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Abstract

Wind power penetration has been consistently growing and it has been rapidly becoming a
significant generation technology in many countries. However, the intermittent and variable nature
of wind energy is a major barrier in wind power commitment. Wind speed fluctuations and
unpredictability can affect the operation and reliability of power systems. Therefore, the impact of
integrating large volume of wind generators on the system reliability needs to be carefully
investigated and the reliability contributions of wind farms require to be evaluated for better
integration of wind energy sources.

Because of intermittency and variability of wind energy, conventional reliability evaluation
methods are not applicable and different techniques have been developed to model wind generators.
However, most of these methods are time-consuming or may not be able to capture time
dependency and correlations between renewable resources and load. Therefore, this research
intends to improve the existing reliability methods and proposes a faster and simpler approach. In
this approach, wind power and electricity demand are being modelled as time-dependent clusters,
which not only can capture their time-dependent attributes, but also is able to keep the correlations
between the data sets. To illustrate the effectiveness of this framework, the proposed methodology
has been applied to the IEEE reliability test system. In addition, the developed technique is
validated by comparing results with the sequential Monte Carlo technique.

Due to an increase in the wind power penetration level in Australia, this research also investigates
the contribution of wind power in the Australian power system from reliability point of view. In
order to calculate the reliability contribution of wind power, the proposed framework is
implemented on the national electricity market at two different reliability assessment levels:
generation and composite system levels. Moreover, the impacts of strategies such as coordinating
hydro units with wind farms on the reliability of wind energy are investigated. Similar to wind
energy, photovoltaic (PV) penetration level is increasing in the Australian power system, which can
affect not only the reliability of the power system, but also the reliability benefit of wind farms.
Therefore, in this thesis the impacts of solar energy on wind load carrying capability under different

scenarios are also assessed.
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Chapter 1

Introduction

1.1. Background and Problem Statements

1.1.1. Reliability Contribution of Wind Power

The use of wind energy is growing significantly and this clean energy continues to be the
technology of choice in many countries around the world. Governmental support and policies are
the most important motivations for the growth of the wind industry [1]. However, wind
unpredictability and variability are the main barriers in its development and bring several challenges
to power systems. Reliability, steady-state analysis, power system security and frequency regulation
are some of the main technical issues that are influenced by wind integration [2]. The growth of
wind energy in the electricity grid with its specific characteristics may add too much uncertainty to
the system’s reliability and affects its ability to supply electricity demand. Thus, it is important to
understand the reliability contribution of wind farms and evaluate their actual capability to supply
demand.

Reliability of an electric power system and its ability to supply electricity demand as
continuously as possible is an important challenge and system operators and planners always
attempt to improve it. There are three levels in reliability assessment studies: generation,
transmission and distribution [3]. Hierarchical level 1 (HLI) is related to the sufficiency of the
generation system to serve electric load. Hierarchical level 2 (HLII), which is also known as
composite system level, studies the reliability of systems considering inadequacy and outages in
both generation system and transmission network. In hierarchical level 3 (HLIII), the ability of
power system facilities from the generation point to supply electricity demand is evaluated.
However, because of the extreme scale of this level, HLIII is usually conducted only in the
distribution facilities zone. The research described in this thesis focuses on the generation system

and composite system studies.

Reliability assessment of power systems in the presence of wind generators is a main concern.
As the characteristics of wind units are different from conventional generators, different approaches

should be taken to model them and to evaluate their reliability contributions. Several probabilistic
1
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and analytical methods have been developed in recent years to model wind power in reliability
studies and to calculate their reliability benefits [4]-[9]. Negative load and time series [4], [5],
multistate unit [6]-[8] and probabilistic distribution [9] are some of the popular models recently in
use. The first group utilizes chronological techniques for reliability assessment. These techniques
are capable of keeping correlations between wind and demand. However, their main drawback is
extensive evaluation time, especially in the composite system studies. On the other hand, multistate
and probabilistic models [6]-[9] are fast but may not be able to keep the chronological features and
correlations between datasets. Although some studies presented techniques to keep the relevancies
between wind generation and load data [10]-[14], these methods still face difficulties in modelling
for systems with a large number of renewable units. For example, wind farms and demand data are
modelled as three dimensional clusters in [12] to keep the correlations between them. However, by
increasing the number of wind farms, the size of the matrix will grow and calculations will become
complicated. Moreover, some of these approaches such as the non-iterative method presented in
[14] are applicable only at the generation level and have not addressed the reliability assessment at

the composite system level.

Therefore, to address the deficiencies of the previous studies and improve the existing methods,
a time-dependent clustering approach is developed in this thesis. This methodology is capable of
keeping the correlations and time dependency features of data sets and can be used to model both
wind and solar generation. In addition, since this technique is using clustered data, it is efficient in
the use of computational time and does not require a large amount of historical data. Another
advantage of this method is its simplicity, even in networks with a large number of wind farms and
solar units it will remain simple and fast. Furthermore, this framework is applicable to analyse the

contribution of renewables at both generation and composite system levels.

1.1.2. Reliability Benefit of Wind Power in The Australian Market

Similar to other countries, renewable energy contribution in the Australian National Electricity
Market (NEM) has been increasing. From all renewable energy resources, the share of wind power
is the highest in the NEM. Total installed capacity of wind in this market by the end of 2014 was
more than 3GW and is expected to increase to 11GW by 2020 [15]. Since the share of wind energy
in the NEM is rising, its role in this electricity market is becoming more significant and will affect
the reliability of this system. Therefore, comprehensive studies are required to investigate the
impact of wind power on the reliability of the NEM network. Furthermore, to have a reliable system
in the future, an accurate estimation of wind farms capability to supply electricity demand in this

power system is crucial.
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In order to calculate the reliability contribution of wind in NEM, a time-dependent approach is
utilized to model wind power, electricity demand and exchanged power through interconnections.
The main reason for applying this methodology is its advantages mentioned before. In particular, its
time efficiency in the transmission level studies of large power systems in the Australian NEM,
where the sequential methods might not be explicitly applicable and need significant computational

time.

1.1.3. Impact of Solar Power on the Reliability Contribution of Wind

Moreover, solar photovoltaic (PV) penetration level has also been increasing in many power
systems. The integration of solar units affects the demand profile and overall reliability level, and as
a result the reliability contribution of wind farms will be affected. Several studies have proposed
models for PV generators in reliability assessment and have evaluated electric system reliability in
the presence of solar energy [16]-[18]. However, these works haven’t considered wind generation

in their studies and the reliability assessment has been performed for just PV panels.

In the case of studying the impact of solar energy on wind contribution, a few works have
addressed the reliability of systems with wind and solar PV generators [13], [19]. However, they
have considered both wind and PV together and have not studied the impact of PV generation on
the reliability benefits of wind farms. Moreover, they have done the assessment only for small test
systems. To our best knowledge, little or no study has evaluated the reliability benefit of wind and
solar for a large scale realistic power system, and the influence of solar generation on the reliability

contribution of wind energy has not yet been analysed.

To address these gaps and investigate the influence of solar energy on reliability benefits of wind
generators, the South Australia (SA) power system has been selected as a case study. This system
has the highest level of wind generation in Australia and also has a high penetration level of solar
energy [20]. The time-dependent clustering methodology is applied to model wind, solar power and
load data. Then the reliability contribution of solar power in this power system is evaluated and a
sensitivity analysis is conducted to assess the influence of PV integration level on the reliability
level of SA. In addition, the impact of PV panels on the reliability benefit of wind farms is analysed

and the contribution of renewables in the future of this electricity network is investigated.
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1.2. Thesis Objectives

This research aims to assess the impacts of integrated wind farms on the reliability of the
Australian power system. The following objectives are investigated in this thesis:

1. Proposing a time-dependent clustering approach to address the drawbacks of current
techniques in calculating the reliability contribution of wind farms.

2. Validating the proposed methodology and verifying its effectiveness by applying it on a
standard test system and an Australian power system.

3. Studying the wind market in Australia and investigating the reliability contribution of
wind power in the national electricity market at two different reliability assessment levels:
generation system and composite system.

4. Investigating factors that can affect the reliability benefit of wind farms in different
reliability assessment levels. Evaluating techniques such as hydro coordination to improve
the reliability contribution of wind power.

5. Developing a method to analyse the influence of solar PV generators on the reliability
benefit of wind farms. Verifying this method’s effectiveness by applying it to an
Australian power system. Validating its ability to capture seasonal impacts and the

influence of correlations between wind regimes and solar pattern.
1.3. Thesis Structure

Following this chapter, the rest of the thesis is organized as follows:

Chapter 2 describes wind characteristics, power curve and capacity factor. A brief overview of
global wind market was provided and the experiences of some leading countries in this industry are
discussed and, government policies and supporting targets in these countries are reviewed. In
addition, the current situation and the future of wind energy in the Australian NEM are presented

and the importance of this research for NEM is explained.

Chapter 3 reviews reliability assessment models and techniques. Reliability assessment levels are
defined and main reliability indices in these levels are described. Different models to simulate
generating units, load and system risk in reliability studies are presented. The process of performing
Monte Carlo simulation methods to estimate the reliability indices are explained using IEEE

reliability test system (RTS).

Chapter 4 defines the capacity value term and reviews different techniques to calculate capacity

value of wind power. Furthermore, several models to represent wind in reliability studies are
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presented and their advantages and disadvantages are discussed. Then, the process of the proposed
methodology to calculate the capacity value of wind power is explained and its effectiveness is
examined for the IEEE-RTS system as a case study. Finally, outcomes have been compared with
results of the sequential Monte Carlo technique to validate the accuracy of the developed approach.

Chapter 5 presents the capacity value of wind power in different regions of the Australian
National Electricity Market. The reliability assessment has been conducted at generation and
composite system levels. Furthermore, the impact of interconnections and interstate exchanged
power on the capacity value of wind is evaluated. For this reason, the capacity value of wind farms
in New South Wales and Victoria power systems, which have several interconnections, has been
calculated in island and connected modes. Moreover, coordinating hydro units with wind farms in
Tasmania to increase the capacity value of its wind power is investigated and different values are
selected as the coordination capacity to analyse the impact of different coordination capacities on

the reliability contribution of wind farms.

Chapter 6 provides an overview of solar energy in the NEM. Then, the proposed methodology to
model solar power in reliability studies is explained. South Australia, which has high levels of wind
and solar generation, is selected as the case study. The impact of solar PV on the capacity value of
wind energy at the generation level of SA has been investigated. Furthermore, the contribution of
renewable generators and the impact of solar energy in the future of South Australia are studied. In
addition, seasonal impact and the influence of correlations between wind regimes and solar

generation profile are analysed.

Chapter 7 provides a summary of the thesis findings and concludes the main contributions. In

addition, possible future research is recommended in this chapter.






Chapter 2

Wind Energy

2.1. Introduction

Wind energy is becoming a matured technology and is growing dramatically all over the world.
Governmental support and policies, which are established due to imperatives such as climate
change, energy security and economic competitiveness, are the most important motivations for the
growth in the wind industry [1]. For instance, the European Union (EU) has set a 20% renewable
energy target in final energy consumption by 2020. The EU is also considering increasing it to 27%
in the 2030 Climate and Energy package in order to meet the EU’s greenhouse gas emissions
reduction target. The Ministry of Energy in Japan started to support 50% of the cost of pre
Environmental Impact Assessment (EIA) investigations. In Mexico the target is to have 9,500MW
wind capacity by 2018 and 15,000MW by 2022 [21]. However, wind is unpredictable and variable
in nature, which affects several aspects of power systems. Reliability, grid planning, steady-state
analysis, power system security and frequency regulation are some of the technical issues that are
influenced by wind integration [2]. The growth of wind energy in the electricity grid with its
specific characteristics may add too much uncertainty to the system’s reliability and affects its
ability to serve a specific demand. Thus, it is important to understand the reliability contribution of

wind energy and evaluate its real capability in supplying the demand.

In common with many other countries/regions, the penetration level of renewable generators in
the Australian National Electricity Market (NEM) is growing rapidly. From all renewable energy
resources, the role of wind power is expected to become more significant in NEM. Australia has
seen an average 30% annual increase in installed wind power over the past decade and this trend is
expected to continue [21]. The current installed capacity of wind power in NEM is around 3.8 GW
[22]. Implementation of policies such as Renewable Energy Target (RET) [23] will be an important
driver for renewable generation expansion over the next 10 years in Australia. The RET scheme
aims to meet a renewable energy target of 33,000GWh by 2020, where for this purpose, an
additional 6 GW renewable capacity in the NEM is required [24]. However, as the integration of
wind power in this grid is increasing, more challenges are expected to rise in this power system and

reliability is one of the main concerns [25]. Therefore, comprehensive studies are required to

7
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investigate the impact of wind power on the reliability of the NEM. Furthermore, as wind turbines
are going to replace conventional generators, accurate estimation of wind farms capability to supply
the demand is crucial to having a reliable system in the future.

Therefore, in this chapter, the characteristics of wind power are described. Then an overview of
global wind energy is provided and the experience of three different countries, namely: Denmark,
Germany and USA, in integrating high levels of wind into the system is presented. Afterward, the
current situation and the future of wind energy in the Australian National Electricity Market (NEM)

are discussed and the importance of this research for NEM is explained.

2.2. Wind Characteristics

2.2.1. Wind Energy

The most obvious characteristic of wind is its fluctuation and unpredictability [26]. Variability is
a main concern, especially for systems with a high level of wind generators, where the wind power
fluctuations may become greater than the load and other generator variations. This variability will
be different for different sites and depends on the wind regimes and the topography of the wind
farm location. The relation between wind power and wind speed is nonlinear and therefore, the

fluctuations in wind power is significantly different from that of wind speed [1].
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Figure 2.1.Variations in the generated power of an individual wind farm (Orange line) vs total wind generation in
Australia (Black line) in June 2015.
Distributing wind turbines and aggregating wind farms across a large area may reduce the
correlation between their wind patterns and hence, decrease the level of variability in the total

output power of wind farms. Figure 2.1 displays the normalised variations of a sample wind farm
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and total wind power in Australia for June 2015 [27]. It can be seen that the impact of aggregation
is significant, and fluctuations in the total Australian wind generation is much lower than the output

of the individual wind farm.

Unpredictability is also important and can affect power systems operation and reliability.
Knowing the exact amount of power that wind farms are going to produce will make the operation
and reliability maintenance of power systems much easier and more economical [15]. Forecasting
over short time frames is not challenging as wind is relatively constant, even on an individual plant
basis. However, providing an accurate long term prediction is a main concern. Aggregation over a

large area will also improve forecasting performance [2].

2.2.2. Power Curve

The output power of a wind turbine is a function of wind speed and is related to specific values
of wind speed and nominal capacity of the turbine. The relationship between generated power of a
turbine and wind speed can be shown in a power curve. This curve depends on the characteristics of
the wind turbine and values of cut-in, cut-out and rated wind speeds of the wind generator [26].
Figure 2.2 displays the power curve for a sample 3 MW wind turbine [28].
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Figure 2.2. Power curve of a sample 3MW wind turbine

Cut-in wind speed is the speed at which the turbine starts to generate power. The wind turbine
reaches its nominal capacity at the rated speed and stops generating power when the wind speed is
blowing faster than the cut-out value. For the power curve demonstrated in Figure 2.2, the cut-in,
rated and cut-out wind speeds are 3 m/s, 14 m/s and 25 m/s, respectively.
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2.2.3. Capacity Factor

Capacity factor is the ratio of the mean power generated by a wind turbine in a period of time, to
the installed capacity of the turbine [26]. This value depends on the wind regime and the type of the
turbine. Capacity factor normally lies in the range of 25% to 40% [26] and can be different for
different seasons or even different years [1]. The capacity factor of wind farms is lower than the one

of conventional power plants like gas or coal generators.

This value can be calculated by means of (2.1) where, P denotes the mean power, x represents
the available power production, fp(X) is the probability density function of total wind power and C,

is the total installed capacity of the wind farm.

G
o ! xf ) (x)dx

) (:I (:I

2.1)

Another method to calculate the capacity factor is to divide the total amount of energy generated
by a wind farm during a period of time by the maximum possible amount of energy it could have
produced with its nominal capacity. The formula to calculate annual capacity factor of a wind farm
using this method is given in (2.2).

8760

2% (2.2)

" C, 8760

where, Xt is the average output power of wind farm at hour t.
2.3. International Increase and Overview of Wind Energy

Wind power penetration in electricity grids has been increasing considerably and wind turbines
are becoming one of the major electricity producers. Since the advent of these generators, every
year more wind farms are integrated into the power system. 2014 was a record year for the wind
industry and the wind market grew by almost 51 GW in this year. This growth was mainly driven
by China, Germany and the US [21]. It was a significant growth in comparison to 2013, when
universal installations were lower than 2012 and was just over 35.6 GW. The previous record
belonged to 2012, when almost 45 GW of new wind farms were installed worldwide. Global annual

installed wind capacity is displayed in Figure 2.3 [29].
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Figure 2.3. Global annual installed wind capacity 1997-2014 [29]

The global installed wind capacity is shown in Figure 2.4. It can be seen that in less than two
decades, the contribution of wind energy in producing electricity has grown significantly from less
than 8 GW in 1997 to around 370 GW by the end of 2014. This exponential trend is expected to
continue and the universal cumulative wind capacity is expected to double by 2020 in a moderate

scenario and rise to more than 700 GW [30].
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Figure 2.4. Global cumulative installed wind capacity 1997-2014 [29]

This increment in wind integration is a universal trend, however different countries have a
different share of universal wind energy. The cumulative wind power capacity of the top ten
countries in the world is given in Figure 2.5 [21]. It can be seen that China and USA together have
almost 50% of total installed wind power in the world. Germany is in third place with more than 39
GW of wind farms and Spain, India, UK, Canada, France, Italy and Brazil are next in order. The
total share of these ten countries in wind generation was more than 80% of the globally installed

wind capacity at the end of 2014.
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Figure 2.5. Top 10 countries with highest installed wind capacity at Dec 2014 [21]

Details of regional installed wind generators in the world at the end of 2014 is provided in Table
2.1 [21]. It shows that in 2013, Europe had the highest wind capacity with more than 120 GW of

wind farms. However, in 2014, wind energy in Asia increased significantly and by adding 26 GW

of new wind turbines in this year, Asia reached first place with 141 GW of wind power by the end

of 2014. This growth was mainly due to the huge installation of new wind farms in China, which

led all countries in that year. China installed more than 23 GW of new wind farms in 2014, the

highest annual added capacity for any country ever. The goal of China is to increase its wind
capacity to 200 GW by the end of 2020. North America is ranked third in the size of its wind

industry with 78 GW and other regions are following at a distance. By the end of 2014, Latin
America & the Caribbean had 8.5 GW, Pacific region 4.4 GW and the size of total wind farms in
Africa & the Middle East was around 2.5 GW [21].
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Table 2.1: Global installed wind power capacity (MW) — Regional distribution [21]

End 2013 New 2014 Total (End 2014)
AFRICA & MIDDLE EAST
Morocco 487 300 787
South Africa 10 560 570
Egypt 550 60 610
Tunisia 245 - 245
Ethiopia 7 - 171
Cape Verde 24 - 24
Other’ 115 14 129
Total 1,602 934 2,535
ASIA )
PR China 91,413 23,196 114,609
India 20,150 2,315 22,465
Japan 2,669 130 2,789
Taiwan 614 18 633
South Korea 561 47 609
Thailand 223 - 223
Pakistan 106 150 256
Philippines 66 150 216
Other? 167 = 167
Total 115,968 26,007 141,964
EUROPE
Germany 34,250 5.219 39,165
Spain 22,959 28 22,987
UK 10,711 1,736 12,440
France 8,243 1,042 9,285
Italy 8,558 108 8,663
Sweden 4,382 1,050 5,425
Portugal* 4,730 184 4,914
Denmark 4,807 105 4,883
Poland 3,390 444 3,834
Turkey 2,958 804 3,763
Romania 2,600 354 2,954
Netherlands 2,671 14 2,805
Ireland 2,049 222 2,272
Austria 1,684 41 2,095
Greece 1,866 114 1,980
Rest of Europe * 5,715 835 6,543
Total Europe 121,573 12,858 134,007
of which EU-28* 117,384 11,829 128,790
LATIN AMERICA & CARIBBEAN ;
Brazil** 3,466 2,472 5,939
Chile 331 506 836
Uruguay 59 405 464
Argentina 218 53 271
Costa Rica 148 50 198
Nicaragua 146 40 186
Honduras 102 50 152
Peru 2 146 148
(arribean 250 - 250
Others ® 55 28 83
Total 4,777 3,749 8,526
NORTH AMERICA
USA 61,110 4,854 65,879
(Canada 7,823 1,871 9,694
Mexico 1,917 634 2,551
Total 70,850 7,359 78,124
PACIFIC REGION
Australia 3,239 567 3,806
New Zealand 623 - 623
Pacific Islands 12 - 12
Total 3,874 567 4,441
World total 318,644 51,473 369,597 Source: GWEC

1 Algeria, Iran, Israel, Jordan, Kenya, Libya, Nigeria

2 Bangladesh, Mongolia, Sri Lanka, Vietnam

3 Bulgaria, Cyprus, Czech Republic, Estonia, Finland, Faroe Islands, FYROM, Hungary, Iceland, Latvia, Liech in, Lithuania, L g, Malta,Norway, Romania, Russia, Switzerland, Slovakia, Slovenia, Ukraine

4 Austria, Belgium, Bulgaria, Cyprus, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal,
Romania, Slovakia, Slovenia, Spain, Sweden, UK

S Caribbean: Aruba, Bonaire, Curacao, Cuba, Dominica, Guadalupe, Jamaica, Martinica, Granada, St. Kitts and Nevis

6 Bolivia, Colombia, Ecuador, Venezuela

b

Note:

Project dec issioning of approxi ly 523 MW and rounding affect the final sums
* Provisional figure

** Projects fully commissioned, grid ion pending in some cases
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2.3.1. Denmark

Denmark is one of the leading countries in the contribution of wind power in supplying total
demand. In 2014, around 39% of the electricity load in Denmark was served by wind power. By the
end of 2014, this country had 4,883 MW of installed wind turbines. Electricity demand in Denmark
varies between 2,100 MW and 6,300 MW, and the share of wind power in supplying load is
expected to go up to 60% by 2021. This system also has 4,200 MW of central power stations, 2,300
MW of combined heat and power (CHP) units and 575 MW of Solar PV systems. Around 75% of
Denmark’s wind farms are onshore (3,612 MW) and 1,271 MW of its wind capacity is from
offshore plants. Figure 2.6 displays the development of onshore and offshore wind farms and the
contribution of wind energy in total energy consumption from 1990 until 2014 and expectations till
2021. It can be seen that the share of wind is expected to grow further and the contribution of

offshore wind farms will increase.
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Figure 2.6. Development of Danish wind energy [31]

These values are the average, indeed in some occasions generated wind power may exceed
demand in Denmark. For instance, at 3am on 10 July 2015, wind farm production was as high as
140% of the Danish domestic demand and therefore, a significant share of it was exported to
Germany, Norway and Sweden through interconnectors [32].

2.3.1.1. Latest Policy and Future Wind Energy Development in Denmark

Around 200MW of onshore wind farms are expected to be installed by 2015, while there will be
no more offshore wind farms in Denmark before the period of 2017-2020 [21]. The wind energy

target for Denmark, established in March 2012, is to supply 50% of its electricity consumption from
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wind energy by 2020. With current wind generation in the Danish power system, this goal is
expected to be reached well before the target date of 2020. The long term plan for Denmark is to

serve 100 % of its total energy demand by renewable energy by 2050 [33].

The main challenge in the future of the Danish grid will be to provide an adequate technical and
regulatory framework for the continuation of the integration of wind energy in the system. This
framework should include the construction of new interconnectors to neighbouring countries and

implementing more wind power in the district heating system [21].

2.3.2. Germany

Germany has the highest installed wind capacity in Europe and third place globally. Its wind
generation capacity at the end of 2014 was 39,165 MW, of which more than 5,000 MW was
installed in 2014 [21]. The majority of Germany’s wind farms are onshore and the size of its
offshore plants in 2014 was 1,049 MW. The German grid has a maximum peak load of 82 GW [34].
Renewables supplied more than 25% of electricity demand in Germany in 2014, where the share of
wind power was around 9% [21]. In 2014, for the first time renewable energy has been the major
source in Germany’s electricity generation with around 83 GW of installed capacity. During several
days in 2014, renewables made up nearly 75% of peak power demand in Germany [35]. Fossil fuel
generators were the second source of electricity with the capacity of about 82 GW. This power
system also has more than 10 GW of hydro generators and 12 GW of nuclear power plants [34].

Total installed wind capacity in Germany for the last fourteen years is illustrated in Figure 2.7. It
shows that the wind industry has experienced a significant growth in this period and wind power in
Germany has gone up sevenfold. It can also be observed that the growth rate in 2014 was the
highest and this year was a record in integrating new wind farms.
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5,000
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MW 8,754 11,994 14,609 16,629 18,415 20,622 22,247 23,903 25,771 27,214 29,060 31,308 34,250 39,165
Source: CGWEC

Figure 2.7. Total installed wind capacity in Germany [21]

2.3.2.1. Latest Policy and Future Wind Energy Development in Germany

The Renewable Energy Sources Act (EEG), which was introduced in 2000, provides support for

wind energy in Germany. In 2014, the EEG was revised and new targets for renewables were
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defined. The new target is to achieve a 40 to 45% share of renewables by 2025, and 55 to 60% by
2035 and a minimum of 80% by 2050 [30].

In 2015, around 3,500 MW to 4,000 MW of new wind farms are expected to be installed in
Germany and almost half of this will be offshore wind farms. Although installation levels will stay
high, the growth rate is expected to slow down in 2016 and future developments will depend on the

timing and improvements in the German system [21].

The main barrier in the future growth of wind power in Germany is system optimisation and
transmission network development, especially for offshore wind. Technical and environmental
regulatory issues, such as rare species and turbine locations have delayed some wind farm

construction projects [21].

