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ABSTRACT

The performance of Transit Travel Time Reliabi(ifyTR) influences service attractiveness, operat-
ing costs and system efficiency. Transit agencssespent considerable effort on implementation
of strategies related to advanced technologiesbtamd improving service reliability. Survey stud-
ies have shown that travelers tend to value a teum unreliability at least as important as a de
crease in the average travel time. The increasradadility of data from automatic collection sys-
tems (e.g. automatic vehicle location, automatie faollection, and etc.) provides opportunities in
addressing transit TTR challenges. While most pagties estimate TTR for impact assessment of
strategic and operational instruments, this reseairms at developing generic models for TTR pre-
diction that can fulfil different transit stakeheld’ requirements (e.g. operators, unreliabilityszs
identification; passengers, trip and departure milag). Three main issues are addressed, namely
TTR quantification, TTR modelling and Travel TimésBibution (TTD) estimation. A unique inte-
grated data warehouse was established for casestofthis research using different sources of
data across six months of a year in Southeast @lasgharea, Australia.

For TTR quantificationa set of TTR measures from the perspective ddgragers using the
operational AVL data was proposed, consideringeddfit perceptions of TTR under different traf-
fic states. The results show that the proposed mneasin provide consistent TTR assessments with
high-level of details, while the conventional TTRe&sures may give inconsistent assessmeats.
TTR modellingthe underlying determinants of travel time uraiglity were identified and quanti-
fied on links of different road types using Seenyrdnrelated Regression Equations (SURE) esti-
mation to account for the cross-equation corretatiacross regression models caused by unob-
served heterogeneity. Targeted strategies canttmeliced to improve TTR under different scenar-
ios. For TTD estimationa novel evaluation approach was developed tsaghe most appropriate
probability distributions for travel time componsiftink running times and stop dwell times). The
Gaussian Mixture Models (GMM) distribution was assl to be superior to its alternatives, in
terms of fitting accuracy, robustness and explagapower. The correlation structures of travel
time components were explored using both a glob@lsalocal correlation measures. On these basis,
a generalized Markov chain model was proposedtimate the trip TTDs for arbitrary origination-
destination pairs at arbitrary times given thevidlial link TTDs, by considering their spatiotem-
poral correlations. The proposed approach is gémabte and computationally more efficient,
while it provides a comparable performance withoregd models in literature.

A major contribution of the research is the es#dishent of a generic TTD estimation meth-
odology that can be applied for a comprehensivéysisaand prediction of TTR to fulfill different
requirements of operators and passengers in trarist methodology is applicable under general
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conditions as the link TTDs are derived conditiooalthe states of the current link and the transi-
tion probabilities are estimated as a function xgfl@natory covariates using logit models. The re-
sults of the research provide a better understgnoliincharacterizing TTR from the perspective of
passengers using the operational data, as wdleazkationships between TTR and planning, oper-
ational, and environmental factors on differentetypf roads. In addition, the research demonstrates
the existence of multiple traffic states for a giveme period and the GMM distribution can well
approximate the underlying characteristics of trdires, including symmetric, asymmetric and
multimodal distributions.

In practice, the proposed TTD estimation methodplppvides a generic tool to analyse
and predict TTR that enables transit agencies filement strategies to improve quality of service,
as well as help transit users to make smart trdeeisions (e.g. fast and reliable path). Given the
complexity of problems and the constraint of avd#adata, the empirical findings on the causes of
travel time unreliability and the probability distutions of travel time components are valid within
the range of the used data and should be usectaiition beyond this range.
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Chapter 1 Introduction

1.1 Background

Transit agencies have spent considerable effortmiplementation of strategies related to advanced
technologies capable of improving service religpi(Balcombe et al., 2004; Kittelson & Assoc et
al., 2003). Survey studies have shown that trasetard to value a reduction in unreliability atsea
as important as a decrease in the average travel(ttam and Small, 2001). Reliability tends to be
even more important in transit than in private tcavel considering the transit passengers have only
limited ability to adjust their departure times diweschedule constraints (Bates et al., 2001). Im-
proving service reliability is believed to be a wiumn situation for both operators and passengers
(Abkowitz et al., 1978). Routes characterized bgeliable service may have difficulty in attracting
potential riders and suffer patronage declines dwee. Increased perceived burdens of waiting
may ultimately impact mode choice decisions. Titaggstems with poor reliability performance
require extra fiscal resources due to higher omerabsts (Kimpel, 2001).

Service reliability can be defined as the probapilhat a service can perform a required
functionunder a givertondition(recurrent and non-recurrent) for a stdiete period(e.g. hourly,
daily, monthly and yearly). Thieinctioncan be connectivity reliability (Bell and lida, 9B, capac-
ity reliability (Chen et al., 2002) and travel timgiability (TTR) (Ng and Waller, 2010). This re-
search is categorized as a study of TTR that fecasedaily recurrent unreliability caused by varia-
tions of traffic flow and demand when the infrastuue is fully available. Non-recurrent unreliabil-
ity is not considered which are less frequent atates to infrastructure failure (Tahmasseby, 2009)

The concern with the impacts of reliability on ogt@wn efficiency for operators and passen-
gers brings about the need to identify and develepningful and consistent indicators of reliability
The workable and consistent reliability measurenuamt help to (Abkowitz et al., 1978): identify
and understand problems in reliability; identifydameasure actual improvements in reliability; re-
late such improvements to particular strategies; modify strategies to obtain greater reliability
improvements. At issue is that reliability has beefined in a variety of ways. Some studies asso-
ciated reliability with on-time performance (Baetsal., 2001; Meyer, 2002), while others related it
to travel time variability, headway regularity (éarand Furth, 2002; Yu et al., 2010), waiting time
(Fan and Machemehl, 2009; Furth and Muller, 200&egrated measures incorporating several
service attributes were also reported (van Oort\ard Nes, 2010). The emergence of automatic
data collection technologies produces a wealtlcofiiate, continuous and automated point-to-point
data that can be used to assess reliability moseeftectively (Mesbah et al., 2012)he frame-
work of quantifying TTR from passengers’ perspealising operational data needs investigation.
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To design appropriate strategies to improve semakability, policy makers should be clear
about the causes of unreliability. Various basatdes have been identified as affecting transit TTR
(EI-Geneidy et al., 2011; Mazloumi et al., 2010;aBtman et al., 2002; Tétreault and EI-Geneidy,
2010). These factors include segment length, pgssexttivities (boardings and alightings), lift use
signalized intersections, number of scheduled staypsiber of actual stops made, delay at the start,
day of the week, time period of the day, servigedation, weather conditions (rain and snow) and
drivers experience. Accordingly, agencies implenstrategies with expectations of improving ser-
vice performance. Several researchers have inatstigdifferent strategies influencing running
time and running time variability (Diab and El-Gahg 2012). These strategies include smart fare
card collection system, reserved bus lanes, lirsteg bus services, stop consolidation, articulated
buses and transit signal prioritg@onstrained by the available data and the regressipproach,
the existing findings only provide partial undersdiing of unreliability causes impacts on TTR.

Travel time distribution (TTD) contains maximum anfnation that capture the stochastic
characteristics of travel times (Du et al., 201B8tter understanding of the distribution of travel
times is a prerequisite for analysing reliabilitydaexploring the causes of unreliability (Sumalee e
al., 2013). Many studies on TTR have attemptedttm&thematical distributions to travel times at
different network levels (Clark and Watling, 200} 3sgerau and Fukuda, 2012; Hollander and Liu,
2008). While some studies have considered symnaéttistribution models, for example, Normal
(May et al., 1989), others have preferred skeweespfor example, Lognormal (Emam and Ai-
Deek, 2006). Recent studies have reported thahgerof travel times could be found even for 5
min intervals (Zheng and Van Zuylen, 2010), andsthmultimodal distributions could be more ap-
propriate, for example, Gaussian Mixture Models (@MGuo et al., 2010)These inconsistencies
clearly affect both the ability to gain insightgarthe nature of TTR and inhibit the ability to gen
alize findings to other applications.

For many applications, e.g. trip planning, tripveatime information is of more interest
(Bhat and Sardesai, 2006). The trip TTD can bevddror inferred using archived data of directed
observations for the same origin and destinatioD)(fairs under similar trip conditions, e.g. time
period. One problem is that the archived databegaires the full coverage of all OD pairs that
travellers might take. Furthermore, with data frambile sources, it is likely that for many OD
pairs very few or no samples were observed. Anctife approach for estimating trip TTDs be-
tween arbitrary OD pairs at arbitrary times is frordividual link TTDs. Link travel times can be
derived directly (e.g. transit AVL data) or estimcifrom the increasingly available but sparse op-
portunistic sensor data, e.g. vehicular GPS, Autmndumber Plate Recognition (ANPR), and
mobile phone data (Hellinga et al., 2008; Huntealet 2009; Jenelius and Koutsopoulos, 2015;
Rahmani and Koutsopoulos, 2013; Zheng and Van Auy@13).The research on the estimation of
trip TTDs from link TTDs is still evolving and iriSaient.
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1.2 Research aim and objectives

Many researchers have highlighted the importandel& for both transit operators and passengers.
While many studies estimate TTR for impact assessmiestrategic and operational instruments,

methods for prediction of TTR for decision makinigath levels are still evolving and limited. Thus,

The main aim of this research is to develop a ganepproach to predict TTR

that can fulfil different stakeholders’ requiremest

The following set of objectives with regard to THRantification, TTR modelling, and TTD esti-
mation have been identified to accomplish the naaim
1. Investigate the characteristics of current TTR ¢atbrs and develop new measures to
guantify TTR from passengers’ perspective usingomerational data.
2. Develop a model to quantify and identify the infiae of contributory factors on TTR.
3. Develop an approach to investigate spatiotempaygtemation influence on TTD and
specify the most appropriate link TTD model.
4. Propose a methodology to estimate trip TTD betwaaditrary origin-destination (OD)

pairs at arbitrary times from link TTDs.

1.3 Thesissignificance and contributions

Accurate prediction of TTR can facilitate the implentations of proactive traffic management
strategies and advanced traveler information systdrich is a key component in addressing unban
mobility issues. The main contributions of thiseash are:
1. New approaches have been developed to quantifynamaeél TTR using AVL data.
2. A generalized methodology has been proposed tmatitrip TTDs from link TTDs.
In addition, the following outcomes are achievedrmythis research:
3. Development of an algorithm to integrate data fidifferent databases, including AVL,
Smart Card Transactions, General Transit Feed fig@mn (GTFS), Brisbane Strategic
Transport Management (BSTM), and Bureau of Metegp(BoM) data.
4. Development of TTR models for different types ohde using a Seemingly Unrelated
Regression Equation (SURE) approach, as opposieé ©Ordinary Least Square (OLS).
5. Investigation of spatiotemporal aggregation inflceron TTD and development of an
approach to specify the most appropriate probgtigtribution of travel times.
6. Development of a transition probability estimatimodel using a logit model formula-
tion with the utilities being a function of link ahacteristic and trip conditions.
7. Development of a link TTD prediction method usingDs conditional on states and

logit model predicted transition probabilities.
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1.4 Thesisoutline

Figure 1-1 shows the thesis outli@hapter lintroduces the research background on TTR and TTD,
establishes the research aim and objectives taHhieved, and describes the contributions and out-
line of this researchChapter 2reviews the relevant literature in the field of T&Rd TTD, identi-

fies the gaps in the existing knowledge of TTR measent, TTR modelling and TTD estimation.

An overview of various data sets, their processing integration is presented@tapter 3
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Introduction
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Chapter 7:
Trip Travel Time Distribution Estimation

M

Chapter 8:
Conclusions and Recommendations for Future Work

Figure 1-1 Thesis outline

The research consists of two main parts, namely &anéR TTD analysis as shown in Figure
1-1. Chapter 4proposes a framework to quantify TTR from passesigagrspective using opera-
tional AVL data. A set of TTR models was then depeld to identify and quantify the impact of
unreliability factors on different types of roadsGhapter 5The necessity to incorporate distribu-
tion information in TTR analysis and TTR predictiomtivates the TTD related researClinapter 6
specifies the most appropriate distribution modetdink travel times. Based on these, a general-
ized approach is proposed to estimate the trip TO&ween arbitrary origination-destination pairs
at arbitrary times from link TTDs i€@hapter 7 Finally, the conclusions and recommendations from

this research are given @hapter 8
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Chapter 2 Rédiability and Distribution of
Transit Travel Time: A Review of Past Work

2.1 Introduction

This chapter reviews the relevant literature infielels of TTR and TTDSection 2.2orovides an
overview of the definitions and measures of TTRyeheral pool of TTR indicators is summarized,
from which a sub-set can be selected accordingftereht objectives and operational constraints.
This is followed by discussions on sources of serwiariations and significant factors that affect
TTR in Section 2.3The followingSection 2.4orovides insights into TTD fitting models, as wadl
spatiotemporal aggregation influence on TTD. Tihe TiTD estimation methodologies are then ex-
plored along with their major assumptionsSiection 2.5Finally, Section 2.6ummarizes the major
findings from the literature review and identifié® gaps in the existing knowledge of TTR model-
ling and TTD estimation.

2.2 Travel timeré€iability definitions and measures

The reliability concept is interpreted and percdidéversely across groups of stakeholders and var-
lous studies have defined reliability from diffetreaspects of transit service. While some studies
associated reliability with travel time (Holland@Q06; Mazloumi et al., 2008), others related it to
maintain headway regularity (Janos and Furth, 20@Ret al., 2010), on-time performance (Bates
et al., 2001; Meyer, 2002), and passenger waitimg tat stops (Fan and Machemehl, 2009).
Abkowitz et al. (1978) defined the reliability dsetinvariability of service attributes which influ-
ence the decisions of planners and travellergoltiges two key insights, consistency of the sexvic
attributes and distinct perspectives between dersateand supply-side. Ceder (2007) identified
six time-related service attributes concerned hyated-side and supply-side, namely, on-time per-
formance, headway regularity, travel time, waittnge, transfer time and buffer time. A general
pool of service reliability indicators based on @hidifferent sets of indicators can be selected for
different objectives is summarized in Table 2-1.

2.2.1 On-time performance
For routes characterized by low frequency serviseBedule adherence plays the most significant
role, since passengers are expected to plan thigiala to coordinate with the scheduled departures

to minimize waiting time at stops with a tolerameebability of missing the trips.
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On time performance is a commonly used scheduleradbe measure in applied environ-
ments, defined as the percentage of trips thatrdepatom minutes late and minutes early from
the scheduled departure time. The US Transport®esearch Board presented a service delivery
measure survey where zero minutes was the most oanearliness threshold and 5 minutes was
the most common lateness threshold (Kittelson &Biges et al., 2003). Camus et al. (2005) have
proposed a weighted delay index, which is an isterg extension of an on time performance
measure. Nakanishi (1997) has given a detaileduslsson and potential improvements of on time

performance indicators.

2.2.2 Headway regularity

For routes characterized by high frequency seryibeadway based measures become important
(Currie et al., 2012). In these circumstances, gragx's are prone to arrive at stops randomly, and
the aggregate waiting time of passengers is migdzhen services are evenly spaced (Osuna and
Newell, 1972). Many indicators are proposed in ttosnain. Some indicators are defined by com-
paring with scheduled headway, such as servicdaety headway ratio (Strathman et al., 1999)
and percentage regularity deviation mean (van @odt van Nes, 2004), while others are defined
based on headway distribution, such as standandta®y, coefficient of variance, average waiting
time (Osuna and Newell, 1972) and probability-baseddway regularity measure (Lin and Ruan,
2009). Additionally, two indicators are developext Epecific purposes. The headway regularity
index identifies the vehicle bunching problem wththe irregularity index can effectively indicate
long gaps between vehicles (Golshani, 1983).

On-time performance and headway regularity aredidbebased indicators. The main issue
is that no universal benchmarking threshold cafobed to mark the difference between frequent
and infrequent services and define the on-timgdalee interval. Moreover, they cannot reflect de-
mand-side perception of reliability. By alteringetbn time tolerance interval from 5 minutes to 10
minutes, the measured service performance impmithsut any changes perceived by passengers.

2.2.3 Trave time

According to Kaparias et al. (2008), most traveidireliability indicators use various features of
the travel time distribution. Lomax et al. (2003tegorized them in three groups, namely statistical
range measures, buffer measures and tardy tripatats. When dealing with people’s perceptions,
it appears to be more appealing to separate physara psychometric performance indicators
(Pronello and Camusso, 2012). For travel time lbditg, physical indicators describe it as ‘it is
what it is’, while psychometric indicators refletas ‘it is what it is perceived to be’. The faNng
discusses physical indicators.
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Statistical Range Indicatorsthis type of measure typically serves as an apprate esti-
mate of the range of trip situations experiencegégsengers, calculated on standard deviation sta-
tistics. Standard deviation of travel time représealiability in such way that small values ar@-co
sidered reliable. Percentage variation of travakti statistically known as the coefficient of varia
tion, provides a clearer picture of the trends padormance characteristics than the standard devi-
ation by eliminating route length from the calcidat Moreover, percentage variation is dimension-
less thus enabling a comparison between links antes to be made. The travel time window is
defined as the average travel time plus or minasstndard deviation of travel time, and can pro-
vide the passenger with an idea of how much theskrame will vary (Lomax et al., 2003). The
variability index is defined as a ratio of pealoft-peak variation in travel conditions, and isaal
lated as a ratio of the difference in the upper 6% lower 95% confidence intervals between the
peak period and the off-peak period.

Tardy Trip IndicatorsTardy trip measures are extreme values of trawed.tiThe tardy trips
are identified by setting unacceptable limit valueshe form of additional minutes plus expected
time or percentage over expectation. In most cdBese values are arbitrarily set. The Florida reli
ability measure (FRM) uses a percentage of theageetravel time in the peak to estimate the limit
of the tolerable travel time range. Travel timeasding the expectations is termed a tardy trip. Ex-
tended FRM uses travel rate (travel time per uisiiadce) instead of travel time, so as to provide a
length-neutral way of grading the service perforaea(Lomax et al., 2003). The misery index ex-
amines trip reliability by using the difference Wween the average travel rates of the worst trijs an
all trips.

Skew-Width IndicatorsSkew and width of travel time distribution measuaes based on
percentiles (van Lint and van Zuylen, 2005). Slkdwravel time distribution is defined as the ratio
of the difference between the'®@nd 58' percentile and the difference between th& aod 1¢°
percentile. Width of travel time distribution indies the distribution compactness. The wider the
distribution is, the lower the reliability will be.

2.24 Waitingtime

Waiting time at a stop is, from the perspectivepassengers, the most significant component of
public transit travel and often cited as one of st important factors hindering the usage of bus
transit. Generally, waiting time indicators can ¢etegorized into two groups, namely, mean-
variance based and extreme-value based (van GbxtaanNes, 2004).

Mean-variance basedExcess waiting time (EWT) is defined as the diffex® between the
average waiting time (AWT) and the scheduled wgitime (SWT) (Trompet et al., 2011). For fre-
guent services, the SWT is defined as the averagegassengers would wait when the service op-
erates exactly as scheduled (Liu and Sinha, 2007).
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For high frequency services, a commonly used AWdiciator is half the headway of suc-
cessive buses, based on three assumptions: passernges randomly, passenger catches the first
bus that comes, and vehicles arrive regularly @&ah Machemehl, 2009). Under irregular vehicle
arrival condition, the AWT is calculated a8/T = u*(1+52/ﬁ)/2, whereu is mean headway and
s’is headway variance (Osuna and Newell, 1972). Euribre, under non-random passenger arri-
vals and irregular vehicle arrival conditions, engall AWT models relate passenger waiting time
with mean headway(Fan and Machemehl, 2009). Thealeines AWT models construct a rela-
tionship between “aware” passenger arrival pattams service performance through an explicit
behavioural mechanism.

Extreme-value basedPassengers are more concerned about extreme valtesr percep-
tion of service performance when budgeting thaivar at stops. Budget waiting time is defined as
95" percentile waiting time for frequent servicessdtves as the total waiting time that a passenger
should budget for a trip to avoid missing expedervices at a stop under certain probabilities. Po-
tential waiting time, defined as the differencevimdn budgeted waiting time and mean waiting
time, serves as the buffer time that a passengmrigtplan for their arrival at stops (Furth and
Muller, 2006). The concept of extreme-value baseticators separates the impact on operations
from the impact on passenger planning. Extremeevhlsed waiting time is far more sensitive to
service reliability than mean-variance based AWT.

225 Transfer time

Transfer time can be calculated from scheduledss{dang, 2010). Therefore, statistic indicators
can be applied to measure transfer time reliabifitych as the coefficient of variation of transfer
delays (Turnquist and Bowman, 1980). However, daagigy arrival time variations make the
measurement rather difficult (Kittelson & Assocmtet al., 2003). Transfer waiting time usually
serves as a transfer time reliability indicator€e 2007; Goverde, 1999). Goverde (1999) derived
an expected transfer waiting time model, a funcabarrival delays distribution, incorporating the

risk and significance of missing connections.

2.2.6 Buffer time

The buffer time indicates extra travel time reqdite allow the passengers’ on time arrival. Gener-
ally, it is defined as the difference betweamercentile and the average travel time. The plannin
time is defined as thexpercentile travel time. It indicates the total tit@at a passenger has to
budget for the trip. Buffer time index is definesl the buffer time divided by the average travel
time. These indicators associate closely with thg passengers make trip decisions (Lomax et al.,
2003). Uniman et al. (2010) proposed the genenah fof an initial set of reliability buffer time
measures under the ‘percentile-based’ and ‘slack’tapproach.
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Reliability buffer time, defined as the differenoetween the upper percentie and an in-
termediate or lower percentijg, is the additional time that would be requiredéxx-percent sure
of arriving at the destination on time. Excesgt®lity buffer time (ERBT) is defined as the diffe
ence between the actual levels of reliability eigrered by passengers and what they should have
experienced had everything gone according to glaa.ERBT indicator can be used to capture the
incident-caused additional unreliability above tiats caused by recurrent factors.

Abkowitz et al. (1978) evaluated the typical seevieliability measures in an applied envi-
ronment and selected several criteria, includinglieitness of definition, controllability, expense
and accurate measurability, and independence.finiralg summary statistics to assess the variabil-
ity distribution impacts, three separate criterierevidentified, including distribution compactness,
likelihood of extremely long delays, and normali@aatof measures. Currie et al. (2012) developed
a framework to assess reliability indicators basedour criteria. Summarizing the evaluation crite-
ria mentioned above, several key effective indisatoe identified: (1) passenger focused; (2) easy
to understand; (3) consistent and objective; (4y@a compare and aggregate; and (5) insights into
unreliability causes provided.

Conceptually, buffer time based indicators fulfietcriteria described above. It is passenger
focused, easy to understand, consistent and olgecomparable across different routes and time
periods, easy to aggregate weighted values by pgssdemand of each OD pair, and can also pro-
vide operators with insights into causes of unbddiaservice at different levels, such as route and
network. Analytical and empirical studies have aonéd buffer time as a powerful tool in indicat-
ing and estimating service reliability (Pu, 2011).

Though buffer time is usually defined as buffevélatime, strictly speaking, it can be rec-
ognized as an extreme value based concept to ¢waleigability performance. It can be applied
manifold: (a) buffer waiting time to indicate budgeé waiting time needed to catch the expected
bus; (b) buffer transfer time to indicate additibti@e required to avoid missed connections; and (c

buffer travel time to indicate extra time necesdaryon time arrival .
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Table 2-1 General pool of reliability indicators

Attribute(1) Indicators Definitions (2)

Percentage of arriving or departing a stop umto
minutes late and minutes early

% On-Time Arrival

% On-Time Arrival/Departure

Odds Ratio - —x 100
On-Time 1-%On-Time Arrival
Performance*
Weighted Delay Index Zil dP(d)/H
On-Time Distribution Distribution of dl_fference between actual running
and scheduled time
5 - . ,
Service Regularity % of headvyays deviating within the predefined
scheduled interval
Percentage Regularity Deviation Mean Zi‘(hw, — Hi,j)/Hzf.j /nj
Headway Regularity Probability P{hw < Hmaa:]}
1 1 n T 2
Standard Deviation of Headway SD, = \/Z;l(hf,j — h‘,v) /(n7 — 1)
Headway " . = 0 /T
Regularity* Average Waiting Time (h) + SDH/hj)/Q
Excess waiting time (Zlhfj/zjhi.] — Zlej/Zle)ﬂ
Coefficient of Variance of Headway CV, = SDH/E] %100
Headway Regularity Index 1— 2[2(@ — ﬁj) r}/nfﬁj
Irregularity Index 14+CV2
Standard Deviation of 1 N — 2
Travel Time SD,, = \/N 1 Z (TT, - TT)
Travel Time Variability TT90—-TT10
Travel Time Window TT +SD,,
Coefficient of Variation of TT SD... / TT
Travel Time Variability Index (ver,, —LeL,,) / (ve,, . —LCL, .)
Extended Florida Reliability Measure 100%—(Count JrR>(1+ p)ﬁ/ Couan)
Misery Index (T}_E|TR o T}_%) / TR
Travel Time Distribution Skew (TT90 - TT50)/(TT50 - TTlO)

Travel Time Distribution Width (TT90 — TT50)/TT50
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Waiting Timé

Scheduled Waiting Time

Average scheduled headway during the analysis
period

Excess Waiting Time

Difference btw average waiting time and sched-
uled waiting time

Empirical Average Waiting Time

ai?j.—&-b

Theoretical Average Waiting Time

(1 - q) [ pw .+ (1 - P) wmnd]

Budget Waiting Time

BWT

frequent m).QS

BWT

infrequent —  0.95

Potential Waiting Time

Difference between budgeted waiting time and
mean waiting time

Transfer Timé

CV of Transfer Delay

Coefficient of variation oatrsfer delays

Transfer Waiting Time

Function of arrival delaytbé feeder service

Expected Transfer Waiting Time

Function of arrival delays distribution of the
feeder service

Buffer Timée’

Buffer Time BT = T'Tax — TT
Buffer Time Index BT/TT

Planning Time TT95

Reliability Factor TTxx —TT50

Reliability Buffer Time

RBT =TT95—-TT50

Excess Reliability Buffer Time RBT .. —RBT
% of liabl PUJ pecentage of overall journeys
% of Unreliable Journeys = with TT > RBT__
PUJ pecentage of journeys under recurrent
% of Excess Unreliable Journeys B condition with TT > RBT

Note: (1) * refers to operator-focused attribiteefers to passenger-focused attribute.

(2) Term Definitions:

m,n-- Given time window limits,H -- Scheduled headway - Delay value,P(d) -- Probability for delayd , h Ej
Observed busand mean headway at sfofH, ; -- Scheduled headway fobusi at stopj , Hmax -- Expected max
headway for stop, n, -- Number of buses at stgph, -- Series of headways; -- Ascending rank ordesf the head-

way, TT ,TT -- Observed and average travel tifi@xx, TRzz - xx" percentile of travel time and travel ratéft ,

TR -- Observed and average travel rate/L  UCL, ., (LCL UCLy - pea)-- LOWer and upper confidence limit

off —peak '

peak !

for peak (off-peak) period,b-- Constant,p , q -- Predefined percentage levél; ..,V - 95" percentile of waiting

time and scheduled headway deviatidt37'  ,RBT -- Overall and recurrent reliability buffer time.

rerall ! recurrent
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2.3 Travel timevariability and unreliability causes

van Oort (2011) distinguished travel time varidpililTTV) and TTR. TTV is the service variations
on the supply side. TTR is defined as the matchiegyee of the supplied and the expected service
(perceived by the demand side). TTR tends to vatyme and space impacted by different sources
of variations from demand and supply sides, as aglhteractions between both sides. Figure 2-1
shows the journey attributes concerned to the ddraad supply sides. Conceptually, if the varia-
tions of all attributes are low, the service hédmsgh reliability.

2.3.1 Sourcesof travel time variability
The sources of TTV can be generally categorizemtind classes, namely, variations in passengers’
behavior (demand-side), and operation performasugep(y-side) (Tahmasseby, 2009).

Demand-Side @ ) Direction @

Waiting time

. ¥ A
; ! Egress time In-vehicle time
[ Q

; 10
Transfer time

Terminal

Schedule adherence —] |

Connection <

F N

Headway regularity

Supply-Side

Figure 2-1Flow diagram of reliability attributes concernedie demand and supply sides

Demand-side: Access time is the time used from the origin tolibarding stop and egress
time is the time used from the alighting stop te tlestination. At the stop the waiting time occurs
between passengers’ arrival and the departurelothes. Passengers may arrive randomly or plan
their arrival, and the budgeted waiting time maypbeserved to avoid missing the expected vehicle
at the stop (Furth and Muller, 2006). After sucbéasboarding a vehicle, the following compo-
nent is in-vehicle time till the vehicle arrivestae destination stop. Passengers may transfeorone
more times for a complete journey. All the time @mments are spatiotemporally stochastic.

