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Abstract 
Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease. It is 

characterised by progressive loss of motor neurons and muscle atrophy. Recently, 

mounting evidence has suggested that complement, part of the innate immune system, is 

involved in the pathogenesis of ALS in both human patients and in animal models. 

Activation of complement in the central nervous system (CNS) has been well defined and 

has been proved to be critical to the death of motor neurons. However, less is known 

about the roles of complement in the skeletal muscle during the ALS disease progression.  

 

The initial aim of this study was to examine the complement activation in skeletal muscle 

of hSOD1G93A mice, a well-characterised ALS animal model. Expressions of major 

complement factors (C1qB, C3, factor B, C4, C5, C5aR1, and C3aR) and regulators 

(CD55, CD59) were determined, and shown to be significantly elevated in the skeletal 

muscle of hSOD1G93A when compared to wide-type (WT) mice as disease progressed, 

suggesting that complement activation in the skeletal muscle of hSOD1G93A mice is 

achieved through classical and possibly other complement cascades. In addition, 

expression levels of C5aR1 and C3aR, receptors for complement peptides C5a and C3a 

respectively, were also increased. Immunolocalisation studies shows that C5aR1 and 

C3aR are expressed on invading immune cells, CD11b+ macrophage and CD4+ helper T 

cells, in skeletal muscle of hSOD1G93A mice. 

 

The second aim of this study was to investigate the physiological roles of complement 

signalling in regulating immune cell migration in skeletal muscle of hSOD1G93A mice. 

Massive invasions of macrophage and helper T cell were observed in tibialis anterior 

muscles of hSOD1G93A mice when compared to age-matched wild-type mice. These 

infiltrations were remarkably attenuated in hSOD1G93A mice lacking either C5aR1 or C3aR. 

By contrast, there was significantly less immune cell invasion into soleus muscles of 

hSOD1G93A mice, but like for the tibialis anterior muscle, this invasion is significantly 

greater when compared to soleus muscles from age-matched wild-type mice, and 

attenuated in soleus muscle from hSOD1G93A mice lacking either C5aR1 or C3aR. The 

soleus muscle, predominantly a slow-twitch muscle, is less vulnerable to denervation in 

hSOD1G93A mice. Taken together, these results indicate that C5a-C5aR1 and C3a-C3aR 

signalling regulates the migration of immune cells into the skeletal muscle during ALS 

disease progression, and the extent of immune cell influx is related to physiological 
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function of skeletal muscle. 

 

In summary, I have shown activation of the complement system in the skeletal muscle of 

hSOD1G93A ALS mouse model, suggesting a role of complement C5a-C5aR1 and C3a-

C3aR signalling in recruiting immune cells into skeletal muscle during disease progression. 

As skeletal muscle is the prime target for ALS, these findings may promote skeletal muscle 

as a therapeutic target for effects of complement factors in ALS treatment. 
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Chapter 1 

 

Introduction 
 
 
 

1.1 Amyotrophic lateral sclerosis / Motor neuron disease 
Amyotrophic lateral sclerosis (ALS), also known as Motor neuron disease (MND), is an 

idiopathic, fatal neurodegenerative disease of the human motor system (Kiernan et al., 

2011). It was formally defined and identified for the first time by Jean-Martin Charcot in 

1869 where degeneration and death of upper and lower motor neurons were observed 

(Cozzolino et al., 2008). 

 

ALS is characterised by progressive muscular paralysis reflecting degeneration of motor 

neurones in the primary motor cortex, brainstem and spinal cord (Wijesekera and Leigh, 

2009). “Amyotrophic” refers to muscle atrophy, weakness and visible fasciculation that 

reflect the degeneration of the corresponding lower motor neurons. “Lateral sclerosis” 

refers to hardening of the anterior and lateral corticospinal tracts where motor neurons are 

degenerating and replaced by gliosis (Rowland and Shneider, 2001, Wijesekera and 

Leigh, 2009). The clinical course of ALS is progressive. About 50% of patients die within 

30 months and 15-20% survive between 5-10 years of symptom onset (Talbot, 2009). The 

most common cause of death among ALS patients is respiratory failure that results from 

progressive weakening of the respiratory muscles (Kiernan et al., 2011). 

 

The incidence of ALS in Europe is estimated to be 2-3 cases per 100,000 person-years, 

and the overall lifetime risk of ALS is 1:350 for men and 1:400 for woman (Uenal et al., 

2014, Johnston et al., 2006). Even though ALS affects people worldwide, an exact 

incidence of this disease remains unknown. The age of onset for ALS varies between 45-

65 years with a median age of onset of 50 years (Cozzolino et al., 2008, Wijesekera and 

Leigh, 2009). Only 5% of patients have an onset before the age of 30 years, although 
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cases of juvenile sporadic onset have been increasingly noted (Haverkamp et al., 1995, 

Gouveia and De Carvalho, 2007). 

 

Several factors contributing to the pathogenesis of the ALS have been proposed, including 

excitotoxicity, oxidative stress, mitochondrial dysfunction, defective axonal transport, 

neurofilament aggregation, abnormal protein aggregation, altered neuron hyperexcitability 

and genetic factors (Shaw and Ince, 1997, Wood et al., 2003, Manfredi and Xu, 2005, Lin 

and Schlaepfer, 2006, Pieri et al., 2009, Barber and Shaw, 2010, Bilsland et al., 2010, 

Chen et al., 2013). The vast majority (90-95%) of ALS cases are sporadic (sporadic ALS, 

sALS), while the remaining ALS cases are inherited (familial ALS, fALS). 

 

To date, more than 20 genes including superoxide dismutase 1 (SOD1), TAR DNA-binding 

protein (TDP-43), fused in sarcoma (FUS), Ubiquilin2 (UBQLN2), C9ORF72, and Valosin-

contaning protein (VCP) are found associated with fALS (Rosen et al., 1993, Sreedharan 

et al., 2008, Vance et al., 2009, Johnson et al., 2010, DeJesus-Hernandez et al., 2011, 

Deng et al., 2011). Among them, mutations in SOD1 account for 20% of familial ALS and 

5% of sALS (Rosen et al., 1993). More than 130 different SOD1 mutations have been 

reported in ALS patients (Andersen, 2006).  

 

1.1.1 SOD1 mutations 
The discovery of disease-associated mutations in the SOD1 gene in 1993 was one of the 

most important breakthroughs in ALS research (Rosen et al., 1993). SOD1 is a homodimer 

of a ubiquitous 153-amino-acid cytosolic metalloenzyme with a catalytic copper ion and a 

stabilizing zinc ion in each subunit. It is expressed in all cells and widely distributed in the 

cytoplasm, nucleus, lysosomes and intermembrane space of mitochondria (Liu et al., 

2004, Pasinelli et al., 2004). The SOD1 gene is composed of five exons separated by four 

introns. The main known function of SOD1 is to provide defence against oxygen toxicity by 

catalysing the reduction of dangerous superoxide radicals to O2 and H2O2 (Chen et al., 

2013).  

 

In the central nervous system (CNS), SOD1 accounts for about 1% of total brain protein. In 

addition, motor neurons generally possess a much higher content of SOD1 protein 

compared to other cells in the nervous system (Shaw and Eggett, 2000). The mechanism 

underlying the nature of the mutation in the SOD1 gene still remains unclear. Increasing 
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evidence indicates that the motor neuron damaging effects from SOD1 is induced through 

several pathways, including protein misfolding and aggregation, oxidative stress and 

cytoskeletal abnormalities. Protein misfolding and aggregation are prominent features of 

ALS. SOD1 inclusions have been demonstrated in lower motor neurons of fALS patients, 

mutant SOD1 mouse models, and in cultured COS cells or motor neurons expressing 

mutant SOD1. Mitochondria abnormalities caused by mutant SOD1 inclusion formation are 

also an early event pathogenesis in SOD1G93A transgenic mice. The abnormal 

accumulation of intermediate filaments (IF) proteins in the axons of motor neurons is one 

of the universal pathological features of ALS. In particular, the aggregation of abnormal 

neurofilaments (NF), the major type of IFs in adult motor neurons, is a common 

pathological hallmark in fALS patients, due to SOD1 mutations and in mutant SOD1 

mouse models, suggesting that NFs may act as toxic intermediates in the disease (Shaw, 

2005). Given the complexity of SOD1-related ALS, it is hard to determine the primary or 

secondary causes, but it is likely that pathogenesis results from a complex interplay 

between protein misfolding and cellular stress.  

 

Besides motor neurons, expression of mutant SOD1 in non-neuronal cells also contributes 

ALS disease and motor neuron death. For instance, astrocytes, the major type of glia in 

the CNS, expressing mutant SOD1 can actively decrease motor neuron survival by 

secreting neurotoxic factors (Nagai et al., 2007, Ferraiuolo et al., 2011, Haidet-Phillips et 

al., 2011, Phatnani et al., 2013). Meanwhile, astrocytes lose some of their neuro-

supportive functions during the disease progression, and ultimately undergo degeneration 

themselves (Rossi et al., 2008, Martorana et al., 2012). Expression of mutant SOD1 on 

microglia, the surveillance immune cells in CNS, also accelerates the disease progression 

(Boillee et al., 2006). In addition, oligodendroglia, also affects motor neuron survival. 

Oligodendroglia expresses monocarboxylate transporter 1 (MCT1), which is crucial in 

providing motor neurons with metabolic support. Reduced expression level of MCT1 was 

found in mutant SOD1 transgenic mice, suggesting that impaired oligodendroglia 

metabolic support to neurons contributes to ALS pathogenesis (Lee et al., 2012b, Philips 

et al., 2013). Taken together, these findings implicate that glial cells carrying mutant SOD1 

are involved in the pathogenesis of ALS by triggering motor neuron degeneration.  

 

ALS is classically regarded as a “neurocentric” disease that causes the progressive loss of 

upper and lower motor neurons followed by axonal degeneration and muscle atrophy 
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(Strong and Rosenfeld, 2003). In recent years, the “dying-back” hypothesis has drawn 

much attention in which pathological changes in motor axons and nerve terminals appear 

to precede motor neuron degeneration and the onset of clinical symptoms (Fischer et al., 

2004, Xie et al., 2005, Parkhouse et al., 2008, Sotelo-Silveira et al., 2009, Carrasco et al., 

2010). In the SOD1G93A mouse, quantitative analysis demonstrated denervation at 

neuromuscular junction (NMJ) by 47 days of age, followed by severe loss of motor axons 

from the ventral root between days 47 and 80 days, and loss of motor neuron cell bodies 

from the lumbar spinal cord after day 80. This pattern suggests that motor neuron disease 

in the SOD1G93A mouse is actually a “dying-back” motor neuropathy where distal axonal 

degeneration occurs early during the disease, before neuronal degeneration, and onset of 

symptoms (Fischer et al., 2004). Neuropathological analysis of a 58-year-old patient with 

sporadic ALS who died unexpectedly also showed a “dying-back” phenomenon where 

denervation and innervation changes at the muscle were observed while pathological 

changes in the motor neuron itself were not detected (Fischer et al., 2004). In addition, 

selective loss of motor units in most forceful fast-twitch muscle fibres was observed prior to 

the onset of symptoms in the SOD1G93A mouse, implicating that motor neurons innervating 

the slower muscle fibres are more resistant than those innervating the faster ones (Frey et 

al., 2000, Schaefer et al., 2005, Hegedus et al., 2007, Hegedus et al., 2008). These 

findings support the idea that neuromuscular denervation and symptom appearance in 

ALS can occur regardless of motor neuron survival, suggesting that alternations 

elsewhere, for instance in skeletal muscle, muscle satellite cells or terminal Schwann cells 

were able to influence the integrity of axons, thus challenging the “neurocentric” view of 

ALS (Pansarasa et al., 2014). 

 

Many strains of transgenic murine ALS models with human SOD1 mutations have been 

generated, particularly the SOD1G93A mutation in which amino acid glycine in position 93 is 

substituted by alanine, to investigate the disease pathogenesis (Gurney et al., 1994). The 

SOD1G93A mouse model displays an onset of clinical symptoms with the development of 

tremor and hindlimb weakness detected by locomotor deficits at ~90 days, progressing to 

paralysis and premature death at ~120-140 days (Gurney et al., 1994).  

 

One of the earliest pathological events is the degeneration of neuromuscular junctions at 

~47 days of age. This degeneration appears to be selective for neuromuscular junctions 

supplied by fast-fatigable motor neurons (Fischer et al., 2004, Pun et al., 2006). These 
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neurons are large motor neurons, which have a higher metabolic load as they are more 

excitable (e.g. capable for generating high frequency action potentials), and thus are more 

vulnerable to cellular stress (e.g. greater levels of reactive oxygen species [ROS]), when 

compared to smaller motor neurons that are less excitable and which innervate slow-twitch 

muscle fibres (Frey et al., 2000, Pun et al., 2006, Hegedus et al., 2007). This might explain 

why denervation of fast-twitch muscles occurs before denervation of slow-twitch muscle 

fibres. By 80 days postnatal, proximal motor axon loss is prominent, coinciding with motor 

impairment, and followed by a drastic 50% loss of lower motor neurons at 100 days 

(Fischer et al., 2004). Pathological features such as vacuolization of mitochondria, 

fragmentation of the Golgi apparatus, endoplasmic reticulum stress, and astrogliosis and 

microgliosis in the spinal cord are observed at early postnatal ages. As the transgenic 

SOD1G93A mice develop a disease strikingly similar to ALS, including selective loss of 

upper and lower motor neurons, paralysis and significant loss of muscle mass, they are 

extensively used as models to probe ALS (Mourelatos et al., 1996, Hall et al., 1998, 

Bendotti et al., 2001, Saxena et al., 2009) (Figure 1). 

 

The standard hSOD1G93A transgenic mouse model harbours 25 copies of the mutant 

human SOD1 gene (Gurney, 1997). The onset of symptoms and survival of SOD1G93A 

mice are directly related to the copy number of the mutant transgene.  Lower copy number 

of the hSOD1G93A transgene results in a prolonged asymptomatic phase and protracted 

survival in these mice (Henriques et al., 2010, Acevedo-Arozena et al., 2011, Deitch et al., 

2014). As the development of disease is delayed, SOD1G93A low-copy transgenic mice 

may more closely mimic human pathophysiology, making it a more appropriate model for 

studying early-stage pathogenesis of human ALS and benefits the development of early-

stage preventive strategies. 

 

1.2 Complement System 
The innate immune system, also known as the non-specific immune system, plays a vital 

role in the inflammatory response to infection through the activity of receptors that are 

capable of recognizing defined molecular patterns present in a variety of microorganisms. 

The complement system is an essential part of the innate immune system and is able to 

discriminate and eliminate invading pathogens (Friec and Kemper, 2009).  
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The Belgium immunologist Jules Bordet described complement for the first time in the 

1890s as a heat-labile substance that ‘complements’ the heat-stable fraction of normal 

blood serum to realise the anti-bacterial function of an antibody (Lachmann, 2006). We 

now know that the complement system consists of more than 40 soluble factors, cellular 

receptors, and regulatory molecules present in blood plasma and on cell surfaces 

(Walport, 2001). The main biological function of complement is to recognise and eliminate 

the ‘foreign’ microorganisms. Complement proteins collaborate as a cascade to opsonise 

pathogens and trigger a series of inflammatory responses modulating the activity of T- and 

B- cells to fight infection and maintain homeostasis (Merle et al., 2015). The complement 

system also bridges the innate and adaptive immune system, destroys host components 

such as apoptotic and necrotic cells and disrupts protein assemblies (Morgan et al., 2005). 

Four distinct pathways, including classical, lectin, alternative and extrinsic, can initiate the 

complement system, depending on the context. Each of the pathways leads to a common 

terminal pathway. These pathways are reviewed in the following sections, along with the 

major complement factors and regulators. 

 

1.3 Complement activation pathways 
Activation of complement is known to occur through three pathways – the classical, 

alternative and lectin pathways. All three pathways result in the cleavage of C3, the most 

abundant complement protein, followed by generation of complement peptide C3a and 

C5a, and the C5b-9 membrane-attack complex (MAC), which creates a pore that disrupts 

cell homeostasis and eventually leads to lysis (Ramaglia and Baas, 2009)(Figure 2). 

Recently, a new complement pathway – the extrinsic protease pathway was discovered. 

Unlike the three pathways previously described whose activation relies on the generation 

of C3, the extrinsic protease pathway generates C5a in the absence of C3 (Huber-Lang et 

al., 2006)(Figure 2). 

 

Complement factors can opsonise bacteria for enhanced phagocytosis. They can recruit 

and activate various cells including polymorphonuclear cells (PMNs) and macrophages. 

Complement is also involved in regulation of antibody responses and it can aid in the 

clearance of immune complexes and apoptotic cells. Furthermore, complement can have a 

detrimental effect for the host, it can contribute to inflammation and tissue damage and 

can trigger anaphylaxis (Walport, 2001). 
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1.3.1 Classical pathway 
The classical pathway, or antibody dependent pathway, was the first complement pathway 

discovered. It is initiated by binding of the C1 complex (composed of C1q, C1r and C1s) to 

the complement-fixing antibodies (IgG1 and IgM) attached to the antigen on the target 

surface. Upon the binding of C1q to antigen-antibody complexes, C1r and C1s are 

subsequently activated which in turn cleave C4 and C2. C4 is cleaved into two fragments, 

C4a and C4b. The larger C4b molecule contains an exposed active thioester bond 

allowing it to attach to a variety of target surfaces and act as an opsonin. Activated C1 

cleaves C2 into C2a and C2b, and C2b binds to C4b on the cell surface, leading to the 

formation of the C3 convertase C4b2b (Ricklin et al., 2010, Wallis et al., 2010)(Figure 2).  

 

The generation of the C3 convertase, which cleaves C3 into the anaphylatoxin C3a and 

the opsonin C3b, is the crucial point in complement activation where all complement 

pathways converge. The opsonic C3 fragment, C3b, either binds covalently to pathogenic 

surfaces, or to C4b in the C4b2b complex producing the C5 convertase (C4b2b3b), which 

cleaves C5 into C5b and the anaphylatoxin C5a. Once released, C5b interacts with C6, 

C7, C8 and multiple copies of C9 molecules ranging from 1 to 18 to form the MAC 

complex, resulting in ion flux and eventually lysis of target cells (Xiong et al., 2003, Carroll 

and Sim, 2011)(Figure 2).  

