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Abstract 

Background:  Lungs donated for transplantation are primarily sourced from brain 

dead organ donors.  The process of brain death causes lung injury through 

haemodynamic instability, catecholamine fluctuations and activation of inflammatory 

pathways. Recent literature has implicated endothelin-1 in transplantation related 

lung dysfunction.  Therefore, inhibition of endothelin signalling may reduce or 

reverse endothelin related vasoconstriction and inflammation.  Tezosentan, a dual 

endothelin antagonist, is able to be nebulised to directly target the lungs.  This aims 

to avoid systemic adverse effects, specifically hypotension.  Nebulised tezosentan 

has been previously demonstrated to reduce pulmonary hypertensive responses to 

systemic inflammatory states. 

 

Objective:  This thesis sought to investigate the role of the pulmonary endothelin axis 

after brain death in a novel, clinically relevant, ovine model of brain death.  

Furthermore, the effects of nebulised tezosentan on pulmonary haemodynamics and 

inflammation in donor lungs after brain death were assessed. 

 

Methods:  Twenty-four merino cross ewes were randomised into four equal groups 

(n=6 per group).  These were control/placebo, control/tezosentan, brain 

dead/placebo and brain dead/tezosentan.  Following induction of general 

anaesthesia and placement of invasive monitoring, brain death was induced in 

allocated animals by inflation of an extradural catheter.  Animals were then 

supported in an intensive care unit environment for 24 hours.  Management reflected 

human donor management, including administration of vasopressors, inotropes and 

hormonal resuscitation therapy.  Nebulised tezosentan was administered at 13 and 

18 hours.  The endothelin axis, and the effects of its antagonism, was assessed by 

physiological monitoring, blood gas analysis, ELISA, histology and 

immunohistochemistry.  Injury of other organs was assessed using standard 

biochemical markers. 

 

Results:  A total of 25 animals underwent the experimental protocol.  One animal 

died during induction of brain death from ventricular fibrillation and was replaced.  



 
iii 

Early evidence of endothelin-1 and big endothelin-1 elevations were seen in brain 

dead animals that received placebo, reaching maximal levels at one and six hours 

after brain death, respectively.  This was not replicated in the brain dead animals that 

received tezosentan.  Systemic endothelin-1 levels were not increased by 

tezosentan administration.  Immunohistochemistry identified the endothelin axis in 

pulmonary tissue, but this was not different between groups.  Induction of brain 

death resulted in tachycardia and hypertension, followed by haemodynamic collapse.  

Mean pulmonary artery pressure rose significantly at induction (186 ± 20%) and 

remained elevated throughout the protocol in those that received placebo.  

Additionally, right ventricular stroke work increased 25.9% above baseline by 24 

hours.  Mean pulmonary blood pressure in brain dead animals that received 

tezosentan showed similar elevations with induction of brain death, but was 

significantly lower at 24 hours compared to those that received placebo.  Systemic 

markers of cardiac and hepatocellular injury were significantly elevated in brain dead 

animals, with no evidence of renal dysfunction.  Tezosentan administration did not 

adversely affect systemic haemodynamics and there was no evidence of adverse 

effects on remote organs. 

 

Conclusions:  This novel, clinically relevant, ovine model demonstrated that the 

endothelin axis is able to be modulated after brain death, reducing the observed 

elevations in pulmonary blood pressure.  Early endothelin release possibly 

contributes to the previously recognised inflammation and cardiopulmonary injury in 

potential donors.  Further investigation is required to determine the exact mechanism 

of the observed results.  In the future, antagonism of the endothelin axis after brain 

death may lead to novel treatments that improve the function of pulmonary and 

cardiac allografts for transplantation. 
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Chapter 1 - Introduction and Background to Transplantation 

Organ transplantation is the gold standard treatment for patients with end stage solid 

organ failure.  Australia has been performing solid organ transplantation for over 50 

years.[1]  Despite ongoing clinical success, a disparity remains between available organs 

and potential recipients.  This continues to cause substantial morbidity and mortality.[2]  

According to the Australia and New Zealand Organ Donation (ANZOD) Registry, the 

number patients on the waiting list exceeds the number of organs transplanted each year 

(see also Figure 1).[3] As a consequence, patients continue to die waiting for a suitable 

organ.[4-6] 

 

 

Figure 1:  Comparison of Donors and Waiting List in Australia 2006-2011. 
 From the ANZOD Registry, 2012.[3]  This graph demonstrates the number of deceased donors 
and transplants (bars), and the number of patients on the waiting list (line graph) for solid organ 
transplants in Australia. 

 

1.1 Lung Transplantation 

The first lung transplant (LTx) occurred in 1963, with the recipient surviving 18 days.[7, 8]  

The first successful heart-lung transplant was done in 1981, quickly followed by single and 

double LTx over the next five years.[7]  Inflammatory and peri-procedural complications 

affect LTx similarly to other organs.  This is further complicated by ongoing exposure to the 

external environment by the very nature of respiration.[9]  Current post-LTx management 

produces one and three year survival rates of 83.5% and 65.8% overall.[10]  

Unfortunately, any gains are offset by the relative lack of available donors.  Twelve LTx 
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occurred in Australia for December 2013, yet there were 155 registered patients on the 

waiting list.[11]  The United States also continues to experience a shortage of donor lungs, 

achieving an average rate of transplants per donor of 0.37.[12] 

 

1.2 Organ Donors 

1.2.1 Living Donors 

Living donors (LD) provide a viable option for transplantation of a number of solid organs, 

including kidney and liver.[13, 14]  Kidneys from LD have better short and long term 

outcomes when compared to those from cadaveric donors.[15]  This results directly from 

the pathological and inflammatory changes that occur after death. With rare exceptions, 

transplanted lungs can only be obtained from deceased donors.  Traditionally, these were 

brain dead (BD)/beating heart donors.  Recent work to expand the donor pool has resulted 

in the inclusion of donation after circulatory death (DCD)/non-beating heart donors.[16, 17]  

 

1.2.2 Donation after Brain Death 

Although outcomes from DCD donors have become increasingly successful in recent 

times,[16, 18] most organs still come from BD donors.  The very nature of brain death 

requires an irreversible central nervous system injury to have occurred, either through 

direct trauma, hypoxia or other mechanisms.  A systemic acute phase reaction occurs with 

serious brain injury[19] creating a proinflammatory environment.  Thus, inflammatory 

upregulation in potentially transplantable organs has already started prior to BD.  Brain 

death then independently causes inflammatory, haemodynamic and endocrine effects that 

cause further injury.[20-24]  Finally, ischaemia-reperfusion injury (IRI) generates reactive 

oxygen species (ROS), which are responsible for complement activation and cytokine 

release, further driving inflammation.[24-26]  

 

1.2.3 Donation after Circulatory Death 

Although the first LTx was performed with a DCD donor,[8] BD donors have become the 

primary source of lung allografts.  Animal studies of DCD donors continued until the late 

1990’s, and lead to the eventual return of this form of donation in humans more 

recently.[18]  This has made some inroads in addressing the donor pool shortfall.  

Donation after circulatory death donors accounted for 25.5% of all donors in 2012.[11]  

This number has remained stable, with 24.6% of lung transplants in the first two months of 

2015 coming from DCD donors.[27]   
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Although initial LTx case reports from DCD donors were promising, early observational 

studies suggested that outcomes were less satisfactory than BD donors.[28, 29]  This was 

refuted by De Vleeschauwer et al, who reported their experience with DCD LTx 

donors.[18]  Retrospective analysis of their DCD and BD donors over a four year period 

demonstrated similar short and medium term outcomes between groups.  An Australian 

collaboration reported the largest cohort of DCD donor outcomes, following 72 recipients 

for five years.[30]  This study observed a greater survival in the DCD group compared to 

BD at both one and five years.[30]  In the United Kingdom, reports of DCD donors showed 

similar survival up to 7 years when compared to BD donors.[16]  Despite this, Kaplan-

Meier graphs indicated less Bronchiolitis Obliterans Syndrome (BOS) in recipients of BD 

donors lungs from three years onward.[16]  Of note, the Australian data reported fewer 

new BOS cases in DCD recipients, (7% Australian data vs 24% United Kingdom data); 

indeed, the incidence of DCD BOS in the Australian study was less than both DCD and BD 

groups from the United Kingdom.  Machuca et al recently reported the experience of a 

single centre in Canada, similarly demonstrating equal five year survival rates between 

groups.[31]  The incidence of BOS was not reported in this study.  These data indicate that 

donation after circulatory death is associated with good outcomes and remains a critical 

contributor to addressing current donor shortages. 

 

1.3 Rationale for the Current Study 

Despite significant improvements in outcomes after LTx, challenges remain.  As long as 

the majority of donations continue to come from BD patients, each transplanted organ will 

be exposed to a unique set of insults.  Consequently, donor management must consider 

each step from donor to recipient in order to gain the maximal benefit.  Implementation of 

standardised Aggressive Donor Management (ADM) protocols for BD donors improves 

quality and quantity of transplantable organs.[32]  The objective of the present thesis is to 

investigate the contribution of the endothelin axis to lung injury after brain death, and apply 

targeted, local therapy in order to improve the quality of potential donor lungs. 
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Chapter 2 - Inflammatory Signalling Associated with Brain Dead 

Organ Donation:  From Brain Injury through to Brain Stem Death 

and Post Transplant Ischaemia Reperfusion Injury 

 

*This Chapter was accepted for publication in the Journal of Transplantation.  However, 

new sections have been added for the thesis.  These sections include: 

2.3.5 Endothelin and its Receptors 

2.3.5.1 Production of Endothelin 

2.3.5.2 Endothelin Receptors 

2.3.5.3 Influence of Endothelin-1 on Pulmonary Injury and Remodelling 

2.7.1 Current Care of the Brain Dead Multi-Organ Donor 

2.7.1.1 Respiratory Management 

2.7.1.2 Fluid, Haemodynamic and Cardiovascular Management 

2.7.1.3 Special Consideration of Cardiac Function after Brain Death 

2.7.1.4 Endocrine and Metabolic Management 

2.7.2 Duration of Care of Brain Dead Organ Donors 

Adjustment has been made to 2.8 Potential Future Directions due to these associated 

edits 

 

This section was originally published as: 

Watts, R.P., Thom, O., and Fraser, J.F., Inflammatory Signalling Associated with 

Brain Dead Organ Donation: From Brain Injury to Brain Stem Death and Post 

Transplant Ischaemia Reperfusion Injury. Journal of Transplantation, 2013. 2013: p. 

19. 
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2.1 Abstract 

Brain death is associated with dramatic and serious pathophysiologic changes that 

adversely affect both the quantity and quality of organs available for transplant.  To fully 

optimise the donor pool necessitates a more complete understanding of the underlying 

pathophysiology of organ dysfunction associated with transplantation.  These injurious 

processes are initially triggered by catastrophic brain injury and are further enhanced 

during both brain death and graft transplantation.  The activated inflammatory systems 

then contribute to graft dysfunction in the recipient.  Inflammatory mediators drive this 

process in concert with the innate and adaptive immune systems.  Activation of deleterious 

immunological pathways in organ grafts occurs, priming them for further inflammation after 

engraftment.  Finally, post-transplantation ischaemia-reperfusion injury leads to further 

generation of inflammatory mediators and consequent activation of the recipient’s immune 

system.  Ongoing research has identified key mediators that contribute to the inflammatory 

milieu inherent in brain dead organ donation.  This has seen the development of novel 

therapies that directly target the inflammatory cascade. 
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2.2 Introduction 

Organ transplantation is the gold standard treatment for patients with end stage solid 

organ failure.  An ever increasing disparity between available organs and potential 

recipients is the cause of avoidable morbidity and mortality.[2, 4-6]  Ongoing efforts are 

being made to increase the quantity and quality of organs available for transplant.  

Although outcomes from non-heart beating donors have become increasingly 

successful,[18] the majority of organs are still donated from donors after brain death (BD).   

Significant brain injury of any aetiology will cause a systemic response,[19] creating a 

proinflammatory environment prior to the occurrence of brain death itself.  BD then also 

creates a variety of inflammatory, haemodynamic and endocrine effects, which induce 

adverse sequelae in distant organs.[20-23]  Finally, ischaemia-reperfusion injury (IRI), 

inherent in transplantation, generates reactive oxygen species (ROS), activates 

complement and independently drives cytokine release and inflammation.[25, 26]  Every 

transplanted organ from a BD donor will face these stages of potential injury.  

Consequently, donor management must consider each step from donor to recipient in 

order to maximise recipient outcomes.  The purpose of this article is to explore the current 

understanding of the three main contributors to injury that an organ will travel through from 

donor to recipient.  Additionally, donor management and organ preservation strategies that 

are currently being investigated will be considered. 

 

2.3 Stage Zero of Potential Organ Injury:  Current Concepts in Immunological 

Signalling 

Inflammation secondary to brain injury, BD and IRI is driven by both the innate and 

adaptive immune systems.  The complexity of these systems means that our 

understanding continues to evolve at a rapid pace (Figure 2).  Prior to reviewing the 

specific inflammatory responses at each major step of the donor organ journey, it is 

important to discuss current concepts in the normally functioning immune system.   
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Figure 2:  Primary Mediators of Peri-Transplant Inflammation 
Multiple mediators have been identified in peri-transplant inflammation.  This diagram represents 
the complexity and observed interplay of these inflammatory mediators associated with 
transplantation 
 

Traditionally, T-cell responses are grouped according to the TH1/TH2 paradigm.  TH1 

lymphocytes (CD4+) are responsible for cell mediated immunity through activation of killer 

CD8+ T-cells and cytotoxic macrophages.[33, 34]  TH2 cells are responsible for control of 

humoral immunity through antibody producing B cells.  Additionally, they regulate 

eosinophil and basophil function.  Recent work has identified TH17 and T-regulatory (Treg) 

subsets.  TH17 cells have been implicated in autoimmunity.[33, 34]  Treg cells are related to 

TH17 cells and function to regulate immunological reactions and prevent uncontrolled 

inflammation.  Each of these T-cells plays a specific role in inflammation and their actions 

can be identified by certain inflammatory mediators.  Although cytokines may interact with 

multiple T-cell subsets, previous authors have classified the major cytokines into “types” 

reflecting the major T-cell subtype to which they are related.[9, 35-37]  This convention will 

be used in the current review. 
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2.3.1 TH1 Cell Related Cytokines 

Communicating via the type 1 cytokines, tumour necrosis factor (TNF)-α, interleukin (IL) -

1, IL-2, IL-12 and IFN-γ,[38-40] TH1 cells play a fundamental role in acute rejection.  Type 

1 cytokines are upregulated early in the inflammatory process.  After their release, IL-1β 

and TNF-α support the inflammatory response via activation of endothelial cells.[41]  

These cytokines act early in the inflammatory cascade, stimulating generation of cellular 

adhesion molecules, innate immune defence mechanisms and participating in cross-talk 

between the various inflammatory pathways.[42, 43]  IL-2 plays an essential role in resting 

T-cell activation and proliferation, contributing to T-cell maturation.[44]  After T-cell 

induction via IL-2, IL-12 directs cellular maturation towards TH1, leading to a cell-mediated 

immune response.[45]  IFN-γ influences both the innate and adaptive immune systems 

and is integral in the antigen presenting cell (APC) controlled balance between effector 

and suppressor T-cells.[46]  IFN-γ not only acts as the primary effector cytokine of IL-12 as 

part of cellular immunity, but also provides negative feedback control of IL-12 and 

indoleamine dioxygenase mediated T-cell inhibition, under the control of APC’s.[46]     

 

2.3.2 TH2 Cell Related Cytokines 

TH2 cell related cytokines include IL-4, IL-5, IL-10 and IL-13.[34, 47]  The type 2 cytokines 

are generally considered anti-inflammatory when associated with brain injury and BD, and 

in the early transplant period.[48-50]  IL-4 inhibits formation of TH1 cells and encourages 

development of TH2 cells.[48]  It also plays an essential role in B-cell generation of IgE.[51]  

IL-4 may activate macrophages via an alternative pathway that reduces inflammation 

through sequestration and metabolism of arginine, an essential requirement for nitric oxide 

generation by inflammatory IFN-γ activated macrophages.[52]  IL-4 has been postulated to 

depress T cell activity through production of indoleamine dioxygenase; Wang et al 

demonstrated increased indoleamine dioxygenase produced by natural killer cells in IL-4 

treated rat livers.[52]  IL-13 is best known for its role in allergy.  Through interaction with its 

receptor, IL-13 stimulates inflammatory cells as well as epithelial and smooth muscle 

cells.[53]  This may contribute to smooth muscle hypertrophy and pulmonary hypertension 

in various lung diseases.[53]  IL-13 inhibits cell mediated immunity through downregulation 

of E-selectin, reduction of neutrophil recruitment and macrophage inhibition.[54]  IL-5 is 

essential for development, recruitment and activation of eosinophils.[55]  Once these cells 

are recruited to inflammatory sites, IL-5 is a potent co-stimulator of eosinophil 

degranulation and maintains their presence through inhibition of apoptosis.[55, 56]  IL-5 
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also acts as a key mediator for generation of antigen specific IgE.  Furthermore, it is 

important for terminal B cell differentiation, including the switch to mature IgM and IgG1 

secreting plasma cells.[57]     

 

IL-10 acts to inhibit production of inflammatory cytokines and upregulate inhibitors of IL-1 

and TNF.[35]  It may also specifically block the production of IL-1 and TNF.[58]  Direct 

activity on inflammatory cells impairs or reverses the effects of pro-inflammatory 

mediators.[58]  While IL-10 is classified as a type 2 cytokine, it is also able to be produced 

by TH1 cells under the influence of transforming growth factor (TGF)-β.[38]   

  

2.3.3 TH17 Cell Related Cytokines 

The TH17 cells are identified by their association with IL-6, IL-17, IL-21, IL-22 and IL-

23.[34, 45, 59]  IL-17 and IL-23 direct TH17 cell differentiation, proliferation and 

maturation.[45]    Apart from directing TH17 development, IL-17 functions to stimulate 

production of chemokines, IL-1β, TNF-α, IL-6 and IL-8.[38, 60]  Its production is reinforced 

by IL-6, IL-23 and TGF-β.[38, 60]  IL-8 related neutrophil attraction and activation may 

contribute partly to the inflammatory action of IL-17.[61]  IL-23 is an important upstream 

regulator of IL-17 expression.[45, 62]  Generation of IL-17 by γδ-T-cells is directly 

activated by IL-23, and these cells are an important source of IL-17.[62]  Furthermore, IL-

23 induces IL-17 production from natural killer T-cells.[60]  IL-21 stimulates natural killer T 

cells, CD40 dependent B-cell proliferation and T-cell expansion.[63]  Hagn et al recently 

demonstrated that incompletely activated CD4+ T-cells, through expression of IL-21 and 

CD40 ligand, stimulate B cells to differentiate into Granzyme B generating cytotoxic B 

cells.[64] 

 

IL-6 has been extensively investigated in many conditions.  It’s pro- and anti-inflammatory 

effects have recently been comprehensively reviewed.[65]  Briefly, it is a pro-inflammatory 

agent which has been classified as a type 17 cytokine,[66] although some authors may 

include it as a type 1.[67]  IL-6, the prototypical member of its family, acts through receptor 

complex formation with glycoprotein gp130 on the cell surface.[65]  The IL-6 receptor 

molecule is present on the surface of hepatocytes, neutrophils, monocytes and 

macrophages.[65, 68]  Direct activation of these receptors is associated with an 

inflammatory response.[68]  Other cells may also respond to IL-6 through a process 

termed trans-signalling.[68]  Free soluble IL-6 receptor binds circulating IL-6 and then 

interacts with the ubiquitous cell surface protein, gp130, to affect cell signalling.[65]   The 
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dual roles of IL-6 may be partly explained by the differing signalling mechanisms.  Soluble 

IL-6 receptor generated from apoptotic neutrophils in areas of inflammation activates 

signalling pathways after interaction with epithelial gp130, attracting regulatory monocytes 

and macrophages and contributing to resolution of inflammation.[65] 

 

2.3.4 Treg Cells and Related Cytokines 

Named due to their ability to downregulate inflammatory processes, Treg cells are another 

important source of the anti-inflammatory IL-10.  Treg are closely related to TH17 cells; both 

lineages are derived from the same naïve T-cell precursor in a similar fashion to TH1/TH2 

cells.[34, 40]  Deknuydt et al recently highlighted the fluidity of the TH17/Treg balance by 

demonstrating that Treg cells can be stimulated to become TH17 cells under the influence of 

IL-1β and IL-2.[34]  TGF-β also directs differentiation of T cell populations in inflammatory 

conditions and is important in the TH17/Treg balance.  TGF-β modulates the effects of IL-2, 

reducing expansion of inflammatory T-cell populations.[38]  When acting synergistically 

with IL-2, TGF-β is able to direct naïve T-cells to become Treg cells.[69]  Selective inhibition 

of TH1 producing mediators by TGF-β further contributes to the diversion from 

inflammatory T-cells to Treg cells, mediating the inflammatory response.[38]  However 

costimulation of TGF-β by IL-6 directs T-cell differentiation towards TH17 cells and 

production of type 17 cytokines.[40]  Treg cells are immunosuppressive through production 

of IL-10 and TGF-β, cellular anergy and direct contact with inflammatory cells.[70]    

 

2.3.5 Endothelin and its Receptors 

Endothelin-1 (ET-1) is the most active member of a family of small polypeptides which are 

potent vasoconstrictors, mitogens of smooth muscle cells and stimulators of fibroblasts 

(Table 1).[71-75]  Endothelin-1 upregulation has been observed in both brain injury and 

BD, and increased expression has been associated with adverse outcomes in lung 

transplantation.  Early investigations into endothelin-1 were focussed on its 

vasoconstrictive properties, though recent research has implicated the endothelin axis in a 

wide variety of pathophysiological conditions.[76-86]  The ubiquitous nature of the 

endothelin axis, its multiple roles in endothelial function, vascular reactivity and 

inflammation, and previous research indicating its potential role in BD related pulmonary 

pathophysiology, highlight ET-1 as a potential therapeutic target in transplant related 

medicine.[87] 
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Table 1:  Properties of Endothelin 
Summary table of the properties of endothelin signalling 

Endothelin   
Endothelin Subtypes[72, 74, 88]   ET-1 

ET-2 
ET-3 
 

Sites of Production[72] Smooth Muscle Cells 
Cardiomyocytes 
Leukocytes 
Macrophages 
Mesangial Cells 
Airway Epithelium 
Alveolar Epithelial Cells 
 

Receptor Subtypes[71-73, 89, 90]  Endothelin Receptor A 
 Endothelin Receptor B 
  

Action  Endothelin Receptor A[71-73, 89, 90] 
Smooth Muscle Contraction 
Fibrogenesis 
 

Endothelin Receptor B[71-73, 89, 90] 
Smooth Muscle Contraction 
Smooth Muscle Relaxation 
ET-1 Clearance 
 

Localisation of Receptors[71, 72, 88] Heart  
Endocardium 
Conducting System  
Coronary Vessels 

Lung 
Kidneys 
CNS 
Liver 
Neutrophils 
 

Stimulators of Release[72]   Endothelial Shear Stress 
Thrombin 
AT2 
Cytokines 
Free Radicals  
Catecholamines 
 

Inhibitors of Release[72] NO 
ANP 
Prostacyclin 

ET – Endothelin, AT2 – Angiotensin 2, NO – Nitric Oxide, ANP – Atrial Natriuretic 
Peptide, CNS – Central Nervous System 
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2.3.5.1 Production of Endothelin 

The endothelins are produced via step-wise proteolytic cleavage.  Initially, prepro-

endothelin is cleaved to form pro-endothelin-1 (or “Big ET-1”).[91-93]  Big ET-1 is then 

processed by endothelin converting enzyme (ECE) to produce ET-1.[93, 94]  Three 

isoforms of ECE exist; non-selective ECE-1 localised to the smooth muscle cell 

membrane, intracellular ECE-2 (which is preferentially selective for Big-ET-1 and operates 

within the Golgi apparatus of endothelial cells) and ECE-3, which is specific for production 

of ET-3.[95, 96]  Studies measuring systemic levels of ET-1 indicate that it primarily acts in 

a paracrine/autocrine fashion; more than 80% of ET-1 is released abluminally into the 

space between endothelium and smooth muscle cells (Figure 3).[95, 97]  Clearance of ET-

1 occurs through its interactions with its receptors, although some degree of metabolism 

occurs through endopeptidases associated with vascular smooth muscle cell 

membranes.[84, 98]  

 

Figure 3:  Schematic Diagram of Endothelin Cell Signalling 
Endothelin-1 is produced by endothelial cells and primarily released abluminally.  Once released, it 
acts in an autocrine/paracrine fashion to stimulate its receptors.  Activation of ETRB on endothelial 
cells leads to vasorelaxation through production and release of nitric oxide and prostacyclin, while 
stimulation of vascular smooth muscle cells through ETRA or ETRB leads to vasoconstriction 
 

2.3.5.2 Endothelin Receptors 

Endothelin-1 acts on two receptor subtypes, ETRA and ETRB, each with different 

functions.[99]  The ETRA receptor exerts its effects via activation of vascular smooth 
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muscle cells.[100]  Endothelin A receptor stimulation elevates cytosolic calcium through 

Gq/11 signalling, with resultant phospholipase C activation.[99]  This, in turn, increases 

inositol triphosphate, stimulating calcium release and leading to calcium-calmodulin 

dependent activation of myosin light chain kinase.[99]    These effects are reinforced via 

ETRA-G12/13 signalling, which activates the Rho-kinase pathway to phosphorylate, and thus 

inactivate, myosin-phosphatase.[99]  Myosin-phosphatase is also inhibited by CPI-17 

