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Abstract

Binary coding or hashing techniques are recognized to

accomplish efficient near neighbor search, and have thus

attracted broad interests in the recent vision and learning

studies. However, such studies have rarely been dedicated

to Maximum Inner Product Search (MIPS), which plays a

critical role in various vision applications. In this paper,

we investigate learning binary codes to exclusively han-

dle the MIPS problem. Inspired by the latest advance in

asymmetric hashing schemes, we propose an asymmetric

binary code learning framework based on inner product fit-

ting. Specifically, two sets of coding functions are learned

such that the inner products between their generated binary

codes can reveal the inner products between original data

vectors. We also propose an alternative simpler objective

which maximizes the correlations between the inner prod-

ucts of the produced binary codes and raw data vectors.

In both objectives, the binary codes and coding functions

are simultaneously learned without continuous relaxations,

which is the key to achieving high-quality binary codes. We

evaluate the proposed method, dubbed Asymmetric Inner-

product Binary Coding (AIBC), relying on the two objec-

tives on several large-scale image datasets. Both of them

are superior to the state-of-the-art binary coding and hash-

ing methods in performing MIPS tasks.

1. Introduction

In the recent years, binary coding (also known as hash-

ing) has become a very popular research subject in com-

puter vision [19, 22, 33], machine learning [16, 37], infor-

mation retrieval [7, 21, 23], and related areas [42]. After

encoding high-dimensional feature vectors of documents,

images, videos, or other types of data to compact binary

codes, an effective binary coding or hashing method is ex-

pected to accomplish efficient similarity search while pre-

serving the similarities among original data to some extent.

As a result, using binary codes to represent and search in
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massive data is a promising solution to handle large-scale

vision tasks, because of not only the storage efficiency (typ-

ically several hundred binary bits per data item) but also the

high time efficiency of pairwise distance computations in

a binary Hamming space. Besides hashing, vector quanti-

zation (VQ) [2, 6, 10, 27, 40, 41] is another promising di-

rection for large-scale search problems in high-dimensional

space. However, VQ and hashing are two very different

techniques, especially in the search step. In this work, we

focus on the latter one.

The binary coding or hashing techniques can be rough-

ly divided into two major categories: data-independent

and data-dependent methods. Locality-Sensitive Hashing

(LSH) [7] is one of the most popular data-independent

methods, which generates randomized hash functions vi-

a random projections. The LSH family has been continu-

ously developed to accommodate a variety of distance and

similarity measures, such as Euclidean distance, p-norm

distance [3], Mahalanobis distance [15], kernel similarity

[14, 28]. Although LSH is ensured to have high collision

probability for similar data items, in practice LSH usual-

ly needs long hash bits and multiple hash tables to achieve

both high precision and recall. The huge storage overhead

may restrict its applications.

The other category, data-dependent methods (or

learning-based methods in the literature), has witnessed a

rapid development in the most recent years. The litera-

ture was comprehensive reviewed in [35] recently. Its e-

mergence is due to the benefit that learned compact bina-

ry codes can effectively and efficiently index and organize

massive data. Different from LSH, data-dependent binary

coding methods aim to generate short binary codes using

available training data. Among them, linear coding func-

tions formed by a set of learned hyperplanes are mostly

adopted, since they are computationally simple and easy to

connect to traditional dimensionality reduction techniques.

A number of algorithms in this category have been pro-

posed, including unsupervised PCA Hashing [33], Iterative

Quantization (ITQ) [8], Isotropic Hashing (IsoHash) [12],

etc., and supervised Minimal Loss Hashing (MLH) [25, 26],

Semi-Supervised Hashing (SSH) [33], Ranking-Based Su-
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pervised Hashing [34], FastHash [17], etc.