 

1.3.2 Lectin pathway 
The lectin pathway of complement is initiated by the binding of mannose-binding lectin 

(MBL) or ficolins to carbohydrate groups on bacterial cells surfaces. MBL belongs to the 

collectin protein family as it contains a collagen-like domain while ficolins consist of a 

collagen-like stem structure (Holmskov et al., 2003). Both MBL and ficolins are pathogen-

recognizing proteins, which form complexes with the MBL-associated serine proteases 

(MASPs). MASPs are regarded as homologous to C1r and C1s molecules of the classical 

complement pathway Activated MASP-1 and MASP-2 cleave C4 and C2, leading to the 

formation of the lectin pathway C3 and C5 convertases, C4b2b and C4b2bC3b, 

respectively (Thiel et al., 2000). 

 

1.3.3 Alternative pathway 
Activation of the alternative pathway can be triggered by almost any foreign substances, 

including lipopolysaccharide (LPS), yeast, virus, and necrotic cells (Guo and Ward, 2005). 
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Additionally, in contrast to the classical and lectin pathways, the alternative pathway is 

capable of auto-activation through the spontaneous conversion of C3 to C3b termed ‘tick-

over’ (Thurman and Holers, 2006). Spontaneous hydrolysis of the unstable thioester bond 

in C3 continually generates the C3b-like protein C3(H2O). This configuration change in C3 

allows the binding of factor B to C3(H2O), followed by the cleavage of factor B by factor D 

into Ba and Bb. When the Ba fragment is released, the active serine protease Bb remains 

associated with the C3(H2O) complex, forming the alternative pathway fluid-phase C3 

convertase C3(H2O)Bb. C3(H2O)Bb further cleaves plasma C3 into C3a and C3b 

(Pangburn and Muller-Eberhard, 1983, Thurman and Holers, 2006, Bexborn et al., 2008).  

 

The initiating component of the alternative pathway is the C3b deposited on cell surfaces. 

C3b generated from the spontaneous cleavage of C3 randomly binds to protein and 

carbohydrates expressed on cell surfaces, forming a C3bB complex upon interacting with 

factor B in an Mg2+-dependent manner. Factor D then cleaves the bound factor B in the 

surface-associated C3bB complex, generating the alternative pathway surface-bound C3 

convertase C3bBb. C3bBb is an unstable enzyme complex homologous to the classical 

pathway convertase C4b2b and decays spontaneously. The serum protein properdin, also 

known as factor P, binds to C3bBb and stabilises it through slowing down the dissociation 

of Bb from the enzyme complex (Hourcade, 2006, Bexborn et al., 2008).  

 

Formation of C3 convertase allows for the cleavage of more C3, resulting in additional C3b 

production. In addition, activation of the classical and alternative pathways can provide 

C3b for the formation of the alterative pathway C3 convertase, which in turn amplifies 

further cleavage of C3 into C3a and C3b (Thurman and Holers, 2006). Amplification of 

C3b production results in an additional covalent binding of C3b to C3bBbP, forming the 

alternative pathway C5 convertase C3bBb3b (Ricklin et al., 2010). 

 

1.3.4 Extrinsic protease pathway 
Aside from the three established pathways, a fourth pathway of complement activation, the 

extrinsic pathway was identified resulting from the link between complement and 

coagulation pathways. The extrinsic pathway of coagulation was discovered in the 1980’s 

(Ploplis et al., 1987). Proteolytic enzymes such as thrombin, plasmin, and kallikrein have 

long been known to be able to cleave and activate complement component C3 (Thoman et 

al., 1984, Markiewski et al., 2007). Thrombin was able to activate C5 in the C3 knockout 
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mouse in which C5 convertases cannot be produced (Huber-Lang et al., 2006). This route 

can bypass the traditional C3-dependent upstream pathways to initiate downstream 

pathway activation (Woodruff et al., 2010). In vitro studies have also shown that individual 

cells are capable of generating bioactive complement fragments. For instance, cultured 

cortical neurons can produce their own C5a, which exacerbates neuronal death under 

metabolic stress, suggesting that similar pathways may be active in dysfunctional motor 

neurons in ALS (Pavlovski et al., 2012). 

 

In a recent study, Lobsiger et al. claimed that global complement activation does not affect 

disease progression in SOD1G93A mice lacking in C1q or C3 (Lobsiger et al., 2013). One 

thing this study overlooked was that the “extrinsic pathway” of complement activation could 

bypass the traditional C3-dependent pathways and consequently alter the disease 

progression. In support of this theory, our lab has demonstrated that a selective C5aR1 

receptor antagonist extended survival of the SOD1G93A rat, and a similar extended survival 

has been observed in SOD1G93A mice lacking C5aR1 (Woodruff et al., 2008a, Woodruff et 

al., 2014). These findings suggest that extrinsic pathway, particularly at the downstream 

step of C5, may contribute to ALS pathogenesis. 

 
1.5 Key effectors of complement 
The primary function of complement is to recognize invading  microorganisms and promote 

their elimination through opsonisation of pathogens with C1q and C3b, followed by lysis 

via the membrane attack complex (MAC), C5b-9, the final product of the five terminal 

proteins C5, C6, C7, C8 and C9 (Carroll and Sim, 2011). 

 

1.5.1 The initiator of the classical pathway 
C1q is the recognition component of the classical pathway, belonging to a family of soluble 

proteins categorised as defence collagens (Bohlson et al., 2007). It is a 460-kDa 

glycoprotein composed of six identical peripheral globular regions, each of which contains 

three distinct polypeptide chains (Reid, 1983). The non-collagen-like domain of C1q 

mediates the recognition of activators of C1, converting C1r and C1s into active serine 

proteases which in turn triggers the initiation of classical complement cascade (Tenner, 

1998). C1q is synthesised by monocyte/macrophage, microglia and dendritic cells (DCs) 

(Korotzer et al., 1995, Kaul and Loos, 2001, Cortes-Hernandez et al., 2004, Reis et al., 

2007). Deficiency of C1q is associated with excessive inflammation and autoimmunity, 
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leading to the development of systemic lupus erythematous (SLE) and glomerulonephritis 

(Botto et al., 1998, Botto and Walport, 2002). There is mounting evidence suggesting that 

C1q serves as a bridging molecule to facilitate the physiologic clearance of apoptotic cells 

by phagocytes (Ogden et al., 2001, Vandivier et al., 2002, Fraser et al., 2010). In addition, 

C1q functions as opsonin to promote the uptake of apoptotoic cells by phagocytes through 

interacting with complement receptors on the cell surface (Francis et al., 2003). 

Interestingly, recent studies demonstrate that C1q also plays a role in mediating synaptic 

pruning in CNS during development. In the developing brain, astrocytes induce the 

generation of C1q in neurons. Neuron and microglia-derived C1q tags weak or 

inappropriate synapses for removal via the activation of classical complement cascade, 

resulting in C3 cleavage and synaptic C3b deposition. Those complement-tagged 

synapses are eliminated through phagocytosis by microglia (Stevens et al., 2007, Schafer 

and Stevens, 2010).  

 

1.5.2 The complement peptides 
As complement activation products opsonise or lyse cells, complement can defend against 

pathogenic materials but also damage healthy host cells and tissues. The complement 

exerts its detrimental roles through the formation of anaphylatoxins, especially C3a and 

C5a (Guo and Ward, 2005). 

 

Complement component C3a is a 77-amino-acid protein. It is cleaved from C3 by C3 

convertase upon activation of the complement pathways. C3a mediates assorted 

immunoregulatory functions, including chemotaxis, smooth muscle contraction and 

increased vascular permeability (Stimler et al., 1983, Williams, 1983, Daffern et al., 1995, 

Legler et al., 1996). It performs these functions through binding to its C3aR, a seven 

transmembrane G protein-coupled receptor (Tornetta et al., 1997).  

 

C5a, a serum protein of 74-amino-acid residues, is regarded as one of the most potent 

inflammatory peptides known. It carries out a broad spectrum of biological activities on 

different cells, including phagocytosis, degranulation, H2O2 production, granule enzyme 

release, delay or enhancement of apoptosis, chemokine and cytokine productions and 

chemotaxis (Guo and Ward, 2005, Lee et al., 2008). The C-terminal arginine on C5a is 

removed by the plasma enzyme carboxypeptidases, forming C5a-des-Arg that has a 10-

1000 times reduced potency compared with C5a (Lee et al., 2008). C5a exerts its effects 
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through two high affinity receptors, the C5aR1 (also known as CD88) and the C5aR2 (also 

known as C5L2/GRP77) (Huber-Lang et al., 2002).  

 

C3a and C5a are powerful inflammatory molecules, especially C5a. These two 

anaphylatoxins are chemically and biologically similar. They share a striking 36% 

sequence similarity and both possess highly conserved C-terminal pentapeptide 

sequences that are essential for activation of their receptors (Klos et al., 2009). C3a 

contains four α-helical cationic regions stabilised by three disulphide bonds while C5a 

contains an additional fifth helix at the C terminus (Nettesheim et al., 1988). These 

structural features make C3a, but not C5a, a highly potent antibacterial peptide as it 

induces breaks in bacterial membranes (Nordahl et al., 2004). 

 

As potent inflammatory mediators, C3a and C5a can trigger contraction of smooth muscle, 

increase the permeability of small blood vessels, and induce vasodilation (Julia et al., 

1998). C3a and C5a also promote oxidative bursts in macrophages, neutrophils, and 

eosinophils while inducing histamine release from basophils and mast cells (Kretzschmar 

et al., 1993, Murakami et al., 1993, el-Lati et al., 1994, Elsner et al., 1994a, Elsner et al., 

1994b). In addition, C3a induces serotonin release from platelets and modulate synthesis 

of IL6 and TNF-α by B cells and monocytes while C5a regulates the production of 

eosinophil cationic protein and the adhesion to endothelial cells by eosinophils (Fukuoka 

and Hugli, 1988, Rivier et al., 1994, Fischer and Hugli, 1997, DiScipio et al., 1999, Fischer 

et al., 1999, Jagels et al., 2000). Both anaphylatoxins are chemoattractive for a wide range 

of immune cells, and this is particularly for C5a. C5a is a strong chemoattractant for 

basophils, macrophages, neutrophils, mast cells, and activated B and T cells (Lett-Brown 

and Leonard, 1977, Aksamit et al., 1981, Ehrengruber et al., 1994, Ottonello et al., 1999, 

Nataf et al., 1999). C3a on the other hand predominantly chemoattracts mast cells and 

eosinophils (Hartmann et al., 1997).  

 

1.5.3 The anaphylatoxin receptors 
The anaphylatoxin receptors, which belong to the superfamily of G-protein coupled 

receptors, include the C3a receptor (C3aR) and C5a receptors, C5aR1 as well as C5aR2. 

Although these receptors share high sequence homology, they differ in ligand specificity, 

signal transduction capacity and function (Lee et al., 2001). 
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1.5.3.1 C3aR 
The C3aR is a G-protein coupled, seven-transmembrane segment protein. Compared to 

C5aR, it is unique with a reduced N-terminal domain and a remarkable large second 

extracellular loop of 172 amino acids between the fourth and fifth transmembrane 

domains, required for ligand binding (Gao et al., 2003) (Figure 3).  

 

C3aR is found in a wide range of tissues, including lung, liver, kidney, brain, heart, muscle 

and testis (Hsu et al., 1997). It is predominantly expressed on the surface of myeloid-

derived cells, such as neutrophils, eosinophils, basophils, mast cells, dendritic cells, 

microglia, and monocytes/macrophages (Klos et al., 1992, Daffern et al., 1995, Hartmann 

et al., 1997, Zwirner et al., 1998a, Gutzmer et al., 2004). In addition, non-myeloid cells 

including astrocytes, endothelial cells, epithelial cells and smooth muscle cells from 

asthma patients (Gasque et al., 1998, Ischenko et al., 1998, Monsinjon et al., 2003, 

Fregonese et al., 2005). C3aR is also expressed on B cells and activated T cells (Martin et 

al., 1997, Zwirner et al., 1999, Werfel et al., 2000). Moreover, recent studies have 

demonstrated up-regulated expression of C3aR on murine CD4+ cells upon dendritic cells 

stimulation (Strainic et al., 2008). 

 

C3aR mediates chemotaxis of eosinophils, mast cells, dendritic cells and monocytes, but 

not neutrophils (Daffern et al., 1995, Nilsson et al., 1996, Gutzmer et al., 2004). It also 

induces an oxidative burst in macrophages, neutrophils and eosinophils (Burg et al., 1996). 

Besides this, basophils and mast cells undergo degranulation and release histamine upon 

C3a-C3aR signalling (Bischoff et al., 1990, Venkatesha et al., 2005). 

 

Upon C3a binding to its receptor C3aR, intracellular signal transduction is promoted via 

heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins). C3aR 

mediates its effect on immune cells through coupling to the pertussis toxin (PTX)-sensitive 

and –insensitive G proteins, Gαi and Gα16, respectively (Norgauer et al., 1993, Zwirner et 

al., 1997, Yang et al., 2001). In endothelial cells, C3aR also couples to insensitive G 

proteins Gα12 and Gα13 (Schraufstatter et al., 2002). The downstream pathway activates 

phosphoinositol-3-kinase gamma (PI3K-γ), which in turn activates phospholipase C (PLC)-

β and PLC-γ. PLC is a multidomain phosphodiesterase that generates the second 

messenger inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which further leads 

to Ca2+ mobilization and phosphokinase C (PKC) activation, respectively. PI3K can also 
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activate the mitogen-activated protein kinases (MAPK)/extracellular-signal regulated 

kinase (ERK) 1/2 (Langkabel et al., 1999, Sayah et al., 2003, Venkatesha et al., 2005) 

 

1.5.3.2 C5aR1 
The classic C5aR1 receptor is a 42-kDa membrane glycoprotein, belonging to the 

superfamily of G protein-coupled receptors with seven transmembrane segments (Leslie 

and Hansen, 2001). Murine C5aR1 displays an overall 65% sequence identity to its human 

counterpart (Gerard et al., 1992). For the interaction between C5a and C5aR1, a “two-site 

binding” model has been proposed. The first binding site is at the aspartate-rich acidic N 

terminus of C5aR1, which interacts with the basic core of C5a. The second binding site is 

between the agonistic C terminus of C5a and the transmembrane domains and charged 

residues at the base of the C5aR1 extracellular loops. Unlike the N-terminal binding site, 

the second binding site is indispensible for receptor activation (Mery and Boulay, 1993, 

DeMartino et al., 1994, Gerber et al., 2001). Current data suggests that at least three 

different discontinuous regions of C5a are involved in its interaction with C5aR1 (Huber-

Lang et al., 2003). In spite of the fact that C5a was first considered as an anaphylatoxin 

and later as a leukocyte chemoattractant, the wide spread expression of C5aR1 implicated 

more general functionality (Figure 4). 

 

Similar to C3aR, C5aR1 is expressed on various myeloid originated cells such as 

neutrophils, eosinophils, basophils, mast cells, dendritic cells and monocytes, as well as 

on non-myeloid cells, including epithelial cells, Kupffer cells, stellate cells, astrocytes and 

microglial cell (Chenoweth and Hugli, 1978, Chenoweth and Goodman, 1983, Gerard et 

al., 1989, Morelli et al., 1996, Werfel et al., 1997, Drouin et al., 2001, Koleva et al., 2002, 

Schlaf et al., 2004, Gasque et al., 1997).  

 

C5aR1 is a potent chemoattractant for monocytes, neutrophils, eosinophils, basophils, 

mast cells, B cells and T cells (Pieters et al., 1995, Webster et al., 1980, DiScipio et al., 

1999, Lett-Brown and Leonard, 1977, Hartmann et al., 1997, Kupp et al., 1991, Nataf et 

al., 1999). It is also responsible for other biological events such as mast cell degranulation, 

oxidative burst in granulocytes, and secretion of proinflammatory mediators from 

monocytes, eosinophils and mast cells (Subramanian et al., 2011, Guo et al., 2003, 

Takafuji et al., 1994, Hartmann et al., 1997). Recent studies have shown up-regulation of 

C5aR1 in the CNS of murine hSOD1G93A transgenic models, suggesting a pathogenic role 
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for C5a-C5aR1 signalling in ALS (Lee et al., 2013, Woodruff et al., 2008b, Woodruff et al., 

2008a). 

 

Signal transduction of C5aR1 depends on heterotrimeric G-proteins. C5aR1 mainly 

couples to the PTX-sensitive G protein Gαi2 in cells such as neutrophils and mast cells or, 

less frequently, to PTX-insensitive G protein Gα16/Gα15 in cells of the hematopoietic lineage 

(Skokowa et al., 2005, Amatruda et al., 1993, Monk and Partridge, 1993, Davignon et al., 

2000). C5a-C5aR1 interaction causes calcium fluxes from both intercellular compartments 

and extracellular medium. Phosphorylation of C5aR1 leads to association with β-arrestins 

1 and 2 and subsequently targeting to clathrin-coated pits for internalization (Braun et al., 

2003).  Binding of arrestins depends on phosphorylation of the C terminus of C5aR1 by G-

protein coupled receptor kinases (GRKs). Apart from their function as kinase, GRKs can 

also interact with other elements of intracellular signalling including Akt, MAPK/ERK kinase 

(MEK) and PI3K-γ (Ribas et al., 2007). It has been demonstrated that C5a-C5aR1 

interaction leads to downstream activation of several components of different signalling 

pathways, such as PI3K-γ, phospholipase C β2 (PLC-β2), phospholipase D (PLD) and 

MEK-1 (Perianayagam et al., 2002, la Sala et al., 2005, Mullmann et al., 1990, Buhl et al., 

1994). Another binding partner of the C terminus of activated C5aR1 is Wiskot-Aldrich 

syndrome protein (WASP). This interaction is strongly potentiated in the presence of active 

cell division cycle 42 (cdc42), a GTP binding protein that induces a conformational change 

of WASP to its active state. WASP is a multifunctional protein that regulates actin 

dynamics and therefore could be involved in the chemotactic response to C5a (Tardif et 

al., 2003). 

 

1.5.3.3 C5aR2 
The second receptor for C5a, C5aR2, is a recently discovered seven-transmembrane 

segment protein expressed on granulocyte and immature dendritic cells (Ohno et al., 

2000).  Like C5aR1, C5aR2 contains the classical G-protein coupled receptor structure but 

is not coupled to intracellular G protein signalling pathways (Okinaga et al., 2003). C5aR2 

shares 58% sequence identity with C5aR1 and 55% with C3aR in its conserved 

transmembrane regions (Lee et al., 2001). C5aR2 is expressed in various myeloid derived 

and non-myeloid cells. It seems to frequently co-express with C5aR1 in most cells and 

tissues (Gavrilyuk et al., 2005, Lee et al., 2001, Okinaga et al., 2003, Gao et al., 2005). 
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By contrast to C5aR1, C5aR2 appears to be a non-functional decoy receptor as no 

mobilization of intracellular calcium, extracellular signal-related kinase phosphorylation or 

receptor internalization was shown when it was treated with C5a (Okinaga et al., 2003). 

