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1 INTRODUCTION

The discrete Fourier transform (DFT) has played a seminal
role in the development of modern NMR spectroscopy, but
as a method for spectrum analysis of time series data, it has
a number of well-known limitations.1 Chief among them is
the difficulty of obtaining high-resolution spectra from short
data records. A host of non-Fourier methods of spectrum
analysis have been developed that attempt to overcome the
limitations of the DFT.2 – 8 Several very different methods
invoke the maximum entropy principle, which originates from
the information-theoretic definition of entropy as a measure
of missing information first formulated by Shannon. One
of the most versatile approaches, called maximum entropy
reconstruction, applies the maximum entropy principle in a
Bayesian context to determine the spectrum having the highest
entropy that is consistent with the measured data. Because
it approaches spectrum analysis as an inverse problem, it is
capable of performing stable deconvolution and processing
data that are sampled at nonuniform intervals. The latter has
found useful application in multidimensional NMR, where
practical constraints on measuring time typically limit the
attainable resolution along indirect dimensions. Here we
describe the theory and application of maximum entropy
reconstruction in NMR, and contrast it with other methods
that invoke the maximum entropy principle.

∗Update based on original article by Jeffrey C. Hoch, Encyclopedia of Magnetic
Resonance,  1996, John Wiley & Sons Ltd.

2 SPECTRUM ANALYSIS AS AN INVERSE PROBLEM

Inverse problems are those in which the properties of
interest can only be viewed indirectly. A famous example
is Plato’s allegory of the cave,5 in which the problem is
to infer the characteristics of an object from the shadows
it casts in the firelight on the walls of a cave. In NMR
spectrum analysis, the inverse problem can be stated as that of
recovering the spectrum fn of an ensemble of spins when the
only observations we have are the free induction decay (FID)
at various times (dk), contaminated by noise (εk):

d̂k = dk + εk (1)

We can approach this inverse problem by placing restrictions
on the possible solutions fn. The first restriction comes from
the obvious requirement that fn must be consistent with the
experimental observations. The agreement can be quantified
through the use of a constraint statistic that measures how well
the reconstructed spectrum agrees with the available data. The
statistic is determined by comparing a “mock” FID, given by
the inverse DFT of the reconstructed spectrum, with the actual
data. When the noise and experimental error in the measured
data are normally distributed, an appropriate statistic is the
(unweighted) χ2 statistic

χ2 =
M−1∑
k=0

|mk − d̂k|2 (2)

where M is the number of data samples collected and mk

is the mock FID. Other forms of the constraint statistic C

are possible, but χ2 is the one generally used because of its
simplicity and the difficulty in justifying any other distribution
of errors in the data. (A weighted χ2 statistic can also be used,
for example, if there is good reason to believe that some of the
data points are more subject to error than others.) Whatever
the form of C, the constraint that the reconstructed spectrum
must be consistent with the measured data takes the form

C ≤ C0 (3)

where C0 is an upper bound on the allowed error. Given a
prior estimate of the amount of noise in the data, C0 should
be comparable to the root mean square (RMS) noise level.

3 MAXIMUM ENTROPY RECONSTRUCTION

The constraint statistic alone does not provide sufficient
restriction on the possible reconstructions to be of much use.
In fact, any mock FID that matches the experimental FID to
within C0 for the first M points will satisfy the constraint. If
we are to improve over the DFT, we need some additional
criteria for regularizing the reconstructed spectrum that will
effectively constrain the values of the mock FID beyond
M . One such criterion is the maximum entropy principle,
which says that a reasonable reconstruction should add no
new information beyond that contained in the experimental
data. The principle originated in the work of Claude Shannon
on the information-carrying capacity of circuits,9 where he
showed that the entropy of a probability distribution p, which
is defined by

S(p) = −
∑

pn log pn (4)
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2 MAXIMUM ENTROPY RECONSTRUCTION

is a measure of the lack of information. There is a formal link
between Shannon’s entropy and the statistical entropy of an
ensemble, and this link can be used to provide a constraint
on possible spectrum reconstructions. On a more pragmatic
level, the maximum entropy principle can be viewed simply
as a means of obtaining a smooth, bounded reconstruction.
The use of the maximum entropy principle to regularize the
possible solutions to the spectrum analysis inverse problem is
called maximum entropy (MaxEnt) reconstruction. (Maximum
entropy reconstruction should be distinguished from the
maximum entropy method (MEM) introduced by Burg,10

which is more closely related to linear prediction (LP).)
Entropy is not unique as a regularizer, however, and there
are other functionals that have similar properties.11

