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We analyze the results of a study conducted for the purpose of assessing the viability of an 
alternative starting point for teaching fractions. The alternative is based on Freudenthal’s 
insights about fraction as comparison. It involves portraying the entities that unit fractions 
quantify as always being apart from the reference unit, instead of as parts of an equally 
divided whole. The study consisted of interviewing 16 third-grade students on a series of 
fraction tasks that embody the proposed alternative starting point. The analysis supports 
regarding the proposed starting point as viable. 

Introduction 
Fractions are one of the most cognitively challenging, difficult to teach, and mathe-

matically complex topics in the elementary school curriculum (Lamon, 2007). In this 
paper, we analyze the results of a study conducted for the purpose of assessing the viability 
of an alternative starting point for teaching this concept. One of the most important aspects 
of the proposed alternative approach is that the initial understandings it aims to support 
entail conceiving unit fractions as entities that are separate from the reference unit.  

The study was part of the planning phase of a classroom design experiment (Cobb, 
2003; Gravemeijer & Cobb, 2006). In this phase, a hypothetical learning trajectory (HLT) 
on fractions was designed and conceptually justified, prior to being tested and refined in 
classrooms. Empirically, the study is centered in interviews with 16 third-grade students 
(ages 8 and 9).  

We start the paper by describing the theoretical perspective we assumed in conducting 
the study. It is consistent with the design experiment methodology as developed by Cobb, 
Gravemeijer and colleagues (Cobb, Gravemeijer, Yackel, McClain, & Whitenack, 1997; 
Gravemeijer & Cobb, 2006; Stephan, Bowers, & Cobb, 2003). We clarify how, from the 
perspective we assumed, the learning paths that pupils follow are regarded as being 
socially and culturally situated, through and through. Consequently, classroom instruction 
is not seen simply as a means by which to influence the pace and breadth of pupils’ cogni-
tive development. Instead, instruction, as a socially and culturally situated practice, is 
considered to strongly influence the very nature of the mathematical understandings that 
students develop.  

We then describe the HLT that we formulated, justifying the initial design by drawing 
on relevant research literature. We start with the overarching learning goals, which center 
on Thompson and Saldanha’s (2003) ideas about reciprocal relationship of relative size. 
Next, drawing on the key tenets of Realistic Mathematics Education (RME) theory (Cobb, 
Zhao, & Visnovska, 2008; Gravemeijer, 1994), we discuss our design considerations 
regarding the instructional starting point. We first analyze the viability of the problem 
situations most commonly used in early fraction instruction; namely, those that aim at 
engaging students in reasoning about the equal partitioning and sharing of a divisible 
object. Based on a review of the research literature and, in particular, on Freudenthal’s 
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(1983) phenomenological analysis of fractions, we argue that these problem situations pro-
vide a rather precarious instructional starting point. We then propose an alternative, which 
involves approaching the entities that unit fractions quantify as being apart from the refer-
ence unit. To complete the HLT description, we list the main shifts in students’ reasoning 
that we anticipate would take place as a result of the proposed instructional design.  

In the second part of the paper we address the empirical questions that our instructional 
alternative raised with respect to the viability of the conjectured starting point. We describe 
and analyze individual student interviews conducted to assess the problem situations that 
aim at engaging students in reasoning about the amount of an attribute that is separate from 
the reference unit, and is defined in terms of fulfilling an iterative condition relative to the 
reference unit. Our analysis shows that these problem situations meet the criteria for a 
viable starting point1, indicating that it is worth advancing the research agenda and testing 
the whole HLT in a classroom design experiment.  

Theoretical and Methodological Perspective: Design Experiments 
Design experiments, as developed by Cobb, Gravemijer and colleagues (Cobb et al., 

1997; Gravemeijer & Cobb, 2006; Stephan et al., 2003), are a research methodology of 
mathematics education that involves developing instructional designs to support particular 
forms of learning. These forms of learning are systematically studied within the context 
defined by the means of supporting them (Cobb, 2003, p. 1). Individual thought processes, 
and social and cultural processes are considered to be reflexively related, with neither 
attributed absolute priority over the other (Cobb et al., 1997). Hence, individual cognition 
is regarded as being thoroughly social, and social processes as being thoroughly cognitive.  

Researchers using this version of the design experiment methodology typically formu-
late their instructional designs following the RME theory (Gravemeijer, 1994), as it 
provides them with design heuristics that are consistent with the way in which they 
construe mathematical learning. They thus design for supporting the progressive reorgani-
zation of students’ activity where, “with the teacher’s guidance, students’ models of their 
informal mathematical activity can evolve through their use into models for more general 
mathematical reasoning” (Cobb et al., 2008, p. 109; emphasis in the original). Instructional 
designs in which such progression breaks down, and where some models need to be aban-
doned when they can no longer soundly support more general mathematical reasoning, 
would not be seen as adequate.  

Hypothetical Learning Trajectory 
A design experiment starts with the formulation of an HLT that consists of an envi-

sioned learning process together with conjectures about possible means of supporting it. 
The means of support are regarded as aspects of the mathematical practices in which 
teacher and students participate in a classroom. They include instructional activities, tools 
for representing mathematical ideas (inscriptions and manipulatives), the nature of class-
room discourse, and the organization of classroom activities (Cobb, 2003; Cobb et al., 
2008).  

                                                        
1 An ultimate test for a viable starting point would be a complete HLT accompanied by evidence of student 
learning. The analysis of such HLT is underway but is beyond the scope of this paper. Here, we explore 
viability of starting points using analytical tools that were developed for this purpose. 
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It is worth clarifying that, in the design experiment methodology, learning trajectories 
are not regarded as accounts of rather autonomous cognitive processes, by which students 
come to develop particular mathematical understandings. Instead, they are considered to be 
tightly related to the social and cultural situations in which they emerge. Instructional 
means of support, like those previously mentioned, are considered to have a strong influ-
ence both on the mathematical understandings that students develop, and on the processes 
by which they develop them (Cobb, 2000).  

In the formulation of an HLT, the mathematical learning goals are first clarified. Next, 
a viable starting point for instruction is chosen. The final step in formulating an HLT 
involves developing conjectures about the main shifts in students’ learning, together with 
the means that will support those shifts. Such shifts need not resemble those that previous 
research have documented, if the means used to support the learning are substantially 
different from the means that shaped the previously documented forms of learning. From 
the theoretical perspective assumed in the design experiment methodology, the emergence 
of uncommon developmental paths is to be expected when the means that support learning 
are atypical.  

HLT: Learning Goals 
Clarifying the mathematical learning goals of an HLT usually involves drawing on and 

synthesizing the prior research literature to identify central organizing ideas for the domain 
(Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). In the case of fractions, we found 
Thompson and Saldanha’s (2003) discussion of what it means to understand fractions well 
to be particularly comprehensive and insightful. For these authors, sophisticated fraction 
reasoning involves “conceiving two quantities as being in a reciprocal relationship of rela-
tive size” (p. 107). We created Figure 1 to better explain our interpretation of Thompson 
and Saldanha’s (2003) assertion.  

 

Figure 1. Lengths in a reciprocal relation of relative size.  

The kind of understanding that Thompson and Saldanha (2003) describe would involve 
conceiving segment B as being 1/6 as long as segment A, and 1/5 as long as segment C, 
given that A is 6 times as long as B, and C is 5 times as long as B. In addition, it would 
involve conceiving segment A as being 6/5 as long as segment C (i.e., 6 times as long as 
1/5 of C), and segment C as being 5/6 as long as segment A (i.e., 5 times as long as 1/6 of 
C).  
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For Thompson and Saldanha (2003) this kind of understanding would draw heavily on 
multiplication, division, measurement, and ratio. Among other things, it would involve 
conceiving the amount of some attribute of an object as being segmented (e.g., the length 
of segment A; Figure 1), and realizing that the segmentation is in comparison with the 
amount of that attribute that serves as a reference (e.g., the length of segment B). In addi-
tion, it would involve imagining the amount that serves as a reference apart from what is 
measured.  