However, this view has been challenged where recent evidence showed that C5aR2 

functions as an intracellular receptor triggered by C5aR1 activation, which acts to regulate 

C5aR1 signalling (Bamberg et al., 2010).  

 

1.6 Regulation of complement activation 
Complement is important for the elimination of invading pathogens, but it can also attack 

host cells when over-activated. Therefore, activation of the complement system must be 

tightly controlled. This delicate balance between activation and inhibition is achieved by 

complement regulators and inhibitors.  

 

Complement regulators are divided into two forms, cell-surface regulators and fluid-phase 

regulators. In humans, there are four well-characterized cell-surface complement 

regulatory proteins, which protect human cells against autologous complement attack. 

Three of the regulators, decay-accelerating factor (DAF, CD55), membrane cofactor 

protein (MCP, CD46) and complement receptor type 1 (CR1, CD35) act as inhibitors of 

C3/C5 convertases while protectin (CD59) functions as an inhibitor of membrane attack 

complex (MAC). DAF inhibits the activation of C3 and C5 by binding to and dissociating 

C3/C5 convertase enzymes of both the classical and the alternative pathway (Lublin and 

Atkinson, 1989). MCP regulates C3 activation by acting as a cofactor protein for factor I-

mediated cleavage of C3b (Liszewski et al., 1991). CR1 possesses both DAF and MCP 

functions. It has decay-accelerating activity against both the classical and the alternative 

pathway C3/C5 convertase. It also acts as a cofactor for factor I-mediated cleavage of C3b 

and C4b, as well as for the cleavage of iC3b to C3c and C3dg. Additionally, CR1 is a 

major immune adherence receptor and plays a role in immune complex processing and 

clearance (Ahearn and Fearon, 1989). Lastly, CD59 prevents the assembly of the MAC at 

the final step of the complement activation cascade. By binding to C5b-8 complex, CD59 

limits C9 incorporation and polymerization in the MAC (Miwa and Song, 2001). 

 

Due to the rapid and self-amplifying activation tendencies, the complement system needs 

to be well controlled in the fluid-phase. This is achieved by a set of fluid-phase regulators 

such as C1 inhibitor (C1-INH), C4b-binding protein (C4BP), factor H, clusterin and 
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vitronectin. C1-INH prevents spontaneous activation of the complement system by 

inhibiting the C1r and C1s serine protease of the classical pathway, as well as MBL-

associated serine protease (MASP) -1 and -2 of the lectin pathway (Davis et al., 2008). 

C4BP acts as an inhibitor of the classical pathway by preventing the formation of the 

classical C3 convertase. It also acts as a factor I cofactor for the cleavage of C4b, 

consequently inhibits the alternative pathway to some extent as well (Blom et al., 2004). 

Factor H binds to C3b, accelerates the disassociation of the alternative pathway C3-

convertase (C3bBb) and acts as a cofactor for the factor I-mediated proteolytic inactivation 

of C3b (Józsi and Zipfel, 2008). Clusterin and vitronectin bind to the terminal complement 

complexses and prevents their incorporation into cell membranes (Schwarz et al., 2008, 

Preissner and Seiffert, 1998). 

 

1.7 Complement activation within the CNS 
The CNS tissue is separated from plasma by the blood-brain barrier (BBB), a blood vessel 

network that forms tightly binding endothelial cells and perivascular astrocytes (Morgan 

and Gasque, 1996, Gasque et al., 2000). The BBB serves as a molecular sieve, which 

prevents infiltration of circulating immune cells such as B- and T- lymphocytes and restricts 

passage of plasma proteins into the brain parenchyma and cerebrospinal fluid (Abbott et 

al., 2010). The liver is the primary site of plasma complement protein synthesis. Though 

most of the complement proteins are unlikely to penetrate the intact BBB, local synthesis 

of complement components was found on astrocytes, microglia, neurons and 

oligodendrocytes (Barnum, 1995). The complement proteins produced by systemic 

immune cells may not reach the cerebral tissue when the BBB is intact; however, they 

could be found during CNS inflammation and neurodegenerative diseases (Morgan and 

Gasque, 1996, Gasque et al., 2000). 

 

The roles of complement activation in the brain remain controversial. It can lead to cytolytic 

death of neurons and enhance a pro-inflammatory reaction contributing to the 

pathogenesis and progression of neurodegenerative disease (Shen et al., 1995). On the 

other hand, complement could also trigger brain tissue remodelling and repair by clearing 

toxic deposits, such as amyloid fibrils present in neurotic plaques in Alzheimer’s disease 

(AD) or by enhancing the expression of growth factors involved in the early processes of 

regeneration (Stevens et al., 2007). Given the multiple functions of complement in CNS, it 

is suggested that complement may play a role in CNS homeostasis (Brennan et al., 2012). 
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1.8 Complement activation in ALS 
Up-regulation of complement components was found in a number of neurodegenerative 

diseases, including ALS, AD and glaucoma (Rosen et al., 1993, Alexander et al., 2008). 

Transgenic hSOD1G93A rats with end-stage disease showed a remarkable deposition of 

complement factor C3/C3b and significant up-regulation of the C5aR1 and C5L2 in the 

lumbar spinal cord (Woodruff et al., 2008a). In the mutant hSOD1G93A mice, elevated 

levels of complement factors (C1qB, C4, factor B, C3/C3b, C5 and C5aR1) and down-

regulation of complement regulators (CD55 and CD59a) were found during disease 

progression. Interestingly, increased microglial C5aR1 expression surrounding the regions 

of motor neuron death were shown in end-stage hSOD1G93A mice (Lee et al., 2013). With 

chronic oral application of PMX205, a selective C5aR1 antagonist, transgenic SOD1G93A 

rats displayed reduced astroglial proliferation in the regions of motor neuron degeneration, 

resulting in enhanced survival times (Woodruff et al., 2008a). Moreover, C5aR1-deleted 

hSOD1G93A mice showed a similarly significant extension in survival compared with 

SOD1G93A (Woodruff et al., 2014). Taken together, these findings suggest that complement 

system is over-activated in animal models of ALS and C5a-C5aR1 signalling contributes to 

the disease. 

 

1.9 Immune cells of peripheral nervous system 
The peripheral nervous system (PNS) is part of the nervous system, which contains the 

nerves and ganglia that reside outside of the spinal cord and brain. The primary function of 

the PNS is to facilitate the complex movements and behaviours by connecting the central 

nervous system to the organs, limbs, and skin. The PNS can be divided into two parts, the 

somatic nervous system and the autonomic nervous system. The somatic nervous system 

contains motor axons that innervate skeletal muscles, while the autonomic nervous system 

consists of cells and axons that connect to smooth muscle, cardiac muscle and glands.  

 

The peripheral nervous system has long been regarded as an immunologically privileged 

site. It is separated from the external environment by the blood-nerve barrier (BNB), a 

highly specialised unit that limits the entry of immune cells and soluble mediators (Kieseier 

et al., 2006). However, the restriction is not complete as cells or soluble factors can easily 

access the PNS at the root entry and exit zones and at the nerve terminals where no 

barrier exists. Activated T and B-lymphocytes constantly patrol throughout the PNS. 



 18 

Antigen-presenting cells (APC), like macrophages, and Schwann cells also contribute to 

the local immune networks (Wekerle et al., 1986).  

 

1.9.1 Schwann cell 
Schwann cell (SC), the primary glial cell of peripheral nervous system, is derived from 

neural crest cells located in the dorsal neural tube (Jessen and Mirsky, 2005). SC has 

critical roles in development, differentiation, physiological homoeostasis, myelination and 

nerve regeneration (Bunge, 1993). During the development of PNS, SC interacts with both 

the extracellular matrix and axons to form the myelin sheath that insulates axons and 

dramatically increases nerve conduction velocity (Balice-Gordon et al., 1998).  In addition 

to myelinating Schwann cells, they can be further divided into three classes: non-

myelinating Schwann cell, the presynaptic Schwann cell and the satellite cell. By contrast 

to myelinating Schwann cells which envelops large-diameter axons, non-myelinating 

Schwann cells can surround the small-diameter axons (Griffin and Thompson, 2008). The 

presynaptic Schwann cells, also known as terminal Schwann cells, are found at 

neuromuscular junctions (NMJ). These play several active and essential roles in synaptic 

function, formation and maintenance of NMJs (Corfas et al., 2004). Following injury to 

mammalian peripheral nerves, presynaptic Schwann cells extend their processes guiding 

reinnervating axons to endplates (Son and Thompson, 1995). The satellite cells are 

associated with the neuronal cell bodies of ganglia (Hanani, 2005).  

 

1.9.2 Macrophage 
Macrophages are phagocytes that were firstly identified by zoologist Metchnikoff in the late 

19th century. They form the mononuclear phagocytic system (MPS) along with monocytes 

and dendritic cells. The MPS, neutrophils and mast cells are considered as ‘professional’ 

phagocytic cells, which express a number of receptors on their surface detecting signals 

that are not normally presented in healthy tissues. For instance, scavenger receptors are 

responsible for binding apoptotic and necrotic cells, opsonized pathogen sand cell debris 

(Murray and Wynn, 2011). 

 

Macrophages are located in all tissues throughout the body and perform important various 

immune surveillance roles, including phagocytosis, antigen presentation and immune 

responses. They can be categorized into subpopulations according to their anatomical 

location and functional phenotype, such as osteoclasts (bone), alveolar macorphages 
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(lung), histiocytes (interstitial connective tissue) and Kupffer cells (liver) (Murray and 

Wynn, 2011). Classification of macrophages depends on their distinct functions, including 

activated macrophages (M1 macrophages) and alternatively activated macrophages (M2 

macrophages) (Mantovani et al., 2005). M1 macrophages activation is induced by 

interferon (IFN)-γ alone or in combination with Toll-like receptor ligands (e.g. 

lipopolysaccharide (LPS)) or cytokines (e.g. tumor necrosis factor (TNF) and Granulocyte-

macrophage colony-stimulating factor (GM-CSF)), whereas interleukin (IL)-4 or IL-13 

stimulates an alternative M2 fashion of macrophage activation (Mantovani et al., 2005). 

 

In the peripheral nervous system, there are large amounts of resident macrophages 

located within the endoneurium of peripheral nerves (Griffin et al., 1993). When 

inflammation or injury occurs, a great number of hematogenous macrophages rapidly 

invade the nerve following PNS lesion. The recruitment of macrophages is mediated by 

chemokines, such as macrophage inflammatory protein (MIP)-1α and transforming growth 

factor (TGF)-β1 (Zou et al., 1999, Kiefer et al., 1996). In addition, complement 

components, specifically anaphylatoxin C5a, can act as chemotactic agents to attract 

macrophages (Don et al., 2007).   

 

1.9.3 T cell lymphocytes 
T lymphocytes, also known as T cells, are one of the major lymphocyte populations in the 

immune system. T cells originate from the pluripotent hematopoietic stem cell population 

produced by bone marrow and they mature in the thymus. The thymus is the primary 

organ for T-lymphocyte development where T cells differentiate into helper, cytotoxic or 

regulatory T cells. The major function of T cells is to work with B cells, another type of 

lymphocyte that develop in bone marrow, to provide adaptive immunity. Unlike B cells, T 

cells cannot detect pathogens by themselves. They need the assistance of antigen-

presenting cells (APC) like dendritic cells or macrophages, which engulf and digest 

pathogens becoming antigen fragments. These fragments are then presented on Major 

Histocompatibility Complex (MHC) class II, a protein located on the surface of APCs, to 

activate the immune response of T cells (Janeway et al., 2011). 

 

T cells are subdivided into several groups based on their lineage markers and functional 

activities. CD4 and CD8 are the major surface co-receptors that define two separate T cell 

lineages with different functions. CD4+ cells recognize antigen in the context of MHC class 
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II molecules and produce cytokines as effector helper T cells. CD8+ cells are activated by 

antigenic peptides presented by MHC class I molecules and generate cytotoxic T cells 

(Broere et al., 2011). 

 

Helper T cells and cytotoxic T cells are the two major classes of T cells. Helper T cells are 

the most common T cells, which make up over 75% of the T cell population. They perform 

their immune functions mainly through secreting cytokines, which assist B cells producing 

antibodies and recruiting phagocytic cells such as natural killer (NK) cells and 

macrophages to the site of infection. By contrast to helper T cells that indirectly exert their 

functions by communicating with other cells, cytotoxic T cells attack and destroy 

pathogens directly. Then are able to trigger the apoptosis, known as programmed cell 

death (PCD), in the targeted cells by releasing specialised lytic granules upon recognition 

of antigens on the surface or their targets (Janeway et al., 2011). 

 

The other major subset of T cells is regulatory T cells (Tregs), which play pivotal roles in 

the development and maintenance of peripheral tolerance, modulation of immune 

response and prevention of autoimmune disease. The majority of Tregs appears within the 

CD4+ T cell population, and can be divided into naturally occurring (nTreg) and inducible 

(iTreg) subtypes. nTregs are derived from thymus and are characterized by constitutive 

expression of the α-chain of the IL-2 receptor (CD25) and the transcription factor Foxp3, 

while iTregs arise from the naïve CD4+ T cells in the periphery (Broere et al., 2011). 

 

1.10 Immune cells in ALS mouse models 
A common feature of ALS and other neurodegenerative diseases is the occurrence of a 

neuroinflammatory reaction consisting of activated glial cells, mostly microglia and 

astrocytes. Microglia are considered as the resident macrophages of the CNS while 

astrocytes are the largest glial cell population within the brain (Kreutzberg, 1996, Dong and 

Benveniste, 2001). Activation of microglia and astrocytes were found in both patients and 

mouse models of ALS (McGeer and McGeer, 2002, Hall et al., 1998). In concert with CNS 

resident immune cells, the peripheral immune cells, and in particular T cells, play a pivotal 

role in ALS pathogenesis.  Infiltrating T cells were found in spinal cord tissue of ALS 

patients and mouse models (Engelhardt et al., 1993, Kawamata et al., 1992, Alexianu et 

al., 2001). Recent studies have suggested a neuroprotective role of CD4+ T lymphocytes 

in mutant SOD1 mice (Beers et al., 2008, Banerjee et al., 2008, Chiu et al., 2008). 
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Evidence shows impaired T cell immune function and diminished T cell proliferative 

capacity in hSOD1G93A mice as well as increased number of necrotic lymphocytes in the 

spleen (Banerjee et al., 2008).  

 

When hSOD1G93A transgenic mice were bred with functional T lymphocytes deficient or 

CD4+ T lymphocytes deficient mice (for instance, mice lacking recombination activating 

gene 2 (RAG2), hSOD1G93A x RAG2-/- mice; CD4 knockout, hSOD1G93A x CD4-/- mice, and 

T cell receptor β chain (TCR) deficient, hSOD1G93A x TCRβ-/- mice), their motor neuron 

disease progression was accelerated and the survival length was shortened, and these 

mutant SOD1 mice displayed attenuated expression of morphological markers of microglia 

activation and microglial neurotropic factors such as IGF (insulin-like growth factor)-1 

(Beers et al., 2008, Chiu et al., 2008). Interestingly, the adoptive T lymphocytes transfer 

from WT donor mice proved to be protective in a mutant SOD1 transgenic mouse model 

(Beers et al., 2008). The combined results indicate that T lymphocytes play an 

endogenous neuroprotective role in ALS by modulating the trophic/cytotoxic balance of 

glia. 

 

1.11 Muscle denervation in ALS mouse models 
Motoneuron death is a prominent feature of ALS. However, rescuing motor neurons from 

death has only a limited impact on the progression of disease and lifespan. It does not 

slow down muscle denervation in either SOD1 mouse models or humans (Fischer et al., 

2004, Gould, 2006, Kostic et al., 1997, Sagot et al., 1995). 

 
The skeletal muscle is one of the three types of muscle in the body, along with smooth and 

cardiac muscle. It represents the majority of muscle tissue, which makes up about 55% of 

individual body mass in most mammals (Zierath and Hawley, 2004). Skeletal muscle is 

composed of various muscle fibre types, which are distinguished by the distribution of 

different myosin heavy chian (MHC) isoforms. Generally, mammalian skeletal muscles 

consist of a “slow” myosin isoform (MHCI), and three “fast” myosin isoforms (MHCIIa, IId/x 

and IIb). Muscle fibres contain only one myosin isoform are regarded as pure fibres (type I 

with MHCI, type IIA with MHCIIa, type IID/X with MHCIId/x, and type IIB with MHCIIb). 

Fibres containing two myosin isoforms are referred as hybrid fibres, which can be 

subgrouped into: type IC (MHCI>MHCIIa); type IIC (MHCIIa>MHCI); type IIAD 

(MHCIIa>MHCIId); type IIDA (MHCIId>MHCIIa); type IIDB (MHCIId>MHCIIb), and type 
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IIBD (MHCIIb>MHCIId) (Pette and Staron, 2000). Under normal conditions, human and 

other large mammals do not express MHCIIb. Interestingly, MHCIIx transcript are more 

abundant in type IIB fibres of human skeletal muscle (Smerdu et al., 1994).  

 

In this project, tibialis anterior (TA) and soleus (SOL) muscles from hSOD1G93A mice and 

age-matched wild-type mice were used. Previous studies have shown that in C57BL6J 

mice, the fast-twitch tibialis anterior muscle consisted predominantly type IIB (59.68 ± 

9.95%) and type IIDB (33.83 ± 15.85%) fibres while type IIAD, IID, IIA, I, and IC/IIC fibres 

were also observed. In the soleus muscle, the majority of muscle fibres are type I (37.42 ± 

8.20%) and type IIA (38.62 ± 6.81%) where type I, IIA, IIAD and IID fibres were also seen 

(Augusto et al., 2004). However, several studies have termed the soleus muscle as a 

slow-twitch muscle as it is primarily composed of slow fibres (type I 58% vs type II 42%). 

Therefore, I defined the soleus muscle as a slow-twitch muscle in the present study 

(Barclay et al., 1993, Atkin et al., 2005, Hegedus et al., 2007).  

