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Abstract 

Termites are one of the most abundant and ecologically important eusocial insects in tropical and 

subtropical regions. Their success as lignocellulose decomposers is a result of a mutualistic 

relationship with their gut microbiota. Termites have evolved from wood-feeding cockroaches 

(lower termites) and expanded their dietary scope to soil, herbivore dung, grass and litter (higher 

termites). The introduction of high-throughput culture-independent molecular techniques has 

reinvigorated efforts to understand the termite gut microbiome and its involvement in symbiotic 

digestion. Yet, there remain significant unanswered or poorly answered questions regarding termite 

gut microbiome ecology and evolution such as the relative effect of diet vs vertical inheritance on 

shaping gut communities, the resilience of these communities under changing dietary regimes, the 

function of specific populations and the relative contributions of prokaryotic and eukaryotic 

symbionts to hydrolysis in lower termites. The aim of this thesis is to address these questions 

making use of Australia’s diverse but understudied termite species. 

In Chapter 2, a molecular survey using SSU rRNA amplicon pyrosequencing was conducted on 66 

termite gut samples comprising seven higher termite genera and nine lower termite genera. Findings 

indicated that vertical inheritance is the primary force shaping the termite gut microbiome, with diet 

playing a more subtle role changing relative abundance of some populations. This suggested that 

gut community and structure may change in response to dietary changes as a short-term adaptive 

mechanism. To test this hypothesis, feeding experiments were performed on the polyphagous lower 

termite species, Mastotermes darwiniensis, and gut communities were monitored over time via SSU 

rRNA profiling, forming the basis of Chapter 3. Small shifts in relative abundance of gut 

populations were noted with compositionally different feedstocks (e.g. wood to grass) supporting 

the original hypothesis, but greater shifts are likely due to response to stress as an effect of smaller 

colony size. However, only small differences were noted in corresponding gut protein profiles, 

suggesting that gut function was maintained even though community composition altered. In 

Chapter 4, whole gut DNA samples of two lower (Mastotermes and Porotermes) and two higher 

(Nasutitermes and Microcerotermes) termite genera were shotgun sequenced. Gene-centric analysis 

of the shotgun data was performed to determine community-level functional similarities and 

differences. Despite conspicuous differences in community structure between these four wood-

feeding genera (Chapter 2), they had similar gene family abundance profiles suggesting functional 

convergence in these communities. Differential coverage binning was also attempted to recover 

population genomes from the metagenomic datasets, but with limited success due to termite host 

DNA compromising the assemblies. However, three and one substantially complete population 

genomes belonging to the Fibrobacteres and TG3 phyla, respectively, were recovered from the two 



ii 
 

higher termite genera, Microcerotermes and Nasutitermes. Currently only one sequenced isolate is 

publicly available for the Fibrobacteres (Fibrobacter succinogenes) and one for TG3 (Chitinivibrio 

alkaliphilus). In Chapter 5, a comparative genomics analysis of the Fibrobacteres/TG3 phyla was 

conducted using the four termite gut population genomes together with three from a cellulose-fed 

anaerobic digester, one from sheep rumen and the two isolate reference genomes. Genome-based 

phylogeny indicated a robust relationship between Fibrobacteres and TG3, thus we propose 

reclassifying TG3 as a class within the Fibrobacteres phylum. Polymer hydrolysing genes were 

found to be over-represented in all 10 genomes suggesting that this is a unifying characteristic of 

the Fibrobacteres, although additional ecosystems should be investigated to confirm this inference. 

Historically, the Fibrobacteres were thought to be non-motile based on extrapolation from F. 

succinogenes, however, our analysis suggests that flagella-based motility is an ancestral and 

widespread trait in this phylum and has been recently lost in F. succinogenes and related genera.  

The findings of this thesis contribute to the growing body of knowledge on termite gut microbiomes 

and in particular, Australian species. The Fibrobacteres genomes provide insight into the evolution 

of this understudied and underrepresented phylum, which are common constituents of anoxic 

fibrolytic communities. 
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Chapter 1 Introduction and Literature Review  

1.1 Insect-microbial interactions 

Microorganisms evolved and formed spatially organised communities as early as 3.25 billion years 

ago, well before the appearance of large multicellular organisms (Allwood et al., 2006; Ley et al., 

2008). They interact not only with each other, but with the environment as well. Today, diverse 

microbial communities are widely distributed over the biosphere, from Antarctic sea ice to the 

human body. Microorganisms play a central role in the regulation of ecosystem processes and have 

played key roles in driving the evolution of animal and plant life (Ley et al., 2008). The importance 

of understanding the composition, functional potential and activities of these communities within 

and across ecosystems is crucial for the survival of eukaryotes as we continue to depend on them. 

The concept of microorganisms shaping the evolution of their host is long known and in fact, Leigh 

van Valen, an evolutionary biologist, coined the term Red Queen Hypothesis where he postulated 

that a constant arms race between prey and host is an important factor in driving evolution (Van 

Valen, 1973).  

1.1.1 Symbiosis 

Symbiosis, or “living together” (de Bary, 1879), involves an interaction between two unlike 

organisms in close association over long periods (Bonfante et al., 2010).  It is more diverse in 

complex systems, where there are networks of interactions of multiple organisms. The traditional 

concept of symbiosis has focused on the interactions based on nutrition and defence, recognising 

interactions such as parasitism (one member may be injured from the relationship), commensalism 

(members are often unaffected) and mutualism (members may benefit) (Bonfante et al., 2010). As 

microorganisms form relationships with their eukaryotic hosts, they are often referred to as 

symbionts (Breznak, 2004; Bonfante and Genre, 2010; Bonfante et al., 2010). Microbes that live 

inside and outside of the host species are referred to as endosymbionts (or inside the cells of the 

host) and ectosymbionts respectively (Breznak, 2004). These resident microorganisms can influence 

their hosts at two phases; (1) in “physiological time” that takes into account the composition, 

density and activities of colonising microorganisms thereby affecting the physiological state of the 

animal; and (2) in “evolutionary time” that influences the degree of host survival to the infecting 

microorganisms (Douglas, 2011). The understanding of host-microbe interactions requires the 

combination of these two perspectives (Douglas, 2011). Symbioses provide unparalleled 

opportunities for genetic exchange between host and symbiont, often increasing co-dependency, the 

most extreme version of which are organelles resulting from endosymbiosis (Margulis, 1981). 
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Margulis emphasised the importance of symbiotic interactions in addition to random mutations and 

horizontal transfer of metabolic properties between host and symbiont (Bonfante et al., 2010). Over 

the past decade, symbiosis studies have highlighted the benefits of both or at least one member from 

interactions (Moran, 2001; Bonfante et al., 2010; Engel et al., 2012; McFall-Ngai et al., 2013). 

Symbiosis is considered a driving force in shaping the evolution and diversity of eukaryotic 

organisms, hence leading to biological novelties (Moran, 2006, 2007; Bonfante et al., 2010). 

1.1.2 Benefits of resident microbiota on the insect host 

A common feature that many hosts such as molluscs and mammals share is that they are colonised 

by a community of microorganisms that influence their physiological health (McFall-Ngai et al., 

2013). Insects as a group have a broader diversity of interactions (e.g. plant-insect, insect-insect, 

insect-mammal) but contain relatively less gut microbial species (e.g. aphids, honey bee) in contrast 

to mammals (Douglas, 2011; Engel and Moran, 2013). A variety of insect species is involved in 

symbiosis (Kaufman et al., 2000; Moran, 2002; Moran, 2007; Brune, 2009). Insects often depend 

on their mutualistic resident microorganisms for successful growth and reproduction. 

Microorganisms’ metabolic capabilities are valuable assets for insects, mainly in nutrient 

biosynthesis and biomass degradation (Moran, 2001; Douglas, 2009; Shi et al., 2010; McFall-Ngai 

et al., 2013). Many insects feed on poor diets that lack essential nutrients such as nitrogen (Mullins 

and Cochran, 1975; Hongoh and Ishikawa, 1997). The importance of symbionts in nutrient 

provisioning, that is, production of vitamins, processing food and recycling usable nitrogen in 

insects has been demonstrated through feeding experiments (Douglas, 2009; Shi et al., 2010). 

Microbial symbionts in insects are also involved in biomass digestion. Insects and symbiotic 

microbes are both capable of producing and secreting enzymes responsible for biomass degradation 

and hydrolysis (Ohkuma, 2003; Tokuda and Watanabe, 2007; Warnecke et al., 2007). Yet, it has 

been controversial as to whether the insect host or microbiota plays a more significant role in 

symbiotic digestion (Shi et al., 2010). In recent years, genomic studies have paved the way to 

explore the critical roles of gut microbiota in the digestion of recalcitrant plant polymers and 

nutrient provisioning (Santo Domingo, 1998; Cox-Foster et al., 2007; Guan et al., 2007; Aylward et 

al., 2012; Engel et al., 2012). Studying insect symbioses, from an application point of view, will no 

doubt enable identification of novel biocatalysts for next-generation biorefinery and development of 

new tactics for pest management.  
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1.2 Termites as a model insect for basic and applied research 

Termites are important detritivores that contribute significantly to the turnover of lignocellulose in 

terrestrial ecosystems and to global greenhouse gas production (Bignell et al., 1997). They have 

been identified as one of the most abundant and ecologically significant eusocial insects (Thorne, 

1997; Engel et al., 2009). They are regarded as the most successful wood destroying pests on Earth 

and negatively impact the timber industry (Verma et al., 2009). An estimated one billion dollars are 

spent worldwide annually on the control and repair of damage caused by termites (Lax and Osbrink, 

2003; Verma et al., 2009). In Australia alone, approximately 130,000 buildings are damaged yearly 

with costs amounting to 910 million dollars (Hadlington and Staunton, 2008). The enhanced ability 

of termites to degrade lignocellulose evolved from mutualistic symbioses with their resident gut 

microbiota (Warnecke et al., 2007; Brune, 2009; Hongoh, 2010).  Unlike most other insects, 

termites have complex and distinctive gut microbial communities responsible for major metabolic 

processes, including degradation of lignocellulose, homoacetogenesis and nitrogen fixation and 

recycling (Brune and Ohkuma, 2011). Many termite species can be successfully reared in the 

laboratory, making them amenable for experimental studies (Salmassi and Leadbetter, 2003). 

1.2.1 Evolution and diet 

Termites are estimated to have arisen about 170 million years (MYR) (Figure 1) from eusocial 

roaches (Bourguignon et al., 2015). They belong to the order Isoptera which are most closely 

related to wood-feeding cockroaches (order Blattaria) genus Cryptocercus (Lo et al., 2000). They 

are a large and diverse group encompassing an estimated 3,106 known species in 295 genera 

worldwide (Kambhampati and Eggleton, 2000; Krishna et al., 2013). Termites were previously 

divided into six extant families, but have been recently reclassified into nine families; the 

Mastotermitidae, Kalotermitidae, Archotermopsidae, Hodotermitidae, Stolotermitidae, 

Stylotermitidae, Serritermitidae, Rhinotermitidae, and Termitidae (Table 1.1) (Krishna et al., 2013). 

The first eight families are collectively referred to as lower termites that harbour populations of 

both cellulolytic flagellated protists and prokaryotes in their guts (Hongoh, 2010). The last family, 

Termitidae, are also known as higher termites and comprise ~85% of described termite species to 

date (Kambhampati and Eggleton, 2000; Hongoh, 2010). Higher termites lack flagellated protists 

which were estimated to be lost from the Termitidae ancestor ~54 MYR (Brandl et al., 2007) in 

response to dietary diversification (see below).  

Termites are often perceived as obligate wood feeders but they are more versatile than previously 

thought. Higher termites have diversified lignocellulose diets ranging from leaves, grass, roots, soils 



4 
 

and dung depending on species (Wood and Johnson, 1986). Some identical higher termite species 

can feed on different materials are referred to as polyphagous species (i.e. Amitermes and 

Gnathamitermes). While those congeneric species that can feed on different materials but each 

species thrives on a single food type are referred to as monophagous species. Lignocellulose 

constitutes the bulk of plant biomass, providing rigidity and structure. It is the most abundant 

organic matter on Earth and a valuable resource for the biofuel industry (Wyman and Yang, 2009). 

Efficient chemical degradation of lignocellulose is a challenging process due to the complexity of 

its structure (Rubin, 2008; Sanderson, 2011). Lignocellulose is made up of three carbon-based 

polymers, cellulose (38-50%), hemicellulose (23-32%) and lignin (15-25%) (Beguin, 1990), with 

cellulose and lignin identified as the first and second most abundant fixed carbon sources 

(Vanwonterghem et al., 2014b). Cellulose is comprised of repeating beta (1-4) –linked chains of 

glucose molecules forming a crystalline structure. Hemicellulose is made up of various hexoses, 

pentoses and sugar acids that branch around cellulose through hydrogen bonds. Lignin is composed 

of phenolic compounds that form a protective sheath around the polysaccharides making the 

biomass resistant to enzymatic digestion (Breznak and Brune, 1994). At present, there is a need for 

alternative sources of enzymes that can efficiently break down lignocellulose to simple sugars and 

eventually to biofuel (Sanderson, 2011; Chaturvedi and Verma, 2013).  

1.2.2 Australian termites 

In Australia, there are approximately 40 termite genera with 268 species that represent five out of 

the nine families, the Mastotermitidae, Archotermopsidae, Kalotermitidae, Rhinotermitidae and 

Termitidae (Peters et al., 1996; Hadlington and Staunton, 2008; Constantino, Last updated: 

September 2012) (Table 1.1). They are geographically distributed across the Australian continent, 

but are typically found in the tropics. The termite nests are often indicative of the termite species 

which may take form of ground mounds, subterranean or arboreal nests. Interestingly, the habits of 

some species vary in different climates, for example, Coptotermes acinaciformis build mounds in 

Queensland and not in New South Wales (Hadlington and Staunton, 2008). Of the hundreds of 

identified Australian species, only a handful is considered pests that infest buildings and forestry. 

The most common pest species that have been identified are Mastotermes darwinensis, 

Cryptotermes brevis, Porotermes adamsoni, Coptotermes acinaciformis, Coptotermes frenchi, 

Heterotermes ferox, Nasutitermes exitiosus and Schedorhinotermes intermedius (Creffield, 1996; 

Hadlington and Staunton, 2008). Some subterranean species survive by maintaining nests beneath 

buildings and pavements in city and suburban areas (Hadlington and Stauton, 2008).  
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Figure 1.1: Phylogenetic tree of termites based on full mitochondrial genome. The colours of 
termite families on the left legend correspond to termite genus/species on the tree. Black circles 
represent termite families included in this thesis.  Reproduced from Bourguignon et al. (2015). 
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Figure 1.2: Structural composition of lignocellulosic material. Cellulose is protected by tight layers 
of hemicellulose, pectins chains and lignin. Cellulose makes up 38-50%, hemicellulose 23-32% and 
lignin 15-25%. Reproduced from Rubin (2008). 

1.2.3 Ecology  

Like ants, bees, wasps and some aphids, termites are highly social insects that live together in a 

rigid caste system within the same nest or colony (Davis et al., 2009). There are several castes 

within the termite colony, most notably workers and soldiers (Figure 1.3). Workers have been 

heavily exploited for studies relating to gut symbionts as they are the most abundant caste and 

perform the majority of the lignocellulose degradation (Berchtold et al., 1999; Ohkuma et al., 1999; 

Graber and Breznak, 2004; Hongoh et al., 2005; Warnecke et al., 2007). Workers are also 

responsible for maintaining major processes in the colony, including building nest and tunnels, 

hunting for food and water sources, feeding and caring for the other castes (Roisin, 2000; 

Hadlington and Staunton, 2008).  

Termites are broadly classified according to their habitat preference; subterranean, dampwood and 

drywood (Table 1.1) (Hadlington and Staunton, 2008). Subterranean termites are the most abundant 
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and widely distributed. They often move from parental colony to food sources via construction of 

underground tunnels. Dampwood termites live in areas where wood is in contact with moist soil 

such as trees and stumps. Drywood termites inhabit dead timber where atmospheric moisture is 

often high (Peters et al., 1996; Hadlington and Staunton, 2008). 

 

 

Figure 1.3: A typical termite life-cycle.  
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Table 1.1: Number of termites in Australia. Adapted by Constantino (Last updated: September 
2012) 

Family  Sub-Family Habitat No. of Genera No. of Species  

Lower termites 
Mastotermitidae - Subterranean 1 1 
Kalotermtidae - Drywood 8 37 
Archotermopsidae - Dampwood 2 6 
Hodotermitidae - Subterranean 0 0 
Stolotermitidae - - 0 0 
Stylotermitidae - - 0 0 
Serritermitidae - - 0 0 
Rhinotermitidae - Subterranean 5 26 
Higher termites 
Termitidae Apicotermitinae Subterranean 0 0 
  Cubitermitinae - 0 0 
  Foraminitermitinae Subterranean 0 0 
  Macrotermitinae Subterranean 0 0 
  Nasutitermitinae Subterranean 6 44 
  Sphaerotermitinae Subterranean 0 0 
  Syntermitinae Subterranean 0 0 
  Termitinae Subterranean 18 154 

1.2.4 Diversity and distribution of microorganisms in the termite gut 

Mutualistic relationships between host and gut microbes have enabled animals and herbivorous 

insects including termites to thrive on recalcitrant plant materials. Many factors such as diet, pH, 

geographical location, host specificity, and life stage are likely to influence insect gut communities 

(Robinson et al., 2010; Colman et al., 2012). These factors are not necessarily exclusive of each 

other. There is evidence that diet and taxonomy of the host can strongly influence insect gut 

microbial communities (Muegge et al., 2011; Wu et al., 2011; Colman et al., 2012). Like all 

animals, termite guts are sterile when they hatch and are soon colonised via trophallaxis, which is 

the transfer of regurgitated or defecated gut contents between colony members (Huang et al., 2008). 

Termite guts harbour an abundant and diverse symbiotic microbial community comprised of 

bacteria, archaea and in the case of lower termites, flagellated protists.  

Despite its small size, the termite gut has a large surface area in proportion to volume. The termite 

digestive tract, similar across insects, comprises three main sections; foregut (crop), midgut and 

hindgut (Engel and Moran, 2013). Ingested woody materials are masticated to smaller fragments by 

the mandibles before arriving in the crop (Muegge et al., 2011). In 1940, Hungate observed 

incomplete digestion of sawdust in the crop and midgut of lower termites (Brune, 2014), which are 

typically smaller than the hindgut. Initial cellulose hydrolysis is initiated by host cellulases secreted 

by either salivary glands in lower termites or the midgut epithelium in higher termites (Watanabe et 
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al., 1998; Tokuda et al., 2004). The hindgut is a dilated compartment that houses an estimated 95% 

of the resident gut microorganisms (Figure 1.4) (Berchtold et al., 1999) and where nutrient 

absorption takes place (Breznak and Brune, 1994).  

Termite hindgut microorganisms are responsible for major metabolic activities where they aid in 

digestive processes; (1) hydrolysis of structural polymers of plant cell walls (cellulose and 

hemicelluloses), (2) fermentation of the depolymerisation products into acetate (homoacetogenesis) 

and other short-chain fatty acids which are subsequently reabsorbed by the host, and (3) re-cycling 

of nitrogenous compounds (Breznak and Brune, 1994; Brune and Friedrich, 2000; Brune, 2014). 

Termites harbour a distinctive gut microbiota shaped through diet and co-evolution with their hosts 

(Brune and Ohkuma, 2011). 

 

Figure 1.4: Schematic diagram of termite gut. (A) Reticulitermes flavipes (Lower termite); C: Crop, 
M: Midgut, Pa: Paunch, Co: Colon, Re: Rectum (B) Nasutitermes species (Higher Termite); C: 
Crop, M: Midgut, ms: Mixed segment, P1: Anterior to enteric valve, P2: Enteric valve region, P3: 
Paunch, P5: Rectum. Reproduced from Brune et al. (1995). 

1.2.3.1 Symbiotic gut flagellates 

Flagellated protists occupy 90% of the hindgut volume of lower termites. It is estimated that 103 to 

105 protists are present in a single gut (Hongoh, 2010). These gut flagellates are unique to termites 

and are closely related to those in the wood-feeding roach, Cryptocercus, sister group of the termite 

lineage (Ohkuma et al., 2009). They belong to either the phylum Preaxostyla (consisting of one 

order Oxymonadida) or Parabasalia (consisting of at least four orders Trichonymphida, 

Spirotrichonymphida, Cristamonadida, Trichomonadida) (Noda et al., 2007; Decker et al., 2009; 

Brune and Ohkuma, 2011). It is thought that these protist lineages have become specialist wood 

degraders over the course of 150 MYR of symbiosis with termites and Cryptocercus cockroaches 

(Hongoh, 2010).  
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1.2.3.2 Symbiotic gut bacteria and archaea  

There are approximately 106 to 108 prokaryotic cells found in a single gut of both lower and higher 

termites (Schultz and Breznak, 1978; Tholen et al., 1997; Hongoh et al., 2005; Hongoh et al., 

2006a). Archaea comprise only a few percent of the total prokaryotes, while the majority are 

bacteria (Leadbetter and Breznak, 1996; Brauman et al., 2001). The majority of bacterial species 

within termite guts are thought to be autochthonous symbionts that are vertically transferred (e.g. 

inherited from other members of the colony) via proctodeal trophallaxis (Hongoh et al., 2005; 

Berlanga et al., 2009; Hongoh, 2010). It is likely that the majority of bacterial species has coevolved 

as a community with the host species, with evidence that bacterial phylotypes (community 

structure) of termite genera have the tendency to cluster together (Hongoh et al., 2005; Brune and 

Dietrich, 2015). Studies have proposed that bacteria do not strictly co-speciate with termite hosts 

and may be transferred between termite species belonging to the same genus (Hongoh et al., 2006a; 

Hongoh et al., 2006b; Hongoh, 2010; Strassert et al., 2010).  

1.3 Culture-independent molecular approaches to study microbial 

ecosystems 

Microorganisms are mostly indistinguishable morphologically, making it impossible to classify and 

reliably identify microbial species based on morphology alone (Amann et al., 1995). Up until the 

late 20th century, microbiologists depended on microscopy and cultivation as their primary tools in 

nearly all microbiological studies (Robinson et al., 2010). However, it is estimated that >99% of 

bacteria observed microscopically are not easily culturable (Amann et al., 1995; Hugenholtz et al., 

1998). This phenomenon is known as the “great plate anomaly” (Staley and Konopka, 1985). 

Culture-independent methods have been developed to investigate microbial communities in diverse 

environments as an approach to overcome this bottleneck (Staley and Konopka, 1985; Amann et al., 

1995; Su et al., 2012). Beginning with the small subunit (SSU) ribosomal RNA (rRNA) gene (16S 

rRNA and 18S rRNA) in the mid-1980s (Pace, 1997) and progressing to whole genome approaches; 

metagenomics and other omic techniques (Handelsman, 2004; Cardenas and Tiedje, 2008), culture-

independent molecular techniques have revolutionised microbial ecology and evolution. These 

developments have been driven by rapid improvements in high-throughput sequencing and 

computing and will be described briefly in turn below. 

1.3.1 SSU rRNA-based methods  

With the introduction of the polymerase chain reaction (PCR) and sequencing of small subunit 

(SSU) ribosomal RNA (rRNA) genes (16S rRNA and 18S rRNA) in the mid-1980s, microbial 



11 
 

ecologists have extensively used rRNA sequences to identify bacteria from bulk DNA extracted 

from environmental samples, thereby bypassing cultivation (Pace et al., 1986; Woese, 1987). The 

SSU rRNA gene has been considered as the ‘gold standard’ phylogenetic marker for examining the 

diversity and taxonomic composition of microbial communities (Lane et al., 1985; Ward et al., 

1990; Hugenholtz et al., 1998; Case et al., 2007; Tringe and Hugenholtz, 2008), taking advantage of 

its universal distribution in cellular lifeforms and that it contains both conserved and hypervariable 

regions suitable for different levels of phylogenetic resolution (Amann et al., 1995; Hugenholtz et 

al., 1998). PCR provides a rapid means of profiling the constituents of a microbial community via 

the use of PCR primers that target highly conserved regions of the SSU rRNA gene (Pace, 1997). 

SSU rRNA genes have been used in a variety of applications to investigate microbiomes including 

(1) PCR-based fingerprinting methods such as denaturing gradient gel electrophoresis (DGGE) 

(Muyzer and Smalla, 1998) (2) PCR-clone libraries, and (3) oligonucleotide probe-based 

hybridisation methods such as fluorescence in situ hybridisation (FISH) (Stokes et al., 2001; Su et 

al., 2012).  

More recently, microbial communities have been profiled by multiplexed SSU rRNA gene 

amplicon sequencing on high throughput next generation (“nextgen”) sequencing platforms (Tringe 

and Hugenholtz, 2008). The first sequencing technology used for this purpose was Roche 454 

pyrosequencing which provided much higher community coverage per sample than the more 

traditional Sanger sequencing of PCR-clone libraries (Sogin et al., 2006). Within a single 

sequencing run, hundreds of thousands of SSU rRNA amplicons, referred to as pyrotags, are 

surveyed from multiple samples in parallel (Ward et al., 2009). Despite this critical breakthrough, 

pyrosequencing is essentially extinct and has been superseded by other technologies, most notably 

Illumina sequencing by synthesis technology which produces two orders of magnitude more data 

for the same cost (Smriga et al., 2010; Caporaso et al., 2011; Loman et al., 2012). There are a 

number of important methodological caveats with respect to SSU rRNA-based community profiling 

including primer bias that can affect species evenness (Engelbrektson et al., 2010), sequencing 

error, particularly for nextgen platforms, that can result in overestimation of species diversity 

(Kunin et al., 2010), lower phylogenetic resolution of nextgen sequencing reads due to shorter 

length than Sanger reads (Pontes et al., 2007), and PCR-generated chimeric sequences which inflate 

diversity estimates and confound phylogenetic tree inference (Pontes et al., 2007). Although SSU 

rRNA has been pivotal in providing insights into microbial diversity in the environment, revealing 

much greater species diversity than previously recognised (Simon and Daniel, 2011; Su et al., 2012; 

Willner and Hugenholtz, 2013), it provides very limited functional information on the profiled 

microorganisms. 
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1.3.2 Genome-based methods 

Metagenomics is the direct culture-independent genomic analysis of microorganisms in 

environmental samples. In contrast to SSU rRNA sequencing that lacks functional information, this 

approach allows a relatively unbiased assessment of the community structure, taxonomy and 

potential metabolic capabilities (functionality) of a microbial community (Hugenholtz and Tyson, 

2008). Since the first metagenomic study of an acid mine drainage biofilm (Tyson et al., 2004) and 

marine surface water from the Sargasso Sea (Venter et al., 2004), numerous other habitats have 

been investigated using metagenomics including marine (DeLong et al., 2006; Rusch et al., 2007), 

terrestrial (Tringe et al., 2005; Blaha et al., 2007) and host-associated ecosystems including insect 

guts (Warnecke et al., 2007; Aylward et al., 2012; Engel et al., 2012). More than 5000 

metagenomes are currently available through the IMG/M database (Markowitz et al., 2014). With 

the rapid advancement of sequencing capacity and computational power, metagenomics has 

progressed from identifying over- and under-represented gene families between communities, 

known as gene-centric analysis (Tringe et al., 2005), to reconstructing metabolic potential of 

individual population genomes (Kunin et al., 2008; Albertsen et al., 2013) . A typical metagenomic 

bioinformatics workflow includes read quality trimming, assembly, binning, annotation (gene 

calling) and comparative analysis (Kunin et al., 2008) (Figure 1.5) briefly described in turn below.  
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Figure 1.5: Overview of a typical culture-independent bioinformatic workflow including
examples of software used for various steps. 
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1.3.2.1 Reads quality trimming and assembly 

One major pitfall of next-generation sequencing is that low-quality sequences typically produce low 

quality assemblies, including misassembled contigs/scaffolds which can confound subsequent 

analyses. Therefore, quality trimming sequence reads such as end-trimming sequence adaptors and 

low quality bases, and removing entire reads that fall below a quality threshold is an important first 

step in bioinformatics analysis of metagenomic datasets. Read quality is normally assessed based on 

Phred quality scores which is a statistical estimate of incorrect base calling using programs such as 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads that fall below a 

common score of ~30, e.g. the probability that 1 in 1000 bases is incorrectly called or 99.9% 

accuracy, are often excluded (http://www.phrap.com/phred/). Sequences that meet the cutoff Phred 

quality scores are subjected to two-step preliminary trimming via Seqprep (St John, 2013) and 

Nesoni (http://vicbioinformatics.com/nesoni.shtml). Seqprep allows removal of adaptors from high 

throughput sequencing pipelines while Nesoni performs quality trimming on reads.  

Quality trimmed reads are assembled into longer contiguous sequences referred to as contigs using 

metagenomic assemblers either via reference-based assembly or de novo assembly. Contigs can 

further be connected by paired-end read information into scaffolds (Thomas et al., 2012). Most 

metagenome assemblers are based on the de Bruijn algorithm that is a representational graph where 

reads are cut into short sequences (k-mers) and capture the overlap (k-1=length of overlap bases) of 

k-mers (Table 1.2) (Li et al., 2012; Sharpton, 2014). Some older assemblers are based on overlap-

layout-consensus algorithm that calculates pair-wise overlaps between reads and this information is 

captured on a graph (Table 1.2) (Li et al., 2012; Sharpton, 2014). Other short read proprietary 

assemblers such as CLC workbench (www.clcbio.com) and SeqMan (www.dnastart.com) are 

commercially available (Miller et al., 2010). 

Table 1.2: Examples of some commonly used publicly available assemblers. 

Assembler Assembly algorithm Reference 

Metavelvet De Bruijn Namiki et al. (2012) 

Ray-Meta De Bruijn Boisvert et al. (2012) 

Meta-IDBA De Bruijn Peng et al. (2011) 

Minimus Overlap-layout-consensus Sommer et al. (2007) 

Newbler Overlap-layout-consensus Margulies et al. (2005) 

PHRAP Overlap-layout-consensus de la Bastide and McCombie (2007) 
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1.3.2.2 Binning 

Binning refers to the process of assigning metagenomic sequences into population groups based on 

either taxonomy-dependent or taxonomy-independent methods (Mande et al., 2012). Taxonomy-

dependent based approaches rely on comparisons to known reference sequences and are a form of 

supervised classification. Comparisons can involve (1) sequence composition (McHardy et al., 

2007; Brady and Salzberg, 2009; Rosen et al., 2011) such as GC content, codon usage, 

oligonucleotide arrangement (Mande et al., 2012), and (2) sequence similarity searches via 

alignment of reads (e.g. MEGAN, (Huson et al., 2007) or Hidden Markov Models (HMMs) (e.g. 

CARMA (Krause et al., 2008) and AMPHORA (Wu and Eisen, 2008)).  Taxonomy-independent 

approaches group contigs into bins based on mutual similarities and are a form of unsupervised 

classification. Similarities can be based on shared tetranucleotide frequencies (sequence 

composition) and organised into bins via methods such as Emergent self-organising maps (ESOMs) 

(Ultsch and Mörchen, 2005) and combined with interpolated Markov models (Strous et al., 2012). 

Recently, another taxonomy-independent approach, differential coverage binning, is starting to 

gather momentum (Albertsen et al., 2013; Sharon et al., 2013; Imelfort et al., 2014). This approach 

bin contigs with similar coverage profiles across multiple related metagenomes with the assumption 

that such contigs belong to the same microbial population. A combination of differential coverage 

and sequence composition-based binning approaches have been successful in recovering near 

complete genomes of microbial populations, including rare populations (<1% relative abundance), 

from a range of habitats. These include activated sludge bioreactors, anaerobic and full-scale 

wastewater treatment plants, permafrost and faecal communities (Albertsen et al., 2013; Imelfort et 

al., 2014).  

1.3.2.3 Gene prediction and annotation 

Gene prediction and annotation is a two-step process that involves identifying putative protein, 

RNA coding (CDSs) and non-coding sequences from contigs or reads (gene prediction) followed by 

assigning functions to identified genes (annotation). Gene prediction (or gene calling) uses two 

main approaches, evidence-based or ab initio (Kunin et al., 2008). In the evidence-based approach, 

each metagenomic read is translated into coding sequences by considering all six possible protein 

coding frames (or known as open reading frames (ORFs)). Subsequently, the resulting peptides are 

compared to reference databases based on similarity searches using BLASTP or faster algorithms 

such as USEARCH (Edgar, 2010), RAPsearch (Zhao et al., 2012), or LAST (Kiełbasa et al., 2011). 

This gene prediction method is most often used together with functional annotation (see below). 



16 
 

The main caveat of this approach is that novel CDSs may have no statistically significant similarity 

to database sequences and will consequently be undetected by this approach (Sharpton, 2014).  

The ab initio method detects CDSs using gene prediction models trained on properties of microbial 

genes (e.g. GC content, codon usage, gene length, identification of promotor motifs). Several 

readily available tools such as Prodigal (Hyatt et al., 2010), MetaGene (Noguchi et al., 2006) and 

GeneMark (Besemer and Borodovsky, 2005) exploit this approach. Even though these tools are 

based on the same principles, their performance differs as a function of read properties (e.g. length 

and sequencing error rate) and therefore, research analysts should be mindful in choosing a suitable 

algorithm for their datasets (Trimble et al., 2012). MetaGene and GeneMark are generally applied 

to assembled contigs while Prodigal can be used on both metagenomic reads and contigs. In 

contrast to evidence-based approaches, the ab initio gene prediction method allows detection of 

novel sequences not represented in public databases, which ideally require validation (e.g. 

expressed mRNA/protein) to prevent spurious calls (Sharpton, 2014). Note that if the reference 

gene is spurious, similarity-based searches can result in additional spurious calls creating phantom 

gene families and adding to the phenomenon of ‘annotation rot’. 

Once CDSs has been predicted, functional annotation follows. This is achieved by comparing the 

translated CDSs to either a database of protein sequences or a database of probabilistic gene 

models, the most widely used being Hidden Markov Models (HMM) (Rabiner and Juang, 1986) of 

protein families, wherein a protein family consist of a group of phylogenetically related protein 

sequences (Finn et al., 2014; Sharpton, 2014). Predicted CDSs are compared to all proteins or 

models, and are then classified into either a single family, a series of families, or no family (in the 

case of novel, highly diverged or potentially spurious protein sequences). Sequence databases like 

the SEED annotation system (Overbeek et al., 2005), KEGG ortholog groups (Kanehisa et al., 

2011), MetaCyc (Caspi et al., 2010) and software tools such as Prokka (Seemann, 2014) are 

frequently used for functional annotation (Karp and Caspi, 2011). These programs are often used in 

parallel to ensure all aspects of metabolic pathways are covered. For example, contigs can be 

annotated by Prokka and the coding sequences mapped to KEGG pathways. MetaCyc can be used 

to crosscheck the presence of pathways that may be absent in KEGG. Searching through databases 

using HMMs can be less accurate due to use of highly conserved sequence motifs leading to 

classification of distantly related homologs. Pfam (Finn et al., 2014) is an example of a HMM 

database that uses HMM probabilistic models to search and annotate protein domains. A number of 

user-friendly web-based programs exist which perform gene prediction, database searches, protein 

family classifications and annotations on submitted metagenomes in the context of publicly 

available datasets. These include MG-RAST (Meyer et al., 2008) and IMG/M (Dai et al., 2012).  
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1.3.2.4 Metabolic reconstruction and comparative analysis 

The functional interpretation of hundreds to thousands of genes is key to incorporating metabolic 

potentials of a particular organism and/or microbial community within an ecosystem (Abubucker et 

al., 2012). Metabolic reconstruction is the process of integrating annotated genes and pathways 

identified in a genome into a cellular framework; an example is shown in Figure 1.6. Surprisingly, 

no dedicated software exists to perform this process and currently reconstructions are performed 

manually in reference to the primary literature. Limitations in metabolic reconstruction include (1) 

ambiguous or incorrect gene annotations including the large fraction of ‘hypothetical’ and ‘putative’ 

genes found in a typical microbial genome, (2) multiple functions of a given enzyme (e.g. succinate 

dehydrogenase; EC 1.3.5.1), and (3) missing genes or incomplete pathways or functional modules 

leading to uncertainty whether the organism is capable of a given function. This can be a particular 

issue with incomplete genomes derived from metagenomes. Hence, it is important that multiple 

lines of evidence are pursued to confirm or refute the presence of metabolic functions, such as gene 

neighbourhood searches to identify potentially overlooked genes, and phylogenetic trees to confirm 

orthology and therefore function. 

Comparative genomics involves the comparison of the metabolic reconstructions of 

phylogenetically or ecologically related organisms to identify commonalities and differences which 

can provide insights on the ecology and evolution of a set of organisms (Hardison, 2003). Note that 

the process of annotation and metabolic reconstruction already implicitly uses comparative 

genomics. A wide range of tools exist to facilitate genome comparisons and visualisation. 

Proteinortho (McDonald et al., 2008) and OrthoMCL-DB (Cantarel et al., 2009) are tools that use 

reciprocal best alignment matches to identify orthologs and paralogs from multiple species. 

Visualisation tools such as STAMP provides user-friendly exploration of statistical results with 

easy output of plots, measurements of effect sizes and confidence intervals (Parks et al., 2014). 

VISTA is a web-accessible software program offering multiple tools for comparative analysis of 

genomes including rVista and GenomeVista that use global alignment strategies for annotation and 

phylo-Vista for analysis and visualisation (Frazer et al., 2004). The aforementioned MG-RAST and 

IMG/M also support comparative analysis of multiple genomes in the context of extensive reference 

genome and metagenome databases. 

 



18 
 

 

Figure 1.6: Example of a metabolic reconstruction, in this case Fibrobacter succinogenes. 
Reproduced from Suen et al., 2011. 

1.3.2.5 Metatranscriptomics and metaproteomics 

Metagenomics has provided abundant information on the metabolic and functional potential of 

uncultured microorganisms, but as a DNA-based approach, it cannot differentiate between 

expressed and non-expressed genes and is unable to capture the actual metabolic activity of a 

microbial community (Simon and Daniel, 2011; Su et al., 2012). Metatranscriptomics is the 

profiling of expressed genes and has been used for identification of RNA-based functional 

regulation and expressed biological profiles in complex ecosystems (Simon and Daniel, 2011). 

Metatranscriptomics involves three essential steps: (1) extraction of total RNA, (2) removal of 

rRNAs to enrich mRNAs, and (3) cDNA synthesis. Extra precaution should be taken when handling 

RNAs as they are less stable than DNAs (e.g. some transcripts have a life time of less than one 

minute) (Kan et al., 2005). Enrichment of mRNA is a crucial step since rRNAs make up 95-99% of 

bulk RNA in microbial cells. Several strategies exist for enriching mRNAs, the two most 

commonly used are (1) hybridisation of rRNA to sequence-based capture probes, which are 

subsequently removed from the RNA pool, and (2) targeting the polyA tails of mRNAs, which are 
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largely absent on rRNAs, using an oligo(dT) primer (Kan et al., 2005). However, mRNA polyA 

tails are more common in eukaryotes than prokaryotes, so this latter method will miss the majority 

of prokaryotic mRNAs (Dreyfus and Régnier, 2002). 

Similarly, metaproteomics provides insights into functional gene expression but via characterisation 

of proteins expressed at a given time within an ecosystem (Su et al., 2012). A standard experimental 

procedure of metaproteomics include: (1) samples preparation such as protein extraction, 

purification and concentration; (2) proteins denaturation and reduction; (3) protein or peptide 

separation and quantification, enzymatic digestion and mass spectrometry sequencing; (4) protein 

identification (Su et al., 2012). Emergence of metatranscriptomics and metaproteomics in recent 

years has enabled the study of gene expression and protein production of microbial communities to 

complement metagenomics DNA-based analyses. These approaches provide insights into the 

functional dynamics of microbial communities, but a number of caveats should be kept in mind. In 

metatranscriptomic studies, potential limitations include low mRNA recovery due to the need to 

separate mRNA from the more abundant structural RNA molecules (rRNA, tRNA), change in 

mRNA profiles due to processing (e.g. storing samples at room temperature), the variable half-lives 

of different mRNAs, and issues with extrapolating mRNA abundance to protein abundance and 

activity (Su et al., 2012). Some of these limitations can be overcome through improvements of 

metatranscriptomic protocols and appropriate processing and storage of samples (Vanwonterghem 

et al., 2014a). In metaproteomics, challenges include effect of sample collection and storage 

conditions on quality and quantity of proteins, difficulty in extracting a suitable protein fraction due 

to the complexity of microbial communities, identification of trypsin-digested peptides, and the 

extrapolation of protein abundance to activity (Kan et al., 2005; Su et al., 2012). Even so, the 

combination of “omic” approaches (metagenomics, metatranscriptomics, metaproteomics, etc) 

offers significant promise to understand the function and dynamics of microbial populations in their 

natural settings.  

1.4 Application of culture-independent molecular methods to termite 

gut communities  

Traditionally, imaging and culture-based methods have been applied to termite gut microbial 

symbionts (Eutick et al., 1978; O'Brien and Slaytor, 1982). Since most microorganisms cannot be 

readily cultured (Pace, 1997), including ~90% of all prokaryotes in the termite hindgut, culture-

independent techniques are necessary to understand termite gut microbial communities (Brune and 

Friedrich, 2000). SSU rRNA-based approaches were first applied to study the termite gut in the 

mid-1990s (Berchtold, 1994; Ohkuma and Kudo, 1996). These included DGGE, terminal restriction 
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fragment length polymorphism (T-RFLP), and fluorescence in situ hybridisation (FISH) (Shi et al., 

2010). In recent years, omic approaches have become a preferred option over SSU rRNA-based as 

they provide functional insights into uncultured gut symbiont populations and communities. Since 

the first application of metagenomics (Warnecke et al., 2007) and metatranscriptomics (Todaka et 

al., 2007) to termite guts, meta-omic approaches have increasingly been used to study the 

relationship of the termite host and its gut microbiome (Table 1.3). Culture-independent approaches 

have revealed a great deal of uncharacterised microbial diversity in this ecosystem and have 

contributed to our understanding of the composition and function of gut microbiota, which will be 

discussed in more detail below. 
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Table 1.3: A compilation of culture-independent termite guts symbiont research. Adapted from 
Scharf (2015b). 

Approach taken Methoda Termite genus Reference 
SSU-based 
16S rRNA genes 
Bacteria 

DGGE Reticulitermes and 
Nasutitermes  

Bauer et al. (2000) 

  T-RFLP Cubitermes Schmitt-Wagner et al. (2003) 
  T-RFLP Macrotermes  Hongoh et al. (2006b) 
  FISH Mastotermes  Berchtold et al. (1999) 
  FISH Cubitermes. Schmitt-Wagner et al. (2003) 
  FISH Microcerotermes and 

Nasutitermes 
Hongoh et al. (2006a) 

  Sanger sequencing Coptotermes Husseneder et al. (2010) 
  Sanger sequencing Multi-species: Reticulitermes, 

Hodotermopsis, Zootermopsis, 
Mastotermes, Kalotermes, 
Neotermes, Cryptotermes 

Stingl et al. (2005) 

  Sanger sequencing Multi-species: Reticulitermes, 
Coptotermes, Zootermopsis 

Lilburn et al. (1999) 

  Sanger sequencing + ARDRA 
analysis 

Reticulitermes Fisher et al. (2007) 

  454 pyrosequencing   Boucias et al. (2013) 
  Sanger sequencing + T-RFLP 

analysis 
Reticulitermes Yang et al. (2005) 

  Sanger sequencing Reticulitermes Hongoh et al. (2003) 
  Sanger sequencing Zootermopsis Rosengaus et al. (2011) 
  Sanger sequencing Cornitermes Grieco et al. (2013) 
  Sanger sequencing + DGGE Cubitermes Fall et al. (2007) 
  Sanger sequencing Multi-species: Odontotermes 

and Microtermes 
Makonde et al. (2013) 

  454 pyrosequencing Multi-species: Otani et al. (2014) 
  454 pyrosequencing Nasutitermes Engelbrektson et al. (2010) 
  454 pyrosequencing   Köhler et al. (2012) 
  Sanger sequencing + T-RFLP 

analysis 
Nasutitermes Husseneder et al. (2010) 

  454 pyrosequencing Trinervitermes Sanyika et al. (2012) 
18S rRNA genes 
Protist 

454 pyrosequencing Multi-species: Reticulitermes, 
Zootermopsis, Cryptocercus 

Tai and Keeling (2013) 

        
  Sanger sequencing Zootermopsis Tai et al. (2013) 
18S and 16S rRNA 
genes 
Protist and bacteria 

454 pyrosequencing Multi-species: 24 lower termites 
and three Cryptocercus 
cockroaches 
 

Tai et al. (2015) 

Omics-based    
Genome, fungal 
symbiont genome, and 
gut microbial 
metagenome 

Illumina sequencing Macrotermes (and 
Termitomyces sp. symbiont) 

Poulsen et al. (2014) 

Transcriptome Sanger sequencing Coptotermes  Hussain et al. (2013) 
  Representational difference 

analysis, Sanger sequencing 
Cryptotermes  Weil et al. (2007) 

  Sanger sequencing Reticulitermes  Gao et al. (2012) 
  Subtractive cDNA library, 

Sanger sequencing 
Macrotermes  Johjima et al. (2006) 

  454 pyrosequencing Termitomyces Yang et al. (2012) 
 

Metagenome Illumina de novo genome 
sequencing 

Coptotermes Do et al. (2014) 

        
  Functional screening + 

Sanger sequencing 
 Coptotermes Mattéotti et al. (2012) 

Mattéotti et al. (2011) 
  Functional screening (beta 

glucosidase) + Sanger 
sequencing 

Globitermes  Wang et al. (2012) 

  454 pyrosequencing (bacterial 
fosmid libraries grown under 

Macrotermes  Liu et al. (2011) 
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selective conditions) 
  Functional screening 

(cellulase and xylanase) + 
Sanger sequencing 

Microcerotermes  Nimchua et al. (2012) 

  454 pyrosequencing Pseudacanthotermes  Bastien et al. (2013) 
  Functional screening 

(esterase)+ Sanger sequencing 
Trinervitermes  Rashamuse et al. (2012) 

  Functional screening (feruloyl 
“FAE” esterase) + Sanger 
sequencing 

 Trinervitermes Rashamuse et al. (2014) 

Metatranscriptome Sanger sequencing 
(normalised polyphenic 
library) 

Coptotermes Zhang et al. (2012) 

  454 pyrosequencing   Xie et al. (2012) 
  Sanger sequencing Hodotermopsis Yuki et al. (2008) 
 Metatranscriptome Sanger sequencing Multi-species:  

Reticulitermes, Hodotermopsis, 
Neotermes, Mastotermes, 
Cryptocercus cokcroach 

Todaka et al. (2010) 

  Sanger sequencing (random 
clones) 

Reticulitermes Wu-Scharf et al. (2003) 

  Filter arrays, Sanger 
sequencing 

Reticulitermes Scharf et al. (2003) 

  Filter arrays, Sanger 
sequencing 

Reticulitermes Scharf et al. (2005) 

  Sanger sequencing Reticulitermes Tartar et al. (2009) 
Metatranscriptome Sanger sequencing (random 

clones) 
Reticulitermes Steller et al. (2010) 

  Microarray Reticulitermes Sen et al. (2013) 
  Microarray Reticulitermes Raychoudhury et al. (2013) 
  Illumina sequencing Zootermopsis  Rosenthal et al. (2011) 
Metabolome Isotope-ratio mass 

spectrometry (IR-MS) 
Hodotermopsis Tokuda et al. (2014) 

  TMAH thermochemical lysis 
coupled with GC-MS 

Zootermopsis Geib et al. (2008) 

  TMAH thermocemical lysis 
coupled with CP-MAS-NMR 
spectroscopy, and Py-GC/MS 

Coptotermes Ke et al. (2011) 

  TMAH thermocemical lysis 
coupled with GC-MS 

Coptotermes Ke et al. (2013) 

Proteome LC-MS/MS (ion trap) and    
2-D PAGE 

Reticulitermes Bauwens et al. (2013) 

  LC-MS Nasutitermes Burnum et al. (2011) 
Metatranscriptome and 
proteome 

454 pyrosequencing + LC-
MS proteomics 

Reticulitermes Sethi et al. (2012) 
 

Combination of SSU- and genome-based 
Metagenome and 16S 
survey 

454 pyrosequencing Odontotermes Liu et al. (2013) 

Metatranscriptome, 
metagenome, and 16S 
pyrosequencing 

454 pyrosequencing Multi-species: 
Amitermes and Nasutitermes 

He et al. (2013) 

a DGGE, Denaturing gradient gel electrophoresis; T-RFLP, Terminal restriction fragment length polymorphism; FISH, 
Fluorescence in situ hybridisation; ARDRA, Amplified ribosomal DNA restriction analysis ; LC-MS, Liquid 
chromatography–mass spectrometry; PAGE, Polyacrylamide gel electrophoresis; TMAH, Tetramethylammonium 
hydroxide; Py-GC/MS, Pyrolysis gas chromatography mass spectrometry. 

  



23 
 

1.4.1 Discovery of novel bacterial diversity in the termite gut  

Characterisation of termite hindgut microbiota using culture-independent methods (Table 1.3) has 

led to the discovery of more than 1500 species of bacteria grouped into 24 phylum-level clusters 

(Figure 1.7) (Hongoh, 2010). Of these clusters, three anaerobic bacterial groups have been reported 

to dominate the guts of all termites examined to date; (1) the genus Treponema belonging to the 

Spirochaetes, (2) the order Bacteriodales in the Bacteroidetes and (3) the class Clostridia in the 

Firmicutes (Eutick et al., 1976; Hongoh, 2010; Brune, 2014). Also, two novel bacterial phyla were 

first identified in the termite gut (TG), candidate phylum TG1 (later reclassified as the 

Elusimicrobia) and candidate phylum TG3, which are abundant in lower and higher termites 

respectively (Hugenholtz et al., 1998; Ohkuma, 2003; Hongoh et al., 2006; Herlemann et al., 2007; 

Ohkuma et al., 2007).  

 

Figure 1.7: Phylum-level diversity of Bacteria identified in the termite gut. Reproduced from 
Hongoh (2010). 
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1.4.2 Metagenomic analyses of termite gut microbiomes 

‘Omic’ approaches have been applied to termite guts to explore the structure and function of diverse 

microbial populations involved in the degradation of lignocellulosic biomass (Table 1.3) with the 

greatest emphasis on protist symbionts of lower termites (Scharf, 2015a). The first metagenomic 

study of termite gut communities confirmed the essential roles of gut symbionts in cellulose and 

hemicellulose hydrolysis, nitrogen fixation and recycling, and homoacetogenesis (Warnecke et al., 

2007). Warnecke et al. (2007) revealed over 700 glycoside hydrolases (GHs) in the hindgut of a 

higher termite (Nasutitermes), comprising 45 carbohydrate active enzyme (CAZy) families, many 

with recognised activity in degradation of plant cell walls (cellulose and hemicellulose) and a 

diverse group of gut bacteria representing 12 phyla and 216 phylotypes.  

Subsequent metagenomic studies on termite gut symbionts have mainly focused on identification of 

lignocellulose-degrading enzymes from microbiota genomes. For example, Liu et al. (2013) and He 

et al. (2013) reported high numbers of bacterial cellulase and hemicellulase genes from the gut 

metagenomes of higher termite fungus-growing Odontotermes (205), wood-feeding Nasutitermes 

(469) and dung-feeding Amitermes (574). While these studies and other SSU-based studies have 

provided evidence for fibre digestion roles of gut bacterial communities in higher termites, fewer 

efforts have been invested into understanding the contribution of gut bacteria to this process in 

lower termites. This is because bacteria have been largely overlooked in lower termites in favour of 

flagellated protists which have been long known as key players in lignocellulose degradation 

(Brune, 2014). Metagenomic approaches have recently been applied to exploring the enzymatic 

involvement of bacterial microbiota in lower termites (Table 1.3). For example, Do et al. (2014) 

identified 587 ORFs encoding cellulases, hemicellulases and pectanases from free-living bacterial 

gut symbionts of Coptotermes gestroi, suggesting that bacteria may play a larger role in 

lignocellulose degradation in lower termites than previously thought. Lignin-degrading genes 

however remain poorly characterised in both higher and lower termite gut symbiont metagenomic 

studies because they are either unknown, or belong to generic gene families such as peroxidases, 

which play multiple roles (Pace, 1997). In addition to targeted searches, gene-centric analysis 

allows detection of over- and under-represented gene families between termite guts or relative to 

other ecosystems pointing to potentially important ecosystem-specific functionality. For example, 

cohesin and dockerin genes, key components of the cellulosome (Todaka et al., 2007), are heavily 

under-represented in most termite guts (Warnecke et al., 2007). However, He et al. (2013) found a 

higher abundance of these gene families in the metagenome of dung-feeding Amitermes relative to 

wood-feeding Nasutitermes. Together with SSU-based community profiling, they inferred that 
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cellulosome-containing Clostridia populations were laterally acquired by Amitermes from herbivore 

dung. 

1.4.3 Expressed genes in termite guts 

Metatranscriptomics and metaproteomics have complemented metagenomic studies by confirming 

expression of genes inferred to be important in termite gut biology (Tartar et al., 2009; He et al., 

2013; Raychoudhury et al., 2013) and by providing information on the response of gut communities 

to different feeding regimens (or alternative biofuel biomass in feeding experiments) (Scharf, 

2015b). One of the first metatranscriptomic studies of a termite gut (Reticulitermes flavipes) 

revealed 6555 putative transcript sequences, of which 3044 were inferred to be host-derived and 

3511 from protist symbionts (Tartar et al., 2009). Of these, 171 were putative cellulase and 

hemicellulase genes, 37% from the host and 57% from protists, suggesting that both are involved in 

polymer digestion through production of cellulases and hemicellulases respectively (Tartar et al., 

2009). Homologues of lignase, antioxidant and detoxification enzymes were also detected in the 

host library, which reported possible involvement in lignin degradation by a termite host. The same 

method was used by the same group to investigate the differences in gene expression between 

wood- and paper-fed Reticulitermes resulting in identification of a set of host and protist symbiont 

transcripts with differential abundance between the two diet treatments (Raychoudhury et al., 2013). 

The majority of transcripts responsive to paper and wood were derived from protists and host 

respectively, and encoded putative digestive and wood-related detoxification enzymes. In both 

studies, bacterial transcripts represented only a minority of the total expressed genes, but this may 

have been due to the use of polyA tailing which would exclude most bacterial transcripts (Tartar et 

al., 2009; Raychoudhury et al., 2013), leaving open the question of bacterial involvement in 

lignocellulose degradation in this lower termite. Using rRNA depletion, He et al. (2013) identified 

bacterial glycoside hydrolases (GHs) and cellulose-binding modules (CBMs) expressed in response 

to cellulose and hemicellulose digestion from the gut metatranscriptomes of dung-feeding 

Amitermes and wood-feeding Nasutitermes, both higher termite genera lacking protists. The 

transcript profiles were consistent with dietary differences, with higher levels of cellulase and 

nitrogen fixing gene expression in wood-feeders, and grass side chain-cleaving hemicellulase 

expression and fixed-nitrogen utilisation in dung-feeders. Importantly, some genes with low relative 

abundance in corresponding metagenomes had high expression levels, such as GH11s (xylanases), 

highlighting the potential limitation of gene-centric analysis in metagenome-only studies.  

Metaproteomics have also been used to explore system dynamics of termite gut symbionts and in 

some cases to provide validation of metatranscriptome data (Scharf, 2015a). In the metagenomics 
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study of a Nasutitermes species by Warnecke et al. (2007), a metaproteome of the hindgut luminal 

fluid was examined to identify which genes were expressed, confirming the inferred importance of 

cellulases and hemicellulases in this ecosystem. For example, the metaproteome analysis revealed 

that only one of the 46 endoxylanase (GH10) genes identified was highly expressed at the time of 

sampling. Metaproteomics has also provided new insights into the long-standing question of 

whether lignin degradation is occurring in the termite gut. Over 9500 termite host and protist genes 

were differentially expressed in Reticulitermes fed with varying degrees of lignin-complex diets, of 

which 96 could be connected to lignin degradation (Sethi et al., 2012). Metatranscriptomics and 

metaproteomics have not been applied extensively to termite gut ecosystems to date (Table 1.3), 

and hold great potential for enhancing our understanding of termite gut microbiology (Shi et al., 

2010). 

1.5 Summary of results chapters 

Since the majority of termite gut microbiota is comprised of unculturable microbes, detailed 

analysis has been hampered until the introduction of molecular techniques in the 1990s. In recent 

years, there has been growing interest in understanding termite gut symbionts with newly developed 

high-throughput technologies. This is in conjunction with the applied goals of advancement in 

biofuel production and pest management (Hongoh, 2010; Shi et al., 2010). Even after more than 20 

years of research, we have only scratched the surface of unveiling the diversity and symbiotic 

mechanisms of these tiny bioreactors. There are yet insufficient data to answer the broader 

ecological questions that include the effect of diet versus co-evolution, the effect of changing diet 

on microbial community structure and function, the function of specific populations, and relative 

function of prokaryotic and eukaryotic symbionts to hydrolysis in lower termites. Conspicuously, 

little molecular data exist for the majority of Australian termite species. 

This thesis aims to address these questions through SSU profiling, feeding trials, metagenomics, 

metaproteomics and enzyme characterisation analyses of termite gut microbiota, with a special 

emphasis on Australian termites. Chapter 2 describes a large molecular survey and comparative 

analysis of Australian and North American termite microbiota via SSU rRNA gene sequencing. 

Chapter 3 examines the gut microbial community composition with dietary fluctuations and time 

through a series of feeding trials on the indigenous Australian termite, Mastotermes darwiniensis. 

Chapter 4 investigates the microbial genomic diversity and functionality by performing shotgun 

sequencing of the gut of four wood-feeding termite genera (Mastotermes, Porotermes, 

Microcerotermes and Nasutitermes) obtained from Chapter 2 and 3. In addition, we recovered four 

population genomes belonging to the Fibrobacteres and TG3 phyla via genome binning. Thus, 
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Chapter 5 characterises the functional features of Fibrobacteres, an important bacterial phylum in 

the termite gut ecosystem, providing insight into the evolutionary perspectives and classification of 

this novel phylum. Chapter 6 summarises findings of this thesis and suggests future directions for 

the study of termite gut microbiota. 
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Abstract 

Termites and their microbial gut symbionts are major recyclers of lignocellulosic biomass. This 

important symbiosis is obligate but relatively open and more complex in comparison to other well-

known insect symbioses such as the strict vertical transmission of Buchnera in aphids. The relative 

roles of vertical inheritance and environmental factors such as diet in shaping the termite gut 

microbiome are not well understood. The gut microbiomes of 66 specimens representing seven 

higher and nine lower termite genera collected in Australia and North America were profiled by 

small subunit (SSU) rRNA amplicon pyrosequencing. These represent the first reported culture-

independent gut microbiome data for three higher termite genera: Tenuirostritermes, 

Drepanotermes, and Gnathamitermes; and two lower termite genera: Marginitermes and 

Porotermes. Consistent with previous studies, bacteria comprise the largest fraction of termite gut 

symbionts, of which 11 phylotypes (6 Treponema, 1 Desulfarculus-like, 1 Desulfovibrio, 1 

Anaerovorax-like, 1 Sporobacter-like, and 1 Pirellula-like) were widespread occurring in ≥50% of 

collected specimens. Archaea are generally considered to comprise only a minority of the termite 

gut microbiota (<3%); however, archaeal relative abundance was substantially higher and variable 

in a number of specimens including Macrognathotermes, Coptotermes, Schedorhinotermes, 

Porotermes, and Mastotermes (representing up to 54% of amplicon reads). A ciliate related to 

Clevelandella was detected in low abundance in Gnathamitermes indicating that protists were either 

reacquired after protists loss in higher termites or persisted in low numbers across this transition. 

Phylogenetic analyses of the bacterial communities indicate that vertical inheritance is the primary 

force shaping termite gut microbiota. The effect of diet is secondary and appears to influence the 

relative abundance, but not membership, of the gut communities. Vertical inheritance is the primary 

force shaping the termite gut microbiome indicating that species are successfully and faithfully 

passed from one generation to the next via trophallaxis or coprophagy. Changes in relative 

abundance can occur on shorter time scales and appear to be an adaptive mechanism for dietary 

fluctuations. 
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2.1 Introduction 

Co-evolution of microbial species with eukaryotic hosts is well known for obligate endosymbionts 

such as Buchnera in aphids (Moran and Mira, 2001) and Wolbachia in nematodes (Bandi et al., 

1998). The importance of vertical inheritance is less clear in more open symbioses such as the 

microbiota of gastrointestinal tracts in which environmental perturbations and lateral transfer of 

organisms between hosts may play a more prominent role. Using culture-independent small subunit 

(SSU) rRNA-based community profiling, Ley et al. (Ley et al., 2008b; Ley et al., 2008a) found that 

both host phylogeny and diet shape gut microbiomes in many mammalian species and Ochman et 

al. concluded that vertical inheritance of gut microbiota in primates is discernable over evolutionary 

time scales (Ochman et al., 2010). 