Compared to the above linear binary coding/hashing

algorithms, nonlinear algorithms may generate more ef-

fective binary codes for data residing in nonlinear struc-

tures. Representative algorithms construct coding func-

tions in a kernel space, for example, Binary Reconstruc-

tive Embedding (BRE) [13], Random Maximum Margin

Hashing (RMMH) [11], Kernel-Based Supervised Hashing

(KSH) [19], the kernel variant of ITQ [8], etc. It has also

been shown that harnessing nonlinear manifold structures

will help produce neighborhood-preserving compact bina-

ry codes. Spectral Hashing (SH) [37, 36] is a well-known

algorithm in this style. More recently, Anchor Graph Hash-

ing (AGH) [20, 18] leverages anchor graphs for making

hash code training and out-of-sample extension to novel da-

ta both tractable and efficient. Shen et al. [30, 31] proposed

a general Inductive Manifold Hashing (IMH) scheme which

generates nonlinear coding functions by exploiting the flex-

ibility of available manifold learning approaches.

Almost all the previous binary coding and hashing al-

gorithms were designed to deal with Approximate Nearest

Neighbor (ANN) search. Studies have rarely been dedicat-

ed to Maximum Inner Product Search (MIPS), which ac-

tually plays a critical role in various vision and learning

applications [32]. The efficacy of aforementioned meth-

ods have not been validated on the MIPS problem yet.

Shrivastava and Li [32] proposed an Asymmetric Locality-

Sensitive Hashing (ALSH) algorithm for searching with

(un-normalized) inner product being the underlying similar-

ity measure. ALSH converts the MIPS problem to a stan-

dard LSH ANN problem by performing a simple asymmet-

ric transformations on data pairs. While ALSH inherits all

the theoretical guarantees of LSH [32], it can hardly achieve

promising search performance using short binary codes.

In this work, we focus on learning data-dependent bi-

nary codes for tackling the MIPS problem. Inspired by

the latest advance in asymmetric hashing1, we propose

an asymmetric binary code learning method for MIPS,

thus named Asymmetric Inner-product Binary Coding

(AIBC). Specifically, two sets of coding functions are

learned such that the inner products between their gener-

ated binary codes can reveal the inner products between o-

riginal data vectors. Despite conceptually simple, the as-

sociated optimization is very challenging due to the highly

nonsmooth nature of the objective that involves sign func-

tions. To this end, we tackle the nonsmooth optimization

in an alternating manner, by which a single coding function

is solved with the others fixed. Through introducing aux-

iliary discrete variables to replace the sign functions, the

optimization procedure is made efficient. As a simplified

1An asymmetric LSH algorithm with sketches [5] was previously pro-

posed at a early stage. Very recently, [24] discussed the power of asym-

metric hashes.

version of the proposed binary code learning framework,

we propose another objective which maximizes the corre-

lations between the inner products of the produced binary

codes and raw data vectors. In both objectives, the bina-

ry codes and coding functions are simultaneously learned

without continuous relaxations, which is the key to achiev-

ing high-quality binary codes.

The main contributions of our work are summarized as

follows:

1. We propose a binary code learning framework for ad-

dressing the MIPS problem, which has the clear aim

of preserving the inner-product similarities among raw

data vectors. To this end, we design a tractable dis-

crete optimization method, by which high-quality bi-

nary codes are iteratively generated with a closed-form

solution for each bit.

2. To further speeding up binary code learning for MIP-

S, we propose an alternative simpler objective which

maximizes the correlations between the inner product-

s of the yielded binary codes and raw data vectors.

By this objective, the binary codes can be learned in

a much more efficient way and, usually, with higher

quality. This is mainly because the problem can be

easily solved with closed-form solutions for the two

associated sub-problems.

3. Our two binary coding methods are extensively eval-

uated on several large-scale image datasets. The ex-

perimental results demonstrate the superiority of our

methods over the state-of-the-arts.

The rest of this paper is organized as follows. Section

2 elaborates the details of the proposed AIBC methods. In

Section 3, we evaluate our approaches on three real-world

large-scale datasets, followed by the conclusion of this work

in Section 4.

2. Asymmetric Inner-product Binary Coding

In this section, we present our binary code learning

framework. We first give a brief introduction of MIPS; and

then propose an inner-product fitting model to learn two

asymmetric coding functions. To speed up the optimization,

we practically simplify the original objective by maximiz-

ing inner-product correlation.