Supply-side: For the fixed service, vehicle trips are schedimetime and space resulting in
on-route schedule adherence at all stops for infetiservice and headway regularity for frequent
service. The supply variations includes termingladture and trip time variations (van Oort, 2011).
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The travel time of a transit trip consists of twamgponents (shown in Figure 2-2), namely
link running time between two consecutive stops dwell time at a stop. Generally, running time
is determined by the inherent network structure kamd characteristics, speed profile, schedules
and timetables, operational control strategiesvaeather (Sun et al., 2014). Dwell time mainly de-
pends on passenger demand and various factorsasueihicle characteristics, crowding effects,

and fare payment (Tirachini, 2013).

Origination Destination
O Stop i Stop i+1 stopj —0O
Dwell . . Dwell . .
time [ Running time——> "o JeRunmng time—>; .

<— ink travel time——¢——Link travel time——

«—Trip travel time between stop i and stop j————>

Figure 2-2Time components for transit trip travel time

Interactions: Figure 2-3shows the interactions of time components betwkenwo sides.
From the perspective of passengers, they are plantig concerned on the mean and variation of
total travel times. The variation of travel timemtes from both supply and demand sides. For in-
stance, the combined impacts of passengers’ anpagérn, vehicle departure time and headway
determine the variation of waiting time at a stbpm the perspective of operators, the dwell time
at a stop is largely determined by passengersiities (e.g. boarding, alighting, lift use, etc.).

— e — — —— ———— ————— — — — ——— — — — — — — — — — — —
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t 2
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Boarding & v v
alighting time In-vehicle time >
y A 4
Waiting time »{ Arrival
\ ¥ time p
\ N Arrival time at stop Demand-side Y,
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Figure 2-3: Interactions between demand and sugfgs (adapted from (van Oort, 2011))

2.3.2 Trave timeunréiability causes
Generally, the components of a transit trip trawake include departure delay from the first stop,
dwell times at stops and link running times betwadjacent stops. The causes of unreliability re-

lated to different trip time components are disedsseparately.
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Departure delay: this is the schedule deviation (early or late)naf &ctual departure at the
terminal. Departure delay variation can introdud@/Tand cause bunching at stops. In most cases,
an early departure is regarded to be much worsedHate departure since passengers have to wait
for a whole time interval between consecutive viesicespecially for an infrequent service. The
determinants of departure delay variation incluew and vehicle availability, terminal infrastruc-
ture configuration (capacity, loading area, turnmgvements, etc.), timetable quality (slack of the
layover time), driver behaviour (response to del@gas and Jacobsen, 2008; van Oort and van
Nes, 2010) .

Stop dwell time: dwell time, the time a vehicle spends to load amidad passengers, is of-
ten the key determinant of speed and capacity (Bued004; Lin and Wilson, 1992; Tirachini,
2011). Most researches related dwell time with passengeratid, while others related dwell time
with secondary factors such as fare collection oathbus types, number of doetsal. These fac-
tors may strongly influence the effectiveness dfedent strategies used to improve service
(Milkovits, 2008). Among the determinants, passeraggivity is recognized to be the principal de-
terminant of dwell time and was studied most (Ct281,2). Figure 2-4 shows the time components

of the dwell time at a stop.

Vehicle Stop Boarding e e Vehicle Starting
Alighting Fare Pay Activity Finished
Door Open Enter l Located 1 Door Closed
Arrival v v v v & Departure
® L 4 o & & L ® < ® O @o—>
—~— ——— . > J [——
DIl | D2 D3 | D1
I(— ————— Dwell Time (Il) — — — — — —)I
< Dwell Time (1) 3

Figure 2-4: Time components of the dwell time atap

D1 (stop delay): Bus bunching, feeder route typap area condition and configuration, land use.
D2 (passenger demand): Boarding numbers, aligimimgbers, max or sum of boarding & alighting,
alighting by the front door or side door, time pes, passenger ages, platform crowding, cross
town or radial, on-time, stop spacing.
D3 (passenger activity): Payment method, vehicpesy atypical passengers, lift operations, pas-
sengers friction, standee numbers, rank of boang@sgengers, bus occupancy.

Link running time: this is composed of driving time and unplanned @itog time (caused
by uncontrolled intersections excluding controllatersection stop). Peng et al. (2009) classified
the causes as environmental, planning, operati&@maironmental factors include traffic conditions,
number of signals, road work, on-street parking dachand variabilityPlanning factors include
route length, schedules, and service frequencipsraiion factors include departure delays, vehicle
conditions, field supervisor management and passdyghavior.
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2.3.3 Trave timereliability modelling

In transit, various basic factors have been idiedtifis affecting running time and associated varia-
bility (Abkowitz and Engelstein, 1983; Bertini arifl-Geneidy, 2004; El-Geneidy et al., 2011;
Mazloumi et al., 2010; Strathman et al., 2002; &t and EI-Geneidy, 2010). Running time is the
amount of time that it takes for a bus to travehirpoint A to point B excluding recovery time at
time points. These factors include segment lenglssenger activities (boardings and alightings),
lift use, signalized intersections, number of seched stops, number of actual stops made, delay at
the start, day of the week, time period of the dagyyice direction, weather conditions (rain and
snow) and drivers experience. Accordingly, agenciggdement strategies with expectations of im-
proving service performance. Several researchers imvestigated different strategies influencing
running time and running time variability (Diab ardl-Geneidy, 2012; El-Geneidy and
Vijayakumar, 2011; El-Geneidy et al., 2006; Kimpetl al., 2005; Surprenant-Legault and El-
Geneidy, 2011; Tétreault and EI-Geneidy, 2010).s€r&rategies include smart fare card collection
system, reserved bus lanes, limited-stop bus syvistop consolidation, articulated buses and
transit signal priority. Diab and El-Geneidy (2018jther investigated the impact of the implemen-
tation of various strategies on service variations.

To understand the effects of general factors omingntime variability, researchers have
developed multivariate linear regression modeleubh different measures of service variation
(Strathman et al., 1999; Yetiskul and Senbil, 20M&ny studies have shown that the segment
length can adversely influence service reliabilag,well as number of scheduled stops, number of
signalized intersections, variation of passengéwities, lift use, delay at first stop, variatiaof
drivers experience (El-Geneidy et al., 2011; Streth et al., 2002). The influence of adverse
weather on reliability is controversial. Hofmanrdad'Mahony (2005) found that rain reduced ser-
vice unreliability since congested traffic flowssudt in a low variation of running times. Tu et al.
(2007a) found that rain conditions make the trairak less reliable than under normal weather
conditions. Mazloumi et al. (2010) concluded theg &iverage and standard deviation of amount of
rain did not significantly influence reliability. dnmy variables of time period and land use were
used as proxies of general traffic flow conditioAsconstant was usually considered in the model
to approximate the omitted factors effect. To geemer insights into the causes of unreliability,
separate regression models were developed forrelffescenarios, such as models for different
times of day (Li et al., 2006; Mazloumi et al., B)land models for different spatial-temporal di-
mensions and service characteristics (Yetiskul Sewbil, 2012). Although traffic condition is be-
lieved to be one of the main factors affecting iserwveliability, only a small number of researchers
have looked explicitly at the influence of traffmw on TTV.Tu et al. (2007b) showed that TTV is
hardly related to the variability of flow in thee flow and hyper-congested regime, whereas it is
positively correlated with flow variability in theongested regime.
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Instead of using traffic flow to represent trafionditions, some studies have defined con-
gestion levels using actual travel times and fiee travel times (Gilliam et al., 2008; Peer et al.
2012). The congestion level could be calculatethasratio or difference between actual and free
flow travel times. Such measure can be comparadied®sn links that differ in lengths and free
flow traffic conditions. Intuitively, vehicles opating on different types of road would experience
different travel times due to infrastructure configtions, traffic compositions and signal delays.
However, no study has been found to differentia¢sd factors in modelling bus travel time relia-
bility. On this basis, an analysis of bus traveiei reliability on Australian urban roads was under-
taken to validate the factors arising in the literee, to uncover other potential factors that might
influence the travel time reliability of bus sers; and the lessons to be learnt from bus trawes ti
reliability effects in the Australian context.

Given a set of regression models, most studiesnatdd the coefficients equation-by-
eqguation using the classical OLS (Diab and EI-Giyne2013; EI-Geneidy et al., 201However,
Martchouk et al. (2010) argued that formulating @aegie ordinary and the standard deviation of
travel time would leave out potentially importambgs-equation correlation that would result in
inefficient parameter estimatefo address this problem, they used SURE estimatiancan ac-
count for the correlation between the unobservedeshcharacteristics on travel time and travel
time variability, since they were measured at e time period on the same link. The SURE was
first proposed by Zellner (1962Previously, the SURE estimation was used by ManggR007)
to study the effects of interstate speed limitsdaiing speeds and by Miller et al. (2009) to study
the average and standard deviation of vehicle speedight time construction zones. SURE was
also applied in studying the post rehabilitatiomf@enance of pavements with random parameters
(Anastasopoulos et al., 2012). Detailed informatarSURE can refer to (Washington et al., 2011).

2.4 Travel timedistribution fitting mode

TTV decreases passengers’ confidence on percegliatitity by impacting the duration of travel
time components (e.g. waiting time, in-vehicle tiare transfer time) and causing uncertainty in
making travel decisions (e.g. route, mode and dematime choices) (van Oort, 2011). A reduction
in TTV has been found to be as or more valuabla @haeduction in average travel time itself
(Bates et al., 2001). TTV can be viewed from déferperspectives (Noland and Polak, 2002):
* Vehicle-to-vehicle variability is the variabilityebween travel times experienced by different
vehicles travelling over the same route and theestimme. This is caused by different delay

time at signals, conflicts with pedestrians, défeces in driving style and so on.
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» Period-to-period (within day) variability is the nability between travel time of vehicles
travelling over the same route on different timés @day, it is mainly attributed to demand
levels, traffic incidents, weather conditions ands.

» Day-to-day variability is the variability of travéime of the same route made at the same
time on different days. It is caused by fluctuasiom travel demand, driving behaviour, road
side activity, weather conditions, incidents aneso
TTD describes the nature and pattern of TTV. Batfitederstanding of the distribution of

travel times is a prerequisite for analyzing rdligb and exploring the causes of unreliability
(Sumalee et al., 2013). Knowledge of TTD is alseasential input for other analyses, such as mi-
cro-simulation of transit systems, travel time pegdns, discrete route choices and timetable de-
sign (Mazloumi et al., 2010).

Research on fitting continuous distributions to eroal travel time data for private vehicles
began many decades ago. For simple cases, symmsstribution (e.g. normal) was initially be-
lieved to be appropriate to characterize vehicdedl time. However, statistical analysis identified
TTDs to be asymmetric and significantly skewedht® ttight (Richardson and Taylor, 1978). Now-
adays, the lognormal model is the most recommefdél for its good fit and relative simplicity
(Clark and Watling, 2005; Hollander and Liu, 2008&ouzi and Maurin (2007) claimed lognormal
was an attractive distribution that could be justiffrom an equivalent theorem derived from the
central limit theorem. The theorem expresses tmapaoduct of independent identically distributed
random variables will be distributed according tognormal model. Other reported models include,
Gamma (Polus, 1979), Loglogistic (Chu, 2010), WiipAl-Deek and Emam, 2006), Burr (Taylor
and Susilawati, 2012) and Stable distribution (Eoag and Fukuda, 2012).

Compared to studies on private vehicle TTD, traf$iD research began relatively late and
there have been limited studies, mainly due touthevailability of extensive travel time data over
time and space. Taylor (1982) showed that bus lttaves that started at 8:15 am every day over
15 successive days followed a normal distributibsrdan and Turnquist (1979) showed that bus
morning peak running times had a skewed distrilbuiod Gamma distribution was a precise fit.
However, day-to-day distributions of bus TTV haeeeived increasing attention since the emer-
gence of automatic data collection systems. Unal.€2009) showed that bus running times (ex-
cluding delay times at stops) on arterial roadwfallewed a skewed distribution but the lognormal
distribution was rejected by 5 of the 12 routeseXa al. (2011) showed that bus peak hour travel
times of stop pairs in urban areas followed Logtgidistribution. Kieu et al. (2014) analyzed
TTV using transit signal priority data and recometh lognormal distribution as the best de-
scriptor of bus travel time on urban roads. TabRshows the selected studies on TTD fitting using
single mode distribution models.
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Table 2-2 Selected studies on TTD fitting usingg@rmmode distribution model

Studies Data Collecting Methods Time Periods Deparfime Window Distribution
Taylor (1982) Manually (bus) Morning peak 0 Normal
Jordan and Turnquist (1979) NA (bus) Morning peak A N Gamma
AM/PM peak 2 hour Normal
Mazloumi et al. (2010) AVL (bus) Off-peak 2.5 hour Lognormal
Peak & off-peak 5 min Normal
Al-Deek and Emam (2006)  Theoretical NA NA Weibull
Susilawati et al. (2013) GPS probe cars NA NA Burr
Fosgerau and Fukuda (2012) AVL (bus) 6am-10pm 1 min Stable
May et al. (1989) Survey (bus) NA NA Normal
Faouzi and Maurin (2007) ETC (car) NA NA Lognormal
Polus (1979) Manually Afternoon NA Gamma
Emam and Ai-Deek (2006)  Loop detector (car) Evemiagk 5min Lognormal
Chu (2010) GPS probe truck MP/off-peak/AP  5min llogistic

Note: NA = not applicable; AVL = Automatic vehidiecation; GPS = Global positioning system; ETCled&onic
toll collection.

However, the above mentioned empirical studies adeathing distribution of TTV tend to
give inconclusive and inconsistent overall resuldsie of the important reasons for such incon-
sistency is the empirical data used. Travel tim& dallected in different temporal-spatial scales
would have different characteristics due to spe@#rvice areas and different traffic conditiorts. |
is a common limitation of empirical modelling stadithat the results are largely determined by the
data. However, two other essential factors can @sribute to the inconsistencies across different
studies, namely, data aggregation and the evatuapproach.

For data aggregation, Vlahogianni and Karlaftisl(POverified that the temporal aggrega-
tion of traffic data can alter the underlying stastic characteristics of traffic performance. Laét
(2006) demonstrated that car TTDs on freewayswo#ldognormal distribution when the Departure
Time Window (DTW) is large (e.g. 1 hour). In a raver DTW, the distribution tends to be normal.
Mazloumi et al. (2010) showed that bus TTD tendsatal a normal distribution in short DTWs.
When the DTW increases, a normal distribution i atgood fit for the peak period, while a
lognormal distribution is more appropriate for tb#-peak period. However, recent researchers
have shown that even in short DTWs (5min), TTDs sk skewed (Chu, 2010; Emam and Ai-
Deek, 2006). Susilawati et al. (2013) showed thattgr links tended to have bimodal distributions
and these phenomenon are broken up when they agedn@to a longer linkThe influence of spa-
tiotemporal aggregation levels of travel time orDIi§ needed to be examined.

For the evaluation approach, the majority of engpirstudies usually evaluated the perfor-
mance of different models solely based on fittiegusracy under some specific scenario, such as
weekday AM peak inbound route TTDhis is thought to be insufficient to claim an eypiate
distribution model for characterizing TTV withoutrsidering other evaluation criteria (e.g. ro-
bustness and explanatory power) and travel timesuddferent scenarios.



Chapter 2 Reliability and distribution of trangavel time: A review of past work 19

The assumption of the above mentioned researtiaisfor a given time period, travel times
are predominantly determined by a unimodal distrdsu However, travel time can be impacted by
various factors and multiple states can exist f@pacific time period. van Lint and van Zuylen
(2005) identified four phases that yielded disivedly different shapes of the day-to-day TTD, on
the basis of empirical observations within 5 mitermals. Recent studies have proved the superior
performance of multimodal distributions in fittifigfDs compared to its alternative models. In ad-
dition, those models provide a connection betwéenshape of TTDs and the underlying travel
time states (Barkley et al.,, 2012; Guo et al., 2080Park et al., 2010; Sangjun et al., 2011;
Susilawati et al., 2013). Conceptually, bus tripe also experience different ranges of travel times
due to stochastic traffic flow en-route, randomagedt intersections and delay time at stéjmw-
ever, no study has been found which fits bus TTRgusultimodal models. It is important to take
into consideration all possible alternative modgds specification of a distribution that can most
appropriately characterize day-to-day variability faus travel times.

2.5 Travel timedistribution estimation methodology

Knowledge of travel times is crucial at many levefstransportation planning and management.
Network-wide travel time information provides inpdbr impact assessment of strategic and opera-
tional instruments. Information of link travel tismiean reveal problematic locations where targeted
strategies can be introduced to improve servidaliity performance. In addition, disseminating
information on travel time reliability to systemaus is a key component of addressing urban mobil-
ity issues, since it can aid travelers to makermfe travel decisions (Kuhn et al., 2013).

Methods on the estimation and prediction of trdwees can be generally classified into two
categories, namely analytical and data-driven. il models explore the physical relationship
between travel times and other traffic variableafiit flow, occupancy, signal phase plans and)etc.
(Geroliminis and Skabardonis, 2011). Data-driverdei® estimate travel times by combining po-
tential factors that can be easily implemented slmmv a promising performance in practice (Fei et
al., 2011). Among the most applied data-driven neples are parametric and nonparametric re-
gression (Chang et al., 2010), Kalman filter (Cathad Dailey, 2003), machine learning (Chun-
Hsin et al., 2004; Van Lint et al., 2005; Yu et @011), Bayesian (van Hinsbergen et al., 2009) and
hybrid methods (Van Lint, 2008). Most of these sadocus on the estimation of expected travel
times, which can be used as an indication of cdiayetevels once compared with free flow travel
times for planning applications (van Hinsbergemlet2009) or to aid users in making smart travel
decisions (Brakewood et al., 2015).
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Travel time variability caused by the inherent netarandomness in the context of supply,
demand and service performance is important toidengJenelius, 2012). Reduction of travel time
variability decreases commuting stress and unegytaif making travel decisions, e.g. departure
time choices (Fosgerau and Engelson, 2011). Maaysstal scalar indexes have been used to
characterize variability, including variance, pentdes and confidence intervals (Jenelius and
Koutsopoulos, 2013; Abbas Khosravi et al., 2011;Khosravi et al., 2011; Li and Rose, 2011,
Pattanamekar et al., 2003). A common limitatioth&t the scalar indexes cannot fully characterize
the stochastic features of travel times withouaasumption on the shape of distribution. They can
only provide incomplete information since the featuof distributions may be missed, e.g. skew-
ness and multimodality (van Lint et al., 2008).

Probability distributions contain maximum infornati that captures the stochastic charac-
teristics of travel times (Du et al., 2012). Mariydies on TTR have attempted to fit mathematical
distributions to travel times at different netwddvels (Clark and Watling, 2005; Fosgerau and
Fukuda, 2012; Hollander and Liu, 2008). For mangliaptions, e.g. trip planning, trip travel time
information is of more interest (Bhat and Sarde®@@6). The trip TTDs can be derived or inferred
using archived data of direct observations fordémme origin and destination (OD) pairs under sim-
ilar trip conditions, e.g. time period. One problenthat the archived database requires the full co
erage of all OD pairs that travelers might taketeNtbat the OD pairs are not restricted to the majo
planning zones, but can be any locations in thevert Furthermore, with data from mobile
sources, it is likely that for many OD pairs veewfor no samples were observed directly. An ef-
fective approach for estimating trip TTDs betweeniteary OD pairs at arbitrary times is from in-
dividual link TTDs. Link travel times can be derd/éirectly (e.g. transit AVL data) or estimated
from the increasingly available but sparse oppastimsensor data, e.g. vehicular GPS, Automatic
Number Plate Recognition (ANPR), and mobile phoatadHellinga et al., 2008; Jenelius and
Koutsopoulos, 2015; Kazagli and Koutsopoulos, 2@R&8hmani and Koutsopoulos, 2013; Zheng
and Van Zuylen, 2013). Given the known link TTO® thallenge is how to estimate trip TTDs by
taking into consideration of the spatiotemporalelations between link travel times.

For the estimation of the mean and variance ofttapel times, the Space Time Autoregres-
sive Integrated Moving Average (STARIMA) model wamposed by Pfeifer and Deutrch (1980).
The model can capture the spatiotemporal relatipasiithin observations. Cheng et al. (2014)
proposed a dynamic spatial weight matrix and alioed STARIMA approach to capture the heter-
ogeneous and dynamic correlations between urbdntidavel times. Jenelius and Koutsopoulos
(2013) used GPS taxi data to estimate the distabutf urban link travel times as a function of
link characteristics and trip conditions and inaogie link correlations based on a spatial moving
average structure. Yeon et al. (2008) consideredtémporal correlation between freeway link

travel times in 1 minute interval based on a Markb&in methodology.
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For the estimation of the probability distributio trip travel times, Hollander and Liu
(2008) introduced the concept of estimating the $TBIng repeated simulations, but the approach
is computationally expensive. One approach foretstemation of trip TTDs from link TTDs is by
assuming that the link travel times are independélana given time period (T. Hunter et al., 2013;
Westgate et al., 2013). This assumption however |e&ad to a considerable underestimation of the
magnitude of variability. Correlations across linkave been captured by using a Markov chain
methodology (Timothy Hunter et al., 2013; Ramezard Geroliminis, 2012; Woodard et al., 2015)
and a dynamic Bayesian network model (Hofleitneridg,Abbeel, et al., 2012; Hofleitner,Herring
and Bayen, 2012). Ramezani and Geroliminis (20%25a Markov chain approach to estimate ar-
terial trip TTDs by capturing the spatial corredais using a Transition Probability Matrix (TPM)
calibrated from historical data, and assuming thattravel times are independent conditional on
link states. Similar to the Markov chain approddbfleitner et al. (2012a,b) assumed that each link
can be in a congested or uncongested state witwitsindependent and normal TTDs. The transi-
tion between link states is modelled using a dyeaBayesian network approach. Fei et al. (2011)
proposed a Bayesian inference based dynamic Imealel for predicting travel times along with
their confidence interval, by combining a priorsilibution and real time traffic information on
freeways. Recently, Srinivasan et al. (2014) appnated trip and link TTDs assuming shifted
lognormal distributions and estimated trip TTDsdmynbining correlated link distributions using a
Moment Generating Function (MGF) approach (Fentoitkidéon’s approach).

Markov chains facilitate the modelling of the prbligtic nature of link travel times and
their spatiotemporal correlations through TPWise main assumption is that the travel times condi-
tional on link states along a Markov path are unmetaited (Timothy Hunter et al., 2013). However,
the assumption was found to be violated in our chsdy. In addition, existing Markov chain based
models usually compute TPMs based on the numbebs#rvations conditional on adjacent link
states, which constraints their ability to genezalito a wide range of applicationshe MGF
method has been widely applied in the wireless camaation field to approximate the probability
density functions of the sum of correlated normalagnormal random variables (Mehta et al.,
2007). The main limitation of the MGF method isttltaneeds prior assumptions on both link and
trip distributions, usually unimodal. It is reasbieto use the MGF approach to estimate the Mar-
kov path TTD since the link TTDs conditional ontstatend to be unimodal.

2.6 Summary of main findings and resear ch gaps

A detailed review was carried out to establish pas¢arches in TTR and TTD areas, including
TTR quantification, TTR modelling and TTD estimatid he main findings from the review are
summarized in Table 2-3.
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Table 2-3: Summary of the main findings from litera review

Main findings Section

Travel time reliability definitions and measures

o No common agreement on TTR definition. Two keydeas: consistency
of service attributes and distinction between sygptiemand sides;

0 A general pool of indicators is summarized basedbich different sets
of indicators can be selected under different sibng;

o Buffer time concept based indicators are appropt@capture passengels’
experienced reliability by using operational data.

2.2

Travel time variability and unreliability causes

o TTR varies in time and space impacted by diffesenirces of variations
from demand and supply sides, as well as intenast@tween them. 23

o0 Basic factors have been identified as affecting TiBRg regression analy
sis, including planning, operational and environtakoharacteristics;

o Strategies have been identified as affecting ThBuding fare collection,
reserved bus lanes, limited-stop bus services,®inpolidation, articulat-
ed buses and transit signal priority.

Travel time distribution fitting model

o The distribution fitting model can be classifiedanwo categories, namely
single-mode and mixture-modes distributions;

0 Inconsistent distribution models were reported tedspatiotemporal ag-
gregation of travel times largely influence TTD;

0 Mixture-modes distribution provides a better fitfiperformance, as well
as a connection with the underlying traffic states.

2.4

Travel time distribution estimation methodology

o Methods for the estimation of trip TTD between oraion-destination
pairs using the increasingly available data fronbiteosources are still 25
evolving and rather limited,;

0 Previous studies on trip travel time distributidTD) estimation used a
Markov chain methodology and are based on a nuofherportant as-
sumptions: independent conditional on states andtaat transition prob-
abilities for a given time period.

From the overview of the literature presented higre following research gaps have been identified:

» Quantification of TTR from the perspective of pagg's using operational AVL data;

» Investigating the impacts of unreliability causeshwdata from both demand and supply
sides by taking into consideration cross-equatmmetations caused by unobserved factors;

» Specifying the most appropriate probability digttibns of day-to-day travel times at dif-
ferent spatiotemporal aggregation levels and ndtbesels.

» Developing a generic model for trip TTD predictibatween arbitrary OD pairs from link
TTDs with consideration of their heterogeneousaelations.
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To address these research g&psapter 4analyzes the limitations of current TTR measures
and proposes a buffer time concept based measwappt@ximate passengers’ experienced TTR
using AVL data. To investigate the impact of urabiiity causes, three TTR models with respect to
main concerns by passengers and operators areofdedelising a seemingly unrelated regression
equations method i@hapter 5To build generic models for TTR predicticdDhapter Gproposes a
novel evaluation approach and set of performancasores to specify the most appropriate distri-
bution model for the day-to-day travel time varlapiat stop, link and route level€hapter 7ro-
poses a generalized Markov chain approach for astighnthe probability distribution of trip travel
times from link travel time distributions and taket consideration correlations in time and space.
The case studies use data integrated from Autoriatiicle Location (AVL), smart card transac-
tions, General Transit Feed Specification (GTF3isl#ne Strategic Transport Model (BSTM) and

Bureau of Meteorology (BoM) systems.
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Chapter 3 Data Description and Processing

3.1 Introduction

The increasing availability of dedicated sensaunshsas AVL and AFC, is transforming a once da-
ta-starved transport field into one of the mosadath. While these data can provide detaileditraff
and operational information, methods for its preaes for decision making at all levels (planning
and policy, operations, control) is still evolvirsuch methods can be complex and time consuming,
especially in the collection of reliable and conipmesive data of travel times and the associated
contributory factors in a large temporal and spatiale. The current research establishes a travel
time related data warehouse for TTR and TTD stlidhe unique performance database developed
here integrates data from different databasesydiy AVL, smart card, GTFS, BSTM, BoM and
STREAMS.

The remainder of the chapter is organized as faldwSection 3.2the description of dif-
ferent databases and the integrated data warelawasgresented. To minimize the possibility of
erroneous data, the major procedure for data psowgsgerror and outlier detection) is then briefly
discussed irSection 3.3 The routes used for case studies in this reseaecldescribed iBection
3.4. Finally,Section 3.&oncludes the chapter.

3.2 Dataintegration

The data used in this research was provided bysLiak, a division of the Department of
Transport and Main Roads (DTMR) in Queensland, wlist TransLink is responsible for coordi-
nating and integrating Queensland's overall pagsergnsport system, including bus, ferry and rail
services. TransLink operates an integrated smadtsystem which allows the use of one ticket on
multiple services. The archived data covered argixths period from November 1, 2012 to April
30, 2013 across Southeast Queensland (SEQ) areammpglement the dataset, data from different
sources were integrated, including AVL, Go card, 169,428 records), GTFS, BSTM and BOM
and STREAMs data. Figure 3-1 shows the databasegrated for this research. The integrated da-
tabase reproduces what has happened for eachiopenat at stops (arrival, departure and passen-
ger activities) and on links (route characteristicaffic condition and weather) along the service
route. It can provide detailed information of tratimes, passenger demand, and operational envi-
ronment.
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AVL Database

[route, date, dir, trip, time, stop]

Reproduce
operation run
(stop & link)

TTR
Prediction

Gocard Database
[route, date, dir, time, stop]

GTEFS Database
[route, date, dir, trip, time, stop]

Integrated
Performance
Database

TR
Assessment

Y

BSTM Database

[link, intersection]

BOM Database

[site, time, weather]

TTR
Modelling

STREAMS Database
[link, time, flow]

Figure 3-1 Overview of the integration scheme

The AVL system in Brisbane provides vehicle triméi information at a stop level, includ-
ing operator, timestamp, route, direction, vehicie ID (unique), stop ID, vehicle arrival and de-
parture time at a stop. The Go card system proypdssengers trip transactions with both ‘Tap in’
and ‘Tap out’ information. The attributes for eacansaction include operator, timestamp, route,
run ID, direction, ticket number, Go card ID, baaglstop, alighting stop, boarding time, alighting
time, passenger journey ID and passenger trip IBTAS feed is composed of a series of text files
and each file models a particular aspect of tranBrmation: stops, routes, trips, and other sehed
ule data littps://developers.google.com/transit/gtffhe BSTM is a four-step strategic transport

model developed in the EMME/3 modelling platformhptovides information on road hierarchy,
road type, lanes, road capacity, posted speed,sandlated volume over capacity (V/C). The
weather data was obtained from BoM stations ar@&m®Q@, including rainfall, temperature, humidi-
ty, wind speed and wind direction, on a half hoasib. STREAM is an integrated intelligent
transport system developed by Transmax in Austrdliee link measure list in STREAM system
provides information on link ID, timestamp, occupghlevel of service, flow. After examining the
coverage of STREAM sensors, it is not used forcse study routes presented in Section 3.4.