2.3.3. USA

Currently, the United States has the second highest installed wind power capacity in the world
with more than 65 GW of wind farms at the end of 2014. This clean source of energy has become
one of the main electricity producers in the US market due to a significant development in recent
years [21]. Although the US has a high level of wind energy, fossil fuel generators are still the
major electricity producer with more than 870 GW capacity. Nuclear power and conventional hydro
with about 104 GW and 79 GW capacity respectively have the next places in the US generation mix
[36]. The share of wind power in total electricity production of USA is around 5.5%. This is
almost equal to 8% of the maximum peak demand in 2014, which was around 770 GW [36].
However, as a result of continued technological improvement and domestic manufacturing, wind
has become one of the most affordable sources of electricity in the US and its share in electricity
production is growing rapidly. Figure 2.8 depicts the development of wind energy in the USA since
2001. From 2005 to 2012, due to supporting policies the wind industry grew dramatically and saw
800% growth in this period and average annual growth was around 31%. The record in wind energy

expansion belongs to 2012, when more than 13GW of new wind farms were installed [21].

80,000
70,000

60,000 i
: P -

.

20,000

10,000 - -

0 - — -

year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
MW 4,275 4,685 6,372 6,725 9,149 11,575 16,725 25,076 35,086 40,298 46,929 60,007 61,110 65,879

Source: GWEC

Figure 2.8. Total installed wind capacity in USA [21]
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The share of different states in total wind capacity of the US is different. Texas with more than
15 GW has the largest wind industry in the USA. The size of the wind market in all states is
displayed in Figure 2.9 [37]. After Texas, California and lowa are the leading states in producing

electricity from wind with 6,018 MW and 5,708 MW wind capacity, respectively.
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Figure 2.9. USA wind power installation by state [37]

2.3.3.1 Latest Policy and Future Wind Energy Development in USA

The federal Production Tax Credit (PTC) which has reduced the cost of wind is the main
incentive policy in the US. However, this credit usually expires and is extended for one and two
years. Therefore, the uncertainty and the frequent expirations in the PTC have affected the growth
rate in the US wind development. In 2015, the US Department of Energy released its Wind Vision
report which claims that the capacity of wind power can supply 10% of the US electricity
consumption by 2020, and then its contribution should double and become 20% by 2030. It also
predicts that wind energy can supply 35% of the electricity demand by 2050 [38].

2.4. Wind Power in The Australian National Electricity Market

The Australian National Electricity Market’s (NEM) electricity grid is operated by Australian
Energy Market Operator (AEMO) and includes the Eastern and South Eastern states of Australia:
New South Wales (NSW), Queensland (QLD), South Australia (SA), Victoria (VIC) and Tasmania
(TAS). This network is primarily dominated by Alternating Current (AC) with some High Voltage
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Direct Current (HVDC) interconnections. Like other countries, the contribution of wind power in
some Australian states (e.g. South Australia) is growing and it is becoming one of the major
electricity producers. In this section, a brief overview of the NEM is presented and the current role

of wind energy in this market and the future of wind power in Australia are discussed.

2.4.1. National Electricity Market

Currently, coal is the main source of electricity in Australia and gas is the second highest source
of generation. Total generation capacity of NEM in 2014 was about 48 GW, whereas the share of
these fossil fuels together was more than 75 per cent. Amongst clean technologies, hydro and wind
had the highest generation capacities with 7,987 MW and 3,144 MW respectively [39]. Although
the contribution of solar energy in the generation system and high voltage network was small, the
share of this renewable source at the distribution level was significant and at the end of 2014, there

were more than 4,100MW of rooftop photovoltaic systems in Australia [40].
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Figure 2.10. Generation capacity of National Electricity Market in 2015 [39]

The generation mixture of NEM at the end of 2014 is presented in Figure 2.10. This graph shows
the share of all energy sources in this market and the changes in their future contributions including
new installations and withdrawn projects. As can be seen from this graph, most of the committed
projects which, will be added to NEM in the near future, belong to renewables. A new project is
defined as committed if it meets all of the following AEMO criteria [25]:

e All land has been acquired.

e Contracts for supply of major components are finalised.
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e All planning and environmental approvals have been obtained.
e Financing arrangements are finalised.

e Project construction has commenced or a date for commencing construction has been set.

Publicly announced proposals represent generation at an early stage of development that has

satisfied less than three commitment criteria [25].

As the capacity of renewables is growing in Australia, conventional fossil fuel generators are
expected to be mothballed and replaced by clean technologies. Coal power plants are the first
nominees for retirement as they are highly pollutant and disperse harmful gases into the air. In the
National Transmission Network Development Plan [41], the following coal plants are projected to
be retired by 2020.

Table 2.2: Retired power plants in NEM by 2020 [41]

Region Fuel Type Capacity (MW)

QLD Black coal 190
NSW Black coal 1,644
VIC Brown coal 884
SA Brown coal 240
Total 2,958

Electricity demand growth in Australia has decreased in recent years due to several reasons such
as lower manufacturing activities due to higher labour cost, after effect of global financial crisis,
usage of energy efficiency technologies by most sectors and the integration of solar panels.
However, maximum load is predicted to increase again in the near future [42]. The maximum value
of electricity loads for different regions of NEM for the last three years are given in Table 2.3. In all
states, the maximum peak demand happens during the summer except Tasmania, where the
maximum load occurs in the winter. New South Wales has the highest demand and for many years
Victoria had been following that. However, since 2014 Queensland has taken over the second place

and is expected to keep this place for several years [42].
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Table 2.3: Maximum demand of NEM regions from 2012 till 2015 [42]

New South Wales Queensland South Australia Tasmania Victoria
2012 — 2013 13,892 8,479 3,095 1,599 9,774
2013 -2014 12,027 8,374 3,281 1,683 10,313
2014 - 2015 11,883 8,831 2,872 1,656 8,626

As the wind generation in the NEM is developing fast, the share of wind farms in supplying
demand will increase. Indeed, in South Australia currently there are some hours when generated
wind power exceeds the instantaneous demand [15]. These hours are expected to increase as the
wind level in SA is expected to grow by around 70% by 2020. Similar to SA, Tasmania will face
the same issue in the near future, i.e. expecting to face occasions where the wind generation
becomes higher than the electricity load. However, other states; NSW, VIC and QLD, are not
expected to experience this exceedance until after 2030 [15].

2.4.2. Wind Power in NEM

Wind energy is maturing in Australia and its total wind capacity has increased from around 73
MW in 2001 to over 3,800 MW at the end of 2014.. This growth has been consistent and every year
Australian wind generation has increased around 30%. The increment in total installed capacity of

wind power in Australia is drawn in Figure 2.11.
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Figure 2.11. Total installed wind capacity in Australia [21]

It can be seen that Australia’s wind industry had a strong year in 2014 with the addition of 567
MW of new wind farms. This was the second largest annual growth compared to 2013, where 655

MW of new wind projects were completed [21].

Australian wind farms are mostly distributed along its Southern coastline and to the West, which
are the regions with the most favourable wind resources. Predicted wind speed in Australia is
demonstrated in Figure 2.12 [43]. It shows that Australia has an excellent wind resource,

particularly in Tasmania, South Australia and Western Australia.
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Predicted wind speed at 80 metres above ground level,
1995-2005, Australia
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Figure 2.12. The potential of wind energy in Australia [43]

At the end of 2014, there were more than 3,200 MW wind farms in NEM, and South Australia
accounts for almost half of the share of this market [25]. This state generated more than 33% of its
electricity from wind energy between 2013 and 2014 [15]. All the regions in NEM have several
wind farms except Queensland, which has only one small wind farm. The capacity of other regions
and their wind generation levels is different. Victoria has the second largest wind capacity in
Australia and is expected to become the largest one by 2020 with about 5GW of wind farms. The
share of NSW was not that high, however new wind farms were added to this state and its capacity
rose to 559 MW by May 2015 [39]. Although the installed wind capacity in Tasmania is not that
high in terms of megawatts, its contribution is almost equal to 20% of the maximum demand of this
island. Details of the wind capacity of all states in NEM and the projected values in 2020 are given
in Table 2.4.
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Table 2.4: Installed wind capacity of NEM in 2014 and 2020 [39], [15]

Region Existing Wind (MW) 2020 Wind (MW)
New South Wales 281 2,382
Queensland 12 266
South Australia 1,473 2,555
Tasmania 308 1,368
Victoria 1,070 4974

24.2.1. Latest Policy and Future Wind Energy Development in Australia

The Australian Government’s Renewable Energy Target (RET) is a national scheme supporting
investment in renewable energy technologies [23]. As wind power is one of the lowest cost
technologies, it has been the dominant form of renewable generation to receive support under the
RET. This target was introduced in 2001 to support renewable energy development [44]. At the
beginning, the aim of this policy was to supply at least 20% or more than 41,000 GWh of
Australia’s electricity demand from renewable sources by 2020. Since then however, the electricity
load growth rate has decreased and it seems that with this target by 2020 the share of renewable
resources may overshoot the 20 percent [21]. In 2015, this policy was revised by the Australian
Government and the new target is to provide 33,000 GWh in 2020. This means by 2020 around
23.5% of Australia’s generation will be from renewables which is double in comparison to the

current levels [23].

Recent changes in the RET have brought uncertainty to the wind industry and put investors at
more risk. However, in the latest revision, it is agreed that the 33,000 gigawatt hour renewable
energy will be required by 2020 to meet the target in the changed load growth scenario. This will

give the renewable energy industry the certainty it needs to grow [23].

RET includes two main schemes: small-scale renewable energy scheme (SRES) and large-scale
renewable energy target (LRET). The LRET provides financial incentives for large renewable
energy power stations, such as wind and solar farms or hydro-electric power stations. While, the
SRES scheme supports owners to install eligible small-scale renewable energy systems such as

rooftop solar, solar water heaters, heat pumps, and small-scale wind and hydro systems [23].
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2.4.3. The Importance of This Work for NEM

Since the integration level of wind power is increasing significantly, more uncertainty and risk is
expected to be introduced to the system, in particular to system adequacy and reliability. The
intermittent nature of wind energy may affect the ability of power systems to supply demand with
high levels of confidence. For systems like Australia where conventional generators are expected to
retire and be replaced with wind power plants it is especially so. Therefore, it is important to
evaluate the capability of wind farms in supplying demand without reducing the reliability of the
system. In other words, the equivalent amount of wind power to replace conventional fossil fuel

generators should be estimated precisely in order to avoid generation inadequacy in the future.

Moreover, since wind farms are often located in remote areas and far from load centres, the
impact of the transmission system on the added value of wind energy should be investigated. This is
necessary not only for transmission expansion planning but also to have an appropriate estimation
of how much load wind farms can serve considering grid constraints and outages. Hence, a proper
model is required to study the reliability impacts of wind power plants at the transmission level.
Modelling interconnections in reliability assessment is crucial and can affect the results. In addition,
because of significant growth in solar generation the load pattern of NEM’s regions is changing. As

a result of this change, the reliability contribution of wind farms may vary.

Therefore, this research is investigating the reliability impacts of wind farms on the national
electricity market. The ability of wind farms in the NEM to supply the demand without increasing
the unreliability of this power network is evaluated. Furthermore, the impact of the transmission
system is assessed and different models are considered to study the influence of the interconnectors
between the NEM’s regions. In addition, the influence of solar generation on the reliability benefits

of wind power in the national electricity market is evaluated.
2.5. Summary

In this chapter, wind characteristics were described, and power curve and power factor terms
were defined. A brief overview of the global wind market was provided and the experiences of
some leader countries in this industry, namely Denmark, Germany and USA were discussed.
Government policies and supporting targets are the main drivers for wind development in these
countries and some technical developments are required for their future networks where high levels

of wind are expected to be integrated.

The Australian wind industry is rapidly developing as well, and according to the Australian

Government RET scheme, renewables are expected to generate 33,000 GWh electricity by 2020.
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This means more than 23% of demand in NEM will be served by clean generators and wind will
have the highest share in the near future. As more and more wind generation is integrated into the
grid, more conventional generators will be retired. This replacement will need to be managed
carefully to ensure the adequacy and reliability of the power system. Therefore, the actual capability
of wind farms to supply demand reliably should be evaluated. Furthermore, the impact of several
factors, such as transmission system constraints and changes in load pattern due to rooftop
photovoltaic systems, on the reliability benefits of wind energy should be investigated.

Because in most cases generation adequacy assessment is conducted using reliability measures
and indices, evaluation of wind load carrying capability using reliability techniques is the most
accurate and recommended calculation method. In the next chapter basics of power system
reliability are provided, important reliability indices are described and different methods to

calculate these indices are explained.
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Reliability Assessment

3.1. Introduction

Due to the failure of equipment and network elements in power systems, the electricity network
may not be able to fulfil its main function, which is to supply electricity demand with an acceptable
degree of reliability and as economically as possible. Failure of power system components is
usually outside of the control of system engineers and can lead to interruptions, which can affect a
wide range of customers from small residential loads to major industrial/commercial demands [45].
Therefore, reliability of an electric power system and its ability to supply electricity demand as
continuously as possible is an important challenge, and system operators and planners try to
improve it. Thus, power system reliability assessment has been widely developed and a wide range

of indices and methodologies have been proposed to evaluate the reliability level of a power system.

Reliability evaluation of power systems can be divided into two main classes of system adequacy
and system security [45]. System adequacy assessment is related to the sufficiency of the system
facilities to supply the electricity demand, which includes the capability of generation units to
produce enough electricity and the ability of transmission and distribution networks to deliver the
generated power to the load point. System security, on the other hand, indicates the ability of the
system to respond to disturbances arising within the system and is associated with system dynamic

and transient disturbances.

There are two main techniques to evaluate the system adequacy: analytical and simulation [46].
Analytical methods construct mathematical models for a system and calculate the reliability indices
by means of mathematical solutions. Simulation techniques, such as Monte Carlo, on the other hand
estimate the system insufficiency by simulating the real process and system behaviour using
statistical approaches. Simulation methods simulate the system in a series of experiments. Both of
these methodologies have advantages and disadvantages. Analytical methods are more accurate and
more efficient in small grids, however they may become complex for large systems [47]. While, in
Monte Carlo simulation techniques the number of samples to obtain an accurate result is

independent of the size of the system and is suitable for large systems. Moreover, analytical
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techniques (Section 3.2.1.5), unlike simulation methods, are not capable of simulating probability

distribution of element failure and repair activities [47].

Reliability assessment studies can be classified in three levels according to the functional zones
of a power system; generation, transmission and distribution [3]. Hierarchical level 1 (HL 1) is
related to the generation system adequacy and the sufficiency of electricity producers to serve the
load is evaluated regardless of the constraints and limitations of the transmission networks.
Hierarchical level 2 (HL II) considers the inadequacy and outages of both generation system and
transmission network together. HLII is also known as composite system level. In hierarchical level
3 (HL I1I), the ability of power system facilities from the generation point to the customer load
point, including power plants, transmission lines and distribution systems, in delivering electricity
and supplying the demand is evaluated. However, due to the extreme scale of this level in real
power systems, this level is usually conducted in the distribution facilities zone. These functional
zones can be combined in adequacy assessment studies as hierarchical levels illustrated in Figure

3.1. The research described in this thesis focuses on the HLI and HLII studies.
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Figure 3.1. Hierarchical levels in the power system reliability studies [45]

3.2. Reliability Evaluation for Adequacy Assessment

3.2.1. Generation System (HLI)

In generation system level studies, all the generators and loads of a system are accumulated into
the same bus and the system is modelled as a single bus system which is shown in Figure 3.2. The
transmission system is not a part of the analysis at this level, therefore, the limitations, outages and

contingencies of transmission lines are not considered in the HLI studies.
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Total System Total System
Generation Demand

Figure 3.2. Power system model in hierarchical level 1 (HLI)

The basic concern in the HL | studies is to determine the generating capacity sufficient to supply
the demand, considering the uncertainty in load variation, generator failures, maintenance and
repairs. In order to avoid unserved demand, a generation capacity higher than the peak demand is
required, in which the difference of the two is very often measured by the capacity reserve. There
are several deterministic and probabilistic methods to estimate the capacity reserve of the system.
However, deterministic methods do not distinguish the random nature of generator failures and the
uncertainty in demand and consequently are not capable of assessing the actual system risk.
Therefore, probabilistic methods, which are able to capture the random behaviour of units and load
fluctuations, have replaced deterministic approaches and are widely being used to evaluate the

system adequacy [48].

The general model of power system in generation adequacy (HLI) studies is shown in Figure 3.3.
This model consists of three main parts: generation, load and risk models [45]. Both analytical and
simulation techniques use this concept, however, they use different methods to model load,
generation and risk of the system. Although HLI is to evaluate the generation system shortages and
there is no transmission system model in it, limited tie-line considerations can be included in this
level. Interconnections between neighbouring systems and remote generating units are these

considerations.

Generation Load
Model Model

Risk
Model

Figure 3.3. Power system model in hierarchical level 1

As it can be seen in this figure, generation and load models should be constructed separately and
then being combined together in order to obtain the risk model and assess the system adequacy.

These models are described in the following sub-sections.
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3.2.1.1. Generation Model

The most important part of adequacy assessment in HLI is generation unit modelling. This model
can provide an artificial historical operation cycle for the generator. A generating unit in a power
system can be represented by multi-state Markov models. A conventional two-state model [49],
which is shown in Figure 3.4 [50], represents a generator that is working in the fully functional
state, or in the forced out of service state. The generating unit transits between these two states with

the transition rates A (failure rate) and p (repair rate), as is depicted in Figure 3.4.

- A
Unit >

Up -

Unit
Down

u

Figure 3.4. Two-state model for a generating unit

The mean time to failure (MTTF) is the average time a unit spends in the “Up” state, and is equal
to the reciprocal of the failure rate A. The mean time to repair (MTTR) is the average time taken to
repair a unit and is equal to the reciprocal of the repair rate p. By having MTTF and MTTR for each

unit and using random variables, an up-and-down cycle model for each generator can be produced.

The two-state model is usually used to represent base load generators which have long operating
cycles. These units can also be in a derated state, where they operate with a reduced-capacity in
addition to the up-state and down-state modes [50]. For these units a three-state Markov model

which is shown in Figure 3.5 can be used, where Ajj is the transition rate from state i to state j.

Unit
Up 1
A2l A31
A12 A13
Unit A32 A23 Unit
Derated Down

Figure 3.5. Three-state model for a generating unit
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The duration of the generating unit working in the up-state can be obtained using (3.1) and (3.2).
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T,=—1InU, (3.2)

where, Typ: IS the up-state duration if the system goes to down-state and Typ2 is the sampling
value of the up-state duration when the system transits to the derated mode, and U; and U> are
uniformly distributed random numbers. Therefore, the sampling value of up-state duration can be

calculated by means of (3.3).
Tup = min(TupliTupz) (33)

Tup can also be used to determine the next state of the unit. For example, if Tuy= Tup1, the unit
will transit to the derated state. By using the state durations, an operating cycle can be created for

the generating unit.

Peaking units are different from base units and have short operating cycles. Therefore, two-state
or three-state models may not be appropriate to represent them. Figure 3.6 displays the four-state

model proposed by the IEEE Task Group on Models for Peaking Service Units [51].

Reserve — IS Unit

Shutdown » InService
I (1-Ps)/T i
1/r Ps/T iym| |/
Y
Forced Out | 1/S Forced Out
Not Needed .. When Needed
1/T

Figure 3.6. IEEE four-state model for a peak generating unit

Where m and r represent mean time to failure and mean time to repair, respectively. T is average
reserve shutdown time between periods of need, S denotes the average in service time per occasion

of demand and Ps represents probability of starting failure.

Peaking units are in service only when they are needed and their starting up duration is so short
that they can be neglected in assumptions. In order to create an operation cycle for these units, first

a uniformly distributed random number in the interval of [0, 1] is produced. If this number is
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smaller than Ps the unit fails to start up, otherwise, it starts. Then the sampling values drawn for m

and r are used to indicate the next state of the generator and the duration of each state.

3.2.1.2.

There
1)

2)

3)

Load Model

are several methods to model load in reliability studies.

Fixed load: The simplest way is to consider the peak demand as a fixed load level for the
entire period of the study [47].

Chronological load: Another simple and popular method to model load in reliability
assessment is chronological load model. This model shows the hourly variations of the
system demand and can also be used to determine the annual peak demand or the
minimum load level. A chronological hourly load model for a sample power system in
Australia is shown in Figure 3.7. It can be seen that the annual maximum demand for this
system is around 12,000MW and the demand can drop to less than 6,000MW. The load
level can also be presented in per-unit values to model different peak demand scenarios

for the system.

14000 T T T . T . . .

12000

10000

8000

Demand (MW)

6000

4000 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Time (h)
Figure 3.7. Hourly load model for an Australian sample system
Load duration curve (LDC): LDC is also a popular method to represent demand in the
adequacy assessments in HLI. This model displays the relationship between generating
capacity requirements and capacity utilization. It is similar to the hourly load model but
in the LDC load is ordered in descending order of magnitude, rather than chronologically.
In other words, LDC model is the hourly load curve rearranged from chronological order

into an order based on magnitude [52]. The area under the load duration curve model
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indicates the total annual energy requirement of the system. The load duration curve for a
sample power system in Australia is illustrated in Figure 3.8. This model can also be

drawn in per-unit values.
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Figure 3.8. Load duration curve for a sample system
4) Clustered model: Load clustering is another approach to model load data. Clustering is a
useful method to classify a set of data into a set of groups. Each cluster is a collection of
load data objects with similar attribute values [53]. The clustering technique can be used
to create a multistep model of the annual load duration curve. There are several clustering
techniques and two of them are widely being used in power system reliability

assessments: K-means [53] and Fuzzy-C means (FCM) [54].

The K-means algorithm is a method to classify N data points into K clusters. Each cluster is
parameterized by a mean vector (M;). The hourly load data points are denoted by L, where the
superscript n is from 1 to the number of hourly data points N. For instance, N for 1 year hourly load
data is 8760. The distance from each hourly load point to each cluster mean value (Din) can be
calculated using (3.4).

D, =IM; -L, | (3.4)

Then load points are classified in the closest cluster and new cluster centres are determined by
means of (3.5).

2L
M. =nelc (3.5)
i C
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where, Ci denotes the number of load points in the in cluster and IC is the set of the load
points in the i cluster. This process is repeated until all the cluster means are fixed between

iterations.

Another clustering method is Fuzzy-C means (FCM). This method is one of the most popular
clustering techniques [55]. Unlike K-means algorithm, final clustered centres in this method are not
related to the initial mean values [56]. The objective function of FCM method is to minimize the

distance between data points and centre of clusters and can be formulated as (3.6) [54]:

IUN) =222 ) X -V, 1sm<o (36)

m=1 c=1

where, U is fuzzy partition matrix for C clusters and V denotes the matrix for centre of
clusters. M is the total number of input data, m represents the index of fuzziness and i is the
membership value as a weighing exponent between data vector (Xi ) and centre of cth cluster (V).

FCM is an iterative method; first the estimated membership values should meet Equation
(3.7). Then, by means of (3.8) the vector of cluster centres for kth iteration can be computed.

C

2 =1 viel..M (3.7)
20
Vv, =1 )m (3.8)
2\ O

m=1
The membership values for all input data are updated using (3.9) in each iteration.

®) _ 1

i{nxvcnrl (3.9

vl

10

The iterative process will continue until (3.10) is met. where, & is a small value for convergence

tolerance.

-1)

<& (3.10)

IPXOREFTRON

It should be noted that the clustering technique may result in multi-solutions. Therefore,
selecting an appropriate number of clusters to obtain a proper model is very important [57]. A 20-
step load model which is accurate enough to represent a sample Australian power system load data

is shown in Table 3.1. This table shows the value of load levels in per-unit (p.u.), which is the load
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level value in MW divided by the peak demand (12,000MW), and their probability of occurrence. It

can be seen that the probabilities of high demand levels are low.

Table 3.1: The 20-step load model of a sample System

Step No. Load Level (p.u.) Probability | Step No. Load Level (p.u.) Probability
1 0.3044 0.0214 11 0.5065 0.0645
2 0.3363 0.0479 12 0.5234 0.0655
3 0.3607 0.0668 13 0.5424 0.0580
4 0.3820 0.0686 14 0.5630 0.0518
5 0.4025 0.0663 15 0.5869 0.0441
6 0.4219 0.0724 16 0.6180 0.0357
7 0.4401 0.0718 17 0.6576 0.0257
8 0.4573 0.0675 18 0.7205 0.0149
9 0.4737 0.0729 19 0.8003 0.0108
10 0.4903 0.0673 20 0.8928 0.0061

3.2.1.3. Risk Model

Risk is a combination of a probability for an accident occurrence and resulting negative
consequences [46]. The extent of consequences in the power system can represent the amount of
unserved demand in a specific time interval or a number of affected customers, etc. The risk
criterion is a term that may distinguish between what is considered as an acceptable level of
reliability and what is not [46]. A wide range of related measures or indices can be utilized to model
and determine the risk of the system. The system risk model in generation adequacy studies is
related to generation and load models and is obtained by combining these two models, as was
shown in Figure 3.3. The risk model can be utilized to obtain the system risk indices. Some widely

used indices in generation system assessment level (HLI) are presented in the following subsection.

3.2.1.4.  Adequacy Indices in HLI

There is a variety of indices to measure the adequacy of the generation system. Some of the most
popular indices in HLI studies are loss of load probability (LOLP), loss of load expectation (LOLE)
and loss of energy expectation (LOEE). These indices are related to the unserved load in the system

and can be calculated using different techniques. Loss of load occurs whenever the system load
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exceeds the available generating capacity and these indices can be obtained according to the

probability, severity, duration and frequency of the shortages.

The LOLP is defined as the probability of the system load exceeding available generating
capacity [46]. The LOLP represents the insufficiency of installed available capacity and expresses

an expected percentage of hours or days per year of capacity deficiency.

The LOLE is the expected number of hours or days in a year that the loss of load may happen.
This index is closely related to the term LOLP. The difference between them is that LOLE is
expressed in the time units while LOLP is in percentage values [46].

