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Abstract Using the Schwartz-Christoffel conformal mapping method together with the complex variable
techniques, we derive steady state analytical solutions for pumping in a rectangular aquifer with four differ-
ent combinations of impermeable and constant-head boundaries. These four scenarios include: (1) one
constant-head boundary and three impermeable boundaries, (2) two pairs of orthogonal impermeable and
constant-head boundaries, (3) three constant-head boundaries and one impermeable boundary, and (4)
four constant-head boundaries. For these scenarios, the impermeable and constant-head boundaries can
be combined after applying the mapping functions, and hence only three image wells exist in the trans-
formed plane, despite an infinite number of image wells in the real plane. The closed-form solutions reflect
the advantage of the conformal mapping method, though the method is applicable for the aspect ratio of
the rectangle between 1/10.9 and 10.9/1 due to the limitation in the numerical computation of the confor-
mal transformation from a half plane onto an elongated region (i.e., so-called ‘‘crowding’’ phenomenon). By
contrast, for an additional scenario with two parallel constant-head boundaries and two parallel imperme-
able boundaries, an infinite series of image wells is necessary to express the solution, since it is impossible
to combine these two kinds of boundaries through the conformal transformation. The usefulness of the
results derived is demonstrated by an application to pumping in a finite coastal aquifer.

1. Introduction

Analytical mathematical models used to tackle pumping-induced flow problems are mostly based on the
assumption that the aquifer is of infinite areal extent [e.g., Lu et al., 2009; Weber and Chapuis, 2013]. This
assumption is only valid if the zone of influence boundary of a pumping well does not reach to the nearby
impermeable (i.e., no-flow) boundaries (such as bedrocks, glacial tills, fault blocks, or relatively impervious
rock) and surface water bodies (i.e., constant-head boundaries, such as streams, rivers, lakes, canals, and
seas) during the extraction or injection period. However, if it interfaces with one or more of these influence
boundaries, the assumption of an infinite domain no longer holds and the influence from boundary condi-
tions must be taken into account [Ferris et al., 1962].

The impact of boundary conditions on pumping has long been recognized in previous studies of both non-
coastal and coastal aquifers [e.g., Chan, 1976; Latinopoulos, 1982; Corapcioglu et al., 1983; Zhan, 1999; Intar-
aprasong and Zhan, 2007; Lu et al., 2012; Lu and Luo, 2014]. Wilson [1993] explored pumping from a
noncoastal aquifer bounded by a stream and a barrier and by two parallel streams, respectively. The author
adopted the Schwartz-Christoffel conformal mapping method to derive the analytical solutions for the two
scenarios. Well pumping in a fully bounded rectangular coastal aquifer with three impermeable boundaries
and one constant boundary (i.e., coastal boundary) was previously explored by Mantoglou [2003] using the
image-well method. For a fully bounded coastal aquifer, theoretically, there exists an infinity of reflection
image wells. However, the author expressed equations in a truncated summation series, while a closed-
form solution was not given, despite its usefulness for pumping in an aquifer where more reflection image
wells are needed to ensure an accurate solution.

Recently, Lu and Luo [2014] explored pumping in a rectangular coastal aquifer bounded by two parallel
impermeable boundaries and two parallel constant-head boundaries (i.e., a head-controlled coastal system).
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They expressed the solution in the series form that superposes infinite image wells. Importantly, they found
a linear relationship between the domain width and length, under which the effects from lateral and hori-
zontal boundaries on the interface toe location and maximum pumping rate are counteracted. The derived
results could offer guidance for designing domain size and well locations to minimize the effects from
boundaries in numerical simulations and laboratory experiments.

In this study, we derive steady state analytical solutions for pumping in a fully bounded rectangular aquifer
relying on the Schwartz-Christoffel conformal mapping method. The main advantage of using the confor-
mal mapping method, as will be shown, is that it can transform the boundary conditions into much simpler
scenarios, which can facilitate the derivation of analytical solutions. We consider five boundary condition
scenarios with different combinations of impermeable and constant-head boundaries. The usefulness of
derived solutions will be demonstrated by an application to pumping in a bounded rectangular confined
coastal aquifer.