An important distinction between MaxEnt reconstruction
and methods of spectrum analysis (such as those based on LP)
that implicitly assume Lorentzian lineshapes is that MaxEnt
reconstruction per se makes no assumptions about the signal
to be recovered. Yet, it is flexible enough to allow prior
information to be incorporated into the reconstruction. A
particularly simple means for incorporating prior knowledge
is through a convolution kernel. Typical kernels might include
exponential decay at some known rate, or J-modulation
at a known frequency. The reconstruction then yields the
deconvolved spectrum with the highest entropy.

4 ENTROPY FUNCTIONALS FOR NMR

For modern NMR experiments, we need to be able to
reconstruct complex spectra containing both positive and
negative components. The Shannon formula [equation (4)]
clearly does not apply to complex-valued spectra or spectra
containing negative components. Computing the entropy of the
magnitude or power spectrum solves this problem, but suffers
from other problems, including singular derivatives. Hore and
colleagues12 considered the entropy of an ensemble of spin-1/2
particles to derive the functional

S(f ) = −
N−1∑
n=0

|fn|
def

log


 |fn|

/
def +

√
4 + |fn|2/def 2

2




−
√

4 + |fn|2/def 2 (5)

where def is a scaling parameter that is related to the sensitivity
of the spectrometer and to the number of spins in the sample;
however, it is more convenient to treat def as an adjustable
parameter. This functional has the advantages that it is convex,
the derivative is continuous, and the value is insensitive to
phase of the signal.11

5 NUMERICAL ALGORITHMS

The next detail that we are faced with is how to solve
the constrained optimization problem, that is, the problem of
maximizing S(f ) subject to the constraint that C ≤ C0. An
equivalent unconstrained optimization problem is to maximize
the objective function

Q S λC (6)

where λ is a Lagrange multiplier. The solution we seek
corresponds to a critical point of Q, i.e., a point where
∇Q = 0. In the general case there is no analytic solution to
this problem, and we are forced to seek numerical solutions.
For many problems of this type, a numerical search using the
gradient of the objective function (steepest ascent or conjugate
gradients) is a reasonably efficient method for finding the
critical point. Unfortunately, an objective function constructed
from two such dissimilar functionals as the χ2 statistic and
the entropy is quite difficult to maximize. Practical solution of
the general MaxEnt reconstruction problem requires a fairly
complex optimizer, and the most efficient algorithms require
of the order of 100 (or more) times the computational effort
of the fast Fourier transform (FFT).

Since the entropy (given by equation (5)) and the con-
straint statistic (equation (2)) are both everywhere convex,
there is a unique, global solution to the constrained optimiza-
tion problem. Furthermore, this maximum satisfies C = C0
provided that the trivial solution fn = 0 does not also satisfy the
constraint.

There have been several algorithms published for computing
MaxEnt reconstructions. A particularly robust and efficient
algorithm was described by Skilling and Bryan.13 This method
uses multiple search directions and a variable metric to
determine the size of the step at each iteration. We describe
here a variant we have found useful in our laboratory.14

The algorithm begins with a flat trial spectrum equal to zero
everywhere. At each iteration, a mock FID is computed from
the current value of the trial spectrum. In the general case,
this involves inverse Fourier transformation and multiplication
by a decay kernel, which is specified by the user as an input
parameter. A decay does not need to be applied, but when it is,
the reconstructed spectrum is an approximation of what would
have been observed had the decay not been present. The first
M points of the N point mock FID are used to compute the
value of C, according to equation (2). The algorithm constructs
a small set of direction vectors, and computes a quadratic
approximation to the entropy in the subspace spanned by these
vectors. Since the constraint is itself quadratic, it is possible to
maximize analytically the entropy approximation subject to the
constraint in this subspace. This results in the trial spectrum
for the next iteration.