In practice, the stop IDs are not necessarily ctest across different operators. The Go
Card dataset does not include the latitude andtlahgy of the stops (x—y coordinates), nor do they
match the region-wide SEQ transit schedule pubdigheTranslink. A stop-matching heuristic was
developed and applied to the Go Card dataset tomthe recorded stop IDs in the region-wide
GTFS network. This heuristic is briefly presentad‘Stop matching heuristic” section in the co-
authored publication (Nassir et al., 2015). Finadlynapping dictionary is generated to match stops
across different systems.
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Figure 3-2 shows a snhapshot of the integrated ow#so The integration procedure is im-
plemented using MySql, C++ and Matlab software. &ach record in the dataset, it possesses the
trip information (Date, direction, link, schedulddparture time from the first stop), operational in
formation (actual arrival time & departure timerfrdAVL data, actual arrival time & departure time
from Go card data, actual stop served), demandnrdton (boarding, alighting and passenger
load), and environmental information (route chaggstics, length, number of lanes, speed limit,
signals, land use, stop types and rainfall).

Trip information Operation information Demand information Environmental information
DATE DIR SCHDEP_RBE LINK |SCHDEP_LBE ACTARR_AVL ACTDEP_AV ACTARR_G( ACTDEP_GI SCHSTO ACTSTCY BOARL ALIGH™ LOAL ROUTETYF LENGTH LANE SPEEDLI SIGNAI ROUNDS OTHERIN STOPNU STATION LANDUS RAN
20130201 1 52100 12 [s2100 52135 52135 0 0 o 0 0 6 05383 1 50 0 0 3 0 0 4 82
20130201 1 52100 2_3 [5zz00 52234 52254 52238 52240 1 1 3 0 0 4 07633 1 60 0 1] T 1 0 4 82
20130201 1 S2100 3.5 [5zd00 52410 52435 52408 5241 1 1 3 0 3 4 07675 1 60 0 1] 8 1 0 3 82
20130201 1 52100 S_6 [52600 52537 52555 52535 52535 1 1 o 1 ] 4 0472 1 60 1 1] 2 1 0 4 82
20130201 1 52100 6.7 [5z800 52643 52713 52647 52654 1 1 3 0 S 4 08855 1 B0 ] o 1 1 0 2 82
20130201 1 52100 7.8 53100 53014 53046 53012 53015 1 1 1 1 8 s 07803 2 50 3 1] 1 0 1 1 82
20130201 1 52100 8.9 [53300 53222 53324 53220 53241 1 1 0 7 8 4 05556 1 50 3 1] 1] 1 0 1 62
20130201 1 52100 9_10 |53500 53611 53630 53609 53615 1 1 o 2 1 1 12233 4 60 4 a 6 1 0 1 82
20130201 1 52100 10_11 54000 53351 54011 53343 53356 1 1 o 2 0 1 06761 4 60 4 a 3 1 0 5 8.2
20130201 1 52100 112 |S4300 54223 54242 54221 54221 1 1 o 1 0 1 05804 4 B0 3 Q 2 1 0 S 82
20130201 1 52100 12_13 54600 54433 54433 1 0 o 0 0 6 0837 1 S0 0 o S 0 0 S 82
20130201 1 53600 12 |[53800 53627 53627 0 0 0 0 0 [ 05383 1 S0 1) o 3 0 0 4 82
20130201 1 53600 2.3 [s3700 53715 53730 53713 53713 1 1 1 0 1 4 07633 1 80 0 a 7 1 0 4 82
20130201 1 53500 3.5 53900 53829 53629 53827 53827 1 0 ] 0 2 4 07675 1 60 0 0 8 0 0 3 82
20130201 1 53600 S5_6 |s4100 53320 53320 53318 53318 1 0 0 0 2 4 0472 1 60 1 1] 2 0 0 4 82
20130201 1 53600 6.7 |54300 5401M 54143 54003 54003 1 1 1 0 2 4 08855 1 60 6 0 1 1 0 2 82
20130201 1 53600 78 |s4600 54402 54558 54400 54430 1 1 4 0 3 5 07803 2 S0 3 o 1 0 1 1 82
20130201 1 S3600 8.3 |s4s800 54842 54300 54840 54840 1 1 0 1 T4 05556 1 S0 3 a 1] 1 0 1 82
20130201 1 53600 3_10 |S5000 55101 55122 55039 55105 1 1 0 2 6 1 12233 4 60 4 1] 6 1 0 1 82
20130201 1 53800 10_11 5500 55423 55446 55427 55427 1 1 1 0 4 1 06761 4 B0 4 1) 3 1 0 S 82
20130201 1 53800 112 |55800 SS713 55728 ssT1 )l 1 1 (1] 1 S 1 05604 4 B0 3 0 2 1 0 S 82
20130201 1 53600 12_13|60100 55928 95328 1 0 ) 0 4 6 0697 1 S0 0 o S 0 0 S 82
20130201 1 60600 12 60600 60613 60613 0 0 o 0 0 6 05383 1 50 0 1] 3 0 0 4 82
20130201 1 60600 2_3 |60700 60715 60732 60713 60713 1 1 1 0 0 4 07633 1 60 0 o T 1 0 4 82
20130201 1 60600 3.5 [60300 60836 60855 60834 60634 1 1 1 0 1 4 07675 1 60 0 1] ] 1 0 3 82
20130201 1 60600 S_6 |6100 60957 61015 60955 60955 1 1 1 0 2 4 0472 1 60 1 1] 2 1 0 4 8.2
20130201 1 60600 6.7 |61300 6nzz 61151 6M20 61120 1 1 1 0 3 4 08835 1 60 ] 1] 1 1 0 2 82
20130201 1 60600 7.8 |61800 61424 61445 612z 61422 1 1 o 1 4 S 07803 2 S0 3 ] 1 0 1 1 82
20130201 1 60600 8.9 [61800 61705 61813 61703 817 1 1 2 4 3 4 05556 1 S0 3 o 1] 1 0 1 82
20130201 1 60600 910 |62000 61326 61326 1 0 o 0 1 1 12293 4 B0 4 o ] 0 0 1 82
20130201 1 60600 0_1 62500 62408 62432 62408 62408 1 1 ) 1 1 1 06761 4 B0 4 o 3 1 0 S 82
20130201 1 60600 1112 62800 62602 62643 62600 62600 1 1 o 1 0 1 05804 4 B0 3 a 2 1 0 S 82
20130201 1 60600 12_1363100 62744 62605 62742 62742 1 1 o 1 0 6 0637 1 50 0 1] 5 1 0 5 82
20130201 1 61600 12 61600 61642 61642 0 0 0 0 0 6 05383 1 50 0 1] 3 0 0 4 82
20130201 1 61600 2.3 [61700 61741 61823 61733 61733 1 0 o 0 0 4 07633 1 60 0 1] T 0 0 4 82
20130201 1 61600 3.5 [61300 61342 62004 61340 61340 1 0 o 0 0 4 07675 1 60 0 1] 8 0 0 3 8.2
20130201 1 61600 S5_6 [62100 62118 62118 1 0 o 0 0 4 047z 1 60 1 1] 2 0 0 4 82
20130201 1 ©1600 6.7 [62300 62221 62245 62213 62213 1 0 o 0 0 4 08855 1 B0 ] 1] 1 0 0 2 8.2
20130201 1 61600 7.8 62600 62547 62623 62545 62545 1 0 o 0 0 S 07803 2 SO ] 1] 1 0 0 1 82

Figure 3-2 Snapshot of the integrated data record

3.3 Data processing

Cleaning and refining the data are important stefata processing. Raw data usually contain er-
roneous records caused by system failure or huraaltyfoperation. The archived Go card data
were screened to minimize the possibility of ercursedata by setting different rules and using
schedule information from GTFS system. The rexflthe cleaned data indicated that 17% of rec-
ords were excluded due to checking and fixing ebregous data with different types of errors.
These errors are summarized and described in Bable

The Median Absolute Deviation (MAD) technique waplged for outlier identification, that
is, extremely long travel times. An item sample wassidered as an outlier if it was outside the
range of the lower and upper bound values detedrigehe MAD 3-delta criteria (Pearson, 2002).
Figure 3-3 displays the cleaning results for wegkdhound travel times. The data were aggregat-
ed in 15 minutes interval. The MAD cleaning tecluags promising with 3.2% outliers identified.
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Table 3-1: Description of Go card transaction exror

Error types Description (causes)

System failure No boarding information, and no fatligg information (not known)

Go card reload An additional transaction recordliiersame passenger trip (top up go card in a leghic
Extremely large interval The difference between the alighting time and bioartime for a transaction is larger than 2
transaction hours or across several days (forget to touchrofhfthe last trip)

Ticket evasion Boarding stop equals to alightirmmpgtap in front door and tap again in the backriloo

Driver faulty operation ~ The service directiortlre transaction is wrong, e.g. the sequence ahth@und stops are
actually the outbound stops (driver forget to clatig route display information)

Abnormal stop The boarding or alighting stops areim the stop list of the recorded service rotite {/e-
hicle does not stop at the designated stop duagdbnching)

80

x  Qutlier TT
70} i

60 x

Travel time [min]

10 1 1 1 1 1 1 1 1 1

05 07 09 11 13 15 17 19 21 23

Departure time from the first stop

Figure 3-3: Data cleaning results and outliers tified

3.4 Casestudy area

The ideal data for empirical study would have laeyéent coverage of services that operating in
different times and spaces. Translink implement&lL Aystem for only a limited number of bus
routes (pilot test). Two bus routes equipped withLAsystems are used for case studies. The data
used covers a six months’ period with service dpegafrom 5:30 to 23:30 every day. The two
routes, which are shown in Figure 3-4, presentrdeveperating environments.

Route 60 is a cross-city route (mixed with locaffic) servicing two suburbs, West End and
Fortitude Valley, as well as the CBD area of Brishalt operates along an arterial route of length
7.8 km and has 12 scheduled stops. It is one ohitfleest frequency bus services in Brisbane. It
runs every 5 minutes between 7 and 9am and 4 amdo®pweekdays and every 10 to 15 minutes

during all other hours of operation. It operatesrfr5.30am until 11.30pm on Sunday to Thursday,
and 24 hours on Friday and Saturday.
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Route 555 is a radial route servicing Upper Mourdv@tt, Eight Mile Plains, Springwood
and Logan as well as Brisbane City. For the inbosemdice to the City as shown in Figure 1, it op-
erates first on the Pacific Motorway (mixed witlcadd traffic) from Loganholme station to Eight
Mile Plains station, then on the South East Bus{iag-only corridor) to the Cultural Centre sta-
tion and continues to the City on an arterial réadked with local traffic). The route is 31km long
and has 12 scheduled stops along the route. Iteues/ 15 minutes for services before 8pm on
weekdays and Saturdays and before 6pm on Sundaygubiic holidays, and every 20 to 30
minutes for other hours.
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Figure 3-4 The used two transit routes in Brisb#nestralia

3.5 Summary

The research has developed a unique integratedetdtam different systems, including AVL, Go
card, GTFS, BSTM, BOM and STREAMS. The integratathdvarehouse provides detailed infor-
mation on supply and demand information, as wethasassociated environmental information. In
this research, a stop matching heuristic algoritt@a® been put forward to build a stop mapping dic-
tionary across different systems. The proceduigacess the raw data is briefly discussed, includ-
ing erroneous Go card transaction detection andrafal travel time outlier identification. Two
transit routes are used as case studies for themreh mainly considering the diverse operating en-
vironments and data availability. These two rowt@ger diverse operating environments, including
CBD area, residential area, major attraction asedurban road, arterial road, motorway, and ex-
clusive busway.
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Chapter 4 Travel Time Reliability Quantifi-
cation

4.1 Introduction

The concern with the impacts of reliability on ogtéwn efficiency (operators) and service effec-
tiveness (passengers) brings about the need ttfidand develop meaningful and consistent relia-
bility measures. The automatic collection techngjueg. AVL and AFC, facilitate the gathering of
enormous quantity and variety of spatial and temlpoperational data that holds substantial prom-
ise for TTR analysis in a deep level. Leveragingttos AVL data, an investigation of the assess-
ment performance of existing TTR measures is peréol. Buffer time measures are believed to be
appropriate to approximate passengers’ experierad@bility. On this basis, the research proposes
a set of TTR measures from the perspective of pgess using the operational AVL data consider-
ing different perceptions of TTR under differerdffic states. The research findings are reported in
a journal paper published in Ma, Ferreira, and Mesii2014).

The remainder of the Chapter is structured asviaidn Section 4.2two issues with regard
to buffer time estimation are discussed, namelyfopmance disaggregation and capturing passen-
gers’ perspectives on reliability, followed by tiietailed methodologies to address these issues pre-
sented inSections 4.3 and 4.4espectively. Case studies using both empirietd édnd numerical
experiment are implemented $ection 4.5The results show that the proposed reliabilityasuee
is capable of quantifying TTR consistently, whiteetconventional ones may provide inconsistent
assessments. Then the potential applications of Tikemeasure in reliability improvement and trip
planning are briefly discussed $ection 4.6 Finally, Section 4. 5ummarizes the main conclusions
and highlights future researches.

4.2 Buffer time and its estimation

From literature review, there is no consensus oitlwattribute is capable of appropriately charac-
terizing service reliability due to the heterogeyeif stakeholders’ preferences and perceptions.
Many studies have highlighted the importance taattarize TTR from the perspective of passen-
gers (Cheng and Tsai, 2014; Hu and Jen, 2006hisrrégard, buffer time measures are assessed to
be more promising than other TTR measures (Cutad ,€2012) in two aspects: conceptually it can
capture the influence of service unreliability aspengers travel decisions (Abkowitz et al., 1978);
and mathematically, percentile-based buffer timanisndicator of compactness of TTD (Pu, 2011).
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4.2.1 Passengers perspectiveon reliability

For a complete journey, excluding access time ftenorigination and egress time to the destina-
tion, a passenger is concerned of waiting timéhatfirst stop, in-vehicle time during the trip and
transfer time between different trips (Ceder, 20@gnerally, the unreliability can impact the dura-
tion and predictability of travel time which ultitedy influence passengers’ trip planning behav-
lours (van Oort, 2011). Due to the vehicle traulet variability, passengers may experience longer
or shorter journey times which lead to early oe latrivals at their destination. These can be guant
fied using a measure of variability, such as steshdaviation of travel time. In addition, unreliabl
service brings uncertainty to travel time whichders passengers’ ability to make optimal travel
decisions to minimize disutility (Uniman et al.,12).

For an infrequent service, passengers tend toeaasvclose to their desired service depar-
ture time without missing the expected vehiclehat first stop. For a frequent service, passengers
would be more interested in choosing a departare that can minimize their late arrivals. If a pas-
senger with a desired arrival tiffg travels in an ideal transport system without anyaklity,
the departure time should be exactly the desiradaitime?’, minus the expected travel time of
the tripTTw. However, in reality, a passenger can experiengt®chastic arrival time distribution
with non-zero probability of a late arrival for éadeparture time as shown in Figure 4-1.
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Figure 4-1: Journey departure decision and artiwa distribution

If a passenger highly valued an on-time arrivalshe should shift the departure time earlier
to reduce the probability of a late arrival. Foraewple, to guarantee a late arrival probability no
more than 5%, the passenger should leave béfrgprgﬁarlywhich is the difference between the de-
sired arrival timeT, and 98" percentile travel time of a tribT%W. This additional time budgeted
by a traveller to increase the probability of antiome arrival is regarded as buffer time. Intuitiye
as the service reliability decreases, a passereggisnto budget more buffer time to avoid a late ar-
rival.
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Generally, buffer time is defined as thé"g%ercentile travel time minus average or median
travel time which indicates the additional timetthgpassenger should budget to guarantee an on-
time arrival under a given probability (Lomax et &003). Although the term ‘buffer time’ usually
denotes buffer travel time, it can be recognized asncept of extreme-value based reliability eval-
uation measure, which can be applied manifoldlyfapbuffer waiting time to indicate excess wait-
ing time needed to catch an expected bus (Furthvanikgr, 2007); (b) buffer transfer time to indi-
cate additional time required to avoid missing @mtions (Goverde, 1999); and (c) buffer travel
time to indicate extra time necessary for an oretarrival.

4.2.2 Buffer time estimation

Two causes may reduce the usefulness of the exibtiffer time measures in the context of per-
formance evaluation when directly applying it toxtare distributions. One reason is that two dif-
ferent mixture TTDs could have the same buffer tirakie as shown in Figure 4-2. It shows that
the service A and B have different probability dgnfunctions (PDFs), thus different reliability
performance. However, they have exactly the sanffertime value (4.7 minutes) calculated using
cumulative distribution functions (CDFs). This enceptually unreasonable in reality. Further, any
travel time samples with the same™9Bercentile and median travel times would have siwme
buffer time value. It indicates by applying the flenftime measure directly on the source travel time
profile could also lead to an inconsistent relid§phssessment when mixture distributions exist.
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Figure 4-2: Travel time samples with mixture disitions

The other reason is, by considering the TTD as alaylihe buffer time measure could hide
the sources of unobserved reliability changes, thaking it hard for the identification of unrelia-
bility factors. Many studies have claimed that TtBn be classified into recurrent and non-
recurrent states for a time period (Barkley et2012; Susilawati et al., 2013).
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In addition, passengers would experience diffeegnval time distributions and thus have
different departure decisions under different omras Conceptually, bus service state can be clas-
sified into three types, namely, fast, slow and-regurrent service states. The former two states
can be aggregated together as the recurrent Biaddravel time under different states can have dif
ferent characteristics. In a recurrent state, tranee is largely determined by traffic flow flucu
tions and passenger demand characteristics. Tfezatite between the fast and slow service states
is mainly caused by stop delays (e.g. red light gueuing) and intersection delays (e.g. serving
passengers, bus bunching, merging to the traffie)fl A vehicle in a fast service state may experi-
ence less intersection delays and stop delaysahann a slow service state. In this case, the pas
senger taking a fast service would plan less ‘buffee’ than one taking a slow service, or even
plan no ‘buffer time’ if the o8 percentile arrival timél’Tmmt%W under a fast service state is al-
ready smaller than the desired arrival tiffig (Figure 4-1). In the non-recurrent state, the eorr
sponding travel time unreliability will be highdran that in the recurrent state. In addition, tte-n
recurrent state can be further broke down to a mefreed sub-set influenced by different factors,
such as incidents, weather and extreme events I@aek al., 2012). In this case, passengers may
not consider the non-recurrent state travel timeinplanning since the non-recurrent traffic cend
tion is rare and cannot be predicted in practice.

In summary, buffer time measure can evaluate thabikty experienced by passengers in
the context of departure planning using operatia@h. However, directly applying buffer time
measure to a whole distribution of travel times rmgaye inconsistent reliability assessments, hide
unreliability causes and can not effectively captpassengers’ departure behaviours. It is reasona-
ble to develop a ‘buffer time’ concept based measiat can assess TTR under different states sep-
arately. Two issues will be addressed in the folh@masections, namely performance disaggregation
and capturing passengers’ perspectives on reliabili

4.3 Performance disaggregation

Based on the discussions, the primary task issaggiregate the overall travel time performance for
a trip origination-destination (OD) pair in a sgectime period across different days into differen
states (or categories). A Gaussian Mixture Mod@ls!i) approach is applied to disaggregate the
performance data.

Mixture models provide flexibility in modelling thenderlying characteristics of the data.
GMM is a special type of mixture models where tbmponent distribution is Gaussian and is used
as a clustering method that is more appropriata kh@eans clustering, especially when clusters
have different sizes and correlation within themldiYimoglu and Geroliminis, 2013). A GMM
model withK components has the following PDF:
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p(y10)=3  wN(y|p.2,) (4.1)

where,
y = a vector of continuous-valued observations;

f]\f(y | uk,Ek) = a Gaussian probability density for comporient

0= (m,u,E) the set of GMM parameters;

0= (wl,---,wK) a vector of mixture coefficients such that> 0 andZwk =1;
m=(p.,p, ) parameter vector of the mean of Gaussian disteibut

Y= (El,---,2K> parameter vector of the variance of Gaussianiloligton.

By changing the component distributions (e.g. Ndymagnormal or Gamma) and the mix-
ture coefficients, a mixture models is flexibleapproximate a large range of different TTDs. In
practice, the mixture coefficient, can be interpreted as the probability that a vehericounters
statek (e.g. congested) and the component distributidicates the TTD under such state. These
connections provide an opportunity for analysinggeagers experienced reliability under different
states separately.

The GMM model can be estimated using the Expectatiaximization (EM) algorithm
(Kazagli and Koutsopoulos, 2013; Yildirimoglu anér@liminis, 2013). Considering a sequence of
N training observation vectohs = {yl,...,yN}and assuming independence between vectors, the
GMM likelihood can be written as:

L(Y1e) = [1[S!, N (v, .5, (4.2)

n=1

At each EM iteration, the parameters are updategltzantee a monotonic increase in the
model’s likelihood value:

B, :%ip(kﬂyn,@) (4.3)
n=1
N N
io=>pkly,.0)y, /> pkly,O) (4.4)
n=1 n=1
5, = ip(k 'y, 0y Eij(k y,.0)— 7’ (4.5)

n=1 n=1

where the parameter s€tis updated iteratively until the likelihood convesgy

The probability of an observation belonging to statécan be calculated as:
K
Prob(componentk | yi) = wk,’]\f(yi | uk,2k>/z~7_:l wj,’]\f(yi | ,uj.,ZJ.) (4.6)

An observation is assigned to the cluster haviﬂgargesProb(componentk | y)
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4.4 Measurement development

The concepts of service variability and reliabilitye different. Service variability is defined ag t
distribution of output values for the supply sidach as vehicle trip time, departure time and head-
ways. It indicates the objective service perforneapovided by operators. Service reliability is de-
fined as the degree of matching between the supphkevice and the expected service. A service
with high variability does not necessarily leadotmor reliability experienced by passengers. Given
an expected trip travel time (e.g. 40 min), a pagsecan perceive an early arrival time with large
variability (e.g. range 34-39 min) as more reliablen a late arrival time with small variability.ge
range 42-45 min). It is reasonable to capture paese’ different perspectives on reliability under
different conditions given a certain expectation.

4.4.1 Rédiability buffer time
Let F) (t) denote the CDF of the PDF (t) under staté:. Let ;' () denote the inverse distribu-
tion function off; (t) Then, thez" percentile travel tim&1" under service statlis:

TT = F ' (z) (4.7)

Following the idea of the traditional buffer timefuhition, the reliability buffer timeRBT,
for service staté is defined as the difference betwedrt percentile travel timéFTkM under ser-
vice statek and N percentile travel timéFTjjm1 under a typical condition. By the nature of the
buffer time concept (additional time budgeted fdrip), the value of buffer time should be no less
than zero. The RBT can be formulated as follows:

M N M N
TT" =TT if TT" > TT

RB Tk —_ typical (4 . 8)

0,otherwise

The recurrent service state is chosen as the typocalition instead of using the whole ser-
vice states, because in transit, the direct expentaf a trip travel time comes from the timetable
published by operators which is usually designesbiating to the average travel time under the re-
current service state. In addition, it is meanisgldéo incorporate the unpredictable incident-
influenced non-recurrent state in modelling a sEréxpectation from the perspective of passengers,
even though they might experience extremely loagdirtimes. The selection 8 andN depends
on the usage purpose and transit passengers’ @neés.

Wakabayashi and Matsumoto (2012) presented a el@tpérformance analysis of different
percentile-based reliability measures and theati@hships. UsuallyM andN are chosen as 95 and
50, respectively. The 85percentile refers to a traveller can be late fovoak one time a month
without getting in too much trouble (Lomax et &003). The 58 percentile relates to the typical
travel time under a certain condition.



Chapter 4 Travel time reliability quantification 35

For a given trip OD pair in a specific time peri(jZ('itTk“I represents the service variability
performance provided by the operators under $taaed TTj:piCal represents the travel time expec-
tation for such service by passengers. Figure luStiates the possible service states for a tig a
the calculation of RBTs under different servicetetaThe definition of RBT for different service
states can be regarded as an approximation of @pEseexperienced buffer times under different
situations. It can be interpreted like this, if @spenger experiences a slow service state forehis/h
trip, the budgeted buffer time required to guarargdate arrival possibility less than 5% is thie di
ference between 85percentile travel time TTﬁi ) and his/her expectation of the service

(TT5U

recurrent

). However, if a passenger experiences a fastceestate that $5percentile travel time
(TT.” ) is still in his/her expectation{T™ ), there is no need to budgeted any buffer time no

recurrent

matter how variable the service performance is uadeh state.
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=
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Figure 4-3: lllustration of possible service staded reliability buffer time

4.4.2 Expected reliability buffer time (operator)
As a service industry, transit operators are canoéproviding satisfactory service to their passen
gers. Reliability measures are required to indicateent service reliability, identify causes ofemn
liability, assess different strategies effect dialelity and modify strategies to improve it. Basen
different application objectives, a set of expeatelthbility buffer time measures (ERBT) are de-
veloped for operators by using different combinagiof RBTs in Equation (4.8).

The OD-level ERBT ERBT ) is defined as the occurrence probabilities wedgiBT,
under different states for an OD trip pair, witlitime period across different days.
where,

p, = the occurrence probability of th¢ service state.
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The subscripts indicate different dimensions ofraggtion including OD pairs, time period
(e.g. morning peak, off peak or afternoon peak)as@an of time over many days (e.g. a 12 week-
day sample). By changing the latter two dimenseallmvs for different levels of temporal analysis.

The Line-level ERBT ERBT, ) spatially aggregateBRBT weighted by the passenger

demand of an OD pair along a certain line duristuaied time period.

ERBT, =| Y (d,xERBT,) / M dod] (4.10)
odeline odéline time period,days
where,

d = the passenger demand of an OD pair along thescoed line.

The ERBT jand ERBT, measures indicate the average overall reliabikfggmance for a
given service for different temporal-spatial scalBise passengers’ experienced RBTs for different
states are aggregated together based on theiilndrins to the overall performance instead of
treating them as equal. For example, the non-rentitravel times can cause the highest RBT but if
they rarely happen, the contribution of them to ¢verall service performance shouldn’'t be so
much. In addition, as different factors contribgtiio different states, the RBTs in Equation 4.8 can
be used to separate different factors influencédhiéty apart which can make causes identifica-
tion and strategies assessment more effectivelymptement fair reliability comparisons between
two different services, the ERBT index (ERBTI) da@ applied which is defined as the expected

reliability buffer time divided by the expectedvehtime (e.g. travel time under a recurrent state)

4.4.3 Trip planning time (passenger)

Although the passengers experience different semstiates in their daily travels, it is hard forrthe

to get an accurate and complete picture of theabipeal performance by themselves as shown in
Figure 4-3. However, on-line applications of trilamqmer on websites and mobile phones provide a
good way to convey such information to the puldiarrent trip planners provide a departure time
calculated using average trip duration based orchwhipassenger can expect a low chance of on-
time arrival. For a bus trip planning, passengeescancerned of deciding departure time to avoid
late arrivals at their destinations and thus theyraore interested in TTR than travel time itself.
Considering travel mode choice and departure tilaernpng, two types of times is interesting to a
passenger, namely the average trip duration antatést trip duration. These two measures can be
used for mode choice and departure time plannexpectively.

The average trip duration (ATD) for a trip is defihas the SDpercentile travel time under
the recurrent service state instead of the whal@cgestates for a specific time period over difar
days. Non-recurrent service state is excluded lsecdus rare and unpredictable in reality, and in-
cluding it would increase the ATD to a much higluea which is meaningless for a trip planning.
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(4.11)

recurrent

ATD:(TT50

)tm'p, time period, days

where the subscript trip indicates a passengeeltfaem a boarding stop to a alighting stop along
the same service route.

The latest trip duration (LTD) for a trip is defthas the 98 percentile travel time under the
slow service state for a specific time period odifferent days. It indicates in 95% occasions, the
vehicle would arrival at the destination using ldsmn the LTD time. In other words, if a passenger
plans a trip according to the LTD, he/she wouldosimter late arrival only once in a month (5%

late arrival).
LTD=(TTY, )
SOW Jtrip, time period, days (4 12)
45 Casestudy

4.5.1 Probability distribution fitting

Modelling travel time profile to a theoretical dibution is the prerequisite for the calculation of
RBT and it can also provide the maximum informationreliability evaluation (Clark and Watling,
2005). Most importantly, by assigning travel timealpoints to different clusters based on distribu-
tion densities can disaggregate travel time datahagh-level of detail. Single and Mixture distrib

tion models are tested to verify whether mixtuedest exist for peak period travel times.