 

Muscle fibres are dynamic structures and their phenotypes change in response to various 

conditions, such as altered neuromuscular activity, mechanical loading or unloading, 

different hormonal profiles, and aging (Pette and Staron, 2000). Animal models of ALS 

also demonstrated skeletal muscle fibre-type shifting during disease progression. In 

hSOD1G93A mice, tibialis anterior muscles showed a 65% decreased in the number of 

innervated IIB fibres and a 28% reduction in the number of IID/X fibres around the age of 

50 days (P50) prior to disease onset, while the number of type IIA muscle fibres increased 

by nearly twofold. These alternations suggested a preferential loss of the most forceful 

motor units containing type IIB fibres in tibialis anterior muscles of hSOD1G93A mouse, as 

well as activity-dependent fibre type transition from fast fatigable fibres (FF = IIB) and fast 

fatigue intermediate fibres (FI = IID/X) to slower fatigue resistant (FR) type IIA fibres 

(Hegedus et al., 2007, Hegedus et al., 2008). On the other hand, the soleus muscle that is 

primarily composed of slow fibres showed no denervation at 30 days of age (P30) whereas 

tibialis anterior muscle denervation occurs demonstrated a 40% of denervation at the 

same age (Vinsant et al., 2013). These results suggest that muscle denervation occurs in 

a fast fibre preferential manner, which is attributed to the selective vulnerability of large 

motor neurons innervating fast-twitch fibres in hSOD1G93A mouse model of ALS (Frey et 

al., 2000, Pun et al., 2006, Hegedus et al., 2007). This selective vulnerability of fast-twitch 

muscle (tibialis anterior) in ALS has also been confirmed by a separated study using 
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SOD1G93Adl, a low-copy mutant human SOD1 mouse model that shows a slower course of 

disease (Acevedo-Arozena et al., 2011). 
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Figure 1. Time course of clinical and neuropathological events in high copy number 
transgenic hSOD1G93A mice. 
Mice develop hindlimb tremor, weakeness and locomotor deficits at about 90 days which is 

preceded by distal synaptic and axonal degeneration. These symptoms are followed by 

fatal paralysis about 1 month later concomitant with spinal motor neuron loss and reactive 

gliosis (Figure adpated from (Turner and Talbot, 2008). 
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Figure 2. Activation pathways of complement. 
The complement system can be activated through four pathways: the classical, lectin, 

alternative and extrinsic protease pathways. The classical pathway is triggered by the 

recognition of an antigen-antibody complex by C1q. C1q binds to a target surface, 

activating C1r and C1s that in turn cleaves C2 and C4 to form the C3 convertase C4b2b. 

The lectin pathway can be initiated by binding of mannose-binding lectins (MBLs) to 

certain carbohydrates expressed on the pathogen surface. This activates the MBL-

associated serine protease (MASP) 2, cleaving C4 and C2 to form the C3 convertase of 

C4b2b. The alternative pathway is activated by spontaneous low level hydrolysis of C3 

generating C3(H2O) which forms a complex with factor B, allowing cleavage by factor D to 

generate the fluid-phase C3 convertase C3(H2O)Bb. This fluid phase enzyme cleaves C3 

and deposits C3b on surfaces. Factor B then binds to surface-bound C3b to form C3bB 

which can be cleaved by factor D to form the surface-bound C3 convertase C3bBb. 

Regardless of the pathway involved, activation of the complement cascade leads to the 

cleavage of C3 and C5, forming the anaphylatoxins C3a and C5a as well as the C5b 

fragment. C5b generation leads to the formation of the membrane attack complex (MAC), 

a lipophilic complex that forms pores in the pathogen membrane, leading to cell lysis. A 

fourth pathway where C3 and C5 can be directly cleaved by proteolytic enzymes such as 

thrombin and kallikrein has been detected and named the ‘extrinsic protease’ pathway. 

 

CD55 and CD59 are the main complement regulatory proteins. CD55 promotes the 

degradation of C3- and C5-convertases, while CD59 inhibits C5b-9 (membrane attack 

complex) formation by interfering the binding of C9 units to C5b-8 complex. 
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Figure 3. Structure of C3a receptor. 
C3aR has a seven transmembrane helices structure. It contains a unique reduced N-

terminal domain and a remarkable large second extracellular loop between the fourth and 

fifth transmembrane domains, which is required for C3a binding (Figure adapted from 

(Klos et al., 2013)) 
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Figure 4. Structure of C5a receptor 1. 
The seven transmembrane helices of C5aR1 contain different charged loop regions. The 

N-terminal extracellular domain of the receptor, and a secondary site, involving Glu199 

and Arg206 of C5aR1, are involved in the interaction with C5a (Figure adapted from (Klos 

et al., 2013)). 
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Chapter 2 

 

General Methodology 
 

 

 

2.1 Mice 
Transgenic hSOD1G93A mice with high copy number (25 copies of hSOD1G93A transgene) 

were purchased from Jackson Laboratory (Bar Harbor, ME, USA) and were bred on 

C57BL/6J background to generate hSOD1G93A mice and litter matched wild-type (WT) 

control mice. These hSOD1G93A mice carry a high copy number of the mutated allele of the 

human (h) SOD1 gene where glycine at codon 93 is replaced by alanine. Homozygous 

C5aR1 deficient mice (C5aR1-/-) were kindly provided by Dr Wetsel and described 

previously (Hollmann et al., 2008).  

 

To generate hSOD1G93A mice lacking C5aR1 (hSOD1G93A × C5aR1-/-) and C3aR 

(hSOD1G93A × C3aR-/-), transgenic heterozygous hSOD1G93A males were first cross-bred 

with C5aR1-/- and C3aR-/- females to generate F1 progeny (hSOD1G93A × C5aR1+/- and 

hSOD1G93A × C3aR+/-). hSOD1G93A × C5aR1+/- and hSOD1G93A × C3aR+/- males were cross 

bred with C5aR1-/- and C3aR-/- females to obtain F2 progeny (hSOD1G93A × C5aR1-/- and 

hSOD1G93A × C3aR-/-).  

 

The disease of amyotrophic lateral sclerosis (ALS) in hSOD1G93A mice were categorised 

into four stages, pre-symptomatic (P30), onset (P70), mid-symptomatic (P130) and end 

stages (P175) according to the symptoms they display (Lee et al., 2013)(Table 1). 

 

Female WT, hSOD1G93A, WT × C5aR1-/-, hSOD1G93A × C5aR1-/-, WT × C3aR-/- and 

hSOD1G93A × C3aR-/- mice at onset, mid-symptomatic and end stages were employed in 

this study. All experimental procedures were approved by the University of Queensland 

Animal Ethics Committee (Permit Number 433-12), and complied ethical guidelines 
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regarding animal experimentation (Drummond, 2009).  In addition, all procedures were 

conducted in accordance with the Queensland Government Animal Research Act 2001 

and Protection Regulations (2002 and 2008), and conformed to the Australian Code for the 

Care and Use of Animals for Scientific Purposes, 8th Edition (National Health and Medical 

Research Council, 2013). 

 

2.2 Immunohistochemistry 
Transverse cryosections (10 μm) from the tibialis anterior (TA) and soleus (SOL) muscles 

of WT and mutant hSOD1G93A mice were stained to localise the expression of C5aR1 and 

C3aR with specific cell-type markers for neuromuscular junctions (alpha-Bungaratoxin, 

1:5000, Invitrogen/Life Technologies, Grand Island, NY, USA), Schwann cells (rabbit 

S100, 1:1000, DAKO, Kyoto, Japan), macrophages (rat CD11b, 1:250, Abcam, 

Cambridge, MA, USA), helper T cells (rat CD4, 1:250, Abcam, Cambridge, MA, USA; 

rabbit CD4, 1:50, Novus Biologicals, Littleton, CO, USA), cytotoxic T cells (rat CD8, 1:250, 

Abcam, Cambridge, MA, USA. Cryosections were blocked in phosphate-bufferd saline 

(PBS) containing 2% normal goat serum (Sigma, USA) or 3% donkey serum (Sigma, 

USA), and 0.2% Triton X-100 (Sigma, USA) at room temperature for 35 minutes and 

incubated with primary antibodies at 4 °C overnight. After incubation, the sections were 

washed in PBS and then incubated with an appropriate secondary antibody at room 

temperature for 2 hours: Alexa 555 goat anti-rat (1:1000, Invitrogen/Life Technologies, 

Carlsbad, CA, USA), Alexa 488 goat anti-rat (1:600, Invitrogen/Life Technologies, 

Carlsbad, CA, USA), Alexa 488 goat anti-rabbit (1:600, Invitrogen/Life Technologies, 

Mulgrave, VIC, Australia), Alexa 488 donkey anti-goat (1:600, Invitrogen/Life 

Technologies, Carlsbad, CA, USA) and Alexa 594 donkey anti-rat (1:1000, Invitrogen/Life 

Technologies, Carlsbad, CA, USA). All the primary and secondary antibodies were diluted 

in PBS with 2% bovine serum albumin and 0.2% Triton X-100. All sections were incubated 

with 4,6-diamidino-2-phenylindole (DAPI) (Invitrogen/Life Technologies) for 10 minutes at 

room temperature prior to mounted with Prolong Gold Anti-Fade medium (Invitrogen, Life 

Technologies). Fluorescent signals were observed using a Zeiss LSM Meta 510 upright 

confocal microscope with a Plan-Apochromat 63× oil objective (Carl Zeiss Inc., 

Oberkochen, Germany) 
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2.3 Quantification of peripheral immune cells 
Serial sections of TA and SOL muscles were stained for macrophages (CD11b) and helper 

T cells (CD4) in WT, hSOD1G93A, WT × C5aR1-/-, hSOD1G93A × C5aR1-/-, WT×C3aR-/-, and 

hSOD1G93A × C3aR-/- mice (10 sections spaced 100 μm apart per animal, n = 3 

mice/group). Five random regions (874 × 655 × 10 μm) from each section were selected 

without any knowledge of the presence of positive cells by viewing only in DAPI channel. 

Each selected region was imaged with standardised settings and then saved. The 

numbers of fluorescently labelled cells in each section were counted at 20× magnification 

and expressed as cells/mm3.  

 

Given that the CD11b positive cells may also mark other peripheral immune cells, I used 

CD8 (cytotoxic T cell) and Ly6B (neutrophil) antibodies to distinguish CD11b positive 

macrophages. As minimal number of CD8+ or Ly6B+ cells were detected in either tibialis 

anterior or soleus muscles from hSOD1G93A, hSOD1G93A × C5aR1-/-, hSOD1G93A × C3aR-/- 

and wild-type mice (data not shown), the vast majority of CD11 positive cells shown in this 

study were macrophages (Christensen et al., 2001, Fink et al., 2014). 

 

2.4 Real-time quantitative PCR 
Total RNA was isolated from TA muscle of WT and hSOD1G93A mice using Rneasy Lipid 

Tissue extraction kit (QIAGEN Inc., Alameda, CA, USA) according to the manufacturer’s 

protocol. The total RNA was purified using Turbo DNAse treatment (Ambio, Life 

Techonologies) then converted to cDNA by means of a reverse transcription kit (Agilent 

Technologies Inc., Santa Clara, CA, USA) according to the manufacturer’s protocol. Target 

genes of interest were amplified using commercial TaqMan probes (Applied Biosystems, 

Life Technologies)(Table 2). Relative target gene expression to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) was determined using this formula: 2-∆CT where ∆Ct = 

(Ct target gene – Ct GAPDH) (Livak and Schmittgen, 2001). Final measures are presented 

as relative levels of gene expression in hSOD1G93A mice compared with expression in WT 

controls. (n = 5 mice/group) 

 

2.5 Western blot analysis 

Muscle homogenates from hSOD1G93A and WT mice at different disease stages were 

resolved on a 10% SDS-PAGE gel and transferred to nitrocellulose membranes (Pall, Ann 

Arbor, MI, USA). Membranes were blocked with 2.5% milk in Tris-buffered saline (TBS)-
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Tween (TBST) solution (containing 1× TBS and 0.1% Tween 20) for one hour at room 

temperature and were subsequently incubated with anti-C5aR1 antibody overnight at 4 °C 

(1:2,500 dilution in 5% BSA-TBST; BMA Biomedical, Augst, Switzerland). Membranes 

were washed with TBST 3 × 10 minutes and then incubated with the goat anti-chicken 

horseradish peroxidase (HRP) (1:15,000 dilution in TBST, GE Healthcare, Pittsburgh, PA, 

USA) for one hour at room temperature. After a final wash with TBST for 6 × 5 minutes, 

signals were detected using the ECL system (GE Healthcare Biosciences, Pittsburgh, PA, 

USA). Blots were stripped and reprobed with anti-GAPDH (1:15,000; Millipore, Billerica, 

MA, USA) and then detected with sheep anti-mouse HRP (1:4,000; GE Healthcare) as 

loading control. Semi-quantitative densitometric analysis of these immunoreactive bands 

was carried out to determine differences in C5aR1 expression levels between hSOD1G93A 

and WT samples at different disease stages as described previously (Abramoff et al., 

2004). (n = 4 mice/group) 

 

2.6 ELISA 

96-well plates (Greiner Bio-One, Frickenhausen, Germany) were pre-coated with 

monoclonal rat anti-mouse C5a capture antibody (Clone I52 – 1486; BD Pharmingen, San 

Diego, CA, USA) diluted in coating buffer (100μM, NaHCO3, 34 μM Na2CO3, pH 9.5) 

overnight at 4°C in a sealed humidified container. This capture antibody is specific for a 

neo-epitope exposed only in mouse C5a/C5a desArg and does not cross-react with C5 

(Livak and Schmittgen, 2001). Following the plate being blocked for 1 hour at room 

temperature with assay diluent (10% Fetal Calf Serum/PBS), C5a standard and TA muscle 

homogenates was incubated for 2 hours at room temperature. The plates were 

subsequently incubated with biotinylated rat anti-mouse C5a detection antibody (clone I52-

278; BD Pharmingen) for 1 hour at room temperature, and then incubated with 

Streptavidin-HRP conjugate for 30 minutes at room temperature. Tetramethylbenzidine 

(Sigma) substrate was used as the chromogen and the plate was read at 450nm. Levels of 

C5a in TA muscle samples were adjusted to micrograms per protein and expressed as 

nanograms of C5a per microgram of protein. (n = 6 mice/group) 

 

2.7 Statistical analysis 
All measures were performed using GraphPad Prism 6.0 (GraphPad Software Inc., San 

Diego, CA, USA). For the results from quantitative real time PCR, western blotting, ELISA, 

statistical differences between hSOD1G93A and WT mice were analysed using two-tailed t-
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test at each stage of disease progression. The statistical differences between WT, 

hSOD1G93A, WT × C5aR1-/-, hSOD1G93A × C5aR1-/-, WT × C3aR-/- and hSOD1G93A × C3aR-

/-mice for peripheral immune cell numbers were analysed using two-way analysis of 

variance (ANOVA).  All data are presented as mean ± SEM and differences were 

considered significant when P ≤ 0.05. 
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Table 1. Different stages defined in amyotrophic lateral sclerosis 

Stage Age Phenotye 
Pre-symptomatic 30 days postnatal No signs of motor deficit 
Onset 70 days postnatal Initial signs of motor deficit (grip 

strength) 
Mid-symptomatic 130 days postnatal Weakness in hind-limb and tremor 

when suspended by the tail 
End 150 to 175 days postnatal Full paralysis of lower limbs and 

loss of righting reflex 
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Table 2. Taqman probes used for quantitative PCR 

Gene of interest Catalogue number 
C1qB Mm01179619_m1  
C3 Mm01232779_m1  
C3aR Mm01184110_m1 
C4 Mm00437896_g1 
C5 Mm00439275_m1  
C5aR1 Mm00500292_s1  
CD55 Mm00438377_m1  
CD59a Mm00483149_m1 
C9 Mm00442739_m1 
Factor B Mm00433909_m1 
Mannose binding lectin 1 Mm00495413_m1 
Mannose binding lectin 2 Mm00487623_m1 
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Chapter 3 

 

Expression of general complement 
components in the skeletal muscle of 

hSOD1G93A mice 
 

 

 

3.1 Introduction 
The complement system comprises numerous plasma and membrane-bound proteins 

which serve to recognize and destruct invading pathogenic microorganisms while 

preserving normal cells (Walport, 2001). In mammals, the liver is the primary site of 

production of the most complement components. Over the last few decades, studies have 

shown various complement proteins synthesized by astrocytes, microglia, and neurons in 

the central nervous system (CNS) (Bonifati and Kishore, 2007, van Beek et al., 2003, 

Thomas et al., 2000). Under normal conditions, local synthesis of complement 

components in the CNS is relatively low. However, when stimulated with inflammatory 

cytokines, glial and neuronal cells in the CNS can assemble a wide variety of complement 

components (Levi-Strauss and Mallat, 1987, Thomas et al., 2000). 

 

It has long been suggested that complement is involved in demyelination, 

neurodegenerative disorders and other CNS pathologies (Morgan and Gasque, 1996).  In 

the last two decades, the complement system has been implicated in the pathogenesis of 

amyotrophic lateral sclerosis (ALS). Significant deposition of C3 was first found in the 

spinal cord and motor cortex of ALS patients (Donnenfeld et al., 1984). In addition, 

increased C3c in cerebrospinal fluid (CSF) and increased serum C4 has been detected 

(Apostolski et al., 1991, Kawamata et al., 1992). Moreover, up-regulation of C1q, C4d, C2, 

C3c, C3dg, and Factor H has been seen in various tissues in ALS patients (Tsuboi and 

Yamada, 1994, Trbojevic-Cepe et al., 1998, Grewal et al., 1999, Jiang et al., 2005, 
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Goldknopf et al., 2006). A recent study conducted by our lab has also shown elevated 

levels of C5a and C5b-9 in the plasma of ALS patients (Mantovani et al., 2014).  

 

In addition to the findings of increased complement component in ALS patients, over-

expression of complement factors has been shown in animal models of ALS. In the 

transgenic SOD1G93A mice, increased expression of C1q in ventral motor neurons from 

lumbar spinal cord was found using microarray analysis (Perrin et al., 2005). Another study 

demonstrated up-regulation of C1q in lumbar spinal cord motor neurons in two other 

mutant SOD animal models, SOD1G37R and SOD1G85R mice. Furthermore, expression of 

C1q protein was also found on motor neurons in these two SOD1 mutants (Lobsiger et al., 

2007). Elevated C1q expression in SOD transgenic mice was further demonstrated by two 

other studies (Ferraiuolo et al., 2007, Fukada et al., 2007). Taken together, these results 

suggest that complement activation is involved in the disease progression of ALS mice 

models. 