The LOEE is the expected energy that will not be supplied by the generating system due to
generation inadequacy. This index incorporates the effect of inadequacies as well as their
probability. Normalized LOEE index, which is the energy not supplied divided by the total energy
demand, can be used to compare the reliability level of different systems.

Different analytical and Monte Carlo simulation techniques can be implemented to calculate the
capacity shortage and these adequacy indices. As mentioned in the introduction of this chapter,
these methods have their own advantages and disadvantages. Therefore, the appropriate method
should be selected based on the type of evaluation and the particular system problems.

3.2.1.5.  Analytical Methods

The easiest approach to calculate the reliability indices in analytical methods is to represent the
generation system with a capacity outage probability table (COPT). In the COPT, the combinations
of available and unavailable generating units and their associated probabilities of existence are
ordered in rows [46]. This table is also presented as a cumulative outage probability of having
capacity shortage. The method to create COPT for a sample system with one 70MW and two
30MW generators and 98% availability for all generating units is illustrated in Table 3.2. In this

table A denotes availability and U represents unavailability.

The COPT can be combined with the LDC load model to calculate the LOLP and LOLE of
system. The method of combining the different system capacity states in a generation model with
the load duration curve to make the system risk model and to calculate reliability indices is

demonstrated in Figure 3.9.
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Table 3.2: A sample a capacity outage probability table

Capacity Outage Available Capacity Awvailability Cumulative success probability

0 130 AxAxA 0.941192
30 100 UxAxA 0.019208
30 100 AxUxA 0.019208
60 70 UxUxA 0.000392
70 60 AxAxU 0.019208
100 30 UxAxU 0.000392
100 30 AxUxU 0.000392
130 0 UxUxU 0.000008

A

Installed capacity A
1 Reserve

Peak demand Capacity outage

\

e
(q+}
(@) M
|
Loss of load
duration
I
- - >
0 Time period T

Figure 3.9. Loss of load concept

Loss of generators causes the expected risk of loss of power supply E(t), which is also known as

mathematical expectation and is given in (3.11).
Ei (t) = piti (3'11)

where, pi is the probability of loss of capacity in system state i, and t; is the duration of loss of
capacity in percent. LOLP is defined as a sum of all expectations for all n system states associated

with loss of load.
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LOLP =) pi, (3.12)

i=1

The formula to calculate LOLE is given in (3.13), where t; is the duration of state i in hours or

days.

LOLE =) pi, (3.13)

i=1

As mentioned earlier, the area under the LDC represents the systems’ required energy.
Therefore, the combination of COPT and this area can be utilized to calculate the loss of energy
expectation index. The process of obtaining the amount of curtailed energy due to a capacity outage

in state i is displayed in Figure 3.10.
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Figure 3.10. Loss of energy expectation method

Equation (3.14) can be used to calculate LOEE in a year, where CE; is the curtailed energy in the
system state i.

LOEE =) CE;p, (3.14)

i=1

The analytical approaches use mathematical models and assume a simplified system operation
[58]. These methods are accurate to model small systems. However, they do not have the flexibility
to represent system variables such as time-varying loads and renewables’ variations, and can
become very complicated in evaluating the adequacy of complex power systems with variable

energy resources such as wind and solar [59]. Another disadvantage of analytical methods is that
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the distribution of various indices cannot be determined by them, which can easily be generated by
MCS [59]. For reliability assessment of large systems or to evaluate the reliability contribution of

renewable energy sources, the Monte Carlo simulation techniques are more appropriate.
3.2.1.6. Monte Carlo Simulation Technique

A popular method used for power system reliability assessment is Monte Carlo Simulation
(MCS). There are two different MCS methods: Sequential and non-sequential MCS. In the
sequential technique, system states are sequentially sampled over time according to the system
operation history. While in the non-sequential method, system states are randomly sampled,
regardless of the chronological behaviour of the system [60]. Both of these methods are capable of
calculating the expected value of main indices and can be effectively used to evaluate the reliability

of power systems [61].

The state sampling method is relatively simple and requires basic reliability data such as the
component-state probabilities [47]. In this method, instead of sampling a distribution function,
random numbers are generated to simulate the system’s state. The main drawback of non-sequential
technique is its incapability to calculate the frequency of load curtailments precisely [47]. The
sequential MCS can determine a comprehensive set of reliability indices including the frequency
and duration of interruptions. However, this technique needs a larger computational effort compared
to the state sampling method and requires chronological hourly load data at each bus, which may
not be available [61].

In this research, for reliability assessment at composite system level, the state sampling MCS is
utilised since it is faster and requires less input data. While for generation adequacy level sequential
technique is applied. Both MCS techniques and the process of calculating generation adequacy
indices using these methods are explained in the following subsections using IEEE reliability test
system (RTS) [62]. Details of IEEE-RTS system are provided in Appendix A.

3.2.1.6.1. Sequential Monte Carlo Simulation

State duration sampling or sequential MCS method is based on simulating the chronological state
transition processes by sampling. First, the sequential state transition model for all system elements
is simulated. Then by combining them the chronological system state transition process is
constructed. The process of state duration sampling method to calculate reliability indices for IEEE-

RTS is described in the following:

In first step, the operation cycle for each generator is created using their MTTF and MTTR and
random numbers. For this reason, time to failure (TTF) and time to repair (TTR) for each unit are
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generated using (3.15) and (3.16), where U; and U, are uniformly distributed random variables
between [0,1].

TTF =—MTTF Ln(U,) (3.15)
TTR =—MTTR Ln(U,) (3.16)

Then, regarding the sampling values of TTF and TTR, operating histories for each generator is
produced. Figure 3.11 shows the available capacity model and up and down cycles of a 122MW unit

of IEEE-RTS in a sample year.

Awailable Capacity
13 T T T T T T T T
12 1.
i
10

Capacity (MW

O =k Q) e (M3~ 0000

1 1 1 1 1 1 1 1
0 1092 2184 3276 4368 5460 G552 7E44 8736
Hour

Figure 3.11. Available capacity model in a sample year for a 12MW generator

In the next step, system available capacity is constructed using the operating cycles of all
generators. All generators capacity models are combined together and the system total generation
capacity model is obtained. The system available capacity of IEEE-RTS for a sample year is
displayed in Figure 3.12.
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Figure 3.12. System available generation capacity for a sample year
To calculate the system insufficiency, the system generation capacity and load models should be
compared and the occasions when demand exceeds generation capacity should be obtained. Figure
3.13 depicts the chronological load model of the IEEE-RTS.
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Figure 3.13. Chronological hourly load model for the IEEE-RTS
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By deducing load model from generation capacity model, a system available margin model is
created, which is shown in Figure 3.14. This model represents the difference between the system
demand and the generation available capacity. When demand is higher than generation, system
margin will become a negative value which indicates the amount of demand not supplied at that

time.

System Awailable Margin
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Figure 3.14. System available margin model for IEEE-RTS in a typical sample year.

Finally, by recording the amount of these losses of load values and their duration from the
system margin model, reliability indices of the system can be estimated. Equations (3.17) and (3.18)
show the formulas to calculate LOLE and LOEE by taking the average value of loss of load

duration (LLD) and energy not supplied (ENS) for N sample iterations.

N

D LLD,

= (3.17)
LOLE == N (hriyn)

N

iz_llENsi (3.18)
LOEE = N (Mwhiyr)

Reliability indices of IEEE-RTS system obtained by using Monte Carlo state duration sampling
method for 3000 sample years are shown in Figures 3.15 and 3.16. In these figures, the blue line
represents the value of index calculated by MCS method and the red line is the analytical answer.
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Figure 3.15. LOLE vs. the number of sample years
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Figure 3.16. LOEE vs. the number of sample years
Reliability indices for the IEEE-RTS system obtained by sequential technique and analytical

values are compared in Table 3.3. It can be seen that the estimated results obtained from this

method have an acceptable accuracy.
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Table 3.3. Reliability indices for IEEE-RTS using sequential MCS and Analytical method

Reliability Index Sequential MCS Analytical Error
LOLE (hr/yr) 9.2 9.38 1.9%
LOEE (Mwh/yr) 1169 1174 0.4%

3.2.1.6.2. Non-Sequential Monte Carlo Simulation

In non-Sequential MCS, the state sampling approach is used, in which case random selection of
time intervals are used to create a non-chronological system state model. In this method the
behaviour of generating units is modelled by means of generator forced outage rate (FOR) and
uniformly random numbers. The state of the i generator is indicated using (3.19) and a random
variable (Ui) between [0, 1].

0 (up state) if U, > PF, + PD,
S, =41 (down state) if PF. <U, <PF, +PD, (3.19)
2 (derated state) if 0<U, <PD,

where, PFi is the probability of down state and PD; represents the probability of the derated state.

Then by determining the state of all generators, the state of system with n generating units can be
obtained by a vector S = (S1, Sy, ..., Si, ..., Sn ). The total available generation capacity in each
system state can be calculated regarding the state of all generating units in that state. In the next
step, the amount of demand not supplied (DNS) is computed by deducing the system’s equivalent
demand from the total generation capacity. This can be calculated by means of (3.20), where, D is
total demand and G denotes the available capacity of unit | in the ke iteration and n is the number

of generators.
DNS, = max {O, D—ZH:G,,(} (3.20)
1=1

The formula to calculate the annualized loss of energy expectation for N sample years based on
the DNS value is given in (3.21).

N
> DNS, x8760

LOEE = X (3.21)

And the LOLE index can be obtained by using (3.22).
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N
> 1,(DNS,)x8760

LOLE =2 (3.22)
N
where Ik is an indicator which is shown in (3.23).
, _J0 if DNS =0 203
“ 11 if DNS, %0 (3.23)

Reliability indices for the IEEE-RTS system obtained by state sampling method Monte Carlo for
5000 samples are given in Table 3.4.

Table 3.4. Reliability indices for IEEE-RTS using non-sequential Monte Carlo method

Reliability Index Non-Sequential MCS Analytical Error
LOLE (hrl/yr) 9.63 9.38 2.6 %
LOEE (Mwhlyr) 1190 1174 1.3%

Although the errors of the non-sequential method in comparison with sequential results are
higher, these indices are still accurate, whereas, the computation time of this method is much lower
than the sequential MCS.

3.2.2. Composite System Adequacy Assessment (HLII)

To analyse the impact of transmission system constraints on the system reliability, adequacy
evaluation should be conducted in the hierarchical level Il (HLII). Adequacy evaluation at HLII is
also known as bulk system evaluation because it includes both the generation system and the

transmission network [50]. Figure 3.17 depicts a sample composite system.

1 2

@— 2 ——
G1

G2

Figure 3.17. A sample composite power system for HLII studies
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Besides generation capacity shortages, insufficiency of the transmission capacity or transmission
line outages may also result in load curtailment and can cause reduction in reliability level of the
system. Therefore, at this level, the adequacy of both generation and transmission systems is being
evaluated. Reliability assessment at HLII involves many activities, such as load flow analysis,
contingency analysis, generation rescheduling, load curtailment philosophy, etc [45]. The general
process to assess the reliability of a composite system is presented in Figure 3.18 [63]. First a
system state is generated based on generator and line outages. Then, a load flow analysis is
conducted to check if the security constraints (line flow limits and voltage limits) are violated in
that state or not. If yes, corrective actions such as generation rescheduling should be taken to avoid
load curtailment. However, in some states, to meet system security limits load shedding is
inevitable. In these scenarios, methods such as linear programming are utilized to optimize the load
curtailment. At the end, reliability indices of the composite system are calculated based on the

amount of curtailed load. The steps of HLII reliability evaluation process is described in Section

3.2.2.2.
( Start )

Y

Outage Selection

Security Limits Safe?

Generation Rescheduling

YES i

Security Limits Safe?

Load Curtailment
LP Mimimization

L Calculation of Reliability Indices -
|
-+

End

Figure 3.18. Adequacy assessment process for HLII studies [63]
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In the composite system studies, a two state model, which was illustrated in Figure 3.4, can also
be utilized to model transmission lines and transformers which are the main components of the
transmission system. To simulate generating units, load and risk of the system, models presented in
generation system level can be applied in the HLII studies as well. However, adequacy assessment

indices of the composite system are different from the HLI indices.

3.2.2.1.  Adequacy Indices in HLII

Similar to the generation adequacy assessment, there is a variety of risk indices available to
determine the system reliability in HLII. These indices in the composite system studies can be
divided in two sets. The first one is load point index which shows the reliability level at an
individual load bus, and the second one is the overall system indices. Both load point and system
indices can be utilized to assess the reliability of the composite system. However, load point indices
are usually used to determine unreliable buses in the system, while system indices are utilized to
provide a global assessment of the system [63]. Some of the main indices in the HLII studies are
presented in the following, where pi denotes the probability of the it failure state, Ci represents the
amount of load curtailments in state i and S is the set of all system states with load shedding. These
indices can be calculated for either whole system or each bus.

Probability of Load Curtailment (PLC)

PLC=2p (3.24)

ieS
Expected Duration of Load Curtailment (EDLC)
EDLC =PLCx8760 hrs/yr (3.25)

Expected Demand Not Supplied (EDNS)

EDNS =>'Cip;, MW (3.26)

ieS
Expected energy not supplied (EENS)

EENS = 8760C,p, MWh/yr (3.27)
ieS
The HLII reliability indices can be calculated in two ways based on the load model [64]. If the
annual load is used in the reliability calculations, the result will be annual indices. If a fixed peak
load model is considered for the whole period of the study, the annualized indices will be the
outcome. The process of calculating annualized indices requires less computational time, however,

annual indices are more useful and more appropriate to model system risk as they consider the
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actual load profile [64]. Therefore, in the HLII studies of this research all the reliability indices are

annual values.

3.2.2.2.  Reliability Assessment Method in HLII

State sampling Monte Carlo method [61] has been applied in this research to assess the reliability
of the composite system. This method was explained in section 2.2.1 for generation system adequacy
assessment. The process of state sampling MCS for composite system level can be described as
follow [65] :

1. A clustered model is constructed for system load and each load level has its probability of
occurrence which is used as a weighting factor to obtain annual indices.

2.  The state sampling MCS method is performed for each load level. Component states (up,
down or derated) are simulated using random numbers, and a system state vector

S=(S,S,,-S,,...S,) IS created. This vector represents the state of a system of t elements,

containing generators, transmission lines, transformers, etc. Generally, generator states are
simulated using multiple-state model (3.19) and the two-state (up and down) model (3.28)

is utilized to simulate transmission line states.

(3.28)

0 (up state) if U, >FOR
1 (down state) if 0<U, <FOR

3. Perform a contingency analysis, if there is no contingency and all component states are
zero, system state is normal and no load curtailment is required. However, when there is an
element outage or more outages, demand not supplied may exist.

4. In some contingency states Generation rescheduling may be required to avoid load
shedding. Optimal load flow analysis approach is used to conduct the contingency analysis
and to determine the load shedding requirements in failed system states. In this work,
MATPOWER [66] has been utilized to run AC load flow, calculate transmission lines
power flow and to obtain the amount of load curtailment due to any component outage(s)
in composite system studies.

5. If load curtailment is inevitable, the amount of curtailed load in system state i (C;) should
be measured. The HLII indices are calculated based on the load shedding events and
equations (3.24) to (3.27).

This process is applied to the IEEE reliability test system and annual reliability indices of this

system are presented in Table 3.5.
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Table 3.5: Annual system indices for the IEEE-RTS

Indices Annual Value
PLC 0.00206
EDLC (hrslyr) 18.04
EDNS (MW) 0.281
EENS (MWh/yr) 2461.56

3.3. Summary

The basics of reliability assessment models and techniques are briefly presented in this chapter.
There are three levels in reliability adequacy studies: generation, generation and transmission
composite system and distribution levels. In the first level (HLI) the sufficiency of generation
system in supplying demand is evaluated. In HLII, generation and transmission systems are studied
together and the adequacy of the system considering contingencies in generators and transmission
lines is assessed. The third level (HLIII) evaluates the adequacy of all the components from the
production level to the delivery point. In this research HLI and HLII are taken into consideration as

wind farms are connected to these high voltage levels.

Different models to simulate generating units, load and system risk in HLI and HLII studied are
presented and main reliability indices in these levels are described. Different models can be applied
depending on the reliability assessment method. There are two main adequacy assessment
techniques: analytical and Monte Carlo simulation. Analytical methods are simple and use
mathematical models to calculate the reliability indices, while MCS techniques are based on
random variables and can be divided into two categories: sequential or non-sequential. The
sequential MCS method can recognize the chronology and the correlation between subsequent
events, however, it needs a large computational time. On the other hand, the non-sequential
approach is incapable of keeping the chronology of the system but is time efficient. The process of
performing MCS methods to estimate the reliability indices are explained using IEEE-RTS system.
Reliability indices of HLI and HLII levels are used in the following chapters to measure the impacts

of wind power on the reliability of power systems and to calculate their load carrying capability.
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Chapter 4

Capacity Value of Wind Power

4.1. Introduction?

Participation of renewable technologies, particularly wind turbines, to supply electricity demand
is increasing in many power systems all over the world. Although these clean energies bring many
benefits and opportunities, fluctuations and uncertainty of these resources pose challenges to
electricity grids. Reliability assessment of electricity networks in the presence of these green
technologies is one of the challenges. As the nature of these power supplies is different from
conventional generators, different techniques are required to model these units and to evaluate their
reliability contribution in power systems. In the reliability studies, the term capacity value is

commonly used to assess the reliability contribution of renewable resources.

Several probabilistic and analytical methods have been developed to evaluate the reliability of
power systems with wind generators and to model wind power in reliability assessment [4]-[9].
Negative load [4], [5], multistate generator [6]-[8] and probabilistic distribution [9] are some of the
proposed models. Negative load models require chronological techniques like sequential Monte
Carlo [67] for reliability assessment. This technique is effective in modelling wind and keeping
correlation between wind and demand. However, an extensive evaluation time is the main drawback
of this method, especially in composite system studies where the transmission system insufficiency
should be considered in the reliability evaluation. Unlike sequential methods, multistate and
probabilistic models [6]-[9] are fast and time efficient but may not be able to capture the
chronological nature and the correlation between wind power, solar energy and demand data.
Although some studies presented techniques to keep the relevance between wind farms and load

[10]-[12] or even wind, PV and load data [13], these methods will face difficulties in modelling and

! This chapter has materials from the following references published by the PhD candidate.

e Mehdi Mosadeghy, Ruifeng Yan and T.K. Saha, “A Time Dependent Approach to Evaluate Capacity Value of
Wind and Solar PV Generation” IEEE Transactions on Sustainable Energy, early access, DOI:
10.1109/TSTE.2015.2478518.

e Mehdi Mosadeghy, Tapan K. Saha and Ruifeng Yan, “Increasing Wind Capacity Value in Tasmania Using
Wind and Hydro Power Coordination” IEEE Power and Energy Society General Meeting, 21-25 July, 2013,
Vancouver, British Columbia, Canada.
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may become complicated when the number of wind farms or solar generators increases. For
instance, in [12] wind farms and load data are being modelled as three dimensional clusters to keep
the dependencies among them. However, this method is effective for systems with a small number
of wind farms and by increasing them, the size of the matrix will grow and calculations will become
complicated. Furthermore, non-iterative techniques in [14], [68] are faster than chronological
techniques but they have some drawbacks as well. For instance, the method proposed in [68] cannot
capture the correlation between the renewable sources and load, which can cause errors in
estimating the reliability benefits of them. Although the evaluation technique in [14] is capable of
keeping the correlations, it will become complicated as the number of renewable generators
increases because this method uses an available capacity probability table. Moreover, this approach
is applicable in generation level studies and hasn’t addressed the reliability assessment of renewable
energy considering transmission system outages and constraints. In addition, in these methods a

huge amount of historical data is required to create probabilistic models.

Therefore, a time-dependent clustering approach is developed in this thesis in order to addresses
the deficiencies of the previous studies. The proposed framework can be applied to assess the
reliability of systems with wind and PV units and is capable of keeping the correlations and time
dependency features of data sets. In this approach, renewable generation units and demand data are
modelled as time-dependent clusters. Therefore, as this technique is using clustered data, it is
efficient in the use of computational time and does not require large amounts of historical data. In
addition, this method will not lose its simplicity even in networks with a large number of wind
farms and PV systems. Another benefit of this technique is its capability of analysing the
contribution of renewables not only in generation adequacy, but also in composite systems
reliability, where the transmission system constraints and outages should be taken into

consideration.

In this chapter, the capacity value term is defined and different techniques to calculate capacity
value are described. Furthermore, several models to represent wind in reliability studies are
presented and their advantages and disadvantages are discussed. Then, the process of the proposed
methodology to calculate the ELCC of wind power is explained and its effectiveness is examined
on the IEEE reliability test system (RTS) as a case study. The reliability assessment has been
conducted in both hierarchical level I (HLI) and hierarchical level 11 (HLII). Two wind farms with
different generation profiles and several aggregated PV systems have been added to this testing
network and their reliability contribution under several scenarios have been investigated. Finally,
outcomes have been compared with results of the sequential Monte Carlo technique to validate the

accuracy of the developed approach.
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4.2. Capacity Value of Wind Power

Due to outages and uncertainties, the ability of a generator to supply loads at some time in the
future is not guaranteed. An important index to measure the capability of a generator in supplying
demand is its capacity value (also known as capacity credit) or effective load carrying capability
(ELCC). This value can quantify risks associated with generators, especially for intermittent units
like wind farms [69]. ELCC is the amount of extra load that can be met by renewable generators
while the reliability level of a system remains unchanged [5]. The capacity value of wind generators
ranges from 5 to 40 % [2] and depends on several factors such as capacity factor of wind farms,
wind profile, correlations between wind and electricity load, wind power penetration level, etc. [10].
Higher wind power generation during peak demand time and high capacity factors will result in a
higher capacity credit [69]. ELCC as a percentage of installed wind capacity has a reverse relation
with wind penetration level and decreases with increasing wind capacity, because at higher wind
capacities the possibility of very low output becomes more important on a system scale. Also since
the correlation between wind generators increases, the installation of additional capacity does not
compensate for the low wind hours; in this case, while additional installed capacity would increase
the MW capacity value, the capacity value as a percentage of rated capacity would decrease [2].
However, this does not mean that less conventional capacity can be replaced by wind energy, but
rather that a new wind farm added to a system with large installed wind capacity will substitute less
than the first wind farm in the system [2]. Generation profile and other units’ maintenance and
forced outage rates can also affect the ELCC of wind farms [69]. Therefore, considering these
factors in the capacity credit calculation to obtain an accurate estimation is crucial. There are
several techniques to determine the capacity value of wind generators [2], [4], [5], [69]-[77]. Some

of the popular methods in calculating ELCC are described in the next section.
4.3. Current Techniques to Evaluate Capacity Value of Wind

To determine generation adequacy, each unit is assigned a capacity value, which represents the
capability of the generator when it is needed. Since all units are subject to outages, a probabilistic
framework to estimate the ELCC is appropriate, in particular for units with stochastic nature such as
wind generators. The capacity value of a wind farm can be calculated in two ways: Reliability-

based technique and Approximation method [2].
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4.3.1. Reliability-Based Method

Generation adequacy evaluation is often based on reliability indices such as loss of energy
expectation (LOEE), loss of load expectation (LOLE) or loss of load probability (LOLP), which
represent the probability of generation insufficiency or load curtailment at a given time [2]. Using
these metrics, the capacity value or the effective load carrying capacity of wind, which is the
amount of extra demand that can be supplied with wind generation at a fixed reliability level, can be
calculated. The level of a system’s reliability is often expressed in terms of the amount of unserved

demand or the percentage or maximum hours per year that demand exceeds power production.

The reliability-based method requires a large amount of historical data and complicated analysis
to calculate the capacity value of wind energy. For example, in Ref. [5] it is shown that for Irish
wind farms at least four or five years of data with hourly resolution are required to keep the
deviations in the ELCC result under 10%. There are some alternative approaches in the case where
sufficient data is not available. One method is to use prediction models and weather data to produce
wind speed and convert them to large scale wind power generation [2]. Another solution is to
implement techniques such as auto regressive moving average (ARMA) to simulate wind
generation for several years retaining its time-dependent characteristics based on historical data
[10], [70]. Probability distribution is another reliability-based technique to compute the ELCC of
wind farms [71]-[74]. In this approach wind speed time series are converted into probability
distributions, which are then combined with conventional generator distributions to calculate the

capacity value of wind energy. These simulation methods have been explained in Section 4.4.

The standard reliability-based framework to calculate the capacity value of wind energy is
explained in [4]. Figure 4.1 can be used to briefly describe this ELCC evaluation process for a

sample wind farm in a power system.
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Figure 4.1. Capacity value calculation for a sample wind farm

The red dashed line is the LOEE of the original system without any wind generator. It can be
seen that the LOEE of this system is around 380 MWh/yr and by adding extra loads this value is
increasing and the system is becoming less reliable. The blue line is the LOEE index for this system
in the presence of a 250MW wind farm for different levels of extra loads. It shows that with this
wind plant, the LOEE value stays under the original level (380 MWh/yr) for up to 77 MW added

load. Therefore, this value can be considered as the capacity credit of the wind farm.

The reliability-based approach is rigorous, data-driven, and can precisely determine the capacity
value of different generators. However, this approach needs excessive datasets that are not always
available and is related to many system characteristics. For these reasons and others, approximation

techniques have been proposed.

4.3.2. Approximation Method

Because of the potential difficulty of assembling the appropriate database to use for the ELCC
calculation, interest in simpler methods has emerged over the past several years. The approximation
techniques can be classified into two categories: risk-based or time-period-based [4]. Risk-based
categories develop an approximation to the utility’s LOLP curve throughout the year. Time-period-
based methods attempt to capture risk indirectly, by assuming a high correlation between hourly
demand and LOLP. A further limitation of time-period-based methods is that they cannot capture
the potential system risks [4]. However, these methods are much simpler and allow the avoidance of

a reliability model. Some of the main ELCC approximation methods are as follow:
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4.3.2.1. Garver Approximation Based Methods

One of the well-known risk-based approximation methods than can be used to estimate the
capacity value of wind is the Garver technique [75]. This approach is a graphical approximation
method to calculate the capacity value of an additional generator [4]. Garver method estimates the
decreasing exponential risk function (LOLP in each hour, LOLE over a specific time). The ELCC
value of a wind farm can be calculated using (4.1). In this approach, wind power is modelled as a
multi-state unit with i levels, where the capacity of each level is w; and p; represents the probability

of each state.