4.5.1.1 Single mode distribution
The single distribution model assumes the traveétsamples come from a single travel time state
during a given time period. The Kolmogorov-Smirn@{+S) and Anderson-Darling (A-D) were
used to test the hypothesis that the AM-peak WDOrHVel time follows the potential theoretical
distributions, including Burr, Exponential, Extrerwalue, Gamma, Log-normal, Logistic, Log-
logistic, Normal and Weibull (Chu, 2010). The hypesis test results are provided in Table 4-1.
Parameters for the fitted travel time distributeme also provided and the goodness-of-fit is meas-
ured using Akaike Information Criterion (AIC) (Akaa, 1974). The test results illustrate that the
TTD can come from any individual theoretical distiiion presented here, except the Exponential
model. However, thp-valuesfor the accepted distributions are rather low #edlargest p-value is
only 0.241(Weibull). These indicate the limited lapiof single distribution models in modelling
the AM-peak WD-IN travel time data profile.

The AIC value indicates that the best distributitting model is Log-normal. And many
studies have also claimed Log-normal as an apm@taptiavel time distribution model which can be
justified from an equivalent theorem derived froemizal limit theorem (Faouzi and Maurin, 2007).
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Therefore, the Log-normal model is selected aspaesentative of single model distribution for

comparison purposes with the mixture models digtidin.

Table 4-1: Summary of fitting performance of singlede distribution models

. K-S test A-D test Parameters .
Single Models (p-value) * (p-value) * Shape Scale Goodness-of-fit AIC
Burr 0.111 (0.089) 1.574 (0.160) 15.86/1.59 30.00 590
Exponential 0.563 (<0.05) 46.657 (<0.05) 28.89 N/A -1071
Extreme value 0.107 (0.110) 2.160 (0.075) 30.25 52.7 -612
Gamma 0.111 (0.088) 1.364 (0.212) 118.19 0.24 - 585
Log-normal 0.110 (0.097) 1.339 (0.220) 3.36 0.09 - 584
Logistic 0.110 (0.096) 1.643 (0.146) 28.83 1.59 955
Log-logistic 0.111 (0.091) 1.625 (0.149) 3.359 ®05 -593
Normal 0.112 (0.087) 1.372 (0.210) 28.89 2.68 - 587
Weibull 0.091 (0.241) 1.679 (0.139) 11.17 30.13 - 602

* P-value < 0.05 rejects the null hypothesis thatdata come from the distribution
* The scale parameter indicates the degree of tieadfor travel time distribution
The shape parameter indicates the shape andblocdithe travel time distribution

4.5.1.2 Mixture mode distribution

The source travel time profile is fitted using ateomponents GMM model. The parameters of the
fitted distributions are shown in Table 4-2. FrorgUufe 4-4, it can be seen that the mixture models
is promising in capturing the bimodal charactecstof travel time distribution. The single model
seems to have limited ability in tackling bimodastdbution. The Hartigan dip test confirms the
existence of bimodal phenomenon in such distriloutiath p-value less than 0.05 (Hartigan and
Hartigan, 1985). The goodness-of-fit AIC value iable 4-2 also verifies the superiority of the
GMM model when compared with the Log-normal modkeiiodelling TTD. The first component
of the GMM model can be regarded as the fast serstate that encounters short stop delays and
intersection delays and the second one is the stwice state that experiences long stop delays
and intersection delays. The variance of the ishponent is much smaller than the second one
due to the fact that the vehicles experiencingtop and intersection delays would have much less

variance than those experiencing stop and intecsedelays.

Table 4-2: Parameters for the fitted single model mixture models distributions

Parameters AlC
Mixture coefficient Shape Scale

Observed N/A N/A N/A N/A
0.21 26.1 0.164

GMM2 0.79 29.6 6.400 542

Log-normal N/A 3.360 0.090 -584
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Figure 4-4: Travel time distribution fitting reswising single and mixture models

4.5.2 Assessment performance comparison

The proposed ERBT is validated by comparing with élisting reliability measures using numeri-
cal travel time samples, including planning timdear, buffer time index and reliability time index
(Chu, 2010). The planning time index (PTI) is cédted as the 95percentile travel timea T°° di-
vided by average travel tinte*.

TT95

avg

PTI= x 100% (4.13)

The buffer time index (BTI) is calculated as thifetence between the 9%ercentile travel

time and average travel time divided by averagestrame.

9 avg
BTI= A ;ET

x100% (4.14)
The reliability time index (RTI) is calculated asetdifference between the ®percentile

travel time and median travel timeT*’ divided by median travel time.

9% 50
RTI=—————— x100% (4.15)

TOU

Considering the fact that the BTI may be too covetre to incorporate random travel time
fluctuations, the RTI is estimated by using medrawel time instead of average travel time. To il-
lustrate the current and proposed reliability measof performance, different groups of travel time
samples are generated using GMM models, with diffeparameters combination. To keep the
central tendency the same for comparison, the peteasof means, andy, for different groups are

set equal to those of the empirical travel time [@as
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The parameters of proportions andp, are set randomly in range [0, 1] with the constrain
thatp, + p, =1. To illustrate the current measures limitationslemsome specific occasions, the
parameters of sigmas ando, are calculated by solving the equation that” — TT* = 4.4 min.

It indicates the fact that even with the same a&ssest result by the current measures, different
shape of distributions can still exist, thus difiet actual reliability performance. Without loss of
generality, five groups of travel time samples presented to investigate different measures as-
sessment ability. Table 4-3 shows the parametarslifterent groups travel time samples. The
overall mean times, median times, and planninggiare also calculated.

Table 4-3: Parameters for different groups traveetsamples

Groups mu sigma proportion Mean Median I?Ianning
,ul ,% Oi 0'2 P, P, time* time* time*
Empirical 26.1 29.6 0.16 6.40 0.21 0.79 28.9 28.8 3.23
Group A 26.1 29.6 1.80 5.20 0.35 0.65 28.4 28.2 932.
Group B 26.1 29.6 7.20 7.40 0.15 0.85 29.1 29.2 9 33.
Group C 26.1 29.6 0.10 2.00 0.70 0.30 27.2 26.3 0 31.
Group D 26.1 29.6 0.10 2.00 0.50 0.50 27.9 26.8 4 31.
Group E 26.1 29.6 0.10 8.00 0.01 0.99 29.6 29.6 3 34.

* Time unit is minutes

Figure 4-5 displays the CDFs and PDFs of diffegmoups travel time samples. The order
of the reliability performance can be identified dgmparing the compactness of the distribution.
That is, the more compact of a service travel tiliséribution, the more reliable of the service. The
reliability performance order (from the best to therst) is identified as Group C, Group D, Group
A, Empirical, Group B and Group E.
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Figure 4-5: CDFs and PDFs for different groups dfNEtravel time samples
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Table 4-4 provides the reliability assessment tesuking PTI, BTI, RTI and ERBTI
measures. It can be seen that the conventionalBATland RTI measures give inconsistent indica-
tions of reliability performances with the real sndentified from Figure 4-5. For example, the BTI
measure indicates that Group D (0.125) has a hetiability than Group C (0.139), but oppositely,
the latter group (blue line) should has a bettkalgity since its distribution is more compactth
that of the former one (dark green line). In additithe RT measure gives equally the same reliabil-
ity time values (4.4 minutes) estimations for diéiet groups travel time samples.

Table 4-4: Assessment results for different graugeel time samples

Groups PTI (P7) BTI (BT) RTI (RT) ERBTI (ERBT)
Empirical 1.148 (33.2) 0.148 (4.30) 0.153 (4.40) 0.373(10.7)
Group A 1.158 (32.9) 0.158 (4.50) 0.156 (4.40) 0.291 (8.20)
Group B 1.164 (33.9) 0.165 (4.80) 0.151 (4.40) 0.500 (14.6)
Group C 1.139 (31.0) 0.139 (3.80) 0.165 (4.40) 0.083 (2.19)
Group D 1.125 (31.4) 0.125 (3.50) 0.164 (4.40) 0.127 (3.40)
Group E 1.159 (34.3) 0.159 (4.70) 0.149 (4.40) 0.535 (15.8)

* PT = planning time, BT = buffer time, RT = relility time

The proposed ERBTI measure can give a consisteabitdy assessment with the reliabil-
ity order identified using ERBTI is the same ast tisentified from Figure 4-5. Furthermore, the
ERBTI measure can provide a significant identifimatof reliability differences for different groups
For example, it can be observed that Group C (loheé¢ and E (red line) have a much different reli-
ability performance from Figure 4-5. The ERBTI vadufor such two groups are 0.083 and 0.535,
respectively, which indicates a much differentadliity performance between the two groups.

4.6 Discussionsand applications

In transit, different stakeholders have differesquirements. Operators are responsible for provid-
ing a reliable service to the public. They are @ned of reliability assessment to gain a deep in-
sight into casual relationships between serviceaitsgservice strategies) and outputs (reliability
performance). Passengers are the recipient of drwgces. They are concerned of deciding depar-
ture time to avoid late arrivals at their destioasi (Kuhn et al., 2013). Potential applications for
fulfilling different stakeholders’ requirements apalysed.

4.6.1 Strategy assessment (operators)

Diab and EI-Geneidy (2013) studied the impacts afious improvement strategies on service
reliability and concluded that the strategies caaréase the standard deviation of travel time. As-
suming the current service travel time distributfollows a 3-components GMM model (GMM3),
the parameters for the GMM3 model are set as[25,30,45],p = [0.1,0.8,0.1]and o = [1,02,15].
Different values ofo, indicate reliability performance changes aftertetyees are applied and set
o, decreasing from 6 minutes to 5 minutes and thehrtonutes.
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From Table 4-5, it can be seen that the propo$t8ITE measure can accurately reflect the
service changes after applying a strategy, whieciinventional reliability measures values coun-
ter-intuitively stay unchanged. Such phenomenonbmicaused by the fact that the conventional
measures are largely impacted by travel times uadesn-recurrent state. If a non-recurrent state
occupies more than 5% of the entire travel timdilerathe 95" percentile travel time will remain
constant no matter what improvements are madehier agttates. Furthermore, by considering ser-
vice reliability under different states separatelfferent contributions of causes of service talia
ity are distinguished based on which efficienttsigges can be made to improve performance.

Table 4-5: Assessment of service performance clsamgjag different reliability measures

a PTI (PT*) BTI (BT*) RTI (RT*) ERBTI (ERBT)
4 1.520 (45.0) 0.452 (14.0) 0.520 (15.4) 0.304)(9.0
5 1.520 (45.0) 0.452 (14.0) 0.520 (15.4) 0.3514)10.
6 1.520 (45.0) 0.452 (14.0) 0.520 (15.4) 0.399g)L1.

* PT = planning time, BT = buffer time, RT = relidity time

4.6.2 Trip planning (passenger)
As passengers are more concerned of TTR than ttemelitself in mode choice and departure
planning, a new trip planner design is presentembtivey such information to passengers as shown
in Figure 4-6. The new trip planner provides pagsesnwith a trip summary and different departure
options. Under a specific departure option, the tiravel information is presented using two differ-
ent sections, namely SCHEDULED and EXPECTED. TB#&EDULED section is a brief sum-
mary of the scheduled travel information for a pigblished by operators, including scheduled de-
parture time, scheduled arrival time and schedtdéd time. Usually, the scheduled time-table for
the duration a trip is not necessarily equal todbwial operational travel time. The EXPECTED
section displays the information of actual travede and travel time reliability of a trip, includin
the expected arrival time, the latest arrival tiamel total expected travel time & total latest ttave
time based on service reliability.

The information shown in Figure 4-6 is given aseaample. The total expected travel time
& total latest travel time in the EXPECTED sectiare calculated using Equations 4.11 and 4.12.
Three departure options are provided for differesi-aversion passengers for different trip purpos-
es. For a passenger who needs high reliabilitygheemight choose OP1, since the expected arrival
and latest arrival time both occur before 8:45aor. & passenger who has less need for reliability,
he/she might choose OP1 or OP2 since the expenigdldimes are before 8:45am and the latest

arrival time is within a tolerable time range.
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TRIP PLANNER

Arrival Before : 8.45am on Friday 5 April 2013
From : Origination
To : Destination

Requirements : Bus, train or ferry

OPTIONS SCHEDULED EXPECTED

Depart  Arrival Total Arrival Latest Total
OP1: XXX 8:10 8:36 00:26 8:39 8:41 00:29 (00:31)
0OP2: XXX 8:15 8:41 00:26 8:44 8:46 00:29 (00:31)
OP3: XXX 8:20 8:46 00:26 8:49 8:51 00:29 (00:31)

Figure 4-6: New designed trip planner for passenger

4.7 Summary

The concern with the impacts of reliability on ogierg efficiency for operators, as well as service
effectiveness for passengers brings about the teeédentify and develop meaningful and con-
sistent measures of reliability. Buffer time measuare believed to be appropriate to quantify relia
bility experienced by passengers in the contexdegfarture planning using operational data. Two
issues related to buffer time estimation under unetservice states are addressed in the research,
namely, performance disaggregation and capturisgerayers’ perspectives on reliability.

A GMM model based approach is applied to disagdectiee performance data which pro-
vides a great flexibility and precision in modedjithe underlying characteristics of travel time.
Based on the mixture distributions, a RBT meassigroposed to approximate passengers’ experi-
enced reliability by considering different perspees on reliability under different operational ser
vice states. A set of ERBT measures is developedgderators by using different spatial-temporal
levels combinations of RBTs. Average trip duratand the latest trip duration measures are pro-
posed for passengers used to make a mode choiaetardhine the departure time for a trip.

Case studies verify the existence of multi-modeiserstates during a given time period.
The proposed ERBT measures can provide consigkabifity assessment with a high-level detail,
while the conventional reliability measures mayeginconsistent assessment results. In addition, by
considering different passengers’ experienced b#lia under different states, different contribu-
tions of causes can be evaluated based on whiebtig# and efficient improvement strategies can
be implemented. A new trip planner design is preskto convey reliability information to passen-
gers. Different options for a trip are providedtle trip planner based on which a passenger can
easily make a choice and plan a departure timerdicgpto their risk aversion preferences.
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Chapter 5 Travel Time Reliability Modelling

5.1 Introduction

To design appropriate strategies to improve semetability, policy makers should be clear about
the causes of unreliability, as well as identifg tauses that have the highest impact. Despitg a si
nificant body of research on TTR modelling, the adasions are constrained by the data and ap-
proach used. On these basis, an analysis of busofiTRustralian urban roads was undertaken to
validate the factors arising in the literature utocover other potential factors that might influenc
the TTR of bus services, and the lessons to batlé@am bus TTR effects in the Australian context.
The research focuses on the stop-to-stop link leslebility modelling, which can provide more
insights into the impact of specific causes on iserunreliability. In addition, the research used a
unique dataset that was built to characterize iafidity by integrating different sources of data,
including AVL, Go card, GTFS, BSTM and BoM. The easch findings are reported in a journal
paper published in Ma, Ferreira, Mesbah and HG@&.5).

The remainder of the Chapter is structured asvaidn Section 5.2three general TTR re-
lated models are developed with respect to maicems by travellers and planners, namely, aver-
age travel time, buffer time and coefficient of iation of travel time. Five groups of alternative
models have been developed to account for varetanised by different road types, including ar-
terial road, motorway, busway, CBD and others. Segiy Unrelated Regression Equations
(SURE) estimation is applied to account for thessrequation correlations across regression mod-
els caused by unobserved heterogeneity. Three cadégories of unreliability contributory factors
have been identified and tested in this study, mampé&anning, operational and environmentac-
tion 5.3 presents the case studies on comparison betweera@l SURE models, and interpreta-
tions of the contributory factors’ impacts on TTRbath aggregated and disaggregated levels. The
main findings and implications in practice are susmed inSection 5.4 Finally, Section 5.5on-
cludes this chapter and highlights the future nesedirection.

5.2 Development of general models and alter native models

The main objective of the study was to identify guoentify the determinants of bus TTR at the link

level. Three general models with respect to depanesiables have been developed, namely, trav-
el time, buffer time and coefficient of variatio@Y) of travel time. The dependent variables reflect

the influence of bus TTR on service attributes ostrconcerned to passengers and operators.
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5.2.1 Dependent and independent variables

The general models were developed using all ofdétaset incorporating all types of roads. Five
groups of alternative models have been developeddount for variations caused by different road
types, including arterial road, motorway, buswaBDCand all other road types.

Optimizing travel time is challenging for transigemcies because changes in travel time
have large and usually conflicting influences onvise reliability and total operating costs. The
general guideline for establishing optimal travedds is to set travel time between two stops equal
to the average observed travel time (Kittelson &dset al.,, 2003). Travel time is also an im-
portant factor that can impact passengers trave\bers (Noland and Polak, 2002).

Buffer time is the additional budgeted time to gudee arrival at a destination under a spe-
cific probability. It is usually defined as the™percentile travel time minus the average or median
travel time. The 98 percentile travel time refers to a traveler cdutdate for a work only one time
a month (Lomax et al., 2003). This deviation meastaptures unreliable service influences on
planning behavior of passengers in terms of depadecisions.

CV of travel time is the standard deviation of ghtimes divided by the mean of travel
times. It captures the patterns of travel timea imay that allows direct comparisons across differ-
ent times, routes and indicators. This variatiorasuee provides a key piece of information for
identifying unreliability causes and understandmgacts of various improved strategies on transit
service reliability (Diab and El-Geneidy, 2013).

The recurrent congestion index (RCI) is definedhasratio of mode speed to maximum or
‘free flow’ speed in Equation 5.1. Similar to thalaulation approach of congestion level used in
(Gilliam et al., 2008), the RCI is calculated usigL data instead of using the simulated traffic
flow from BSTM. To exclude stop delay influenceetink speed is calculated as length over run-

ning time.

RCI, = —— 1P

where

RCI,, = recurrent congestion index for tini@n link /;

V1** = mode speed for timeon link /;

V7 = the free flow speed on link

The mode speed is the speed that occurs most frigumder a given case. The reference
speed is the speed that could theoretically besaeldiwhen the traffic is free flowing. It is uswyall
less than the speed limit in order to allow fomslay down at intersections, stops and other align-
ment features. The reference speed for each liskbkan derived from the minimum travel time
using the cleaned dataset collected between 5:38nan23:30 pm.
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The dependent and independent variables used imdiaels is provided (Table 5-1). The
mean values of delay at first stop, boardings digthtengs were not included in models Il and I,
because they were highly correlated with their @lues (Pearson correlations 0.90, 0.91 and 0.95).

Table 5-1: Description of Variables and Models

Variables Descriptions 1l
Travel time The travel time between two consecustops (second). 0

Buffer time The difference between"®percentile and median travel times (second). 0

CV Travel time The coefficient of variation of tel\time between two consecutive stops. O
Planning variables

Length The length of the studied segment (kilometre VR R
Scheduled headway The scheduled headway of thiesetong the studied segment (second).\ v
Scheduled stop The scheduled number of stops #henstudied segment. VoA
Weekday* A dummy variable that equals 1 if the observenl dperated on Monto Fri. v
AM peak? A dummy variable that equals 1 if the bus stacedng the morning peak. \ v v
PM peakl A dummy variable that equals 1 if the bus stadedng the afternoon peak. \ vV
Inbound® A dummy variable that equals 1 if the bus operatbdund to city. oA
Eastbound A dummy variable that equals 1 if the bus operaistbound across city. v v v
Operational variables

Delay at first stop The delay relative to schedilthe first stop along the studied segment.

Actual stops served The number of actual stopsesey the bus along the studied segment. v v
SD delay at first stop The standard deviation efdblay relative to the schedule at the first stop. v+
SD actual stops served  The standard deviationechttual stops served by the bus. VoA
Number of boardings The number of passengers baattle bus along the studied segment.
Number of alightings The number of passengers ttighhe bus along the studied segment.
Boardings squared The number of boardings squared. \
Alightings squared The number of alightings squared \

SD boardings The standard deviation of the numbpassengers boarding the bus. v oA
SD alightings The standard deviation of the nundigrassengers alighting the bus. oA
Environmental varia-

bles

Recurrent congestion  The proxy index of recurrent traffic congestiontstr different time of NIV
index day.

Number of lanes The number of lanes of the rodddinng the studied segment. NN A
Speed limit The post speed limit of the road lildng the studied segment. VR R
Number of signals The number of signalized inteieaclong the studied segment. oA A
Signals squared The number of signalized interseetiong the studied segment squared. \
Light rain® A dummy variable that equals 1 if the precipitatiess than 2.5 mm/hour. v oA
Rain* A dummy variable that equals 1 if the precipitatiarger than 2.5 mm/hour. N v
Motorway® A dummy variable that equals 1 if the bus operaledg a motorway road. \ v
Busway® A dummy variable that equals 1 if the bus operaledg a busway road. v v
Arterial °® A dummy variable that equals 1 if the bus operaledg an arterial road. \
CBD°® A dummy variable that equals 1 if the bus operate@BD area. N NN
Notes:

0 = dependent variables for model ahd independent variables for model.

1. The referred day type is weekend. 2. The redetiree period is off peak. Morning peak = 7:000®and afternoon
peak = 16:00 - 19:00. 3. The referred directioauthound and westbound for radial and cross cityiee respectively.
4. The referred weather is good weather. 5. Thernmed road is local, district and suburban road¥hé referred land
use is Non-CBD area.

5.2.2 Seemingly unrelated regression equations (SURE) estimation
The multivariate travel time reliability models che written as,

TT=BX, +¢ 5.9)

BT =BJX, +¢, -3p
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CV =BJX, +¢, 45

where,

TT,BT,CV = average travel time, buffer time and coefficiehvariance of travel time;

B,,B,, B, = vectors of estimated parameters;

X,,X,, X, = vectors of independent predictors;

£,,€,,€, = model regression disturbance terms.

In transportation-related studies, the models e commonly treated separately and es-
timated equation-by-equation using the standard @igshod. Equations 5.2, 5.3 and 5.4 do not
directly interact with each other as one would €xpe a classic simultaneous equation system.
That is, the travel time does not directly detemiime buffer time, buffer time does not directly in
fluence the CV of travel time, and so on. Howevellpwing Mannering (2007), the contempora-
neous disturbance-term correlations are expectedish across regression models, since they were
measured during the same time period of day osdhee link.

In this case, the equations are seemingly unrelatééctually shared common unobserved
characteristics which should be considered as apgrBormulating separate OLS models would
leave out potentially important contemporaneousetations that result in consistent but inefficient
parameter estimates. To address this problem, SédiREation can be used to account for the cor-
relation between the shared unobserved charaateri§tor detailed information on estimation of
SURE, refer to (Washington et al., 2011). PrevipuSURE was used to study speed variability in
construction zones and travel time variability oeefvays (Martchouk et al., 2010; Miller et al.,
2009).

5.3 Case Study

To build the dataset required for the analysis,tthgel time observations on routes 555 and 60
were aggregated for each 15-min time interval arhdmk. Operations for weekdays or weekends
and different directions were also considered &iegorizing. Public holidays have been excluded
from the analysis since they have different operapatterns. A sample size threshold of 30-trip
observations was found to be the point when théysisaretains its robustness. Accordingly, any
group with observations less than 30 was exclude the analysis and 6535 categories of time-
space observations were produced with sample armging from 30 to 167. Totally, 2681 catego-

ries were excluded with sample size less than 30bus bunching always occurs at cultural center
station, any link connected to it was excluded fribia analysis since such link has considerably
different characteristics to other links. Finalg, links with 5393 cases were used in the analysis.
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5.3.1 Comparison between OL S and SURE estimations
The independent variables (Table 5-1) were examansdl pre-tested using statistical analysis.

Some variables were excluded from the further amslgecause they were either insignificant or

collinear with other variables. In particular, teect of incorporating time and direction dummy

variables on model’s explanation power was testaagua hierarchical multiple regression, includ-

ing inbound, eastbound, weekday, AM peak and PM.pEaese dummy variables were found to

have negligible effects (effect size < 0.007) opriaving models’ explanatory power since the pro-

posed RCI had already captured the within-day tianieof traffic conditions. The descriptive sta-

tistics of dependent and independent variablesubed in the analysis are provided (Table 5-2).

Table 5-2: Descriptive Statistics of Dependent knaipendent Variables

Variables Type of variable Min Max Average Std. dev
Dependent variables

Average travel time (s) Continuous 55.75 692.3 068. 114.89
Buffer time (s) Continuous 2.5 649 39.25 33.07
CV of travel timé Continuous 0.02 0.81 0.14 0.06
Independent variables

Length between two stops (km) Continuous 0.38 8.53 1.92 1.69
Delay at first stop of link (s) Continuous -377.37 1168.6 55.61 147.93
Number of actual stops Continuous 0 1 0.74 0.24
Number of Boardings Continuous 0 23.19 1.88 2.37
Boardings Squared Continuous 0 537.66 9.15 25.85
Number of Alightings Continuous 0 22.72 1.9 2.64
Alightings Squared Continuous 0 516.2 10.55 34.34
SD delay at first stop of litk Continuous 2.87 758.72 93.54 66.23
SD number of actual stops Continuous 0 0.52 0.34 0.17
SD number of boardings Continuous 0 10.92 1.63 1.4

SD number of alightinds Continuous 0 13.9 1.52 1.48
Recurrent congestion index Continuous 7.87 105.81 74.61 18.74
Number of signals Continuous 0 8 1.32 2.19
Signals squared Continuous 0 64 6.57 15.41
Light rain versus good weatHer Dummy 0 1 0.08 0.27
Rain versus good weatRer Dummy 0 1 0.27 0.44
CBD versus Non-CBD aréa Dummy 0 1 0.19 0.39
Arterial versus Other roatls Dummy 0 1 0.08 0.28
Busway versus Other rodds Dummy 0 1 0.47 0.5
Motorway versus Other roatls Dummy 0 1 0.1 0.3

Notes:

1. SD = standard deviation, CV = coefficient ofigtion, and CBD = central business district. 2. lReent congestion
index = mode speed divided by free flow speed.@d3veather no precipitation, Light rain = precipitation betan
0 and 1.25 mm/30min, and rain = precipitation lathan 1.25 mm/30min. 4. Other roads = road typekiding local,

district, and suburban roads.

To choose the appropriate regression models foatitins 5.2 to 5.4, SURE and OLS mod-
els were developed separately using the generaselatThe Pearson correlations of regression re-
siduals were 0.56, 0.23 and 0.73 between Equafidghand 5.3, Equations 5.2 and 5.4, and Equa-
tions 5.3 and 5.4, respectively. It indicates tkistence of contemporaneous disturbance-term cor-
relations across regression models. By compariegéBults between SURE and OLS models, it
was found that the standard errors of coefficiemtSURE models were significantly smaller than
those in OLS models, which highlights the moreogdfit estimation ability of SURE model.
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No significant change of the adjusted Was found but the coefficients of factors changed
substantially ranging from 0 to 56%. One would hewvaccept the SURE estimates as more trust-
worthy since they have explicitly accounted forretations of unobserved characteristics. Besides,
from practical implications, the result from SURBdel seems to make more sense. For example,
the deviation of SD delay was not found significanOLS model but it was found significant in
SURE model. As this paper focuses on identifyind @uantifying contributory factors, no detailed
comparison of SURE and OLS models was provided. Adr¢he regression results presented in the
paper were from SURE models.

5.3.2 General modelsfor travel timereéliability

Table 5-3 shows the SURE models for average titawel, buffer time and CV of travel time using
the general dataset. Overall, they can explain 38% and 40% of the variations in average travel
time, buffer time and CV of travel time observagspmespectively. Théold values highlight the
top five important factors impacting average trairake, buffer time and CV of travel time.

5.3.2.1 SURE Model for Average Travel Time

Consistent with previous studies (Diab and EI-Gayne?013; El-Geneidy et al., 2011), travel time
increases with an increase in route length, nurabactual stops, number of boardings, number of
alightings, and number of signals. Route lengththadargest positive effect. Delay at first st@gs h

a negative effect on travel time, which means busets who have late departures have less travel
times compared to those who depart on time or e@His could be explained by the fact that bus
drivers aim to match a predefined timetables. Aseeted, travel time is adversely impacted by the
RCI which means it takes less time to travel wheifffit is less congested. Compared to a good
weather, rain will increase travel time. This canditributed to a decrease in driving speed and in-
crease in the gaps between vehicles for safetysifyaficant difference in travel time was found
between light rain and good weather.