Termites provide an appealing model system to explore the relative importance of vertical 

inheritance and environmental factors on symbiotic gut microbiota as unlike most insects, their gut 

communities are relatively complex comprising in the order of hundreds of species (Douglas, 

2011). Termites are thought to have evolved from a cockroach-like ancestor into strictly eusocial 

insects that feed exclusively on lignocellulosic biomass (Brune, 2014). Such recalcitrant substrates 

are digested through an obligate symbiosis with specialised gut microbiota comprising bacteria and 

protists in lower termites (classified into eight families) and bacteria only, in more recently evolved 

higher termites (classified in a single family, the Termitidae) (Krishna et al., 2013). Accordingly, 

transmission of gut microorganisms between termites is more strictly regulated than in mammals 

via trophallaxis (mouth to mouth transmission) or coprophagy (consumption of faeces) (Noda et al., 

2007) and co-speciation with the host has been observed in selected members of the gut community 

(Noda et al., 2007). To determine whether vertical inheritance is the dominant force shaping termite 

gut communities more broadly, we used SSU rRNA gene amplicon pyrosequencing to profile the 

gut microbiomes of 66 termite samples, representing 16 genera, obtained in Australia and North 

America. These data expand current knowledge of termite gut microbiome diversity and represent 

the first gut community profiles for three higher (Tenuirostritermes, Drepanotermes, 

Gnathamitermes) and two lower (Marginitermes, Porotermes) termite genera. 

2.2 Methods 

2.2.1 Sample collection and processing 

Termite collections were made on public lands in Queensland, Northern Territory (Australia), and 

Arizona (United States of America). Where possible, specimens were collected with their nest 

material and transported to the laboratory in ventilated plastic containers at room temperature to 
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reduce stress to the insects. Termites were removed from their nest material within a day of arriving 

in the laboratory. For community profiling, workers were transferred to a metal tray and frozen at 

−80°C for 20 min, then collected into 2 ml cryotubes and stored at −20°C until further processing. 

Frozen specimens were thawed on ice, and gut tracts were extracted using clean sharp tweezers. 

The guts were immediately transferred into a sterile 1.5 ml microtube on ice and stored at −20°C 

until extraction. For morphological identification, soldier specimens were stored in 85% ethanol. 

2.2.2 DNA extraction 

Total genomic DNAs were extracted from pooled (5–30) whole gut samples, depending on size of 

species, using FastDNA® SPIN kit for Soil (MP Biomedicals, Australia). Termite guts were added 

to a lysing matrix, treated with lysis buffer, and underwent bead beating in the Vortex-Genie® 2 

(MoBio Laboratories, USA). DNA was bound to silica matrix and washed and eluted in DNase-free 

water. DNA yield was then quantified by the Qubit™ fluorometer and QuantIT ds-DNA BR assay 

kit (Invitrogen, Australia). DNA concentration varied depending on the biomass of the whole gut. 

DNA concentrations were standardised across all samples to 20 μg/ml, diluting where necessary in 

Ultrapure™ distilled water (Invitrogen, Australia). DNA quality was evaluated using gel 

electrophoresis on 1.0% agarose gels stained with SYBR Safe, visualised on a CCD compact image 

system (Major Science, USA). 

2.2.3 SSU rRNA PCR and amplicon pyrosequencing 

The universal primer pair 926F (or prokaryote-specific 803F) and 1392R was used to amplify the 

V6 to V8 variable regions of the SSU rRNA gene. Primer sequences were modified by 

incorporation of the Roche 454 A or B adaptor sequences and a unique 5–7 nucleotide barcode, 

known as multiplex identifier (MID), to identify amplicons originating from different samples in the 

same sequencing reaction. The reverse primer 1392R was barcoded on the 5′end with the MID 

between the 454 A adaptor (uppercase) and the SSU rRNA primer (lowercase) (5′-CCA TCT CAT 

CCC TGC GTG TCT CCG AC TCAG [MID] acgggcggtgtgtRc-3′); and the 926 forward primer 

(lowercase) was modified by addition of 454 B adaptor (uppercase) at its 5′end (3′-CCT ATC CCC 

TGT GTG CCT TGG CAG TC TCAG aaactYaaaKgaattgRcgg-3′) (or 803 forward primer 

ttagaKacccBNgtagtc) (Engelbrektson et al., 2010). 

DNA amplification was carried out in 50 μl PCR reactions, using 2 μl of termite whole gut DNA 

extract as template. The amplification mixture contained 0.2 μl of 1U Fisher BioReagents* Taq 

DNA polymerase (Thermo Fisher Scientific Inc., USA), 4 μl of 25 mM MgCl2, 1.5 μl of BSA 

(Roche diagnostic, Australia), 5 μl of 10X buffer, 1 μl of dNTP mix (each at a concentration of 10 
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mM), 1 μl of each 10 mM forward primer and reverse primer; and E.coli was used as the positive 

control. PCR was performed using a Veriti® Thermal Cycler (Applied Biosystems™, Australia) 

with the following cycling parameters: an initial denaturation step of 95°C for 3 min followed by 30 

cycles of 95°C for 30 s, 55°C for 45 s, 72°C for 90 s, and a final extension of 72°C for 10 min. 

Amplification products were quantified by electrophoresis in 1% agarose with SYBR Safe staining. 

To ensure that similar numbers of sequencing reads were obtained for each sample, PCR amplicons 

were pooled in equal concentrations after cycling and then purified using the Agencourt® 

AMPure® XP Kit (Beckman, USA). DNA was quantified with the Qubit™ fluorometer and 

QuantIT ds-DNA BR assay kit. Cleaned, pooled, barcoded amplicons were submitted for 

pyrosequencing library preparation where they were mixed in equal proportions with other samples 

prior to emulsion PCR for GS FLX pyrosequencing (454 Life Sciences, USA). 

2.2.4 Analysis of SSU rRNA gene sequences 

SSU rRNA sequence data were obtained from the multiplexed 454 run by converting the 

pyrosequencing flowgrams to sequence reads using the standard software provided by 454 Life 

Sciences (Engelbrektson et al., 2010; Kunin et al., 2010). Short and/or low quality reads were 

removed using UCHIME version 4.2 (Bragg et al., 2012), and homopolymer errors were corrected 

using Acacia (Bragg et al., 2012). Sequence data were analysed using a pyrotag (pyrosequence 

reads) processing pipeline, Quantitive Insights Into Microbial Ecology (QIIME) (Caporaso et al., 

2010) and CD-HIT (Fu et al., 2012). Reads were hard trimmed to 250 bp and clustered into 

operational taxonomic units (OTUs) with a threshold of 97% sequence identity using MCL (Kunin 

and Hugenholtz, 2010). OTU representatives were compared to the Greengenes database (February 

2011 release) for taxonomy assignment using BLAST (Altschul et al., 1990; McDonald et al., 

2012). A table which lists the relative abundance of each OTU in each sample was generated and 

visualised as a heatmap. The relationship between the microbial communities in different samples 

was assessed using jackknifed UPGMA trees derived from the distance matrices obtained with the 

phylogeny-based unweighted and weighted Soergel beta-diversity measures implemented in 

Express Beta Diversity v1.04 (Parks and Beiko, 2013). The Soergel distance measures community 

relatedness based on phylogeny and either presence/absence (unweighted) or relative abundance 

(weighted) of OTUs (Lozupone and Knight, 2005; Lozupone et al., 2006; Lozupone et al., 2011). A 

comparative analysis of several phylogenetic beta-diversity measures resulted in the 

recommendation of the Soergel measure based in part on the unweighted variant being identical to 

unweighted UniFrac and the weighted variant being closely related to normalised, weighted 

UniFrac (Parks and Beiko, 2013). The relative abundance of different phyla within the higher and 



47 
 

lower termites was compared using Welch’s t-tests with Šidák multiple test correction as 

implemented in STAMP (Parks and Beiko, 2010). 

2.2.5 Molecular identification of termite host species 

The mitochondrial cytochrome oxidase II (COII) gene was amplified with PCR using three sets of 

primers Fleu/Rlys (TCT AAT ATG GCA GAT TAG TGC/GAG ACC AGT ACT TGC TTT CAG 

TCA TC), COIIF-M13/COIIR-M13 (GTT TTC CCA GTC ACG ACG TTG TAC AGA TAA GTG 

CAT TGG ATT T/AGG AAA CAG CTA TGA CCA TGG TTT AAG AGA CCA GTA CTT G), 

and COIIFw-M13/COIIRw-M13 (GTT TTC CCA GTC ACG ACG TTG TAC AGA YWA GTG 

CAH TGG ATT T/AGG AAA CAG CTA TGA CCA TGG TTT AAG AGA CCA KTA CTT G). 

This gene is commonly used for identification of termite species (Ohkuma et al., 2004; Legendre et 

al., 2008). The amplification products were purified and directly sent for Sanger sequencing 

(Macrogen Inc., Korea). The sequences were manually trimmed and inspected using Geneious 

software (www.geneious.com). Reference COII nucleotide sequences were obtained from the 

National Center for Biotechnology Information server (http://www.ncbi.nlm.nih.gov) and aligned 

using Clustal W in ARB (Price et al., 2009), followed by manual checking and refinement of the 

automated alignment. Nucleotide and amino acid-based trees were constructed using a neighbour-

joining method in ARB, and the topologies were compared. The COII tree was inferred using 

FastTree v2.1.3 (Price et al., 2009) with the generalised time-reversible model of nucleotide 

evolution.  

2.2.6 Stable isotope analysis 

Two to three individual termites for each sample were dried at 60°C , homogenised, and acidified to 

remove inorganic carbonate. The abundances of 13C and 12C were determined at the School of 

Biological Sciences, Washington State University using continuous-flow isotope ratio mass 

spectrometry with a Costech elemental analyser coupled to a Micromass Isoprime isotope ratio 

mass spectrometer (EA/IRMS). The isotope ratios of 13C to 12C are reported relative to Pee Dee 

Belemnite.   

2.2.7 Nucleotide sequence accession numbers 

All SSU rRNA sequence data obtained from this study have been deposited in GenBank under 

BioProject PRJNA248567. The COII termite host sequences are deposited under the accession 

numbers KJ907786–KJ907853. 
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2.3 Results 

2.3.1 Sample collection and host identification  

Samples of 66 termite colonies and two cockroaches were collected in Australia (Queensland and 

the Northern Territory) and the United States (Arizona) (Appendix A: Table S2.1). Termites were 

identified by sequencing and comparative analysis of their mitochondrial cytochrome oxidase II 

(COII) genes (Liu and Beckenbach, 1992) using the cockroaches as outgroup taxa. They were 

classified according to their closest identified phylogenetic neighbour in the public reference 

database (Appendix A: Figure S2.1) and also by soldier morphology (Appendix A: Figure S2.2). A 

total of 16 termite genera were sampled, seven higher and nine lower termites representing five of 

the nine recognised families (Table 2.1). The phylogenetic tree used to classify our samples 

(Appendix A: Figure S2.1) is consistent with previous inferences based on COII and other marker 

genes (Thompson et al., 2000; Legendre et al., 2008; Ware et al., 2010) with the following 

observations. The genus Nasutitermes is not monophyletic (Inward et al., 2007), clustering together 

with several other nasute genera (subfamily Nasutitermitinae) including Tumulitermes, 

Hospitalitermes, and specimens 7TT2 and 7TT3, morphologically identified as Tenuirostritermes. 

Similarly, Amitermes is not monophyletic, clustering together with Gnathamitermes and 

Drepanotermes, although it should be noted that internal groupings within the Termitidae are not 

well supported by bootstrap resampling. Specimens 8MH1 and 9MH1 are the first COII data for the 

genus Marginitermes, and these sequences are grouped with members of the family Kalotermitidae 

as predicted by morphological similarities (Scheffrahn and Postle, 2013). All other COII sequences 

obtained from the collected specimens, including cockroach outgroups, are grouped with reference 

sequences belonging to the expected genera predicted by morphology (Appendix A: Figure S2.1). 

We then used this host phylogeny as a reference to establish the degree of vertical inheritance 

occurring with resident gut microbiomes. 
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Table 2.1: Summary of the surveyed 66 termite whole gut samples according to host phylogeny 
(genus and family); sample location (country); and relative bacterial, archaeal, and protist 
abundances using universal primers (926F) and prokaryote primers (803F) in some instances (see 
text and Appendix A: Figure S2.10). 

 

2.3.2 Gut microbiome profiling  

Whole guts were removed and pooled from 5 to 30 workers depending on the size of the species 

(Appendix A: Table S2.1). In the case of the two cockroach outgroups, the gut material of a single 

individual was used for subsequent analyses. Culture-independent microbial community profiles 

were determined via SSU rRNA gene amplicon pyrosequencing using the primers 926F and 1392R 

that broadly target all three domains of life (Lane, 1991). To evaluate the reproducibility of the 

profiles based on sets of pooled workers, we initially generated three biological replicates for four 

samples representing different termite genera. Clustering of samples by redundancy analysis (RDA) 

using Hellinger transformed data showed that the variation between the biological replicates of each 

subsampled genus was significantly less than the variation between termite genera (Appendix A: 

Figure S2.3). Based on these observations and to permit a broader survey, we generated only one 

pooled worker sample profile for each of the remaining 62 termite specimens. A total of 457,947 

pyrosequence raw reads were produced from the 68 samples ranging from 600 to 10,000 per sample 

after removal of termite (or cockroach) host SSU rRNA gene sequences, which comprised from 3% 

to 55% of total reads for each sample. Specimens were randomly resampled to a depth of 600 reads, 

and rarefaction and diversity analysis suggested that this was adequate to describe the overall 

Termite genus Family
Protist

AU US Total %
926F 803F 926F 803F

1 Drepanotermes Termitidae 1 0 1 97.5 2.5 0.0
2 Gnathamitermes Termitidae 0 8 8 99.7 0.1 0.2
3 Amitermes Termitidae 2 8 10 98.2 1.7 0.0
4 Nasutitermes Termitidae 7 1 8 97.5 2.5 0.0
5 Tenuirostristermes Termitidae 0 2 2 99.8 0.2 0.0
6 Microcerotermes Termitidae 12 0 12 99.1 0.9 0.0
7 Macrognathotermes Termitidae 1 0 1 77.9 63.5 22.1 36.5 0.0

Sub-total 24 18 42
926F 803F 926F 803F

8 Reticulitermes Rhinotermitidae 0 3 3 92.0 0.2 7.8
9 Heterotermes Rhinotermitidae 6 0 6 91.4 5.3 3.3

10 Coptotermes Rhinotermitidae 3 0 3 66.5 78.6 33.4 21.4 0.1
11 Schedorhinotermes Rhinotermitidae 3 0 3 82.3 72.9 17.2 27.1 0.5
12 Marginitermes Kalotermitidae 0 2 2 98.5 0.0 0.2
13 Incisitermes Kalotermitidae 0 1 1 97.6 0.0 1.5
14 Glyptotermes Kalotermitidae 2 0 2 100.0 0.0 2.4
15 Porotermes Stolotermitidae 1 0 1 42.1 50.1 57.7 49.9 0.0
16 Mastotermes Mastotermitidae 3 0 3 82.2 92.4 17.4 7.6 0.4

Sub-total 18 6 24
Overall 42 24 66

Lower

Number of samples Bacteria Archaea

% %
Higher 
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diversity of the samples (Appendix A: Figure S2.4). The resampled data was normalised for SSU 

rRNA copy number variation using CopyRighter (Angly et al., 2014) which can vary by up to an 

order of magnitude between prokaryotic genera. However, the effect of copy number correction was 

relatively subtle for these datasets (Appendix A: Table S2.2). Overall, the majority of non-host 

amplicon reads from the whole gut samples were bacterial (95.4% on average in higher termites, 

83.8% in lower) with smaller percentages of archaea (4.5% in higher, 14.4% in lower) and protists 

(0.1% in higher, 1.1% in lower) recovered (Table 2.1). 

2.3.3 Bacterial profiles 

To determine the evolutionary distribution and conservation of bacterial groups across the sampled 

termite host radiation, we performed a prevalence versus relative abundance analysis (Turnbaugh et 

al., 2010). Beginning at the broad taxonomic rank of phylum, all termite gut microbiomes were 

noted to comprise a core set (100% prevalence) of four bacterial phyla (Bacteroidetes, Firmicutes, 

Spirochaetes, and Proteobacteria) and an accessory set (<100% prevalence) of six bacterial phyla 

(Elusimicrobia, Fibrobacteres, Actinobacteria, Synergistetes, Planctomycetes, and Acidobacteria) 

using a relative abundance threshold of 1% in at least one sample (Table 2.1). Within the termite 

cohort, the core and accessory phyla showed pronounced differences in prevalence and relative 

abundances most notably between lower and higher termites. On average across the sampled 

genera, the Bacteroidetes are more abundant in lower than in higher termites, and the Spirochaetes, 

Acidobacteria, Fibrobacteres, and Synergistetes are more abundant in higher than lower termites 

(Table 2.1 and Appendix A: Figure S2.5). We also observed that the Elusimicrobia are highly 

abundant in many lower termites while being nearly absent in all higher termites (Appendix A: 

Figure S2.6). These differences in relative abundance are mostly accounted for by a small number 

of genera in each of the phyla (see below). Additionally, we noted a secondary pattern associated 

with diet at the phylum level. Polyphagous termite genera (i.e. those comprising species with 

different diets) tended to show an increase in the relative abundance of Spirochaetes and 

Fibrobacteres and a decrease of Firmicutes on a wood relative to a grass diet (Nasutitermes) and on 

a grass relative to dung diet (Gnathamitermes) (Appendix A: Figure S2.7). 
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Table 2.2: Summary of core and accessory bacterial phyla in higher and lower termite gut 
communities present at >1% relative abundance in at least one sample.  

 

For the Bacteroidetes, the genus Candidatus Azobacteroides is highly represented in many of the 

lower termite specimens, and for the Elusimicrobia, members of the genus Candidatus 

Endomicrobium are similarly highly represented in several lower termite genera (Figure 2.1). For 

the Spirochaetes, the genus Treponema is highly represented in all of the higher termite genera; and 

for the Fibrobacteres, which were not detected in most of the lower termite samples, members of the 

classes Chitinovibrionae (TG3) and Fibrobacteres-2 were broadly represented in higher termite 

specimens (Figure 2.1). At increased phylogenetic resolution, several operational taxonomic units 

(OTUs) stood out either because they were abundant (>10% of bacterial reads) in one or a few 

termite genera and/or prevalent in the surveyed termites (present in >50% of specimens) (Figure 

2.2). Four OTUs belonging to Candidatus Azobacteroides represent on average >10% of the reads 

from the guts of a number of lower termite genera and appear to have a co-evolutionary signal. For 

example, OTU5 is found in five of the six Heterotermes specimens that cluster together in the COII 

tree (Appendix A: Figure S2.1), with the phylogenetic outlier, Heterotermes BF01 containing a 

different Candidatus Azobacteroides OTU (OTU7; Figure 2.2). Similarly, three abundant 

Candidatus Endomicrobium OTUs likely representing separate species occur in different lower 

termite genera (Porotermes—OTU43, Incisitermes—OTU55, Reticulitermes—OTU24; Figure 2.2 

and Appendix A: Figure S2.8). Other abundant OTUs included Candidatus Vestibaculum in 

Incisitermes (OTU27) and Marginitermes (OTU105), Blattabacterium in Mastotermes (OTU22) 

and in the cockroach outgroups (OTU3), Enterococcus (OTU44) in one Coptotermes sample 

(AP01), Dysgonomonas (OTU207) in one Heterotermes sample (SL01), and Fusobacterium 

(OTU133) in all three Mastotermes specimens. In terms of prevalence, Treponema was the standout 

Prevalence Relative abundance Prevalence Relative abundance p-values

% % (S.D) % % (S.D)
Bacteroidetes 100.0 6.3 (±5.0) 100.0 41.3 (±24.8) ***
Firmicutes 100.0 24.0 (±14.1) 100.0 19.1 (±11.6) _
Spirochaetes 100.0 44.3 (±18.9) 100.0 13.2(±13.0) ***
Proteobacteria 100.0 5.5 (±2.7) 100.0 7.5 (±6.5) _

Planctomycetes 100.0 4.3 (±4.4) 79.1 2.3 (±2.6) _
Synergistetes 95.2 3.1 (±3.0) 95.8 1.0  (±0.6) _
Actinobacteria 92.9 1.8 (±1.8) 87.5 2.3  (±2.1) _
Acidobacteria 90.5 2.0 (±1.3) 45.8 <1 (±0.8) ***
Fibrobacteres 95.2 5.7 (±5.2) 12.5 <1 (±1.1) ***
Elusimicrobia 31.0 <1 (±0.2) 70.8 8.4 (±15.3) _

Phylum in bold *** p-value <0.05
S.D Standard deviation _ p-value >0.05

Phylum
LowerHigher



52 
 

genus, with six Treponema OTUs being broadly represented across the higher termites and in some 

instances also across the lower termites, for example OTU1 (present in 92% of all specimens; 

Figure 2.2). To confirm that the ubiquity of this OTU was not due to sample contamination, we 

examined it at higher resolution by dividing the 7,223 reads comprising OTU1 into identical 

clusters (Appendix A: Table S2.3). Most (89%) of these identical clusters were from members of 

the same termite families suggesting minimal contamination (and vertical inheritance) and also 

indicating that while 97% OTUs reduce the effect of pyrosequencing error on diversity estimates 

(Kunin et al., 2010), they are often composites of multiple strains (Patin et al., 2013). Although 

OTU1 was present as a low abundance member in most termite genera (<1%), it was highly 

represented in Microcerotermes (up to 35% of bacterial reads; Appendix A: Figure S2.7). Other 

high prevalence (and mostly low abundance) OTUs included Desulfarculus-like (OTU51), 

Desulfovibrio (OTU38), Anaerovorax-like (OTU120), Sporobacter-like (OTU364), and Pirellula-

like (OTU151) bacteria (Figure 2.2 and Appendix A: Figure S2.8). 



53 
 

 

Figure 2.1: Heatmap showing microbial taxa (mostly genus and family level) with relative abundance ≥0.2% in one or more whole gut samples 
surveyed in this study. Each row represents a gut sample and each column a microbial taxon with relative abundance indicated by shading according to 
the legend. Phylum-level designations for the microbial taxa are indicated at the top of the figure, and host sample phylogeny is indicated to the left 
(family) and right (genus) of the figure.   
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Figure 2.2:  Prevalence versus relative abundance graph of bacterial OTUs (97% sequence identity) in the surveyed gut samples. OTUs with ≥10% 
relative abundance or ≥50% prevalence across the 66 termite samples are highlighted in red and labelled with OTU ID and closest matching bacterial 
genus. Relative abundance was calculated only using samples containing detectable amounts of a given OTU. In instances where the OTU is only 
found in a single termite genus, the termite genus is also included in the label. 
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2.3.4 Archaeal profiles  

Archaea comprise a minority of the higher termite gut community profiles with the exception of the 

Macrognathotermes sample (20% of reads) and represent >10% of the profiles in four of the nine 

lower termite genera investigated, in one instance comprising more than half the reads (Porotermes 

57%; Table 2.1). Three of the five termite genera with high archaeal signal had multiple 

representatives (Coptotermes, Schedorhinotermes, and Mastotermes), which showed a high degree 

of variation in the percentage of archaeal reads (Figure 2.3). To cross-check that this variation and 

that the unexpectedly high archaeal abundance in many of these samples was not the result of 

primer bias, we generated additional community profiles using a different forward primer, 803F, 

which broadly targets bacteria and archaea (Lane, 1991). The profiles were largely consistent 

between the two primer sets confirming both the sample-to-sample variation within a termite genus 

and that the archaea comprise a high percentage of the amplicon reads in some samples (Table 2.1 

and Appendix A: Figure S2.9). The majority of detected archaeal phylotypes are Euryarchaeota 

most closely related to methanogenic genera including (in descending relative abundance) 

Methanobrevibacter, Methanomassiliicoccus, Methanobacterium, Methanimicrococcus, and 

Methanospirillum. Additionally, a Crenarchaeote belonging to an uncultured lineage, pGrfC26 

(Großkopf et al., 1998), was detected up to 10.2% in some termite genera (Figure 2.1 and Figure 

2.3). 
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Figure 2.3: Heatmap showing archaeal OTUs (97% seq id) with ≥0.1% relative abundance in one or more of the surveyed gut samples. Each row 
represents an OTU and each column a gut sample with relative abundance as a percentage of the total microbial community (including bacteria) 
indicated by numbers and shading according to the legend. The termite genus for each sample is indicated at the top of the figure, and OTU phylogeny 
is indicated to the left (phylum) and right (mostly genus) of the figure. 
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2.3.5 Eukaryotic profiles 

Non-termite host eukaryotic sequences represented only 1.0% of the community profiles averaged 

over the 16 termite genera with the highest fraction recovered in the lower termite Reticulitermes 

(8%; Table 2.1). These percentages likely do not reflect protist cell numbers or ratios due to the 

much higher number of rRNA copies in protists relative to bacteria and variation of copy number 

between protist lineages (Gong et al., 2013). The majority of the eukaryotic reads were classified as 

parabasalids (Trichonympha, Pseudotrichonympha, and Metadevescovina) and oxymonads 

(Dinenympha) (Figure 2.1 and Appendix A: Figure S2.10). A low abundance phylotype (0.2 to 

0.5%) most closely related to the ciliate Clevelandella (98% sequence identity) was unexpectedly 

detected in half of the Gnathamitermes samples (Appendix A: Figure S2.10). 

2.3.6 Beta-diversity analyses 

To explore the relative effect of vertical inheritance and diet on termite gut microbiota, we 

calculated phylogenetic distances between bacterial communities with (weighted) or without 

(unweighted) taking OTU relative abundance into account. Hierarchical clustering of unweighted 

Soergel dissimilarity distances produced a topology largely consistent with the inferred host 

evolution (Appendix A: Figure S2.1; (Legendre et al., 2008)) but not with inferred diet where 

dietary variation was present, that is, in polyphagous genera (Figure 2.4 and Appendix A: Table 

S2.4). All termite genera with >1 representative were resolved as monophyletic groups according to 

comparison of their gut bacteria with the exception of Coptotermes and Amitermes (Figure 2.4). 

However, the latter genus was also not monophyletic within the COII tree (Appendix A: Figure 

S2.1), with FC04 and TV01 forming a separate line of descent in both trees. The vertical inheritance 

signal was strong enough to resolve some family level associations (with >1 genus), including the 

Termitidae with the exception of Macrognathotermes and the Kalotermitidae (Figure 2.4). When 

OTU relative abundance was taken into account, the host signal was weakened particularly at the 

family level, but most termite genera were still resolved as monophyletic groups (Appendix A: 

Figure S2.11). Closer inspection of Nasutitermes and Gnathamitermes revealed that relative 

abundance clustered members of these polyphagous genera by diet (Figure 2.5) reflecting the 

phylum-level shifts noted previously (Appendix A: Figure S2.7). Isotopic analysis of gut contents 

supports this observation as putative wood feeders had isotopically heavier carbon (d13C:−27‰ to 

−28‰) than their grass (d13C: −13‰ to −22‰) or dung feeding (d13C: −16‰ to −22‰) 

counterparts (Figure 2.5). 
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Figure 2.4: UPGMA tree of unweighted (presence/absence only) Soergel pairwise distances 
between bacterial profiles showing a high consistency with host phylogeny and low consistency 
with diet (Appendix A: Table S2.4). The values on interior nodes represent jackknife support values 
≥49. Termite host affiliation (family) and presumptive diet are indicated to the right of the tree. 
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Figure 2.5: Subtrees of host and bacterial community phylogenetic comparisons showing 
secondary effect of diet on community structure of polyphagous termite genera. When the relative 
abundance of bacterial OTUs is taken into account (weighted Soergel), samples cluster according to 
diet. The values on interior nodes of the COII trees are FastTree local support values and jackknife 
support values ≥49 on the Soergel UPGMA trees. Carbon isotope values of gut contents are shown 
in the far right panels. 
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2.4 Discussion 

Termite gut microbiota have been the subject of an increasing number of investigations over the 

past years using a suite of new molecular tools (Brune, 2014), however, a large amount of termite 

diversity remains to be explored. Here, we present the first extensive culture-independent molecular 

survey of the gut microbiomes of Australian termites and expand our existing knowledge of North 

American termite gut microbial diversity. These data are then used to assess the relative effect of 

vertical inheritance and environmental factors (primarily diet). The 16 termite genera examined in 

this study have a set of core and accessory gut bacterial phyla that distinguish them from all other 

habitats (Table 2.2). This observation is consistent with previous culture-independent studies which 

show that the combination of these phyla is highly distinctive of the termite gut microbiome 

(Warnecke et al., 2007; Hongoh, 2010; He et al., 2013; Brune, 2014; Tai et al., 2015) particularly in 

comparison to other insect gut communities (Douglas, 2009; Engel and Moran, 2013). This 

distinctiveness is further underlined by the observation that the majority of operational taxonomic 

units (OTUs) identified in the present study cluster with sequences from previous termite surveys 

(Tholen and Brune, 1999; Hongoh et al., 2003; Hongoh et al., 2005; Shinzato et al., 2005; Yang et 

al., 2005; Nakajima et al., 2006; Warnecke and Hugenholtz, 2007; Köhler et al., 2008; Husseneder, 

2010; Ikeda-Ohtsubo et al., 2010; Schauer et al., 2012). A recent extensive rRNA-based survey of 

gut bacteria in 34 termite species (Dietrich et al., 2014) allows direct comparison of the bacterial 

profiles of seven termite genera that overlap between the studies. The three higher termite profiles 

generally match well, but the four lower termite profiles have some conspicuous differences even at 

the relatively course phylogenetic resolution of phylum. In particular, the Dietrich et al. (2014) 

profiles have higher proportions of Spirochaetes and lower proportions of Bacteroidetes and 

Firmicutes than the corresponding profiles in our study (Appendix A: Figure S2.12). For 

Reticulitermes and Coptotermes, this may reflect real differences as different species were profiled, 

but for Mastotermes and Incisitermes for which the same species were examined, the more likely 

explanation is differences arising from methodology such as DNA extraction method (Morgan et 

al., 2010) and/or PCR primers used (Engelbrektson et al., 2010). A study by Sabree and Moran 

(Sabree and Moran, 2014) using similar DNA extraction method and primers to ours produced a 

similar gut community profile for Mastotermes (Appendix A: Figure S2.12). 

With these methodological caveats in mind, key differences between higher and lower termite gut 

profiles are linked to the presence of protists in the latter group. The Bacteroidetes and 

Elusimicrobia are the most over-represented phyla in lower termites relative to higher termites 

because they harbor highly abundant members of the Candidatus genera Azobacteroides, 



61 
 

Vestibaculum (Bacteroidetes), and Endomicrobium (Elusimicrobia; Figure 2.2), which are 

recognised protist symbionts (Noda et al., 2005; Noda et al., 2006; Noda et al., 2007; Stingl et al., 

2004; Stingl et al., 2005). Candidatus Azobacteroides pseudotrichonymphae, an endosymbiont of 

the parabasalid Pseudotrichonympha grasii, has previously been reported to comprise 

approximately 70% of the bacterial cells present in the gut of Coptotermes formosanus (Hongoh et 

al., 2008). Here, we found phylogenetically distinct Candidatus Azobacteroides spp. comprise up to 

66% of the bacterial gut profiles in Coptotermes, up to 63% in Schedorhinotermes, and up to 72% 

in Heterotermes (Appendix A: Figure S2.8) and identified their putative Pseudotrichonympha hosts 

only in those termite genera (Figure 2.1 and Appendix A: Figure S2.10), supporting the previously 

reported specific relationship between the two in multiple termite genera (Noda et al., 2007). 

Candidatus Vestibaculum illigatum was first reported in Neotermes cubanus and was shown to be 

an epibiont of the flagellated protist Staurojoenina (Stingl et al., 2004). Here, we found abundant 

populations (8%–22%) of Candidatus Vestibaculum in Incisitermes and Marginitermes, both 

members of the family Kalotermitidae. Assuming that Candidatus Vestibaculum is a specific 

epibiont of Staurojoenina, this is consistent with the observation that Staurojoenina is only found in 

members of the family Kalotermitidae (Yamin, 1979; Gile et al., 2013). However, the other 

Kalotermitidae genus surveyed, Glyptotermes, lacked detectable populations of Candidatus 

Vestibaculum (Appendix A: Figure S2.8) and Staurojoenina was not detected at all in our survey. 

The latter observation may be due to our primer set not targeting this parabasalid genus (two 

mismatches in the 926F primer to S. assimilis acc. AB183882). 

Candidatus Endomicrobium was detected in all of the lower termite genera surveyed and was also 

found in low abundance in some of the higher termite genera (Figure 2.1) consistent with previous 

findings (Stingl et al., 2005; Ikeda-Ohtsubo et al., 2007; Ohkuma et al., 2007). In Reticulitermes and 

Incisitermes, Candidatus Endomicrobium is a recognised cytoplasmic symbiont of the parabasalids 

Trichonympha and Metadevescovina, respectively (Ohkuma et al., 2007). Our data are consistent 

with these observations as high abundance populations of Candidatus Endomicrobium, and their 

respective host protists were detected in Reticulitermes and Incisitermes (Figure 2.1). The highest 

relative abundance of Candidatus Endomicrobium was found in Porotermes (65% of bacterial 

reads; Figure 2.2 and Appendix A: Figure S2.8), however, no protist host sequences were detected, 

presumably due to primer mismatches as visual observation of Porotermes gut contents reveal a 

high diversity of protist morphotypes (unpublished observation). 

The most prevalent (ubiquitous) genus in the gut survey was Treponema (Figure 2.2), which 

comprises most of the Spirochaetes phylum signal. Treponema has been reported in every termite 

gut investigation to date (Brune, 2014) and contributes substantially to the distinctiveness of the 
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termite gut microbiome. Numerous Treponema OTUs were found in the present survey, many of 

which flourished in the higher termites (Appendix A: Figure S2.8) likely following the 

evolutionary loss of protists from the hindgut (Brandl et al., 2007). It has been shown that 

Spirochaetes are essential for the survival of higher termites and that their removal results in a 

shorter life span (Eutick et al., 1978). Metagenomic, metatranscriptomic, and metaproteomic 

analyses of two higher termite genera, Nasutitermes and Amitermes, indicate that treponemes are 

involved in all of the major functions in the hindgut, including fibre hydrolysis, fermentation, 

homoacetogenesis, and nitrogen fixation (Warnecke et al., 2007; He et al., 2013) which may explain 

their success (ubiquity) and long term co-habitation with their termite hosts. However, Treponema 

is a phylogenetically broad genus (Ohkuma et al., 1999a; Breznak and Leadbetter, 2006; Berlanga 

et al., 2009) and it seems likely that not all species will be capable of all key functions. 

Two deltaproteobacteria (Desulfovibrio and Desulfarculus-like OTUs) were present in low 

abundance in over half of the samples tested (Figure 2.2). Desulfovibrio has previously been 

reported as a widespread constituent of termite guts mainly based on cultivation studies, with 

proposed functions including oxygen removal and nitrogen fixation (Kuhnigk et al., 1996). 

However, the Desulfarculus-like OTU was more prevalent (Appendix A: Figure S2.8) and a 

member of this group has recently been inferred to be primarily responsible for the first step in 

CO2-reductive acetogenesis (Rosenthal et al., 2013). If this key functionality in the Desulfarculus-

like group is conserved across different termite genera, it may explain their widespread distribution 

among the surveyed termites. Less expected was the widespread occurrence of a Pirellula-like 

planctomycete OTU (Figure 2.2). Planctomycetes have been reported in alkaline gut segments of 

soil-feeding termite genera, where they are speculated to play a role in degradation of humus-

associated biopolymers such as N-acetylglucosamine (Köhler et al., 2008). No soil-feeding genera 

were surveyed in the present study, although the planctomycete OTU may be associated with 

alkaline segments known to be present in several higher termite genera (Bignell and Eggleton, 

1995). The planctomycete OTU was also detected in three lower termite genera (Appendix A: 

Figure S2.8) which are not known to have alkaline gut segments, suggesting that planctomycetes 

are not strictly associated with higher pH in termites (Hongoh et al., 2003; Hongoh et al., 2005; 

Nakajima et al., 2005). 

Archaea have been reported to constitute only a small fraction (up to 3%) of the termite gut 

ecosystem (Brauman et al., 2001), however, we found much higher percentages in the amplicon 

profiles of a number of lower termite genera and one higher termite genus (Table 2.1). We cross-

checked our findings with an alternative forward primer broadly targeting bacteria and archaea 

(803F) and confirmed that the result was not an artefact of the universal primer pair (926F and 
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1392R). Also considering that many samples had archaeal proportions in the anticipated range 

(<3%; Table 2.1), we suggest that the higher values are not artefacts of the primers or of the DNA 

extraction method used. The observed variability in archaeal abundance between samples belonging 

to the same termite genus, e.g. Schedorhinotermes (1.4%, 24.5%, and 32.9%), suggests that 

archaeal abundance may be more variable between specimens than previously appreciated, possibly 

reflecting environmental factors or simply temporal dynamics (‘archaeal blooms’). Only 

hydrogenotrophic methanogens, dominated by Methanobrevibacter in most cases, were detected in 

the surveyed termite guts consistent with previous reports (Ohkuma et al., 1999b; Tokura et al., 

2000; Shinzato et al., 2001), suggesting that acetoclastic methanogenesis is likely unfavourable in 

this habitat. Phylotypes closely related to a recently described phylogenetically novel methanogenic 

genus related to the Thermoplasmatales, Methanomassiliicoccus, were detected in several termite 

genera raising the possibility that these methanogenic populations may have an obligate 

requirement for methanol (Paul et al., 2012). 

Eukaryotes were not the primary focus of this study, and our data are likely an underestimate of 

protist diversity in the surveyed species due to primer mismatches (Hadziavdic et al., 2014; Wang et 

al., 2014). Also, rRNA-based relative abundance estimates will likely not reflect cell counts (e.g. 

Reticulitermes (Lewis and Forschler, 2004)) due to the much higher number of rRNA gene copies 

in protists relative to bacteria (Gong et al., 2013), the former of which is not currently corrected by 

CopyRighter (Angly et al., 2014). However, some interesting qualitative observations were made 

including putative protist host-bacterial symbiont pairings described above. It is commonly reported 

that higher termites lack flagellated protists, which are primary agents of lignocellulose digestion in 

lower termites (Brune and Ohkuma, 2011; Hongoh, 2011; Brune, 2014). Instead, bacteria and to a 

lesser extent, the termite itself, provide the enzymes necessary for lignocellulose hydrolysis in 

higher termites (Brune, 2014; Hongoh, 2014). Unexpectedly then, a phylotype related to the ciliate 

Clevelandella, previously reported in wood-feeding cockroach intestinal tracts (Lynn and Wright, 

2013), was detected in the higher termite genus Gnathamitermes (Appendix A: Figure S2.10). An 

older microscopic study of higher termite gut ecosystems supports our findings with the 

identification of small numbers of a closely related ciliate, Nyctotherus, in Amitermes (Kirby, 

1932), although no protists were detected in the Amitermes community profiles in the present study. 

The presence of low abundance protist populations in some higher termite genera suggests either 

reacquisition after the major evolutionary transition to bacteria-dominated gut communities in the 

higher termites or low-level persistence of some protist species across this transition. It will be 

interesting to determine if these ciliates are directly involved in lignocellulose digestion. 
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A primary motivation of our study was to determine the relative importance of vertical inheritance 

(host signal) versus diet on termite gut microbiota composition given the unusual status of termites 

among insects in terms of gut microbiome complexity (Douglas, 2011) and the importance of 

termites as ecosystem engineers (He et al., 2013). This question is not immediately addressable 

using field observations of lower termites as they are primarily wood feeders with the exception of 

Mastotermes (Abe et al., 2000; Andersen and Jacklyn, 1993). However, we obtained sufficient 

specimens of polyphagous higher termite genera to evaluate the relative effect of diet and host 

signal. The strongest signal was clearly due to vertical inheritance, with termite genus and even 

family level associations being resolved based on gut community profiles alone, particularly in 

unweighted analyses (Figure 2.4). This is consistent with previous studies indicating that vertical 

transmission plays an important role in structuring termite gut communities, for example co-

speciation of gut symbionts within the genera Reticulitermes and Microcerotermes (Hongoh et al., 

2005) and a general host signal in whole gut community analyses of 34 termite and cockroach 

species (Dietrich et al., 2014). Maintenance of host-specific microbial communities must be 

achieved via vertical transmission during trophallaxis or coprophagy, as there is no germline 

transfer in termites (Huang et al., 2008). It is important to note that a dominant host signal in gut 

community composition does not imply that all component species are the product of vertical 

inheritance, ultimately resulting in co-speciation. The termite gut is an open system that would 

allow ingress of foreign microorganisms, which may be able to persist under favourable conditions. 

For example, it was speculated that some Firmicute populations in Amitermes have been laterally 

acquired from herbivore gut communities as a result of dietary specialisation, i.e. dung feeding (He 

et al., 2013) (see below). These bacterial populations were then subsequently vertically transmitted 

in the Amitermes lineage. While fine-scale reconstruction of population co-evolution is not feasible 

with partial rRNA sequences, the clusters of identical reads identified in the most ubiquitous 97% 

OTU, Treponema OTU1, reflects the dominant overall host signal but also suggests that a minority 

of strains in the cluster may have been laterally transferred between termite genera (Appendix A: 

Table S2.3). 

The effect of diet on gut community structure has been addressed to a lesser extent in termites. No 

clear dietary signal was observed in unweighted analyses (Figure 2.4), but when the evenness 

(relative abundance) of gut phylotypes was taken into account, a secondary effect of diet on 

community structure became apparent in the well-sampled polyphagous termite genera. 

Specifically, Nasutitermes samples are partitioned into wood- and grass-feeding clades and 

Gnathamitermes into grass- and dung-feeding clades (Figure 2.5). Changes in phylum-level 

abundances could be correlated with the dietary differences such as an increased abundance of 
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Spirochaetes and Fibrobacteres and decreased abundance of Firmicutes in wood-feeding relative to 

grass-feeding Nasutitermes (Appendix A: Figure S2.7). This is consistent with previous reports of 

the importance of Spirochaetes and Fibrobacteres in the digestion of wood fibres (Warnecke et al., 

2007; Mikaelyan et al., 2014). He et al. (He et al., 2013) identified phylum-level shifts between 

dung-feeding Amitermes and wood-feeding Nasutitermes. Based on metagenomic and 

metatranscriptomic analyses, they explained these differences by inferring that Firmicutes play a 

greater role in hemicellulose hydrolysis and utilisation of fixed-nitrogen compounds required for 

dung digestion and Spirochaetes play a greater role in cellulose hydrolysis and nitrogen fixation 

required for wood digestion. However, our data suggest that phylum-level differences attributed to 

diet were overestimated in the He et al. study (He et al., 2013) because of marked differences 

between the Amitermes and Nasutitermes gut communities due to vertical inheritance. We estimate 

that changes in the relative abundance of these phyla between wood- and grass-feeding 

Nasutitermes samples is only 4%–8%, as opposed to the 15%–34% differences seen between dung-

feeding Amitermes and wood-feeding Nasutitermes (Appendix A: Figure S2.7). Presumably in 

some instances, changes in relative abundances of gut populations occurred over evolutionary time 

scales in response to dedicated dietary specialisation (Andersen and Jacklyn, 1993). However, 

recent feeding trial studies of Reticulitermes flavipes indicate that such changes in population 

evenness can occur on short time scales allowing polyphagous termite species to adjust rapidly to 

changes in their diet due to seasonal variation or availability of foraged plant species (Boucias et al., 

2013; Huang et al., 2013). 

2.5 Conclusions 

In summary, we infer that vertical inheritance is the primary force shaping the termite gut 

microbiome and that most indigenous species are successfully and faithfully passed from one 

termite generation to the next. Changes in relative abundance can occur on shorter time scales and 

appear to be an adaptive mechanism for changes in diet. The resilience of termite gut communities 

to experimental dietary perturbations remains to be fully explored. Our findings suggest that an 

evolutionary perspective will greatly assist in deconvoluting specific and whole community 

functionality in the termite gut microbiome. 

  



66 
 

2.6 Acknowledgements 

We thank the following colleagues for assistance with collection and processing of specimens used 

in this study: Martin Allgaier, Gary Cochrane, John Gosper, Patrick Keeling, Scott Kleinschmidt, 

Victor Kunin, Linda Ly, Lisa Margonelli, Mark Morrison, Micheal Neal, Peter O’Donoghue, Carly 

Rosewarne, Rochelle Soo, and Brian Thistleton. We thank Shaomei He and Susannah Tringe for 

sample sorting and shipping of US termite samples to Australia; Fiona May, Sue Read, and 

members of the JGI production team for assistance with pyrosequencing; Stephanie Malfatti for 

assistance with sequence analysis; Lyn Cook for useful discussions on marker genes; and Ray Lee 

for isotope analysis. The study was supported by funding to the Australian Centre for Ecogenomics 

and the DOE Joint Genome Institute and Queensland Smart Futures Fund (Future biofuels). NR was 

supported by a UQ Research Scholarship. We dedicate this manuscript to the memory of our friend 

and colleague Falk Warnecke (1972–2014). 

2.7 References 

Abe, T., Bignell, D.E., and Higashi, M. (2000) Termites: Evolution, Sociality, Symbioses, Ecology: 
Kluwer Academic Publishers. 

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment 
search tool. Journal of Molecular Biology 215: 403-410. 

Andersen, A.N., and Jacklyn, P. (1993) Termites of the top end: CSIRO Publishing. 

Angly, F.E., Dennis, P.G., Skarshewski, A., Vanwonterghem, I., Hugenholtz, P., and Tyson, G.W. 
(2014) CopyRighter: a rapid tool for improving the accuracy of microbial community profiles 
through lineage-specific gene copy number correction. Microbiome 2: 11. 

Bandi, C., Anderson, T.J., Genchi, C., and Blaxter, M.L. (1998) Phylogeny of Wolbachia in filarial 
nematodes. Proceedings of the Royal Society of London Series B: Biological Sciences 265: 2407-
2413. 

Berlanga, M., Paster, B.J., and Guerrero, R. (2009) The taxophysiological paradox: changes in the 
intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the 
physiological state of the host. International Microbiology 12: 227-236. 

Bignell, D.E., and Eggleton, P. (1995) On the elevated intestinal pH of higher termites (Isoptera: 
Termitidae). Insectes Sociaux 42: 57-69. 

Boucias, D.G., Cai, Y., Sun, Y., Lietze, V.U., Sen, R., Raychoudhury, R., and Scharf, M.E. (2013) 
The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to 
dietary lignocellulose composition. Molecular Ecology 22: 1836-1853. 

Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P., and Tyson, G.W. (2012) Fast, accurate error-
correction of amplicon pyrosequences using Acacia. Nature Methods 9: 425-426. 



67 
 

Brandl, R., Hyodo, F., Korff-Schmising, M.v., Maekawa, K., Miura, T., Takematsu, Y. et al. (2007) 
Divergence times in the termite genus Macrotermes (Isoptera: Termitidae). Molecular 
Phylogenetics and Evolution 45: 239-250. 

Brauman, A., Dore, J., Eggleton, P., Bignell, D., Breznak, J.A., and Kane, M.D. (2001) Molecular 
phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. 
FEMS Microbiology Ecology 35: 27-36. 

Breznak, J.A., and Leadbetter, J.R. (2006) Termite gut spirochetes. In The prokaryotes: Springer, 
pp. 318-329. 

Brune, A. (2014) Symbiotic digestion of lignocellulose in termite guts. Nature Reviews 
Microbiology 12: 168-180. 

Brune, A., and Ohkuma, M. (2011) Role of the Termite Gut Microbiota in Symbiotic Digestion. In 
Biology of Termites: a Modern Synthesis. Bignell, D.E., Roisin, Y., and Lo, N. (eds): Springer 
Netherlands, pp. 439-475. 

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K. et al. 
(2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 
335-336. 

Dietrich, C., Köhler, T., and Brune, A. (2014) The cockroach origin of the termite gut microbiota: 
patterns in bacterial community structure reflect major evolutionary events. Applied and 
Environmental Microbiology 80: 2261-2269. 

Douglas, A. (2009) The microbial dimension in insect nutritional ecology. Functional Ecology 23: 
38-47. 

Douglas, A.E. (2011) Lessons from studying insect symbioses. Cell Host Microbe 10: 359-367. 

Engel, P., and Moran, N.A. (2013) The gut microbiota of insects–diversity in structure and function. 
FEMS Microbiology Reviews 37: 699-735. 

Engelbrektson, A., Kunin, V., Wrighton, K.C., Zvenigorodsky, N., Chen, F., Ochman, H., and 
Hugenholtz, P. (2010) Experimental factors affecting PCR-based estimates of microbial species 
richness and evenness. International Society for Microbial Ecology Journal 4: 642-647. 

Eutick, M.L., Veivers, P., O'Brien, R.W., and Slaytor, M. (1978) Dependence of the higher termite, 
Nasutitermes exitiosus and the lower termite, Coptotermes lacteus on their gut flora. Journal of 
Insect Physiology 24: 363-368. 

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012) CD-HIT: accelerated for clustering the next-
generation sequencing data. Bioinformatics 28: 3150-3152. 

Gile, G.H., Carpenter, K.J., James, E.R., Scheffrahn, R.H., and Keeling, P.J. (2013) Morphology 
and molecular phylogeny of Staurojoenina mulleri sp. nov.(Trichonymphida, Parabasalia) from the 
hindgut of the Kalotermitid Neotermes jouteli. Journal of Eukaryotic Microbiology 60: 203-213. 

Gong, J., Dong, J., Liu, X., and Massana, R. (2013) Extremely high copy numbers and 
polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich 
ciliates. Protist 164: 369-379. 



68 
 

Großkopf, R., Stubner, S., and Liesack, W. (1998) Novel euryarchaeotal lineages detected on rice 
roots and in the anoxic bulk soil of flooded rice microcosms. Applied and Environmental 
Microbiology 64: 4983-4989. 

Hadziavdic, K., Lekang, K., Lanzen, A., Jonassen, I., Thompson, E.M., and Troedsson, C. (2014) 
Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PloS 
One 9: e87624. 

He, S., Ivanova, N., Kirton, E., Allgaier, M., Bergin, C., Scheffrahn, R.H. et al. (2013) Comparative 
metagenomic and metatranscriptomic analysis of hindgut paunch microbiota in wood- and dung-
feeding higher termites. PLoS One 8: e61126. 

Hongoh, Y. (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. 
Bioscience, Biotechnology, and Biochemistry 74: 1145-1151. 

Hongoh, Y. (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the 
termite gut. Cellular and Molecular Life Sciences 68: 1311-1325. 

Hongoh, Y. (2014) Who digests the lignocellulose? Environmental Microbiology 9:2644-2645. 

Hongoh, Y., Deevong, P., Inoue, T., Moriya, S., Trakulnaleamsai, S., Ohkuma, M. et al. (2005) 
Intra- and interspecific comparisons of bacterial diversity and community structure support 
coevolution of gut microbiota and termite host. Applied and Environmental Microbiology 71: 6590-
6599. 

Hongoh, Y., Ohkuma, M., and Kudo, T. (2003) Molecular analysis of bacterial microbiota in the 
gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiology Ecology 
44: 231-242. 

Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Toh, H., Taylor, T.D. et al. (2008) Genome of an 
endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322: 
1108-1109. 

Huang, Q.-Y., Wang, W.-P., Mo, R.-Y., and Lei, C.-L. (2008) Studies on feeding and trophallaxis 
in the subterranean termite Odontotermes formosanus using rubidium chloride. Entomologia 
Experimentalis et Applicata 129: 210-215. 

Huang, X.-F., Bakker, M.G., Judd, T.M., Reardon, K.F., and Vivanco, J.M. (2013) Variations in 
diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with 
grassy and woody plant substrates. Microbial Ecology 65: 531-536. 

Husseneder, C. (2010) Symbiosis in subterranean termites: a review of insights from molecular 
studies. Environmental Entomology 39: 378-388. 

Ikeda-Ohtsubo, W., Faivre, N., and Brune, A. (2010) Putatively free-living ‘Endomicrobia'– 
ancestors of the intracellular symbionts of termite gut flagellates? Environmental Microbiology 
Reports 2: 554-559. 

Ikeda-Ohtsubo, W., Desai, M., Stingl, U., and Brune, A. (2007) Phylogenetic diversity of 
‘Endomicrobia’and their specific affiliation with termite gut flagellates. Microbiology 153: 3458-
3465. 



69 
 

Inward, D.J., Vogler, A.P., and Eggleton, P. (2007) A comprehensive phylogenetic analysis of 
termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics 
and Evolution 44: 953-967. 

Kirby, H. (1932) Protozoa in termites of the genus Amitermes. Parasitology 24: 289-304. 

Köhler, T., Stingl, U., Meuser, K., and Brune, A. (2008) Novel lineages of Planctomycetes densely 
colonize the alkaline gut of soil-feeding termites (Cubitermes spp.). Environmental Microbiology 
10: 1260-1270. 

Krishna, K., Grimaldi, D.A., Krishna, V., and Engel, M.S. (2013) Treatise on the Isoptera of the 
world. Bulletin of the American Museum of Natural History 377: 200-623. 

Kuhnigk, T., Branke, J., Krekeler, D., Cypionka, H., and König, H. (1996) A feasible role of 
sulfate-reducing bacteria in the termite gut. Systematic and Applied Microbiology 19: 139-149. 

Kunin, V., and Hugenholtz, P. (2010) PyroTagger : A fast , accurate pipeline for analysis of rRNA 
amplicon pyrosequence data. The Open Journal: 1-8. 

Kunin, V., Engelbrektson, A., Ochman, H., and Hugenholtz, P. (2010) Wrinkles in the rare 
biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. 
Environmental Microbiology 12: 118-123. 

Lane, D.J. (1991) Nucleic Acid Techniques in Bacterial Systematics. In Nucleic Acid Techniques in 
Bacterial Systematics. M., S.E.G. (ed): Wiley, New York, pp. 115-175. 

Legendre, F., Whiting, M.F., Bordereau, C., Cancello, E.M., Evans, T.A., and Grandcolas, P. 
(2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear 
markers: Implications for the evolution of the worker and pseudergate castes, and foraging 
behaviors. Molecular Phylogenetics and Evolution 48: 615-627. 

Lewis, J.L., and Forschler, B.T. (2004) Protist communities from four castes and three species of 
Reticulitermes (Isoptera: Rhinotermitidae). Annals of the Entomological Society of America 97: 
1242-1251. 

Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., and Gordon, J.I. (2008a) Worlds within 
worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology 6: 776-788. 

Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S. et al. (2008b) 
Evolution of mammals and their gut microbes. Science 320: 1647-1651. 

Liu, H., and Beckenbach, A.T. (1992) Evolution of the mitochondrial cytochrome oxidase II gene 
among 10 orders of insects. Molecular Phylogenetics and Evolution 1: 41-52. 

Lozupone, C., and Knight, R. (2005) UniFrac: a new phylogenetic method for comparing microbial 
communities. Applied and Environmental Microbiology 71: 8228-8235. 

Lozupone, C., Hamady, M., and Knight, R. (2006) UniFrac--an online tool for comparing microbial 
community diversity in a phylogenetic context. BMC Bioinformatics 7: 371. 

Lozupone, C., Lladser, M.E., Knights, D., Stombaugh, J., and Knight, R. (2011) UniFrac: an 
effective distance metric for microbial community comparison. The ISME Journal 5: 169-172. 



70 
 

Lynn, D.H., and Wright, A.-D.G. (2013) Biodiversity and molecular phylogeny of Australian 
Clevelandella species (Class Armophorea, Order Clevelandellida, Family Clevelandellidae), 
intestinal endosymbiotic ciliates in the wood-feeding roach Panesthia cribrata Saussure, 1864. 
Journal of Eukaryotic Microbiology 60: 335-341. 

McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A. et al. (2012) 
An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of 
bacteria and archaea. The ISME Journal 6: 610-618. 

Mikaelyan, A., Strassert, J.F., Tokuda, G., and Brune, A. (2014) The fibre‐associated cellulolytic 
bacterial community in the hindgut of wood‐feeding higher termites (Nasutitermes spp.). 
Environmental Microbiology. 

Moran, N.A., and Mira, A. (2001) The process of genome shrinkage in the obligate symbiont 
Buchnera aphidicola. Genome Biology 2: 1-0054.0012. 

Morgan, J.L., Darling, A.E., and Eisen, J.A. (2010) Metagenomic sequencing of an in vitro-
simulated microbial community. PLoS One 5: e10209. 

Nakajima, H., Hongoh, Y., Noda, S., Yoshida, Y., Usami, R., Kudo, T., and Ohkuma, M. (2006) 
Phylogenetic and morphological diversity of Bacteroidales members associated with the gut wall of 
termites. Bioscience, Biotechnology, and Biochemistry 70: 211-218.  

Nakajima, H., Hongoh, Y., Usami, R., Kudo, T., and Ohkuma, M. (2005) Spatial distribution of 
bacterial phylotypes in the gut of the termite Reticulitermes speratus and the bacterial community 
colonizing the gut epithelium. FEMS Microbiology Ecology 54: 247-255. 

Noda, S., Iida, T., Kitade, O., Nakajima, H., Kudo, T., and Ohkuma, M. (2005) Endosymbiotic 
Bacteroidales bacteria of the flagellated protist Pseudotrichonympha grassii in the gut of the 
termite Coptotermes formosanus. Applied and Environmental Microbiology 71: 8811-8817. 

Noda, S., Inoue, T., Hongoh, Y., Kawai, M., Nalepa, C.A., Vongkaluang, C. et al. (2006) 
Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to 
flagellated protists in the gut of termites and a wood‐feeding cockroach. Environmental 
Microbiology 8: 11-20. 

Noda, S., Kitade, O., Inoue, T., Kawai, M., Kanuka, M., Hiroshima, K. et al. (2007) Cospeciation in 
the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their 
bacterial endosymbionts. Molecular Ecology 16: 1257-1266. 

Ochman, H., Worobey, M., Kuo, C.H., Ndjango, J.B., Peeters, M., Hahn, B.H., and Hugenholtz, P. 
(2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. 
PLoS Biology 8: e1000546. 

Ohkuma, M., Iida, T., and Kudo, T. (1999a) Phylogenetic relationships of symbiotic spirochetes in 
the gut of diverse termites. FEMS Microbiology Letters 181: 123-129. 

Ohkuma, M., Noda, S., and Kudo, T. (1999b) Phylogenetic diversity of nitrogen fixation genes in 
the symbiotic microbial community in the gut of diverse termites. Applied and Environmental 
Microbiology 65: 4926-4934. 



71 
 

Ohkuma, M., Sato, T., Noda, S., Ui, S., Kudo, T., and Hongoh, Y. (2007) The candidate phylum 
'Termite Group 1' of bacteria: phylogenetic diversity, distribution, and endosymbiont members of 
various gut flagellated protists. FEMS Microbiology Ecology 60: 467-476. 

Ohkuma, M., Yuzawa, H., Amornsak, W., Sornnuwat, Y., Takematsu, Y., Yamada, A. et al. (2004) 
Molecular phylogeny of Asian termites (Isoptera) of the families Termitidae and Rhinotermitidae 
based on mitochondrial COII sequences. Molecular Phylogenetics and Evolution 31: 701-710. 

Parks, D.H., and Beiko, R.G. (2010) Identifying biologically relevant differences between 
metagenomic communities. Bioinformatics 26: 715-721. 

Parks, D.H., and Beiko, R.G. (2013) Measures of phylogenetic differentiation provide robust and 
complementary insights into microbial communities. The ISME Journal 7: 173-183. 

Patin, N., Kunin, V., Lidström, U., and Ashby, M. (2013) Effects of OTU clustering and PCR 
artifacts on microbial diversity estimates. Microbial Ecology 65: 709-719. 

Paul, K., Nonoh, J.O., Mikulski, L., and Brune, A. (2012) “Methanoplasmatales,” 
Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of 
methanogens. Applied and Environmental Microbiology 78: 8245-8253. 

Price, M.N., Dehal, P.S., and Arkin, A.P. (2009) FastTree: computing large minimum evolution 
trees with profiles instead of a distance matrix. Molecular Biology and Evolution 26: 1641-1650. 

Rosenthal, A.Z., Zhang, X., Lucey, K.S., Ottesen, E.A., Trivedi, V., Choi, H.M. et al. (2013) 
Localizing transcripts to single cells suggests an important role of uncultured deltaproteobacteria in 
the termite gut hydrogen economy. Proceedings of the National Academy of Sciences 110: 16163-
16168. 

Sabree, Z.L., and Moran, N.A. (2014) Host-specific assemblages typify gut microbial communities 
of related insect species. SpringerPlus 3: 138. 

Schauer, C., Thompson, C.L., and Brune, A. (2012) The bacterial community in the gut of the 
cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and 
termites. Applied and Environmental Microbiology 78: 2758-2767. 

Scheffrahn, R.H., and Postle, A. (2013) New termite species and newly recorded genus for 
Australia: Marginitermes absitus (Isoptera: Kalotermitidae). Australian Journal of Entomology 52: 
199-205. 

Shinzato, N., Muramatsu, M., Matsui, T., and Watanabe, Y. (2005) Molecular phylogenetic 
diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Bioscience, 
Biotechnology, and Biochemistry 69: 1145-1155. 

Shinzato, N., Matsumoto, T., Yamaoka, I., Oshima, T., and Yamagishi, A. (2001) Methanogenic 
symbionts and the locality of their host lower termites. Microbes and Environments 16: 43-47. 

Stingl, U., Maass, A., Radek, R., and Brune, A. (2004) Symbionts of the gut flagellate 
Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of 
Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’. Microbiology 150: 2229-2235. 

Stingl, U., Radek, R., Yang, H., and Brune, A. (2005) “Endomicrobia”: cytoplasmic symbionts of 
termite gut protozoa form a separate phylum of prokaryotes. Applied and Environmental 
Microbiology 71: 1473-1479. 



