected, and LE Unaffected and Control Matched Affected 

and Control Matched Unaffected; PRTEE – patient rated tennis elbow evaluation; NRS – 11-point 

numerical rating scale (0 = no pain, 10 = worst pain imaginable; NRS); n/a – not applicable 

 

6.3.4 Kinematic measurements 

 Two clusters of four non-collinear reflective markers were attached to the upper limb to 

record radial-ulnar deviation and flexion-extension of the wrist, and forearm pronation-supination 

(Figure 6-1). One cluster was attached to the dorsum of the hand between the 2nd and 3rd 

metacarpals, and another was attached to the palmar surface of the forearm immediately proximal to 

the wrist joint. Motion of the clusters during the movement task was recorded by an 8-camera 3D 

motion analysis system (T040, Vicon Motion Systems Ltd. Oxford, UK) at 200 sample/s. An 

electrogoniometer (SG65, Biometrics Ltd., Newport, UK) was attached to the dorsal surface of the 

hand and distal end of the forearm to provide on-line feedback of radial-ulnar deviation position 

during the movement task (Figure 6-1A). The electrogoniometer signal was recorded at 100 

samples/s using a Power1401 Data Acquisition system and Spike2 software (Cambridge Electronic 
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Design, CED, UK). The two recording systems were synchronized by remotely starting and 

stopping the motion analysis system recordings with Spike2 software. 

 

 

Figure 6-1. Experiment setup showing the position of the upper limb from the side (A) and top (B) 

view for performance of the radial-ulnar deviation task. Note the dashed line indicates the neutral 

position of the wrist and forearm. Also note, in Study 3 the task radial-ulnar deviation task was 

performed with the elbow extended whilst gripping a load cell (not shown here). 

 

6.3.5 Procedures 

Participants sat in an upright posture with their forearm resting on a table and supported in 

mid-position between pronation and supination. Their elbow was positioned in relaxed extension 

(Figure 6-1). The forearm was secured with an adjustable clamp applied mid-way between the 

elbow and wrist. This setup allowed unconstrained wrist motion and forearm pronation-supination 

and limited the potential for arm movements that were unrelated to the experimental tasks. 

Prior to the experimental trials the neutral position of the wrist and forearm, and the 

maximal range of motion for radial and ulnar deviation, were determined. The neutral position was 

measured using a handheld goniometer with the wrist and forearm in the mid position of flexion 

and extension, radial and ulnar deviation, and forearm pronation and supination.  

The task involved repeated wrist radial-ulnar deviation movement of the affected limb with 

the elbow extended while gripping a load cell (Futek, Irvine, CA, USA). The radial-ulnar 

movement was between two target angle regions that were displayed on a computer screen 

positioned approximately 60 cm in front of the participant (Study 1). Participants were instructed to 

gradually increase their force (from zero) over ~3 seconds until they reached a target force 
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(achievement of the target force was indicated verbally by the experimenter). The target force for 

each participant in the LE group was set to his or her pain-free grip force of the affected upper limb. 

To determine an appropriate target force for Control participants, that reflected the pain-free grip 

force (as a % of their unaffected MVC) used by LE participants, the following formula was used:  

 

Target ForceCPn = (MVC UnaffectedLEPn / MVC unaffectedCPn) x Pain-Free Grip ForceLEPn,  

where CPn is the control participant matched to the specific LEPn participant 

 

Participants were asked to maintain the target grip force throughout the trial but were not given 

verbal or visual feedback of the force. Feedback of force was not provided as pilot testing indicated 

that participants failed to consistently move between the two target regions (i.e. the primary task 

goal) when feedback of both wrist movement and force were provided simultaneously. 

Pilot testing (n=4) was undertaken to confirm that the radial-ulnar deviation movement with 

the addition of the grip component would provoke pain. These participants with chronic LE 

experienced elbow pain during performance of the task (3.2 ± 1.9 /10 (mean ± 95% CI) on the 11-

point NRS).  

Participants were instructed to move from a target angle region 20-40% of their maximal 

ulnar deviation range to a target angle region 60-80% of their maximal radial deviation range. This 

movement was timed with a metronome set to 90 beats per minute (1 repetition = movement from 

ulnar to radial target and return to ulnar target). Emphasis was placed on reaching the target angle 

region in the radial deviation direction. Participants practiced the task until it was consistently 

completed at the correct frequency and between the two target angle regions. Data from this 

practice period were not analysed. One trial (i.e. sixty repetitions) of the task was recorded. After 

every 20 repetitions, participants in both groups were asked to verbally rate the average pain they 

experienced (using the 11-point NRS) over the preceding 20 repetitions. Participants were asked at 

the end of each 60-repetition trial whether they perceived any fatigue in the forearm or wrist during 

the task (i.e. “Did you experience any fatigue in your upper limb during the task?”). No participants 

reported experiencing fatigue during the radial-ulnar deviation task.  

 

6.3.6 Data analysis 

For analysis of successful attainment of the radial deviation target angle region, radial-ulnar 

deviation angle data recorded with the electrogoniometer were analysed offline using Spike2 

software. Successful attainment of the target region was represented as the proportion of repetitions 

(0-100 %) within two epochs (Start: repetitions 1-20; End: repetitions 41-60) in which the 
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participant successfully terminated radial deviation movement within the radial deviation target 

angle region. 

Grip force data and angle of the wrist/forearm in flexion-extension and pronation-supination 

were calculated offline using Matlab 7.14 (The Mathworks, Natick, MA, USA). The grip force and 

wrist/forearm angles were determined when the wrist passed through the radial-ulnar neutral 

position, as it moved from the ulnar target towards the radial target. The radial-ulnar neutral 

position was chosen as it is a standard and repeatable position in the radial-ulnar deviation range of 

motion that has the greatest potential for movement to be modified in the flexion-extension and 

pronation-supination directions (Study 1). However, some participants failed to cross the neutral 

radial-ulnar position during some repetitions. As a result, the force data and wrist/forearm angles 

could not be calculated for all repetitions. Data from any trial with fewer than 55 (of 60) full 

repetitions (i.e. repetitions that crossed neutral), or more than three consecutive repetitions that did 

not cross neutral, were not included in the analysis. Data for repetitions where the neutral radial-

ulnar position was crossed were represented within two epochs (Start: repetitions 1-20; End: 

repetitions 41-60). 

The grip force data were analysed to determine if participants maintained the target grip 

force during the trial. These data were expressed as a proportion of the target force within each 

epoch for each participant (i.e. 100% = maintenance of the target force; <100% = less than the 

target force). 

The mean wrist flexion-extension and forearm pronation-supination angles at the start 

(repetitions 1-20) and end (repetitions 41-60) were calculated when the wrist passed through the 

radial-ulnar neutral position, as it moved from the ulnar target towards the radial target. Positive 

values indicate wrist flexion and forearm pronation, whereas negative values indicate wrist 

extension and forearm supination, throughout the text and figures. Participants with chronic LE 

were sub-grouped according to whether they moved into a more flexed wrist position or more 

extended position between the start and end of the task. The mean change in pain intensity between 

the start and end of the trial for each sub-group were compared. 

VARelements was defined as variability in the angle of the wrist/forearm in planes other than 

that of the primary movement (i.e. wrist flexion-extension and forearm pronation-supination). 

VARelements was quantified as the standard deviation of the angle (SD°), and the mean of the 

absolute difference in angle between consecutive repetitions of wrist flexion-extension and forearm 

pronation-supination (mean delta angle; Δ°). The delta angles of the repetitions were summed and 

divided by the number of analysed repetitions within each epoch. Mean delta angle (rather than sum 

of delta angle, which is conceptually similar; Study 1) was used to quantify VARelements in the 
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current study to negate the effect of variation in the number of repetitions in each epoch that were 

calculated for some participants (as discussed above).  

 

6.3.7 Statistical analysis 

Statistical analysis was performed using Statistica 10 (Statsoft, Tulsa, OK, USA). Pain 

intensity in the LE group was compared between Epochs (Start vs. End) with a dependent t-test 

(two tail). Change in pain intensity between the start and end of the trial for participants who moved 

into a more flexed wrist position (n=8) and those who moved into a more extended wrist position 

(n=8) were compared with a dependent t-test (two tail). Note, participants in the control group did 

not report any pain (i.e. 11-point NRS = 0), and therefore no statistics were performed on these 

data. Successful attainment of the target angle region (i.e. % of analysed repetitions), target grip 

force data , VARelements (i.e. SD°, Δ°) and mean flexion-extension and pronation-supination angle, 

were compared with a repeated measures ANOVA with Epoch (Start vs. End) as a within subject 

factor, and Group (LE vs. Control) as a between-subject factor. Post-hoc testing was undertaken 

using Fisher’s least significant difference test. Linear regression analysis was used to assess the 

relationship between pain intensity, wrist flexion-extension position, and SD of wrist flexion-

extension, and the change in these three factors between the start and end of the trial at group level. 

Pearson correlation coefficients (r) were then calculated for each relationship. Significance level 

was set at p < 0.05. Data are presented as mean ± 95% CI throughout the text and figures. 

 

6.4 Results 

Pain measures 

 Pain intensity was greater at the end (4.5 ± 0.9 /10) than at the start (2.9 ± 0.6 /10) of the 

trial when participants in the LE group performed the task (P < 0.001). Participants who selected a 

more flexed position had a smaller increase in pain (1.4 ± 0.6) than participants who moved into 

more wrist extension (2.5 ± 0.6; P = 0.03). 

 

Successful attainment of the task goals 

There was no difference in attainment of the target angle region between LE and controls at 

the start (LE: 91 ± 5 %; Control: 90 ± 11 %) or end (LE: 84 ± 9 %; Control: 86 ± 11 %) of the trial 

(Interaction - Group × Epoch: P = 0.560; Main effect - Group: P = 0.928). The target angle region 

was achieved less often at the end (85 ± 7 %) than the start (90 ± 6 %) of the trial for both groups 

(Main effect - Epoch: P = 0.037).  
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There was no difference in attainment of the target grip force between LE and controls at the 

start (LE: 63 ± 13 %; Control: 76 ± 15 %) or end (LE: 41 ± 12 %; Control: 49 ± 13 %) of the trial 

(Interaction - Group × Epoch: P = 0.419; Main effect - Group: P = 0.263). The target force was 

achieved less often at the end (70 ± 10 %) than at the start (45 ± 9 %) of the trial for both groups 

(Main effect - Epoch: P = 0.001). 

 

Mean wrist/forearm angle  

Wrist flexion-extension angle moved into a relatively more flexed position between the start 

(-3.2° ± 4.6°) and the end (-1.0° ± 5.1°) of the trial (Main effect - Epoch: P = 0.019; Interaction - 

Group × Epoch: P = 0.765; Figure 6-2). Forearm pronation-supination angle became relatively 

more pronated, from 12.8° ± 2.5° at the start to 14.4° ± 3.1° at the end of the trial (Main effect - 

Epoch: P = 0.004; Interaction - Group × Epoch: P = 0.589). There was no difference between LE 

and controls in the mean wrist flexion-extension and forearm pronation-supination angles during 

performance of the radial-ulnar deviation movement (Main effect - Group: both P > 0.244).  