 

The role of complement activation in skeletal muscle during ALS pathogenesis has not 

been well studied. In mSOD1G93A mice lacking C4, decreased macrophage activation was 

observed. Since C4 is necessary for the activation of both the classical and lectin 

complement pathways, this result suggests that C4 deposition in skeletal muscle of ALS 

animal model may lead to the activation of downstream complement cascade and 

subsequent macrophage recruitment (Chiu et al., 2009). To further understand the role of 

complement plays in skeletal muscle, we quantified the expression levels of the major 

complement components in hSOD1G93A mice and compared to wild-type (WT) 

counterparts in this chapter. 

 

3.2 Results 
3.2.1  Up-regulation of major complement components in skeletal muscle of 
hSOD1G93A mice 
Previous studies from our lab have shown up-regulation of major complement components 

in the lumbar spinal cord of hSOD1G93A mice, however it is unclear whether the 

complement system is activated in the skeletal muscle of hSOD1G93A mice during disease 

progression (Lee et al., 2013). To investigate this, the mRNA levels of the key initiating 

components (classical pathway - C1qB; lectin pathway – MBL-1/2; alternative pathway - 

factor B), a central protein for both classical and lectin pathways (C4), the central 
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component of all complement cascades (C3), and the major unit of the membrane attack 

complex (C9) were measured using quantitative real-time PCR in the tibialis anterior (TA) 

muscle of wild-type (WT) and hSOD1G93A mice, respectively. 

 

C1qB is the b chain of complement 1 subcomponent q (C1q). It reflects the expression 

level of C1q, the initiator of classical complement cascade. The results showed significant 

increase of C1qB transcripts by 2.1-fold and 6.5-fold at mid-symptomatic (P130) and end-

stage (P175) of disease in hSOD1G93A mice respectively when compared to wild-type mice 

(n = 5, *p < 0.05; Figure 5). Factor B, an initiator of the alternative complement activation 

pathway, also demonstrated increased transcript levels by 1.7-fold, 2.3-fold and 7.7-fold at 

onset, mid-symptomatic and end-stage disease in hSOD1G93A mice when compared to 

age-matched wild-type mice (n = 5, *p < 0.05; Figure 6). C4 illustrated similar changes to 

that of C1qB and factor B, where its mRNA expression levels increased by 2.2-fold, 3.3-

fold and 17.1-fold at onset, mid-symptomatic and end-stage disease in hSOD1G93A mice (n 

= 5, *p < 0.05, **p < 0.01; Figure 7). Examination of mRNA levels on mannose binding 

lectin 1 and mannose binding lectin 2, initiators of the lectin pathway, were also performed. 

However, the results showed undetectable levels of MBL-1/2 mRNA in tibialis anterior 

muscle of either hSOD1G93A or wild-type mice (data not shown). 

 

In addition, mRNA expression levels of C3 were also examined. C3 plays a central role in 

the activation of all complement pathways. C3 displayed a marked increase in mRNA 

levels by 1.8-fold and 5.6-fold increase at mid-symptomatic (P130) and at end-stage 

(P175) of disease respectively (n = 5, *p < 0.05; Figure 8). In short, expression levels of 

initiator factor C1q, factor B, and C4, and central complement cascade component C3 

were found significantly increased in hSOD1G93A mice. These results suggest that 

activation of complement system in skeletal muscle of hSOD1G93A mice may contribute to 

the disease progression of ALS. 

 
3.2.2 Altered expression of complement regulators and receptors 
Decay-accelerating factor ([DAF], CD55) is a glycosylphosphatidylinositol (GPI) linked 

membrane inhibitor of complement. It inhibits the activation of complement by interfering 

with the functional activity of C3 and C5 convertases in both the classical and alternative 

pathways. It is widely distributed on both vascular and non-vascular cell types (Lublin and 

Atkinson, 1989, Miwa and Song, 2001). Previous study from our laboratory has 
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demonstrated decreased expression of CD55 at both mRNA and protein levels in the 

spinal cord of hSOD1G93A mice at end-stage disease (Lee et al., 2013). Here we examined 

the expression of CD55 in the tibialis anterior muscle of hSOD1G93A mice and showed that 

its mRNA levels were significantly increased by 1.5-fold and 1.7-fold at onset and end-

stage disease respectively when compared to age-matched wild-type mice (n = 5, *p < 

0.05; Figure 9).  

 

CD59a is the primary regulator of membrane attack complex assembly in mouse 

(Baalasubramanian et al., 2004). The mRNA levels of CD59a altered in a similar fashion to 

that of CD55; namely a 1.3-fold and a 2.4-fold increase of its mRNA expression were 

observed at onset and end-stage disease respectively in hSOD1G93A mice when compared 

to wild-type controls (n = 5, *p < 0.05, **p < 0.01; Figure 10). Besides the regulator CD59a, 

the major component of membrane attack complex C9 was also measured. However, 

undetectable mRNA expression levels of C9 were found in tibialis anterior muscle of either 

hSOD1G93A mice or wild-type counterparts (data not shown). Taken together, these results 

suggest that the homeostasis of the complement system was disrupted in the skeletal 

muscle of hSOD1G93A mice. 

 

3.3 Discussion 
It has been well documented that activation of complement cascade contributes to the 

disease progression of ALS in both human patients and rodent models (Lee et al., 2012a). 

In the hSOD1G93A transgenic mice, previous studies by our group have demonstrated that 

complement factors, including C1qB, factor B, C4 and C3, were strongly up-regulated in 

the central nervous system (Lee et al., 2013). However, little is known about the 

complement activation in the skeletal muscle of ALS mouse models.  Since skeletal 

muscle is a direct target of SOD1 mutation, in this study, I sought to investigate the 

expression of the major complement factors and its regulator in the skeletal muscle of 

hSOD1G93A mice (Dobrowolny et al., 2008). 

 

The present study has for the first time demonstrated the up-regulation of mRNA 

expression in C1qB, factor B, C4 and C3, the initiators and central components of 

complement cascades, in the tibialis anterior muscle of hSOD1G93A mice during disease 

progression. It has been identified that the mRNA expression levels of C1qB, factor B, C4 

and C3 were up-regulated in the spinal cord of hSOD1G93A mice throughout symptomatic 
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phases (Lee et al., 2013). Here I revealed that this up-regulation of complement factors is 

not restricted to the central nervous system, but also applies to skeletal muscle.  

 

Skeletal muscle is an extremely complex and heterogeneous tissue composed of a 

spectrum of fibre types with different structure, molecular composition and functions. 

Recent evidence suggests that skeletal muscle is a primary target in hSOD1G93A mice, and 

a retrograde and progressive sequential pattern of degeneration has been proposed where 

hSOD1G93A mutation causes muscle atrophy, followed by fragmentation of their 

neuromuscular junction (NMJ), retrograde axonal degeneration and eventually motor 

neuron death (Dobrowolny et al., 2008, Dupuis and Loeffler, 2009, Zhou et al., 2010, 

Wong and Martin, 2010). In the present study, up-regulation of C1qB and C3 mRNA 

expressions was observed at mid-symptomatic (P130) age in tibialis anterior muscles. In 

addition, it has been previously shown that complement components C1q and C3b/iC3b 

are deposited at NMJ at pre-symptomatic (47 days), prior to the appearance of clinical 

symptoms, and remain detectable until mid-symptomatic (126 days) (Heurich et al., 2011). 

These findings implicate that activation of complement may contribute to the 

degenerations of distal axons in hSOD1G93A mice during disease progression.  

 

Besides C1qB and C3, factor B and C4 mRNAs transcripts were also significantly 

increased in the tibialis anterior muscles of hSOD1G93A mice during disease progression, 

compared to wild-type controls. Factor B is a 93-kDa single peptide chain protein. It 

initiates the activation of alternative pathway by binding to the spontaneously hydrolysed 

C3. Upon activation, factor B is cleaved into the fragments Ba and Bb by factor D, 

generating C3 converatase C3bBb (Ricklin et al., 2010). C4 is a paralogous to C3 and C5, 

and shares up to 30% sequence identity with the two complement proteins. It is a central 

component in the classical and lectin pathways where its major fragment C4b plays an 

important role in mediating downstream complement activation (Mortensen et al., 2015). 

Significant up-regulations of both factor B and C4 mRNA levels were observed in tibialis 

anterior muscle of hSOD1G93A mice, suggesting that all of the three main activation 

pathways within the complement cascade were activated in ALS disease progression in 

hSOD1G93A mice. In combination with previous findings, where complement activation was 

demonstrated in the spinal cord of hSOD1G93A mice, the results of the present study 

suggest that global complement pathway activation is a common feature of ALS pathology 

in hSOD1G93A mice, and this activation is not restricted to CNS (Lee et al., 2013). 
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C1q acts as an opsonin in the immune system, marking apoptotic cells and debris for 

removal by phagocytosis. Recent evidence also suggests that C1q plays an active role in 

triggering developmental synapse elimination (Stevens et al., 2007, Chu et al., 2010, 

Stephan et al., 2012). In hSOD1G93A mice, up-regulation of C1qB mRNA level has been 

shown in the spinal cord tissue while protein expression of C1 has been found on motor 

neurons and microglia. These findings suggest that C1q might assist in the removal of 

dying motor neurons through opsonisation in hSOD1G93A mice (Lee et al., 2013). 

Combining the discovery of C1q deposition at the denervated NMJ from previous studies 

and the up-regulation of C1qB mRNA expression in tibialis anterior muscle shown by the 

present study, I postulate that C1q might drive the pruning of synapses at the denervated 

NMJ in hSOD1G93A mice in a similar manner as in the developmental synapse elimination, 

leading to synapse degeneration. 

 

C3 is the central compartment of the complement cascade where three primary activation 

pathways converged. It has been demonstrated that C3 deposits in spinal cord of 

transgenic SOD1G93A murine models, and in spinal cord and motor cortex of ALS patients 

(Woodruff et al., 2008a, Lee et al., 2013, Donnenfeld et al., 1984). In the present study, 

significant increase in C3 mRNA levels were observed from mid-symptomatic (day 130) in 

the tibialis anterior muscle of hSOD1G93A mice compared with wild-type mice. This may 

suggest that activation of complement pathways is a universal feature, not restricted to the 

central nervous system but also occurs in skeletal muscle, during the disease progression 

in the hSOD1G93A mice. In addition to C3, deposition of C3b/iC3b, the active product of C3, 

has been found at the NMJ, promoting the opsonisation of those destructed NMJ by 

phagocytes (Heurich et al., 2011). Increased C3 mRNA expression in the skeletal muscle 

of hSOD1G93A mice shown in this study supports this idea that complement facilitates the 

denervation of NMJ across ALS disease progression.  

 

To investigate this up-regulation of complement in ALS affected muscles further, I 

examined the levels of complement regulators CD55 and CD59. CD55 inhibits the 

complement activation via suppressing the formation and promoting the catabolism of C3 

and C5 convertases (Fujita et al., 1987). CD59 inhibits the formation of membrane attack 

complex by interfering the binding of C9 units to C5b-8 complex (Navenot et al., 1997). 

 

Previous in vitro studies have shown that CD55 can protect neurons from degeneration 
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and apoptosis (Wang et al., 2010b). Decreased levels of CD55 mRNA and protein were 

observed in the spinal cord of hSOD1G93A mice during later stages of disease (Heurich et 

al., 2011, Lee et al., 2013). By contrast, we showed a significant increase in mRNA level of 

CD55 in the tibialis anterior muscle of hSOD1G93A mice at end-stage (day 175) compared 

with wild-type mice. Since CD55 inhibits the generation of C3 convertase, increases in 

CD55 mRNA expression level may lead to reduced production of active fragment 

C3b/iC3b, which in turn ameliorates denervation of NMJ in hSOD1G93A mice. This may 

indicate a negative feedback mechanism to slow down the activation of complement. 

However, a significant increase of C3 mRNA level was shown in skeletal muscle of 

hSOD1G93A mice at end-stage of disease as well. This finding gives rise to the question 

how is complement being activated in the absence of external pathogens in skeletal 

muscle? 

 

It has been shown that mutant SOD1 toxicity can induce transcriptional up-regulation of 

C1q subunits (C1qA, C1qB and C1qC) in the motor neuron before the clinical symptoms, 

while restricted expression of mutant hSOD1G93A on specific neurons is sufficient to induce 

motor neuron degeneration in mice (Lobsiger et al., 2007, Jaarsma et al., 2008, Wang et 

al., 2008). As a portion of mutant SOD1 may act from outside of the motor neurons (e.g. 

extracellular SOD), it is possible that the induced complement system recognizes the 

extracellular mutant SOD1 and marks the motor neuron for attack (Urushitani et al., 2006). 

These findings implicate mutant SOD1 toxicity in neurodegeneration via triggering 

activation of the complement system. Besides neuronal cells, mutant SOD1 is also 

expressed in skeletal muscle of hSOD1G93A mice. Significant elevation of oxidation, 

accompanied by substantial compensatory antioxidant enzyme up-regulation has been 

observed in the skeletal muscle of hSOD1G93A mice (Mahoney et al., 2006). Transgenic 

mice with selective-expression of hSOD1G93A in skeletal muscle showed that accumulation 

of oxidative stress served as a signalling molecule to trigger muscle atrophy (Dobrowolny 

et al., 2008).  

 

It has been well established that complement activation plays an important role in 

mediating tissue injury after oxidative stress. The lectin pathway mediates activation and 

deposition of complement after endothelial oxidative stress in the context of 

ischemia/reperfusion (I/R) injury (Collard et al., 2000). Complement activation and 

deposition also takes place following skeletal muscle I/R. The lectin and/or classical 
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pathway were implicated in the complement activation during skeletal muscle I/R (Weiser 

et al., 1996, Toomayan et al., 2003). Collectively, these data suggest that oxidative stress 

within skeletal muscle caused by mutant SOD1 toxicity might trigger the activation and 

deposition of complement within skeletal muscle of hSOD1G93A mice. 

 

In the previous study from our laboratory, CD59 displayed decreased mRNA expression 

level in the spinal cord of hSOD1G93A mice at end-stage of disease (Lee et al., 2013). By 

contrast, the current study showed that CD59 mRNA expression was significantly 

increased in tibialis anterior muscle of end-stage hSOD1G93A mice. This overexpression of 

CD59 observed in muscles of hSOD1G93A mice could be beneficial as it may prevent 

muscle damage subsequent to deposition of MAC (Goncalves et al., 2002). 

 

One limitation of my results is that I only examined mRNA transcript expressions but not 

protein expressions of the above complement factors. Given that our laboratory’s previous 

published work has shown that the up-regulation of these complement factor transcripts 

does correlate with up-regulation of their proteins in the spinal cords of hSOD1G93A mice, it 

does support my general conclusion for an up-regulation of these members of complement 

in skeletal muscle of hSOD1G93A mice (Lee et al., 2013). 

 

In summary, this research chapter has shown that complement is activated in the skeletal 

muscle of hSOD1G93A mice during ALS disease progression, and the activation of 

complement may be as a consequence of increased oxidative stress within muscle, 

triggered by mutant SOD1 toxicity.  
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Figure 5. Expression of C1qB in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of C1qB in tibialis anterior (TA) muscle of wild-type (WT) and 

hSOD1G93A mice were quantified by quantitative real-time PCR at three different ages. (n = 

5; *p < 0.05, Student t test). Bars represent the mean ± SEM. OS, onset = postnatal day 

70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = postnatal 

day 175 (P175). 
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Figure 6. Expression of factor B in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of factor B in tibialis anterior (TA) muscle of wild-type (WT) and 

hSOD1G93A mice were quantified by quantitative real-time PCR at three different ages. (n = 

5; *p < 0.05, Student t test). Bars represent the mean ± SEM. OS, onset = postnatal day 

70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = postnatal 

day 175 (P175). 
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Figure 7. Expression of C4 in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of C4 in tibialis anterior (TA) muscle of wild-type (WT) and hSOD1G93A 

mice were quantified by quantitative real-time PCR at three different ages. (n = 5; *p < 

0.05, **p < 0.01, Student t test). Bars represent the mean ± SEM. OS, onset = postnatal 

day 70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = 

postnatal day 175 (P175). 

  



 47 

 

Figure 8. Expression of C3 in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of C3 in tibialis anterior (TA) muscle of wild-type (WT) and hSOD1G93A 

mice were quantified by quantitative real-time PCR at three different ages. (n = 5; *p < 

0.05, Student t test). Bars represent the mean ± SEM. OS, onset = postnatal day 70 (P70); 

MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = postnatal day 175 

(P175). 
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Figure 9. Expression of CD55 in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of CD55 in tibialis anterior (TA) muscle of wild-type (WT) and 

hSOD1G93A mice were quantified by quantitative real-time PCR three different ages. (n = 5; 

*p < 0.05, Student t test). Bars represent the mean ± SEM. OS, onset = postnatal day 70 

(P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = postnatal day 

175 (P175). 
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Figure 10. Expression of CD59a in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of CD59a in tibialis anterior (TA) muscle of wild-type (WT) and 

hSOD1G93A mice were quantified by quantitative real-time PCR three different ages. (n = 5; 

*p < 0.05, **p < 0.01, Student t test). Bars represent the mean ± SEM. OS, onset = 

postnatal day 70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage 

= postnatal day 175 (P175). 
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Chapter 4 
 

Role of C5a-C5aR1 signalling in 
regulating the infiltration of immune cells 

in hSOD1G93A mice 
 

 

 

4.1 Introduction 
The C5 cleavage fragment C5a is the most potent complement peptide that recruits and 

activates immune cells, such as neutrophils, monocytes, eosinophils, and T lymphocytes. 

(Guo and Ward, 2005) Previous studies have demonstrated up-regulation of C5aR1, the 

major C5a receptor, in neurodegenerative states (Humayun et al., 2009, Woodruff et al., 

2008a, Lee et al., 2013). Interestingly, our group has demonstrated the cellular localisation 

of C5aR1 to motor neurons and microglia in hSOD1G93A mice (Lee et al., 2013). Moreover, 

our group has shown that hSOD1G93A transgenic rats treated with PMX205, a selective 

C5aR1 antagonist, displayed a significant extension of survival and improved motor 

function compared to untreated animals (Woodruff et al., 2008a, Woodruff et al., 2014). 

Taken together, these findings suggest that complement system is over-activated and the 

disease progression is associated with C5a-C5aR1 signalling in these animal models of 

ALS. 