We regard Thompson and Saldanha’s (2003) account of reciprocal relations of relative 
size as useful for organizing fraction instruction. It frames fractions as a single, although 
multi-faceted, mathematical notion around which to orient instructional efforts (Cobb, 
1999). In addition, it approaches fractions squarely within the context of quantitative 
reasoning. As such, this account allows for establishing connections between fractions and 
the ways in which rational numbers are used in multiple disciplines for measuring and 
comparing phenomena.  

In Thompson and Saldanha’s (2003) account of reciprocal relationships of relative size, 
we recognize four features of unit fractions that students would have to come to make 
sense of; namely: (a) that they are numbers that account not for an object, but for an 
amount of an attribute present in the object, (b) that the amount they account for is in a 
direct iterative relation with the amount embodied by a reference unit (B is 1/n as big as A 
when A is n times as big as B), (c) that they can be imagined as being apart from the 
amount with which they are in an iterative relation, and (d) that the amount they account 
for is susceptible of being iterated unrestrictedly (m/n where m can be bigger and even 
much bigger than n). In formulating our HLT, we chose as the overarching learning goal 
understanding unit fractions in a way that included these four features.  

HLT: Starting Point 
 Within the tenets of RME (Cobb et al., 2008; Gravemeijer, 1994), a viable starting 

point for instruction consists of problem situations and tools for representing mathematical 
ideas that need to have the potential of fulfilling three conditions: (a) becoming experien-
tially real to students, (b) triggering informal ways of reasoning that can be a basis for 
developing increasingly sophisticated mathematical ways of knowing in a particular 
domain, and (c) serving as paradigmatic cases in which to “anchor students’ increasingly 
abstract mathematical activity” (Cobb et al., 1997, p. 159).  

 Problem situations and tools that are experientially real are those with which 
students can immediately engage in personally meaningful mathematical activity (Cobb et 
al., 1997). In psychological terms, these would be problems and representations with which 
students can readily become imagistically involved (Thompson, 1996). Consequently, for a 
problem situation or a tool to be regarded as experientially real, it does not necessarily 
need to come from or be relevant to all students’ everyday experiences. However, it has to 
be possible for all students to construe the problem and representations as personally 
meaningful and mathematically engaging, with teacher guidance and support.2  

 For a starting point to be viable, it is not enough to use problem situations and tools 
with which students can engage in personally meaningful mathematical activity. The 
activities also need to trigger informal ways of reasoning, on which students can be 

                                                        
2 Notice that fictional scenarios can be regarded as being experientially real, if established in a classroom in 
ways that are meaningful for students, and lead them to engage in mathematical activity. 
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supported to build and develop more sophisticated understandings about specific mathe-
matical ideas. In other words, the problems and inscriptions need to be a means of achiev-
ing learning goals in the short run.  

 In addition, the problem situations and tools need to serve as anchors for students’ 
reasoning, as learning evolves. For this to occur, the representations emerging in students’ 
minds (i.e., metonymies, prototypes, and metaphors; Presmeg, 1992), as they engage in 
problem solving at the beginning of the learning trajectory, need to be reconcilable with 
the sequence of mathematical understandings that students are expected to develop 
throughout the learning trajectory, including those that are the end goals of instruction. 
Consequently, students’ initial activity has to have the potential of serving as a referent as 
pupils make sense, in the long run, of increasingly sophisticated mathematical ideas.  

Equal Partition 
The prevalent image of a unit fraction that instructional designers aim to foster in the 

initial phases of instruction is that of a single piece of an equally divided whole. Most 
commonly, the whole is portrayed as a divisible object—such as a pizza, a pie, a tortilla, a 
candy bar, or a French loaf—and the unit fraction as the piece that a person would get 
when fairly sharing the object among a certain number of people. The literature review we 
discuss below led us to question the viability of instructional activities aimed at fostering 
this image of a unit fraction as a starting point for instruction. Given the broad acceptance 
that this way of introducing fractions has had among instructional designers, we amply 
discuss the considerations that led us to its rejection as a starting point for our HLT.  

With respect to viability as a starting point, there is much evidence that students can 
readily and meaningfully engage with partitioning situations, even from an early age 
(Pitkethly & Hunting, 1996; Steffe & Olive, 2010). In addition, these problem situations 
have proven useful in triggering informal ways of reasoning, on which students can be 
supported to make sense of some important fraction notions (Behr, Wachsmuth, Post, & 
Lesh, 1984; Empson, Junk, Dominguez, & Turner, 2006; Lamon, 2007; Steffe & Olive, 
2010). For instance, these situations can be used to help pupils to overcome the whole 
number dominance rationale for gauging fraction quantities (Behr et al., 1984), and instead 
reason in ways consistent with the inverse order relation among unit fractions (Tzur, 
2007). Students can be encouraged to think about the size of the pieces that would result 
from, for instance, fairly sharing a cake with more rather than fewer recipients (Sophian, 
Garyantes, & Chang, 1997).  

It is thus clear that situations that aim to foster the image of a unit fraction as a single 
piece of an equally divided whole can fulfill the first two criteria of a viable starting point 
for instruction. Whether these situations would also meet the third criterion, and serve as 
an anchor for the development of increasingly sophisticated understandings of fractions, is 
more difficult to determine.  

Several authors have identified, in theoretical terms, significant limitations of the equal 
partitioning model of fraction (e.g., Freudenthal, 1983; Kieren, 1976; Thompson & 
Saldanha, 2003), and some have expressed reservations about its contribution to children’s 
fraction knowledge (e.g., Davis, 2003). Empirically speaking, research studies have shown 
that many students face great challenges3 in making sense of fractions as numbers that 

                                                        
3 Elsewhere (Cortina, Višňovská, & Zúñiga, 2015) we have discussed how meeting these challenges need not 
be regarded as an unavoidable step in making sense of the fraction concept. Instead, building on 
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account for the amount of a given attribute (e.g., a length, an area, a mass). Specifically, it 
has been documented that pupils commonly draw on their understanding of natural num-
bers when interpreting fractions, which leads them to erroneously judge fraction inscrip-
tions composed of big numbers as necessarily accounting for large amounts (e.g., Behr et 
al., 1984; Kieren, 1993; Post, Carmer, Behr, Lesh, & Harel, 1993; Streefland, 1991). 
Among the students who overcome this way of interpreting fractions, many tend to 
construe them as numbers that account solely for the numerosity of discrete entities (“so 
many out of so many”; Thompson & Saldanha, 2003), and not for the amount of a continu-
ous attribute (Saxe, Taylor, McIntosh, & Gearhart, 2005). Finally, few pupils come to 
conceive fractions as numbers that can soundly account for the amount of an attribute that 
is bigger than one (Norton & Wilkins, 2009).  

It is reasonable to presume that instructional activities that depict fractions as pieces of 
an equally partitioned whole would have been prominent in the instructional experiences of 
almost all the students who undergo such difficulties. However, the existing research does 
not firmly support regarding these difficulties as a function of the use of partitioning 
activities in early fraction instruction. It has been, indeed, documented that students who 
are oriented to construe fractions as equal sized parts of a whole can overcome the diffi-
culties and develop understandings about unit fractions akin to those proposed as the 
overarching learning goals of the HLT (e.g., Behr et al., 1984). We examined the instruc-
tional approaches used by researchers who documented the learning paths of students who 
successfully overcame these difficulties.  

Assuming a constructivist perspective, Steffe and his colleagues (Hackenberg, 2007; 
Norton & Wilkins, 2009; Olive & Steffe, 2001; Steffe, 2002; Steffe & Olive, 2010; Tzur, 
1999) conducted a series of teaching experiments4, in which they accounted for students’ 
learning in terms of the development of increasingly sophisticated fraction schemes 
(Hackenberg, 2007; Norton & Wilkins, 2009; Olive & Steffe, 2001; Steffe, 2002; Steffe & 
Olive, 2010; Tzur, 1999). In the interventions they conducted to encourage students’ 
cognitive development, they started by engaging pupils in situations that involved reason-
ing about the equal partitioning and fair sharing of food items, such as candy bars, cakes, 
and French fries.  