 

Variability of the elements 

Standard deviation: flexion-extension 

 SD of wrist flexion-extension angle (SD°flexion-extension) was less at the end than the start of 

the trial in the LE group (Interaction - Group × Epoch: P = 0.013; post-hoc: P = 0.008), but did not 

change between start and end in the Control group (post-hoc: P = 0.430) (Figure 6-2). However, 

post-hoc testing did not show differences between LE and Controls at the start (post-hoc: P = 0.109) 

or end (post-hoc: P = 0.542) of the trial. 

 

Standard deviation: pronation-supination 

There was no difference in SD of the pronation-supination angle (SD°pronation-supination) when 

the wrist passed through neutral ulnar-radial deviation between LE and Controls (Interaction - 

Group × Epoch: P = 0.757; Main effect - Group: P = 0.640; Main effect - Epoch: P = 0.287) (Figure 

6-2). 
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Figure 6-2. Group data for change of wrist/forearm position and VARelements. Group mean and 95% 

confidence interval of mean wrist/forearm position, standard deviation (SD), and mean delta angle 

(Δ°), for participants in the Control group (white) and chronic LE group (black) during performance 

of the radial-ulnar deviation task. For the mean wrist/forearm position, positive values indicate 

flexion/pronation, and negative values indicate extension/supination. Asterisk (*) indicates 

significant difference (P < 0.05) between bracketed items. 

 

Mean delta angle: wrist flexion-extension 

 Mean delta angle of wrist flexion-extension (Δ°flexion-extension) was less at the start than the 

end of the trial in the Control group (Interaction - Group × Epoch: P = 0.026; post-hoc: P = 0.002). 

In the LE group, there was no difference in Δ° flexion-extension between the start and end of the trial 

(post-hoc: P = 0.993). There was no difference between LE and Controls at the start (post-hoc: P = 

0.816) or end (post-hoc: P = 0.151) of the trial (Figure 6-2). 
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Mean delta angle: pronation-supination 

The mean delta angle (Δ° pronation-supination) was greater at the end of the trial than the start of 

the trial for both groups (Main effect - Epoch: P = 0.004). No other differences in this measure were 

observed between groups (Interaction - Group × Epoch: P = 0.718; Main effect - Group: P = 0.337) 

(Figure 6-2).  

 

Correlation between pain intensity, wrist flexion-extension positon, and VARelements 

In LE participants, lower pain intensity at the start of the trial was related to a more flexed 

wrist position (r = 0.57; P = 0.02) and greater SD in the flexion-extension direction (r = 0.62; P = 

0.01). A greater change of wrist position into flexion between the start and end of the trial was 

correlated with a greater change in SD in the flexion-extension direction (r = 0.53; P = 0.03). 

Correlations are shown in Figure 6-3.  

 

Figure 6-3. Correlations between pain intensity and movement strategy. Plots of pain rating (11-

point numerical rating scale; 0-10) at the start (repetitions 1-20) of the trial versus standard 

deviation (SD) of wrist flexion-extension at the start of the trial (A) and wrist flexion-extension 

position at the start of the trial (B), change in SD of wrist flexion-extension versus change in wrist 

flexion-extension (C), and change in pain intensity versus change in wrist flexion-extension 

position (D) when participants with chronic LE performed the task. Linear functions (A-C) and a 

quadratic function (D) were fitted to the data. Pearson correlation coefficients (r) and two-tailed 

probability values (P) are shown (A-D).  
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6.5 Discussion 

 Variability of the elements (VARelements) in the performance of motor tasks is thought to be 

important for musculoskeletal health. In this study VARelements of wrist/forearm angles were 

measured in participants with chronic LE and healthy controls during a wrist radial-ulnar deviation 

task. The task provoked moderate pain in participants with chronic LE. There was no difference 

between LE and controls in attainment of the task goals, but both groups attained the goals less 

often at the end than the start of the trial. Our results show there were no differences in 

wrist/forearm position or the magnitude of VARelements between the LE group and Controls. 

However SD°flexion-extension was decreased by the end of the trial compared to the start in people with 

LE. Further exploration of the data revealed that participants in the LE group who moved their wrist 

into a more flexed position and reduced SD°flexion-extension had the largest reduction in pain intensity. 

These data suggest participants with chronic LE moved into a more flexed wrist position to 

minimise pain, then reduced VARelements around this new wrist position so the less painful strategy 

was used for subsequent repetitions of the task. 

 

Was attainment of the task goal different in chronic LE? 

Successful attainment of the task goals (i.e. termination of radial deviation movement within 

the target region, and matching the target grip force) was not different between LE and controls. 

These data concur with the observation that attainment of the radial deviation target region for a 

similar radial-ulnar deviation movement (i.e. performed with the elbow in 90°, rather than 

extension) was not affected by acute experimental elbow pain induced by injection of hypertonic 

saline (Study 1). Contrary to these results, we have also shown that the radial deviation target region 

was attained less often when pain was induced with cutaneous electrical stimulation at the elbow 

(Study 2). One interpretation of the difference observed between studies in this thesis is that phasic 

pain (i.e. electrical stimulation), but not tonic pain experienced during movement (i.e. hypertonic 

saline, chronic LE), affects attainment of the radial deviation target angle region, possibly due to 

differences in distraction from the task goal by the differences in pain modalities, or by the clearer 

link between movement and pain in the phasic pain condition. 

Participants in both groups attained the task goals less often at the end of the trial than the 

start. The most likely explanation for this reduction is that participants were required to maintain a 

target grip force, which may have diverted attention from the primary goal of terminating radial 

movement within the target region. An alternative explanation is that participants’ motivation to 

perform the task accurately might have decreased from the start to the end of the trial. It is also 
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possible the reduction in goal attainment was related to fatigue, but this is unlikely given 

participants reported no fatigue after completion of the task. These data, combined with previous 

studies, suggest attainment of the goal is affected when pain is phasic (cutaneous electrical 

stimulation (Study 2)) but not tonic (i.e. chronic LE; hypertonic saline injection (Study 1)), and 

might be influenced by the participant’s motivation and attention to the task. 

 

Was VARelements different between participants with chronic LE and Controls?  

The effect of chronic pain/pathology on VARelements has been evaluated during multi-joint 

tasks such as walking and reaching, and results have been contrasting (e.g. decreased (Hamill et al. 

1999) vs. increased (Cunningham et al. 2014)). One factor that might influence VARelements during 

chronic pain is the number of elements involved in a task (e.g. many elements in complex tasks vs. 

few elements in simple tasks) and the potential for those elements to be varied depending on the 

underlying biomechanical constraints. We studied a simple motor task that has few degrees of 

freedom and thus limited capacity for VARelements to change. VARelements was considered in 

directions other than the primary radial-ulnar motion (i.e. flexion-extension and pronation-

supination). 

VARelements was not different between LE and Controls in the flexion-extension or 

pronation-supination directions at the start or end of the trial. One interpretation is that the wrist 

flexion-extension and forearm pronation-supination elements of the radial-ulnar deviation task are 

tightly constrained by the nervous system and thus not able to change in the LE group. However, 

contrary to this interpretation, SD°flexion-extension decreased between the start and end of the trial in the 

LE group but not Controls. The presence of ongoing pain in the LE group may motivate the nervous 

system to change movement strategy over time. 

 

Was there a relationship between movement strategy and pain intensity? 

We investigated whether there was a relationship between pain intensity experienced by 

participants with chronic LE and the different movement strategies used during the task. 

Participants who performed the radial-ulnar deviation task with greater VARelements at the start of the 

trial experienced less pain. It has been proposed that VARelements facilitates the distribution of 

stresses more broadly to reduce cumulative loading on specific tissues (Srinivasan and Mathiassen, 

2012). In participants with chronic LE, greater VARelements during the radial-ulnar task might be 

beneficial to reduce the cumulative loading on the painful/damaged regions of the common extensor 

tendon, with the potential for reduced pain. Alternatively, greater VAR might reflect a greater 
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potential to explore different options and alter movement strategy with repeated performance of the 

task (Moseley and Hodges, 2006).  

Participants who performed the task in a more flexed wrist position at the start of the trial 

experienced less pain. The most likely explanation is that this strategy may have served to reduce 

activation of the ECRB muscle during the movement task (Alizadehkhaiyat et al. 2007; Rojas et al. 

2007) to decrease painful loading of the common extensor tendon. Reduced activation of ECRB 

affects the coordinated activation of the forearm muscles, which is required to maintain the optimal, 

slightly extended wrist position during gripping (Shimose et al. 2011; Snijders et al. 1987). Less 

pain in a more flexed wrist position observed in the current study might explain the finding that 

participants with chronic LE adopted a more flexed wrist posture than healthy controls during a 

pain-free grip task (Bisset et al. 2006).  

Interestingly, participants who moved into a more flexed position between the start and end 

of the trial also had the largest reduction of VARelements and a lesser or no increase in pain during the 

task. This provides evidence that participants moved into a more flexed wrist position to minimise 

pain, then subsequently reduced VARelements around this new wrist position to retain the less painful 

strategy for subsequent repetitions of the task (Moseley and Hodges, 2006). These data concur with 

previous studies where VARelements was reduced (Study 1) and wrist/forearm position changed 

(Study 2) when a simple radial-ulnar task was performed during acute experimental pain. Although 

these correlations yielded significant relationships, they are based on a small sample size. Further 

studies with larger sample sizes are required to confirm the findings of this study. 

 

6.6 Conclusion 

Participants with chronic LE moved the wrist into a more flexed wrist position and reduced 

VARelements to allow performance of the radial-ulnar deviation task in a less painful manner. This 

concurs with earlier studies that found when the nervous system was challenged by acute 

experimental pain wrist/forearm position was altered and VARelements reduced during the simple 

task. The next step that is required is development of a model of sustained elbow pain to investigate 

the time-course of VARelements from before the onset of pain and several days thereafter, which 

could provide insight into the possible relationship between VARelements in acute and chronic pain. 
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7 Movement evoked pain and mechanical hyperalgesia 

after intramuscular injection of nerve growth factor: A model 

of sustained elbow pain 

 

7.1 Abstract 

Purpose: Lateral epicondylalgia (LE) presents as lateral elbow pain provoked by upper limb tasks. 

An experimental model of elbow pain provoked by movement/muscle contraction and maintained 

over several days is required to better understand the mechanisms underlying sustained elbow pain. 

This study investigated the time course and pain location induced by nerve growth factor (NGF) 

injection into a wrist extensor muscle, and whether movement and muscle contraction/stretch 

provoked pain.  

 

Methods: On Day 0 twenty-six painfree volunteers were injected with NGF (N=13) or isotonic 

saline (randomized) into the extensor carpi radialis brevis (ECRB) muscle of the dominant arm. On 

Day 2 pain was induced in all participants by hypertonic saline injection into ECRB. A Likert scale 

and patient-rated tennis elbow evaluation (PRTEE) was used to assess pain and functional 

limitation (Days 0-10). Pain intensity during contraction and stretch of ECRB, and pressure pain 

thresholds were recorded before and after injections on Days 0 and 2, and Days 4 and 10.  

 

Results: Compared with isotonic saline, NGF evoked: i) greater Likert pain ratings from 12 hours 

post-injection until Day 6, ii) greater PRTEE scores on Days 2 and 4, iii) greater pain during ECRB 

contraction/ stretch on Day 2, and iv) lower pressure pain thresholds on Day 4.  