(protein kinase C potentiated inhibitor protein of 17 kDa), which is itself activated by 

calcium dependent and independent mechanisms (including phospholipase C mediated 

production of diacylglycerol) to reinforce smooth muscle contraction and increase calcium 

sensitivity in vascular smooth muscle cells.[99]  The final result is prolonged smooth 

muscle contraction, increasing systemic and pulmonary vascular resistance.[99]  ETRA 

antagonism has been observed to decrease hepatic inflammatory cytokine release in BD 

animal models.[101]  This may occur indirectly, through attenuation of ischaemic 

vasospasm, or by direct interruption of cytokine generation secondary to ET-1 

signalling.[101]  Although the mitogenic effect of ET-1 occurs through ETRA activation, it is 

modified and enhanced by ETRB cosignalling.[102]  After signalling through ETRA, ET-1 is 

internalised for lysosomal degradation.[98] 

 

The ETRB receptors also utilise G-protein coupled signalling.[103]  Their activation 

produces differing responses dependent on their location.  Some authors have sub-

classified ETRB receptors into ETRB1 (endothelial) and ETRB2 (vascular smooth muscle) in 

accordance with their localisation.[95]  Vascular smooth muscle ETRB causes 

vasoconstriction via Gq related signalling,[104] whereas endothelial ETRB leads to 

vasodilatation due to activation of inducible nitric oxide synthase (NOS) and production of 

NO.[99, 105]  Stimulation of this subtype also increases cyclo-oxygenase (COX) 

dependent production of prostacyclin (PGI2), which acts to reinforce vasodilatation and 

inhibit platelet aggregation.[99]  Nitric oxide and PGI2 are released from endothelial cells to 

act on nearby smooth muscle.[99]  In vascular smooth muscle cells, NO activates 

guanylate cyclase, increasing cyclic GMP and protein kinase G to decrease intracellular 

calcium.[99]  Vasorelaxation secondary to prostacyclin is achieved through adenylate 

cyclase signalling, which also reduces intracellular calcium.[99]  In addition to its 

vasomotor role, ETRB sequesters and clears circulating ET-1, particularly that traversing 

the pulmonary circulation.[106, 107] 
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2.3.5.3 Influence of Endothelin-1 on Pulmonary Injury and Remodelling 

Endothelin-1 is highly expressed in pulmonary tissue, with ET-1 mRNA production being 

up to five times that of other organs.[108, 109]  Through local signalling, ET-1 is primarily 

responsible for elevating vascular tone to modulate pulmonary flow.[108]  Furthermore, 

ETRA stimulation causes proliferation of vascular smooth muscle cells and fibroblasts via 

phosphatidyl-inositol 3-kinase/protein kinase B, protein kinase C and mitogen associated 

protein kinase signalling.[108]  These intracellular signalling systems also result in 

enhancement of extracellular matrix remodelling.[108]  Endothelin-1 induced MMP-2 and -

9 actively degrade type IV and V collagen, which are important components of the cell 

basement membrane.[110]   

 

Insights from cancer literature have suggested that these effects of ET-1 are important 

contributors to extra-cellular matrix remodelling.[85, 110, 111]  Signalling by ETRA may 

activate the epidermal growth factor receptor (EGFR) through multiple mechanisms. The 

scaffolding protein, β-arrestin, anchors the ETRA receptor to the cell membrane and acts 

as a focal point for facilitation and interaction of complex cell signalling networks.[84]  

When ET-1 activates ETRA, β-arrestin may activate EGFR, leading to phosphorylation and 

activation of β-catenin.[84]  Additionally, β-arrestin may itself bind to β-catenin, increasing 

nuclear uptake and facilitating transcription of molecular targets.[84]  These targets include 

gelatinase transcription and translation.[84, 111]  Furthermore, ET-1 has been observed to 

decrease production of TIMP-1 and -2, significantly tipping the balance towards 

extracellular matrix degradation.[111, 112]  Contrary to this, Felx et al reported that both 

TIMP-1 and -2 expression increased in osteosarcoma cells when stimulated by ET-1, and 

that this increased expression could be inhibited by the administration of an inhibitor of 

NFκB.[110]  These contradictory results may still explain increased collagen catabolism 

secondary to ET-1 stimulation, as TIMP-1 and -2 may activate the precursor forms of 

MMP-9 and -2, respectively.[110]  Such imbalances have been observed in the lung 

pathology as well; the matrix metalloproteinases are important mediators of acute lung 

injury and the acute respiratory distress syndrome (ARDS).[113, 114] 

 

2.4 Stage One of Potential Organ Injury:  Brain Injury 

Most brain dead donors suffer from three main causes of BD: cerebrovascular injury, 

anoxia or traumatic brain injury (TBI).[115, 116]  Donor cause of death can significantly 

influence recipient survival rates, though this varies according to the organ.  Renal 

transplant outcomes are adversely affected by cerebrovascular causes of BD.[117, 118]  
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Lung transplant is unaffected by donor cause of death,[119]  while heart transplant 

outcomes remain controversial.[120, 121]  For this reason, it is important to consider the 

pathophysiologic responses to severe central nervous system injury, and their systemic 

sequelae, prior to brain death. 

 

2.4.1 Systemic Inflammatory Response Secondary to Brain Injury 

Central nervous system (CNS) injury is associated with the systemic inflammatory 

response syndrome (SIRS).  This can occur with an intact blood brain barrier (BBB), 

indicating an additional mechanism distinct from CNS derived cytokine release.[122, 123]  

The link between the brain and SIRS has been comprehensively reviewed by Lu et al.[124]  

Briefly, SIRS is associated with leukocyte mobilisation and recruitment to major organs, 

activation and release of inflammatory mediators, generation of ROS, increased vascular 

permeability and organ dysfunction.[125, 126]  Brain intraparenchymal injection of TNF-α 

recruits and activates systemic monocytes while IL-1β activates and recruits neutrophils 

via release of chemokines from the liver.[122, 127] 

 

TNF-α is released from the spleen in the early stages of brain injury to augment the 

peripheral inflammatory response.[19, 128]  Lee et al demonstrated upregulation of TNF-α, 

IL-1β, IL-4 and IL-6 in the spleens of rats with subarachnoid haemorrhage (SAH).[128]  

Intravenous administration of neural stem cells attenuated the inflammatory response via a 

chaperone mechanism which was localised to the spleen and reversed on 

splenectomy.[128]  Splenic inflammation may also be directly downregulated via vagal 

messages from the brain.[19]  The SIRS response activates gut derived inflammatory 

mediators, resulting in leaky gut wall.[129]  This contributes to global inflammation through 

cytokine generation and systemic endotoxin exposure, worsening pulmonary inflammation 

and impairing oxygenation.[129-131]  Similar to the spleen, gut generation of cytokines is 

also modulated by the CNS through vagal input.[130]   

 

2.4.2 Localised Response to Brain Injury and Loss of Blood Brain Barrier 

Function 

Local responses to severe brain injury can be classified into two phases.[132]  The primary 

phase is due to the insult itself and includes cellular death, direct BBB disruption and 

cerebral oedema.[132]  The secondary phase of injury is caused by elevated intracranial 

pressure (ICP), global brain ischaemia, excitotoxicity, metabolic derangements and 
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haemodynamic instability.[132-134]  Whatever the cause of brain death, a cytokinaemia 

secondary to brain injury occurs prior to brain death itself.[135-138] 

 

Local inflammation, and the direct effect of the insult itself, causes the highly selective BBB 

to become disrupted.[137, 139]  Matrix metalloproteinases (MMP), especially MMP-9, act 

to break down extracellular proteins, including basal lamina and endothelial tight 

junctions.[140]  In a rat model of closed head trauma, Higashida et al investigated the role 

of MMP-9 and Hypoxia Inducible Factor (HIF) in cerebral oedema resulting from lost BBB 

integrity.[140]  Inhibition of MMP-9 in this model significantly reduced the amount of brain 

oedema observed after 24 hours.  Additionally, inhibition of HIF (an upstream regulator of 

protein expression associated with hypoxia) also significantly reduced the expression of 

MMP-9 and brain oedema.[140]  This observation was confirmed in an intracranial 

haemorrhage model in rats; Wu et al showed that MMP-9 is upregulated early post injury 

and is associated with brain oedema.[141]  A post-mortem study of intracranial 

haemorrhage confirmed these findings in humans.[142] 

 

The effect of the loss of BBB integrity is to allow bidirectional access of inflammatory cells 

and mediators.[139, 143-147]  CNS derived cytokines are then free to interact at receptors 

within the systemic tissues, inducing local inflammation and ‘priming’ organs for further 

injury.[144, 148]  The importance of brain injury derived cytokinaemia was recently 

demonstrated by Graetz et al, who reviewed compartmental levels of IL-6 in SAH and 

found elevated plasma IL-6 is associated with increased mortality.[135]  This provides 

further evidence that isolated brain injury causes a systemic inflammatory response and 

upregulates the peripheral immune system.[130, 146] 

 

2.4.3 Type 1 Cytokines 

Type 1 cytokines are upregulated in the brain after injury and contribute to BBB 

breakdown, vasospasm and secondary injury.[133, 149, 150]  The general roles of these 

and other inflammatory mediators have been previously reviewed.[151]  Briefly, IL-1β is a 

pleiotropic proinflammatory mediator that stimulates multiple pathways of inflammation 

after brain injury.[151]  TNF-α acts as a proinflammatory agent early in the inflammatory 

process in the CNS.[152]    Microdialysis techniques have confirmed the presence of IL-1β 

and TNF-α in extracellular fluid after TBI and SAH.[135, 150, 153]  Both of these cytokines 

are also released peripherally as part of a systemic acute phase response (APR).[15, 19, 

122, 154]  IL-1β and TNF-α can be detected in blood within as little as one hour after brain 
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ischaemia, even before significant neuronal cell death can be demonstrated.[146, 155]  

Quantitative systemic levels of type 1 cytokines may be affected by the type of brain insult; 

these were decreased in a middle cerebral artery occlusion model in mice, partially 

explaining the mechanism of the observed shift from TH1 to TH2 driven immunity post-

stroke.[36]   

 

The soluble TNF Receptors (TNFR), p55 and p75, also contribute to the inflammatory 

process in traumatic brain injury, though the specifics of their involvement are not currently 

clear.[147]  They act as anti-inflammatory agents through free TNF scavenging, although 

TNFR levels are more closely correlated to mortality in potential donors than TNF 

itself.[147, 152]  This observation may actually reflect an imbalance in pro- and anti-

inflammatory mechanisms or simply be due to the very short half life of TNF.[147]     

 

2.4.4 Type 2 Cytokines 

A recent study of stroke in IL-4 knockout mice showed that IL-4 reduces the TH1:TH2 cell 

ratio and infarct volume, and improves neurological outcome.[48] Studies in humans have 

shown that brain derived IL-4 can be detected in the jugular vein in patients with serious 

head injury.[156]  A post-mortem study of TBI patients confirmed elevated IL-4 in brain 

tissue.[133]  IL-13 has been less studied in brain injury.  One in vitro study of IL-13 and IL-

4 did show that these mediators induced apoptosis of activated microglia, which may 

account for part of the observed anti-inflammatory effect.[157]  IL-13 is not significantly 

elevated in the plasma after TBI.[50] 

 

IL-10, a type 2 cytokine with anti-inflammatory properties,[48, 49] plays a protective role in 

the CNS, reducing infarct size in stroke patients.[58, 158]   Analysis of post-mortem TBI 

brains confirmed the presence of IL-10, though levels were more modest than similarly 

identified pro-inflammatory cytokines.[133]  This was consistent with intraparenchymal 

levels measured by microdialysis in TBI and SAH patients.[153]  Overflow of IL-10 into the 

cerebrospinal fluid (CSF) after TBI has also been demonstrated.[159]  Systemic IL-10 

levels peak early in TBI patients, declining to baseline within 48 hours.[147]  Although IL-

10 decreases inflammation through its immunomodulatory action, it also increases 

susceptibility to infection through immune system downregulation.[158]   
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2.4.5 Type 17 Cytokines 

In the CNS, IL-6 plays a dichotomous role through modulation of glial responses and 

neuronal survival, contributing to the early inflammatory response, but modulating later 

inflammatory pathways to assist with brain recovery.[152, 160-162]  While its 

proinflammatory role is well known, it has also been shown to protect against excitotoxicity 

in vitro and brain ischaemic or excitotoxic states in vivo.[160]  The specifics of how this 

balance is achieved is less clear.[160]  One suggestion is that the role of IL-6 depends on 

the amount of neuronal cell damage and is concentration dependent, but it is also probably 

subject to negative feedback inhibition via crosstalk between NMDA and IL-6 

receptors.[160]  It may also downregulate inflammation through stimulating IL-1 receptor 

antagonist.[153]  Microdialysis techniques have confirmed that IL-6 is acutely increased 

after brain injury.[135, 136]  Furthermore, Graetz et al demonstrated that IL-6 is released 

from the brain parenchyma into the systemic circulation after brain injury, particularly in the 

presence of high ICP.[135]  Previous studies have also shown that IL-6 interferes with 

BBB integrity.[135, 143]  Similar to IL-4, IL-6 is detectable in jugular blood, and the 

transcranial gradient correlates with poor outcome in TBI.[135, 143]  The APR is 

stimulated by circulating IL-6[163] and this may provide a link between central injury and 

the peripheral immune response seen with intracranial injury.[146]  

 

The roles of IL-17 and IL-23 in acute brain injury remain to be fully elucidated.  While a role 

has been established in central autoimmune disorders including experimental models of 

multiple sclerosis,[33] less has been published on acute CNS injury.  Murine models 

demonstrate that both of these interleukins are locally upregulated after stroke.[164-166]  

Currently, there are no published data on their peripheral release after acute brain injury. 

 

2.4.6 The Endothelin Axis in Brain Injury 

Endothelin-1 is an important mediator in TBI, stroke and SAH.[94, 167-169]  In acute brain 

injury, ET-1 leads to constriction of large vessels, altering the normal balance between 

vascular relaxation and constriction, resulting in impaired cerebral blood flow.[169]  This 

alteration of blood flow has been targeted in studies of SAH.[170]  Clazosentan, an ET 

receptor A antagonist, reduces large cerebral artery vasospasm in murine models, but this 

did not reduce other mechanisms of secondary brain injury.[170]  Salonia et al analysed 

CSF levels of ET-1 in paediatric head trauma.[169]  They found that ET-1 is significantly 

elevated after injury and remains so for up to 5 days.  Central production of ET-1 in adult 
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TBI was confirmed by Chatfield et al.[167]  Their analysis of the jugulo-arterial gradient 

showed that ET-1 is produced intracranially and spills over into the systemic circulation.   

 

2.5 Stage Two of Potential Organ Injury:  Brain Death 

Serious brain injury, augmented by local inflammation, may eventually lead to an 

irretrievable state of impaired brain function and brain death.  BD then further causes a 

massive autonomic storm and cytokinaemia which increases the inflammatory state of the 

individual.[171-173]  A complex interplay of immunologic,[174] coagulopathic,[175] 

autonomic, haemodynamic and endocrine[176, 177] dysregulation drives inflammation 

through local and global cytokine release, cellular activation, organ priming, IRI and 

secondary ischaemic insult (Figure 4). 

 

Figure 4:  Interaction of Homeostatic Mechanisms Post Brain Death 
Multiple organ systems are activated after brain death.  In order to maintain homeostasis, these 
organ systems interact with each other, while reinforcing some of the inflammatory pathways. 
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2.5.1 The Autonomic Nervous System during Brain Death 

Brain stem dysfunction is associated with extreme physiological perturbations due to its 

‘master control’ function.[178-180]  Brain stem failure secondary to high ICP occurs in a 

rostro-caudal direction, with initial hypertension and bradycardia (classically known as 

Cushing’s reflex[181, 182]), followed by an intense ‘sympathetic storm’ which remains 

unopposed due to ischaemia of the parasympathetic vagal nucleus.[183, 184]  This storm 

results from an overwhelming release of catecholamines in an attempt to perfuse the brain 

by increasing the mean arterial pressure (MAP) to overcome the elevated ICP.[185, 186]    

Such changes in autonomic outflow can be detected prior to the occurrence of brain 

death.[187]  The initial massive upsurge in sympathetic tone results in widespread 

vasoconstriction and microthrombus formation, impairing organ and tissue perfusion.[178] 

 

As the ICP outpaces the MAP, ischaemia progresses down the brain stem, sympathetic 

centres become necrotic, vascular and myocardial sympathetic stimulation drops and a 

second phase of hypotension ensues.[178, 188, 189]  The resulting uncontrolled 

hypotension further impairs the already tenuous end organ perfusion that resulted during 

the sympathetic storm.[188] 

 

While the effects of the sympathetic nervous system are the most obvious clinically during 

and after BD, inflammatory and haemodynamic responses are also influenced by the 

parasympathetic nervous system (PNS).  The effect of BD is to inhibit PNS mediated anti-

inflammatory responses by direct destruction of vagal centres in the brain stem.[130]  

Under normal conditions, vagal stimulation directly decreases inflammation via cholinergic 

receptors on inflammatory cells.[190, 191]  Central activation of vagal efferent pathways 

downregulates inflammation in the brain, gut and spleen.[19, 130]  Balance is normally 

achieved through negative feedback by the innate immune system interacting with the 

PNS via IL-1 receptors in the parasympathetic paraganglia.[130] 

 

2.5.2 Cytokine Upregulation after Brain Death 

2.5.2.1 Type 1 Associated Cytokines 

Cytokine upregulation after BD has been recognised for many years.[129, 192]  Animal 

models have shown that serum levels of IL-1β and TNF-α may be influenced by the rate of 

induction of brain death.[41, 193]  Avlonitis et al reported that explosive brain death 
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induced a rapid increase in IL-1β, with significantly elevated levels detectable within one 

hour and remaining so throughout the duration of the study.[193]  TNF-α levels initially 

rose and then decreased by five hours, though it remained above baseline.[193]  Zhu et al 

showed that gradual induction of brain death lead to steady elevation of IL-1β over 24 

hours in a pig model.[194]   Conversely, Damman and colleagues, utilising gradual BD 

induction in a rat model, showed that IL-1β and TNF-α did not change significantly over the 

four hours of their study.[163]  Interestingly, this group also analysed serum cytokine levels 

in human BD donors and showed that they were not significantly elevated.[163]  Cypel and 

colleagues recently reported that TNF-α and IL-1β mRNA are significantly elevated in 

lungs rejected for transplant, highlighting the clinical importance of these proinflammatory 

cytokines.[195] 

 

2.5.2.2 Type 2 Associated Cytokines Including IL-10 

Early studies of cytokine upregulation after BD suggested that Type 2 cytokines are not 

significant contributors to BD induced inflammation.[192]  Takada et al did not show 

upregulation of IL-4 in rat kidneys, hearts, livers or lungs after BD.[192] Weiss et al studied 

cytokine expression at various timepoints during the liver transplantation process.[15]  This 

group reported that IL-4 expression is increased after brain death.[15]   IL-10 is elevated in 

the plasma of human BD donors.[129, 172, 196]  Additionally, IL-10 has been shown to be 

upregulated in human livers[15] and kidneys.[197]   Work undertaken by Li et al suggested 

that IL-10 expression after BD may be important in stimulating apoptosis of graft infiltrating 

lymphocytes through activation of the Fas/Fas Ligand pathway.[198]  There is little 

literature investigating the role of IL-5 and IL-13 during brain death.  This may be an area 

for future research. 

 

2.5.2.3 Type 17 Associated Cytokines 

IL-6 is heavily implicated in BD related inflammation,[199, 200] where it is an important 

instigator of the generalised APR.[163]  Levels increase in human brain dead donors up 

until the time of organ retrieval.[163]  Systemic venous and CNS derived IL-6 is 

significantly higher at brain death than at admission to the intensive care unit (ICU) in TBI 

patients that progress to BD.[143]  Brain death induces the production of IL-6 in multiple 

organs, including the kidney,[201] heart,[202] liver[203] and lung.[173]  IL-6 signalling 

induces nitric oxide synthase in cardiac myocytes[202] and contributes to early 
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haemodynamic compromise in the donor via direct negative inotropy.[199, 204]  IL-6 

mRNA and protein are elevated in non-structural donor heart dysfunction.[202] 

 

Damman et al recently investigated IL-6 related renal acute phase protein synthesis in 

rats.[163]  As expected, IL-6 was upregulated after brain death.  This correlated with an 

increase in renal acute phase proteins, notably complement 3 (C3), fibrinogen, α2-

macroglobulin and haptoglobin.[163]  Furthermore, in vitro analysis indicated that renal 

production of C3 is directly related to IL-6 exposure.[163] 

 

Overall, elevated plasma levels of IL-6 are associated with poorer transplantation 

outcomes.[15, 203]  Murugan and colleagues demonstrated an inverse relationship 

between donor plasma IL-6 levels and recipient six-month hospital free survival.[172]   

Kaneda et al also showed that higher donor IL-6 levels increased the risk of recipient 

death within 30 days of lung transplant.[205] 

 

TH17 cells, through production of IL-17, stimulate inflammation in donor organs.[206]  

Pretransplant renal biopsies from deceased donors showed little elevation of IL-17 positive 

cells, though few graft infiltrating cells were demonstrated in the biopsy samples.[206]  

Although a number of authors have studied IL-17 in the context of chronic rejection, the 

role of BD donor IL-17 currently remains unexplored. 

 

2.5.2.4 Treg Associated Cytokines 

TGF-β is upregulated in heart and lung tissue in animal models.[144]    Elevated TGF-β 

mRNA has been identified in renal and liver biopsies from brain dead donors.[15, 197]  

Weiss et al showed that the greatest stimulus for TGF-β expression in liver grafts is BD 

itself.[15]  A slight decrease in expression occurred prior to cold storage and to 

reperfusion.  TGF-β mRNA expression increased by one hour after implantation and 

reperfusion but did not exceed levels measured before surgical manipulation (ie after BD 

alone).[15]  Skrabal et al also demonstrated that TGF-β mRNA transcription is increased in 

donor heart and lungs in a porcine model of brain death.[144]  The role of TGF-β in acute 

organ injury may relate to its role in the TH17/Treg balance,[40, 69] however increased 

expression prior to transplantation may start fibrotic processes through activation of MMP’s 

and tissue inhibitor of metalloproteinases (TIMP’s).  MMP-2, -9, TIMP-1 and -2 expression 

is increased after BD in pulmonary tissue.[88]  
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2.5.2.5 Interleukin 8 

IL-8 is a chemokine which attracts and activates neutrophils.[207, 208]  Similar to other 

cytokines, IL-8 is produced peripherally after BD where it stimulates neutrophil driven 

angiogenesis and fibroproliferation.[207, 209]  IL-8 induced neovascularisation, alveolar–

capillary disruption and extracellular matrix deposition contribute to the development of 

acute lung injury after brain death.[207]  In lung donors, broncho-alveolar lavage fluid IL-8 

levels are positively correlated with neutrophil infiltration in pre-transplant lung tissue, 

contributing to early graft dysfunction.[207]   

 

2.5.2.6 The Endothelin Axis 

ET-1 release from endothelium is stimulated by noradrenaline, thrombin and TGF-β.[210]  

Animal experiments have shown that ET-1 is upregulated in serum and in donor lung after 

BD and that this is related to MMP activation.[88, 211]   Salama et al demonstrated a 

correlation between donor ET-1 and primary graft dysfunction (PGD).[212]  In this study, 

ET-1 upregulation (as measured by donor lung mRNA and donor serum levels) adversely 

affected recipients after transplantation, contributing to the development of PGD. 

 

2.6 Stage Three of Potential Organ Injury:  Ischaemia Reperfusion Injury 

Ischaemia reperfusion injury is implicated in early and late stage transplant 

complications.[213]  IRI leads to organ dysfunction through induction of cytokines, 

generation of free radicals and activation of immunocompetent cells.[213, 214]  Endothelial 

cell dysfunction secondary to IRI is key in chronic allograft dysfunction in hearts,[215] 

lungs,[25] livers,[216] and kidneys.[217]  Early injury to cells occurs as a direct result of 

ischaemia, with impaired oxygen delivery, altered energy metabolism and accumulation of 

waste products.  Cell death occurs through necrosis and apoptosis, the latter through 

caspase signalling.[129, 218]  Further injury occurs upon reperfusion, with recruitment of 

inflammatory cells, interaction between local and systemic cytokine signalling systems and 

generation of ROS.[199, 219, 220]   

 

APC’s of the innate immune system play a key role providing antigens and co-stimulatory 

molecules to activate the adaptive immune system, contributing to IRI and early graft 

dysfunction.  Activation of cellular immunity can be classified as direct or indirect.[219]  
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Direct activation occurs due to the transfer of donor APC’s in the allograft, which activate 

recipient TH1 cells.[219]  Atkinson et al recently demonstrated that passenger leukocytes 

are recruited to donor hearts after BD in a murine model.[41]  This finding was also 

confirmed in lung[221] and renal allografts.[13]  Gelman et al also demonstrated that 

recipient T-cells interact with donor APC’s and that this is sufficient to activate an 

inflammatory response.[221]  Alternatively, the indirect pathway results from the interaction 

of recipient APC’s with native T-cells to stimulate inflammation.  

 

2.6.1 Contribution of Preservation Strategies to Cytokine Expression 

Hypothermic preservation strategies are widely used to decrease inflammation, depress 

the metabolic rate of cells and reduce the effects of ischaemia.[222]  However, cold 

storage does cause cell death via both apoptosis and necrosis.[35]  BD donor organs 

predominantly display the latter mechanism.[216]  The duration and type (warm or cold) of 

ischaemic time may also directly influence cytokine production.  A correlation was recently 

identified between cold ischaemia time and levels of IL-1 and IL-8 in human liver 

transplants.[223]  Warm ischaemia time correlated with IL-6 and IL-10 in the same study.  