2.1. Maximum Inner Product Search (MIPS)

MIPS has been playing a significant role in various ap-

plications, such as recommender systems, deformable part

model, multi-class classification [32]. Given a new query

q, MIPS targets at retrieving the datum having the largest

inner product with q from the database A. Formally, the
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MIPS problem is formulated as below:

p = argmax
a∈A

a⊤q. (1)

For large-scale similarity search problems, it is practical

to implement MIPS by employing binary coding techniques

to achieve both storage and computational efficiencies. A

binary coding function h(x) maps an original feature vector

x to a binary code of r bits in the Hamming space {1,−1}r
2. Then problem (1) is reformulated as follows

p = argmax
a∈A

h(a)⊤h(q). (2)

It is natural to apply the popular locality sensitive hash-

ing (LSH) for this problem. The LSH algorithm is simply

constructed by the random projections generated from the

standard normal distribution. Despite the popularity, the di-

rect use of LSH on MIPS does not inherit the high collision

probability guarantee of that on near neighbor search prob-

lems. To solve this problem, Shrivastava and Li [32] pro-

posed the Asymmetric Locality Sensitive Hashing (ALSH)

method, which converted the MIPS problem to the standard

ℓ2 nearest neighbor search problem. ALSH adopts two set-

s of different hash functions h(·) and z(·) to compute the

inner product of the query and database point. The MIPS

problem is performed as

p = argmax
a∈A

h(a)⊤z(q), (3)

where h(·) and z(·) are both constructed directly from LSH,

by simply appending a few entries to a and q with differ-

ent values. ALSH was proved to share the similar colli-

sion guarantee of similar points on MIPS as LSH on nearest

neighbor search problem, which is mainly benefited from

the flexibility of asymmetric hash functions.

2.2. Inner­product fitting

While the LSH and ALSH methods guarantee search ac-

curacy to some extent, promising performance can hardly

be achieved with compact binary codes due to the indepen-

dence of data. To overcome the above limitation, we pro-

pose to learn hash functions rather than random projection

for coping with the MIPS task.

Suppose that we have two sets of points: A =
[a1,a2, . . . ,an] and X = [x1,x2, . . . ,xm], where ai ∈
R

d×1 and xi ∈ R
d×1. Denote the similarity matrix of A

and X as S ∈ R
n×m, of which the element Sij defines the

similarity of ai and xj . We aim to learn two sets of bi-

nary codes for A and X respectively, the inner product of

which can well approximate S. Inspired by [32], we adopt

2Note that we use (1,-1) bits for mathematical derivations, and use (1,0)

bits for implementations of all referred binary coding and hashing algo-

rithms.

the asymmetric form of hash functions in our binary code

learning formulation. We consider the following problem

with hash functions h(·) and z(·),

min
h,z

||h(A)⊤z(X)− S||2. (4)

Here || · || is the Frobenius norm. We will show next that the

utilization of asymmetric hash functions can significantly

facilitate the optimization of the above discrete optimization

problem.

In our implementation, we compute the similarity ma-

trix S by inner product, S = A⊤X. With this setting, (4)

turns out to be a problem of inner product fitting with bi-

nary codes. We therefore name the proposed binary code

learning method employing asymmetric coding functions

as Asymmetric Inner-product Binary Coding (AIBC). In

practice, we normalize Sij to be 1 (or 0) when it is over (or

smaller than) a threshold.

With the linear form of hash functions, i.e., h(x) =
sgn(W⊤x) and z(x) = sgn(R⊤x), where W,R ∈ R

d×r,

we then have

min
W,R

||sgn(W⊤A)⊤sgn(R⊤X)− S||2. (5)

It is easy to see that the above problem is highly non-

convex and difficult (usually NP hard) to solve due to the

discrete sign functions. A feasible solution is to relax the

discrete constraint by omitting the sign function. The con-

tinuous relaxation methodology is widely applied for hash

code learning. However, this approximation method may

accumulate considerable quantization errors, which makes

the final binary codes less effective.