2. Method

2.1. Boundary Condition Scenarios
We consider a pumping well located in a homogeneous, rectangular aquifer bounded by five scenarios, as
shown in Figure 1. Scenario 1 (labeled as ‘‘S1’’; Figure 1a) includes three impermeable boundaries and one
constant-head boundary, which is the same aquifer type as that studied by Mantoglou [2003]. S2 considers
two parallel impermeable boundaries and two parallel constant-head boundaries (Figure 1b), which is the
aquifer type investigated by Lu and Luo [2014]. Two pairs of orthogonal impermeable and constant-head
boundaries are assumed in S3 (Figure 1c). S4 (Figure 1d), and S5 (Figure 1e) assume that the aquifer is
bounded by one impermeable boundary and three constant-head boundaries, and four constant-head
boundaries, respectively. In addition to these scenarios, an aquifer bounded by four impermeable bounda-
ries has been studied by Chan [1976]. This scenario was not considered in this study since a steady state
condition never occurs.

Flow systems are assumed at steady state conditions. Surface recharge and regional flow are neglected for
simplicity, and they can be readily added once the solutions are derived. We further assume that x and y
axes are aligned with the lower and left boundaries, respectively, with the origin at the intersection of these
two boundaries (Figure 2). The well is at an arbitrary location with coordinates of (xw, yw) and with a con-
stant pumping rate of Qw [L3/T]. The domain length (in the x axis direction) and width (in the y axis direc-
tion) are kW [L] and W [L], respectively, where k is the aspect ratio.

The discharge potential is employed to express pumping and confined flow, and the relation between
potential and head is given as [Strack, 1989]:

F5KHh5
Qw

2p
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2xwÞ21ðy2ywÞ2

q
r0

�
1h0 (1)

in which K[L/T] is the hydraulic conductivity, h[L] and h0[L] are the piezometric head at (x, y) and at the
distance of r0 from the well. Therefore, once the solution of F is derived, the piezometric head is
obtained.

Figure 1. Schematic diagram of a rectangular aquifer bounded, respectively, by (a) one constant-head boundary (in green) and three
impermeable boundaries (in black), (b) two parallel constant-head boundaries and two parallel impermeable boundaries, (c) two pairs of
orthogonal impermeable and constant-head boundaries, (d) one impermeable boundary and three constant-head boundaries, and (e)
four constant-head boundaries.
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2.2. Conformal Mapping Method and Analytical Derivation
The Schwartz-Christoffel conformal mapping method is used to derive the analytical solutions. An examina-
tion of these boundary condition scenarios indicates that S1 and S3–S5 can be categorized into the same
type where the impermeable and constant-head boundaries can be combined after applying the mapping
functions. By contrast, the impermeable and constant-head boundaries in S2 are unable to be combined
with the application of conformal mapping, as they meet at the origin and infinity. As such, the solution of
S2 must be expressed in a series form. In the following, we first derive analytical solutions for S1 and S3–S5,
and then for S2.

For S1, a well is located in a rectangular domain bounded by one constant-head boundary and three imper-
meable boundaries. The vertices of the rectangular A–D in the z-plane are mapped onto the real axis of the
s-plane, as shown in Figures 2a1 and 2b1. The interior of the rectangular is then transformed to the upper
half s-plane. After transformation, the coordinates of points A–D in the s-plane are: sA521; sB50; sC51,
and sD51=m. Therefore, the transformation follows the formula:

zðsÞ5C1

ð
dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðs21Þðs21=mÞ
p 1C2 (2)

in which C1 and C2 control the size of the rectangle and the location of the origin in the z-plane, respec-
tively. C250 because z 5 0 corresponds to s 5 0. To facilitate using the image-well method, the s-plane is
then transformed onto the f1-plane through the transformation equation f15s1=2, as shown in Figure 2c1.
This transformation leads to a simpler scenario, that is, well pumps in an upper right quarter plane bounded
only by orthogonal impermeable and constant-head boundaries. As such, only three image wells exist in
the solution [Strack, 1972, 1989].

Equation (2) can then be rewritten as:

Figure 2. Conformal mapping for four scenarios: (a1)–(c1) S1, (a2)–(c2) S3, (a3)–(c3) S4, and (a4)–(b4) S5. Boundaries in green and blue represent the constant-head and impermeable
boundaries, respectively. Black hollow circles indicate the locations of the real well. The red hollow circles represent the image wells with the same type (i.e., injection/extraction) as the
real well, while red solid circles denote the image wells with the opposite type as the real well.
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zðf1Þ5C3

ð
df1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð12f1
2Þð12mf1

2Þ
p (3)

in which C352C1=
ffiffiffiffi
m
p

. Equation (3) is an incomplete elliptic integral of the first kind. m is determined based
on the aspect ratio k. The complete elliptic integrals with the upper limits equal to 1 and 1=

ffiffiffiffi
m
p

are:

KðmÞ5
ð1

0

df1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12f1

2Þð12mf1
2Þ

p (4)

KðmÞ1iKð12mÞ5
ð1=

ffiffiffi
m
p

0

df1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12f1

2Þð12mf1
2Þ

p (5)

The complete elliptic integrals for the distances between points B–C and between points B–D give:

KðmÞ
Kð12mÞ5k (6)

The proof of equation (6) can be found in Appendix A. Thus m can be easily found based on the value of k.
Note that the range of k is limited between 1/10.9 and 10.9/1, due to the ‘‘crowding’’ phenomenon that
occurs in the Schwartz-Christoffel transformation for elongated regions [Howell and Trefethen, 1990]. Once
m is available, C3 can be calculated by kW

KðmÞ (see Appendix A).