 

Since complement has been initiated in the skeletal muscle of ALS murine animal model 

(Chapter 3), and that C5a-C5aR1 signalling is activated in CNS, it is reasonable to 

hypothesize that the C5a-C5aR1 signalling may also be enhanced in the skeletal muscle 

of hSOD1G93A mice. C5a has been recognized as a potent chemoattractant for immune 

cells, elevated expression of its major receptor C5aR1 might also lead to increased 
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infiltration of immune cells in to skeletal muscle, and this immune cell invasion would differ 

in accordance to the level of muscle damage and muscle type (fast- or slow-twitch muscle) 

in hSOD1G93A mice, during ALS progression. To investigate and test these ideas, in this 

chapter, the expression levels of C5 and its major receptor C5aR1 in the skeletal muscle 

of hSOD1G93A mice were examined. To further elucidate the function of C5a-C5aR1 

signalling in the skeletal muscle during disease progression of ALS, the extent of immune 

cell infiltration, namely CD11b+ macrophages and CD4+ helper T cells, was determined 

and compared in respect to the type of muscle in muscle. 

 

4.2 Results 
4.2.1 Up-regulation of C5a ligand and its receptor C5aR1 in the skeletal muscle of 
hSOD1G93A mice 
The downstream complement factor C5a, the ligand for C5aR1, can be rapidly generated 

in response to insult or injury in the CNS (Woodruff et al., 2011). In order to determine 

whether downstream complement factor C5a is also activated in skeletal muscle of ALS 

affected animal model in response to muscle destruction, protein expression levels of C5a 

were examined the in the tibialis anterior muscle of hSOD1G93A and wild-type mice using 

ELISA. The results showed marked increases in C5a at onset (P70), mid-symptomatic 

(P130) and end-stage (P175) of disease by 1.8-fold, 1.5-fold and 1.7-fold when compared 

with wild-type mice respectively (n = 6, *p<0.05 and ***p<0.001; Figure 11). Previous 

studies have shown increases in C5aR1 expression in the CNS of multiple rodent models 

of ALS (Woodruff et al., 2011, Lee et al., 2013, Humayun et al., 2009). Given C5a 

expression has increased in the tibialis anterior muscle during ALS disease progression in 

hSOD1G93A mice, I next examined the expression levels of its signalling receptor C5aR1 

during these disease stages in the skeletal muscle of hSOD1G93A and compared to age-

matched wild-type controls.   

 

The mRNA and protein expression levels for C5aR1 in the tibialis anterior muscle of wild-

type and hSOD1G93A mice were examined using quantitative real-time PCR and western 

blot, respectively. C5aR1 mRNA expression was significantly increased by 1.9-fold at mid-

symptomatic and by 4.6-fold at end-stage of disease respectively when compared to wild-

type mice (n = 5; *p < 0.05, **p < 0.01; Figure 12). This change in mRNA expression was 

confirmed at protein level using western blot analysis, where a 45kDA C5aR1 immuno-

reactive band was observed in hSOD1G93A and wild-type mice at end-stage of disease 
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(Figure 13A). Semi-quantitative analyses of these bands relative to GAPDH loading control 

showed increased C5aR1 protein levels in the tibialis anterior muscle of hSOD1G93A mice 

by 8.2-fold at end-stage of disease when compared to WT mice (n = 6, ** p < 0.01; Figure 

13B). 

 

Altogether, the results above support my hypothesis that downstream factors of 

complement cascade were activated in skeletal muscle of ALS animal model during 

disease progression. More importantly, C5a-C5aR1 signalling appeared to be activated in 

ALS-affected skeletal muscle, implicating an active role of C5a-C5aR1 signalling mediating 

ALS disease progression in hSOD1G93A mice. 

 

4.2.2 Cellular localisation of C5aR1 
I next investigated the cellular localisation of C5aR1 to see where C5a-C5aR1 signalling 

might exert its functions in skeletal muscle tissue during ALS disease progression. To 

achieve this, I performed immunohistochemistry for C5aR1 on tibialis anterior muscle from 

hSOD1G93A and wild-type mice. Transverse sections of tibialis anterior muscles from end-

stage animals were immuno-stained for C5aR1, along with specific cellular markers to 

identify neuromuscular junction (α-Bungarotoxin), Schwann cells (anti-S100), 

macrophages (anti-CD11b) and helper T cells (anti-CD4). 

 

I first examined the co-localisation of C5aR1 on neuromuscular junction (NMJ), the site of 

communication between motor nerve axons and muscle fibres, which undergoes 

destruction during ALS disease progression, and Schwann cell, the neuroglia at NMJ that 

guides synaptic homeostasis and repair. I demonstrated that in wild-type and hSOD1G93A 

mice, C5aR1 was not present on either neuromuscular junction (yellow arrows in Figure 

14A) or Schwann cells (yellow arrows in Figure 14B), suggesting that increased 

expression of C5a and its signalling receptor C5aR1 may be in response to gross changes 

within the muscle (e.g. increased oxidative stress levels within muscle fibres) during 

disease progression, rather than a focal response of NMJ damage. 

 

Following this demonstration, I then examined whether peripheral immune cells, possibly 

migrating into tibialis anterior muscle via the chemoattraction function of C5a, were 

responsible for the increased expression of C5aR1 within this tissue. Two major 

populations of immune cells in skeletal muscle, macrophages and T lymphocytes, were 
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selected for investigation of C5aR1 localisation. I showed that C5aR1 was expressed 

predominantly on CD11b positive macrophages in both the wild-type and hSOD1G93A mice 

(yellow arrows in Figure 15A) and some on CD4 positive helper T cells (yellow arrows in 

Figure 15B). Overall, the data suggest that C5a is not directly involved in the degeneration 

of NMJ, but acting as a strong chemoattractant by recruiting immune cells into skeletal 

muscle of hSOD1G93A mice, that are presumably displaying increased levels of damage 

due to the toxic effects of mutant SOD1 within muscle fibres. 

 

4.2.3 hSOD1G93A mice lacking C5aR1 have a reduced number of macrophages and 
helper T cells when compared to hSOD1G93A mice during disease progression of 
ALS 
Several studies have shown that the infiltration of macrophages and T cells in spinal cord 

of ALS patients may contribute to ALS pathology (Troost et al., 1989, Graves et al., 2004). 

Given that I showed a marked C5aR1 accumulation in infiltrating macrophages and helper 

T cells, attracted by C5a via its signalling receptor C5aR1, in tibialis anterior muscles of 

hSOD1G93A mice. I investigated whether absence of C5aR1 in hSOD1G93A mice would 

have any effect on the infiltration of peripheral macrophages and helper T cells in the 

tibialis anterior muscle. Transverse sections of tibialis anterior muscle from wild-type, 

hSOD1G93A, and hSOD1G93A x C5aR1-/- mice at onset (P70), mid-symptomatic (P130) and 

end-stage (P175) of disease progression were stained for markers of macrophages (anti-

CD11b) and helper T cells (anti-CD4), and were quantified.  

 

The number of macrophages in tibialis anterior muscle of hSOD1G93A mice was 

significantly increased at onset, mid-symptomatic and end-stage of disease when 

compared to wild-type mice (n = 3, *p < 0.05 and **p < 0.01; Figure 16A). By contrast the 

number of macrophages in tibialis anterior muscle of hSOD1G93A mice lacking C5aR1 was 

significantly reduced at mid-symptomatic and end-stage of disease when compared to 

hSOD1G93A mice (n = 3, **p < 0.01 and *** p < 0.001; Figure 16A). Similar to 

macrophages, I showed that the number of helper T cells was significantly increased in 

tibialis anterior muscle of hSOD1G93A mice at all stages of disease when compared to age-

matched wild-type mice (n = 3, **p < 0.01 and ***p < 0.001; Figure 17A). Interestingly only 

at mid-symptomatic ALS disease stage there was a further increased in the number of 

helper T cells.  This increase did not occur in the hSOD1G93A mice lacking C5aR1, 

suggesting that the spike in helper T cell numbers at this stage is influenced by the 
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presence of C5aR1 (n = 3, **p < 0.01; Figure 17A). Taken together, these data confirmed 

my speculation that C5a-C5aR1 signalling mediates the infiltration of pre-immune cells, 

macrophages and T helper cells, into ALS affected skeletal muscle of hSOD1G93A mice, 

and these infiltrations were largely attenuated in hSOD1G93A mice lacking C5aR1. 

 

It has been demonstrated that fast-twitch muscle fibres are preferentially affected in ALS 

(Frey et al., 2000, Atkin et al., 2005, Pun et al., 2006). As massive invasions of immune 

cells were shown in tibialis anterior muscles that are vulnerable in ALS, this raises the 

question of the extent of immune cells invasions into muscles that are less vulnerable in 

ALS, like slow-twitch soleus muscles. To address this, I next examined the number of 

macrophages and T helper cells in the soleus muscles from wild-type, hSOD1G93A, and 

hSOD1G93A x C5aR1-/- mice at onset (P70), mid-symptomatic (P130) and end-stage (P175) 

of ALS disease progression. The number of macrophages in soleus muscles of 

hSOD1G93A mice significantly increased at mid-symptomatic and end-stage of disease 

when compared to WT mice (n = 3, ***p < 0.001; Figure 16B). By contrast there was a 

significant decrease in the number of macrophages in the soleus muscles of hSOD1G93A 

mice lacking C5aR1 (n = 3, ***p < 0.001; Figure 16B). Interestingly, the number of 

macrophages in soleus muscles of hSOD1G93A mice was much lower than the number of 

macrophages in tibialis anterior muscles of hSOD1G93A mice, which supports other studies 

that showed fast-twitch muscles are preferentially affected in hSOD1G93A mice when 

compared to slow-twitch muscles (Figure 16) (Frey et al., 2000, Atkin et al., 2005). This 

idea was also supported by the quantification of T helper cells, where no significant 

differences of T helper cell numbers were observed in soleus muscles across wild-type, 

hSOD1G93A, and hSOD1G93A x C5aR1-/- mice during ALS disease progression, but the 

numbers of T helper cells in tibialis anterior muscles of hSOD1G93A muscles were markedly 

higher than their counterparts in soleus muscles (Figure 17). To summarise, these results 

demonstrated that immune cells invade skeletal muscle of hSOD1G93A mice in a muscle 

type-dependent manner, where fast-twitch muscles were more vulnerable to immune cell 

infiltration, compared to the slow-twitch soleus muscle. 

 

4.3 Discussion 
Among the complement factors, C5a is one of the most potent complement peptide with a 

range of functions (Guo and Ward, 2005). C5a exerts its effects through its two receptors, 

C5aR1 and C5aR2 (Sarma and Ward, 2012). Previous studies have demonstrated up-
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regulation of C5aR1 within the CNS of SOD1G93A rodents, suggesting that C5a-C5aR1 

signalling plays a role in the pathology of ALS (Woodruff et al., 2008a, Lee et al., 2013). In 

the present study, the expression of C5aR1 in hSOD1G93A TA muscle was elevated at both 

mRNA and protein levels. In addition to C5aR1, its ligand C5a also showed increased 

protein expression. These results demonstrated that downstream complement effectors, in 

particular C5a and its signalling receptor C5aR1, may be actively involved in the disease 

progression of ALS through both CNS and skeletal muscle. As C5a is a potent 

chemotactic agent regulating migration of immune cells, I examined the cellular 

localisation of C5aR1, the receptor which C5a exert its functions through, and quantified 

the number of immune cells, in particular CD11b+ macrophages and CD4+ helper T cells, 

infiltrated into skeletal muscle of hSOD1G93A mice (Guo and Ward, 2005). 

 

The neuromuscular junction (NMJ) is the synapse where the axon terminal of a motor 

neuron communicates with the motor endplate. It has been demonstrated that endplates 

are denervated much earlier than the axons and the cell body loss during the 

pathogenesis of ALS in hSOD1G93A mice, and this degeneration process may be driven by 

the initiation of complement system in the skeletal muscle (Fischer et al., 2004, Heurich et 

al., 2011). Here I found no deposition of C5aR1 at neuromuscular junction in tibialis 

anterior muscles of either wild-type or hSOD1G93A mice. The results suggest that C5a-

C5aR1 signalling may not be directly involved in the destruction of NMJ, but rather a 

response to muscle damage caused by accumulated oxidative stress in the muscle, 

triggered by the expression of mutant SOD1 within these muscle fibres.  

 

It has long been known that perisynaptic Schwann cells regulate morphological stability, 

integrity and repair of the NMJ.  So far, the involvement of Schwann cells in ALS pathology 

is still unclear. In spite of that Schwann cells are incapable of triggering disease 

independently, they may modulate ALS pathogenesis and progression like other glial cells, 

including astrocytes, microglia and oligodendrocytes (Clement et al., 2003, Boillee et al., 

2006, Yamanaka et al., 2008, Wang et al., 2010a, Kang et al., 2013). This was addressed 

by previous study showing that knock-down of G37R expression in Schwann cells of 

SOD1G37R mice shortened the late phase of disease and survival, suggesting that the 

neuroprotective effect of G37R in Schwann cells was greater than its toxicity (Lobsiger et 

al., 2009). Another study showed that in contrast to microglia and astrocytes, accumulation 

of G93A within Schwann cells is not pathological to spinal cord motor neurons or 



 56 

deleterious to disease course in transgenic hSOD1G93A mice (Turner et al., 2010). 

Furthermore, knockdown of G85R in Schwann cells of SOD1G85R mice showed delayed 

onset and extended survival, suggesting that G85R expression in Schwann cells is 

neurotoxic (Wang et al., 2012). In a more recent study, impairments in Schwann cells 

functions were observed in SOD1G37R mice. As the alternations in the synaptic 

transmission decoding ability of Schwann cells are detrimental to NMJ repair, it was 

suggested that Schwan cells could play an important role in NMJ maintenance and 

progression of ALS disease (Arbour et al., 2015). In the present study, I showed no co-

localisation of C5aR1 to Schwann cells in TA muscles of hSOD1G93A mice, suggesting that 

C5a-C5aR1 signalling is unlikely to contribute to denervation of NMJ through altering the 

properties of perisynaptic Schwan cells. 

 

In ALS patients, substantial numbers of infiltrating macrophages and T cells are found in 

the spinal cord (Troost et al., 1989, Kassmann et al., 2007).  Infiltration of T cells into 

spinal cord has also been observed in hSOD1G93A transgenic mouse model of ALS 

disease (Chiu et al., 2008, Beers et al., 2008). Since C5a is a potent chemoattractant for 

immune cells, and its receptor C5aR1 was not present on either NMJ or Schwann cells, it 

seems reasonable to postulate that C5a signals through C5aR1 expressed on the pre-

immune cells, which infiltrated into skeletal muscles. Hereby I examined C5aR1 

expression on immune cells. The results showed C5aR1 was co-localised to macrophages 

and T helper cells, indicating that immune cells are the likely sources of C5aR1 generation 

in skeletal muscle during disease progression. 

 

It has been well defined that microglia and astrocytes are activated in the CNS in mouse 

model of ALS, while T cells infiltrate the spinal cord (Hall et al., 1998, Chiu et al., 2008, 

Beers et al., 2008). However, the role of the innate immunity in the skeletal muscle and its 

target tissues have not been well characterised. A recent study has shown that activated 

macrophages accumulate along the length of degenerating motor nerve fibres in ventral 

roots, sciatic nerves and muscles in mutant SOD1G93A and mutant SOD1G37R mice muscle 

(Chiu et al., 2009).  In this study, I found a striking infiltration of CD11b positive 

macrophage cells in tibialis anterior muscles, a fast-twitch muscle that is vulnerable to 

denervation, of hSOD1G93A mice from disease onset when compared with wild-type mice. 

Surprisingly, this infiltration was largely attenuated in hSOD1G93A mice lacking C5aR1.  
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Numerous studies have shown that macrophages are essential for skeletal muscle 

regeneration (Summan et al., 2006, Arnold et al., 2007, Bryer et al., 2008). After acute 

injury, M1 or proinflammatory macrophages, arise from exposure to inflammatory stimuli 

such as T helper (Th) 1 cytokines interferon (IFN)-γ and tumour necrosis factor (TNF)-α, 

infiltrate to the site of damage in association with recruited monocytes, and participate in 

the phagocytic removal of cellular debris (Mantovani et al., 2004). Macrophages also 

exhibit a spectrum of non-inflammatory phenotypes, also referred as M2 macrophages. 

The population of M2 macrophages is more complex than that of M1 macrophages. M2a 

or ‘alternatively activated’ macrophage, results from stimulation of Th2 cytokines 

interleukin (IL)-4 and IL3, are associated with tissue repair, wound healing and fibrosis 

(Bhattacharjee et al., 2013). Meanwhile, anti-inflammatory M2c macrophages induced by 

IL-10, release anti-inflammatory cytokines to deactivate the M1 phenotype and promote 

the proliferation of non-myeloid cells (Sica and Mantovani, 2012). Consequently, invading 

macrophages transit from a proinflammatory, which is usually found in the early stages 

after muscle injury, to an anti-inflammatory type (Arnold et al., 2007, Bryer et al., 2008).  

 

In the present study, I showed increasing trends in the number of infiltrating macrophages 

into tibialis anterior muscles of hSOD1G93A mice from disease onset (day 70) when 

compared to wild-type controls.  Given that muscle denervation occurs at early disease 

stage in hSOD1G93A mice, it is plausible to postulate that invading macrophages from 

disease onset in tibialis anterior muscles is in response to muscle damage and 

subsequent regeneration (Fischer et al., 2004). To understand which phenotypes of 

macrophages contribute to muscle repair in ALS hSOD1G93A mouse model, further study is 

needed to clarify the composition of macrophage populations during disease progression. 

Interestingly, the accumulation of macrophages was not observed in tibialis anterior 

muscles of hSOD1G93A mice lacking C5aR1, suggesting that C5a-C5aR signalling is 

required to recruit macrophages into damaged muscles of hSOD1G93A mice during ALS 

progression. This is supported by other studies that show C5a is a strong chemoattractant 

for immune cell invasion including macrophages into peripheral tissues (Guo and Ward, 

2005). 