In order to obtain high-quality hash functions, we keep

the sign function in our formulation. By taking the advan-

tage of the flexibility of asymmetric hash functions, for this

discrete optimization problem, we can naturally choose to

solve W and R in an alternating fashion, that is, solve for

one variable each time while keeping the other one fixed.

We thus first consider the following sub-problem with vari-

able W by fixing z(X) = Z in (4),

min
W

||sgn(W⊤A)⊤Z− S||2. (6)

In practice, we initialize R by PCA projections. Similarly,

by fixing h(A) = H, we obtain the following sub-problem

with variable R,

min
R

||H⊤sgn(R⊤X)− S||2, (7)

Problem (6) or (7) is still with the sign function and can-

not be solved trivially by an off-the-shelf solver. We now

present a scalable and tractable method to (6), and (7) can

be accordingly solved in the same way. To conquer the op-

timization involving discrete function, we introduce an aux-

iliary variable B ∈ {−1, 1}r×n to separate the optimizing
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variable W and the sign function. We will show next the in-

troduction of the auxiliary variable B (binary codes for A)

is the key to simplify the optimization. We rewrite problem

(6) as

min
B,W

||B⊤Z− S||2 + λ||B−W⊤A||2 (8)

s.t. B ∈ {−1, 1}r×n.

The objective of (8) has a clear explanation: the first term

minimizes the inner products fitting error by the learned bi-

nary codes; while the second term ensures the hash function

h(x) can well predict the target binary codes B with min-

imum quantization loss. The parameter λ serve a trade-off

between these two loss terms.

In problem (8), given B, it is easy to compute W

W =(AA⊤)−1AB⊤. (9)

We then have the following problem w.r.t. B,

min
B

||B⊤Z||2 − 2trace(B⊤D) (10)

s.t. B ∈ {−1, 1}r×n,

where D = ZS⊤ + λW⊤A. Note that ||B||2 = nr.

For this key sub-problem, inspired by the recent progress

of binary codes optimization [29], we choose to solve one

row of B each time while fixing all other rows, i.e., we com-

pute one-bit for all n samples each time. Let b be the lth

row of B, l = 1, · · · , r, and B̃ the remaining rows of B.

Then b contains one bit for each of n samples. Similarly, let

d be the lth row of D, D̃ the matrix of D excluding d, z the

lth row of Z and Z̃ the matrix of Z excluding z. With these

notations and a few simple matrix manipulations, problem

(10) can be written as w.r.t. b

min
b

b(B̃⊤Z̃z⊤ − d⊤) (11)

s.t. b ∈ {−1, 1}n.

Thus, we obtain the optimal solution for the lth row of

B,

b = sgn(zZ̃⊤B̃− d). (12)

By this method, each bit is iteratively updated with the pre-

learned r − 1 bits till the procedure converges with a set

of better codes. In our experiments, the procedure usually

converges with less than 10 iterations. With the analytical

solution for each bit, the whole optimization is very effi-

cient and thus can easily scale to massive data. Till now,

we are ready to solve problem (8) (therefor also (6)) itera-

tively with the solution of W and B provided above. By

iteratively solve (6) and (7), we finally obtain a pair of hash

function of h(·) and z(·). Although this method can hardly

achieve the globally optimal solution for the discrete opti-

mization problem, at each step, the local optimal solution

for each variable (e.g., W,b) is obtained in a closed form.

We will show in the experiments that this optimization strat-

egy works very well. Since the objective (4) of this method

involves a quadratic term with the hash functions, we denote

this method as AIBC-Q.

Note that the supervised hashing approach KSH [19]

used a similar objective as in (4). However, our binary

coding approach mainly differs from KSH in the following

three aspects: 1) KSH is supervised while our AIBC is un-

supervised. 2) For each binary bit, KSH learns a single cod-

ing function while AIBC learns two coding functions in an

asymmetric fashion. 3) KSH applies a greedy optimization

procedure to solve a relaxed problem by using a sigmoid

function to replace the sign function. In contrast, AIBC di-

rectly optimizes the binary codes without resorting to any

continuous relaxations. In the experiments, we implement

an unsupervised version of KSH and the comparative results

clearly show the advantage of our AIBC technique.