During the teaching experiments, students were supported to reason about the size of 
the pieces produced by equally partitioning a whole, in increasingly sophisticated ways. 
Pupils were first encouraged to conceive the part of a whole as a physical entity that 
embodied an attribute (i.e., a length), which could be iterated in its own right. Next they 
were encouraged to reason about the relative size of a single piece of an equally divided 
whole, in terms of the number of iterations that would be necessary to produce something 
as big as the whole. For instance, pupils were encouraged to reason about the size of one of 
the three equal pieces of a whole as being of such a size that three iterations of its length 
would be necessary to cover the length of the whole.  

                                                                                                                                                                        
Brousseau’s (1997) insights about didactical obstacles, we have explained how the emergence of these 
challenges can be a function of how the concept is typically taught. 
4 It is worth mentioning a key difference between teaching experiments (Steffe & Thompson, 2000) and 
design experiments. Although both methodologies involve engaging students in instruction for extended 
periods of time, the main purpose of teaching experiments is to account for students’ construction of 
mathematical concepts and operations. Therefore, teaching experiments are different from design 
experiments in that instructional design—understood as the systematic testing and refinement of heuristics 
and resources for supporting learning—does not play a central role in the former ones (Cobb, 2003). 



Cortina, Višňovská, & Zúñiga 
 

7  

The next step involved engaging pupils in thinking about the relative size of lengths 
produced by iterating the equal size part of a whole. Students were first presented with 
situations in which the lengths that were to be produced would be shorter than the whole. 
For instance, they were asked to reason about the length that would be produced by two 
iterations of one of three equal parts of a whole (i.e., 2/3). They were then encouraged to 
think about lengths longer than the whole, such as the one produced by four iterations of 
one of three equal parts (i.e., 4/3).  

The research conducted by Steffe and his colleagues clearly shows that students can 
develop relatively sophisticated understandings of fractions by reorganizing their concep-
tions about the equal partitioning and fair sharing of a divisible object. However, the path 
they must follow is not free of obstacles. As Norton and Hackenberg (2010) recognized, to 
develop the envisioned understandings, pupils have to clear at least two developmental 
hurdles.  

The first hurdle involves “moving from part-whole to partitive conceptions” (Norton & 
Hackenberg, 2010, p. 345). Such a move requires conceiving the partitions made to a 
whole not only as being actual pieces of an object, but also as being of such a nature that 
when connected, both their numerosity and the amount of a certain attribute (i.e., a length) 
would accumulate. As can be noticed, clearing this first hurdle is tantamount to overcom-
ing the previously mentioned difficulty of construing fractions as numbers that account for 
the amount of a continuous attribute.  

The second hurdle specified by Norton and Hackenberg (2010) lays in “moving from 
partitive conceptions of proper fractions to iterative conceptions of proper and improper 
fractions” (p. 345). In this case, an equal size part of a whole (i.e., the unit fraction) must 
come to be conceived as the amount of an attribute susceptible of being iterated unrestrict-
edly, “regardless of how this unit was produced (e.g., dividing a whole into six parts) or 
which operations were performed on it” (Tzur, 1999, p. 410). Clearing this second hurdle 
is thus tantamount to overcoming another of the previously mentioned difficulties, making 
sense of fractions as numbers that can soundly account for the amount of an attribute that is 
bigger than one.  

For the purpose at hand, it is significant that Norton and Hackenberg (2010) identified 
these hurdles in the developmental processes of students whose learning was carefully 
supported and monitored by researchers. Hence, the emergence of these difficulties cannot 
be regarded as a function of oversights or carelessness in the teaching received by pupils.  

When reinterpreted within the theoretical perspective we assume, the reviewed findings 
are consistent with regarding the student difficulties as being a function of the means of 
support commonly used in early fraction instruction. Specifically, these difficulties can be 
a function of the limitations of the equal partitioning model as an anchor for making sense 
of fractions in increasingly sophisticated ways. The program of research, the planning 
phase of which we report in this paper, intends to explore whether this is indeed the case. 
In the following sections we draw on Freudenthal’s (1983) phenomenological analysis of 
fractions to first solidify our reasons for not using the equal partitioning model as a starting 
point in our work, and then introduce an instructional alternative.  

Fraction as Fracturer 
In his didactical phenomenology, Freudenthal (1983) assumed a strong instructional 

perspective. He considered that students should experience mathematical concepts as 
means for organizing phenomena. He thus sought to identify, as broadly as possible, the 
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phenomena that would “beg to be organized” (p. 32) by different concepts. He viewed the 
mathematizing of such phenomena as the basis from which students would reinvent a 
particular mathematical idea.  

In the case of fractions, Freudenthal distinguished between two different kinds of 
everyday phenomena that would beg to be organized with the fraction concept. In the first 
kind, he recognized the need for fractions in situations in which the size of a part is gauged 
with respect to a whole: “fractions present themselves if a whole has been or is being split, 
cut, sliced, broken, coloured in equal parts or if it is experienced, imagined, thought as 
such” (Freudenthal 1983, p. 140). Freudenthal coined the term fraction as fracturer to 
categorize instructional activities that would fit into this phenomenological way of engag-
ing with the concept.  

He also recognized a significantly different kind of situations in which fractions are 
necessary: “fractions also serve in comparing objects which are separated from each other 
or are experienced, imagined, thought as such” (Freudenthal 1983, p. 145). He called this 
second phenomenological approach fraction as comparer.  

Freudenthal regarded the fraction as fracturer approach as being of a “convincing and 
fascinating concreteness” (p. 147), but also as phenomenologically much too restricted. For 
this author, the most basic case of fraction as fracturer would involve the breaking of a 
divisible object into equal parts. He noticed that, in this case, the main action takes place 
on the object itself, and that the amounts of a given attribute play a secondary role; they 
serve to “check the fairness of the distributive procedure” (p. 149).  

Freudenthal’s account thus suggests that situations involving the equal partitioning of a 
divisible object, when used as a situation to be mathematized with fractions, could easily 
lead pupils to associate this concept with the most salient quantifiable product of the parti-
tioning act: the numerosity of the pieces that are produced. As a consequence, these situa-
tions would not straightforwardly lead to the use of fractions as a means to quantify the 
amount of a continuous attribute.  

Freudenthal’s considerations about fraction as fracturer are also useful for understand-
ing why situations that involve the equal partitioning of a whole could be an inadequate 
anchor for students to make sense of fractions as numbers that can soundly account for the 
size of something that is bigger than one. To explain this point, Freudenthal zoomed in on 
the mathematical model of magnitude, within which continuous attributes, such as length, 
area, and weight are susceptible of unrestricted accumulation. He underlined four aspects 
of this model:  

To constitute a magnitude in a system of quantities requires: 
• an equivalence relation, which describes the conditions for replacing objects (for instance 

quantities of a certain substance) with each other and which leads to equality within the magni-
tude, 

• a way of taking together objects (quantities), which leads to an addition in the magnitude,  
• the unrestricted availability of objects with the same magnitude value (that is, in the same 

equivalence class), which makes addition unrestrictedly possible, 
• the possibility of dividing an object into an arbitrary number of partial objects that replace each 

other, which leads to division by natural numbers (p. 146; emphasis added). 

In analyzing the fraction as fracturer approach, Freudenthal recognized in it “a quite 
restricted equivalence concept” (p. 147), since the number of identical things that are 
produced by dividing a whole into n equal parts is limited to n. As a consequence, this 
approach would not lead to regarding the addition of objects with the same magnitude 
value (i.e., the individual size of each of the equal pieces of a whole) as unrestrictedly 
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possible. Instead, it would present a clear boundary for the addition: the number of pieces 
into which the whole was divided. Freudenthal thus concluded that, in phenomenological 
terms, the fraction as fracturer approach “leads to proper fractions (<1) only” (p. 147).  