 

Conclusions: Intramuscular NGF injection induced elbow muscle hyperalgesia and pain that was 

provoked by movement and muscle contraction/stretch for several days. This study presents a novel 

experimental human pain model suitable to study the sustained effects of lateral elbow pain on 

sensorimotor function and to probe the mechanisms underlying persistent musculoskeletal pain. 
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7.2 Introduction 

Patients with lateral epicondylalgia (LE) present with lateral elbow pain provoked by 

gripping and other manual tasks. Chronic LE involves sensorimotor changes, including bilateral 

mechanical hyperalgesia and reduced pain free grip strength (Coombes et al. 2012a), and strength 

deficits of wrist, elbow, and shoulder muscles (Alizadehkhaiyat et al. 2007; Coombes et al. 2012b). 

Whether the sensorimotor deficits found in chronic LE are a cause or effect of sustained pain and 

hyperalgesia remains unclear. 

Experimental models of pain have been used to investigate mechanisms that underlie 

sensorimotor changes during acute muscle pain, such as delayed muscle activation (Hodges et al. 

2003). Although these studies provide insight, interpretation is limited by the transience of the 

induced pain. This could explain inconsistencies between the effects of acute experimental pain and 

impairments of musculoskeletal pain conditions; e.g. pain provocation by muscle 

contraction/stretch (Tsao et al. 2010), deep-tissue hyperalgesia (Slater et al. 2003). Models of 

sustained pain and hyperalgesia that mimic typical behaviour of musculoskeletal pain conditions are 

needed to study the specific involvement of pain and nociceptive stimulation in the transition from 

acute to sustained musculoskeletal pain (Graven-Nielsen and Arendt-Nielsen, 2010). It is important 

to note that pain models cannot capture other factors that are likely involved in this transition to 

sustained pain, such as the affective and cognitive dimensions of pain (e.g. anxiety and depression, 

fear of movement and re-injury). 

The combined effect of delayed onset muscle soreness (DOMS) induced by eccentric 

exercise of the wrist extensor muscles and intramuscular injection of hypertonic saline has been 

used to study sustained elbow pain. That method induced mechanical hyperalgesia for two days, 

and reduced grip and wrist extension force at 24 hours following exercise (Slater et al. 2005). 

However, damage to contractile elements by eccentric exercise (Paulsen et al. 2012) can directly 

influence function, which precludes investigation of the independent effects of pain/nociceptive 

stimulation. An alternative is nerve growth factor (NGF), an endogenous neuromodulator vital for 

nerve development and reconstruction (Lewin and Mendell, 1993). Intramuscular injection of NGF 

induces mechanical hyperalgesia for up to 14 days and mild pain during muscle contraction that 

lasts up to 3 days after injection into the tibialis anterior (Andersen et al. 2008; Hayashi et al. 2013), 

masseter (Svensson et al. 2008) and supraspinatus muscles (Gerber et al. 2011). NGF injection 

provides a viable method to study sustained hyperalgesia, but the pain response to muscle 

contraction remains unclear. A recent study found electrically-stimulated muscle contraction 

evoked pain that was no worse whether the muscle fascia was injected with NGF or isotonic saline 

(Deising et al. 2012). However, that study does not preclude provocation of NGF-induced muscle 
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pain by muscle contraction, as electrical stimulation was limited to twitches, which do not replicate 

function, and hyperalgesia of fascia might not respond similarly to muscle hyperlagesia during 

contraction. Investigation of pain and hyperalgesia after NGF injection into elbow muscle and the 

relationship to muscle contraction and function is required to determine whether NGF injection 

could be a suitable model to study a potential cause-effect relationship between pain and 

sensorimotor changes in sustained elbow pain. Intramuscular injection of NGF into elbow muscle 

would be a useful model of sustained elbow pain if the induced pain lasted for up to a week and was 

provoked in a consistent manner by contraction and stretch of the upper limb muscles and by 

functional activities of the upper limb. 

This study investigated, in healthy subjects: 1) the time course of pain and hyperalgesia 

induced by injection of NGF into a wrist extensor muscle, and 2) whether movement and muscle 

contraction provoke pain in the NGF-induced hyperalgesic muscle.  

 

7.3 Methods 

7.3.1 Participants 

Twenty-six healthy volunteers (age 25.8 ± 5.4 years (mean ± SD); 7 females) participated in 

this study. Participants were excluded if they had a recent history of pain that affected the upper 

limb and/or neck, a history of neurological, musculoskeletal or mental illness, were currently using 

analgesics and/or anti-inflammatory medications, or if they were participating in more than two 

sessions of muscle training exercises per week that involved the upper limbs. All participants were 

given a written and verbal explanation of the study and written informed consent was obtained prior 

to inclusion. The study was approved by the local ethics committee (N-201200640) and conformed 

to the Declaration of Helsinki. Data collection was conducted at Aalborg University, Denmark. 

 

7.3.2 Study design 

A randomized, double blind, placebo-controlled study design was used to study the nature 

and time course of pain induced by NGF injection. Participants attended four experimental sessions 

over 11 days (Figure 7-1). On Day 0, participants were randomized into one of two groups: NGF 

group (n = 13; 5 females) or control group (n = 13; 2 females). Participants were blinded to group 

allocation for the duration of the study. On Day 0 participants received an injection of NGF (NGF 

group) or isotonic saline (control group) into the extensor carpi radialis brevis (ECRB) muscle of 

the dominant upper limb. On Day 2 hypertonic saline-induced pain was evoked in the ECRB 

muscle of the dominant limb in all participants to investigate whether NGF injection sensitized the 
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muscle to chemical irritation. The behaviour of pain induced by NGF to a range of stimuli was 

studied to identify whether it reacted in a manner consistent with clinical pain. To address this 

issue, assessments of the muscle pain and functional limitation, movement-evoked pain, response to 

muscle contraction and stretch, and pressure pain sensitivity were performed before and after 

injections on Days 0 (NGF/ISO) and Day 2 (hypertonic saline), and on Days 4 and 10. Participants 

completed a daily diary of their elbow pain from Day 0 to Day 10.  
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Figure 7-1. Timeline of experiment. Participants attended four experimental sessions (Days 0, 2, 4, and 10), and completed a daily diary of their elbow 

pain (Day 0 to Day 10) at approximately midday and in the evening of Days 0-4 and only in the evening on Days 5-10.  

AM – morning; PM – evening; PRTEE – patient rated tennis elbow evaluation; PPT – pressure pain threshold; NGF – nerve growth factor; ISO – 

isotonic saline. 
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7.3.3 NGF-induced pain and hyperalgesia 

A single bolus of NGF (5 μg, 0.2 ml; recombinant human NGF, prepared by the pharmacy 

at Aalborg University Hospital), or isotonic saline (0.2 ml 0.9%) was injected into the ECRB 

muscle of the dominant upper limb on Day 0. The injection site was 1 cm lateral to a point 5 cm 

distal to the lateral epicondyle along a line from the lateral epicondyle to the midline of the wrist. 

Palpation during contraction (radial deviation and extension of the wrist) and ultrasound imaging of 

the anatomical boundaries of the muscle confirmed that this site related to ECRB. Separate 

examiners prepared and administered the injection, and performed the assessments to ensure 

blinding of the assessor and participant. 

 

7.3.4 Questionnaires on pain intensity and functional limitation 

A modified 7-point Likert scale that relates the pain intensity to specific activities (Slater et 

al. 2005; Andersen et al. 2008) was used to assess muscle pain intensity at the beginning of each 

session: 0 = ‘a complete absence of pain/soreness’; 1 = ‘a light pain/soreness in the muscle felt only 

when touched/a vague ache’; 2 = ‘a moderate pain/soreness felt only when touched/a slight 

persistent ache’; 3 = ‘a light muscle pain/soreness when lifting objects or carrying objects’; 4 = ‘a 

light muscle pain/soreness, stiffness or weakness when moving the wrist or elbow without gripping 

an object’; 5 = ‘a moderate muscle pain/soreness, stiffness or weakness when moving the wrist or 

elbow’; 6 = ‘a severe muscle pain/soreness, stiffness or weakness that limits my ability to move’. 

The patient-rated tennis elbow evaluation (PRTEE) was used to measure pain and functional 

limitation (Rompe et al. 2007) at the beginning of each session. It has excellent test-retest reliability 

(r=0.93) and good correlation with other functional scales such as the Disability of Arm and 

Shoulder (DASH) questionnaire (r=0.87) in the tennis elbow population (Rompe et al. 2007). The 

task-related questions are scored on an 11-point Likert scale, with calculation of separate subscales 

for pain and function (Function A: activities specific to the upper limb; Function B: general 

activities), and a total score ranging from 0 (no pain and no functional limitation) to 100 (worst 

imaginable pain with a very significant functional limitation).  

 

7.3.5 Location of NGF-induced pain 

Participants drew the distribution of their pain induced by the injection of NGF or isotonic 

saline on an anatomical drawing of the upper limb at the beginning of each session. These drawings 

were digitized (Matlab 7.14) and the size of the painful area represented as a percentage of the total 

surface area of the anterior and posterior surfaces of the upper limb as represented by the drawing. 
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7.3.6 Pain diary 

Participants completed a pain diary at approximately midday and in the evening on Days 0-4 

and only in the evening on Days 5-10. The diary consisted of the 7-point modified Likert scale, an 

anatomical drawing of the upper limb upon which the pain area was drawn, and four questions 

where participants rated their pain on an 11-point numerical rating scale (NRS): i) when the arm 

was at rest; ii) when doing a task with repeated arm movements; iii) when pain was at its least; and 

iv) when pain was at its worst. 

 

7.3.7 Contraction- and stretch-evoked pain 

The influence of contraction and stretch of the ECRB muscle on pain intensity was 

examined for both upper limbs. Participants performed the muscle contraction tasks (i.e. wrist 

extension and gripping; order randomized) with the upper limb supported on a platform in 90° 

shoulder flexion, elbow extension and forearm pronation. Participants were instructed to maintain 

this upper limb position during each contraction. A force sensor (MC3A 250, AMTI, USA) was 

mounted above the hand being tested to record the force exerted during the wrist extension 

contractions. Gripping force was measured with a custom-made grip dynamometer (grip width = 64 

mm), consisting of a strain gauge (CCT Transducers, Italy) interposed between two padded bars. 

Three maximal voluntary contractions (MVC) with strong verbal encouragement were performed 

for each task. Force was gradually increased to a maximum within each 5 s trial. Each trial was 

separated by 1 min to limit possible effects of fatigue. Immediately after each contraction the 

participants indicated whether pain intensity increased, decreased or was unchanged during the 

contraction, and verbally rated the pain intensity on an 11-point NRS anchored with ‘no pain’ at 0 

and ‘maximum pain imaginable’ at 10. The maximum force achieved during the three MVC trials 

was used for the submaximal trials. Three submaximal contractions were performed before and 

after the injections. The MVC recorded on Day 0 (i.e. before NGF/ISO injection) was used to 

calculate the 10% MVC force target required for submaximal trials performed on Days 0, 2 and 4. 

A target force of 10% MVC was chosen as it was comparable to the amount of force required for 

many everyday tasks, and pilot tests (n=3) indicated that it allowed participants to perform three 

submaximal contractions without onset of forearm muscle fatigue. In the submaximal tasks 

participants gradually increased force from zero to the 10% MVC target (displayed on a computer 

screen) over 5 s, maintained the target force for 10 s, and then reduced force to zero over 5 s. 