2.3. Inner­product correlation maximization

In this part, we propose an alternative model to further

speed up the learning procedure of AIBC. The new model

simplifies the objective in (4) by directly maximizing the

correlation of the similarity matrix S and
(

h(A)⊤z(X)
)

,

max
h,z

trace(h(A)Sz(X)⊤). (13)

We note that the objective function of (13) can be easily

obtained by discarding the quadratic term ||h(A)⊤z(X)||2

in (4). Note that the quadratic term does not leverage the

groundtruth similarity and can be seen as a regularization

with the magnitude of the learned inner product. We find

in practice omitting this term does not adversely affect the

performance. In contrast, we show next it provides a much

more efficient mean of solving the asymmetric hash func-

tion learning problem.

Using the same strategy described in the previous sec-

tion, for (13) we obtain the following two sub-problems (14)

and (15) w.r.t. W and R, respectively.

max
W

trace(sgn(W⊤A)SZ⊤); (14)

max
R

trace(HSsgn(R⊤X)⊤). (15)

By introducing the auxiliary variable B, problem (14) is

formulated as

max
B,W

trace(BSZ⊤)− λ||B−W⊤A||2 (16)

s.t. B ∈ {−1, 1}r×n.

Same as problem (8), we solve problem (16) iteratively

with B and W. The difference is, problem (16) benefits
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Table 1: Results in terms of mAP, Precision of top 500 samples and Hamming distance 2 Precision of the compared methods on SUN397

with 32, 64 and 128 bits, respectively.

Method
mAP Precision@500 HD2 Precision

32-bit 64-bit 128-bit 32-bit 64-bit 128-bit 32-bit 64-bit 128-bit

LSH 0.0605 0.0920 0.1428 0.0921 0.1397 0.2036 0.0304 0.0011 0.0002

ALSH 0.0592 0.0913 0.1425 0.0918 0.1406 0.2033 0.0352 <0.0001 <0.0001

SH 0.2103 0.2191 0.1991 0.2737 0.2877 0.2735 0.2479 0.0084 0.0002

IsoHash 0.2414 0.2668 0.2850 0.2912 0.3198 0.3391 0.3101 0.0131 0.0005

ITQ 0.3014 0.3336 0.3456 0.3448 0.3774 0.3887 0.3815 0.0779 0.0039

InnerKSH 0.2900 0.3312 0.3558 0.3367 0.3734 0.3923 0.3735 0.1442 0.0314

AIBC-Q 0.3549 0.3925 0.4299 0.3996 0.4263 0.4409 0.4684 0.1646 0.0376

AIBC-L 0.3639 0.4042 0.4348 0.4078 0.4428 0.4642 0.4704 0.1746 0.0522
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Figure 1: Precision curve of up to top 2000 retrieved samples and precision-recall curves on SUN397. We only report AIBC-L for AIBC

for clarity. 64 bits are used.

from the advantage that it has a optimal analytical solution

for B with a given W,

B = sgn
(

ZS⊤ + 2λW⊤A
)

. (17)

This property does not only make (16) much more efficient

to solve but also provide more accurate solution for the w-

hole optimization. This explains why this method performs

slightly better than AIBC-Q in our experiments. The opti-

mization of (16) can be easily solved by iteratively updating

B and W (by (9)). With the above closed-form solutions,

the training of the proposed method can be easily performed

on large-scale data with very high efficiency. Since the ob-

jective (13) of this method only involves a linear term with

each hash function, we denote this method as AIBC-L.

The proposed Asymmetric Inner-product Binary Coding

(AIBC) is summarized in Algorithm 1.