72 
 

Tai, V., James, E.R., Nalepa, C.A., Scheffrahn, R.H., Perlman, S.J., and Keeling, P.J. (2015) The 
role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. 
Applied and Environmental Microbiology 81: 1059-1070. 

Tholen, A., and Brune, A. (1999) Localization and in situ activities of homoacetogenic bacteria in 
the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Applied 
and Environmental Microbiology 65: 4497-4505. 

Thompson, G., Kitade, O., Lo, N., and Crozier, R. (2000) Phylogenetic evidence for a single, 
ancestral origin of a ‘true’ worker caste in termites. Journal of Evolutionary Biology 13: 869-881. 

Tokura, M., Ohkuma, M., and Kudo, T. (2000) Molecular phylogeny of methanogens associated 
with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiology 
Ecology 33: 233-240. 

Turnbaugh, P.J., Quince, C., Faith, J.J., McHardy, A.C., Yatsunenko, T., Niazi, F. et al. (2010) 
Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of 
identical twins. Proceedings of the National Academy of Sciences 107: 7503-7508. 

Wang, Y., Tian, R.M., Gao, Z.M., Bougouffa, S., and Qian, P.-Y. (2014) Optimal eukaryotic 18S 
and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis. PloS 
One 9: e90053. 

Ware, J.L., Grimaldi, D.A., and Engel, M.S. (2010) The effects of fossil placement and calibration 
on divergence times and rates: an example from the termites (Insecta: Isoptera). Arthropod 
Structure & Development 39: 204-219. 

Warnecke, F., and Hugenholtz, P. (2007) Building on basic metagenomics with complementary 
technologies. Genome Biology 8: 231. 

Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T. et al. 
(2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher 
termite. Nature 450: 560-565. 

Yamin MA (1979) Flagellates of the orders Trichomonadida Kirby, Oxymonadida Grasse, and 
Hypermastigida Grassi & Foa reported from lower termites (Isoptera families Mastotermitidae, 
Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the 
wood-feeding roach Cyptocercus (Dictyoptera: Cryptocercidae). Sociobiology 4: 5–119 

Yang, H., Schmitt‐Wagner, D., Stingl, U., and Brune, A. (2005) Niche heterogeneity determines 
bacterial community structure in the termite gut (Reticulitermes santonensis). Environmental 
Microbiology 7: 916-932. 



73 
 

Chapter 3 Effect of diet on microbial community composition 

in the gut of Mastotermes darwiniensis 

Abstract 

From our initial amplicon survey, we hypothesised that dietary fluctuations caused shifts in the gut 

community structure and function. We directly tested this hypothesis through a series of feeding 

experiments performed on the most basal polyphagous termite species Mastotermes darwiniensis. 

Here, using amplicon community profiling and proteome analyses, we investigated the M. 

darwiniensis gut microbial community compositional changes in response to wood (complex 

lignocellulose), sugarcane mulch (C4 grass) and cotton (pure cellulose) diet over a period of seven 

days. Shifts in relative abundance of some gut microbial populations were noted with 

compositionally different feedstocks but most of the changes are likely due to response to stress as 

an effect of small colonies. While laboratory conditions can influence the termite gut microbiome, 

the bulk of prokaryotic communities of Mastotermes gut profiles were comparably consistent in all 

diets. In addition, zymograhy coupled with mass spectrometry sequencing of M darwiniensis gut 

extracts identified highly expressed protist-derived cellulases. Thus, our findings have contributed 

to the understanding of community structure and function of gut microbiota in lower termites and 

suggest that the contribution of prokaryotic symbionts to lignocellulose digestion is more complex 

than previously appreciated.   
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3.1 Introduction 

Microbial communities are generally sensitive to disturbances, despite the system or the type of 

disturbance, and change in composition may affect the overall dynamics of an ecosystem (Allison 

and Martiny, 2008). Community stability is often defined as the ability of the community to 

maintain its functional and structural properties in response to perturbation (Ives and Carpenter, 

2007; Little et al., 2008; Robinson et al., 2010). Ecological concepts of community stability have 

been applied when evaluating how perturbation can affect microbial composition (Robinson et al., 

2010). Three factors are considered when determining the extent to which microbial communities 

respond to environmental perturbations (1) resistance; the capacity of a microbial community to 

withstand perturbations without loss of structure or function, (2) resilience; the ability of a 

community to return to its original composition after disturbance, and (3) functional redundancy; 

the ability of a community to perform the same functions despite compositional changes after 

disturbance (Allison and Martiny, 2008). 

Gastrointestinal tract microbial communities are influenced by various factors (perturbations) 

including changes in diet. A number of studies have found that both host phylogeny and diet play a 

role in shaping gut microbial communities as observed in mammals (Ley et al., 2008; Muegge et al., 

2011; Wu et al., 2011), arthropods (Tanaka et al., 2006; Husseneder et al., 2009; Cardoso et al., 

2012) and fish (Ward et al., 2009; Smriga et al., 2010; Miyake et al., 2015). Our findings in Chapter 

2 indicate that in the termite, diet plays a secondary role in shaping community composition after 

host phylogeny, and we predicted that diet may alter relative abundances of populations (evenness) 

on shorter timescales as an adaptive mechanism for varying diets in polyphagous termite genera 

such as Nasutitermes, Gnathamitermes and Mastotermes. Due to their ability to feed on diverse 

complex lignocellulose biomass as reported in Chapter 2, polyphagous termite species serve as an 

excellent model system to test host-associated gut community stability in response to changes in 

diet. 

Mastotermes darwiniensis is the only recognised polyphagous lower termite species that is 

indigenous to Australia. Different colonies of M. darwiniensis are known to feed on different types 

of biomass ranging from drywood, palm trees, cattle dung to soil (Andersen and Jacklyn, 1993), yet 

little is known about the response of the gut community to changes in diet. Although recent feeding 

experiments in lower termites suggest that gut microbial communities are sensitive to diet, these 

assays were conducted on strict wood-feeding termite species and only profiled gut community 

composition at the end of a feeding trial (Husseneder et al., 2009; Sethi et al., 2012; Boucias et al., 

2013; Huang et al., 2013; Raychoudhury et al., 2013). Here, using culture-independent SSU rRNA 
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amplicon-based sequencing, we performed a perturbation study to test the hypothesis proposed in 

Chapter 2. A secondary goal of the study was to identify feedstock-specific enzymes that may be of 

use in biofuel applications. For this purpose, we also assayed enzyme activity on model substrates 

using zymograms. The specific goals of this Chapter were to (1) evaluate the effect of diet on 

relative abundance of gut prokaryotic populations of M. darwiniensis that were fed on wood (pine 

and eucalyptus) and plant substrates (sugarcane mulch and cotton) at multiple time points during the 

feeding trial, and (2) to identify enzymes with high activity on specific feedstocks of interest. 

3.2 Methods 

3.2.1 Rearing of termites under laboratory conditions 

Feeding experiments were performed over a period of 14 months (from December 2012 to March 

2014) in the insectary at the School of Biological Sciences, the University of Queensland (UQ). M. 

darwiniensis (Figure 3.1) were collected by the Department of Primary Industry and Fisheries, 

Darwin (Thistleton laboratory) and live termites were shipped to UQ in 232 x 142 x 64 mm 

containers containing Eucalyptus regnans saw dust and vermiculite to minimise stress to termites 

by providing cushion during transport (Howick et al., 1975). Shipping took two to three days and 

upon arrival, termites were visually inspected to ensure that they were healthy. This was important 

as shipping can cause termite to experience stress and may cause them to develop disease.  

In the laboratory, containers were emptied onto a large tray to separate termites from saw dust and 

vermiculite. Termite individuals were carefully picked up using a pair of fine tip tweezers. Termites 

were sorted into different castes (mainly three group; soldiers, workers and other castes) and only 

healthy, freely moving workers were selected for experiment.  

3.2.1.1 Optimising maintenance conditions for feeding experiments  

In the laboratory, termites were divided into two batches. The first batch of Mastotermes was reared 

in 165 x 165 x 191 mm containers with E. regnans blocks. Container lids were replaced with metal 

mesh wires (6.5 x 6.5 x 0.6 mm) to create ventilation. The second batch of Mastotermes was reared 

in 232 x 142 x 64 mm containers after the first batch of individuals died from desiccation. Termites 

were kept in a tall standing cabinet with ventilation and were maintained in the dark at 27±2°C. The 

first batch of Mastotermes died within three days. The second batch of Mastotermes was monitored 

for a period of two weeks with 100 µl of water added every two days.  Humidity was measured 

using digital hygrometer. 
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Figure 3.1: Photos of a (top) worker M. darwiniensis specimen and (below) dissected M. 
darwiniensis worker whole gut.  

3.2.1.2 Feeding experiments 

For feeding experiment 1, upon arrival in the laboratory, three tubes of five workers each were 

subsampled from the colony for DNA extraction and 50 workers for proteome analysis, and were 

stored at -80°C till further processing. Similar to pre-trials, the remaining termites were separated 

from saw dust and vermiculite and divided into nine 232 x 142 x 64 mm containers and labelled 

accordingly (Table 3.1). Experiment was conducted in three replicates on three diets: E. regnans, 

hay and cotton. Each container was supplied with 100 µl of water and refilled every two days. All 

containers were kept at room temperature in a dark ventilated cabinet for period of four days as 

described above. Mastotermes workers reared on E. regnans and cotton were collected and stored at 

-80°C at day four till further processing. Individuals in the hay treatment were infested with fungus 

and discarded, consequently feeding experiment was halted.  

For feeding trial 2, upon arrival in the laboratory, collection of Mastotermes at 0 hr were repeated as 

of feeding trial 1 (Table 3.1). The remaining termites were separated into 12 232 x 142 x 64 mm 

containers with ~200 workers and one to two soldiers per container. All termites were first placed 

on E. regnans for three days to allow them to adapt to the laboratory conditions. Different 

feedstocks (E. regnans, Corymbia citrodora subsp. variegata, sugarcane mulch, hay and cotton) 

were tested in three replicates. C. citrodora, genetically modified eucalyptus plant biomass was 

used as second generation biofuel feedstock of interest (Lupoi et al., 2015). Hay and sugarcane 

mulch were used as grass diets. Each container was supplied with 100 µl of water and refilled when 

required. All containers were maintained in conditions as described above. Mastotermes workers 

were collected from each container at day four and day seven into a 2 ml tube, and stored at -80°C 

till further processing.  
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3.2.2 Microbial community profiling of the gut of M. darwiniensis 

Frozen specimens were thawed on ice, and gut tracts were extracted using clean sharp tweezers. 

The guts were immediately transferred into a sterile 1.5 ml tube on ice and subjected to DNA 

extraction. Total genomic DNA was extracted from five pooled whole gut samples using 

FastDNA® SPIN kit for Soil (MP Biomedicals, Australia). Termite guts were added to a lysing 

matrix, treated with lysis buffer, and underwent bead beating in the Vortex-Genie® 2 (MoBio 

Laboratories, USA). DNA was bound to silica matrix and washed and eluted in DNase-free water. 

DNA quality was evaluated using gel electrophoresis on 1.0% agarose gels stained with SYBR 

Safe, and visualised on a CCD compact image system (Major Science, USA). DNA quantification 

was carried out using the Qubit™ fluorometer and QuantIT ds-DNA BR assay kit (Invitrogen, 

Australia). DNA concentration varied depending on the biomass of the whole gut. DNA 

concentrations were standardised across all samples to 20 μg/ml, diluting (where necessary) with 

Ultrapure™ distilled water (Invitrogen, Australia).  

3.2.3 PCR amplification and amplicon sequencing 

For the feeding trial 1 samples, DNA were prepared, purified and sequenced according to methods 

described in Chapter 2. For the feeding experiment 2 samples, the universal primer pair 926F (5’-

AAACTYAAAKGAATTGRCGG-3’) and 1392R (5’-ACGGGCGGTGWGTRC-3’) was used to 

amplify the V6 to V8 variable regions of the SSU rRNA gene (Lane, 1991). Primer sequences were 

modified by incorporation of Illumina specific adapter sequence (i5: TCGTCGGCAGCGTC; i7: 

GTCTCGTGGGCTCGG). PCR products of ~466 bp were amplified in standard PCR conditions 

using workflow outlined by Illumina (#15044223).  

To ensure that similar numbers of sequencing reads were obtained for each sample, PCR amplicons 

were pooled in equal concentrations after amplification and then purified using the Agencourt® 

AMPure® XP Kit (Beckman, USA). Amplicons were quantified with the Qubit™ fluorometer and 

QuantIT ds-DNA BR assay kit. Purified amplicons were indexed with unique 8 bp barcode using 

the Illumina Nextera Kit A-D (Illumina FC-131-1002) to identify amplicons originating from 

different samples in the same sequencing reaction. Purified, pooled and barcoded amplicons were 

paired end sequenced with both the forward and reverse primers on Illumina MiSeq (Illumina, San 

Diego, CA, USA) with V3 300 bp chemistry according to manufacturer’s protocol. 
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Table 3.1: Workers collected at multiple time points from feeding trial 1 and 2. 

  Day 0  Day 1 Day 4  Day 7 

Feeding Trial 1         

Eucalyptus regnans (Control)         

      ER1 5 5 5 - 

      ER2 5 5 5 - 

      ER3 5 5 5 - 

Cotton         

      CT1   5 5 - 

      CT2   5 5 - 

      CT3   5 5 - 

          

Feeding Trial 2         

Eucalyptus regnans (Control)         

      ER1 5^ - 5^ 5 

      ER2 5^ - 5^ 5 

      ER3 5^ - 5^ 5 

Corymbia citrodora         

      CC1   - 5^ 5 

      CC2   - 5^ 5 

      CC3   - 5^ 5 

Sugarcane mulch         

      SC1   - 5^ 5 

      SC2   - 5^ 5 

      SC3   - 5^ 5 

Cotton         

      CT1   - 5^ 5 

      CT2   - 5^ 5 

      CT3   - 5^ 5 

^Additional 50 wokers collected for proteomics       

3.2.4 Sequence processing and analysis 

SSU rRNA sequence data obtained from the Illumina MiSeq run were demultiplexed and analysed 

using Quantitive Insights Into Microbial Ecology (QIIME) (Caporaso et al., 2010). Reads were 

trimmed to 200 bp and clustered into operational taxonomic units (OTUs) with a threshold of 97% 

sequence similarity using MCL (Kunin and Hugenholtz, 2010). OTU representatives were 

compared to the Greengenes database (May 2013 release) for taxonomy assignment using BLASTn 

(Camacho et al., 2009). Termite host OTUs were removed and the number of sequences were 

normalised to 14,000 sequences per samples for sampling depth. Normalised OTU table were 

adjusted to account for differences in SSU rRNA copy numbers between taxa using CopyRighter 

(Angly et al., 2014). Observed species (richness) and Simpson index were calculated for each 
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sample using QIIME. A table which lists the relative abundance of each OTU in each sample was 

generated. Differences in the composition of Mastotermes gut communities at different diet and time 

points were assessed using permutational multivariate analysis of variance (PERMANOVA) and 

principal component analysis (PCA). All analyses were conducted and visualised using R version 

3.2.0 with the vegan package (Oksanen et al., 2007).  

3.2.5 Proteomics 

3.2.5.1 Preparation of crude enzyme extract  

Frozen termite specimens were thawed on ice, and gut tracts were extracted using clean sharp 

tweezers. The guts of 20 workers were immediately transferred into a sterile 1.5 ml tube with 150 µl 

of phosphate buffered saline (PBS, pH 7.4) on ice. Proteinase inhibitor solution (1X Complete Mini 

EDTA-free; Roche) was added to the extraction buffer to prevent protein degradation. The gut 

samples were homogenised with a sterile pellet pestles, vortex-mixed and centrifuged at 14,000 g 

for 10 min at 4°C.  The supernatants were pooled into a new sterile 1.5 ml tube and stored at -80°C. 

The obtained supernatant is referred as crude enzyme extract. Three replicates were prepared for 

each feedstock in the same manner. 

3.2.5.2 Measurement for cellulase activity  

Total protein concentration in crude enzyme extract was measured using Bradford method 

(Bradford, 1976) via Coomassie Protein Assay Kit using bovine serum albumin (BSA) as a protein 

standard (working concentration of 100-1500 µg/ml). Absorbance was measured at 595 nm with a 

plate reader. Activity of endoglucanase (CMCase) were measured from M. darwiniensis gut content 

enzyme extracts based on the release of reducing sugar using the dinitrosalicylic acid (DNS) assay 

(Miller, 1959; Coughlan and Moloney, 1988). All crude enzyme extract were diluted to a working 

concentration of ~1.2 µg/ml in 50 mM citrate-phosphate buffer (pH 6.5). The 96-well microplate 

protocol was performed as previously described (Xiao et al., 2005; dos Santos Castro et al., 2014). 

Briefly, 30 µl of crude enzyme extract was combined with 30 µl of substrate (1% carboxymethyl 

cellulose (CMC) in 50 mM citrate-phosphate buffer, pH 6.5). The reaction was incubated at 50°C 

for 30 min in PCR thermocycler and then stopped by addition of 60 µl of DNS reagent. The colour 

reaction was developed at 95°C for 5 min, followed by cooling at 4°C for 1 min and hold on 20°C. 

A 100 µl aliquot of each reaction was transferred to the flat-bottom 96-well plate and absorbance 

was measured at 540 nm using SpecMAx 190 microplate reader. Glucose standards of 0, 0.3, 0.6, 

0.9, 1.2 and 1.5 mg/ml were prepared in 50 mM citrate-phosphate buffer pH 6.5 and used for the 

standard curve construction. Enzyme controls were prepared by adding 30 µl of crude enzyme 
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extract to the pre-incubated (50°C for 30 min) substrate and DNS was added to halt enzyme 

activity. Each assay was performed in triplicate along with glucose standard and controls. One unit 

of the cellulolytic activity was defined as the amount of enzyme capable of releasing 1 µM of 

glucose per minute. 

3.2.5.3 Protein electrophoresis and zymogram analysis  

Cellulase activities of crude extract from M. darwiniensis gut content were detected by performing 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) through in-gel substrate 

and/or overlay zymogram techniques. A commercial Aspergillus niger cellulase (Sigma–Aldrich, 

Australia) was used as a positive control in all tests. For in-gel substrate zymograms, samples were 

mixed with Laemmli sample buffer (Laemmli, 1970), heated to 95°C for 3 min and loaded onto 4-

12% SDS-PAGE gel containing 0.1% CMC. Sample loading pattern (20 µg/lane) was repeated onto 

the same gel to produce identical gels. Electrophoresis was carried out at constant voltage (100 V) 

for 150 min at room temperature. After electrophoresis, the gel was then cut into half, where the 

first half was used for zymograms and second half for protein visualisation by staining with 

Coomassie brilliant blue R-250. For zymograms, the gel was washed four times for 15 min each in 

25% (v/v) isopropanol followed by four washes 15 min each in 50 mM citrate-phosphate buffer pH 

6.5 at room temperature. The gel was then incubated at 50°C for 30 to 60 min in 50 mM citrate-

phosphate buffer pH 6.5, washed with water and stained with 0.1% Congo red for 30 min. Excess 

Congo red was removed and the gel was washed with 1 M NaCl and 10 min with 0.1 M Tris-HCl 

pH 8.0 until clear bands became visible indicating cellulase activity. To increase visualisation of the 

activity bands, 5% acetic acid was introduced into the incubation chamber with gel. The gel was 

visualised and imaged under ultraviolet light and aligned with the Coomassie blue stained gel. The 

zymogram gel was documented using the Odyssey Infrared Imaging System (Li-Cor Bioscience).  

Overlay zymograms was prepared on a 8-16% Tris-Glycine Mini Protein gel (Novex, Invitrogen) 

using Novex SDS sample buffer (2X) without a reducing agent and sample heating. Samples (20 

µg/lane) were loaded in the same manner as for in-gel substrate zymograms. The gel was run at 

constant voltage (120 V) for 190 min at 4°C using pre-chilled running buffer. Following 

electrophoresis, the gel was cut into half as described above. The zymogram half of the gel was 

washed four times for 15 min each in cold 25% (v/v) isopropanol followed by four washes 15 min 

each in cold 50 mM citrate-phosphate buffer pH 6.5. The polyacrylamide gel was then placed on the 

top of a 2% agarose gel made in 50 mM citrate-phosphate buffer pH 6.5 containing 0.1% CMC. The 

assembled gels were incubated at 50°C for 30 to 60 min in humidity chamber (container with 

wetted paper towel). The agarose gel was stained and visualised as described above. 
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 3.2.5.4 Protein sequencing and identification 

The bands of interest correlated to activity zones in zymograms were carefully excised from the 

reference gel (Coomassie blue stained gel) and transferred to 1.5 ml centrifuge tubes for trypsin 

digestion. Briefly, gel pieces were washed twice for 30 min each with 25 mM ammonium 

bicarbonate in 50% acetonitrile, reduced with 10 mM DDT in 25 mM ammonium bicarbonate for 

45 min at 55°C and then alkylated with 50 mM iodoacetamide in 25 mM ammonium bicarbonate 

for 30 min at room temperature in the dark. To remove iodoacetamide, gel pieces were washed 

three times for 10 min each with 25 mM ammonium bicarbonate, followed by dehydration with 

100% acetonitrile. Trypsin digestion of dehydrated and air dried gel pieces was performed at 37°C 

overnight using sequencing grade modified trypsin (Promega, Madison) in 25 mM ammonium 

bicarbonate. The peptides were extracted with 1% trifluoroacetic acid in 50% acetonitrile, and dried 

using a Speed Vac. Peptide samples were cleaned up using ZipTip pipette tips (Millipore) according 

to the manufacturer’s protocol with some modifications prior to mass spectrometry analysis. 

Briefly, ZipTip tips were equilibrated with 100% acetonitrile, followed by peptide binding with 

0.1% trifluoroacetic acid in 5% acetonitrile, and finally peptides were eluted into 0.1% 

trifluoroacetic acid in 80%, acetonitrile. Eluted samples were further diluted 10 times with sterile 

water and a 100 µl was submitted for peptide sequencing in the HPLC grade Agilent vial. Peptide 

sequencing and analysis were performed at the Mass Spectrometry Research Facility at the School 

of Chemistry and Molecular Bioscience, UQ, on a TripleTof 5600 instrument (ABSciex) (liquid 

chromatography–mass spectrometry/mass spectrometry (LC-MS/MS)).  

All MS/MS spectra were analysed using Mascot (Matrix Science, London UK) (provided by the 

Australian Proteome Computational Facility, http://www.apcf.edu.au/) to search against Swiss-Prot 

and/or LudwigNR databases, using the following parameters; (1) species: all species, (2) fixed 

modifications: carbamidomethyl of cysteine, (2) variable modifications: oxidation of methionine, 

(4) enzyme: trypsin, (5) number of allowed missed cleavages: up to 2, (6) peptide (MS) mass 

tolerances: 50 ppm and (7) MS/MS mass tolerance: 0.1 Da. Peptides were also identified against 

our M. darwiniensis metagenome database (described in detail in Chapter 4) by translating the 

nucleotide to amino acid sequences. Search was performed using Mascot search algorithm with the 

above-mentioned parameters. Identified peptide sequences based on the metagenome data were 

assigned using protein Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990) 

algorithm, against non-redundant protein sequences (nr) database. 



82 
 

3.3 Results and Discussion 

3.3.1 Optimisation of rearing termites under laboratory conditions  

Termites are known to be sensitive to variable humidity which can impact on various aspects of 

colony life including individual and colony survival (Fuller et al., 2011; Fuller and Postava‐

Davignon, 2014). As termites are vulnerable to desiccation, they construct their nests or mounds in 

a way that maintains a constant humidity (60-75%) independent of external conditions (Davenport, 

2012). Therefore, we tested container size and ventilation over a period of two weeks before 

beginning our feeding experiments.  

Evaluation of containers for termite survival. Termites were initially trialled in 165 x 165 x 191 mm 

plastic containers with metal mesh replacing the lid for ventilation. Five to six hundred 

Mastotermes workers placed in these containers all died over a period of four to seven days from 

desiccation due to the large ventilation opening resulting in too low humidity (50%). Mesh 

openings were therefore reduced in size to a 10 mm diameter opening in the lid of a smaller 

container measuring 232 x 142 x 64 mm.  Two to three hundred workers were successfully 

maintained at 60-75% humidity in these containers but only up to two weeks before population 

health declined. This is consistent with declining health and survival rate of termite individuals in 

laboratory kept small colonies as previously reported for Nasutitermes (Husseneder et al., 2010) and 

Coptotermes (Tanaka et al., 2006). 

Feeding trial 1. Mastotermes were reared on three feedstocks, Eucalyptus regnans, hay and cotton, 

in the 232 x 142 x 64 mm with 10 mm ventilation grids, using three replicated containers per 

feedstock for a planned period of seven days (Figure 3.2 and Table 3.1). Previous feeding studies 

involving termites suggest that seven days is sufficient time for the gut community to adapt to a 

new feedstock (Husseneder et al., 2009; Boucias et al., 2013; Raychoudhury et al., 2013; Sethi and 

Scharf, 2013). E. regnans was used as a control as this was the biomass that the termites were 

reared on by our collaborators in the Northern Territory. Hay was used as an example of a C3 grass 

diet which has different hemicellulose composition to wood (Knobbe et al., 2006), and cotton was 

used as a pure crystalline cellulose control. To allow the termites to adapt to the insectary 

conditions, they were left undisturbed in their original container for two days before separating 

them into sets of ~200-300 individuals per container. Visual observation after one, two, and four 

days revealed that termites on E. regnans and cotton were actively feeding on the supplied 

substrates, however, their counterparts on hay were infested with fungus by day four and the 

experiment was suspended at this point. The rapid mortality observed on hay was due to fungal 
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spoilage of the hay at the experimental humidity of 60-75% (Knapp et al., 1975). Therefore, hay 

was replaced by sugarcane mulch as an alternative (C4) grass in feeding trial 2. 

Feeding trial 2. Mastotermes workers were reared on E. regnans, Corymbia citrodora, cotton and 

sugarcane mulch using three replicated containers per feedstock for a period of seven days (Table 

3.1). C. citrodora was included as a biofuel feedstock of interest. Unexpectedly, individuals in all 

the containers became infested with mites after two days (Figure 3.3), which quickly led to 100% 

mortality. Mites are known parasites of termites (Weiser and Hrdy, 1962). The presence of mites 

attached to various body parts, particularly the head (Figure 3.3), indicate that the termite colony is 

undergoing stress (Korb and Fuchs, 2006), suggesting that social grooming did not happen or was 

less frequent (Micheal Neal, personal communication). Social grooming is an important defensive 

behaviour of termites against parasites such as mites and other parasites (Korb and Fuchs, 2006). 

Since we were unable to identify a cause for the mite infestation, we simply repeated the feeding 

trial with a fresh batch of Mastotermes workers. Individuals in all containers appeared healthy and 

were actively feeding and producing frass over the seven day feeding trial.  

 

 

Figure 3.2: Photos of 232 x 142 x 64mm containers (A) with sugarcane mulch, (B) Eucalyptus 
wood block, (C) set up of feeding experiment.  

 

A 

B 

C 
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Figure 3.3: Photos of worker M. darwiniensis (left) infested with mites and (right) a close up of 
mite on the head. Scale bar = 1 mm in both panels. 

3.3.2 Effect of different lignocellulose feedstocks on gut microbiota of Mastotermes 

3.3.2.1 Mastotermes gut community profiling 

Whole guts were removed and pooled from five workers collected at multiple time points during the 

two feeding trials (Table 3.1). Culture-independent microbial community profiles were determined 

via SSU rRNA gene amplicon sequencing using the primer pairs 926F and 1392R that broadly 

target all three domains of life (Lane, 1991). The Roche 454 Pyrosequencer at the Australian Centre 

for Ecogenomics was decommissioned between the first and second feeding trials, consequently, 

pyrosequence reads (pyrotags) were obtained for the first study, and MiSeq Illumina reads (mitags) 

were obtained for the second study. A total of 47,557 quality trimmed pyrotags were produced from 

the 15 samples of the first feeding trial ranging from 724 to 5,258 per sample after removal of 

termite host SSU rRNA gene sequences, which comprised 16 to 56% of total reads for each sample. 

Specimens were randomly resampled to a depth of 700 reads. A total of 1,525,235 quality trimmed 

mitags were produced from the 27 samples of the second feeding trial ranging from 17,935 to 

134,301 per sample after removal of termite host SSU rRNA gene sequences, which comprised 

from 23 to 33% of total reads for each sample. Specimens were randomly resampled to a depth of 

14,400 reads. To assess the completeness of the diversity of microbial taxa in termite guts that were 

sampled in the feeding experiments, we performed rarefaction analyses. Rarefaction analysis 

suggested that the gut microbiota of Mastotermes in feeding trial 2 were more diverse than those in 

feeding trial 1 (Appendix B: Figure S3.1). Although the alpha diversity can be significantly 

affected by sequencing length and depth, these biases can be corrected by adjusting to a suitable 

cutoff for low abundance OTU filtering (Tremblay et al., 2015). The greater alpha diversity 

observed in mitag reads as compared to pyrotag indicates that this sequencing platform would be 
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favoured for rare biosphere applications (Tremblay et al., 2015). In addition, rarefaction analysis of 

the average replicates in the gut samples indicated a larger richness in day four gut samples. The 

15% dropped in the number of observed OTUs in the day seven gut samples may indicate a 

decrease in diversity with time. The resampled data was normalised for SSU rRNA copy number 

variation using CopyRighter which can vary by up to an order of magnitude between prokaryotic 

genera (Angly et al., 2014). The majority of the overall non-host amplicons reads from the whole 

Mastotermes gut samples were bacterial (87.7-89.6% on average) followed by archaea (~10.0% on 

average) and protists (0.5-2.2% on average) (Appendix B: Table S3.1).  

3.3.2.2 Variation of gut microbial profiles of Mastotermes using different 

sequencing platforms 

Since we were obliged to change sequencing platforms, a primary question was whether the pyrotag 

and mitag data were comparable. In order to address this, we first assessed the biological 

differences between samples within the same treatment. Many of the biological replicates showed 

appreciable differences but did not differ significantly (P = 0.833) compared to different treatments 

(Appendix B: Table S3.1). As previously noted in the community profiling survey presented in 

Chapter 2, the variation observed between biological replicates suggests greater inter-individual gut 

microbiome differences than anticipated assuming that technical replication is sound (Appendix A: 

Figure S2.3). Inter-individual gut microbiome differences from the same colony have previously 

been reported (Minkley et al., 2006; Boucias et al., 2013). Despite this variation and the use of two 

different sequencing platforms, gut community composition was comparable between the two 

feeding trials on E. regnans at time zero (Figure 3.4). Notable exceptions were the Bacteroidetes, 

Elusimicrobia and Spirochaetes (Figure 3.4). The Elusimicrobia had higher relative abundance in 

the mitag profiles while the reverse was true for the Bacteroidetes and Spirochaetes. To quantify the 

variance between the two datasets, we performed a permutational multivariate analysis of variance 

(PERMANOVA). The frequencies of 171 OTUs displayed variation (P < 0.05) between the two 

datasets suggest that sequencing platforms can account for up to 65% of the variance. Two major 

factors that can account for the observed differences are (1) methodological biases, such as error 

estimates and sequencing biases between the two sequencing platforms (Luo et al., 2012; Ratan et 

al., 2013), and (2) biological differences as observed between Mastotermes colonies collected from 

Darwin and Townsville (see Chapter 2 and 4). Since most published termite gut symbiont 

community profiling studies are based on 454 pyrosequencing (see Table 1.3), it is difficult to 

identify which sequencing platform provides greater accuracy of the Mastotermes gut profile based 

on comparison to previous reports alone. To this end, we compared gut profiles of two recent 

termite surveys by the same group that were conducted via 454 amplicon pyrosequencing (Dietrich 
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et al., 2014) and Illumina Miseq (Dietrich et al., 2014) pyrosequencing to further validate 

population differences between the two sequencing platforms. The three higher termite 

(Nasutitermes corniger, Trinervitermes sp. and Cubitermes ugandensis) gut profiles that were 

selected from both studies for the purpose of this analysis originated from the same colonies 

respectively. Similar to our results, the pyrotag- and mitag-based profiles from Dietrich et al. (2014) 

and Mikaelyan et al. (2015) were comparable with notable discrepancies in some populations (e.g. 

Acidobacteria, Bacteroidetes, candidate phylum TG3, Proteobacteria and Spirochaetes) (Appendix 

B: Table S3.2). We were unable to identify specific bacterial populations that were affected by the 

different sequencing platforms. This is due firstly to the use of different termite genera; in the 

Dietrich et al. (2014) and Mikaelyan et al. (2015) studies, higher termites were used and secondly 

the limitation of multiplex amplicon sequencing may lead to artificial inflation of microbial 

diversity (Kunin et al., 2010). Although the limitations for both the Illumina and 454 platforms have 

been extensively evaluated in terms of the sequencing error and artefacts in previous studies 

(Margulies et al., 2005; Erlich et al., 2008; Gomez-Alvarez et al., 2009; Quince et al., 2009), Roche 

454 tends to produce a higher error rate, with up to 15% of generated sequences resulting from 

artificial amplification (Gomez-Alvarez et al., 2009; Luo et al., 2012). More importantly, it is well 

established that amplicon-based sequencing can be biased due to unequal amplification of SSU 

rRNA genes (e.g. overestimate of species diversity as a result of chimeric sequence formation) 

(Haas et al., 2011; Tremblay et al., 2015). There is therefore a need for a less biased amplification 

approach such as shotgun sequencing-based community profiling to reduce limitations that exist 

with current amplicon-based sequencing methods (Darling et al., 2014; Hasan et al., 2014) 

(discussed in more detail in Chapter 4). Due to the uncertainty in comparing data from feeding trials 

1 and 2, we focussed our attention on the second feeding trial which incorporated more feedstocks. 
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Figure 3.4: Relative abundances (≥0.2%) of M. darwiniensis gut profiles on the E. regnans control 
diet using different sequencing platforms. Each row represents a microbial taxon with relative 
abundance indicated by red shading and taxa with notable differences between the two platforms 
indicated by yellow. 

3.3.2.3 Effect of time and diet on microbial gut community profiles  

Phylum-level groups identified in the gut microbiome at three time points (0 hr, Day 4 and Day 7) 

were largely consistent with notable differences in relative abundance of some phyla between 

termites at time points four and seven (Figure 3.5). The relative abundance of core termite gut 

bacterial taxa; Bacteroidetes, Spirochaetes and Proteobacteria, present in all profiled samples in this 

study, were fairly consistent across all samples which further supports their essential roles in the gut 

community despite differences in diet. Four prokaryotic phyla, Euryarchaeota, Elusimicrobia, 

Actinobacteria and Firmicutes showed pronounced differences between samples at day four and day 

seven, irrespective of diet. The Euryarcheaota and Elusimicrobia are more abundant at day four in 

comparison to day seven. The opposite is true for Actinobacteria and Firmicutes. Most members of 

Elusimicrobia and Euryarchaeota are intracellular bacterial symbionts of flagellates in the gut of 

lower termites and wood-feeding cockroaches (Cryptocercus punctulatus) (Ohkuma, 2008; Strassert 

et al., 2012), although a small number of Euryarchaeota such as some Methanobrevibacter are 

attached to the gut epithelial wall. Although only a relatively small percentage of Mastotermes 

protists were detected in this study as an artefact of the universal primers that do not target many 

microbial eukaryotes (see Chapter 2), it has been well demonstrated that flagellates make up the 

bulk of the microbial community in lower termites (Brune and Stingl, 2006; Tai et al., 2015). A 

declining trend in relative abundance of detected protists was observed between day four to day 

seven in all feeding treatments (Figure 3.5) consistent with the observed reduction in Elusimicrobia 

and Euryarchaeota. An opposite trend was observed for the Actinobacteria and Firmicutes where 

Taxon C1_0_p C2_0_p C3_0_p avg C1_0 C2_0 C3_0 avg

Eukaryota;__Excavata 1.0% 0.5% 0.8% 0.7% 2.5% 3.3% 3.8% 3.2%

k__Archaea;p__Euryarchaeota 7.4% 6.8% 16.1% 10.1% 9.4% 9.1% 11.4% 10.0%

k__Bacteria;p__Acidobacteria 0.2% 0.0% 0.2% 0.1% 0.5% 0.5% 0.5% 0.5%

k__Bacteria;p__Actinobacteria 1.7% 1.3% 2.3% 1.8% 1.9% 1.9% 2.0% 2.0%

k__Bacteria;p__Bacteroidetes 52.8% 55.4% 42.5% 50.2% 39.4% 36.6% 33.5% 36.5%

k__Bacteria;p__Elusimicrobia 8.3% 6.8% 4.6% 6.5% 18.3% 15.3% 15.2% 16.3%

k__Bacteria;p__Firmicutes 14.5% 16.2% 22.5% 17.7% 14.3% 22.0% 20.6% 19.0%

k__Bacteria;p__Fusobacteria 4.8% 4.4% 4.3% 4.5% 4.8% 4.3% 4.4% 4.5%

k__Bacteria;p__Planctomycetes 0.3% 1.0% 0.4% 0.6% 0.6% 0.9% 0.9% 0.8%

k__Bacteria;p__Proteobacteria 1.8% 2.0% 1.1% 1.6% 4.2% 2.3% 4.2% 3.6%

k__Bacteria;p__Spirochaetes 6.2% 5.0% 4.3% 5.2% 2.2% 2.4% 2.2% 2.3%

k__Bacteria;p__Synergistetes 0.7% 0.6% 0.5% 0.6% 0.3% 0.1% 0.3% 0.2%

k__Bacteria;p__TM7 0.1% 0.0% 0.1% 0.1% 0.5% 0.3% 0.3% 0.3%

k__Bacteria;p__Tenericutes 0.1% 0.1% 0.1% 0.1% 0.3% 0.4% 0.5% 0.4%

k__Bacteria;p__Verrucomicrobia 0.2% 0.0% 0.2% 0.1% 0.7% 0.5% 0.2% 0.5%

pyrotag mitag
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the relative abundance increases from day four to day seven in all diets. Similar shift patterns of 

these dominant bacterial phyla, specifically Elusimicrobia and Actinobacteria, were previously 

observed in a closely related wood-feeding roach, C. punctulatus (Berlanga et al., 2009). Berlanga 

et al. (2009) reported that the relative abundance of Elusimicrobia decreases and Actinobacteria and 

Firmicutes increase significantly after fasting. This suggests that at least some of the observed 

community composition changes may have been due to stress related to the change in diet, rather 

than strict adaptation to a new feeding substrate. 

 

Figure 3.5: Phylum-level summary of microbial taxa between wood- and grass-fed Mastotermes. 
The bar graph represents the averaged of three replicates per treatment.  

Microbial gut community composition was analysed in greater detail using 97% identity operational 

taxonomic units (OTU) (Figure 3.6 and Appendix C: Table S3.1). Two Methanobrevibacter OTUs 

(OTU9 and OTU38) were more abundant at day four than day seven for all diets. 

Methanobrevibacter sp. are found either in the periphery of the hindgut or as an endosymbionts of 

protists which suggests that these OTUs are associated with declining gut protist species. It has been 

suggested that this association is a strategy in maintaining an anoxic condition in the termite gut 

ecosystem (Brune, 2011). Other likely protist symbionts and protist OTUs also declined in relative 

abundance between day four and seven. These included the dominant Endomicrobia OTU (OTU27) 

on day four (Figure 3.6) which has 100% identity to an uncultured Endomicrobia endosymbiont of 

cellulolytic Deltotrichonympha sp. in the Parabasalia group (Li et al., 2003; Watanabe et al., 2006; 

Ikeda-Ohtsubo et al., 2007) and three parabasalid OTUs (OTU131, OTU77 and OUT161). These 

parabasalid OTUs are affiliated to Deltotrichonympha sp. (OTU131; 0.2 – 3.8%), Koruga sp. 

(OTU77; 0.1-0.4%) and Metadevescovina sp. (OTU161; 0.1-0.5%). In a feeding trial of the lower 

termite Coptotermes formosanus, Tanaka et al. (2006) demonstrated that changes in diet resulted in 
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changes in the protist community. Because the study compared the gut profiles at the end of 30 

days, the differences in the number of protists were only compared between individuals on different 

diets and possible changes that may have been due to stress over time were not recorded. Findings 

from this study showed a strong correlation between protists on wood and artificial diets. 

Individuals on wood (complex lignocellulose) substrates had high abundance of protists as 

compared to those on artificial diets (cellulose, cellobiose and glucose). This reduction in relative 

abundance of protists provides evidence that they are the key players in lignocellulose digestion, 

particularly of cellulose and hemicellulose. These authors concluded that the protist community is 

unable to effectively use the artificial substrates resulting in a decrease in most protist populations 

(Tanaka et al., 2006). This may also be the case in feeding trial 2 for the cotton and sugarcane 

mulch substrates. 

For the inclining trend observed in some of the prokaryotic populations, five Actinomycetales OTUs 

(OTU51, OTU55 and OTU147-Microbacterium sp., OTU52-Corynebacterium sp., and OTU42-

Tsukamurella sp.) mainly accounted for the higher abundance of Actinobacteria present in gut 

profiles at day seven (Figure 3.6 and Appendix B: Table S3.1). Interestingly, most of these OTUs 

are associated with aerobic bacteria suggesting that the gut condition was favouring the growth of 

these populations. Two Firmicutes OTUs, OTU69 and OTU70, identified as Leuconostocaceae sp. 

and Lachnospiraceae sp., respectively, increased in number from day four to day seven in all 

treatments. Leuconostocaceae sp. were previously reported in lower termite genera Mastotermes, 

Hodotermes, Reticulitermes and Coptotermes in low abundance (Dietrich et al., 2014; Butera et al., 

2015) but were relatively high in the Mastotermes profiles at day four and day seven. Members of 

the family Leuconostocaceae are generally involved in carbohydrate fermentation isolated from 

food goods ranging from vegetables, fruits, fish and dairy products to spoiled refrigerated meats 

(Robinson and Batt, 1999), yet their roles in the termite gut are unclear. Lachnospiraceae sp. have 

previously been reported in the gut periphery of lower and higher termites (Thompson et al., 2012) 

and were consistent with the appearance of aerobic Actinobacteria at day seven. Dissolution of 

physiochemical gradients, including oxygen, have been noted in cockroach guts when the protist 

community declines (Berlanga et al., 2009). This could explain the observed population shifts 

between days four and seven, i.e. decrease in protist and protist symbiont OTUs and increases in 

putatively aerobic bacterial populations. These shifts may point to a stress response to changes in 

diet, but since such shifts were also observed in the E. regnans controls, smaller colony size and 

container conditions may have contributed to the stress response. 

Two other important OTUs that were abundant in all Mastotermes samples despite the 

compositional shifts observed in some phyla were OTU57 (~10%) and OTU97 (~4%) assigned to 
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Blattabacterium and Fusobacterium respectively (Figure 3.6 and Appendix B: Table S3.1). 

Mastotermes are the only termite genus to retain the obligate fat body endosymbiont 

Blattabacterium from their ancestral cockroaches. Compared to Blattabacterium in omnivorous 

roach Periplaneta, those in Mastotermes and its sister wood roach Cryptocercus are smaller in 

genome size and has loss a fraction of genes involved in nutritional biosynthesis as a result of 

acquisition of gut microbes that are capable of supplying essential nutrients (Sabree and Moran, 

2014). Even though Blattabacterium in Mastotermes are functionally diminished, its presence in the 

basal termite genus suggests that Mastotermes are lacking certain gut microbiome constituents 

required to fully take up the function of Blattabacterium (Sabree and Moran, 2014). Another gut 

symbiont, Fusobacterium, has been reported in almost all investigated Mastotermes gut profiles (3-

6%) (Sabree et al., 2012; Dietrich et al., 2014; Sabree and Moran, 2014) (Appendix A: Figure 

S2.8). The only report on a potential role of Fusobacterium sp. is the member Sebaldella termitidis, 

belonging to the order Fusobacteriales, in lower termite Reticulitermes sp. were previously reported 

to produce acetic and lactic acid via sugar fermentation (Harmon-Smith et al., 2010) and 

Fusobacterium (OTU97) may perform a similar function in Mastotermes. Other OTUs that were 

consistent (>0.1%) across the different dietary treatment and time points were OTU113 

(Acidobacteria), OTU66 (Pirellulaceae) and OTU13 (Rhodocyclaceae). 
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Figure 3.6: Heatmap showing microbial OTUs with ≥0.1% relative abundance in the Mastotermes 
profiled gut samples in feeding trial 2. Each row represents an OTU with relative abundance 
indicated by shading according to the legend and each column represents a gut sample. The time 
point and diet for each sample is indicated at the top of the figure by colour according to the legend. 
Abbreviations; ER: E. regnans, CC: C. citrodora, CT: Cotton, SC: Sugarcane mulch. 
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Figure 3.7: Principle component analysis (PCA) plots of microbial profiles obtained from 
Mastotermes gut samples biological replicates at 0 hr, Day 4 and Day 7. The colour indicates time 
points. Panels represent gut samples reared on different feedstocks; (A) E. regnans, (B) C. 
citrodora, (C) cotton and (D) sugarcane mulch. Principal components 1 and 2 explained (A) 
39.07% and 17.15%, (B) 43.77 and 16.08%, (C) 52.74% and 14.08%, and, (D) 49.45% and 17.11% 
of the variance, respectively. 
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Since it is well established that there are associations between the protist-symbiont bacterial phyla 

to hindgut protists (i.e. decrease in Elusimicrobia and Euryarchaeota), protist-symbiont prokaryotes 

could provide a gauge for evaluating the presence and absence of protists in lower termites as 

observed in the community composition shifts from time zero to day seven (Ohkuma, 2008). The 

ability of microbes to adapt to changes in diet over the course of evolutionary timescales has been 

an open-ended research question. While termite feeding experiments have attempted to demonstrate 

that microbes in host-associated ecosystems such as observed in Reticulitermes and Coptotermes sp. 

are capable of adapting to dietary changes over a short period of seven days (Geib et al., 2008; 

Husseneder et al., 2009; Sethi et al., 2012; Raychoudhury et al., 2013), it is still unclear when the 

gut microbial community composition alters to accommodate a new diet. In a feeding study by 

Boucias et al. (2013), little to no change in the relative abundance of prokaryotic community 

composition in the lower termite Reticulitermes under different feeding regimens (filter paper, pine 

wood slivers, paper and wood) at the end of seven days were observed. Similar to other feeding 

experiments, the Reticulitermes gut profiles under different feeding conditions were compared at 

the end of the anticipated feeding period. They suggested that the apparent resilience of the 

prokaryotic community composition is the result of functional redundancy of prokaryotes or the 

functional independence of this community from lignocellulose digestion (Boucias et al., 2013). 

Our findings also showed comparable relative abundance of some bacterial populations 

(Acidobacteria, Bacteroidetes, Fusobacteria, Planctomycetes, Proteobacteria, Synergistetes, 

Tenericutes and Verrucomicrobia) across all Mastotermes gut profiles regardless of time or diets. 

This suggests that either no change in the bacterial community function was required or that 

functional changes occurred only at the transcriptional and translational levels which were not 

detectable via SSU rRNA profiling. While our study supports findings from Boucias et al. (2013) 

that gut community composition does not reflect the artificial (sugarcane and cotton) feeding 

treatments at day seven, the compositional shifts in relative abundance of members of Parabasalia, 

Euryarchaeota, Actinobacteria and Firmicutes in the gut profiles of Mastotermes possibly reflect on 

the failure of the gut microbiota to maintain community stability (Figure 3.5 and Figure 3.6). This 

is because group size and rate of social interactions are important factors to longevity and vigour of 

termite colonies (Miramontes and DeSouza, 1996), which are variables not usually considered 

explicitly in feeding experiments. It is worth noting that in the gut of lower termites, the protist-

prokaryotes symbiotic complex plays an important role in lignocellulose degradation and sustaining 

gut gradients, and any changes in the number of protists may lead to an increase in bacterial 

populations.  
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A complementary multivariate PCA analysis comparing the relative abundance of community 

composition of Mastotermes under different feeding conditions showed segregation at days four and 

seven within each feeding treatment (Figure 3.7). We noted that the compositional shifts in 

Mastotermes gut profiles between different time points across all diets were statistically significant 

(Figure 3.7). The compositional shifts observed over a seven day period may be due to declining 

termite health rather than dietary adaptation. Previous feeding assays that lasted for 21-days for 

Nasutitermes (Miyata et al., 2007) and 30-days for Coptotermes (Tanaka et al., 2006) respectively 

showed gradual mortality of individuals as the trial progressed. Mastotermes colonies have 

successfully been reared for years in laboratory within (Cochrane, personal communication) and 

outside (Fröhlich et al., 1999; Li et al., 2003) of Australia, in huge enclosed spaces and in large 

numbers. However, there seems to be a breakdown of the gut microbial community stability when 

small numbers of Mastotermes are placed in smaller enclosed containers over a period of seven 

days, suggesting that these giant termites are less robust in reduced groups, or that our protocol may 

have been too restrictive for the survival of this species. In addition, the gradual mortality that was 

also observed in Nasutitermes and Coptotermes may simply reflect that although termites are 

adaptable to changes in diet in the wild, when placed under laboratory conditions, especially in 

small numbers, it promotes a detrimental physiological response that ultimately affects the gut 

microbiota. Hence, a precaution should be taken when conducting future feeding experiments and 

concluding results from such experiments. 

Despite stress response as a likely factor for the shift in gut community composition, we observed 

that there were greater shifts occurring on more compositionally different feedstocks (wood vs. 

grass and cotton) (Figure 3.8). Several reasons that may account for this observation are as follows; 

(1) shift pattern in wood diet indicates stress response over time; (2) shift pattern between gut 

profiles on wood and artificial diets indicates dietary response, resulting in the inability of the gut 

microbiota to respond to the compositional structure of the artificial diets. Although findings from 

our feeding experiments demonstrated changes in community composition as a dietary response 

(Figure 3.8), supporting our initial hypothesis that predicted membership evenness changes with 

diet, most of the effects were due to stress. Presumably changes in relative abundances occur over 

short evolutionary timescales which could account for at least 10,000 years to adjust to new diet and 

lifestyles (Quercia et al., 2014) fluctuations in population evenness as an adaptation to diet may take 

longer than seven days with minimum physiological disturbances. 
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Figure 3.8: Principle component analysis (PCA) plots of microbial profiles obtained from 
Mastotermes gut samples average of biological replicates at 0 hr, Day 4 and Day 7. The colour 
indicates dietary treatments and shape represents time points. Principal components 1 and 2 
explained 49.81% and 17.65% of the variance, respectively. 

3.3.3 Identification of active cellulases  

Proteomics in combination with zymograms, a functional assay for analysing proteolytic activity 

(Leber and Balkwill, 1997), were used to determine different lignocellulose feeding impact at the 

translational level. As this is an optimisation stage of applying proteomics and zymograms to the 

termite gut, focus was placed on identification of cellulolytic enzymes involved in hydrolysing 

feedstocks used in feeding trial 2. To generate crude extract for SDS gel electrophoresis, pools of 

~20 Mastotermes whole guts were homogenised and quantified. The total protein concentration of 

the obtained crude extract for different feedstocks ranged from 6.2 to 11.8 mg/ml (Appendix B; 

Figure S3.2). Firstly, for the purpose of testing the in-gel substrate zymogram technique, an 
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experiment was performed on E. regnans at time zero to identify cellulase activity. Carboxymethyl 

cellulase (CMCase) activities were detected through zones of clearing on the zymogram gels in 

SDS-PAGE under both non-reduced and reduced conditions. Eight clearing zones were observed 

under non-reduced conditions and only one from reduced conditions (Figure 3.9). Due to the nature 

of protein migration in the SDS-PAGE gel, reduced conditions were chosen for subsequent testing. 

Protein in non-reduced conditions migrates as a smear and retained activity during electrophoresis 

which indicates overlapping of clearing regions between different enzymes, making it difficult to 

interpret the relationship of protein bands to activity zones and isolate individual enzymes 

contributing to the activity. Separation of protein under non-reduced conditions also resulted in poor 

resolution on Coomassie-stained gels. By contrast, the zone of clearing (MTZ-1; Figure 3.10) 

detected under reduced conditions corresponded to a band of ~40 kDa (MTC-1 and MTC-2 

(replicate); Figure 3.10) as guided by the reference Coomassie-stained gel (Figure 3.10). MTZ-1 

was identified via two approaches; band excised from zymogram gel and reference gel. In total, five 

samples were trypsin-digested and subjected to mass spectrometry analysis; MTZ-1, MTC-1, MTC-

2 and two control A. niger from both zymogram (ANZ-1) and reference (ANC-1) Coomassie gels.  

 

Figure 3.9: Zymograms of crude extract from M. darwiniensis. Samples were treated and separated 
on SDS-PAGE gel under non-reducing conditions. Abbreviations; C: control; 1 to 4: E. regnans 
performed in replicates. 

 

 

C      1        2        3       4   
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Figure 3.10: Zymogram (left) and corresponding reference gel (right) of crude extract from M. 
darwiniensis. Samples were treated and separated on SDS-PAGE gel under reducing conditions. 

All proteins were identifiable by comparison to Swiss-Prot and LudwigNR databases except for 

ANZ-1 (Table 3.2). For bands excised from the zymogram gel, ANZ-1 did not match any cellulose-

like proteins while MTZ-1 was identified as a ‘putative glycoside hydrolase (GH) family 7’ from an 

uncultured symbiotic protist of M. darwiniensis (Table 3.2). For bands excised from the reference 

gel, ANC-2 was identified as an ‘endoglucanase A’ from A. kawachii (strain NBRC 4308) and both 

bands MTC-1 and MTC-2 as ‘putative GH family 7’ from an uncultured symbiotic protist of M. 

darwiniensis. The MTC-1 also had a match to ‘beta-1,4-endoglucanase precursor’, a GH9 cellullase 

originating from M. darwiniensis. We also performed peptide searches against the metagenome 

database (see Chapter 4) to identify corresponding contigs. The matching contig ‘contig_87399_1’ 

was blasted against the NCBI database and had 100% similarity to putative GH7 family (A4UX17), 

which is the same entry as the Mascot search (Table 3.2). This suggests that the metagenome 

database provides a source to identify novel enzymes that are not publicly available.  

Table 3.2: Description of protein hits as determined by mass spectrometry analysis of trypsin 
digested gel bands from zymogram gel (Z) and Coomassie-stained gel (C).  

Band ID Protein name CAZy* 
family 

Accession 
number 

Peptides 
matched 

Source 

MTZ-1  Putative glycoside 
hydrolase family7  

GH7  A4UX17  49 uncultured symbiotic protist 
of M. darwiniensis  

MTC-1  Putative glycoside 
hydrolase family7;  
Beta-1,4-endoglucanase 
precursor  

GH7; 
GH9  

A4UX17 
Q8IFU4  

11 
6 

uncultured symbiotic protist 
of M. darwiniensis; M. 
darwiniensis  

MTC-2  Putative glycoside 
hydrolase family7  

GH7 A4UX17 14 uncultured symbiotic protist 
of M. darwiniensis  

ANZ-1  Keratin - e.g. P35527 >400 Various including human 

ANC-2  Endoglucanase A  GH12  Q12679  137 Aspergillus kawachii (strain 
NBRC 4308)  

*CAZy – Carbohydrate Active Enzymes 

  

MTC-2 
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As an alternative approach, overlay zymograms on gradient (8-16%) SDS-PAGE gel was used to 

examine cellulolytic activity of the gut content of M. darwiniensis under non-reducing conditions. 

In comparison to in-gel zymograms under non-reduced conditions, the overlay zymogram technique 

allowed a maximum preservation of enzymatic activity while achieving good protein separation for 

further band identification by mass spectrometry. Comparison of cellulolytic activity between 

different lignocellulose feeding revealed that there was insignificant alteration in cellulase profiles 

across the four feedstocks (Figure 3.11 and 3.12). The measurement of endoglucanase activity 

(Figure 3.11) confirms that changes in cellulase profiles are very subtle as observed in in-gel 

zymography (Figure 3.12). All samples displayed similar activities (in-gel zymography) and at 

least five notable enzymes with sizes of ~21 kDA, 33 kDA, 36 kDA, 100 kDa and 120 kDA are 

responsible for these activities (Figure 3.12). The small differences in protein profiles observed 

suggest that gut function was maintained even though community composition altered. Of the five 

clearing zones, the two enzymes (sizes ~21 kDA and 36 kDA) that have the most intense activities 

were MS-21 and MS-36 respectively (Figure 3.12). MS-21 and MS-36 were excised from the 

corresponding reference gel for identification where obtained peptides were affiliated with termite 

(or insect) and protist proteins according to the SwissProt and LudwigNR databases. However, 

identified proteins were not associated with cellulase activity. Obtained peptides were also searched 

against our Mastotermes metagenome database and identified 23 contigs that matched the peptide 

mass spectra, but none were GH-related proteins. This probably indicates that there was low 

abundance of target enzymes compared to all other proteins present at the excised gel location. To 

achieve better identification, sample separation by two-dimensional gel electrophoresis can be used 

to obtain ‘pure’ protein spots. Alternatively, samples can be fractionated using size-exclusion and 

ion-exchange chromatography. Fractions can then be tested for cellulolytic activity, allowing 

further sequencing of only relevant fractions.  

  

Figure 3.11: Zymography of endoglucanases produced by M.
darwiniensis gut communities on following diet: A and B – E. regnans;
C – C. citrodora; D - sugarcane mulch; E - cotton. Time points: A – 0 hr;
B-E – Day 7. 
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Figure 3.12: Endoglucanase activity (U/mg protein) measured in gut crude extract of termites M. 
darwiniensis subjected to different diet. Values are average from three groups per diet. Error bars 
represent standard deviation. Abbreviations; ER_0: E. regnans at 0 hr; ER_7: E. regnans at day 7; 
CC: C. citrodora; SC: sugarcane mulch; CT: cotton.  

3.4 Conclusion 

In summary, this study provides an insight into the influence of key factors on the survival rate of 

Mastotermes under laboratory conditions and a general assessment of the Mastotermes gut 

microbial community on wood and artificial diets via the use of SSU amplicon sequencing. Overall, 

our findings support the hypothesis that a seven day feeding period is sufficient to notice the impact 

of an alternate diet on termite gut microbial communities. The differences in prokaryotic gut 

composition between wood and alternative-fed Mastotermes observed were small suggesting that 

greater shifts in gut microbiota could be due to stress response to rearing conditions and sources of 

nutrition as previously described (Husseneder et al., 2009). As some bacterial populations play 

crucial roles in the survival of termites, selective pressures also ensure that important bacterial 

phyla (core microbiome) are always present and are contributing factor to the notable community 

composition shifts. Whether the subtle differences between artificial and wood-fed Mastotermes 

indicates functional redundancy of the prokaryotic community, or that prokaryotic microbiota plays 

a trivial role in lignocellulosic digestion, or perhaps due to the seven day period, shifts in 

prokaryotic community composition indicate declining termite health, it will not be known until 

similar feeding studies are performed (and reproduced) to investigate these communities at the 

transcriptional and translational level as previously observed in a seven day diet-influenced host and 

protist symbionts gene expression (Raychoudhury et al., 2013; Sethi and Scharf, 2013). Though our 

zymogram approach identified protist-derived expressed enzymes, it did not detect any cellulases of 

bacterial origin, keeping in mind that we are still optimising our protocol, hence requires further 

testing. These findings contribute new knowledge in understanding of the symbiosis between the 

termite host and its gut microbiota via symbiont-assisted lignocellulose digestion, providing 

ER_0        ER_7         CC            SC            CT 
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important information for subsequent feeding trials and emphasis on the limitations of amplicon 

sequencing. Hence, this chapter provides the basis to Chapter 4 where shotgun community profiling 

is compared to amplicon sequencing and also provides insight into the potential roles of prokaryotic 

communities in lignocellulose digestion. 
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Chapter 4 Metagenome-based analysis of gut communities in 

lower and higher termites 

Abstract 

Culture-independent small subunit rRNA (SSU) gene amplicon surveys have been widely used to 

investigate various termite gut habitats. Protocols and approaches used vary between studies with 

regards to primers and sequencing platforms. These choices may account for the variations 

observed between different studies of the same species. Despite these choices, limitations of 

amplicon-based sequencing are associated with primers and the polymerase chain reaction (PCR) 

introduces biases that may alter microbial diversity estimates. To better understand the effect of 

primers and PCR biases on termite gut microbial composition, we obtained metagenomes from 

lower (Mastotermes and Porotermes) and higher (Nasutitermes and Microcerotermes) termites and 

compared the shotgun metagenome-based community profiles to their corresponding amplicon-

based profiles previously obtained in Chapters 2 and 3. The community composition was fairly 

consistent between the metagenome and amplicon profiles, with greater differences noted between 

lower and higher termite gut profiles. Despite the compositional differences between lower and 

higher termites, a gene-centric analysis comparing community functional capability between lower 

and higher termite metagenomes identified commonalities in essential functions to termite biology 

which includes polymer hydrolysis, nitrogen fixation, hydrogen metabolism and homoacetogenesis. 