ELCC = —% In{z pe ™ } (4.1)

where, m is Garver’s constant and can be determined after a simple reliability assessment run.
This technique has been a popular method in the estimation of ELCC but has been superseded by

advances in computing power [4].

43.2.2. Annual Peak Calculations

Some power systems use loss of load probability at time of annual peak demand as a risk
criterion to calculate the ELCC of wind generators [76]. In this approximation method, instead of
considering reliability index for the whole year, the impact of wind plants on the risk index is
studied at the time of annual peak. Since this specific time happens once a year, the available data is
limited [4]. There are two methods to estimate the capacity value of wind during annual peak: 1)
considering the entire peaking season 2) considering hours where demand is within a specific
percentage of the annual peak. The drawback of this method is that it is limited to a specific period

and does not consider load curtailments at other times of the year [4].

4.3.2.3. Peak-Period Capacity Factor

One of the most straightforward methods is to calculate the wind capacity factor (average output)
over several periods of peak demand [2], [77]. This approach is not as accurate as the reliability-
based method, but might be useful as a quick screening method since it does not require rigorous
calculations and excessive datasets. The main deficiency of this method is its incapability to capture
the short term or annual fluctuations of wind energy, or the correlation between wind power and

electricity demand.
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4.4, Modelling Wind in Reliability Studies

There are several methods to model wind energy in the reliability assessment. Wind energy
simulated from these models then is utilized in the reliability studies to calculate the capacity value
of wind. Different models may result in different capacity values for wind energy. Hence, to have

accurate results in reliability evaluation, implementing a proper method to model wind is essential.

Wind speed data generated from the following modelling methods are utilized to obtain wind
power output. Wind power generation then is implemented in reliability evaluation as chronological
data or a multi-state generator [6]-[8]. Chronological hourly wind data produced by these methods
is used in a sequential Monte Carlo simulation to calculate the ELCC [78]. The hourly wind power
is considered as a negative load and the system’s demand at a specific time is equal to the original
load minus the wind generation at that moment [4], [5]. On the other hand, the multi-state wind
generator model is similar to conventional generators with derated states, where wind power is
represented with partial capacity outage states with associated probabilities. Analytical methods or a
Monte Carlo state sampling technique are suitable to determine the capacity credit of wind power

when it is presented as a multi-state model [6], [79], [80].

Some of the popular models to represent wind in reliability evaluations are presented in this
section and their advantages and disadvantages are described.

4.4.1. Observed Data

Directly using observed historical wind data repetitively in the reliability assessment procedure
is one of the easiest and most straightforward methods. In this approach, generated wind power
obtained from historical wind speed data is modelled as a negative load or as a multi-state generator

and reliability evaluation is conducted according to the modelled wind power [4], [5].

However, the main issue with the observed wind data is the missing data. Because of equipment
failures or extreme weather conditions, some data points may not be recorded and are required to be
estimated before creating the wind models [78]. Moreover, reliability indices calculated based on
the observed data are highly related to the wind regimes in the years considered in the assessment,

especially when the size of data sets are limited [78].

4.4.2. Time Series

Time series models such as auto regressive moving average (ARMA) [70], [78], [80]-[83] are
one of the most popular methods to simulate wind in reliability studies. The ARMA model is based

on historical wind speed data and can represent wind speed fluctuations [70]. Reliability indices
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obtained from an ARMA model based on a small number of historical data are similar to those
calculated based on a large number of years of data [78]. The ARMA models are different for

different locations due to the difference in their wind regimes [80].

To create an appropriate ARMA model for a wind farm, the methodology described in [70] can
be utilized. In this method, the simulated wind speed SW; is computed by implementing the average

value («) and standard deviation (ot) of wind data at time t into the(4.2).
SW, = 1 + oy, (4.2)

where y; represents the data series value and can be calculated from observed wind data (OW;)
and using (4.3).

Y = (O\Nt _/ut)/o_t (4-3)

Then an ARMA(n,m) time series model of a wind farm can be created by means of (4.4).
Y = Zfb. Yiato _Zgjat—j (4.4)
i=1 j=1

where, & is the auto-regressive parameter, € denotes the moving average element and a

indicates white noise with a normal independent distribution.

For example, an ARMA(4,3) model of Musselroe wind site in Tasmania, which is created using
historical wind data from 2007 until 2012, is presented in (4.5).

y, =1.0148y, , +0.7822y, ,-y, ,+0.1934y, , +a,
~0.2404¢, , —0.8924¢, ,+0.31%¢, , (4.5)
a, € NID (0, 0.12633%)

Wind speed data created by the ARMA method can be more comprehensive in reliability
evaluation than the observed wind speed model [78]. In addition, the ARMA model is the most

proper model to represent wind in the sequential Monte Carlo simulation method [80].

4.4.3. Markov Chain

Markov Chain model can incorporate the probability, frequency and duration characteristics of
wind speed [78]. In this model, wind speed or the output power of a wind turbine is represented as a
multi-states Markov chain [9], [79]. These states are created based on the available observed wind
data. In this model, transition rates between wind states (A;;) are required to simulate wind energy.

In the Markov model, an exponential distribution is considered for state residence times of wind,
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and states’ frequencies are close to those of the historical wind data [78]. A Markov model for a

sample 2MW wind turbine is shown in Figure 4.2 [79].

Figure 4.2. Markov model for generated power of a 2MW wind turbine [79].

There are several deficiencies associated with the Markov model. In this model, state
probabilities of the simulated wind data are sometimes different from those of the historical data.
The differences may lead to differences in the generated wind power and will cause noticeable
errors in the ELCC estimations [78]. Moreover, since wind speed is used to create Markov model
for wind turbines, when the number of turbines in a wind farm is large or there are several wind
farms in the study, these models become complicated and face significant difficulties [79]. Also
these models may generate a large number of states for wind farm output power, which is not
desirable for reliability assessments. Furthermore, Markov chain models may not be able to keep
the correlations and may lose the load following capability, which will result in different reliability
indices [78].

4.4.4. Probabilistic Distribution

Several studies have utilized probability distribution functions to model wind speed in reliability
assessments. The probability density functions of some popular models that have been proposed for
wind speed modelling are presented in Table 4.1. Parameters in these formulas are as follows: « is
shape parameter, S denotes size parameter, yis location parameter and k represents inequality

parameter. x is the average and o is the standard deviation of the logarithm of random variable.
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Table 4.1: Probability density functions of popular distributions to model wind speed [71]

Distribution Probability density function Reference
1 k+1
X X .
Burr ak (E) /B <1 +a (E)> , —o00 <x<oo; 0otherwise [84]
G ( 1 )(X _ y>a_1 &-v)/B) < < 0 oth i [85]
amma e Y X oo; otherwise
Br'(c) §
Inverse Gaussian (L)e(‘B(X‘V‘“)Z/Z“Z(X‘Y)), Yy <x < o0; 0otherwise [86]
2n(x—vy)?

In(x —y)-p
e

Lognormal —, y<x<oo; 0otherwise [87], [88]
(x—vy)ov2r Y
5(2)”
Rayleigh (;—2) e 3 , 0 < x < o; 0otherwise [88]-[90]
) a1y (XN _ [13], [85],
Weibull (%)e ( B ) , Y < x < o; 0otherwise [90]-[92]

Amongst these distribution functions, the Weibull distribution is the most commonly
recommended and adopted distribution to describe the distribution of wind speed as this distribution

can give a good fit to the measured data [72], [93].

The main drawback of these models is that a large amount of wind speed data is needed to build
proper probability distributions of wind speed [82]. Moreover, it is difficult to select an appropriate
distribution, and none of these distributions is suitable to represent wind distributions for all wind
regimes since different locations may have different distributions [94]. Also, because of extreme
randomness of wind speed in both time and space, the estimated parameters for an assumed
distribution may not fit historical wind speed data [71]. Furthermore, some of these distributions
cannot capture the chronological nature and the hourly dependencies among data sets [78].

4.5. Proposed Methodology

Wind power data simulated from the above methods as mentioned earlier, are normally
implemented in reliability assessment either as chronological data or multi-state models. However,
there are some concerns with these methods. A major concern associated with the multi-state
technique is the loss of wind and load correlation and the relations between wind farm variations
[4]. Since the capacity value is affected not only by the mean wind power, but also the correlation
between wind farms and the demand at each hour, this incapability may cause errors in the ELCC

calculation [78]. Although some studies proposed methods to keep the correlations [10]-[14], these
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methods will face difficulties in modelling and may become complicated when the number of wind
farms increases. For instance, the method presented in [14] is capable of keeping the relevance
between datasets, as this method utilizes the available capacity probability table, it will become
complicated as the number of wind farms increases. Moreover, some of these approaches [13], [14]
are applicable in the generation level assessment and haven’t addressed the reliability assessment of
renewables considering transmission system outages and constraints. On the other hand, sequential
method is capable of keeping dependencies. However, this approach needs considerable
computation time, particularly in reliability assessments for large generation and transmission
systems [80], [83][95].

Therefore, a new framework is proposed in this research in order to address these deficiencies
and to capture timely features and correlations between load and renewable power data sets, while
keeping the reliability assessment simple and fast. For this reason, a time-dependent clustering
technique has been developed. Several years of data points are clustered into hourly base groups.
Then, by means of random numbers, values of the wind power and load for each hour are
determined. Afterward, reliability indices of electric systems are obtained, and load carrying
capabilities of renewable generators are calculated based on these indices. In this study, the fuzzy c-
mean clustering method [54] has been applied to classify data sets, a correlated random number
sampling technique is proposed to select the proper value from time-dependent clusters and state
sampling Monte Carlo is used to calculate reliability indices. These steps are briefly described in the
following subsections.

4.5.1. Fuzzy C-Means (FCM)
Clustering is the process of dividing data sets into classes so that elements in the same class have
similar values. Fuzzy C-means (FCM) is one of the most widely used clustering methods [96]-[98].
The FCM algorithm was described in Chapter 3. As it was mentioned in that chapter, an appropriate
number of clusters should be selected to obtain an accurate clustered model. Elbow technique is a
popular method to find the proper number of clusters [99]. In this method, if the objective function
value (difference between data points and cluster centres) is graphed on a y-axis and the number of
clusters on an x-axis, it can be observed that the objective function value is reduced by selecting
higher number of clusters; however, this reduction is not significant after the elbow point. Figure
4.3 displays the objective function of FCM to create hourly cluster model for the RTS hourly

demand with a different number of clusters.
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1.5
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Figure 4.3. Number of clusters analysis
It can be observed that for all of the hourly data sets the objective function value can be reduced
by selecting higher numbers of clusters. However, this reduction is not significant after selecting ten
or more clusters, which is after the elbow point. An Hourly 10-step model of the per-unit demand of
RTS is demonstrated in Figure 4.4. This model has retained the time dependency feature of the
demand. It shows that the electricity demand can have 10 different states for each hour, while these

values are low in the early morning and are high during the morning and evening peak times.
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Figure 4.4. Time-dependent clustered model for the RTS demand
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Each hourly state has a probability of occurrence P; and these probabilities should meet (4.6).
2P =1 (4.6)
j=1

When a time-dependent cluster model is created, to determine the hourly value of wind or load in

the reliability assessment, the sampling technique [45] is employed.

4.5.2. Sampling Technique

The probabilities of all clusters P;j are put consecutively in the interval [0, 1]. Then by generating
a uniformly distributed random number in the same interval, a cluster centre will be selected for
each sample according to the value of this random number [45]. Figure 4.5 shows this process
which should be repeated for each hour to determine the value of data for that hour in each sample

simulation.
Uniformly distributed Random number

1 1 {L 1 1 {L 1
1 | L&) 1 1 17 1

Figure 4.5. Explanation of how to sample clustered data

This process should be implemented on all wind farms output and load data sets. Figure 4.6
illustrates the RTS electricity load for a sample day created by this technique. Output value for each
hour has been determined from time-dependent clusters using the sampling technique mentioned
above.
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Figure 4.6. Hourly simulated demand for a sample day.
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4.5.3. Correlation

The only problem with the sampling technique is the correlation between wind models. Although
using independent uniformed random numbers for each cluster model may provide an accurate
ELCC estimation in systems with uncorrelated wind farms, results may become different from
chronological calculations if there are highly correlated wind plants in the power grid. Since a
correlation among wind farms may exist, the problem with accuracy of the simulations arises when
the output of several wind farms are simultaneously simulated [100]. To overcome this problem, a

correlated random number selection process is proposed in this work.

Correlation matrix method is a conventional method to keep the relevance between wind regimes
[100]-[102]. Cholesky decomposition (CD) technique [103] is one of the popular methods based on
the correlation matrix, which is particularly useful for Monte Carlo simulations [104]. However the
main drawback of this method is that it can just keep the correlation between normal distributions,
while wind power usually does not follow this distribution [13], [74]. Therefore, the
Cholesky decomposition is combined with distribution transformation techniques in the sampling
process to deal with the correlations between random numbers. This can be conducted by means of
the inverse transformation technique [45], [105], [106]. The correlated sampling process is
explained in the following steps.

A) Creating a normal distributed random matrix

An independent random matrix R is created for all wind farms by using normal distributed
variables. The size of this matrix depends on the number of wind plants and the number of sample

years in the MCS reliability assessment.

B) Cholesky Decomposition

In order to generate correlated random variables (normal distributed) using CD, first, the

correlation matrix of wind farms is required, which is a symmetric matrix and is shown in (4.7).

1 piz piz = Pin

Pz 1 pa3 = Pon
C=|p1z paz 1 = P3n (4.7)

lP1n Pzn P3n -+ 1 |

Then, with the correlation matrix C, a matrix U should be generated such that the equation (4.8)

is met.

UJu' =C (4.8)
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Matrix U is a lower triangular matrix and U" is upper triangular. The matrix U can be utilized to
convert independent normal random values into dependent multi-normal variables. This matrix can
be calculated by means of (4.9) [103].

1 0 0 0

p1z V1-pf 0 0

P23—P12P13 —1,.T

pig BBZPuPu [1_ 5 RSIpT

U= e, e 0 (4.9)
: : 0

P2n—Pi2Pin  P3n—P3 R3'pY

P1 e 1 — -1 T
i " [1-p2, [1-psR51pT 1 p"R"_lp"_

where, R,, = (p;;)ij=1 is a positive-definite correlation matrix, R™1is its inverse and to simplify

writing let R;* = 1. Forj > 1, p;‘j = (p1j, P2j» -, P1j), AN p; = pit. For n>j>i+l andi>1,

equation (4.10) applies.

pi:-jl Riilpi-l;—l = Zpki+l(l k-1) *Pki(,...k-1) (4.10)
k=1

.....

After creating matrix U, a correlated random numbers matrix (Rc) can be obtained from the

uncorrelated random matrix (R) and using (4.11).

R. =RU (4.11)
C) Transformation
Inverse transform technique [45], [105] can be utilized to transform uniform or normal
distributions to other distributions by using (4.12). For instance, in Ref. [13] this method is applied

to transform normal values into Weibull distributions or in Ref. [74] normal distribution variables

(N;) are converted into different distributions such as Weibull, Burr, lognormal and gamma.
X, = FON)] - (i=1--,n) (4.12)

where, X; is non-normal distribution variables, ngl is the inverse of any cumulative distribution
function Fy,, and ®(N;) represents cumulative distribution function (CDF) of the standard normal

variable N;.

However, these techniques are useful in the Probabilistic Distribution wind models (Section
4.4.4.) where, as mentioned earlier, the complexity increases as the number of wind farms with
different distribution functions increases. While in the proposed time-dependent method the purpose
of transformation is to convert normal distributed random numbers into uniformly distributed ones

for all wind farms. Therefore, the simplest method is utilized to perform this transformation which
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is using the cumulative distribution function ® of normal random variables. For N; with a standard

normal distribution N(0,1), the CDF can be calculated from (4.13) [106].

O(N,) = J_Ie 2dt [1+erf(\/_)} N, e R (4.13)

where, erf, is the error function. Then the new random variable U, defined by U=®(N), is
uniformly distributed into [0, 1] [106]. This CDF can be easily generated in MatLab by using
normcdf(x) function. Since just the CDF is used to transform normal into uniform distribution,
equation (4.12) and the complicated transformation methods presented in [13], [74] are not
required.

To clarify the process of random number selection and the significance of the correlations
between wind farms, four neighbouring sample wind farms with high relevance are selected and the
result of different simulation methods are presented. The correlation coefficients matrix between
these four sample wind farms (W1, W2, W3 and W4) and their distribution functions are illustrated
in Figure 4.7.
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Figure 4.7. Correlations between wind farms based on historical data.

It shows that there are high relevancies between generated powers of these plants. The highest
correlation (0.88) exists between W1 and W4, and the relevance between W1 and W3 is the lowest

(0.68). Statistical data of the produced power of these wind plants and the total generated power of
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them are provided in Table 4.2. It shows that amongst these wind systems W1 has the highest mean
value and the highest deviation.

Table 4.2: Statistical data of four sample wind farms and their total wind generation

W1 (140MW) W2 (30MW) W3 (47MW) W4 (48MW)  Wigw

Average (MW) 32.64 11.56 20.07 15.32 79.58

Standard Deviation (MW) 40.14 9.29 14.25 14.98 72.22

To show the importance of the dependencies among random variables, first, uniformly
distributed random values without any correlation are utilized to select proper values from the time-

dependent clustered models to represent wind. Results of this selection method without considering
the correlations between wind farms are presented in Figure 4.8.
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Figure 4.8. Correlations between wind farms using uniformly distributed random numbers.

As it can be seen from this figure, the model has captured the distribution of wind farms but it is
incapable of retaining the dependencies. The average values and standard deviations of simulated

wind farms and the errors between the standard deviations of simulated values and historical data
are given in Table 4.3.

This method has produced individual wind powers with appropriate mean and deviation values.
However, the main concern is the total wind power. Although the average value is close to the
historical data but due to losing the correlations, the deviation is too far from the observed standard

deviation and it has 37.15% error. Since this model cannot capture simultaneous variations between
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these wind regimes, the total deviation is different. This total deviation is very crucial in capacity
credit calculations. Because a smaller deviation means fewer fluctuations in the total wind power,

the capacity value of wind will be overestimated and estimations will be higher than the real ELCC

value.
Table 4.3: Statistical data of simulated wind farms and their total wind generation
W1 W2 W3 W4 Wiotal
Average (MW) 31.52 11.71 20.18 15.29 78.71
Standard Deviation (MW) 39.75 9.28 14.29 14.94 45.39
Error (%) 0.97 0.14 0.23 0.25 37.15

In the second experiment, the Cholesky method has been applied to select correlated random
values. The decomposition matrix is shown in (4.14) and simulation results are displayed in Figure
4.9.

1.00 0.00 0.00 0.00
L _|069 072 0.00 0.00 ‘i
~10.68 054 050 0.00 (4.14)

0.88 0.19 0.05 0.43
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Figure 4.9. Correlations between wind farms using correlated normal random numbers.
This correlation matrix is close to the original one which was given in Figure 4.7. It shows that
this method is effective in retaining the relevancies. However, since this method is just applicable
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on normal distributed random numbers, it could not keep the distribution function of wind farm
outputs. Therefore, the simulated results are not appropriate to represent these power plants in the
reliability assessment. The main difference is in the deviation values of individual wind farms and

total power production.

Table 4.4: Statistical data of simulated wind farms and their total wind generation

w1 W2 W3 W4 Wiotal

Average (MW) 32.88 10.82 20.19 13.15 77.05
Standard Deviation (MW) 39.96 6.86 8.80 9.83 59.36
Error (%) 0.45 26.17 38.27 34.33 17.80

It can be seen that the statistical results of this method, presented in Table 4.4, have high errors
in their deviations, which is mainly due to the differences between the distributions of the simulated

wind powers and the original values.

In the final test, the proposed methodology, which is a combination of Cholesky and distribution
transformation, is utilized to generate correlated uniformly distributed random numbers. As
mentioned before, first the correlations are captured by using the Cholesky decomposition matrix,
then, the normal distributed random variables are transformed into uniformly distributed values.

Outcomes are provided in Figure 4.10 and Table 4.5.
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Figure 4.10. Correlations between wind farms using the proposed approach.
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It can be observed that this method not only is successful in generating wind powers with
accurate distributions but also has captured the dependencies among generated powers. The
simulated wind farms have similar mean and standard deviation values and also the total average
and deviation are close to the ones of the historical data with just 2.61% error. Therefore, it can be
seen that the developed technique is a proper way to select random numbers and to determine the

generated wind values from the time-dependent clustered models.

It should be mentioned that the differences in the shape of correlation coefficient diagrams of the
clustered models from the historical data are because of the type of data sets. The generated power
obtained from time-dependent clustered models are selected from ten cluster values while historical
data can have any values from zero to the installed capacity. With more clusters the shape will be
closer to the historical data shape. However, as mentioned earlier (Section 4.5.1), the main purpose
of clustering is to reduce the size of data, and for wind data sets ten clusters are enough to represent

the wind power and more clusters are not required.

Table 4.5: Statistical data of simulated wind farms and their total wind generation

W1 W2 W3 w4 Wiota

Average (MW) 32.98 11.59 19.96 15.50 80.03
Standard Deviation (MW) 40.08 9.29 14.16 14.92 70.34
Error (%) 0.17 0.07 0.66 0.38 2.61

4.5.4. Reliability Assessment

By determining all required values for each hour, the reliability index of a system for that
moment is being calculated and the overall system index can be obtained by taking the average
value of these indices. To calculate the reliability indices, the amount of unserved energy or
curtailed load should be calculated. For this reason, the state sampling Monte Carlo Method [45]
has been utilized. This technique estimates the generation capacity of the system and the status of
transmission lines based on their forced outage rates and repair times. Then, the amount of unserved
energy, as a system reliability index, is calculated for each hour of the day according to the system’s
available generation, transmission capacity and the value of load and wind production obtained
from time-dependent clustered model.

As all data sets are being clustered on an hourly basis and reliability assessment is done for each
hour separately based on the correlated random sampling, the time dependency attributes and the
correlation between all these data sets will be automatically taken into account. The unserved
energy of the system with and without renewable generators should be calculated using the
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proposed approach and by comparing these indices, the capacity value of clean generators is

evaluated.
The proposed framework is briefly described in the following steps:
e All wind farms output and load data sets are reshaped in 24 hourly groups.

e Proper numbers of clusters for all these hourly data sets are specified and elements in

each hourly group are clustered using the Fuzzy C-mean technique.

e The probabilities of all clusters are put successively in the interval of [0, 1]. Then by
means of correlated uniformly distributed random numbers, the value of wind power and

electricity demand for each hour will be determined.

e Reliability of the system is evaluated by implementing these time-dependent cluster
models into the state sampling Monte Carlo technique on an hourly basis. The overall

system reliability index is obtained by taking the average value of these hourly indices.

e Capacity value of wind is evaluated by investigating the impact of wind generators on the

system reliability indices and applying the reliability-based calculation method.

4.5.5. Generation System Level Study

In generation adequacy or hierarchical level 1, different reliability indices have been
implemented to calculate reliability benefits of renewable energies. Loss of load expectation
(LOLE) [4]-[6], severity index (SI) [107] and at-risk and healthy state possibilities [108] are some
of these indices. In this study, loss of energy expectation (LOEE) is adapted, because this index not
only incorporates the effect of inadequacies but also includes their probabilities [45]. To calculate
LOEE, firstly, Demand Not Supplied (DNS) should be computed by means of (4.15).

9
DNS,, = max {0, D, —ZGJ.S} (4.15)
j=1

Where g is the total number of generators and Gjs represents the available capacity of the j
generator in the Sy iteration. Dy denotes the total demand for each hourly cluster t and can be

calculated using (4.16).
Dt = L( + Pexp,t - I:)imp,t - I:>W,t (416)

where, L, is the original system’s load, Peyy, + and Py, . represent hourly exported and imported
power to the system, respectively, and Py, . is the total wind power generation at time t. After
calculating DNS, the annualized LOEE of each hourly cluster and for N iterations is calculated
using (4.17).
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N
> "DNS,, x8760
LOEE, = 1T (4.17)

4.5.6. Composite System Level Study

Reliability assessment in the hierarchical level Il includes generation and transmission systems
adequacy. Therefore, reliability assessment results in this level can show the impact of transmission
lines outages and insufficiencies on the capacity value of renewable generators. In this level, the
amount of unserved energy can be calculated by running load flow for each system state and
recording the unserved load in each iteration. In this work, MATPOWER [109] has been used to

run load flow and record the total curtailed load due to any element outage(s).

An AC optimal power flow (OPF) is used to calculate the amount of unserved demand due to
outages or insufficiencies. When a generator or a transmission line outage happens, the OPF model
is applied to reschedule generations and reduce constraint violations. This generation rescheduling
also tries to avoid or to minimize the total load curtailment. The objective function of the OPF
model (4.18) is minimization of the total load curtailment while satisfying the AC power flow
equations and line flow, voltage, and generation output limits, which are shown in equations (4.19)
to (4.25).

min ;Ci (4.18)
Subject to
Pgi,min Spgl < Pglmax, i :]-:"'ang (419)
Q;,min < Qé < Qgi],max, i Zl."', ng (420)
Vni],min Sle Svni],max, i Zl,"',nb (421)
giref < 9. < eiI’Ef’ | = Iref (422)
2R+2G=2R (4.23)
0<C<PD (4.24)
IT(SJ) |STmax (4'25)

where, Ci is the curtailed load, Py' and Qg' are the real and reactive power injections, and Pg'
denotes the load power. VVoltage magnitude at bus i is shown with Vi' and 6; is the reference bus
angle. Total system demand is PD and C denotes the total unserved load. T(S;) represents the line
flow vector under system state Sj, and Tmax IS the transmission lines limit. n;, ng and ny are the
number of generators, loads and total buses respectively, and I is the set of indices at the reference

bus.
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The reliability indices are calculated based on the unserved load in selected system outage states
and their probabilities of happening [65]. In this research, the amount of curtailed load and its
probability of occurrence are utilized in (4.26) to calculate the hourly value of expected energy not
supplied (EENS), which is an important index to represent the amount of unserved energy and is
similar to LOEE in HLI.