Significantly, the authors found that the excess cytokines generated by hepatic graft warm 

ischaemia time resulted in systemic adverse effects, most notably increased intraoperative 

pulmonary shunt.[223]  Another study found that, while cold ischaemic time per se did not 

adversely affect liver function, the associated graft generated IL-8 did correlate with 

PGD.[224]  Weiss et al, in a study of transplanted human livers, showed that IL-4 was 

increased in BD donors prior to explantation, but cold ischaemia and reperfusion did not 

result in further increases in the cytokine.[15]  Indeed, while it was elevated compared to 

living donors, it failed to reach statistical significance at time points other than immediately 

after laparotomy.  IL-10 was highly expressed prior to organ preservation, but cold 

ischaemia and reperfusion did not result in further elevation of this cytokine.[15]  Livers 

from living donors showed a relatively greater increase in expression of IL-10 one hour 

after reperfusion than BD organs, which may partially contribute to better outcomes with 

organs from these donors.[15]   

 

Delayed graft function in transplanted kidneys has been shown to be dependent on cold 

ischaemic time.[206]  Kaminska et al showed that while cytokine upregulation occurred 

associated with brain death, mRNA expression did not increase further after cold 

ischaemia and prior to reperfusion.[197]  In keeping with this, de Vries et al were unable to 

detect an arteriovenous difference across human BD donor kidneys for multiple cytokines, 
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including IL-4, IL-5, IL-10 and IL-13.[13]  Cold ischaemia and reperfusion does not induce 

excess TGF-β mRNA production, indicating that the primary stimulus for this mediator is 

brain death itself.[197]   

 

2.6.2 Other Mediators of Ischaemia Reperfusion Injury 

The combination of BD and IRI activates allografts greater than either insult alone.  

Kusaka et al studied rat renal isografts to analyse gene activation after BD, IRI or 

combined BD/IRI.[213]  They found that BD primarily upregulated cytokines, chemokines 

and adhesion molecules while IRI tended to upregulate transcription factors.  BD/IRI 

combined was synergistic in enhancing upregulation of these genes.  More recent work 

has maintained these findings.  Inhibition of JNK, a phosphorylator of the transcription 

factor c-Jun,  decreases IRI induced renal damage in rats.[217]  In humans, de Vries et al 

demonstrated that reperfusion of BD kidneys generates higher cytokine levels than living 

donor allografts (ie those that only underwent IRI).[13]   

 

Complement interacts with, and reinforces, the inflammatory process of IRI by increasing 

TNF-α and IL-1.[41]  C3a and C5a, potent anaphylatoxins generated by the complement 

cascade, activate mast cells and neutrophils.[220]  While the specific mechanism of 

complement activation in BD is unknown, it is postulated that ischaemia leads to defects in 

cell membranes, uncovering neoepitopes via exposure of internal cellular components to 

the humoral immune system, which leads to interaction with natural IgM and activation of 

the classical complement pathway.[220]  ROS generated during infarction and IRI may 

lead to lipid peroxidation and alteration of cellular cytoskeletal structure providing further 

neo-epitopes for IgM.[220]   

 

The importance of toll like receptors (TLR) in IRI is currently being investigated.  It was 

previously noted that low levels of lipopolysaccharide (LPS) may precondition and 

therefore protect the lung from IRI.[225]  Merry et al demonstrated that low dose 

preconditioning with LPS in rat lung ischaemia reduced injury.[225]  The authors 

postulated that this may be due to LPS activating TLR-4 via an alternative pathway that 

results in protective interferon and IL-10 generation.  Unfortunately, they did not measure 

IL-10 protein or mRNA to confirm this hypothesis.  The role of TLR’s in renal IRI has 

recently been reviewed elsewhere.[26]  TLR’s may also contribute to inflammation through 

interaction with T-cells via cytokine signalling.  APC TLR activation leads to generation of 

cytokines, including IL-6, which may decrease the sensitivity of TH1 cells to the 
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immunosuppressive effects of Treg cells.[226]  Additionally, TLR on Treg cells may directly 

inhibit their immunosuppressive effects.[226] 

 

ET-1 contributes to IRI through activated neutrophils, leading to endothelial injury, 

neutrophil superoxide production and generation of ROS.[88]  Both ET-1 and it’s receptors 

are upregulated in the lungs after brain death.[88]  Alveolar macrophages have been 

demonstrated to increase expression of endothelin receptors in the donor lung in animal 

models.[88]  This may then prime passenger macrophages for further activation by 

recipient ET-1, which is generated in the pro-inflammatory environment of chronic lung 

disease, surgery and the post-transplant course.[88, 227] 

 

Heme-oxygenase-1 (HO-1) is essential for the metabolism of heme to carbon monoxide, 

free iron and biliverdin.[44]  Its ability to reduce injury secondary to IRI, with resulting better 

recipient outcomes after transplantation has been the subject of much research.  HO-1 

exerts its beneficial effects through anti-oxidant, anti-apoptotic and anti-inflammatory 

mechanisms.[44, 228-230]  Carbon monoxide contributes to these beneficial effects 

through inhibiting T-cell proliferation and IL-2 secretion.[44]  Zhou et al, in studying a rat 

model of BD, demonstrated improved lung function and decreased lung injury when 

carbon monoxide was administered at 250 ppm.[231]  Carbon monoxide decreased 

myeloperoxidase activity, TNF-α and IL-6.[231]  More recently, the same group 

demonstrated that both carbon monoxide and biliverdin reduce myeloperoxidase activity 

and cytokine signalling while improving respiratory mechanics in rat lung after BD.[232]  

HO-1 has also been linked to anti-inflammatory cytokine generation.  IL-10 production 

secondary to HO-1 is increased in both BD[229] and non-BD models.[233]  HO-1 may also 

be an important mediator of IL-13’s anti-inflammatory effect.[228, 234] 

 

2.7 Management Implications  

Recipients of organs from brain dead donors continue to have poorer outcomes than those 

that receive living donor organs.  Aggressive donor management (ADM) improves both 

quality and quantity of organs available for transplant.[32]  Current ADM recommendations 

include early identification of potential donors, ICU admission, pulmonary artery 

catheterisation, aggressive fluid management, vasopressors, hormonal resuscitation 

therapy, pulmonary toilet and bronchoscopy.[180, 235-238]  Even with ADM, up to 25% of 

potential donors are lost due to haemodynamic instability.[180]   
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 2.7.1 Current Care of the Brain Dead Multi-Organ Donor 

Management protocols have been developed in order to support potentially transplantable 

organs, prevent further injury and optimise organ function.[239]  Interventions can be 

broadly classified into systems including respiratory, cardiovascular/renal and 

endocrine/metabolic.[240] 

 

2.7.1.1 Respiratory Management 

Systemic inflammatory responses may injure the lungs after brain death, resulting in 

pulmonary oedema and impairment of gas exchange.[241]  Mascia et al first noted, in an 

observational study, that most donors were ventilated with similar strategies to those with 

brain injuries.[242]  This included no or low positive end expiratory pressure (PEEP) and 

larger tidal volumes.[242]  Subsequently, the same author performed a randomised clinical 

trial in donors, comparing a conventional ventilation strategy to a low tidal volume 

strategy.[243]  This study reported an increase in lung retrievals with the low tidal volume 

strategy, despite being stopped early due to funding issues.[243] 

 

Excessive fluid administration may increase pulmonary oedema, compromising potential 

lung allografts.[244, 245]  Therefore, fluid administration must be carefully controlled in 

order to maintain an appropriate fluid balance without “overloading” the potential donor. 

 

2.7.1.2 Fluid, Haemodynamic and Cardiovascular Management 

After an initial, transient, catecholamine storm, loss of sympathetic outflow results in 

hypotension and cardiovascular collapse.[238, 240]  Impaired perfusion pressure leads to 

tissue ischaemia, local inflammation, necrosis and microthrombus formation.[24]  

Interventions are therefore necessary to support blood pressure and augment tissue 

perfusion.  Central to this is recognition that prior management efforts (for example 

mannitol to manage intracranial hypertension) and development of diabetes insipidus may 

result in intravascular fluid depletion.[238]  Optimisation with fluid therapy is therefore 

essential.  Current literature indicates that crystalloid solutions are preferential to colloid; a 

systematic review found that hydroxyethyl starch may worsen post-transplant renal 

function.[246]  Management of diabetes insipidus promotes haemodynamic stability and 

reduces fluid administration.[238]   
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Current recommendations are to support blood pressure with a target mean arterial 

pressure of at least 60 mmHg and urine output of >0.5 mL/kg/hr.[240]  No high level 

evidence is available for choice of vasoactive agent.[246]  Studies comparing use of 

noradrenaline and vasopressin as pressor agents demonstrate differing effects on 

transplantable organs.  Animal models suggest that both agents decrease lung 

inflammation and serum cytokine release.[131]  While a similar effect is seen in the kidney, 

hepatic inflammation is increased by both agents.[247]  Dopamine decreased monocyte 

kidney graft infiltration and markers of inflammation in a rat model of BD.[230]  In humans, 

a retrospective cohort study did not find any difference in survival amongst recipients of 

cardiac allografts from donors who were administered either noradrenaline or 

dopamine.[248]  Schnuelle et al observed that donor dopamine infusion was associated 

with a decreased risk of dialysis after transplant in renal recipients, but this did not 

translate into a mortality benefit.[249]  Based on the available data, and the increased risk 

of death associated with dopamine use in septic shock patients,[250] it has been 

recommended that noradrenaline is the first vasopressor of choice in potential organ 

donors.[246]  Vasopressin may considered for donors with diabetes insipidus.[238, 246]   

 

2.7.1.3 Special Consideration of Cardiac Function after Brain Death 

Right ventricular dysfunction contributes to a significant number of early deaths after heart 

transplant.[251-255]  Studies in animal models suggest that preload recruitable stroke 

work of the right ventricle is impaired to a greater degree than the left,[256] and that the 

right ventricle has reduced ability to cope with an increased afterload.[257]  Despite 

reduced contractility, right ventricular pump performance may be able to be maintained 

under conditions of increased afterload, albeit with a greater end diastolic volume.[258]  

Bittner et al observed that the right ventricle had diminished ability to increase total power 

(compensatory hydraulic power) after brain death.[257]  Any observed right ventricular 

reserve was considered to result from changes in the ratio of oscillatory power (determined 

by the properties of the pulmonary arterial tree and does not contribute to forward blood 

flow) to mean power (power generated to overcome vascular resistance).[257]  

 

The preload recruitable stroke work relation deteriorates even further after implantation 

into the recipient.[251]  In a canine model, an attempt was made to transplant BD donor 

hearts into dogs with chronic pulmonary hypertension, however this was aborted after a 

series of failures.[251]  This included two animals unable to be weaned from 
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cardiopulmonary bypass secondary to acute right ventricular failure and sustained 

ventricular dysrhythmias.[251]  More recently, Stoica et al found similar impairment of right 

ventricular function in humans.[254]  Compared to controls undergoing coronary artery 

bypass grafting, brain dead donor hearts showed a reduction in contractility, as reflected 

by the end systolic pressure volume relationship.[254]  End diastolic volume index was 

also increased in this study.[254]  Administration of dopamine improved preload recruitable 

stroke work, without any alteration in the end systolic pressure volume relationship.[254]  

The increase in stroke volume occurred through an increase in end diastolic volume, 

reflecting impairment of cardiac output.[254]  Right ventricular dysfunction may therefore 

complicate cardiac transplant, especially when subjected to an increase in recipient 

pulmonary pressures.[255]  Currently, no strategies are specifically recommended to 

manage these alterations in right ventricular function; this remains a challenge for future 

studies.[255] 

 

2.7.1.4 Endocrine and Metabolic Management 

Loss of hypothalamic thermal regulation often results in temperature abnormalities in brain 

dead donors.  This must be actively managed to maintain a target temperature of greater 

than 35 ˚C.[240]  Techniques include warming blankets and appropriate warming and 

humidification of inspired gases.[259]   

 

Destruction of the hypothalamus and pituitary gland also causes hormonal dysregulation in 

the potential donor.  Pituitary dysfunction is not a universal phenomenon, however, as 

hypophyseal blood flow may be maintained by the lower hypophyseal artery, a branch of 

the external carotid artery.[188]  Loss of anti-diuretic hormone secretion occurs commonly, 

resulting in diabetes insipidus in up to 80% of brain dead donors.[131]  Replacement with 

vasopressin or its analogues prevents dehydration and electrolyte disturbances in the 

potential donor.[188]   

 

Normally, afferent vagal nerve signalling activates the hypothalamic-pituitary-adrenal axis, 

stimulating cortisol release.[190, 260]  IL-1, -6 and TNF reinforce this via increasing 

corticotrophic releasing hormone and adrenocorticotrophic hormone secretion.[145]  

Hypothalamic or pituitary failure after brain death interferes with this usual process, leading 

to adrenal insufficiency.[261]  In a study of BD versus healthy volunteers, levels of 

adrenocorticotrophic hormone and cortisol were similar, representing an inadequate stress 
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response in the BD group.[145]  Overall, hypothalamic-pituitary-adrenal axis dysregulation 

results in an impaired stress response, haemodynamic instability and increased 

inflammation.[143, 172, 261]  Previous observational studies have indicated that 

methylprednisolone administration improves pulmonary oedema and increases lung 

retrieval rates.[245]  However, a recent systematic review found no clear clinical benefit for 

routine administration of corticosteroids in potential organ donors.[262] 

 

Thyroid axis dysregulation after brain death is often identifiable as reduced thyroxine and 

free tri-iodothyronine (fT3).[177]  Some patients may demonstrate the sick euthyroid 

syndrome (low fT3, normal thyroxine, elevated inactive rT3 and low thyroid stimulating 

hormone).[177]  IL-6 may play a role in this latter phenomenon.[145]  Thyroid hormone 

may regulate anaerobic metabolism and cardiac/haemodynamic stability after brain death, 

however the benefits of routine thyroid hormone administration remains unclear.[177, 186, 

188]  A recent meta-analysis of routine thyroid hormone administration (as thyroxine and 

tri-iodothyronine) did not find any benefit on donor haemodynamics, acid-base balance, 

vasopressor use or cardiac index.[263]  In contrast, a retrospective analysis of 106703 

patients in the United Network for Organ Sharing (United States) found that administration 

of thyroid hormones was associated with increased organ procurement/transplantation for 

lung, heart, kidney, pancreas and intestine but not liver.[264] 

 

Hormone resuscitation is most commonly delivered as a “package”, with the aim of 

improving donor haemodynamics and increasing the number of organs available for 

transplant.[236, 265]  This package frequently includes methylprednisolone, thyroid 

hormone, vasopressin and insulin.[259, 266]  Routine administration of hormone 

resuscitation remains controversial, however.[177, 188]  Studies in pigs have 

demonstrated that hormone therapy was associated with improved left ventricular 

contractility and systemic vascular resistance.[267]  This resulted in a reduction in 

noradrenaline requirements to maintain haemodynamic stability in the hormone 

resuscitation group.[267]  Despite these findings, determining the role and mechanism of 

each agent in the hormone ‘cocktail’ has been difficult.  Management of vasoplegia after 

brain death with vasopressin is well accepted,[177] though blood flow to the gut may be 

compromised.[268]  As mentioned previously, recent studies of methylprednisolone and 

thyroid hormone individually have not clearly confirmed a benefit.  Furthermore, 

Venkateswaran et al reported no improvement in donor circulatory function after 

administration of methylprednisolone, liothyronine or their combination compared to 



 

31 

placebo.[177]  However, a reduction in noradrenaline administration was noted after 

institution of vasopressin, and this was associated with an improvement in cardiac index 

on post hoc analysis.[177] 

 

2.7.2 Duration of Care of Brain Dead Organ Donors 

The Australian and New Zealand Organ Donation Registry reported that the median time 

from brain death to aortic cross clamp in Australian donors in 2012 was 18.5 hours.[11]  

Therefore, a significant amount of time may pass between brain death and organ 

explantation.  It was initially believed that longer intervals prior to allograft retrieval may 

increase organ injury due to prolonged exposure to inflammatory cytokines.[269]  

However, more recent data have challenged the notion that organs must be retrieved as 

early as possible after brain death.  Avlonitis et al noted in a study of rats that lungs that 

were transplanted after five hours had improved pulmonary vascular resistance and 

oxygenation compared to lungs transplanted after 15 minutes.[269]  In human lung 

transplant recipients, Wauters et al noted that a brain death to cold preservation (BD-CP) 

time of greater than 10 hours was associated with increased survival at both five and 10 

years.[119]  Indeed, on multivariate analysis, this group reported the hazard of dying in the 

years after transplant was decreased by 5% per hour increase in BD-CP time.[119]  This 

study was a single centre, retrospective analysis, which limits the generalisability of this 

outcome, and further studies are needed.  Renal grafts may similarly benefit from 

extended duration of brain death prior to transplantation.  Nijboer et al analysed data from 

the Organ Procurement and Transplantation Network and found that, in donors younger 

than 56 years, each hour increase in duration of brain death reduced delayed graft 

function by 0.4%.[270] 

 

Many confounding factors may account for these findings.  This includes selection bias, as 

unstable potential donors may receive longer duration of care but not ultimately provide 

organs for transplant.  As such, they are not included in databases such as those 

analysed.[270]  Another possible explanation is the ability to apply aggressive donor 

management strategies, with time to optimise organ function.[119]   

 

2.8 Potential Future Directions 

The inflammatory cascade may be downregulated by ADM.  Currently, there are no 

standard interventions specifically directed at individual cytokines, though many are being 

investigated (Table 2).  Steroid administration, as part of hormonal resuscitation, is now 
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commonplace in the management of organ donors and, in addition to addressing a 

relatively inadequate adrenal response, reduces inflammatory cytokines to levels similar to 

living donors.[173, 183, 203]   

  

Other methods directly addressing anti-inflammatory mechanisms are currently being 

investigated.  Gene transfer of IL-10 holds great promise.  Manning and colleagues 

investigated viral IL-10 (virIL-10) transfer into a rat model of lung IRI using mesenchymal 

stem cells.[25]  This study showed that virIL-10 was detectable in the lungs and that 

presence of this cytokine was related to improved lung function, less microscopic 

pathology and decreased lung oedema at four hours post injury.  Gene transfer 

pretreatment of rat liver grafts to generate recombinant human IL-10 significantly 

decreases IRI and markers of apoptosis, with upregulation of HO-1 and the antiapoptotic 

agent, Bcl-2.[35]  HO-1 may then act as a downstream regulator of protective mechanisms 

in IRI.[35]   

 

HO-1 or its metabolites (carbon monoxide and biliverdin) may offer potential therapeutic 

benefits.[44, 229, 231, 232]  Overexpression of HO-1, through adeno-associated virus 

gene transfer, was associated with downregulation of IL-2 and TNF-α, decreased 

infiltration of cytotoxic and helper T-cells and an increase in IL-10, TGF-β and Treg 

infiltration in transplanted rat livers.[229]  IL-13 gene transfer in rat livers increased HO-1 

expression with reduced evidence of IRI.[234]  Inhibition of HO-1 activity reversed this 

effect, suggesting that part of IL-13’s anti-inflammatory properties in IRI is mediated by 

HO-1.[234] 
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Table 2:  Major Cytokines Associated with Brain Injury and Brain Death 
Cytokine/ 
Chemokine 

Organs/Cells upregulated  
in BD/CNS injury 

Stimulation in BD/TBI Action Potential Therapeutic 
Agents in Brain Injury 

TNF-α CNS – astrocytes, 
microglia, neurons[133, 
271] Endothelial cells[271] 
Lungs[272] 
Splenocytes, 
macrophages[19] 

Infection, TBI, SAH[271] Endothelial cell 
detachment/apoptosis, 
activation caspase-3, disruption 
of BBB[271] 
Induction of CAM’s and other 
inflammatory cytokines[273] 
Impairment of cardiac 
function[204] 

IFN-β,[272], NNZ-
2566[274], etenercept and 
IFN inhibitors[123] 
Haemoadsorption[196] 

IL-1β CNS – neurons, microglia, 
infiltrating 
macrophages[275] 
Endothelial cells[271] 

Neuroexcitation, 
infection, trauma[275] 
SAH[271] 

Synaptic modulation, central 
regulation of systemic 
inflammatory response[275] 
Pro-Inflammatory, activation of 
NFκB and SAPK with 
upregulation of E-
selectin/ICAM/VCAM[271] 

IL-1RA[275] and NNZ-
2566[274] 
Haemoadsorption[196] 

IL-6 CNS - Microglia[276] 
Kidney, Liver, Spleen, 
Heart[143, 172, 199, 200, 
204] 
Macrophages[204] 

IL-1β[271] 
TNF-α[204] 
Sepsis, major surgery, 
heart failure, multi-
trauma and burns[143, 
147, 199, 277, 278] 

Regulator of inflammation – 
Inhibition of TNF and 
upregulation of Control of glial 
responses and neuronal 
survival.[160-162] 
IL-1RA in CNS, induction of 
NGF[274]  
Disruption of BBB[271] 
Inducer of acute phase 
reaction[133, 279] 
Cardiac dysfunction, fibroblast 
activation[199] 

Haemoadsorption[196] 

IL-8/CXCL-
8/MIP-2 

Microglia[276] 
Lung - alveolar 
macrophages, endothelial 
cells[207, 280] 

Trauma, ischaemia, 
SAH, ET-1[271] 
TNF-α, IL-1β [273] 

Disruption of BBB[271, 273] 
CXC chemokine – neutrophil 
migration and activation[273] 
Induces ROS by 
neutrophils[279] 

Haemoadsorption[196] 

IL-10 Macrophages, 
microglia[276] 
Splenocytes[146] 
 

TBI[159] 
Burns, MT, surgery, 
infection[279] 

Anti-inflammatory – 
downregulates TNF-α, IL-1β and 
IFN-γ, upregulates 
antagonists[58, 281] 
Reverses effect of 
proinflammatory cytokines 
directly on cells[58] 

Haemoadsorption[196] 

E-Selectin Endothelial cells in multiple 
organs[272] 

IL-1β[271] TNF-α[204]  
TBI[274] 
SAH[271] 

Essential for neutrophil rolling, 
margination and diapedesis[271] 

 

ICAM Endothelial cells in multiple 
organs[272] 

IL-1β[271] TNF-α[204]  
SAH[271] 

Essential for neutrophil rolling, 
margination and diapedesis[271] 

Monoclonal 
antibodies[271] and IFN-
β[272] 

VCAM Endothelial cells in multiple 
organs[272] 

IL-1β[271] TNF-α[204]  
SAH[271] 

Essential for neutrophil rolling, 
margination and diapedesis[271] 

Monoclonal 
antibodies[271] and IFN-
β[272] 

TGF-β Macrophages, microglia, 
astrocytes, neurons[282, 
283]  
Platelets, choroid 
epithelium[284] 

Constitutively expressed 
by microglia[281] 
SAH[284] 
 

Anti-inflammatory, may block 
activation by IL-1β[276] 
Regulates T-cell survival and 
function[283] 
Suppresses IFN-γ induced 
macrophage upregulation, 
cytokine and chemokine 
generation[283] 
Downregulation of adhesion 
molecules[283] 
Reduces COX-2 production in 
microglia[276] 
ECM component 
generation[285] 
Angiogenesis[284] 
ET-1 generation[210] 

Haemoadsorption[196] 

IFN-γ Microglia[276] 
Macrophages[274]  

TBI, SAH[274, 276]  Upregulation of CAM’s, 
chemokines and innate immune 
system cells[274] 

IFN inhibitors[123] 

COX-2 CNS – Microglia, 
endothelial cells[276] 

Inflammatory mediators 
including IL-1β, TNF-α, 
IL-6[276] 

Production of prostaglandins, 
reinforcement of 
inflammation[276] 

COX inhibitors[276] 

BD – Brain Stem Death, TBI – Traumatic Brain Injury, CNS – Central Nervous System, SAH – Subarachnoid Haemorrhage,  
BBB – Blood Brain Barrier, MT – Multi-Trauma, ECM – Extra-Cellular Matrix,  COX – Cyclo-Oxygenase, IL – Interleukin,  
TNF – Tumour Necrosis Factor, CAM – Cellular Adhesion Molecule (ICAM – Inter Cellular Adhesion Molecule /  
VCAM – Vascular Cellular Adhesion Molecule), NFκB – Nuclear Factor κ B, SAPK – Stress Activated Protein Kinases,  
MIP-2 – Macrophage Inflammatory Protein 2, TGF – Transforming Growth Factor, IFN – Interferon 
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Hypothermic ischaemic storage prior to transplantation does not allow sufficient metabolic 

activity for gene transfer to be beneficial.[286]  Cypel et al therefore trialled an ex-vivo lung 

perfusion (EVLP) model to transfer recombinant human IL-10 genes into porcine 

lungs.[286]  Perfusate IL-10 was increased while IL-6 decreased.  This effect was 

maintained after transplantation and four hours of reperfusion.  Lung function, as assessed 

by PaO2:FiO2 ratio, was significantly improved in the transfected lungs.  When transfection 

was trialled in human lungs rejected for transplantation, Cypel and colleagues found 

similar results including improved gas exchange and pulmonary vascular resistance.[286] 

 

Lung conditioning using EVLP is able to improve function of lungs initially rejected for 

transplant.[287]  Sadaria et al has established a baseline cytokine profile of human lungs 

undergoing EVLP.[287]  Cytokine analysis during 12 hours of EVLP showed an 

upregulation in IL-6, IL-8, G-CSF and MCP-1.[287]  IL-1β, IL-4, IL-7, IL-12 and TNF-α were 

detectable but remained unchanged.[287]  IL-17 was undetectable, as were IL-10 and IL-

13.[287]  Kakishita et al also investigated the cytokine profile of EVLP in pigs.[288]  

Inflammatory cytokines were similarly elevated.  Interestingly, based on a previously 

published concept of haemoadsorption of cytokines,[196] Kakishita investigated the benefit 

removing perfusate cytokines within the circuit.  Cytokine levels were significantly reduced 

with haemoadsorption, but oxygenation, pulmonary vascular resistance, peak airway 

pressure and myeloperoxidase activity (as a marker of neutrophil accumulation) were not 

statistically different.[288] 

 

Numerous other agents have been investigated as part of organ protection and 

preservation strategies.  Donor simvastatin may reduce IRI in cardiac allografts.[215]  This 

agent appears to work through multiple mechanisms and provides a lasting effect after a 

single dose to the donor prior to graft removal.[215]  Organ donors in this animal model 

were not brain dead, therefore simvastatin’s effects seem to be related to downregulation 

of ischaemia-reperfusion injury.  A study of N-acetylcysteine after pig non-BD lung 

transplantation demonstrated increased glutathione and downregulation of the 

inflammatory transcription factor NFκB in tissue samples.[208]  IL-6 and IL-8 levels were 

also reduced.  Lung function was improved despite extended cold ischaemia and 

reperfusion.[208]  Intraoperative administration of N-acetylcysteine to human liver 

transplant recipients significantly increased the transhepatic gradient of IL-4 and IL-10 

around the time of reperfusion, but not at other measured time points.[289]  The authors 
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theorised that the presence of these anti-inflammatory cytokines at reperfusion may 

benefit recipients through downregulation of inflammation.  Unfortunately, although the 

agent was administered as a continuous infusion for 24 hours, no further information is 

given about levels of cytokines later than the first hour of transplant, nor any information 

about hepatic biochemistry and patient outcomes.   