Overrepresentation of hydrolytic enzymes in prokaryotic communities of lower termites support a 

previous hypothesis of their involvement in lignocellulose degradation. Using a differential-

coverage binning method, 179 genome bins were recovered from metagenomes of Nasutitermes, 

Microcerotermes and Porotermes. Of these, four substantially completed population genomes 

represent a known termite gut bacterial phylum, Fibrobacteres/TG3, forming the basis for a 

comparative genomics analysis in Chapter 5. 
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4.1 Introduction 

Culture-independent characterisation of microbial communities in the environment using small 

subunit (SSU) ribosomal RNA (rRNA) amplicon sequencing has revealed much greater diversity 

beyond the traditional culture-based microbiological studies. SSU rRNA-based amplicon 

sequencing provides rapid profiling of microbial communities from the environment, typically 

through DNA extraction, polymerase chain reaction (PCR) amplification of single genes and 

identification of sequences to reference databases. However, important limitations of this approach 

such as PCR and primer biases that favour the amplification of chimeric sequences which leads to 

overestimation of diversity should be considered. Advances in “next-generation” DNA sequencing 

technology have resulted in the development of new culture-independent methods that can use 

genomic information beyond the confines of a single marker gene, most notably shotgun 

metagenomics (Willner and Hugenholtz, 2013). A major goal of shotgun metagenomic studies, that 

allows direct analysis of DNA from environmental samples, is to move beyond community 

profiling of specific microbial marker genes to provide a less biased view of microbial genomic 

diversity and functionality of an ecosystem (Hugenholtz and Tyson, 2008). 

In lower termites, flagellates are cellulolytic specialists and it has been widely thought that bacterial 

symbionts play a negligible role in lignocellulosic digestion (Mattéotti et al., 2011; Brune, 2014). 

Recent work has shown possible cellulose digestion involvement of bacterial symbionts in lower 

termites via (1) genomic identification of genes related to lignocellulose degradation (Boucias et al., 

2013; Do et al., 2014; Yuki et al., 2015), (2) antimicrobial treatments which suggest involvement of 

cellulolytic prokaryotes in metabolism of carbohydrate and phenolic components of lignocellulose 

(Peterson et al., 2015) and (3) metabolomic profiling of hindgut bacteria through phosphorolysis of 

cellobiose or cellodextrins (Tokuda et al., 2014). Though these studies have provided insights into 

the importance of gut prokaryotes in digestive processes, the involvement of these lignocellulose 

degrading genes in lower termites is still unclear. Furthermore, in Chapter 2, we observed high 

abundance of termite genera-specific prokaryotic populations of interest in a few of the Australian 

termites. Here, we performed a gene-centric analysis of five termite gut metagenomes of two lower 

termite genera (Mastotermes and Porotermes) and two higher termite genera (Nasutitermes and 

Microcerotermes) to determine if system-specific differences exist between gut bacterial microbiota 

from lower termites and higher termites with similar diets and association of cellulolytic genes. 

Also, we used differential coverage binning to obtain near and substantially complete bacterial 

genomes from the termite gut of Microcerotermes, Nasutitermes and Porotermes. 
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4.2 Methods 

4.2.1 Samples and metagenome sequencing 

DNA from samples obtained in Chapter 2 and 3 were used for this study, including two lower 

termites (Porotermes and Mastotermes) and two higher termites (Microcerotermes and 

Nasutitermes). The second colony of Mastotermes was collected from Townsville (S19° 18' 

40.086", E146° 44' 33.6444"). Briefly, specimens were collected with their nest material and 

transported to the laboratory in ventilated plastic containers at room temperature to reduce stress to 

the insects, removed from their nest material within a day of arriving in the laboratory, stored at -

20°C and processed as previous described (Chapter 2). The P3 segment gut content of Mastotermes 

workers were collect as described in He et al. (2013) and was separated into two microtubes and 

processed independently. One microtube of P3 content was passed through a 0.8µm filter to remove 

larger microbial cells such as protists (filtered P3 content). Genomic DNA (gDNA) was extracted 

from termite gut using FastDNA® SPIN kit for Soil (MP Biomedicals, Australia) according to 

manufacturer’s instructions.  

DNA libraries were prepared from all gDNA for sequencing using a Nextera XT Sample 

Preparation Kit (Illumina, San Diego, CA, USA). DNA library concentrations were measured using 

a QuantIT kit (Molecular probes, Carsbad, CA, USA) and equimolar-pooled for sequencing. 

Samples were paired-end sequenced between a quarter and two fifths of a flowcell lane each on the 

following platforms with an average fragment size of 320 bp. Porotermes was sequenced on an 

Illumina Miseq (2 x 250 bp) and Microcerotermes, Nasutitermes and Mastotermes were sequenced 

on an Illumina HiSeq 2000 (2 x 100 bp). 

4.2.2 Community profiling 

SSU rRNA gene amplicon sequencing of all samples were performed on GS FLX pyrosequencing 

system (454 Life Sciences, USA) as previously described in Chapter 2. The microbial community 

composition was determined from the paired-end metagenome data by extracting and classifying 

SSU rRNA reads using GraftM (https://github.com/geronimp/graftM) based on 32 genetic marker 

genes via hidden Markov model (HMM) search. 

4.2.3 Metagenome assembly and annotation 

Paired-end reads were overlapped where possible using Seqprep (https://github.com/jstjohn 

/SeqPrep) and quality trimmed using Nesoni (http://www.vicbioinformatics.com/software. 

nesoni.shtml). A de novo assembly of the overlapped and quality trimmed reads was generated 



109 
 

using CLC workbench v6 (CLC Bio, Taipei, Taiwan) with kmer size of 63. Open reading frames 

(ORFs) were identified and annotated using PROKKA (rapid prokaryotic genome annotation) v1.7 

using default settings (Seemann, 2014). The summary statistics are shown in Appendix C: Table 

S4.1.  

4.2.4 Gene-centric comparative analysis 

Gene-centric analysis was performed to reveal relative representation of gene families between 

metagenomics datasets. Metagenomes of termite gut communities of Mastotermes, Porotermes, 

Nasutitermes, and Microcerotermes were compared based on functional units of Clusters of 

Orthologous Groups (COG) and KEGG Orthology (KO) assignments or functional categories. The 

results were mostly consistent across COG and KO. Results were mostly interpreted based on 

COGs, and in some cases KOs, where COGs were not available. The abundance of each functional 

unit is the total count of genes belonging to that unit, adjusted (normalised by sequencing depth) by 

individual population abundance.  

4.3 Results and Discussion 

4.3.1 Metagenomic sequencing 

Bulk DNAs extracted from termite whole gut samples of two Mastotermes (Mastotermes_DW and 

Mastotermes_TV), one Porotermes, one Microcerotermes and one Nasutitermes for SSU rRNA-

based community profiling (Chapter 2 and 3) were used in the present study. A total of 18.8 and 

25.3 Gb, of Illumina 2 x 100 bp were sequenced from higher termites Microcerotermes (M) and 

Nasutitermes (N). Similarly, 5.9 Gb of Illumina 2 x 250 bp were sequenced from the lower termites 

Porotermes (P) and 3.9 and 6.3 Gb of 2 x 100 bp from Mastotermes_DW (MD) and 

Mastotermes_TV (MT) respectively (Table 4.1 and Appendix C: Table S4.1). Sequence datasets 

from each termite sample (Microcerotermes, Nasutitermes, Porotermes, Mastotermes_DW and 

Mastotermes_TV) were independently assembled for gene-centric analysis (Appendix C: Table 

S4.1).   
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Table 4.1: Summary statistics of metagenomes. 

Metagenome Source Estimated 
metagenome size 

GC (%) Total no. of SSU 
reads detected 

Higher termites 

M Microcerotermes - Chapter 2 18.8 gb 44 46898 

N Nasutitermes - Chapter 2 25.3 gb 44 55787 

Lower termites 

P Porotermes - Chapter 2 5.9 gb 46 9769 

MD Mastotermes (DW) - Chapter 3 3.9 gb 44 5752 

MT Mastotermes (TV) - Townsville 6.3 gb 40 8610 

4.3.2 Microbial community composition 

Although environmental surveys using SSU rRNA amplicon sequencing (Chapter 2 and 3) has 

revolutionised the field of microbial ecology, a major caveat of this approach is primer bias and the 

potential for chimera formation. Hence a primary motivation of this chapter was to use shotgun 

sequencing to assess community composition because it is not reliant on PCR. Whole gut microbial 

community composition from three lower and two higher termites was determined by mining the 

SSU rRNA genes from the unassembled metagenomic datasets using GraftM 

(https://github.com/geronimp/graftM). A majority of the sequences of the profiled gut communities 

were bacterial, ranging between 76 to 99% in these samples while archaea made up 1 to 23%. The 

major populations identified using this approach in the lower termite samples belonged to the phyla 

Bacteroidetes, Firmicutes and Elusimicrobia and in the higher termite, Spirochaetes and 

Fibrobacteres (Figure 4.1).  

The SSU rRNA extracted from the five termite gut metagenomes were compared to the previously 

detailed SSU amplicon profiles (Chapter 2). From a broader taxonomic grouping, the SSU rRNA 

pyrotag profiles had higher relative abundance of Euryarcheaota as compared to the SSU rRNA 

metagenome profiles (Figure 4.1), most notably in lower termites (particularly Porotermes: 20% 

and 58% of reads respectively). Despite the discrepancy of Euryarcheaota, the relative abundance of 

the major bacterial taxa between metagenome and pyrotag profiles are comparable, with the 

exception of Porotermes. For Mastotermes samples, Mastotermes_DW and Mastotermes_TV, both 

the pyrotag and metagenome data showed high abundance of Bacteroidetes and Firmicutes (Figure 

4.1). For Microcerotermes and Nasutitermes, Spirochaetes and Fibrobacteres were abundant in both 

profiles (Figure 4.1).  
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Without taking Euryarcheaota into consideration, Firmicutes and Elusimicrobia were the most 

abundant populations in both pyrotag and metagenome profiles of Porotermes. Other populations 

such as Spirochaetes, Bacteroidetes and Proteobacteria are detected in low abundance in the pyrotag 

profile as compared to the metagenome. The differences in relative abundance of some populations 

are most likely accounted for by PCR primers and amplification bias that has been a concerning 

issue with amplicon-based sequencing (Berry et al., 2011).  It is therefore important to obtain an 

accurate representation of the microbial community to capture the richness and diversity of the 

environment. For this reason, shotgun sequencing provides a less biased approach to amplicon 

sequencing as it does not rely on targeting and amplifying a specific gene and serves as a way to 

validate discovery of novel organisms in these targeted surveys (Haas et al., 2011; Poretsky et al., 

2014). For example, TM7, Tenericutes and Crenarchaeota were undetected or in low abundance in 

the amplicon data but were present in 0.2-1.0%, 0.1-3.0% and 0.4-6.0% respectively in the shotgun 

profiles (Figure 4.1).  

On a finer scale, the top 70 OTUs were extracted from both sequencing platforms (Figure 4.2). 

Similar to the phylum-level analysis, the dominant populations were comparable. For instance in 

the Porotermes specimen, despite the overestimation of Methanobrevibacter (58.2%; OTU 2) in the 

amplicon-based study (Chapter 2), higher proportions of Methanobrevibacter (15.5%, OTU 578) 

than published termite gut profiles (up to 3%; Brauman et al., 2001) were also observed in the 

metagenome profile (Figure 4.2). This supports our initial findings that the archaeal abundance 

between specimens is more variable than previously appreciated. Similarly, this trend was also 

observed in several other populations such as a high abundance of class Endomicrobia in 

Porotermes (27.5% of pyrotag reads, 22.6% of metagenome), genus Fibrobacteres-2 (3.3, 3.1% of 

pyrotag reads; 4.2%, 5.3% of metagenome), family M1PL1-46 (2.1%, 3.5% of pyrotag reads; 6.1%, 

2.6% of metagenome) and genus Treponema (53.6%, 22.0% of pyrotag reads, 58.8%, 65.7% of 

metagenome) in Microcerotermes and Nasutitermes respectively. The pyrotag and metagenome 

community profiles were fairly consistent. Although community profiling from metagenomes 

provides a better estimation of a snapshot of the environmental diversity as it eliminates chimeric 

OTUs generated from amplicon sequencing, short SSU rRNA sequences extracted from shotgun 

data results in low resolution taxonomic classification compared to pyrotags (Haas et al., 2011). 

Longer sequencing length of up to 300 bp can now be obtained to provide an improved taxonomic 

resolution with advancement in sequencing platforms such as Illumina Miseq (Thomas et al., 2012).  
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Figure 4.1: Prokaryotic community composition at phylum level by metagenome (top) and pyrotag 
genes (bottom).  
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Figure 4.2: Comparison of SSU rRNA gene metagenome-based (metagenome) and amplicon 
(pyrotag) microbial community profiles based on the top 70 OTUs by total relative abundance 
across all samples. All population represents >0.2% relative abundance in samples. Samples are 
displayed in columns accordingly; M; Microcerotermes, N; Nasutitermes, P; Porotermes, MD; 
Mastotermes_DW, MT; Mastotermes_TV. OTUs are grouped by phyla and ordered by taxonomy 
(lowest to highest) and displayed in rows. 

 

#ID M N P MD MT Consensus Lineage #OTU ID M N P MD MT Consensus Lineage

Biomass (qPCR) Biomass (qPCR)

105 k__Archaea

289 p__Crenarchaeota

435 c__MCG

642 c__MHVG

540 c__DSEG 141 g__Methanobacterium

543 f__Methanobacteriaceae 7 g__Methanobrevibacter

578 g__Methanobrevibacter 2 g__Methanobrevibacter

3 s__Methanobrevibacter arboriphilus

292 o__MVS‐40

282 f__Holophagaceae

430 o__Actinomycetales 52 f__Propionibacteriaceae

20 f__Propionibacteriaceae 108 g__Propionicimonas

434 f__Coriobacteriaceae

669 p__Bacteroidetes 129 f__p‐2534‐18B5

660 o__Bacteroidales 12 f__Porphyromonadaceae

576 f__Porphyromonadaceae 6 g__Bacteroides

248 f__S24‐7 4 g__Blattabacterium

620 g__Bacteroides 56 g__Candidatus  Azobacteroides

644 g__Blattabacterium 8 g__Parabacteroides

177 g__Candidatus Azobacteroides 72 g__Parabacteroides

223 g__Dysgonomonas 18 g__Parabacteroides

423 g__Paludibacter 25 s__Tannerella forsythia

87 g__Parabacteroides 120 s__Dysgonomonas gadei

673 g__Tannerella

539 c__Endomicrobia 9 c__Endomicrobia

49 c__Endomicrobia

28 c__Endomicrobia

57 c__Endomicrobia

103 c__Endomicrobia

414 o__TG3‐1 17 f__M1PL1‐46

528 f__Fibrobacteraceae 68 f__M1PL1‐46

221 f__M1PL1‐46 155 f__M1PL1‐46

29 g__Fibrobacteres ‐2 258 f__M1PL1‐46

11 g__Fibrobacteres ‐2

38 g__Fibrobacteres ‐2

80 g__Fibrobacteres ‐2

207 g__Fibrobacteres ‐2

Actinobacteria

Bacteroidetes

Metagenome Pyrotag

Crenarcheota

Euryarcheota

Acidobacteria

Elusimicrobia

Fibrobacteres
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Figure 4.2: Continued. 

  

#ID M N P MD MT Consensus Lineage #OTU ID M N P MD MT Consensus Lineage

561 p__Firmicutes 30 c__Clostridia

538 c__Bacilli 34 o__Lactobacillales

112 o__Clostridiales 36 f__Clostridiaceae

520 o__Lactobacillales 33 f__Clostridiaceae

374 f__EtOH8 151 f__Clostridiaceae

646 f__Lachnospiraceae 100 f__Clostridiaceae

291 f__Mogibacteriaceae 335 f__Clostridiaceae

633 f__Ruminococcaceae 94 f__Ruminococcaceae

61 g__Anaerofustis 39 f__Ruminococcaceae

556 g__Clostridium 64 f__Ruminococcaceae

504 g__Enterococcus 176 f__Ruminococcaceae

353 g__Lactococcus 75 f__Coriobacteriaceae

480 g__Syntrophomonas 265 f__Coriobacteriaceae

153 g__Turicibacter 180 f__Coriobacteriaceae

254 g__Weissella 53 g__Anaerofustis

46 g__Turicibacter

26 g__Weissella

62 g__Weissella

42 s__Lactococcus garvieae

138 f__Fusobacteriaceae 31 s__Fusobacterium necrophorum

287 g__Fusobacterium

622 f__Pirellulaceae 130 f__Pirellulaceae

84 p__Proteobacteria 32 c__Betaproteobacteria

303 c__Alphaproteobacteria 101 f__Rhodocyclaceae ; g__Z‐35

589 c__Betaproteobacteria 27 f__Desulfobacteraceae

629 f__Rhodocyclaceae

470 g__TS34

398 c__Deltaproteobacteria

406 f__Desulfarculaceae

28 f__Desulfovibrionaceae

73 g__Desulfovibrio

125 f__Campylobacteraceae

491 o__SBYZ_6080 10 g__Treponema

345 o__M2PT2‐76 76 g__Treponema

160 f__Spirochaetaceae 67 g__Treponema

608 g__SJA‐88 123 g__Treponema

261 g__Treponema 128 g__Treponema

5 g__Treponema

16 g__Treponema

55 g__Treponema

110 g__Treponema

20 g__Treponema

215 g__Treponema

21 s__Treponema  sp5

65 s__Treponema  sp6

372 f__Dethiosulfovibrionaceae

263 g__TG5

467 g__Candidatus  Tammella

382 f__Mycoplasmataceae

564 f__Cerasicoccaceae 35 f__Cerasicoccaceae
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4.3.3 Gene-centric analysis of community metabolism 

Metagenomic analyses were performed to identify functional similarities and differences between 

lower and higher termite gut microbiota. Metagenome data were generated with Illumina shotgun 

sequencing. The summary statistics of metagenomic sequencing, assembly and annotation are listed 

in Appendix C: Table S4.1. Gene-centric analysis was conducted to compare the metagenomes 

based on functional categories of Clusters of Orthologous Groups (COG) and KEGG Orthology 

(KO) functional units. The higher termite metagenomes shared greater similarities in functional 

profiles to each other than to the lower termites. Consistencies among the lower termite 

metagenomes were observed (Figure 4.3). There are also functional differences between lower and 

higher termite gut microbiota, particularly cell motility and associated chemotaxis which were 

overrepresented in higher termites.  

4.3.4 Functional profiling of the DNA metagenomes 

Functional profiles were determined by classification of predicted genes based on the COG 

database. Of the annotated protein coding sequences, 21.8%, 14.6%, 17.8%, 12.9% and 8.4% from 

Microcerotermes, Nasutitermes, Porotermes, Mastotermes_DW and Mastotermes_TV had COG 

functional prediction respectively classified into the 25 different COG categories (Figure 4.3 and 

Appendix C: Table S4.1). From this analysis, there is an overrepresentation of genes in six 

categories in all five metagenomes, including translation, ribosomal structure and biogenesis 

(category J, 8.5-13.7%), amino acid transport and metabolism (E, 8.1-10.2%), replication, 

recombination and repair (L, 7.8-9.2%), energy production and conversion (C, 5.0-8.1%), 

carbohydrate transport and metabolism (G, 5.5-6.5%) and cell wall/membrane/envelope biogenesis 

(M, 5.0-5.5%) (Figure 4.3). These results are likely reflective of the biology of the prokaryotic 

community in the termite gut ecosystem. The enrichment of genes required for cellular processes 

and metabolism suggest that they are capable of acquiring their own nutritional needs. In higher 

termites, gut prokaryotic communities are dependent on the metabolism of carbohydrates to 

perform these cellular processes (Warnecke et al., 2007; He et al., 2013). The moderately abundant 

genes for COG category M (cell wall/membrane/envelope biogenesis) possibly reflect the need to 

attach to plant cell walls (Suen et al., 2011). The enrichment of these genes in lower termites 

suggest that the gut prokaryotic communities, although mostly present as ecto- and endosymbionts 

of flagellated protists (Brune, 2014), are also capable of these essential functions. It was previously 

suggested that in honey bees the transportation of sugars from the environment is assisted via the 

components of multiple phosphotransferase systems which represent the majority of the functions 

within COG category G (carbohydrate transport and metabolism) (Engel et al., 2012). These sugar 
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transporters are also detected in our metagenomes (Appendix C: Table S4.2), which could explain 

the abundance of glycoside hydrolases as an adaptation to plant cell wall digestion. Moreover, the 

general eukaryotic functional categories such as categories Z (cytoskeleton), W (extracellular 

structures), A (RNA processing and modification), and B (chromatin structure and dynamics) are 

absent from our metagenomic dataset consistent with a previous study (Do et al., 2014).  

Despite the functional commonalities that exist between lower and higher termite gut metagenomes, 

two COG categories are more abundant in higher than lower termites; category N (cell motility) and 

T (signal transduction mechanisms). The composition of these categories is in accordance with the 

termite gut structure and the free-living nature of the bulk of bacteria in higher termites (Appendix 

C: Table S4.3 and Table S4.4). The steep physiochemical gradients that consist of an anoxic 

central and a microoxic periphery within the termite gut are known reservoirs of motile bacteria, 

unlike mammalian rumen that harbours mostly non-motile bacteria (Beckwith and Light, 1927; 

Brune and Friedrich, 2000). In contrast, bacteria in lower termites are either associated with the 

flagellates, attached to the gut wall or free-living. Those bacteria that exist as ectosymbionts of 

flagellated protists have been reported to possess flagella as they are involved in symbiotic motility 

by propelling their eukaryotic hosts (König et al., 2006; Hongoh et al., 2007). Low abundance of 

motility genes in the prokaryotic community in lower termites reflects their overall abundance as 

compared to those in higher termites. The high abundance of cell motility and chemotaxis genes in 

higher termites (Microcerotermes and Nasutitermes) to lower termites may also reflect the 

differences in community composition, specifically highly motile populations such as the 

Spirochaetes (He et al., 2013). From both the metagenome and pyrotag profiles (Figure 4.1 and 

Figure 4.2), the Spirochaetes are more abundant in both higher termites (60-74%) as compared to 

lower termites (1-13%) consistent with previous findings (He et al., 2013).  

4.3.5 Plant polysaccharide degradation enzymes 

Plant cell walls are mainly composed of lignocellulose that contains 40-55% of cellulose encrusted 

with 20-40% hemicellulose and 10-20% lignin. Both the host and gut symbionts of termites 

contribute to lignocellulose degradation but for the scope of this chapter, we only focus on the gut 

prokaryotic symbionts. The predicted genes encoding glycoside hydrolases (GHs) from the 

metagenomes were classified into 88 families based on the Carbohydrate-Active enZYmes (CAZy) 

database (Lombard et al., 2014) (Appendix C: Table S4.1). Cellulose and hemicellulose are 

abundant polysaccharides while lignin is an insoluble complex polymer in plant cell walls. In order 

to access cellulose and hemicellulose, lignin has to be removed or at least modified (Zabel and 

Morrell, 2012). However, consistent with previous efforts (Todaka et al., 2007; Warnecke et al., 
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2007; He et al., 2013; Do et al., 2014), we did not detect any lignin-degrading enzymes from 

symbionts of both lower and higher termites. Unlike the fungus-growing termite family 

Macrotermitinae that benefits from lignin digestion by their fungal symbiont, other termites must 

overcome this barrier through alternative means (Brune, 2014). Recent studies have shown small 

alterations in the overall lignin structure, in both lower and higher termites, (Hopkins et al., 1998; 

Hyodo et al., 1999; Katsumata et al., 2007; Geib et al., 2008; Li et al., 2011) and provided evidence 

of potential expressed lignase genes in the gut of the lower termite Reticulitermes (Tartar et al., 

2009; Sethi et al., 2012). Even so, lignin is a major end product found in termite faeces, at least in 

wood-feeding termites (Brune, 2014). It has been suggested that any modification to lignin structure 

would increase the accessibility of polysaccharides to enzymes (Raychoudhury et al., 2013; Brune, 

2014). Along with enzymatic digestion, mechanical breakdown through the hosts mandibles and 

gizzard also contribute to a decrease in the mass of lignin hence assisting the initial digestion 

processes (Hyodo et al., 1999). 

It is known that in higher termites, prokaryotic communities are the major source of glycoside 

hydrolases (GHs) for depolymerisation of recalcitrant plant fibre due to the absence of flagellates. 

In the lower termites, flagellates produce the bulk of GHs in the hindgut paunch and prokaryotic 

symbionts are thought to not play a significant role in digestion (Mattéotti et al., 2011; Brune, 

2014). All metagenomes included in this study had an abundance of genes encoding bacterial GHs 

for cellulose and hemicellulose degradation (Appendix C: Table S4.2). The number of genes 

encoding GHs in the higher termite metagenomes are five-fold higher than in the lower termites 

which corresponds to the SSU rRNA community composition (Appendix C: Table S4.1). 

Cellulases and hemicellulases represent 55-65% of total genes encoding GHs in both higher and 

lower termites. These genes encoding GHs from prokaryotic symbionts of two lower termite 

genera, Mastotermes and Porotermes, support potential involvement of prokaryotes in 

lignocellulose digestion, as recently reported in other lower termites (Mattéotti et al., 2012; Do et 

al., 2014; Tokuda et al., 2014; Peterson et al., 2015; Yuki et al., 2015).  
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Figure 4.3: Relative abundance of COG functional categories (% of total coding sequences) across 
the investigated metagenomes; M: Microcerotermes, N: Nasutitermes, P: Porotermes, MD: 
Mastotermes_DW, MT: Mastotermes_TV. Metagenomes are ordered by similarity of relative 
patterns.  

From the broad functional categories of GHs, all metagenomes had higher relative abundances of 

hemicellulases as compared to cellulases, one-fold higher in higher termites and four-fold higher in 

lower termites (Figure 4.4 and Appendix C: Table S4.2). Cellulases and hemicellulases are major 

enzymes in plant cell wall degradation that are responsible for hydrolysis of cellulose chains and the 

side chains of hemicellulose (Breznak and Brune, 1994; Scharf, 2015). The removal of 

hemicellulose is considered a pre-requisite step into gaining access to cellulose (Scharf and Tartar, 

2008; Sethi et al., 2012; Scharf, 2015). The polysaccharide matrix is composed of three branched 

backbones, xylan, xyloglucan and mannan. Degradation of hemicellulose is achieved through action 

of multiple hemicellulases targeting these main backbones. Hemicellulases are relatively high in 
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both the higher (35.9-39.4%) and lower (45.4-49.5%) termite metagenomes. Eighteen GH families 

with known hemicellulase activities were identified in all five metagenomes (Figure 4.5, Appendix 

D: Table S4.2 and Table S4.3). Twelve of these (GH2, GH10, GH26, GH27, GH28, GH35, GH39, 

GH42, GH43, GH51, GH53 and GH67) contain catalytic domains of endo-xylanases, endo-1,4-β-

xylanases, xyloglucanases, xyloglycosyltransferases, β-mannanases, galacturonases, arabinoses, 

xylosidases and xylan α-1,2-glucoronosidases that were previously reported in the gut of other 

termite genera including Reticulitermes (Tartar et al., 2009), Coptotermes (Do et al., 2014) and 

Amitermes (He et al., 2013). Five of the 18 hemicellulase-containing GHs identified in this study 

are associated with prokaryotic-derived debranching enzymes that cleave hemicellulose side chains, 

detected in the gut of fungus-growing termites, Pseudacanthotermes militaris and Macrotermes 

natalensis (Bastien et al., 2013; Poulsen et al., 2014). The high relative abundance of hemicellulases 

in prokaryotic communities in lower termites suggests that they may play an assisting role, to that 

of protists, to achieve hemicellulose removal.  

The cellulases identified in the gut metagenomes of the higher termite genera Microcerotermes and 

Nasutitermes represent 28.3% and 28.7% of the overall GHs respectively. In the lower termites 

Porotermes, Mastotermes_DW and Mastotermes_TV, 10.0%, 10.2% and 9.6% of the GHs were 

cellulases respectively. Cellulases can be classified into three main classes which include 

endocellulases (β-1, 4-endoglucanases/cellulases), exoglucanases/cellobiohydrolases and β-

glucosidase (Breznak and Brune, 1994; Scharf, 2015). These enzymes work synergistically and 

sequentially to completely digest cellulose (Breznak and Brune, 1994; Scharf, 2015). Generally, the 

endoglucanases are responsible for cleaving the main cellulose chains to release polysaccharide 

units, making it accessible to exoglucanases and β-glucosidase. Exoglucanases hydrolyse the non-

reducing ends of side chains to further release cellobiose (a glucose dimer). Cellobiose is then 

hydrolysed to glucose by glucosidase or cleaved by cellobiose phosphorylase. Within the three main 

classes, there are differences in abundances of cellulases between lower and higher termites. For 

instance, two endoglucanases GH5 and GH9 are found in all metagenomes, four-fold higher in 

relative abundance in higher termites (11.5-11.8%) compared to lower termites (1.5-2.5%) 

(Appendix C: Figure S4.1 and Table S4.2). This is consistent with previous reports of high 

abundance of cellulases from gut bacterial symbionts in the higher termite genus, Nasutitermes, 

which are the key players in cellulose degradation (Tokuda and Watanabe, 2007, Warnecke et al., 

2007; He et al., 2013). Tokuda and Watanabe (2007) reported that the hindgut of Nasutitermes sp. 

contained several cellulases responsible for up to 59% of cellulase activity against crystalline 

cellulose in comparison to the midgut. They also showed that termites under antibiotic treatment 

had a significant decrease in cellulase activity suggesting cellulase enzymes in the hindgut of 



120 
 

Nasutitermes sp. were derived from symbiotic bacteria (Tokuda et al., 2007), further supporting the 

higher abundance of prokaryotic cellulases in the Microcerotermes and Nasutitermes metagenomes 

when compared to the lower termites. Relatively low abundances of GH5 and GH9 suggest that 

prokaryotic symbionts in lower termites may be peripherally involved in cellulose degradation. Do 

et al (2014) also reported relatively low GH5 and GH9 in the free-living bacterial community of a 

lower termite Coptotermes gestroi. In addition, at least one or more genes encoding β-glucosidases 

are identified in all gut metagenomes that are responsible for cleaving cellobiose and cellodextrins 

(polymer) to glucose. However, we did not find any exoglucanases in our metagenome datasets 

which was also undetected in C. gestroi (Do et al., 2014). It has been reported that in the lower 

termite Reticulitermes flavipes, exoglucanase activity is associated with protist-derived GH7 (Zhou 

et al., 2007). In the Mastotermes proteome in Chapter 3, which corresponds to the 

Mastotermes_DW metagenome, we noted protist-derived GH7 (A4UX17) expression and as 

expected, no GH7 gene was detected in the prokaryotic-annotated metagenomic data. However, 

peptide searches against the Mastotermes_DW metagenome identified that A4UX17 had 100% 

similarity to ‘contig_87399_1’ which confirms the presence of GH7 in the unannotated 

metagenomic data (see Chapter 3; Table 3.2). This supports the inference that protist symbionts are 

primarily responsible for exoglucanase activity in the guts of lower termites. For higher termites, no 

exoglucanase has been identified to date, as it may not be a requirement for cellulose digestion in 

the higher termite gut ecosystem and that exoglucanases are rare in bacterial cellulase systems 

(Breznak and Brune, 1994). Cellobiose or cellodextrin phosphorylases (GH84 and GH94; Appendix 

C: Table S4.2) were also detected in both the higher and lower termite metagenomes. It was 

proposed that bacterial cellobiose or cellodextrin phosphorylases in higher termites play an 

important role in the hydrolysis of wood polysaccharides by catalysing oligosaccharides in the 

bacterial cytoplasm (Warnecke et al., 2007). Interestingly, the presence of bacterial cellobiose or 

cellodextrin phosphorylases in lower termite may play similar role to those in higher termite as 

recently demonstrated in a metabolomics profiling of 13C-labelled cellulose digestion (Tokuda et al., 

2014). The proposition that Treponema is involved in cellulolysis in higher termite (Warnecke et 

al., 2007) may also be applicable to lower termite (Tokuda et al., 2014). The abundance of GH94 in 

Nasutitermes (2.2%), Microcerotermes (2.2%) and Porotermes (0.2%) (Appendix C: Table S4.2) 

correspond to the community composition of Treponema (Figure 4.2), ~50%, ~50% and 5%, in 

these metagenomes respectively, supporting its relative roles in cellulose digestion in both lower 

and higher termites.    

In the metagenomes, chitinases are present in low abundance (2.1-4.3%) in all metagenomes. Chitin 

is a major component of the insect exoskeleton (Shen and Jacobs-Lorena, 1997). In insects, 
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chitinases are secreted to facilitate in moulting (shedding part of its body) by cleaving chitin in the 

exoskeleton into smaller oligosaccharides (Shen and Jacobs-Lorena, 1997). Chitin is also an 

important component of the insect peritrophic matrix (PM), a membrane that surrounds food bolus 

in the midgut of the insect (Tellam, 1996; Shen and Jacobs-Lorena, 1997). It is known that bacteria-

derived chitinases in insect guts are responsible for maintaining the physical properties of PM and 

that the chitinous sheath of PM provides bacteria with a source of nitrogen and carbon for growth 

and development (Shen and Jacobs-Lorena, 1997; Indiragandhi et al., 2007). Chitinases may also be 

involved in digestion of cell wall of fungal hyphae ingested in wood particles and dead nest mate 

bodies (Hongoh, personal communication). This suggests that the chitinases detected in the guts of 

lower and higher termites may have similar functions.  

 

Figure 4.4: Distribution of genes encoding GH family proteins from the termite gut.   

 

Figure 4.5: Distribution of GH families with known hemicellulase activity in this study and other 
termite gut. 
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4.3.6 Other major functions in the termite gut ecosystem 

From our initial COG and KO functional categories analyses, we further investigated the enriched 

genes contributing to the carbohydrate and energy metabolism categories. Genes encoding proteins 

for the two major metabolic pathways of polymer hydrolysis, glycolysis and pentose phosphate 

pathways, were relatively abundant in both lower and higher termites (Appendix C: Table S4.3 and 

Table S4.4), indicating the importance of polysaccharide metabolism in gut ecosystems. Although 

sugar transporters are more abundant in higher than lower termites, probably due to community 

composition differences, presence of these transporters in lower termites indicates the potential 

ability of the prokaryotic community in polymer hydrolysis of imported monosaccharides such as 

glucose and xylose. 

Bacteria are known key players of nitrogen fixation that is an important function in the termite guts 

as they thrive on diets that are nitrogen poor (Benemann, 1973; Breznak et al., 1973; Brune, 2014). 

As previously detected by Warnecke et al. (2007) and He et al. (2013), bacteria in the higher termite 

genera, Nasutitermes and Amitermes, have rich arrays of nitrogen fixation genes encoding 

nitrogenase components which were also observed in the higher termite Microcerotermes and 

Nasutitermes metagenomes. We also found that the lower termite prokaryotic symbionts have large 

numbers of nitrogenase genes relative to total protein coding genes (Appendix C: Table S4.3). 

Some bacterial symbionts of termite flagellates have been shown to play essential roles in nitrogen 

fixation (Noda et al., 1999; Ohkuma et al., 1999; Hongoh et al., 2008; Hongoh, 2011; Brune, 2014).  

Hydrogen is an important product generated from the fermentation of cellulose and xylan to acetate 

via hydrogenase activities. In the higher termite metagenomes, the iron-only hydrogenase encoding 

genes are abundant in both the Microcerotermes and Nasutitermes as previously noted (Warnecke 

et al., 2007; He et al., 2013). Although protists are known to be the main producer of hydrogen 

through fermentation, abundance of the iron-only hydrogenase genes in the lower termite 

metagenomes suggest that the prokaryotic communities may also be involved in hydrogen 

generation (Appendix C: Table S4.3). This is in agreement with previous reports that identified 

homologues of iron-only hydrogenases in both lower and higher termites most closely related to 

spirochaetes (Leber and Balkwill, 1997; Fröhlich et al., 1999; Warnecke et al., 2007; Brune, 2014). 

In addition, low abundance of NiFe hydrogenases were detected in all the metagenomic datasets as 

previously reported (Warnecke et al., 2007). 

Another major function that the termite gut symbionts are responsible for is homoacetogenesis 

(Wood-Ljungdahl pathway). Homoacetogenesis involves the reduction of CO2 to acetate which is a 

major H2 sink process (Ljungdhal, 1986) and ultimately acetate is used by the termite host as a 
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carbon and energy source (Odelson and Breznak, 1983). The importance of homoacetogenesis in 

both lower and higher termite gut ecosystems is highlighted by the abundance of genes encoding 

the Wood-Ljungdahl pathway in all metagenomes (Appendix C: Table S4.3 and Table S4.4). 

Consistent with previous findings, genes encoding NADPH-dependent formate dehydrogenases 

required for catalysing the methyl group acetate were present in the lower termite metagenomes 

(Zhang et al., 2011) but lacking from the higher termite (Warnecke et al., 2007; He et al., 2013). It 

was hypothesised that an alternative pathway to generate formate was used, likely via the pyruvate 

formate lyases which were present in all metagenomes (Warnecke et al., 2007). Homologs of 

cysteine and selenocysteine variants of hydrogenase-linked formate dehydrogenases (FDH(H)) 

(alternative to NADPH-dependent formate dehydrogenase) that use H2 instead of NADPH were 

also present in the higher and lower termite metagenomes (He et al., 2013). Additionally, a key 

enzyme responsible for homoacetogenesis, formyl tetrahydrofolate synthase (FTHFS) was 

identified in high abundance across all metagenomes supporting the significance of this metabolic 

function in the termite gut (Appendix C: Table 4.4) (Warnecke et al., 2007; Zhang et al., 2011).  

4.3.7 Population genome binning 

Gene-centric analysis, while useful for assessing commonalities and differences in overall 

community function between ecosystems, generally provides limited insight on the populations 

responsible for those functions (Kunin et al., 2008; Brulc et al., 2009). The approach also tends to 

overlook potentially important functions that maybe underrepresented and do not provide direct 

association of the specific populations involved in metabolic pathways of overrepresented genes 

(Brulc et al., 2009). Hence, population genome binning (assigning sequences into defined 

taxonomic groups) allows associating metabolic data to organisms that are likely responsible for the 

processes. It is one of the goals of this chapter to recover population genomes of interest from the 

metagenomes obtained from selected lower and higher termites identified in Chapter 2. In the initial 

survey, we identified higher relative abundance of Fibrobacteres from gut microbiota of wood-

feeding Microcerotermes and Nasutitermes which is an underrepresented bacterial phylum but 

important in the termite gut ecosystem. We also noted high abundance of Elusimicrobia (~65% of 

bacterial reads; see Chapter 2: Figure 2.2) in the lower termite, Porotermes. For this reason, we 

attempted to recover population genomes from co-assemblies of the gut metagenomes of 

Microcerotermes and Nasutitermes using differential coverage binning (Albertsen et al., 2013; 

Imelfort et al., 2014) and Porotermes metagenome using distribution-based binning (DBB v1.0.1; 

https://github.com/dparks1134/DBB). A total of 179 population genomes were recovered from the 

three datasets (Appendix C: Table S4.1), and of these, only three from Microcerotermes, one from 

Nasutitermes, and one from Porotermes were substantially complete (>60% completeness and 
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<10% contamination) according to CheckM estimates and classification (Parks et al., 2015). The 

four substantially complete population genomes from Microcerotermes and Nasutitermes were 

affiliated with Fibrobacteres and the TG3 candidate phylum, and one from Porotermes was 

affiliated with the order Lactobacillales. Dominant bacterial populations such as Spirochaetes and 

Elusimicrobia in the higher termites and Porotermes metagenomes were not binned. This could be 

due to host DNA contamination, as the whole gut was used instead of lumen contents, which 

hampers downstream processes such as assembling the reads. Whole gut was initially used to obtain 

the gut microbiota attached to the gut wall and in the gut lumen. We therefore tested the effect of 

three different gut specimen parts (whole gut, P3 content and filtered P3 content) from a subset of 

Mastotermes from Chapter 3 on the resulting metagenomic data. The whole gut sample resulted in 

~40% of the eukaryotic (insect host, protists and other eukaryota) sequences in the metagenome 

datasets (Appendix C: Figure S4.2). The P3 content and filtered P3 content metagenomes have 

two-fold lesser eukaryotic sequences (27.3% and 11.4% respectively) as compared to the whole gut. 

Eukaryotic genomes in metagenomic datasets are often considered as contaminants and are not well 

characterised due to tandem repeats and polymorphisms (Gilbert and Dupont, 2011; Zhou et al., 

2014), which further complicates the quality of the final assembly. Moreover, the recovery of 

population genomes using differential coverage will be greatly impeded by the quality of the 

metagenomic assembly (Imelfort et al., 2014). Therefore caution should be exercised when 

selecting termite gut samples for subsequent shotgun sequencing and preceding processes (e.g. 

DNA extraction) should be tailored based on the specific goals of analysis.   

4.4 Conclusion 

This chapter provides a new view into the complex prokaryotic communities in the termite gut. The 

community composition obtained from the metagenome was comparatively consistent with 

amplicon profiles, with divergences between the lower and higher termites. The relatively high 

proportion of archaea in the metagenome community profile of Porotermes confirmed the archaeal 

abundance in the initial amplicon profile. Despite the well-defined dominant role that protists play 

in the gut of lower termites, the gene-centric analysis revealed that prokaryotic symbionts have 

genes for key functionality (i.e. nitrogen fixation, hydrogen metabolism and homoacetogenesis), 

similar to those in higher termites. The abundance of GH families across both lower and higher 

termites likely contribute unique degradation potential that is shared between these metagenomes. 

Our findings support the ability of the prokaryotic communities to degrade lignocellulose in the gut 

of lower termites suggesting that with the evolutionary loss of cellulolytic protists in higher 

termites, bacterial populations dominate to take over the major roles. The absence of formate 



125 
 

dehydrogenases anomaly previously reported appears to be common across the higher termites and 

would be interesting to determine if it is a trait in other higher termites. Findings in this chapter also 

provides foundation for future studies targeting specific roles of important bacterial populations in 

the gut of both lower and higher termites via population genome binning or metatranscriptomics 

approaches. We were particularly interested in the poorly represented bacterial phylum 

Fibrobacteres that were abundant in the gut profiles of wood-feeding higher termites than grass-

feeding species (Chapter 2). We therefore conducted a comparative genomic analysis of the phylum 

Fibrobacteres using the substantially completed Fibrobacteres genomes recovered from 

Nasutitermes and Microcerotermes, together with six other Fibrobacteres genomes from other 

anaerobic habitats (Chapter 5). 
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Abstract 

The Fibrobacteres has been recognised as a bacterial phylum for over a decade, but little is known 

about the group beyond its environmental distribution, and characterisation of its sole cultured 

representative genus, Fibrobacter, after which the phylum was named. Based on these incomplete 

data, it is thought that cellulose hydrolysis, anaerobic metabolism, and lack of motility are unifying 

features of the phylum. There are also contradicting views as to whether an uncultured sister 

lineage, candidate phylum TG3, should be included in the Fibrobacteres. Recently, chitin-degrading 

cultured representatives of TG3 were isolated from a hypersaline soda lake and the genome of one 

species, Chitinivibrio alkaliphilus, sequenced and described in detail. Here, we performed a 

comparative analysis of Fibrobacter succinogenes, C. alkaliphilus and eight near or substantially 

complete Fibrobacteres/TG3 genomes of environmental populations recovered from termite gut, 

anaerobic digester, and sheep rumen metagenomes. We propose that TG3 should be amalgamated 

with the Fibrobacteres phylum based on robust monophyly of the two lineages and shared character 

traits. Polymer hydrolysis, using a distinctive set of glycoside hydrolases and binding domains, 

appears to be a prominent feature of members of the Fibrobacteres. Not all members of this phylum 

are strictly anaerobic as some termite gut Fibrobacteres have respiratory chains adapted to the 

microaerophilic conditions found in this habitat. Contrary to expectations, flagella-based motility is 

predicted to be an ancestral and common trait in this phylum and has only recently been lost in F. 

succinogenes and its relatives based on phylogenetic distribution of flagellar genes. Our findings 

extend current understanding of the Fibrobacteres and provide an improved basis for further 

investigation of this phylum.  
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5.1 Introduction 

The phylum Fibrobacteres is recognised as a major line of descent in the bacterial domain but is 

understudied due to limited representation by axenic cultures. The only described genus in this 

lineage is Fibrobacter (Montgomery et al., 1988, originally classified as Bacteroides Hungate, 

1950), after which the phylum was named (Ludwig and Klenk, 2001). Fibrobacter currently 

comprises two species, F. succinogenes isolated from a cow rumen (Hungate, 1950) and F. 

intestinalis isolated from a rat cecum (Montgomery and Macy, 1982), of which the former has a 

publicly available genome sequence (Suen et al., 2011). Both species are primary degraders of 

cellulosic plant biomass in herbivore guts (Hungate, 1950; Montgomery et al., 1988), which has 

prompted the suggestion that cellulose degradation may be a unifying feature of the phylum 

(Ransom-Jones et al., 2012; Ransom-Jones et al., 2014). This is supported by culture-independent 

16S rRNA-based environmental surveys identifying relatively high numbers of diverse members of 

the Fibrobacteres in cellulolytic ecosystems (Ransom-Jones et al., 2012; Ransom-Jones et al., 

2014).  

Candidate phylum TG3 (Termite group 3) is often phylogenetically associated with the 

Fibrobacteres based on comparative analyses of the 16S rRNA gene (Hongoh et al., 2005; Hongoh 

et al., 2006; Warnecke et al., 2007; He et al., 2013; Sorokin et al., 2014). TG3 was initially detected 

in environmental surveys of termite guts (Hongoh et al., 2005), but was later found to be present in 

a diverse range of habitats (Hongoh et al., 2006). Recently, the first isolates for TG3 have been 

described (Sorokin et al., 2012), one of which has been named Chitinivibrio alkaliphilus and its 

genome sequenced (Sorokin et al., 2014). C. alkaliphilus is a haloalkaliphilic anaerobic chitin-

utilising bacterium isolated from soda lake sediments. There have been conflicting views as to 

whether TG3 should be merged with the Fibrobacteres or retained as a separate phylum (Sorokin et 

al., 2014). 

Recent developments in metagenomics provide the opportunity to obtain genomic representation of 

uncultured Fibrobacteres and TG3 populations which can be used to evaluate conservation of 

polymer (cellulose and chitin) degradation and other metabolic properties across these lineages, and 

the robustness of the association between the two phyla. Here, we used differential coverage 

binning (Albertsen et al., 2013) to obtain seven Fibrobacteres and one TG3 population genomes 

from termite gut, sheep rumen and anaerobic digester samples. This substantially expands the 

genomic coverage of both groups and comparative analyses of these genomes with the publicly 

available F. succinogenes and C. alkaliphilus genomes suggest that polymer hydrolysis is a 

phylogenetically widespread trait in these lineages. We propose that candidate phylum TG3 should 
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be classified as part of the Fibrobacteres based on shared character traits and phylogenetic analyses 

of concatenated gene sets supporting a robust association between the two groups.  

5.2 Methods 

5.2.1 Samples and metagenome sequencing 

DNA samples described in previous 16S rRNA community profiling studies were used in the 

present study for shotgun sequencing. These comprised four termite samples; MC05, MC06, MC07 

and IN01 (Rahman et al., 2015) and six anaerobic digester samples taken from 3 reactors (AD1-3) 

at two time points (day 96 and 362) (Vanwonterghem et al., 2014). A publicly available sheep 

rumen metagenome (BioProject acc. PRJNA214227) was also included in the study together with 

two reference genomes; Fibrobacteres succinogenes S85 (BioProject acc. PRJNA41169) and 

Chitinivibrio alkaliphilus ACht1 (BioProject acc. PRJNA195589). Shotgun libraries were prepared 

using the Nextera XT Sample Preparation Kit (or TruSeq DNA Sample Preparation Kits v2 for 

AD1-3 day 96) (Illumina, San Diego, CA, USA) and library DNA concentrations were measured 

using the QuantIT kit (Molecular probes, Carsbad, CA, USA) and equimolar-pooled for sequencing. 

Between a quarter and a third of an Illumina HiSeq 2000 flowcell of paired-end sequences (2 x 

100bp with an average fragment size of 320) were obtained for each library. 

 5.2.2 Sequence assembly and population genome binning 

For the termite datasets, paired-end reads were merged and adaptors removed using SeqPrep v1.1 

(https://github.com/jstjohn/SeqPrep), and then quality trimmed with a Q-value of 20 using Nesoni 

v0.128 (http://www.vicbioinformatics.com/software.nesoni.shtml). Adaptor removal and quality 

trimming was performed using CLC Workbench v6 (CLC Bio, Taipei, Taiwan) for the anaerobic 

digester (AD) datasets (Vanwonterghem et al., in prep). De novo assemblies of the termite and AD 

datasets were generated using CLC Workbench v6 using a word size of 63 and a minimum contig 

length of ≥500 bp. Reads from each samples were mapped to the assembled contigs using the 

BWA-MEM algorithm in BWA v0.5.5 with default parameters (Li, 2013). Population genomes 

were obtained using the differential coverage binning method of GroopM (Imelfort et al., 2014) 

with default parameters. The termite and AD metagenomes were binned independently using 

GroopM v0.1 and v0.2, respectively. Briefly, reads from each sample were mapped onto their 

corresponding co-assemblies and coverage patterns for each scaffold were calculated, transformed, 

and projected onto a 3-dimensional space in which scaffolds from the same population genome 

cluster together (Imelfort et al., 2014). Manual refinement of selected genomes was performed 

using the GroopM refine function in order to merge bins with compatible genome characteristics 
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(i.e., GC and coverage statistics) and split bins that appeared to be aggregates of two or more 

genomes. For the sheep rumen metagenome, population genomes were recovered using a 

distribution-based binner (DBB v1.0.1; https://github.com/dparks1134/DBB) since multiple related 

samples were not available for differential coverage binning. This method identified contigs likely 

to belong to the same population based on the GC-content, tetranucleotide signature, and coverage 

of individual contigs. Genome completeness and contamination was estimated using the lineage-

specific marker sets determined by CheckM v1.0.3 (Parks et al., 2015).  

5.2.3 Taxonomic assignment of population genomes 

Population genomes estimated to be >60% complete and <10% contaminated were placed in a 

maximum likelihood tree of 2,358 reference genomes based on a concatenation of 83 marker genes 

as described previously (Soo et al., 2014). The inferred phylogeny was used to identify putative 

members of the Fibrobacteres and TG3 lineages. To corroborate genome-based identifications, 16S 

rRNA genes or gene fragments associated within the population genomes were identified with 

CheckM (Parks et al., 2015) and aligned with reference Fibrobacteres and TG3 sequences obtained 

from SILVA database release 119 (Quast et al., 2012) using ssu-align v0.1 (Nawrocki et al., 2009). 

Poorly represented leading and trailing columns of the multiple sequence alignment were manually 

trimmed, and a maximum likelihood tree inferred with FastTree v2.1.7 (Price et al., 2009). 

Sequences greater than 1200 nt were selected for the purposes of calculating nonparametric 

bootstrap support values. These selected sequences were reanalysed using FastTree followed by 100 

bootstrap replicates, and support values propagated to the full tree consisting of both short and long 

sequences. Phylogenetic tree and bootstraps values were scaled and edited in ARB (Ludwig et al., 

2004) and Adobe Illustrator CS6 (Adobe). All Fibrobacteres/TG3 population genomes have been 

deposited at JGI IMG/ER under the accessions 2522572000, 2522572002, 2522572004, 

2522572005, 2582580742, 2582580743, 2585427501, 2606217802 and GenBank/DDBJ/EMBL as 

individual Biosamples under the multispecies BioProject PRJNA293241. 

5.2.4 Genome annotation and metabolic reconstruction 

The draft Fibrobacteres and TG3 genomes were uploaded to the Integrated Microbial Genomes with 

Microbiome Samples-Expert Review (IMG/ER) system (Markowitz et al., 2014) for automated 

annotation with IMG/M Metagenome Gene Calling. KEGG pathway maps were visualised by 

uploading KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations to the KEGG Mapper - 

Colour Pathway (http://www.genome.jp/kegg/tool/map_pathway3.html). Glycoside hydrolases 

(GHs) and carbohydrate-binding modules (CBMs) were identified using the CAZy database 

(Lombard et al., 2014) via dbCAN (Yin et al., 2012). Signal peptide predictions were performed 
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using SignalP (Petersen et al., 2011). IMG/ER identified methyl-accepting proteins were scanned 

for chemotaxis protein domain using InterProScan5 (Jones et al., 2014). The draft genomes were 

also annotated with PROKKA v1.7 using default settings (Seemann, 2014). The final gene and 

pathway inventories of the putative Fibrobacteres and TG3 genomes were based on a combination 

of the IMG and PROKKA annotations and functional classifications based on COG (Clusters of 

Orthologous Groups), KO, Enzyme, Pfam, or TIGRfam assignments. Metabolic reconstructions 

based on these inventories were prepared in Adobe Illustrator CS6 (Adobe).  

5.2.5 Genome and protein family comparative analyses 

Average amino acid identities (AAI) between homologues in genome pairs were calculated using 

the AAI calculator with default settings in CompareM v0.0.4 (https://github.com/dparks1134/ 

CompareM). Heatmaps of the relative abundance of genes and pathways within genomes were 

generated with STAMP v2.0.9 (Parks et al., 2014). Phylogenetic analysis of selected proteins (GHs, 

CBMs, cytochrome bd, fibro-slime domain, flagellar proteins) in the population genomes was 

performed by identifying homologues within IMG v4.510 (Markowitz et al., 2014) using BLASTP. 

A gene was considered homologous if it had an expectation value ≤1e-5, an amino acid identity 

≥50%, and an alignment length of ≥30%. Proteins alignments were obtained using MAFFT v7.221 

(Standley, 2013) and trees inferred using FastTree v2.1.7 under the WAG+G models and support 

values determined using 100 non-parametric bootstrap replicates.  

5.3 Results and Discussion 

5.3.1 Recovery of population genomes from environmental metagenomic datasets 

Bulk DNAs extracted from termite whole gut samples for 16S rRNA-based community profiling 

(Rahman et al., 2015) were used in the present study. A total of 74 Gb of Illumina 2 x 100 bp data 

were sequenced from four sets of Microcerotermes whole gut samples (30 guts per set) obtained 

from the same nest, IN01, in Brisbane, Queensland. Similarly, 71 Gb was sequenced from three sets 

of Nasutitermes whole gut samples (30 guts per set) collected from three mounds within a 1 km 

radius in Murphy’s Creek, South East Queensland (MC05, MC06, MC07). Bulk DNAs extracted 

from three lab-scale anaerobic digesters collected at two timepoints (AD1 to 3; reported in 

Vanwonterghem et al. (2014)) were also sequenced to produce a total of 111 Gb (2 x 100 bp 

Illumina reads). Publicly deposited metagenomic datasets were also screened for the presence of 

Fibrobacteres genomes (data not shown), of which one, a sheep rumen microbiome (BioProject acc. 

PRJNA214227, SRR948090; 9.9 Gb of 2 x 100 bp Illumina reads) produced a genome of sufficient 

quality for comparative analysis. Sequence datasets from each habitat were independently 
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assembled and binned (Appendix D: Table S5.1). A total of 303 population genomes with >60% 

completeness and <10% contamination (estimated by CheckM; Parks et al. (2015)) were obtained 

from the four sample types and, of these, eight were phylogenetically affiliated with the publicly 

available isolate genomes of Fibrobacteres (Fibrobacter succinogenes S85, acc. PRJNA41169) and 

TG3 (Chitinivibrio alkaliphilus ACht1, acc. PRJNA195589) (Figure 5.1). All eight genomes had 

low contamination, four were near complete and four were substantially complete according to 

CheckM estimates and classification (Parks et al., 2015). Together with the two reference 

organisms, genome size and GC content range from 2.4 to 3.8 Mb and 37.4 to 53.9% respectively 

(Table 5.1) comparable to other phyla of similar phylogenetic breadth (Lightfield et al., 2011). 

5.3.2 An expanded phylogenetic classification of the phylum Fibrobacteres 

We constructed a phylogenetic tree based on a concatenated alignment of 83 bacterial single copy 

marker genes (Dupont et al., 2012). The ingroup comprised the two complete reference genomes 

representing the Fibrobacteres (Suen et al., 2011) and TG3 (Sorokin et al., 2014) lineages and eight 

population genomes obtained in this study (Table 5.1). We evaluated the monophyly of these 

genomes using an outgroup consisting of 2358 genomes from 33 phyla. The Fibrobacteres and TG3 

genomes formed a robustly monophyletic group (Figure 5.1A) supporting the previously noted 

relationship between these lineages (Hongoh et al., 2006; Warnecke et al., 2007; Krieg et al., 2011; 

He et al., 2013; Mikaelyan et al., 2015). Therefore, we propose to amalgamate TG3 as one or more 

classes within the phylum Fibrobacteres based on this robust phylogenetic association and shared 

character traits described below. Additionally, all 10 ingroup genomes contain signature inserts in 

their RNA polymerase β’ subunit and serine hydroxymethyltransferase genes that identify them as 

members of the FCB superphylum (Gupta, 2004). Using the partial 16S rRNA gene sequences 

identified in a number of the population genomes (Table 5.1), we placed the genomes in the 

broader context of the 16S rRNA-defined Fibrobacteres lineage (Figure 5.1B). F. succinogenes 

S85, AD_80, AD_111 and SR_36 belong to the family Fibrobacteraceae (Spain et al., 2010), with 

AD_312 likely representing a separate family in the same order (Fibrobacterales) based on AAI 

similarities (Appendix D: Table S5.2; Konstantinidis and Tiedje (2005)). IN01_31, IN01_221 and 

IN01_307 form a monophyletic cluster found exclusively in termite guts previously referred to as 

candidate order TFG-1 (Warnecke et al., 2007). We propose the candidatus name, Fibromonas 

termitidis, for the most complete of these genomes, IN01_221, and the family and order names, 

Fibromonadaceae and Fibromonadales for this group and related 16S rRNA sequences (Figure 

5.1). Unfortunately, population genome MC_77 lacked a 16S rRNA sequence so could not be 

placed within the 16S framework. However, it likely belongs to the TG3 lineage, and more 

specifically in the termite cluster proximate to isolate ACht6-1 (Figure 5.1; Sorokin et al. (2012)). 
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Sorokin et al., (2014) proposed the class Chitinivibrionia to accommodate C. alkaliphilus ACht1, 

which now becomes the second recognised class within the Fibrobacteres due to its amalgamation 

with TG3 (Figure 5.1). We have provisionally included MC_77 in the class Chitinivibrionia, 

however, given the depth of the relationship with C. alkaliphilus (Figure 5.1), MC_77 and isolate 

ACht6-1 may represent a distinct class within the expanded phylogenetic representation of the 

Fibrobacteres phylum. 
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Table 5.1: Summary statistics of Fibrobacteres genomes. 

1Estimated completeness and contamination based on lineage-specific single copy marker genes (Parks et al., 2015) 
2Bioproject accession number 
3IN01_221  

Genomes Source Estimated 
population 
genome size 

(Mb) 

GC 

(%) 

No. of 
contigs 

Estimated 
Completeness1 

(%) 

Estimated 
Contamination1 

(%) 

No. of 
genes 

rRNA 
genes 

Coding 
Density 

(%) 

Refs 

PURE CULTURE 

Fibrobacter 
succinogenes S85 

Cow rumen 3.8 48.1 1 100.0 2.5 3188 5S,16S,23S 91.3 Suen et al., 2008 

Chitinivibrio 
alkaliphilus ACht1 

Soda Lake 2.6 46.2 99 97.9 0.0 2346 5S,16S,23S 93.1 
Sorokin et 
al.,2014 

POPULATION GENOMES 

AD_80 Bioreactor 3.3 51.4 123 88.9 1.7 2801 5S 91.1 Present study 

AD_111 Bioreactor 3.6 50.2 189 88.1 0.2 3069 5S,16S,23S 91.3 Present study 

SR_36 Sheep rumen 3.4 53.9 50 99.2 1.7 2906 5S 93.1 PRJNA2142272 

AD_312 Bioreactor 2.8 37.4 56 100.0 3.5 2392 - 90.9 Present study 

IN01_31 Microcerotermes gut 3.2 43.2 220 96.6 2.6 3417 5S,23S 88.5 Present study 

Fibromonas 
termitidis3 

Microcerotermes gut 3.2 43.1 211 98.3 1.7 3355 16S 90.7 Present study 

IN01_307 Microcerotermes gut 2.6 41.5 157 87.9 1.7 2779 - 92.4 Present study 

MC_77 Nasutitermes gut 2.4 52.4 317 73.3 0.0 2324 - 85.2 Present study 
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Table 5.2: Inventory of glycoside hydrolases (GHs) identified in the Fibrobacteres genomes, organised by functional category. 