EENS, = > ¢, p, x8760 (4.26)

leS

where, pi is the probability and C; denotes the amount of curtailed load in system state |. the
overall EENS of the system is the mean value of these hourly indices. By comparing EENS indices
of the system with and without renewable generators, the capacity value of these resources can be

computed.
4.6. Implementation on IEEE Reliability Test System

To verify the efficiency of the developed approach, it has been implemented on the IEEE
reliability test system. Reliability contribution of wind farms has been investigated at two different
adequacy assessment levels: generation level (HLI) and composite system level (HLII). In order to
investigate the impact of wind regime and penetration levels of wind, the developed method has
been applied for different wind profiles and various levels of wind farms. Also reliability
contribution of PV systems has been estimated using this technique to validate its effectiveness to
model solar energy. In addition, reliability assessment of RTS with a significant amount of wind
and PV has been conducted to evaluate the precision and simplicity of the proposed approach in

modelling high levels of renewables.

The IEEE-RTS system is modified by adding wind generators. This system has 2,850 MW peak
load and its generation capacity is 3,405MW. The details of this system can be found in Appendix
A. Two wind farms with different wind regimes have been added to this system. Wind generation
data for these two sites are measured from the real South Australian wind farms from 2012 till 2014
with hourly resolutions [110]. Wind power data for W1 is from the Mount Millar wind farm and
data from the Clement Gap plant has been utilized for W2. Figure 4.11 (a) and (b) shows the

average percentage value of generated power in these two wind farms.
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Figure 4.11. Average generated wind power for W1 and W2

Several photovoltaic systems with a sample generation profile have been added to IEEE-RTS.
Figure 4.12 depicts the solar power generation pattern for two years. These PV data sets have
hourly resolution and are aggregated values of measured data. It shows that the maximum PV
generation is around 85% of the rated PV power (500MW), which happens during the summer time.
In order to conduct a sensitivity analysis, PV systems with this profile and different installed

capacity levels have been added to the RTS system.
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Figure 4.12. A sample PV generation pattern
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After implementing the developed method on wind farms, PV units and load data, their time-
dependent clustered models are created. Then by applying the sampling technique and
implementing these models in the state sampling Monte Carlo, the hourly and total reliability
indices of the RTS system at the HLI and HLII levels are calculated.

4.6.1. Results of HLI Assessment

In the first step, loss of load expectation of the original RTS system without renewables is
calculated by using the time-dependent clustering model to represent its demand. Figure 4.13 shows
the LOEE index of IEEE-RTS for each hour after 10,000 iterations. As this graph shows, the LOEE
value is different for each hourly cluster and is expected to be higher during the peak period. The
overall LOEE of this system is 1,132 MWh/yr, which is the average value of 24 hourly values.

5000

LOEE (MWh/yr)

1 3 7 10 13 16 19 22 24
Time of day

Figure 4.13. Loss of energy expectation value for hourly clusters

After obtaining the reliability index of the original system, the wind power model is added to the
system and is utilized as a reference to calculate the capacity value of wind plants. Once again the
reliability evaluation is conducted in the presence of wind and extra loads added to the system. The
amount of extra load that can be supported with wind farms without exceeding the reliability level
of the original system is considered as the ELCC of that wind farm. The ELCC calculation process
for the W1 wind farm added to the RTS system is depicted in Figure 4.14.
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Figure 4.14. Capacity value of the W1 wind farm

The red dashed line is the LOEE of the original RTS system without any wind or PV generators
and 2,850 MW peak demand. The blue line is the LOEE index for this system in the presence of the
W1 wind farm with 500 MW installed capacity and for different levels of peak load. It shows that in
the presence of W1, around 144 MW extra load can be added to the system, while the reliability
level of the RTS system is maintained at the original level (1,132 MWh/yr).

Total results of this clustering technique and the sequential Monte Carlo are given in Table 4.6.
It should be mentioned that all of the clustered models of wind and PV are generated by using two

years of historical hourly data sets.

This table shows that in both techniques, the ELCC of W1 is higher than W2 and by increasing
their installed capacity the percentage value of their load carrying capability will decrease. Table
4.6 also illustrates that the differences between the proposed approach and the sequential technique
for these wind farms with two different wind regimes are small. In addition, estimated results
obtained from the clustering method are acceptable for different levels of wind power. Thus, it can
be concluded that the time-dependent approach can effectively estimate the ELCC of wind farms

regardless of their wind regime and installed capacity.
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Table 4.6: Capacity value of renewable energies for IEEE-RTS at generation level

Sequential Monte Carlo Time-dependent Cluster Error
Capacity Value

MW % MW % %
Wind Regime 1 — 250MW 84 33.6 90 36.0 2.4
Wind Regime 1 — 500MW 144 28.8 141 28.2 0.6
Wind Regime 1 — 1000MW 230 23.0 211 21.1 1.9
Wind Regime 2 — 250MW 65 26.0 67 26.8 0.8
Wind Regime 2 — 500MW 104 20.8 110 22.0 1.2
Wind Regime 2 — 1000MW 145 145 157 15.7 1.2
250MW PV 60 24.0 55 22.0 2.0
500MW PV 98 19.6 91 18.2 14
500MW Wind+250MW PV 201 26.8 189 25.2 1.6
1000MW Wind+500MW PV 319 21.3 313 20.8 0.5

Furthermore, it can be seen that this method can also be applied in systems with high levels of
PV and wind without losing its simplicity and accuracy. Moreover, simulation results for solar
energy indicate that the time-dependent clustering technique is also applicable to model PV
systems, and it can precisely estimate the reliability contribution of solar generators with various
capacities. More details about the process of modelling solar PV units in reliability evaluation are

presented in Chapter 7.

4.6.2. Results of HLII Assessment

In order to evaluate the time-dependent technique at HLII level, the same approach has been
applied on the RTS composite system and results are presented in Table 4.7. The capacity values of

these resources have decreased due to transmission system outages and congestions.

Table 4.7 shows that the time-dependent technique is also suitable to model wind and PV in the
HLII studies. It can be used to estimate ELCC of wind and solar power, separately and combined, at

the composite system level with an acceptable correctness.

From Tables 4.6 and 4.7 it can be observed that results of the proposed method in both reliability
evaluation levels have an error of less than 2.5% compared to the results of the sequential Monte
Carlo technique. However, this clustering technique is much faster as it just needs to be performed

for 24 clusters in each sample year compared with 8760 hours in the sequential method. This time

75



Chapter 4. Capacity Value of Wind Power

efficiency is especially noticeable in the composite system assessment of large power systems,

where load flow execution might be required for each simulation run.

Table 4.7: Capacity value of renewable energies in IEEE-RTS for HLII studies

Sequential Monte Carlo  Time-dependent Cluster Error
Capacity Value

MW % MW % %

Wind Regime 1 — 500MW 121 24.2 113 22.6 1.6
Wind Regime 2 — 500MW 80 16.0 88 17.6 1.6
250MW PV 49 19.6 43 17.2 1.4
500MW Wind + 250MW PV 151 20.1 145 19.3 0.8

The proposed methodology has been applied to an existing power system in Australia to
demonstrate the effectiveness and speed of this technique in comparison with the sequential Monte
Carlo method. The computational time and number of simulations to reach the stopping criterion in
evaluating the reliability benefits of renewable generators in the composite system level of this
system are given in Table 4.8. It should be mentioned that the LOEE coefficient of variation
tolerance, which is 0.1, is utilized as the convergence criterion and the stopping rule is as follows:
after reaching a given number of samples, the variation tolerance is checked to see if it is

acceptable. If not, the number of samples is increased.

Table 4.8: Speed Comparison for composite system studies

Method Number of Sample Years Computation time (min)
Sequential Monte Carlo 2,000 2165.6
Time-dependent Cluster 50,000 118.55

From this table, it can be seen that the number of sample years to reach the proper tolerance error
in clustering approach is higher than the sequential method. For the HLII studies, in the sequential
Monte Carlo method 2,000 sample years were used while in the proposed method this number was
50,000. However, in the sequential Monte Carlo it should be simulated for 8,760 hours per sample
year, while in the clustering methodology it just needs 24 simulations per year. Therefore, as it is
shown, the computational time of the time-dependent clustering technique is much lower than the

one of the sequential Monte Carlo method.
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4.7, Summary

Because wind is uncertain and variable, it is important to determine the contribution of wind
energy contribution to power demand adequacy. Capacity value or effective load carrying capability
iIs a common term to demonstrate the reliability contribution of generators. In this chapter the
definition of ELCC is presented and several methods from reliability-based and estimation methods
to calculate this value are described. However, due to the characteristics of wind, conventional
reliability evaluation methods are not applicable and different models have been developed to
represent wind power in reliability assessment and ELCC calculations. Some of the most popular
methods to model wind are presented in this chapter.

Most of these methods are time-consuming or may not be able to keep the time dependency and
relevancies among renewable resources and load. Therefore, this research intends to improve the
existing methods and proposes a fast and simple approach. In this approach, wind power, PV
generation and electricity demand are being modelled as time-dependent clusters, which not only
can capture their time-dependent attributes, but also is able to keep the correlations between these
data sets. In addition, it can handle many wind farms in a large network without losing its time

efficiency, simplicity and accuracy.

In this method, Fuzzy C-mean clustering algorithm has been utilized to create time dependant
models to represent wind power, solar generation and load data. Then, a sampling method is
developed based on the Cholesky decomposition and transformation approaches to select the proper
hourly value from wind clusters while retaining the relevancies among wind farms. Afterward, the
time dependant models are applied with the state sampling Monte Carlo to calculate the reliability
indices of power systems with and without renewable generators. Then by means of these indices,

capacity value of wind and PV is computed.

To illustrate the effectiveness of this framework, the proposed methodology has been applied on
the IEEE-RTS system and the correctness of the results is validated. The validation test consists of
comparing outputs of the developed technique with the results of the sequential Monte Carlo
method. The proposed approach is implemented in the next chapters to calculate the capacity value

of Australian wind farms at the generation and composite system levels.
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Chapter 5

Capacity Value of Australian wind farms

5.1. Introduction?

Wind energy is growing fast in Australia and the total wind capacity of Australia has increased
around 3GW in the last decade. Since the share of wind farms in electricity production is rising,
their role in the Australian electricity market is becoming more significant. Therefore, in this
chapter, the contribution of wind power in the Australian National Electricity Market (NEM) from a
reliability point of view is investigated. NEM is an interconnected grid comprising several
connected regional networks and approximately 48,000 MW of installed generation [39]. The NEM
spot pool market is managed by the Australian Energy Market Operator (AEMO) and operates
across the Eastern and Southern states. The NEM region incorporates Queensland (QLD), New
South Wales (NSW), Australian Capital Territory (ACT), Victoria (VIC), South Australia (SA) and
Tasmania (TAS). The regional map of NEM is shown in Figure 5.1.

The installed capacity of wind generation in the NEM at the end of 2014 was more than
3,100MW. Amongst all the states, South Australia has the highest wind capacity (1,473MW) and
Victoria is in second place with almost 1GW wind capacity. However, new wind farms are
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expected to be installed in Victoria and this state will have the highest wind capacity in Australia by
2020 [15]. The contribution of wind in NSW and Tasmania is not that high; nevertheless, similar to
SA and VIC, their wind capacity is expected to grow significantly. Queensland has the lowest wind
generation in the NEM and its wind capacity is not predicted to develop remarkably. Therefore,
since there is not a significant amount of wind generation in QLD, this power system has not been
considered in this study. Installed capacity of wind generation in different regions of NEM and their

predicted capacity in 2020 are presented in Table 5.1.

In this chapter, the capacity value of wind power in South Australia, Victoria, New South Wales
and Tasmania is calculated in two different reliability levels: HLI and HLII. In the HLI studies, the
reliability assessment has been conducted at the generation level and the insufficiency of generators
to supply demand and the contribution of wind power are investigated. At the composite system
level or HLII, in addition to the generation shortages, transmission system’s constraints and outages
are taken into account in the reliability assessments. Therefore, evaluating the capacity value of
wind generation in this level presents the effect of line outages and network limitations on the wind

capacity value.

Figure 5.1. Regional map of national electricity market [111]
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Table 5.1: Installed and predicted wind capacity of NEM regions [39], [15]

Region 2014 Wind (MW) 2020 Wind (MW)
New South Wales 281 2,382
Queensland 12 266
South Australia 1,473 2,555
Tasmania 308 1,368
Victoria 1,070 4974

In order to calculate the reliability contribution of wind, the time-dependent approach that has
been explained in Chapter 4 is utilized to model wind power, electricity demand and exchanged
power through interconnections. The main reason for applying this methodology is its ability to
capture the correlations between datasets and their time varying behaviours while keeping the
assessment process simple and fast, particularly in the transmission level studies of large power
systems such as NSW, SA and VIC, where the sequential methods might not be applicable and need

significant computational time.

Furthermore, the impact of interconnections and interstate exchanged power on the ELCC of
wind farms is evaluated. For this reason, the capacity value of wind farms in NSW and VIC power
systems, which have several interconnections, has been calculated in island and connected modes.
The significance of the tie-lines power flow on ELCC is assessed by comparing the results of these

two modes.

Moreover, since Tasmania has a large hydro generation capacity, coordinating hydro units with
wind farms to increase the capacity value of wind power is investigated. Different values are
selected as the coordination capacity to analyse the impact of different coordination capacities on
the ELCC of wind farms.
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5.2. South Australia

5.1.1. South Australian Power System

South Australia (SA) is a Southern state in Australia and its capital city is Adelaide. The SA
system has a substantial installed level of wind and solar generation, which can supply around 80%
of its average load. Historical hourly load data of the SA system is extracted from [112]. The load
profile of South Australia is depicted in Figure 5.2. In this diagram, the horizontal axis is the time of
day in hours, the bottom and top of the boxes are the first and third quartiles, and the band inside the
box is the second quartile (the median) of load data. The ends of the whiskers represent the
variability outside the upper and lower quartiles and the minimum and maximum of all of the data.
From this graph it can be observed that the overall electricity demand in SA is at low levels from
midnight to early in the morning and this system has two peak periods: one in the morning and the
other one in the evening. However, the highest peak (3,000 MW) occurs during the afternoon.
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Figure 5.2. Box-and-whisker plot for hourly load data in South Australia for 2012-13 [112]

The generation profile of South Australia is a mixture of thermal and renewable generators. The
total installed capacities of thermal and renewable generation of SA in 2013 were approximately
3,600MW and 1,700MW respectively [15]. Table 5.2 shows number, type and capacity of
generators in South Australia.
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Table 5.2: Generating unit data in 2013 [113], [114]

Type Number of Units Total installed Capacity (MW)
Diesel 6 136.5
Conventional Natural Gas 36 2716
Brown Coal 6 770
Wind 15 1202
Renewable
PV (Distributed) 500

5.1.2. Wind Data

The total generated power of these wind farms in 2012 and 2013 is displayed in Figure 5.3. It
shows that in those specific years, the maximum electricity generated by wind farms in SA was
higher than 1,000MW [110]. The average value of total wind generation in South Australia during
this period was 423MW and the standard deviation of its total hourly wind production was around
250MW.
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Figure 5.3. Total wind generation in South Australia 2012 and 2013 [110]

South Australia had fifteen wind farms with a total capacity of 1202MW in 2013. Table 5.3
gives the information of these wind farms [15]. Lake Bonney with the total installed capacity of
278.5MW is the largest wind farm and the North Brown Hill has the highest capacity factor in SA.
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Table 5.3: South Australian wind farms [15]

Wind Farm’s Name  Capacity (MW) Capacity Factor

Canunda 46 0.3742
Cathedral Rocks 66 0.4081
Clements Gap 56.7 0.3855
Hallett (Brown Hill) 94.5 0.3975
Hallett Hill 71.4 0.3975
North Brown Hill 132.3 0.4115
Bluff Wind Farm 52,5 0.3835
Lake Bonney Stage 1 80.5 0.3452
Lake Bonney Stage 2 159 0.3364
Lake Bonney Stage 3 39 0.3408
Mount Millar 70 0.3934
Snowtown 98.7 0.4036
Starfish Hill 34.5 0.3786
Waterloo 111 0.3950
Wattle Point 90.75 0.3220

South Australia is connected to other states through two high voltage interconnections;
Murraylink a 220 MW, +150 kV HVDC light bipolar interconnector and Heywood a 275 kV
HVAC with 460 MW capacity [115]. The average values of transferred power through these lines in
2012 and 2013 are illustrated in Figure 5.4 [110].
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Figure 5.4. Mean value of power flow through tie-lines for 2012 and 2013 [110]
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In this figure, when SA is importing power the transferred power is shown as positive and during
exportation this value is negative. It can be seen that the average exchanged power through
Heywood interconnection is toward South Australia and this system imports electricity through this
link. The average amount of imported power is high during the evening peak time and is low in the
early morning. On the other hand, there is a balance between imported and exported through
Murraylink. The average exchanged power is positive during the evening period, while on average,
South Australia exports electricity through this link in the morning and the mean value of
exchanged power during this period is negative.

5.1.3. Simulation Results

In this study the output power of all South Australian wind farms, its hourly demand and
transferred power through interconnectors have been modelled separately as hourly clusters using
two years of historical data. Time-dependent clustered models of these input data sets have been
created using the methodology explained in the previous chapter.

An hourly ten-cluster model of total demand in South Australia in per-unit value on the highest
peak demand basis (2,991MW) is depicted in Figure 5.5. This model has captured the time
dependency features of the demand. For instance, it shows that the electricity load is at its lowest

level in the early morning and the highest peak can occur at midday. These features could be clearly
seen from the historical data that has been displayed in Figure 5.2.
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Figure 5.5. Time-dependent clustered model for electricity demand in South Australia

The same approach has been applied on all the wind farms and timely clustered models are

created to represent their output power in the reliability studies. The time-dependent cluster model

of the output power of the Clement Gap wind farm is presented in Figure 5.6. It shows that the

generated power of this wind farm at each hour has ten different clusters (the appropriate number of

clusters is obtained from the method explained in Section 4.5 of Chapter 4).
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Figure 5.6. Time-dependent clustered model of Clement Gap wind farm

86



Chapter 5. Capacity value of Australian wind farms

These clusters vary between 0 to more than 90 percent of the rated capacity. However, similar to
load data, the probabilities of clusters are time-dependent and different for each hour. For instance,
at 11:00am the probability of a low wind level for this wind farm (0.1% of the rated capacity) is
around 32%, while the chance of a low level wind at 12:00am is around 12%. The probability of the

clusters at each hour is presented in Figure 5.7.
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Figure 5.7. Probability of hourly clusters of the Clement Gap wind farm

The time-dependent model of this wind farm is also presented as a matrix in Table 5.4. In this
table, columns represent clusters and rows are probability and value of each cluster for a specific
time of day. For instance, at 8:00am the probability of having 24.8% wind power is 10% and the
possibility of generating power with 91.4% of the nominal capacity is 8.8%.
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Table 5.4: Time-dependent model of the Clement Gap wind farm
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luster
m 1 2 3 4 5 6 7 8 9 10
) Valte (pu) 0010 0126 0232 0349 0444 0550 0658 0761 0852 0.960
Probability ~ 0150 0.18 0108 0109 0081 0082 0088 0083 0115 0.066
; Valte (pu) 0005 0094 0183 0268 0380 0492 0588 0715 0836 0.959
Probability ~ 0.157 0079 0085 0090 0116 0096 0085 0092 0135 0.064
2 Valte (pu) 0005 0107 0211 0304 0385 0490 0588 0697 0815 0053
Probability ~ 0.167 0103 0082 0088 0108 0079 0088 0093 0126 0.067
) Valte (pu) 0004 0092 0190 0285 0380 0476 0578 0678 0805 0.940
Probability ~ 0.179 0096 0103 0.082 0074 0077 0114 0070 019 0.088
; Valte (pu)  0.004 008L 0174 0261 0354 0451 0546 0664 0794 0939
Probability ~ 0.185 0092 0083 0089 0086 0089 0089 0075 0129 0.083
] Valie (pu) 0002 0083 0162 0260 0379 0497 0615 0716 0833 0.949
Probability ~ 0.187 0083 0116 0.094 0109 0107 0062 0.093 0.083 0.064
; Valte (pu) 0003 0089 0174 0265 0361 0469 0566 0675 0808 0045
Probability ~ 0.181 0108 0111 0090 0086 0086 0083 0092 0092 0071
. Valte (pu) 0002 0079 0160 0248 0327 0413 0524 0628 0764 0914
Probability ~ 0208 0094 0100 0100 0089 0090 0085 0068 0078 0.088
; Valte (pu) 000l 0068 0153 0229 0328 0421 0557 0687 0801 0018
Probability 0224 020 0098 0101 0096 0101 0074 005 0068 0.057
0 Valte (pu) 000l 0050 0121 0.184 0253 0353 0479 0620 0748 0909
Probability ~ 0246 0.116 0096 0086 0088 0090 0078 0066 0075 0.059
" Valte (pu) 000l 0066 0141 0218 0305 0396 0525 0643 0799 0912
Probability ~ 0.324 0.14 0103 0083 0073 0067 0056 0064 0057 0.059
o Valte (pu) 0000 0057 0128 0211 0317 0423 0530 0666 0803 0910
Probability ~ 0319 022 0096 0077 0093 0068 005 0055 0055 0.057
0 Valte (pu) 0000 0051 0111 0174 0265 0355 0464 0604 0752 0901
Probability ~ 0278 022 0090 0082 0085 0077 0067 0060 0074 0.066
P Valte (pu) 0004 0067 0158 0243 0339 0439 0576 0733 0830 0923
Probability ~ 0.260 0.35 0142 0096 0067 0071 0078 0049 0053 0.048
. Valte (pu)  0.004 0060 0130 0209 0303 0397 0521 0642 0782 0912
Probability 0223 012 0108 0115 0079 0071 0086 0070 0079 0.056
" Valte (pu) 0004 0079 0168 0248 0335 0445 0560 0681 0814 0932
Probability ~ 0.242 0.24 0115 0067 0077 0100 0083 0.07L 0081 0.040
o Valte (pu) 0002 0071 0168 0263 0392 0498 0606 0718 0823 0.930
Probability 0252 012 0103 0111 0081 0079 0082 0067 0071 0.042
" Valte (pu) 0000 0074 0154 0242 0333 0446 0561 0683 0799 0929
Probability ~ 0271 0094 0081 0083 0070 0090 0103 0067 0083 0.057
" Valte (pu) 000l 0077 0171 028l 0379 0471 0576 0696 08l2 0934
Probability 0250 0.107 0073 0096 0078 0094 0086 0063 0092 0.062
” Valte (pu) 000l 0086 0180 0275 0380 0476 0570 0690 0809 0923
Probability ~ 0.197 0.108 0085 0100 0101 0081 0085 0085 0089 0.070
- Valte (pu) 0002 0082 0178 0287 0380 0458 0554 0660 0777 0915
Probability ~ 0.161 0082 0.096 0.104 0083 0090 0089 0101 0.104 0.089
» Valte (pu) 0007 0092 0176 0283 0411 0524 0658 075/ 0852 0.952
Probability ~ 0.142 0089 0093 0096 0109 0119 0094 0085 0101 0.071
i Valte (pu) 0007 010l 0193 0287 0382 0500 0609 0742 0850 0958
Probability ~ 0.134 0098 0092 0085 0101 0085 0093 0116 0.122 0074
. Valte (pu) 0003 0079 0156 0257 0366 0487 0603 0709 0829 0.953
Probability ~ 0.126 0078 0081 0096 0103 0100 0096 0098 0141 0.082
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After creating models for demand, wind farms and exchanged power, the reliability assessment
has been conducted at two different levels: Generation level and Composite system level. At the
generation level (HLI), the generation system adequacy in suppling demand is assessed and the
reliability benefit of wind farms is evaluated regardless of transmission system. To investigate the
contribution of wind power, first the reliability level of the original system without wind farms is
calculated. As mentioned in the previous chapter, in the HLI studies, loss of energy expectation is
utilized as the index to measure the reliability of the system. Figure 5.8 shows the LOEE of this
system without wind generation for 2,000 sample years. It can be seen that LOEE of SA system is
converging to 80 MWh/yr.
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Figure 5.8. Loss of energy expectation of SA for 2000 sample years

In the next step, the LOEE of South Australia with wind generators has been calculated again for
different extra loading levels. Figure 5.9 demonstrates the process of calculating capacity value of
wind farms for SA at generation level. The red line is the LOEE of this system without wind units,
which was shown in Figure 5.8. The blue line represents LOEE of SA system with 1202MW of
wind farms. It can be seen that the capacity value of wind power in South Australia is around
385MW, which means wind units can supply 385 MW of extra loads while the reliability level of
SA is not tolerated.
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Figure 5.9. Reliability benefits of wind energy in SA

To investigate the impact of transmission network contingencies on the capacity value of wind,
the proposed approach has been conducted on the SA system at the HLII level. At the transmission
level, this system has around 400 high-voltage buses (66kV, 132kV and 275kV) and 89 high-
voltage substations. The high voltage map of the South Australian power system is depicted in
Figure 5.10. The SA system has a large network with about 5,600 route kilometres of transmission
lines [116]. The Murraylink and Heywood interconnectors between SA and Victoria are on the East
and the Southeast sides, respectively. Wind farms are distributed across this state thus, they have
different wind regimes and there is no high correlation between most of the major wind farms. The
correlation matrix between hourly generations of major wind farms in South Australia is presented
in Table 5.5.