 

In renal transplantation, carbamylated erythropoietin (EPO) downregulated renal IL-1β and 

IL-6 in a rat model of brain death.[201]  This agent retains the protective effects of EPO 

without stimulating haematopoiesis.[201]  Utilising an isolated perfused kidney circuit, 

Nijboer and colleagues demonstrated that carbamylated EPO downregulated IL-1β and IL-

6, reduced neutrophil infiltration and reversed brain death induced renal impairment.  Of 

note, other authors are also investigating EPO in preventing brain IRI.[290]  Such use in 

pre-BD conditions may eventually spill over to benefit the recipients of organs from these 

patients in the case of non-survival. 

 

Further research is required into the impact of pre-BD management of organ donors.  

There are substantial data examining the management of TBI or SAH patients which 

specifically addresses inflammatory/anti-inflammatory interventions and long term 

recovery.  The impact of such management on the transplanted organs of those that fail 

treatment and become BD organ donors may reveal interesting results.   

 

2.9 Conclusion 

Engrafted organs undergo significant pathophysiological challenges as they are 

transplanted from the donor to the recipient.  Brain injury, brain death, ischaemia and 

reperfusion all contribute to inflammation and injury.  As has been discussed, a vast 

amount of research is ongoing at each of these steps of transplant.  Understanding the 

molecular inflammatory responses and utilising interventions that can reduce 

haemodynamic instability, inflammation and IRI is the key to further advancing donor 

management.  With time and more successful interventions, it may be possible to further 

address the ongoing shortage of donor organs and decrease the number of patients who 

die whilst waiting for a transplant. 
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Chapter 3 - Development of an Ovine Model for Investigation of 

the Implications of the Endothelin Axis after Brain Death 

 

3.1 Development of an Ovine Model of Brain Death 

3.1.1 Early Identification of the Endothelin Axis in Brain Death 

In searching for models to study brain death, only intact animals are suitable due to the 

complex pathophysiological changes that occur across and within multiple systems.  A 

rodent model of brain death was initially employed by our group to study the endothelin 

axis.[88]  After brain death was induced by inflation of an extradural catheter, the animals 

were ventilated for four hours and then sacrificed.  Analysis of pulmonary tissue 

demonstrated increased expression of ET-1, ETRA, ETRB, MMP-2 and MMP-9.  Alveolar 

macrophages were increased in the lungs of BD animals and demonstrated increased 

expression of each of the investigated markers.  Staining indicated upregulation of the 

endothelin axis in epithelial and endothelial cells, vascular smooth muscle and alveolar 

macrophages.  The importance of these findings in the latter cellular population, and the 

role of macrophages as a significant source of inflammatory cytokines and gelatinases, 

also indicates that these cells may be ‘primed’ prior to transplantation.[24, 144, 227]   

 

Other authors have observed endothelin related organ injury after brain death.  In the 

original paper investigating inflammatory cytokines after BD, Takada et al noted that 

endothelin was upregulated in renal interstitial macrophages and focal capillary endothelial 

cells.[192]  Endothelin expression has been ascribed to detrimental effects in brain dead 

hearts,[210] lungs,[291] pancreata,[292] and livers.[101]  In humans, Salama et al 

observed an association between donor lung tissue endothelin mRNA, recipient serum ET-

1 and primary graft dysfunction.[212]  However, a recent porcine model presented by 

Valenza et al included pulmonary ET-1 mRNA assessment, and was unable to find any 

evidence of upregulation.[293] Overall, there remains much more to be learnt about 

endothelin expression in the pulmonary tissue of potential donors.  Inhibition of the 

endothelin axis in donors may yet provide an opportunity for therapeutic intervention to 

prevent ET-1 driven production of gelatinases, decreasing extracellular matrix destruction 

and protecting potentially transplantable lungs. 

 



 

37 

3.1.2 Limitations of Rodent Animal Models 

Although the rat model provided new insights into the role of the endothelin axis after BD, 

small animal models suffer from many limitations.[294]  Challenges that rodent models 

suffer from include small animal size (limiting blood sampling, interventions and 

therapeutic manoeuvres), vastly altered physiologic variables compared to humans, 

significantly different structural anatomy and altered inflammatory responses to injury.[294, 

295]   

 

Recent work has also questioned the validity of mouse models for investigating human 

disease, demonstrating that inflammatory signalling after a variety of insults were greatly 

dissimilar to humans.[295]  Seok et al compared genome-wide expression of inflammatory 

mediators in a variety of human diseases to their murine model counterparts and found 

that the expression of murine orthologs was essentially random.[295]  This paper has been 

challenged, however, through a re-analysis of the data.  Takao et al specifically analysed 

genes that were known to be significantly expressed in both humans and mice in the 

models under study and demonstrated a close correlation.[296]  This is unsurprising 

considering they selected genes that were already known to be expressed by both 

humans and mice in validated models.  Nonetheless, they considered this a more valid 

approach to analysing the data as animal models are designed to mimic aspects of the 

related human disease and cannot be expected to respond entirely the same across the 

whole genome.[296]   

 

3.1.3 Selection of Sheep as a Large Animal Model of Brain Death 

As no single animal model can absolutely replicate human pathology,[297] the process of 

selecting and developing such models requires careful consideration of known anatomical, 

physiological and immunological similarities between the animal chosen and the particular 

human disease of interest.[294]  In terms of respiratory pathology, appropriately sized 

sheep, pigs, dogs and primates have similar body size and respiratory capacity to 

humans.[294]  Compliance, resistance, airflow, tidal volumes and respiratory rates are of 

great similarity between sheep and humans, and this allows direct comparison to human 

values.[294]  Furthermore, measures of lung function are able to be obtained without 

anaesthesia or sedation,[294] and targeting a lower PaCO2 in sheep facilitates awake 

ventilatory tolerance.[298, 299]  Blood and tissue sampling can be increased due to animal 

size, and other sampling methods, such as bronchoscopy, can be undertaken.[300]  

Medications may be delivered effectively via aerosolisation in sheep, allowing 
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characterisation of both drug deposition and response.[300]  Sheep immunology is closely 

similar to humans and has provided significant insight into innate inflammation.[297]  Such 

properties have resulted in sheep being widely used to model human lung diseases 

including asthma, chronic obstructive lung disease and cystic fibrosis.[297, 300]  

Widespread genetic diversity due to out-breeding of sheep may more accurately reflect 

human disease responses compared to genetically modified rodents.[297]  Although such 

genetic control has lead to greater understanding of specific pathophysiological processes, 

these results may not be completely applicable to clinical human medicine.[294, 297]  

Endothelial and epithelial production of endothelin has been observed[301] and 

successfully targeted in sheep.[75, 302, 303]  Finally, the placid nature of sheep allows 

easy housing and reduced risk due to animal handling.[304]  One disadvantage of sheep 

models, however, is the limited range of specific antibodies currently available.[297]     

 

Previously validated large animal models of brain death have included primates,[305] 

canines[306] and pigs.[307]  Each of these animal models are valid and useful; there is no 

specific literature proving that one type should be utilised to the exclusion of others.  No 

other group has published an ovine model of brain death, and sheep models of varying 

pathology do not indicate that the development of such a model would be inherently 

disadvantageous.  Until recently, animal models of BD have remained time limited due to 

the associated extreme haemodynamic instability.[24]  Exploratory development of a 

sheep model by our research group indicated that the duration could be extended to 24 

hours.[308]  A longer model may better replicate the clinical management of organ donors, 

as significant delays frequently occur between the time of BD and surgical organ 

explantation.[309]  Sheep allow application of current human donor management 

strategies by their size; invasive arterial and central venous access can be utilised, as can 

pulmonary artery monitoring, intermittent bronchoscopy and echocardiography.  Clinically 

employed donor protocols, including vasoactive medications and hormone therapy, may 

be used in a manner similar to humans, with the same doses and similar physiologic 

responses.  Other large animal models of BD may be considered, however, due to the 

suitability of sheep, particularly with regard to lung injury models, and our group’s 

significant experience with these animals, we chose to develop a clinically relevant, 

extended duration, ovine model to investigate the endothelin axis after brain death. 
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3.1.4 Anaesthesia Selection 

Previous experience with the development and implementation of sheep models 

highlighted the need to find an appropriate anaesthetic agent for the present thesis.  

Haemodynamic instability associated with BD limits the use of hypotensive anaesthetic 

agents, such as volatile anaesthetics.  This would be most marked at induction of brain 

death due to the significant and rapid changes in physiology that occur.  Although the 

maintenance phase would require vastly less agent (as the animal was brain dead), 

hypotensive agents increase the risk of loss of animals early in the protocol.  Propofol, 

which is also cardiodepressant, was not a suitable option, as our group’s previous work 

identified that prolonged infusions lead to inadequate metabolism of the solubilising lipid.  

Consequently, this impairs sample analysis.  Furthermore, prolonged infusions of large 

doses may be required,[310] placing control animals at risk of propofol related infusion 

syndrome[311] although there are currently no literature reports of this occurring in sheep.  

Ketamine and midazolam can be used, however in our group’s experience, this 

combination does not provide smooth anaesthetic conditions over prolonged periods and 

requires increasing up-titration of doses.   

 

Alfaxalone is a neurosteroid that was previously available in combination with alfadalone in 

human anaesthesia (Althesin).[312]  This agent was removed from the market in 1984 due 

to hypersensitivity reactions that occurred with the solubilising excipient that was used 

(Cremophor EL).[313].  More recently, alfaxalone has been reformulated for use in 

veterinary medicine.  This contemporary formulation uses 2-hydropropyl-β-cyclodextran to 

solubilise the active anaesthetic agent, and is completely devoid of the histamine releasing 

effects seen with Cremophor EL.[314]  Furthermore, it provides rapid anaesthesia with 

stable haemodynamics in sheep,[314] and would not be expected to cause the previously 

identified issues with lipid metabolism that occur with propofol.  Because of these benefits, 

alfaxalone was chosen as the primary anaesthetic agent for this thesis.  Single agent 

anaesthesia with alfaxalone was not feasible due to cost[315]; hence a combination of 

alfaxalone, ketamine and midazolam was used. 

 

3.1.5 Selection of the Endothelin Antagonist 

Sutherland et al noted that both ETRA and ETRB receptors were upregulated after brain 

death, particularly on alveolar macrophages.[88]  These cells play an integral role in 

inflammatory responses to various stimuli; through multiple cell surface receptors and a 

significant armamentarium of inflammatory mediators, macrophages can contribute directly 
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to pulmonary inflammation, or act to recruit neutrophils and further drive the inflammatory 

process.[316, 317]  Gibbs et al identified a link between alveolar macrophages and 

gelatinase expression in lung injury in rats, which was similar to that seen in the human 

lung.[317]  This observation was extended to the brain death model by the Sutherland 

study.[88]  Other authors have identified the relationship between alveolar macrophages, 

pulmonary IRI and free oxygen radical generation.[318, 319]  These findings have lead to 

the conclusion that resident tissue inflammatory cells, including pulmonary macrophages, 

may be primed prior to transplantation, and that these cell populations may be the initiators 

of early lung injury after transplant.[24, 318]  The selection of a dual endothelin receptor 

antagonist was therefore based on the observations that alveolar macrophages express 

both endothelin receptors after brain death[88] and that they contribute significantly to 

post-transplant pulmonary injury.[318]  

 

Endothelin antagonists have been investigated in a wide variety of conditions, including 

pulmonary hypertension,[108] sepsis,[74] pain,[80] cancer,[84, 111] meconium 

aspiration,[320] heart failure,[321, 322] and cerebral vasospasm amongst others.[170]  An 

important recognised class effect of endothelin antagonists is vasodilatation.[76, 96, 323]  

In the setting of brain death, the haemodynamic deterioration that occurs after the early 

catecholamine “storm” often requires vasoactive support to maintain organ and tissue 

perfusion.[24, 238]  Thus, nebulisation would allow drug delivery directly to the lung, whilst 

minimising systemic absorption and possible hypotensive effects.  In selecting an 

endothelin antagonist for the current study, tezosentan fulfils these major criteria (dual 

receptor antagonism[324] and ability to be nebulised). 

 

3.1.5.1 Tezosentan 

Using bosentan as a template, tezosentan was developed to increase water solubility and 

clearance for use in urgent and emergent indications.[324]  Furthermore, the high degree 

of water solubility allows its administration both intravenously and via nebulisation.[74, 

324, 325]  Persson et al compared intravenous and nebulised tezosentan in endotoxaemic 

pigs, and demonstrated that a dose of 0.5 mg/kg nebulised effectively reversed pulmonary 

hypertension.[74]  This dose was also used by Mommerot et al, who observed improved 

haemodynamics and oxygenation parameters in a porcine model of cardiopulmonary 

bypass.[325]  Tezosentan has also demonstrated therapeutic efficacy in sheep.  Kuklin et 

al demonstrated that tezosentan reduced pulmonary microvascular pressure and evidence 
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of lung injury in endotoxaemic sheep.[303]  Cox et al observed that tezosentan decreased 

pulmonary vascular resistance and bronchiolar obstruction in sheep after smoke inhalation 

and burn injury, however it did not prevent lung injury overall.[302]  Finally, Fitzgerald et al 

observed that tezosentan was able to reduce acute and chronic pulmonary hypertension in 

a lamb model.[326]  

 

The above studies indicated that tezosentan was able to be administered via nebulisation 

and that an observable effect may be expected in sheep, further supporting its selection.  

Bosentan was initially considered, however it is administered orally, and wasn’t available 

for this study in intravenous/nebulisable form.  Macitentan was not available.  Finally, other 

preclinical agents were not as easily available as tezosentan; these were not required as 

tezosentan fulfilled the requirements of this study. 

 

The early clinical application of tezosentan in human pathology focussed on its use in 

acute heart failure.  This included the Randomised Intravenous TeZosentan-4 (RITZ), trial 

which found no benefit for tezosentan administration in terms of dyspnoea or a composite 

endpoint including death, worsening heart failure, ischaemia or new or recurrent 

myocardial infarction.[327]  Following up from this, RITZ-5 did not find benefit for 

intravenous tezosentan for pulmonary oedema.[328]  The largest trials investigating 

tezosentan in acute heart failure (VERITAS)[321] confirmed these results.  Consequently, 

tezosentan is no longer used in acute heart failure.  It is yet to find a place in routine 

clinical medicine. 
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Chapter 4 - Novel 24-h ovine model of brain death to study the 

profile of the endothelin axis during cardiopulmonary injury    

 

*This chapter was accepted for publication in Intensive Care Medicine Experimental, 

originally published as: 

Watts, R.P., Bilska, I., Diab, S., Dunster, K.R., Bulmer, A.C., Barnett, A.G., and Fraser, 

J.F., Novel 24-h ovine model of brain death to study the profile of the endothelin axis 

during cardiopulmonary injury.  Intensive Care Medicine Experimental, 2015.  3:31 

.   
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4.1 Abstract 

Background:  Upregulation of the endothelin axis has been observed in pulmonary tissue 

after brain death, contributing to primary graft dysfunction and ischaemia reperfusion 

injury.  The current study aimed to describe a novel, 24 hour, clinically relevant, ovine 

model of brain death, developed to investigate the pulmonary endothelin axis and related 

physiology.  We hypothesised that brain death in sheep would also result in demonstrable 

injury to other transplantable organs.     

 

Methods:  Twelve merino cross ewes were randomised into two groups.  Following 

induction of general anaesthesia and placement of invasive monitoring, brain death was 

induced in six animals by inflation of an extradural catheter.  All animals were supported in 

an intensive care unit environment for 24 hours.  Animal management reflected current 

human donor management, including administration of vasopressors, inotropes and 

hormonal resuscitation therapy.  Activation of the endothelin axis and transplantable organ 

injury were assessed using ELISA, immunohistochemistry and standard biochemical 

markers. 

 

 Results:  All animals were successfully supported for 24 hours.  ELISA suggested early 

Endothelin-1 and Big Endothelin-1 release, peaking one and six hours after BD, 

respectively, but there was no difference at 24 hours.  Immunohistochemistry confirmed 

activation of the endothelin axis in pulmonary tissue.  Brain dead animals demonstrated 

tachycardia and hypertension, followed by haemodynamic collapse, typified by a reduction 

in systemic vascular resistance to 46 ± 1% of baseline.  Mean pulmonary artery pressure 

rose to 186 ± 20% of baseline at induction and remained elevated throughout the protocol, 

reaching 25 ± 2.2 mmHg at 24 hours.  Right ventricular stroke work increased 25.9% 

above baseline by 24 hours.  Systemic markers of cardiac and hepatocellular injury were 

significantly elevated, with no evidence of renal dysfunction.  

 

Conclusions:  This novel, clinically relevant, ovine model of brain death demonstrated an 

increase in pulmonary blood pressures in brain dead animals over 24 hours.  Confirmation 

of the presence of the endothelin axis after brain death may implicate its role in generating 

the observed pulmonary pressures, contributing to inflammation and cardiopulmonary 

injury.  The development of this model will allow for further investigation of therapeutic 

strategies to minimise the deleterious effects of brain death on potentially transplantable 

organs.   
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4.1.1 Medical subject headings key words: 

Brain Death; Organ Transplantation; Haemodynamics; Pulmonary Circulation; Ventricular 

Function, Right; Endothelin-1; Receptors, Endothelin; Sheep. 
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4.2 Background 

After brain death (BD), the lungs are particularly susceptible to injury in the peri-transplant 

period secondary to direct trauma, soiling with blood or gastric contents, iatrogenic injury, 

infection and inflammation.[24, 241, 269]  Details of the specific mechanisms of 

catecholamine- and cytokine-induced donor organ injury after BD are yet to be fully 

elucidated.[24, 119, 329]  Peri-transplant injury contributes to the ongoing shortage of 

transplantable lungs; this is highlighted by United States data showing an average rate of 

lungs transplanted per donor of 0.37.[12]   

 

Endothelins, their precursors, receptors and associated signalling pathways are 

collectively referred to as the endothelin axis.[85, 88]  Endothelin-1 (ET-1) is a potent 

vasoconstrictor, smooth muscle cell and fibroblast mitogen and a stimulator of 

inflammatory cell infiltration.[72, 75, 330]  Once released, ET-1 stimulates matrix 

metalloproteinase (MMP) expression in pulmonary tissue, resulting in protein hydrolysis 

and interstitial oedema.[24, 88]  Our group first demonstrated that the endothelin axis was 

upregulated after BD in rats, and that this correlated with pulmonary injury.[88]  

Upregulation of endothelin receptors “primes” the lungs for post-transplant injury,[24] and 

may partly explain the relationship between endothelin expression and primary graft 

dysfunction that has been observed in human lung allograft recipients.[212]   

 

Haemodynamic instability has limited the duration of previous BD animal studies and 

supportive measures used to extend these models to clinically relevant timeframes are 

difficult to apply to small animals.[186, 210, 306]  Interventions utilised in human BD 

donors, such as fluid or vasoactive agent administration, may have significant effects on 

genomic expression of inflammatory mediators,[295, 331] further limiting the ability of 

small animal models to replicate comprehensive, modern, intensive care monitoring and 

management.  To begin to address these issues, porcine models have been extended to 

24 hours.[332, 333]  Zhai et al investigated hepatic injury after BD in BaMa miniature 

pigs.[332]  Although this is a valid extended model, the animals were small compared to 

humans (average of 25 kg), and the use of other clinically relevant interventions, such as 

vasopressors, inotropes and hormone resuscitation, were not reported.  The model 

published by Sereinigg et al was developed to more closely reflect clinical experience with 

BD donors, including the use of vasoactive agents, however this publication did not 

specifically include a control group for comparison.[333]   
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No animal model can absolutely replicate all aspects of human pathophysiology.[297]  For 

example, controversy exists regarding rodent modelling of human disease, with evidence 

both supporting and refuting similarities of inflammatory genomic responses to injury 

between the two species.[295, 296]  Both pigs and sheep have been effectively utilised as 

large animal models of human pathology, with each offering notable benefits.[304, 334]   

Ovine models have been highlighted as particularly suitable for investigating human lung 

disease.[304, 331, 335, 336]  Furthermore, sheep models have provided detailed insight 

into the endothelin axis and its contribution to pulmonary haemodynamics, as well as the 

role of ET-1 in lung inflammation.[294, 301, 304, 337]  Therefore, based on these 

considerations, we have developed a 24 hour ovine model to investigate the role of the 

endothelin axis in BD related pulmonary inflammation.  Additionally, the results of 

comprehensive investigation of the effects of BD on ovine haemodynamics and systemic 

markers of transplantable organ injury are presented. 

 

4.3 Materials and Methods 

4.3.1 Ethics Approval  

This study was conducted with the approval of the Queensland University of Technology 

Animal Ethics Committee, approval number 0900000319.  All experiments were performed 

in accordance to NHMRC Australian Code of Practice for the Care and Use of Animals for 

Scientific Purposes and the Animal Care and Protection Act 2001 (QLD). 

 

4.3.2 Animal Management 

Twelve merino-cross ewes were randomly allocated to groups of six animals each (BD vs 

control) using Statmate (GraphPad Software, La Jolla, California).  Initial surgical 

preparation was the same in all animals.  A comprehensive description of the animal 

management protocol can be found in 4.8 Appendix 1:  Animal Management, while Table 

3 lists the details of the medications used in this study.  After fasting, the right external 

jugular veins were cannulated, general anaesthesia was induced with midazolam and 

alfaxalone, and all animals were intubated.  Pulmonary arterial and peripheral arterial 

catheters were placed.  Intracranial access was obtained through a burr-hole midway 

between the midline and lateral edge of the cranium, rostral to the animal's horn base, and 

an intracranial pressure monitor was introduced.  This was designated as the Protocol 

Start Time (PST) in non-BD animals. 
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Another burr hole was created on the contralateral side in animals allocated to BD, 

followed by the extradural placement of a 16 Fr Foley catheter.  Brain death was induced 

by normal saline inflation of the catheter to increase intracranial pressure (ICP) above the 

mean arterial pressure (MAP) for 30 minutes.[305]  Commencement of inflation served as 

the BD induction time (BIT).  Confirmation of brain death was achieved by continuously 

negative cerebral perfusion pressure (defined as MAP - ICP) for greater than 30 minutes, 

loss of pupillary and corneal reflexes and lack of respiratory efforts.  Protocol start time 

was deemed once BD was confirmed in animals allocated to this group.  Due to variability 

in duration required for induction and confirmation of BD, haemodynamic results are 

reported as time from BIT.  Haemodynamic deterioration was managed with intravenous 

fluid, and vasopressors or inotropes as appropriate. 

 

At 12 hours after PST, hormone resuscitation therapy was commenced with vasopressin, 

methylprednisolone and liothyronine.  This time point was chosen to reflect the clinical 

realities of delays in diagnosis and confirmation of brain death, family consent for organ 

transplantation, and the change from lifesaving to organ preserving treatment.[309]  After 

completion of the 24 hour protocol, the animals were sacrificed using sodium 

pentobarbitone. 
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Table 3: Medications Used as Part of the Protocol.   

Drug Bolus Initial Infusion Rate Notes 

Anaesthetic Induction 

 Lignocaine 1% 
3-5 mL sub-
cutaneously 

 
Over central venous access 
insertion sites 

 Buprenorphine 300 mcg  
Administered six hourly during 
protocol 

 Midazolam 0.5 mg/kg   

 Alfaxalone 3 mg/kg  
If further boluses needed, 
dosed at 0.5 mg/kg 

Anaesthetic Maintenance 
 Alfaxalone  6 mg/kg/hr Adjusted to surgical plane 
 Ketamine  3 mg/kg/hr Adjusted to surgical plane 

 Midazolam  0.25 mg/kg/hr 
Used only if required (if 
alfaxalone exceeded 250 mg/hr) 

Antimicrobial Prophylaxis 
 Cefalotin 1000 mg   
 Gentamicin 40 mg   
Fluid Management 

 Hartmann’s Solution 10-20 mL/kg 2 mL/kg/hr 

Titrated to CVP 8–12 mmHg.  
Boluses if needed for low urine 
output (< 0.5 mL/kg/hr) or 
hypotension (MAP < 60 mmHg).  
Initial fluid of choice 

 Normal Saline 0.9% 10-20 mL/kg 1-2 mL/kg/hr 
Boluses if needed for low urine 
output (UO < 0.5 mL/kg/hr) or 
hypotension (MAP < 60 mmHg). 