CAZy 
family 

Known activity pfam domain 

Fibrobacteria Chitinivibrionia Cellulolytic 
bacteria (35 
genomes1) 

Bacterial average across 2038 
genomes Fibrobacteraceae Fibromonadaceae  

F. 
succino-

genes 
S85 

AD_
80 

AD_
111 

SR_
36 

AD_
312 

IN01_
31 

IN01_
221 

IN01_
307 

C. alkali- 
philus 
ACht1 

MC_
77 

  
Avg Avg Prevalence 

(%) 
No. of 
phyla# 

Cellulases                

GH5 cellulase PF00150 13.0 16.7 16.7 15.2 18.8 27.5 18.0 15.2 6.3 23.3 2.37 1.46 30.9 17 
GH9 endoglucanase PF00759 9.0 10.3 10.4 8.7 5.8 10.0 12.8 12.1 18.8 6.7 0.91 0.31 9.6 15 
GH44 endoglucanase PF12891 1.0 1.3 1.0 1.1 1.5 - - - - - 0.03 0.03 2.3 7 
GH45 endoglucanase PF02015 4.0 3.9 5.2 4.4 2.9 2.5 7.7 9.1 - 3.3 0.02 0.01 0.3 3 
Subtotals (%)   27.0 32.1 33.3 29.4 29.0 40.0 38.5 36.4 25.0 33.3 3.33 1.81 
Chitinases                

GH18 chitinase PF00704 2.0 2.6 2.1 2.2 2.9 2.5 2.6 3.0 3.1 3.3 3.12 2.16 30.0 19 
GH19 chitinase PF00182 - - - - - - - - 6.3 - 0.55 0.32 9.7 10 
GH20 β-hexosaminidase PF00728 - - - - - - - - - 3.3 1.15 0.91 23.2 17 
Subtotals (%)   2.0 2.6 2.1 2.2 2.9 2.5 2.6 3.0 9.4 6.7 4.82 3.39   
Hemicellulases                

GH8 endo-xylanases PF01270 6.0 3.9 7.3 7.6 5.8 5.0 5.1 3.0 15.6 3.3 0.81 0.56 20.1 17 
GH10 endo-1,4-β-xylanase PF00331 8.0 5.1 7.3 6.5 2.9 2.5 2.6 3.0 6.3 - 1.06 0.43 12.7 14 
GH11 xylanase PF00457 4.0 1.3 4.2 5.4 1.5 2.5 5.1 3.0 - - 0.31 0.08 4.3 11 
GH26 β-mannanase & xylanase PF02156 4.0 3.9 4.2 3.3 2.9 - - 3.0 - - 0.98 0.16 6.9 11 
GH53 endo-1,4-β-xylanase PF07745 2.0 1.3 1.0 2.2 1.5 2.5 2.6 3.0 - - 0.55 0.22 10.6 14 
Subtotals (%)  24.0 15.4 21.0 25.0 14.5 12.5 15.4 15.2 21.9 3.3 3.72 1.45   
Debranching enzymes                

GH16 
xyloglucanases & 
xyloglycosyltransferases 

PF00722 4.0 5.1 4.2 3.3 4.4 0.0 0.0 0.0 3.1 0.0 1.72 0.78 19.7 20 

GH74 
endoglucanases & 
xyloglucanases 

- 2.0 3.9 2.1 2.2 2.9 0.0 0.0 0.0 0.0 0.0 0.27 0.10 4.3 9 

GH51 
alpha-L-
arabinofuranosidase 

- 1.0 1.3 1.0 1.1 1.5 0.0 2.6 3.0 0.0 0.0 0.78 0.41 15.0 14 

GH54 
alpha-L-
arabinofuranosidase 

PF09206 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.02 0.9 6 

Subtotals (%)    8.0 10.3 8.3 6.5 8.7 0.0 2.6 3.0 3.1 0.0 2.77 1.31   
Oligosaccharide-degrading enzymes               

GH1 
β-glucosidase & other β-
linked dimers 

PF00232 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 3.3 2.73 3.66 46.6 17 

GH2 
β-galactosidases and other 
β--linked dimers 

PF00703 
PF02836 
PF02837 

2.0 2.6 2.1 2.2 2.9 0.0 0.0 3.0 3.1 0.0 2.88 1.92 38.2 18 

GH3 mainly β-glucosidases 
PF00933 
PF01915 3.0 2.6 2.1 1.1 2.9 5.0 0.0 3.0 0.0 0.0 4.68 5.87 73.4 27 

GH43 arabinases & xylosidases PF04616 14.0 11.5 9.4 13.0 13.0 5.0 5.1 0.0 0.0 3.3 2.82 1.30 22.2 15 
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Table 5.2: Continued. 

CAZy 
family 

Known activity pfam domain 

Fibrobacteria Chitinivibrionia Cellulolytic 
bacteria (35 
genomes1) 

Bacterial average across 2038 
genomes Fibrobacteraceae Fibromonadaceae  

F. 
succino-

genes 
S85 

AD_
80 

AD_
111 

SR_
36 

AD_
312 

IN01_
31 

IN01_
221 

IN01_
307 

C. alkali- 
philus 
ACht1 

MC_
77 

  
Avg Avg Pre-

valence 
(%)

No. of 
phyla2 

GH52 β-xylosidase PF03512 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.04 0.03 1.5 5 
Subtotals 
(%) 

    19.0 16.7 13.5 16.3 18.8 10.0 5.1 6.1 6.2 10.0 13.14 12.79   

Cellobiose/chitobiose phosphorylase              

GH84 
cellobiose/chitobiose 
phosphorylase 

PF06165 
PF06205 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.23 0.16 4.8 7 

GH94 
cellobiose/chitobiose 
phosphorylase 

PF06165 
PF06205 1.0 1.3 1.0 1.1 1.5 5.0 2.6 3.0 6.3 3.3 0.58 0.66 18.8 18 

Subtotals 
(%) 

    1.0 1.3 1.0 1.1 1.5 5.0 2.6 3.0 9.4 3.3 0.81 0.82   

Others                 

GH13 unknown PF02903 3.0 3.9 3.1 3.3 5.8 7.5 10.3 12.1 6.3 6.7 16.52 16.67 80.2 27 

GH23 
lysozyme type 
G/peptidoglycan 
lyase/chitinase 

- 3.0 3.9 3.1 3.3 4.4 12.5 10.3 12.1 12.5 20.0 8.01 17.21 80.7 30 

GH27 unknown   1.0 1.3 1.0 1.1 1.5 0.0 0.0 0.0 0.0 0.0 0.44 0.09 5.1 10 
GH30 glucosylceramidase PF02055 4.0 3.9 4.2 4.4 2.9 0.0 2.6 0.0 0.0 0.0 0.52 0.31 11.6 15 
GH57 alpha-amylase PF03065 3.0 3.9 2.1 2.2 2.9 5.0 2.6 3.0 3.1 10.0 0.70 2.43 22.8 27 

GH77 
amylomaltase or 4-α-
glucanotransferase 

PF02446 1.0 1.3 1.0 1.1 1.5 2.5 2.6 3.0 3.1 3.3 1.47 3.20 55.0 26 

GH95 
α-1,2-L-fucosidase/α-L-
fucosidase 

- 1.0 1.3 1.0 1.1 1.5 0.0 0.0 0.0 0.0 0.0 0.35 0.22 9.8 14 

GH105 unknown PF07470 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77 0.31 12.2 14 
GH106 α-L-rhamnosidase - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.16 0.09 4.5 8 

GH109 
α-N-
acetylgalactosaminidase  

- 0.0 0.0 0.0 1.1 1.5 0.0 0.0 0.0 0.0 0.0 5.81 5.61 65.1 27 

GH116 unknown   1.0 1.3 1.0 1.1 1.5 2.5 2.6 3.0 0.0 0.0 0.04 0.21 4.7 9 
GH127 β-L-arabinofuranosidase - 1.0 1.3 1.0 1.1 1.5 0.0 2.6 0.0 0.0 0.0 0.77 0.32 14.7 14 
Subtotals (%)   19.0 21.8 17.7 19.6 24.7 30.0 33.3 33.3 25.0 43.3 35.51 46.67   
Total estimated glycoside hydrolases 100 78 96 92 69 40 39 33 32 30 - -   
(glycoside hydrolases with signal peptide (%)) 71.8 64.1 72.1 76.4 48.7 35.6 46.5 40.0 31.4 28.6 - -   
                
Total estimated genes 
  

2871 2754 3008 2855 2344 3391 3347 2773 2304 2321 45123 33953  
 

(signal peptide to total genes (%)) 21.2 17.9 21.6 22.0 15.2 10.8 11.1 11.5 7.4 7.7     
                
% of genes that are glycoside hydrolases  3.5 2.8 3.2 3.2 2.9 1.2 1.2 1.2 1.4 1.3 1.24 0.94   
1Based on Koeck et al. (2014) 
2 Of a total of 30 bacterial phylum  
3Estimated average genes across 35 and 2038 bacterial genomes respectively 
4Average of 116 GHs to total genes of 35 and 2038 bacterial genomes respectively   
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5.3.3 Inferred metabolism of Fibrobacteres genomes 

We performed comparative analyses of the two isolate and eight draft population genomes (Table 

5.1) to infer metabolic properties associated with the Fibrobacteres in the context of their 

environmental settings.  

5.3.3.1 Polymer hydrolysis 

Cellulases 

Members of the Fibrobacteres are best known for their ability to hydrolyse plant polymers in anoxic 

habitats such as the bovine rumen (Suen et al., 2011; Jewell et al., 2013; Ransom-Jones et al., 2014) 

and termite gut (Warnecke et al., 2007; He et al., 2013). Therefore, we began by identifying genes 

encoding glycoside hydrolases (GHs) classified according to the CAZy database (Lombard et al., 

2014). All ten genomes contained numerous GHs representing between 1.2 to 3.5% of the total 

genes, which is higher than the bacterial average of 0.9%, but similar to other cellulolytic bacteria 

(2%) (Table 5.2). However, polymer-degrading enzymes are highly over-represented in the 

Fibrobacteres GH inventory relative to other recognised cellulolytic bacteria (cellulases - 25% vs 

3%, xylanases - 15% vs 4%). The proportion of Fibrobacteres GHs with signal peptides is also 

much higher than that for the average Fibrobacteres gene (28.6 ± 76.4 vs 7.4 ± 21.6 respectively) 

which is as expected for proteins involved in extracellular deconstruction of carbohydrate polymers 

(Lombard et al., 2014). 

A quarter of the GHs in the Fibrobacteraceae and Chitinivibrionia and over a third of the GHs in 

the Fibromonadaceae are cellulases. Most of the cellulases belong to families GH5 and GH9 which 

are widely distributed in bacteria (Figure 5.2) (present in ≥50% of recognised phyla; Table 5.2; 

Berlemont and Martiny (2013)). The less common cellulase family GH45, previously noted to be 

distinctive of F. succinogenes (Suen et al., 2011; Dai et al., 2012) and related organisms in the 

termite hindgut (Warnecke et al., 2007), is present in all studied representatives of the 

Fibrobacteres, with the exception of C. alkaliphilus (Figure 5.2 and Table 5.2). Cellulase family 

GH44 is distinctive of the Fibrobacteraceae in the context of the Fibrobacteres although it has been 

identified in members of six other bacterial phyla. The previously noted absence of the classical 

exo-acting β-1,4 glucanase families GH6, GH7 and GH48 in F. succinogenes is upheld across the 

phylum supporting the hypothesis that the Fibrobacteres have a distinctive suite of carbohydrate-

active enzymes and lignocellulose hydrolysis mechanism (Morrison et al., 2009, Wilson 2009). 

Furthermore, the distinctive basic terminal domain (~80 AA in the C-terminus) noted in F. 

succinogenes cellulases (Iyo and Forsberg, 1996; Malburg et al., 1996; Qi et al., 2007, 2008) is 
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widespread in cellulases of all members of the Fibrobacteres. Cellulases play an important role in 

the habitats from which the Fibrobacteres genomes were obtained (Table 5.1) with the possible 

exception of the soda lake from which C. alkaliphilus was recovered. Although C. alkaliphilus 

encodes a high proportion of cellulases relative to the bacterial average (Table 5.2), it was reported 

to be unable to grow on cellulose as a sole carbon source (Sorokin et al., 2014) indicative of their 

role being relevant to polymer deconstruction rather than energy acquisition. 

Hemicellulases and debranching enzymes 

As with the cellulases, hemicellulases and debranching enzymes are present in the Fibrobacteres 

genomes at much higher relative abundance than the bacterial average, (12.5 to 32.3% vs 2.7%) 

with the exception of MC_77 (3.3%; Table 5.2). Five hemicellulase families, primarily 

endoxylanases, were identified in the eight Fibrobacteria genomes, likely reflecting the importance 

of xylan hydrolysis in animal and insect gut ecosystems (Allgaier et al., 2010; Tokuda et al., 2014). 

Debranching enzymes, responsible for cleaving the side chains (glycosidic and/or ester linkages) 

from xylan backbones (Sethi and Scharf, 2013), were most prevalent in the Fibrobacteraceae. 

Families GH51 and GH54 are most commonly alpha-L-arabinofuranosidases responsible for 

removing arabinose side chains from xylan which is an important constituent of plant lignocellulose 

(He et al., 2013). GH51s were common in the Fibrobacteria, whereas GH54 was only identified in 

F. succinogenes S85 and AD_111 (Table 5.2), despite being closely related to the AD_80 and 

SR_36 population genomes (Figure 5.1). 

Chitinases 

There are three GH families with recognised chitinase activity, GH18, GH19 and GH20, the first 

two of which are responsible for hydrolysis of insoluble chitin to soluble oligosaccharides in the 

periplasm (LeCleir et al., 2007; Beier and Bertilsson, 2013). GH20 hydrolyses N-

Acetylglucosamine (GlcNAc) molecules from chitin oligomers (Beier and Bertilsson, 2013) or 

directly from chitin polymers (LeCleir et al., 2007). As expected, C. alkaliphilus has the highest 

proportion of chitinases, approximately three times the bacterial average (Table 5.2), as it is a 

chitin-degrading specialist (Sorokin et al., 2014). Furthermore, it has two types of chitinases, GH18 

and GH19, which has been postulated to improve substrate degradation due to synergistic enzyme 

interactions (Beier and Bertilsson, 2013). The closest phylogenetic neighbour of C. alkaliphilus in 

this study, MC_77, similarly has representatives of two chitinase families (GH18 and GH20) and a 

higher than average proportion of chitinases (Table 5.2) suggesting that chitin degradation may be 

occurring in the termite hindgut from which the MC_77 genome was obtained. Chitinases have 

rarely been considered in the context of Fibrobacteres, however, all representatives of this phylum 
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had GH18-encoding genes at the bacterial average (Table 5.2), indicating the potential for this 

function in primarily lignocellulose-degrading gut communities.  

Accessory attachment genes for polymer degradation 

The adhesion of cellulolytic anaerobic bacterial to plant biomass is considered a prerequisite step in 

breaking down plant cell walls (Morrison and Miron, 2000; Miron et al., 2001). In anaerobic gut 

bacteria such as F. succinogenes and Ruminococcus species, surface-associated cellulolytic 

enzymes complexes (cellulosomes, Dassa et al. (2014)), individual GHs possessing non-catalytic 

carbohydrate-binding modules (CBM, Qi et al. (2005)), and Type IV pilin like structures (Pegden et 

al., 1998) are known to be responsible for adhesion. Fifteen CBM families are represented in the 

Fibrobacteria and Chitinivibrionia genomes mostly targeting cellulose, hemicellulose or chitin 

(Table 5.3) which is consistent with the GH profiles (Table 5.2). There are approximately four 

times as many CBMs in the Fibrobacteraceae as in Fibromonadaceae and Chitinivibrionia, which 

is also broadly consistent with the relative abundances of GHs in these groups. The CBM families 

also showed lineage-specific patterns. For example both CBM6 and CBM35 are all overrepresented 

in the Fibrobacteraceae compared to the Fibromonadaceae, but the opposite is apparent for 

CBM11, CBM32 and CBM50 (Table 5.3). This suggests that CBMs in the Fibrobacteres have most 

often been vertically inherited and have not been distributed between lineages by horizontal 

transfer. This is supported by phylogenetic reconstruction of the Fibrobacteres CBMs which shows 

mostly vertical transmission and in some lineages expansion of families via gene duplication 

(Appendix D: Figure S5.1). Higher relative abundances of certain CBM families also correlate with 

the observed differences in GH family abundances. For example, CBM6 is often associated with the 

hemicellulose-associated families, GH10 and GH43 (Suen et al., 2011), and all three of these 

families are overrepresented in the Fibrobacteraceae relative to the Fibromonadaceae (Table 5.2 

and Table 5.3).  

As previously reported for F. succinogenes (Suen et al., 2011), no clostridial-like cohesin or 

dockerin-like modules were identified in any of the Fibrobacteres genomes, indicative of an absence 

of cellulosomes in this lineage. Two other putative cellulose binding proteins have been reported in 

F. succinogenes; TIGR02145 and TIGR02148 (Morrison et al., 2009; Suen et al., 2011). 

TIGR02145 is a domain of ~175 to 200 amino acids with an inferred extracytoplasmic location, and 

has been suggested to be a possible cohesin analogue (Warnecke et al., 2007). It is present in high 

copy number in all of the Fibrobacteres genomes (17 to 119 copies) with the exception of C. 

alkaliphilus. TIGR02148 is a fibro-slime domain-containing protein originally identified in the F. 

succinogenes genome and implicated in adherence to plant biomass (Toyoda et al., 2009). We 
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found this protein family to be present in all Fibrobacteres genomes, again with the exception of C. 

alkaliphilus (Table 5.4). Therefore, these putative adhesion proteins are not only distinctive of F. 

succinogenes, but of the Fibrobacteres phylum as a whole. A phylogenetic reconstruction of the 

fibro-slime protein family indicates multiple duplication events in the class Fibrobacteria resulting 

in up to 10 copies per genome (Table 5.4 and Appendix D: Figure S5.2). Interestingly, one of the 

two fibro-slime proteins identified in the termite Chitinivibrionia genome, MC_77, contains a 

flagellar domain (flgD) suggesting that polymer attachment in this species may be flagella-

mediated. Type IV pili are known to facilitate attachment of F. succinogenes cells to cellulose (Qi 

et al., 2007) and Gram negative cells to chitin (Li et al., 2003; Giltner et al., 2012). All 

Fibrobacteres genomes contain the necessary genes for synthesis of Type IV pili (Table 5.4) 

suggesting that this may be a widespread auxiliary mechanism used by members of this phylum to 

attach to polymers, and perhaps, to facilitate a “twitching” motility phenotype.  
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Figure 5.1: Phylogenetic analysis of the phylum Fibrobacteres. (A) Maximum likelihood tree of the phylum Fibrobacteres based on alignment of 83 
concatenated proteins as previously described (Soo et al, 2014). The tree was inferred using an outgroup comprising 2358 genomes from 33 phyla. For 
clarity, only the immediate phylum-level neighbourhood of the Fibrobacteres is shown. Fibrobacteraceae genomes are shown in red; Fibromonadaceae 
in blue; and Chitinivibronia in green. Fibrobacteres genomes encoding nitrogen-fixing, flagellar and/or respiratory genes are indicated by N, F and R in 
boxes (dotted box indicates incomplete genes), respectively. Bootstrap support for interior nodes using multiple inference methods is shown according 
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to the legend at the lower left of the fig; ML=Maximum Likelihood, MP= Maximum Parsimony, NJ=Neighbour Joining. (B) Maximum likelihood tree 
based on 16S rRNA genes from Fibrobacteres and TG3 obtained from SILVA database release 119 (Quast et al., 2013). The closest matches to the 
partial 16S rRNA sequences obtained from the population genomes are indicated by colour matching to panel A, noting that the position of MC_77 is 
estimated since this genome lacks a 16S rRNA sequence. Isolates are bolded in black. Taxonomic group names by rank are proposed to the right of the 
tree, also see main text. Node support values are as described for panel A.  
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Table 5.3: Inventory of accessory attachment genes for polymer hydrolysis identified in the Fibrobacteres genomes, organised by Carbohydrate-
binding modules (CBMs). 

CAZy 
family 

pfam domain 

Fibrobacteria Chitinivibrionia Cellulolytic bacteria 
(35 genomes1) 

Bacterial average 
across 2038 genomes Fibrobacteraceae Fibromonadaceae  

F. 
succino-

genes 
S85 

AD_80 AD_111 SR_36 AD_312 IN01_31 IN01_221 IN01_307 C. alkali- 
philus 
ACht1 

MC_77   
Avg Avg Prevalence 

(%) 

Non-catalytic CBMs associated with: 
Cellulases 
CBM4 pfam02018 8.3 10.9 9.6 8.6 12.2 5.9 6.7 13.3 12.5 15.4 5.6 0.5 5.3 
CBM30 - 0.0 0.0 0.0 1.7 0.0 5.9 6.7 0.0 0.0 0.0 0.6 0.1 1.2 
CBM51 pfam14498 5.0 4.4 5.8 3.5 6.1 11.8 13.3 6.7 0.0 0.0 0.4 0.4 4.3 
Subtotals (%) 13.3 15.2 15.4 13.8 18.4 23.5 26.7 20.0 12.5 15.4 6.6 1.0 

Chitinases 

CBM50 - 8.3 8.7 7.7 8.6 6.1 35.3 20.0 20.0 12.5 30.8 14.6 39.8 73.4 
Hemicellulases (debranching and oligosaccharide-degrading enzymes) 

CBM11 pfam03425 6.7 8.7 7.7 6.9 8.2 23.5 26.7 26.7 25.0 0.0 0.1 0.0 0.6 

CBM13 - 0.0 0.0 0.0 0.0 4.1 0.0 0.0 6.7 0.0 0.0 3.7 1.6 10.4 

CBM22 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15.4 6.2 0.4 4.0 

CBM32 - 1.7 0.0 0.0 1.7 0.0 5.9 6.7 6.7 37.5 0.0 3.2 3.4 17.8 

CBM35 - 23.3 17.4 19.2 27.6 16.3 0.0 0.0 6.7 0.0 0.0 3.7 0.7 7.3 

CBM61 - 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.4 5.3 

CBM67 - 1.7 2.2 1.9 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.2 8.1 

Subtotals (%) 35.0 28.3 28.8 37.9 28.6 29.4 33.3 46.7 62.5 15.4 19.3 7.6  

Cellulases/hemicellulases 

CBM6 pfam03422 41.7 45.7 46.2 37.9 44.9 5.9 6.7 6.7 0.0 15.4 4.9 0.7 8.0 

CBM9 pfam02018 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 5.0 0.9 8.1 

Subtotals (%) 41.7 45.7 46.2 37.9 44.9 5.9 6.7 6.7 0.0 23.1 9.9 1.6  

Others 

CBM48 pfam02922 1.7 2.2 1.9 1.7 2.0 5.9 13.3 6.7 12.5 7.7 7.5 22.3 63.6 

CBM66 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7 1.1 1.0 7.4 

Subtotals (%) 1.7 2.2 1.9 1.7 2.0 5.9 13.3 6.7 12.5 15.4 8.6 24.1   

Total estimated CBM 60 46 52 58 49 17 15 15 8 13     

Total estimated genes 2871 2754 3008 2906 2344 3391 3347 2773 2304 2321     

CBM to estimated genes (%) 2.1 1.7 1.7 2.0 2.1 0.5 0.4 0.5 0.3 0.6 1.42 0.33   
1Based on Koeck et al. (2014) 
2Average of 52 CBMs to total genes across 35 cellulolytic bacteria genomes 
3Average of 52 CBMs to total genes across 2038 bacterial species 
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Table 5.4: Inventory of accessory attachment genes for polymer hydrolysis identified in the Fibrobacteres genomes, organised by functional category. 

CAZy family 
Function 
ID 

Fibrobacteria Chitinivibrionia Cellulolyti
c bacteria 

(35 
genomes1) 

Bacterial 
average 
across 

3454 sp.2 

Fibrobacteraceae Fibromonadaceae  

F. 
succino-

genes 
S85 

AD_80 AD_111 SR_36 AD_312 IN01_31 IN01_221 IN01_307 C. alkali- 
philus 
ACht1 

MC_77 

Avg Avg 

Other cellulose-binding proteins 
Fib_succ_major, corresponding to 
TIGR02145    

pfam09603 54 65 72 96 17 119 116 70 0 41 0.0 0.1 

fibro-slime protein, corresponding to 
TIGR02148 

pfam07691 6 5 5 6 4 0 0 4 0 2 0.3 0.2 

Type IV pilin genes  

Type IV pilin N-term methylation site PilA pfam13544 3 3 2 3 3 4 2 2 6 2 2.2 2.7 

type IV pilus assembly protein PilB K02652 1 0 1 1 2 1 1 1 2 3 0.9 0.4 

type IV pilus assembly protein PilC K02653 1 1 1 1 1 1 1 1 2 1 0.8 0.4 
leader peptidase (prepilin peptidase) / N-
methyltransferase [EC:3.4.23.43 2.1.1.-] 

K02654 1 1 1 1 1 1 1 1 1 1 1.1 0.5 

type IV pilus assembly protein PilE K02655 0 0 0 0 0 0 0 0 2 0 0.1 0.2 

type IV pilus assembly protein PilM K02662 1 1 1 1 1 1 1 1 1 1 0.7 0.3 

type IV pilus assembly protein PilN K02663 1 1 1 1 1 1 1 1 1 1 0.4 0.3 

type IV pilus assembly protein PilO K02664 1 1 1 1 1 1 1 1 1 1 0.3 0.2 

type IV pilus assembly protein PilQ K02666 2 2 2 2 2 1 1 1 1 1 0.1 0.2 
two-component system, NtrC family, 
response regulator PilR 

K02667 0 0 0 0 1 0 0 0 0 0 0.1 0.1 

twitching motility protein PilT K02669 3 2 3 2 3 2 2 2 3 2 0.9 0.5 
1Based on Koeck et al. (2014) 
2Average across 3454 bacterial genomes on IMG
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Figure 5.2: Glycoside hydrolase families with a significant difference in mean proportions ≥ 1% 
between Fibrobacteres and other cellulolytic bacteria and a p ≤ 0.05. Statistical significance was 
assessed using Welch’s t-test with Bonferroni multiple test correction. 

5.3.3.2 Fermentative metabolism and respiration 

We expected that fermentation of sugars resulting from polymer hydrolysis would be the primary 

metabolism in the Fibrobacteres based on the obligate fermentative phenotype of F. succinogenes 

(Suen et al., 2011) and C. alkaliphilus (Sorokin et al., 2014). Metabolic reconstruction indicates that 

all Fibrobacteres genomes have the potential to utilise glucose via the Embden-Meyerhof pathway 

(EMP) and pentose phosphate pathway (PPP), but not via the Entner-Doudoroff pathway which is 

absent (Figure 5.3). It has previously been noted that F. succinogenes and C. alkaliphilus are 

unable to grow on xylan as a sole carbon source which suggests that they use their xylanases simply 

to expose cellulose and chitin respectively rather than using the resulting xylose as a growth 

substrate (Suen et al., 2011; Sorokin et al., 2014).  

In that context, all Fibrobacteres lack the genes encoding a xylose permease and xylose 

interconversions via xylulose to xylulose-5-P which could then be processed via the PPP (Figure 

5.3), suggesting the inability to use xylose is a phylum-level trait. The ability to use chitin 

hydrolysis products appears to be limited to the Chitinivibrionia genomes. All investigated 

Fibrobacteres should be able to perform the initial hydrolysis of insoluble chitin to smaller soluble 

oligosaccharides via GH18, which can be imported into the periplasm via TonB-dependent 

transporters (Figure 5.3). However, either GH19 (C. alkaliphilus only) or GH20 (MC_77 only) are 

required to hydrolyse the soluble oligosaccharides into N-acetylglucosamine (GlcNAc) dimers or 

trimers, which can then be converted into fructose-6-P and enter the EMP or PPP pathways 

(Sorokin et al., 2014). For all studied genomes, the end products of the EMP pathway, 

phosphoenoylpyruvate and pyruvate, can then enter the tricarboxylic acid (TCA) cycle or the latter 

can be metabolised to formate, acetate or ethanol. All 10 genomes encode incomplete TCA cycles 

as they lack succinyl-CoA-synthase as previously noted for both F. succinogenes (Suen et al., 2011) 

and C. alkaliphilus (Sorokin et al., 2014). All Fibrobacteria also lack 2-oxoglutarate synthase and 

the two Chitinivibrionia representatives lack succinate dehydrogenase suggesting succinate and 
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fumarate are end products of the reductive arm of the TCA cycle for these classes, respectively 

(Figure 5.3). Succinate is a major fermentative end products of F. succinogenes (Suen et al., 2011), 

but fumarate does not accumulate as a fermentation product of C. alkaliphilus (Sorokin et al., 

2014). 

All of the investigated Fibrobacteraceae and Chitinivibrionia genomes lack major components of 

the electron transport chain (ETC) and are incapable of growth via respiration, which is consistent 

with previous reports that their characterised representatives are obligate anaerobes (Suen et al., 

2011; Sorokin et al., 2014). By contrast, the Fibromonadaceae genomes encode an ETC comprising 

complexes I and II, cytochrome bd and an ATP synthase, which should be able to perform some 

form of electron-transport linked phosphorylation (Figure 5.3 and Appendix D: Table S5.3). The 

cytochrome bd complex in other bacteria functions under low oxygen conditions (Borisov et al., 

2011), which is consistent with the termite hindgut habitat from which the Fibromonadaceae 

genomes were obtained. Due to its small size, the termite hindgut is only anoxic in the central 

region and has microoxic peripheries (Brune et al., 1995). To investigate the origins of the 

Fibromonadaceae ETC, we inferred phylogenetic trees from the most conserved components (bd 

complex), which indicate that the common ancestor of the family had an ETC which is distantly 

related to other phyla and unlikely to be the result of a recent lateral transfer (Appendix D: Figure 

S5.3). Other lineages within the Fibrobacteres, currently lacking genomic representation (Figure 

5.1B), may also have ETCs, which if present, will help to shed light on the ancestry of respiration in 

this phylum. All Fibrobacteres genomes, with the exception of MC_77, encode enzymes to counter 

oxidative stress including thioredoxin reductase and superoxide dismutase, but not catalase 

(Appendix D: Table S5.3). The apparent absence of antioxidant enzymes in MC_77 may be an 

artefact of the lower estimated completeness (73.3%) of this genome.  

5.3.3.3 Nitrogen and ammonia metabolism 

Lignocellulosic biomass is nitrogen limited and a poor source of amino acids, vitamins and their 

precursors (Brune, 2014). Metabolic reconstruction revealed a sporadic distribution of core nitrogen 

fixing genes (nifH, nifD and nifK) amongst the Fibrobacteres representatives (Figure 5.1, Figure 

5.3 and Appendix D: Table S5.3), suggesting a history of gain and loss by lateral gene transfer as 

previously noted more generally for nitrogen fixation (Boucher et al., 2003). We created 

phylogenetic trees for NifD and NifK and infer that the genes encoding these proteins were 

independently acquired relatively recently in the Fibrobacteraceae, Fibromonadaceae and 

Chitinivibrionia from different Firmicutes donors (Appendix D: Figure S5.4). Genes immediately 

flanking the nif genes were conserved in each family supporting lateral acquisition (Appendix D: 
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Figure S5.5). Our data are therefore not consistent with the idea of an early acquisition of nitrogen-

fixing genes in the Fibrobacteres (Suen et al., 2011), but rather suggest a patchy history of recent 

gain and loss in habitats where nitrogen-fixing genes are present in numerous other community 

members providing the opportunity for lateral transfer (Warnecke et al., 2007; Brulc et al., 2009; He 

et al., 2013). Whether the nif genes are functionally active is debatable as F. succinogenes, which 

contains only four nif genes (3 core; nifH,D,K), has not been shown to be capable of nitrogen 

fixation (Suen et al., 2011). If any of the Fibrobacteres are capable of nitrogen fixation, they have 

amongst the lowest recorded number of subunits (3 to 9) for an active nitrogenase (Wang et al., 

2013). By contrast, all members of the Fibrobacteres have ammonia uptake and assimilation genes 

(Appendix D: Table S5.3) which may supply their nitrogen requirements (Matheron et al., 1999, 

Suen et al., 2011, He et al., 2013). All ten of the Fibrobacteres genomes have the potential to 

synthesise most of their own amino acids and cofactors (Figure 5.3 and Appendix D: Table S5.3), 

including the gut symbionts, suggesting that they are not dependent on other organisms or host diet 

for most of their nutritional requirements. 

 

Figure 5.3: Composite metabolic reconstruction of members of the phylum Fibrobacteres. Presence 
of genes and pathways in a given lineage is indicated by coloured dots (legend at lower left). Steps 
in metabolic pathways absent in all investigated Fibrobacteres genomes are indicated by red 
crosses. Multistep reactions are shown by red arrows. Abbreviations are described in Appendix D: 
Table S5.3. 
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5.3.3.4 Motility and chemotaxis  

Fibrobacteres have been defined as non-motile bacteria based on their only characterised 

representative genus, Fibrobacter (Ransom-Jones et al., 2012; Jewell et al., 2013). However, far 

from being a phylum-level trait, all investigated members of the Fibromonadaceae and 

Chitinivibrionia encode numerous flagellar and associated chemotaxis genes (Figure 5.3, Appendix 

D: Figure S5.6 and Table S5.3), which is consistent with the direct observation of a polar flagellum 

in C. alkaliphilus (Sorokin et al., 2014). Methyl-accepting chemotaxis proteins were notably more 

abundant in the Fibromonadaceae and MC_77 genomes than in C. alkaliphilus (Appendix D: 

Figure S5.6) despite the closer phylogenetic relationship of MC_77 to C. alkaliphilus. This may 

reflect habitat differences since Fibromonadaceae and MC_77 reside in termite guts which have 

complex chemical milieus and steep chemical gradients likely requiring motile microorganisms to 

respond to a wider range of environmental cues than C. alkaliphilus in a hypersaline soda lake. 

Putative sensory hydrogenases were identified in members of both the Fibromonadaceae and 

MC_77 (Appendix D: Figure S5.7), which are hypothesised to allow these bacteria to orient 

themselves to steep hydrogen gradients present in the termite gut (Warnecke et al., 2007). The 

absence of flagella and chemotaxis previously reported for F. succinogenes (Suen et al., 2011) 

appears to be a family-level trait in the Fibrobacteraceae (Figure 5.3, Appendix D: Figure S5.8 

and Table S5.3). Phylogenetic analysis of several core flagellar genes (Liu and Ochman, 2007) 

suggests that motility was vertically inherited from a common Fibrobacteres ancestor and 

subsequently lost in the Fibrobacteraceae lineage (Appendix D: Figure S5.8). Since most members 

of this family have adapted to life in the herbivore gut, flagella-enabled chemotaxis and motility 

may have been no longer required due to an abundance of degradable substrates and mixing of 

contents provided by the host animal. Further genomic representation of the phylum will be 

required to determine if other lineages within the Fibrobacteres have similarly lost motility genes. 

5.4 Conclusion 

In this study, we have substantially expanded the phylogenomic representation of the Fibrobacteres 

and TG3 lineages by obtaining eight draft genomes of environmental populations from termite guts, 

anaerobic cellulose-fed digester and a sheep rumen. We propose that TG3 should be amalgamated 

with the Fibrobacteres phylum because the two lineages are robustly monophyletic in concatenated 

marker gene trees, and because they share a number of key traits. These include polymer hydrolysis 

which appears to be a unifying feature of the phylum, reflected by environmental distribution in 

habitats in which polymer hydrolysis plays a major role. As with F. succinogenes, all Fibrobacteres 

representatives have xylanases, but lack the genes necessary to metabolise xylan degradation 
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products for energy transduction. In contrast to previous suppositions largely based on 

characteristics of the genus Fibrobacter, we infer that not all members of the Fibrobacteres are 

strictly anaerobic as some have respiratory chains, and most appear to be motile. Members of the 

family Fibromonadaceae have low oxygen bd cytochromes allowing them to respire in 

microaerophilic conditions, and flagella-mediated motility is inferred to be an ancestral trait in the 

phylum having being lost from the family Fibrobacteraceae. Nitrogen fixing genes are sporadically 

distributed across the phylum and appear to have been obtained by multiple independent lateral 

transfers, whereas salvaging of fixed nitrogen from ammonia is inferred to be a more general trait. 

The eight population genomes described in the present study form an improved basis for further 

investigations into the Fibrobacteres phylum.  
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Description of Candidatus Fibromonas termitidis 

Fibromonas termitidis (Fi.bro.mo’nas L. fem. n. fibra, fiber or filament in plants or animals; Gr. 

fem. n. monas, a unit, monad. ter.- mi'ti.dis. L. n. tarmes, tarmit- (L.L.var. termes, termit-) worm 

that eats wood; M.L. adj. termitidis pertaining to the termite). Not cultivated. Inferred to be Gram-

negative, motile, containing an electron transport chain, and able to use cellulose as a primary 

growth substrate. Represented by population genome IN01_221 (acc. no. LIUG00000000) obtained 

from metagenomes of whole gut samples of the higher termite, Microcerotermes (acc. no. 

KJ907817). 

Description of Fibromonadaceae (fam. nov.) 

The description is the same as for the genus Fibromonas; -aceae ending to donate an family. Type 

genus: Candidatus Fibromonas 

Description of Fibromonadales (ord. nov.) 

The description is the same as for the genus Fibromonas; -ales ending to donate an order. Type 

family: Fibromonadaceae fam. nov. 

Emended description of the phylum Fibrobacteres Garrity and Holt 2012  

The phylum Fibrobacteres is a deep-branching lineage of the Bacteria. On the basis of comparative 

sequence analysis of isolate and environmental genomes, the phylum comprises at least two classes; 

Fibrobacteria and Chitinivibrionia, and three orders; Fibrobacterales, Fibromonadales and 

Chitinivibrionales. Gram-negative, polymer-degrading bacteria. 
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Chapter 6 Conclusion and future directions 

6.1 Conclusion 

Termites (order Isoptera) are a group of important eusocial insects that have been the subject of 

extensive basic and applied research. They thrive on recalcitrant wood lignocellulose as their main 

food source while some have utilised other nutritionally poor biomass like soil, grass and herbivore 

dung. Their ability to survive on these substrates is through a mutualistic symbiosis between termite 

host and gut microorganisms. In lower termites, this nutritional interaction involves a tripartite 

symbiosis of the host, protists and prokaryotes, but in higher termites the association has been 

evolutionarily reduced to host and prokaryotes. This has led to fundamental research in 

understanding termite physiology, phylogeny and gut microbiology. Termites as global pests have 

contributed major economic losses for damage to agriculture and structures. From an applied 

research perspective, this has led to the integration of pest management and biotechnological 

applications in studying termite biology (Scharf, 2015). Prior to the omics era, pioneering research 

using culture- and molecular SSU-based approaches have shaped our understanding of termite gut 

microbiology, yet further analyses are impeded due to limitations of these methods such as the 

inability to examine the overall functional potential of the termite gut. The advancement of 

sequencing capacity and computational power in the omics era has not only resulted in the great 

majority of termite gut microbiology studies being conducted in the last decade but has provided 

new views on the complex microbial gut symbiosis (Brune and Dietrich, 2015). 

The focus of this thesis was to characterise the gut communities of primarily Australian termites via 

high throughput culture-independent approaches. This is aligned with the goal of answering broader 

ecological questions that include the effect of diet versus co-evolution, effect of changing diet on 

microbial community structure and function, the function of specific populations, and relative 

contributions of prokaryotic and eukaryotic symbionts to lignocellulose hydrolysis in lower 

termites. As little molecular data exist for most Australian termite fauna, we profiled the gut 

microbiomes of 66 Australian and American termites using SSU rRNA amplicon pyrosequencing 

(Chapter 2). To our knowledge, this represents the first culture-independent gut microbiome profiles 

of three higher termite genera (Tenuirostritermes, Drepanotermes, and Gnathamitermes) and two 

lower termite genera (Marginitermes and Porotermes). In addition to primary findings that indicate 

vertical inheritance is the major factor in structuring the termite gut microbiome, we also found that 

diet leaves an imprint influencing the relative abundance but not membership of gut communities. 

We hypothesised that changes in relative abundance can occur on shorter timescales as a form of 
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adaptation for dietary fluctuations. This hypothesis was tested in Chapter 3 through a series of 

feeding assays using the polyphagous Australian termite species, Mastotermes darwiniensis as the 

model organism. Changes in community composition of Mastotermes gut profiles were notable 

with compositionally different feedstocks (e.g. wood to grass) supporting our initial hypothesis. 

However, greater shifts appeared to be stress related, possibly due to a combination of dietary 

change and smaller colony size. Despite the altered composition changes, the gut functions were 

maintained with only small differences detected in corresponding gut protein profiles. In Chapter 4, 

we performed a gene-centric analysis of shotgun data comparing gut community functional 

capabilities of lower and higher termites. The similar gene abundance profiles between the four 

termite genera suggest a convergence for essential functions of the termite gut ecosystems, despite 

conspicuous differences in community composition. From the gut metagenomic datasets, we were 

able to recover four populations belonging to the Fibrobacteres phylum using a differential 

coverage binning approach. Fibrobacteres are minor constituents of most habitats but were 

strikingly abundant in the gut of wood-feeding higher termites. In Chapter 5, we performed 

comparative genomic analysis of these Fibrobacteres population genomes together with those 

acquired from cellulose-fed anaerobic digesters, rumen and soda lake. Metabolic reconstruction of 

these Fibrobacteres genomes provided insights into the metabolism of this underrepresented but 

important bacterial phylum in termite gut and other anaerobic ecosystems. In contrast to previous 

suppositions that Fibrobacteres are non-motile based on the only described genus Fibrobacter, our 

findings suggest that motility is an ancestral and widespread trait between members and has been 

lost in the family Fibrobacteraceae. Although polymer hydrolysis appears to be a prominent feature 

of members of Fibrobacteres, more representation should be investigated to confirm this inference.  

6.2 Future directions 

Community profiling using phylogenetic markers such as the SSU rRNA gene (16S and 18S rRNA 

genes) have been widely applied to characterise the 1µl-scale termite gut ecosystem (Table 1.3).  It 

has not only provided useful insights into the density and diversity of the termite gut microbiota but 

also evidence for the coevolutionary patterns of host and their gut microorganisms (e.g. survey 

studies). The distinctive gut microbiota across the termite host phylogeny, to that of other insect gut 

communities, reflects their eusociality through proctodeal trophallaxis and coprophagy, ensuring 

that species are successfully and faithfully transferred from one generation to another. The termite 

gut microbiome is highly distinctive with a combination of core and accessory gut bacterial phyla 

among termite major groups (e.g. lower and higher termite).  It is important to note that a dominant 

host signal in gut community composition does not imply that all component species are the product 
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of vertical inheritance which ultimately results in co-speciation of specific lineages. The differences 

in abundance of bacterial phyla between termite host groups are likely to fulfil different functional 

niches (Brune and Dietrich, 2015). As noted in Chapter 2, diet appears to be a secondary signal in 

shaping the termite gut microbiota of both lower and higher termites when considering both protist 

and prokaryotic communities. Diet however appears as a driving factor influencing the gut 

community structure when only bacterial communities, likely acquired from the environment, are 

taken into consideration (Leber and Balkwill, 1997; Colman et al., 2012; Dietrich et al., 2014; Tai et 

al., 2015). It is not surprising that such conclusions are drawn as most of the SSU rRNA surveys 

have extensively been applied to the identification of prokaryotic populations in the termite gut. 

SSU surveys have mainly focus on prokaryotic communities due to the extreme variation in 

eukaryotic SSU rRNA gene copy number in eukaryotes and primer mismatches (Amaral-Zettler et 

al., 2009). It is important that the entire community of the termite hindgut ecosystem is evaluated to 

capture the overall diversity. In addition, greater potential now lies in characterising the protist 

symbionts in lower termites using SSU rRNA surveys, provided that some requirements such as 

development of appropriate primers and analytical tools are met (Tai et al., 2013; Tai et al., 2015). 

Future SSU rRNA profiling efforts should be invested into the association of prokaryotic and 

flagellated protist populations to provide a detailed characterisation of the overall microbial 

diversity in this complex symbiosis expanding the understanding of current termite hindgut 

ecology. There is also a need for higher resolution phylogenetic analysis of candidate symbionts 

(Mikaelyan et al., 2015b), which cannot be attained through analysis of short reads, to provide 

concrete evidence for co-speciation (Mikaelyan et al., 2015a).  

The failure to maintain social behaviour (e.g. social grooming) within a colony leads to the inability 

to sustain community stability that ultimately results in the breakdown of the gut community. It is 

worth noting that environmental conditions may also impact the termite gut community as observed 

through a shift in specific microbial populations over a period of seven days likely in response to 

laboratory conditions (Chapter 3). Similar feeding trials with the primary goal of discovering novel 

biocatalysts for second generation biofuel, focusing on different feedstocks of interest, have showed 

strong discrepancies in results between studies (Brune and Dietrich, 2015). Most of these studies 

have only focused on the “end of feeding assay” profiles without exploring underlying mechanisms 

such as temporal changes of gut profiles in relation to diet and physiological conditions of 

individuals. Hence, conclusions extrapolated from feeding experiments have to be considered with 

caution. Despite the bacterial communities exhibiting resistance to dietary perturbation, more 

feeding assays are required to address whether compositional changes is reflective of diet or simply 

stress. In the future, feeding experiments should be conducted at larger scale in terms of the number 
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of termite individuals and the size of enclosed space to minimise stress. Additionally, monitoring 

the colony fitness and survival rate would be useful in understanding the impact of perturbation on 

termite gut community stability. 

There has been an inclining omic-based research towards understanding termite and gut symbiont 

biology, and their potential for biotechnological applications with the advancement of high-

throughput sequencing technologies. Even after decades of research, the functional roles of 

individual microbial populations in the termite gut remains vague. The use of SSU rRNA-based 

approaches coupled with omics techniques has only outlined the major functional niches of these 

populations in the complex 1ul-hindgut environment. Although these techniques have provided 

identification of key functions in the termite gut ecosystem, SSU rRNA amplicon-based 

amplification introduces primer and PCR biases that lead to variations in community structure as 

observed between the pyrotag and mitag Mastotermes gut profiles (Chapter 3). Therefore, there is a 

need to move towards metagenomic community profiling to provide a less biased view of the gut 

microbial diversity. We also noted that from the amplicon-based profiles, the archaeal relative 

abundance was substantially higher and variable in a number of species (e.g. Porotermes and 

Mastotermes) than previously appreciated, likely due to primer biased. However, the higher 

proportion of archaea was also reflected in Porotermes metagenome-based profiles (Chapter 4) 

which confirms our initial findings. As we move beyond SSU rRNA-based identification of termite 

gut symbionts, a follow-up experiment to investigate the archaeal populations would involve 

overlaying metagenomics and metatransciptomics, coupled with visualisation methods. By 

examining the expression of the gut populations and their spatial distributions, it would be possible 

to provide an understanding of the potential functionality of the high abundance of the archaeal 

community. Additionally, the 16S rRNA analysis has limited resolution that results in closely 

related sequences representing a single OTU at 97% similarity. The multiple and variable 16S 

rRNA copies do not provide breakdown of functionality which genomics-based studies allow. 

Moreover, shotgun metagenomics should be able to address the aforementioned on-going 

conflicting opinions as to whether the termite gut microbiota is reflective of cospeciation or dietary 

fluctuations without the biases inherent to primer and PCR amplification, providing a higher 

resolution profiling. 

Since termites and their gut symbionts are identified as a potential resource for industrial 

applications, omic-based studies have mainly focused on the aspects of lignocellulose digestion. It 

will be interesting to determine if the unexpected presence of low abundance ciliates in some higher 

termite genera are directly involved in lignocellulose digestion (Chapter 2). There are also many 

opportunities to explore other aspects of termite gut symbiosis such as identification of key players 
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in major functions in lower termites, for instance, the abundant OTUs that were identified in this 

thesis such as Fusobacterium and Dysgonomonas. With a range of binning tools that are readily 

available (Thomas et al., 2012), underrepresented populations continue to be explored. Some 

populations that are prevalent in termite guts but have very low abundance (e.g. candidate phylum 

ZB-3 and SR1) would be of interest for comparative studies. Comparative analysis of population 

genomes recovered from termite gut and other anaerobic environments, such as members of the 

bacterial phylum Fibrobacteres, would provide an evolutionary perspective in addition to the goal of 

reconstructing the tree of life. Prediction of functional and catalytic features of population genomes 

remains a challenge based on analysis of putative gene products alone (Brune, 2014). Furthermore, 

most of the termite gut microbiota lack cultured representatives due to the difficulty in culturing in 

vitro. There should be an adjunct goal in isolating key members of termite gut microbiota (Brune, 

2014). Novel termite gut microbes have been successfully isolated using two strategies; (1) 

selective substrates (Wertz and Breznak, 2007; Paul et al., 2012) or (2) unconventional cultivation 

(Leadbetter et al., 1999; Geissinger et al., 2009).  Together with information gathered from genomic 

data, a rational isolation strategy would provide potential in expanding termite gut microorganism 

representation (Brune, 2014). This would definitely be an invaluable asset for characterising a wider 

diversity of Fibrobacteres to understand the ecophysiological properties that are not apparent from 

genome analysis alone. 

6.3 References 

Amaral-Zettler, L.A., McCliment, E.A., Ducklow, H.W., and Huse, S.M. (2009) A method for 
studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of 
small-subunit ribosomal RNA genes. PLoS One 4: e6372. 

Brune, A. (2014) Symbiotic digestion of lignocellulose in termite guts. Nature Reviews 
Microbiology 12: 168-180. 

Brune, A., and Dietrich, C. (2015) The gut microbiota of termites: Digesting the diversity in the 
light of ecology and evolution. Annual Review of Microbiology 69. 

Colman, D.R., Toolson, E.C., and Takacs-Vesbach, C.D. (2012) Do diet and taxonomy influence 
insect gut bacterial communities? Molecular Ecology 21: 5124-5137. 

Dietrich, C., Köhler, T., and Brune, A. (2014) The cockroach origin of the termite gut microbiota: 
patterns in bacterial community structure reflect major evolutionary events. Applied and 
Environmental Microbiology 80: 2261-2269. 

Geissinger, O., Herlemann, D.P., Mörschel, E., Maier, U.G., and Brune, A. (2009) The 
Ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the First Cultivated 
Representative of the Termite Group 1 Phylum. Applied and Environmental Microbiology 75: 
2831-2840. 



165 
 

Leadbetter, J.R., Schmidt, T.M., Graber, J.R., and Breznak, J.A. (1999) Acetogenesis from H2 plus 
CO2 by spirochetes from termite guts. Science 283: 686-689. 

Leber, T.M., and Balkwill, F.R. (1997) Zymography: A single-step staining method for quantitation 
of proteolytic activity on substrate gels. Analytical Biochemistry 249: 24-28. 

Mikaelyan, A., Dietrich, C., Köhler, T., Poulsen, M., Sillam-Dussès, D., and Brune, A. (2015a) Diet 
is the primary determinant of bacterial community structure in the guts of higher termites. 
Molecular Ecology 24: 5284–5295. 

Mikaelyan, A., Köhler, T., Lampert, N., Rohland, J., Boga, H., Meuser, K., and Brune, A. (2015b) 
Classifying the bacterial gut microbiota of termites and cockroaches: a curated phylogenetic 
reference database (DictDb). Systematic and Applied Microbiology. 

Paul, K., Nonoh, J.O., Mikulski, L., and Brune, A. (2012) “Methanoplasmatales,” 
Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of 
methanogens. Applied and Environmental Microbiology 78: 8245-8253. 

Scharf, M.E. (2015) Omic research in termites: an overview and a roadmap. Frontiers in Genetics 
6. 

Tai, V., James, E.R., Perlman, S.J., and Keeling, P.J. (2013) Single-cell DNA barcoding using 
sequences from the small subunit rRNA and internal transcribed spacer region identifies new 
species of Trichonympha and Trichomitopsis from the hindgut of the termite Zootermopsis 
angusticollis. PloS One 8: e58728. 

Tai, V., James, E.R., Nalepa, C.A., Scheffrahn, R.H., Perlman, S.J., and Keeling, P.J. (2015) The 
role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. 
Applied and Environmental Microbiology 81: 1059-1070. 

Thomas, T., Gilbert, J., and Meyer, F. (2012) Metagenomics-a guide from sampling to data 
analysis. Microbial Informatics and Experimentation 2: 1-12. 

Wertz, J.T., and Breznak, J.A. (2007) Physiological ecology of Stenoxybacter acetivorans, an 
obligate microaerophile in termite guts. Applied and Environmental Microbiology 73: 6829-6841. 

 

 

 



166 
 

Appendix A: Supplementary figures and tables for Chapter 2 

 

Figure S2.1: Maximum likelihood (FastTree) tree of aligned mitochondrial cytochrome oxidase (COII) genes from termite samples included 
in this study (in blue) and publicly available reference sequences. Family level affiliations are indicated by color according to the legend at 
left. 
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Figure S2.1: Continued 
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Figure S2.2: Soldier morphologies of several termite specimens collected in Australia. 



169 
 

 

Figure S2.2: Continued 
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Figure S2.2: Continued 
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Figure S2.2: Continued 
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Figure S2.3: Redundancy analysis (RDA) plots of microbial profiles obtained from biological 
replicates of four termite genera. Differences were significantly less between biological replicates 
than between genera. 
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Figure S2.4: Rarefaction curves and associated Shannon diversity indices (H) of microbial profiles 
obtained for each of the 66 samples separated into different panels by termite genus affiliation. 
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Figure S2.4: Continued 
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Figure S2.5: Core and accessory bacterial phyla with a significant difference in mean proportions 
≥1% between higher and lower termites and a p value ≤0.05. Statistical significance was assessed 
using Welch’s t-test with Šidák multiple test correction. 
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Figure S2.6: Relative proportion of Elusimicrobia across the higher and lower termite samples. 
Termite genus affiliations of the samples is shown to the left of the figure. 
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Figure S2.7: Average whole gut microbial community profiles of the 16 termite genera surveyed in 
this study. The profiles of the polyphagous termite genera Gnathamitermes and Nasutitermes are 
further divided by diet (in colored boxes). 
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Figure S2.8: Heatmap of bacterial OTUs 
(97% seq id) with ≥10% relative 
abundance or ≥50% prevalence across the 
66 termite samples (Figure 2). Each row 
represents an OTU and each column a gut 
sample with relative abundance as a 
percentage of the total microbial 
community indicated by numbers and 
shading according to the legend. The 
termite genus and family for each sample 
is indicated at the top and bottom of the 
figure, respectively, and OTU phylogeny 
is indicated to the left (phylum) and right 
(mostly genus) of the figure. 
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Figure S2.9: Heatmap of archaeal OTUs generated with two primer pairs in whole gut samples of termites with ≥10% archaeal relative abundance 
(Table 2). Each row represents a different OTU, and the abundance as a percentage of the total community is indicated by shading according to the 
legend. Termite family affiliations of each sample are indicated at the top the figure, respectively, and OTU phylogeny is indicated to the left (phylum) 
and right (mostly genus) of the figure. 
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Figure S2.10: Heatmap of 
protist OTUs (97% seq id) 
across the 66 termite samples. 
Each row represents an OTU 
and each column a gut sample 
with relative abundance as a 
percentage of the total 
microbial community indicated 
by numbers and shading 
according to the legend. The 
termite genus and family for 
each sample is indicated at the 
top and bottom of the figure, 
respectively, and OTU 
phylogeny is indicated to the 
left (phylum) and right (mostly 
genus) of the figure. 
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Figure S2.11: UPGMA tree of weighted (relative abundance taken into account) Soergel pairwise 
distances between bacterial profiles showing a drop in consistency with host phylogeny 
(particularly family level) relative to the unweighted analysis (Figure 4; Additional file 14: Table 
S4). The values on interior nodes represent jackknife support values ≥49. Termite host affiliation 
(family) is indicated to the right of the tree. 
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Figure S2.12: Comparison of termite gut bacterial profiles obtained in the present study (rRNA 
copy number corrected and uncorrected profiles) and by Dietrich et al. (2014). An additional 
Mastotermes profile reported by Sabree and Moran (2014) is also included for reference. For each 
study, the profiles are averaged across samples belonging to the same termite genus (number of 
samples is shown above each bar). 
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Table S2.1: Details of the 68 specimens collected in the present study. 