The coefficient of boarding time (3.4 seconds)ektively higher than alighting time (2.5
seconds), since passengers can only use the foontwhen boarding; while they can use both the
front and back doors when alighting. The squaread fer alighting indicates that the time associat-
ed with passenger alighting decreases with eacii@u passenger. It means that the first passen-
ger takes an average of 2.5 seconds to alighttrenslecond passenger will take less time since they
have already gotten their smart card and belongeady. The test result by including the variable
of boardings square showed that it had an unstedizdal coefficient 0.032 with standard error
0.033. It indicates that the boarding time assediatith each additional passenger could also in-
crease, since the subsequent passengers may neztimeto find a seat when the bus is crowded.
The dummy variables of land use and road type sidbat these factors influence on average trav-
el time are different under different environments.
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Table 5-3:SURE Models for Average Travel Time, Buffer Timedd@V Travel Time

Predictors Average travel time  Buffer time CV travel timé
B@)" B@° B@°

Length between two stops 73.315 (1.077) ** 14.806 (0.756) ** -0.005 (-0.124) **

Delay at first stop of link -0.015 (-0.020) ** NA AN

Number of actual stops 20.296 (0.043) ** -8.252@8) ** -0.044 (-0.174) **

Number of Boardings 3.4080 (0.070) ** NA NA

Boardings Squared — NA NA

Number of Alightings 2.5230 (0.058) ** NA NA

Alightings Squared -0.077 (-0.023) ** NA NA

SD delay at first stop of litk NA 0.0180 (0.036) ** 0.00003 (0.032) **

SD number of actual stops NA 10.923 (0.055) ** 0.1000 (0.272) **

SD number of boardings NA 2.2060 (0.094) ** 0.006 (0.138) **

SD number of alightinds NA 1.1000 (0.049) ** 0.002 (0.046) **

Recurrent congestion index
Number of signals

Signals squared

Light rain versus good weatter —

Rain versus good weatfer 3.4840 (0.013) **
CBD versus Non-CBD aréa -44.310 (-0.151) **

-2.4930 (-0.41) **
22.365 (0.426) **

-1.142 (-0.647) **
3.7400 (0.248) **

-9.790 (-0.116) **

-0.002 (-0.492) **
0.026 (0.933) **
-0.003 (-0.734) **
0.006 (0.026) *
-0.005 (-0.036) **
-0.068 (4B7) **

Arterial versus Other roatls -108.04 (-0.259) **
Busway versus Other rodds -29.675 (-0.129) **
Motorway versus Other roatls -80.580 (-0.209) **

-31.016 (-0.258) **
-9.7630 (-0.147) **
-42.173 (-0.381) **

-0.048 (AL7) **
-0.030 (1) **
-0.050 (2042) **

Constant 207.36 ** 99.607 ** 0.27 **
Number of links 42

Number of cases 5393

Adjusted R 0.949 0.464 0.398
Notes:

The bold values highlight the top five importanggictors with highep than others.
The coefficients Bf) P: B = unstandardized coefficieifit= standardized coefficient and p = significanaele

t statistics significance ** = p < 0.01 and * = 0<05.

NA stands for Not Applicable information and therdyol ‘—' stands for insignificant variable with p > 0.05.

1. SD = standard deviation, CV = coefficient ofigtion, and CBD = central business district. 2. lReznt congestion
index = mode speed divided by free flow speed.@d3veather no precipitation, Light rain = precipitation betan
0 and 1.25 mm/30min, and rain = precipitation lathan 1.25 mm/30min. 4. Other roads = road typekiding local,

district, and suburban roads.

5.3.2.2 SURE Model for Buffer Time

As anticipated, buffer time increases with an iaseein route length, SD delay at first stop, SD ac-
tual stops, SD boardings and SD alightings, andbauraf signals. Route length has the largest pos-
itive effect on buffer time. Its impact can be tetato factors that create friction, such as tcaén-
tering the road and pedestrian crossings. SD hagsdnad a more important influence than SD
alightings since boardings usually take more tilr@ntalightings. Each actual stop made along the
route section decreased the buffer time by 8 sexdhdheans that a link buffer time is less if the
scheduled stop is served all the time, comparethid¢acase of a link where the scheduled stop is
served only occasionally. The RCI has a negatifle@ence on buffer time, which indicates that
passengers need to budget less buffer time whenreet traffic congestions are relieved. No sig-
nificant difference of buffer time was found betwegod and rainy weather.
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5.3.2.3 SURE Model for CV of Travel Time

Consistent with previous study (El-Geneidy et 2011), CV of travel time increases with increas-
ing SD delay at first stop, SD actual stops, SDrthogs and SD alightings, number of signals. The
signal has the largest positive effect on travektivariability. The squared term of signal indisate
the influence of the signal on variability will dease with each additional signal. CV travel time
decreases with increasing of route length. Theore#s that the variation of travel times could be
made up by drivers to comply with the timetableclicactual stop made along the route section de-
creases CV travel time. It indicates that the ragtetion with the scheduled stops being served all
the time is more reliable than the route sectiotih whe scheduled stops being served occasionally.
The RCI has an adverse impact on reliability, sihég more probable for an incident to occur and
takes longer time for clearance when congestiomrgsccCompared to good weather, light rain in-
creases CV of travel time by 0.006 while rain dases it by 0.005. The combined effects of traffic
condition and passenger demand could contributt@ito

5.3.3 Alternative modelsfor travel timereliability

Table 5-4 shows the SURE models for AVG travel tilmgffer time and CV travel time on differ-
ent types of road. Effective strategies can be nadide an improved understanding of unreliability
factors for each link type. For average travel tilmeses travelling on busway experience less run-
ning time (57 seconds) and stop loss time (18 six)ahan those travelling on other road types. It
takes longer for vehicles travelling in the CBDaead stopping there, when all other variables are
kept at their mean values. Vehicles in the CBD aredess influenced by signals (3 seconds), pos-
sibly due to less cycle length and coordinatiotraffic signals. Travelling in the CBD area is more
sensitive to rain when compared to good weathee. prbposed RClIs are all negatively significant
and greatly important in explaining the variatianstravel time observations. The boarding and
alighting times will decrease with each additiopaksenger boarding and alighting. The signs of
boardings and alightings in OTHERS and MOTORWAY misdvere unexpected.

Passengers travelling on busway need to budgebldfe time (7 seconds) than those trav-
elling on other roads when all other variableskagt constant. Buffer time on busway is least sen-
sitive to deviations of actual stops and most $mesio deviation of passenger activities. Deviatio
of boardings was found to be more important thaghtihgs except in the OTHERS model. The
RCls are all negatively significant and greatly ortant in explaining the variations in buffer time
observations. Signals in CBD area would seem taedse buffer time. Compared with good
weather, light rain was not found significant ineahative models, while rain will increase buffer

time on arterial and decrease it on busway.
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Table 5-4: SURE Models of Average Travel Time, Buffime and CV Travel Time on Different
Types of Roads

. ARTERIAL  MOTORWAY BUSWAY CBD' OTHERS

Predictors

B (B) B () B () B () B ()
Average travel time (in second)
Length between two stops 104.74 (.397) 67.444§.76466.79 (1.234) 211.5(1.116) 177.34 (.609)
Delay at first stop of link -0.04 (-.092) -0.0160t7) -0.007 (-.037) -0.070(-.118) -0.057 (-.17)
Number of actual stops 23.162 (.114) 52.861 (.10618.166 (.140) 79.968 (.200)—
Number of Boardings - 4,552 (.116) 4.3320 (.231) 4.5490 (.166) -2.9040)
Boardings Squared - -0.118 (-.038) -0.032 (-.012) -0.207 (-.098) 0.380141)
Number of Alightings 6.919 (.839) -5.199 (-.152) 2@5(.157) 3.1740(.119) 4.351(.257)
Alightings Squared -0.238 (-.47) 0.2710(.124) ©3.1-.039) -0.146 (-.076)—
Recurrent congestion index ~ -1.72 (-.518) -4.646 (-.217) -2.194 (-.639) -3.14801) -3.141 (-.99)
Number of signals 5.9420 (.247) 72.659 (.259) 8080@99) 3.3600 (.085) NA
Light rain versus good weatfier — — — 9.209 (.029) -—
Rain versus good weatRer 3.131 (.048) — — 10.037 (.054) —
Constant 93.589 291.545 187.11 102.29 209.22
Adjusted R .802 .99 .938 .885 640
Buffer time (in second)
Length between two stops - 11.678 (.465) 6.9960 (.423) 50.889 (.682) 197.B1§)
Number of actual stops - - -13.28 (-.285) — -45.87 (-.22)
SD delay at first stop of lifk ~— — 0.053 (.099) — 0.0480 (.087) —
SD number of actual stops 14.302 (.107) 32.427 (.145) 6.8340 (.078) 14.930 (.060)
SD number of boardings 1.0430 (.100) 1.824 (.082) 4939 (.576) 2.0550Q)1 —
SD number of alightinds — — 1.1400 (.104) — 7.6440 (.212)
Recurrent congestion index ~ -0.31 (-.131) -1.770 (-291) -0.474 (-.384) -1.q5838) -3.589 (-.96)
Number of signals 41910 (.243) 16.831(.211) 3090531) -2.180(-.139) NA
Light rain versus good weatfier — — — — —
Rain versus good weatfer 5.179 (.111) — -1.714 (-.073) — —
Constant 46.545 105.77 50.156 74.576 187.053
Adjusted R .089 476 .326 268 493
CV travel timé
Length between two stops -0.266 (-.39) -0.002 ()08 -0.024 (-.394) -0.036 (-.263) -0.166 (-.27)
Number of actual stops - - -0.041 (-.239) -0.070 (-.244) -0.136 (-.36)
SD delay at first stop of lifk ~ — .00006 (.132) — — —
SD number of actual stops 0.1240 (.257) 0.0370(.208) 0.1030(.317) 0.00021) 0.1250 (.279)
SD number of boardings 0.0050 (.090) 0.0020 (.107)  0.0140 (.440%

SD number of alightinds - — — 0.0120 (.178)
Recurrent congestion index ~ -0.002 (-.19) -0.002 (-.388) -0.001 (-.223) -0.q@363) -0.006 (-.87)

Number of signals 0.0170 (.268) 0.0140 (.216) 000(1972) 0.0020 (.085) NA

Signals squared — — — -0.001 (-.222) NA

Light rain versus good weatfier — — — — 0.0140 (.054)
Rain versus good weatfer — — -0.005 (-.058) 0.026 (.092) —

Constant 0.197 0.223 0.129 0.256 0.533
Adjusted R 0.196 0.256 0.450 0.110 0.630
Number of links 4 4 14 10 10

Number of cases 445 533 2526 1024 865

Note:

The coefficients Bff) for each predictor B = unstandardized coeffigiandp = standardized coefficient.

Only significant variables with p <= 0.05 are praeel in the model.

NA stands for Not Applicable information and therdol ‘—' stands for insignificant variable with p > 0.05.

1. SD = standard deviation, CV = coefficient ofigtion, and CBD = central business district. 2. lReEnt congestion
index = mode speed divided by free flow speed Jd3meather no precipitation, Light rain = precipitation ieb
tween 0 and 1.25 mm/30min, and rain = precipitaldoger than 1.25 mm/30min. 4. OTHERS = road typekiding
local, district, and suburban roads.
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For CV travel time, travel time variability decreasif the buses are scheduled to serve all
stops along the route on busway and CBD area. €hmtibns of actual stops and number of sig-
nals are significant in all the models. The squaeth of signals in CBD area indicate that the
travel time variability decreases with the increatéhe number of signals. The deviation of board-
ings is more important in impacting variability théhat of alightings, except in OTHERS model.
The RClIs are negatively significant in explainirgyiations in travel time observations. Compared
to good weather, the rain decreases variabilithusway and increases it in CBD area.

In brief, the service performance of bus operabngdifferent types of roads can be com-
pared directly in alternative models by excludihg influence of other covariant factors. For ex-
ample, busway can provide a faster and more religdtvice than others in terms of average travel
time and buffer time. Another insight can be oledirirom alternative models is that the relative
importance of factors would differ from differerdad types. Specific measures should be taken to
efficiently improve reliability under different opating environments. For example, in BUSWAY
average travel time model, the impact of the nundfeactual stops (.140) is less important than
that of the number of boardings (.231). It implieat making strategies to speed the boarding can
be more efficient than find ways to decrease stipys.

5.4 Main findings and practical implications

The research aims to identify and quantify the dyde determinants of bus TTR on links of dif-
ferent road types using planning, operational amdrenmental data integrated from sources of
AVL, smart card, GTFS, BSTM and BOM database. Tlannfindings are summarized from per-
spectives of modelling approach and findings. Lake other empirical study, the conclusions are
valid within the range of the used data and shbeldsed with caution beyond this range.
1) Modéelling Approach
Different from previous reliability studies in trsify the recurrent congestion index was defined to
represent traffic conditions and SURE model wasl tigeestimate coefficients.
o The RCI was found to be highly significant in rélidy models. Further including dummy
variables of time and direction had a negligibleetfon models’ explanatory power.
o Pearson test verified the existence of correlatimta/een reliability models.
0 The SURE model is capable to provide more efficesmtimations than OLS model.
Implications: These findings offer a new perspective to modeR it transit. The SURE
model should be regarded as more trustworthy sinicas explicitly accounted for cross-equation
correlations of disturbance terms. The model cdddyeneralized to other link since the RCI can
well capture enroute traffic conditions. Other gyswf reliability measures can be modelled using
the approach proposed here.
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2) General Models
From general models, the top five important facforgifferent attributes can be identified.

o For average travel time: link length, recurrentgestion index, signals, number of board-
ings, and alightings.

o For buffer time: link length, recurrent congestiodex, signals, SD actual stops, and SD
boardings.

o For the coefficient of variation of travel timegeals, recurrent congestion index, SD actual
stops, number of actual stops and SD boardings.

Implications: These findings are supportive of general strageggech as designated bus
lanes, busway, signal priority, stop consolida@gma smart card payment.
3) Alternative Models
Alternative models were developed to account forati@ns caused by different types of roads.

o From alternative models, service performance diemiht types of road can be compared by
excluding the covariant factors impacts. For examplisway was found to provide a faster
and reliable service than others.

o Alternative models can provide detailed insight® ithe influence of specific causes. For
example, the influence of signal is not as impdreanthat of actual stops made along route.
Implications: These findings can help to facilitate efficiemagtgies under different scenar-

ios to improve service reliability and mitigate tingpacts of unreliability for both travellers ang-o
erators. For example, in CBD areas, it may be neffiective to introduce measures which reduce

stop loss time rather than to implement signalrfiyio

5.5 Summary

The concern with making efficient and effectiveattgies to improve service reliability brings
about the need to identify and quantify the impafctinreliability causes on TTR. Despite signifi-
cant research in private vehicle reliability mool there has been much less emphasis on model-
ling link level transit TTR on different types abads. The research identifies the most important
factors that influence the service attributes fasgengers and operators, to enable effective and ef
ficient strategies to improve transit reliabilitgnformance.

A comprehensive set of reliability causes assodiatgéh planning, operational and envi-
ronmental perspectives, has been estimated arattltesing 6 months data from two bus routes in
Brisbane, Australia. The data sources include AdfiLstop level vehicle travel times, smart card for
passenger demand, GTFS and BSTM for route chaistaterand BOM for weather observations.
A recurrent congestion index was developed heneflect within-day variation of traffic condi-

tions using historical travel time observationstéad of using dummy variables.
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A SURE model was applied to address the inefficoeefficient estimation issue caused by
the unobserved shared service characteristics saceggession models for average travel time,
buffer time and CV of travel time. The statistitests suggest that the congestion index is highly
significant in reliability models. Cross-equatioor@lations were found to exist between reliability
models and the SURE provides more efficient estonghan the OLS model.

The model results provide insights into the catisasaffect bus travel time, buffer time and
the coefficient of variation of travel time. Targdtstrategies are likely to be more effective dnd e
ficient after an improved understanding of the dastwhich impact on reliability for each link type.
Due to the different characteristics of road limkel within-day variation of traffic conditions cap-
tured by the recurrent congestion index, the resudh be generalized to predict average travel time
and its reliability on other bus routes with similiak types. Other reliability related dependeat-v
iables, such as headway regularity and scheduleraedbe, can be modelled using the approach
proposed here.
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Chapter 6 Travel TimeDistribution Model-
ling

6.1 Introduction

Bus travel time reliability performance influencgsrvice attractiveness, operating costs and system
efficiency. Better understanding of the distribatiof travel time variability is a prerequisite fia-
liability analysis. A wide array of empirical stedi has been conducted to model distribution of
travel times in transport. However, depending andhta tested and approaches applied to examine
the fitting performance, different conclusions hden reported. While some studies have consid-
ered symmetrical distribution models, others haraefgpred skewed and multimodal ones. These
inconsistencies clearly affect both the abilitygean insights into the nature of TTV and inhibieth
ability to generalize findings to other applicasoifhe research aims to specify the most appropri-
ate distribution model for the day-to-day travehei variability by using a novel evaluation ap-
proach and set of performance measures. Two imgaddsues are addressed: 1) Data aggregation
influence on the attributes of TTV, and 2) Evalaatof the alternative distribution models’ perfor-
mance. A novel evaluation approach and set of measre developed to facilitate comprehensive
comparison of alternative distribution models. Tasearch findings are reported in a journal paper
published in Ma, Ferreira, Mesbah and Zhu (2015).

The remainder of the Chapter is structured asvi@ioln Section 3 the evaluation approach
focusing on finding the most appropriate distribatmodel is described. The data aggregation in-
fluence on the feature of TTV is investigated amal dlternative distribution models’ performance is
evaluated inSection 4 The decrease of temporal aggregation of trametditends to increase the
normality of distributions. The spatial aggregatairink travel times would break up the link mul-
timodality distributions for a busway route, butike for a non-busway route. The Gaussian Mix-
ture Models is evaluated as superior to its alteres in terms of fitting accuracy, robustness and
explanatory power. The identified most approprratalel is further discussed 8ection 5 includ-
ing the reasons for its superior performance as@jpplications. The reported distribution model
shows promise to fit travel times for other sersiggth different operation environments consider-
ing its flexibility in fitting symmetric, asymmetriand multimodal distributions. Finallgection 6

provides the main conclusions, as well as highsigittential future research.
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6.2 Distribution evaluation approach

The proposed evaluation approach can provide cdmpeive comparison of distribution fitting
performance from three aspects, including casergaor, alternative models selection and evalua-
tion measures. The alternative distribution modeéstested for different cases and evaluated com-
prehensively considering accuracy, robustness aplkhmatory power in order to specify the most
appropriate distribution model in fitting day-toyd@ariability of bus travel time. The detailed eval
uation approach is described as follows:

1) Case Generation

Test cases are generated by aggregating the pregsed travel time data in combinations of dif-
ferent temporal-spatial scales and time compondiis.considered aggregation attributes are tem-
poral scale (weekday or weekend, period, 60 mimn89 15 min, and 5 min), spatial scale (direc-
tions, route level and link level) , and time comepnots (travel time, running time and stop delay
time). Accordingly, five distinct periods are use&¥ off-peak (05:00-07:00), AM peak (07:00-
09:00), Inter peak (09:00-15:00), PM peak (15:0@@Pand PM off-peak (19:00-23:00). A case is
a combination of the above aggregation attributash as weekday inbound AM peak route run-
ning time.

2) Distribution Fitting

For observations under each case, alternativeliisbn models are used to fit them. The single
distribution models, including Burr, Normal, Lognual, Gamma, Weibull, Logistic, and Log-
logistic, are chosen from the literature that hesrbreported to be the best under specific testing
environments. The PDF parameters are estimated usa Maximum Likelihood method. The
GMM model, a special case of mixture distributiondal, is also considered. The maximum com-
ponents numbeK is set to be 3 considering the interpretationhef parameters in reality, that can
be related to free flow, recurrent and non-recursenvice states .

3) Hypothesis Test

For fitted distributions under each case, the AsdieiDarling (AD) test is used to test if the altern
tive distribution models pass the null hypothesjdhtét the observations comes from the alternative
distributions (Anderson and Darling, 1954). A largd significance value highlights a better fit-
ting performance of the model. The distribution mloi$ rejected when the value of AD signifi-
cance is smaller than 0.05. If accepted, the atemm distribution is placed into the candidature
models pool. The candidate distributions fittingfpenance is then ranked by using the AD signif-
icance values in an ascending order. For examptaei GMM performs the best, it has the top
mark of 1.
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4) Performance Summary

The statistics, accuracy and robustness for eaemative distribution model, are summarized, and
their explanatory power discussed. Here accuracgnsi¢ghe model can fit the observations with

only a small fitting error. It can be measured gsiescriptive statistics of AD significance value

and distribution mark. Robustness means the mtgkdf can adjust to different cases with a tolera-
ble fitting error, especially under complex sitoas. It can be measured using the proportion of
cases that passed the hypothesis test. Explanad@rgr indicates the distribution model describes

the reality in a useful way and is flexible enougltapture hidden patterns of travel times.

6.3 Distribution evaluation measures

Two groups of measures are chosen and calculategigfiregation influence analysis and perfor-
mance evaluation. To explore the data aggregatifftmence on the shape of distribution, a set of
measures of symmetry, normality and multimodality selected. Skewness/se is a measure of the
degree of asymmetry of a distribution while kursése is a measure of the ‘flatness’ (vs peakedness)
of a distribution (Washington et al., 2011). Thanstard errose = W whereN is the sample
size. A Skewness (kurtosis) value of more thandwiw corresponding standard ersers suffi-
cient to reject a 0 value for skewness (kurtogishigher skewness/se (kurtosis/se) value highlights
a more asymmetrical (peaked) distribution. Thedaigise can be used to indicate where the vari-
ance of data comes from. If the distribution is pe&ky, the variance is distributed throughout. If
the distribution is peaky, the variance of dataelto the distribution centre is little and theiaace
mainly comes from tails. Normal significance andhuodal significance are measures of the degree
of normality and unimodality, respectively. A higtsgnificance value indicates a better normality
or unimodality of TTD. The normal significance valis calculated using AD test and the unimodal
significance value is calculated by the Hartiggm téist (Hartigan and Hartigan, 1985). The null hy-
pothesis H for the dip test is that the TTD is unimodal. H&o hypothesis fcannot be rejected a
distribution is unimodal with a significance valaeger than 0.05.

To evaluate the alternative distribution modelsfgenance in fitting day-to-day variability
of bus travel times, a set of measures of accuaadyrobustness are developed. Survivor function
Suv(o) is developed that can capture the probability thatdistribution model will survive beyond
a specified AD significance value.

Suv (AD _sig> =1- F(AD _sig) (6.1)
where

AD sig=the AD significance value;

F(AD _8ig>: the cumulative density function of AD significanealue.
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For a specified value of AD significance, a largervivor probability highlights a more ro-
bust model. For a specified value of probabilityaeger AD significance value indicates a more
accurate model. Also, for accuracy measures, trenmé AD significance values and Cases_top3
ratio (ratio of cases marked with top 1 to top 3n® total number of cases) are calculated. A model
with a larger mean and higher Cases_top3 ratioligiyis a more accurate model. For robustness
measures, the standard deviation of AD significavaieies and Cases_pass ratio (ratio of cases
with AD significance value larger than 0.05 to tb&al number of cases) are calculated. A model
with a smaller standard deviation and higher Casess ratio indicates a more robust model. The
explanatory power is discussed by examining its ehsttucture in fitting different types of distri-
butions and the interpretation of its parametergaiity.

6.4 Case Study

The motivation for the research was to specify@etgf distribution that can appropriately model
the day-to-day TTV for public transport. The idédata for empirical study would have a large ex-
tent coverage of services that operating in difieteanes and spaces. The routes 555 and 60 data
were used. Buses operating on the two routes wrpged with AVL systems that can provide
travel time information in different time and spasmmles, which satisfied the data requirement of
this study. The two typical routes cover diverserating environments, including CBD area, resi-
dential area, major attraction area, suburban raddrial road, motorway, and exclusive busway.
The data used covers a six months’ period withisemperating from 5:30 to 23:30 every day. The
two routes were used as a prototype to evaluatentist appropriate distribution models for other
routes with similar operation environment. In tp&/002 and 56,316 numbers of cases are identi-
fied for route and link levels times, respectively.

6.4.1 Aggregation impactson distribution

Statistical tests were conducted to examine thevstny, asymmetry, normality and multimodality
of a distribution in order to explore the data aggtion influence on the characteristic of time dis
tributions. Temporal and spatial aggregation impagtre investigated separately.

6.4.1.1 Temporal aggregation

Different levels of temporal aggregation that iefice route and link level TTDs were examined.
First, the distributions for different temporal aggation levels of route travel times were visiwealiz
using the histogram for the weekday inbound senkagure 6-1 shows the TTDs for AM peak and
Inter peak time periods. For the AM peak perioditeds0 travel times show a multimodality distri-
bution while route 555 travel times shows an asymmand flat distribution with a short right tail.
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The multimodality phenomenon may be caused by nandehicle delay times at signalized
intersections and delay times at stops along th&erdccordingly, it is rather hard to use a uni-
modal distribution model to fit such travel timegtwseveral peaks. For the Inter peak period, the
TTDs on the two routes are rather symmetric winall proportion of large travel times on the
right compared to the distributions for the AM pegmdtiod. A normal distribution may appropriate-
ly characterize the Inter peak travel times.

() ()
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Figure 6-1: Distribution of travel times for rout&S5 and 60 during (a) AM peak period and (b)
inter peak period.

A different picture of TTDs emerges by decreasimg temporal aggregation level of travel
times. Figure 6-2 shows the distribution for roG&b travel times in 60 min and 15 min departure

time windows during the AM peak time period.
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Figure 6-2: Distribution of travel times with depae time window (DTW) 60 minutes and 15
minutes during AM peak period.
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In a comparative sense, both the TTDs are relgtvelre symmetrical than those shown in
Figure 6-2 and TTD for the 15 min DTW is relativehore symmetrical than that for the 60 min
DTW. A normal distribution would provide a promigitfit for a short temporal aggregation level.
To better understand the temporal data aggregatfarence on time distributions, statistical tests
were conducted to examine the characteristicsagétitimes for different cases.

Table 6-1 shows a series of key descriptive stedistf route level distributions for bus trav-
el time components (travel time, running time amatld time) with different aggregation levels for
weekday inbound travel. Similar results were alsaonfl for other tested scenarios. No result of 5
min aggregation level was provided for route 55%&siits minimum headway is 15 min. First, re-
sults of different statistical measures with a dase of aggregation levels under each scenario were
examined, such as route 555 peak travel time. bloifgiant difference was found for the measure
of COVs across different aggregation levels, exéaptoute 60 Inter peak travel times and running
times. The skewness/se and kurtosis/se valuesadecteinder all scenarios which highlight a less
skewed and more flat distribution. Accordingly, th@mal sig values increased under all scenarios
which indicate a more symmetric distribution. Themal distribution seems to be an appropriate
model for travel times within a small aggregatierd! (e.g. 5 min) since the normal sig values are
much larger than 0.05 for all cases. These findargsconsistent with the visualized analysis above
and the results reported by Mazloumi et al. (208ilarly, it seems rather unlikely that the dis-
tribution is multimodal for a very short time int@t. The reason for those could be less variatfon o
factors influencing travel times that exists fosheorter DTW. For an ideal assumption, if only one
factor has a significant variance for a certainrsB@W, the resultant travel times should follow a
normal distribution.