Applying the image-well method in the f1-plane, the complex potential of S1 is expressed as [Strack, 1972, 1989]:

X15
Qw

2p
ln ½ðf12d1Þðf12d1Þ
ðf11d1Þðf11d1Þ

�1F0 (7)

in which F0 is the value of the discharge potential along the constant-head boundary, d1 is the well location
on the f1-plane, and d1 represents the complex conjugate of d1.

We assume that z=C35Fðf1;mÞ, where Fðf1;mÞ is the incomplete elliptic function of the first kind. One can
find that [Betz, 1948]:

f15snðz=C3Þ5
snðx=C3Þdnðy=C3Þ1icnðx=C3Þdnðx=C3Þsnðy=C3Þcnðy=C3Þ

cn2ðy=C3Þ1msn2ðx=C3Þsn2ðy=C3Þ
5Reih (8)

in which sn, cn, and dn are the three standard forms of Jacobi elliptic integrals, which denote the sine,
cosine, and delta amplitude elliptic functions, respectively; snðyÞ stands for snðy; 12mÞ, and similar defini-
tions are made for cnðyÞ and dnðyÞ. The values of sn, cn, and dn can be evaluated by MatlabVR built-in func-
tions. R and h are expressed as R25M2

11N2
1 and h5tan 21ðN1=M1Þ, respectively, where M1 and N1 are the

real and imaginary parts of f1, respectively.

The complex potential for S1 is written by:

X15F11iW1 (9)

in which F1 and W1 are the flow potential and stream function for S1, respectively, and they can be
expressed by four components: F15F1

11F2
11F3

11F4
11F0 and W15W1

11W2
11W3

11W4
1, respectively. Similar

definitions are made for S3–S5 by simply replacing the subscripts with 3–5, respectively. For S1, F1
1-F4

1 and
W1

1-W4
1 are given as:

F1
15

Qw

4p
ln ½ðM12M1wÞ21ðN12N1wÞ2� (10)

F2
15

Qw

4p
ln ½ðM12M1wÞ21ðN11N1wÞ2� (11)

F3
152

Qw

4p
ln ½ðM11M1wÞ21ðN11N1wÞ2� (12)
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F4
152

Qw

4p
ln ½ðM11M1wÞ21ðN12N1wÞ2� (13)

W1
15

Qw

2p
tan 21ðN12N1w

M12M1w
Þ (14)

W2
15

Qw

2p
tan 21ðN11N1w

M12M1w
Þ (15)

W3
152

Qw

2p
tan 21ðN11N1w

M11M1w
Þ (16)

W4
152

Qw

2p
tan 21ðN12N1w

M11M1w
Þ (17)

in which M1w and N1w are the real and imaginary parts of the well location on the f1-plane, respectively,
and they can be obtained by letting x 5 xw and y 5 yw in equation (7).

Following the similar method and procedure as above, one can derive the solutions for S3–S5. For S3 (see
Figures 2b122b3), after transformation, the solution of the complex potential (X3) on the
f35ðs21Þ1=2

5ðf2
121Þ1=2-plane is similar to that of S1 with M3 and N3 expressed by:

M35<½ððM11iN1Þ221Þ1=2�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððM2

12N2
121ÞÞ21ð2M1N1Þ2

q
1ðM2

12N2
121Þ

2

vuut
(18)

N35=½ððM11iN1Þ221Þ1=2�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððM2

12N2
121ÞÞ21ð2M1N1Þ2

q
2ðM2

12N2
121Þ

2

vuut
(19)

in which < and = represent the real and imaginary parts of the function, respectively. Similarly, M3w and N3w

are obtained by letting M15M1w and N15N1w in equations (18) and (19), respectively. For S4 (see Figures
2c1–2c3), after transformation, the complex potential (X4) on the f45s1=2-plane can be derived by letting
F2

452F2
1; F

4
452F4

1; W2
452W2

1, and W4
452W4

1, respectively. Similarly, the complex potential of S5 (X5) on
the f55s1=2-plane can be obtained by letting F2

552F2
1; F

3
552F3

1; W2
552W2

1, and W3
552W3

1, respectively
(see Figures 2d122d3).