 
Dextrose 5% or Dextrose 
4% in Saline 0.18% 

10-20 mL/kg 1-2 mL/kg/hr 
Utilised for hypoglycaemia (BSL 
< 6 mmol/L) 

Vasopressors, Inotropes and Cardiovascular Support 

 Metaraminol 0.5-1 mg  
Utilised in emergency situations 
for hypotension only 

 Atropine 600 mcg  
Utilised in emergency situations 
for bradycardia (HR < 60 bpm) 
only 

 Noradrenaline  0.05 mcg/kg/min Adjusted to MAP > 60 mmHg 
 Dopamine  5 mcg/kg/min Adjusted to MAP > 60 mmHg 

 Isoprenaline  0.5 mcg/min 

Adjusted to MAP > 60 and HR > 
60 bpm.  Utilised only if 
considered bradycardia as 
cause of hypotension 

 Glyceryl Trinitrate  0.1 mg/hr 
For hypertension (SBP > 180 
mmHg) if necessary 

 Amiodarone  5 mg/kg over 2 hours 

Infusion for appropriate 
dysrhythmias (eg atrial 
fibrillation) if necessary.  Could 
be repeated 

Hormonal Management  

 Insulin 10 – 20 U 0.5 U/hr 

Bolus for BSL > 16 mmol/L.  
Infusion adjusted to BSL 6 – 10 
mmol/L, tested hourly once 
infusion commenced 

 Dextrose 50% 25 mL  

For management of 
hypoglycaemia (BSL < 3.5 
mmol/L).  Please also note 
Dextrose 5% could be used for 
ongoing maintenance per above 

 Desmopressin 4 mcg  
If urine output > 300 mL/hr for 
two consecutive hours 
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Table 3 (cont):  Medications and Ventilation Settings Used as Part of the Protocol. 

Hormone Resuscitation at 12 hours 

 Vasopressin 1 U 
0.5 – 4.0 U/hr (initial 
dose 2.0 U/hr) 

Adjusted to SVR 800 – 1200 
dyn.s.cm-5 

 Liothyronine 4 mcg 3 mcg/hr  
 Methylprednisolone 15 mg/kg   
Electrolyte Management 

 Potassium Chloride  10 – 40 mmol/hr 
Adjusted to potassium 3.5 – 5.0 
mmol/L 

 Calcium Chloride 10% 6.8 mmol  
Administered to keep ionised 
calcium > 1.05 mmol/L 

 Magnesium Sulphate 10 – 20 mmol  
Allowed for management of 
dysrhythmias (eg atrial 
fibrillation) 

Euthanasia 
 Sodium Pentobarbitone 100 mg/kg   
Not all agents were used.  Agents listed include medications that were able to be used in 
the case of predetermined outcomes or complications. 

4.3.3 Sample Retrieval and Storage 

Blood was collected from the peripheral arterial line at baseline (prior to BIT), 1, 6, 12, 18 

and 24 hours after confirmation of BD.  Blood samples were then centrifuged, supernatant 

transferred into vials (Eppendorf, North Ryde, Australia) and stored at –80 °C until 

analysis.  After animals were euthanised, the lungs were removed en bloc and samples 

taken from both lower lobes.  These were fixed in 10% phosphate buffered formalin, 

embedded in paraffin and mounted on slides for histological analysis. 

 

4.3.4 Histological and Tissue Analysis 

Samples were taken from the right lower lobe to assess for wet:dry weight ratio, as an 

indicator of inflammatory oedema.  These were dehydrated in an oven at 45 °C for 48 

hours, at which time they were reweighed and the ratio calculated.  

 

Haematoxylin and eosin staining of lung specimens was performed to allow morphologic 

assessment of tissue samples.  Inflammation was graded semi-quantitatively as previously 

reported.[88]   

 

Immunohistochemical staining was employed to assess the patency of the endothelin axis 

using standard methods (see also 4.9 Appendix 2:  Immunohistochemistry Staining 

Procedure).[114]  Monoclonal anti-ET-1 (Sigma Aldrich, St Louis, Mo), polyclonal anti-

ETRA, anti-ETRB and anti-MMP-2 (Merck Millipore, Billerica, MA), polyclonal anti-MMP-9 

(Biorbyt, San Francisco, CA) and polyclonal anti-TIMP-1 (Tissue Inhibitor of 

Metalloproteinase-1) and anti-TIMP-2 (Bioss, Woburn, MA) were selected as primary 

antibodies.  Immunohistochemistry and histological scoring was performed independently 
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by two investigators (RW and IB) and results compared.  Disagreements in scoring were 

resolved by using the lowest score (ie indicating less injury).  Slides were assessed in 

random order and the assessors were blinded to group of allocation. 

 

4.3.5 ELISA 

Systemic concentrations of ET-1 and proendothelin-1 (Big ET-1) were assessed in EDTA 

plasma using commercially available sandwich ELISA kits (BiomedicaGruppe, Austria).  

Absorbance was read at 450 nm with reference 630 nm on a 96 well plate 

spectrophotomer (FluoStar Omega, BMG LabTech, Germany).  The results from one 

animal in the BD group were excluded due to technical reasons preventing accurate 

spectrophotometric analysis.   

  

4.3.6 Biochemical Analysis 

Biomarkers of organ injury were assayed using the COBAS Integra 400 chemical analyser 

(Roche Diagnostics, Dee Why, Australia), following manufacturer’s instructions.  Reagent 

cassettes were calibrated using the Calibrator for Automated Systems (CFAS, Roche 

Diagnostics).  Precision and accuracy of assays were confirmed using standard quality 

controls (Precinorm Clin Chem Multi 1 and 2, Roche Diagnostics). All tests were 

performed in duplicate, averaged and compared to CFAS calibrators in order to interpolate 

sample concentrations.  Cardiac markers included myoglobin and CK-MB.  Hepatic 

markers included total and conjugated bilirubin, alkaline phosphatase and γ-glutamyl 

transferase (cholestatic function) and alanine aminotransferase, aspartate 

aminotransferase (hepatocellular injury).  Albumin and total protein were assessed as 

markers of synthetic function, while lactate dehydrogenase was a general marker for 

cellular injury.  Urea, creatinine and phosphate were included to assess renal function. 

 

4.4 Statistical Analysis 

This study was designed with six subjects for each group.  This is able to detect a true 

difference in the standardised mean change between experimental and control subjects of 

+/– 1.794 with probability (power) 0.8.  The Type I error probability associated with this test 

of the null hypothesis that the population means of the experimental and control groups 

are equal is 0.05.  We assumed the response within each subject group was Normally 

distributed, standardised to a standard deviation of 1.   

 



 

51 

Analysis of biochemical data was performed using Prism 6 (GraphPad Software Inc., 

United States).  All regression analyses of physiological data were conducted using R 

software (www.r-project.org).  A two-sided statistical significance level of <0.05 was 

adopted.  Results are reported as mean ± standard deviation.  Two-way repeated-

measures Analysis of Variance (ANOVA) was used to test for significant differences in 

dependent variables.  Student’s t-test was used to compare changes in physiological 

variables at specified time points.  Fisher’s exact test was used to compare semi-

quantitative assessment of tissue samples.  For continuous physiological variables, a 

regression model was used to examine the changes in variables over time.  A mixed 

model with a random intercept for each sheep to account for repeated responses from the 

same animal was used.[338] 

  

4.5 Results 

All 12 animals survived the 24 hour protocol.  Induction of BD was successful in all animals 

allocated to this group.  Summary tables detailing ventilation, haemodynamics, fluid 

balance, biochemistry and histology can be found in 4.10 Appendix 3:  Summary of Animal 

Data. 

 

4.5.1 Animal Management and Point of Care Testing 

There were no differences between the animal groups with regard to mechanical 

ventilation.  Markers of oxygenation, P(A-a)O2 and PaO2:FiO2, deteriorated in BD animals 

over the first two hours.  Mean P(A-a)O2 in BD animals was 66.8 ± 40 mmHg (8.9 ± 5.3 kPa, 

p<0.001) greater at one hour and 45.7 ± 40 mmHg (6.09 ± 5.3 kPa, p=0.016) greater at 

two hours.  PaO2:FiO2 was 221 ± 81 less in BD animals (p<0.001) at one hour and 110 ± 

80 (p=0.003) less at two hours.  These variables were thereafter similar to controls and no 

difference was found at 24 hours (p=0.56 P(A-a)O2 and p=0.87 PaO2:FiO2, Figure 5).  

Minute ventilation was similar between the groups, with a trend towards lower PaCO2 in the 

control group by 24 hours (PaCO2 27 ± 4 mmHg (3.6 ± 0.5 kPa) control vs 32 ± 5 mmHg 

(4.3 ± 0.6 kPa) BD, p=0.051).  Lactate, a surrogate marker of hypoperfusion, was 

significantly elevated in the BD group (p=0.03 at 24 hours), reaching a peak value of 2.75 

± 3.3 mmol/L at 18 hours (Figure 6).  There was no difference in blood pH between groups 

(p=0.85).  No vasoactive agents were required in the control group, whereas all BD 

animals required vasoactive support (Figure 7).  Each of the six BD animals met 

predefined criteria for diabetes insipidus and required desmopressin.  Cumulative fluid 
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balance at 24 hours was not different between groups (2.1 ± 0.8 L control vs 2.4 ± 1.7 L 

BD, p>0.9). 

 

Figure 5:  Oxygenation Parameters from Arterial Blood Gases 

A) Alveolar-arterial oxygen difference, P(A-a)O2, B) PaO2:FiO2 Ratio  Oxygenation deteriorated early 
after induction of brain death and was no different to control animals at 24 hours.  Brain death was 
induced immediately after the baseline value at time 0  
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Figure 6:  Lactate and pH Values from Arterial Blood Gases 

 A) Lactate levels and B) pH as measured by arterial blood gases.  Lactate levels were elevated in 
brain dead animals, remaining higher than controls at 24 hours.  An early acidosis was noted, but  
normalised by 24 hours.  Brain death was induced immediately after the baseline value at time 0 
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Figure 7:  Doses of Vasoactive Agents Administered to Brain Dead Sheep 

Mean doses of dopamine and noradrenaline administered to the brain dead animals over the 
duration of the study. 
 

4.5.2 Physiologic Variables  

Time to confirmation of brain death after inflation of the extradural catheter was 50 ± 22 

mins.  During this time, the highest ICP achieved was 237 ± 79 mmHg, with a resultant 

CPP of -117 ± 34 mmHg.  At completion of the study, ICP was 87 ± 12 mmHg with a CPP 

of -6.5 ± 12mmHg.   

 

Brain death caused tachycardia, hypertension and elevated cardiac output (Figure 8A-C). 

Cardiac index (CI) increased primarily as a consequence of tachycardia with the stroke 

volume index (SVI) acutely decreasing from 45 ± 1 mL/m2 to 30 ± 6 mL/m2 (p<0.001).  

Mean arterial pressure increased from 99 ± 3 mmHg to peak at 193 ± 40 mmHg during 

induction of BD, decreasing to 58 ± 2% of baseline at 90 minutes after BIT (p<0.001) and 

remaining lower than the control group at 24 hours (p<0.001).  Systemic vascular 

resistance index (SVRI - Figure 8D) increased from 1741 dyn.s.cm-5 to 3718 dyn.s.cm-5 

within five minutes of foley catheter inflation, falling to 46 ± 1% of baseline by one hour and 

remaining depressed throughout the remainder of the study.  After initiation of hormone 

resuscitation, SVRI increased to 81 ± 7% of baseline.  Cardiac index increased to a peak 
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of 7.48 ± 2.1 L/min/m2 from a baseline of 4.55 ± 0.18 L/min/m2 30 minutes after BIT and 

remained 14 ± 5% above baseline until one hour after hormonal therapy was commenced, 

whereby it returned to baseline levels.  At 24 hours there was no statistical difference 

(p=0.79 compared to baseline, p=0.91 compared with controls). Left ventricular stroke 

work index (LVSWI) was significantly reduced in BD animals compared to controls 

(p<0.001).  After decreasing to 19.8 ± 0.69 g.m/m2/beat at 75 minutes post BIT, LVSWI 

returned to 35.1 ± 1.3 g.m/m2/beat over the following four hours.  Hormonal resuscitation 

therapy increased LVSWI to 44.8 ± 2.8 g.m/m2/beat at 24 hours (p<0.001 compared to 

baseline). 

 

 

Figure 8:  Systemic Cardiovascular Responses Observed in Brain Dead and Control 

Animals over 24 Hours. 

See end of figure for complete description 
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Figure 8 (cont):  Systemic Cardiovascular Responses Observed in Brain Dead and 

Control Animals over 24 Hours. 

See end of figure for complete description 
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Figure 8 (cont):  Systemic Cardiovascular Responses Observed in Brain Dead and 

Control Animals over 24 Hours. 

A) Heart rate.  After an early peak, heart rate was similar to controls at 24 hours.  B) Mean arterial 
pressure increased with brain death and then fell below baseline.  C) Cardiac index was elevated 
after brain death, returning to control levels by three hours.  It fell after administration of hormone 
therapy.  D)  Systemic vascular resistance index was similar to MAP.  E)  Left ventricular stroke 
work index fell after brain death.  It rose over time but remained less than control animals at 24 
hours.  Brain death was induced immediately after the baseline value at time 0. 
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Mean pulmonary artery pressure (mPAP) peaked at 186 ± 20% of baseline with induction 

of BD (p<0.001), rising from 16 ± 0.2 mmHg to 30 ± 13 mmHg.  After the initial peak, 

mPAP remained 31 ± 2% greater than baseline 90 minutes after BIT (p<0.001) and 

continued to increase for the remainder of the experiment (Figure 9A-B).  Pulmonary 

vascular resistance index (PVRI) increased from 50 ± 3 dyn.s.cm-5 to 123 ± 77 dyn.s.cm-5 

within five minutes of foley catheter inflation (Figure 9C), decreasing to 55 ± 4% of 

baseline (28 ± 12 dyn.s.cm-5) at four hours after BD.  The PVRI returned to baseline after 

initiation of hormone resuscitation and was not different from the control group at 24 hours 

(p=0.5).  Right ventricular stroke work index (RVSWI) had decreased 15 minutes after BIT 

(by 1.4 ± 0.7 g.m/m2/beat, p<0.001).  However, by 30 minutes, this had increased to be 6.8 

± 0.34 g.m/m2/beat (5.4 ± 0.01%) above the baseline of 6.5 ± 0.24 g.m/m2/beat (p=0.01) 

and continued to increase to 25.9% above baseline (8.4 ± 1 g.m/m2/beat) at the end of the 

study in the BD animals (p<0.001). 
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Figure 9:  Pulmonary Haemodynamic Responses Observed in Brain Dead and 

Control Animals during Induction of BD and over 24 Hours. 

A) Mean pulmonary arterial pressure peaked early after brain death, remaining above baseline and 
controls to 24 hours.  B) Percent variance from baseline of mPAP demonstrates that this deviated 
in brain dead animals to a greater degree over time than controls.  C)  Pulmonary vascular 
resistance index returned to levels consistent with controls by 24 hours. D) Right ventricular stroke 
work index increased over time compared to baseline in brain dead animals, but was not different 
to controls at 24 hours.  Brain death was induced immediately after the baseline value at time 0 
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One animal in the control group met the definition of postcapillary pulmonary hypertension 

at commencement of the experiment (MPAP 27 mmHg, PAOP 19 mmHg, transpulmonary 

gradient 8 mmHg, PVRI 101 dyn.s.cm-5).  Mean pulmonary artery pressure, PVRI and 

RVSWI were not different between control and brain dead animals at 24 hours (p=0.98 for 

mPAP, p=0.57 for PVRI and p=0.55 for RVSWI).  Exclusion of the sheep with baseline 

pulmonary hypertension did not reach statistical significance, but indicated that this single 

animal had a large effect on the analysis (p=0.58 for mPAP, p=0.21 for PVRI and p=0.24 

for RVSWI).   

 

4.5.3 Histological and Tissue Analysis 

There was no statistically significant difference in lung wet:dry ratio between groups, with 

an average ratio of 3.48 versus 3.39 (non-BD vs BD, p=0.68). 

 

Semi-quantitative assessment of lower lobe pulmonary histology demonstrated increased 

inflammation in BD animals (non-BD animals:  none-mild inflammation (0 or +); BD 

animals:  moderate-severe inflammation changes (++ or +++), including increased 

interstitial oedema and inflammatory cell infiltration, p=0.014). 

 

The endothelin axis was detectable by immunohistochemical staining (4.10.5 Summary of 

Haematoxylin and Eosin and Immunohistochemical Staining).  Staining of ET-1 was 

localised to bronchiolar epithelium and perivascular smooth muscle in both BD and non-

BD animals, with no appreciable difference in expression noted.  With regard to the 

endothelin receptors, ETRA stained minimally in both groups within bronchiolar epithelium 

and smooth muscle, and ETRB was well localised to airway columnar epithelium.  There 

was no difference in expression of either receptor between groups.  Overall, there were no 

differences in intensity of staining for MMP-2 or MMP-9 between groups, with MMP-2 

slightly expressed within vascular endothelial and bronchiolar epithelial cells and MMP-9 

able to be identified within bronchiolar epithelium and perivascular smooth muscle.   

 

Low intensity of staining for TIMP-1 and -2 was observed for both groups, with no 

detectable difference.  Staining of TIMP-1 was primarily localised within the columnar 

epithelia in the bronchioles with some staining within the alveolar parenchyma.  Similarly to 

TIMP-1, TIMP-2 expression was mainly observed in bronchiolar epithelia, though some 

staining in the alveolar parenchyma and pulmonary blood vessels was noted.   
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4.5.4 ELISA 

One animal in the brain dead group was excluded from analysis as blood samples had 

suffered from haemolysis and were unable to be assessed.  Big ET-1 increased in BD 

sheep six hours after PST compared to baseline (p=0.002, Figure 10A).  Big ET-1 

concentrations also tended to be increased compared to control animals at the same time-

point (p=0.064).  After this early peak, concentrations of Big ET-1 returned to baseline at 

12 hours and remained similar to the non-BD group during the remainder of the protocol 

(p=0.99 at 24 hours).  Similarly, ET-1 levels rose by 26.9% from baseline at one hour after 

induction of brain death, approaching statistical significance (p=0.09, Figure 10B), and 

then declined to be equivalent to control animals at 12 hours.  Scatter plots indicated no 

correlation between hourly average doses of administered vasoactive agents and the 

observed levels of Big ET-1 or ET-1 (Figure 11). 
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Figure 10:  ELISA Analysis of Big Endothelin-1 and Endothelin-1.   

A)  Big Endothelin concentrations.  B)  Endothelin-1 concentrations.  Samples measured in EDTA 
plasma.  Sheep 6 has been excluded from this analysis (Brain Dead group) due to technical errors 
in measurement. 
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Figure 11:  Scatter plot of ELISA Concentrations versus Average Hourly Vasoactive 

Infusion Doses.  

A) Big Endothelin-1. B) Endothelin-1.     = noradrenaline,    = dopamine.  Although these agents 
may stimulate endothelin release, scatterplots do not indicate a correlation between dose and 
levels measured. 
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4.5.5 Biochemical Analysis 

Circulating myoglobin and CK-MB increased over time in BD animals (Figure 12), 

indicating myocardial necrosis; no change was observed in control animals.  In BD 

animals, myoglobin levels increased earlier than CK-MB, however this did not reach 

statistical significance compared to control animals (p=0.13 at 24 hours).  CK-MB was 

significantly elevated in BD compared to control animals at 24 hours (p=0.04).  Hepatic 

injury was also evident at 24 hours with elevation of both alanine aminotransferase and 

aspartate aminotransferase in BD animals (p<0.001 for both).  Cholestatic enzymes were 

not elevated, indicating preferential hepatocellular injury.  No evidence of renal dysfunction 

was indicated by elevated creatinine or urea levels (p=0.5 creatinine, p=0.8 urea, BD vs 

control animals at 24 hours). 
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Figure 12:  Biochemical Results of Markers of Cardiac Injury in Brain Dead and 
Control Animals over 24 Hours.   
Upper Limit refers to the upper limit of the COBAS reference range.  A) Creatine Kinase MB 
Isoenzyme.  B) Myoglobin.  Both cardiac markers indicated myocardial injury and necrosis.  As 
expected from their biological properties, myoglobin increased faster, but it did not reach statistical 
significance.  CK-MB increased later in brain dead animals and was statistically significant at 24 
hours. 
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4.6 Discussion 

This is the first report to document a 24 hour, clinically relevant, ovine model of brain death 

and assess systemic and pulmonary endothelin expression.  Histological analysis 

indicated increased inflammation in the BD lung tissue, consistent with previous 

literature.[88, 241]  The components of the endothelin axis were identifiable by 

immunohistochemical staining, with no demonstrable difference found between groups.  

This is in contradistinction to previous observations in rodents.[88]  ELISA did suggest an 

early elevation and then resolution of both ET-1 and Big ET-1 in plasma after brain death; 

this may reflect an early release with rapid clearance,[339] however, no ongoing systemic 

expression was detected.  Observed peak concentrations obtained at one hour and six 

hours for ET-1 and Big ET-1, respectively, may reflect significant peaks that occurred 

earlier, but were not captured by the sampling time in this study.  Oishi et al previously 

demonstrated that ET-1 peaks as early as 30 minutes in BD canines, however this 

elevation was still detectable at 60 minutes.[210]  Another complicating factor in comparing 

these results to the current study is the nature of sampling; while Oishi’s group sampled 

coronary venous sinus blood (to detect cardiac generated ET-1), our study analysed 

peripheral arterial blood.  Systemic levels of ET-1 indicate a spillover effect,[97]  and 

therefore may only be detectable in very low concentrations when assessed in this manner 

due to mixing of blood returning to the pulmonary circulation.  Secondly, pulmonary ETRB 

may continue to serve its usual function of clearing circulating ET-1, concealing any 

detectable elevations in mixed central venous blood.[106]  Both of these factors may have 

contributed to our observed results and provide opportunities for future study.   

 

Data is accumulating of the role of ET-1 in brain death and organ donation; activation of 

the endothelin axis has been demonstrated early in BD related pulmonary 

inflammation,[88] it contributes to complications associated with human lung 

donation,[212, 340, 341] and it may contribute to the altered cardiopulmonary 

haemodynamics observed in the current study.  As a potent mitogen, ET-1 stimulates 

smooth muscle hyperplasia and leads to airway remodelling and oedema.[330]  

Furthermore, ET-1 initiated cell signalling leads to short- and long-term injury, fibrosis and, 

ultimately, allograft rejection.[340]  Thus, endothelin-1 may induce an inflammatory 

response that continues to manifest itself long after any detectable elevations in plasma 

concentrations have resolved; inflammatory cells recruited to the lung by endothelin 

signalling and increased ET-1 receptors in allograft tissue[88] may be further activated 



 

68 

after transplant by ischemia reperfusion injury[330] and the inflammatory state of the 

recipient.[24]     

 

Activation of the sympathetic nervous system during brain death results in dramatic 

increases in vascular resistance and arterial pressure, and contributes to systemic 

inflammation.[178]  Novitzky et al observed that the resulting increase in SVRI and left 

atrial pressure leads to transfer of up to 72% of total blood volume to the lower resistance 

pulmonary vasculature; mPAP and PVRI were also noted to increase with induction of 

BD.[305]  This has been hypothesised to contribute to pulmonary capillary injury seen after 

BD.  Bittner and colleagues demonstrated that, when observed for six hours, the PVRI 

decreased below baseline after the initial sympathetic storm of BD, resulting in increased 

pulmonary flow and vascular congestion, contributing to increased extravascular lung 

water content.[329]  These authors reported that the decrease in PVRI was secondary to 

sympathetic failure and increased vascular distensibility.[329]  The data over the first six 

hours in the present study supports these observations, replicating the early increase in 

SVRI and MAP, with reduction in PVRI after an early peak.  Cardiac index increased from 

baseline, reaching a maximal value after the SVRI had dropped, resulting in a 

hyperdynamic circulation.  This may contribute to the observed reduction in PVRI via 

distension of pulmonary vessels and pulmonary capillary reserve recruitment,[305] in 

addition to the loss of sympathetic vasoconstriction.   

 

Pulmonary interstitial oedema did not differ between groups.  The lack of oedema between 

the groups may be due to resolution of excess lung water by the end of the protocol.  

Skilled management likely influenced this outcome; fluid balance was similar between 

groups, thus preventing iatrogenic pulmonary oedema.  The influence of duration of care 

was posited by Avlonitis et al, who observed that, in a prolonged rat model of brain death 

(15 minutes vs five hours), longer duration of care was associated with better oxygenation 

and reduced post-transplant PVR despite greater exposure to inflammatory 

cytokines.[269]  This group postulated that the improvement in donor oxygenation at four 

hours reflected clearance of neurogenic pulmonary oedema.[269]  This finding was 

replicated in our study, demonstrating impaired oxygenation for the first two hours, with 

subsequent recovery to levels similar to controls.  Duration of BD donor care also 

influences recipient survival in humans; time from BD to cold preservation greater than 10 

hours is associated with a survival advantage at both five and 10 years.[119]  Hormone 

resuscitation may have also contributed to the observed effect; methylprednisolone 



 

69 

administration reduces extravascular lung water in BD donors.[245]  Furthermore, 

dopamine stimulates alveolar fluid clearance and is another possible mechanism to 

explain our findings.[342] 

 

While the absolute values of mPAP did not greatly exceed the defined cut-off for 

pulmonary hypertension (>25 mmHg)[343] in the present study, the increased pressure 

was significantly greater than baseline and does reflect greater resistance that needs to be 

overcome by a damaged myocardium.  The observation that mPAP was elevated at 24 

hours suggests that the effect of BD on pulmonary pressures may be greater than 

previously identified.  Extended elevations in right ventricular afterload may contribute to 

the previously identified right ventricular ischaemia and fibrosis, further priming the right 

ventricle for acute failure in the recipient.  Optimisation of ventilation, oxygenation and pH 

prevented contributions of these factors to the observed increase in pulmonary pressures 

in the current study.   