3. Experiments

In this section, we evaluate the proposed methods on

three large-scale datasets: YouTube Faces [38], SUN397

[39] and ImageNet [4]. The proposed two methods AIBC-

Q and AIBC-L are compared against several state-of-the-art

hashing methods including LSH (implemented by signed

random projections), ALSH [32], SH [37], ITQ [8], Iso-

Hash [12]. We also compare the unsupervised version of

Algorithm 1 Asymmetric Inner-product Binary Coding

(AIBC)

Input: Data A and X; code length r; maximum iteration

number t; parameters λ.

Output: Hash function h(x) and z(x).

1. Compute the similarity matrix S = A⊤X.

2. Initialize R by PCA projections.

3. Loop until converge or reach maximum t iterations:

- h-step: Compute W by solving problem (6) or (14).
- z-step: Compute R by solving problem (7) or (15).

KSH [19] implemented by ourselves with the similarity

computed by inner product (thus named InnerKSH). We use

the public codes and suggested parameters of these methods

from the authors. For InnerKSH, we use 4,000 training sam-

ples to form the pairwise similarity matrix and randomly

choose 1,000 samples as anchor points. Since our methods

are unsupervised, we do not compare them with the super-

vised methods. For our AIBC, we empirically set the pa-

rameter λ to 100 and the maximum iteration number t = 2;

the data matrix A is set as the whole training data; X is

formed by the 10,000 randomly selected points from train-

ing data. We binarize each column of S with a threshold
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Table 2: Results in terms of mAP, Precision of top 500 samples and Hamming distance 2 Precision of the compared methods on the

YouTube Faces database with 32, 64 and 128 bits, respectively.

Method
mAP Precision@500 HD2 Precision

32-bit 64-bit 128-bit 32-bit 64-bit 128-bit 32-bit 64-bit 128-bit

LSH 0.1341 0.2513 0.4092 0.2710 0.4811 0.7004 0.4444 0.2388 0.1400

ALSH 0.1124 0.2104 0.3565 0.2210 0.4106 0.6355 0.3262 0.0726 < 0.0001
SH 0.6543 0.6395 0.5677 0.8556 0.9001 0.9047 0.9596 0.3547 0.1447

IsoHash 0.6756 0.7204 0.7274 0.8698 0.9150 0.9274 0.9561 0.5037 0.1492

ITQ 0.7443 0.7775 0.7767 0.8979 0.9321 0.9416 0.9646 0.8229 0.4587

InnerKSH 0.7512 0.7634 0.7757 0.8989 0.9138 0.9239 0.9697 0.8676 0.6434

AIBC-Q 0.7913 0.8175 0.8293 0.9393 0.9502 0.9625 0.9859 0.9444 0.8532

AIBC-L 0.8152 0.8233 0.8400 0.9477 0.9551 0.9590 0.9931 0.9716 0.9329
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Figure 2: Precision curve of up to top 2000 retrieved samples and precision-recall curves on YouTube Faces. We only report AIBC-L for

AIBC for clarity. 64 bits are used.

computed by the kth largest one among the n inner prod-

ucts, where k is set to 500 for SUN397, 1000 for ImageNet

and 2000 for YouTube Faces. For evaluation, database data

and queries are compressed by h(x) and z(x), respectively.

We report the compared results in terms of both hash

lookup: precision of Hamming distance 2 (HD2 Preci-

sion) and Hamming ranking: mean of average precision

(mAP) and mean precision of the top 500 retrieved neigh-

bors (Precision@500). We also present the detailed result-

s by precision-recall and the precision of top 2000 curves.

Note that we treat a query a false case if no point is returned

when calculating precisions. Ground truths are defined by

the category information from the datasets.

3.1. SUN397: retrieval with scene images

SUN397 [39] contains about 108K images from 397

scene categories, where each image is represented by a

1,600-dimensional feature vector extracted by PCA from

12,288-dimensional Deep Convolutional Activation Fea-

tures [9]. We use a subset of this dataset including 42 cat-

egories with each containing more than 500 images (with

total 33K images); 100 images are sampled uniformly ran-

domly from each category to form a test set of 4,200 images.