 

 

No ID Collection Date Location GPS Coordiantes Nest Type Presumptive Diet
δC13 
(‰)

Family Genus

#of workers 
used for 
profiling

Accession 
no

1 DR01 6/08/2011 Darwin River S12° 46' 17.22" Free standing mound Grass Termitidae Drepanotermes 30 KJ907786

E130° 57' 53.58"

2 FC04 6/08/2011 Fly Creek, Darwin S12° 46' 19.5" Magnetic mound Grass -19.5 Termitidae Amitermes 30 KJ907787

E130° 58' 35.04"

3 TV01 26/05/2011 Townsville S19° 39’ 59.18" Mound Grass -15.1 Termitidae Amitermes 30 KJ907788

E146° 50’ 16.20"

4 2AM2 23/07/2008 Arizona N31° 47' 58.98'' Dung Dung Termitidae Gnathamitermes 30 KJ907789

W110° 9' 26.039''

5 4GP2 23/07/2008 Arizona N31° 31' 58.74'' Dung Dung -22.4 Termitidae Gnathamitermes 30 KJ907790

W110° 0' 42.599''

6 7GP3 24/07/2008 Arizona N31° 20' 52.62'' Under rock Grass -21.6 Termitidae Gnathamitermes 30 KJ907791

W110° 14' 41.459'

7 7GP2 24/07/2008 Arizona N31° 20' 52.62'' Under rock Grass -21.5 Termitidae Gnathamitermes 30 KJ907792

W110° 14' 41.459'

8 2GP1 23/07/2008 Arizona N31° 31' 58.74'' Dung Dung -19.4 Termitidae Gnathamitermes 30 KJ907793

W110° 0' 42.599''

9 7GP1 24/07/2008 Arizona N31° 20' 52.62'' Under rock Grass -20.7 Termitidae Gnathamitermes 30 KJ907794

W110° 14' 41.459'

10 10GP1 24/07/2008 Arizona N31° 20' 52.62'' Under rock Unknown Termitidae Gnathamitermes 30 KJ907795

W110° 14' 41.459'

11 6GP1 24/07/2008 Arizona N31° 31' 58.74'' Cow Dung on dirt Dung -16.9 Termitidae Gnathamitermes 30 KJ907796

W110° 0' 42.599''

12 2AW1 23/07/2008 Arizona N31° 47' 58.98'' Wood debri Wood -23.2 Termitidae Amitermes 30 KJ907797

W110° 9' 26.039''

13 4AW3 23/07/2008 Arizona N31° 31' 58.74'' Dead Yucca Grass -18.7 Termitidae Amitermes 30 KJ907798

W110° 0' 42.599''

14 8AW2 23/07/2008 Arizona N31° 31' 58.74'' Cow Dung Dung -20.4 Termitidae Amitermes 30 KJ907799

W110° 0' 42.599''

15 6GP2 24/07/2008 Arizona N31° 31' 58.74'' Dry wood Wood -23.4 Termitidae Amitermes 30 KJ907800

W110° 0' 42.599''

16 4AW1 23/07/2008 Arizona N31° 31' 58.74'' Cow Dung Dung -22.4 Termitidae Amitermes 30 KJ907801

W110° 0' 42.599''

17 4AW2 23/07/2008 Arizona N31° 31' 58.74'' Cow Dung Dung -20.3 Termitidae Amitermes 30 KJ907802

W110° 0' 42.599''
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Table S2.1: Continued 

 

No ID Collection Date Location GPS Coordiantes Nest Type Presumptive Diet
δC13 
(‰)

Family Genus

#of workers 
used for 
profiling

Accession 
no

18 2A.1 23/07/2008 Arizona N31° 47' 58.98'' Dead root crown Wood -22.2 Termitidae Amitermes 30 KJ907803

W110° 9' 26.039''

19 2A.2 23/07/2008 Arizona N31° 47' 58.98'' Soil under rock Wood -22.4 Termitidae Amitermes 30 KJ907804

W110° 9' 26.039''

20 FC05 6/08/2011 Fly Creek, Darwin S12° 46' 16.98" Cathedral mound Grass -13.2 Termitidae Nasutitermes 30 KJ907805

E130° 58' 33.24"

21 DW01 18/06/2011 Darwin S12° 28' 59.99" Cathedral mound Grass -14 Termitidae Nasutitermes 30 KJ907806

E130° 58' 59.99"

22 DW04 7/08/2011 Darwin Beach S12° 27' 46.128"  Beach Hibiscus Wood -28 Termitidae Nasutitermes 30 KJ907807

E130° 50' 30.3684"

23 MC05 21/07/2011 Murphy's Creek S27° 28’ 7.08" Mound Grass -16.8 Termitidae Nasutitermes 30 KJ907808

E152°01' 40.86"

24 MC07 21/07/2011 Murphy's Creek S27° 28’ 12.96" Mound Grass -18.6 Termitidae Nasutitermes 30 KJ907809

E152°01' 56.64"

25 MC06 21/07/2011 Murphy's Creek S27° 28’ 10.14" Mound Grass -17.5 Termitidae Nasutitermes 30 KJ907810

E152°01' 43.92"

26 CC02 26/04/2011 Caloundra Coast S26° 48’ 3.6" Banksia Wood -27.1 Termitidae Nasutitermes 30 KJ907811

E153° 08' 59.04"

27 LabNasut - Florida N29° 38' 42.95'' Laboratory Wood -27.4 Termitidae Nasutitermes 30 KJ907812

W82° 20' 47.018''

28 7TT2 24/07/2008 Arizona N31° 20' 52.62'' Under rock Grass Termitidae Tenuirostritermes 30 KJ907813

W110° 14' 41.459'

29 7TT3 24/07/2008 Arizona N31° 20' 52.62'' Under rock Grass Termitidae Tenuirostritermes 30 KJ907814

W110° 14' 41.459'

30 CA01 10/07/2011 Cairns S16° 52' 45" Dead log Wood Termitidae Microcerotermes 30 KJ907815

E145°44' 35"

31 CA03 10/07/2011 Cairns S16° 49' 50" Mound Wood Termitidae Microcerotermes 30 KJ907816

E142°40' 00"

32 IN01 1/07/2011 Indooroopilly, Brisbane S27° 29' 52.1916" Nest Wood Termitidae Microcerotermes 30 KJ907817

E152° 58' 21.1944"

33 PH01 3/03/2011 Pinjarra Hills, QLD S27° 32’ 17.4012" Nest on post Wood -25.9 Termitidae Microcerotermes 30 KJ907818

E152° 55' 10.02"

34 PH03 3/03/2011 Pinjarra Hills S27° 32’ 18.6" Eucalypt tree Wood Termitidae Microcerotermes 30 KJ907819

E152° 55' 9"

35 PH02 3/03/2011 Pinjarra Hills S27° 32’ 19.2" Mound at base of Eucalypt tree Wood Termitidae Microcerotermes 30 KJ907820

E152° 55' 10.2"

36 GHR03 8/06/2011 Green Hill Reservoir S27° 29.814’ Stump Wood Termitidae Microcerotermes 30 KJ907821

E152° 57.532

37 GHR01 8/06/2011 Green Hill Reservoir S27° 30.064’ Mound Wood Termitidae Microcerotermes 30 KJ907822

E152°57.946'

38 MC08 21/07/2011 Murphy's Creek S27° 28’ 10.02" Mound Wood Termitidae Microcerotermes 30 KJ907823

E152°01' 42.96"
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No ID Collection Date Location GPS Coordiantes Nest Type Presumptive Diet
δC13 
(‰)

Family Genus

#of workers 
used for 
profiling

Accession 
no

39 MC09 21/07/2011 Murphy's Creek S27° 28’ 14.34" Mound Wood Termitidae Microcerotermes 30 KJ907824

E152°01' 43.5"

40 MC04 21/07/2011 Murphy's Creek S27° 28’ 11.34" Mound Wood Termitidae Microcerotermes 30 KJ907825

E152°01' 41.34"

41 MC03 21/07/2011 Murphy's Creek S27° 28’ 6.48" Mound Wood Termitidae Microcerotermes 30 KJ907826

E152°01' 40.14"

42 FC02 6/08/2011 Fly Creek, Darwin S12° 45' 58.08" Mound at base of red gum Wood Termitidae Macrognathotermes 30 KJ907827

E131° 04' 55.86"

43 4RT1 23/07/2008 Arizona N31° 31' 58.74'' Dung (probably horse) Dung Rhinotermitidae Reticulitermes 30 KJ907828

W110° 0' 42.599''

44 4RT2 23/07/2008 Arizona N31° 31' 58.74'' Wood (mesquite, palo verde) Wood Rhinotermitidae Reticulitermes 30 KJ907829

W110° 0' 42.599''

45 8RT1 24/07/2008 Arizona N31° 24' 42.12'' Harwood mesquite stick Wood Rhinotermitidae Reticulitermes 30 KJ907830

W110° 54' 23.399''

46 MC02 21/07/2011 Murphy's Creek S27° 28’ 5.88" Mound diffuse in large tree Wood Rhinotermitidae Heterotermes 30 KJ907831

E152°01' 40.8"

47 SL01 22/05/2011 St Lucia S27° 29' 41.118"  Pine fence paling Wood Rhinotermitidae Heterotermes 30 KJ907832

E152° 59' 37.9638"

48 IN02 18/01/2012 Indooroopilly S27° 30' 27.126"  Roots of Oleander bush Roots Rhinotermitidae Heterotermes 30 KJ907833

E152° 59' 06252"

49 MC01 21/07/2011 Murphy's Creek S27° 28’ 6.78" Tea tree root Wood Rhinotermitidae Heterotermes 30 KJ907834

E152°01' 40.98"

50 PH04 13/04/2011 Pinjarra Hills S27° 32’ 23.4" Growth of tree Wood Rhinotermitidae Heterotermes 30 KJ907835

E152° 55' 8.4"

51 BF01 8/08/2011 Berrimah Farm, Darwin S12° 26' 38.58" Pine plank with undercoat Wood Rhinotermitidae Heterotermes 30 KJ907836

E130° 55' 42.9"

52 AP01 4/03/2013 Archerfield S27° 34' 2.2116" Laboratory Wood Rhinotermitidae Coptotermes 30 KJ907837

E153 1' 1.7976"

53 FC03 6/08/2011 Fly Creek, Darwin S12° 45' 54.66" Mound at base of blood wood eucalypt Wood Rhinotermitidae Coptotermes 30 KJ907838

E131° 03' 4.32"

54 BF02 8/08/2011 Berrimah Farm, Darwin S12° 27' 25.5" Mound at base of stringy bark eucalypt Wood Rhinotermitidae Coptotermes 30 KJ907839

E130° 55' 31.68"

55 CC01 26/04/2011 Caloundra Coast S26° 48’ 3.6"     Banksia Wood Rhinotermitidae Schedorhinotermes 20 KJ907840

E153° 08' 59.04"

56 DR02 6/08/2011 Darwin River S12° 46' 17.22" Burnt iron wood branch Wood Rhinotermitidae Schedorhinotermes 20 KJ907841

E130° 57' 53.58"

57 WH01 19/06/2011 Wellers Hill, Tarragindi S27°31'42.21" Mound Wood Rhinotermitidae Schedorhinotermes 20 KJ907842

E153° 2'53.53"

58 8MH1 24/07/2008 Arizona N31° 35' 42'' Cottonwood Wood Kalotermitidae Marginitermes 30 KJ907843

W111° 2' 57.18''

59 9MH1 24/07/2008 Arizona N31° 47' 58.98'' Cottonwood Wood Kalotermitidae Marginitermes 30 KJ907844

W110° 9' 26.039''

Table S2.1: Continued 
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Table S2.1: Continued 

 

  

No ID Collection Date Location GPS Coordiantes Nest Type Presumptive Diet
δC13 
(‰)

Family Genus

#of workers 
used for 
profiling

Accession 
no

60 5IM1 24/07/2008 Arizona N31° 31' 58.74'' Sycamore Wood Kalotermitidae Incisitermes 30 KJ907845

W110° 0' 42.599''

61 BB01-2 4/03/2011 Binna Burra S28° 9' 29.916" Dead tree Wood Kalotermitidae Glyptotermes 30 KJ907846

E153° 11' 21.771"

62 TN05 19/11/2011 Mount Glorious S27° 20' 6.96" Fallen log Wood Kalotermitidae Glyptotermes 30 KJ907847

E152° 46' 13.5"

63 TN01 19/11/2011 Mount Glorious S27° 20' 11.6406" Fallen log Wood Stolotermitidae Porotermes 30 KJ907848

E152° 46' 13.2708"

64 FC01 6/08/2011 Fly Creek, Darwin S12° 45' 58.05" Cattle dung / soil Dung -26.4 Mastotermitidae Mastotermes 5 KJ907849

E131° 04' 55.86"

65 DW03 5/08/2011 Darwin, Northern Suburbs S12° 22' 55.5" Carpentaria palm Grass -27.0 Mastotermitidae Mastotermes 5 KJ907850

E130° 53' 55.1"

66 DW02 5/08/2011 Darwin, Northern Suburbs S12° 22' 55.1" African mahogany Wood -27.5 Mastotermitidae Mastotermes 5 KJ907851

E130° 53' 53.7"

67 PP01 22/07/2011 Perrin Park, Toowong S27° 29' 32.5824" Palm tree Omnivorous Blattidae Periplaneta 1 KJ907852

E153° 0' 25.2168"

68 DR03 6/08/2011 Darwin River S12° 46' 17.22" Under Bark Omnivorous Blattidae Periplaneta 1 KJ907853

E130° 57' 53.58"
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Table S2.2: Effect of rRNA copy number correction on termite gut profile relative abundance 
estimates for OTUs with ≥1% in at least one sample. 

http://link.springer.com/article/10.1186%2Fs40168-015-0067-8  

Table S2.3: Distribution of identical sequence clusters comprising >10 reads in Treponema OTU1 
(comprising 7,223 reads in total). Each row represents an identical cluster and each column a gut 
sample with absolute numbers of reads for each cluster and sample shown. The termite genus and 
family for each sample and country of origin are indicated at the top of the table using color coding. 

http://link.springer.com/article/10.1186%2Fs40168-015-0067-8  

Table S2.4: Consistency analysis of microbial community relationships based on weighted and 
unweighted Soergel distances with host phylogeny (COII) and presumptive diet. 

 

Attribute Unique states
unweighted weighted unweighted weighted

Lower and Higher Termites
Family 5 5 9 0.8 0.44
Genus 17 17 21 0.94 0.76
Diet 3 15 12 0.13 0.17

Higher Termites 
Genus 7 6 7 1 0.86
Diet 3 15 12 0.13 0.17

# state changes Consistency index
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Appendix B: Supplementary figures and tables for Chapter 3 

 

 

  

A. 

 

 

 

 

 

B. 

 

 

 

 

 

C. 

Figure S3.1: Rarefaction curves and associated Simpson diversity index of microbial profiles 

obtained for each biological replicates. (A) Alpha diversity analysis for feeding trial 1, (B) feeding 

trial 2. (C) Simpson’s diversity index for feeding trial 1 (blue) and 2 (red). 
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Figure S3.2: Total protein concentration of the obtained crude extract from different feeding
treatments. 

E. regnans at 0hr

Average Net595

0.7824 0.48065 0.26955 0.8273 0.5337 0.3145 0.8618 0.5739 0.3019

Concentration ug/ml

1404.778 618.3353 312.4503 1620.704 707.6507 375.1442 1815.58 783.4437 357.5178

ug/ml * dilution

11238.23 9893.365 9998.41 12965.63 11322.41 12004.61 14524.64 12535.1 11440.57

mg/ml

11.23823 9.893365 9.99841 12.96563 11.32241 12.00461 14.52464 12.5351 11.44057

Concentration mg/ml

ER1 ER2 ER3

10.37667 12.09755 12.83344

E. regnans at Day 7

Average Net595

0.61345 0.4361 0.2344 0.59065 0.37115 0.18995 0.41985 0.2406 0.1138

Concentration ug/ml

867.4977 549.601 263.8721 817.7399 455.0653 203.5079 525.474 272.4012 106.306

ug/ml * dilution

6939.981 8793.616 8443.908 6541.919 7281.045 6512.254 4203.792 4358.419 3401.792

mg/ml

6.939981 8.793616 8.443908 6.541919 7.281045 6.512254 4.203792 4.358419 3.401792

Concentration mg/ml

ER1 ER2 ER3

8.059169 6.778406 3.988001

C. Citrodora at Day 7

Average Net595

0.57185 0.33645 0.19735 0.4676 0.26695 0.14815 0.6365 0.3813 0.2236

Concentration ug/ml

723.2108 426.2546 222.4307 568.0068 334.7553 137.1801 871.2417 475.8851 266.8214

ug/ml * dilution

5785.686 6820.074 7117.781 4544.055 5356.085 4389.763 6969.933 7614.161 8538.283

mg/ml

5.785686 6.820074 7.117781 4.544055 5.356085 4.389763 6.969933 7.614161 8.538283

Concentration mg/ml

CC1 CC2 CC3

6.574514 4.763301 7.707459
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Figure S3.2: Continued. 

   

Cotton at Day 7

Average Net595

0.46555 0.20275 0.16885 0.78995 0.4684 0.29845 0.5124 0.28265 0.1471

Concentration ug/ml

516.2334 217.8478 189.1229 1311.54 521.0186 301.8475 600.3527 286.9238 169.8896

269.5918

ug/ml * dilution

4129.867 3485.564 6051.933 10492.32 8336.298 9659.119 4802.822 4590.78 5436.468

4313.469

mg/ml

4.129867 3.485564 6.051933 10.49232 8.336298 9.659119 4.802822 4.59078 5.436468

4.313469

Concentration mg/ml

CT1 CT2 CT3

4.221668 9.495912 4.943357

Sugarcane mulch at Day 7

Average Net595

0.889 0.5322 0.3648 0.6815 0.4034 0.231 0.547 0.3365 0.19485

Concentration ug/ml

1607.702 639.4271 372.9113 997.8388 422.1455 241.5417 670.0006 340.7278 211.227

ug/ml * dilution

12861.62 10230.83 11933.16 7982.711 6754.328 7729.334 5360.005 5451.645 6759.265

mg/ml

12.86162 10.23083 11.93316 7.982711 6.754328 7.729334 5.360005 5.451645 6.759265

Concentration mg/ml

SC1 SC2 SC3

11.6752 7.488791 5.856972
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#OTU ID ER1_0 ER2_0 ER3_0 ER1_4 ER2_4 ER3_4 ER1_7 ER2_7 ER3_7 CC1_4 CC2_4 CC3_4 CC1_7 CC2_7 CC3_7

OTU131;Deltotrichonympha_nana 1.4 2.0 2.2 1.4 3.0 1.3 0.6 0.5 0.4 2.9 0.8 1.1 1.9 0.1 0.1

OTU77;Koruga_bonita 0.1 0.2 0.2 0.2 0.3 0.2 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.0 0.0

OTU161;Metadevescovina_extranea 0.1 0.2 0.2 0.3 0.5 0.1 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Parabasalia 1.5 2.4 2.6 1.9 3.9 1.6 0.7 1.0 0.5 3.1 1.0 1.3 2.1 0.1 0.2

OTU86;f__Methanobacteriaceae 0.3 0.2 0.3 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1

OTU28;g__Methanobacterium 0.4 0.4 0.6 0.3 0.0 0.7 0.0 0.1 0.0 0.0 0.8 0.1 0.0 0.0 0.0

OTU9;g__Methanobacterium;  s__beijingense 2.7 1.8 2.5 2.4 1.3 2.7 0.9 1.3 1.3 2.5 1.5 1.3 1.1 0.6 0.9

OTU31;g__Methanobrevibacter 0.2 0.5 0.3 0.2 0.1 0.1 0.0 0.3 0.1 0.1 0.1 0.0 0.1 1.5 0.0

OTU38;g__Methanobrevibacter;  s__arboriphilus_1 5.5 6.4 7.7 5.2 1.1 7.2 1.5 2.0 2.2 1.0 6.5 1.8 1.7 2.1 2.0

OTU89;g__Methanobrevibacter;  s__arboriphilus_2 0.3 0.2 0.3 0.3 0.2 0.4 0.6 0.6 1.0 0.2 0.5 0.3 0.6 0.8 0.8

Euryarchaeota 9.4 9.4 11.7 8.5 2.8 11.4 3.2 4.3 4.6 4.0 9.4 3.7 3.6 5.1 3.9

OTU113;p__Acidobacteria;  o__MVS‐40 0.5 0.5 0.6 0.7 0.6 0.7 0.8 0.6 0.5 0.7 0.4 0.6 0.6 0.5 0.3

Acidobacteria 0.5 0.5 0.6 0.7 0.6 0.7 0.8 0.6 0.5 0.7 0.4 0.6 0.6 0.5 0.3

OTU52;g__Corynebacterium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.1 0.1 5.4 0.3

OTU51;g__Microbacterium_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1

OTU55;g__Microbacterium_3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

OTU147;g__Microbacterium_1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.4 0.0 0.0 0.0 0.0 0.2 0.0

OTU10;g__Propionicimonas_2 0.3 0.1 0.1 0.3 0.1 0.2 0.2 0.2 0.3 0.1 0.1 0.2 0.2 0.2 0.3

OTU12;g__Propionicimonas_3 0.1 0.1 0.1 0.3 0.1 0.3 0.1 0.2 0.3 0.1 0.2 0.2 0.2 0.3 0.1

OTU53;g__Propionicimonas_1 0.2 0.1 0.1 0.2 0.4 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.2 0.1 0.3

OTU73;g__Xylanimicrobium 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU24;f__Propionibacteriaceae 1.0 0.5 1.1 1.3 0.9 1.5 3.3 2.4 3.9 1.1 0.8 1.5 2.3 3.4 4.4

OTU42;g__Tsukamurella 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

OTU23;f__Coriobacteriaceae_1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.3

OTU37;f__Coriobacteriaceae_2 0.3 0.2 0.3 0.5 0.2 0.3 0.2 0.4 0.3 0.2 0.3 0.2 0.3 0.4 0.4

Actinobacteria 1.9 1.2 1.9 2.7 1.9 2.6 4.4 4.0 6.2 1.9 1.7 2.4 3.8 10.5 6.3

OTU134;o__Bacteroidales_1 0.4 0.2 0.2 0.4 0.2 0.3 0.1 0.6 0.2 0.2 0.3 0.2 0.4 0.2 0.1

OTU17;o__Bacteroidales_4 0.1 0.2 0.1 0.2 0.1 0.4 0.1 0.4 0.8 0.2 0.3 0.2 0.5 0.3 0.3

OTU72;o__Bacteroidales_6 0.6 1.2 0.7 1.7 0.3 1.4 0.1 0.3 0.4 1.2 1.2 1.5 0.6 0.2 0.3

OTU82;o__Bacteroidales_3 0.3 0.6 0.4 0.7 0.1 0.6 0.1 0.2 0.2 0.6 0.6 0.8 0.3 0.1 0.2

OTU114;o__Bacteroidales_7 0.2 0.2 0.3 0.1 0.2 0.3 0.1 0.0 0.4 0.3 0.3 0.3 0.3 0.2 0.3

OTU159;o__Bacteroidales_2 0.3 0.2 0.3 0.2 0.2 0.3 0.1 0.1 0.1 0.3 0.3 0.4 0.2 0.0 0.1

OTU160;o__Bacteroidales_5 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1

OTU95;f__Bacteroidaceae 0.3 0.4 0.3 0.6 0.2 0.4 0.1 0.3 0.3 0.3 0.3 0.2 0.3 0.1 0.1

OTU22;g__Bacteroides_2 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.1 0.1 0.0

OTU63;g__Bacteroides_3 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

OTU145;g__Bacteroides_1 0.1 0.1 0.2 0.2 0.3 0.1 0.0 0.3 0.2 0.1 0.1 0.1 0.1 0.3 0.0

OTU20;g__Bacteroides;  s__eggerthii 0.4 0.1 0.1 0.2 1.3 0.4 0.1 0.5 0.2 0.2 0.1 0.2 0.5 0.7 0.2

OTU142;g__Bacteroides;  s__uniformis 0.2 0.1 0.2 0.1 0.1 0.3 0.1 0.1 0.1 0.2 0.2 0.3 0.2 0.1 0.2

OTU120;o__Bacteroidales;  f__p‐2534‐18B5_2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.4 0.2 0.5 0.1 0.0 0.1

OTU137;o__Bacteroidales;  f__p‐2534‐18B5_1 1.5 1.0 1.5 0.7 0.8 1.2 0.8 0.3 0.6 3.9 2.0 3.6 0.9 0.3 0.9

OTU49;f__Porphyromonadaceae 0.2 0.1 0.1 0.2 0.4 0.1 0.3 0.3 0.3 0.2 0.1 0.2 0.4 0.3 0.5

OTU19;g__Candidatus Azobacteroides_4 3.3 2.7 3.2 3.3 1.6 2.8 2.5 2.1 3.3 3.0 2.8 3.4 2.5 2.3 2.3

OTU41;g__Candidatus Azobacteroides_2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2

OTU111;g__Candidatus Azobacteroides_1 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1

OTU124;g__Candidatus Azobacteroides_5 0.6 0.5 0.6 0.6 0.3 0.5 0.5 0.4 0.6 0.6 0.6 0.7 0.5 0.6 0.5

 Table S3.1: Relative abundance in the mitag libraries of the Mastotermes gut microbiota.  



192 
 
 

Table S3.1: Continued.  

#OTU ID ER1_0 ER2_0 ER3_0 ER1_4 ER2_4 ER3_4 ER1_7 ER2_7 ER3_7 CC1_4 CC2_4 CC3_4 CC1_7 CC2_7 CC3_7

OTU128;g__Candidatus Azobacteroides_3 1.2 2.2 1.3 1.2 1.3 2.1 1.1 1.0 1.6 2.1 1.2 2.0 2.0 1.0 2.5

OTU74;g__Dysgonomonas_4 0.0 0.2 0.1 0.1 0.1 0.0 0.0 1.3 0.1 0.1 0.0 0.0 0.0 0.2 0.0

OTU78;g__Dysgonomonas_3 0.5 0.4 0.4 0.5 0.3 0.5 0.1 0.1 0.1 0.3 0.4 0.3 0.3 0.1 0.1

OTU148;g__Dysgonomonas_1 2.6 3.8 3.9 8.0 4.3 3.4 5.5 11.2 9.9 6.8 4.6 5.3 9.0 7.1 3.8

OTU158;g__Dysgonomonas_2 0.1 0.1 0.1 0.3 0.1 0.2 0.2 0.4 0.2 0.4 0.2 0.3 0.4 0.2 0.3

OTU40;g__Parabacteroides 0.3 0.2 0.3 0.3 0.5 0.3 0.4 0.3 0.4 0.3 0.3 0.4 0.3 0.3 0.6

OTU59;g__Parabacteroides 0.3 0.2 0.3 0.2 0.2 0.3 0.4 0.2 0.2 0.3 0.3 0.3 0.3 0.5 0.5

OTU68;g__Parabacteroides 2.3 1.5 2.2 2.3 2.0 2.5 3.4 2.3 1.9 2.7 2.5 2.9 2.6 2.9 3.8

OTU71;g__Parabacteroides 2.1 1.9 2.1 2.3 1.2 2.2 1.8 1.2 1.7 2.0 2.2 2.5 1.7 1.3 1.8

OTU85;g__Parabacteroides 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU88;g__Parabacteroides 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1

OTU98;g__Parabacteroides 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1

OTU99;g__Parabacteroides 0.1 0.1 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0

OTU115;g__Parabacteroides 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2

OTU126;g__Parabacteroides 0.5 0.5 0.6 0.5 0.3 0.6 0.5 0.3 0.5 0.6 0.6 0.6 0.5 0.5 0.5

OTU139;g__Parabacteroides 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0

OTU67;g__Tannerella 2.9 1.9 2.7 2.3 2.4 3.1 3.0 2.1 1.8 2.6 2.1 3.0 2.6 2.8 2.8

OTU75;g__Tannerella 0.8 0.9 0.9 0.5 0.1 0.7 0.0 0.1 0.0 0.1 0.7 0.1 0.0 0.0 0.0

OTU143;g__Tannerella 0.6 0.4 0.5 0.3 0.2 0.8 0.4 0.2 0.1 0.5 0.4 0.6 0.4 0.0 0.1

OTU125;g__Prevotella 0.3 0.2 0.3 0.1 0.3 0.3 0.3 0.2 0.2 1.0 0.4 0.4 0.3 0.3 0.4

OTU32;o__Bacteroidales;  f__RF16_1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1

OTU90;o__Bacteroidales;  f__RF16_2 0.1 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.2 0.1 0.2 0.1 0.0 0.0

OTU153;o__Bacteroidales;  f__RF16_3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.4 0.0 0.1 0.0 0.1 0.1 0.0

OTU132;o__Bacteroidales;  f__S24‐7 0.1 0.1 0.2 0.3 0.9 0.2 0.6 1.6 2.5 0.2 0.3 0.3 0.7 1.2 0.6

OTU61;g__Chryseobacterium 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

OTU57;g__Blattabacterium 12.9 14.3 8.9 5.6 14.1 6.4 15.4 18.2 14.4 2.9 14.5 4.3 4.9 4.3 17.7

OTU84;g__Blattabacterium 0.3 0.3 0.2 0.2 0.3 0.2 0.3 0.4 0.3 0.1 0.3 0.2 0.1 0.1 0.3

OTU140;g__Blattabacterium 0.2 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.1 0.4

OTU151;g__Blattabacterium 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.0 0.2 0.1 0.1 0.1 0.2

OTU155;g__Blattabacterium 0.3 0.4 0.2 0.2 0.3 0.2 0.4 0.4 0.3 0.1 0.3 0.2 0.1 0.2 0.4

OTU60;g__Sphingobacterium;  s__multivorum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

Bacteroidetes 38.2 38.5 35.0 35.9 36.0 34.4 40.6 49.1 46.3 36.1 42.3 37.9 35.6 30.1 44.1

OTU26;c__Endomicrobia_5 0.5 0.5 0.3 0.3 0.5 0.3 0.2 0.2 0.1 0.3 0.3 0.4 0.2 0.0 0.1

OTU27;c__Endomicrobia_3 14.9 12.8 11.3 7.7 14.3 9.3 2.5 2.1 1.3 15.4 3.5 9.1 6.1 0.1 1.1

OTU81;c__Endomicrobia_2 0.3 0.2 0.2 0.2 0.3 0.2 0.0 0.0 0.0 0.3 0.1 0.2 0.1 0.0 0.0

OTU92;c__Endomicrobia_4 0.6 0.5 0.4 0.4 0.8 0.3 0.0 0.1 0.0 0.3 0.2 0.3 0.2 0.0 0.0

OTU102;c__Endomicrobia_7 0.7 0.9 0.4 0.2 0.7 0.1 0.3 0.2 0.1 1.3 0.2 0.8 0.5 0.1 0.2

OTU105;c__Endomicrobia_8 0.3 0.2 0.2 0.2 0.3 0.2 0.1 0.1 0.0 0.3 0.1 0.2 0.1 0.0 0.0

OTU122;c__Endomicrobia_1 1.5 1.3 1.6 1.1 0.1 1.6 0.1 0.1 0.0 0.1 1.3 0.2 0.0 0.0 0.0

OTU144;c__Endomicrobia_6 1.5 0.9 2.0 0.7 0.5 1.7 0.8 0.4 0.1 1.8 1.2 2.4 0.5 0.0 0.1

Elusimicrobia 20.2 17.4 16.4 11.0 17.3 13.8 4.1 3.1 1.7 19.7 6.9 13.6 7.7 0.3 1.6

OTU36;g__Enterococcus 0.6 1.3 1.0 1.5 0.6 2.4 0.4 0.3 0.3 1.1 1.0 0.8 0.3 0.8 0.7

OTU29;f__Leuconostocaceae_1 0.9 2.4 1.9 4.2 1.9 2.5 1.8 0.9 1.0 2.7 2.1 2.2 2.3 1.4 1.4

OTU70;f__Leuconostocaceae_2 4.2 7.3 5.6 8.2 8.8 6.6 5.5 8.1 10.7 9.0 10.7 8.1 9.0 14.7 8.8

OTU100;f__Leuconostocaceae_3 0.5 1.4 1.2 2.7 1.0 1.5 1.2 0.7 0.7 1.5 1.1 1.4 1.4 0.7 0.8

OTU14;g__Lactococcus_4 0.3 0.4 0.4 0.5 1.1 0.3 0.7 0.4 0.5 0.3 0.6 0.1 0.1 0.7 0.2
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#OTU ID ER1_0 ER2_0 ER3_0 ER1_4 ER2_4 ER3_4 ER1_7 ER2_7 ER3_7 CC1_4 CC2_4 CC3_4 CC1_7 CC2_7 CC3_7

OTU35;g__Lactococcus_2 0.1 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

OTU50;g__Lactococcus_3 0.0 0.1 0.1 0.2 0.0 0.2 0.1 0.0 0.1 0.1 0.2 0.1 0.1 0.0 0.1

OTU108;g__Lactococcus_1 0.1 0.1 0.2 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1

OTU80;o__Clostridiales_4 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.1

OTU106;o__Clostridiales_3 0.3 0.4 0.4 0.6 0.3 0.6 0.2 1.2 0.4 0.4 0.3 0.3 0.6 0.7 0.1

OTU123;o__Clostridiales_1 0.1 0.2 0.2 0.0 0.2 0.0 0.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

OTU138;o__Clostridiales_2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.0 0.1 0.0 0.1 0.1 0.0 0.0

OTU141;o__Clostridiales_5 0.2 0.2 0.2 0.2 0.1 0.4 0.1 0.0 0.0 0.6 0.2 0.2 0.1 0.0 0.0

OTU18;f__Mogibacteriaceae_7 0.2 0.2 0.2 0.4 0.1 0.3 0.1 0.4 0.3 0.2 0.3 0.2 0.2 0.3 0.1

OTU25;f__Mogibacteriaceae_3 1.8 1.2 1.5 2.1 1.0 1.8 1.1 2.2 2.1 1.3 1.6 1.4 1.8 1.3 1.7

OTU45;f__Mogibacteriaceae_2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU47;f__Mogibacteriaceae_9 0.2 0.3 0.3 0.5 0.4 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1

OTU94;f__Mogibacteriaceae_5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU101;f__Mogibacteriaceae_8 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2

OTU129;f__Mogibacteriaceae_4 0.6 0.3 0.5 0.4 0.2 0.3 0.4 0.5 0.5 0.3 0.2 0.3 0.4 0.2 0.3

OTU150;f__Mogibacteriaceae_1 0.4 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.2 0.3 0.3 0.4 0.3 0.2 0.3

OTU154;f__Mogibacteriaceae_6 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1

OTU112;f__Clostridiaceae_2 0.1 0.1 0.2 0.5 0.1 0.8 0.8 0.2 1.0 0.3 0.3 0.6 0.2 0.7 0.7

OTU118;f__Clostridiaceae_1 0.0 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.3 0.1 0.3

OTU6;g__Clostridium;  s__subterminale 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.2

OTU109;g__Anaerofustis_1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.3 0.1 0.2 0.1 0.1 0.1 0.0 0.0

OTU110;g__Anaerofustis_2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

OTU8;f__Lachnospiraceae_1 0.0 0.0 0.0 0.0 0.2 0.0 0.3 0.2 0.1 0.0 0.1 0.1 0.2 0.3 0.2

OTU34;f__Lachnospiraceae_2 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.8 0.2 0.0 0.2 0.2 0.7 0.5 0.6

OTU69;f__Lachnospiraceae_3 0.2 0.5 0.3 1.4 5.7 0.6 15.2 9.1 5.0 0.2 1.5 2.5 10.3 14.4 5.5

OTU56;g__Anaerostipes 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.1

OTU11;f__Peptostreptococcaceae_1 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.3 0.1 0.3

OTU48;f__Peptostreptococcaceae_5 0.1 0.1 0.1 0.1 0.1 0.2 0.4 0.2 0.3 0.2 0.4 0.5 0.7 0.3 0.6

OTU116;f__Peptostreptococcaceae_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

OTU121;f__Peptostreptococcaceae_2 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1

OTU136;f__Peptostreptococcaceae_3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1

OTU54;f__Ruminococcaceae_7 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.0

OTU93;f__Ruminococcaceae_2 0.2 0.2 0.3 0.3 0.1 0.3 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1

OTU103;f__Ruminococcaceae_3 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU107;f__Ruminococcaceae_8 0.8 0.6 0.9 0.9 0.2 0.6 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.0 0.0

OTU130;f__Ruminococcaceae_1 0.1 0.1 0.1 0.2 0.1 0.2 0.0 0.2 0.1 0.3 0.2 0.1 0.1 0.0 0.0

OTU133;f__Ruminococcaceae_5 0.5 0.2 0.3 0.1 0.3 0.3 0.1 0.1 0.0 0.2 0.2 0.2 0.1 0.0 0.1

OTU149;f__Ruminococcaceae_4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2

OTU156;f__Ruminococcaceae_6 0.5 0.3 0.4 0.3 0.3 0.2 0.0 0.3 0.0 0.2 0.1 0.1 0.1 0.0 0.0

OTU46;g__Phascolarctobacterium 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.0

OTU21;f__Erysipelotrichaceae 0.0 0.2 0.1 0.4 1.0 0.1 0.3 0.2 1.7 0.1 0.1 0.3 0.6 0.8 0.8

Firmicutes 14.8 19.7 18.5 28.0 26.2 22.6 31.6 29.7 28.0 21.4 24.4 23.0 32.5 40.2 25.5

OTU96;g__Fusobacterium_2 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.1 0.2 0.2 0.2 0.2 0.3 0.4 0.3

OTU97;g__Fusobacterium_1 3.6 3.3 3.5 3.5 4.2 3.0 8.0 3.0 5.9 4.4 4.1 5.9 5.3 7.0 8.3

OTU119;g__Fusobacterium_3 0.2 0.1 0.2 0.2 0.1 0.2 0.3 0.1 0.2 0.2 0.2 0.3 0.2 0.2 0.2

Fusobacteria 3.9 3.5 3.8 3.9 4.5 3.4 8.6 3.2 6.4 4.9 4.5 6.5 5.8 7.6 8.8

Table S3.1: Continued.  
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#OTU ID ER1_0 ER2_0 ER3_0 ER1_4 ER2_4 ER3_4 ER1_7 ER2_7 ER3_7 CC1_4 CC2_4 CC3_4 CC1_7 CC2_7 CC3_7

OTU66;f__Pirellulaceae 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.3

Planctomycetes 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.3

OTU79;o__Rickettsiales 1.0 0.2 1.8 0.8 0.4 0.2 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.0

OTU43;c__Betaproteobacteria 0.3 0.3 0.4 0.5 0.3 0.5 0.5 0.3 0.5 0.6 0.4 0.4 0.5 0.6 0.3

OTU65;f__Oxalobacteraceae 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.1

OTU13;f__Rhodocyclaceae;  g__TS34_2 1.0 1.3 1.2 0.9 1.1 1.8 1.9 0.9 1.6 1.0 1.9 1.6 1.9 1.6 1.5

OTU135;f__Rhodocyclaceae;  g__TS34_1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU39;f__Enterobacteriaceae_1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0

OTU64;f__Enterobacteriaceae_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.0

OTU76;f__Enterobacteriaceae_3 0.8 0.0 0.0 0.1 0.7 0.7 0.0 0.6 0.2 0.0 0.1 0.1 0.9 0.0 0.1

OTU44;g__Acinetobacter 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0

OTU33;g__Pseudomonas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 3.6

OTU4;g__Stenotrophomonas;  s__geniculata 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2

Proteobacteria 3.4 2.1 3.7 2.6 2.7 3.4 2.7 2.1 2.7 2.0 2.7 2.4 3.8 3.5 5.9

OTU1;g__Treponema_7 0.5 0.4 0.3 0.2 0.5 0.3 0.1 0.2 0.1 0.5 0.1 0.2 0.2 0.0 0.1

OTU2;g__Treponema_6 2.0 1.4 1.8 1.3 0.2 1.3 0.4 0.1 0.1 1.1 1.0 0.9 0.3 0.0 0.0

OTU5;g__Treponema_1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.1

OTU7;g__Treponema_10 0.1 0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1

OTU15;g__Treponema_11 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.2 0.1 0.2 0.2 0.0 0.0

OTU58;g__Treponema_9 0.3 0.2 0.3 0.3 0.2 0.4 0.0 0.0 0.0 0.5 0.1 0.3 0.0 0.0 0.0

OTU62;g__Treponema_2 0.2 0.1 0.2 0.2 0.2 0.5 0.1 0.1 0.0 0.3 0.1 0.1 0.1 0.0 0.1

OTU91;g__Treponema_3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.0 0.1

OTU104;g__Treponema_8 0.3 0.4 0.3 0.2 0.3 0.4 0.1 0.2 0.1 0.5 0.3 0.3 0.3 0.0 0.1

OTU146;g__Treponema_4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.2

OTU157;g__Treponema_5 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.1 0.0 0.0

OTU152;g__Treponema;  s__primitia 0.2 0.2 0.2 0.1 0.3 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.0 0.1

OTU3;g__Treponema;  s__sp5 0.3 0.1 0.3 0.2 0.1 0.3 0.1 0.1 0.0 0.2 0.1 0.2 0.1 0.0 0.0

Spirochaetes 4.8 4.1 4.3 3.4 2.9 4.4 1.7 1.5 1.1 4.3 2.8 3.1 2.4 0.6 1.0

OTU16;f__Dethiosulfovibrionaceae;  g__TG5_2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU87;f__Dethiosulfovibrionaceae;  g__TG5_1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1

OTU30;g__Candidatus Tammella 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.1 0.1

OTU127;g__Candidatus Tammella 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.1

Synergistetes 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.1 0.3 0.3 0.4 0.4 0.4 0.3 0.3

OTU117;c__Mollicutes;  o__RsaHF231 0.3 0.3 0.6 0.7 0.4 1.1 0.9 0.5 1.6 1.0 3.2 4.6 1.4 1.1 1.9

Tenericutes 0.3 0.3 0.6 0.7 0.4 1.1 0.9 0.5 1.6 1.0 3.2 4.6 1.4 1.1 1.9

OTU83;f__Cerasicoccaceae 0.6 0.4 0.5 0.3 0.3 0.2 0.1 0.2 0.0 0.4 0.2 0.2 0.1 0.0 0.0

Verrucomicrobia 0.6 0.4 0.5 0.3 0.3 0.2 0.1 0.2 0.0 0.4 0.2 0.2 0.1 0.0 0.0

Table S3.1: Continued.  
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Table S3.1: Continued.  

#OTU ID CT1_4 CT2_4 CT3_4 CT1_7 CT2_7 CT3_7 SC1_4 SC2_4 SC3_4 SC1_7 SC2_7 SC3_7

OTU131;Deltotrichonympha_nana 2.0 2.6 2.7 0.9 3.8 0.1 1.8 1.9 3.4 1.0 0.4 0.2

OTU77;Koruga_bonita 0.2 0.2 0.2 0.1 0.4 0.0 0.1 0.1 0.3 0.2 0.0 0.0

OTU161;Metadevescovina_extranea 0.1 0.3 0.1 0.0 0.2 0.0 0.2 0.1 0.1 0.2 0.5 0.1

Parabasalia 2.3 3.2 3.0 1.0 4.3 0.2 2.1 2.1 3.7 1.4 1.0 0.2

OTU86;f__Methanobacteriaceae 0.3 0.2 0.3 0.1 0.2 0.1 0.5 0.2 0.2 0.3 0.2 0.1

OTU28;g__Methanobacterium 0.2 0.2 0.4 0.0 0.0 0.0 0.3 0.3 0.2 0.1 0.0 0.0

OTU9;g__Methanobacterium;  s__beijingense 4.2 1.8 2.3 1.3 1.8 0.9 3.8 2.0 1.8 2.4 1.3 0.8

OTU31;g__Methanobrevibacter 0.3 0.3 0.3 0.0 0.3 0.1 0.6 0.3 0.2 0.5 1.4 0.0

OTU38;g__Methanobrevibacter;  s__arboriphilus_1 5.6 4.4 4.9 2.5 1.6 2.2 4.5 3.6 3.2 1.9 1.9 1.4

OTU89;g__Methanobrevibacter;  s__arboriphilus_2 0.6 0.3 0.4 0.9 0.5 1.0 0.3 0.6 0.3 0.3 0.4 0.6

Euryarchaeota 11.2 7.2 8.7 4.9 4.4 4.3 9.9 7.1 5.9 5.5 5.2 2.9

OTU113;p__Acidobacteria;  o__MVS‐40 0.7 0.6 0.7 0.2 0.4 0.1 0.4 0.5 0.5 0.2 0.2 0.5

Acidobacteria 0.7 0.6 0.7 0.2 0.4 0.1 0.4 0.5 0.5 0.2 0.2 0.5

OTU52;g__Corynebacterium 0.0 0.0 0.6 5.1 0.0 2.1 0.0 0.0 0.0 3.0 3.1 1.1

OTU51;g__Microbacterium_2 0.0 0.0 0.1 2.1 0.0 0.9 0.0 0.0 0.0 0.7 0.2 0.1

OTU55;g__Microbacterium_3 0.0 0.0 0.1 0.5 0.0 2.7 0.0 0.0 0.0 0.0 0.2 0.2

OTU147;g__Microbacterium_1 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.3 0.2 0.1

OTU10;g__Propionicimonas_2 0.1 0.2 0.1 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.3

OTU12;g__Propionicimonas_3 0.1 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.3 0.2

OTU53;g__Propionicimonas_1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1

OTU73;g__Xylanimicrobium 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.2

OTU24;f__Propionibacteriaceae 1.2 1.0 1.6 2.4 2.0 2.6 1.0 1.7 0.9 0.8 1.8 3.5

OTU42;g__Tsukamurella 0.0 0.0 0.3 0.4 0.0 7.4 0.0 0.0 0.0 0.6 0.0 0.2

OTU23;f__Coriobacteriaceae_1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1

OTU37;f__Coriobacteriaceae_2 0.1 0.3 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.4 0.2

Actinobacteria 1.8 2.0 3.6 11.7 2.8 16.5 2.1 2.8 1.9 6.3 6.8 6.4

OTU134;o__Bacteroidales_1 0.6 0.2 0.5 0.3 0.1 0.9 0.4 0.3 0.2 0.4 0.9 2.1

OTU17;o__Bacteroidales_4 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.6 0.4 0.2

OTU72;o__Bacteroidales_6 3.0 1.6 1.2 0.7 0.7 0.2 0.6 1.1 1.9 1.9 0.4 0.4

OTU82;o__Bacteroidales_3 1.4 0.8 0.5 0.3 0.4 0.1 0.3 0.5 1.0 0.9 0.2 0.2

OTU114;o__Bacteroidales_7 0.3 0.2 0.1 0.1 0.1 0.0 0.2 0.2 0.1 0.1 0.1 0.1

OTU159;o__Bacteroidales_2 0.3 0.3 0.2 0.1 0.3 0.0 0.3 0.1 0.2 0.1 0.1 0.0

OTU160;o__Bacteroidales_5 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1

OTU95;f__Bacteroidaceae 0.3 0.4 0.4 0.3 0.4 0.1 0.4 0.3 0.3 0.2 0.2 0.1

OTU22;g__Bacteroides_2 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.2 0.2 0.4 0.4

OTU63;g__Bacteroides_3 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0

OTU145;g__Bacteroides_1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.3 0.3 0.2 0.4 0.4

OTU20;g__Bacteroides;  s__eggerthii 0.2 0.1 0.1 0.6 0.2 0.1 0.3 0.8 0.5 0.8 1.4 0.8

OTU142;g__Bacteroides;  s__uniformis 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2

OTU120;o__Bacteroidales;  f__p‐2534‐18B5_2 0.2 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.2 0.2 0.0 0.0

OTU137;o__Bacteroidales;  f__p‐2534‐18B5_1 1.2 1.0 1.0 0.9 0.9 0.1 0.8 0.7 1.6 2.2 0.5 0.4

OTU49;f__Porphyromonadaceae 0.1 0.1 0.2 0.3 0.2 0.2 0.4 0.3 0.5 0.3 0.3 0.8

OTU19;g__Candidatus Azobacteroides_4 3.3 2.7 3.4 2.1 2.6 1.6 2.6 2.7 2.9 1.9 2.3 1.9

OTU41;g__Candidatus Azobacteroides_2 0.2 0.2 0.3 0.1 0.1 0.0 0.2 0.2 0.1 0.1 0.1 0.1

OTU111;g__Candidatus Azobacteroides_1 0.2 0.1 0.2 0.2 0.2 0.3 0.1 0.3 0.2 0.1 0.1 0.1

OTU124;g__Candidatus Azobacteroides_5 0.7 0.5 0.7 0.4 0.7 0.2 0.5 0.5 0.6 0.4 0.4 0.4
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#OTU ID CT1_4 CT2_4 CT3_4 CT1_7 CT2_7 CT3_7 SC1_4 SC2_4 SC3_4 SC1_7 SC2_7 SC3_7

OTU128;g__Candidatus Azobacteroides_3 2.0 1.5 2.5 1.5 1.9 0.6 1.5 1.3 1.4 3.4 1.5 0.7

OTU74;g__Dysgonomonas_4 0.1 0.0 0.0 0.0 0.0 1.6 0.1 0.0 0.7 0.1 3.5 1.6

OTU78;g__Dysgonomonas_3 0.5 0.4 0.3 0.1 0.2 0.0 0.6 0.3 0.3 0.1 0.1 0.1

OTU148;g__Dysgonomonas_1 2.6 4.9 5.5 7.3 5.5 6.3 5.1 5.4 6.0 6.0 9.5 6.4

OTU158;g__Dysgonomonas_2 0.2 0.3 0.3 0.5 0.4 0.3 0.2 0.3 0.3 0.2 0.3 0.4

OTU40;g__Parabacteroides 0.3 0.2 0.3 0.3 0.4 0.0 0.6 0.2 0.4 0.2 0.2 0.2

OTU59;g__Parabacteroides 0.2 0.3 0.3 0.4 0.3 0.1 0.3 0.2 0.4 0.2 0.2 0.2

OTU68;g__Parabacteroides 2.4 2.0 2.0 2.7 2.9 0.5 3.1 2.6 3.2 2.3 1.7 1.5

OTU71;g__Parabacteroides 2.2 2.0 1.9 1.3 2.0 0.8 1.7 1.9 1.7 1.4 1.3 1.2

OTU85;g__Parabacteroides 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0

OTU88;g__Parabacteroides 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0

OTU98;g__Parabacteroides 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1

OTU99;g__Parabacteroides 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0

OTU115;g__Parabacteroides 0.2 0.1 0.1 0.2 0.2 0.0 0.2 0.2 0.2 0.1 0.1 0.1

OTU126;g__Parabacteroides 0.5 0.5 0.7 0.4 0.7 0.2 0.5 0.5 0.5 0.4 0.4 0.4

OTU139;g__Parabacteroides 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

OTU67;g__Tannerella 3.2 1.4 2.0 1.6 2.3 0.6 2.8 2.1 2.7 1.0 1.9 1.1

OTU75;g__Tannerella 0.5 0.3 0.6 0.1 0.0 0.0 0.4 0.3 0.2 0.1 0.0 0.0

OTU143;g__Tannerella 0.8 0.3 0.5 0.1 0.4 0.1 0.5 0.2 0.4 0.1 0.2 0.1

OTU125;g__Prevotella 0.5 0.2 0.3 0.4 0.5 0.0 0.3 0.3 0.4 0.4 0.1 0.1

OTU32;o__Bacteroidales;  f__RF16_1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1

OTU90;o__Bacteroidales;  f__RF16_2 0.3 0.3 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.2 0.1 0.0

OTU153;o__Bacteroidales;  f__RF16_3 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.1

OTU132;o__Bacteroidales;  f__S24‐7 0.2 0.2 0.4 3.4 0.6 3.3 0.3 0.4 0.3 0.7 1.5 1.0

OTU61;g__Chryseobacterium 0.0 0.0 0.0 0.7 0.2 0.0 0.1 0.0 0.0 2.0 0.0 0.0

OTU57;g__Blattabacterium 3.9 20.5 11.5 3.6 8.8 20.2 8.1 13.9 4.0 2.8 2.6 25.4

OTU84;g__Blattabacterium 0.2 0.4 0.3 0.1 0.2 0.2 0.2 0.4 0.1 0.1 0.1 0.3

OTU140;g__Blattabacterium 0.1 0.2 0.1 0.0 0.1 0.2 0.1 0.2 0.1 0.1 0.0 0.2

OTU151;g__Blattabacterium 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.2 0.1 0.0 0.0 0.3

OTU155;g__Blattabacterium 0.1 0.4 0.3 0.1 0.1 0.2 0.2 0.4 0.1 0.1 0.1 0.4

OTU60;g__Sphingobacterium;  s__multivorum 0.0 0.0 0.3 5.2 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1

Bacteroidetes 34.3 46.0 40.0 37.2 36.0 40.2 35.1 40.4 35.3 33.7 34.4 51.1

OTU26;c__Endomicrobia_5 0.3 0.4 0.3 0.1 0.4 0.0 0.4 0.3 0.3 0.1 0.1 0.0

OTU27;c__Endomicrobia_3 14.8 7.7 9.3 1.6 10.0 0.2 8.6 7.5 10.1 6.0 0.9 0.6

OTU81;c__Endomicrobia_2 0.2 0.2 0.2 0.1 0.2 0.0 0.2 0.2 0.2 0.2 0.0 0.0

OTU92;c__Endomicrobia_4 0.3 0.2 0.2 0.2 0.4 0.0 0.3 0.2 0.2 0.2 0.1 0.0

OTU102;c__Endomicrobia_7 0.5 0.3 0.5 0.0 0.5 0.0 0.8 0.3 0.6 0.2 0.1 0.0

OTU105;c__Endomicrobia_8 0.3 0.2 0.2 0.1 0.1 0.0 0.2 0.2 0.2 0.2 0.0 0.0

OTU122;c__Endomicrobia_1 0.9 0.6 0.6 0.0 0.0 0.0 0.5 0.4 0.5 0.2 0.0 0.0

OTU144;c__Endomicrobia_6 1.9 0.4 0.7 0.1 0.8 0.0 0.9 0.6 1.4 0.2 0.4 0.1

Elusimicrobia 19.2 9.8 12.1 2.2 12.4 0.4 12.0 9.7 13.5 7.2 1.6 0.8

OTU36;g__Enterococcus 0.4 0.6 0.3 0.9 0.4 0.6 0.3 0.2 0.5 0.2 0.2 1.0

OTU29;f__Leuconostocaceae_1 0.9 3.7 1.9 1.4 4.4 1.5 2.8 2.2 1.9 4.0 2.9 1.3

OTU70;f__Leuconostocaceae_2 9.4 5.7 8.1 9.9 5.1 7.1 14.3 13.0 11.7 19.1 18.5 7.2

OTU100;f__Leuconostocaceae_3 0.5 2.5 1.2 1.0 2.9 1.2 1.8 1.5 1.2 2.4 1.7 0.9

OTU14;g__Lactococcus_4 0.5 0.4 0.3 1.5 1.9 0.6 0.1 0.1 0.1 0.3 0.6 1.0

Table S3.1: Continued.  
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#OTU ID CT1_4 CT2_4 CT3_4 CT1_7 CT2_7 CT3_7 SC1_4 SC2_4 SC3_4 SC1_7 SC2_7 SC3_7

OTU35;g__Lactococcus_2 0.0 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.0

OTU50;g__Lactococcus_3 0.0 0.1 0.1 0.0 0.1 0.4 0.1 0.0 0.0 0.2 0.2 0.0

OTU108;g__Lactococcus_1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.0

OTU80;o__Clostridiales_4 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.1 0.0 0.0

OTU106;o__Clostridiales_3 0.5 0.3 0.5 0.3 0.2 0.4 0.6 0.5 0.3 1.1 0.8 0.4

OTU123;o__Clostridiales_1 0.0 0.5 0.1 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.0 0.1

OTU138;o__Clostridiales_2 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.0

OTU141;o__Clostridiales_5 0.1 0.3 0.2 0.1 0.3 0.0 0.2 0.2 0.3 0.2 0.0 0.1

OTU18;f__Mogibacteriaceae_7 0.1 0.3 0.2 0.3 0.1 0.2 0.2 0.3 0.1 0.3 0.4 0.2

OTU25;f__Mogibacteriaceae_3 1.0 1.6 1.7 1.6 1.2 0.8 1.5 1.8 1.0 1.6 1.5 1.0

OTU45;f__Mogibacteriaceae_2 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0

OTU47;f__Mogibacteriaceae_9 0.1 0.1 0.2 0.0 0.2 0.2 0.2 0.3 0.4 0.2 0.3 0.1

OTU94;f__Mogibacteriaceae_5 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

OTU101;f__Mogibacteriaceae_8 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1

OTU129;f__Mogibacteriaceae_4 0.4 0.2 0.3 0.2 0.2 0.1 0.3 0.5 0.3 0.3 0.2 0.2

OTU150;f__Mogibacteriaceae_1 0.3 0.3 0.3 0.2 0.2 0.0 0.2 0.4 0.3 0.1 0.1 0.1

OTU154;f__Mogibacteriaceae_6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1

OTU112;f__Clostridiaceae_2 0.4 0.3 0.2 1.5 0.5 1.4 0.3 0.5 0.2 1.0 0.5 0.6

OTU118;f__Clostridiaceae_1 0.1 0.0 0.1 0.2 0.1 0.2 0.0 0.1 0.2 0.1 0.1 0.2

OTU6;g__Clostridium;  s__subterminale 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.1 0.1 0.4

OTU109;g__Anaerofustis_1 0.1 0.4 0.1 0.0 0.2 0.0 0.1 0.2 0.1 0.0 0.1 0.1

OTU110;g__Anaerofustis_2 0.2 0.2 0.1 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.2

OTU8;f__Lachnospiraceae_1 0.0 0.0 0.0 0.2 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.3

OTU34;f__Lachnospiraceae_2 0.2 0.0 0.0 0.4 0.0 0.7 0.0 0.0 0.0 0.1 0.5 0.3

OTU69;f__Lachnospiraceae_3 0.5 0.2 1.1 7.1 1.9 4.9 0.7 1.3 4.3 4.2 8.3 11.3

OTU56;g__Anaerostipes 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU11;f__Peptostreptococcaceae_1 0.1 0.0 0.1 0.1 0.1 0.3 0.0 0.1 0.2 0.1 0.1 0.2

OTU48;f__Peptostreptococcaceae_5 0.2 0.1 0.3 0.3 0.3 0.7 0.1 0.1 0.3 0.2 0.2 0.4

OTU116;f__Peptostreptococcaceae_4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

OTU121;f__Peptostreptococcaceae_2 0.1 0.0 0.1 0.4 0.1 0.4 0.0 0.0 0.1 0.1 0.2 0.2

OTU136;f__Peptostreptococcaceae_3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

OTU54;f__Ruminococcaceae_7 0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 1.0 0.3 0.1

OTU93;f__Ruminococcaceae_2 0.1 0.3 0.2 0.2 0.3 0.0 0.2 0.2 0.1 0.0 0.1 0.2

OTU103;f__Ruminococcaceae_3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

OTU107;f__Ruminococcaceae_8 0.3 0.5 0.3 0.0 0.1 0.0 0.6 0.2 0.3 0.3 0.1 0.0

OTU130;f__Ruminococcaceae_1 0.2 0.1 0.5 0.1 0.2 0.0 0.2 0.1 0.2 0.3 0.1 0.1

OTU133;f__Ruminococcaceae_5 0.1 0.2 0.1 0.0 0.1 0.0 0.3 0.2 0.2 0.0 0.0 0.0

OTU149;f__Ruminococcaceae_4 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2

OTU156;f__Ruminococcaceae_6 0.1 0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0

OTU46;g__Phascolarctobacterium 0.1 0.0 0.1 0.1 0.1 0.5 0.0 0.0 0.1 0.2 0.3 0.2

OTU21;f__Erysipelotrichaceae 0.2 0.1 0.3 0.9 0.2 3.5 0.1 0.2 0.1 0.3 1.1 1.3

Firmicutes 18.4 20.5 20.1 30.6 22.7 27.3 27.1 26.2 26.3 39.1 41.0 30.3

OTU96;g__Fusobacterium_2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.1

OTU97;g__Fusobacterium_1 2.3 3.7 3.6 3.8 4.9 1.5 3.7 3.5 5.8 1.6 3.0 2.6

OTU119;g__Fusobacterium_3 0.1 0.2 0.2 0.2 0.2 0.0 0.2 0.1 0.3 0.1 0.1 0.1

Fusobacteria 2.6 4.0 3.9 4.1 5.3 1.7 4.1 3.8 6.3 1.8 3.3 2.8

Table S3.1: Continued.  
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ER1‐3_0 E. regnans at 0hr CC1‐3_4 C. citrodora at Day 4 CT1‐3_7 Cotton at Day 7

ER1‐3_4 E. regnans at Day 4 CC1‐3_7 C. citrodora at Day 7 SC1‐3_4 Sugarcane mulch at Day 4

ER1‐3_7 E. regnans at Day 7 CT1‐3_4 Cotton at Day 4 SC1‐3_7 Sugarcane mulch at Day 7

Table S3.1: Continued.  

#OTU ID CT1_4 CT2_4 CT3_4 CT1_7 CT2_7 CT3_7 SC1_4 SC2_4 SC3_4 SC1_7 SC2_7 SC3_7

OTU66;f__Pirellulaceae 0.2 0.3 0.4 0.2 0.3 0.2 0.3 0.3 0.2 0.1 0.2 0.3

Planctomycetes 0.2 0.3 0.4 0.2 0.3 0.2 0.3 0.3 0.2 0.1 0.2 0.3

OTU79;o__Rickettsiales 0.3 0.3 0.0 0.0 4.9 0.0 0.1 0.3 0.0 0.0 0.0 0.0

OTU43;c__Betaproteobacteria 0.2 0.5 0.4 0.2 0.3 0.1 0.4 0.3 0.4 0.1 0.2 0.3

OTU65;f__Oxalobacteraceae 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.2 0.2

OTU13;f__Rhodocyclaceae;  g__TS34_2 1.5 1.0 1.6 0.6 1.4 0.3 1.1 2.4 1.1 0.5 0.7 1.5

OTU135;f__Rhodocyclaceae;  g__TS34_1 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.2 0.1 0.0 0.0 0.1

OTU39;f__Enterobacteriaceae_1 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0

OTU64;f__Enterobacteriaceae_2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0

OTU76;f__Enterobacteriaceae_3 0.4 0.0 0.0 0.0 0.2 4.6 0.5 0.1 0.0 0.1 0.8 0.0

OTU44;g__Acinetobacter 0.0 0.0 0.3 1.2 0.1 0.1 0.0 0.1 0.0 0.9 0.3 0.2

OTU33;g__Pseudomonas 0.0 0.0 0.0 0.4 0.0 0.6 0.0 0.0 0.0 0.0 1.0 0.1

OTU4;g__Stenotrophomonas;  s__geniculata 0.0 0.0 0.1 1.0 0.0 0.4 0.0 0.0 0.0 0.1 0.2 0.0

Proteobacteria 2.8 2.0 2.7 3.8 7.1 6.5 2.4 3.4 1.7 2.0 3.6 2.4

OTU1;g__Treponema_7 0.6 0.3 0.3 0.1 0.4 0.0 0.4 0.3 0.3 0.3 0.1 0.0

OTU2;g__Treponema_6 1.4 0.5 0.8 0.1 0.5 0.0 0.8 0.6 0.9 0.1 0.5 0.1

OTU5;g__Treponema_1 0.2 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

OTU7;g__Treponema_10 0.2 0.1 0.1 0.1 0.1 0.0 0.1 0.2 0.2 0.1 0.1 0.1

OTU15;g__Treponema_11 0.2 0.1 0.1 0.1 0.1 0.0 0.2 0.2 0.1 0.1 0.0 0.1

OTU58;g__Treponema_9 0.6 0.3 0.2 0.0 0.1 0.0 0.2 0.0 0.3 0.1 0.0 0.0

OTU62;g__Treponema_2 0.4 0.1 0.1 0.0 0.2 0.0 0.3 0.2 0.2 0.1 0.1 0.0

OTU91;g__Treponema_3 0.2 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.0

OTU104;g__Treponema_8 0.5 0.4 0.3 0.1 0.3 0.0 0.3 0.3 0.3 0.2 0.1 0.2

OTU146;g__Treponema_4 0.3 0.1 0.1 0.1 0.1 0.0 0.2 0.2 0.1 0.1 0.1 0.1

OTU157;g__Treponema_5 0.1 0.1 0.2 0.0 0.1 0.0 0.2 0.1 0.1 0.1 0.1 0.1

OTU152;g__Treponema;  s__primitia 0.2 0.2 0.1 0.1 0.1 0.0 0.2 0.2 0.1 0.1 0.1 0.0

OTU3;g__Treponema;  s__sp5 0.4 0.1 0.2 0.1 0.1 0.0 0.2 0.1 0.1 0.0 0.1 0.1

Spirochaetes 5.2 2.8 2.8 1.0 2.3 0.3 3.5 2.6 2.8 1.3 1.4 0.9

OTU16;f__Dethiosulfovibrionaceae;  g__TG5_2 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0

OTU87;f__Dethiosulfovibrionaceae;  g__TG5_1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 0.1

OTU30;g__Candidatus Tammella 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1

OTU127;g__Candidatus Tammella 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Synergistetes 0.4 0.2 0.3 0.2 0.3 0.1 0.3 0.3 0.2 0.1 0.2 0.2

OTU117;c__Mollicutes;  o__RsaHF231 0.7 0.6 1.5 2.9 1.4 2.3 0.4 0.5 1.1 0.9 1.1 1.1

Tenericutes 0.7 0.6 1.5 2.9 1.4 2.3 0.4 0.5 1.1 0.9 1.1 1.1

OTU83;f__Cerasicoccaceae 0.4 0.7 0.1 0.0 0.2 0.0 0.4 0.3 0.4 0.4 0.1 0.0

Verrucomicrobia 0.4 0.7 0.1 0.0 0.2 0.0 0.4 0.3 0.4 0.4 0.1 0.0
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Table S3.2: Relative abundances (≥0.2%) of gut profiles from three same colonies using different 
sequencing platforms. 