 

Administration of catecholamines to the BD animals did represent a difference in care 

between the two groups.  However, this is unlikely to explain the observed findings 

because elevated pulmonary pressures remained unchanged when doses of vasopressors 

were decreased after commencement of hormone therapy.  The use of vasoactive agents 

is common in BD donors,[238] and has been demonstrated to reduce inflammation 

associated with hypotension and resultant poor tissue perfusion.[178]  Previous studies of 

noradrenaline and dopamine infusions in sheep do not support that these agents were 

causative of the observed alterations in pulmonary pressures.[344, 345]  In a study of 

noradrenaline infusion in healthy and endotoxaemic sheep, Lange et al observed an 

increase in PVRI in endotoxaemic sheep only.[344]  Dopamine infusion in sheep has been 

associated with an increase in mPAP at rates significantly higher than the doses used in 

the current study.[345, 346]  Although ET-1 can both stimulate[347]  and be stimulated by 

catecholamines,[93, 348] comparison of ET-1 and Big ET-1 concentrations over time with 

the average hourly dose of vasoactive agents did not reveal any correlation in the current 

study and, therefore do not account for the observed results. 

 

The current study also confirms that BD induces injury in other transplantable organs in 

sheep.  Elevation of hepatic transaminases indicates hepatocellular injury consistent with 

other animal models.[194, 349]  Serum cholestatic enzyme activities did not increase over 

time and suggest biliary obstruction was not associated with hepatic injury.     
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All BD animals required management of haemodynamic collapse with vasopressors.  

Haemodynamic support requirement was reduced after hormone therapy was initiated.  

This is in part due to the inclusion of vasopressin, but may also reflect improved 

haemodynamics directly due to hormonal administration.  Thyroid hormone may play a 

role in regulating anaerobic metabolism and cardiovascular stability post-BD, however the 

benefits of its routine administration remains controversial.[186, 263]  The current trial 

included hormonal resuscitation consistent with local protocols.[239] 

 

Limitations of the Study 

Several important limitations have been noted in this study.  As previously identified, 

plasma sampling times may have missed very early peaks in ET-1 or Big ET-1.  Big ET-1 

and ET-1 were measured at different timepoints early in the study.  Assessment of Big ET-

1 at six hours, rather than one hour, was aimed to assess changes in protein over the 

entire duration of the study.  However, ET-1 was measured earlier in order to better 

quantify early elevations of the functional peptide that may have occurred more closely to 

induction of BD.  More frequent sampling around the induction of BD in future studies will 

better characterise the time-course of ET-1.  Small numbers of animals in each group 

raises the possibility of type 2 error, although pre-clinical animal models have used similar 

numbers.[332, 333]  Myoglobin and CK-MB were chosen to assess for cardiac injury in the 

current study.  Although troponin may reflect cardiac function in the donor, the correlation 

between troponin levels and recipient outcome remains controversial.[350]  Recently 

published guidelines continue to include CK as a biomarker in assessment of potential 

heart transplantation donors.[351, 352]  Although NT-proBNP has been noted as a 

potential marker for assessing cardiac function in potential donors,[353] it is yet to be 

included among standard tests for donors.[354]  Inflammatory cytokines have been well 

characterised in other animal models of BD.  An ongoing challenge in developing new 

models is a relative paucity of validated, species specific analytical methods.  Our group 

continues to develop and validate ovine specific tests,[331, 355] and the presented model 

will provide a platform to further investigate cytokine expression after BD in future studies.   

 

4.7 Conclusion 

The present model replicated the clinical realities leading to delays in organ retrieval upon 

BD.  Haemodynamic disturbances which occur in BD animals has limited the duration of 

previous studies.  By utilising complete haemodynamic monitoring and support in the 
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same fashion as is applied to human donors, it is possible to maintain a BD sheep for 24 

hours.  While sheep undergoing BD demonstrate complex haemodynamic changes similar 

to those seen in humans, our data also suggests that early haemodynamic and 

inflammatory derangements may improve over time with aggressive donor management.  

This reduces the urgency for organ retrieval and supports such timeframes as are 

frequently encountered in daily clinical practice.  However, significant increases in 

pulmonary blood pressure may be noted up to 24 hours after brain death.  Big ET-1 and 

ET-1 are detectable early after BD, and may contribute to the inflammatory cascade that 

primes allografts for post-transplant dysfunction.  Endothelin-1 may also be a factor in the 

induction of right ventricular dysfunction observed in cardiac transplantation.  Further 

investigation, targeting the endothelin axis, may provide a novel management option in 

order to improve the condition of transplantable lungs, increasing the number and quality 

of allografts available.   
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4.8 Appendix 1:  Animal Management 

4.8.1 Anaesthesia Induction, Surgical Preparation and Monitoring Setup 

Animals were divided into two groups (brain dead vs control) of six sheep each, for a total 

of 12 animals.  Initial surgical preparation was identical in both groups of animals.  After 

overnight fasting, animals were administered local anaesthesia (lignocaine 1%) and the 

right external jugular vein was cannulated using a 7 Fr triple lumen central venous catheter 

(Arrow-Howes, Research Triangle Park, North Carolina, USA).  The left external jugular 

vein was accessed via an 8 Fr sheath for later placement of a pulmonary artery catheter 

(Edwards Lifesciences, Irvine, California, USA).  Buprenorphine, cefalotin and gentamicin 

were then administered.  Table 3 in the main manuscript lists details of medications used 

in this study.  General anaesthesia was induced with midazolam and alfaxalone, and 

animals were intubated under direct laryngoscopy.  Mechanical ventilation was 

commenced using a Galileo ventilator (Hamilton Medical, Reno, Nevada, USA) with 

continuous quantitative capnography.  Initial ventilator settings were Synchronised 

Controlled Mandatory Ventilation, FiO2 0.5, tidal volume 10 mL/kg, 20 breaths per minute 

and positive end-expiratory pressure (PEEP) of 5 cmH2O.  Ventilation was adjusted to 

keep ETCO2 at 35-40 mmHg, with mild hyperventilation to reduce animal discomfort and 

allow invasive ventilation of sheep in the awake state.[298, 299]  

 

Anaesthesia was maintained during surgical preparation with continuous infusions of 

alfaxalone and ketamine and adjusted to maintain a surgical plane (monitored by 

observing heart rate, blood pressure, respiratory efforts and rate, eyelash reflexes, 

chewing and jaw movements).  Midazolam infusion was commenced if alfaxalone 

exceeded 250 mg/hr.   

 

Continuous electrocardiography and oxygen saturation monitoring was commenced 

directly after intubation.  Invasive arterial blood pressure monitoring was performed after 
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cannulation of the right facial artery under direct surgical visualisation.  Physiologic 

variables were monitored using a Marquette Solar 8000 monitor (GE Healthcare, Little 

Chalfont, UK) and recorded every five seconds with custom software.  A 7.5 Fr pulmonary 

artery catheter was inserted via the previously placed sheath and continuous monitoring of 

the mixed venous oxygen saturation (SvO2), cardiac output and body temperature were 

commenced using a Vigilance II Monitor (Edwards Lifesciences, Irvine, California, USA).  

Data were recorded every two seconds using manufacturer provided software.  Cardiac 

index, systemic vascular resistance index (SVRI), pulmonary vascular resistance index 

(PVRI), stroke volume index and right ventricular and left ventricular stroke work index 

were calculated according to standard equations.[356] 

 

Pulmonary artery diastolic pressure was used to calculate PVRI in lieu of repeated 

measurements of pulmonary artery occlusion pressure (PAOP) to minimise the risk of 

iatrogenic injury.  The PAOP was measured every six hours to ensure consistency with the 

pulmonary diastolic pressure.  Calculation of the body surface area (BSA) was performed 

using the equation, BSA=0.094x(weight)0.67.[357]  A size 10 Portex tracheostomy tube 

(Smiths Medical, London, UK) was surgically placed and the endotracheal tube removed.  

A transurethral urinary catheter was inserted to monitor urine output. 

 

Finally, intracranial access was obtained in all animals through a surgical incision midway 

between the midline and lateral edge of the cranium, rostral to the animal's horn base.  A 

burr hole was created to reveal the dura and an intracranial pressure monitor was placed.  

This point was designated the protocol start time in control animals. 

 

4.8.2 Induction of Brain Death 

 In animals allocated to brain death, a second burr hole was created on the opposite side 

of the head.  A 16 Fr Foley catheter was then inserted extradurally.  Brain death was 
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induced via inflation of the catheter balloon with 20 mL saline in 5 mL aliquots.  One 

millilitre aliquots were then used to ensure that the cerebral perfusion pressure (CPP, 

defined as the mean arterial pressure less the intracranial pressure) remained negative for 

30 minutes,[305] preventing cerebral blood flow, and that no additional sympathetic 

response or seizure activity occurred in response to the boluses.  Confirmation of brain 

death was achieved by continuously negative CPP for greater than 30 minutes, loss of 

pupillary and corneal reflexes and lack of respiratory efforts.  This was designated as the 

protocol start time for BD animals.   

 

4.8.3 Protocol for Anaesthesia, Sedation and Analgesia in Control Animals after 

Surgical Preparation 

After the protocol start time in control animals, six hourly buprenorphine was continued for 

analgesia, while anaesthesia remained according to the surgical plane.  Anaesthesia was 

ceased at twelve hours after the protocol start time.  Ketamine, alfaxalone and midazolam 

were able to be administered to non-BD animals after this time to prevent distress and 

ensure animal well-being.  If required, these were titrated to clinical sedation, whereby the 

animals were calm but easily rousable.  Muscle relaxants were not used at any time to 

allow monitoring for signs of animal distress.   

 

4.8.4 Protocol for Anaesthesia, Sedation and Analgesia in Brain Dead Animals 

after Surgical Preparation 

Anaesthetic and analgesic agents were continued after brain death to maintain 

consistency of care between groups.  Ketamine and alfaxalone were reduced to 2 mg/hr 

and 1 mg/hr respectively after diagnosis of brain death, reflecting adjustment to maintain a 

‘surgical plane’ in these animals.  Midazolam was ceased if it had been used. Six hourly 

buprenorphine was also continued.  Ketamine and alfaxalone were ceased at 12 hours in 

BD animals. 
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4.8.5 Protocol for Haemodynamic, Ventilatory and Electrolyte Management in all 

Animals 

Hartmann’s solution was initially administered at 2 mL/kg/hr and titrated to maintain a right 

atrial pressure of 8–12 mmHg.  Further fluid boluses of crystalloid could be administered to 

maintain haemodynamics and urine output greater than 0.5 mL/kg/hr.  Hypotension, 

defined as systolic blood pressure of <90 mmHg or MAP <60 mmHg, was treated with 

intravascular fluid optimisation and then dopamine or noradrenaline could be commenced. 

Arterial blood gases (ABG) were measured with a Radiometer ABL-825 analyser 

(Copenhagen, Denmark) every two hours or as required.  Ventilatory adjustments were 

made to achieve PaO2 of greater than 100 mmHg (13.3 kPa) with a minimum FiO2 of 0.3, 

and PaCO2 of 35 mmHg (4.6 kPa) and normal pH.  Potassium and calcium were replaced 

as directed by ABG results.    

 

4.8.6 Protocol for Metabolic Management, Hormone Resuscitation and Animal 

Sacrifice in all Animals 

Blood glucose levels were maintained between 6 and 10 mmol/L using insulin or dextrose 

infusions as necessary.  Body temperature was manipulated with warmed fluids, warming 

blankets, heat lamps and manipulation of the operating theatre environmental temperature 

to maintain normothermia.  Diabetes insipidus was defined as urine output greater than 

300 mL/hr for two consecutive hours.[358]  This was treated with desmopressin and 

adequate fluid replacement. 

 

Hormone resuscitation therapy with vasopressin, methylprednisolone and liothyronine was 

commenced in all animals at 12 hours after the designated protocol start time.[239]  

Animals were euthanised at 24 hours with sodium pentobarbitone.  
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4.9 Appendix 2:  Immunohistochemistry Staining Procedure 

Primary antibodies used for immunohistochemistry included monoclonal anti-ET-1 (Sigma 

Aldrich, St Louis, Mo), polyclonal anti-ETRA, anti-ETRB and anti-MMP-2 (Merck Millipore, 

Billerica, MA), polyclonal anti-MMP-9 (Biorbyt, San Francisco, CA) and polyclonal anti-

TIMP-1 and anti-TIMP-2 (Bioss, Woburn, MA).  After trials for optimisation of 

concentration, the antibodies were diluted in TBS 0.5% Triton-100 (TBS-T) in the following 

ratios; ET-1 1:100, ETRA 1:20, ETRB 1:100, MMP-2 1:100, MMP-9 1:50, TIMP-1 1:50 and 

TIMP-2 1:50.   

 

After sections were rehydrated, they were washed in Tris buffered saline (TBS) and 

epitope heat retrieval was performed using citrate buffer solution (10mM Sodium Citrate, 

0.05% Tween-20, pH 6.0) for 20 minutes.  After cooling, the slides were rinsed in distilled 

water and endogenous peroxidase activity was quenched with 3% hydrogen peroxide 

solution for 5 minutes.  Slides were washed and then placed in TBS prior to application of 

1:10 normal horse serum in TBS-T for one hour in a humidified chamber at room 

temperature.  Diluted primary antibodies were applied and slides were then incubated at 

4°C (1 hour for ET-1, ETRA, ETRB and MMP-2 and 24 hours for MMP-9, TIMP-1 and 

TIMP-2). 

 

Following incubation, slides were rinsed with TBS-T and a biotinylated secondary antibody 

was applied (Vectastain ABC system, Vector Labs, Burlingame, CA) and incubated in a 

humidified chamber at room temperature for 60 minutes.  After rinsing with TBS-T, an 

avidin/biotin complex was applied and the slides were again incubated in a humidified 

chamber at room temperature for 60 minutes.  Slides were rinsed in TBS-T and then 

developed with 3,3’-diaminobenzidine to reveal brown staining peroxidase activity.  After 

staining with Mayer’s haematoxylin, samples were dehydrated and mounted with DePx 

(BDH Laboratories, Poole, England).  Negative controls were created by completing the 

same steps with exclusion of the primary antibodies. 
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4.10 Appendix 3:  Summary of Animal Data 

4.10.1 Ventilatory, Arterial Blood Gas and Fluid Balance Data 

Control Brain Dead 

Ventilation at 24  Hours 

Minute Ventilation (L/Min) 8.2 ± 1.2 9.8 ± 1.3 

Respiratory Rate (Breaths/Min) 19.6 ± 2.6 22.1 ± 2.7 

Tidal Volume (Litres) 428.1 ± 42.5 456.9 ± 44.7 

Positive End Expiratory      

Pressure 
(cmH2O) 6.8 ± 1.2 7.5 ± 1.3 

Plateau Pressure (cmH2O) 18.9 ± 1.8  19.3 ± 2.0 

Static Compliance (L/cmH2O) 35.9 ± 5.5 39.2 ± 5.8 

Blood Gas Results at 24 hours 
    

P(A-a)O2 (mmHg) 23.4 ± 25.5 14.6 ± 26.7 

PaO2:FiO2  
442.9 ± 44.7 447.6 ± 46.9 

PaCO2 (mmHg) 27 ± 4.5 31.9 ± 4.7 

pH 
 

7.46 ± 0.06 7.38 ± 0.09 

Lactate (Mol/L) 1.1 ± 0.5† 1.9 ± 0.6 

Fluid Parameters at 24 hours 
    

Cumulative Fluid 

Administered 
L 4.7 ± 1.7† 15.2 ± 12.5 

Cumulative Urine Output L 2.6 ± 0.9† 12.8 ± 11.6 

Fluid Balance L 2.1 ± 0.8 2.4 ± 1.7 

† - p < 0.05 CP vs BDP ˜ - p < 0.05 vs baseline 
Maximum/Minimum values given occurred within 15 minutes 
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4.10.2 Summary of Systemic Haemodynamic Variables  

                 Control       Brain Dead 

Systemic Haemodynamics 

Heart Rate (beats/min) 

Baseline 122 ± 1 101 ± 5 

Maximum 125 ± 30† 220 ± 73˜ 

Average First Hour 124 ± 1† 174 ± 15˜ 

Average at 24 Hours 105 ± 8 100 ± 9 

Cardiac Index (L/min/m
2
) 

Baseline 4.0 ± 0.15  4.5 ± 0.18 

Maximum 4.7 ± 1.2† 7.5 ± 2.19˜ 

Average at 24 Hours 5.2 ± 1.3 4.6 ± 0.6 

Mean Arterial Pressure 

(mmHg) 

Baseline 107 ± 2 99 ± 3 

Maximum 110 ± 18† 190 ± 40˜ 

Average at 24 Hours 122 ± 5† 83 ± 5˜ 

Central Venous Pressure 

(mmHg) 

Baseline 7.5 ± 3.2 6.2 ± 5.0 

Maximum 8.5 ± 4.3 11.3 ± 5.3 

Average at 24 Hours 9.7 ± 1.8 10.9 ± 1.7 

SvO2 (%) 

Baseline 78.7 ± 9.5† 67 ± 11.8 

Minimum 77.2 ± 13.1 67.5 ± 6.3 

Average at 24 Hours 78.2 ± 4.2 75.5 ± 5.0 

Systemic Vascular 

Resistance Index 

(dyn.s.cm
-5

) 

Baseline 1808 ± 49 1741 ± 60 

Maximum 1885 ± 401† 3718 ± 77˜ 

Average at 24 Hours 1973 ± 202†  1317 ± 212 

Left Ventricular Stroke 

Work Index 

(g.m/m
2
/beat) 

Baseline 47 ± 1.7 53 ± 1.7 

Maximum 49 ± 15.9 57 ± 23.4˜ 

Average at 24 Hours 65 ± 5.8†˜ 45 ± 6.1˜ 

† - p < 0.05 CP vs BDP ˜ - p < 0.05 vs baseline 
Maximum/Minimum values given occurred within 15 minutes 
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4.10.3 Summary of Pulmonary Haemodynamic Variables   

                 Control     Brain Dead 

Pulmonary Haemodynamics 
  

Mean Pulmonary Artery 

Pressure (mmHg) 

Baseline 19 ± 0.8 16 ± 0.2 

Maximum 20 ± 4.9† 30 ± 13˜ 

Average at 24 Hours 21 ± 2.2 25 ± 2.2˜ 

Pulmonary Vascular 

Resistance Index 

(dyn.s.cm
-5

) 

Baseline 54 ± 3.9 50 ± 3.1 

Maximum 57 ± 16.9† 123 ± 77˜ 

Average at 24 Hours 70 ± 19 61 ± 19 

Right Ventricular Stroke 

Work Index 

(g.m/m
2
/beat) 

Baseline 6 ± 0.4 7 ± 0.2 

Maximum 6 ± 0.4 7 ± 2.6 

Average at 24 Hours 8 ± 1.0 9 ± 1.0˜ 

† - p < 0.05 CP vs BDP ˜ - p < 0.05 vs baseline 
Maximum/Minimum values given occurred within 15 minutes 
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4.10.4 Summary of Biochemical Data 

  Control Brain Dead 

Cardiac Markers 
 

Myoglobin mcg/L Baseline 23.2 ± 2.0 28.7 ± 3.6 

24 Hours 29.9 ± 3.4 59.3 ± 15 

Creatine Kinase MB  U/L Baseline 18.5 ± 2.2 18.1 ± 2.3 

 24 Hours 18 ± 4.7† 31.8 ± 5.8 

Hepatic Markers   
 

Total Bilirubin μmol/L Baseline 1.27 ± 0.4 0.9 ± 0.5 

24 Hours 4.0 ± 3.8†~ 0.8 ± 0.6 

Conjugated Bilirubin μmol/L Baseline 1.3 ± 0.6 1.0 ± 0.6 

24 Hours 3.2 ± 1.8†~ 1.0 ± 0.7 

Alkaline 

Phosphatase 

U/L Baseline 105.2 ± 29.3 84.1 ± 23.7 

 24 Hours 76.2 ± 19.4 84.6 ± 25.5 

γ-Glutamyl 

Transferase 

U/L Baseline 58.7 ± 6.8 56.8 ± 2.6 

 24 Hours 55.0 ± 6.4 50.3 ± 4.0 

Alanine 

Aminotransferase 

U/L Baseline 9.8 ± 1.2 8.0 ± 1.1 

 24 Hours 16.4 ± 1.1† 75.5 ± 39.5 

Aspartate 

Aminotransferase 

U/L Baseline 78.6 ± 4.7 79.9 ± 7.2 

 24 Hours 139.3 ± 9.8† 596.0 ± 291.1 

Albumin g/L Baseline 30 ± 2.4 31 ± 4.6 

 24 Hours 29 ± 0.8 24 ± 4.4~ 

Total Protein g/L Baseline 61 ± 3.9 66 ± 8.6 

 24 Hours 60 ± 5.6 51 ± 7.3~ 

Lactate 

Dehydrogenase 

U/L Baseline 470 ± 90 402 ± 83 

 24 Hours 791 ± 254† 2569 ± 2977~ 

Renal Markers   
 

Urea mmol/L Baseline 7.7 ± 0.8 6.5 ± 0.7 

24 Hours 4.3 ± 0.2 2.5 ± 0.5 

Creatinine μmol/L Baseline 68.4 ± 2.6 71.3 ± 7.9 

24 Hours 67.2 ± 3.5 57.1 ± 6.4 

Phosphate mmol/L Baseline 2.3 ± 0.6 1.9 ± 0.4 

24 Hours 1.2 ± 0.3~ 1.5 ± 0.7 

† - p < 0.05 CP vs BDP ˜ - p < 0.05 vs baseline 
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4.10.5 Summary of Haematoxylin and Eosin and Immunohistochemical Staining 

 

Sheep HE 

Score 

Neutrophils 

(/Field)* 

ET-1 ETRA ETRB MMP-2 MMP-9 TIMP-1 TIMP-2 

Brain Dead 

1 ++ 19 + 0 + 0 0 + ++ 

2 ++ 10 + 0 + + + + + 

4 + 3 + 0 + 0 0 0 + 

6 ++ 11 0 0 + 0 0 + + 

8 ++ 6 0 0 + + 0 0 0 

10 + 4 0 0 + + 0 0 + 

Control 

3 0 4 0 0 + + + 0 0 

5 0 5 + 0 + 0 0 0 + 

7 + 9 + + + + 0 0 0 

9 ++ 3 0 0 + 0 0 0 0 

11 ++ 6 + + + 0 + 0 + 

12 0 4 0 0 + 0 0 + 0 

P-Value 0.014 0.018 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

* Neutrophils counted by microscopy in 5 fields under 63x power and then averaged. 

  



 

83 

4.11  Representative Images of Immunohistochemical Staining of the 

Endothelin Axis 

Staining of lung tissue samples and magnification.  Brown staining indicates uptake of 

antibody (arrows to highlight representative staining).  The left column represents Control 

animals.  The right column represents Brain Dead animals.  A) Endothelin-1 (10x).  B)  

Endothelin A receptor (10x).  C)  Endothelin B receptor (5x).  D)  Matrix metalloproteinase 

2 (10x).  E)  Matrix metalloproteinase 9 (10x left panel, 20x right panel).  F)  Tissue 

inhibitor of metalloproteinases 1 (10x).  G)  Tissue inhibitor of metalloproteinases 2 (10x). 

 

A) 

 

 

 
B) 

 

 

 
C) 
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E) 
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Chapter 5 - The Effects of Nebulised Tezosentan Administered 

After Brain Death in a Clinically Relevant 24-h Ovine Model  

 

5.1 Introduction 

Endothelin activity after brain death may contribute to early and delayed lung allograft 

function via both inflammatory and vasoactive mechanisms.[88, 210, 341]  Previous 

authors have identified that alterations in pulmonary haemodynamics results from transfer 

of blood from the systemic to pulmonary vasculature,[305] contributing to pulmonary 

oedema.[178]  Ultimately, significant injury may occur to the lungs after brain death, 

causing pulmonary inflammation, tissue oedema, neutrophil infiltration and impaired gas 

exchange.[178, 269]  Chapter 4 described an ovine model of brain death which was 

developed to further investigate the role of endothelin in pulmonary injury in potential 

donors.  This model identified an increase in pulmonary inflammation after brain death, 

and that the endothelin axis was detectable with immunohistochemistry and ELISA.  In 

brain dead animals, pulmonary blood pressures were noted to increase over 24 hours, 

however this was not statistically significant when compared to control animals.  

Administration of an endothelin antagonist may provide further insight into the role of 

endothelin after brain death. 