The quadratic approximation to the entropy is accurate only
for small step sizes, so when the value of C for the mock
FID is far from the desired value C0, it is better to solve the
analytic maximization using a constraint value C ′, which is
intermediate between C0 and the current value of C, rather than
attempt one large step. Consequently, the algorithm proceeds
in two phases. In the first phase, C is larger than C0 and the
algorithm attempts to lower C. In the second phase, C0 has
been attained and the algorithm seeks to maximize the entropy.

This approach could be based on direction vectors that
include ∇S, the gradient of the entropy (with respect to f ). The
problem is that the gradient can be dominated by small values
of f , and the algorithm would spend more time adjusting
values that are close to zero than adjusting signal peaks. The
key insight of Skilling and Bryan was that the introduction of
an “entropy metric” produces an algorithm that more evenly
weights the contributions of large and small values of the
spectrum. Using the entropy metric amounts to replacing ∇S

and ∇C (the gradient of the constraint with respect to the trial
spectrum) with H 1 S and H 1 C, where H is 2S, the
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MAXIMUM ENTROPY RECONSTRUCTION 3

negative of the Hessian (the matrix of second derivatives) of
S. The matrix H is nearly diagonal, so its inverse is easy to
compute. The search directions used during the first phase of
the algorithm are

∇C, H−1∇C, H−1∇Q, H−1(∇2C)H−1∇Q, Q = S − λC

(7)

and λ is set to |∇S|/|∇C|. During the second phase, the
second search direction is replaced by ∇Q. In the original
algorithm of Skilling and Bryan, neither ∇C nor ∇Q is used
as a search direction. We found that including them speeds up
the convergence. The major effort in computing these vectors
stems from four DFTs (two each to compute ∇C and to apply
∇2C) and multiplication by H−1.

With these direction vectors, a quadratic model for the
entropy and the constraint can be constructed using a
second-order Taylor expansion about the trial spectrum. A
spectrum f ′ in the subspace spanned by the direction vectors
can be represented by a vector of length four, ā; the
correspondence is given by

f ′ = a1υ1 + a2υ2 + a3υ3 + a4υ4 + f0 (8)

where v1 through v4 are the direction vectors and f0 is
the current trial spectrum. The quadratic approximations then
become

S(ā) ≈ S(f0) + B̄ · ā + 1

2
ā · M · ā (9a)

and

C(ā) ≈ C(f0) + Ḡ · ā + 1

2
ā · N · ā (9b)

where vectors B̄ and Ḡ are inner products of ∇C and ∇S with
the direction vectors

B̄i = ∇S · υi (10a)

Ḡi = ∇C · υi (10b)

Similarly, the 4 × 4 matrices M and N are the inner products
of ∇2S and ∇2C with the direction vectors

Mij = υi · ∇2S · υj (11a)

Nij = υi · ∇2C · υj (11b)

Computing these values requires several more Fourier trans-
formations and large matrix products. The Lagrange condition
∇S − λ∇C = 0 for the maximum of the objective function in
the subspace becomes

(B̄ + M · ā) − λ(Ḡ + N · ā) = 0̄ (12)

By a suitable change of coordinates in the subspace, it
is possible to simplify this equation by simultaneously
diagonalizing M and N. The solution then is given by

ai = Bi − λGi

λNii − Mii

(13)

λ can be found by using a binary search to determine the value
for which C(ā) equals the target value C ′.

Convergence criteria for determining when the trial spec-
trum is sufficiently close to the MaxEnt reconstruction derive
from the Lagrange condition and the requirement that C C .

The Lagrange condition implies that ∇C and ∇S are parallel,
so convergence can be monitored by computing the value

Test =
∣∣∣∣

∇S

|∇S| − ∇C

|∇C|
∣∣∣∣ (14)

The algorithm terminates when C ∼= C0 and Test � 1. In
practice, we stop the algorithm when Test < 10−3, or when
a preset maximum number of iterations has been executed.

The value of C0 can be estimated from the data by
examining a portion of an FID that is essentially free of signal,
or alternatively, by examining a signal-free region of the DFT
spectrum. For MaxEnt reconstructions, C0 should generally
be somewhat larger than the estimate of the RMS noise level.
Very large values of C0 result in overly smooth reconstructions
in which weaker components are washed out.