 

 

Bacterial phylum Pyrotag^ Itag* Pyrotag^ Itag* Pyrotag^ Itag*

Acidobacteria  0.3 1.3 0.8 1.1 0.0 0.3

Actinobacteria  0.8 1.0 2.2 1.8 2.8 3.8

Armatimonadetes  0.0 0.0 0.0 0.0 0.0 0.0

Bacteroidetes  6.4 4.9 14.7 17.3 21.2 8.8

Candidate phylum BD1 5  0.0 0.0 0.0 0.0 0.0 0.0

Candidate phylum BRC1  0.0 0.0 0.0 0.0 0.0 0.0

Candidate phylum OP11  0.0 0.3 0.1 0.1 0.0 0.4

Candidate phylum SR1  0.0 0.3 0.1 0.1 0.1 0.0

Candidate phylum TG3  13.0 3.9 2.0 1.5 1.4 0.0

Candidate phylum TM7  1.0 0.9 0.5 0.6 0.9 0.5

Chlamydiae  0.0 0.0 0.0 0.0 0.0 0.0

Chlorobi  0.0 0.0 0.0 0.0 0.1 0.2

Chloroflexi  0.0 0.0 0.0 0.0 0.1 0.1

Cyanobacteria  0.1 0.4 0.0 0.0 0.1 0.0

Deferribacteres  0.0 0.0 0.1 0.1 0.0 0.1

Deinococcus‐Thermus  0.0 0.0 0.0 0.0 0.0 0.0

Elusimicrobia  0.0 0.0 0.0 0.0 0.3 0.6

Fibrobacteres  10.0 9.1 0.1 0.1 0.1 0.0

Firmicutes  6.7 6.7 24.1 23.8 52.3 55.5

Fusobacteria  0.1 0.2 0.0 0.0 0.1 0.3

Gemmatimonadetes  0.0 0.0 0.0 0.0 0.0 0.0

Lentisphaerae  0.0 0.1 0.1 0.1 0.3 0.9

NPL‐UPA2  0.0 0.0 0.0 0.0 0.0 0.0

Nitrospirae  0.0 0.0 0.0 0.0 0.0 0.0

Planctomycetes  0.2 0.3 0.0 0.0 0.4 0.6

Proteobacteria  4.0 3.1 4.2 3.8 6.4 11.9

Spirochaetes  55.5 66.2 49.8 47.9 10.7 11.5

Synergistetes  0.1 0.7 1.0 1.1 0.5 2.4

Tenericutes  ‐ 0.1 ‐ 0.0 ‐ 0.0

Verrucomicrobia  0.0 0.2 0.0 0.0 0.1 0.8

WCHB1‐60  0.0 0.0 0.0 0.0 0.0 0.0

unknown  1.6 0.7 0.2 0.4 1.8 1.6

^ Dietrich et al., 2014

* Mikaelyan et al., 2015

Cubitermes ugandensisTrinervitermes spNasutitermes corniger 
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Appendix C: Supplementary figures and tables for Chapter 4 

 

 

Figure S4.1: Glycoside hydrolases (GHs) encoding genes with significant difference in mean 
proportion between lower and higher termites.  
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Figure S4.2: Distribution of metagenomic reads derived from termite host and microbial symbionts 
in three different gut DNAs extracted from A) whole gut sample, B) P3 gut content, C) filtered P3 
gut content.  
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Table S4.1: Sequencing, assembly, annotation and binning statistics of metagenomes. 

Binning

Metagenome Samples
Seqeuncing 

platform

No. of Illumina reads 

X2 (paired‐end)
No. of QC reads No. of QC bp

No. of bases went into 

contigs (bp)

No. of 

contigs*

Highest 

contig
N50 No. of coding bases

Percent of COG 

(%)

Population 

genomes

M IN012001 62,575,107 95,378,037 10,859,265,807 324,991,198 248,238 164,466 1,432 8,169,273 21.8 65
#

N MC05 84,465,475 121,159,426 12,287,121,832 326,777,528 298,626 110,183 1,070 10,597,450 14.6 101
#

P TN01
MiSeq         

(2 X 250 bp)
11,821,118 12,212,753 3,484,459,158 262,533,523 233,941 78,809 1,142 2,136,343 17.8 13

MD Whole gut1 19,680,253 36,672,375 3,455,608,272 85,903,917 69,432 142,742 1,391 1,208,144 12.9 ‐

MT TV022002 31,524,589 58,589,923 5,522,825,295 147,868,612 162,401 108,154 851 2,233,301 8.4 ‐

*Longer than 500bp
# 
Differential coverage binning is based on co‐assembly (see  Chapter 5 for detailed analysis)

HiSeq         

(2 X 100 bp)

AnnotationSequencing Assembly

HiSeq         

(2 X 100 bp)
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Family

(%) Gene count* (%) Gene count* (%) Gene count* (%) Gene count* (%) Gene count*

Cellulase

Endocellulases (active on internal β‐1,4 glucosidic bonds) EC 3.2.1.4

GH5 11.5 7796 11.8 6705 1.9 204 2.5 165 1.5 103

GH9 3.1 2121 2.9 1642 0.4 47 1.1 74 0.5 36

GH44 0.0 7 0.1 27 ‐ ‐ ‐ ‐ ‐ ‐

GH45 0.7 473 1.0 573 ‐ ‐ ‐ ‐ ‐ ‐

β‐glucosidases (producing glucose from cellobiose) EC3.2.1.21 

GH1 1.5 1005 1.4 784 0.5 56 ‐ ‐ 0.4 28

GH3 6.9 4632 7.1 4062 5.2 554 5.3 349 5.9 392

GH4 1.5 1039 1.9 1076 0.6 64 ‐ ‐ 0.3 22

GH16 0.8 568 0.4 204 1.1 121 1.1 70 1.0 66

GH17 ‐ ‐ ‐ ‐ 0.1 6 0.2 14 ‐ ‐

Cellobiose/chitobiose phosphorylase 0 0

GH84 ‐ ‐ 0.0 8 ‐ ‐ ‐ ‐ ‐ ‐

GH94 2.2 1460 2.2 1238 0.2 19 ‐ ‐ ‐ ‐

Subtotal 28.3 19100 28.7 16319 10.0 1070 10.2 672 9.6 646

Hemicellulases

Depolymerising

Endohemicellulase EC 3.2.1.8

GH8 2.1 1391 0.5 293 0.1 6 ‐ ‐ ‐ ‐

GH10 8.4 5700 4.5 2587 0.6 63 0.5 32 1.0 67

GH11 3.1 2082 2.6 1498 ‐ ‐ ‐ ‐ ‐ ‐

GH26 1.7 1170 0.2 130 0.4 44 0.5 32 0.2 11

GH28 0.3 216 0.3 177 1.5 159 1.8 118 1.6 109

GH53 1.4 935 0.9 498 0.1 8 0.3 18 0.2 12

GH113 0.1 96 0.1 72 ‐ ‐ ‐ ‐ ‐ ‐

Exohemicellulase EC 3.2.1.37/EC 3.2.1.25

GH39 1.5 1023 0.9 538 0.6 59 0.2 10 0.1 5

GH52 0.1 86 0.1 63 ‐ ‐ ‐ ‐ ‐ ‐

GH2 1.9 1252 1.3 730 3.1 334 5.5 364 4.9 330

GH120 0.0 21 1.3 709 0.7 73 0.5 33 0.3 23

GH35 0.1 55 0.1 43 0.4 42 0.8 50 0.5 32

GH42 0.8 549 0.9 521 0.5 49 0.2 13 0.2 15

GH116 0.2 139 0.3 157 0.7 74 1.2 78 1.0 64

Debranching 0

α‐glucuronidases EC 3.2.1.139 0

GH67 0.3 201 0.1 71 0.3 33 0.2 12 0.1 6

α‐arabinofurnosidases EC 3.2.1.55

GH43 6.0 4061 6.9 3935 4.8 514 5.8 379 5.9 392

GH51 0.9 623 1.2 669 1.4 154 1.6 104 1.4 90

GH54 ‐ 0.0 4 ‐ ‐ ‐ ‐ ‐

Mastotermes_DW  Mastotermes_TVPorotermesMicrocerotermes Nasutitermes 

Table S4.2: Glycoside hydrolases (GHs) identified in the metagenomes, organised by functional category.  
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Table S4.2: Continued. 

Family

(%) Gene count* (%) Gene count* (%) Gene count* (%) Gene count* (%) Gene count*

α‐galactosidases EC 3.2.1.22 0

GH4 1.5 1039 1.9 1076 0.6 64 ‐ ‐ 0.3 22

GH27 0.1 31 0.9 504 0.3 29 0.8 52 0.5 33

GH36 0.3 194 0.2 117 0.4 47 1.1 71 0.5 33

GH57 3.5 2356 3.7 2116 1.3 135 0.8 51 1.3 87

GH110 0.0 7 0.0 7 0.6 58 0.3 21 0.4 25

GH97 0.1 73 0.1 27 1.4 151 1.5 96 1.1 72

Other debranching 0

GH16 0.8 568 0.4 204 1.1 121 1.1 70 1.0 66

GH29 0.7 472 1.7 982 9.5 1017 5.8 383 5.4 362

GH74 0.1 84 0.0 8 ‐ ‐ ‐ ‐ ‐ ‐

GH31 0.8 551 2.3 1333 0.9 96 0.7 48 0.9 62

GH38 0.5 309 0.6 367 1.5 161 1.7 112 1.4 91

GH76 0.0 21 0.0 6 0.2 17 0.1 7 0.3 20

GH78 0.2 101 0.4 219 7.6 809 5.4 353 6.5 436

GH95 0.4 295 0.4 208 3.9 420 2.7 174 3.6 244

GH106 0.2 107 0.2 103 4.7 498 4.1 272 5.6 372

GH115 1.2 806 0.9 509 0.4 46 0.5 35 0.7 44

Subtotal 39.4 26614 35.9 20478 49.5 5281 45.4 2989 46.7 3127

Chitinase

GH18 1.7 1140 2.1 1211 0.6 60 0.8 50 1.0 64

GH19 0.1 38 0.0 12 0.0 2 ‐ ‐ ‐ ‐

GH20 1.1 717 2.1 1220 1.9 201 1.8 120 1.2 79

Subtotal 2.8 1895 4.3 2443 2.5 263 2.6 170 2.1 143

Others

GH7 ‐ ‐ ‐ ‐ 0.0 4 ‐ ‐ ‐ ‐

GH13 7.1 4772 7.8 4441 3.9 417 3.3 216 3.7 248

GH15 0.0 6 ‐ ‐ 0.2 25 ‐ ‐ 0.1 4

GH22 ‐ ‐ ‐ ‐ 0.0 3 ‐ ‐ ‐ ‐

GH23 6.5 4379 7.7 4381 4.4 473 4.1 267 6.6 441

GH24 0.3 171 0.1 78 1.0 111 1.4 93 ‐ ‐

GH25 0.1 80 0.3 167 1.2 129 1.2 80 0.2 13

GH30 5.4 3654 1.9 1094 0.8 81 1.0 68 0.8 54

GH32 0.1 86 0.1 58 0.8 86 0.6 38 0.7 45

GH33 0.1 68 0.4 203 0.1 11 0.6 39 0.5 32

GH37 ‐ ‐ ‐ ‐ 0.0 2 0.2 12 ‐ ‐

GH50 0.0 4 0.0 5 0.1 10 0.3 20 0.3 22

GH55 0.0 22 ‐ ‐ 0.0 4 0.1 7 0.1 5

GH65 0.3 187 0.2 94 0.6 61 0.2 10 ‐ ‐

GH66 0.0 4 ‐ ‐ 0.0 3 ‐ ‐ ‐ ‐

GH73 1.9 1288 2.3 1318 3.3 347 2.9 193 2.3 155

GH75 ‐ ‐ 0.0 8 ‐ ‐ ‐ ‐ ‐ ‐

GH77 2.8 1866 3.3 1888 0.8 83 1.3 86 1.6 110
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Table S4.2: Continued. 

 

Family

(%) Gene count* (%) Gene count* (%) Gene count* (%) Gene count* (%) Gene count*

GH85 ‐ ‐ ‐ ‐ 0.1 14 ‐ ‐ ‐ ‐

GH87 0.0 7 0.0 25 ‐ ‐ ‐ ‐ ‐ ‐

GH88 0.4 281 0.1 70 0.4 46 1.1 72 0.8 55

GH89 0.0 8 0.1 31 0.1 9 0.2 11 0.2 14

GH92 0.2 117 0.2 132 2.7 288 4.3 282 4.1 274

GH93 0.0 14 ‐ ‐ ‐ ‐ 0.2 12 0.1 6

GH98 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.1 5

GH99 0.1 67 0.1 46 0.9 99 0.8 49 0.7 48

GH101 0.0 7 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

GH102 0.0 15 ‐ ‐ 0.1 11 0.3 23 0.1 9

GH103 0.1 86 0.1 37 0.1 14 0.4 25 0.2 14

GH104 0.0 7 ‐ ‐ ‐ ‐ ‐ ‐ 1.5 103

GH105 0.5 330 0.2 137 1.0 109 0.7 44 1.0 68

GH108 0.0 13 0.1 37 0.1 14 ‐ ‐ ‐ ‐

GH109 3.7 2483 4.4 2502 12.2 1301 14.0 924 13.5 902

GH112 0.1 89 0.2 104 ‐ ‐ ‐ ‐ ‐ ‐

GH114 ‐ ‐ ‐ ‐ 0.1 10 0.1 7 ‐ ‐

GH117 ‐ ‐ ‐ ‐ 0.4 47 0.3 22 0.1 9

GH123 0.0 6 0.1 40 0.3 34 0.3 16 ‐ ‐

GH125 0.1 35 0.0 17 0.3 33 ‐ ‐ 0.3 19

GH127 0.5 356 1.9 1085 2.1 226 2.3 149 2.8 184

GH128 0.1 44 0.1 37 0.1 10 0.2 14 0.1 6

GH129 ‐ ‐ 0.0 8 0.0 2 ‐ ‐ ‐ ‐

GH130 1.5 992 1.7 938 1.2 123 0.7 46 0.3 23

Subtotal 31.9 21547 33.3 18980 39.8 4241 42.9 2827 42.8 2868

Total GHs

Total genes

* Gene count is the number of genes weighted by their individual read depth

69157 58221 10854 6658 6783

1195788 221831321011148012317 10464945
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Table S4.3: Major functions represented between the metagenomes based on Clusters of Orthologous Groups (COG). 

% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

ENERGY METABOLISM

Nitrogen metabolism

C COG2710 Nitrogenase molybdenum‐iron protein 0.13 2091 0.15 2072 0.12 422 0.11 163 0.18 319

E COG0347 Nitrogen regulatory protein PII  0.12 1899 0.17 2396 0.11 389 0.25 361 0.22 377

P COG1348 Nitrogenase subunit NifH (ATPase)  0.09 1458 0.12 1706 0.06 223 0.05 77 0.06 104

Hydrogen metabolism

C COG0374 Ni, Fe‐hydrogenase I large subunit 0.00 16 0.00 21 0.02 71 0.00 0 0.00 0

C COG1740 Ni, Fe‐hydrogenase I small subunit 0.00 32 0.00 21 0.02 74 0.00 0 0.00 7

C COG3261 Ni, Fe‐hydrogenase III large subunit 0.00 24 0.00 52 0.02 80 0.03 41 0.01 18

C COG3260 Ni, Fe‐hydrogenase III small subunit 0.00 24 0.00 31 0.02 86 0.01 16 0.01 22

C COG4074 H2‐forming N5, ,N10‐methylenetetrahydromethanopterin 

dehydrogenase

0.00 0 0.00 0 0.01 42 0.00 0 0.00 7

R COG4624 Iron only hydrogenase large subunit 0.05 801 0.08 1162 0.02 82 0.04 65 0.07 126

Homoacetogenesis

C COG1456 CO dehydrogenase/acetyl‐CoA synthase gamma subunit 

(corrinoid Fe‐S protein) 

0.02 401 0.01 115 0.01 29 0.00 0 0.01 18

C COG1152 CO dehydrogenase/acetyl‐CoA synthase alpha subunit  0.01 144 0.00 10 0.00 8 0.00 4 0.01 20

C COG1151 6Fe‐6S prismane cluster‐containing protein  0.00 72 0.01 209 0.01 38 0.03 43 0.01 18

C COG2069 CO dehydrogenase/acetyl‐CoA synthase delta subunit 

(corrinoid Fe‐S protein) 

0.01 168 0.01 73 0.00 15 0.00 6 0.01 18

C COG1614 CO dehydrogenase/acetyl‐CoA synthase beta subunit  0.01 96 0.01 126 0.01 32 0.01 19 0.01 18

C COG0243 Anaerobic selenocysteine‐containing  dehydrogenases 0.00 0 0.00 21 0.15 508 0.02 29 0.02 29

C COG1882 Pyruvate‐formate lyase  0.01 104 0.02 241 0.03 95 0.05 72 0.03 53

Pyruvate decarboxylation

C COG0280 Phosphotransacetylase  0.06 986 0.06 806 0.12 410 0.09 130 0.15 255

AMINO ACID METABOLISM

Amino acid transport

E COG3842 ABC‐type spermidine/putrescine transport systems 0.06 1010 0.09 1308 0.01 46 0.02 36 0.01 16

E COG4166 ABC‐type oligopeptide transport system 0.06 921 0.08 1130 0.03 101 0.01 19 0.03 53

E COG1176 ABC‐type spermidine/putrescine transport system 0.06 1050 0.07 973 0.01 46 0.02 30 0.04 67

E COG0601 ABC‐type dipeptide/oligopeptide/nickel transport systems 0.13 2131 0.19 2689 0.16 555 0.12 166 0.05 84

E COG4608 ABC‐type oligopeptide transport system 0.11 1723 0.12 1695 0.09 300 0.03 50 0.03 51

E COG1173 ABC‐type dipeptide/oligopeptide/nickel transport systems 0.12 2027 0.16 2292 0.13 452 0.10 148 0.03 60

E COG1115 Na+/alanine symporter  0.02 353 0.04 576 0.02 86 0.03 37 0.03 55

E COG0834 ABC‐type amino acid transport/signal transduction systems 0.12 1979 0.13 1790 0.13 433 0.03 47 0.03 58

Amino acid and amine oxidation

C COG1012 NAD‐dependent aldehyde dehydrogenases  0.04 609 0.06 837 0.11 393 0.13 190 0.09 160

P COG3546 Mn‐containing catalase  0.00 0 0.00 42 0.00 2 0.00 6 0.00 0

P COG0753 Catalase  0.00 32 0.00 10 0.03 107 0.01 20 0.01 13

E COG0665 Glycine/D‐amino acid oxidases (deaminating)  0.00 72 0.00 52 0.02 63 0.00 0 0.01 20

C COG2414 Aldehyde:ferredoxin oxidoreductase  0.00 72 0.00 10 0.02 53 0.00 0 0.00 0
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Table S4.3: Continued. 

% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

Ammonia transport and assimilation

P COG0004 Ammonia permease  0.03 513 0.04 586 0.06 212 0.09 127 0.11 197

E COG0069 Glutamate synthase domain 2  0.03 489 0.05 649 0.06 210 0.08 110 0.10 177

E COG0174 Glutamine synthetase  0.04 689 0.01 105 0.04 134 0.05 68 0.08 146

Urease

E COG0804 Urea amidohydrolase (urease) alpha subunit  0.01 96 0.02 241 0.01 46 0.03 44 0.01 13

O COG2371 Urease accessory protein UreE  0.01 144 0.01 126 0.00 2 0.00 0 0.00 0

O COG0830 Urease accessory protein UreF  0.01 168 0.02 283 0.00 0 0.01 10 0.00 0

E COG0831 Urea amidohydrolase (urease) gamma subunit  0.01 168 0.02 272 0.01 50 0.03 48 0.01 24

Arginine biosynthesis

E COG0002 Acetylglutamate semialdehyde dehydrogenase  0.07 1074 0.06 910 0.09 319 0.10 151 0.10 173

E COG1364 N‐acetylglutamate synthase (N‐acetylornithine 

aminotransferase) 

0.06 969 0.05 712 0.06 191 0.06 83 0.09 160

E COG0137 Argininosuccinate synthase  0.06 1002 0.05 764 0.08 271 0.10 140 0.15 266

Histidine  biosynthesis

E COG0040 ATP phosphoribosyltransferase  0.06 1010 0.07 1005 0.06 206 0.09 128 0.13 222

E COG0131 Imidazoleglycerol‐phosphate dehydratase  0.08 1242 0.10 1392 0.05 187 0.11 165 0.11 189

E COG0139 Phosphoribosyl‐AMP cyclohydrolase  0.03 553 0.05 733 0.06 200 0.10 143 0.12 209

E COG1387 Histidinol phosphatase and related hydrolases of the PHP 

family 

0.02 304 0.01 147 0.04 145 0.07 98 0.04 73

Isoleucine  biosynthesis

E COG0059 Ketol‐acid reductoisomerase  0.04 601 0.02 272 0.10 332 0.07 108 0.11 189

E COG0129 Dihydroxyacid dehydratase/phosphogluconate dehydratase  0.04 689 0.01 209 0.05 183 0.07 108 0.06 111

E COG0028 Thiamine pyrophosphate‐requiring enzymes [acetolactate 

synthase

0.09 1482 0.07 1046 0.09 300 0.10 148 0.12 206

E COG1171 Threonine dehydratase  0.00 32 0.04 513 0.02 63 0.00 0 0.01 11

Leucine  biosynthesis

E COG0059 Ketol‐acid reductoisomerase  0.04 601 0.02 272 0.10 332 0.07 108 0.11 189

C COG0473 Isocitrate/isopropylmalate dehydrogenase  0.04 657 0.05 659 0.08 271 0.08 116 0.15 255

E COG0129 Dihydroxyacid dehydratase/phosphogluconate dehydratase  0.04 689 0.01 209 0.05 183 0.07 108 0.06 111

E COG0066 3‐isopropylmalate dehydratase small subunit  0.05 785 0.07 973 0.07 233 0.04 57 0.10 177

E COG0028 Thiamine pyrophosphate‐requiring enzymes [acetolactate 

synthase

0.09 1482 0.07 1046 0.09 300 0.10 148 0.12 206

E COG0065 3‐isopropylmalate dehydratase large subunit  0.04 729 0.03 481 0.07 227 0.06 90 0.09 155

Methionine biosynthesis

E COG1410 Methionine synthase I 0.04 577 0.06 795 0.07 256 0.05 71 0.03 51

E COG0626 Cystathionine beta‐lyases/cystathionine gamma‐synthases 0.07 1138 0.09 1266 0.08 282 0.09 126 0.05 80

E COG0620 Methionine synthase II (cobalamin‐independent)  0.00 48 0.00 10 0.03 111 0.02 31 0.01 11
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Table S4.3: Continued. 

% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

Phenylalanine/tyrosine biosynthesis

E COG0169 Shikimate 5‐dehydrogenase  0.08 1234 0.15 2135 0.08 265 0.11 155 0.08 142

E COG0077 Prephenate dehydratase  0.04 697 0.07 963 0.05 158 0.09 134 0.13 231

E COG0710 3‐dehydroquinate dehydratase  0.02 345 0.01 147 0.01 42 0.01 13 0.00 4

Tryptophan biosynthesis

E COG0512 Anthranilate/para‐aminobenzoate synthases component II  0.08 1250 0.06 858 0.05 162 0.04 62 0.10 171

E COG0547 Anthranilate phosphoribosyltransferase  0.05 881 0.07 931 0.05 187 0.03 37 0.03 55

E COG0159 Tryptophan synthase alpha chain  0.07 1074 0.06 858 0.05 185 0.04 53 0.04 71

E COG0147 Anthranilate/para‐aminobenzoate synthases component I  0.06 961 0.04 597 0.05 164 0.04 61 0.04 69

E COG0169 Shikimate 5‐dehydrogenase  0.08 1234 0.15 2135 0.08 265 0.11 155 0.08 142

E COG0135 Phosphoribosylanthranilate isomerase  0.06 1050 0.09 1203 0.05 174 0.05 72 0.03 44

E COG0134 Indole‐3‐glycerol phosphate synthase  0.06 953 0.08 1151 0.05 189 0.04 55 0.02 35

E COG0710 3‐dehydroquinate dehydratase  0.02 345 0.01 147 0.01 42 0.01 13 0.00 4

E COG0133 Tryptophan synthase beta chain  0.05 793 0.06 879 0.03 99 0.03 38 0.03 58

Valine biosynthesis

E COG0059 Ketol‐acid reductoisomerase  0.04 601 0.02 272 0.10 332 0.07 108 0.11 189

E COG0129 Dihydroxyacid dehydratase/phosphogluconate dehydratase  0.04 689 0.01 209 0.05 183 0.07 108 0.06 111

E COG0436 Aspartate/tyrosine/aromatic aminotransferase  0.26 4158 0.30 4259 0.24 843 0.31 442 0.27 477

E COG0028 Thiamine pyrophosphate‐requiring enzymes [acetolactate 

synthase

0.09 1482 0.07 1046 0.09 300 0.10 148 0.12 206

Vitamin biosynthesis

Thiamine

H COG1060 Thiamine biosynthesis enzyme ThiH and related 

uncharacterized enzymes 

0.07 1090 0.07 952 0.12 399 0.13 182 0.15 255

H COG0422 Thiamine biosynthesis protein ThiC  0.02 248 0.01 199 0.09 317 0.07 104 0.03 55

H COG0352 Thiamine monophosphate synthase  0.04 601 0.06 869 0.07 237 0.07 103 0.11 193

H COG0476 Dinucleotide‐utilizing enzymes involved in molybdopterin 

and thiamine biosynthesis family 2 

0.10 1546 0.10 1413 0.09 328 0.06 91 0.06 109

H COG0351 Hydroxymethylpyrimidine/phosphomethylpyrimidine 

kinase 

0.03 489 0.05 753 0.03 105 0.03 39 0.03 49

Biotin

H COG0502 Biotin synthase and related enzymes  0.06 1026 0.08 1141 0.04 145 0.05 69 0.02 42

H COG0161 Adenosylmethionine‐8‐amino‐7‐oxononanoate 

aminotransferase 

0.01 160 0.01 84 0.01 44 0.01 10 0.00 4

H COG0156 7‐keto‐8‐aminopelargonate synthetase and related enzymes  0.03 537 0.02 230 0.09 326 0.09 127 0.14 240

Cobalamin biosynthesis

P COG0310 ABC‐type Co2+ transport system 0.05 865 0.03 408 0.05 158 0.03 38 0.02 27

H COG1429 Cobalamin biosynthesis protein CobN and related Mg‐

chelatases 

0.00 0 0.00 0 0.00 0 0.02 23 0.01 18

Inorganic phosphate metabolism

P COG1785 Alkaline phosphatase  0.02 361 0.02 314 0.01 40 0.02 32 0.01 22

P COG1283 Na+/phosphate symporter  0.06 969 0.07 1005 0.03 95 0.03 39 0.03 55

P COG0855 Polyphosphate kinase  0.06 969 0.05 722 0.03 111 0.03 44 0.02 27
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Table S4.3: Continued. 

% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

CARBOHYDRATE METABOLISM

Sugar transporter

G COG4213 ABC‐type xylose transport system 0.08 1362 0.11 1538 0.02 59 0.02 36 0.05 95

G COG0395 ABC‐type sugar transport system 0.50 8189 0.56 7901 0.17 584 0.07 103 0.06 98

G COG3090 TRAP‐type C4‐dicarboxylate transport system 0.00 16 0.00 21 0.03 118 0.00 0 0.01 22

G COG1653 ABC‐type sugar transport system 0.11 1859 0.16 2208 0.02 78 0.01 16 0.00 4

G COG4211 ABC‐type glucose/galactose transport system 0.01 232 0.02 220 0.00 13 0.00 4 0.00 0

G COG2211 Na+/melibiose symporter and related transporters  0.03 545 0.03 429 0.03 107 0.01 17 0.01 18

G COG1129 ABC‐type sugar transport system 0.08 1290 0.19 2648 0.10 342 0.04 61 0.01 16

G COG1175 ABC‐type sugar transport systems 0.31 4984 0.32 4552 0.08 261 0.03 41 0.04 78

G COG0738 Fucose permease  0.00 56 0.00 52 0.05 160 0.08 116 0.05 84

G COG1172 Ribose/xylose/arabinose/galactoside ABC‐type transport 

systems

0.05 769 0.15 2166 0.23 805 0.07 106 0.02 33

Glycolysis

G COG0205 6‐phosphofructokinase  0.18 2997 0.20 2794 0.10 338 0.12 173 0.20 346

G COG0837 Glucokinase  0.01 128 0.01 126 0.00 6 0.00 0 0.00 0

G COG0696 Phosphoglyceromutase  0.05 761 0.04 502 0.03 99 0.07 98 0.05 89

G COG3635 Predicted phosphoglycerate mutase 0.01 144 0.01 136 0.03 92 0.02 26 0.02 27

Pentose phosphate pathway

G COG0021 Transketolase  0.03 481 0.03 481 0.04 124 0.02 30 0.01 16

G COG0120 Ribose 5‐phosphate isomerase  0.04 713 0.06 816 0.02 74 0.01 8 0.03 58

G COG0362 6‐phosphogluconate dehydrogenase  0.03 545 0.01 188 0.01 50 0.00 0 0.01 20

G COG0363 6‐phosphogluconolactonase/Glucosamine‐6‐phosphate 

isomerase/deaminase 

0.06 905 0.06 827 0.03 118 0.10 138 0.06 111

G COG0698 Ribose 5‐phosphate isomerase RpiB  0.04 681 0.02 314 0.11 372 0.10 143 0.11 200

SIGNAL TRANSDUCTION

Chemotaxis

N COG0840 Methyl‐accepting chemotaxis protein  0.13 2187 0.09 1224 0.01 23 0.00 7 0.00 0

N COG2201 Chemotaxis response regulator containing a CheY‐like 

receiver domain and a methylesterase domain 

0.11 1771 0.13 1790 0.01 50 0.00 0 0.01 9

N COG1871 Chemotaxis protein; stimulates methylation of MCP proteins  0.02 280 0.01 115 0.01 32 0.00 0 0.00 0

N COG1352 Methylase of chemotaxis methyl‐accepting proteins  0.10 1546 0.14 1978 0.02 53 0.01 10 0.03 49

N COG0643 Chemotaxis protein histidine kinase and related kinases  0.04 721 0.07 921 0.00 13 0.01 13 0.00 0

N COG0835 Chemotaxis signal transduction protein  0.17 2676 0.15 2187 0.03 95 0.01 20 0.02 29

T COG0784 FOG: CheY‐like receiver  1.25 20303 1.37 19412 0.24 834 0.12 171 0.19 322

N COG3143 Chemotaxis protein  0.00 8 0.00 0 0.00 11 0.01 13 0.01 11

N COG1776 Chemotaxis protein CheC 0.03 441 0.02 324 0.02 57 0.00 0 0.00 0

OmpR

T COG0642 Signal transduction histidine kinase  2.00 32482 1.78 25210 0.50 1736 0.24 341 0.15 266

T COG0745 Response regulators consisting of a CheY‐like receiver 

domain and a winged‐helix DNA‐binding domain 

0.32 5120 0.25 3506 0.41 1401 0.21 309 0.13 224
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% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

NtrC

T COG3850 Signal transduction histidine kinase 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3851 Signal transduction histidine kinase 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4585 Signal transduction histidine kinase  0.01 224 0.01 199 0.01 42 0.03 44 0.03 55

T COG2197 Response regulator containing a CheY‐like receiver domain 

and an HTH DNA‐binding domain 

0.21 3461 0.12 1706 0.09 305 0.11 153 0.07 120

NarL

T COG3852 Signal transduction histidine kinase 0.00 0 0.00 0 0.00 11 0.01 13 0.01 13

T COG0642 Signal transduction histidine kinase  2.00 32482 1.78 25210 0.50 1736 0.24 341 0.15 266

S COG3304 Predicted membrane protein  0.00 24 0.00 42 0.00 15 0.02 24 0.02 29

CitB

T COG3290 Signal transduction histidine kinase regulating 

citrate/malate metabolism 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

K COG4565 Response regulator of citrate/malate metabolism  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

LytT/AgrA

T COG2972 Predicted signal transduction protein with a C‐terminal 

ATPase domain 

0.06 897 0.04 576 0.00 6 0.00 0 0.00 0

T COG3275 Putative regulator of cell autolysis  0.00 0 0.00 0 0.00 8 0.00 0 0.00 0

K COG3279 Response regulator of the LytR/AlgR family  0.07 1138 0.03 429 0.03 92 0.09 124 0.04 73

Other kinases, phosphatases

T COG2205 Osmosensitive K+ channel histidine kinase  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3920 Signal transduction histidine kinase  0.00 8 0.00 10 0.00 4 0.01 10 0.00 0

T COG4191 Signal transduction histidine kinase regulating C4‐

dicarboxylate transport system 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4192 Signal transduction histidine kinase regulating 

phosphoglycerate transport system 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4251 Bacteriophytochrome (light‐regulated signal transduction 

histidine kinase) 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4564 Signal transduction histidine kinase  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG5000 Signal transduction histidine kinase involved in nitrogen 

fixation and metabolism regulation 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG5002 Signal transduction histidine kinase  0.00 64 0.00 21 0.01 27 0.00 0 0.00 0

T COG0478 RIO‐like serine/threonine protein kinase fused to N‐

terminal HTH domain 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

R COG0515 Serine/threonine protein kinase  0.08 1218 0.06 858 0.07 246 0.07 105 0.08 142

T COG0317 Guanosine polyphosphate 

pyrophosphohydrolases/synthetases 

0.06 1042 0.05 764 0.07 231 0.08 121 0.05 84

T COG0394 Protein‐tyrosine‐phosphatase  0.01 144 0.01 73 0.01 34 0.00 0 0.00 4

T COG0467 RecA‐superfamily ATPases implicated in signal transduction  0.00 56 0.00 63 0.00 0 0.00 0 0.00 4

T COG0631 Serine/threonine protein phosphatase  0.04 625 0.03 429 0.05 170 0.07 103 0.05 80

G COG1762 Phosphotransferase system mannitol/fructose‐specific IIA 

domain (Ntr‐type) 

0.21 3421 0.25 3569 0.06 210 0.08 110 0.14 246

Porotermes Mastotermes_DW Mastotermes_TVCategory COG ID Subcategory Microcerotermes Nasutitermes
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Table S4.3: Continued. 

 
% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

T COG2062 Phosphohistidine phosphatase SixA  0.00 8 0.00 0 0.02 59 0.00 7 0.00 0

T COG2114 Adenylate cyclase 0.36 5865 0.31 4416 0.04 145 0.01 13 0.06 104

T COG2365 Protein tyrosine/serine phosphatase  0.01 216 0.01 105 0.01 21 0.00 4 0.00 0

T COG2453 Predicted protein‐tyrosine phosphatase  0.00 8 0.00 0 0.00 0 0.01 18 0.00 0

Other regulators, domains

T COG1551 Carbon storage regulator (could also regulate swarming and 

quorum sensing) 

0.06 1002 0.09 1224 0.02 53 0.00 4 0.02 33

T COG1639 Predicted signal transduction protein  0.07 1178 0.07 984 0.01 29 0.00 0 0.01 20

T COG1702 Phosphate starvation‐inducible protein PhoH 0.05 801 0.04 576 0.03 116 0.05 66 0.01 24

T COG1956 GAF domain‐containing protein  0.00 0 0.00 52 0.02 65 0.03 38 0.02 31

K COG1974 SOS‐response transcriptional repressors (RecA‐mediated 

autopeptidases) 

0.10 1570 0.11 1538 0.04 124 0.00 5 0.11 200

T COG2172 Anti‐sigma regulatory factor (Ser/Thr protein kinase)  0.08 1362 0.09 1203 0.03 95 0.01 14 0.01 11

T COG1716 FOG: FHA domain  0.00 24 0.01 178 0.01 40 0.06 88 0.01 20

T COG2198 FOG: HPt domain  0.01 112 0.02 251 0.00 2 0.00 0 0.00 0

T COG2199 FOG: GGDEF domain  0.35 5673 0.55 7796 0.09 307 0.09 133 0.04 69

T COG2200 FOG: EAL domain  0.05 745 0.11 1496 0.01 50 0.00 0 0.02 27

T COG2203 FOG: GAF domain  0.02 377 0.01 167 0.01 42 0.00 0 0.01 9

T COG2206 HD‐GYP domain  0.30 4863 0.29 4144 0.04 153 0.01 13 0.04 69

T COG2770 FOG: HAMP domain  0.00 8 0.00 10 0.00 0 0.00 0 0.00 0

T COG2905 Predicted signal‐transduction protein containing cAMP‐

binding and CBS domains 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3434 Predicted signal transduction protein containing EAL and 

modified HD‐GYP domains 

0.01 104 0.01 105 0.00 0 0.00 0 0.00 0

K COG3437 Response regulator containing a CheY‐like receiver domain 

and an HD‐GYP domain 

0.41 6690 0.36 5107 0.07 254 0.01 13 0.02 33

T COG3456 Uncharacterized conserved protein 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3480 Predicted secreted protein containing a PDZ domain  0.00 0 0.00 31 0.01 21 0.00 0 0.00 0

K COG3604 Transcriptional regulator containing GAF 0.04 641 0.01 73 0.02 74 0.03 44 0.02 42

T COG3605 Signal transduction protein containing GAF and PtsI domains  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3629 DNA‐binding transcriptional activator of the SARP family  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3706 Response regulator containing a CheY‐like receiver domain 

and a GGDEF domain 

0.14 2284 0.04 534 0.01 50 0.00 7 0.00 0

T COG3707 Response regulator with putative antiterminator output 

domain 

0.01 120 0.00 10 0.00 11 0.04 51 0.07 113

T COG3830 ACT domain‐containing protein  0.07 1066 0.06 816 0.03 120 0.03 45 0.03 53

T COG3887 Predicted signaling protein consisting of a modified GGDEF 

domain and a DHH domain 

0.00 8 0.00 42 0.01 38 0.00 0 0.00 0

T COG3947 Response regulator containing CheY‐like receiver and SARP 

domains 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4566 Response regulator  0.00 0 0.00 0 0.00 11 0.02 24 0.02 27

T COG4567 Response regulator consisting of a CheY‐like receiver 

domain and a Fis‐type HTH domain 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4725 Transcriptional activator 0.01 112 0.00 42 0.01 32 0.00 0 0.00 0

Category COG ID Subcategory Microcerotermes Nasutitermes Porotermes Mastotermes_DW Mastotermes_TV
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Table S4.3: Continued. 

 

% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

T COG4753 Response regulator containing CheY‐like receiver domain 

and AraC‐type DNA‐binding domain 

0.01 144 0.00 10 0.00 6 0.01 11 0.00 0

K COG4978 Transcriptional regulator 0.00 0 0.00 10 0.00 6 0.00 6 0.00 0

Sensors, domains

T COG1966 Carbon starvation protein 0.05 841 0.07 931 0.05 179 0.01 19 0.02 42

T COG2202 FOG: PAS/PAC domain  0.01 112 0.01 94 0.00 8 0.00 6 0.01 13

T COG3292 Predicted periplasmic ligand‐binding sensor domain  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3300 MHYT domain (predicted integral membrane sensor domain)  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3322 Predicted periplasmic ligand‐binding sensor domain  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3447 Predicted integral membrane sensor domain  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3448 CBS‐domain‐containing membrane protein  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3452 Predicted periplasmic ligand‐binding sensor domain  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG3614 Predicted periplasmic ligand‐binding sensor domain  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

K COG4219 Antirepressor regulating drug resistance 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4250 Predicted sensor protein/domain  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG4252 Predicted transmembrane sensor domain  0.00 0 0.00 21 0.00 4 0.00 0 0.00 0

T COG4936 Predicted sensor domain  0.00 64 0.00 0 0.00 2 0.01 17 0.00 0

T COG4943 Predicted signal transduction protein containing sensor and 

EAL domains 

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG5001 Predicted signal transduction protein containing a 

membrane domain

0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

T COG5278 Predicted periplasmic ligand‐binding sensor domain  0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

CELL MOTILITY

Flagellum structure and biogenesis

N COG1334 Uncharacterized flagellar protein FlaG  0.01 200 0.01 199 0.00 2 0.00 0 0.00 0

N COG1344 Flagellin and related hook‐associated proteins  0.21 3405 0.23 3234 0.02 67 0.01 14 0.06 111

N COG1419 Flagellar GTP‐binding protein  0.06 921 0.06 827 0.01 27 0.00 0 0.02 38

N COG1536 Flagellar motor switch protein  0.10 1683 0.11 1538 0.01 46 0.01 13 0.03 55

N COG1580 Flagellar basal body‐associated protein  0.05 737 0.08 1162 0.00 13 0.01 10 0.03 53

N COG1749 Flagellar hook protein FlgE  0.05 809 0.04 534 0.01 36 0.01 16 0.03 55

N COG1815 Flagellar basal body protein  0.09 1466 0.09 1287 0.02 59 0.01 10 0.01 13

N COG1843 Flagellar hook capping protein  0.07 1098 0.05 680 0.01 32 0.00 0 0.04 62

N COG1868 Flagellar motor switch protein  0.10 1562 0.07 1015 0.01 50 0.00 4 0.04 64

N COG1157 Flagellar biosynthesis/type III secretory pathway ATPase  0.05 889 0.07 1046 0.01 34 0.02 28 0.03 44

N COG1317 Flagellar biosynthesis/type III secretory pathway protein  0.05 881 0.05 774 0.01 21 0.01 13 0.02 38

N COG1766 Flagellar biosynthesis/type III secretory pathway lipoprotein  0.06 897 0.07 1026 0.00 11 0.01 13 0.01 20

N COG1886 Flagellar motor switch/type III secretory pathway protein  0.06 1002 0.07 984 0.01 29 0.00 6 0.04 62

N COG1987 Flagellar biosynthesis pathway 0.08 1290 0.08 1109 0.02 55 0.00 7 0.03 44

Porotermes Mastotermes_DW Mastotermes_TVCategory COG ID Subcategory Microcerotermes Nasutitermes
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Table S4.3: Continued. 

 

 

  

% of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy* % of COG 

genes^

Gene copy*

Pilus

N COG3063 Tfp pilus assembly protein PilF  0.00 0 0.00 0 0.00 6 0.00 5 0.00 0

N COG4972 Tfp pilus assembly protein 0.00 8 0.00 0 0.00 6 0.00 7 0.00 0

N COG3166 Tfp pilus assembly protein PilN  0.00 0 0.00 0 0.00 6 0.00 0 0.01 9

N COG3188 P pilus assembly protein 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0

N COG2165 Type II secretory pathway 0.02 304 0.02 324 0.03 90 0.03 37 0.01 16

N COG2804 Type II secretory pathway 0.06 897 0.03 387 0.04 147 0.02 30 0.00 4

N COG2805 Tfp pilus assembly protein 0.06 929 0.02 324 0.05 170 0.03 48 0.01 13

DEFENCE

V COG4096 Type I site‐specific restriction‐modification system 0.02 377 0.02 324 0.01 19 0.00 7 0.00 0

V COG4452 Inner membrane protein involved in colicin E2 resistance  0.03 553 0.02 251 0.02 71 0.01 14 0.00 0

V COG0841 Cation/multidrug efflux pump  0.10 1667 0.11 1538 0.11 385 0.13 190 0.14 251

V COG0286 Type I restriction‐modification system methyltransferase 

subunit 

0.10 1659 0.13 1831 0.07 250 0.03 42 0.01 13

V COG4823 Abortive infection bacteriophage resistance protein  0.01 96 0.02 230 0.00 4 0.01 10 0.00 4

V COG2720 Uncharacterized vancomycin resistance protein  0.00 56 0.00 10 0.01 19 0.00 0 0.00 0

V COG1619 Uncharacterized proteins 0.01 112 0.01 94 0.00 8 0.01 12 0.00 0

V COG0732 Restriction endonuclease S subunits  0.02 401 0.02 324 0.02 78 0.01 10 0.00 0

V COG1403 Restriction endonuclease  0.02 264 0.01 147 0.01 42 0.02 31 0.03 53

V COG1136 ABC‐type antimicrobial peptide transport system 0.38 6194 0.33 4688 0.40 1378 0.27 393 0.40 690

V COG1131 ABC‐type multidrug transport system 0.22 3541 0.17 2438 0.33 1156 0.11 158 0.22 386

V COG2274 ABC‐type bacteriocin/lantibiotic exporters 0.04 633 0.01 136 0.01 50 0.04 59 0.01 11

^ Percentage of total COG assigned genes 

* Gene count is the number of genes weighted by their individual read depth

Category COG ID Subcategory Microcerotermes Nasutitermes Porotermes Mastotermes_DW Mastotermes_TV
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Category KO ID Microcerotermes Nasutitermes Porotermes Mastotermes_DW Mastotermes_TV

Gene copy* Gene copy* Gene copy* Gene copy* Gene copy*

ENERGY METABOLISM

Nitrogen fixation

nitrogen fixation protein NifB K02585 52.6 58.6 28.6 72.1 68.9

nitrogenase molybdenum‐iron protein alpha chain nifD K02586 170.8 468.9 85.7 113.2 160.9

nitrogenase molybdenum‐cofactor synthesis protein nifE K02587 131.4 136.8 17.1 61.8 68.9

nitrogenase iron protein nifH K02588 197.1 254.0 51.4 72.1 103.4

nitrogen regulatory protein PII 1 nifDH1 K02589 92.0 39.1 17.1 41.2 46.0

nitrogen regulatory protein PII 1 nifDH1 K02590 92.0 19.5 17.1 41.2 68.9

nitrogenase molybdenum‐iron protein beta chain nifK K02591 249.7 508.0 74.3 164.7 126.4

Homoacteogenesis (Wood‐Ljungdahl pathway)

carbon‐monoxide dehydrogenase catalytic subunit [EC:1.2.99.2 1.2.7.4] K00198 52.6 117.2 5.7 10.3 46.0

formate‐‐tetrahydrofolate ligase [EC:6.3.4.3] K01938 39.4 214.9 34.3 61.8 103.4

methylenetetrahydrofolate dehydrogenase (NADP+) /               

methenyltetrahydrofolate cyclohydrolase [EC:1.5.1.5 3.5.4.9] K01491 105.1 175.8 68.5 113.2 229.8

methylenetetrahydrofolate reductase (NADPH) [EC:1.5.1.20] K00297 118.3 214.9 40.0 41.2 103.4

5‐methyltetrahydrofolate corrinoid [EC:2.1.1.258] K15023 0.0 0.0 11.4 30.9 11.5

acetyl‐CoA synthase [EC:2.3.1.169] K14138 13.1 39.1 11.4 61.8 11.5

acetyl‐CoA decarbonylase/synthase complex subunit gamma [EC:2.1.1.245] K00197 52.6 0.0 17.1 72.1 23.0

acetyl‐CoA decarbonylase/synthase complex subunit delta [EC:2.1.1.245] K00194 26.3 19.5 5.7 41.2 34.5

Pyruvate metabolism

phosphoenolpyruvate carboxylase [EC 4.1.1.31] K01595 0.0 0.0 5.7 0.0 11.5

oxaloacetate decarboxylase, alpha subunit [EC 4.1.1.3] K01571 52.6 214.9 34.3 20.6 80.4

oxaloacetate decarboxylase, beta subunit [EC 4.1.1.3] K01572 92.0 351.7 34.3 113.2 149.4

pyruvate carboxylase subunit A [EC 6.4.1.1] K01959 13.1 19.5 0.0 0.0 0.0

pyruvate carboxylase subunit B [EC 6.4.1.1] K01960 52.6 19.5 22.8 72.1 23.0

malate dehydrogenase [EC 1.1.1.37] K00024 52.6 19.5 28.6 30.9 80.4

malate dehydrogenase (oxaloacetate‐decarboxylating)(NADP+)[EC 1.1.1.40] K00029 13.1 19.5 17.1 41.2 68.9

fumarate hydratase, class I [EC 4.2.1.2] K01676 0.0 39.1 17.1 51.5 80.4

fumarate hydratase subunit alpha [EC 4.2.1.2] K01677 0.0 156.3 28.6 41.2 34.5

fumarate hydratase subunit beta [EC 4.2.1.2] K01678 26.3 97.7 17.1 41.2 34.5

formate C‐acetyltransferase [EC 2.3.1.54] K00656 39.4 39.1 62.8 205.9 160.9

pyruvate formate lyase activating enzyme [EC 1.97.1.4] K04069 210.3 254.0 62.8 175.0 57.5

putative pyruvate‐flavodoxin oxidoreductase [EC 1.2.7.‐] K03737 131.4 234.5 80.0 164.7 229.8

acetyl‐CoA synthetase [EC 6.2.1.1] K01895 262.8 175.8 22.8 102.9 80.4

phosphate acetyltransferase [EC 2.3.1.8] K00625 78.8 78.2 51.4 102.9 149.4

acetate kinase [EC 2.7.2.1] K00925 144.6 117.2 74.3 175.0 114.9

acetaldehyde dehydrogenase / alcohol dehydrogenase [EC 1.2.1.10 1.1.1.1] K04072 13.1 214.9 34.3 20.6 23.0

Table S4.4: Major functions represented between the metagenomes based on Kyoto Encyclopedia of Genes and Genomes (KEGG). 
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Table S4.4: Continued. 

Category KO ID Microcerotermes Nasutitermes Porotermes Mastotermes_DW Mastotermes_TV

Gene copy* Gene copy* Gene copy* Gene copy* Gene copy*

ENERGY METABOLISM

Nitrogen fixation

nitrogen fixation protein NifB K02585 52.6 58.6 28.6 72.1 68.9

nitrogenase molybdenum‐iron protein alpha chain nifD K02586 170.8 468.9 85.7 113.2 160.9

nitrogenase molybdenum‐cofactor synthesis protein nifE K02587 131.4 136.8 17.1 61.8 68.9

nitrogenase iron protein nifH K02588 197.1 254.0 51.4 72.1 103.4

nitrogen regulatory protein PII 1 nifDH1 K02589 92.0 39.1 17.1 41.2 46.0

nitrogen regulatory protein PII 1 nifDH1 K02590 92.0 19.5 17.1 41.2 68.9

nitrogenase molybdenum‐iron protein beta chain nifK K02591 249.7 508.0 74.3 164.7 126.4

Homoacteogenesis (Wood‐Ljungdahl pathway)

carbon‐monoxide dehydrogenase catalytic subunit [EC:1.2.99.2 1.2.7.4] K00198 52.6 117.2 5.7 10.3 46.0

formate‐‐tetrahydrofolate ligase [EC:6.3.4.3] K01938 39.4 214.9 34.3 61.8 103.4

methylenetetrahydrofolate dehydrogenase (NADP+) /               

methenyltetrahydrofolate cyclohydrolase [EC:1.5.1.5 3.5.4.9] K01491 105.1 175.8 68.5 113.2 229.8

methylenetetrahydrofolate reductase (NADPH) [EC:1.5.1.20] K00297 118.3 214.9 40.0 41.2 103.4

5‐methyltetrahydrofolate corrinoid [EC:2.1.1.258] K15023 0.0 0.0 11.4 30.9 11.5

acetyl‐CoA synthase [EC:2.3.1.169] K14138 13.1 39.1 11.4 61.8 11.5

acetyl‐CoA decarbonylase/synthase complex subunit gamma [EC:2.1.1.245] K00197 52.6 0.0 17.1 72.1 23.0

acetyl‐CoA decarbonylase/synthase complex subunit delta [EC:2.1.1.245] K00194 26.3 19.5 5.7 41.2 34.5

formate dehydrogenase major subunit [EC:1.2.1.2] K00123 0.0 0.0 45.7 82.4 34.5

Pyruvate metabolism

phosphoenolpyruvate carboxylase [EC 4.1.1.31] K01595 0.0 0.0 5.7 0.0 11.5

oxaloacetate decarboxylase, alpha subunit [EC 4.1.1.3] K01571 52.6 214.9 34.3 20.6 80.4

oxaloacetate decarboxylase, beta subunit [EC 4.1.1.3] K01572 92.0 351.7 34.3 113.2 149.4

pyruvate carboxylase subunit A [EC 6.4.1.1] K01959 13.1 19.5 0.0 0.0 0.0

pyruvate carboxylase subunit B [EC 6.4.1.1] K01960 52.6 19.5 22.8 72.1 23.0

malate dehydrogenase [EC 1.1.1.37] K00024 52.6 19.5 28.6 30.9 80.4

malate dehydrogenase (oxaloacetate‐decarboxylating)(NADP+)[EC 1.1.1.40] K00029 13.1 19.5 17.1 41.2 68.9

fumarate hydratase, class I [EC 4.2.1.2] K01676 0.0 39.1 17.1 51.5 80.4

fumarate hydratase subunit alpha [EC 4.2.1.2] K01677 0.0 156.3 28.6 41.2 34.5

fumarate hydratase subunit beta [EC 4.2.1.2] K01678 26.3 97.7 17.1 41.2 34.5

formate C‐acetyltransferase [EC 2.3.1.54] K00656 39.4 39.1 62.8 205.9 160.9

pyruvate formate lyase activating enzyme [EC 1.97.1.4] K04069 210.3 254.0 62.8 175.0 57.5

putative pyruvate‐flavodoxin oxidoreductase [EC 1.2.7.‐] K03737 131.4 234.5 80.0 164.7 229.8

acetyl‐CoA synthetase [EC 6.2.1.1] K01895 262.8 175.8 22.8 102.9 80.4

phosphate acetyltransferase [EC 2.3.1.8] K00625 78.8 78.2 51.4 102.9 149.4

acetate kinase [EC 2.7.2.1] K00925 144.6 117.2 74.3 175.0 114.9

acetaldehyde dehydrogenase / alcohol dehydrogenase [EC 1.2.1.10 1.1.1.1] K04072 13.1 214.9 34.3 20.6 23.0
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Category KO ID Microcerotermes Nasutitermes Porotermes Mastotermes_DW Mastotermes_TV

Gene copy* Gene copy* Gene copy* Gene copy* Gene copy*

CARBPHYDRATE METABOLISM

Glycolysis

hexokinase [EC:2.7.1.1] K00844 92.0 117.2 17.1 10.3 114.9

glucose‐6‐phosphate isomerase [EC:5.3.1.9] K01810 65.7 214.9 62.8 72.1 137.9

6‐phosphofructokinase 1 [EC:2.7.1.11] K00850 223.4 312.6 57.1 144.1 218.3

fructose‐bisphosphate aldolase, class I [EC:4.1.2.13] K11645 0.0 0.0 11.4 0.0 0.0

fructose‐bisphosphate aldolase, class II [EC:4.1.2.13] K01624 92.0 195.4 62.8 164.7 149.4

triosephosphate isomerase (TIM) [EC:5.3.1.1] K01803 249.7 449.4 62.8 82.4 160.9

glyceraldehyde 3‐phosphate dehydrogenase [EC:1.2.1.12] K00134 39.4 97.7 57.1 113.2 160.9

phosphoglycerate kinase [EC:2.7.2.3] K00927 39.4 78.2 62.8 123.5 149.4

2,3‐bisphosphoglycerate‐dependent phosphoglycerate mutase [EC:5.4.2.11] K01834 13.1 58.6 22.8 61.8 23.0

2,3‐bisphosphoglycerate‐independent phosphoglycerate mutase [EC:5.4.2.12] K15633 157.7 254.0 28.6 123.5 160.9

probable phosphoglycerate mutase [EC:5.4.2.12] K15634 0.0 58.6 28.6 20.6 0.0

2,3‐bisphosphoglycerate‐independent phosphoglycerate mutase [EC:5.4.2.12] K15635 13.1 39.1 22.8 72.1 68.9

enolase [EC:4.2.1.11] K01689 78.8 97.7 51.4 185.3 103.4

pyruvate kinase [EC:2.7.1.40] K00873 39.4 117.2 28.6 82.4 103.4

phosphoglucomutase [EC:5.4.2.2] K01835 52.6 254.0 28.6 123.5 206.8

Galactose metabolism

alpha‐glucosidase [EC 3.2.1.20] K01187 13.1 58.6 74.3 92.7 137.9

beta‐galactosidase [EC 3.2.1.23] K01190 105.1 175.8 114.2 226.5 459.7

UDP‐glucose 4‐epimerase [EC 5.1.3.2] K01784 170.8 312.6 62.8 133.8 126.4

UDP‐galactopyranose mutase [EC 5.4.99.9] K01854 13.1 58.6 17.1 20.6 57.5

alpha‐galactosidase [EC 3.2.1.22] K07407 39.4 19.5 45.7 102.9 80.4

UDP‐glucose 4‐epimerase [EC 5.1.3.2] K17716 0.0 0.0 5.7 0.0 0.0

Chitin metabolism

chitinase [EC 3.2.1.14] K01183 52.6 97.7 5.7 20.6 0.0

beta‐N‐acetylhexosaminidase [EC 3.2.1.52] K01207 118.3 312.6 28.6 10.3 46.0

N‐acetylglucosamine‐1‐P‐mutase (Phosphomannomutase) [EC 5.4.2.8] K01840 39.4 78.2 11.4 82.4 91.9

glucokinase [EC 2.7.1.2] K00845 26.3 58.6 34.3 175.0 68.9

glucosamine‐6‐phosphate deaminase [EC 3.5.99.6] K02564 39.4 214.9 34.3 133.8 172.4

CELL MOTILITY

Flagellar assembly

flagella basal body P‐ring formation protein FlgA K02386 13.1 78.2 0.0 10.3 11.5

flagellar basal‐body rod protein FlgB K02387 131.4 214.9 0.0 0.0 23.0

flagellar basal‐body rod protein FlgC K02388 144.6 175.8 5.7 20.6 11.5

Table S4.4: Continued.  
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Category KO ID Microcerotermes Nasutitermes Porotermes Mastotermes_DW Mastotermes_TV

Gene copy* Gene copy* Gene copy* Gene copy* Gene copy*

CELL MOTILITY

flagellar basal‐body rod modification protein FlgD K02389 39.4 136.8 5.7 0.0 23.0

flagellar hook protein FlgE K02390 131.4 214.9 11.4 10.3 34.5

flagellar basal‐body rod protein FlgF K02391 0.0 0.0 0.0 0.0 0.0

flagellar basal‐body rod protein FlgG K02392 354.8 468.9 11.4 30.9 34.5

flagellar L‐ring protein precursor FlgH K02393 0.0 39.1 0.0 10.3 23.0

flagellar P‐ring protein precursor FlgI K02394 0.0 39.1 5.7 0.0 11.5

flagellar hook‐associated protein 1 FlgK K02396 197.1 254.0 11.4 10.3 34.5

flagellar hook‐associated protein 3 FlgL K02397 131.4 293.1 0.0 0.0 0.0

negative regulator of flagellin synthesis FlgM K02398 78.8 58.6 5.7 0.0 11.5

flagellar biosynthesis protein FlhA K02400 276.0 449.4 17.1 41.2 34.5

flagellar biosynthetic protein FlhB K02401 92.0 254.0 22.8 10.3 23.0

flagellar transcriptional activator FlhC K02402 0.0 0.0 0.0 0.0 0.0

flagellar transcriptional activator FlhD K02403 0.0 0.0 0.0 0.0 0.0

flagellin, FliC K02406 262.8 605.7 45.7 10.3 46.0

flagellar hook‐associated protein 2, FliD K02407 78.8 214.9 11.4 10.3 23.0

flagellar hook‐basal body complex protein FliE K02408 131.4 175.8 5.7 10.3 0.0

flagellar M‐ring protein FliF K02409 157.7 254.0 11.4 41.2 23.0

flagellar motor switch protein FliG K02410 328.5 605.7 40.0 10.3 23.0

flagellar assembly protein FliH K02411 118.3 195.4 5.7 10.3 11.5

flagellum‐specific ATP synthase [EC:3.6.3.14] K02412 157.7 156.3 17.1 10.3 11.5

flagellar FliJ protein K02413 105.1 136.8 11.4 10.3 23.0

flagellar hook‐length control protein FliK K02414 0.0 19.5 0.0 0.0 0.0

flagellar motor switch protein FliM K02416 249.7 214.9 0.0 0.0 11.5

flagellar motor switch protein FliN/FliY K02417 170.8 293.1 0.0 0.0 11.5

flagellar protein FliO/FliZ K02418 92.0 117.2 0.0 0.0 11.5

flagellar biosynthetic protein FliP K02419 118.3 156.3 11.4 0.0 11.5

flagellar biosynthetic protein FliQ K02420 78.8 156.3 11.4 0.0 23.0

flagellar biosynthetic protein FliR K02421 92.0 175.8 17.1 10.3 0.0

flagellar protein FliS K02422 144.6 175.8 0.0 0.0 11.5

flagellar protein FliT K02423 0.0 0.0 5.7 0.0 0.0

flagellar motor A MotA K02556 131.4 351.7 5.7 20.6 34.5

flagellar motor B MotB K02557 105.1 234.5 17.1 20.6 34.5

flagella synthesis protein FlgN K20399 0.0 0.0 0.0 0.0 0.0

Bacterial chemotaxis

methyl‐accepting chemotaxis protein K03406 2707.1 6486.7 120.0 92.7 114.9

chemotaxis protein CheD K03411 13.1 19.5 5.7 0.0 0.0

chemotaxis protein methyltransferase CheR K00575 170.8 390.8 5.7 0.0 57.5

Table S4.4: Continued. 
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Table S4.4: Continued. 

 

Category KO ID Microcerotermes Nasutitermes Porotermes Mastotermes_DW Mastotermes_TV

Gene copy* Gene copy* Gene copy* Gene copy* Gene copy*

CELL MOTILITY

two‐component system, chemotaxis family, response regulator CheB K03412 170.8 429.8 0.0 0.0 46.0

two‐component system, chemotaxis family, sensor kinase CheA K03407 315.4 508.0 11.4 10.3 23.0

purine‐binding chemotaxis protein CheW K03408 223.4 429.8 17.1 0.0 34.5

two‐component system, chemotaxis family, response regulator CheV K03415 13.1 19.5 0.0 0.0 23.0

two‐component system, chemotaxis family, response regulator CheY K03413 223.4 273.5 17.1 10.3 23.0

chemotaxis protein CheC K03410 13.1 19.5 0.0 0.0 0.0

chemotaxis protein CheZ K03414 0.0 0.0 5.7 10.3 0.0

chemotaxis protein CheX K03409 223.4 254.0 34.3 10.3 23.0

* Gene count is the number of genes weighted by their individual read depth
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Appendix D: Supplementary figures and tables for Chapter 5 

 

Figure S5.1: A maximum likelihood phylogenetic analysis of two CBM families; A) CBM4 and B) 
CBM46 > 722aa. Carbohydrate binding module (CBM) protein sequences were aligned using 
MAFFT v7.221 and phylogenetic trees were constructed from 2,256 finished genomes from the 
IMG database (Markowitz et al., 2009) using Fasttree v2.1.7. The trees are unrooted and only the 
closest neighbors of the Fibrobacteres (in red) are shown with corresponding IMG IDs in brackets. 
Bootstrap support for interior nodes is indicated by dots according to the legend at the top left of the 
figure. 
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Figure S5.2: A maximum likelihood phylogenetic analysis of fibro-slime domain proteins >600aa. 
Fibro-slime domain protein sequences were aligned using MAFFT v7.221 and phylogenetic trees 
were constructed from 2,256 finished genomes from the IMG database (Markowitz et al., 2009) 
using Fasttree v2.1.7. The tree is rooted with MC_77 and corresponding IMG IDs shown in 
parentheses. Bootstrap support for interior nodes is indicated by dots according to the legend at the 
top left of the figure. 