Taken together (see Table 1), Freudenthal’s analysis supports regarding situations that 
involve the equal partitioning of a divisible object as an ill suited anchor for making sense 
of the mathematical ideas proposed as overarching learning goals of the HLT. These situa-
tions might prompt students to regard fractions solely as a resource for mathematizing the 
numerosity of discrete elements in sets and subsets. More importantly, they could lead 
pupils to develop metonymies and other mental representations (Presmeg, 1992) that are 
incongruent with regarding fractions as numbers that can soundly account for the size of an 
attribute that is bigger than one.  

Table 1 
Suitability of problem situations and tools—based on the fraction as fracturer approach—
as a starting point for instruction, as supported by empirical evidence (e) or Freudenthal’s 
phenomenological analysis (ph).  

Fraction as 
fracturer Aspect of a viable starting point 

e ph 
Becoming experientially real to students ✓   
Triggering informal ways of reasoning that can be a basis for 
developing increasingly sophisticated mathematical ways of knowing ✓   

Serving as paradigmatic cases in which to anchor students’ 
increasingly abstract mathematical activity ✗  ✗  

Fraction as Comparer 
As mentioned before, Freudenthal (1983) identified a second kind of everyday 

phenomena that would beg to be organized with the fraction concept, a kind in which the 
sizes of objects that are separated from each other are compared. For instance, fractions 
become necessary when comparing the length of a ping-pong paddle to the length of a 
tennis racquet (1/3 as long).  

Freudenthal recognized this alternative phenomenological approach to fractions (i.e., 
fraction as comparer) to be more consistent with the mathematical model of magnitude. 
Among other things, it would be consistent with regarding the amount of an attribute 
quantified by a fraction as susceptible of being iterated unrestrictedly. As an illustration, in 
the case of the paddle and racquet example, it is noticeable that there would be no clear 
phenomenological boundary for how many times 1/3 of the length of the tennis racquet 
could be iterated, since the object embodying this length (the ping-pong paddle) is separate 
from the reference unit. Hence, it is sensible to interpret the expression “10/3 of the length 
of the racquet” as ten iterations of the length of the paddle, each iteration being 1/3 as long 
as the length of the racquet.  

Based on Freudenthal’s insights about the fraction as comparer approach, we envi-
sioned an alternative starting point for fraction instruction. It involves the use of problem 
situations and tools aimed at cultivating an image of unit fractions as the amount of an 
attribute that is (a) separate from a reference unit, and (b) fulfills an iterative condition with 
respect to the reference unit.  
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The basic image of unit fractions we chose to work with is shown in Figure 2. It 
involves a set of rods that would embody lengths of the reference unit and of the unitary 
fractional amounts. The reference unit would be the length of a wooden stick (about 24 cm 
long) and the unitary fractional amounts would be the lengths of plastic drinking-straws.  

 

Figure 2. Unit fractions as the lengths of rods.  

Students would judge a straw to be 1/2 as long as the stick (reference unit) when being 
of such a size that two iterations of the length of the straw would be necessary to cover the 
exact length of the stick (see Figure 3). A straw would be judged as being 1/3 as long as 
the reference unit when being of such a size that three iterations of its length would be 
necessary to cover the exact length of the stick, and so on.  

  

Figure 3. A half conceived as the length of something that requires two iterations 
 to cover the length of the reference unit. 

We deemed the proposed starting point as phenomenologically consistent with the 
learning goals that we chose for the HLT, and specifically with all four features of unit 
fractions that students need to encounter (cf., Thompson & Saldanha, 2003). It would 
present fractions squarely as a resource for mathematizing the amount of a continuous 
attribute; namely, the length of a straw that is apart from the reference unit. In addition, an 
object separated from the reference unit would embody the amount of an attribute quanti-
fied by a unit fraction. This, in turn, would allow for regarding the iteration of unit 
fractions as unrestrictedly possible.  

HLT: Expected Shifts in Students’ Reasoning 

The Instructional Sequence 
To cultivate the image of unit fractions just described, we expected to use a series of 

activities based on the reinvention of linear measurement. In the initial phase of the 
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instructional sequence, these activities would resemble those used by Stephan et al. 
(Stephan et al., 2003) to support students’ development of measuring conceptions. We 
conjectured that it would be necessary to start at this stage, given the limitations of 
students’ prior mathematical experiences. 

The overarching narrative of the instructional activities would involve learning about 
the ways in which a fictitious group of people, living in pre-colonial Mesoamerica, 
measured. Using this scenario, the first issue we expected to problematize with the students 
was the need for establishing a standard unit of measurement. We expected to achieve this 
goal by exploring with the children what would happen if a group of people used only the 
parts of their bodies (hands, feet, thumbs, etc.) to measure. Students would then see the use 
of sticks with a unified length as a sensible solution to a problem.  

The second issue we aimed at problematizing was the fact that the length of many 
things would not correspond to a whole number of iterations of the stick. For instance, the 
height of a basket could be more than one stick but less than two. Students would then 
recognize the need for creating and using units of measurement shorter than the length of 
one stick. The production of straws that fulfilled specific iterative conditions would be 
introduced as the solution developed by the ancient people.  

In producing the straws, students would be encouraged to make sure that each fulfilled 
a specified condition. For instance, they would be asked to produce a straw of such a 
length that two iterations of it would exactly cover the length of the stick. Students would 
be given a drinking straw about 15 cm long and asked to iterate it along the stick. If the 
two iterations did not exactly cover the length of the stick, students would be asked to 
manipulate the length of the straw so that it did, either by reducing its size using a pair of 
scissors, or by using a longer straw. By repeated trials, students would home in on the 
specified length (see Figure 4).  

 

Figure 4. Adjusting the size of a drinking straw so that two iterations of it cover exactly  
the length of a reference unit.  
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It is worth clarifying some of the similarities and differences of the activities that we 
chose to use, with those used by other fraction learning researchers. For instance, Davydov 
(1969/1991) conducted a series of classroom teaching experiments on fractions in which 
students were oriented, from the start, to reason about the measurement of lengths and to 
represent them on the number line. As in our case, an important issue in the instructional 
agenda involved establishing ratios between different units of measure. However, 
Davydov’s experiments included orienting pupils to reason about unit fractions as parts of 
a whole (e.g., 1/4 as “one part of a whole divided equally into four parts”; p. 34), whereas 
our aim is to find out whether avoiding such reasoning altogether, in initial instruction, can 
be a productive way to encourage powerful fraction learning.  

In addition, researchers working in the Freudenthal Institute (van Galen et al., 2008) 
developed an instructional sequence on fractions, called “the Amsterdam stick,” aimed (as 
in our case) at the reinvention of linear measurement. However, this sequence is not meant 
to be used at the start of fraction instruction. Instead, students are expected to engage in it 
after having had ample experiences with partitioning and sharing activities. Furthermore, 
unit fractions are represented as segments of the stick—like centimeters are on a traditional 
ruler—instead of as separate rods. Given these differences, this research did not provide 
answers to the questions we were asking.  

Finally, the activity of producing the straws resembles one with which Steffe and 
colleagues (e.g., Steffe, 2010) encouraged students to reason about the size of a part rela-
tive to the size of the whole. However the two activities are significantly different in that 
the one we just described does not intend for iteration to be a means of gauging the size of 
a part of a whole.5 Instead, the lengths that are iterated belong to objects (straws) that are 
presented as always being apart from the reference unit (the stick).  

To summarize, the problem situations and tools that we chose as a starting point have 
some similarities with those used by other fraction learning researchers. However, in 
phenomenological terms, they also entail a significant difference—they frame fractions 
squarely within the fraction as comparer approach. Determining whether this difference 
leads to differences in student learning is at the core of our research program. 