The other adjustable parameter, def, is rather more difficult
to prescribe. def represents the scale at which the nonlinear
effects of MaxEnt reconstruction become significant. A large
value of def results in nearly linear reconstructions. When
def is large and C0 is zero, the resulting reconstruction
is essentially the same as the DFT of the zero-filled FID.
However, very low values of def can give rise to spurious
artefacts. As a rule of thumb, we use values of def somewhat
lower than the noise level. Fortunately, the results are not
overly sensitive to the choice of def. We know of no
algorithmic procedure for determining the best value.

5.1 Constant-λ Algorithm

In principle, multidimensional MaxEnt spectra can be
reconstructed while computing the overall entropy of the
fully-dimensional spectrum, or by partitioning the reconstruc-
tion into a series of reconstructions computed for lower di-
mensional spectra. For example, a 2-D MaxEnt spectrum can
be computed via a series of 1-D MaxEnt reconstructions in f2
following Fourier processing of f1. If the constraint statistic
C0 is kept constant between rows, it can lead to variation in
the weighting (λ) of the constraint and the entropy. This is due
to natural variations in signal and noise distribution, which af-
fect the entropy. This scenario will introduce small changes
in the reconstruction between rows and may have a signifi-
cant effect on peak shapes. By using a constant value for the
weighting λ, one can minimize the variation of the nonlinearity
between rows. A good estimate of λ can be made by finding
representative rows where the constraint statistic C(f ) = C0
is satisfied and using the value of λ found for these rows to
perform the complete reconstruction. The same basic strategy
can be applied to higher dimensions, e.g., a 3-D spectrum can
be constructed as a series of 2-D plane reconstructions. The
approach of using a fixed value of λ, rather than a fixed value
of C0, is called the constant-λ algorithm.15 The advantage of
this approach is that the memory requirements for intermediate
storage are smaller, leading to more efficient computation.

5.2 Automated MaxEnt

While the formal derivation of the MaxEnt algorithm
specifies criteria for determining the appropriate values of def
and C (or λ), applying those criteria in practice is challenging
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4 MAXIMUM ENTROPY RECONSTRUCTION

and finding optimal values even more so. Fortunately, the
results of MaxEnt reconstruction are not terribly dependent
on the precise values of the parameters, over a wide range.
Using empirical rules of thumb, Mobli et al. described an
automated procedure for determining values for the adjustable
parameters.16,17 While they cannot be said to be optimal, they
have proven to be useful estimates for most applications.
The key to the approach is to evaluate the noise level of
the acquired data in situ in order to estimate the value
of C0. Using Parseval’s theorem, it is then possible to
estimate the frequency domain def parameter. In practice, this
approach tends to result in a very conservative estimate of def
resulting in faster and more linear but noisier reconstructions.
Alternatively, the value of def can be systematically reduced
by some constant to produce smoother reconstructions. This
procedure can also be implemented to use the constant-λ
algorithm. In this approach, in addition to estimating the C0
and def parameters, 10 frequencies with the largest signal
components are identified. Dimensions orthogonal to these
frequencies are then reconstructed using the estimated C0
and def parameters. The resulting λ-values for these 10
reconstructions are evaluated, and the average λ value is
used together with the previously estimated def parameter to
reconstruct the entire dataset.

6 PROPERTIES

6.1 Analytic Solution

While numerical solution is required in the general case,
there is a special case of MaxEnt reconstruction that has
an analytical solution. Though unrealistic in several respects,
examination of this special case can give some insights into
how MaxEnt reconstruction works. When N (the number
of points in the reconstructed spectrum) is equal to M (the
number of experimental data points), and when the relationship
between the trial spectrum and the mock FID is given simply
by the inverse Fourier transform (i.e., we are not trying to
deconvolve a decay), the solution can be found analytically.
Parseval’s theorem, which states that the sum of the squared
magnitudes of a vector is equal to the sum of the squared
magnitudes of its Fourier coefficients, permits the constraint
statistic to be computed in the frequency domain. Under these
circumstances, the Lagrange condition becomes