Participants were instructed to match the 10% MVC target as closely as possible. Participants rested 

for 30 s between submaximal contractions. Immediately after each contraction the participants 
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indicated whether there was an increase, decrease or no change in pain intensity during the 

contraction, and verbally rated the pain intensity on the 11-point NRS. 

For the stretching task, the upper limb was supported on a platform in 90° shoulder flexion, 

elbow extension, and the forearm in neutral rotation. The wrist was passively moved into flexion or 

ulnar deviation in separate trials (order randomized), held for 5 s, and then returned to the starting 

position (Palmer and Epler, 1998). One trial of each stretch (i.e. flexion, ulnar deviation) was 

performed at each experimental session. Immediately after each stretch, participants indicated 

whether there was an increase, decrease or no change in pain during the stretch, and verbally rated 

the pain intensity on the 11-point NRS. 

 

7.3.8 Pressure pain sensitivity 

Pressure pain thresholds (PPT) were measured bilaterally with an electronic algometer 

(Algometer Type II, Somedic AB, Sollentuna, Sweden) applied to the ECRB muscle (injection 

site), low back (3 cm lateral to the spinous process of the 4th lumbar vertebra), and over the tibialis 

anterior muscle belly. Pressure applied via the algometer probe (1 cm2) was increased at a rate of 30 

kPa/s, and the participant was instructed to press a button when the pressure sensation changed to 

one of pain, at which point the application of pressure ceased. Three measurements were recorded 

at each site and the mean value used for analysis. The PPT data were expressed as a percentage of 

the PPT measures recorded at the baseline session (Day 0 pre-injection). 

 

7.3.9 Saline-induced muscle pain and related measures 

A single bolus of hypertonic saline (0.5 ml, 5.8%) was injected into the muscle belly of 

ECRB (same location as NGF/ISO injection) on Day 2. The pain intensity was recorded 

continuously on a 10-cm electronic visual analogue scale (VAS; sampling frequency of 1 Hz), 

where 0 cm indicated ‘no pain’ and 10 cm ‘maximum pain imaginable’. Participants performed 

gripping and wrist extension tasks (see above) immediately after the injection. Participants were 

instructed to begin rating the saline-induced pain intensity immediately after the injection and to 

update their pain rating after each repetition of the gripping and wrist extension tasks until the pain 

ceased. The maximum VAS scores reported by each participant during each task (i.e. gripping and 

wrist extension) were used for further analysis. After the saline-induced pain had ceased, 

participants drew their pain distribution on the standardized drawing of the upper limb. 
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7.3.10 Statistical analysis 

Statistical analysis was performed using Statistica 9 (Statsoft, Tulsa, OK, USA). According 

to a Kolmogorov-Smirnov test for normality the majority of PPT data, pain area data, and VAS 

scores during saline-induced pain were normally distributed. The contraction- and stretch-evoked 

pain and questionnaire data (e.g. Likert scale, PRTEE, pain at rest, worst pain) were not normally 

distributed and were therefore analyzed with non-parametric tests. Data are reported as mean and 

95% confidence intervals or median and interquartile range when appropriate. Significance was set 

at P < 0.05 for all analyses. 

Comparison of the effects of injection of NGF and ISO: To determine whether NGF 

injection induced muscle hyperalgesia, PPTs were compared between sessions (Day 0 post-

injection vs. Day 2 pre-injection vs. Day 4 vs. Day 10), and between groups (NGF vs. ISO) with a 

mixed-model repeated measure analysis of variance (RM-ANOVA). To determine the time course 

of area of pain, these data were compared between sessions (Day 0 post-injection and 15 

subsequent assessments) and a between-subject factor of group (NGF vs. ISO) with a mixed-model 

RM-ANOVA. A Bonferroni post-hoc test was used for the PPT and area of pain data. To determine 

whether pain induced by NGF was provoked by muscle contraction and stretch, the non-normally 

distributed NRS data during these tasks were analyzed in several ways. First, a Kruskal-Wallis test 

on ranks was used to test for differences between groups/side (Group: NGF, ISO; Side: ipsilateral, 

contralateral) at each session. This was followed by a Mann Whitney U test to probe the specific 

differences when significant. Second, a Friedman test was used to test for differences between 

sessions within each group (NGF, ISO) and side (ipsilateral, contralateral). This was followed by a 

Wilcoxon matched pairs test when significant to investigate differences between individual 

sessions. Bonferroni corrections were used to adjust p-values for multiple comparisons.  

Effects of hypertonic saline: To determine whether NGF injection sensitized the muscle to 

chemical irritation PPTs were compared between sides (Ipsilateral vs. contralateral), sessions (Day 

2 pre-injection vs. Day 2 post-injection) and a between-subject factor of group (NGF vs. ISO) with 

a mixed-model RM-ANOVA. The VAS scores during saline-induced pain were analyzed with a 

two-way RM-ANOVA with a between-subject factor of group (NGF vs. ISO), and the task-

sequence (the task that was performed first: gripping vs. extension). A Bonferroni post-hoc test was 

used for the PPT and VAS scores data. An independent t-test (two tails) was used to compare the 

pain area data.  
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7.4 Results 

Self-reported NGF-induced pain intensity 

The 7-point Likert scale scores were higher in the NGF group than the ISO group from the 

evening of Day 0 until Day 6 (P < 0.003, Figure 7-2A). For the NGF group, peak pain was 

experienced on the morning of Day 2 (P = 0.001) and then gradually returned to zero by Day 10 (P 

= 0.068). No participants in either group reported elbow pain at rest (P = 1.00). When participants 

reported the worst pain they experienced in the preceding 12 hours (Days 0-4) or 24 hours (Days 5-

10), the NRS scores were greater in the NGF group than the ISO group from the evening of Day 0 

until Day 5 (P < 0.003, Figure 7-2B). Those in the NGF group reported greater pain with repeated 

arm movements than the ISO group, reflected by higher NRS scores recorded in the pain diary, 

between Day 0 and Day 4 (P < 0.003, Figure 7-2C).  

The total PRTEE and component scores (Pain, upper limb activities, general activities) for 

participants injected with NGF were greater than those in the ISO group when measured on both 

Day 2 (P < 0.001) and Day 4 (P < 0.001, Figure 7-3).  

 Participants injected with NGF reported a larger area of pain than those injected with 

isotonic saline (RM-ANOVA interaction: group × session: F15 = 6.29, P < 0.001) from the evening 

of Day 0 until the evening of Day 4 (post-hoc: P < 0.05, Table 7-1, Figure 7-4).  

 

Contraction-evoked pain after NGF vs. ISO 

On Day 2 (before the hypertonic saline injection) participants reported greater pain 

provocation during maximal wrist extension contraction (i.e. higher NRS scores) for the limb 

injected with NGF than the limb injected in the ISO group and the contralateral limbs in either 

group (NGF, ISO) (P < 0.017, Figure 7-5). There were no differences in pain intensity evoked by 

contraction at 10% MVC (P > 0.15). No participants reported pain (NRS = 0) following muscle 

contraction of the contralateral limb (i.e. non-injected limb).  

 

Stretch-evoked pain after NGF vs. ISO 

When the ECRB muscle was stretched by passively moving the wrist into flexion there was 

greater provocation of pain (i.e. higher NRS scores) for the injected limb of the NGF group than the 

injected side of the ISO group, and the contralateral limb in either group (NGF, ISO) on Day 2 (P < 

0.001, Figure 7-5). Stretch into ulnar deviation had negligible effect on pain (Figure 7-5). The 

stretch of the ECRB muscle in the limb contralateral to the injection did not produce pain for 

participants in either group (NRS = 0). 
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Pressure pain sensitivity after NGF vs. ISO 

The RM-ANOVA of the PPTs recorded at the ipsilateral elbow showed an interaction 

between group and session (F3 = 3.19, P = 0.029; Figure 7-6A). PPTs were lower in the NGF group 

at Day 2 than Day 0 post-injection (post-hoc: P = 0.005) and Day 10 (post-hoc: P < 0.001), and 

lower on Day 4 than Day 0 post-injection (post-hoc: P = 0.027) and Day 10 (post-hoc: P < 0.001). 

There were no such differences between sessions for the ISO group. PPT was lower for the NGF 

group than the ISO group on Day 4 (post-hoc: P = 0.03) but not at any other session (post-hoc: P > 

0.05). For the contralateral elbow there was a main effect of session (F3 = 12.36, P < 0.001). PPT on 

Day 10 was greater (regardless of group) than all other sessions (post-hoc: P < 0.05). As expected, 

PPT was not significantly affected at the low back (Figure 7-6B) or tibialis anterior (Figure 7-6C).  

 

Effect of hypertonic saline on induced pain behaviour 

There was no difference between groups (NGF: 6.6 ± 2.9 arbitrary units; ISO: 5.1 ± 3.3) 

with respect to the area of pain following the hypertonic saline injection (Figure 7-4). During pain 

induced by hypertonic saline, the peak VAS scores recorded when participants performed the 

submaximal contraction tasks (i.e. gripping and wrist extension) were greater for participants in the 

NGF group (7.3 ± 0.8 cm) than the ISO group (6.2 ± 0.6 cm; RM-ANOVA main group effect: F1 = 

5.01, P = 0.036). Hypertonic saline injection at the elbow did not change the PPTs for either group 

at the elbow, low back or tibialis anterior muscle (Table 7-2). 
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Figure 7-2. Group data for the 10-day pain diary. Median scores (75th percentile) from the 10 day 

pain diary for the NGF (nerve growth factor, open bars) and ISO (isotonic saline; median score was 

always 0, data for the 75th percentile is shown on the right side of the NGF data for each time point) 

groups including (A) the 7-point Likert scale (0 = ‘a complete absence of pain/soreness’; 6 = ‘a 

severe muscle pain/soreness, stiffness or weakness that limits my ability to move’), (B) the 

numerical rating scale of worst pain intensity (0-10), and (C) the numerical rating scale of the pain 

experienced with repeated arm movements (0-10).  

* – Significant increase compared with the ISO group, Mann Whitney and Bonferroni: P < 0.003.  

# – Significant increase compared with Day 0 am, Wilcoxon and Bonferroni: P < 0.003. 
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Figure 7-3. Group data for the patient rated tennis elbow evaluation (PRTEE). Median (75th 

percentile) total score for the PRTEE questionnaire for the NGF (nerve growth factor, open bars) 

and ISO (isotonic saline, solid bars) groups at Day 2 and 4. The total score is further represented by 

the three subscales Pain, Function A (activities specific to the upper limb), and Function B (general 

activities).  

* – Significant increase compared with the ISO group, Mann Whitney and Bonferroni: P < 0.017. 

 

 

Figure 7-4. Pain chart drawings. Pain drawings of painful areas immediately after the NGF/ISO 

(nerve growth factor/isotonic saline) injection (Day 0 post-injection), the evening of Day 0 (Day 0 

pm), before the hypertonic saline injection on Day 2 (Day 2 pre-injection), pain evoked by 

hypertonic saline injection (Day 2 hypertonic saline injection), and the evenings of Day 4, 6, 8 and 
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10. The number of participants in each group who reported pain is indicated for each time-point. 

The crosses indicate the injection site. 