The comparative results are shown in Table 1. First we

can see that the proposed AIBC-L significantly outperforms

all other algorithms in mAP, precision of top 500 and Ham-

ming distance 2 precision. Our AIBC-Q performs slight

worse than AIBC-L on this dataset, although it still outper-

forms all other methods in all situations. Among other com-

pared methods, ITQ and InnerKSH achieve best results. It

is not surprising that the data-independent algorithm LSH

and ALSH do not perform as well as other learning based

methods. Interestingly we also observe that the asymmet-

ric ALSH algorithm achieves close results with the orig-

inal signed random projection based LSH method on this

dataset. The detailed precision curves of top 2000 retrieved

samples and the precision-recall curves using 64 bits are

shown in Figure 1. We can easily see that the performance

rank of the precision curves of the compared methods is

consistent with the above analysis. The proposed AIBC still

performs the best among the compared algorithms.

Efficiency We further take the SUN397 dataset as an

example to evaluate the computational efficiency of these

compared algorithms. The model training time and the test-

ing time (of compressing one query into binary codes with

the trained model) are shown in Table 4. First, we are not

surprised to see that the proposed AIBC-L has a significant
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Table 3: Results in terms of mAP, Precision of top 500 samples and Hamming distance 2 Precision of the compared methods on the

ImageNet database with 32, 64 and 128 bits, respectively.

Method
mAP Precision@500 HD2 Precision

32-bit 64-bit 128-bit 32-bit 64-bit 128-bit 32-bit 64-bit 128-bit

LSH 0.0496 0.0974 0.1743 0.1036 0.1963 0.3133 0.0708 < 0.0001 < 0.0001
ALSH 0.0495 0.0907 0.1694 0.1043 0.1847 0.3074 0.0644 < 0.0001 < 0.0001

SH 0.2418 0.3066 0.3309 0.3647 0.4531 0.4956 0.4029 0.0327 0.0004

IsoHash 0.2521 0.3326 0.3847 0.3673 0.4649 0.5231 0.4194 0.0342 0.0002

ITQ 0.3231 0.4127 0.4621 0.4304 0.5313 0.5882 0.4619 0.1730 0.0435

InnerKSH 0.4073 0.4651 0.4850 0.5080 0.5693 0.5893 0.4942 0.2345 0.0743

AIBC-Q 0.4421 0.5280 0.5756 0.5702 0.6180 0.6658 0.5280 0.3102 0.1828

AIBC-L 0.4771 0.5402 0.5753 0.5796 0.6375 0.6643 0.5595 0.3817 0.2243
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Figure 3: Precision curve of up to top 2000 retrieved samples and precision-recall curves on ImageNet. We only report AIBC-L for AIBC

for clarity. 64 bits are used.

computational advantage over AIBC-Q, due to the simpli-

fied objective. Compared to SH, IsoHash and ITQ, AIBC-L

consumes more time to train the hash functions, which is

mainly occupied by the inner product matrix calculation.

However, the training of AIBC-L is still sufficiently effi-

cient to scale to large-scale data: it runs only about 15 sec-

onds on a standard PC for training with the whole 33K im-

ages of the SUN397 database. As can be seen, InnerKSH

suffers from a huge computational overhead with the greedy

optimization procedure, while AIBC-L can be trained much

more efficiently with the closed-form solution of each sub-

problem.

3.2. YouTube Faces: retrieval with face images

YouTube Faces dataset contains 1,595 different people,

from which we choose 340 people such that each one has at

least 500 images to form a subset of 370,319 face images,

and represent each face image as a 1,770-dimensional LBP

feature vector [1]. We use a subset of YouTube Faces with

38 people each containing more than 2,000 faces (about

100K images in total). The test set includes 3,800 face im-

ages which are evenly sampled from each of the 38 classes.

We report the results on YouTube Faces in Table 2. A-

gain, the proposed AIBC-L and AIBC-Q achieve the best

Table 4: Comparison of the the computational efficiency (in con-

sumed seconds) on SUN397. Both the training and testing time

are compared with two different code lengths.