0 = ∇Q = ∇S − 2λ(f − F) (15)

where F is the DFT of the data d̂ . The solution is given by

|fn| = δ−1
λ (|Fn|) (16a)

phase(fn) = phase(Fn) (16b)

where δλ is the function

δλ(x) = x − s ′(x)/2λ (17)

and s(x) is the contribution of a spectral component with
magnitude x to the overall entropy S (see equation (5)).
This result corresponds to a nonlinear transformation, applied
point by point to the DFT of the time domain data. The
transformation depends on the value of λ, and has the effect
of scaling every point in the spectrum down, but points closer
to the baseline are scaled down more than points far above

10008006004002000
x

d
l–1

l = 1.0

0.05

0.01

0.005

1000

800

600

400

200

0

Figure 1 The nonlinear transformation δ−1
λ (x) applied to the DFT

spectrum that results in the MaxEnt reconstruction when N = M , for
various values of the Lagrange multiplier λ

the baseline. Figure 1 illustrates δ−1
λ (x) for various values of

λ. As λ increases, the relative weight given to the constraint
term in the objective function increases, and the transformation
becomes more nearly linear.

This helps to explain the characteristic of MaxEnt recon-
structions that noise near the baseline is suppressed more than
noise away from the baseline (for example, superimposed on
a broad peak, Figure 2). A further point to note is that there is
a very important distinction between the signal-to-noise ratio
(SNR) and sensitivity. Sensitivity is the ability to distinguish
signal from noise. Applying the same transformation to both
the signal and the noise cannot improve this ability, since
peaks that are comparable in height to the noise level will
be reduced by the same amount as the noise. The ratio be-
tween the highest signal peaks and the noise may increase, but
small peaks will be just as difficult to distinguish as before.
For linear operations (such as apodization), an improvement
in SNR necessarily implies an improvement in sensitivity; for
nonlinear operations (such as MaxEnt reconstruction) this is
not so. In this special case, gains in SNR in the MaxEnt re-
construction are purely cosmetic. In the more general case,
for example when an approximately known decay is decon-
volved from the reconstructed spectrum, there may be real
sensitivity gains. However, a prudent investigator will always
question whether gains in SNR really correspond to gains in
sensitivity.18

6.2 SNR versus Sensitivity, and Quantification

The nonlinearity of MaxEnt reconstruction is an inherent
characteristic, and is responsible for the method’s ability to
achieve noise suppression without sacrificing resolution to the
extent associated with linear filtering (such as the windowed
DFT). This nonlinearity has important implications in situa-
tions where quantification of peak intensities or volumes is
required, such as nuclear Overhauser effect measurements or
difference spectroscopy. For difference spectroscopy, it may
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MAXIMUM ENTROPY RECONSTRUCTION 5

(a)

(b)

Figure 2 (a) DFT and (b) MaxEnt reconstruction for a synthetic noisy
signal. Noise near the baseline is suppressed more effectively than noise
superimposed on the broad peak

be sufficient to compute the difference using the time-domain
data and compute the MaxEnt reconstruction of the differ-
ence. This ensures that the same nonlinearity applies to both
experiments. When measuring nuclear Overhauser effects, or
otherwise quantifying peak intensities, there are two possible
approaches. One is to tightly constrain the reconstruction to
match the data, which forces the reconstruction to be more
nearly linear (although at the expense of noise suppression).
Another is to add synthetic signals of known relative intensity
into the time domain data prior to reconstruction. A calibration
curve can then be constructed by quantifying the intensities of
the known signals.15

7 APPLICATIONS

7.1 Deconvolution

An approach to deconvolution using linear methods of
spectrum analysis that exploits the convolution theorem is to
divide the time-domain data by a convolution kernel whose
DFT is the function one wishes to deconvolve. This approach
works reasonable well for window functions, for example that
have values significantly greater than zero. For functions that
have very small values or zero, this approach becomes unstable
(or undefined). The inverse nature of MaxEnt reconstruction
makes it amenable to performing stable deconvolution, even
when the kernel has small or zero values. To perform
deconvolution using MaxEnt, one modifies the constraint
statistic used to defined consistency with the measured data
[equation (2)] by including the kernel function

C(f, d) =
M−1∑
i=0

|mi − di |2 =
M−1∑
i=0

|ki · IDFT(f)i − di |2 (18)

where ki are the elements of the kernel function k. When
k is everywhere equal to 1, the mock data are simply the
inverse discrete Fourier transform (IDFT) of the trial spectrum.
Otherwise, the spectrum of the mock data is given by f
convolved with the spectrum of k, so f is the deconvolved
spectrum.