Comparing peak and off-peak time periods for a sagwregation level, the COVs of the
peak period tend to be larger than those of thepedik period, since the travel conditions are more
complicated for peak hours. However, by examining values of skewness/se and normal sig
measures, the off-peak travel times and runninggishow a more skewed and asymmetric distri-
bution than those of the peak period while an oppassult was achieved for other levels aggrega-
tion. These seemingly conflicting results couldchesed by the different time intervals for the AM
peak period (2 hours) and off-peak periods (6 Hourke kurtosis/se measure indicates a more
peaked distribution of travel times and runningesmuring the off-peak period. The unimodal sig
measure highlights that it is less likely for tratiene and running time distributions to be multi-

modal during an off-peak period.
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Table 6-1: Key descriptive statistics of travel@snwith different temporal aggregation level
. . . . kewness Kurtosis Normal Unimodal
Route Time period Aggregation level Sample size CllO)Zez Is@ SigP Si?
TT* 555 Peak AM peak 662 0.16 4.83 30.80 0.02 0.29
60 min 331 0.15 3.16 22.29 0.10 0.69
30 min 164 0.14 2.46 16.94 0.35 0.57
15 min 83 0.14 1.19 11.00 0.63 0.75
Off-peak Period 2600 0.06 15.42 91.72 0.00 0.98
60 min 372 0.05 143 23.85 0.37 0.76
30 min 187 0.05 1.12 17.04 0.67 0.78
15 min 93 0.05 0.99 11.87 0.74 0.64
60 Peak AM peak 972 0.17 4.34 23.51 0.00 0.00
60 min 486 0.17 3.26 17.20 0.00 0.00
30 min 243 0.17 290 13.94 0.00 0.04
15 min 122 0.17 2.15 9.71 0.01 0.04
05 min 42 0.15 0.80 5.09 0.25 0.20
Off-peak Inter peak 1688 0.12  31.67 134.62 0.00 0.95
60 min 238 0.08 2.60 20.44 0.51 0.85
30 min 119 0.08 181 14.39 0.60 0.70
15 min 59 0.08 141 10.03 0.69 0.71
05 min 40 0.08 1.34 8.22 0.72 0.74
RT* 555 Peak AM peak 662 0.16 5.76 33.74 0.01 0.09
60 min 331 0.15 3.88 23.65 0.08 0.83
30 min 164 0.14 3.40 18.57 0.28 0.66
15 min 83 0.15 1.70 11.87 0.52 0.68
Off-peak Inter peak 2600 0.06 14.83 113.89 0.00 0.87
60 min 372 0.05 1.93 29.57 0.62 0.93
30 min 187 0.05 1.98 19.84 0.63 0.94
15 min 93 0.05 1.28 13.08 0.77 0.86
60 Peak AM peak 972 0.21 6.02 26.27 0.00 0.00
60 min 486 0.21 3.98 18.98 0.00 0.00
30 min 243 0.20 3.40 14.74 0.00 0.09
15 min 122 0.20 2.35 10.04 0.01 0.12
05 min 42 0.18 0.84 5.11 0.24 0.20
Off-peak Inter peak 1688 0.14 3494 145,92  0.00 0.98
60 min 238 0.09 343 24.35 0.50 0.77
30 min 119 0.09 240 16.73 0.58 0.77
15 min 59 0.09 1.79 11.10 0.63 0.71
05 min 40 0.09 1.50 8.90 0.68 0.71
DT* 555 Peak AM peak 662 0.34 18.85 137.70  0.00 0.82
60 min 331 0.33 10.63 71.47 0.14 0.95
30 min 164 0.33 6.48 42.49 0.38 0.94
15 min 83 0.32 3.52 21.05 0.53 0.82
Off-peak Inter peak 2600 0.28 17.47 109.22 0.00 0.81
60 min 372 0.27 5.19 35.16 0.29 0.61
30 min 187 0.27 3.36 23.02 0.52 0.74
15 min 93 0.27 2.11 14.74 0.67 0.77
60 Peak AM peak 972 0.22 9.02 95.42 0.04 0.96
60 min 486 0.21 7.59 74.90 0.24 0.94
30 min 243 0.20 6.47 55.27 0.16 0.80
15 min 122 0.19 3.92 32.25 0.42 0.90
05 min 42 0.19 2.21 13.17 0.61 0.79
Off-peak Inter peak 1688 0.23  8.55 68.90 0.00 0.88
60 min 238 0.22 4.14 25.79 0.28 0.86
30 min 119 0.22 2.86 17.69 0.46 0.89
15 min 59 0.22 2.09 12.11 0.63 0.81
05 min 40 0.21 1.69 9.78 0.67 0.72

*TT = Travel time, RT = Running time, DT = Delayte. 1. COV = Coefficient of Variance. 2. se = stard error. 3.
sig = significance value of hypothesis test.
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Comparing the same aggregation level across diffdime components shows that delay
time tends to have a different patterns of chanvgés travel time and running time between the
peak and off-peak time periods, such as duringp#ak hour, delay time have a more peaked distri-
bution than during the off-peak hour. Also, deleyds have a larger variability and a more skewed
but peaked distribution. It indicates that the aace of stop delay time is largely influenced by
some extremely small and large observations. Theaf/ses have revealed that the temporal data
aggregation could alter the nature of time distitns with different pattern change behaviour. An
appropriate temporal aggregation level should bextsd before distribution fitting.
6.4.1.2 Spatial aggregation
Different links along a bus route have differentuccteristics, such as road types, signalized-inter
sections and land use (CBD, major attractors adeesial area). These different characteristics can
lead to different spatial time distributions. Figu-3 shows the actual and scheduled travel time
and its COV of different links along route 555 the weekday inbound AM peak service. Table 6-2
shows the characteristics of links and key desegmtatistics of travel time distributions.

Comparing COVs among the different links shows,thiaks 1, 7, 10 and 11 have relatively
larger values than the others which could be calisethe combined effects of road type, road
length, major attractors and signalized intersestid-or links 1 and 11, the inbound traffic condi-
tion is usually congested during the AM peak peaod the signalized intersections would further
worsen the situation. For links 7 and 10, the largeability is mainly caused by bus bunching and
high passenger demand at these stops. Comparkd togasures for route level travel times in Ta-
ble 1, the link travel times are more complicataethwnly 3 out of 11 links having normal sig val-
ues larger than 0.05. Conceptually, for a spe&iiaV, a link level TTD would be more viable than
a route level TTD since the intersection and stelaydtimes will occupy a greater proportion of the
travel times for the former.

Table 6-2: Characteristic of links and key desargstatistics of TTDs [weekday inbound AM ser-

vice 555]

Link Route Major at- Length Signal COV  Skewnesshe Kurtosis/sé Normal U_mmodal
number type tractor (km) sigf sigf

1 Motorway Shopping 8.80 4 0.28 4.52 31.93 0.00 00.0
2 Motorway - 5.60 2 0.19 6.72 34.59 0.00 0.78
3 Bus way - 2.60 0 0.14 6.95 37.31 0.00 0.36
4 Bus way Shopping 2.60 0 0.12 4.15 35.30 0.14 0.05
5 Bus way University  2.20 0 0.14 4.35 35.00 0.07 000.

6 Bus way - 2.70 0 0.11 281 31.42 0.14 0.21
7 Bus way Hospital 1.60 0 0.22 1257 50.23 0.00 80.4
8 Bus way - 1.90 0 0.15 6.77 38.88 0.00 0.77
9 Bus way - 0.80 2 0.15 5.70 44.39 0.00 0.00
10 Bus way Major stop  1.00 3 0.39 12.00 45.50 0.00 0.21

11 Suburban - 0.75 3 0.30 10.59 44.08 0.00 0.94

1. se = standard error. 2. sig = significance valueypothesis test.
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Figure 6-3Travel times (actual and scheduled) and foieit of variance (COV) between different
stops along the route.

To examine the multimodality of distributions inbla 6-2, 4 out of 11 links have multi-
modal distributions whereas the route level traeés for the AM peak have a unimodal distribu-
tion. The multimodal phenomenon on the links setrise broken up when aggregated to a route
level travel time which is consistent with the fimgls reported by Susilawati et al. (2013). Thedarg
distinction between different links travel timesutm be mutually made up by an increase of the
spatial aggregation. For example, if a vehicle ekivelatively slowly at the first link, the driver
would speed up at the following stops to catch itp #e time table.

To further explore the spatial aggregation levéliBnce on the multimodality distributions,
the unimodal sig values for link level travel tim&fsroute 60 in AM peak period and 60 min DTW
are presented in Table 6-3, along with the charatizof route 60.

Table 6-3Characteristics of links and unimodal statistic3 ®Ds [weekday eastbound AM service
60]

Link number Route type Major attractor Length (km) Signal E‘X]I\IAm;S;IL)S'é ér(l)mr:](i)g)al sid
1 Local Residential 0.54 0 0.00 0.01
2 District Residential 0.76 0 0.01 0.04
3 District - 0.77 0 0.01 0.12
4 District - 0.47 1 0.17 0.40
5 District Major stop 0.89 6 0.70 0.90
6 Suburban CBD 0.78 3 0.43 0.82
7 District CBD 0.56 3 0.00 0.17
8 Arterial CBD 1.23 4 0.75 0.96
9 Arterial - 0.68 4 0.78 0.68
10 Arterial - 0.58 3 0.28 0.50
11 Local - 0.70 0 0.02 0.20

1. sig = significance value of hypothesis test.
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The results show that multimodality generally oscat the first three links and not for the
following links except the last link in the AM peaderiod. However, the multimodality of link
TTDs cannot be made up by the spatial aggregatmare ghe route level travel times still have a
clear multimodal distribution as shown in Table.6Fhis reveals that the drivers would have lim-
ited flexibility to speed up on route 60 when coaisted by the traffic conditions.

6.4.2 Distribution fitting performance evaluation

According to the above analysis, different dataraggtion strategies could alter the time variabilit
differently. To evaluate the alternative distrilmmimodels fitting performance and choose the most
appropriate model, hypothesis AD tests were comduftr all cases with different combinations of
temporal level, spatial level attributes and timenponents.

6.4.2.1Route level distribution

Figure 6-4 (a) displays the route level survivandtion of the AD test significance value for alter-
native distribution models. The survivor curve Hights the probability that a model can provide a
promising fitting performance for a specified sfigance value. For example, for a given signifi-
cance value 0.4, the GMM model has a maximum pihbtyato survive while the Weibull model
has a minimum probability to survive. Under alm®5¢6 of cases, the GMM can provide an AD
significance value larger than 0.7 which highlights superior performance to its alternatives in
terms of accuracy and robustness. This is furtismudsed in the following section using two test
cases. Comparing survivor function among the catdg] the Weibull model has the worst fitting
performance with the fastest decrease rate as haignificance increases. The Burr model and
GMM model have a relatively similar steady survigdd significance value range from 0 to 0.7,
which highlights their accurate fitting performangben they can converge to a solution. However,
the initial drop of Burr model at the AD significzenvalue O indicates that the Burr model cannot
converge to a solution for almost 20% of cases. féllare cases of Burr model will decrease its
application in reality even though it can providkighly accurate fitting when it can converge. The
performance of Loglogistic, Logistic, Gamma, Logmat and Normal are similar although the
Loglogistic model has a relatively better fit.
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Figure 6-4: Survivor function of Anderson-Darlingd) test significance for alternative distribu-
tion models (a) route level and (b) link level. GMB&ussian mixture models

Table 6-4 shows the descriptive summary of the Aghicance values and the alternative
distributions performance. The results show that@MM model has the largest AD significance
mean and median values with the smallest standandttbn. This further highlights the relatively
better accuracy and robust performance of the GMdMehcompared to its alternatives. The GMM
model passes the AD test in 4,984 of 5,002 caskghwndicates its good flexibility to adjust to
different situations for route level travel tim&he GMM and Burr models are listed 3,092 and
3,106 times, respectively, in the top 3 best fiftdistributions. However, the Burr model passes the
AD test in only 4,022 out of 5,002 cases whichaither low compared to the GMM model. Figure
6-5(a) shows the distribution of the top 3 modelsdll cases. It can be clearly observed that the
GMM model has a much larger proportion of the hiétshg model compared with the Burr model.

Table 6-4Descriptive summary of AD significance value amaddidature distributions
performance [route level]

Model Mean_sig* Median_sig* SD_sig* Cases_pass Cases_top3
Normal 0.67 0.78 0.30 4751 1422
Weibull 0.45 0.40 0.35 4134 582
Logistic 0.75 0.84 0.26 4855 1459
Gamma 0.71 0.81 0.29 4769 1095
Lognormal 0.70 0.80 0.30 4740 1709
Loglogistic 0.76 0.86 0.26 4832 2359
Burr 0.71 0.91 0.38 4022 3106

GMM 0.91 0.97 0.14 4984 3092

* sig is the AD test significance value.

The bold value indicates the best model identifiader each performance measure.

1. A passed distributiowith AD p value> 0.05. Theotal number of cases is 5,002.

2. The total number of cased being listed as the tapd3the total number of cases is 14,824.
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6.4.2.2 Link level distribution

Figure 6-4(b) shows the link level survivor functiof the AD test significance value for the alter-
native distributions. The results show that the GNiddel has a better fitting performance than its
alternatives for link level travel times. Comparithg alternative distributions performance between
route level and link level travel times, all de@eavhen modelling link level travel times. Each
model has a survival probability drop ranging fr&¥ to 40% at the AD significance value 0.
These indicate the greater complexity of the distions for link travel times than those of route
travel times, which is consistent with the previanglysis in Section 6.4.2. Moreover, according to
the Hartigan dip test, the proportions of multimidgiacases for route level travel times and link
level travel times are 2% and 16%, respectivelye Ticrease of the multimodality proportions
should be another factors worsen the alternatistildutions performances. Relatively, the Weibull
model provides the worst performance while the Nadyrhogistic, Gamma, Lognormal, Loglogistic
and Burr models have a similar and intertwinedgrenince.

Table 6-5 shows the descriptive statistics of th& g\gnificance value for the alternative
distributions performance of link level travel timeThe results show that the GMM model per-
forms better than its alternatives with the largestan and median significance values and the
smallest standard deviation. It also has a betieustness characteristic than the other distribatio
with the maximum number of cases passing the ADates being listed in the top 3 clusters.

Figure 6-5 (b) shows the distribution of the tom@8dels for all cases and that the number of
top 1 cases for the GMM model is more than thd taianber of the top 3 cases of the Burr model.
This illustrates the greater flexibility of the GMModel for link level travel times. Obviously, the
performance of all distribution models decreasegelg in modelling the link level travel times
compared with modelling the route level travel tsmgom the perspective of mean, median and SD

of significance values.

Table 6-5: Descriptive summary of significance ealand candidature distributions performance

[link level]

Model Mean_sig* Median_sig* SD_sig* Cases_pass Cases_top3
Normal 0.51 0.53 0.37 45347 19864
Weibull 0.36 0.23 0.37 35305 8677
Logistic 0.55 0.62 0.36 47772 18657
Gamma 0.51 0.60 0.40 40163 9383
Lognormal 0.52 0.62 0.40 40311 16121
Loglogistic 0.54 0.67 0.40 40737 16586
Burr 0.51 0.68 0.44 33946 22713
GMM 0.75 0.94 0.35 49563 34246

* sig is the AD test significance value.

The bold value indicates the best model identifinder each performance measure.

1. A passed distributiowith AD p value> 0.05. Thdotal number of cases is 56,316.

2. The total number of cased being listed as the8tand the total number of cases is 146,247.
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Figure 6-5: Summary of the distribution of top 3dats for all cases (a) route level and (b) link

level. GMM, Gaussian mixture models
To make a direct comparison of the fitting perfonoa of the alternative models for the

route level and link level travel times, the COVsignificance value, the passed cases ratio and the
top 3 cases ratio are presented in Table 6-6. I@]eall the distribution performances decrease in
modelling link travel times with larger COV_sig uak and smaller passed cases ratios. Compara-
tively, the GMM Cases_top 3 ratio increases frorfoab 23% while the Burr decreases from 21%
to 16%. The passed_cases ratio for the GMM modehenlink level scenario is still promising

(88%) which indicates a relatively strong flexityilin modelling complex distributions of link trav-
el times.

Table 6-6: Comparison of candidature models fitpegformance for route level and link level
travel times

Model COV_sig Cases_pass rafio Cases_top3 ratio
Route Link Route Link Route Link

Normal 0.45 0.73 0.95 0.81 0.10 0.14
Weibull 0.78 1.03 0.83 0.63 0.04 0.06
Logistic 0.35 0.65 0.97 0.85 0.10 0.13
Gamma 0.40 0.77 0.95 0.71 0.07 0.06
Lognormal 0.43 0.76 0.95 0.72 0.12 0.11
Loglogistic 0.34 0.73 0.97 0.72 0.16 0.11
Burr 0.53 0.87 0.80 0.60 0.21 0.16
GMM 0.16 0.47 1.00 0.88 0.21 0.23

The bold value indicates the best model identifiader each performance measure.

1. COV_sig is calculated as SD_sig divided by Mesagn_

2. Cases_pass ratio is calculated as Cases_padsddby the total number of cases under the cooretipg scenario.
3. Cases_topa3 ratio is calculated as Cases_top$ediby the total number of cases under the cooratipg scenario.
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6.5 Discussionsand applications

From the aforementioned analysis, the Mixture Msdis$tribution can provide superior fitting per-
formance than its alternatives. More than one métmodels with different distribution compo-
nents (e.g. lognormal, Gamma or Log logistic) cchddtested besides GMM, but not essential. The
common limitation of empirical studies is that fireings are largely influenced by the data used
and it may be not easy to generalize. Considehrgltverse operating environments and the com-
plete set of cases tested in the paper, the icesh@MM model could be transferred to fit TTDs on
other bus service routes to a large extent. Examnmaf more routes with different operating envi-
ronments (e.g. rural area) using the methodologpgsed here could further complement this re-
search. However, like any other empirical study, ¢bnclusions are valid within the range of the
used data and should be used with caution beyosdahge. The transferability of the GMM mod-
el to fit distributions of travel times in a morergeralized manner is discussed below from perspec-
tives of its mathematical characteristics, explanapower and practical application.

1) Mathematical characteristics

The GMM is a special type of mixture models withuSsian component distribution. GMM is flex-
ible enough to fit a large range of distributiobg,changing the mixture coefficients and component
distributions. In a general sense, the basic shapdsstribution can be classified into symmetric,
skewed and multimodal categories. A distributiorpractical (e.g. TTD) could be regarded as the
combination of these basic shapes. The ability dMGin fitting these distributions is examined by
visualizing and comparing with the candidate madels

Figure 6-6 shows that the AM peak travel times hawvebvious bimodal distribution with
two peaks. The first peak is relatively symmetritile/ the second peak is right skewed with a short
tail. Under such a multimodal distribution cases @MM model can properly capture the peaks of
the TTD as well as the short tail in the secondkpednich can be observed from the density and
cumulative probability graphs. The Burr model isveoful in capturing the first peak and the sec-
ond peak tail, but it fails to capture the secordlp Other models cannot capture any peak in the
AM peak travel times.

Figure 6-7 shows that the Inter peak travel timageha skewed distribution with a long
right tail (skewness/se = 31.7). Also the distributis rather peaked than peak period travel times
since the kurtosis/se is very large (kurtosis/sE34.7). Under such a largely skewed distribution,
the GMM model properly captures the peak of the TaBDwell as the long tail on the right, while
the Burr distribution can capture the peak well faiis to capture the long tail. Other models can
generally fit the peak location well but could fibthe long tail. Figure 6-8 shows the AD test-sig
nificance for distributions of hourly travel timeser the whole day.
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The result shows that the GMM model can pass theesDwith considerable significance
values for travel times at different time periodsalay. In peak time periods (e.g. 08:00, 09:00 an
16:00), the GMM model can still perform well whidéher distribution models cease to fit the travel
times, which further verifies the accuracy and sibass of the GMM model.
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Figure 6-6: Fitting results for a multimodality ttibution (a) density and (b) cumulative probalilit
(Case: urban route, weekdays, eastbound, AM pealelttime). GMM, Gaussian mixture models.
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2) Explanatory power
From a mathematical perspective, by changing tmepoment distributions (e.g. Normal, Lognor-
mal or Gamma) and the mixture coefficients, a nrxtonodels is flexible enough to approximate a
large range of different distributions. From a picad perspective, Guo et al. (2010) conducted a
simulation and empirical study on freeway TTD atalnsed the connection between GMM model
parameters and the underlying traffic states. Teengse of the GMM model is that travel times are
dominated by complex stochastic traffic statesamathan deterministic ones. Different travel time
states could exist for a given time period, sucfres flow and congested states. Two levels of un-
certainty can be quantitatively assessed in the Giiddel, namely concurrency probability of the
state (mixture coefficient) and travel time varlapiunder such a state (component distribution).
Compared to freeway travel times, bus travel times more complicated and are mainly
dominated by traffic flow, passenger demand andamnal management (e.g. frequency, time
schedule and time point). For a bus service traned, different states may exist given the spatio-
temporal aggregation levels, such as high speeadcsestate, medium speed service state and low
speed service state. The high speed and mediund spedace states belong to a recurrent service
state and a trip under the former state could eéspee relatively less total stops and intersection
delays than that under the latter state. The sjmeed service state is impacted by unexpected inci-
dents or bad weather conditions. And the combinéidance of other factors (delay from last time
point, load in vehicle, drivers’ behaviour and e} eould also contribute to different service sst
even within a short aggregated time periods (7:08)7across different days.
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In practice, the mixture coefficient can be intetpd as the probability that travel times un-
der a state (e.g. fast service state) and the coempalistribution indicates the distribution ofiea
times under such a state. The component in theuneixhodels could be symmetric or skewed dis-
tributions, depending on the definition of traffitates. Guo et al. (2012) have further done adjtti
performance comparison between symmetric and skewedd model by fixing the number of
components to be two. They concluded the multidtagaormal model is the optimal model for
modelling freeway travel time under moderate tovigemaffic conditions. However, no evidence
has been found on the performance of the altematiodels if changing the number of components
to be three or more. Theoretically, GMM can fit thlkeewed distribution well by regarding the
skewed travel times coming from two or more différ&raffic states, and it has been verified in
Figure 6-7. And from the interpretation perspectihe GMM model could be more promising than
the skewed mixture models considering the simpim fof normal distribution component.

3) Practical application

TTD fitting is the preliminary preparation for rahility analysis. The GMM model can provide
much detailed travel time information for both mgement agencies and individual travellers. For
agencies, the GMM model provides a flexible andesiap distribution fitting than its alternatives,
which enables accurate and effective assessmeéhe oéliability performance of the system. Since
distribution can provide the maximum information feliability analysis, the improved statistical
fitting can better support reliability analysispesially considering passengers’ different perspec-
tive on travel times under different service stafdso, Chapter 4 investigated the current religpil
measures performance and concluded the shapetobdi®n plays a key role in service assess-
ment. Moreover, the GMM model makes it possiblartalyse travel time reliability and unreliabil-
ity causes in a detailed disaggregated level uddtarent states, and thus help policy makers to
establish effective measures to improve reliabjp¢yformance. For travellers, the GMM model en-
ables a report of the reliability information argyato a weather report which should be easily ac-
cepted by the general public and help passengegiamatheir trip wisely (Guo et al., 2010). For ex-
ample, for the AM peak travel, the probability ofperiencing a fast service is 20%, and if that
happens, the expected travel time for this trip ivdoe 30 min.

6.6 Summary

The research focuses on the specification of digions for day-to-day variability of bus travel

times. The spatiotemporal data aggregation inflaeo distribution was investigated using six
months AVL data on two typical service routes insBane. The performance of alternative distri-
bution models were examined under different casesidering fitting accuracy, robustness and
explanatory power.
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Consistent with previous studies, the decreasernpbral aggregation level results in a less
asymmetric and flat distribution, and an increafsthe normality of the distribution. The link level
TTDs are more complicated than the route level T/HDxe the travel times of the former are more
sensitive to intersection and stop delays. Theia@paggregation of link travel times breaks up the
multimodality distribution for the busway servicée it is not applicable for the non-busway ser-
vice. The reason may be that the drivers haveivelgtmore flexibility to adjust speed to catch up
with schedules on a busway route. It is clear thattemporal-spatial aggregation of travel times
could alter the hidden features of TTDs, and ultetyaaffect reliability analysis results. Better se
lecting the appropriate data aggregation leveldgefeliability analysis needs further investigation

The GMM model is evaluated as superior to its aftdves under different cases in terms of
fitting accuracy, robustness and explanatory powader almost 95% cases, the GMM model pro-
vides an AD significance value larger than 0.7,chhnighlights its accurate and robust fitting per-
formance. Its parameters can be connected to eliffestates service performance, which is useful
for identifying unreliability causes and reportingliability information. The Burr model provides
almost the same accurate fitting performance as Giiddel in premise that it can converge to a
solution which has a powerful ability in modelliegtremely long tails of a distribution. However,
the high ratio of Burr model failure to convergeulblargely decrease its usefulness in application.
The Normal, Lognormal, Logistic, Loglogistic, anda@ma models have a relatively similar per-
formance under the route level scenario and antwiteed performance under the link level scenar-
i0. The Weibull model has the worst performanceeaurmbth scenarios.

Though constrained by the empirical data testeal réiported GMM distribution model re-
mains promising for fitting travel times for otheervices with different operational environments.
Mathematically, it is flexible enough to model éifént types of TTDs by changing the component
distribution model and component numbers, includiggimetric, asymmetric and multimodal dis-
tributions. A major limitation of GMM model is itsick of robustness to outliers, since the maximi-
zation of the likelihood function under an assursdissian distribution is equivalent to finding the
least-square solution. In the Bayesian model seleaontext, the presence of outliers often in-
creases the number of mixture components emplayétkimodel. Another limitation of the GMM
model is its instability for each run of the algbm, due to random initialization of the parameters
small sample size and inadequate number of comp®iBrrJ. Park et al., 2010; Yildirimoglu and
Geroliminis, 2013). It is important to properly atethe data and determine the optimal number of
components for GMM model in practice. These linntag are further discussed and addressed in
Chapter 7.
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Chapter 7 Trip Travel Time Distribution Es-
timation

7.1 Introduction

Methods for the estimation of trip travel timesveeen origination-destination pairs using the in-
creasingly available data from mobile sources tileesolving and rather limited, especially in the
context of probability distribution estimation. Ri@us studies on trip TTD estimation used a Mar-
kov chain methodology (Timothy Hunter et al., 20R&mezani and Geroliminis, 2012; Yeon et al.,
2008) and are based on a number of important aggumpconditional independence between link
travel times (e.g. independent conditional on syatend constant transition probabilities for aegiv
time period (e.g. 7:00-7:15am). However, empiriealdence suggests that the conditional inde-
pendence assumption is not always appropriateh&umbore, previous studies use constant transi-
tion probabilities for different environmental cotgins and estimate them from empirical counts of
transitions. This constraints their ability to gealize to a large range of applications. The regear
proposes a generalized Markov chain (GMC) apprdactestimation of trip TTDs between arbi-
trary OD pairs at arbitrary times from link or segmh TTDs. The research findings are reported in a
journal paper (under review) in Ma, KoutsopoulosirEira and Mahmoud (2015).

The remainder of the chapter is organized as fal@ection 7.2defines the research prob-
lem. In Section 7.3the framework for the distribution estimationpi®posed, followed by the de-
tailed methodology presented$ection 7.4To address the methodological gaps, the Markol pa
TTD is approximated as a sum of correlated distidims using a moment generating function algo-
rithm. The transition probabilities are estimatesing a logit model formulation with the utilities
being a function of explanatory covariates (linlaccteristic and trip conditions), as opposed from
observation counts. The proposed approach is ddmatetsin a case study for transit trip TTD es-
timation using AVL data that can provide both liakd ground-truth trip TTDs iBection 7.5The
implementation of the proposed approach in trassiemonstrated iBection 7.6 Finally, Section

7.7summarizes the main conclusions and highlightséutesearch.

7.2 Problem statement

A roadsegments a directed edge between two adjacent vertiegs ihtersections) that is associat-
ed with edge identification (id), a starting poiat, ending point and a set of intermediate pohds t
describe the road segment using polyline.



Chapter 7 Trip travel time distribution estimation 75

A road network is a directed gra@fﬁV,E), whereV is a set of vertices representing the
terminal points of the road segments, diiib a set of edges representing road segments. dA roa
link is a set of connected road segments between twacesd setting points
link :e, — e, — --- — ¢, Wheree_is road segment and/ is the number of road segments. These
setting points may represent geometrical separatoensor locations, e.g. signals, ANPR, bus
stops, loop detectors, etc.tAp is a sequence of connected road segments or liakersed be-
tween an OD paifO,D) in a road network. These are illustrated in Figixk
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Figure 7-1: lllustration of network components: megts, links, and trips

An observation log on link at time¢ consists of a link idid , a vehicle idvid, distance
traversed, ,, arrival timestamp ~ and travel time7 ,, obs(1,) = (lid,vid.d, .t ,T,,). This data
can be obtained from fixed location sensor systdorsexample ANPR, AVL, or loop detectors
with vehicle re-identification (Coifman and Kim, @®, Coifman and Krishnamurthy, 2007). An-
other promising source is from position-enable@tBgFloating Car Data, FCD). In such systems,
the two consecutive polled positions do not neadgsrrespond to the starting and ending points
of links. For high-frequency GPS measurements @ugry 5 seconds), the traversal times can be
easily allocated on individual links (Timothy Hunt al., 2013). For low-frequency measurements,
many studies successfully decompose the travemsaltb individual road links using a hybrid ap-
proach of physical and data-driven models (Helliegal., 2008; Hofleitner,Herring and Bayen,
2012; Rahmani et al., 2015; Zheng and Van Zuyléa 32

The problem of probability distribution estimatiohtrip travel times is defined as:

Given a set of probability distributions of linkatrel times, estimate the probability distribu-
tion of trip travel times for an arbitrary OD paat an arbitrary time.

Let {Dist(1,,t), Dist(l,.t),..., Dist(l,.t)} denote link TTDs at time. The simplest model for
estimation of the trip TTist (tripod,t) at timef is by convoluting link TTDs.