 

  



221 
 

 

 

Figure S5.3: A maximum likelihood phylogenetic analysis of proteins encoding cytochrome bd-I 
ubiquinol oxidase; A) subunit 1 and B) subunit 2 > 341aa. Cytochrome bd-I ubiquinol oxidase 
protein sequences were aligned using MAFFT v7.221 and phylogenetic trees were constructed from 
2,256 finished genomes from the IMG database (Markowitz et al., 2009) using Fasttree v2.1.7. The 
trees are unrooted and only the closest neighbors of the Fibrobacteres (in red) are shown with 
corresponding IMG IDs in brackets. Bootstrap support for interior nodes is indicated by dots 
according to the legend at the top left of the figure. 
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Figure S5.4: A maximum likelihood phylogenetic analysis of protein encoding nitrogenase; A) NifD and B) NifK > 458aa. Nitrogenase protein
sequences were aligned using MAFFT v7.221 and phylogenetic trees were constructed from 2,256 finished genomes from the IMG database
(Markowitz et al., 2009) using Fasttree v2.1.7. The trees are unrooted and only the closest neighbors of the Fibrobacteres (in red) are shown with
corresponding IMG IDs in brackets. Bootstrap support for interior nodes is indicated by dots according to the legend at the top left of the figure. 
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Figure S5.5: Gene neighborhoods of nitrogen fixing genes in the families A) Fibrobacteraceae and 
B) Fibromonadaceae. Genomes containing nif genes are indicated by dotted boxed Ns to the left of 
the figure. Colors indicate orthologous gene families and syntenous blocks of genes are highlighted 
by boxing; horizontal boxes denote nif genes and vertical boxes are common flanking region. 
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Figure S5.6: Relative abundance of KEGG ortholog (KO) functional categories across the 
investigated Fibrobacteres genomes. Genomes are ordered by similarity of relative abundance 
patterns.
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Figure S5.7: Methyl-accepting chemotaxis proteins (MCP) encoded in the genomes of family Fibromonadaceae (panels A-C) and class 
Chitinivibrionia (panels D-E) predicted with InterProScan5 (Jones et al., 2014). Protein domains are shown as colored blocks. 
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Figure S5.7: Continued. 
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Figure S5.7: Continued. 
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Figure S5.8: A maximum likelihood phylogenetic analysis of protein encoding flagellar genes; A) 
Flagellar biosynthetic proteins (FlhA), B) Flagellar motor proteins (FlhB), C) RNA polymerase 
sigma factor for flagellar (MotA),  D) Flagellar hook-basal body complex (FliA). Flagellar protein 
sequences were aligned using MAFFT v7.221 and phylogenetic trees were constructed from 2,256 
finished genomes from the IMG database (Markowitz et al., 2009) using Fasttree v2.1.7. The trees 
are unrooted and only the closest neighbors of the Fibrobacteres (in red) are shown with 
corresponding IMG IDs in brackets. Bootstrap support for interior nodes is indicated by dots 
according to the legend at the top left of the figure. The length of amino acid sequences ranges from 
339 to 957. 
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Figure S5.8: Continued. 
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Table S5.1: Metagenome sequencing statistics. 

Sample ID Shotgun sequence 
(Gb) (2x100bp)

Number of 

scaffoldsa 

Largest 
contig 

N50a Number of population 

genomesb

Habitat

IN01201 18.8 804,409 165,423 1,375 3 (65) Termite gut
IN01202 17.7 Termite gut
IN01041 17.9 Termite gut
IN01042 19.1 Termite gut
MC05 25.3 607,574 89,930 1,084 1 (102) Termite gut
MC06 26.6 Termite gut
MC07 19.2 Termite gut
AD1_T1 33.2 494,042 815,228 2,999 3 (100) Anaerobic digestor
AD2_T1 27.3 Anaerobic digestor
AD3_T1 16.5 Anaerobic digestor
AD1_T2 10.9 Anaerobic digestor
AD2_T2 14.2 Anaerobic digestor
AD3_T2 9.2 Anaerobic digestor

SRR948090 9.9 78,410 423,553 2,425 1(36) Sheep rumen

a
contigs ≥ 500bp

b
Fibrobacteres (total)
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Table S5.2: Shared orthologous genes and average amino acid identities (AAI) for all genome 
pairs, and proposed taxonomic rank relationships based on Kostantinidis & Tiedje, 2005. 

 

Genome Id A Genes in A Genome Id B Genes in B No. orthologous genes Mean AAI

Intra Domain
C. alkaliphilus  ACht1 2363 AD_80 2782 387 43.7
C. alkaliphilus  ACht1 2363 AD_111 3039 385 44.1
C. alkaliphilus  ACht1 2363 SR 2863 412 44.5
C. alkaliphilus  ACht1 2363 F. succinogenes  S85 3126 427 44.7
AD_80 2782 MC_77 2254 307 45.0
C. alkaliphilus  ACht1 2363 IN01_307 2731 406 45.2
C. alkaliphilus  ACht1 2363 IN01_221 3284 416 45.3
AD_111 3039 MC_77 2254 305 45.3
C. alkaliphilus  ACht1 2363 IN01_31 3298 401 45.4
C. alkaliphilus  ACht1 2363 AD_312 2362 427 45.6

Intra Phylum
MC_77 2254 SR 2863 349 46.3
F. succinogenes  S85 3126 MC_77 2254 345 46.5
AD_312 2362 MC_77 2254 319 47.2
IN01_307 2731 MC_77 2254 367 48.2
MC_77 2254 IN01_31 3298 373 48.7
IN01_221 3284 MC_77 2254 377 48.8
C. alkaliphilus  ACht1 2363 MC_77 2254 499 49.0

Intra Class
AD_111 3039 IN01_31 3298 781 53.7
AD_80 2782 IN01_31 3298 777 53.8
AD_80 2782 IN01_307 2731 761 53.9
AD_80 2782 IN01_221 3284 815 54.0
AD_111 3039 IN01_307 2731 762 54.1
AD_111 3039 IN01_221 3284 819 54.1
IN01_31 3298 SR 2863 842 54.3
F. succinogenes  S85 3126 IN01_307 2731 845 54.4
F. succinogenes  S85 3126 IN01_31 3298 845 54.4
F. succinogenes  S85 3126 IN01_221 3284 886 54.5
IN01_307 2731 SR 2863 827 54.7
IN01_221 3284 SR 2863 883 54.8
AD_312 2362 IN01_221 3284 894 55.4
AD_312 2362 IN01_31 3298 849 55.5
AD_312 2362 IN01_307 2731 832 55.6

Intra Order
AD_111 3039 AD_312 2362 1439 61.1
AD_312 2362 AD_80 2782 1392 61.3
AD_312 2362 SR 2863 1518 61.5
AD_312 2362 F. succinogenes  S85 3126 1481 61.7

Intra Family
AD_111 3039 F. succinogenes  S85 3126 1903 73.1
AD_80 2782 F. succinogenes  S85 3126 1877 73.2
F. succinogenes  S85 3126 SR 2863 1921 73.5

Intra Genus
AD_111 3039 SR 2863 1917 75.8
AD_80 2782 SR 2863 1851 76.3
IN01_307 2731 IN01_31 3298 1420 79.0
IN01_221 3284 IN01_307 2731 1520 79.9
IN01_221 3284 IN01_31 3298 1586 83.2
AD_111 3039 AD_80 2782 2003 84.9
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Table S5.3: Presence/absence of genes in the Fibrobacteres genomes organised into functional pathways and modules depicted in Figure 2. 

 

F. succinogenes   AD_80 AD_111 SR_36 AD_312 IN01_31 IN01_221 IN01_307 C. alkaliphilus MC_77 
S85 ACht1

Embden-Meyerhof-Parnas(glycolysis)
Glucokinase EC 2.7.1.2 GLK 1 1 1 1 1 1 1 - 1 1
Phosphoglucomutase EC 5.4.2.2 PGM - - - - - - - - 1 1
Glucose-6-phosphate isomerase EC 5.3.1.9 G6P 1 1 1 1 1 - 1 - 1 1
6-phosphofructokinase EC 2.7.1.11 PFK 1 1 1 1 1 1 2 2 2 1
fructose-bisphosphate aldolase EC 4.1.2.13 FBA 1 - - 1 1 1 1 1 1 1
triosephosphate isomerase EC 5.3.1.1 TPI 1 1 1 1 1 1 1 - 1 1
glyceraldehyde 3-phosphate dehydrogenase EC 1.2.1.12 G3P 1 - - 1 1 1 1 1 2 1
phosphoglycerate kinase EC 2.7.2.3 PGK 1 1 1 1 1 1 1 1 1 -
phosphoglycerate mutase EC 5.4.2.12 PGM 1 1 1 1 1 1 1 1 1 -
enolase EC 4.2.1.11 - 1 1 1 - 1 1 1 1 1 -
pyruvate kinase EC 2.7.1.40 PK - - - - - - - - 1 1
Chitin catabolic pathway
chitinase [EC 3.2.1.14] K01183 1 1 - 1 1 - - - - 1
beta-N-acetylhexosaminidase [EC 3.2.1.52] K01207 BNAH 2 2 2 1 1 - - - - -
beta-N-acetylglucosaminidase pfam07555 BNAG - - - - - - - - 1 -
Cellobiose/Cellobiose phosphorylase GH94 CBP 1 1 1 1 1 5 1 1 2 1
N-acetylglucosamine-1-P-mutase (Phosphomannomutase)      [EC 
5.4.2.8] K01840 AGM 3 3 3 3 3 - 2 2 1 1
N-acetylglucosamine-6-phosphate deacetylase             
(Ribonucleotide monophosphatase NagD, HAD superfamily) COG0647 NAG 2 2 2 2 2 1 1 1 2 -
Polysaccharide deacetylase pfam01522 PD 3 1 1 1 1 2 2 2 9 -
exo-1,4-beta-D-glucosaminidase K15855 BGA - - - - - - - - 1 -
glucokinase [EC 2.7.1.2] K00845 GLK 1 1 1 1 1 1 1 - 1 1
glucosamine-6-phosphate deaminase [EC 3.5.99.6] K02564 G6PD - - - - - - - - 1 -
Pyruvate metabolism
Phosphoenolpyruvate carboxykinase [EC 4.1.1.32] pfam00821 PEPC 1 1 2 1 1 1 2 1 - -
phosphoenolpyruvate carboxylase [EC 4.1.1.31] K01595 PEPC - - - - - - - - 1 -
oxaloacetate decarboxylase, alpha subunit [EC 4.1.1.3] K01571 - - - - - - - - - 1 1
oxaloacetate decarboxylase, beta subunit [EC 4.1.1.3] K01572 - 1 1 1 1 1 1 1 1 1 -
pyruvate carboxylase subunit A [EC 6.4.1.1] K01959 - - - - - - 1 1 - - -
pyruvate carboxylase subunit B [EC 6.4.1.1] K01960 - 1 1 - 1 1 1 - 1 1 -
malate dehydrogenase [EC 1.1.1.37] K00024 - 1 - - 1 1 1 1 1 - -
malate dehydrogenase (oxaloacetate-decarboxylating)(NADP+)      
[EC 1.1.1.40] K00029 - 1 1 1 1 1 - - - - -
fumarate hydratase, class I [EC 4.2.1.2] K01676 - 1 1 1 1 1 1 1 1 - -
fumarate hydratase subunit alpha [EC 4.2.1.2] K01677 - 1 - - - - - - - 1 1
fumarate hydratase subunit beta [EC 4.2.1.2] K01678 - 1 - - - - - - - 1 1
formate C-acetyltransferase [EC 2.3.1.54] K00656 FCA 1 1 1 1 1 - - - 1 -
pyruvate formate lyase activating enzyme [EC 1.97.1.4] K04069 - 1 1 1 1 2 1 1 - 3 2
putative pyruvate-flavodoxin oxidoreductase [EC 1.2.7.-] K03737 - 1 - - 1 1 1 1 1 1 -
acetyl-CoA synthetase [EC 6.2.1.1] K01895 ACS 1 1 1 1 1 1 - - - -
phosphate acetyltransferase [EC 2.3.1.8] K00625 PAT - - - - - - - - 1 -
acetate kinase [EC 2.7.2.1] K00925 AK 1 1 1 1 1 - 1 1 1 -
acetaldehyde dehydrogenase / alcohol dehydrogenase                      
[EC 1.2.1.10 1.1.1.1] K04072 AAD - - - - - - - - 1 -
aldehyde dehydrogenase (NAD+) [EC 1.2.1.3] K00128 ADH 1 1 1 1 1 - - - 1 -
acylphosphatase [EC 3.6.1.7] K01512 - - - - - - - - - 1 1
pyruvate, orthophosphate dikinase [EC 2.7.9.1] K01006 - - - - - 1 1 1 1 1 -
pyruvate, water dikinase [EC 2.7.9.2] K01007 - - - - - - - - - 1 -

Functional decription Function ID Symbol

Fibrobacteria Chitinivibrionia

Fibrobacteraceae Fibromonadaceae
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Table S5.3: Continued.  

 

F. succinogenes   AD_80 AD_111 SR_36 AD_312 IN01_31 IN01_221 IN01_307 C. alkaliphilus MC_77 
S85 ACht1

Pentose phosphate pathway
glucose-6-phosphate 1-dehydrogenase EC 1.1.1.49 - - - - - - - - - 1 -
6-phosphogluconolactonase EC 3.1.1.31 - - - - - - - - - 1 -
6-phosphogluconate dehydrogenase EC 1.1.1.44 - - - - - - - - - 1 -
ribulose-phosphate 3-epimerase EC 5.1.3.1 RPE 1 1 1 1 1 - 1 2 1 1
ribose 5-phosphate isomerase EC 5.3.1.6 RPI 1 - 1 1 1 1 1 1 1 -
transketolase EC 2.2.1.1 - 1 1 1 1 1 1 1 1 1 1
transaldolase EC 2.2.1.2 - - - - - - - - - 1 -
ribose-phosphate pyrophosphokinase EC 2.7.6.1 RPP 1 1 1 1 1 1 1 1 1 1
Tricarboxylic acid cycle (TCA)/Reverse TCA cycle
Citrate (Si)-synthase EC 2.3.3.1 CS 1 1 1 1 2 1 2 1 1 1
Aconitate hydratase EC 4.2.1.3 ACH 1 1 1 1 1 1 1 1 2 1
Isocitrate dehydrogenase (NADP(+)) EC 1.1.1.42 IDH 1 1 1 1 1 1 1 1 1 1
Isocitrate dehydrogenase (NAD(+)) EC 1.1.1.41 IDH - - - - - - - - 1 -
2-oxoglutarate dehydrogenase EC 1.2.4.2 - - - - - - - - - - -
Dihydrolipoyllysine-residue succinyltransferase EC  2.3.1.61 - - - - - - - - - - -
2-oxoglutarate synthase EC 1.2.7.3  2OS - - - - - - 1 - 2 2
Succinyl-CoA-synthase EC 6.2.1.5 SCS - - - - - - - - - -
Succinate dehydrogenase (quinone) EC 1.3.5.1 SDH 3 1 2 2 2 2 2 2 - -
Fumarase/Fumarate hydratase EC 4.2.1.2 FH 3 1 1 1 1 1 1 1 2 2
Malate dehydrogenase EC 1.1.1.37 MDH 1 - - 1 1 1 1 1 - -
Malic enzyme COG0281 ME 1 1 1 1 1 - - - 1 1
Fumarate redutase (quinol) EC 1.3.1.6 - - - - - - - - - - -
Glycoxylate cycle
Malate synthase EC 2.3.3.9 - - - - - - - - - - -
Isocitrate lyase EC 4.1.3.1 - - - - - - - - - - -
fermentative product
Electron Transport Chain
succinate dehydrogenase flavoprotein subunit [EC 1.3.5.1] K00239 - 1 - 1 1 1 1 1 1 - -
succinate dehydrogenase iron-sulfur subunit [EC 1.3.5.1] K00240 - 2 1 1 1 1 1 1 1 - -
succinate dehydrogenase cytochrome b556 subunit K00241 - 1 - 1 1 1 1 1 1 - -
NADH-quinone oxidoreductase subunit A [EC 1.6.5.3] K00330 - 2 2 2 2 2 2 2 2 - -
NADH-quinone oxidoreductase subunit B [EC 1.6.5.3] K00331 - 1 1 1 1 1 1 1 1 - -
NADH-quinone oxidoreductase subunit C [EC 1.6.5.3] K00332 - 1 1 1 1 1 1 1 1 - -
NADH-quinone oxidoreductase subunit D [EC 1.6.5.3] K00333 - 2 2 2 2 2 2 3 2 - -
NADH-quinone oxidoreductase subunit E [EC 1.6.5.3] K00334 - - - - - - - - - 2 -
NADH-quinone oxidoreductase subunit F [EC 1.6.5.3] K00335 - 1 1 1 1 1 1 - - 1 -
NADH-quinone oxidoreductase subunit G [EC 1.6.5.3] K00336 - 1 1 1 1 1 2 - - 1 -
NADH-quinone oxidoreductase subunit H [EC 1.6.5.3] K00337 - 2 2 2 2 2 1 2 2 - -
NADH-quinone oxidoreductase subunit I [EC 1.6.5.3] K00338 - 2 2 2 2 2 1 2 2 - -
NADH-quinone oxidoreductase subunit J [EC 1.6.5.3] K00339 - 2 2 2 2 2 1 2 2 - -
NADH-quinone oxidoreductase subunit K [EC 1.6.5.3] K00340 - 2 2 2 2 2 1 2 2 - -
NADH-quinone oxidoreductase subunit L [EC 1.6.5.3] K00341 - 2 2 2 2 2 2 2 2 - -
NADH-quinone oxidoreductase subunit M [EC 1.6.5.3] K00342 - 2 2 2 2 2 2 2 2 - -
NADH-quinone oxidoreductase subunit N [EC 1.6.5.3] K00343 - 2 2 2 2 2 2 2 2 - -
NADH dehydrogenase [EC 1.6.99.3] K00356 - 1 1 1 1 1 - - - - -
cytochrome d ubiquinol oxidase subunit I [EC 1.10.3.-] K00425 - - - - - - 1 1 - - -
cytochrome d ubiquinol oxidase subunit II [EC 1.10.3.-] K00426 - - - - - - 1 1 - - -

succinate fumarate

Fibrobacteraceae Fibromonadaceae

Functional decription Function ID Symbol

Fibrobacteria Chitinivibrionia
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Table S5.3: Continued.  

 

F. succinogenes   AD_80 AD_111 SR_36 AD_312 IN01_31 IN01_221 IN01_307 C. alkaliphilus MC_77 
S85 ACht1

Electron Transport Chain
ABC-type transport system involved in cytochrome bd 
biosynthesis, fused ATPase and permease components  COG4987 - - - - - - 2 2 2 - -
ABC-type transport system involved in cytochrome bd 
biosynthesis, ATPase and permease components  COG4988 - - - - - - 1 1 1 - -
polyphosphate kinase [EC 2.7.4.1] K00937 - - 1 - - - - 1 1 1 1
inorganic pyrophosphatase [EC 3.6.1.1] K01507 - 1 1 1 1 1 - - - 1 -
V/A-type H+-transporting ATPase subunit A [EC 3.6.3.14] K02117 - 1 - 1 1 1 - 1 1 1 -
V/A-type H+-transporting ATPase subunit B K02118 - 1 - - 1 1 1 1 1 1 -
V/A-type H+-transporting ATPase subunit D K02120 - 1 - - 1 1 1 1 1 1 -
V/A-type H+-transporting ATPase subunit E K02121 - 1 1 1 1 1 - 1 1 1 -
V/A-type H+-transporting ATPase subunit I K02123 - 1 - 1 1 1 1 1 1 1 -
V/A-type H+-transporting ATPase subunit K K02124 - 2 1 1 2 1 1 1 1 1 -
NADH dehydrogenase [EC 1.6.99.3] K03885 - - - - - - - - - 1 -
NADH dehydrogenase (ubiquinone) flavoprotein 2                       
[EC 1.6.5.3 1.6.99.3] K03943 - - - - - - 1 - 1 - -
NAD(P)H-quinone oxidoreductase subunit K [EC 1.6.5.3] K05582 - - - - - - 1 - - - -
pyrophosphatase PpaX [EC 3.6.1.1] K06019 - - - - - - - - - 1 -
manganese-dependent inorganic pyrophosphatase [EC 3.6.1.1] K15986 - 1 1 - - - - - - - -
K(+)-stimulated pyrophosphate-energized sodium pump              
[EC 3.6.1.1] K15987 - - - 1 1 1 1 1 1 - -
Galactose metabolism
alpha-glucosidase [EC 3.2.1.20] K01187 - - - - - - - 1 1 - -
beta-galactosidase [EC 3.2.1.23] K01190 - 1 1 1 1 1 - - - - -
UDP-glucose 4-epimerase [EC 5.1.3.2] K01784 - 3 2 3 2 2 4 2 2 1 1
UDP-galactopyranose mutase [EC 5.4.99.9] K01854 - 1 - - - - 1 - 1 - -
alpha-galactosidase [EC 3.2.1.22] K07407 - 1 1 1 1 1 - - - - -
UDP-glucose 4-epimerase [EC 5.1.3.2] K17716 - 2 - - - - - 1 - - -
Xylose metabolism
D-xylose reductase K17743 XR - - - - - - - - - -
Aldehyde reductase K00011 AR - - - - - - - - - -
D-xylulose reductase K03331 XLR - - - - - - - - - -
L-iditol 2-dehydrogenase K00008 IDH - - - - - - - - - -
xylose isomerase K01805 XI - - - - - - - - - -
xylulokinase K00854 XLK 1 - - - - - - - - -
Nitrogen fixation
nitrogen fixation protein NifB K02585 - - - - - - - - - - -
nitrogenase molybdenum-iron protein alpha chain nifD K02586 - 2 1 1 - - - 2 - - 1
nitrogenase molybdenum-cofactor synthesis protein nifE K02587 - - - - - - - 1 - - 1
nitrogenase iron protein nifH K02588 - 2 1 1 - - - 2 - - 1
nitrogen regulatory protein PII 1 nifDH1 K02589 - - - - - - - 2 - - -
nitrogen regulatory protein PII 1 nifDH1 K02590 - - - - - - - 2 - - -
nitrogenase molybdenum-iron protein beta chain nifK K02591 - 2 1 1 - - - 2 - - 1
nitrogenase molybdenum-iron protein nifN K02592 - - - - - - - 1 - - -
Ammonia uptake and assimilation
Ammonia channel protein AmtB (permease) COG0004 1 1 1 1 1 - 1 1 - 1
Nitrogen regulatory protein PII COG0347 1 1 1 1 1 - 6 1 - 1
Glutamate synthase domain 2 COG0069 GS 1 1 1 1 1 1 1 1 - -
Glutamine synthetase COG0174 GS - - - 1 - 1 - 1 - -
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Ammonia uptake and assimilation
Glutamine synthetase type III COG3968 GS 2 2 2 2 2 1 1 1 2 1
Glutamate dehydrogenase/leucine dehydrogenase COG0334 GD 1 1 1 1 1 - 1 1 2 -
Histidine ammonia-lyase COG2986 - 1 1 - - - 1 - - - -
Carbamoylphosphate synthase large subunit COG0458 - 3 1 2 1 2 1 1 1 1 -
Sulfur metabolism
  Sulfate transport system 
sulfate transport system ATP-binding protein K02045 - 1 - 1 1 - 1 - - - -
sulfate transport system permease protein K02046 - 1 - 1 1 - 1 - 1 - -
sulfate transport system permease protein K02047 - 1 - 1 1 - 1 1 1 - -
sulfate transport system substrate-binding protein K02048 - 2 - 1 1 - 1 1 1 - -
  Assimilatory sulfate reduction (sulfate->sulfite)
bifunctional enzyme CysN/CysC K00955 - - - - - - - - - 1 -
sulfate adenylyltransferase subunit 1 K00956 - 1 - 1 1 - 1 1 1 - -
sulfate adenylyltransferase subunit 2 K00957 - 1 - 1 1 - 1 1 1 1 -
3'(2'), 5'-bisphosphate nucleotidase K01082 - - - - - 1 - - - - -
phosphoadenosine phosphosulfate reductase K00390 - 1 - - - - - - - 1 -
adenylylsulfate reductase, subunit A K00394 - 1 - 1 1 - 1 - 1 - -
adenylylsulfate reductase, subunit B K00395 - 1 - 1 1 - 1 - 1 - -
  ABC transport system
sulfonate transport system ATP-binding protein K15555 - 1 1 1 - - - - - - -
Hydrogenase
Iron only hydrogenase large subunit, C-terminal domain COG4624 - - - - - - 1 - - 3 -
Iron only hydrogenase large subunit, C-terminal domain pfam02906 - - - - - - 3 1 1 3 2
Flagellar assembly (core genes are bolded)
flagella basal body P-ring formation protein FlgA K02386 - - - - - - 1 1 1 1 -
flagellar basal-body rod protein FlgB K02387 - - - - - - 2 2 2 1 1
flagellar basal-body rod protein FlgC K02388 - - - - - - 2 2 2 1 -
flagellar basal-body rod modification protein FlgD K02389 - - - - - - 1 1 1 1 -
flagellar hook protein FlgE K02390 - - - - - - 2 2 2 1 1
flagellar basal-body rod protein FlgF K02391 - - - - - - - - - - -
flagellar basal-body rod protein FlgG K02392 - - - - - - 3 2 1 2 -
flagellar L-ring protein precursor FlgH K02393 - - - - - - - 1 1 1 1
flagellar P-ring protein precursor FlgI K02394 - - - - - - - 1 1 1 1
flagellar hook-associated protein 1 FlgK K02396 - - - - - - 1 1 1 1 1
flagellar hook-associated protein 3 FlgL K02397 - - - - - - 1 1 1 1 -
negative regulator of flagellin synthesis FlgM K02398 - - - - - - - - - - -
flagellar biosynthesis protein FlhA K02400 - - - - - - 1 1 1 1 1
flagellar biosynthetic protein FlhB K02401 - - - - - - 1 1 1 1 1
flagellar transcriptional activator FlhC K02402 - - - - - - - - - - -
flagellar transcriptional activator FlhD K02403 - - - - - - - - - - -
flagellin, FliC K02406 - - - - - - 7 5 3 5 3
flagellar hook-associated protein 2, FliD K02407 - - - - - - 1 1 2 2 1
flagellar hook-basal body complex protein FliE K02408 - - - - - - 1 1 1 1 -
flagellar M-ring protein FliF K02409 - - - - - - 1 1 1 1 -
flagellar motor switch protein FliG K02410 - - - - - - 1 3 2 1 -
flagellar assembly protein FliH K02411 - - - - - - 1 1 1 1 -
flagellum-specific ATP synthase [EC:3.6.3.14] K02412 - - - - - - 1 1 1 1 -
flagellar FliJ protein K02413 - - - - - - 1 1 1 1 -
flagellar hook-length control protein FliK K02414 - - - - - - 1 - - 1 -
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Flagellar assembly
flagellar motor switch protein FliM K02416 - - - - - - 1 1 1 1 1
flagellar motor switch protein FliN/FliY K02417 - - - - - - 2 2 2 2 2
flagellar protein FliO/FliZ K02418 - - - - - - - - - - -
flagellar biosynthetic protein FliP K02419 - - - - - - 1 1 1 - -
flagellar biosynthetic protein FliQ K02420 - - - - - - 1 1 1 1 -
flagellar biosynthetic protein FliR K02421 - - - - - - 1 1 1 1 -
flagellar protein FliS K02422 - - - - - - 1 1 1 1 1
flagellar protein FliT K02423 - - - - - - - - - - -
flagellar motor A MotA K02556 - - - - - - 1 1 1 1 1
flagellar motor B MotB K02557 - - - - - - 1 1 1 1 1
flagella synthesis protein FlgN K20399 - - - - - - - - - - -
Bacterial chemotaxis
methyl-accepting chemotaxis protein K03406 MCP - - - - - 14 18 12 8 11
chemotaxis protein CheD K03411 cheD - - - - - - - - 3 2
chemotaxis protein methyltransferase CheR K00575 cheR - - - - - 1 3 1 2 1
two-component system, chemotaxis family, response regulator 
CheB K03412 cheB - - - - - 1 1 1 2 1
two-component system, chemotaxis family, sensor kinase CheA K03407 cheA - - - - - 2 1 1 5 1
purine-binding chemotaxis protein CheW K03408 cheW - - - - - 1 1 1 3 2
two-component system, chemotaxis family, response regulator 
CheV K03415 cheV - - - - - - - - 1 -
two-component system, chemotaxis family, response regulator 
CheY K03413 cheY - - - - 1 2 2 1 9 2
chemotaxis protein CheC K03410 cheC - - - - - - - - - -
chemotaxis protein CheZ K03414 cheZ - - - - - - - - - -
chemotaxis protein CheX K03409 cheX - - - - - 2 2 3 1 2
Amino acid
Glycine, serine and threonine metabolism
  Serine biosynthesis (glycerate 3P->serine)
D-3-phosphoglycerate dehydrogenase [EC:1.1.1.95] K00058 - 2 1 1 1 1 1 1 1 1 1
phosphoserine aminotransferase [EC:2.6.1.52] K00831 - 1 1 - 1 1 1 1 1 1 1
phosphoserine / homoserine phosphotransferase EC 3.1.3.3 1 1 1 1 1 2 1 1 - -
[EC:3.1.3.3 2.7.1.39] EC 2.7.3.9 - - - - - - - - - 1 -
  Glycine biosynthesis (serine->glycine)
glycine hydroxymethyltransferase [EC:2.1.2.1] K00600 - 1 1 1 1 1 1 1 1 1 -
  Threonine biosynthesis (aspartate->homoserine->threonine)
aspartate kinase [EC:2.7.2.4] K00928 - 1 1 1 1 1 1 1 1 1 1
aspartate-semialdehyde dehydrogenase [EC:1.2.1.11] K00133 - 1 1 1 1 1 1 1 1 1 2
homoserine dehydrogenase [EC:1.1.1.3] K00003 - 1 1 1 1 1 1 1 1 1 1
homoserine kinase type II [EC:2.7.1.39] K02204 - 1 1 1 1 1 2 1 1 1 -
threonine synthase [EC:4.2.3.1] K01733 - 1 1 1 1 1 1 1 1 1 1
Valine, Isoleucine, leucine biosynthesis (Pyruvate -> Valine/Isoleucine/Leucine)
acetolactate synthase I/II/III large subunit [EC:2.2.1.6] K01652 - 2 1 1 1 1 1 1 1 1 -
acetolactate synthase I/III small subunit [EC:2.2.1.6] K01653 - 1 1 - 1 1 1 1 1 1 -
ketol-acid reductoisomerase [EC:1.1.1.86] K00053 - 1 1 1 1 1 1 1 1 1 -
dihydroxy-acid dehydratase [EC:4.2.1.9] K01687 - 1 1 1 1 1 1 1 1 1 1
branched-chain amino acid aminotransferase [EC:2.6.1.42] K00826 - 1 1 1 1 1 1 1 1 1 1
alanine-synthesizing transaminase [EC:2.6.1.66 2.6.1.2] K14260 - - - - - - - - - 1 1
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Valine, Isoleucine, leucine biosynthesis (Pyruvate -> Valine/Isoleucine/Leucine)
2-isopropylmalate synthase [EC:2.3.3.13] K01649 - 2 2 2 2 2 2 - 2 2 -
3-isopropylmalate/(R)-2-methylmalate dehydratase large subunit 
[EC:4.2.1.33 4.2.1.35] K01703 - 1 1 1 - 1 1 1 1 2 -
3-isopropylmalate/(R)-2-methylmalate dehydratase small subunit 
[EC:4.2.1.33 4.2.1.35] K01704 - 1 1 1 - 1 - 1 1 2 -
3-isopropylmalate dehydrogenase [EC:1.1.1.85] K00052 - 1 1 1 1 1 1 1 1 1 -
Arginine and Proline metabolism (Glutamate->Arginine)
  Ornithine biosynthesis (glutamate -> ornithine)
glutamate N-acetyltransferase / amino-acid N-acetyltransferase 
[EC:2.3.1.35 2.3.1.1] K00620 - 1 1 1 1 1 1 1 1 1 -
acetylglutamate kinase [EC:2.7.2.8] K00930 - 1 1 1 1 1 1 1 1 1 -
N-acetyl-gamma-glutamyl-phosphate reductase [EC:1.2.1.38] K00145 - 1 1 1 1 1 1 1 1 1 -
acetylornithine aminotransferase [EC:2.6.1.11] K00818 - 1 1 1 1 1 - - - - -
acetylornithine/N-succinyldiaminopimelate aminotransferase 
[EC:2.6.1.11 2.6.1.17] K00821 - - - - - - 1 1 1 1 -
  Urea cycle
ornithine carbamoyltransferase [EC:2.1.3.3] K00611 - 1 1 1 1 1 1 - 1 1 1
argininosuccinate synthase [EC:6.3.4.5] K01940 - 1 1 1 1 1 1 1 1 1 1
argininosuccinate lyase [EC:4.3.2.1] K01755 - 1 1 1 1 1 1 - 1 1 1
  Proline biosynthesis (Glutamate->Proline)
glutamate 5-kinase [EC:2.7.2.11] K00931 - 1 1 1 1 1 1 1 1 1 1
glutamate-5-semialdehyde dehydrogenase [EC:1.2.1.41] K00147 - 1 1 1 1 1 1 1 1 1 1
pyrroline-5-carboxylate reductase [EC:1.5.1.2] K00286 - 1 1 1 1 1 1 1 1 1 1
Phenylalanine, Tyrosine, Tryptophan biosynthesis
  Chorismate biosynthesis
3-deoxy-7-phosphoheptulonate synthase [EC:2.5.1.54] K01626 - - - - - - - - 2 1
3-dehydroquinate synthase [EC:4.2.3.4] K01735 - - - - - - 1 - 1 -
3-dehydroquinate dehydratase I [EC:4.2.1.10] K03785 1 1 1 1 1 1 1 1 - -
3-dehydroquinate dehydratase II [EC:4.2.1.10] K03786 - - - - - - - - 1 -
shikimate dehydrogenase [EC:1.1.1.25] K00014 1 1 1 1 1 - 1 1 1 -
shikimate kinase [EC:2.7.1.71] K00891 - - - - - 1 - - 2 -

shikimate kinase / 3-dehydroquinate synthase [EC:2.7.1.71 4.2.3.4] K13829 - 1 1 1 1 1 - 1 1 - -
3-phosphoshikimate 1-carboxyvinyltransferase [EC:2.5.1.19] K00800 - 1 1 1 1 1 2 1 2 1 -
chorismate synthase [EC:4.2.3.5] K01736 - 1 1 1 1 1 1 1 1 1 -
  Phenylalanine and Tyrosine biosynthesis (Chorismate -> Phenylalanine/Tyrosine)
prephenate dehydrogenase [EC:1.3.1.12] K04517 - 1 1 1 1 1 1 1 1 1 1
chorismate mutase [EC:5.4.99.5] K01850 - - - - - - - - - 1 1
chorismate mutase [EC:5.4.99.5] K04093 - 1 1 1 1 1 1 1 1 - -
prephenate dehydratase [EC:4.2.1.51] K04518 - 1 1 1 1 1 1 1 1 1 1
aspartate aminotransferase [EC:2.6.1.1] K00812 - 1 1 1 1 1 1 1 1 1 -
aspartate aminotransferase [EC:2.6.1.1] K11358 - - - - - - - - - 1 -
histidinol-phosphate aminotransferase [EC:2.6.1.9]  2 1 3 2 2 1 1 1 1 1
  Tryptophan biosynthesis (Chorismate -> Tryptophan)
anthranilate synthase component I [EC:4.1.3.27] K01657 - 1 1 1 1 1 - - 1 1 -
anthranilate synthase component II [EC:4.1.3.27] K01658 - - - - - - 1 1 1 1 -
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Phenylalanine, Tyrosine, Tryptophan biosynthesis
  Tryptophan biosynthesis (Chorismate -> Tryptophan)
anthranilate synthase/phosphoribosyltransferase [EC:4.1.3.27 
2.4.2.18] K13497 - 1 1 1 1 1 - - - - -
anthranilate phosphoribosyltransferase [EC:2.4.2.18] K00766 - - - - - - 1 1 1 1 1
phosphoribosylanthranilate isomerase [EC:5.3.1.24] K01817 - - - - - - 1 1 1 1 1
indole-3-glycerol phosphate synthase / phosphoribosylanthranilate 
isomerase [EC:4.1.1.48 5.3.1.24] K13498 - 1 1 1 1 1 - - - - -
indole-3-glycerol phosphate synthase [EC:4.1.1.48] K01609 - - - - - - 1 1 1 1 -
tryptophan synthase alpha chain [EC:4.2.1.20] K01695 - 1 1 1 1 1 1 1 - 1 1
tryptophan synthase beta chain [EC:4.2.1.20] K01696 - 1 1 1 1 1 1 1 1 1 -
tryptophan synthase beta chain [EC:4.2.1.20] K06001 - 1 1 1 1 1 1 - - 1 -
Cysteine and Methionine biosynthesis
  Cysteine (Serine -> Cysteine)
serine O-acetyltransferase [EC:2.3.1.30] K00640 - 2 2 1 2 1 2 2 3 1 -
cysteine synthase A [EC:2.5.1.47] K01738 - 3 1 2 2 2 2 2 2 3 1
cysteine synthase B [EC:2.5.1.47] K12339 - - - - - - - 1 1 - -
  Pyruvate -> Cysteine
cystathione beta-lyase [EC:4.4.1.8] K14155 - 1 1 - 1 - 1 1 1 - 1
  Methionine (apartate -> homoserine -> methionine)
aspartate kinase [EC:2.7.2.4] K00928 - 1 1 1 1 1 1 1 1 1 1
aspartate-semialdehyde dehydrogenase [EC:1.2.1.11] K00133 - 1 1 1 1 1 1 1 1 1 2
homoserine dehydrogenase [EC:1.1.1.3] K00003 - 1 1 1 1 1 1 1 1 1 1
homoserine O-succinyltransferase [EC:2.3.1.46] K00651 - - - - - - - - - 1 2
cystathionine gamma-synthase [EC:2.5.1.48] K01739 - - - - - - 1 1 1 1 1
cystathionine beta-lyase [EC:4.4.1.8] K01760 - 1 - 1 - - - - - 1 -
5-methyltetrahydrofolate--homocysteine methyltransferase 
[EC:2.1.1.13] K00548 - 1 1 1 2 2 2 2 2 1 -
5-methyltetrahydropteroyltriglutamate--homocysteine 
methyltransferase [EC:2.1.1.14] K00549 - 1 1 1 1 1 - - - 1 -
  Methionine degradation (Methionine -> Homocysteine->Homoserine)
S-adenosylmethionine synthetase [EC:2.5.1.6] K00789 - 1 - 1 1 1 1 1 1 - -
DNA (cytosine-5)-methyltransferase 1 [EC:2.1.1.37] K00558 - 1 7 3 3 - 1 4 2 1 1
adenosylhomocysteinase [EC:3.3.1.1] K01251 - 1 1 1 1 1 - - 1 - -
O-acetylhomoserine (thiol)-lyase [EC:2.5.1.49] K01740 - 1 - - - - - - - - -
homoserine O-acetyltransferase [EC:2.3.1.31] K00641 - 4 3 3 3 1 1 - 1 1 -

  Methionine salvage pathway
S-adenosylmethionine decarboxylase [EC:4.1.1.50] K01611 - - - - - - - - - 1 -
spermidine synthase [EC:2.5.1.16] K00797 - 1 2 2 1 1 1 1 1 1 1
adenosylhomocysteine nucleosidase [EC:3.2.2.9] K01243 - - - - - - 1 - - - 1
5'-methylthioadenosine phosphorylase [EC:2.4.2.28] K00772 - - - - - - - 1 1 1 -
methylthioribose-1-phosphate isomerase [EC:5.3.1.23] K08963 - 2 3 2 2 2 1 1 1 1 1
Alanine, Aspartate and Glutamate Metabolism
  Aspartate metabolism
 ( L-Aspartate->N-Carbamonyl-L-aspartate/D-Aspartate/Oxaloacetate)
aspartate carbamoyltransferase catalytic subunit [EC:2.1.3.2] K00609 - 1 1 1 1 1 - 1 1 1 1
aspartate racemase [EC:5.1.1.13] K01779 - 1 - - - - - - - - -
L-aspartate oxidase [EC:1.4.3.16] K00278 - 1 1 1 1 1 1 1 1 - 1
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Alanine, Aspartate and Glutamate Metabolism
 ( L-Aspartate->Fumarate)
argininosuccinate synthase [EC:6.3.4.5] K01940 - 1 1 1 1 1 1 1 1 1 1
argininosuccinate lyase [EC:4.3.2.1] K01755 - 1 1 1 1 1 1 - 1 1 1
adenylosuccinate synthase [EC:6.3.4.4] K01939 - 1 1 1 1 1 1 1 2 1 1
adenylosuccinate lyase [EC:4.3.2.2] K01756 - 1 1 1 1 1 1 1 1 1 1
aspartate ammonia-lyase [EC:4.3.1.1] K01744 - - - - - - - - - - 1
  Aspartate synthesis
  (N-Acetyl-L-aspartate->L-Aspartate)
aspartoacylase [EC:3.5.1.15] K01437 - 1 1 1 1 1 1 1 1 - -
  (L-Asparagine->L-Aspartate)
L-asparaginase [EC:3.5.1.1] K01424 - 1 1 1 1 - - - - - -
  (Oxaloacetate<->L-Aspartate)
aspartate aminotransferase [EC:2.6.1.1] K00812 - 1 1 1 1 1 1 1 1 - 1
aspartate aminotransferase [EC:2.6.1.1] K11358 - - - - - - - - - - 1
  Glutamate synthesis and metabolism
  (2-Oxo-glutarate->Glutamate)
glutamate dehydrogenase [EC:1.4.1.2] K00260 - - - - - - - - - - 1
glutamate dehydrogenase (NADP+) [EC:1.4.1.4] K00262 - 1 1 1 1 1 - 1 1 - 1
glutamate synthase (NADPH/NADH) large chain [EC:1.4.1.13 
1.4.1.14] K00265 - 1 1 1 1 1 - - - - -
glutamate synthase (NADPH/NADH) small chain [EC:1.4.1.13 
1.4.1.14] K00266 - 2 2 2 2 2 1 1 1 1 1
  (Glutamate->Glutamine)
glutamine synthetase [EC:6.3.1.2] K01915 - 2 2 2 3 2 2 1 2 1 2
  (Glutamine->5-Phosphoribosylamine/Carbomoylphosphate)
amidophosphoribosyltransferase [EC:2.4.2.14] K00764 - 2 2 2 2 1 1 1 1 1 1
carbamoyl-phosphate synthase large subunit [EC:6.3.5.5] K01955 - 4 1 1 1 2 1 1 1 - 1
carbamoyl-phosphate synthase small subunit [EC:6.3.5.5] K01956 - 1 1 1 1 1 1 1 1 - 1
  (D-Glucosamine-6P->Glutamine)
glucosamine--fructose-6-phosphate aminotransferase (isomerizing) 
[EC:2.6.1.16] K00820 - 1 1 1 1 1 1 1 1 1 1
  Alanine sythesis and metabolism
  (Alanine<->Pyruvate)
alanine-synthesizing transaminase [EC:2.6.1.66 2.6.1.2] K14260 - - - - - - - - - 1 1
  (Asparagine->Alanine)
L-asparaginase [EC:3.5.1.1] K01424 - 1 1 1 1 - - - - - -
Lysine biosynthesis (aspartate->lysine)
aspartate kinase [EC:2.7.2.4] K00928 - 1 1 1 1 1 1 1 1 1 1
aspartate-semialdehyde dehydrogenase [EC:1.2.1.11] K00133 - 1 1 1 1 1 1 1 1 1 2
4-hydroxy-tetrahydrodipicolinate synthase [EC:4.3.3.7] K01714 - 1 1 1 1 1 1 1 1 1 2
4-hydroxy-tetrahydrodipicolinate reductase [EC:1.17.1.8] K00215 - 1 1 1 1 1 1 1 1 1 2
diaminopimelate dehydrogenase [EC:1.4.1.16] K03340 - 1 1 2 1 1 - - - 1 -
Histidine metabolism (PPP -> Histidine) 
ATP phosphoribosyltransferase [EC:2.4.2.17] K00765 - 1 1 1 1 1 - 1 - 1 1
phosphoribosyl-ATP pyrophosphohydrolase [EC:3.6.1.31] K01523 - 1 1 1 1 1 1 1 1 1 -
phosphoribosyl-AMP cyclohydrolase [EC:3.5.4.19] K01496 - 1 1 1 1 1 1 1 1 1 1
phosphoribosylformimino-5-aminoimidazole carboxamide ribotide 
isomerase [EC:5.3.1.16] K01814 - 1 1 1 1 1 1 1 1 1 2
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Histidine metabolism (PPP -> Histidine) 
glutamine amidotransferase [EC:2.4.2.-] K02501 - 1 1 1 1 1 1 1 1 1 1
cyclase [EC:4.1.3.-] K02500 - 1 1 1 1 1 1 1 1 1 1
imidazoleglycerol-phosphate dehydratase [EC:4.2.1.19] K01693 - 1 1 1 1 1 1 2 - 1 1
histidinol-phosphate aminotransferase [EC:2.6.1.9] K00817 - 2 1 3 2 2 1 1 1 1 1
histidinol-phosphatase (PHP family) EC 3.1.3.15 - - - - - - - - - 1 -
[EC:3.1.3.15  4.2.1.19] EC 4.2.1.19 - 1 1 1 1 1 1 2 - 1 1
histidinol dehydrogenase [EC:1.1.1.23] K00013 - 1 1 1 1 1 1 2 - 1 1
Metabolism of cofactors and vitamins
Thiamine metabolism
thiamine-phosphate pyrophosphorylase [EC:2.5.1.3]   K00788 -
hydroxymethylpyrimidine/phosphomethylpyrimidine kinase [EC:2.7.1K00941 - 1 1 2 1 2 2 2 2 3 2
thiamine-monophosphate kinase [EC:2.7.4.16]   K00946 - 1 1 1 1 1 1 1 1 0 0
1-deoxy-D-xylulose-5-phosphate synthase [EC:2.2.1.7]   K01662 - 1 1 1 1 1 1 1 1 1 0
phosphomethylpyrimidine synthase [EC:4.1.99.17]   K03147 - 2 2 2 2 1 1 1 1 1 1
sulfur carrier protein ThiS adenylyltransferase [EC:2.7.7.73] K03148 - 1 1 0 1 1 1 1 1 1 0
thiazole synthase [EC:2.8.1.10]   K03149 - 1 1 1 1 0 0 0 0 1 0
2-iminoacetate synthase [EC:4.1.99.19]   K03150 - 1 1 1 1 1 1 1 1 1 1
thiamine biosynthesis protein ThiI  K03151 - 1 1 1 1 1 2 2 2 2 2
cysteine desulfurase [EC:2.8.1.7]   K04487 - 0 0 0 0 0 0 0 0 1 0
Riboflavin metabolism
riboflavin synthase [EC:2.5.1.9]       K00793 - 1 1 1 0 0 0 0 0 3 0
6,7-dimethyl-8-ribityllumazine synthase [EC:2.5.1.78]       K00794 - 1 1 1 1 1 1 1 1 1 0
diaminohydroxyphosphoribosylaminopyrimidine deaminase / 5-
amino-6-(5-phosphoribosylamino)uracil reductase [EC:3.5.4.26 
1.1.1.193]   K11752 - 1 0 0 1 1 0 1 1 1 0

riboflavin kinase / FMN adenylyltransferase [EC:2.7.1.26 2.7.7.2]   K11753 - 1 1 1 1 1 1 1 1 1 1
3,4-dihydroxy 2-butanone 4-phosphate synthase / GTP 
cyclohydrolase II [EC:4.1.99.12 3.5.4.25] K14652 - 1 1 1 1 1 1 1 1 1 1
Vitamin B6 metabolism 1 0 0 1 1 1 1 1 1 0
4-hydroxythreonine-4-phosphatedehydrogenase[EC:1.1.1.262] K00097 -
phosphoserineaminotransferase[EC:2.6.1.52] K00831 - 0 0 0 0 1 1 1 1 1 1
pyridoxinekinase[EC:2.7.1.35] K00868 - 1 1 0 1 1 1 1 1 1 1
threoninesynthase[EC:4.2.3.1] K01733 - 1 0 1 1 0 0 0 0 0 0
erythronate-4-phosphatedehydrogenase[EC:1.1.1.290] K03473 - 1 1 1 1 1 1 1 1 1 1
pyridoxine5-phosphatesynthase[EC:2.6.99.2] K03474 - 0 0 0 0 1 1 1 1 1 1
pyridoxal5'-phosphatesynthasepdxSsubunit[EC:4.3.3.6] K06215 - 1 1 1 1 1 1 1 1 1 1
5'-phosphatesynthasepdxTsubunit[EC:4.3.3.6] K08681 - 1 1 1 1 0 0 0 0 0 0
Nicotinate and nicotinamide metabolism 1 1 1 1 0 0 0 0 0 0
L-aspartate oxidase [EC:1.4.3.16] K00278 - 1 1 1 1 1 1 1 1 1 0
quinolinate synthase [EC:2.5.1.72] K03517 - 1 1 1 1 1 1 1 1 1 1
nicotinate-nucleotide pyrophosphorylase (carboxylating) 
[EC:2.4.2.19] K00767 - 1 1 1 1 1 1 1 1 1 1
5'-nucleotidase [EC:3.1.3.5] K03787 - 1 1 1 1 1 1 1 1 1 1
purine-nucleoside phosphorylase [EC:2.4.2.1] K03783 - 0 0 0 0 0 0 0 0 1 0
NAD+ diphosphatase [EC:3.6.1.22] K03426 - 1 1 1 1 0 1 1 0 1 0
nicotinate-nucleotide adenylyltransferase [EC:2.7.7.18] K00969 - 1 1 1 1 1 0 0 0 1 0
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Nicotinate and nicotinamide metabolism
NAD+ synthase (glutamine-hydrolysing) [EC:6.3.5.1] K01950 - 2 1 1 2 1 0 0 0 1 0
NAD+ synthase [EC:6.3.1.5] K01916 - 0 0 0 0 0 1 1 1 0 0
5'-nucleotidase [EC:3.1.3.5] K01081 - 0 0 0 0 0 1 0 0 0 0
NAD+ kinase [EC:2.7.1.23] K00858 - 1 1 1 1 1 1 1 1 1 1
NAD(P) transhydrogenase subunit alpha [EC:1.6.1.2] K00324 - 0 0 0 0 0 0 0 0 2 0
NAD(P) transhydrogenase subunit beta [EC:1.6.1.2] K00325 - 0 0 0 0 0 0 0 0 1 0
nicotinamide-nucleotide amidase [EC:3.5.1.42] K03742 - 0 0 0 0 1 0 0 0 0 0
nicotinamide-nucleotide amidase [EC:3.5.1.42] K03743 - 1 1 1 1 0 0 0 0 1 1
bifunctional NMN adenylyltransferase/nudix hydrolase [EC:2.7.7.1 
3.6.1.-] K13522 - 0 0 0 0 0 1 1 0 0 0
Pantothenate and CoA biosynthesis
ketol-acid reductoisomerase [EC:1.1.1.86]    K00053 - 1 1 1 1 1 1 1 1 1 0
2-dehydropantoate 2-reductase [EC:1.1.1.169]    K00077 - 1 0 0 0 0 0 0 0 0 0
3-methyl-2-oxobutanoate hydroxymethyltransferase [EC:2.1.2.11]   K00606 - 1 1 1 1 1 1 1 1 1 1
branched-chain amino acid aminotransferase [EC:2.6.1.42]  K00826 - 1 1 1 1 1 1 1 1 1 1
dephospho-CoA kinase [EC:2.7.1.24]    K00859 - 1 1 1 1 1 0 0 0 1 1
pantetheine-phosphate adenylyltransferase [EC:2.7.7.3]    K00954 - 1 1 1 1 1 0 2 1 1 0
holo-[acyl-carrier protein] synthase [EC:2.7.8.7]   K00997 - 0 0 0 0 0 0 0 0 1 1
aspartate 1-decarboxylase [EC:4.1.1.11]    K01579 - 1 1 1 1 1 1 1 1 1 1
acetolactate synthase I/II/III large subunit [EC:2.2.1.6] K01652 - 2 1 1 1 1 1 1 1 1 0
acetolactate synthase I/III small subunit [EC:2.2.1.6] K01653 - 1 1 0 1 1 1 1 1 1 0
dihydroxy-acid dehydratase [EC:4.2.1.9]    K01687 - 1 1 1 1 1 1 1 1 1 1
pantoate--beta-alanine ligase [EC:6.3.2.1]    K01918 - 1 1 1 1 1 1 1 1 1 1
type III pantothenate kinase [EC:2.7.1.33]  K03525 - 1 0 2 1 1 1 1 1 0 0
4'-phosphopantetheinyl transferase [EC:2.7.8.-]    K06133 - 1 0 0 1 0 0 0 0 0 0
phosphopantothenoylcysteine decarboxylase / phosphopantothenate-
-cysteine ligase [EC:4.1.1.36 6.3.2.5] K13038 - 1 1 1 1 1 0 1 1 1 1
Biotin metabolism
3-oxoacyl-[acyl-carrier protein] reductase [EC:1.1.1.100]       K00059 - 4 3 2 2 2 2 1 2 2 1
enoyl-[acyl-carrier protein] reductase I [EC:1.3.1.9 1.3.1.10]     K00208 - 0 0 0 0 0 1 1 0 1 0
3-oxoacyl-[acyl-carrier-protein] synthase I [EC:2.3.1.41]       K00647 - 1 1 0 0 0 1 0 0 0 0
8-amino-7-oxononanoate synthase [EC:2.3.1.47]        K00652 - 0 0 0 0 1 1 1 1 1 0
adenosylmethionine-8-amino-7-oxononanoate aminotransferase 
[EC:2.6.1.62]        K00833 - 1 1 1 1 1 0 1 1 1 0
biotin synthase [EC:2.8.1.6]        K01012 - 2 2 2 2 1 2 2 2 2 2
6-carboxyhexanoate--CoA ligase [EC:6.2.1.14]        K01906 - 1 1 1 1 0 0 0 0 0 0
dethiobiotin synthetase [EC:6.3.3.3]        K01935 - 1 1 1 1 1 1 1 1 1 0
malonyl-CoA O-methyltransferase [EC:2.1.1.197]        K02169 - 0 0 0 0 1 1 1 1 0 1
3-hydroxyacyl-[acyl-carrier-protein] dehydratase [EC:4.2.1.59]       K02372 - 2 2 2 2 1 1 1 1 0 0
BirA family transcriptional regulator, biotin operon repressor / biotin-
[acetyl-CoA-carboxylase] ligase [EC:6.3.4.15] K03524 - 1 1 1 1 1 1 1 1 1 0
3-oxoacyl-[acyl-carrier-protein] synthase II [EC:2.3.1.179]       K09458 - 4 3 3 3 3 2 1 1 3 1
biotin synthesis protein BioG       K09789 - 0 0 0 0 1 0 0 0 0 0
Lipoic acid metabolism
lipoic acid synthetase [EC:2.8.1.8] K03644 - 0 0 0 0 0 0 0 0 1 1
lipoate-protein ligase A [EC:2.7.7.63]  K03800 - 0 0 0 0 0 0 0 0 1 2
Folate biosynthesis
dihydrofolatereductase[EC:1.5.1.3] K00287 - 1 1 1 1 1 1 1 1 0 0
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Folate biosynthesis
dihydropteroatesynthase[EC:2.5.1.15] K00796 - 1 1 1 1 1 1 1 1 1 1
2-amino-4-hydroxy-6-
hydroxymethyldihydropteridinediphosphokinase[EC:2.7.6.3] K00950 - 1 1 1 1 1 0 0 1 1 1
alkalinephosphatase[EC:3.1.3.1] K01077 - 0 0 0 0 1 0 0 0 0 0
GTPcyclohydrolaseI[EC:3.5.4.16] K01495 - 1 1 1 2 1 1 1 1 1 1
dihydroneopterinaldolase[EC:4.1.2.25] K01633 - 1 1 1 1 1 1 1 1 0 0
para-aminobenzoatesynthetasecomponentI[EC:2.6.1.85] K01665 - 0 0 0 0 0 0 0 0 1 0
6-pyruvoyltetrahydropterin/6-
carboxytetrahydropterinsynthase[EC:4.2.3.124.1.2.50] K01737 - 1 2 0 2 1 1 0 0 2 1
4-amino-4-deoxychorismatelyase[EC:4.1.3.38] K02619 - 0 0 0 0 0 0 0 0 1 0
para-aminobenzoatesynthetase/4-amino-4-deoxychorismate lyase 
[EC:2.6.1.85 4.1.3.38] K03342 - 1 1 0 0 0 0 0 0 0 0
7-cyano-7-deazaguaninesynthase[EC:6.3.4.20] K06920 - 1 2 0 2 0 0 0 0 1 0
7-cyano-7-deazaguaninereductase[EC:1.7.1.13] K09457 - 1 1 1 1 0 1 1 1 1 1
7-carboxy-7-deazaguaninesynthase[EC:4.3.99.3] K10026 - 1 1 0 1 0 0 0 0 1 1
dihydrofolatesynthase/folylpolyglutamate synthase [EC:6.3.2.12 
6.3.2.17] K11754 - 1 1 1 1 1 1 1 1 1 0
One carbon pool by folate
dihydrofolate reductase [EC:1.5.1.3] K00287 - 1 1 1 1 1 1 1 1 0 0
methylenetetrahydrofolate reductase (NADPH) [EC:1.5.1.20] K00297 - 1 1 1 1 1 1 1 1 1 0
5-methyltetrahydrofolate--homocysteine methyltransferase 
[EC:2.1.1.13] K00548 - 1 1 1 1 1 1 1 1 1 0
thymidylate synthase [EC:2.1.1.45] K00560 - 1 1 1 1 1 1 1 0 0 1
glycine hydroxymethyltransferase [EC:2.1.2.1] K00600 - 1 1 1 1 1 1 1 1 1 0
phosphoribosylaminoimidazolecarboxamide formyltransferase / IMP 
cyclohydrolase [EC:2.1.2.3 3.5.4.10] K00602 - 1 0 1 1 1 1 1 1 1 1
methionyl-tRNA formyltransferase [EC:2.1.2.9] K00604 - 1 1 1 1 1 1 1 1 1 0
aminomethyltransferase [EC:2.1.2.10] K00605 - 0 0 0 0 0 0 0 0 0 1
formyltetrahydrofolate deformylase [EC:3.5.1.10] K01433 - 1 1 1 1 1 1 0 0 1 0
methylenetetrahydrofolate dehydrogenase (NADP+) 
/methenyltetrahydrofolate cyclohydrolase [EC:1.5.1.5 3.5.4.9] K01491 - 1 1 1 1 1 1 1 1 1 0
5-formyltetrahydrofolate cyclo-ligase [EC:6.3.3.2] K01934 - 1 1 1 1 1 0 0 0 1 1
phosphoribosylglycinamide formyltransferase 2 [EC:2.1.2.2] K08289 - 1 1 1 1 1 1 1 0 1 0
phosphoribosylglycinamide formyltransferase 1 [EC:2.1.2.2] K11175 - 1 1 1 1 1 1 1 1 1 0
Ubiquinone and other terpenoid-quinone biosynthesis
1,4-dihydroxy-2-naphthoate octaprenyltransferase [EC:2.5.1.74 
2.5.1.-] K02548 - 0 0 0 0 0 0 0 0 1 0
4-hydroxybenzoate octaprenyltransferase [EC:2.5.1.-]  K03179 - 2 1 2 2 2 1 1 1 0 0
3-octaprenyl-4-hydroxybenzoate carboxy-lyase UbiD [EC:4.1.1.-] K03182 - 1 1 1 1 1 1 1 1 0 0
ubiquinone/menaquinone biosynthesis methyltransferase 
[EC:2.1.1.163 2.1.1.201] K03183 - 1 1 1 1 1 1 1 1 0 0
3-octaprenyl-4-hydroxybenzoate carboxy-lyase UbiX [EC:4.1.1.-] K03186 - 1 1 1 1 1 1 1 1 0 0
chorismate dehydratase [EC:4.2.1.151]  K11782 - 1 1 1 1 1 1 1 1 0 0
futalosine hydrolase [EC:3.2.2.26]  K11783 - 1 1 1 1 1 1 1 0 0 0
cyclic dehypoxanthinyl futalosine synthase [EC:1.21.99.2] K11784 - 0 0 0 0 1 0 0 0 0 0
1,4-dihydroxy-6-naphthoate synthase [EC:1.14.-.-]  K11785 - 1 1 1 1 1 1 1 1 0 0
aminodeoxyfutalosine synthase [EC:2.5.1.120]  K18285 - 1 1 1 1 1 1 0 0 0 0
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