Table 5.5: Correlations between major wind farms production in SA

Cathedral North Brown Hill Lake Bonney Snowtown Waterloo Wattle Point

Cathedral 1.00 0.15 0.10 0.11 0.16 -0.01
North Brown Hill 0.15 1.00 0.39 0.70 0.75 -0.05
Lake Bonney 0.10 0.39 1.00 0.34 0.52 0.00
Snowtown 0.11 0.70 0.34 1.00 0.60 0.01
Waterloo 0.16 0.75 0.52 0.60 1.00 0.00
Wattle Point -0.01 -0.05 0.00 0.01 0.00 1.00
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Figure 5.10. South Australian high voltage network [117]

In the HLII studies, the amount of curtailed load due to constraints or contingencies is recorded

to calculate the reliability index of the system. First, a load flow analysis is conducted for each

simulated system state to check if system constraints such as voltage limits and line flow limits are

met. If these constraints are violated, corrective actions like generation rescheduling might be

enough to avoid load curtailment. Otherwise, power outage has to be managed. An AC optimal
power flow (OPF) in MATPOWER [109] has been used to minimize and record the total curtailed

load due to any element outage(s). For this reason, an equivalent network was prepared with some
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assumptions and approximations and the results can be considered as indicative but not exact.
Hence, the outcomes presented in HLII may not reflect the exact composite system analysis of the

SA particular system.

While sequential Monte Carlo requires a substantial amount of time to execute thousands of
hourly load flow analysis for each of 2000 samples, the proposed approach only needs twenty-four
load flows to be performed in each sample year. Because in the time-dependent clustering method,
all data are categorized on an hourly basis and the reliability evaluation is conducted for each hour
separately. Table 5.6 compares the ELCC of wind power in South Australia for the HLI and HLII
levels calculated by means of the proposed method and the Sequential Monte Carlo technique.

Table 5.6: ELCC of wind energy in the SA System

1202MW Wind
Capacity Value
MW %
HLI — Sequential Monte Carlo 385 32.0
HLI — Time-dependent Cluster 382 31.8
HLII — Sequential Monte Carlo 306 25.5
HLII -Time-dependent Cluster 312 26.0

This table shows that the reliability contributions of renewable resources at the HLII level have
decreased due to transmission system insufficiency and contingencies. The ELCC of wind power
has decreased around 70MW. It can be observed that results obtained from the time-dependent
clustering technigue in both HLI and HLII levels are accurate and close to the Sequential Monte

Carlo method.
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5.3. Victoria

5.1.4. Victorian Power System

Victoria is a Southern state of Australia between South Australia and New South Wales, and
Melbourne is its capital city. Maximum demand in Victoria was about 10,000MW between 2013
and 2014 [112] while its generation capacity was around 12,000MW [118]. The Victorian
electricity network has a mesh topology and is connected to three other states: New South Wales,

South Australia and Tasmania via high-voltage interconnections.

Average demand in Victoria is around 5,400MW [112]. Figure 5.11 depicts the average and
variability outside upper and lower quartiles of hourly electricity demand in this state from 2013 till
the end of 2014 using box-and-whisker plot. These values, provided by Australian Energy Market
Operator (AEMO), are net measured electricity demand [112], which is the total load minus
production of rooftop photovoltaic (PV) systems at the distribution level. Installed capacity of
rooftop PV in Victoria by the end of 2014 was around 700MW [114].
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Figure 5.11. Box-and-whisker plot for hourly load data in Victoria for 2013-14 [112]

It can be seen that this load profile has two peaks: one in the morning and one in the evening.
However, on some occasions high electricity demand has happened in the middle of the day. It also
shows that the Victorian demand is low during midnight and early morning, and the minimum load

value in these two years was around 3,200MW.

93



Chapter 5. Capacity value of Australian wind farms

The generation portfolio of Victoria is displayed in Figure 5.12. Generators’ contribution is
shown in percentage value of total installed capacity. As it can be observed, the contribution of
fossil fuel resources in this power system is around 72% with a majority of coal generators. Among
renewable generators, hydro has the highest installed capacity. Wind power is the second highest
renewable source of energy in Victoria with an installed capacity of 9%.

Water
19%

Wind
9%

Figure 5.12. VIC installed capacity percentage by generation type [118]

Details of the generation system in the Victorian power system are given in Table 5.7. It shows
that there are other types of renewable resources in this system, however, their contribution is
insignificant. There is 53 MW of Biomass generation and solar power has the lowest capacity (1.5
MW). However, it should be mentioned that in this table, the solar term just stands for large size
generators and the contribution of rooftop PV systems at the distribution level, which is around

800MW, has not been considered in this value.

Table 5.7: VIC existing and potential new developments by generation type (MW) [39]

Status / Gas ) )
Coal CCGT OCGT Solar Wind Water Biomass Other
Type other

Existing 6,410 21 1,904 516 15 1,070 2,296 53 0.8
Committed 0 0 0 0 0 154 0 0 0

Publicly

500 1,150 0 100 3,287 97 0 0

announced
Withdrawn 189 0 0 0 0 0 0 0 0

The future of the role of wind power in this system is expected to become more significant since
there are more than 3,000 MW of publicly announced projects for this renewable source. On the

94



Chapter 5. Capacity value of Australian wind farms

other hand, the contribution of coal will decrease and 189 MW of coal generators will be
withdrawn. Publicly announced proposals represent generation at an early stage of development that

has met less than three of the following AEMO commitment criteria [25]:

All land has been acquired.

Contracts for supply of major components are finalised.

All planning and environmental approvals have been obtained.

Financing arrangements are finalised.

Project construction has commenced or a date for commencing construction has been set.

As mentioned earlier, Victoria is connected to three other states (NSW, SA & TAS) through high
voltage AC and DC interconnections. The connection between Victoria and NSW consists of
330kV and 220kV AC lines [115]. Victoria is connected to South Australia through one high
voltage AC link (Heywood) and a HVDC interconnector (Murraylink). A HVDC interconnection
(Basslink) transfers power between Victoria and Tasmania. The nominal capacity of these tie-lines
is provided in Table 5.8 [115]. It can be observed that for some of these transmission links the
capacity limit is different in each direction. For example, a maximum of 478MW can go from
Victoria to TAS through Basslink, while this interconnection can transfer up to 594MW in the

opposite direction.

Table 5.8: Nominal capacity of interconnections [115]

From To Nominal Capacity
Victoria NSW 700 to 1600 MW
NSW Victoria 400 to 1350 MW
Victoria SA (Heywood) 460 MW
SA (Heywood) Victoria 460 MW
Victoria SA (Murraylink) 220 MW
SA (Murraylink) Victoria 200 MW
Victoria TAS (Basslink) 478 MW
TAS (Basslink) Victoria 594 MW

The hourly variations of total exported power from Victoria to other states during 2013 till the
end of 2014 is shown as a box-and-whisker plot in Figure 5.13 [110]. Positive values represent the

amount of exported power from Victoria and negative numbers are the amount of imported power.
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Figure 5.13. Box-and-whisker plot of hourly exported power from Victoria 2013-2014 [110]

The mean value of exchanged power is around 500MW which shows that during this period
Victoria has mainly exported electricity through the tie-lines It can be seen that the highest amount
of exported power is around 2,100MW, while this system has imported more than 1,000MW on

some occasions.

5.1.5. Wind Data

By the end of 2014, there were seven large wind farms in Victoria with a total installed capacity
of 1,070MW [15]. This state has the second highest installed wind capacity in Australia and by
2020 will become the highest with the addition of more than 4,000MW new wind farms [15].

Table 5.9: Existing Victorian wind farms [15]

Wind Farm Installed Capacity (MW) Capacity Factor (%)
Challicum Hills 53 34.08
Macarthur 420 36.62
Mortons Lane 20 36.62
Oaklands Hill 67 38.14
Portland 102 39.74
Waubra 192 38.48
Yambuk 30 39.74
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Table 5.9 provides details of major Victorian wind farms that have been considered in this thesis.
Macarthur with 420MW capacity is the largest wind farm not only in Victoria but also in the
Southern Hemisphere. Amongst Victorian wind farms, Yambuk and Portland have the highest

capacity factor, which is the ratio of average power production to the installed capacity.

Total hourly electricity production of these wind farms in 2013 and 2014 is illustrated in Figure
5.14. It shows that wind generators in Victoria could produce up to 850MW electricity in these
years. However, on several occasions the total generated energy has fallen to zero megawatt. The
mean value of total wind generation in this period is around 277MW and its standard deviation is
about 214MW.
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Figure 5.14. Total wind power production in Victoria in 2013 and 2014 [110]

5.1.6. Simulation Results

The first step to calculating the capacity value of wind power is to generate time-dependent
cluster models for demand, exchanged power and wind datasets. Figure 5.15 depicts the demand
model obtained from the methodology that has been explained in Chapter 4. This model is in per-
unit values of the highest peak load in Victoria for 2013 and 2014 (10,196MW). A comparison
between this model and the box-and-whisker plot of the VIC load (Figure 5.11) indicates that this
model has captured the time dependency of the load profile. For instance, it can be seen that similar
to the historical load profile, in this model the value of clusters during early morning is very low

and the highest peak may happen around midday.
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Figure 5.15. Time-dependent clustered model for electricity demand in Victoria
To measure the reliability contribution of wind energy in the power system and calculate the
capacity value, in the first step, the reliability level of the system without wind power should be

calculated. Loss of load expectation of Victoria without wind power for 20,000 sample years using
the state sampling Monte Carlo method is illustrated in Figure 5.16.
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Figure 5.16. Loss of load expectation of Victoria for 20000 sample simulations

Then, this index is computed again for the VIC system with wind generation and with different
levels of extra load added to its demand. Finally, the ELCC value is obtained based on the
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comparison between the systems original reliability level and the LOEE in the presence of wind

power. This process can be elaborated by means of Figure 5.17.
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Figure 5.17. The process of calculating the ELCC of Victorian wind farms

From this figure it can be seen that the LOEE of Victoria without wind farms is around
192MWh/yr, which is considered as the system reliability level and is shown as the dashed red line.
The blue line shows the LOEE of this system considering wind units and extra loads. It shows that
by adding wind units, the system has become more reliable and LOEE has decreased to around
100MWh/yr. However, by increasing the load level, LOEE will increase and this system will
become less reliable (blue line). The intersection between the blue line and original system’s
reliability level (red line) will be considered as the reliability contribution of wind power.
Therefore, ELCC of the Victorian wind farms is about 247 MW. This value is less than 30% of the
rated capacity of the wind farms and shows that the reliability contribution of wind in Victoria is
small. There are several reasons for this issue. This system’s high reliability, huge capacity of
power exchange, analogous wind regimes and low correlations between wind power and load

profile might be some of the main causes.

Unserved energy in Victoria as shown in Figure 5.16 is around 200MWh/yr. this value is less
than 0.0005% of its annual energy consumption, which is much lower than the Australian minimum
standard (0.002 %) [119]. This indicates that this network is highly reliable, which might be due to
the meshed topology of the Victorian power grid and its huge generation capacity. Another reason
can be the high capacity interconnectors between Victoria and other states, which allows this power

system to import huge amounts of electricity during high demand periods or power shortage
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incidents. For example, on 18 October 2014 at 9:30pm Victoria imported 2189MW electricity from
its neighbouring power systems [110] which was about 34% of its demand at that time (6398 MW).
Therefore, by importing a huge amount of electricity during shortages, this system stays highly

reliable.

The uniform major wind regime of wind farms in Victoria might be another cause of the low
ELCC. Figure 5.18 depicts the correlations between the output powers of large Victorian wind
farms themselves and load data in 2013 and 2014. It shows that these wind farms generate
electricity with a similar profile. Consequently, as they fluctuate simultaneously, they cannot
compensate each other’s variations and the total wind power is oscillating and in some occasions it

may even drop to a very small value, which was shown in Figure 5.14, as well.
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Figure 5.18. Correlations between generated power of wind farms and demand in VIC [110]

Figure 5.18 also illustrates the correlation between these wind farms and total demand in
Victoria. It can be observed that the wind power and load profile in this state are almost
uncorrelated. This means that during peak demand periods, when the chance of load curtailment and
unreliability is high, the participation of wind units is low. Therefore, this may lead to a small

contribution of wind power in the Victorian system’s reliability.

The high voltage network of this power system contains around 312 buses and 450 transmission
lines. This high voltage network carries electricity from power stations to electricity distributors
across all of Victoria via 13,000 high voltage towers and approximately 6,500 kilometres of
transmission lines [120]. The transmission grid of Victoria is depicted in Figure 5.19. This power
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system from the West is connected to South Australia, from the South to Tasmania and from the
Northeast to the New South Wales grid.
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Figure 5.19. High voltage network of Victoria [117]

It can be seen that all the Victorian wind farms are located on the Southwest region of this
network, which is the main reason for the high correlations between their wind regimes. Missing
these correlations, as was mentioned in Section 4.5 of Chapter 4, will result in wrong models and
the total wind generation model will not be accurate. For instance, the standard deviation of total
historical wind power in Victoria, as mentioned before, is around 214 MW while the standard
deviation value obtained from an uncorrelated model is about 134 MW. This lower fluctuation will

result in higher capacity and overestimating the reliability contribution of wind energy.

The reliability assessment is conducted once again at the composite system level to evaluate the
reliability contribution of wind generators considering transmission network constraints and outages
as well. Capacity values of total wind power in Victoria at generation and composite system levels
are given in Table 5.10.
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Table 5.10: Capacity value of wind power in Victoria

885 MW Wind
Capacity Value
MW %
Generation Level 247 27.9
Composite System Level 212 24.0

It can be seen that the impact of the transmission system on the ELCC value is around 4% and
the capacity value has decreased from 247MW to 212MW. This reduction is much smaller than the
70MW decline in South Australia. The main reason is the mesh topology of the Victorian grid and
thus, the low impact of line outages on the whole power system.
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5.2. New South Wales

5.2.1. NSW Power System

New South Wales (NSW) has the highest population and is the largest electricity consumer
network in Australia. This power system also has the largest generation level in Australia with a
total generation capacity of 15,700MW in 2014. The majority of electricity in NSW is generated by
coal power plants [39]. Figure 5.20 illustrates the contribution of different generator types in the
total generation system of New South Wales and the detail of its generation portfolio is given in
Table 5.11 [39]. It can be seen that the share of coal and gas generators in producing electricity in
NSW is almost 80%. The installed capacity of hydro power plants is 2,745MW which is 16% of the
total generation capacity and the contribution of wind power producers in NSW electricity

generation is only 2% [118].

Biomass Other

Wind
2%

Gas_—"
12%

Figure 5.20. NSW installed capacity percentage by generation type [118]

Among all generators, the share of wind generation in publicly announced projects, which are
expected to be constructed in the future, is the highest with around 5,000MW capacity. Solar energy
is also expecting a significant growth with around 500MW committed and publicly announced
development plans. For fossil fuel generators, the size of future projects is quite large as well, in
particular for coal and open cycle gas turbine (OCGT) units. There are 2,000MW and 1,370MW
publicly announced projects for coal and OCGT, respectively. However, a huge amount of coal
power plants will be withdrawn in the near future (1,144MW).
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Table 5.11: NSW existing and potential new developments by generation type (MW) [39]

Status /
Coal CCGT OCGT Solar Wind Water Biomass Other
Type other
Existing 10,240 598 1,388 25 0.1 281 2,745 129 291
Committed 0 0 0 0 175 385 0 0 0
Publicly
2,000 0 1,370 15 323 4,817 0 8 0
announced
Withdrawn 1,144 0 0 0 0 0 0 0 0

As mentioned before, NSW has the highest demand in Australia and the average hourly demand
in NSW from 2012 to the end of 2014 is around 8,000MW. The average value and variability
outside upper and lower quartiles of hourly electricity loads in NSW from 2012 to 2014 is depicted

in Figure 5.21 [112]. As can be seen, the average demand (boxes) in this system has two peak

periods and the electricity consumption is low during midnight and early morning. Although the

average value in the middle of the day is less than 9,000MW, on some occasions the highest peak

demand occurs in this period (red crosses), probably due to summer air-conditioning. It can also be

observed that the range of variations in NSW electricity consumption is from 5,000MW minimum
demand to almost 14,000MW as the highest peak load [112].
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Figure 5.21. Box-Whisker plot of NSW demand for 2012-2014 [112]

The New South Wales network is connected to the Queensland and Victoria power systems

through three interconnectors. From Terranora in NSW to Mudgeeraba in Queensland there are two
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110 kV DC lines known as Directlink interconnector. The other tie-line is the Queensland to New
South Wales (QNI), which is a 330 kV AC interconnection between Dumaresq in New South Wales
and Bulli Creek in Queensland. Victoria to New South Wales interconnector (VNI) consists of 330
kV and 220 kV AC lines. Nominal capacities of these lines in each direction are presented in Table
5.12 [115].

Table 5.12: Nominal capacity of NSW interconnections [115]

From To Nominal Capacity
NSW (Directlink) Queensland 107 MW
Queensland NSW 210 MW
NSW (QNI) Queensland 300-600 MW
Queensland NSW 1078 MW
Victoria NSW 700 to 1600 MW
NSW Victoria 400 to 1350 MW

This table also shows that the capacity of these tie-lines in the NSW direction is higher, which is
due to frequency, voltage, small signal and transient stability constraints. For example, the QNI
connection can transfer up to 600MW from NSW to Queensland, while its capacity in the opposite
direction is 1,078MW. The average hourly diagram of the total electricity transferred from NSW
interconnections is illustrated in Figure 5.22. This value as seen in this diagram is negative all the
time, which means most of the time NSW is importing power from other states through the
interconnections. It can also be observed that the amount of exchanged power is time-dependent, for
instance, the mean value of imported power during the early morning is almost double that of the

imported electricity in the evening.
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Figure 5.22. Average exchanged power of NSW with other states [110]

5.2.2. Wind Data

New South Wales does not have large installed wind capacity and only has four major wind
farms. Details of these wind farms which have been considered in this study are presented in Table
5.13. The largest wind farm in NSW is Capital with 140MW and the smallest one is Cullerin wind
farm (30MW), which has the highest capacity factor.

Table 5.13: Existing New South Wales wind generation [15]

Wind Farm  Capacity (MW)  Capacity Factor

Capital 140 0.3985
Cullerin 30 0.3997
Gunning 47 0.3751
Woodlawn 48 0.3985

Figure 5.23 demonstrates the total wind generation in NSW from 2012 till the end of 2014 [110].
It shows that the output of wind farms in NSW can vary from OMW to 260MW. The mean value of
the total hourly wind power is 84.72MW and its standard deviation is around 79MW.
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Figure 5.23. Total wind generation in NSW for 2012-2014 [110]

Correlations between outputs of the main NSW wind farms are shown in Figure 5.24. It can be
observed that there is a high correlation between their generated powers. The highest correlation is
between Capital and Woodlawn which is 90%. These correlations should be taken into account in
the simulations; otherwise, the calculated ELCC will not be accurate.
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Figure 5.24. Correlation matrix between NSW wind farms
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It can also be seen that the probability distribution functions of the electricity production in these
wind farms (the diagonal elements) are similar as well. These high correlations and similarities in

wind regimes are mainly due to the close vicinity of wind farm locations.

5.2.3. Simulation Results

To evaluate the reliability contribution of wind power in NSW, first, all historical data are
classified into twenty-four groups and each group represents a specific time of the day. Then, by
means of the Fuzzy C-mean method (explained in Chapter 4), data points in each of these 24 groups
are clustered into a proper number of levels. The clustered model of the electricity consumption in
New South Wales in per-unit of its highest peak demand (13,788MW) is demonstrated in Figure
5.25. As can be observed, for each hour there are 10 clusters to represent load value at that time.
The number of clusters is obtained by using the elbow method which has been explained in Section
4.5.1 of Chapter 4.
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Figure 5.25. Time-dependent clustered model for electricity demand in NSW

Afterwards, these clusters are sorted successively in accordance with their cluster value. The
time dependant model of Woodlawn wind farm is given in matrix form in Table 5.14. In this matrix,
rows indicate the hour that clustering has been done for, and columns are the clusters representing
wind power levels in per-unit and their probabilities at each hour. For example, the possibility of
Woodlawn generating 96.5% of its nominal capacity at 1:00am is 8.6% and the probability of

producing 0.9% of its installed capacity at the same time is 22.4%.
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m 1 2 3 4 5 6 7 8 9 10
) Value (pu) 0009 0079 0158 0253 0352 0457 0581 0709 0867 0965
Probability ~ 0.224 0140 0131 0104 0083 0061 0063 0054 0055 0.086
, Value (pu) 0010 0087 0160 0244 0345 0453 0574 0691 0853 0958
Probability ~ 0.264 0145 0110 0095 0081 0056 0049 0045 0056 0.099
2 Value (pu) 0006 0064 0140 0218 0297 0398 0513 0644 0816 00956
Probability ~ 0251 0130 0115 0091 0078 0074 0046 0053 0053 0.110
, Value (pu) 0005 005/ 0119 0185 0271 0366 0499 0651 0848 0963
Probability ~ 0.253 0120 0106 0074 0091 0080 0058 0058 0069 0.089
; Value (pu) 0009 0083 0168 0273 0382 0512 0638 0779 0901 0973
Probability ~ 0.304 0148 0118 0083 0068 0051 0049 0047 0061 0071
] Value (pu) 0007 0073 0156 0245 0354 0456 0597 0728 0877 0967
Probability ~ 0.283 0154 0115 0072 0068 0070 0048 0053 0055 0.082
; Value (pu) 0006 0072 0154 0244 0334 0436 0563 0708 0888 0970
Probability ~ 0.282 0151 0092 0088 0076 0072 0054 0057 0059 0.070
; Value (pu) 0005 0069 0142 0220 0303 0395 0532 0674 0801 00952
Probability ~ 0.307 0120 0098 0073 0070 0073 0062 0054 0035 0.109
; Value (pu) 0004 0065 0133 0218 0321 0424 0511 0627 0787 0946
Probability ~ 0.313 0111 0108 0083 0068 0064 0047 0040 0056 0.110
" Value (pu) 0005 0068 0152 0241 0339 0451 0588 0747 0877 00963
Probability ~ 0.328 0104 0108 0082 0065 0070 0047 0053 0062 0.081
" Value (pu) 0006 0081 0169 0251 0342 0429 0548 0708 0863 00957
Probability ~ 0.343 0098 0088 0079 0053 0053 0055 0064 0059 0.109
o Value (pu) 0005 0076 0158 0257 0369 0486 0615 0.768 0887 0965
Probability ~ 0.328 0105 0080 0080 0067 0049 0066 0065 0060 0.100
0 Value (pu) 0006 0077 0164 0275 0378 0500 0638 0788 0901 00968
Probability ~ 0.318 0101 0094 0070 0061 0060 0058 0061 0075 0.100
. Value (pu) 0006 0064 0143 0226 0337 0472 0597 0729 0855 0960
Probability ~ 0.307 0097 0083 0068 0064 0053 0061 0059 0068 0.139
. Value (pu) 0006 0080 0163 0274 0395 0519 0652 0754 0874 00961
Probability ~ 0291 0139 0068 0072 0066 0065 0039 0054 0075 0.131
" Value (pu) 00056 0067 0136 0223 0319 0438 0579 0718 0876 00961
Probability ~ 0234 0119 0094 0063 0063 0077 0067 0073 0085 0.127
o Value (pu) 0006 0081 0168 0270 0367 0483 0608 0734 0869 00963
Probability ~ 0.224 0101 0104 0096 0064 0069 0067 0062 0083 0.130
" Value (pu) 0010 0110 0219 0331 0433 0543 0676 0794 0890 0971
Probability ~ 0.199 0119 0113 0103 0074 0078 0065 0064 0087 0.099
" Value (pu) 0011 0103 0214 0304 0395 0502 0625 0741 0868 00965
Probability ~ 0.147 0120 0106 0102 0103 0080 0070 0084 0087 0.100
” Value (pu) 0012 0105 0198 0291 0393 0498 0605 0712 0845 0960
Probability ~ 0.142 0106 0111 0120 0108 0084 0069 0088 0062 0.110
- Value (pu) 0012 0100 0196 0301 0394 0493 0623 0711 0848 00959
Probability ~ 0.149 0133 0122 0110 0094 0107 0063 0062 0058 0.101
» Valie (pu) 0011 009 0189 0281 0381 0482 0574 0694 0849 0965
Probability ~ 0.154 0127 0122 0105 0111 0071 0080 0077 0057 0.095
i Value (pu) 0012 0093 0185 0275 0366 0485 0587 0717 0852 00963
Probability ~ 0.185 0130 0.118 0109 0110 0081 0069 0046 0057 0.093
. Valie (pu) 0012 0092 0180 0258 0356 0460 0592 0722 0865 0962
Probability ~ 0221 0141 0099 0113 0089 0084 0056 0057 0057 0.084
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In the next step, for each time-dependent clustered model, correlated uniformly random numbers
between [0, 1] are generated for each hour and the cluster values with the probability related to
these numbers are selected to represent the data at that specific time. This process should be
conducted for all wind farms, demand and interconnector data sets. Simulated output power of
Woodlawn for a sample day generated by means of the sampling technique (described in chapter 4)
considering its correlations with other datasets is displayed in Figure 5.26. The output power of this
wind farm can vary from OMW to 48MW and the generated power at each hour is related to cluster
values and their probabilities, generated random number and correlations with other wind farms at

that time.

50 T T T T T

N w S
o o o

Generated Power (MW)

RN
o

O 1 1
1 5 9 13 17 21 24

Time of Day

Figure 5.26. Simulated output power of Woodlawn for a sample day

Reliability of the NSW system is evaluated at generation and composite system levels using
these time-dependent cluster models and the state sampling Monte Carlo technique. In the HLI
study, all generators and electricity consumers are considered to be at one bus and the total
generated wind power is deducted from the original demand minus the imported power plus the
exported electricity. Then, the demand not supplied by the system is calculated on an hourly basis
and the LOEE index is calculated for each hour. Finally, the overall loss of energy expectation is

obtained by taking the average value of the hourly indices.