Students’ Reasoning 
We expected to support two initial shifts in students’ reasoning. The first would 

involve making sense of the inverse order relation of unit fractions (Tzur, 2007). We 
anticipated that the activity of the straws could serve as the basis for engaging students in 
reasoning about the relation between the size of a straw and the number of times its length 
has to be iterated to cover exactly the length of the stick. For instance, pupils could be 
asked to discuss what would be longer, a straw that needed four iterations to cover the 
length of the stick or one that needed five (i.e., 1/4 vs. 1/5).  

The second shift would involve using the drinking straws as units of measure in their 
own right. The straws could be used to produce paper strips of different sizes; for instance, 
use the 1/3 straw (i.e., the one that fits three times in the stick) to produce a strip that is 
four times as long as the straw (4/3). The production of these strips could support the 
orchestration of whole class conversations about the outcomes of iterating unit fractions: 
“Would the paper strip be shorter, as long as, or longer than the stick?” We anticipated that 

                                                        
5 In fact, the proposed activity is intended to substitute activities based on the notion of equipartition (i.e., 
fraction as fracturer) in initial fraction instruction. 
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students would then be able to assess the size of any fraction as being smaller, as big as, or 
bigger than 1. Generally speaking, their activity would resemble that of children who 
Steffe and colleagues (e.g., Steffe & Olive, 2010) describe as having developed iterative 
conceptions of proper and improper fractions.  

HLT: Summary 
It is worth noticing that the envisaged HLT seems to call for more sophisticated 

quantitative reasoning than situations that entail partitioning a whole into n equal parts. 
Consequently, although apparently a better suited anchor for supporting the emergence of 
sophisticated understandings of fractions, the possibility exists that the proposed starting 
point would not meet the first two aspects of a viable starting point: (a) becoming experi-
entially real to students and, (b) triggering informal ways of reasoning about important 
fraction notions (see Table 2). In the remainder of this paper, we report on the empirical 
study we conducted to explore this concern and to justify the outlined HLT. 

Table 2 
Suitability of problem situations and tools as a starting point for instruction, as supported 
by empirical evidence (e) or Freudenthal’s phenomenological analysis (ph). Comparison 
between the two approaches. 

Fraction as 
fracturer 

Fraction as 
comparer Aspect of a viable starting point 

e ph e ph 
Becoming experientially real to students ✓   ?   
Triggering informal ways of reasoning that can be 
a basis for developing increasingly sophisticated 
mathematical ways of knowing 

✓   ?   

Serving as paradigmatic cases in which to anchor 
students’ increasingly abstract mathematical activity ✗  ✗   ✓  

Background of the Study 
As part of the planning phase of a design experiment, we carried out a study aimed at 

exploring the viability of the alternative starting point. We interviewed 16 students who 
formed the only third grade classroom of the public school in which we planned to conduct 
the design experiment. This school was in a poor neighborhood of a city in southern 
Mexico. The interviews were conducted eight months into the school year. At the time of 
the interviews, six of the students were eight years old and ten were nine. Seven were girls 
and nine were boys.  

During the interviews, we used problem situations consistent with the alternative 
starting point. These were activities in which the amount of an attribute was defined in 
terms of it fulfilling an iterative condition, relative to a reference unit. We explored 
whether novice fraction learners would readily construe these problem situations as experi-
entially real, and whether they would, informally, reason about them in ways consistent 
with the inverse order relation and basic fraction equivalencies.  
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Students’ Prior Instructional Experiences 
To document students’ prior instructional experiences, we collected data on the group’s 

performance on the national standardized test (ENLACE), and inspected the pupils’ 
mathematics notebooks. In addition, we included questions in the interviews to document 
how students interpreted conventional fraction inscriptions (see Chocolate Bar task).  

The students’ results on the standardized test in mathematics were low. The group’s 
mean was in the 9th percentile, nationwide. Regarding the four categories of the test 
achievement, 11 of the participating pupils were categorized as below basic (insuficiente), 
4 as basic (elemental), one as proficient (bueno) and none as advanced (excelente).  

The inspection of the notebooks suggested that the students’ prior instructional experi-
ences in mathematics had been rather poor. It was noticeable that the notebooks had been 
used in 45 different activities. Twelve of these involved rote exercises such as: (a) writing 
series of numbers, from 1 to 100, with increments of one (1, 2, 3...), two (2, 4, 6...), three 
(3, 6, 9...), and so on, up to ten; and (b) writing all the numbers, one by one, from 6700 to 
6900. Fourteen activities involved carrying out mechanical operations such as: five addi-
tions and five subtractions with four and five-digit numbers (e.g., 16376 + 24931 + 36184), 
23 multiplications of four digit numbers by a one digit number (e.g., 7 × 2554), and 14 
divisions of four digit numbers by a one digit number (e.g., 2879 ÷ 8). Other activities 
seemed to involve copying information from the blackboard, such as copying the fractional 
equivalences of the weights in grams to one kilogram (1000 g = 1 kg, 750 g = 3/4 kg, 500 
g = 1/2 kg, 250 g = 1/4 kg, and 125 g = 1/8 kg).  

In the interviews, we included a Chocolate Bar task intended to document how 
students interpreted conventional fraction inscriptions as a result of their prior instructional 
experiences. This task was presented at the end of the interviews and intentionally called 
on a fraction as fracturer situation to provide a comparison to other tasks.6 It involved a 
rectangle that represented a chocolate bar and cards with conventional fraction inscriptions 
(see Figure 5). Students were told that the cards represented an amount of chocolate to be 
eaten. They were asked to read the cards out loud and to indicate on the picture how much 
chocolate it would involve eating. Pupils were also asked to express whether the amount 
written on the card would be more, less, or as much as half of the chocolate.  

 

Figure 5. Cards with fraction inscriptions in the order in which they were presented, one by one.  

Results from this task are presented in Table 3. They indicate that the students had not 
yet learned much about how to read and interpret fraction inscriptions. Only eleven of the 

                                                        
6 Our introduction of this task and the analysis of students’ responses followed the method we describe in 
detail in the next section. 
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sixteen children both correctly read the card with 1/2 inscription (see Figure 5), and identi-
fied the amount of chocolate it represented. The card with the 1/4 inscription was correctly 
read and interpreted by eight of the students. Six of the remaining eight students were 
unaware of what the inscription could mean. The other two read it as “one fourth” but 
considered it to represent a quantity bigger than 1/2. In the case of the 2/4 card, only five 
students read and interpreted it correctly. The 1/3 and 1/8 cards were not read and inter-
preted correctly by any of the students.  

Responses to the Chocolate Bar task indicated that students’ prior instructional experi-
ences had contributed little to helping them make sense of the quantitative meaning of 
common fraction notations. For the purposes of our study, it was therefore reasonable to 
consider these students to be novice fraction learners. 

Table 3 
Conventional fraction inscriptions correctly and incorrectly read and interpreted by 
students. 

 1/2 1/4 2/4 1/3 1/8 

Correct 11 8 5 0 0 

Incorrect 5 8 11 16 16 

Methodology 
The students’ interviews were similar to those used in the tradition of the constructivist 

teaching experiment (Steffe & Thompson, 2000). However, they were conducted in a way 
consistent with the design experiment methodology. The main purpose was to document 
the different ways in which the participating students would engage with problem situa-
tions consistent with the chosen starting point, given their prior instructional experiences 
(Stephan et al., 2003).  

Interview Protocol 
The interview protocol included the Chocolate Bar task, and three more problem situa-

tions designed to test the viability of the alternative starting point. These were designed to 
encourage students to reason about amounts of a given attribute as multiplicands that 
satisfy a certain iterative condition with respect to a reference unit.  