Dist (trip,,,t) = Dist (,t) @ Dist (1,,t) ® ... ® Dist (1.t v.1

where operatorg ) expresses convolution, arid is the number of links for a trip.
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The convolution method postulates the independanueng link travel times without con-
sidering correlation information. Markov chains baveen successfully applied to estimate route
travel times from link travel times on freeways amwl arterials (Timothy Hunter et al., 2013;
Ramezani and Geroliminis, 2012; Yeon et al., 200&rkov chains assume a memory-less random
process with transitions from one state to anadineong a finite number of states. Given a sequence
of random variable@(ﬂ} = X, X,,...,X,, the conditional probability of the system movitagthe
next stater ,, depends only on the current state

Prob (X”+l = P ‘ Xl - x“XQ = 1‘2,...,Xn = xn) = Prob (Xn+1 =T | Xn = xn) (72)

n+1

Similar to a Markov chain process, the travel tioiex vehicle on the current link depends
only on the travel time on the previous link. Difat from the definition of traffic propagationeth
spatial Markov state progression designates hoeh&le experiences a series of travel time states
on links along a route (Ramezani and Gerolimin@,2). The state transition probabilities capture
the combined influence of static and dynamic fectosm the current and neighbour links at differ-
ent temporal lags (e.g. upstream and downstreaiffic tcmnditions from preceding time periods,
link geometric configurations, etc.). In previousdes, the main assumptions on TTD estimation
using a Markov chain methodology are:

1. Conditional independence between link travel tifiedependent conditional on states);

2. Constant transition probabilities for a given tiperiod (e.g. 7:00-7:15am).

The conditional independence assumption is illtstfan Figure 7-2(a). The grey rectangle
represents the observations of travel times oncadjdinks for the same vehicles. The red line ap-
proximates the linear relationship between adjatekttravel time observations. The increasing
trend indicates a significant and positive corfefabetween adjacent link travel times. The correla
tion can be ideally eliminated when the observatiare conditioned on link states as shown in dark
grey groups (e.g. F-F stands for the group of Jekithat experience fast speed on both current link
and next link). However, empirical evidence suggésat the conditional independence assumption
is not always appropriate. The conditional obséowatcould still be correlated as illustrated bg th
green-bound light-grey rectangle in Figure 2b. €fane, such correlation should be incorporated in
the model formulation.

Previous studies assume separate transition piategbunder different environmental con-
ditions and estimate them from empirical countsransitions. Alternatively, the transition proba-
bilities can be estimated as a function of explaryatovariates with model parameters calibrated
using historical data. This approach is more géraard less sensitive to data availability, e.gdina
equate number of observations.
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Figure 7-2: Two-dimensional diagram representing fyroups of vehicles (F = Fast and S = Slow):
(a) ideally uncorrelated observations within grqup$ potentially correlated observations within
groups.

7.3 Estimation framework

The framework of our proposed trip TTD estimatigrpi@ach is shown in Figure 7-3. It is com-
posed of two major parts: Markov Chain Identifioati and Probability Distribution Estimation.
The database provides information of link travelds, link characteristics and trip conditions.

Markov Chain Identification Probability Distribution Estimation
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Figure 7-3:Trip traveltime distribution estimation framework

Markov Chain ldentification: this step aims to define traffic states and estinthe transi-
tion probability model. The outputs are probalaktof link traffic states, link TTDs (conditionah o
states), and time-space dependent transition pildlesh
* The state definition is performed using a Gausdiatture model (GMM) based clus-
tering algorithm. The approach ensures homogemgityn each cluster; differentiation
over space and time; large enough state that caactierize the underlying traffic con-
ditions; and computational efficiency.
* The transition probabilities are estimated usiriggit model formulation with the utili-
ties being a function of explanatory covariateseSehcovariates include link character-
istics, traffic conditions on neighbour links amdrh preceding time intervals.
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Probability Distribution Estimation: this estimates the trip TTD using a Markov chain
process. Markov paths are permutations of linkestalong a trip. The Markov path probability is
estimated as the product of initial state probaédiand transition probabilities between linkseTh
Markov path TTDs are estimated as the sum of cedllink TTDs conditional on states using a
MGF approach. Finally, the trip TTD is estimatedtlas sum of Markov path TTDs weighted by
their occurrence probabilities.

7.4 Methodology

7.4.1 Statedefinition

A heuristic clustering algorithm based on GMM iveleped to define states. The GMM approach
identifies homogeneous clusters within which theesbations are normally distributed. The opti-
mal number of clusters can be determined by chgcdiia accuracy and stability of the clustering
results for different cluster numbers. For examiilere could be one state for a link in a resi@dénti
area, but there could be two or three states iB@ @rea depending on link configuration and time-
of-day. Following the GMM clustering, an additiorsaép is proposed to convert the incorrect clus-
tering outcomes. The Silhouette widths are examamedi observations are reassigned if their Sil-
houette widths are negative. In addition, proposiof clusters are checked and the cluster with a
proportion less than a predefined threshold is etkrgith its nearest cluster. Hence, an unreasona-
ble large number of states can be avoided anditdified states are large enough to represent the
underlying traffic conditions.

The optimal number of clusters is determined bynfit a set of mixture models with in-
creasing number of clusters and using accuracy umessincluding average silhouette width and
information measures such as the Akaike Informa@oiterion (AIC). In addition to accuracy, the
clustering method should return the same resulesnwhis repeated several times to guarantee its
stability. Two reasons could cause unstable GMMteling results, namely random initialization
and artificial cuts.

The EM algorithm may converge to a local maximurd bhance its estimation performance
may vary with randomly initialized parameters (BPRark et al., 2010). THemeans++ algorithm
can be used to identify initial GMM component meéhgthur and Vassilvitskii, 2007 k-means++
selects each centroid with a probability proporiaio the distance from itself to the closest aentr
that has been already chosen. It has been uskd Iiterature to find centroid seeds for ameans
algorithm. For each observatian=1,..., N and already chosen centraid=1,...,k —1, the new

centroid% is chosen from all observatiolsvith a probability:

D(y.n )/ > D(y,n) (7.3)

Jy;€X,
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where,

D(yi, u(,) = the distance between observatioand centroid,._, andy’ is the set of observa-

tions closest to centrojd and y belongs toy, .

Artificial cuts relate to the fact that when sonagural clusters may be classified in an artifi-
cial way to satisfy the given cluster number andstltan cause instability (Yildirimoglu and
Geroliminis, 2013). The silhouette width (SW) forpaint measures how similar the point is to
points in its own cluster, compared to points ineptclusters.

() _Hi=eld

max {a(@)b(z)} -

where,

a (2)= the average dissimilarity afwith all other points within the same cluster;

b(i)= the lowest average dissimilarity oto other clusters.

Distance metrics are usually used to measure diasity, such as Euclidean, Mahalanobis
distance, etc. The Mahalanobis distance is prefeageit takes into account the covariance within
clusters. The average silhouette width (ASW) ovkdata is a measure of the overall clustering
guality. The mean and standard deviation of the A8®asures can be used to assess the stability
of the clustering results and determine the optimamber of clusters (Yildirimoglu and
Geroliminis, 2013). The proposed heuristic algont(GMMS clustering algorithm) uses the GMM
initial clustering results and the Silhouette valtie determine the optimal number of clusters. The
GMMS algorithm is described in Figure 7-4.

Initialization:
1. Set the maximum number of staggsproportion thresholdv and replication$;, 7, .
GMM clustering:
2. Forn=123...,p
2.1Form =1,2,3,...,7,
a. Initialize the GMM parameters using tkeneans++ algorithm.
b. Fit observations using the GMM algorithm with clrst, .
c.  Perform, replications and select the GMM model with the desalAIC.
d.  Cluster using posterior probability and calcula@&Vk
2.2 Calculate the mean and standard dexiafiéSWs.
Posterior refinement:
3. Select the optimal number of states as the onegythes the larger mean and smaller standard devia-
tion of ASWs, and return the component mean values, ... in ascending order and proportiafsw,, ... -
4. If the cluster proportioriv; is smaller thamx , merge this cluster to the nearest one.
5. Calculate the Silhouette width for each observatlbit is negative, re-assign the observation to a
cluster that gives the largest silhouette value.
Outputs:
6. Return the number of states and state identifindto all observations.

Figure 7-4: The description of GMMS clustering altom
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7.4.2 Transition probabilities estimation
Let X, (t)denote the state on linkat timet . The state spacg, (¢) on link » at timet is a set of
values thatX, (¢) may take @, (t) = {x1 (t).22 (t),r 2™ (t)} wherez! (¢)is the state on link » at

time ¢, andm,_, is the number of states on linkat timet . Note that the state spa@g(t) vary

‘
across both links and time periods.

Count-based method

The majority of existing methods estimate the ahistate probabilities, as well as the transition
probabilities using available observations anduating the corresponding frequencies. The initial
state probabilities (t)at time ¢t are the probabilities of different states@lr(t) on the first link

which can be estimated by:

()] | Vam(x,(¢) xi(t))/ZZﬂNum(Xl(t):xf(t))

#(1) = ﬁ%;@ | (6, (1) = (1) 52 M (3, (6) = (1) (7.5)

A (X, (6) = 2 (1)) (3,1 = 5 ()

where,
#(t)= an estimate ofe(t);
Num(X, () = 2} (t)) = the number of observations of staten link 1 at timet .
The TPMP (t) between a pair of successive links-1 andn at time¢ can be repre-

n—1,n

sented as:

P (1)=] (7.6)

where,
p,,(t) = the transition probability from stateto state; at timet between two successive
links, with " p, (¢} =1,
Given a set of observations, the transition prdbsgsp, . (t) can be estimated by:
b, (t)=Prob{X, (t) ==’ (t)| X, (t) == (t)}
Num (XW1 (t) = :B:H (t),X" (t) = xi (t)) (7.7)
o (X, (1) = a2, 1), X, () = = (1)

where,
p,,(t) = the estimation o, (¢
Num(X, ,(t)==.,(t),X,(t)==(t)) = the number of observations of vehicles that en-

counter staté on link » —1 and statej on link n at time¢ .
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Logit-based model

To capture the heterogeneous and dynamic link lttame correlations, a logit model is proposed
that estimates transition probabilities as a funrciof link characteristics and trip conditions. To
avoid inconsistent dimension of TPMs between diffierlinks at different times, an optimized
number of clusters across all links is used. Fawveaience, the notatiohis excluded in the fol-
lowing discussion.

Let the dimension of TPMs b&/x M. Letpjfj denote the probability that vehickeexperi-
ences statgon linkn, conditioned on having staten linkn—1. The transition probabilities vary
with link characteristics and trip conditions. L&t be a vector of the explanatory variables for ve-
hicle k. The utility V’; for vehicle ¥ moving from state to j can be expressed as:

VE=BZ, +e, (7.8)

ik

where,

B8, = a vector of parameters ardis the error term.

Assuming the error terms are independently andtickdty distributed, the transition proba-
bility for vehicle k£ from state; on link n—1 to statej on link n is given by the logit model:

p,k, — / Zj”: 1 e 7.9)

The coefficients are estimated relative to a refegestate (e.g. low speed state) using max-
imum likelihood. Since the sum of each row elemafit§PM equals to 1)/ logit models should
be built conditional on the state of the previom&.l The coefficients of thes&/ conditional logit
models are estimated separately (Madanat et &5)19ccordingly, M datasets need to be gener-
ated conditional on the state of the previous lifér each case, the dependent variable is the state
(1, 2,...,M ) and the independent variables are related tcaegpbry factors that influence the tran-
sition behaviour. For example, suppose that thebmurof states across all links 4 =3. Three
datasets, namely, dataset 1 conditional on stéfi@si speed) of the previous link, dataset 2 condi-
tional on state 2 (medium speed) of the previonk, land dataset 3 conditional on state 3 (low
speed) of the previous link, are used for modemedton.

7.4.3 Probability distribution estimation

Figure 7-5 illustrates the Markov chain procesgfbability distribution estimation for a route
(trip). Each circle represents the state that aclemay encounter along a route. The edge between
adjacent link states represents the transitiongiitity to the state a vehicle encounters on thre cu
rent link given the state on the previous link. kar paths are permutations of link states along a
route. If the number of states for linksm_, there arel_[jzlm" Markov paths. Each represents a
different realization of a set of TTDs on links.
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Figure 7-5: The Markov chain structure to estintafetravel time distribution

7.4.3.1Generalized Markov Chain (GMC) approach
The probability of each Markov path is the prodattthe initial state probability and transition

probabilities between adjacent links.

wexp (7.10)

In-10dy

XD,
Jy+ds pjz Js

Prob(X, = ) X, = . X, = a) )= 7/ xp,

The Markov path distribution is estimated as the saf correlated conditional link TTDs
using the MGF algorithm.

Dist(Xlzxfl,Xzzx;2,---,X = ) MGF{Dzst( )Dzst( ),Dzst(azj\;)} (7.11)

N

where,
Dist(:vi”)= the probability distribution of travel times omk » conditional on the state of
current links ;
MGF {o} = the moment generating function method to apprakgnthe sum of the correlat-
ed distributions.
Finally, the probability distribution of trip tral/@mes is estimated as the mixture of Markov
path TTDs (Equation (17)) weighted by the corresjiog probabilities (Equation (16)).

Dist (Tm'p tmveltz’me) = Zil {Prob (Markov pathq) x Dist (Markovpathq)} (7.12)

Compared to the Markov chain approach proposedamdzani and Geroliminis (2012),
the proposed approach takes into consideratioheotorrelations between link travel times condi-
tional on states along a Markov path. It simplifies calculation of link TTDs which is conditioned
solely on the state of the current link (compameadanditioned on the states of upstream, current
and downstream links), and makes it possible toehmk TTDs and transition probabilities as a
function of explanatory covariates, which are impot from a practical point of view as it allows

the general application of the model.
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7.4.3.2 Moment Generating Function (MGF) Algorithm
MGF is an alternative approach to analytically warkh pdfs. If two distributions have the same
MGFs, then they have identical distributions. Stasian et al. (2014) used a MGF based approach
to estimate the trip TTD as the sum of the coreeldink TTDs assuming they have a unimodal dis-
tribution. However, the unimodal assumption is @letays appropriate. It is more reasonable to as-
sume a unimodal distribution (e.g. normal or logrnal) for link travel times along a Markov path
since they are conditional on the underlying traffiates. In the approach proposed in this paper,
the MGF method is adopted to approximate the sucooklated random variables (RVs) along a
Markov path by matching the MGF of the Markov p&iD with the MGF of the sum of the condi-
tional link TTDs.

Let X = (X,,X,, -, X, )denote the link travel times conditional on steaksng a Markov

path. The MGF of a vector of RV with a continuous joint distributiorf, (X) can be written as:
My (S)=E|exp(-'X)| = [ +: exp(-8"X) f, (X)X (7.13)

where,
S” = the transpose of, with S€ R.

Assuming that the conditional link travel times a@mally distributed, the vector of RVs
X follows approximately a multivariate normal (MVMistribution (Mehta et al., 2007). The MVN
distribution is given as:

f(X) = ;exp[-l(x p) E (X - u)} (7.14)
(271)" [ ?
where,
n= [E(Xl),E(X2>,...,E(XN>]: the vector of mean values of the R¥s= (X,, X, X, )

> = [Cov(Xi, Xj)] = the covariance matrix arjtl| its determinant.

The Markov path travel time = ZLX is the sum of link travel times conditional on
states. As the vector of R\ follows the MVN distribution, any linear combinati@f its compo-
nents is normally distributed, i.eN(,uy,aY). The Markov path TTD parameters can be easily es-
timated as:

N N N
Hy = ZNH 012/ - ZZE@' (7.15)
i=1 =1 j

i=1 j=1

where,
p, = the distribution mean on link
%, = the covariance between linksand ;.
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If the link travel times follow a lognormal distrbion, the lognormal MGF does not have a
general closed form. Mehta et al. (2007) applisti@t Gauss-Hermite expansion to approximate it.

Let RV Zfollow a lognormal distribution:

1 (ln(z) — MX)Q
fz (Z> = WGXP —T (7.16)

where,
#,,0, = mean and standard deviation of the normallyiisted RV X , with X = In(Z).
Then, the MGF of a lognormal distribution can beressed by a series expansion based on
the Gauss-Hermite integration.

~ A K wk
M, (s;,uX,UX> = Z—exp

k=1 N T

(7.17)

—Sexp (\/50Xak + )

where,

~

M, (s; 1,0, )= the approximation function of the MGF 4f
K = the Hermite integration ordet) and a, areK specific parameters (see Abramowitz
and Stegun (1964) for values).
Following the same procedure, the MGF of the sumcarrelated lognormal RVS,
OV
Yy=%"7,is

X exp _SZ exp \/—ZE a + (7.18)

i,

where,
M, (s;p, 33) = the approximation function of the MGF & ;
= the (i, j)" element of the square root of the covariance marix
Finally, the sum of lognormal RVs is approximated & lognormal RV with parameters

given by the following two equations:

~

M, (si;,ux,ax):]\;ly (si;u,E),atizl and 2 (7.19)

The covariance matrix can be estimated from historical observationsafoy two links at
the same time period. However, computing the fallaziance matrix is not practical due to obser-
vation constraints for large networks (Timothy Hemét al., 2013). Typically, the covariance ma-
trix is calibrated assuming only adjacent (or seeorder, etc.) link travel time correlations
(Srinivasan et al., 2014).
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7.5 Case Study

751 Trip TTD estimation

The space-time autocorrelation and cross-corrgldtiactions were used to explore the correlation
structure of transit travel time components in tla¢a (Figure 7-6). The link running times were
strongly correlated with their first order neighbdinks and insignificantly correlated with high-or
der ones (Figure 7-6a). The correlations betwesh nunning times and downstream dwell times
were not significant (Figure 7-6b). Longer link nimg times did not necessarily lead to larger
headways downstream. The dwell times of first omdjacent stops were significantly correlated
with little decrease when the spatial order incesa3 his makes sense because of the relatively sta-
ble travel patterns on weekdays at peak hours.pHnial correlation test after controlling for the
effect of demand at stops (boarding and alightingjicates an insignificant correlation between

stop dwell times.
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Figure 7-6: Global and local correlations of travishe components in AM peak period: (a)
spatiotemporal autocorrelation function (ST-ACF) wfit running times between links with
different spatial orders; and (b) cross-correlationction (CCF) between link unit running times
and downstream stop dwell times on different typla®ads.

Based on these results and in order to simplifyw#d&lation of the proposed method, dwell
times are assumed to be independent for a spéancperiod. In this case, the probability distribu
tion for transit trip travel times is estimated si®own in Figure 7-7/, (rtt>is the pdf of running
times for linkiat time period and s, (dtt) the pdf of dwell times for stoat time period: . The
trip running time distribution is estimated fronmKki running time distribution{sﬁ(rtf)} using the
proposed GMC approach. The trip dwell time distiidiu is estimated by convoluting stop dwell
time distributions{fi (dtt)}. Finally, the trip TTD is estimated as the conwian of trip running

time distribution and trip dwell time distribution.
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Figure 7-7:The estimation approach for transit trip traveldidistribution

7.5.2 Statedefinition

The GMMS algorithm parametess,« ,7;, 7, in Figure 4 are selected to be 5, 0.001, 50 and 20
respectively. Figure 7-8 shows observations of umning times. Each dot represents an observa-
tion of the unit running time of the same vehictetao consecutive links. Group jindicates a
vehicle experiencing stateon current link and statg on the next link. The results from the clus-
tering steps are also illustrated in the figuredifferent colours. A standard GMM algorithm results
in clusters with observations incorrectly cluste(exttangle area). The observations in the reatangl
areas have negative silhouette widths. Howeveragptication of the proposed GMMS algorithm
re-assigns these observations to the clusterstidtiargest silhouette widths (left cluster). Diffe
ent clusters on each link represent the underlyiaiic conditions over different time periods of a
day, since dwell times have been excluded frometrames.

In this case, the correlation between running timglsin each group is negligible. However,
running times could potentially be correlated asstrated in Figure 7-9 with observations from an-
other bus route (route 60). The solid trend lingghlight the existence of significant correlations
which cannot be neglected in the estimation ofMaekov path running time distributions. Route
60 is a cross city route going through the CBD. ¢¢grihese correlations could be caused by the
combined effects of signals, stop activities, aridedl behaviour.
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Figure 7-8: State clustering results [Route 555ekday, Inbound, All Day]
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Figure 7-10 shows the clustering results with défe number of states for different tem-
poral aggregation of travel times (intervals ofr8ih, 1 hour, periods, and the whole day). The bars
display the mean ASWs with error bars showing thexage standard deviation of ASWs across all
scenarios. The optimal number of states is 3 (whkiseclustering outcome is relatively accurate
and stable).
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7.5.3 Transition probability model

For the development of the transition probabilitteedel, in addition to AVL, data from other
sources were used, including Smart Card Transagti®aneral Transit Feed Specification (GTFS),
Brisbane Strategic Transport Management (BSTM), Badeau of Meteorology (BoM) data. The
data was partitioned into cases based on trigbates (route id, direction, link id, and weekdays)

30 minutes time intervals. Cases with sample @88 than 150 were dropped as they are insuffi-
cient for multimodal distribution analysis. Finallihree separate datasets with a total of 113,426
cases were obtained, one for each state of théopielk (high, medium and low speed).

Table 7-1 summarizes the datasets and descrifgatistis of the associated variables. As
expected, the percentage of cases in the high sgaedon the current link decreases as the states
on the previous link change from high to low. Tleeurrent congestion index (RCI) is defined as
the mode speed over free flow speed (high valuégate good recurrent traffic condition, e.g.
busway). It captures different characteristicsaad links and within-day variation of traffic condi
tions. The free flow speed was derived from thenmig times observed between 5:30 am and 23:30
pm. The congestion index (Cl) is calculated as dpeer free flow speed (high value indicates a
free flow traffic condition). The CI on current krat preceding time is calculated as the median Cls
from the preceding 30 minutes. If observations nitthe preceding 30 minutes interval are not
available, the RCI is used. The delay on the preyviok is calculated as the actual arrival time at
the stop minus the scheduled time. The actual stdijgates a vehicle skipping a stop or not by
checking the difference between arrival and depatimes.



Chapter 7 Trip travel time distribution estimation 89
Table 7-1: Summary of dataset and descriptivessiediof variables
Datasets Variables Unit Min Max Mean Std
Given state H Cl on previous link at current time” % 27.1 112.4 76.9 16.6
Cl on current link at preceding time” % 5.29 107.269.1 18.7
Total: 44,503 RCI on current link” % 12.0 88.5 67.9 18.3
H: 20,052 (45.1%) Length of current link km 0.38 8.53 2.04 1.73
M: 17,882 (40.2%) Number of signals on current link int 0.00 8.00 6.3 212
L: 6,569 (14.8%) Delay on previous link min -9.38 14.5 1.55 4.16
Actual stop on current link (1,0) 0.00 1.00 0.80 .4®
Passenger load on current link int 0.00 86.0 15512.4
Precipitation per half hour mm 0.00 1.80 0.05 30.2
Route type on previous lifik [1-5] na na na na
Route type on current lifik [1-5] na na na na
Given state M Cl on previous link at current time” % 13.9 120.0 67.6 18.3
Cl on current link at preceding time % 5.56 132. 68.5 18.1
Total: 46,785 RCI on current link® % 12.0 88.52 68.5 18.0
H: 15,902 (34.0%) Length of current link km 0.41 8.53 2.03 1.66
M: 22,159 (47.4%) Number of signals on current link int 0.00 8.00 3.2 2.00
L: 8,724 (18.6%) Delay on previous link min -12.1 18.2 2.22 4.21
Actual stop on current link (1,0) 0.00 1.00 0.76 .43
Passenger load on current link int 0.00 89.0 15.8 12.7
Precipitation per half hour mm 0.00 1.80 0.05 0.23
Route type on current lifik [1-5] na na na na
Route type on previous lifik [1-5] na na na na
Given state L Cl on previous link at current time” % 9.67 87.10 56.7 20.0
Cl on current link at preceding time % 6.09 B7. 66.1 18.7
Total: 22,138 RCI on current link® % 12.0 88.5 66.6 19.2
H: 6,349 (28.7%) Length of current link km 0.38 8.53 1.98 1.70
M: 10,046 (45.4%) Number of signals on current link int 0.00 8.00 9.3 2.05
L: 5,743 (25.9%) Delay on previous link min -8.27 249 2.21 4.41
Actual stop on current link (1,0) 0.00 1.00 0.74 4D
Passenger load on current link int 0.00 90.0 14.812.1
Precipitation per half hour mm 0.00 1.80 0.05 0.25
Route type on current lifik [1-5] na na na na
Route type on previous lifik [1-5] na na na na

Notes:‘na’ stands for not applicable.
*H, M, L stand for High, Medium and Low speed stgtrespectively. The marginal percentages areepies in pa-
renthesis. The datasets are the observations centlink given previous link state (H , M, L).

" Cl is congestion index and RCI is recurrent catige index.
# Route types 1-5 stand for Busway, Motorway, AaleCentral business district (CBD) and otherspestively.

Note that the state transitions characterize hoxghacle experiences a series of link states

along a trip rather than traffic propagations. Tien current link at preceding time is used to-cap

ture the influence from both the upstream and dtneam links at preceding time intervals. The ClI

on previous link at current time is used to refleath the traffic and drivers’ behavior impactg(e.

schedule recovery, aggressiveness, etc.). In additne boundaries of states from the GMM clus-

tering tend to be inconsistent for trips on différenks over different time period of a day. For e

ample, the boundary for a high speed state in 8B &rea could be Cl = 0.4 while on the Busway

it could be CI = 0.7. The RCI is capable of captgrihe recurrent traffic conditions for trips at-di

ferent times and locations.

Table 7-2 summarizes the MNL models estimationltes@enerally, the probabilities to be

in high and medium speed states rather than a p@edsstate increase with the increase of the Cl

from the previous link and the CI on the currenklirom preceding time intervals.
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Table 7-2: MNL model estimation coefficients andfpemance

Given state H

Given state M

Given state I

State choice  Variables B (B)° B () B ()

H staté Cl on previous link at current time 0.034 (1.034)* 0.020 (1.020)** 0.017 (1.017)**
Cl on current link at preceding time 0.484 (1.622) 0.462 (1.587)** 0.496 (1.642)**
RCI on current link -0.457 (0.633)**  -0.450 (0.638 -0.481 (0.618)**
Length of current link -0.141 (0.868)**  -0.321.7@5)**  -0.397 (0.672)**
Number of signals on current link -0.06 (0.942)** -0.053 (0.948)* -0.177 (0.838)**
Delay on previous link 0.032 (1.033)** 0.031 (119% 0.048 (1.049)*
Actual stop on current link -0.068 (0.934) -0.(PB85)** -0.209 (0.811)**
Passenger load on current link -0.006 (0.994)** (1P 0.001 (1.001)
Precipitation at current time 0.076 (1.079) 0.084087) 0.064 (1.067)
Route type on previous lifik
Busway -0.764 (0.466)**  -0.066 (0.936) -0.204 (B3
Motorway -0.913 (0.401)**  0.706 (2.026)** 0.851.822)**
Arterial road -0.102 (0.903) 0.04 (1.041) 0.33806)*
Central business district 0.213 (1.238)* 1.15983)** 1.021 (2.775)**
Route type on current link
Busway 0.724 (2.063)** 0.144 (1.155) 0.877 (2465
Motorway 0.709 (2.033)** 1.008 (2.74)** 1.889 (8 )B*
Arterial road 0.147 (1.159) -0.849 (0.428)**  -06L{0.839)
Central business district 0.631 (1.879)** -0.{0495)** 0.058 (1.06)
Intercept -1.79 (0)** 0.46 (0)* 0.518 (0)*

M state Cl on previous link at current time 0.010 (1.020)* 0.012 (1.012)** 0.014 (1.014)**
Cl on current link at preceding time 0.197 (1.217) 0.192 (1.211)** 0.201 (1.222)*
RCI on current link -0.172 (0.842)** -0.193 (0.825 -0.202 (0.817)**
Length of current link -0.055 (0.946)* -0.108808)** -0.157 (0.855)**
Number of signals on current link -0.017 (0.983) 0.043 (0.987) -0.057 (0.945)**
Delay on previous link 0.029 (1.029)** 0.024 (15 0.029 (1.029)**
Actual stop on current link -0.11 (0.896)* -0.0@B968) -0.076 (0.927)
Passenger load on current link -0.001 (0.999) D(Qm01) 0.007 (1.007)**
Precipitation at current time -0.019 (0.981) @.02.042) -0.168 (0.846)*
Route type on current link
Busway -0.532 (0.587)**  0.027 (1.027) -0.205 (@131
Motorway -0.863 (0.422)**  0.107 (1.113) 0.139 @49
Arterial road -0.04 (0.961) 0.182 (1.199)* 0.423BL7)**
Central business district -0.177 (0.838)* 0.59B(7)** 0.357 (1.429)**
Route type on previous lifik
Busway 0.655 (1.925)** 0.019 (1.02) 0.628 (1.874)
Motorway 0.663 (1.94)** 0.511 (1.667)** 1.008 (2)#*
Arterial road -0.106 (0.899) -0.65 (0.522)** 0.0{11.074)
Central business district 0.581 (1.789)** -0.38481)** 0.1 (1.105)
Intercept 0.806 (0)** 1.599 (0)** 1.459 (0)**

L staté Reference category (base outcome)

L(0) -44,862 -48,370 -23,615

L(B) -33,515 -37,605 -17,840

rho-squared 0.253 0.223 0.245

Notes: The coefficients Bff) »: B = unstandardized coefficiefit= exponential coefficient (eXpandp = significance

level.

t statistics significance ** < 0.01 and * 9p < 0.05.
1. The reference category is low speed state.
2. H, M, L = high, medium and low speed stategeetvely.