A useful application of this approach is for virtual
decoupling, in which a cosine modulation caused by spin–spin
coupling is deconvolved. Shimba et al. showed that a single
convolution kernel with a fixed frequency is sufficient to
perform virtual decoupling so long as the variation in the
couplings is comparable to or smaller than the linewidth of
the resonances.19,20 Virtual decoupling can be useful when
radiofrequency (RF) decoupling is not feasible, and avoids
sample heating or Bloch–Siegert shifts that can accompany
RF decoupling.

7.2 Nonuniform Sampling (NUS)

The ability to handle data that have been collected at nonuni-
form time intervals is another consequence of the inverse
nature of MaxEnt reconstruction, and this capability has been
used to overcome limits on resolution in multidimensional ex-
periments imposed by practical constraints on measuring time.
Non-Fourier methods of spectrum analysis, including MaxEnt
reconstruction, are typically used to compute spectra from data
collected at nonuniform intervals. NUS in multidimensional
NMR remains an active area of research, and is discussed
elsewhere in this volume (see Rapid Multidimensional NMR:
Decomposition Methods and their Applications, Maximum
Entropy: Multidimensional Methods)

8 RELATED METHODS

8.1 Burg Maximum Entropy Method

An application of the maximum entropy principle to
signal processing that preceded MaxEnt reconstruction was
introduced by J. P. Burg.10 Noting the Fourier transform
relationship between the autocorrelation function of a time
series and the power spectrum, Burg asked what constraints the
positivity of the power spectrum places on the autocorrelation
function beyond the measured interval. He showed that the
answer is very similar to the result of extrapolating the
autocorrelation function by maximizing the entropy, and
devised a very simple procedure that amounts to fitting LP
coefficients to the measured data, from which the MaxEnt
(power) spectrum can then be derived. This “Burg maximum
entropy method” bears a much closer resemblance to LP
extrapolation and the linear prediction z-transform (LPZ)
method21 (see Fourier Transform and Linear Prediction
Methods) than to MaxEnt reconstruction. The use of the
LP framework implicitly invokes a model of a sum of
exponentially decaying sinusoids to describe the signals, in
contrast to MaxEnt reconstruction, which does not assume the
signals conform to any particular form.

8.2 Forward MaxEnt

The nonlinearity of MaxEnt reconstruction presents chal-
lenges to quantitative applications, such as determining nuclear
Overhauser effects (NOEs), relaxation rates, or metabolomics.
As mentioned above, one approach is to empirically determine
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6 MAXIMUM ENTROPY RECONSTRUCTION

a calibration curve, another is to perform reconstructions using
large values of λ to minimize the nonlinearity. For applica-
tions involving NUS, Hyberts and Wagner22 proposed taking
this latter step to the extreme: by constraining the IDFT of
the spectrum to exactly match the measured data, they use
entropy maximization to determine the values of the data at
intervals not sampled. The result, which they call forward
MaxEnt (FM), amounts to the MaxEnt spectrum in the limit of
infinite λ. As a statistical method, this would be described as
overfitting, since the spectrum will not be consistent with an
independent remeasurement of the data. On the other hand, the
results are highly linear and can be quantified without resorting
to calibration.

8.3 Compressed Sensing

In the broadest sense, MaxEnt reconstruction is a regular-
ization method that uses the regularization functional to ensure
smooth reconstructions that are consistent with the measured
data. Functionals other than entropy have been proposed, in-
cluding the total power, area, and absolute magnitude of the
spectrum, and in practice many of them give highly similar
results. The term compressed sensing has emerged to describe
one such approach that uses the l1-norm as the regularization
functional applied to NUS data.23 Although formal and compu-
tational arguments have been advanced for various functionals,
we find that for NUS data the distribution of sampling times
has a far greater impact on the resulting spectra than does the
precise form of the regularization functional.
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