 

 

Figure 7-5. Group data for pain intensity scores during muscle contraction and stretch. Median 

(75th percentiles) pain intensity scores on a numerical pain scale (0-10) in the NGF (nerve growth 

factor, open bars) and ISO (isotonic saline, solid bars) groups at Day 2 and 4 during maximal (A) 

and submaximal wrist extension (B), maximal (C) and submaximal gripping (D), and when ECRB 

was stretched by passively moving the wrist into maximal flexion (E), and ulnar deviation (F).  

* – Significant increase compared with the ISO group, Mann Whitney and Bonferroni: P < 0.017. 
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Table 7-1: Size of the painful area  

 Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

 am Pm am pm am pm am pm am pm       

NGF 
0.0 

(0.0) 

3.4* 

(2.9) 

4.6*,# 

(1.8) 

5.0*,# 

(1.1) 

5.5*,# 

(1.8) 

5.3*,# 

(1.4) 

4.9*,# 

(1.5) 

4.5*,# 

(1.6) 

3.6*,# 

(1.4) 

4.2*,# 

(1.8) 

2.7 

(1.2) 

2.2 

(1.1) 

1.8 

(1.1) 

1.2 

(1.1) 

0.6 

(0.6) 

0.3 

(0.4) 

ISO 
0.0 

(0.0) 

0.2 

(0.1) 

0.2 

(0.1) 

0.2 

(0.1) 

0.3 

(0.2) 

0.4 

(0.3) 

0.1 

(0.1) 

0.1 

(0.2) 

0.1 

(0.1) 

0.1 

(0.1) 

0.1 

(0.1) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

0.0 

(0.0) 

 

NGF – nerve growth factor group; ISO – isotonic saline group; Mean (95% confidence interval); * – Significantly enlarged compared with the ISO 

group, Bonferroni: P < 0.05; # – Significantly enlarged compared with Day 0 am, Bonferroni: P < 0.05 

 

Table 7-2: Pressure pain thresholds for the elbow, low back and tibialis anterior 

 Elbow Low back Tibialis anterior 

 Day 2 pre Day 2 post Day 2 pre Day 2 post Day 2 pre Day 2 post 

NGF-dominant 62.6 (13.3) 64.6 (16.6) 85.0 (9.7) 89.4 (14.4) 90.8 (10.7) 88.1 (12.3) 

NGF-contralateral 92.2 (5.8) 93.1 (9.1) 93.4 (13.1) 100.1 (13.9) 89.4 (9.9) 91.8 (11.8) 

ISO-dominant 85.5 (12.8) 78.3 (13.4) 97.2 (14.2) 95.9 (8.4) 99.0 (12.3) 99.1 (11.7) 

ISO-contralateral 104.0 (12.7) 101.6 (12.3) 98.3 (17.9) 103.8 (22.1) 99.5 (11.5) 106.3 (8.6) 

 

NGF – nerve growth factor group; ISO – isotonic saline group; Mean (95% confidence interval) pressure pain thresholds normalized to values recorded 

pre-injection on Day 0 (i.e. 0–100 %); Pre – Pre hypertonic saline injection at Day 2 ; Post – Post hypertonic saline injection at Day 2  
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Figure 7-6. Group data for pressure pain threshold testing. Mean (95% confidence interval) of 

pressure pain threshold from the NGF (nerve growth factor, open bars) and ISO (isotonic saline, 

solid bars) groups normalized to values recorded pre-injection on Day 0 (i.e. baseline) for the elbow 

(A), low back (B) and tibialis anterior muscle (C).  

* – Significant increase compared with the ISO group, Bonferroni: P < 0.05. 
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7.5 Discussion 

This study is the first to demonstrate that intramuscular injection of NGF in the ECRB 

muscle induces lateral elbow pain and leads to reduced function lasting for several days. A unique 

feature of this model is the provocation of pain with movement of the upper limb and by contraction 

and stretch of the injected muscle. These features indicate that intramuscular injection of NGF 

induces pain that responds in a manner typical of sustained clinical pain, and is therefore a suitable 

model to study the effect of sustained lateral elbow pain on motor control of the upper limb. 

 

Self-reported pain and functional effects of intramuscular NGF injection  

Participants who received an injection of NGF reported lateral elbow pain that peaked 48 

hours after injection and lasted for an average of 6 days. Although sustained pain/soreness 

following NGF injection has been reported, there are discrepancies between the present and 

previous results. A single NGF injection given into the tibialis anterior muscle induced pain that 

peaked after 24 hours with a lower intensity (Likert scale: 2) and lasted for 7 days (Andersen et al. 

2008), whereas pain after three separate injections on consecutive days peaked 24 hours after the 

third injection (Likert scale: 3) and lasted for a further 14 days (Hayashi et al. 2013). Injection of 

NGF into ECRB induced sustained muscle pain that was more intense than after injection into 

tibialis anterior (i.e. higher scores on the Likert scale) but had a similar duration, which implies 

duration might be independent of initial pain intensity.  

Data from the PRTEE, which evaluates pain and functional limitation, concurs with findings 

from the Likert scale. Participants injected with NGF reported greater pain and reduced function on 

the PRTEE (total score and sub-scales) than those in the ISO group at Day 2 and Day 4. The Day 2 

PRTEE scores of individuals injected with NGF (18 ± 7) were similar to that reported by patients 

with mild chronic LE (24 ± 6 (mean ± SD); Coombes et al. 2012a). Thus, injection of NGF into the 

ECRB muscle induced comparable but slightly less functional limitation and pain after 2 days than 

participants with mild chronic LE who had pain for approximately 26 weeks.  

The area of pain was greatest 48 hours after the NGF injection and was primarily located 

around the injection site. Pain spread into the proximal half of the forearm in 12/13 participants, 

similar to DOMS at the elbow (Slater et al. 2003). An increase in the area of pain has also been 

reported following injection of NGF into the tibialis anterior muscle (Hayashi et al. 2013). 

Increased pain area is thought to be explained by expansion of the receptive fields of nociceptive 

neurons with prolonged noxious input (Hoheisel et al. 1993). 

 

 



 

139 
 

Contraction-evoked pain 

Maximal wrist extension of the arm injected with NGF evoked lateral elbow pain of ~2/10 

from a resting intensity of zero. Similar pain intensity has been reported during contraction of leg 

(Andersen et al. 2008) and shoulder (Gerber et al. 2011; Nie et al. 2009) muscles that were injected 

with NGF. Provocation of pain with movement and muscle contraction is a feature of the NGF 

model of sustained pain that is not consistently associated with other common models of deep tissue 

pain (e.g. hypertonic saline; Tsao et al. 2010). In the present study, lateral elbow pain was only 

provoked by maximal wrist extension and not the 10% contraction intensity. Previous studies have 

reported pain (~2-3/10) during submaximal contractions of shoulder (Gerber et al. 2011; Nie et al. 

2009) and lower limb muscles (Andersen et al. 2008) injected with NGF. It is unclear whether 

differences in contraction-evoked pain intensity between studies are due to differences in 

contraction intensity or the dynamic/static nature of the tasks. 

 

Stretch-evoked pain 

This is the first study to demonstrate provocation of pain by stretch of a muscle injected with 

NGF. This is best explained as a result of mechanical sensitization (i.e. also demonstrated by 

reduced PPT) of the muscle following NGF injection. Surprisingly, only the wrist flexion stretch, 

and not ulnar deviation stretch, was provocative. A greater range of motion is available for wrist 

flexion (~90°) compared to ulnar deviation (~35°) (Palmer and Epler, 1998), which may result in a 

greater change in muscle length and thus greater pain provocation. 

 

Pressure pain sensitivity 

Pressure pain threshold at the elbow injection site was less in the NGF group than the ISO 

group at Day 4. Similarly, intramuscular injection of NGF into tibialis anterior (Andersen et al. 

2008; Hayashi et al. 2013), trapezius (Nie et al. 2009) and masseter (Svensson et al. 2003; Svensson 

et al. 2008) muscles induced mechanical hyperalgesia at the injection site that lasted for 

approximately one week. 

 

Effects of superimposed injection of hypertonic saline 

Intramuscular injection of hypertonic saline into ECRB elicited more intense pain during the 

contraction tasks in the NGF group than the ISO group, but there was no difference in the size of 

the painful area between the two groups. These findings concur with an earlier study that found men 

(but not women) reported more intense pain in the leg that was injected with NGF than the 
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contralateral leg injected with isotonic saline, but with no difference in the area of pain between the 

two legs (Andersen et al. 2008). 

 PPTs at the elbow were not affected by injection of hypertonic saline in either group. 

Injection of hypertonic saline alone (i.e. no prior injection of NGF) into ECRB (Slater et al. 2005) 

did not affect PPT at the injection site, which suggests that injection of hypertonic saline into ECRB 

does not affect PPT at the elbow, whether pre-sensitized with NGF or not. 

 

Sensitization of peripheral and central mechanisms following NGF injection 

Intramuscular injection of NGF sensitizes high threshold mechanosensitive afferent fibers 

(i.e. muscle nociceptors) (Hoheisel et al. 2005). Under normal conditions these muscle afferents do 

not respond to weak, everyday stimuli (e.g. muscle contraction, stretch) and require tissue-

threatening stimulation to be activated (Mense, 2009). In the current study, contraction, stretch and 

direct pressure stimulation of the ECRB muscle after NGF injection evoked pain, which indicates 

involvement of peripheral sensitization. Evidence of sensitized central mechanisms such as 

sensitization of dorsal horn neurons (Hoheisel et al. 2007), distinct areas of referred pain (Andersen 

et al. 2008), and spreading hyperalgesia (Hayashi et al. 2013) have been found following NGF 

injection. The extensive spreading of pain including referred pain suggests that sensitization of 

central mechanisms cannot be excluded. 

In the current study, an injection of hypertonic saline into pre-sensitized muscle did not 

induce further mechanical hyperalgesia at the elbow or referred pain, but did elicit more intense 

pain compared to the isotonic saline group. Hypertonic saline activates dorsal horn neurons, induces 

hyperalgesia one day after injection (Hoheisel et al. 2007), and produces distinct areas of referred 

pain (Graven-Nielsen and Arendt-Nielsen, 2010), but it does not alter the mechanical thresholds of 

muscle afferents (Sung et al. 2007), which suggests that hypertonic saline may sensitize central, 

rather than peripheral, mechanisms. Further, the strong nociceptive barrage caused by hypertonic 

saline may excite the pool of dorsal horn neurons to the same extent independent of a potential 

sensitization of the central neurons (i.e. a ceiling effect). Thus it is unclear to which degree 

facilitated central mechanisms was involved within the short period of NGF-induced pain. 

 

NGF as a model of sustained elbow pain 

It is critical experimental models of sustained pain reflect typical features of musculoskeletal 

conditions, including prolonged pain (rather than a brief, transient event) and provocation of pain 

with contraction, stretch and function. Data from the present study and previous reports for other 

muscles provide evidence that intramuscular injection of NGF more effectively replicates these 
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features of musculoskeletal pain conditions than injection of hypertonic saline or DOMS for several 

reasons. First, NGF injection induced pain that was evoked during movement for approximately one 

week after a single injection (Andersen et al. 2008; Study 4) and two weeks after multiple injections 

(Hayashi et al. 2013). In contrast, pain from hypertonic saline injection lasted for up to 10 minutes 

and DOMS-related pain was sustained for 2-3 days after exercise (Slater et al. 2005). Second, pain 

that is induced by injection of NGF was evoked by contraction and stretch of ECRB. This contrasts 

the potential for pain to decrease during contraction/stretch of a muscle injected with hypertonic 

saline (Tsao et al. 2010). Third, injection of NGF in the current study induced lateral elbow pain 

during movement of the upper limb that was more intense than exercise-induced DOMS of the wrist 

extensor muscles (Slater et al. 2003) and more similar in intensity to that reported by people with 

mild LE (Coombes et al. 2012a). 