The CI from a previous link has little effect ag tnodels are already conditioned on the
previous link state. The negative sign of RCI iatiks that a vehicle operating on a link with a
higher RCI (e.g. busway) would have a lower proligitio be in a high speed state than on a link
with a lower RCI (e.g. CBD) when all other factare kept constant.
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The probabilities to be in high and medium speatestcompared to be in a low speed state
decrease with the increase of link length (factbed create frictions, e.g. pedestrian crossirag; tr
fic entering from side roads, etc.), number of algr(signalized intersection delay), and actugb sto
(stop delay). The delay on previous link has atpaseffect due to the schedule recovery behaviour
of drivers. If the vehicle is delayed on the presdink, it would speed up to catch up with timeta-
bles on current link. The passenger load has &agilelgl influence on transition probabilities. The
precipitation has a significant and negative infice for the probability to be in a medium speed
state compared to a low speed state conditiona lmw speed state on the previous link. It indi-
cates that the bad weather increases the prolydboitien vehicle to experience a low speed state on
current link when the previous link is congested.

For prediction purpose, the MNL models in Table W&te refined by taking into considera-
tion of the relative importance of variables ane simplicity of data collection in practice. Table
3 summarizes the model specification and estimatsuwlts. Cl on previous link at current time
(Cl_PreL_CurT), Cl on current link at preceding time interv@l (CurL_PreT), and RCI on current
link (RCI_Curl) provide the best model specification.

Table 7-3:Specified MNL model coefficients and performance

Variables Given state H Given state M Given state [*

H M L H M L H M L
Cl_PreL_CurT 0.014* 0.006* 0.002* 0.001* 0.017* 0.007*
Cl_CurL_PreT 0.474** 0.189** 0.448** 0.181* 0.483**  0.193**
RCI_CurL -0.45**  -0.17** -0.43**  -0.17** -0.46**  -0.19**
Intercept -1.15* 0.734** -0.27** 1.24** -0.36** B8**
L(0) -44,810 -48,285 -23,605
L(B) -34,280 -38,773 -18,553
rho-squared 0.235 0.197 0.214

Notes:L state is the reference state in MNL models
Statistical t test significance 15 < 0.001 and P < 0.05.
# H, M, L represent high, medium and low speecestaespectively.

Figure 7-11lillustrates the estimated state prolimsilfor Cls on the current link at the pre-
ceding time interval. Figure 7-11a and Figure 7-%thbw the transition probabilities from the low
speed state on the previous link to all stateswrent link having low (e.g. CBD area) and high
(e.g. Busway) RCls, respectively. Figure 7-11c kigure 7-11d show the transition probabilities
from a high speed state on the previous link tetates on current link having high and low RCls,
respectively. The probability to be in the highw)jespeed state increases (decreases) monotonically
with the increase of Cls at the preceding timerugke The probability to be in the medium speed
state increases to a peak point and then decredtbethe increase of Cls at the preceding time in-
terval. Thex-axis of the peak points are positively correlatgth RCI values, which highlights the
effectiveness of RCIs in differentiating the incstent boundaries of states on different types of
roads.
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Figure 7-11: Estimated transition probabilitieshwitifferent congestion indexs of preceding time
interval, (a) Cl_PreL_CurT = 25%, RCI_CurL = 25%b) Cl_PreL_CurT = 25%, RCI_CurL =
75% ; (c) CI_PreL_CurT = 75%, RCI_CurL = 75% ; @) PreL_CurT = 75%, RCIl_CurL = 45% .

7.5.4 Probability distribution estimation and perfor mance analysis

To assess the performance of the method, the Kikitbaibler (KL) distance is calculated to com-
pare the estimated distribution to the empiricatyal) one. For discrete distributions, the KL dis-
tance of the estimated distributionTD _, , from the empirical on&;TD_ , is,

D,, (TTD, || TTD )= " p,, (i)log, (pmp (i)/p.. (z)) (7.20)

wherep, (i)andp,, (i)are the observed and estimated probabilities farmervation:.

The KL distance is a measure of the information Yasen the estimated distribution is used
to approximate the actual one. If the estimatettridigion is equal to the actual one, the KL dis-
tance is 0. Statistical measures are also calcutatassess the accuracy of the estimation results,
including mean, variance, and percentiles. The Kglonov-Smirnov (KS) test was used to test the
null hypothesis that the estimated distributionadgjihe empirical one.
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7.5.4.1 Performance comparison
The performance of the proposed GMC distributiamrestion method is assessed by comparing it
with the performance of alternative methods, incigcconvolution, MC, and MGF models.

Theconvolutionmethod assumes independence of link travel times.

Two MC modelsare implemented based on the route TTD estimaigmoach proposed by
Ramezani and Geroliminis, (2012). One model is ¢tbasegrid clustering (MC_Grid), and the sec-
ond on GMMS clustering (MC_GMMS) for state defiaiti The transition probabilities for the MC
models are estimated using the count-based mefta probability distributions of link running
times and stop dwell times were estimated from engdidata using a nonparametric kernel distri-
bution model. The MC_GMMS version is closer to BRemezani and Geroliminis, (2012) method.

Two MGF modelsare implemented based on the path TTD estimatommoach used by
Srinivasan et al. (2014) and the MGF method desdrib Section 7.4.3. These two models are as-
sociated with different assumptions about the IRkDs, normal (MGF_CN), and lognormal
(MGF_CLN). The covariance matriX was estimated from historical observations. Thelinear
equation (25) is solved numerically using the staiddrust-region-reflective algorithm in Matlab.

Three GMC modelsare implemented based on the proposed approdgécion 7.4.3. The
states are clustered using the GMMS clusteringrithgo in Section 4.1 and the transition probabil-
ities are estimated from the logit models in Secfics.3. These three models are associated with
different settings of link running time correlat®ralong the Markov paths: no correlation
(GMC_GMMS_NC), correlated normal distributions (GMGMMS_CN), and correlated lognor-
mal distributions (GMC_GMMS_CLN). The covariancetmaZ along each Markov path was es-
timated from historical observations conditional lork states between any link pairs at different
time periods. The GMC_GMMS_NC is closer to HofleittHerring,Abbeel, et al. (2012) method.

Table 7-4 presents the results for route 60 eastbtrips between stops 7 and 10 from 7:00-
8:00 am on weekdays. Generally, the GMC and MC isqu®vide more accurate estimations than
the convolution and MGF models. The convolution elqeerforms the worst since it fails to con-
sider dependence between link travel times. ThabghMGF models are capable of capturing spa-
tial correlations, they fail the KS test due toithaimodal assumptions on link and trip TTDs. The
MC_Grid model fails the KS test since the arbitratgte boundaries could not always reassure the
independence as GMMS does. The MC_GMMS model pesvile most accurate estimation even
when conditional dependencies exist. The distrim#iconditional on states of upstream, current
and downstream links can possibly minimize the iohjph dependencies. The GMC_GMMS_CLN
model performs well but relatively a bit worse tithe MC_GMMS model. The major reason is the
errors from the estimated transition probabiliti#ee GMC_GMMS_NC model performs worse
than the GMC_GMMS_CN and GMC_GMMS_CLN models, whaffirms the effectiveness of
the MGF algorithm in capturing the correlationsvetn travel times conditional on link states.
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Table 7-4: Performance comparison [R60, eastboifd;8:00, between stops 7 and 10]

Models KL dist. KS test* Mean SD Prc95 Prc75 Prc50 Prc25

Empirical 0.000 1 596 174 814 715 636 540
Convolution 0.444 0 597 136 798 689 612 515
MC_Grid 0.192 0 603 150 805 706 635 531
MC_GMMS 0.036 1 595 161 794 707 637 531

GMC_GMMS_NC 0.080 1 593 157 780 703 636 531
GMC_GMMS_CN 0.069 1 593 165 791 702 639 531
GMC_GMMS_CLN 0.052 1 594 162 797 702 637 531

MGF_CN 0.418 0 596 168 874 709 595 481
MGF_CLN 0.670 0 604 242 1060 729 561 432

Note: * The value 1 indicates that the model passe&&éest.

Figure 7-12 compares the estimated distributiorik thie empirical one. The GMC and MC
models approximate the two peaks well, but the otuton and the MGF models fail to capture
these. While the proposed GMC model provides a ewaigpe performance with the MC_GMMS
model, the proposed approach is generalizablerif@isons conditional on states and transition
probabilities can be modelled as functions of exalary covariates) and computationally more ef-
ficient (distributions conditional only on currdirik state). It also requires less data for thebcat
tion of the transition probabilities (compared tethods that estimate them based on link specific
fractions from historical data. The MC_GMMS appioaan only run with inputs of link travel
time observations due to the introduction of intedmnate stages in Markov paths (Ramezani and
Geroliminis, 2012).
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Figure 7-12: Probability density function and cuative density function of the estimated
distributions
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7.5.4.2 Sensitivity analysis

The results in the previous section are from a (i) with three links. The sensitivity of the-re
sults to trip distances and road types is alsotefést. Statistical tests, unimodality and spaitiot
poral correlation, were conducted to examine thaedging characteristics of link TTDs. The uni-
modality of a distribution was tested using thetigan dip test (Hartigan and Hartigan, 1985). A
high dip significance value provides support tihat distribution is unimodal.

Trip distance

Figure 7-13 shows the KL performance contour mdmistribution estimation as a function of dis-
tance from the first stop (stop order) in differénmte 30 minutes time intervals (e.g. 7:00 = 7:00-
7:30 am). Four models are presented: convolutioMlCGGMMS_NC (Hofleitner,Herring and
Bayen, 2012), GMC_GMMS_CLN and MGF_CLN (Srinivasainal., 2014). The MC_GMMS
model is not shown as it was not feasible to edsrtiae distribution for trips with more than 9 Ik
due to computational reasons which underlies oritkeoajor limitations.

In general, the GMC models provide more accuratenaions than the convolution and
MGF models for trips in peak hours, especially thips between stops 1 to 3 on Motorway links.
The reason for the lower performance of the coriatuand MGF models are mainly due to the
highly significant link correlations and multimodgiktributions in peak hours on motorways. How-
ever, the MGF model performs well and relativelytérethan the GMC models for trips in off-peak
hours (9:00-14:00), when the link and trip runnimges have unimodal distributions. The comple-
mentary performance between the GMC and MGF maqulalsts to the potential of developing a
hybrid approach that can make full use of theiraada&ges by balancing accuracy and computation
burden. The GMC_GMMS_CLN model is more accurate antmlist than the GMC_GMMS_NC
model by further taking into consideration the sgatorrelations along a Markov path. The superi-
or performance of the former occurs for trips fretap 1 to stops 11 and 12 in peak hours. Stop 11
is a major spot near the CBD area where bus bugdtappens frequently in peak hours. The corre-
lation between its adjacent links was found to igaiBcant. This could be explained by the fact
that a bus having to stop would spend more timdath the adjacent upstream and downstream
links than a bus driving through.

Table 7-5 summarizes the performance of the vamoodels. The tested cases include trips
on routes 555 and 60 with different distances ffa@0 t018:00 in 30 minutes intervals on week-
days. The results verify that the proposed GMC rhpdsvides more accurate and robust TTD es-
timation than the alternatives and it can fit thepeical distributions accurately for 88% of thette

ed cases.
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Figure 7-13: KL performance metric as a functiorrgf distance and time of day (R555, inbound,
weekdays). (a) Convolution, (b) GMC_GMMS_NC, (c) GMGMMS_CLN, and (d) MGF_CLN

Table 7-5:Performance summary

Method Average KL Max KL Percentage cases passetbkiS
Convolution 0.083 0.190 61%

GMC_GMMS_NC 0.027 0.126 82%

GMC_GMMS_CLN 0.014 0.089 88%

MGF_CLN 0.044 0.156 69%

Road types

Table 7-6 compares the distribution estimationgrips on routes 555 and 60, on different types of
roads on weekdays between 8:00-8:30 am. The fasiiticlude Motorway, Busway, CBD, Arterial,
and Residential roads. For Motorway, CBD, and Aatdrips, the link travel times have multimod-
al distributions (unimodal sig < 0.05) and are lygtorrelated (ST-ACF).
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The convolution and MGF models fail to approximtte ground-truth empirical distribu-
tions. The proposed GMC model M3 incorporating lodkrelations along a Markov path performs
relatively better than M2 assuming no correlatieor. Busway trips, the travel times have an insig-
nificant correlation and a unimodal distribution.this case, the four models all approximate well
the empirical distribution, with the MGF model M£rforming the best. For residential trips, the
travel times have a significant correlation andnanodal distribution. All models passed the KS
test except the convolution model. If balancing@ioity and accuracy important, it is reasonable
to use the convolution method for Busway trips. M®F model can also be applied when the trip
travel times have a unimodal distribution.

Table 7-6: Comparison of estimation performancerips on different types of roads

Road types Links* Distance  Unimodal ST-ACF KL_M1 KL_M2 KL_M3 KL_M4

(km) sig (conf.Y (pass} (passf  (passf  (pass)
Motorway 13 14.4 000  025(.08) 0.140(0) 0.016(10.011(1)  0.081(0)
Busway 310 14.4 082  0.03(04) 0018(1) 0.021(1).0141) 0.003(1)
CBD 6.9 257 001  021(04) 0.273(0) 0.033(1) 0@P3 0.238(0)
Arterial 9 11 1.25 000  0.11(04) 0.192(0) 0.041(1)0.032(1)  0.139(0)
Residential 15 254 038  0.13(06) 0.096(0) 0.0L4( 0.005(1) 0.011(1)

Note:* 1_3 indicates trips from stop 1 to stop 3.
1. sig = significance value. 2. conf. = 95% confide boundary; ST-ACF = spatiotemporal autocormetatiinction.
3. M1-M4 stands for Convolution, GMC_GMMS_NC, GMCMBIS_CLN and MGF_CLN methods.

7.6 Discussionsand applications

Figure 7-14 shows the implementation of the progdS®C model for transit trip TTDs estimation.
The data input is solely from the AVL system. Fairip between OD pairi,(j) at 7:00-7:30, the
source data is partitioned according to trip atitiels and then cleaned to exclude abnormal observa-
tions. The GMMS algorithm clusters the link runniimges and outputs the distributions condition-
al on current link states. The MNL TPM model estiesathe transition probabilities with inputs of
RCI on the current link, Cl on the previous linkcafrrent time, and CI on the current link at the
preceding time interval.

The Markov chain process constructs the Markov gaiid calculates the probability of
each path using the estimated transition probagsliThe Markov path distribution is approximated
using the MGF algorithm with consideration of lin&rrelations along the Markov paths. The co-
variance matrix conditional on the states betwegntao links can be derived from empirical data
or estimated from a model. The trip running timstrbutions are estimated as the sum of Markov
path distributions weighted by Markov path probiéies. The trip dwell time distribution is esti-
mated as the convolution of stop dwell time disttibns fitted using a non-parametric kernel model.
Finally, the trip TTD is derived as the convolutiohthe trip running time and trip dwell time dis-
tributions.
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Figure 7-14: The implementation of the proposed GétGcture for transit application

As the proposed GMC structure is modular, it careasily adapted for different applica-
tions. The upper part of the implementation strieeiean be readily used to estimate TTDs for car
trips as well since all the inputs required aré& lbased. The GMC structure can also be extended to
provide real-time predictions of the bus arrivaiéi distribution at downstream stops using a similar
idea as in Noroozi and Hellinga (2014). For examfble state probabilities on the next link can be
estimated using the MNL model given the currerit ktate. The corresponding TTDs conditional
on link states can be derived from historical d&teen the TTD on the next link can be estimated as
the sum of these distributions weighted by thevestied probabilities.

To examine the effectiveness of the above mentiamatoach in predicting the down-
stream link TTD, an alternative model with the fixeansition probabilities and a naive historical
data based model are developed for comparison.fiXbé transition probabilities are calculated
using the count-based approach for two successike in 30 minutes under different cases (e.g. a
case is weekday inbound from 7:00-7:30 am). Theenaiodel predicts the link TTD as the empiri-
cal distributions in 30 minutes under differentesmsThe lower and upper bounds of an interval
prediction with theoretical coverag#®(l— «) wherex € (0,1) are calculated as theo(« /2)and
100(1 — « / 2) percentiles of the distribution, respectively (Wadtlet al., 2015).

To measure the accuracy of the deterministic (meamjictions, the mean absolute error
(MAE) and the mean absolute percentage error (MARE)used. To measure the accuracy of in-
terval predictions, the empirical coverage peragatand the average width of the interval are re-
ported. The empirical coverage measures the pagerdf test trips for which the observed travel
time is inside the predicted interval with a spieciheoretical coverage. If two methods can both
predict the variability correctly, the average mtd width is used to indicate which one is better
(Woodard et al., 2015).
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MAE = 15" 7

nl ’ Ta,(:t __ mpred (721)
MAPE=—} " |=———x100%

n i= act

where,

T = actual travel time for observatian

T = predicted travel time for observation

n = number of observations.

Table 7-7 provides the summary of deterministic amdrval predictions. The tested data
are link running times for weekday inbound tripsnfr 7:00-18:00 over a 6 months period. General-
ly, the models with the predicted and fixed TPM&qen better than the naive historical data based
model since they can both reflect the influencenftbe upstream link. The model with the predict-
ed TPMs provides a relatively more accurate preicperformance than the one with the fixed
TPMs in terms of both deterministic and intervadgictions, since it further incorporates the real-
time information from the preceding time intervdian can better adjust the predicted state proba-
bilities on the successive link.

Table 7-7: Summary of deterministic and intervadactions performance

Accuracy measures Model with predicted Model with fixed Naive historical mod-
TPMs TPMs el

Mean absolute error* 4.9 5.4 8.5

Mean percentage error 6.9% 7.8% 13.2%

Empirical coverage 92.9% 93.2% 95.0%

Average interval width 25.5 28.7 40.9

Note: The bold values indicate the best predigtierformance;
* the unit is seconds per kilometres;
# the theoretical coverage is 95% (the interval tsveen 2.5 percentile and 97.5 percentile of theiistion).

Figure 7-15 shows the mean and 95% confidencevadtprediction results from the models
with the predicted and fixed TPMs. The model wittefl TPMs tends to give relatively more con-
stant mean predictions for all trips in the sameetof a day which is counterintuitive in realitynel
model with the predicted TPMs can reflect the uasitrip running times by taking advantage of the
real-time information from the preceding time in@s, but still rather limited. The model with the
predicted TPMs can provide relatively narrower ivéé predictions than the one with the fixed
TPMs, especially in terms of the lower confidenoerdary.
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Figure 7-15: Predictions of means and intervala @ample Motorway link for weekdays inbound
trips over different times of day across six montksiod. [Model 1 uses the predicted probability;
Model 2 uses the fixed probability; 95% conf. iraties 95% confidence intervals]

7.7 Summary

Travel time distribution along paths in transpadiatnetworks can provide comprehensive infor-
mation for planning, operations monitoring and colntas well as travel planning. Previous studies
focus on directly fitting the link or route travieines. However, the applicability of these methods
may be limited due to the small number of direceations at the Origin-Destination level. Fur-
thermore, many of the methods assume link indepergder correlated unimodal link distributions.
The research proposes a GMC approach to estimat€TtDs by aggregating link TTDs that takes
into account the spatial-temporal correlations agnbink travel times. The proposed GMC ap-
proach captures the correlations among link tréxets conditional on the underlying traffic states.
The method is applicable under general conditiaaghe link distributions are derived conditional
on the states of the current link and the transipoobabilities are estimated as a function of ex-
planatory covariates using logit models.

The proposed approach has been demonstrated addtedlin a transit case-study using
AVL data. The results confirm that the GMC approacbvides an effective and efficient way to
estimate TTDs compared to other methods. The pedonce of the GMC method is promising spe-
cially when link correlations conditional on statexl multimodal distributions exist. The method is

also computationally more efficient than other noelhproposed in the literature.
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The use of transition probabilities as a functidrexplanatory variables makes the model
general (and requires less data for calibratiorp@ses than other methods). However, there is a
small cost in estimation accuracy, as the estimtagatsition probabilities and the fitting of para-
metric link distribution models (required by the M@lgorithm), inevitably introduce errors that
influence its estimation performance. The sensjtignalysis on trip distances and road types high-
light the complementary performance of the GMC M@EF methods. Since dwell times are diffi-
cult to model at stop-level, being mainly deterndifiy demand, the research has undertaken pre-
liminary analysis on demand modelling and propasednteractive multiple models (IMM) based
pattern hybrid approach to predict short-term pagsedemand at a route-level (Ma, Xing, et al.,
2014).
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Chapter 8 Conclusionsand Future Research

Transit TTR performance influences service attvactess, operating costs and system efficiency.
Archived AVL-AFC data provides the potential forpnoving transit management and performance
at all levels (planning and policy, operations, tcol). The research has reviewed the state-ofrart i
TTR and TTD analysis. Most studies estimate TTRifigpact assessment of strategic and opera-
tional measures and methods for prediction of TT&®lanited. TTD provides the comprehensive
information for TTR analysis. While link-level TTBan be derived or inferred from dedicated or
mobile sensors, methods for estimation of trip TA&ween an origination and a destination pair
are still evolving.

The thesis is divided into two main parts corregpieg to TTR and TTD analyses. Lever-
aging on the AVL-AFC and the associated databasemiributory factors, the first part quantified
and modelled TTR in the Australian context. To depethe generic approach for analyzing and
predicting TTR, the second part modelled TTDs sk &nd trip levels. The results can be used to
derive TTR information that can be used to fuldiifferent transit stakeholders’ requirements (im-
pact assessment for operators and trip planningdssengers).

Following the analysis of existing studies, fourimasearch gaps were identified, namely:

1. Current measures may provide inconsistent assessmitbnlack of distribution infor-
mation and are insufficient to reflect passengpesteptions under different occasions;

2. Analysis of unreliability causes is largely consteal by data availability and estimation
approach. The traditional ordinary least squareessyjon model can provide inefficient
estimation of parameters due to cross-equatiorelations caused by omitted covariates
and unobserved heterogeneity;

3. Although TTD fitting is the prerequisite for TTR agsis, inconsistent results are re-
ported to date. In assessing the performance fardiit distribution models, in addition
to accuracy, the flexibility and explanatory powesed to be considered;

4. For many applications, trip travel time informati@g. trip planning) is important, but
receives little attention in estimation of trip THm link TTDs with consideration of
dynamic and heterogeneous spatiotemporal correiatio

The major contribution of this thesis is the pragebsrip TTD estimation model using a ge-
neric Markov chain approacikCapter J. The proposed approach captures the correlatioreng
link travel times conditional on the underlyingffiastates. The method is applicable under general
conditions as the link distributions are deriveaditional on the states of the current link and the

transition probabilities are estimated as a fumctbexplanatory covariates using logit models.



Chapter 8 Conclusions and future works 103

8.1 Summary of thethesis

The empirical studies are commonly constrained dp @vailability. To establish a travel time re-
lated data warehouse for travel time reliabilitydaravel time distribution studies, this thesis has
developed a unique integrated dataset using diffeseurces across six months of year, including
AVL, Go card, GTFS, BSTM, BOM and STREAMEltapter 3 The integrated database provides
detailed information on supply and demand, as agthe associated environmental information.

In the first part of this thesi€hapter andChapter %, TTR measures and models were de-
veloped to examine the impacts of unreliabilitytéas, leading to the following contributions.

Chapter 4proposes a set of TTR measures from the perspeatipassengers using the op-
erational AVL data considering different perceptiaf TTR under different traffic states. Two is-
sues with regard to buffer time estimation wereuksed, namely, performance disaggregation and
capturing passengers’ perspectives on reliabilihe main results are summarized as follows:

» The case studies verified the existence of mixstiages during a given time period and

the GMM model provides better fitting performanbart single mode distributions.

» The proposed reliability measures provide consisiesessment with a high-level detalil,

while the conventional measures may give inconsigissessment results.

Chapter Sputs forward three general TTR related models wapect to main concerns by
travellers and planners, namely, average traved,thmffer time and coefficient of variation of trav
el time. In addition, five groups of alternativedels to account for variations caused by different
road types, including arterial road, motorway, bagwWCBD and others, were developed. Seemingly
Unrelated Regression Equations (SURE) estimatiapdied to account for the cross-equation cor-
relations across regression models caused by urvelsbeterogeneity. Three main categories of
unreliability contributory factors have been idéetl and tested in this study, namely: planning,
operational and environmental. The main resultsanemarized as follows:

» The defined recurrent congestion index captureferémt characteristics of road links

and within-day variation of traffic conditions.

» Cross-equation correlations were found to exiswbenh reliability models and the

SURE provides more efficient estimation than theS@hodel.

* The most important factors were found to be recurecengestion index, traffic signals

and passenger demand at stops.

In the second part of the thes@@h@pter Gand Chapter J, trip TTD estimation model from
link TTDs was developed in order to predict TTRviitn arbitrary OD pairs at arbitrary times,
leading to the following detailed contributions.efeémpirical findings (e.g. mixture distribution) of
link and route TTDs affirm the importance of incorating distribution information for TTR analy-
sis in the first part of the thesis.
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Chapter 6specifies the most appropriate distribution mddelthe day-to-day travel time
variability by using a novel evaluation approackl aet of performance measures. We investigated
the spatial and temporal aggregation influence ®W.TA novel evaluation approach and set of
measures are developed to facilitate comprehemrsirgarison of alternative distribution models.
The main results are summarized as follows:

* The decrease of temporal aggregation level resulidess asymmetric and flat distribu-

tion, and an increase of the normality of the dstion.

* The spatial aggregation of link travel times breagsthe multimodality distribution for
the busway service while it is not applicable fog hon-busway service.

« The GMM model is evaluated as superior to its alives under different cases in
terms of fitting accuracy, robustness and explaggiower.

* Mathematically, GMM is flexible enough to modelfdifent types of TTDs, including
symmetric, asymmetric and multimodal distributions

Chapter 7proposes a generalized Markov chain (GMC) apprdachestimation of trip
TTDs between arbitrary OD pairs at arbitrary tinfreen link or segment TTDs. The proposed ap-
proach consists of three major components, nanatg gefinition, transition probabilities estima-
tion and probability distribution estimation. A hlestic clustering method, based on Gaussian mix-
ture models, has been developed to cluster linkrobsions with regard to their homogeneity and
underlying traffic conditions. A transition probhbty estimation model is developed as a function
of link characteristics and trip conditions usingpgit model. By applying a Markov chain proce-
dure, the probability distribution of trip travaéines is estimated as the combination of Markov path
travel time distributions weighted by their corresding occurrence probabilities. The link travel
time distribution is conditioned on the traffic af the current link that can be estimated frdm o
servations. A moment generating function basedrdlgo is used to approximate the Markov path
travel time distribution as the sum of correlatetk ltravel time distributions. The proposed ap-
proach is applied in a transit case study usingraatic vehicle location data. The main results are
summarized as follows:

* The proposed trip TTD estimation method is effextand efficient, especially when
correlations and multimodal distributions exist ants computationally more efficient
than other methods proposed in the literature.

» The important factors for traffic state transiticare traffic condition from previous link,
traffic condition on current link at preceding tingerval and recurrent congestion in-
dex on current link (link characteristics).

* The proposed link TTD prediction method providestdredeterministic and interval
predictions of travel time than its alternatives.
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8.2 Futureresearch

This thesis has provided a detailed methodologyrfodelling TTR and TTD, as well as providing

a deep insight into contributory factors. The maieas for future research are as follows:

1.

In evaluating TTR from a passenger perspectivesrathportant attributes should be in-
corporated, including waiting time, transfer tilbegdgeted waiting time, budgeted trans-
fer time and schedule inconvenience. The calculatmf these components under mix-
ture mode distribution conditions need to be ingaséd.

The findings from TTR modelling are valid withinetlhange of the used data and should
be used with caution beyond this range. More buteswith different operating charac-
teristics can further complement the current figdinin addition, a refined reliability re-
lated dependent variables (Chapter 4) could patnimprove modelling performance
and provide more insights of reliability contribrtgbimpacts.

The modelling of TTDs with inputs of explanatoryriadles (link characteristics and trip
conditions) needs to be investigated, especialtytie prediction of mixture distribu-
tions (the states’ occurrence probabilities andctireesponding distribution parameters).
The use of transition probabilities as a functibexplanatory variables makes the mod-
el quite general. However, this comes at a smai coestimation accuracy. More fac-
tors need to be examined and the performance wik\aluated for predictions of trip
travel time distributions (a set of links) as wasl link travel time distributions.
Developing a hybrid scheme based on different T estimation methods (corre-
sponding to characteristics of the underlying tcaétates) has the potential to improve
estimation accuracy and decrease computation bui@s is a promising future re-
search direction, specially for real-time analysis.

Since stop dwell times are difficult to model atpstevel, being mainly determined by
demand, the research has proposed an interactiitpleunodels (IMM) based pattern
hybrid approach to predict short-term passengeradenat a route-level (Ma, Xing, et
al., 2014). Future work could involve the estimatmf dwell time distributions given a
predicted level of demand.

Intersection delay is an important part of trawelet variability. To model intersections
explicitly and regard them as separate type of T estimation entity from the links

would be potential useful.
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