It should be mentioned that as NSW is highly reliable and its original LOEE at HLI level is very
small, evaluating the impact of wind power on its original reliability level is not possible. Therefore,
the NSW system has been modified and its load has been increased to reach the Australian standard
of unserved energy level, which is 0.002% [121]. Then the load carrying capability of its wind
power is calculated considering this new index. The LOEE of the modified NSW power system is
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illustrated in Figure 5.27. This index is considered as a measure to calculate the reliability

contribution of wind farms at the generation level.
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Figure 5.27. Loss of energy expectation of the modified NSW system

For the HLII study, all wind farms are modelled at their specific bus and the load flow analysis is
conducted on an equivalent high-voltage network of NSW with some assumptions and
approximations to evaluate the impact of transmission and generation system contingencies on the
reliability contribution of wind farms. The amount of energy not supplied by the system without
wind farms is used as the reliability level of the system and the amount of extra load that can be
supported by wind farms without exceeding this level is measured as the expected load carrying

capability of wind energy at this level.

The high-voltage network of NSW is shown in Figure 5.28. The NSW grid comprises 99
substations and around 13,000 kilometres of transmission lines. This transmission network operates
at voltage levels of 500kV, 330 kV, 220 kV and 132 kV [122]. NSW, as mentioned earlier, has

several connections with Victoria and Queensland networks.
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Figure 5.28. High voltage network of NSW [122]

The ELCC of wind farms in NSW at HLI and HLII are given in Table 5.15. It can be observed
that the capacity value has decreased at the HLII level due to the transmission network constraints
and contingencies. However, since NSW has a meshed network and wind farms are located in the

middle of the network the impact of the transmission system is not that high compared to systems
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like South Australia with large transmission networks and wind farms located at the edge of the

system.

Table 5.15: Capacity value of wind power in NSW

265 MW Wind
Capacity Value
MW %
Generation Level 93.05 35.24
Composite System Level 84.56 31.91

5.2.4. Impact of Interconnections on Capacity Value of Wind Farms

Victoria and New South Wales have several connections with other states and exchange a
considerable amount of electricity through these tie-lines. Therefore, in this section, the impact of
interconnections on the reliability benefits of wind energy in these power systems is investigated at
the generation level. First, these networks are considered to work in islanded mode and no power is
transferred through the interconnectors. Then, the results are compared with the ELCC of these two
states considering the exchanged power through the tie-lines to investigate the impact of the
interconnections on the reliability benefits of wind energy in these two states.

The loss of energy expectation indices of NSW and VIC in island mode are calculated. Then, the
same index is calculated in the presence of wind energy by applying the approach that was
explained in the previous sections. Figure 5.29 illustrates the ELCC calculation process for NSW

wind farms in island mode.
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Figure 5.29. Capacity value of NSW wind farms in island mode
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The ELCC of wind energy in New South Wales, as demonstrated in this figure is around 90MW.
It means that this much extra load can be supplied with 265MW of installed wind farms in NSW
while the reliability level of the system is unchanged. The same approach has been applied on the

Victorian wind farms and the results of the study are presented in Table 5.16.

Table 5.16: ELCC of wind farms in NSW and VIC

From ELCC (MW) ELCC (%)
NSW (265MW) 90.20 MW 34.03
VIC (885MW) 219.8 MW 24.84

It can be observed that although the ELCC of wind farms in Victoria is higher in megawatt, its
capacity value in percentage value is lower, due to its higher installed wind capacity. One reason
might be the lower mean value or capacity factor of wind farms in Victoria (Table 5.9) in
comparison to NSW wind farms (Table 5.13). The correlations between wind regime and load
profile could be another reason. Table 5.17 compares the average hourly correlations between the
NSW and VIC total wind power and their demand data in island mode. As can be seen, the

correlation between wind generation pattern and load profile in Victoria is lower than in NSW.

Table 5.17: Average hourly correlations between wind power and load data in NSW and VIC

State Correlation Coefficient
NSW 0.5986
VIC 0.3712

By comparing wind capacity values in the island mode with the ELCC values of NSW and VIC
considering interconnections, which has been calculated in previous sections (Table 5.10 and Table
5.15), the impact of tie-lines can be investigated. The percentage values of the effective load
carrying capabilities of wind power in NSW and VIC with and without interconnections are

compared in Figure 5.30.
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Figure 5.30. ELCC of NSW and VIC for different scenarios

As expected, it can be seen that in both systems, the ELCC of wind farms in the presence of tie-
lines has increased. However, the increment in NSW is insignificant compared to the rise in the
ELCC of VIC. The main reason for this might be the different role of the interconnectors in these
two states. As it has been shown in Figure 5.13, Victoria exports electricity most of the time
through these tie-lines and the average exported power for this system is positive. On the other
hand, Figure 5.22 shows that NSW uses the interconnections mainly to import power. Therefore, as
the tie-lines are considered and these networks are not islanded anymore, the VIC wind farms can
export their generated power to other states when there is no need for them inside Victoria.
Whereas, as NSW imports electricity, the contribution of wind is not changing that much and the

impact of interconnections on its ELCC is negligible.

Therefore, it can be concluded that the impact of these power lines on the reliability benefits of
wind farms can be different and depends on their roles in exporting or importing electricity. If tie-
lines help to export power most of the time, the ELCC of wind energy may increase. However, if a

system mainly imports electricity through them, their influences on ELCC might be insignificant.
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5.3. Tasmania

5.3.1. Tasmanian Power System

Tasmania is an island state of Australia located South of Victoria. The majority of its power
production is from renewable energy resources. This system is the smallest network in Australia
and its maximum peak demand is around 1,800MW [112]. Electricity in Tasmania is currently
almost entirely produced by hydro generation with a total installed capacity of 2,300MW [22].
Installed wind generation capacity is already around 308 MW with more than 1GW of projects
publicly announced for future development. Tasmania is connected to mainland Australia via a
single HVDC undersea link (Basslink) with an export capacity of 630 MW. Tasmania has the
potential for high wind penetration levels [123]. Evaluating the contribution of wind generators in
the system adequacy of the Tasmanian power system is essential due to the expected increase of

wind power penetration levels in Tasmania.

Tasmania generates most of its electricity from hydro (77%) and has around 386 MW of gas-fired
generation as the second source of power production [22]. Currently, wind power has a 10% share
of total generation capacity of this system. The proportion of different energy sources in the

generation capacity of Tasmania is shown in Figure 5.31.

Gas
13%
r

Wind
10%

Figure 5.31. TAS installed capacity percentage by generation type [118]

Furthermore, future generation development in Tasmania is expected to be in the renewable
sector as there are more than 1,300MW wind and 302MW hydro projects publicly announced. The

details of the Tasmanian generation system and its future developments are given in Table 5.18.
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Table 5.18: TAS existing and potential new developments by generation type (MW) [39]

Status / Type CCGT OCGT Gas other Wind Water
Existing 208 178 5 308 2,281
Publicly

0 0 0 1,379 302
announced

Unlike other states, in Tasmania peak load generally occurs during winter. Figure 5.32 shows the
range of variations in the Tasmanian hourly load from 2011 to 2013 [112]. It can be seen that the
hourly load profile varies from 650MW to more than 1,600MW and consists of two peak periods:

one in the morning and the other in the evening.

1800 . . . : . .
1600 TT%+ T, _
R by
S 1400 A et
= S[IrSERERy H
ML
0 | :':' :ll:l
Dmmﬁ$ﬁﬁﬁgl:=1’::':H::li:ll
R N S T
I ill ilj-;'l': 11 lll
800-$ii4&$i+ LIRS +]
600 L ' ' ' - S
1 5 9 13 17 21 24
Time of Day

Figure 5.32. Box-and-whisker plot for hourly load data in Tasmania for 2011-13 [112]

It can be observed that the load profile of Tasmania is unique and different from other states. The
average load in this system is low during midnight and midday, while in other states the highest
peak demand happens during the midday period. This is mainly because of its mild weather in
summer and very cold weather in winter [124]. Since the demand in winter is much higher than the
summer load, the reliability evaluation for Tasmania is conducted only for the winter time (June,
July and August), when this system may face some insufficiencies. The average seasonal demand of
Tasmania in 2012 is depicted in Figure 5.33. It shows that the average electricity consumption in

this state is the highest during winter and has the lowest peak in summer.
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Figure 5.33. Average hourly demand of Tasmania for different seasons in 2012 [112]

5.3.2. Wind Data

Tasmania is geographically located within the 'Roaring Forties'; latitudes with some of the most
reliable winds on Earth [123]. Tasmania currently has 140MW Woolnorth and 168MW Musselroe
wind farms. This means the wind capacity in Tasmania might be able to supply around 17% of its
peak demand (1,800MW). The statistical values of historical wind speed data of six years (2006 till
2012) for these sites provided by the Australian Bureau of Meteorology are presented in Table 5.19.

Table 5.19: Statistical data of Woolnorth and Musselroe sites wind speed [124]

Site Mean (m/s) Standard Deviation (m/s)

Woolnorth 9.73 4.94

Musselroe 6.80 3.65

It can be seen that the wind regime at the Woolnorth location is better than the one at the
Musselroe site. However, it should be mentioned that for the Musselroe wind farm the BOM wind
speed data of Eddystone Point weather station which is the nearest active weather station and is 30

kilometres distance from this wind farm was utilized.
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5.3.3. Simulation Results

The process of calculating the capacity value of the Woolnorth wind farm for the winter period is
shown in Figure 5.34. The dashed line in this figure illustrates the loss of energy expectation of
Tasmania for different extra loads added to this power system. It can be seen that LOEE is around
200 MWh/yr for 1,800 MW peak load (no extra load). This index is computed once again
considering wind farms and extra load levels. The solid line in Figure 5.34 depicts the LOEE of this
system. Comparing these two lines, 44 MW extra load could be added to the Tasmanian power
system supplemented by the Woolnorth wind farm without exceeding the existing LOEE level (200
MWh/yr.). This is equivalent to approximately 31% of the 140MW installed capacity of the

Woolnorth wind farm.
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Figure 5.34. Capacity value of Woolnorth wind farm
Effective load carrying capability of Musselroe is investigated by applying the same process
described before. The capacity value of this 168 MW wind farm is around 38 MW (23% of its
installed capacity). Although this wind farm has a higher installed capacity than the 140MW
Woolnorth wind farm, its capacity value is lower. This could be due to the lower wind speed in

Musselroe compared with Woolnorth as has been shown in Table 5.19.

In order to calculate the impact of the transmission system on the capacity credit of wind farms,
reliability assessment has been conducted at HLII. In this level, an equivalent network was prepared
with some assumptions to study load flow analysis on the Tasmanian power system. The expected
energy not supplied considering generation units and the transmission network has been calculated
using the state sampling (non-sequential) Monte Carlo method. Figure 5.35 displays the high-

voltage network of Tasmania and the location of Woolnorth and Musselroe wind sites. In Tasmania
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the transmission network operates at voltages of 220 kV and 110 kV and consists of 3,577 circuit
kilometres of transmission lines and underground cables, 49 transmission substations and 7

switching substations [125].
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Figure 5.35. High voltage network of Tasmania [117]

Figure 5.36 depicts the EENS of the Tasmanian composite system during winter with and
without wind generation. It can be seen that in all cases, by increasing system load the EENS is
growing. However, adding wind generation can reduce this index and improve system reliability.
But the amount of augmentation for each case is different. The ELCC of Woolnorth is around
35MW which is higher than Musselroe with 24MW capacity value and the load carrying capability

of total wind generation in Tasmania is around 33MW.
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Figure 5.36. ELCC of wind farms in Tasmanian composite system during winter

Figure 5.37 compares the capacity value of wind farms at different reliability assessment levels.
It shows that the reliability benefits of wind energy at HLII have decreased due to network
constraints and transmission line contingencies. In this study, as wind farms are far from load
centres, the effect of transmission system constraints is significant. Moreover, the amount of
reduction in the ELCC of Musselroe is higher. Therefore, it can be concluded that transmission
network reinforcement near this site might be more beneficial than near the Woolnorth site.

However, economic analysis and more studies are required to verify this conclusion.
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Figure 5.37. Capacity value of wind farms in two reliability assessment levels
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5.3.4. Wind - Hydro Coordination

Hydroelectric power is the major source of electricity in Tasmania with 27 hydro power stations,
generating around 10,000 GWh of electricity annually [123]. This presents an ideal opportunity for
the Tasmanian power system to coordinate hydro-electric and wind power generation to balance
wind power variations and maximize renewable energy utilization. Coordinating the output of some
existing hydro units with wind farms can balance the wind power fluctuations and increase the
benefits of wind farms. Power system reliability in the presence of wind-hydro coordination has
been studied in [126] and [127]. Hydro units were considered as peak time generators in [126] and
it was shown that coordinating wind and hydro can improve system adequacy when a proper
number of hydro units are designated to support wind farms. Wind power is utilized in [127] to
store water in hydro reservoirs during off peak periods, which can be used at a later time by the
hydro station to produce its highest capacity during peak load times when electricity has a higher

value.

For cooperation between hydro and wind generators, first, the coordination strategies such as
energy storing inception and energy balancing should be determined. Energy inception policy
specifies when the coordinated generator has to reduce its output and what the minimum required
level of wind power to trigger the coordinated generator should be. Different values can be selected
as the coordination criterion, which means the minimum required capacity of the wind to start

preserving water in the storage [127].

In order to balance the stored and released water for hydro plants, the energy balancing strategy
should be determined. Short-term and long-term policies can be considered as energy balancing
policies. In these strategies, at the end of a specified operation cycle (e.g. 24 hours), all the stored
water should be released. Although long-term policies are more flexible they may require a water

management process and therefore, are more complicated.

Among Tasmanian hydro stations, the Gordon scheme located in the southern part of Tasmania
is considered to be ideal for coordination with wind power. The Gordon station has the highest
hydro installed capacity in Tasmania [22] comprising three 144MW units, which generates up to
432 MW of power. This hydro station is supplied with water from Lake Gordon and Lake Pedder
[128]. Gordon hydro station is coordinated with Tasmanian wind farms in a daily energy balancing
policy: during off peak periods the wind farm produces power and the hydro unit decreases
electricity production which effectively stores water in its reservoir. During peak load periods, the
Gordon hydro power station could generate additional power using the stored water to maximize its

output when electricity usually has a higher value. The unused capacity of Gordon station during
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peak time, which is around 30 MW, is utilized as an inception strategy. During off peak times when
the wind farm power exceeds 30 MW, Gordon hydro unit stops producing power and retains its
water level. This stored water can be used to obtain maximum power from this hydro station if it’s

required.

The coordination process between the Gordon hydro plant and Woolnorth for a sample day is
illustrated in Figure 5.38. The dashed red line represents the inception strategy, the blue line is the
power generation of Woolnorth and the shaded areas are the amount of energy that can be stored
and utilized during peak times. For the cooperation process a day is divided into four periods: two
off peak periods and two peak durations. The off peak times are from 11pm to 6am and 12pm to

5pm, while 6am to 12pm and 5pm to 11pm are considered the peak times.

Cwiput Power (W)

Figure 5.38. Coordination process between Gordon and Woolnorth for a sample day

The LOEE index of Tasmania has been calculated once again considering the cooperation. Then,
by comparing this index with the original LOEE, the effective load carrying capability of wind
farms coordinated with Gordon hydro station is calculated. The effect of this coordination on the

capacity value of Woolnorth and Musselroe wind farms is displayed in Figure 5.39.

As is shown in Figure 5.39, the capacity values of Woolnorth and Musselroe have increased.
This means that without using extra water and just by changing the power production plan of the
Gordon hydro station, the load carrying capability of wind farms could be significantly increased. It
should be noted that this increase depends on the wind regime of the wind farms. Taking Woolnorth
as an example, coordinating 30 MW of hydro power has raised its capacity value from 31% to 46%
or by 20 MW (from 44 MW to 64 MW). At Musselroe the same coordination has resulted in an
increase from 23% to 33% or by 17 MW (from 38 MW to 55 MW).
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Figure 5.39. Capacity value of Tasmanian wind farms with and without hydro coordination

It is considered highly likely that the impact of coordinating on capacity value depends on wind
speed regime at each wind farm, with larger increases occurring at wind farms with more consistent
wind. Thus it is concluded that it would be better to use hydro units to support wind farms with

higher wind speeds if the objective is to maximize the benefits from increased capacity value.

To assess the effect of a higher coordination criterion, the study was repeated with a 50 MW
coordination capacity. In this simulation, the hydro unit could stop power production and retain its
water when the output power of the wind farm is more than 50 MW during light load. Although this
value is 20 MW higher, the results are similar to the previous study (coordinating 30 MW) and have
not materially changed. It has increased the capacity value of Woolnorth and Musselroe wind farms
by 21 MW and 18 MW, respectively.

Therefore, in order to investigate the impact of coordination inception strategy on the ELCC of
wind farms, different values have been selected as the coordination capacity for the cooperation
between Woolnorth wind farm and Gordon hydro unit. The results of this study are depicted in
Figure 5.40. It can be seen that by increasing the coordination capacity, the ELCC of this wind farm
is increasing. However, the increment rate decreases and the ELCC is saturated after 30MW
coordination capacity. Lower probabilities of producing high levels of wind during off-peak and the
constraint in the Gordon hydro reservoir are the main reasons. Therefore, selecting a higher
coordination capacity may not improve the capacity value of wind farms significantly, and an

optimum strategy should be selected according to hydro unit constraints and the output profile of

wind farms.
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Figure 5.40. Capacity value of Woolnorth for different coordination capacities

54, Summary

Capacity values of wind farms in several regions of the NEM have been evaluated for
hierarchical levels | and I1 in reliability studies. First, reliability contribution of wind energy in
generation adequacy assessment has been investigated, where the capacity shortage of generators is
important regardless of their location in the network. In the second level study, the impact of
transmission system constraints and contingencies has also been taken into consideration. Because
the location of generators and loads are important and will affect the result at this level, load flow
study is also required in each iteration, which increases the computational time of current reliability
assessment techniques significantly. Therefore, the proposed time-dependant clustering method,
which has been explained in Chapter 4, has been applied to model wind generation, electricity
consumption and exchanged power. This method is not only fast and simple but also is capable of
keeping correlations and time properties of datasets and can be used in systems with a large number
of renewable generators without losing its simplicity. In order to calculate the reliability benefits of
wind generation, LOEE and EENS indices have been computed in the generation adequacy

assessment level and composite system studies, respectively.

It is concluded that at the generation level, wind capacity value is related to wind regime of
wind farms, their correlation with load profile, dependencies between wind patterns, generation

capacity of the system, exchanged power through interconnections and the reliability level of the
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studied system. While at the composite system level, in addition to these factors the topology of the
transmission network, location of wind farms and transmission system constraints are affecting the
ELCC of wind farms as well. By comparing the results of these two reliability assessment levels, it
can be realized that reliability benefits of wind generation in the composite system assessment is
lower. This can be due to transmission system constraints and outages. Hence, the amount of
reduction in the ELCC of wind farms can be a criterion in network augmentation studies.
Furthermore, results show that the impact of exchanged power through tie-lines can be dissimilar

for different systems and is mainly related to the direction of the flowing power.

It is also concluded that wind-hydro coordination can improve the capacity value of wind farms
regarding their wind regime and water constraints of the hydro unit. However, using different
capacities to coordinate wind and hydro power indicates that coordinating with higher capacities
may not result in a great increment in the capacity value of wind farms and the ELCC might be
saturated after a certain level of coordination capacity.

Furthermore, there were many assumptions considered in this study with network information
about different state networks. Hence the results presented in this chapter are the work of the
candidate and do not reflect the views of the network companies or the Australian Energy Market
Operator. To have an exact analysis, collaboration between the state electricity network companies,

generators and AEMO is necessary.

Similar to wind power, the penetration level of solar power is increasing in the NEM regions.
This growth, which is mainly due to the increment in the residential solar panels installations, will
change the shape of the electricity consumption profile in power systems and consequently will
affect the reliability level of systems and the capacity value of wind power. Since integration of
photovoltaic systems is increasing, their role in supplying demand should be taken into account in
reliability calculations. Therefore, in the next chapter the impact of solar energy on the reliability of
power systems and its influence on the ELCC of wind farms are investigated.
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Impact of Solar PV on the Capacity Value of
Wind Farms

6.1. Introduction?

Similar to wind energy, the photovoltaic (PV) penetration level is increasing in many countries
power systems, which will affect not only the overall reliability of power systems, but also will
affect the reliability benefits of wind farms. Several studies have proposed models for PV
generators in reliability assessment and have evaluated electric systems reliability in the presence of
solar energy [16]-[18]. However, these works haven’t considered wind generation in their studies

and the reliability assessment has been done just for PV panels.

A few works have addressed the reliability of systems with wind and solar PV generators [13],
[19]. However, they have considered both wind and PV together and have not studied the impact of
PV generation on the reliability benefits of wind farms. In Ref. [19] energy adequacy of a
distribution system with renewable distributed generators (DG) has been evaluated and the
reliability contribution of these small DGs during peak time is measured. Reliability evaluation of
the IEEE reliability test system with large-scale wind and PV generation has been investigated in
Ref. [13]. This work proposed a method to capture all correlations between wind speed, solar
irradiation and load profile in the adequacy studies. It has concluded that these dependencies will
affect the reliability indices, and by increasing the level of integrated renewable generators the
impact of correlation will increase. To our best knowledge, little or no study has evaluated the
reliability benefit of wind and solar in a realistic power system, and the influence of solar

generation on the reliability contribution of wind energy has not been analysed.

! This chapter covers the following references:
e Mehdi Mosadeghy, Ruifeng Yan and Tapan K .Saha “Impact of PV Penetration Level on the Capacity Value
of South Australian Wind Farms” Renewable Energy (Elsevier), Volume 85, January 2016, Pages 1135-1142.
e Mehdi Mosadeghy, Ruifeng Yan and T.K. Saha, “A Time Dependent Approach to Evaluate Capacity Value of
Wind and Solar PV Generation” IEEE Transactions on Sustainable Energy, early access, DOI:
10.1109/TSTE.2015.2478518.
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To address these gaps and investigate the influence of solar energy on reliability benefits of wind
generators, the South Australia (SA) power system has been selected as a case study. Where the
level of wind generation is the highest compared to demand in Australia, and this system has a high
penetration level of solar energy [20]. The time-dependent clustering methodology, which has been
explained in Chapter 4, is applied to model wind, PV and load data. Reliability indices of the SA
system with and without renewable generators have been calculated at the generation level. Then,
by comparing these indices, the impact of PV panels on the contribution of wind farms is analysed.
Therefore, this research will provide a valuable methodology for system operators and planners to
investigate the impact of solar energy while they are assessing the reliability contribution of wind
farms. Because without considering this issue the reliability benefits of wind energy may be

overestimated.

The rest of this chapter is organized as follows. A brief overview of solar power in the Australian
National Electricity Market (NEM) is given. The methodology to model PV in reliability studies
described. Then, the impact of solar power on the capacity value of wind has been evaluated. In
addition, effects of seasonal dependencies and wind pattern correlations with PV profile on the
capacity value of wind farms are discussed. Furthermore, the future contribution of renewable
energies in the adequacy of the SA system is assessed by considering different scenarios for 2020.

Finally, a summary of conclusions is given.
6.2. Solar Energy in the Australian NEM

Solar power is growing rapidly in many power systems around the world. At the end of 2014,
around 177 GW of solar PV were installed all over the world, where more than 38 GW were
installed in 2014 [129]. Total capacity of installed PV globally from 2000 to 2014 is illustrated in
Figure 6.1. It can be seen that PV installation has increased significantly and solar power is
expected to continue this growth strongly. A similar trend is happening in Australia and in 2014
around 900MW solar PV were installed in this country. Australian solar energy continues to
develop steadily and its current annual growth rate is around 18% [42]. Most of the PV systems in
Australia are small-scale rooftop installations; however there are a number of larger-scale PV power
stations [130].
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Figure 6.1. Evolution of global PV installation [129]

Australia has good potential for solar energy and currently there are more than 4,300 MW
installed PV units, where the share of NEM is around 88% with 3,862 MW PV systems [40].
Australian PV installation density by postcode is depicted in Figure 6.2 [40]. It can be seen that the

density in most of the major cities is high and this value in Brisbane and Adelaide is more than
45%.
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Figure 6.2. Australian PV installation density by postcode [40]
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Among NEM regions, Queensland has the highest installed solar capacity with around 1,400
MW and New South Wales follows with almost 1,000 MW of solar generation. Victoria and South
Australia are next with PV installed capacity of about 800 MW and 600 MW respectively.
Currently, Tasmania has the lowest PV level with less than 100 MW of installed solar units. Total
installed capacity of solar PV systems in NEM regions is presented in Figure 6.3 [40]. The
maximum demand in most of these regions happens during the summer noon period [42].
Therefore, PV units can have a large impact on the reliability and generation adequacy of these
systems since solar generation has a high output during that time and can contribute significantly to
reduce the peak demand. Thus, in this research, the reliability contribution of solar power and its

impact on the capacity value of wind farms is investigated.
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Figure 6.3. Installed PV generation capacity in NEM by State (Aug 2015) [40]
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6.3. Solar Generation Model

South Australia is selected as the case study to evaluate the ELCC of its solar generation and the
impact of solar energy on the capacity value of wind power. This system not only has the highest
wind level in Australia but also has a significant amount of solar PV, which makes it an interesting
case for this study. To obtain the output power of solar PV panels in South Australia, the total
installed capacity of each suburb has been obtained from the Clean Energy Regulator [114]. Then,
by implementing Global Horizontal Irradiance (GHI) data [124], the hourly generated power of PV
panels in each suburb has been calculated using (6.1) [131].

2101, -29) 61)

J

P, =P

130



Chapter 6. Impact of Solar Energy

where, P, is cell output power (W), Py, denotes cell maximum installed power (W), G;
represents incident global irradiance (W/m?) and G; is standard incident global irradiance (1000

W/m?). T, denotes cell temperature and y is cell maximum power temperature coefficient (°CL).

By summarizing the output power of the photovoltaic panels in all suburbs, the total hourly solar
generation of the SA system, which is shown in Figure 6.4, has been computed. As depicted in this
figure, in 2013 PV panels in South Australia could produce up to 85% of their nominal capacity in
the summer and around 55% during the winter. It should be mentioned that during this study, at the
end of 2013 South Australia had around 500MW of PV panels [114].
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Figure 6.4. Total solar PV generation pattern in South Australia

In the next step, the hourly power data is transferred into time-dependent cluster model, which
was explained in Chapter 4. The hourly 8-step model of per-unit PV generation is demonstrated in
Figure 6.5. It shows that solar generation can have 8 different states for each hour, while these

values are zero before sunrise and after sunset.
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Figure 6.5. PV output model for South Australia

When time-dependent cluster model is created, to determine the hourly values of PV, wind and

load from the clustered models, the correlated sampling approach (Chapter 4-Section 4.5.2) is
utilized.