It is important to note, however, the intention of this study was to investigate whether 

intramuscular injection of NGF could be a suitable model of sustained lateral elbow pain, not a 

model of clinical chronic unilateral LE. The NGF model of sustained pain cannot replicate 

important features of chronic LE such as long-term pain and functional limitation (e.g. >6 weeks), 

anxiety, fear of movement, and fear of re-injury (Alizadehkhaiyat et al. 2007). Further, although 

intramuscular injection of NGF induced critical features of sustained lateral elbow pain (e.g. 

provocation of pain with movement of the upper limb and by contraction and stretch of the injected 

muscle), pain models are unlikely to precisely replicate the pain associated with clinical 

musculoskeletal conditions.  

 

7.6 Conclusion 

This study shows that a single intramuscular injection of NGF induces sustained elbow pain 

that is sustained for up to one week and provoked by contraction, stretch and functional use of the 

muscle. As such, this experimental pain model may be suitable to study the sustained effects of 

lateral elbow pain on sensorimotor function and to probe the mechanisms underlying persistent 

musculoskeletal pain. 

 

 

 

 

 

 

 



 

142 
 

8 Discussion 

The overall objective of this thesis was to investigate movement variability in the context of acute 

and chronic pain during performance of a simple radial-ulnar deviation task with few ‘elements’ 

and thus limited capacity to change during movement. 

 

8.1 Main findings of each study 

Several studies of multi-joint tasks have found that VARelements increased during acute experimental 

pain. Study 1 investigated the effect of acute tonic experimental pain, induced with injection of 

hypertonic saline, on movement variability during the radial-ulnar deviation task. This study 

showed that unlike multi-joint movements with multiple elements, where VARelements has been 

shown to increase during acute pain, VARelements in the forearm pronation-supination direction was 

reduced in the simple task. The most likely explanation was that VARelements was constrained in the 

simple task with limited capacity for alternative options. Constraint of VARelements during acute 

experimental pain might have occurred for several reasons, including an attempt to reduce pain or to 

exert greater control over joint motion. This study provides evidence that VARelements is altered 

differently for simple tasks compared to complex, multi-joint tasks during acute pain, at least when 

the pain is tonic. 

For Study 2 we modified the experimental paradigm so that the radial-ulnar deviation task 

provoked moderate pain only as the wrist moved through the middle of the radial-ulnar range of 

motion. Further, we provided a less-painful or non-painful solution that was within the participant’s 

expected flexion-extension range. It was hypothesised that the presence of transient painful stimuli 

would evoke an initial increase in VARelements, to assist a search for a less painful solution. Further, 

it was hypothesised that if participants experienced the substantially less painful solution this 

strategy would be selected more frequently than was observed in control trials. The findings of this 

study show that participants did seek a new solution. However, rather than increasing VARelements to 

search for a less painful solution, movement strategy gradually changed with repetition of the task. 

The movement strategy resulted in lower reported pain levels at the end of the trial than at the 

beginning; however, only 37% of the participants choose to use the externally determined less-

painful region more frequently during the pain trial. Three different movement strategies used by 

participants during the painful trial were identified based on changes of wrist/forearm position (i.e. 

‘no change’, ‘small change’, and ‘large change’). Participants who did not change the mean vector 

of wrist/forearm position during pain (37% of participants in Pain 5-1 experiment) used the 
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externally determined less-painful solution more often than participants who had a large change of 

wrist/forearm position (63%), but did not experience a greater benefit in terms of pain reduction. 

Study 3 investigated whether VARelements was different between participants with chronic 

lateral epicondylalgia (LE) and healthy controls during the radial-ulnar deviation task whilst 

participants gripped a load cell. VARelements was not different between the LE group and controls at 

the start or end of the task. In participants with chronic LE, VARelements in the flexion-extension 

direction decreased with repetition of the task, but this was not found in healthy controls. Although 

these overall measures were inconsistent with our hypotheses, several features of inter-individual 

variation in the LE group were consistent. For participants with chronic LE there was a relationship 

between pain intensity and movement strategy used during the radial-ulnar task. Performance of the 

task in a more flexed wrist position (which is the position more commonly adopted by participants 

with LE with gripping in clinical studies) and with greater VARelements was associated with lower 

reported pain scores. Further, participants with chronic LE who had the greatest reduction of 

VARelements during the task had a smaller increase of pain intensity. The most likely explanation is 

that VARelements decreased around a solution that was the least painful for subsequent performance 

of the task. 

Changes to movement (e.g. movement variability, muscle activation patterns) are found in 

acute and chronic pain. However, it is unclear how changes in acute pain might progress to those 

observed in chronic pain. In Study 4 healthy participants received an injection of nerve growth 

factor (NGF) or isotonic saline, and underwent several tests over a 10-day period to characterise the 

pain induced by the NGF injection. We found that intramuscular injection of NGF into an elbow 

muscle induced lateral elbow pain that lasted for approximately six days. A unique feature of this 

pain model was the provocation of pain with movement of the upper limb and by contraction and 

stretch of the injected muscle. These features indicate that intramuscular injection of NGF induces 

pain that responds in a manner that is typical of acute clinical pain that is sustained for several days, 

and is therefore a suitable model to study the effect of sustained lateral elbow pain on movement 

variability and other aspects of motor control of the upper limb. 

 

8.2 Implications of this research for the understanding of how pain 

influences movement variability 

8.2.1 Attainment of the goal in acute and chronic pain 

Attainment of a goal is a behaviourally relevant feature of many tasks.  However, to our 

knowledge no studies have considered attainment of the task goal within the context of movement 
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variability and pain. Two studies have considered some aspects of variability of the goal, such as a 

cutting task in a specific direction, with a target force, and in time with a metronome (Madeleine et 

al. 2008a) and repetitive pointing between two targets (Lomond and Côté, 2010), but unlike Studies 

1-3 did not consider attainment of the goal. 

In Studies 1-3 participants performed a standardised movement task that required wrist 

radial-ulnar deviation movement between two target regions. Attainment of the goal was reduced 

for trials performed during transient acute pain induced with electrical stimulation (Study 2), but 

was not different for tonic/constant pain induced with hypertonic saline compared to a non-painful 

trial (Study 1) or experienced by participants with chronic LE relative to pain-free controls (Study 

3). One explanation is that electrical stimulation distracted participants from the task goal and 

resulted in reduced attainment of the goal. 

Another factor that might contribute to our varied observations between studies, may be the 

perceived costs and benefits of goal attainment between studies. In Studies 1-3 participants were 

encouraged to attain the task goal, but did not receive an explicit reward or penalty for achieving 

this goal. In the absence of explicit benefit or cost participants may have lacked motivation to attain 

the target during the painful trials in Study 2 and by the end of the task in Study 3. It is also possible 

that in Study 2 participants might have anticipated reduced pain (i.e. a benefit) from reduced radial 

deviation, even though radial-ulnar deviation range of motion was not related to pain intensity in 

any Studies 1-3.  

 

8.2.2 VARelements in acute pain 

Two previous studies found VARelements was increased during acute experimental pain 

(Moseley and Hodges, 2006; Madeleine et al. 2008a). It was proposed that by taking advantage of 

VARelements during acute pain, the motor system searches for an alternative option that is less 

provocative of pain. If exposed to a less painful solution, the nervous system might reduce 

VARelements, so the solution is used more frequently to minimise pain (Moseley and Hodges, 2006). 

The data from Studies 1 and 2 do not support this hypothesis for a simple task. In Study 1 

VARelements decreased in the pronation-supination direction and was not changed in the flexion-

extension direction during acute pain. In Study 2 VARelements of wrist/forearm position was not 

different between painful and non-painful trials. This suggests that unlike multi-joint tasks 

(Moseley and Hodges, 2006; Madeleine et al. 2008a), the motor system does not increase 

VARelements during simple tasks in acute pain to search for less painful movement strategies. Thus, 

changes to VARelements in acute pain are not stereotypical. Whether VARelements increases or 

decreases during acute pain likely depends on several factors, including the body region, context, 
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individual, and task for which VARelements is recorded. This aligns with a contemporary theory of 

the motor adaptation to pain (Hodges and Tucker, 2011), which proposes that the neuromotor 

changes in pain are dependent on the individual person and the specific task that is performed. 

A critical difference between Studies 1 and 2 and previous studies (Moseley and Hodges, 

2006; Madeleine et al. 2008a) is the tasks that were investigated. In Studies 1 and 2 participants 

performed a simple task (wrist radial-ulnar deviation) with few elements for which VARelements 

could change (i.e. flexion-extension, pronation-supination). In simple tasks the nervous system 

might exert tighter control over the fewer elements to minimise the potential for “negative” 

VARelements to affect attainment of the goal (Scholz and Schoner, 1999). Conversely, multi-joint 

tasks have more elements, and thus more options for which VARelements can be increased during 

acute pain (Moseley and Hodges, 2006; Madeleine et al. 2008a).  

In Study 1 decreased VARelements during acute pain might reflect constraint of motion in the 

forearm pronation-supination direction to minimise provocation of pain as found in chronic pain 

(Hamill et al. 1999; Heiderscheit et al. 2002; Yakhdani et al. 2010). Alternatively, it might reflect 

increased control of the elements involved in the simple task in response to altered proprioception 

as a result of pain (Dessureault et al. 2008). 

In Study 2, an experimental paradigm was developed where a less painful movement 

strategy (i.e. a specific benefit) was provided that would be experienced by participants through 

natural VARelements in the flexion-extension direction during the radial-ulnar deviation task. We 

found that VARelements of wrist/forearm position was not different between the painful and non-

painful trials. This provides evidence that in simple tasks VARelements does not increase to explore 

alternative movement options. Although VARelements was not increased during the simple task 

participants did achieve a reduction in pain. Rather than systematically using VARelements to search 

for a less painful solution, participants used a gradual change of wrist/forearm position over 

multiple repetitions. One interpretation is the motor system gradually changed movement strategy 

to explore alternative movement options. Thus, in Study 2 the nervous system resolved to a less 

painful movement strategy, but in the context of the simple task, VARelements was not used as part of 

this resolution. It is important to note, however, that VARelements might be still be used as part of a 

search, but only in tasks that have multiple elements (Moseley and Hodges, 2006; Madeleine et al. 

2008a) for which movement can be varied without disturbing the potential to maintain the task goal.  

In Study 2 participants used one of three different movement strategies during acute pain. 

One strategy involved a large change in position on either the first or second repetition of the 

painful trial. Another strategy involved progressive, small changes of position with each repetition. 