 

Brain death may adversely affect the right ventricle (RV) more than the left ventricle (LV) 

after heart transplantation, contributing to early deaths secondary to RV failure.[254, 256, 

329]  Right ventricular contractility is altered after brain death, an effect that primarily 

becomes apparent with increased ventricular afterload.[257]  Such changes may go 

undetected by conventional donor assessment techniques.[254]  Modulation of pulmonary 

pressures in the potential donor may therefore represent a target for preserving cardiac 

function.[359]  Endothelin antagonists are able to reverse pulmonary pressures that are 

elevated in a variety of disease states, including endotoxaemia,[74] meconium 

aspiration[320] and cardiopulmonary bypass,[325] and therefore may also offer an 

interventional benefit after BD.  Furthermore, inhibition of the endothelin axis may also 

counteract the ‘priming’ that occurs after BD[88] and decrease ischaemia-reperfusion 

injury after transplantation.[101]  

 

Tezosentan is a dual endothelin receptor antagonist that maintains partial selectivity for 

ETRA in a 30:1 ratio.[74, 325]  As BD is associated with significant hypotension resulting 
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from autonomic failure, intravenous tezosentan may worsen haemodynamic instability and 

tissue ischaemia.  Therefore, nebulisation allows for organ specific therapy while avoiding 

systemic complications.[322]  Nebulised tezosentan is effective in reducing pulmonary 

hypertension in previous animal models while avoiding systemic hypotension.[74, 325]  

This chapter describes the effects of administered nebulised tezosentan on pulmonary 

haemodynamics, myocardial work and histologic evidence of lung injury associated with 

BD in a 24 hour, clinically relevant, ovine model of brain death. 

 

5.2 Methods 

5.2.1 Ethics Approval  

The work reported in this chapter was performed under The Queensland University of 

Technology Animal Ethics Committee approval number 0900000319.  All activities were 

performed under the guidance of the Australian Code of Practice for the Care and Use of 

Animals for Scientific Purposes (NHMRC) and the Animal Care and Protection Act 2001 

(QLD). 

 

5.2.2 Animal Management 

Animal experiments followed the methods outlined in 4.8 Appendix 1:  Animal 

Management.  A further 12 merino-cross ewes were included in this analysis, in addition to 

those animals reported in Chapter 4.  Experiments for all 24 sheep were undertaken 

concurrently to allow randomisation into the four groups.  All sheep were between 12 and 

24 months of age and weighed 38 ± 4.5 kg.  Randomisation into the four groups was via 

StatMate (GraphPad Software, La Jolla, California), and these groups were termed 

control/placebo (CP), control/tezosentan (CT), brain dead/placebo (BDP) and brain 

dead/tezosentan (BDT).   

 

5.2.3 Tezosentan Administration 

A standard tezosentan dose of 20 mg was chosen based upon the average expected 

sheep weight of 40 kg (approximately 0.5 mg/kg/dose).[74, 325]   Tezosentan was 

reconstituted to 4 mL with normal saline.  An equivalent volume of normal saline served as 

a placebo.  Nebulised tezosentan or placebo was administered at 13 and 18 hours after 

PST due to the half-life of the drug.  This was delivered by a pneumatically driven 

nebulizer (Cirrus, Intersurgical, UK), synchronized to the inspiratory phase of the ventilator 

cycle, and modified for refilling without disconnection from the circuit or loss of PEEP.  The 
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nebuliser was set at 8 L/min to deliver 76% of the volume as particles less than 5 

micrometres in diameter. 

 

5.2.4 Sample Retrieval and Storage 

Blood was sampled from the peripheral arterial line at baseline, 1, 6, 12, 18 and 24 hours.  

After centrifugation, supernatant was transferred into vials and stored at -80 °C until 

analysis.  Lungs were removed en bloc after animal sacrifice via a lateral thoracotomy and 

tissue samples collected from both lower lobes.  After immediate fixation in 10% 

phosphate buffered formalin, samples were embedded in paraffin and mounted on slides. 

 

5.2.5 Histological and Tissue Analysis 

Wet:dry weight ratio served as a marker of inflammatory oedema using right lower lobe 

samples.  These were weighed immediately after sampling and again after complete 

dehydration at 48 hours.  Morphological changes were randomly assessed by semi-

quantitative grading of haematoxylin and eosin stained slides by blinded assessors, 

grading inflammation and none/mild vs moderate/severe.[88]   

 

Expression of endothelin-1, its receptors, matrix metalloproteinase-2 and -9 and tissue 

inhibitor of metalloproteinase- and -2 were assessed with immunohistochemistry, as 

previously described (4.9 Appendix 2:  Immunohistochemistry Staining Procedure).   

 

5.2.6 ELISA 

Big ET-1 and ET-1 were measured in plasma using sandwich ELISA kits 

(BiomedicaGruppe, Austria).  Absorbance was assessed at 450 nm, with a reference 

wavelength of 630 nm, on a 96 well plate spectrophotomer (FluoStar Omega, BMG 

LabTech, Germany).     

 

5.2.7 Biochemical Analysis 

The COBAS Integra 400 chemical analyser (Roche Diagnostics, Dee Why, Australia), 

following manufacturer’s directions, was employed to assess markers of cardiac, hepatic 

and renal injury.  Each sample was tested in duplicate, averaged and interpolated via 

comparison to commercially supplied calibrators.  Cardiac markers included myoglobin 

and CK-MB.  Total and conjugated bilirubin, alkaline phosphatase and γ-glutamyl 

transferase served as markers of hepatic cholestatic function, while alanine 

aminotransferase and aspartate aminotransferase were measured for evidence of 
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hepatocellular injury.  Synthetic function of the liver was assessed by albumin and total 

protein, while lactate dehydrogenase was a general marker for cellular injury.  Renal 

function was measure by urea, creatinine and phosphate concentrations. 

 

5.3 Statistical Analysis 

Study design and power calculation was performed for the animals presented in Chapter 4 

and 5 together.  As such, the study included four groups of six animals in total.  This is 

able to detect a true difference in the standardised mean change between experimental 

and control subjects of +/– 1.794 with probability (power) 0.8.  The Type I error probability 

associated with this test of the null hypothesis that the population means of the 

experimental and control groups are equal is 0.05.  We assumed the response within each 

subject group would be Normally distributed, standardised to a standard deviation of 1.   

 

Statistical analysis of biochemical data was performed with Prism 6.  Regression analyses 

of physiological data were performed with R software (www.r-project.org).  A two-sided 

statistical significance level of <0.05 was set and results reported as mean ± standard 

deviation.  Two-way repeated-measures Analysis of Variance (ANOVA) was used to 

compare dependent variables over time and between groups.  Tukey’s correction was 

used for multiple comparisons.  Student’s t test was used to compare changes in 

physiological variables at specified time points.  Fisher’s exact test was used to compare 

semi-quantitative assessment of tissue samples.  Statistical regression using a mixed 

model with a random intercept for each individual was used to examine changes in 

continuous variables over time.[338]   

 

5.4 Results 

There was no statistical difference in weight between groups (CP 36.7 ± 3.3 kg, CT 38.6 ± 

4.7 kg, BDP 37.2 ± 2.2 kg, BDT 39.0 ± 7.2, p=0.8).  Induction of brain death was 

successful in all animals allocated to these groups.  One animal in the BDT group suffered 

from sustained ventricular fibrillation during brain death induction and was removed from 

analysis.  In order to maintain six animals per group, this sheep was replaced.  All other 

animals completed the protocol to 24 hours as allocated. 

 

5.4.1 Animal Management and Point of Care Testing 

Mechanical ventilation and arterial blood gas data are reported in Table 4.  Administration 

of tezosentan did not affect oxygenation as reflected by the PaO2:FiO2 ratio.  Lactate, 
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which was measured as a surrogate marker of hypoperfusion, was increased in BD 

animals.  Administration of nebulised tezosentan to BD animals reversed this by -0.78 ± 

0.65 mmol/L (p=0.019) by the end of the study.  All BD animals required haemodynamic 

support, however there was no difference between groups for the amount of dopamine or 

noradrenaline provided at any time-point. 

 

Table 4:  Ventilation and Blood Gas Results between all Four Groups at 24 Hours 

 

Control / 
Placebo 

Control / 
Tezosentan 

Brain Dead / 
Placebo 

Brain Dead / 
Tezosentan 

Ventilation Parameters         

Minute 
Ventilation (L/Min) 

8.2 ± 1.2 8.6 ± 1.3 9.8 ± 1.3 10.0 ± 1.3 

Respiratory 
Rate 

(Breaths/ 
Min) 

19.6 ± 2.6 20.2 ± 2.7 22.1 ± 2.7 22.2 ± 2.8 

Tidal Volume 
(Litres) 

428.1 ± 42.5 425.2 ± 43.7 456.9 ± 44.7 453.7 ± 46.0 

PEEP 
(cmH2O) 

6.8 ± 1.2 6.6 ± 1.2 7.5 ± 1.3 7.1 ± 1.3 

Plateau 
Pressure (cmH2O) 

18.9 ± 1.8  17.9 ± 1.9 19.3 ± 2.0 18.9 ± 2.0 

Static 
Compliance (L/cmH2O) 

35.9 ± 5.5 39.1 ± 5.8 39.2 ± 5.8 40.1 ± 6.0ᶱ 

Blood Gas Results          

P(A-a)O2 (mmHg) 23.4 ± 25.5 22.8 ± 29.5 14.6 ± 26.7˚ 34.5 ± 30.8 

PaO2:FiO2   442.9 ± 44.7 446.2 ± 52.5 447.6 ± 46.9 464.8 ± 54.7 

PaCO2 (mmHg) 27 ± 4.5†‡ 30 ± 6.0 ˇ 31.9 ± 4.7˚ 37.7 ± 6.1 

Lactate (Mol/L) 1.1 ± 0.5† 0.8 ± 0.6ˆˇ 1.9 ± 0.6˚ 1.1 ± 0.6 
* - p < 0.05 CP vs CT, † - p < 0.05 CP vs BDP, ‡ - p < 0.05 CP vs BDT, ˆ - p<0.05 CT vs BDP,  

ˇ-p<0.05 CT vs BDT,˚-p<0.05 BDP vs BDT,˜-p<0.05 vs baseline,ᶱ-p<0.05 change with tezosentan 

 

5.4.2 Physiologic Variables 

Haemodynamic results are included in  

Table 5 and Table 6.  Inflation of the extradural catheter rapidly resulted in hypertension 

and tachycardia.  Brain dead animals reached a maximal heart rate (HR) within five 

minutes of catheter inflation.  Tezosentan decreased the HR in BD animals at each 

administration time-point (p<0.001 both timepoints).   
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Table 5:  Comparison of Mean Systemic Haemodynamic Values between all Four 

Groups 

 
Control / 
Placebo 

Control / 
Tezosentan 

Brain Dead / 
Placebo 

Brain Dead / 
Tezosentan 

Systemic Haemodynamics 

Heart Rate 
(beats/min) 

Baseline 122 ± 1 116 ± 2 101 ± 5 118 ± 3 

Maximum 125 ± 30†‡ 118 ± 23ˆˇ 220 ± 73˜ 206 ± 52˜ 

24 Hours 105 ± 8 110 ± 9 100 ± 9˚ 96 ± 9 

Cardiac Index 
(L/min/m2) 

Baseline 4.0 ± 0.15 4.0 ± 0.14  4.5 ± 0.18 4.0 ± 0.06 

Maximum 4.7 ± 1.2† 4.3 ± 0.59ˆˇ 7.5 ± 2.19˜ 6.3 ± 2.3˜ 

24 Hours 5.2 ± 1.3‡ 5.1 ± 0.6ˆ 4.6 ± 0.6˚ 3.8 ± 0.6 

Stroke 
Volume Index 
(ml/m2/beat) 

Baseline 39 ± 5.5 34 ± 9.1 47 ± 16.5 41 ± 19 

Minimum 36 ± 5.2†‡ 33 ± 6.0ˆˇ 25 ± 20.8˜ 23 ± 9.0˜ 

24 Hours 50 ± 4.3† 50 ± 4.2 53 ± 4.6˚ 45 ± 4.6 

Central 
Venous 
Pressure 
(mmHg) 

Baseline 8 ± 4.5 7 ± 5.4 8 ± 5.0 6 ± 4.6 

Maximum 9 ± 3.7 7 ± 4.6 11 ± 5.4 9 ± 6.3 

24 Hours 10 ± 1.6 9 ± 1.7 11 ± 1.7˚ 9 ± 1.7 

Mean Arterial 
Pressure 
(mmHg) 

Baseline 107 ± 2 107 ± 1 99 ± 3 118 ± 4 

Maximum 110 ± 18†‡ 106 ± 18ˆˇ 190 ± 40˜ 182 ± 42˜ 

24 Hours 122 ± 5†‡ 117 ± 6ˆˇ 83 ± 5˜ 82 ± 5˜ 

Systemic 
Vascular 
Resistance 
Index 
(dyn.sec/cm5/
m2) 

Baseline 1808 ± 49 2123 ± 105 1741 ± 60 2230 ± 30 

Maximum 1885 ± 
401†‡ 2183 ± 547ˆˇ 3718 ± 77˜ 3292 ± 795˜ 

24 Hours 1973 ± 202† 1750 ± 227ˇ  1317 ± 212˚ 1526 ± 235 

Left 
Ventricular 
Stroke Work 
Index 
(gm.m/m2/ 
beat) 

Baseline 47 ± 1.7 43 ± 1.5 53 ± 1.7 49 ± 2.0 

Maximum 49 ± 15.9‡ 42 ± 8ˇ 57 ± 23.4˜ 70 ± 22˜ 

24 Hours 65 ± 5.8*†‡˜ 64 ± 4.8ˆˇ˜ 45 ± 6.1˚˜ 41 ± 6.1˜ 

Maximum values given occurred within 15 minutes of BIT/PST.   

* - p < 0.05 CP vs CT, † - p < 0.05 CP vs BDP, ‡ - p < 0.05 CP vs BDT, ˆ - p<0.05 CT vs BDP,  

ˇ-p<0.05 CT vs BDT,˚-p<0.05 BDP vs BDT,˜-p<0.05 vs baseline,ᶱ-p<0.05 change with tezosentan 
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Table 6:  Comparison of Pulmonary Haemodynamics between all Four Groups 

 
Control / 
Placebo 

Control / 
Tezosentan 

Brain Dead / 
Placebo 

Brain Dead / 
Tezosentan 

Pulmonary Haemodynamics 

Mean 
Pulmonary 
Artery 
Pressure 
(mmHg) 

Baseline 19 ± 0.8 17 ± 0.9 16 ± 0.2 15 ± 0.4 

Maximum 20 ± 4.9† 17 ± 8.6ˆˇ 30 ± 13˚˜ 25 ± 8.5˜ 

Average at 
24 Hours 21 ± 2.2 21 ± 2.2 25 ± 2.2˚˜ 20 ± 2.2˜ 

Pulmonary 
Vascular 
Resistance 
Index 
(dyn.sec/cm5/
m2) 

Baseline 54 ± 3.9 44 ± 3.1 50 ± 3.1 47 ± 2.2 

Maximum 57 ± 16.9† 48 ± 12.7ˆˇ 123 ± 77˚˜ 81 ± 34˜ 

Average at 
24 Hours 70 ± 19* 43 ± 20 61 ± 19 67 ± 20 

Right 
Ventricular 
Stroke Work 
Index 
(gm.m/m2/ 
beat) 

Baseline 6 ± 0.4 5 ± 0.5 7 ± 0.2 5 ± 0.3 

Maximum 6 ± 0.4 5 ± 0.1 7 ± 2.6 8 ± 4.7 

Average at 
24 Hours 8 ± 1.0‡ 8 ± 1.0 9 ± 1.0˚ 7 ± 1.0 

Maximum values given occurred within 15 minutes of BIT/PST 

* - p < 0.05 CP vs CT, † - p < 0.05 CP vs BDP, ‡ - p < 0.05 CP vs BDT, ˆ - p<0.05 CT vs BDP,  

ˇ-p<0.05 CT vs BDT,˚-p<0.05 BDP vs BDT,˜-p<0.05 vs baseline,ᶱ-p<0.05 change with tezosentan 

 

Mean arterial pressure similarly reached maximal values in BD animals within five minutes 

of BIT and then declined to remain significantly below both baseline and the control groups 

at 24 hrs (all comparisons p<0.001, Figure 13A).  However, MAP in BDT animals was not 

decreased in comparison to BDP animals (p=0.88).  Mean pulmonary artery pressure 

increased from baseline in BD animals within five minutes of BIT (p<0.001), with no 

difference in peak mPAP between BD groups (p=0.86, Figure 13B).  Pulmonary pressures 

in the BDP animals remained 31 ± 2% greater than baseline 90 minutes after BIT 

(p<0.001) and then increased over the remainder of the experiment to reach 25 ± 2.2 

mmHg.  Although the mPAP in BDP animals was elevated at 24 hours, the mPAP in BDT 

animals had returned to a level consistent with control animals (CP vs BDT p=0.989).  The 

difference in mPAP between BDP and BDT animals at 24 hours was statistically significant 

(p=0.026). 
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Figure 13:  Arterial Pressures Recorded in Brain Dead Animals. 

Solid arrows indicate hormone therapy.  Dashed lines indicate administration of tezosentan or 
saline.  BDP = Brain dead placebo, BDT = Brain dead tezosentan A) Mean Arterial Pressure was 
elevated early in both brain dead groups.  Some improvement was noted after administration of 
hormone therapy.  B) Mean Pulmonary Arterial Pressure were similar until tezosentan was 
administered.  This was most pronounced after 18 hours.  Brain death was induced immediately 
after the baseline value at time 0 
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Systemic vascular resistance in BD animals followed a similar time course to MAP and 

HR, reaching maximal values within five minutes, declining below baseline and control by 

one hour and remaining lower to the end of the study (Figure 14A).  Hormone therapy 

increased SVRI, reflecting titration of vasopressin according to the protocol.  Animals in 

the BDT group had a higher SVRI at 24 hours compared to BDP animals (p=0.001).  

Pulmonary vascular resistance also peaked within five minutes of BIT (Figure 14B).  Both 

BD groups then fell below baseline, however this gradually improved after initiation of 

hormone therapy.  Administration of tezosentan decreased the PVRI of control animals (70 

± 19 dyn.sec/cm5/m2 vs 43 ± 20 dyn.sec/cm5/m2, CP vs CT p=0.011), however, no 

difference between BD groups (BDP vs BDT p=0.46) existed at 24 hours.   

 

Cardiac index increased in BD animals by 30 minutes, returning to baseline by 3 hours 

and gradually decreased thereafter.  Overall, the administration of tezosentan in BDT 

decreased the CI by 0.65 ± 0.46 L/min/m2 (p=0.006 at 24 hours).  Left ventricular stroke 

work index followed a similar course to CI, remaining below baseline at 24 hours in the BD 

animals (p<0.001).  Tezosentan reduced LVSWI in BDT animals at 24 hours (p <0.001).  

RVSWI displayed a brief decrease after BD, recovering to baseline by 30 minutes.  While 

the RVSWI continued to increase in BDP animals, nebulised tezosentan reversed this 

(BDP vs BDT p<0.001).   
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Figure 14:  Vascular Resistances of Brain Dead Animals. 

Solid arrows indicate hormone therapy.  Dashed arrows indicate tezosentan or saline.  BDP = 
Brain dead placebo, BDT = Brain dead tezosentan A) Systemic vascular resistance index 
increased after brain death and then fell below baseline.  Improvement was noted after hormone 
therapy.  In animals receiving tezosentan, a small increase in systemic vascular resistance was 
noted.  B) Pulmonary vascular resistance index was similar to the systemic resistance, with no 
differences at 24 hours.  Brain death was induced immediately after the baseline value at time 0 
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5.4.3 Histological and Tissue Analysis 

Wet:dry ratios indicated no significant difference in inflammatory oedema between all four 

groups. 

 

Semi-quantitative assessment of lower lobe pulmonary histology did not demonstrate any 

difference between CP and CT animals (p=0.07).  As noted previously, BDP animals had 

increased inflammation compared to CP animals (p=0.014); this effect was maintained 

compared to CT animals (p=0.1).  However, BDT animals had less inflammation than BDP 

animals (p=0.02).  There was no difference in inflammatory scoring between BDT vs CP 

(p=1.0) or BDT vs CT (p=0.1) 

 

Staining of the endothelin axis was similar to that previously reported.  No difference in 

intensity of staining was noted between groups for either endothelin receptor, or MMP-2, -

9, TIMP-1 or TIMP-2.   

 

5.4.4 ELISA 

Analysis of plasma Big ET-1 suggested that CT and BDT had higher levels at baseline; Big 

ET-1 remained elevated throughout the study in these groups when compared to those 

receiving placebo (Table 7).  When comparing CP vs BDP, there were no significant 

differences over time.  Similarly, analysis of CT vs BDT groups did not reveal any 

significant changes.  The difference in concentrations of Big ET-1 between the BDP and 

BDT groups did reach statistical significance at 24 hours (p<0.01).  ET-1 levels rose by 

26.9% from baseline at one hour after induction of brain death, approaching statistical 

significance (p=0.09) in BDP animals, however a significant elevation was not observed in 

BDT animals (p=0.99, Table 7).  Despite these differing responses, no significant 

differences between the groups were noted.  Furthermore, tezosentan did not affect ET-1 

concentrations. 
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Table 7:  Results of ELISA of Big Endothelin-1 and Endothelin-1 

  
Control / 
Placebo 

Control / 
Tezosentan 

Brain Dead / 
Placebo 

Brain Dead / 
Tezosentan 

Big ET-1 (fmol/L) 
   

Baseline 83 ± 30* 195 ± 120ˆ 85 ± 40 151 ± 14 
6 Hours 115 ± 20* 275 ± 0.16ˆˇ 145 ± 30 177 ± 50 
12 Hours 95 ± 20* 195 ± 110ˆ 105 ± 40 145 ± 60 
24 Hours 88 ± 30*‡ 205 ± 120ˆ 85 ± 40˚ 208 ± 16 

ET-1 (fmol/mL) 
   

Baseline 63 ± 18 62 ± 45 67 ± 21 58 ± 16 
1 Hour 68 ± 29 60 ± 29 85 ± 37 47 ± 17 
12 Hours 59 ± 15 55 ± 37 58 ± 27  45 ± 17 
24 Hours 48 ± 16 47 ± 30 48 ± 17 35 ± 10 

* - p < 0.05 CP vs CT, † - p < 0.05 CP vs BDP, ‡ - p < 0.05 CP vs BDT, ˆ - p<0.05 CT vs BDP,  

ˇ-p<0.05 CT vs BDT,˚-p<0.05 BDP vs BDT,˜-p<0.05 vs baseline,ᶱ-p<0.05 change with tezosentan 

 
Table 8:  Results of Biochemical Analysis  

  Control / 
Placebo 

Control / 
Tezosentan 

Brain Dead / 
Placebo 

Brain Dead / 
Tezosentan 

Cardiac Markers   
   

Myoglobin (μg/L) 
Baseline 23.2 ± 2.0 21.9 ± 1.5 28.7 ± 3.6 24.5 ± 4.3 
24 Hours 29.9 ± 3.4‡ 28.9 ± 0.5ˇ 59.3 ± 15 71.0 ± 9.8 

Creatine Kinase 
MB (U/L) 

Baseline 18.5 ± 2.2 19.3 ± 3.5 18.1 ± 2.3 22.6 ± 3.1 
24 Hours 18 ± 4.7† 16.8 ± 2.7ˆ 31.8 ± 5.8 29.7 ± 3.0 

Hepatic Markers   
   

Alkaline 
Phosphatase (U/L) 

Baseline 105 .2 ± 
29.3 91.1 ± 29.4 84.1 ± 23.7 109.4 ± 35.2 

24 Hours 76.2 ± 19.4 64.5 ± 21.1 84.6 ± 25.5 100.4 ± 42.1 
γ-Glutamyl 
Transferase (U/L) 

Baseline 58.7 ± 6.8 71.6 ± 11.0 56.8 ± 2.6 65.8 ± 4.8 
24 Hours 55.0 ± 6.4 62.0 ± 7.7 50.3 ± 4.0 58.7 ± 4.6 

Alanine 
Aminotransferase 
(U/L) 

Baseline 9.8 ± 1.2 9.8 ± 1.9 8.0 ± 1.1 9.5 ± 0.6 

24 Hours 16.4 ± 
1.1†‡ 16.5 ± 2.2ˆˇ 75.5 ± 39.5 61.8 ± 16.3 

Aspartate 
Aminotransferase 
(U/L) 

Baseline 78.6 ± 4.7 105.6 ± 40.9 79.9 ± 7.2 73.6 ± 4.8 

24 Hours 139.3 ± 
9.8†‡ 

160.6 ± 
18.3ˆˇ 596.0 ± 291.1 534.0 ± 142.8 

Renal Markers   
   

Urea (mmol/L) 
Baseline 7.7 ± 0.8 8.3 ± 1.1 6.5 ± 0.7 7.0 ± 0.5 
24 Hours 4.3 ± 0.2 4.4 ± 0.4 2.5 ± 0.5 3.5 ± 0.5 

Creatinine (μmol/L) 
Baseline 68.4 ± 2.6 75.4 ± 4.4 71.3 ± 7.9 73.2 ± 7.0 
24 Hours 67.2 ± 3.5 77.8 ± 6.4ˆˇ 57.1 ± 6.4 57.3 ± 4.9 

* - p < 0.05 CP vs CT, † - p < 0.05 CP vs BDP, ‡ - p < 0.05 CP vs BDT, ˆ - p<0.05 CT vs BDP,  

ˇ-p<0.05 CT vs BDT,˚-p<0.05 BDP vs BDT,˜-p<0.05 vs baseline,ᶱ-p<0.05 change with tezosentan 
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5.4.5 Biochemical Analysis 

Myoglobin and CK-MB increased over time in both BD groups.  However, tezosentan did 

not significantly reduce markers of myocardial injury (Table 8).  Similarly, the elevations in 

hepatocellular enzymes were not affected by tezosentan administration.  No deterioration 

of renal markers of injury was observed in the brain dead groups (Table 8).   