The first problem, Milk Carton, involved asking students to make judgments about the 
relative capacity of different kinds of cups based on how many cups of each kind can be 
filled with the milk contained in a carton. In the problem, cards were used (Figure 6) that 
showed the number of cups that, in each case, could be filled with the milk in a carton that 
was physically present (Figure 7). Children were asked both to make general judgments 
about the change in the level of the milk in the carton after serving one cup of each kind, 
and to compare which of two kinds of cups would hold more milk (paper cups vs. foam 
cups; i.e., sevenths vs. ninths). No cups were shown to the children, only the cards.  
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Figure 6. Cards used in the Milk Carton problem to show how many cups of each kind  
could be filled with the milk contained in a carton.  

The comparisons that the students were asked to make were the following:  

• Plastic cups vs. glass cups (halves vs. fourths) 
• Pottery cups vs. glass cups (thirds vs. fourths) 
• Paper cups vs. foam cups (sevenths vs. ninths) 

In addition, students were asked to judge how much milk (plenty or little) the aluminum 
(twentieths) and the pewter cups (ones) would hold. In this part of the interview, students 
were given a whiteboard marker to make marks on the carton, and show the approximate 
level of the milk after serving different numbers of different kinds of cups.  

 

Figure 7. Image of the milk carton that is physically presented to students.  

This problem situation included several aspects of the proposed alternative starting 
point. First, it directly asked for acting on, and reasoning about, amounts of a specific 
attribute; namely, amounts of milk. Second, it asked for gauging the size of unitary 
amounts (the capacity of the different kinds of cups) in terms of them satisfying an itera-
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tive condition. Lastly, it presented the objects embodying the unitary amounts (i.e., the 
paper cups) as being apart from the reference unit (i.e., the milk carton). Therefore, no 
clear boundary for the accumulation of the unitary amounts was set, since it would be 
sensible to imagine an accumulated amount resulting from how much milk would someone 
drink if he or she drank a pottery-cup of milk every day during a week (7/3), a month 
(31/3), or a year (365/3).  

In the second problem, Kangaroos, the students were presented with the picture shown 
in Figure 8. They were told that the number at the end of each line indicated how many 
equal-size jumps it would take for each of the kangaroos to cover the whole distance. 
Students were asked to determine which of the three kangaroos would make the longest 
jumps and which the shortest (i.e., 1/2 vs. 1/4 vs. 1/5).  

In terms of the proposed starting point, the amounts of an attribute that this problem 
encouraged the students to reason about were lengths of jumps. The size of the unitary 
amounts was defined in terms of them fulfilling an iterative condition: equal-size jumps of 
such a length that so many of them would be exactly enough to cover a given distance. It is 
worth noticing that, also in this case, the unitary amounts of an attribute (i.e., the size of the 
jumps) were portrayed as being apart from the reference unit (i.e., the length of the whole 
line). Consequently, there was no evident boundary in how many times the unitary 
amounts could be iterated. This made questions such as the following to be sensible: 
“Which of the kangaroos would travel the farthest distance after jumping 100 times?”  

 

 

Figure 8. The Kangaroos problem.  

In the third problem, Water Tanks, the students were shown a picture of three water 
tanks of equal size (see Figure 9), and told that the number below each tank indicated the 
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time in hours it took for the tank to fill up.7 Students were first asked to determine which 
of the three tanks would have more water after one hour of being filled (i.e., 1/2 vs. 1/4 vs. 
1/8).  

The problem was then used to elicit informal ways of reasoning about basic fraction 
equivalencies. Pupils were asked to determine how long would it take for the second tank 
to have the same amount of water that the first tank would have after one hour (i.e., 2/4 = 
1/2). Similar questions were asked to help students identify the time it would take for the 
8-hour tank to have as much water as:  

• the 2-hour tank after 1 hour (4/8 = 1/2)  
• the 4-hour tank after 1 hour (2/8 = 1/4) 
• the 4-hour tank after 3 hours (6/8 = 3/4) 

 

Figure 9. The Water Tanks problem.  

In terms of the proposed starting point, the amounts of an attribute in this problem 
situation were water levels in a tank. Unitary amounts were defined in terms of them satis-
fying an iterative condition: An amount of water flowing out of the specific pipe in one 
hour is such that it would take exactly a certain number of hours to fill the entire tank. In 
addition, when it is assumed that someone can be consuming the water constantly, there 
was no apparent restriction on how much water could flow out of the pipes. This made 
questions such as the following to be sensible: “Which household would receive more 
water in a 14 hour period?”  

Students were first asked to answer the Kangaroos and Water Tanks questions without 
marking the sheet. However, when they expressed difficulties in responding to the ques-
tions, the interviewer encouraged them to use a pencil and make inscriptions (e.g., showing 
the level of the water). When the inscriptions made by the students did not meet the stated 

                                                        
7 In many Mexican households, water tanks are placed on the roofs. It is common for these tanks to fill up 
during the night hours. The water stored in them is consumed during the day. 
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conditions (e.g., equal accumulation of water in each hour), the interviewer made it notice-
able to the children, and allowed them to correct their estimations.  

It is important to clarify that not all the questions in the protocol were presented to all 
the students. There were many cases in which students appeared to have considerable diffi-
culties in responding to less demanding questions. In some of those cases, the more 
demanding questions were not addressed to them. For instance, in the Water Tanks prob-
lem, students who did not recognize that the third tank would need four hours to have as 
much water as the first tank after one hour (4/8 = 1/2) were not presented with further 
questions.  

Presenting the Problems 
In line with the design experiment methodology, as the interviewers presented the 

problems, they tried to support students in interpreting the situations as experientially real. 
Before the questions in the protocol were addressed to the students, brief conversations 
were held about the general setting and the context of each of the problems. The following 
extract from the Water Tanks conversation illustrates how the problems were introduced to 
the students.  

Interviewer:  [Shows the sheet with the image of three water tanks, Figure 9]. What are 
these?  

Teresita:8  Water tanks [tinacos]? 

Interviewer:  Water tanks. Right? And what are they used for?  

Teresita:  To fill water.  

Interviewer:  And where are they put?  

Teresita:  In a house with two floors?  

Interviewer:  In what part of the house?  

Teresita:  Where the washing place [lavadero] is?  

Interviewer:  In the terrace roof [azotea]? In the roof [techo]? 

Teresita:  Yes.  

Interviewer:  Look [pointing at the drawings on the sheet], they belong to different houses. 
How long does it take for this one to fill up?  

Teresita:  Two hours.  

Interviewer:  This one?  

Teresita:  Four hours. 

Interviewer:  And why do you think that is, if they are the same size? 

Teresita:  Because the water is slower? 

Interviewer:  It is slower. Where is the water faster?  

Teresita:  In the two hours one.  

The interviewers supported students in construing the drawings and numbers shown to 
them as representing specific things and events and, in doing so, used types of guidance 
(e.g., questions and prompts) that could conceivably be provided by a classroom teacher. 

                                                        
8 Names used in this paper are pseudonyms. 
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Teresita was a student who readily developed helpful images. She recognized the drawings 
as representations of tanks that are used to store water. She also seemed to have a clear 
image of why it would take longer for some tanks to fill up.  

In some cases, the negotiation was not as straightforward as in the extract above. 
However, in every case, the interviewers worked to support students to make sense of the 
general setting and the context of each of the problems.  

Data Analysis 
We analyzed the interviews in the way typically followed in the planning phase of a 

design experiment (Stephan et al., 2003). We sought to create a coherent account of 
students’ reasoning, considering the social nature of the situation in which it emerged 
(Cobb & Yackel, 1996). We attended to two issues in particular: (a) the extent to which the 
problem situations became experientially real to the pupils, and (b) the ways of reasoning 
that emerged as the students dealt with the problem situations. In the remainder of this 
paper, we first document how the problems became experientially real for the novice 
fraction learners with relative ease. We then document that the students’ informal 
mathematical reasoning, evoked when solving those problems, allowed them to 
meaningfully explore two core notions of fraction reasoning: inverse order relation and 
basic equivalencies.  