The final strategy involved minimal change in position during pain with greater utilization of the 
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less/non-painful solution provided in the experimental paradigm. Participants who had a minimal 

change of wrist/forearm position during pain used the externally determined less painful solution 

region more often than participants who had a large change of wrist/forearm position. However, 

participants who experienced the solution region did not have lower pain ratings. One possible 

explanation for this observation is that the nervous system may perceive small adaptations (e.g. 

small changes in wrist/forearm position) as being insufficient to experience less pain provocation, 

and more extreme adaptations may be preferred to interpret that sufficient action had been taken 

(Hodges et al. 2013; Moseley et al. 2004; Tucker et al. 2012). This might explain why some 

participants in Study 2 used a strategy that involved a large change in position on either the first or 

second repetition of the painful trial. Data from other studies of pain in the absence of injury 

(Hodges et al. 2013) or when pain is anticipated but without noxious input (Moseley et al. 2004; 

Tucker et al. 2012) highlight that changes to movement can exceed the adaptation that is actually 

required to protect the body part. 

 

8.2.3 VARelements in chronic pain 

Previous studies that evaluated movement variability in chronic pain have reported diverse 

results, but many concluded that VARelements is decreased in individuals with chronic pain relative to 

those without pain. However, as discussed in detail within the Background chapter of this thesis, a 

simple conclusion of decreased VARelements in chronic pain betrays the complexity and diversity of 

these data (see section 2.2.5).   

In Study 3 it was hypothesised that VARelements would be less in participants with chronic LE 

than healthy controls during a simple movement task. Contrary to this hypothesis, VARelements was 

not different between the two groups at the start or end of the trial. The most likely explanation for 

the lack of between-group differences was that participants with chronic LE did not all react 

uniformly and they adopted different movement strategies that were related to the intensity of pain 

experienced by the individual participant during the radial-ulnar task. We found that greater 

VARelements in the flexion-extension direction at the start of the trial was associated with less 

provocation of pain during the radial-ulnar movement. Consistent with Moseley and Hodges (2006) 

we conclude that this greater VARelements may have been beneficial in the exploration of different 

options, and the resolve to a less provocative movement strategy.  

Performance of the task in a more flexed wrist posture at the start of the trial was associated 

with less pain. This more flexed wrist posture might be a beneficial adaptation to reduce activation 

of the wrist extensor muscles to minimise pain. In normal situations, the wrist extensor muscles are 

activated during gripping tasks to control wrist position (Snijders et al. 1987; Shimose et al. 2011). 
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However, participants with chronic LE have less activation of ECRB (recorded with intramuscular 

electrodes) and ECR (combined activation of ECRB and ECRL) during gripping (Alizadehkhaiyat 

et al. 2007) than healthy controls. This possible mechanism of reduced activation of ECRB as a 

protective mechanism to minimise pain during gripping might explain the results of Bisset et al 

(2006), where participants with chronic LE adopted a more flexed wrist posture than healthy 

controls during a pain-free grip task (i.e. ramped force applied until the first onset of pain). 

Participants who moved their wrist into a more flexed position between the start and end of 

the trial had a greater reduction of VARelements in the flexion-extension direction. The most likely 

explanation is that participants learnt to perform the task in a wrist position that provoked less pain 

(i.e. greater wrist flexion) with repetition of the task, and then reduced VARelements to ensure the less 

painful solution was used more frequently for subsequent repetitions to minimise pain. These 

results in participants with chronic LE (Study 3) concur with the hypothesis of Studies 1 and 2 that 

VARelements would decrease if a less painful solution was found during acute pain. This suggests that 

participants with chronic LE retain the flexibility to alter VARelements during performance of a 

painful task, with the potential benefit of reducing pain provocation. Although, these data imply a 

short term benefit of the change in strategy, whether these modifications have negative 

consequences in the long term has been proposed and is worthy of consideration. 

 

8.3 Implications for the motor adaptation to pain 

The nervous system does not use VARelements to search for a less painful solution in acute pain for all 

movement tasks 

The studies in this thesis challenge the hypothesis that the nervous system systematically 

increases VARelements during acute pain to search for a less painful solution in all tasks (Moseley and 

Hodges, 2006). We demonstrated that VARelements decreased (Study 1) or was not affected (Study 2) 

when the simple radial-ulnar deviation task was performed during acute experimental pain. The data 

from Study 2 suggest the motor system searched by changing wrist/forearm position, not by 

increasing VARelements. The results of Studies 1 and 2 contrasts previous studies that reported 

VARelements increased when complex multi-joint tasks were challenged by acute pain (Moseley and 

Hodges, 2006; Madeleine et al. 2008a). As discussed above, multi-joint tasks have more elements 

and more options that can be varied between repetitions than simple tasks. Thus, it is possible that 

VARelements only increases during pain to search for a less painful solution for tasks that involve 

enough elements that can be varied. This proposal concurs with the most recent theory of the motor 

adaptation to pain that proposes the nervous systems adopts a more flexible solution that is specific 

to the individual and task (Hodges and Tucker, 2011) 
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The nervous system retains the flexibility to explore less painful strategies in chronic pain 

Previous studies that investigated changes to VARelements in chronic pain have implied that 

VARelements is inflexible in chronic pain (Hamill et al. 1999; Heiderscheit et al. 2002; Madeleine and 

Madsen, 2009). The results of Study 3, in which VARelements reduced between the start and end of 

the radial-ulnar deviation task in participants with chronic LE, provide evidence that the nervous 

system retains some flexibility to alter VARelements with repetition of a task in chronic pain. These 

data concur with findings that VARelements changed over time when simple (Studies 1 and 2) and 

complex tasks (Moseley and Hodges, 2006) were performed during acute pain. Thus, VARelements 

can change with repetition of a task, during simple tasks performed with acute (Studies 1 and 2) and 

chronic pain (Study 3) and complex, multi-joint tasks performed with acute (Moseley and Hodges, 

2006) and chronic (Lomond and Côté, 2010) pain.  

 

The nervous system likely considers several factors in the motor adaptation to pain 

An inherent assumption of theories that attempt to explain the motor adaptation to pain is 

that a priority of the nervous system is pain reduction and prevention of further tissue damage. The 

different changes to VARelements in Studies 1-3 might be related to these priorities. For instance, 

constraint of motion could reduce pain and prevent uncontrolled joint motion that could cause 

future tissue damage (Study 1), and change of wrist/forearm position was associated with lower 

reported pain (Study 2). However, the results of Studies 1 and 2 and previous studies (Tucker and 

Hodges, 2010; Hug et al. 2014) do not fully support the assumption that a reduction in pain and 

potential for injury are the main priorities of the nervous system during pain. For instance, although 

most participants in Study 2 experienced the movement solution that would have provoked minimal 

(i.e. 1/10) or no pain, they did not elect to maintain this less/non painful movement strategy. 

Instead, they chose a movement strategy that was only moderately less painful (Pain 5-1 experiment 

= 3.2/10; Pain 5-0 experiment = 3.7/10). Although this strategy was less painful, it did not provide 

the same benefit (i.e. magnitude of pain reduction) that was possible with the externally determined 

solution. 

Reduction of pain intensity and protection from further injury are no doubt important factors 

in selection of movement strategy during pain, but these two factors alone cannot fully explain the 

motor adaptation to pain. The most likely explanation is that the nervous system considers other 

factors in addition to reduction of pain and protection from further injury in selection of a new 

movement strategy, such as optimisation of end-point error to ensure attainment of a task goal 

(Kording and Wolpert, 2004), energy usage of muscles (Anderson and Pandy, 2001), and muscle 
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forces (Pandy et al. 1995). However, it is unclear how the nervous system balances these different 

factors required of movement, and whether the weight or importance of each factor is altered during 

acute pain or injury.  

 

8.4 Intramuscular injection of nerve growth factor as a model of 

sustained elbow pain 

In Study 4 it was found that the NGF model of sustained pain reflected typical features of 

musculoskeletal pain conditions, including prolonged pain rather than a brief event that lasts for 

several minutes, and provocation of pain during muscle contraction/stretch and functional activities. 

After intramuscular injection of NGF into the ECRB muscle, participants reported lateral elbow 

pain that peaked after two days and on average lasted six days in total. It is possible to induce pain 

that lasts for approximately two weeks with multiple injections on separate days (Hayashi et al. 

2013). Function of the upper limb was affected for up to four days after NGF injection. Scores on 

the PRTEE, which was used to measure pain and functional limitation, indicated that intramuscular 

injection of NGF induces pain and functional limitation comparable to mild chronic LE (Coombes 

et al. 2012a).  

A critical finding of Study 4 was that maximal wrist extension contraction provoked 2/10 

elbow pain. However, submaximal wrist extension, and gripping at a maximal or submaximal 

intensity, did not provoke pain. Other studies have reported similar pain intensity (2-3/10) during 

submaximal contractions of shoulder (Nie et al. 2009; Gerber et al. 2011) and lower limb (Andersen 

et al. 2008) muscles following intramuscular NGF injection into those body regions. The 

differences in contraction-evoked pain intensity between studies are likely due to differences in 

contraction intensity or the dynamic/static nature of the tasks that were studied. 

Study 4 and previous studies show that intramuscular injection of NGF is a more optimal 

model of sustained pain than other experimental pain models for several reasons. First, NGF 

induced pain that was evoked during movement for 1-2 weeks after single/multiple injections 

(Study 4; Andersen et al. 2008; Hayashi et al. 2012). In contrast, pain from hypertonic saline 

injections lasts for approximately 10 minutes (Slater et al. 2003), and pain after eccentric exercise 

lasts for 2-3 days (Slater et al. 2005). Second, NGF allows investigation of the isolated effect of 

sustained nociception/pain in the absence of injury, unlike eccentric exercise, which induces 

damage to muscle fibres exercise (Paulsen et al. 2012). Third, the pain provoked after NGF 

injection has a clear relationship to movement and muscle contraction, unlike the inconsistent 

relationship between pain provocation and amplitude of movement or strength of contraction after 
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hypertonic saline injection (Coppieters and Hodges, unpublished observations), although some data 

do show a contrasting decrease of pain during contraction/stretch (Tsao et al. 2010).  

Intramuscular NGF is potentially useful as a model to enable future investigation of the 

effect of persistent exposure to pain for several days. Such studies could provide insight into the 

time-course of changes to movement variability, and other features of neuromuscular control (e.g. 

patterns of muscle activation), during sustained pain. It is critical to note, however, that the NGF 

model of sustained pain is not a model of chronic pain because of stark differences in the duration 

of pain induced by NGF (1-2 weeks) compared to chronic pain conditions (several months) and the 

expectation by the participants of the duration of pain, unlike clinical pain where the duration is 

generally unpredictable.  

 

8.5 Methodological considerations 

The studies in this thesis were carefully designed and conducted. However, it is important to 

recognize the limitations inherent in experimental design and analyses. In addition to the detailed 

consideration of these issues in each study chapter, the key limitations in regard to the overall 

interpretation of Studies 1-4 are discussed in the following sections. 

 

Participant numbers 

All of the experiments included in this thesis included a relatively small number of 

participants. However, this is not uncommon in human neurophysiology experiments, particularly 

those that involve experimental induction of pain (e.g. injection of hypertonic saline, cutaneous 

electrical stimulation) in healthy participants. It is desirable to involve only an essential number of 

participants to obtain sufficient data. Even with a small sample size, the findings from our studies 

were consistently observed across most participants (except where variation between participants 

was identified as a feature of the response, see Studies 2 and 3) and yielded significant differences 

in all studies. 