As mentioned above, the solution of S2 will be expressed in the series form. The complex potential of this
scenario is first derived for the two infinite parallel constant-head boundaries, and then the effects of the
image wells produced by two infinite parallel impermeable boundaries are superposed. The reason for this
selection is explained in C. Lu et al., 2015, A note on the application of the image-well method for a rectan-
gular boundary, submitted to Advances in Water Resources. The complex potential for a well between two
constant-head boundaries is given by [Intaraprasong and Zhan, 2007, Lu and Luo, 2014]:

X025
Qw

2p
ln

�
sin ðpðz2zwÞ

2kW Þ
sin ðpðz1zw Þ

2kW Þ

�
1F0 (20)

Superposing image wells generated from the two infinite parallel impermeable boundaries, the complex
potential for S2 is expressed as:

X25
Qw

2p

X1
n521

ln

�
sin ðpðz2zw 2i2nWÞ

2kW Þ
sin ðpðz1zw 2i2nWÞ

2kW Þ
sin ðpðz2zw 2ið2n11ÞWÞ

2kW Þ
sin ðpðz1zw 2ið2n11ÞWÞ

2kW Þ

�
1F0 (21)

Separating F2 and W2 from X2 gives:

F25
Qw

4p

X1
n521

ln

�
ðcosh ðpðy2yw22nWÞ=kWÞ2cos ðpðx2xwÞ=kWÞÞ
ðcosh ðpðy2yw22nWÞ=kWÞ2cos ðpðx1xwÞ=kWÞÞ

ðcosh ðpðy2yw2ð2n11ÞWÞ=kWÞ2cos ðpðx2xwÞ=kWÞÞ
ðcosh ðpðy2yw2ð2n11ÞWÞ=kWÞ2cos ðpðx1xwÞ=kWÞÞ

�
1F0

(22)
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W25
Qw

2p

X1
n521

�
tan 21

�
sin ðpxw=kWÞsinh ðpðy2yw22nWÞ=kWÞ

cos ðpxw=kWÞcosh ðpðy2yw22nWÞ=kWÞ2cos ðpx=kWÞ

�

1tan 21

�
sin ðpxw=kWÞsinh ðpðy2yw2ð2n11ÞWÞ=kWÞ

cos ðpxw=kWÞcosh ðpðy2yw2ð2n11ÞWÞ=kWÞ2cos ðpx=kWÞ

�� (23)

Figure 3 shows the flow nets (streamlines and equipotentials) of S1–S5 based on the analytical solutions
derived above, where k 5 1 and the sides of the square are normalized to 1. The significant discrepancy in
these lines reflects the impact of different boundary condition combinations on the flow field.

3. Application

3.1. Problem Description
We consider a pumping well located in a confined flux-controlled coastal aquifer, as shown in Figure 4. It is
assumed that the domain in plan view is rectangular, and bounded by the sea (constant-head), inland
boundary (impermeable), and two lateral boundaries (impermeable). Therefore, the case corresponds to S1.
Though the case assumed may not be physically realistic, it was employed in the study of Mantoglou [2003]
and taken here as a demonstrative case.

We assume that the system is at the steady state condition and the interface between freshwater and sea-
water is sharp (i.e., the mixing between freshwater and seawater is neglected). In the absence of a well, a
uniform regional flow with a constant rate of qf 50:3 m2=d discharges to the sea over a stagnant seawater.
The thickness between the confining later and the aquifer base is B520 m, and the hydraulic conductivity is
K510 m=d. The domain length and width are L½L� and W½L�, respectively. It is further assumed that the well
is located at the center of the two lateral boundaries, and xw5800 m from the coastline. For convenience,
we assume that the coordinate system is the same as the one adopted above. As such, yw5W=2.

3.2. Maximum Pumping Rate
Estimating the maximum possible pumping rate without pumping saltwater often interests water resources
managers as well as well designers, since practical pumping rates below this critical value could keep the

Figure 3. Constructed flow nets (streamlines in red and equipotentials in blue): (a) S1, (b) S2, (c) S3, (d) S4, and (e) S5.
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production well sustainable. When a well extracts groundwater, there is a capture zone, within which
groundwater can be extracted. Hence, the critical condition would occur when the stagnation point of the
extraction well and the interface tip coincide [Strack, 1976]. Under such conditions, the interface is unstable
as an infinitesimal increase of the extraction rate would cause saltwater upconing.