Construing Problems as Experientially Real 
The evidence we used for determining that a problem had been construed as experien-

tially real consisted of verbal expressions and gestures that suggested that a student was 
reasoning about the quantities involved in the problem, and not just about the numbers. For 
instance, in the Milk Carton problem, this type of evidence included students referring to 
amounts of milk or making gestures with their hands indicating the size of cups. The 
following extract illustrates the latter case:  

Interviewer:  When I serve one cup of milk, how far does the milk carton empty?  

Marilu:  To here [marking the carton at about the middle]. 

Interviewer:  Why? 

Marilu:  Because they are this size [gesturing with her fingers the size of a cup].  

Gestures referring to the actual size of cups indicated to us that a student like Marilu had 
interpreted the problem as involving actual quantities. In other words, it indicated that a 
student was imagistically involved with the problem at hand and, thus, engaging in person-
ally meaningful mathematical activity.  

Given these evidence criteria, all 16 students construed the three problems as experien-
tially real. Naturally, the process of doing so was not always the same. We have already 
illustrated how Teresita, understanding where the water was “faster”, construed the Water 
Tanks problem as experientially real relatively seamlessly. With other students, like 
Marilu, it took longer.  

Collectively, the results from this component of the analysis support the viability of the 
proposed starting point. They suggest that it would be possible to support a group of third 
grade students, like those with which we planned to work, to readily construe problems 
based on the comparer approach as experientially real.  
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Triggering Informal Ways of Reasoning 
We now turn to the analysis of the students’ informal ways of reasoning about the two 

basic aspects of fraction relations underlying the interview problems: inverse order relation 
of unit fractions, and basic fraction equivalences. Rather than claiming that students’ 
mathematical reasoning was solid at the time of the interviews, we assessed whether these 
initial forms of reasoning appear suitable for developing increasingly sophisticated mathe-
matical ways of knowing in the short run.  

Comparing the Size of Unitary Fractional Amounts 
All of the students applied some intuitions consistent with the inverse order relation 

when they compared the sizes of unitary fractional amounts. However, there were signifi-
cant qualitative differences among them. As we explain below, while some students readily 
reasoned in ways consistent with the inverse order relation, others seemed to rely strongly 
on what Behr et al. (1984) called the whole-number-dominance strategy, when judging the 
relative size of the amounts.  

We created four categories that account for the different ways in which the students 
reasoned about the relative size of the unitary amounts (see Table 4). We first describe 
each category in descending order of sophistication of reasoning and later return to discuss 
the instructional implications.  

Table 4 
Number of students in different categories, according to how they reasoned about the 
relative size of unit fractions. 

 

Category 1 
Readily anticipating that the 
more iterations, the smaller 
the amount of an attribute 

Category 2 
Coming to 
anticipate 

Category 3 
Strong reliance on 
visual evidence 

Category 4 
Initial insight  
in extreme cases 

N 6 5 3 2 
 

Category 1: Readily anticipating that the more iterations, the smaller the amount of an 
attribute. The students in this category (N=6) readily assessed that the plastic cups (halves) 
would hold more milk than the glass cups (fourths). They also readily assessed that the 
pottery cups (thirds) would hold more milk than the glass ones (fourths), and that the paper 
cups (sevenths) would hold more milk than the foam ones (ninths). In the Kangaroos 
problem, they anticipated that the first kangaroo (halves) would make the longest jumps, 
followed by the second (fourths) and the third (fifths). Finally, they anticipated that the 
first tank (halves) would be the one with the most water after one hour, followed by the 
second tank (fourths) and then the third one (eights).  

Category 2: Coming to anticipate the amount of the attribute. The students in this cate-
gory (N=5) differentiated themselves from those in the previous one in that it was during 
the course of interviews that they came to anticipate that the more iterations of an amount 
of an attribute that were needed to make as much as a reference unit, the smaller the 
amount had to be. These students initially assessed the size of the cups following the 
whole-number-dominance strategy, thus judging that the cups with the bigger number 
would hold more milk. However, after estimating the place where the milk would be after 
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serving the different cups, they came to consistently make comparisons in accord with the 
inverse order relation.  

Zaide was one of the students in this category. She initially anticipated that the plastic 
cups (halves) would be smaller than the glass cups (fourths). After marking on the carton 
sensible estimates of where the levels of the milk would be if one plastic cup and one glass 
cup were served, respectively, she changed her mind and considered that the plastic cups 
would be bigger. When comparing the glass cups (fourth) and the pottery cups (thirds), she 
followed a similar path. Finally, she anticipated that the foam cups (ninths) would hold less 
milk than the paper cups (sevenths), as illustrated by the following excerpt:  

Interviewer:  Which would be bigger?  

Zaide:  The foam cups [ninths]. 

Interviewer:  Bigger? 

Zaide:  Oh, no, the paper ones [sevenths].  

Interviewer:  The paper or the foam ones? 

Zaide:  Paper. 

Interviewer:  Why the paper ones? 

Zaide:  Because if they put nine cups it goes down less. And if you put seven it goes down 
faster. 

Interviewer:  Which can hold more? 

Zaide:  The seven ones [paper cups]. 

Interviewer:  The seven ones can hold more? 

Zaide:  Because they are not many cups.  

In the excerpt it is noticeable that Zaide reasoned about the capacity of the paper cups 
based on how the levels of the milk in the carton would change as these cups were served. 
Her previous estimations seemed to have helped her imagine that when more cups were to 
be served, the level of the milk in the carton would drop less with one serving (“it goes 
down less”). This imagery allowed her to correctly anticipate that the foam cups (ninths) 
would be smaller than the paper cups (sevenths).  

In the Kangaroos situation, Zaide also started by making comparisons following the 
whole-number-dominance strategy (i.e., that the second kangaroo, fourths, would make 
longer jumps than the first one, halves). She then made reasonable estimates for the land-
ing spots of the two kangaroos, and changed her mind. Finally, she correctly anticipated 
that the third kangaroo (fifths) would make shorter jumps than the second one (fourths). In 
the Water Tanks problem, she readily anticipated that, after one hour, the first tank (halves) 
would have more water than either the second (fourths) or the third (eights).  

Zaide’s case illustrates how a group of students seemed to develop imagery, during the 
interviews, which allowed them to soundly reason in ways consistent with the inverse 
order relation. Within the quantitative context of the problems, they anticipated that the 
more iterations of the amount of an attribute that were needed to produce as much as a 
reference unit, the smaller the amount would have to be.  

Category 3: Comparisons based on visual evidence. The students in this category 
(N=3) consistently started by judging the relative size of the amounts following the whole-
number-dominance strategy. Then, like the students in the previous category, they made 
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reasonable estimates for the places where the milk would be after serving the different 
kinds of cups, and used them to judge the size of the amounts.  

These students differentiated themselves from those of the previous group in that, 
during the interviews, they did not seem to have come to understand this principle suffi-
ciently well to consider that it would apply in every case. They always appeared to follow 
the whole-number-dominance strategy when anticipating the difference in size between 
two kinds of cups (or the length of the jumps of two kangaroos). Only after marking esti-
mates they judged otherwise.9  

Category 4: Initial insight in extreme cases. The two students in this group showed the 
least sophisticated reasoning. They strongly followed the whole-number-dominance 
strategy when making the comparisons. They considered that the glass cups (fourths) 
would hold more milk than the plastic cups (halves), even after they had made marks on 
the milk carton that appeared to indicate that the opposite was true. They also considered 
that the second kangaroo (fourths) would make longer jumps than the first one (halves), 
even after they had made reasonable marks of where the two kangaroos would land.  

Nonetheless, these students seemed to have some intuitions consistent with the inverse 
order relation. They judged the aluminum cups (twentieths) as being small, and the pewter 
cups (ones) as being big. In addition, with the guidance of the interviewer, they created 
reasonable estimates for where the level of the milk would be in the carton after serving 
different kinds of cups (see Figure 10).  