 

Experimental pain 

Experimental pain models provide a standardized method to induce pain in healthy 

participants, which allow the investigation of specific aspects of human motor control. They are 

useful to study the immediate effects of acute pain on the motor control system, which could not be 

achieved with a clinical population where pre-pain measures are unavailable and where other 

effects such as injury are likely to be present and difficult to disentangle from the pain effects. 
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Hypertonic saline has been shown to induce pain that mimics several changes associated 

with clinical pain, such as impaired postural stability (Hirata et al. 2012) and delayed muscle 

activation (Hodges et al. 2003). However, the models cannot mimic all aspects of clinical pain, 

including deep tissue hyperalgesia (Gibson et al. 2006; Slater et al. 2003). Further, some data 

suggest that pain induced by hypertonic saline injection is reduced by muscle contraction/stretch 

(Tsao et al. 2010), which contrasts many clinical contexts. Despite these limitations, the acute pain 

induced with hypertonic saline in Study 1 provided insight into the changes to VARelements in 

response to a discrete noxious stimulus.  

The use of electrical stimulation to induce acute pain in Study 2 allowed application of a 

painful stimulus of known intensity and duration at a specific time within each repetition of the 

motor task (Handwerker and Kobal, 1993), and with an intensity that could be varied trial by trial. 

Importantly, this model is not associated with stimulus habituation and sensitization (McMahon and 

Koltzenburg, 2005), which was confirmed in Study 2. It was for these reasons electrical stimulation 

was critical for the experimental paradigm used in Study 2.  

These experimental models of acute pain allow control of confounding factors other than 

nociception/pain, such as local tissue damage and degeneration, peripheral/central sensitization, 

inflammatory response, and psychosocial changes that could exert their own influence on motor 

behaviour. Although the ultimate goal is to understand the interaction between these different 

factors and their relationship to motor control changes in clinically painful musculoskeletal 

conditions, it is necessary to first understand the independent contribution of nociceptive 

stimulation.  

 

Quantification of variability 

Motion of wrist flexion-extension and forearm pronation-supination were analysed as the 

wrist crossed the neutral radial-ulnar deviation position when moving from the ulnar target towards 

the radial target. This position was chosen because it is a standard and repeatable position in the 

radial-ulnar deviation range. It was consistently crossed by all participants in Studies 1 and 2. In 

Study 3 some trials were discarded because participants failed to cross the neutral position in a 

consistent manner.  

Conventional measures of variability, such as standard deviation or coefficient of variation 

have primarily been used to quantify movement variability (Riley and Turvey, 2002). In contrast, in 

this thesis, VARelements in the flexion-extension and pronation-supination directions were quantified 

with several linear and non-linear measures (e.g. standard deviation, sum/average delta angle, and 
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sum of path length). The methods used in this thesis to analyse the movement data and quantify 

variability allowed us to answer the specific question that were posed. 

More complex non-linear measures, such as continuous relative phase (Hamill et al. 1999), 

sample entropy (Hamill et al. 2000), and Lyapunov exponents (Rosenstein et al. 1993) have also 

been used to quantify variability. One benefit of these measures is the ability to consider the entire 

motion signal rather than a discrete point (e.g. neutral radial-ulnar deviation position) and 

quantification of the structure of variability. However, these complex measures have limitations and 

are not appropriate for all situations. For instance, continuous relative phase is limited in 

quantifying non-sinusoidal movement signals and is not appropriate for most couplings between 

movements of the lower limb during gait (Peters et al. 2003). 

Previous studies that investigated the influence of pain on movement variability evaluated 

variability of other task characteristics, such as velocity, acceleration, posture, and patterns of 

muscle activation. It is possible variability of these movement characteristics were altered when 

participants performed the repetitive task during acute (Studies 1 and 2) and chronic (Study 3) pain. 

However, the method of recording movement and quantifying variability in these studies allowed us 

to answer the specific questions that were posed in this thesis. 

 

Experimental paradigm 

Identification of a simple movement task with few degrees of freedom was critical for 

Studies 1-3 of this thesis. The simple radial-ulnar deviation task that was ultimately chosen as it 

allowed investigation of the specific questions posed in this thesis. However, the task is not 

representative of the diverse and complex repertoire of movement performed in everyday life and 

for which VARelements can be altered in acute and chronic pain. Future work using other 

experimental paradigms (e.g. lower limb, trunk) is required to determine whether the results can be 

extrapolated. 

 

8.6 Future directions 

The simple radial-ulnar deviation task used in Studies 1-3 of this thesis was associated with 

clear differences in the changes to VARelements during pain compared to complex multi-joint tasks 

with many elements. A focus on wrist and forearm movement allowed investigation of a simple 

system (i.e. fewer elements than previous studies of complex tasks) and the potential to study a 

provocative task in a clinical chronic pain population (i.e. lateral epicondylalgia). This paradigm 

proved useful to improve the understanding of changes to VARelements in acute and chronic pain. 
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However, further investigation is needed to study the complex relationship between VARelements and 

pain/pathology. 

 

In what circumstances does the nervous system exploit VARelements to search for a solution? 

 Previous studies found VARelements increased during acute pain and proposed it reflected a 

search for a less painful solution (Moseley and Hodges, 2006; Madeleine et al. 2008a). However, 

the results from Studies 1 and 2 show that during performance of the simple radial-ulnar deviation 

task, VARelements did not increase during acute pain. These data challenge the role of VARelements in 

exploration of alternate movement strategies in acute pain to search for a less painful solution. 

However, it is still possible that VARelements increases during other tasks to facilitate a search for a 

less painful solution. Future studies should investigate the potential role of VARelements in the search 

for a less painful solution using tasks with varying number of elements for which VARelements can 

change and for different regions of the body. This can be done to probe whether the changes to 

VARelements are dependent on the potential for the element(s) to change or the body region(s) 

involved in the task. 

A novel experimental paradigm was used in Study 2 to investigate whether the nervous 

system would choose to use a specific movement strategy that provoked less pain (Chapter 5). 

Moderately painful (~5/10) electrical stimuli were delivered to the elbow as the wrist crossed the 

neutral radial-ulnar deviation position. A less painful solution was provided. The less painful 

strategy (~1/10 or no pain) was adjacent to all other strategies that provoked moderate pain (Figure 

5-2 in Chapter 5). Thus, there was a “step change” between the less/non-painful solution and all 

other wrist flexion-extension positions that would provoke moderate pain. Participants did not use 

the externally determined less painful strategy more often during the painful trials. It is possible the 

solution was not intuitive enough for the nervous system to find. For instance, there is some 

evidence that the nervous system responds better to “graded” changes than “switch” changes (i.e. 

on/off) for feedback of EMG amplitude to control a prosthesis (Smidt, 2014). A similar 

experimental paradigm to Study 2, but with “graded” changes to pain intensity leading to a less 

painful strategy, rather than a large “step change” to a less painful solution, could be used to probe 

this question. 

In Study 3, participants with chronic LE who moved their wrist into a more flexed position 

between the start and end of the radial-ulnar task had a greater reduction of VARelements in the 

flexion-extension direction and experienced less pain. It was proposed this change of wrist position 

would be expected to provoke less pain in participants with chronic LE as a result of reduced 

activation of the wrist extensor muscles. However, further investigation is required. A future study 
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could use the experimental paradigm in Study 2 to investigate the potential of the nervous system to 

search for a specific less painful strategy in participants with chronic LE. 

 

Why do different people use different movement strategies? 

In Studies 2 and 3 several sub-groups were identified based on the movement strategies used 

in acute experimental pain (Study 2) and chronic LE (Study 3). Sub-groups based on resolution or 

non-resolution of VARelements in a postural control strategy after cessation of acute low back pain 

were identified in a previous study (Moseley and Hodges, 2006). The potential for different 

movement strategies that involve changes to VARelements in acute and chronic pain warrants further 

investigation with larger sample sizes to confirm the preliminary results of these studies. Questions 

remain. For instance, in Study 2, why did some participants have no change in strategy (i.e. used a 

similar wrist/forearm position between the non-painful and painful trials), whereas other 

participants had a large change in strategy? Interestingly, participants who did not change 

wrist/forearm position experienced the externally determined solution region more often than 

participants who had a large change of wrist/forearm position, but did not get a larger benefit in 

terms of magnitude of pain reduction. 

 

What factors does the motor system consider in the motor adaptation to pain? 

An inherent assumption of theories of the motor adaptation to pain is that reduction of pain 

and minimisation of further injury are the main priorities of the nervous system. The results of 

Study 2 question this assumption. A critical question for future studies is what other factors the 

nervous system considers in selection of a movement strategy during acute and chronic pain. This 

question might be answered with the development of a novel experimental paradigm that considers 

the interaction between pain intensity, energy expenditure, attainment of a goal, muscle force, and 

other factors that might influence motor adaptation.  

Once it is clear what factors the nervous system considers for the motor adaptation to pain, it 

is important to investigate whether the nervous system ascribes relative weights or prioritises the 

different factors. These weightings could depend on the task, body region, and individual. For 

instance, the nervous system might have the capacity to perform a cost-benefit analysis that 

considers each factor and its influence on pain and movement before making a decision to change 

motor strategy. A potential route to investigate these questions is to design experimental paradigms 

where different movement strategies are beneficial or detrimental. For instance, different movement 

strategies might be associated with a specific benefit or cost, such as pain provocation or pain relief, 
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greater or less force needed to complete a task, or more or less potential for error to attain the task 

goal. 

 

What is the relationship between changes to VARelements in acute and chronic pain? 

 Changes to VARelements in acute and chronic pain have been found in numerous studies, but 

it is unclear how the changes in acute pain relate to those found in chronic pain. A critical first step 

is to study changes to VARelements in the same group of participants over the course of one week 

using the NGF model of sustained elbow pain that was characterised in Study 4. An important 

feature of this experimental pain model is that is induces pain that reflects typical features of 

clinical pain, including pain with muscle contraction/stretch and movement, and mechanical 

hyperalgesia. The NGF model of sustained elbow pain can also be applied more broadly. For 

instance, to investigate whether the altered patterns of forearm muscle activation in chronic LE 

(Alizadehkhaiyat et al. 2007; Rojas et al. 2007) are also found when at the onset of elbow pain and 

when it is sustained for several days. 

 

8.7 Conclusions 

The four studies in this thesis provide novel evidence of changes to movement variability in 

acute and chronic pain, and provide a new model of sustained pain that reflects typical features of 

musculoskeletal pain. The results provide strong evidence that the changes to VARelements that we 

recorded in acute and chronic pain during simple tasks with few elements do not change in a 

manner identical to what has been shown for complex, multi-joint tasks. A key finding was that the 

nervous system searched for, and found, a less painful movement strategy during acute pain using a 

gradual change of wrist/forearm position. This conflicts with a key hypothesis that the nervous 

system uses increased VARelements to search for a less painful solution during pain. A major 

consideration is that in selection of a movement strategy during pain the nervous system likely 

considers multiple factors in addition to reduction of pain and minimisation of tissue damage, 

including optimisation of end-point error and energy efficiency of muscles. A novel finding was 

that the nervous system retains the flexibility to alter VARelements during chronic pain to enable 

performance of a task in a manner that provokes less pain. Furthermore, it presents a new model of 

experimental pain that will enable investigation of changes to various aspects of human motor 

control during sustained pain. 
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