For the problem assumed above, three stagnation points can be found, with ys being 0, W=2, and W. It
is clear that ys5W=2 is taken to derive the maximum pumping rate because the corresponding xs of this
stagnation point is the largest [Lu and Luo, 2014]. In other words, the stagnation point with ys5W=2 is
located most seaward, and hence critical to pumping saltwater. Therefore, a key step for determining
the maximum pumping rate is to find the expression capable of deriving the x coordinate of the critical
stagnation point. We exhibit the expression in Appendix B. With this expression, the maximum pump-
ing rate Qm can be determined by an iterative procedure, as explained in Strack [1976] and Lu et al.
[2013].

3.3. Impact of Domain Size on Maximum Pumping Rate
Figure 5 shows the impact of W and L on Qm, where W and L are varied between 1000 and 5000 m. As
shown in Figure 5a, the domain size has a significant impact on Qm, with the largest (Qm5403 m3=d) and
lowest (Qm5199 m3=d) values obtained when W5L51000 m and W5L55000 m, respectively. Figure 5b

Figure 4. Conceptual model of a pumping well located in a fully bounded, flux-controlled, confined coastal aquifer: (a) cross section and
(b) plan view.

Figure 5. Impact of the domain size on the maximum pumping rate: (a) Qm and (b) g.
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shows the relative impact of the domain size on the maximum pumping rate, in comparison to a counter-
part with W5L51 (i.e., the scenario assumed in the study of Strack [1976]). The relative impact is quanti-
fied by g5

jQm2Qs
mj

Qs
m

3100%, where Qs
m is the Strack’s [1976] solution. The results indicate that when using

numerical modeling to derive Qm for cases with three impermeable boundaries at infinite distances, a signif-
icant error may occur if the domain size is not sufficient. For example, as W5L52000 m, the relative impact
from the domain size is about 27%. Hence, the analytical solution obtained can serve as a guide for design-
ing the model domain size in numerical modeling, among other purposes.

4. Conclusion

Steady state analytical solutions for pumping in a rectangular aquifer with four different boundary condition
scenarios have been developed using the Schwartz-Christoffel conformal mapping method together with
the complex variable techniques. These four boundary condition scenarios share the same feature that the
impermeable and constant-head boundaries can be combined after the conformal transformation. The
developed analytical solutions are in the closed form, demonstrating the advantage of the conformal map-
ping method. By contrast, for the scenarios with two parallel impermeable boundaries and two parallel
constant-head boundaries, the conformal mapping method fails since it is impossible to combine these two
kinds of boundaries. As such, the solution must be expressed in the series form that superposes infinite
image wells.

The developed analytical solutions can be applied to evaluate boundary effects in numerical simulations
and laboratory experiments, and to assist in the management of coastal and noncoastal pumping wells.
Note that the limitation of using the conformal mapping solutions lies in the range of the aspect ratio of
the rectangle between 1/10.9 and 10.9/1. However, for aspect ratios out of this range the rectangle may be
replaced by an infinite strip as the short boundaries will have minimal influence, except when the well is
very close to one of them; the rectangle can then be replaced by a semiinfinite trip.

Appendix A: Proof of Equation (5)

The distance between points B (at z 5 0, f 5 0) and C (at z5kW; f51) in Figures 2a1 and 2b1 can be calcu-
lated by:

zC2zB5kW5C3

ð1

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12f2Þð12mf2Þ

q 5C3KðmÞ (A1)

Similarly, the distance between points B (at z 5 0, f 5 0) and D (at z5kW1iW; f51
ffiffiffiffi
m
p

) can be calculated
by:

zD2zB5kW1iW5C3

ð1=
ffiffiffi
m
p

0

dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12f2Þð12mf2Þ

q 5C3½KðmÞ1iKð12mÞ� (A2)

Combing equations (A1) and (A2) yields:

KðmÞ
Kð12mÞ5k (A3)

and

C35
kW

KðmÞ (A4)

Appendix B: Derivation of the Location of the Stagnation Point

The x coordinates of the stagnation point are derived by setting the components of the discharge vector
equal to zero. Since ys5W=2 is known, we use @F

@x 50 to derive xs. The potential for the problem considered
is expressed as:
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F5F12qf x (B1)

The derivative of F with respect to x is given by:

@F
@x

5
@F1

1

@x
1
@F2

1

@x
1
@F3

1

@x
1
@F4

1

@x
2qf (B2)

in which @F1
1

@x ;
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1
@x ;
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1

@x , and @F4
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@x are expressed by:
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where @M1
@x and @N1

@x are given as:
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