 

Figure 10. Estimates made by students on the Milk Carton problem. 

Collectively, the results from this component show that problem situations like those 
used in the interviews can be a well-suited means of eliciting students’ reasoning about 
comparing size of unit fractions, in informal ways. They suggest that a group of third grade 
students could productively participate in the analysis and discussion of problem situations 
that ask for comparing the amounts of a certain attribute, given the number of iterations it 

                                                        
9 This was the case when comparisons involved, as well as when they did not involve, one half. 
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would require to make as much as a reference unit. It would be sensible to expect that, 
during the analysis and discussion of the problem situations, some of the students would 
produce solutions consistent with the inverse order relation, while others would produce 
solutions that followed the whole-number-dominance strategy. Whole class conversations 
could be orchestrated in which the two kinds of solutions were analyzed and contrasted.  

Given that even the students who showed the least sophisticated reasoning seemed to 
have some intuitions consistent with the inverse order relation, it would also be reasonable 
to expect that, as the two kinds of solutions were collectively analyzed and discussed, those 
consistent with the inverse order relation would eventually become treated by the class as 
routine and beyond need of justification (Cobb, 2000). The important number of students 
who, in the course of a single interview, seemed to have progressed significantly in making 
sense of solutions consistent with the inverse order relation (Category 2), further allows 
regarding this expectation as reasonable.  

Basic Equivalencies 
As previously mentioned, the Water Tanks problem was also intended to engage 

students in reasoning informally about basic equivalencies. It is worth mentioning that, in 
addition to the inverse order relation, this notion is considered to be of much importance in 
early fraction instruction (National Council of Teachers of Mathematics, 2000).  

As shown in Table 5, there were three students who did not recognize any of the 
equivalencies. In contrast, five students recognized them all. Of the remaining eight 
students, two identified only one of the equivalencies (2/4=1/2), four children identified the 
two equivalencies between the tanks when being half full (2/4=1/2; 4/8=1/2), and the other 
two pupils identified those plus the one between two hours in the four-hour tank and one 
hour in the two-hour tank (2/8 = 1/4).  

Table 5 
Number of students that identified the different equivalencies in the water levels of the 
tanks. 

 

2/4 = 1/2 
4/8 = 1/2 
2/8 = 1/4 
6/8 = 3/4 

2/4 = 1/2 
4/8 = 1/2 
2/8 = 1/4 

 

2/4 = 1/2 
4/8 = 1/2 

 

2/4 = 1/2 
 

No equivalence  
recognized 

N 5 2 4 2 3 
 

When establishing the equivalencies, it was noticeable that several of the students 
based their answers on numeric patterns. However, they seemed not to lose track of the 
quantitative meaning of the numbers involved. For instance, Andres justified the equiva-
lence between six hours in the eight-hour tank and three hours in the four-hour tank (6/8 = 
3/4) in the following way:  

Andres:  Because here. This one [pointing at the number eight below the third tank] is twice as 
this one [pointing at the number four below the second tank]. If you add four plus four 
you get eight, and three plus three, six.  

As can be noticed, Andres’ solution was of a calculational nature. It is unclear whether he 
was thinking about water levels as he referred to the numbers. Nonetheless, in a conversa-
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tion that took place briefly after, it was noticeable that he had not lost track of the quantita-
tive meaning of the numbers involved in the problem.  

Interviewer:  And in which household would you rather live?  

Andres:  [readily points at the first water tank (two-hour tank)] 

Interviewer:  Why? 

Andres:  Because it fills up faster, in two hours. 

This conversation indicates that Andres was mindful of the quantitative meaning of the 
numbers in the problem, and of what they would imply for the users of each of the water 
tanks.  

Similar to the previous component, the results from this component show that problem 
situations like those used in the interviews can be a well-suited means of eliciting students’ 
reasoning about basic fraction equivalencies, in informal ways. Although we did not 
recognize informal ways of reasoning about equivalencies in all the students, the children’s 
collective performance was favorable when compared to the one they had in the Chocolate 
Bar situation.10 The reader will recall that only five of the sixteen students recognized the 
equivalence between 2/4 and 1/2 (see Table 3). In contrast, thirteen children recognized the 
equivalencies between the level of the water in the four-hour tank after two hours, and the 
level in the two-hour tank after one hour (2/4 = 1/2). In addition, five students seemed to 
have clearly recognized the equivalence in the level of the water in the eight-hour tank 
after six hours, and the level in the four-hour tank after three hours (6/8 = 3/4; see 
Table 5).11  

Discussion and Conclusions 
Researchers have widely viewed the development of early fraction notions as stem-

ming from ideas and intuitions of equal partitioning and fair sharing of divisible objects 
(e.g., Piaget, 1965; Steffe & Olive, 2010; Streefland, 1991). In our work, we call this view 
into question. Adopting a sociocultural approach, we have conjectured that the widely 
documented relation between the emergence of early fraction-like intuitions and notions, 
and situations that entail equally dividing and fairly sharing an object, need not be regarded 
as a function of a somewhat natural psychogenetic process. We explore the possibility that, 
instead, this relation is a function of a particular socially and culturally situated way of 
introducing children into the fraction realm.  

With this consideration in mind, we sought alternative activities from which basic 
fraction notions could emerge. Given the significant difficulties that students typically face 
when making sense of the concept in increasingly sophisticated ways, we consider this 
a worthy endeavor. In our explorations, we found Freudenthal’s (1983) observations about 
fraction as fracturer and fraction as comparer to be particularly insightful and useful. We 
also found it intriguing that, in his outline of how fractions could be taught, Freudenthal 

                                                        
10 The Chocolate Bar task was used as the last one in the series, after the Water Tanks problem. 
11 It is important to clarify that we are not claiming that the students learned to work with basic fraction 
equivalencies in the course of a single interview. After all, the data on the numbers of students who did not 
recognize the equivalence between 2/4 and 1/2 in the Chocolate Bar situation are direct evidence refuting 
such claim. Instead, what our data shows is that instructional activities based on the proposed starting point 
can serve as a means of eliciting informal ways of reasoning about simple equivalencies in classrooms with 
novice fraction learners. 
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himself did not propose specific problem situations, based on the fraction as comparer 
approach, that could become the starting point for fraction instruction.  

Other researchers have used problem situations and tools consistent with the fraction as 
comparer approach. For instance, imagery consistent with this approach is present in the 
instructional efforts used by Steffe and colleagues to encourage students to develop what 
they call iterative conceptions of fractions (Hackenberg, 2007; Steffe & Olive, 2010; Tzur, 
1999). However, problem situations and tools consistent with the fraction as comparer 
approach have always been used as an improvement of, or as an addition to, the imagery 
based in fraction as fracturer situations. We had to ask whether eliminating the fracturer 
imagery from initial fraction instruction, altogether, could lead to learning paths that intro-
duce fewer hurdles for the learner.  

In this paper, we have described an alternative starting point for teaching fractions, and 
explained why it could be better suited, in the long run, for supporting students’ develop-
ment of increasingly sophisticated fraction notions. We have also analyzed data that show 
how novice fraction learners can construe problem situations and tools, designed consis-
tently with this starting point, as experientially real. In addition, we documented that such 
problem situations and tools can become a means of eliciting informal ways of reasoning 
about the inverse order relation and about basic fraction equivalencies.  

In terms of the criteria for the viability of a starting point for fraction instruction, 
outlined in Table 2, our paper thus presents a reasoned argument for the fraction as 
comparer approach, and completes the planning phase of our design experiment. Whether 
specific problem situations and tools consistent with fraction as comparer approach would 
actually lead to a more beneficial fraction learning requires further empirical research. Our 
use of the outlined HLT in classroom experiments (Cortina, Visnovska, & Zuniga, 2014) 
provides initial indications that the proposed alternative starting point might open clearer 
paths for pupils to learn fractions and, thus, enhance their opportunities to understand this 
concept.  
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