Figure 6.6 illustrates solar PV generation for a sample day created by this technique. The output
value of each hour has been determined from time-dependent clusters using the sampling technique
mentioned before.
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Figure 6.6. Hourly PV generation for a sample day obtained from the proposed technique.
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To calculate the reliability index of the SA system, first the pure demand is calculated and by
recording the events that demand exceeds the available generation capacity, the demand not
supplied and consequently, the loss of energy expectations is determined. In order to obtain the
amount of pure demand (Dy), which is a combination of system load, exchanged power, wind and
PV generation, equation (6.2) is applied.

Dt = L[ + Pexp,t - Pimp,t - PW,t - By it (62)

where, Pe,,, . and P, » are exported and imported power through the interconnectors at time t,

and L, denotes system load. Ppy . represents total power generation of solar PV and Py, . shows

total wind power.

Historical hourly load data of the SA system is extracted from [112]. However, this data is not
the actual demand and includes the output power of solar PV. Thus, to obtain the actual hourly load
data, the total solar production in SA has been added to the given load data. The average daily load
profile of South Australia with and without solar PV generation in 2012-2013 is depicted in Figure
6.7.
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Figure 6.7. Average daily load profile of South Australia [112]

The red graph shows the SA demand obtained from AEMO database and the blue line is the

actual load. The main difference is during midday when the generated power of solar units is high.
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6.4. Impact of Solar Energy on the ELCC of Wind

To study the influences of solar generation, the capacity value calculation, mentioned in Chapter
4, is conducted again by incorporating PV generation. In the first step, to study the impact of solar
generation on the reliability level of the SA system, LOEE of this system is calculated for a variety
of PV installed capacities and different amounts of added load. Figure 6.8 depicts the result of this
study. It can be seen that in all cases, by increasing PV capacity level, LOEE decreases and the

system becomes more reliable, especially in the presence of higher amounts of added extra loads.
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Figure 6.8. Sensitivity analysis of PV penetration level impact on LOEE

In the next step, in order to investigate the pure reliability benefits of solar energy, the ELCC of

PV with different installation levels has been evaluated. Results are illustrated in Figure 6.9.
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Figure 6.9. ELCC of different installed PV levels

As can be observed in this figure, by adding extra solar PV to the system the reliability
contribution of solar energy will increase, however, the ELCC improvement rate will decline. For
instance, the load carrying capability of 500MW solar generation is 168MW and by adding another
500MW PV this value will go up to 220MW, which means the extra 500MW PV has improved the
ELCC of solar energy around 52MW. This can be due to the high generation to load ratio; as the PV
level increases, total generation level of the system will grow and the reliability of the system will
improve, as was shown in Figure 6.8. Therefore, the additional PV will have a lower reliability

contribution.

Furthermore, to evaluate the reliability contribution of renewable energies in the SA system, the
capacity value of wind and PV together in South Australia has been evaluated. Figure 6.10
compares the capacity value of wind farms, solar panels and wind - PV combined together in SA. It
shows that the reliability benefit of PV is 16BMW and wind power has a capacity credit of 385MW.
However, the load carrying capability of wind and PV together is 497MW, which is less than the

summation of those separately.
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Figure 6.10. Reliability benefits of renewable energy generation in SA

The overlap between wind and PV generation during some periods of the day, as is shown in
Figure 6.11, might be the reason. This figure shows that around midday both wind and solar
generators are producing power and their total generation is high. Therefore, the reliability benefits
of these sources together might be saturated and the system may face less reliability problems
during that time of the day.
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Figure 6.11. Average hourly output of renewable generators in SA
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Moreover, to analyse the impact of this overlap and the influence of solar power on the reliability
contributions of wind energy, the process described in Figure 6.10 has been repeated for 1202MW
of wind and different levels of PV generation. Figure 6.12 displays the results of this study. This
graph shows that as the level of PV generation increases the ELCC of renewable energy will grow,
however, the growth rate will decline and the contribution will be saturated in high levels of PV and

wind power. The main reason as mentioned in Figure 6.9 might be the higher ratio of generation to

load.
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Figure 6.12. ELCC of renewable energy in SA for different levels of PV

By comparing Figure 6.9 and Figure 6.12, it can be noticed that by increasing solar PV levels,
the impact of solar energy on the capacity value of wind energy increases, however the influence
rate will decline and be saturated as the PV level increases. For example, ELCC of 500MW PV in
Figure 6.10 is around 168MW and by adding 1202MW of wind generation this value raised to
497MW, while adding the same amount of wind power to the system with 2000MW PV panels has
improved the ELCC from 220MW to around 520MW. One of the main reasons for this saturation as
mentioned earlier, can be the growth in system generation level and the other one might be the

higher overlap between PV and wind generation.

To demonstrate this impact clearly, the ELCC of wind farms for different penetration levels is
presented in Figure 6.13. PV penetration level is considered as the peak value of solar generation
divided by peak load. This graph shows that as the penetration level of PV increases the
contribution of wind energy in the reliability of the system will decrease. It can also be understood

that the impact of high solar PV penetration levels on the capacity credit of wind farms is higher;
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however, the reduction rate of ELCC will decline as the PV generation level increases. For instance,
if the PV penetration level changes from 0 to 15%, the ELCC of wind generation will decrease
around 65 MW, but if PV level increases from 15% to 30%, capacity credit of wind farms will
reduce another 20 MW.
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Figure 6.13. Wind capacity credit for different installed PV levels

6.4.1. Wind Profile Impact

As mentioned before, the impact of solar energy on the reliability benefit of wind farms can be
related not only to the level of PV generation but also to the correlations between wind regime and
PV profile. Therefore, in this section the effect of wind-load and wind-PV correlation on the
capacity value of renewable resources has been investigated. For this reason, another wind regime
has been assumed for South Australia. Figure 6.14 illustrates the median, quartiles, and extremes of
the SA total wind generation data set using the box and whiskers plot and Figure 6.15 displays the
probability of total wind generation under a new wind profile. The wind regime of the Macarthur

wind farm in the state of Victoria has been selected as the new wind pattern [110].
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Figure 6.14. Box-and-whiskers plot for total wind generation in South Australia in 2013
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Figure 6.15. Macarthur wind power generation regime box-and-whiskers in 2013

Table 6.1: Wind regimes correlation with load profile on average monthly time scale

Correlation Coefficient Load Capacity Factor
SA Wind Regime 0.3141 0.384
Macarthur Wind Regime 0.2184 0.294

Table 6.1 demonstrates the capacity factor of these two wind regimes and their average monthly

correlation with load profile. It can be noted that the SA wind regime has a higher capacity factor,
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which means a higher mean value for its output, and this wind regime is more correlated to the

system load.

The capacity value assessment method shown in Figure 6.10 has been applied to the new wind
profile and results are given in Table 6.2. It shows that the effective load carrying capability of the
SA wind profile is higher than the new one. The higher capacity factor of the SA wind regime can
be one of the main reasons, and the higher correlation between this wind regime and load curve
might be another cause. Therefore, it shows that the capacity value of wind farms not only depends
on their power generation but also is related to their correlation with load profile.

Table 6.2: Effect of PV on ELCC of different wind regimes

ELCC of Wind Energy (MW) oMW PV 500MW PV
SA Wind Regime 385 497
Macarthur Wind Regime 265 404

Furthermore, it can be seen that although the ELCC of combined wind and solar generations is
higher in the SA wind profile, the added value of solar PV in the Macarthur regime is more; in this
case, adding 500MW PV has improved the ELCC value by 112MW (from 385MW to 497MW),
while in the second wind regime the added value of PV is 139MW. This is despite the expectation

from correlation coefficient of solar generation and load data, given in Table 6.3.

Table 6.3: Average hourly correlation of PV generation and load for different wind regimes

Correlation Coefficient Load Load- SA Wind Load- Macarthur

Solar PV 0.3652 0.4009 0.2329

This table shows correlations between PV output and the original SA load, original load minus
SA wind power and original load minus wind power generated with the Macarthur regime. It was
expected that due to higher correlation between PV and the second load profile (load minus SA
wind), added benefit of PV should be higher in the SA wind regime, which is in contrary to the
results in Table 6.2. The lower capacity factor of the Macarthur wind profile might be the main
cause of this issue. As the average output power of Macarthur is lower, there will be more space for
solar power to contribute to the system reliability and the added ELCC of solar energy in this case is
higher. Therefore, it can be concluded that although the impact of PV generation on the reliability
benefit of wind farms is related to the relation between wind profile and PV curve, the capacity
factor of wind regime might affect the added value of solar generation as well.
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6.4.2. Seasonal Correlation

Since the output power of solar generators is related to the season of the study, in some cases
seasonal evaluations might be required. The proposed technique is also capable of capturing
seasonal features of renewable resources and load data. In order to illustrate its effectiveness, a
seasonal case study has been conducted for the South Australian network. Three different seasons
are considered for this state: summer, spring-autumn and winter, and time-dependent cluster models
for renewable generation systems, electricity demand, and exchanged power are created based on
these seasons. Clustered models of the SA solar generation and load data in summer and winter are
presented in Figures 6.16 - 6.19.
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Figure 6.16. PV output model for South Australia in summer

From these figures it can be seen that load and solar generation have different profiles during
summer and winter. For example, in Figure 6.16 the PV system can generate close to 85% of its
installed capacity during solar peak time, while as shown in Figure 6.17, in winter its output power
can go up to around 55%. In addition, these figures also show that the PV system generates power
for a longer period in summer in comparison to winter. Furthermore, the range of hourly cluster
values illustrates that the variation of solar energy in South Australia during summer is higher than
that in winter. For instance, solar generation during midday in summer may change from 20% to

85% while in winter during the same period it varies from 15% to 55%.
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Figure 6.17. PV output model for South Australia in winter

This clustering technique is not only capable of capturing seasonal features of renewable

resources but also can model seasonal patterns of electricity load. Figures 6.18 and 6.19 represent

the SA load model during summer and winter. These figures show that the load patterns are

different for hot and cold seasons. During summer, peak demand happens at midday, whereas the

winter load model has two peak periods. The first peak is in the early morning and the second one

occurs in the late evening. By comparing these two figures, it can also be concluded that the

maximum demand during the hot season is generally higher than the winter period in South

Australia.
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Figure 6.18. Load clustered model for South Australia in summer
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Figure 6.19. Load clustered model for South Australia in winter

After making seasonal clustered models for wind, PV, load and exchanged electricity, seasonal
LOEE of the system is calculated and load carrying capabilities of wind and solar PV systems are
evaluated based on the time-dependent clustering methodology proposed in Chapter 4. Results of
the seasonal studies for South Australia using both the sequential Monte Carlo and the time-

dependent clustering methods are summarised in Table 6.4.

Table 6.4: Seasonal reliability benefits of wind and PV generation in South Australia

ELCC (MW) Summer Spring-Autumn Winter
Sequential Monte Carlo 403 338 392
1202MW Wind Time-dependent Cluster 391 333 409
Error (%) 0.99 0.42 14
Sequential Monte Carlo 561 390 415

1202MW Wind + )
Time-dependent Cluster 550 382 429
500MW PV

Error (%) 0.65 0.71 0.82

This table shows that the capacity value of wind farms during winter and summer is similar,
while the added value of solar PV during summer is the highest and the load carrying capability of
renewable resources during spring-autumn is the lowest. It can also be observed that the results of
the clustering method are accurate and close to those of the sequential technique, which implies that

the proposed approach is able to capture the seasonal features precisely.

143



Chapter 6. Impact of Solar Energy
6.4.3. Future Scenario

More renewable energy is projected to be integrated into the South Australian network in the
near future. Table 6.5 gives an overview of the SA system in 2020. It has been predicted that the
peak demand will grow to more than 3,700MW and the Heywood interconnector capacity will be
expanded to 650MW. It also shows that more than 1,350MW new wind capacity is expected to be
added to this system and its new solar capacity will be around 960MW by 2020 [15]. Therefore, to
evaluate the future contribution of renewable energies in the generation adequacy of South
Australia, two different scenarios have been studied for 2020. In the first scenario, there will be no
thermal generation retirement and in the second one, 240MW of brown coal generation will be
mothballed by 2020 [15].

Table 6.5: Projected 2020 South Australia System [15]

Wind (MW) Rooftop PV (MW) Utility PV (MW) New Thermal (MW) Heywood capacity (MW)

2555 560 400 321 650

Table 6.6 compares the capacity value of renewable generations for different scenarios. It can be
seen that although the amount of capacity value in MW is higher in 2020, the percentage value of
ELCC will be smaller than the existing system. Therefore, it can be concluded that as the
penetration level of wind and PV increases, the percentage of their reliability contribution may
decline. However, when thermal generators are retired this value may increase, but not as much as
the mothballed capacity.

Table 6.6: Renewable energy capacity value in SA for 2020

PV Wind Wind + PV
ELCC
MW % MW % MW %
2013 - Existing 168 33.6 385 32.1 497 29.2
2020 — No retirement 330 34.4 586 22.9 878 24.9
2020 - 240MW Brown Coal 352 36.7 641 25.1 922 26.2

It should be mentioned that the LOEE of the system increased after removing 240MW of brown

coal generation, however it still meets the Australian reliability standard [121].

144



Chapter 6. Impact of Solar Energy

6.5. Summary

Like wind generation, solar PV penetration levels are growing fast in many power systems.
Therefore, in order to have a proper evaluation of wind reliability contributions in systems like
South Australia with fast growing PV, the impact of solar energy on the ELCC of wind farms needs
to be investigated; otherwise the reliability benefit of wind energy might be overestimated. In this
chapter, first, an overview of solar energy in the NEM is provided. Then the approach to model
solar PV in reliability studies is explained and the impact of solar generation on the reliability
contribution of wind energy at the generation level has been investigated. South Australia, which
accounts for more than half of Australia’s wind share and a rapidly increasing solar capacity is
selected as the case study. Furthermore, the contribution of renewable generators in the future of the
SA power system has been analysed and the impact of solar energy in 2020, when there are high
levels of renewables integrated into this grid, is studied. In addition, seasonal impact and the

influence of correlations between wind regimes and solar pattern are analysed.

It is concluded that integrating high levels of solar generation into the power system will reduce
the ELCC of wind farms. However, the severity of this effect will decrease with further increases in
PV generating capacity. It is also understood that as the level of wind and PV increases, the
percentage value of their ELCC may decline. However, by retiring conventional generators this
value may increase. In addition, it has been shown that although load carrying capability of wind
farms is related to their wind profile and their dependencies with load curve, PV penetration level
affects this value and the amount of influence depends on the capacity factor of wind farms and the
correlation between wind and solar energy. Therefore, the correlation between wind regime, solar
pattern and load profile should be considered in wind farm planning to obtain more reliability
benefits from these sources of energy. However, as mentioned in previous chapters, other factors
such as capacity factor, location of wind farm and transmission network constraints should be taken

into account to have more accurate results.
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Chapter 7

Conclusions and Recommendation for Future
Research

7.1. Summary

In this thesis, wind characteristics are described and an overview of the global wind industry is
provided. Wind markets in Denmark, Germany and USA, government policies, supporting targets
and technical requirements for wind development in these countries are explained. In addition, an
overview of the Australian wind industry is presented and the future of wind power in the

Australian National Electricity Market is discussed.

Furthermore, basics of reliability assessment methods are briefly presented. Different models to
represent wind power in reliability assessment and several reliability-based and estimation methods
to calculate capacity value of wind are described. However, most of these methods are time-
consuming or may not be able to keep the time relevancies and correlations among renewables and
load datasets. Therefore, this thesis proposes a new approach to improve the existing methods and
overcome their deficiencies. In the proposed framework, wind power and electricity demand are
being modelled as time-dependent clusters. Fuzzy C-mean clustering method is utilized to create
these clusters, which not only can capture time-dependent attributes of the datasets, but also are able
to keep the correlations between them. Furthermore, a sampling method is developed based on the
Cholesky decomposition and transformation techniques to select the proper hourly value from wind
clusters while retaining the correlations. Afterward, the time-dependant models are applied with the
state sampling Monte Carlo method to calculate the reliability indices of power systems with and
without renewable generators. Then by means of these indices, the capacity value of wind is

computed.

Afterward, the proposed methodology is applied to calculate load carrying capability of wind
power in several regions of the NEM. First, reliability contribution of wind farms at the generation
level of these systems is evaluated regardless of their transmission grid. Then, the impact of

transmission system constraints and contingencies on the ELCC of wind is investigated. In addition,
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the importance of interconnections and electricity exchange between these regions is studied.
Moreover, coordinating hydro units with wind farms as an approach to increasing wind capacity

value is assessed.

In addition, as the penetration level of solar generation is growing rapidly in the NEM regions,
the shape of the electricity consumption profile in power systems and consequently the reliability
level of systems are expected to change. These changes will affect the reliability contributions of
wind power. Therefore, in this thesis the role of solar power in supplying demand is taken into
account and the impact of solar energy on the capacity value of wind is investigated and the

influence of correlations between wind regimes and solar pattern are analysed.

7.2. Main Findings and Contributions

» Time-dependent clustering approach

In this thesis a time-dependent clustering method has been proposed to evaluate the reliability
contribution of wind generators. This approach is not only much faster than the sequential technique
but also is able to capture the time-dependent characteristics of wind units and the correlation
between them. In order to demonstrate its effectiveness, this method has been applied on the IEEE

reliability test system.

Results show that the new approach can estimate the ELCC of wind with an acceptable accuracy.
It is also concluded that this method can be utilized for different penetration levels of wind and
solar generators, and will provide precise results regardless of the wind profile and the size of
renewable generators. Also, this approach is capable of capturing seasonal behaviour of power

systems and renewable resources.

Furthermore, it is shown that this method is not only applicable at the generation adequacy
assessment level but also can be employed in the composite system studies where the sequential
techniques may require a huge amount of time and probabilistic and multistate models may not be
able to keep the correlation between resources and capture their time dependencies. In addition, it is
illustrated that the time-dependent clustering approach can be utilized in systems with several wind

farms and solar generators without facing difficulties and losing its simplicity.

» Capacity value of wind power in NEM

From the capacity value calculations, it is concluded that at the generation level, wind capacity

value is related to the wind profile, correlations between wind power and electricity demand,

148



Chapter 7. Conclusions and Future Research

dependencies between wind regimes, exchanged power with neighbouring networks and the
reliability level of the studied system. While, at the generation and transmission system level, in
addition to these elements, topology of the transmission network, location of wind sites and
transmission system constraints can affect the reliability contribution of wind farms as well. It can
be realized that due to transmission system constraints and outages the reliability benefits of wind
generation in this level is lower. Therefore, the amount of reduction in the capacity value of wind
farms can be utilized as a criterion in network reinforcement studies. Furthermore, results show that
considering tie-lines will increase the ELCC of wind units. This increment is mainly related to

power flow direction and in systems with higher exportations ELCC grows more.

From hydro coordination studies, it is demonstrated that wind-hydro coordination can improve
the capacity value of wind farms and the improvement is related to wind regimes and water
constraints of the hydro unit. However, coordinating with higher capacities may not result in a great
improvement and the capacity value of wind farms may become saturated after a certain level of the

coordination capacity.

» Impact of solar power on the reliability contribution of wind

The effectiveness of the proposed methodology to study the impact of solar energy is shown and
it is concluded that integrating high levels of solar generation into the power system will reduce the
ELCC of wind farms. However, the severity of this effect decreases with further increases in PV
generating capacity and the amount of influence depends on the capacity factor of wind farms and
the correlation between wind and solar energy. Therefore, considering solar generators in ELCC
calculations is important, because without considering their role the reliability benefits of wind
energy may be overestimated. It is also understood that as the level of wind and PV increases, the
percentage value of their ELCC declines. However, by retiring conventional generators this value

may increase.

It should be mentioned that there were many assumptions considered in this study with network
information about different state networks. Therefore, the results presented in this thesis are the
work of the PhD candidate and do not reflect the views of the network companies or the Australian
Energy Market Operator. Further collaborations between the state electricity network companies,
generators and AEMO is necessary to conduct an exact analysis.

All in all, since integration of wind and solar power into a power system is increasing the time-
dependent methodology developed in this thesis, it can be a useful tool for power system engineers,

in particular for planners to investigate the reliability contribution of these clean energies. The main
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benefit of this method is its ability to keep the correlations between datasets, because without
considering them the contribution of wind and solar power might be overestimated. Another
advantage is its computational time. This method can be utilized by system operators to study
several scenarios in a short amount of time. Although computational time may not be a critical issue
in generation adequacy assessment, in transmission level studies of large systems it might become
important, especially in systems with high levels of wind and PV systems. In addition, this research
will provide a valuable methodology for system operators and planners to investigate the impact of
solar energy while they are assessing the reliability contribution of wind farms. Because without
considering this issue the reliability benefits of wind energy may be overestimated. Furthermore,
this work provides an overview of wind contributions in different regions of the NEM which might
be useful for Australian system operators and planners to have an estimation about how much they
can rely on wind power in different states and can consider the results in future planning of
renewable integrations. In addition, the methodology developed in this work can be a valuable asset
for researchers working on renewable energies and can provide them an effective model to

represent wind and solar power in their studies.

7.3. Future Research

A number of recommendations for future research are proposed as below:

> Electricity price impact

The electricity price and the impact of market variations on the capacity value of wind can be
analysed and the proposed approach can be modified to model electricity price variations in

reliability assessments.

» A Model to consider reactive power

New wind turbines can generate and contribute to provide reactive power in power systems. The
reactive power can affect the reliability of power systems particularly at the transmission level.
Therefore, a new model can be developed to represent wind farm reactive power generation and the

impact of reactive power on the reliability contribution of wind farms should be investigated.

» Coordination with other generators

Wind is being coordinated with hydro units in this thesis. However, other fast responding energy
resources such as gas generators can also cooperate with wind farms and optimum coordination

plans can be investigated to increase the ELCC value.
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» Transmission reinforcement

According to the result of reliability assessment, possible transmission reinforcement alternatives
to improve the capacity value of wind farms can be investigated and the effective option to absorb
more wind power can be specified. Moreover, the effect of applying Flexible Alternating Current
Transmission System (FACTS) on the ELCC of wind farms, as another improvement option, can be
assessed and an algorithm can be developed to obtain maximum reliability benefit from these

devices.

» Congestion management

Due to insufficiency of transmission grid capacity, congestions occur on the grid. Congestion
management solutions can be studied to increase the transfer capability of the transmission system,
avoiding wind energy curtailment and increasing reliability benefits of wind farms. Different
congestion management schemes can be assessed to find proper methods to improve the ELCC of
the wind farms in the NEM grid.

> Reliability-cost studies

Reliability cost/worth assessment can be conducted for different reliability improvement plans.
Then, in accordance with economic and technical constraints, some methodologies can be
developed to increase the Australian wind capacity value in an effective way.
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Appendix A:

IEEE Reliability Test System

Table A.1: General data of IEEE-RTS

Total Installed Capacity Annual Peak Load
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Figure A.1. IEEE reliability test system
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Table A.2: Hourly Peak Load in Percent of Daily Peak

winter weeks summer weeks spring/fall weeks

1-8&44-52 18 -30 9-17 & 31 - 43

Hour Weekday Weekend Weekday Weekend Weekday Weekend

12-1am 67 78 64 74 63 75
1-2 63 72 60 70 62 73
2-3 60 68 58 66 60 69
3-4 59 66 56 65 58 66
4-5 59 64 56 64 59 65
5-6 60 65 58 62 65 65
6-7 74 66 64 62 72 68
7-8 86 70 76 66 85 74
8-9 95 80 87 81 95 83

9-10 96 88 95 86 99 89
10-11 96 90 99 91 100 92
11-noon 95 91 100 93 99 94
Noon-1pm 95 90 99 93 93 91
1-2 95 88 100 92 92 90
2-3 93 87 100 91 90 90
3-4 94 87 97 91 88 86
4-5 99 91 96 92 90 85
5-6 100 100 96 94 92 88
6-7 100 99 93 95 96 92
7-8 96 97 92 95 98 100
8-9 91 94 92 100 96 97
9-10 83 92 93 93 90 95
10-11 73 87 87 88 80 90
11-12 63 81 72 80 70 85
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Table A.3:Daily load in Percent of Weekly Peak

Day Mon Tue Wed Thu Fri Sat  Sun

Peak Load 93 100 98 96 94 77 75

Table A.4: Weekly Peak Load in Percent of Annual Peak

Week Peak Load Week Peak Load
1 86.2 27 75.5
2 90.0 28 81.6
3 87.8 29 80.1
4 83.4 30 88.0
5 88.0 31 72.2
6 84.1 32 77.6
7 83.2 33 80.0
8 80.6 34 72.9
9 74.0 35 72.6
10 73.7 36 70.5
11 71.5 37 78.0
12 72.7 38 69.5
13 70.4 39 72.4
14 75.0 40 72.4
15 72.1 41 74.3
16 80.0 42 74.4
17 75.4 43 80.0
18 83.7 44 88.1
19 87.0 45 88.5
20 88.0 46 90.9
21 85.6 47 94.0
22 81.1 48 89.0
23 90.0 49 94.2
24 88.7 50 97.0
25 89.6 51 100.0
26 86.1 52 95.2

165



Table A.5: Generation Unit Reliability Data

Unit Size (MW) No. of Units Unit Type FOR MTTF (Hour) MTTR (Hour)

12 5 Oil 0.02 2940 60
20 4 Oil 0.10 450 50
50 6 Hydro 0.01 1980 20
76 4 Coal 0.02 1960 40
100 3 Oil 0.04 1200 50
155 4 Coal 0.04 960 40
197 3 Oil 0.05 950 50
350 1 Coal 0.08 1150 100
400 2 Nuclear  0.12 1100 150
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