 

Several studies have addressed the infiltration of T cells in the CNS from both ALS 

patients and transgenic mouse models (Holmøy, 2008, Chiu et al., 2008, Beers et al., 

2008). The present study showed a substantial invasion of CD4 positive helper T cells into 
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tibialis anterior muscle of hSOD1G93A mice across the three disease stages where a 

reduction of helper T cell numbers was observed in hSOD1G93A × C5aR1-/- mice. Previous 

studies have indicated a neuroprotective role of T cells or CD4+ T cells in hSOD1G93A 

transgenic mice as depleting functional T cells or CD4+ T cells led to the acceleration of 

disease progression (Chiu et al., 2008, Beers et al., 2008). Knocking out CD4+ T cells 

decreased microglial reactivity suggesting a direct interaction between CD4+ T cells and 

glial activation (Beers et al., 2008). Another study showed that motor neuron degradation 

was accelerated in mutant SOD1 mice lacking functional CD4+ T cells, suggesting the 

importance of CD4+ T cells for neuroprotective effects in ALS (Holmøy, 2008). In this 

study, we showed an elevated and diminished number of CD4+ helper T cells in tibialis 

anterior muscle of hSOD1G93A and hSOD1G93A × C5aR1-/- mice, respectively. Recent 

studies showed that T cells also participate in the skeletal muscle regeneration. Improved 

muscle regeneration has been shown in the absence of T cells in the animal model of 

dysferlinopathy (Farini et al., 2012). As hSOD1G93A mice with fully deleted C5aR1 

demonstrated a significant extension in survival, it is possible that diminished T cells 

infiltration facilitates muscle regeneration in hSOD1G93A × C5aR1-/- mice, which in turn 

ameliorate muscle denervation (Woodruff et al., 2014). However, the exact role of T cells 

in ALS pathology awaits further investigation. 

 

C5a is a strong chemoattractant and is involved in the recruitment of inflammatory cells 

such as T cell, eosinophils, neutrophils, monocytes and macrophages (Guo and Ward, 

2005, Don et al., 2007). Since a massive influx of macrophages and helper T cells, 

accompanied by increased expression of C5a and its receptor C5aR1, has been quantified 

in hSOD1G93A tibialis anterior muscles, suggests that C5a-C5aR1 signalling mediates the 

recruitment of these peripheral immune cells during the ALS disease progression. This is 

confirmed by the observation of reduced numbers of infiltrating macrophages and helper T 

cells in hSOD1G93A mice lacking C5aR1. 

 

In addition to tibialis anterior muscles, the numbers of infiltrating macrophages and helper 

T cells were also quantified in soleus muscle, a slow-twitch muscle that is less vulnerable 

to ALS pathogenesis. A similar infiltration profile of macrophage in soleus muscles was 

discovered where significantly increased quantities of macrophages were observed in 

hSOD1G93A mice when compared with wild-type mice, and this influx of macrophages was 

diminished in hSOD1G93A mice lacking C5aR1. Meanwhile, minimal infiltrations of helper T 
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cells were detected in soleus muscle of wild-type, hSOD1G93A and hSOD1G93A × C5aR1-/- 

mice. Together, these results suggest that infiltrations of pre-immune cells occur in a 

muscle type-dependent manner as fewer macrophages and helper T cells were observed 

in the soleus muscles, a muscle less affected in ALS.  
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Figure 11. Expression of C5a in hSOD1G93A and wild-type mice during disease 
progression. 
Protein expression of C5a in tibialis anterior (TA) muscle of wild-type (WT) and hSOD1G93A 

mice were quantified by quantitative real-time PCR at three different ages. (n = 6; *p < 

0.05, ***p < 0.001; Student t test). Bars represent the mean ± SEM. OS, onset = postnatal 

day 70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = 

postnatal day 175 (P175).  
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Figure 12. Expression of C5aR1 in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of C5aR1 in tibialis anterior (TA) muscle of wild-type (WT) and 

hSOD1G93A mice were quantified by quantitative real-time PCR at three different ages. (n = 

5; *p < 0.05, **p < 0.01, Student t test). Bars represent the mean ± SEM. OS, onset = 

postnatal day 70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage 

= postnatal day 175 (P175). 
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Figure 13. Protein expression of C5aR1 in hSOD1G93A and wild-type mice at end-
stage. 
Protein expression of C5aR1 in tibialis anterior (TA) muscle of end-stage wild-type (WT) 

and hSOD1G93A mice was detected by western blot (A) and the expression levels were 

semi-quantified (B). (n = 4; **p < 0.005, Student t test). Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) expression levels were the same across genotype indicating 

equal loading of protein. Bars represent the mean ± SEM.   
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Figure 14. C5aR1 is not localised at neuromuscular junction or Schwann cells in 
hSOD1G93A mice. 
C5aR1 is not expressed on either neuromuscular junction or Schwann cells. 

Immunostaining of C5aR1 (red, yellow arrows) with α-Bungarotoxin (green, A) for motor 

endplate and S100 (green, B) for Schwann cells in TA muscle of WT and hSOD1G93A mice 

at end stage. Nuclei were visualized with DAPI (blue). Scale bars, 20 μm.  
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Figure 15. C5aR1 is localised to macrophages and helper T cells in hSOD1G93A mice. 
Cellular localization of C5aR1 on macrophages and helper T cells. Immunostaining of 

C5aR1 (red) with CD11b (green, A) for macrophages and CD4 (green, B) for helper T 

cells in tibialis anterior (TA) muscle of WT and hSOD1G93A mice at end stage. C5aR1 

(yellow arrows) is co-localised with CD11b-positive macrophages and CD4-positive helper 

T cells. Nuclei were visulised with DAPI (blue). Scale bars, 20 μm.  



 65 

 
 

Figure 16. Quantification of macrophages in skeletal muscle of WT, hSOD1G93A and 
hSOD1G93A × C5aR1-/- mice. 
Infiltration of macrophages into tibialis anterior or soleus muscle groups at various stages. 

Cryosections of tibialis anterior (A) and soleus (B) muscle from WT, hSOD1G93A and 

hSOD1G93A×C5aR1-/- mice were stained for CD11b and quantified as described in 

Materials and Methods. More CD11b+ macrophages were present in MS and ES 

hSOD1G93A mice than WT mice, while less CD11b+ macrophages were found in MS and 

ES hSOD1G93A×C5aR1-/- mice compared with hSOD1G93A mice (n = 3; *p < 0.05, **p < 

0.01, ***p < 0.001, two-way ANOVA). Bars represent the mean ± SEM. WT, wild-type; OS, 

onset = postnatal day 70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, 

end stage = postnatal day 175 (P175).  
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Figure 17. Quantification of helper T cells in skeletal muscle of WT, hSOD1G93A and 
hSOD1G93A × C5aR1-/- mice. 
Infiltration of helper T cells into tibialis anterior or soleus muscle groups at various stages. 

Cryosections of tibialis anterior (A) and soleus (B) muscle from WT, hSOD1G93A and 

hSOD1G93A×C5aR1-/- mice were stained for CD4 and quantified as described in Materials 

and Methods. More CD4+ helper T cells were present in hSOD1G93A mice than WT mice, 

while less CD4+ helper T cells were found in MS hSOD1G93A×C5aR1-/- mice compared with 

hSOD1G93A mice in TA muscle (A). There are no significant changes of CD4+ helper T cells 

numbers in SOL muscle (B).  (n = 3; **p < 0.01, ***p < 0.001, two-way ANOVA). Bars 

represent the mean ± SEM. WT, wild-type; OS, onset = postnatal day 70 (P70); MS, mid-

symptomatic = postnatal day 130 (P130); ES, end stage = postnatal day 175 (P175). 
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Chapter 5 

 

Role of C3aR signalling in regulating the 
infiltration of immune cells in hSOD1G93A 

mice 
 

 

 

5.1 Introduction 
Complement protein C3 is the central component of the complement system (Figure 2). 

Cleavage of the C3 by the convertase C4b2b of the lectin and classical pathways, and the 

convertase C3bBb of the alternative pathway, results in the generation of the C3a and C3b 

fragments (Lambris, 1988). C3a is a versatile peptide with diverse functions in immune 

response. It mediates both proinflammatory and anti-inflammatory activities upon binding 

to its receptor C3aR (Wetsel et al., 2000). 

 

C3aR is a G-protein-coupled receptor. It is widely expressed on myeloid and lymphoid 

cells, including mast cells, eosinophils, neutrophils, monocytes/macrophages, microglia, 

dendritic cells, T cells and B cells (Klos et al., 2009). It is also found expressed on several 

types of neuronal cells (Davoust et al., 1999). The biological functions of C3aR mediated 

signalling system, such as exocytotic release of granula from basophils or eosinophils, and 

the up-regulation and release of the monocyte chemoattractant protein-1 (MCP-1, also: 

chemokine CCR ligand 2, CCL2), are tightly controlled (Bischoff et al., 1990, Takafuji et 

al., 1994, Ahamed et al., 2001). 

 

In inflamed human CNS, C3aR has been found on both astrocytes and microglia in the 

area of pathology and infiltrating macrophages in multiple sclerosis and meningitis 

(Gasque et al., 1998). Deposition of C3/C3b has been shown in spinal cord and skeletal 

muscle of hSOD1G93A transgenic murine ALS models (Woodruff et al., 2008a, Heurich et 
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al., 2011, Lee et al., 2013). Together these observations suggest an involvement of C3 in 

CNS inflammation. 

 

Given that C3 participates in neuroinflammatory diseases and accumulates in the skeletal 

muscle of hSOD1G93A transgenic mice, raises the idea that C3 plays an active role in the 

pathogenesis of ALS in the skeletal muscle of hSOD1G93A transgenic mice. Support for this 

idea comes from studies that show C3 fragment C3a is a chemotactic factor for immune 

cells, hence it is possible that C3a exert its function through signalling its receptor C3aR 

on circulating immune cells, promotes their infiltration into damaged muscle such as seen 

in ALS (Ricklin and Lambris, 2013). To address these questions, I assessed the 

expression of C3aR, and quantified the number of infiltrating immune cells in the skeletal 

muscle of hSOD1G93A mice with comparison to WT and hSOD1G93A mice lacking C3aR. 

 

5.2 Results 
5.2.1 Expression of C3aR 
C3aR, the receptor of C3, is expressed by hippocampal, cortical and motor neurons in the 

normal CNS and plays roles in regulating neurogenesis (Davoust et al., 1999, Rahpeymai 

et al., 2006, Ducruet et al., 2012). However, the roles of C3aR in neurodegenerative 

diseases are ill defined. Therefore, I first examined the expression of C3aR in the skeletal 

muscle of hSOD1G93A mice. The mRNA levels of C3aR in the tibialis anterior muscle of 

wild-type and hSOD1G93A mice were determined by qPCR. The results showed that the 

mRNA level of C3aR significantly increased by 1.6-fold, 2.6-fold and 7.6-fold at onset 

(P70), mid-symptomatic (P130) and end-stage (P175) disease in tibialis anterior muscle of 

hSOD1G93A mice when compared with wild-type mice (n = 5; *p < 0.05; Figure 18), 

suggesting an activation of C3a-C3aR signalling within muscles, during the ALS disease 

progression in the hSOD1G93A ALS model. 

 

5.2.2 Cellular localisation of C3aR 
Since elevation of C3aR mRNA expression was observed, I next examined cellular 

localisation of C3aR within skeletal muscle tissues of hSOD1G93A and wild-type mice using 

immunohistochemistry. Transverse sections of tibialis anterior muscles at end-stage were 

stained for C3aR1 along with specific cellular markers to identify neuromuscular junction 

(α-Bungarotoxin), Schwann cells (anti-S100), macrophages (anti-CD11b) and helper T 

cells (anti-CD4). 
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My results showed that C3aR was not expressed at neuromuscular junction or surrounding 

Schwann cells (Figure 19). In order to determine whether C3a-C3aR signalling contributes 

to the recruitment of infiltrating immune cells during skeletal muscle regeneration, I 

examined the expression of C3aR on invading macrophages and helper T cells. I found 

predominate expression of C3aR on CD11b positive macrophages in tibialis anterior 

muscles from hSOD1G93A mice, compared to that of aged-matched wild-type controls 

(Figure 20). Together, these data suggest that C3a-C3aR signalling is not involved in the 

destruction of NMJ, the focal site of muscle damage, but rather for macrophage migration 

by chemotaxis into muscles from hSOD1G93A mice during disease progression, 

presumably trigged by muscle responding to the toxic effects of mutant SOD1 expressed 

within their cytoplasm. 

 

5.2.3 hSOD1G93A mice lacking C3aR have reduced number of macrophages and 
helper T cells when compared to hSOD1G93A mice during disease progression of 
ALS 
In the previous chapter, I showed significant invasion of macrophages and helper T cells 

induced by C5a-C5aR1 signalling in tibialis anterior muscles of hSOD1G93A during disease 

progression (Figures 16 and 17). Since C3a also strongly promotes chemotaxis of immune 

cells, I investigated whether C3a-C3aR1 signalling modulates the infiltration of 

macrophages and helper T cells in the tibialis anterior muscles of hSOD1G93A mice. 

Transverse tibialis anterior muscle sections from wild-type, hSOD1G93A, and hSOD1G93A 

lacking C3aR (hSOD1G93A x C3aR-/-) mice at onset (P70), mid-symptomatic (P130) and 

end-stage (P175) of ALS disease progression were stained for markers of macrophages 

(anti-CD11b) and helper T cells (anti-CD4). The presences of such stained cells within 

tibialis anterior muscles from these mice and were quantified. 

 

I observed significant invasion of macrophages and helper T cells in tibialis anterior 

muscle of hSOD1G93A mice (Figures 21A and 22A). By contrast, I noted significant 

reductions in the number of macrophages shown in tibialis anterior muscles of hSOD1G93A 

mice lacking C3aR at mid-symptomatic (P130) and end-stage (P175) of disease when 

compared to hSOD1G93A mice (n = 3, **p < 0.01, ***p < 0.001; Figure 21A). Interestingly, 

hSOD1G93A mice lacking C3aR showed an initial increased number of macrophages at 

disease onset (P70) when compared to hSOD1G93A mice (n = 3, p = 0.24; Figure 21A). As 

for helper T cells, notable decreases were observed in tibialis anterior muscles of 
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hSOD1G93A x C3aR-/- mice at mid-symptomatic and end-stage when compared to 

hSOD1G93A mice (n = 3, **p < 0.01; Figure 22A). In short, the data supports my hypothesis 

that C3 is involved in the pathogenesis of ALS by modulating the infiltrating immune cell in 

skeletal muscle through C3a-C3aR signalling. 

 

In Chapter 4, I showed that immune cells migrated into skeletal muscle of hSOD1G93A mice 

in a muscle type-dependent manner, namely there were significantly less macrophages 

and helper T cells invasion into soleus muscles – a slow-twitch muscle, compared to 

tibialis anterior muscles, which has fast-twitch properties (Figures 16 and 17). Here, I 

compared the numbers of macrophages and helper T cells in the soleus muscles of wild-

type, hSOD1G93A, and hSOD1G93A x C3aR-/- mice at onset (P70), mid-symptomatic (P130) 

and end-stage (P175) of disease progression. In the soleus muscles from hSOD1G93A mice 

lacking C3aR, a similar trend of changes in the numbers of macrophage were observed as 

in the tibialis anterior muscles, where fewer macrophages were found as disease 

progresses (n = 3, **p < 0.01, ***p < 0.001; Figure 21B). The extent of macrophage 

invasion in soleus muscles is far less severe than in tibialis anterior muscles in hSOD1G93A 

mice lacking C3aR (Figure 21). As for helper T cells, I found no obvious changes in helper 

T cell numbers in soleus muscles from wild-type, hSOD1G93A, and hSOD1G93A x C3aR-/- 

mice (Figure 22B). Similarly, the overall numbers of helper T cells in soleus muscles were 

far fewer than its counterparts in tibialis anterior muscles in hSOD1G93A x C3aR-/- mice. 

These results suggest that immune cell infiltrations mediated by C3a-C3aR signalling also 

follows the muscle type-dependent pattern as shown in hSOD1G93A x C5aR1-/- mice, where 

fewer infiltrating immune cells were found in soleus muscles that appeared to be more 

resistant to degenerative effects.  

 

5.3 Discussion 
C3a is an anaphylactic peptide formed by the cleavage of complement factor C3. It can 

induce proinflammatory and anti-inflammatory biological actions through binding to its G-

coupled receptor C3aR. Previous studies suggest that C3a might play multiple roles in 

promoting neuronal development, regeneration and repair (Yanamadala and Friedlander, 

2010). It has been reported that blocking C3aR has beneficial therapeutic effects in CNS 

lupus by reducing neuronal apoptosis and gliosis in brains of MRL/lpr mouse of lupus 

model (Jacob et al., 2010). However, the role of C3a-C3aR signalling in ALS remains 

unclear. 
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In the present study, I showed increased mRNA expression of C3aR in tibialis anterior 

muscles of hSOD1G93A mice during disease progression. In addition, immunolocalisation of 

C3aR was found on macrophages, but not at the neuromuscular junction, or on Schwann 

cells and helper T cells. Quantifications of CD11b positive macrophages and CD4 positive 

helper T cells demonstrated that C3a-C3aR signalling participates in the recruitment of 

those immune cells into damaged muscle tissue, where significant drops in the number of 

macrophages and helper T cells were seen in tibialis anterior muscles of hSOD1G93A 

lacking C3aR. In brief, these findings indicate that C3a-C3aR contributes to the 

pathogenesis of ALS in hSOD1G93A transgenic mice by regulating the migration of immune 

cells in skeletal muscle. 

 

C3 is the central component of complement cascades. In the skeletal muscle, deposition 

of C3 and its cleaved fragment C3b/iC3b at the NMJ has been shown in both patients and 

animal models of myasthenia gravis (MG), the most common autoimmune disorder of 

neuromuscular transmission (Soltys and Wu, 2012). Deposition of C3b/iC3b at denervated 

NMJ has also been observed in hSOD1G93A transgenic mice, implicating the classical 

complement pathway in degeneration of distal axons (Heurich et al., 2011). As increased 

mRNA of C3 in skeletal muscle during ALS disease progression of hSOD1G93A transgenic 

mice was observed in Chapter 3, it is necessary to identify whether C3 fragment C3a will 

mediate inflammatory response at NMJ, causing further tissue damage. The finding that 

C3aR was not detected on either NMJ or perisynaptic Schwann cells, the glial component 

of the NMJ, in tibialis anterior muscles of hSOD1G93A mice in this study, suggests that C3a-

C3aR signalling is unlikely to be involved in the destruction of NMJ (Auld and Robitaille, 

2003). 