Method
Training time Testing time

64-bit 128-bit 64-bit 128-bit

LSH 0.0846 0.1459 3.136e-6 3.629e-6

ALSH 0.5460 0.5976 1.296e-5 1.486e-5

SH 2.377 5.223 2.750e-5 1.060e-4

IsoHash 1.825 2.311 3.664e-6 6.335e-6

ITQ 3.326 5.296 3.527e-6 6.409e-6

InnerKSH 1933.1 4259.1 5.533e-5 6.1706e-5

AIBC-Q 53.29 173.9 3.179e-6 4.240e-6

AIBC-L 15.19 15.61 3.272e-6 3.853e-6

results on this dataset in all situations. For instance, with 64

bits the proposed AIBC-L obtains 82.33% which are higher

than the second best 77.75% (ITQ) by 4.85%. SH and Iso-

Hash do not perform as well as other data-dependent meth-

ods on this dataset. For HD2 Precision, we can see that most

of the data-dependent methods perform well with short code

lengths. However, SH, IsoHash and ITQ suffer from dra-

matic performance drop with long hash bits due to the in-

creasingly sparsity of Hamming space. In contrast, with 128
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bits AIBC-L still achieves a high precision (93.29%) which

outperforms all other methods by large margins. The supe-

riority of the proposed AIBC is further shown in Figure 2.

It is clear that AIBC ranks the first on both precision of top

2000 and precision-recall.

3.3. ImageNet: retrieval with large dataset

As a subset of ImageNet [4], the large dataset ILSVRC

2012 contains over 1.2 million images of totally 1,000 cat-

egories. We form the retrieval database by the 100 largest

classes with total 128K images from the provided training

set, and 50,000 images from the validation set as the query

set. As in [17], we use the 4096-dimensional features ex-

tracted by the convolution neural networks (CNN) model.

The results are shown in Table 3. The superiority of the

AIBC is further demonstrated on this large-scale database.

For example, with 64-bit AIBC-L achieves 54.02% mAP

while the best results of other methods is 46.51% obtained

by InnerKSH. For hash lookup, AIBC-L gets a precision

of 22.43% while those of ITQ and InnerKSH are all less

than 10%. Between the proposed methods, AIBC-Q tends

to achieve better MAP and precision than AIBC-L with long

binary codes. However, in HD2 precision AIBC-Q is still

inferior to AIBC-L. Figure 3 illustrates the precision and

precision-recall curves, which clearly show AIBC performs

better than other methods on this large dataset.

3.4. Algorithm analysis

In this subsection, we empirically evaluate the proposed

algorithm (AIBC-L) on ImageNet with parameter λ varied

from 0.1 to 10,000. We observe from Figure 4 (left) that the

performance reaches the peak at λ = 100, and drops dra-

matically with larger λs. We also show in Figure 4 (right)

the objective values of our algorithm with increasing num-

ber of iterations. As can be seen, the objective value does

not change significantly with more than 5 iterations.

4. Conclusions

This paper focused on binary code learning for the MIPS

problem through proposing an inner-product fitting frame-

work. In the framework, two asymmetric coding functions

are learned such that the inner products between original

data pairs are approximated by the produced binary code

vectors. While this framework is conceptually simple, the

associated optimization is very challenging due to the pres-

ence of discrete sign functions. Benefiting from the flexi-

bility of the asymmetric coding mechanism, we solved the

optimization in an alternating fashion involving two sub-

problems. We also proposed an alternative objective that

maximizes the correlations between the inner products of

the pursed binary codes and raw data vectors, which enjoys

a closed-form solution for each sub-problem, thus making

the whole optimization more efficient.
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Figure 4: (Top) MAPs with varying λs; (Bottom) the function of

objective value with iterations.

To obtain high-quality binary codes, both of our pro-

posed two approaches directly optimize the target binary

codes without resorting to continuous relaxations. The pro-

posed Asymmetric Inner-product Binary Coding (AIBC)

technique with both qudratic (AIBC-Q) and linear objec-

tives (AIBC-L) were evaluated on several large-scale image

datasets. Experimental results showed AIBC significantly

outperforms several state-of-the-art hashing methods.
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