 

5.5 Discussion 

Tezosentan was successfully administered via nebulisation to both brain dead and control 

animals without causing serious deterioration in haemodynamics.  Detectable reductions in 

mean pulmonary artery pressure and right ventricular stroke work were noted when 

compared amongst brain dead groups, however, the lack of a statistical difference in 

mPAP between BDP and CP animals makes the interpretation of these findings difficult.  

Additionally, there were no detectable differences in immunohistochemical expression of 

the endothelin axis.  As such, while a physiological effect of tezosentan was detectable, 

the overall significance of these changes, and how they may affect transplantation 

medicine, remains unclear.   

 

The precise mechanisms of endothelin’s involvement in BD related inflammation remain to 

be fully elucidated, though several authors have observed that it plays an important role.  

Contrary to the previous findings by our group,[88] the current thesis did not demonstrate 

any detectable upregulation of the endothelin axis after 24 hours.  This may be due to the 

extended duration of the present study; if early detectable expression did occur, it may 

have resolved prior to tissue sample retrieval.  Alternatively, it may be that no significant 

tissue upregulation occurred, or did not occur in this model.  Previous authors have not 

attempted to quantify the endothelin axis in sheep models, and more recent studies have 

not consistently found that ET-1 is upregulated after BD.  Salama et al demonstrated that 

an increase in donor lung tissue ET-1 mRNA was associated with PGD in humans.[212]  

However, it would appear that elevated ET-1 was only found in those patients that 

developed PGD, meaning that the majority of transplanted lungs (61%) did not have any 

detectable increase in ET-1 mRNA.  This may indicate that, while upregulation of the 

endothelin axis, when it does occur, adversely affects lung transplant outcomes, it may not 

be an inherent part of the inflammatory response of BD per se.  Consistent with this is the 

recent report of Valenza et al, who did not find any increase in donor ET-1 mRNA in a 

porcine lung transplantation model.[293]  Rather than consistent contributions to BD 

related inflammation in the donor, detrimental effects of endothelin may be related to IRI 
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after transplantation, as observed by Shaw et al and Shennib et al.[87, 291]  This may also 

be consistent with Salama et al’s findings that combined elevations in donor ET-1 mRNA 

and recipient serum ET-1 was associated with the greatest degree of PGD.[212]  Such 

variability between study outcomes implies that greater understanding of the endothelin 

axis in BD related inflammation is required to allow proper extrapolation of animal data to 

human transplant medicine. 

 

Further research is required to elucidate the exact mechanisms behind the observed 

haemodynamic responses to tezosentan in the present study. When comparing the non-

brain dead groups, tezosentan’s only physiological effect of note was a reduction in PVRI, 

consistent with its expected mechanism of action.  More complex changes were noted 

among BD animals, however.  Pulmonary artery pressure was decreased in BDT 

compared to BDP animals at 24 hours, without a reduction in PVRI.  Cardiac index was 

also reduced in BDT animals compared to BDP animals, with an associated reduction in 

both heart rate and stroke volume index.  As vascular pressure relies on both vascular 

resistance and cardiac output, the reduced forward blood flow (through reduction in CI) 

may contribute to our findings.  However, similar reductions in left ventricular output would 

result in increased left atrial pressure, counteracting any effect of reduced pulmonary flow 

on mPAP.  Also noted was that MAP was maintained in BDT animals, with a small 

increase in SVRI.  It is difficult to explain this increase.  There was no difference in 

administration of pressor, including vasopressin.  Brain death precludes a brain-stem 

reflex response to the reduction in cardiac output, however it has been noted that some 

degree of reflex sympathetic activity has been maintained in BD donors undergoing 

surgical organ retrieval.[360]  Pennefather et al noted increases in systemic vascular 

resistance after commencement of surgery for organ retrieval.  This was associated with 

increased catecholamine levels via an unknown mechanism.  They theorised that a spino-

adrenal reflex may remain intact, however further study was recommended.   

 

Pulmonary vasodilators may act as negative inotropes by three main mechanisms.  These 

include afterload reduction, decreases in coronary perfusion (due to a reduction in 

systemic pressure) or by direct effects on the myocardium.[361]  Tezosentan did not 

decrease the MAP, and hence, did not decrease either the afterload or  the driving 

pressure for coronary perfusion.  Rather, tezosentan may have reduced the CI via direct 

antagonism of myocardial endothelin receptors.[71]  Nebulised tezosentan is absorbed via 

the pulmonary circulation, though levels are significantly lower than those reached by 
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systemic administration.[74]  Konrad et al, observed that intravenous tezosentan 

decreased cardiac inotropy while concurrently improving lusitropy in endotoxaemic 

pigs.[71]  This resulted in an overall increase in cardiac output due to improved diastolic 

function and reduced afterload.  However, Persson et al, did not demonstrate any change 

in CI in endotoxaemic pigs with nebulised tezosentan.[74]  These differing findings may be 

because the effects of endothelin antagonism on myocardial performance is influenced by 

the pathophysiological state of the heart.[71]  The current study was not designed to 

specifically assess the direct effects of tezosentan on the heart.  However, Konrad et al’s 

findings provide a possible contributor for the observed reduction in mPAP in BDT 

animals; improved lusitropy may shift the end diastolic pressure-volume relationship 

downwards and rightwards, reducing left ventricular and left atrial end diastolic 

pressure.[362]  Future studies, designed specifically to evaluate tezosentan’s effects on 

the heart, may be able to answer these questions.   

 

Although a reduction in CI may be deemed undesirable, the current findings suggest that 

overall tissue perfusion was not impaired with administration of tezosentan.  Circulating 

levels of lactate were within the analyser’s normal range at the end of the study.  

Therefore, the statistically significant reduction of lactate in BDT animals is of unlikely 

clinical significance.  More importantly though, a reduction in cardiac output secondary to 

tezosentan may have worsened haemodynamic stability, impairing tissue perfusion and 

increasing lactate; this was not observed. 

 

Systemic levels of ET-1 were similar across all groups.  Tezosentan did not increase ET-1, 

although ETRB antagonism decreases clearance of circulating endothelin.[106]  Previous 

studies have confirmed that intravenous tezosentan increases systemic ET-1 levels,[71, 

74] an effect that could adversely affect other transplantable organs.  In the current study, 

the localised effect of nebulisation,[74] or incomplete ETRB antagonism, may account for 

the lack of ET-1 elevation after tezosentan administration.  Big ET-1 levels tended to be 

highest in the CT group; this was statistically significant compared to the CP and BDP 

groups at all points, including at baseline.  It is unclear as to why this occurred.  No 

protocol violations were noted across the group, and no one single animal accounted for 

these results.  Big ET-1 did increase in the BDT animals from 12 to 24 hours, an 

observation that would be unexpected from tezosentan’s mechanism of action.  

Interference with either self-regulation (negative feedback) of endothelin production or NO-

mediated inhibition via ETRB antagonism could be speculated, however ET-1 is not 
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reported in the literature as an inhibitor of its own production.  A clinically relevant effect of 

this observation remains questionable, as Big ET-1 is required to be converted to ET-1 for 

maximal signalling; this conversion was not detected by the ET-1 ELISA. 

 

Lung histology indicated increased inflammation in BDP animals compared to all other 

groups.  Overall, the modest inflammatory changes in the BDP group is not unexpected, 

as previous studies have suggested that ongoing care of brain dead donors may actually 

lead to improvement in lung function.[119, 269, 363]  It is possible that tezosentan 

prevented or reversed the inflammatory changes observed after BD, accounting for the 

lower score in BDT animals.  However, an explanation for this was not provided by 

immunohistochemistry.  Further study, including techniques such as mRNA analysis, may 

provide further insight in the future.  Brain death resulted in hepatic and cardiac injury, as 

previously reported.  Tezosentan did not decrease levels of cardiac markers.  This is most 

likely because cardiac injury primarily occurred during induction of brain death,[255] well 

before tezosentan administration.  The finding of no differences in hepatic or renal markers 

of injury between the BDP and BDT groups further supports tezosentan’s localised effects. 

 

Interpretation of the results in the current study is potentially confounded by variations in 

management between groups.  This study was designed to be pragmatic, reflecting 

multiple interventions commonly used in the care of the potential brain dead organ donor.  

Attempts were made throughout the protocol to maintain consistency, such as sedation 

adjustment to the surgical plane, or vasoactive support to pre-defined targets.  Despite 

this, inclusion of prolonged sedation, hormone resuscitation therapy and vasoactive agents 

may have influenced the outcomes of physiological variables.  Achieving a protocol of 24 

hours is a strength of the current study, but further investigation of endothelin antagonism 

after BD may require alterations to the protocol.  Such variations include removal of non-

BD animals (thus removing sedation), or exclusion of hormone resuscitation therapy and 

vasoactive agents (both of which have measurable cardiovascular effects of their own).  

Although this may result in shorter studies, greater consistency between groups would 

allow a more detailed understanding of the effects of tezosentan alone. 

 

5.6 Conclusion 

The current study is the first to demonstrate that nebulised tezosentan may be safely 

administered to potential organ donors.  Observed haemodynamic changes after brain 

death were complex, demonstrating a reduction in cardiac output, with maintained blood 
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pressure and no evidence of worsening systemic perfusion.  It is possible that the 

reduction in mPAP is due to direct cardiac effects rather than pulmonary activity in brain 

dead animals.  Further studies are required to fully quantify the effects of tezosentan on 

potential cardiac and pulmonary grafts in the brain dead donor. 
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Chapter 6 - Conclusions and Opportunities for Future Research 

6.1 Summary of Findings in Thesis 

The present thesis demonstrates the following major points; 1) the feasibility and validity of 

an extended, clinically relevant ovine model of brain death, 2) pulmonary and systemic 

haemodynamics are significantly altered after brain death, 3) nebulised tezosentan can be 

administered safely to brain dead sheep despite their deranged haemodynamics, and 4) 

nebulised tezosentan results in complex physiological responses in brain dead animals.  

As reviewed in Chapter 2, brain death causes widespread inflammation which contributes 

to multi-organ injury.  Fundamental to this process are numerous cytokines, 

neurotransmitters and other cell signalling molecules, including the endothelin axis.  

Recent pulmonary transplant literature has identified that ET-1 may play a role in both 

early and late graft related complications.   

 

In order to further investigate the endothelin axis after BD, the selection of a clinically 

relevant large animal model was required.  Chapter 3 discusses the considerations behind 

selecting and developing an ovine model for this project.  Similar to other large animal 

models, such as swine, sheep are an appropriate species to investigate human pathology.  

Extending the model to 24 hours was considered important to replicate delays that occur in 

human BD organ donor management.  Although shorter duration models provide insight 

into early inflammatory and physiologic changes after brain death, models of greater 

duration may more accurately simulate the donor after aggressive management.  The 

complexity of such a model may introduce confounders, however.  Management between 

groups in the current thesis did have notable differences.  Administration of vasoactive 

agents to brain dead animals was a source of heterogeneity, as was differing amounts of 

sedation/anaesthesia.  It is unclear the degree to which these confounders may have 

influenced the final outcomes, but a pragmatic approach was chosen to simulate clinical 

experience.   

 

The present thesis attempted to quantify the effects of a dual endothelin receptor 

antagonist on pulmonary inflammation after brain death.  Tezosentan was chosen for its 

non-selectivity and ability to be nebulised.  ETRB antagonism may have increased 

systemic levels of ET-1, but there was no evidence of this by ELISA.  Additionally, 

nebulised tezosentan did not worsen haemodynamics of BD animals and there was no 

biochemical evidence of worsened transplantable organ injury.  Tezosentan had minimal 
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effect on cardiac markers of injury; although CK-MB did not reach statistical significance in 

the BDT animals compared to CP, the level was not much less than the BDP animals, 

suggesting that clinically relevant injury had already occurred.   

 

6.2 Clinical Relevance of the Presented Findings 

In order to completely ascertain the importance of these study findings, one must consider 

not only their statistical significance, but also their clinical implications.  An increase in the 

pulmonary blood pressure of BDP animals was noted to occur at 24 hours.  This was from 

a baseline of 16 ± 0.2 mmHg to 25 ± 2.2 mmHg, representing a 56% increase.  Highest 

values (outside of the immediate period of BD induction) were observed during the final 

hour of the study.  When nebulised tezosentan was administered to BD animals, mPAP 

was decreased to 20 ± 2.2 mmHg, a result that was statistically significant.  Represented 

graphically, this appeared to mostly occur after the 18 hour dose.  Despite this, the 

absolute change in mPAP was small, being approximately 5 mmHg.  As noted in Chapter 

2, the right ventricle is more adversely impacted after brain death than the left.  Therefore, 

the increase in pulmonary artery pressure, despite being small in absolute terms, may 

contribute to right ventricular dysfunction.  The study by Szabo et al demonstrated a 

reduction in the peak positive dP/dT in brain dead animals compared to controls when the 

increase in pulmonary vascular resistance was increased by 50% from baseline.[258]  

Although this represented a pulmonary arterial systolic pressure of 30 mmHg, a level 

greater than that observed in the current thesis, this was from a baseline of 22 ± 2 mmHg.  

Therefore, further investigation is required, including pressure-volume and pulmonary flow 

analysis, to fully understand the clinical impact of the observed changes in mPAP in the 

current study. 

 

Right ventricular stroke work also appeared to decrease in BDT animals compared to 

BDP.  Although this was statistically significant, it was within the normal range of 5-10 

g/m2/beat.  As RVSWI is a derived variable, it is dependent on cardiac index, heart rate, 

mPAP and central venous pressure.  Comparing these results at 24 hours suggests that 

the observed RVSWI may be due to either a reduction in mPAP or CI.  As already noted, 

the reduction in mPAP in BDT animals was not due to a decrease PVRI at 24 hours.  

Therefore, it is possible that the observed changes in RVSWI were due to the reduction in 

cardiac output induced by tezosentan.  Further study is required to better delineate which 

mechanism predominates.     
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Acute severe pulmonary hypertension is frequently treated with agents other than 

endothelin antagonists.  Nitric oxide (NO) is a commonly applied inhaled pulmonary 

vasodilator.  Small studies have assessed its potential role in the preservation of 

pulmonary allografts.  Avlonitis et al investigated inhaled NO administered to BD rodent 

donors prior to lung transplantation.[193]  This study observed that, contrary to previous 

living donor experiments, NO worsened oxygenation without improving systemic markers 

of inflammation.  The authors concluded that NO administration to BD organ donors was of 

no benefit, and could actually lead to harm.[193]  Similar to NO, research into inhaled 

prostacyclin therapy for lung preservation has focussed on preventing IRI.  Consequently, 

animal models have used non-BD donors.  Studies investigating BD organ donors are yet 

to be published.  While administration of inhaled NO or PGI2 to recipients of heart or lung 

transplants with evidence of pulmonary hypertension in the immediate post-transplant 

period is associated with improved haemodynamics,[364] further research is required to 

determine if there is a role for these agents in organ donor management. 

 

Measured systemic haemodynamic changes were similar to those observed in previous 

studies.  Such significant alterations during and after brain death, and the requirement for 

vasoactive agent administration, indicates that these observed changes were clinically 

relevant.  Lactate was measured as a surrogate marker of global perfusion.  Peak levels 

obtained did not greatly exceed normal values; at 24 hours, all groups were below 2 

mmol/L.  Animals in the BDT group had a statistically significant reduction in lactate levels 

at 24 hours, but in absolute terms this was small.  Of greater clinical importance is that no 

increase in lactate levels was observed.  This is despite the reduction in cardiac index, and 

the potential for endothelin antagonists to cause hypotension and worsen perfusion.   

 

6.3 Limitations of the Current Thesis 

Limitations occur in all research projects and it is identified that such threats remain in this 

study.  Blinding of groups to BD or control cannot be achieved by nature of the 

intervention.  The investigators caring for the animals must induce brain death and need to 

be available to manage any complications that may arise from this process.  Further, it is 

impossible to hide the physiological changes that occur.  Management of BD animals 

necessarily differed to controls through use of haemodynamic support and greater 

intervention for complications.  These actions could potentially confound the results.  

Further, anaesthesia and sedation were adjusted to the surgical plane/comfort, meaning 

that brain dead animals required less medication.  These effects have been attempted to 
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be controlled for by including four experimental groups.  Additionally, administration of the 

active drug or placebo was blinded from the experimental team caring for the animals. 

 

Each group was allocated six animals for a total of 24 assessed in the current thesis.  A 

power analysis was performed prior to commencement which indicated that these 

numbers were adequate to allow detection of deviation by one standard error.  Animal 

studies frequently have small numbers per group, for example, Cox et al studied four 

animals per group when assessing smoke and burn injury,[302] while Kuklin used a total of 

21 sheep in assessing endothelin in endotoxaemia.[75]  In terms of animal BD model 

reports, Seirenigg et al reported 15 pigs,[333] while Valenza et al reported a total of 10 

pigs, with five donors and five recipients.[293]  Although the current study is consistent 

with recent published literature reporting animal models, such small numbers of animals 

per group increases the risk of Type II errors.  Of course, subjects that are potential 

outliers could also disproportionately influence study findings.  One possible advantage of 

small studies is that they can successfully identify significant differences between groups, 

but this still requires careful interpretation and further investigation.[365]  Increasing animal 

numbers may have improved our ability to detect more changes between groups, although 

logistic and financial limitations prevented this.  Each animal study was undertaken over 

30 hours, including setup time, study protocol and post-mortem and tissue sampling.   

 

It was identified early that team experience may affect the observed outcomes.  As further 

experiments were performed, the team was able to identify complications faster and 

intervene at an earlier stage with improved intervention selection.  Experience gained with 

instrumentation and equipment can also affect intra-protocol animal management.  Of 

particular note was the ventilator, which can directly injure the lung (ventilator associated 

lung injury).  In order to control for this, management protocols were put in place to ensure 

consistent management (for example, ventilator rate and volumes, or criteria for 

identification and treatment of diabetes insipidus) prior to commencement of the study.   

 

Nebulisation of tezosentan directly delivers the agent to the target site and was selected in 

order to reduce systemic effects of endothelin antagonism.  While this is potentially 

beneficial in models that result in severe haemodynamic disturbances, heterogeneity in 

particle size generated by nebulisation may lead to altered deposition of the drug in the 

small airways and, hence, variability in the exact amount of drug delivered.  The 

nebulisation system used is a standard system that is able to be attached to the inspiratory 
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limb of a ventilator, with generation of particles consistent with previous studies.[74, 325]  

Despite this, and the observation of a measurable effect in the current thesis, further 

investigation is necessary to determine the exact degree of delivery of tezosentan via 

nebulisation. 

 

The severe physiological insult of BD itself may risk validity through loss of experimental 

animals.  One sheep was lost at induction of BD due to ventricular fibrillation, despite 

advanced life support protocols being administered.  In order to control for this, the animal 

was replaced to maintain group balance.  Although this was seen as a setback in terms of 

resources and attempts to minimise animal harm, it further demonstrated the validity of the 

model.  Ventricular dysfunction that is unresponsive to intervention and leads to death is 

reported to occur in 10-40% of cases of brain death.[121] 

 

Although the application of ovine models is gaining increased acceptance,[294, 315, 331] 

industry development of sheep specific investigational modalities is slow.  Antibodies and 

ELISA kits aimed at identifying a wide range of targets in rodent and human tissue/blood 

samples have been developed, however not all of these are appropriate for use in ovine 

models.  The antibodies and ELISA kits used in the current thesis were based on previous 

laboratory experience, sequence homology of molecular targets (and expected cross 

reactivity) and published works that successfully applied these investigational tools in 

sheep.  Trials were required to identify appropriate dilutions to minimise non-specific 

staining, yet identify the targets of interest.  Initial trials of some of the antibodies were 

unsuccessful and required new antibodies to be sourced.  As the wider research 

community continues to adopt sheep models for human disease, it is expected that such 

limitations would disappear. 

 

The duration of the study, and use of a sheep model, provided ample sampling time points 

and methods.  This ability was tempered by sample processing time and financial 

restraints.  Unfortunately, limitations in financial resources prevented ELISA testing for 

endothelin-1 and big endothelin-1 at all timepoints that blood was collected.  As noted 

previously, elevations in endothelin-1 concentrations have been detected early after brain 

death, and it is possible that the selective testing of samples to encompass the entire 24 

hour period may have resulted in missing peak levels that occurred very early in the 

protocol.  Trial testing of adrenaline and noradrenaline was successfully performed, but 

complete analysis of all samples was prohibitively expensive.  As noted in the animal 
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protocols, tracheostomy was performed on all animals.  This was to facilitate 

bronchoscopy for broncho-alveolar lavage and bronchial brushings.  Unfortunately, a 

number of bronchial brushing pellets were lost after sample processing, making any 

results from testing the remaining samples unreliable.  Similar to blood and serum testing, 

broncho-alveolar lavage fluid analysis was also limited by financial restraints.  Tissue, 

serum, urine and broncho-alveolar lavage fluid samples remain appropriately stored to 

enable possible assessment in the future. 

 

6.4 Opportunities for Future Research 

Transplantation remains the gold standard treatment for end stage organ disease, 

however the complexity of brain death and the peri-transplant period is yet to be fully 

understood.  The extreme physiologic alterations that occur adversely affect transplantable 

organs, impairing their quality, and increasing the likelihood of post-transplant 

complications.  Endothelin has been observed to play a role in this inflammation and, as 

has been demonstrated in the current thesis, targeting this axis is possible.  However, 

further research in this area is required to fully elucidate the potential clinical application of 

endothelin antagonists after brain death.  This may include extending the current model to 

include transplantation of tezosentan treated lungs.  Successful lung transplantation has 

been performed in sheep,[366] although this is not a common model in the literature. 

 

Intermittent administration of tezosentan may reduce its therapeutic benefit due to its short 

half life.  Continuous intravenous infusion may overcome this and provide antagonism of 

endothelin across multiple organs.  It is currently unknown if widespread antagonism 

would improve the function of these other organs, however.  Unfortunately, intravenous 

administration would reasonably be expected to worsen haemodynamic instability.  

Although other models of critical illness have successfully used intravenous tezosentan 

safely,[74, 320] recent developments in lung transplantation provide another modality to 

administer continuous infusions of tezosentan (including potentially greater doses) to 

donor lungs.  The introduction of ex-vivo perfusion techniques now allows reconditioning 

and salvage of marginal lungs.[367, 368]  Cypel et al demonstrated that ex-vivo lung 

perfusion (EVLP) is able to improve the quality of lungs prior to transplantation by 

optimising conditions and allowing lungs to recover from BD associated injury.[367]  It has 

been envisaged that this may significantly contribute to addressing the ongoing disparity 

between lungs available for transplant and the number of patients on the waiting list.[367]   
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Ex-vivo lung perfusion may be employed to increase the degree of endothelin antagonism 

achievable while completely avoiding further haemodynamic compromise in the BD donor.  

Increasing the dose in this manner may also increase the observed clinical effects.  

Addition of tezosentan to the perfusate will enhance delivery of the agent directly to 

pulmonary vasculature, while combination administration with nebulisation would directly 

target bronchiolar and alveolar epithelium and alveolar macrophages.  This would also 

allow direct comparison of drug delivery between the nebulisation and intravenous routes 

of administration.  Future studies by our group will assess the effects of pulmonary 

tezosentan administration through EVLP techniques.  We have successfully won a 

competitive grant to develop an ovine pulmonary EVLP model and investigate the effects 

of tezosentan administration by both nebulisation and perfusate delivery.  Comparison of 

these administration methods will enable quantification of drug delivery by nebulisation, 

giving greater insight into the actual amount of drug delivered to the alveolar epithelium 

and pulmonary vascular endothelium.  This study will utilise a Vivoline EVLP machine, 

which has already been acquired.  Ethics clearance has been approved and this study has 

now commenced.  Finally, post-transplant outcomes of these interventions, and the 

possible effects of tezosentan in ischaemia-reperfusion injury, could be assessed by 

developing and implementing an ovine model of lung transplantation. 

 

Cardiac function after brain death may also be further investigated using the current 

model.  Opportunities include the use of echocardiography to assess the changes in 

cardiac function that occur during and after brain death.  Our group has previously 

reported on the application of intra-cardiac echocardiography in sheep undergoing extra 

corporeal membrane oxygenation.[369, 370]  The feasibility of intra-cardiac and 

transthoracic echocardiography was tested in our BD model.  Similar to EVLP techniques 

described above, it is also possible to assess the effects of endothelin antagonism on 

cardiac function using an ex-vivo heart perfusion technique.[371]  Our group has recently 

acquired such a device to use in the ovine brain death model. 

 

6.5 Closing Statements 

Brain death may occur due to multiple pathologies and remains a multi-system disease.  

The very nature of brain death requires evolutionary survival mechanisms to maintain the 

body in an entirely unphysiological state, that is, in the absence of brain function.  

Overarching control of physiologic and inflammatory processes is lost and mechanisms for 

survival become maladaptive, injuring organs and impairing their function.  In the natural 
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order, death results, yet modern technology is able to delay and even reverse these 

processes.  Organs can now be routinely transplanted to preserve and prolong life. 

 

Progressive understanding of complex molecular signalling continues to identify new 

targets for intervention both before and after transplantation.  This includes the 

identification of the endothelin axis as a potential target.  The current thesis has 

demonstrated that nebulised tezosentan in BD donors is feasible as part of an organ 

preserving strategy.  Pharmacodynamic responses to nebulised tezosentan in brain dead 

sheep were complex and further study is required to evaluate their underlying 

mechanisms.  Beneficial effects of endothelin antagonism may be realised in the future 

through utilisation of other techniques, such as EVLP, or studying other complications of 

transplantation, including ischaemia-reperfusion injury.  Ultimately, targeting the endothelin 

axis may become part of aggressive donor management protocols in the future. 
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