 

Like complement peptide C5a, C3a attracts immune cells to sites of activation via binding 

to its receptor C3aR. It is assumed that C3a-C3aR signalling is responsible for recruiting 

immune cells into muscle injury sites during ALS disease progression. To verify this 

assumption, cellular localisation of C3aR on macrophages and helper T cells was 

examined, as well as the number of immune cells in skeletal muscle of hSOD1G93A 

transgenic mice. Previous studies have demonstrated expression of C3aR on infiltrating 

macrophages in multiple sclerosis, and C3a is a chemotaxin for mouse macrophages 

(Gasque et al., 1998, Zwirner et al., 1998b). In another study, high C3aR expression has 

been found on infiltrating macrophages in the adipose tissue of mice, and depletion of 
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C3aR showed a string decrease in macrophage infiltration (Mamane et al., 2009). These 

findings indicate that C3a-C3aR may contribute to the accumulation of macrophages at the 

site of inflammation. In the present study, I found expression of C3aR on macrophages in 

tibialis anterior muscles of hSOD1G93A mice. In addition, significant reduction in 

macrophage influx has also been observed in tibialis anterior muscles of hSOD1G93A mice 

lacking C3aR. Overall, my results are consistent with findings of previous studies showing 

that C3a-C3aR signalling regulates the invasion of macrophages (Mamane et al., 2009). 

Moreover, C3a-C3aR signalling may play a beneficial role in ALS pathogenesis of 

hSOD1G93A mice as these infiltrating macrophages are essential for muscle regeneration 

after injury (Summan et al., 2006, Arnold et al., 2007, Bryer et al., 2008). In Chapter 4, I 

showed that immune cells infiltrate skeletal muscle of hSOD1G93A x C5aR1-/- mice in a 

muscle type-dependent manner, where fewer macrophages and helper T cells were 

presented in soleus muscles compared to tibialis anterior muscles. These differences in 

the numbers of immune cells between tibialis anterior and soleus muscles were also seen 

in hSOD1G93A x C3aR-/- mice, suggesting that the extent of immune cell invasion in 

hSOD1G93A is regulated by complement signalling and determined by the twitch-type 

specificity of skeletal muscle. 

 

It has been shown that functional C3aR is expressed on the CD4+ and CD8+ blood- or 

skin-derived T cell cones from patients with atopic dermatitis (Werfel et al., 2000). 

Expression of C3aR on T cells also provides co-stimulatory signals that enhance effector T 

cells (Teff) and limit natural regulatory T cells (nTreg) function (Strainic et al., 2008, Kwan 

et al., 2013). Moreover, genetic deficiency or pharmacological blockade of C3aR signalling 

augments murine and human induced regulatory T cells (iTreg) stability (van der Touw et 

al., 2013). Double immunostaining showed that C3aR expression was absent from CD4+ T 

cells in tibialis anterior muscles of wild-type and hSOD1G93A mice, suggesting the absence 

of signalling into CD4+ cells via C3aR. A recent study discovered that the absence of 

C3aR signalling in CD4+ cells diverts naïve T cells into Foxp3+ iTreg cells, indicating that 

complement has a crucial role in modulating the induction and function of Treg cells. In the 

same study, striking up-regulation of C5aR2 expression on iTreg cells was observed in 

dendritic cells lacking C3a and C5a, whereas less C5aR2 was found on iTreg cells treated 

with exogenous transforming growth factor (TGF)-β1 (Strainic et al., 2013). TGF-β1 is up-

regulated in muscle of muscular dystrophies, such as Duchene muscle dystrophy (DMD), 

congenital muscular dystrophy, and inflammatory myositis, and mutant SOD1 induces 
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marked up-regulation of TGF-β1 mRNA expression in muscles of hSOD1G93A mice 

(Bernasconi et al., 1999, Ishitobi et al., 2000, Galbiati et al., 2012). Combining these 

findings, it is possible that C5aR2 expression decreases in tibialis anterior muscles from 

hSOD1G93A x C3aR-/- mice, resulting from the synergistic effect of C3aR signalling and 

cytokine TGF-β1 where the absence of C3aR signalling in CD4+ T cells induces of iTreg 

cells and TGF-β1 down-regulates C5aR2 expression on those iTreg cells. Since C5aR2 is 

the alternative receptor of C5a, C5a-C5aR2 signalling could regulate the infiltration of 

helper T cells in skeletal muscle in a similar manner as C5a-C5aR1. Given that the 

absence of C5a-C5aR1 signalling attenuates CD4+ T cells influx in tibialis anterior muscles 

of hSOD1G93A mice, the reduced CD4+ cells migrations observed in tibialis anterior 

muscles of hSOD1G93A x C3aR-/- mice in this study might be due to the impaired C5a-

C5aR2 signalling. To verify these speculations, further studies would be required to 

examine the cytokine expression and C5aR2 signalling in skeletal muscle of transgenic 

hSOD1G93A mice.   
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Figure 18. Expression of C3aR in hSOD1G93A and wild-type mice during disease 
progression. 
mRNA expression of C5aR1 in tibialis anterior (TA) muscle of wild-type (WT) and 

hSOD1G93A mice were quantified by quantitative real-time PCR at three different ages. (n = 

5; *p < 0.05, **p < 0.01, Student t test). Bars represent the mean ± SEM. OS, onset = 

postnatal day 70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage 

= postnatal day 175 (P175).  
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Figure 19. C3aR is not localised at neuromuscular junction or Schwann cells in 
hSOD1G93A mice. 
C3aR is not expressed on either neuromuscular junction or Schwann cells. 

Immunostaining of C3aR (red, yellow arrows) with α-Bungarotoxin (green, A) for motor 

endplate and S100 (green, B) for Schwann cells in TA muscle of WT and hSOD1G93A mice 

at end stage of disease. Nuclei were visualized with DAPI (blue). Scale bars, 20 μm.  
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Figure 20. C3aR is localised to macrophages, but not helper T cells in hSOD1G93A 
mice. 
Cellular localization of C3aR on macrophages, but not helper T cells. Immunostaining of 

C3aR (red) with CD11b (green, A) for macrophages and CD4 (green, B) for helper T cells 

in tibialis anterior (TA) muscle of WT and hSOD1G93A mice at end stage. C33aR (yellow 

arrows) is co-localised to CD11b-positive macrophages, but not to CD4-positive helper T 

cells. Nuclei were visulised with DAPI (blue). Scale bars, 20 μm.  
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Figure 21. Quantification of macrophages in skeletal muscle of WT, hSOD1G93A and 
hSOD1G93A × C3aR-/- mice. 
Infiltration of macrophages into tibialis anterior or soleus muscle groups at various stages. 

Cryosections of tibialis anterior (A) and soleus (B) muscle from WT, hSOD1G93A and 

hSOD1G93A×C3aR-/- mice were stained for CD11b and quantified as described in Materials 

and Methods. Fewer CD11b+ macrophages were found in MS and ES hSOD1G93A×C3aR-/- 

mice compared with hSOD1G93A mice (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001, two-way 

ANOVA). Bars represent the mean ± SEM. WT, wild-type; OS, onset = postnatal day 70 

(P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = postnatal day 

175 (P175). 
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Figure 22. Quantification of helper T cells in skeletal muscle of WT, hSOD1G93A and 
hSOD1G93A × C3aR-/- mice. 
Infiltration of helper T cells into tibialis anterior or soleus muscle groups at various stages. 

Cryosections of tibialis anterior (A) and soleus (B) muscle from WT, hSOD1G93A and 

hSOD1G93A×C3aR-/- mice were stained for CD4 and quantified as described in Materials 

and Methods. Fewer CD4+ helper T cells were found in MS and ES hSOD1G93A×C3aR-/- 

mice compared with hSOD1G93A mice in TA muscle (A). There are no significant changes 

of CD4+ helper T cells numbers in SOL muscle (B).  (n = 3; **p < 0.01, ***p < 0.001, two-

way ANOVA). Bars represent the mean ± SEM. WT, wild-type; OS, onset = postnatal day 

70 (P70); MS, mid-symptomatic = postnatal day 130 (P130); ES, end stage = postnatal 

day 175 (P175). 
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Chapter 6 

 

General discussion 
 

 

 

Amyotrophic lateral sclerosis is a late onset fatal neurodegenerative disease. It is well 

characterised by the progressive loss of upper and lower motor neurons in the central 

nervous system accompanied by muscle weakness and atrophy (Wijesekera and Leigh, 

2009). Over the years, many theories of ALS pathogenesis have been proposed, including 

oxidative stress, excitotoxicity, mitochondrial dysfunction, axonal transport defects and 

abnormal protein aggregation (Parakh et al., 2013). In addition to these mechanisms, 

evidence from several studies have suggested involvement of complement system in 

human ALS pathology and animal models of ALS (Lee et al., 2012a). A previous study 

from our lab has demonstrated local activation of complement in the central nervous 

system of hSOD1G93A mice, a well-defined transgenic mouse model of ALS that carries 

mutant human SOD1 gene, during the disease progression (Lee et al., 2013). However, 

the roles of complement in the skeletal muscle in ALS pathology are poorly understood. 

The aim of this study was to determine the expression and biological function of 

complement factors in the skeletal muscle of hSOD1G93A mice. My working hypothesis was 

that complement is activated in the skeletal muscle of hSOD1G93A mice, and it contributes 

to ALS disease progression through modulating immune cell migrations via complement 

receptors C3aR and C5aR1 signalling. 

 

The first major finding from the present study is that complement activation in the skeletal 

muscle of hSOD1G93A mice. Using quantitative PCR, I detected up-regulation in mRNA 

levels of C1qB, factor B and C3, the initiators of classical and alternative pathway and 

central compartment of complement cascade, showing that complement has been 

activated. These findings are consistent with previous studies that have demonstrated in 

spinal cord and neuromuscular junction of hSOD1G93A mice, suggesting that complement 
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activation is not restricted to CNS, but also displayed in skeletal muscle of ALS disease 

model (Heurich et al., 2011, Lee et al., 2013). To date, the initiating site of 

neurodegeneration is still under debate. The “dying-back” theory has been suggested 

where pathological changes in skeletal muscles, motor axons and motor nerve terminals 

appear to precede motor neuron degeneration and clinical symptoms (Dadon-Nachum et 

al., 2011, Moloney et al., 2014). This hypothesis is supported by the finding of C1q and 

C3b/iC3b deposition at the neuromuscular junction at in hSOD1G93A mice of pre- (day 47) 

and mid-symptomatic (day 126) disease stage (Heurich et al., 2011). As significant 

increases of C1qB and C3 were observed in tibialis anterior muscles of hSOD1G93A mice at 

disease onset (day 70), my findings may favour the “dying-back” pattern of ALS pathology 

in hSOD1G93A mice where activation of complement in skeletal muscle may contribute to 

the degenerations of the NMJ and its motor axons.  

 

The second main finding of this study is that complement receptor C5aR1 is responsible 

for the recruitment of immune cells in hSOD1G93A mice. Complement peptide C5a is the 

active fragment cleaved from C5. It possesses a wide spectrum of biological functions, 

including induced chemotaxis of immune cells like neutrophils, monocytes, macrophages, 

and T lymphocytes. C5a exert is functions via binding to its signalling receptor C5aR1 or 

alternative receptor C5aR2 (Guo and Ward, 2005). Studies from our lab have 

demonstrated that up-regulation of C5aR1 within the CNS of SOD1G93A rodents, and 

selectively blocking C5aR1 activity with specific antagonist or depleting C5aR1 in 

transgenic SOD animals ameliorates disease symptoms and extends life span. These data 

suggest that C5a-C5aR1 signalling plays a detrimental role in the pathology of ALS 

(Woodruff et al., 2008a, Lee et al., 2013, Woodruff et al., 2014). Herein I showed elevated 

expressions of C5aR1 and its ligand C5a in tibialis anterior muscles of hSOD1G93A mice, 

and immunohistochemistry results demonstrated that C5aR1 is localised to CD11b 

positive macrophages and CD4 positive helper T cells, but not at NMJ or on Schwann 

cells. 

 

NMJ is the synapse that connects axon terminals to motor endplates. It undergoes 

destruction much earlier than the axons and cell body loss in hSOD1G93A mice during 

disease progression (Fischer et al., 2004, Heurich et al., 2011). Schwann cells, the 

principle glia of the PNS, regulates the morphological stability, integrity and repair of NMJ 

(Darabid et al., 2014). Multiple studies showed either neuroprotective or neurotoxic effect 
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of Schwann cells by manipulating the expression of mutant SOD1 gene within Schwann 

cells (Lobsiger et al., 2009, Turner et al., 2010, Wang et al., 2012, Arbour et al., 2015). 

The absence of C5aR1 on NMJ and Schwann cells indicates that C5a-C5aR1 signalling is 

not involved in the process of triggering phagocytosis of Schwann cells, or inducing 

perisynaptic Schwann cell-guided NMJ reinnervation during ALS disease progression as 

seen in nerve injury (Reichert et al., 1994, Kang et al., 2014). As other types of 

phagocytes, like macrophages, can be attracted to remove nerve debris during axonal 

degeneration, the recruitments of other immune cells by C5a-C5aR signalling have also 

been examined. Cellular localisation of C5aR1 to infiltrating macrophages and helper T 

cells was demonstrated, and mass influx of macrophage and helper T cells were also 

observed in tibialis anterior muscles of hSOD1G93A mice. 

 

Macrophages have long been implicated in muscle regeneration after injury (Summan et 

al., 2006, Arnold et al., 2007, Bryer et al., 2008). Depending on their phenotypes, M1 or 

M2, macrophages can either participate in the removal of cellular debris or be actively 

involved in the tissue repair (Summan et al., 2006). Interestingly, the infiltration of 

macrophages is significantly attenuated in tibialis anterior muscles of hSOD1G93A mice 

lacking C5aR1. A similar trend was also observed in soleus muscles of hSOD1G93A mice 

lacking C5aR1, but to a lesser extent. These results suggest that C5a-C5aR1 signalling 

plays a pivotal role in recruiting macrophages into skeletal muscles of hSOD1G93A mice 

during disease progression. Similarly, significant reductions in infiltrating helper T cells 

numbers were also seen in tibialis anterior muscles of hSOD1G93A mice lacking C5aR1. 

Several studies have illustrated infiltration of T cells in the CNS of both ALS patients and 

transgenic mouse models, and suggested a neuroprotective property of functional CD4+ T 

cell in transgenic SOD1 mice (Beers et al., 2008, Chiu et al., 2008, Holmøy, 2008). The 

roles of T cells present in skeletal muscle of ALS animal models including hSOD1G93A mice 

remains unclear. By contrast, studies in other muscle diseases such as MD show that 

depleting T and B lymphocytes resulted in an improvement of muscle regeneration (Farini 

et al., 2012). Given that hSOD1G93A mice lacking C5aR1 display a significant extension in 

survival (Woodruff et al., 2014) and muscle performance in grip-strength (unpublished 

observations), I postulate that diminished T cell infiltration in tibialis anterior muscles of 

hSOD1G93A mice lacking C5aR1 may contributes to muscle regeneration. In brief, my 

results suggest that C5a-C5aR signalling is actively involved in the pathogenesis of ALS in 

skeletal muscle, facilitating muscle regeneration by mediating immune cell infiltrations into 
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skeletal muscle. 

 

Depending on the composition of muscle fibre types, skeletal muscle can be basically 

categorised into fast-twitch and slow-twitch subtypes. By contrast to fast-twitch tibialis 

anterior muscles, slow-twitch muscle like soleus muscles is more resistant to denervation. 

Minimal invasions of macrophages and helper T cells were found in soleus muscles of 

hSOD1G93A when compared to their counterparts in tibialis anterior muscles, indicating that 

the infiltration of immune cells in skeletal muscle occurs in a muscle type-dependent 

manner. Denervation in ALS occurs in a muscle fibre type-specific pattern, where fast-

twitch type II fibres undergo destruction first, followed by slow-twitch type I fibres (Frey et 

al., 2000, Hegedus et al., 2007, Pun et al., 2006). Skeletal muscle is the major site of 

dietary glucose disposal. Defects in skeletal muscle glucose uptake are associated with 

insulin resistance. Altered muscle metabolism in hSOD1G93A mice has also been proved to 

be fibre type related, where decreased insulin-stimulated glucose uptake occurred in fast-

twitch muscle first at middle stage of disease (Smittkamp et al., 2014). Recent reports 

show that macrophage numbers within muscle are elevated during obesity, which 

associated with insulin resistance, and that muscle cells in vitro can mount autonomous 

inflammatory responses under metabolic challenge (Pillon et al., 2013). This cross-talk 

between skeletal muscle and immune cells implicates that the differences in the extent of 

immune cell invasion between tibialis anterior muscles and soleus muscle might be related 

to the altered muscle metabolism in hSOD1G93A mice. 

 

In addition to C5a-C5aR1 signalling, the present study also investigated C3a-C3aR 

signalling in ALS pathology. C3a is an active fragment of complement factor C3. It can 

initiate both pro- and anti-inflammatory responses via binding to its receptor C3aR 

(Yanamadala and Friedlander, 2010). However, the role of C3a-C3aR1 signalling in ALS 

has not been well elucidated. Increased mRNA level of C3aR was seen in tibialis anterior 

muscles of hSOD1G93A, suggesting the existence of C3aR signalling in skeletal muscle. 

Similar to C5aR1, there was no co-localization of C3aR to NMJ or on perisynaptic 

Schwann cells, suggesting that C3a-C3aR signalling does not participate in the 

denervation of NMJ. Interestingly, similar trends of immune cells migration was 

discovered, whereas hSOD1G93A mice lacking C3aR showed a striking reduction in 

macrophage and helper T cell numbers in tibialis anterior muscles when compared to 

hSOD1G93A mice. However, expression of C3aR was found absent on CD4+ T cells in 
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tibialis anterior muscles of hSOD1G93A mice. Previous studies showed that the absence of 

C3aR signalling in CD4+ T cells induces transition of naïve T cells to iTreg cells, and iTreg 

cells expressing less C5aR2 under exposure to excessive TGF- β1, a cytokine whose 

mRNA level is largely increased in muscle of hSOD1G93A mice due to mutant SOD1 toxicity 

(Strainic et al., 2013, Galbiati et al., 2012). Since C5aR2 is the alternative receptor for 

C5a, it is possible that C5a-C5aR2 signalling is reduced as a consequence of absence of 

C3aR on CD4+ T, which in turn recruits fewer T cells into tibialis anterior muscles as seen 

in hSOD1G93A mice lacking C5aR1. This finding requires further study to investigate the 

expression of cytokines that are related to T cell chemotaxis and subpopulation of T cells 

in skeletal muscle of hSOD1G93A mice. 

 

In conclusion, the current study demonstrates activation of complement in skeletal muscle 

of transgenic hSOD1G93A mice, and signalling of complement receptor C5aR1 and C3aR 

are involved in the pathogenesis of ALS in skeletal muscle. These findings suggest that 

complement is actively involved in the disease progression of ALS, and its impact is not 

limited to CNS, but also applies to skeletal muscle, which may yield new mechanistic 

insights into the ALS pathology. 
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