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Abstract 

Brassica and wheat are important crops for agriculture in Australia and world-wide. Their 

production is challenging because of biotic stresses such as diseases, and environmental 

factors including drought and soil salinity.  

 

In comparison to the model species Arabidopsis thaliana and rice, the genomes of 

Brassica and wheat are both large and complex. This size and complexity makes it more 

difficult to determine their genome sequences..  

 

The sequence information produced by Second Generation Sequencing (SGS) 

technologies allows researchers to identify for example large numbers of molecular 

genetic markers which can be used to study heritable traits and for applied crop 

improvement.  

 

SGS technologies are speeding up genome sequencing, but they have led to vast 

increases in the amount of data resulting in major computational challenges. To manage 

this data, new computational systems have to be designed to support the SGS based 

research. 

 

This thesis describes the design, implementation and validation of the SGSautoSNP 

pipeline, a new approach to call SNPs in large and complex crop genomes using SGS 

sequences. In our method the reference genome sequence is used only to assemble the 

reads, and SNPs are then called between these assembled reads. The pipeline includes 

gene prediction, SNP annotation and identifies low SNP density regions which are more 

conserved than high SNP density regions.  

 

A total of 638,593 SNPs in the Brassica napus AA genome and 881,289 SNPs in the 

wheat group 7 chromosome arms were identified using the SGSautoSNP pipeline. 

Validation of 20 B. napus AA genome SNPs resulted in a SNP prediction accuracy of 

around 95%. Of the 28 wheat SNPs that were used for validation of the SGSautoSNP 

pipeline, 26 (93%) produced the expected genotype.  

 

By combining the SGSautoSNP pipeline together with SnpEff it was possible to determine 

whole genome SNPs trends, transition to transversion ratios and SNP frequencies across 

chromosomes. Annotation of B. napus AA genome SNPs have revealed that 0.5% of 



predicted SNPs are classified as “high effect” SNPs, and these could impact the structure 

of the proteins or the amino acid transcripts.  

 

The discovered molecular markers, genes, genetic and marker annotations and gene 

ontology by SGSautoSNP pipeline are stored in a new developed database called 

SGSautoSNPdb. This information are linked to other databases in order to allow 

researchers to access information quick and in a biologist friendly manner.  

 

Together, the SGSautoSNP pipeline and SGSautoSNPdb provides tools to help us to 

understand how natural selection has shaped the evolution of crop genomes and SNPs 

that can be applied to improve crops in order to secure a sufficient food-source into the 

future. 
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Chapter 1: Introduction 

Brassica napus L. (canola) and bread wheat (Triticum aestivum L.) are key crops for 

Australian agriculture and the export economy. Furthermore, they also have huge 

economic and social significance worldwide. Production of these crops is often reduced by 

environmental and demographic factors such as drought, disease and soil salinity. In 

addition, the world’s population continues to grow at a rapid speed and by 2050 it is 

predicted that there will be more than 9 billion people on the earth, over 2 billion more than 

today, where there are already 1 billion people suffering from hunger, 19 March 2014). 

Food production around the world will need to increase by 70% in order to be able to feed 

this dramatically increased population (FAO, 2009). To overcome these challenging 

environmental and demographic factors, breeding techniques must be improved to 

accelerate production of new crops, and provide farmers with varieties of Brassica and 

wheat with increased yield, biotic and abiotic stress tolerance.  

 

Both canola and wheat have genomes which are large and complex, making it difficult to 

apply modern molecular biological techniques. These large and complex genomes are due 

to genome duplication and the amplification of transposable elements. Research has 

shown that genome duplication occurred in almost all ancient flowering plants (Doyle et al., 

2008, Soltis and Soltis, 1999) and polyploidy results in increased genome complexity 

(Soltis et al., 2004). 

 

The discovery of genetic variations (polymorphisms) which can be used as molecular 

markers is generally easier in diploid species, because a marker often has a unique 

physical location, or single locus. However, in a polyploid plant species the discovery of 

polymorphisms is not easy because of the presence of homoeologues (Bundock et al., 

2009). Despite the problems associated with genome complexity it was possible to 

develop a pipeline, called SGSautoSNP (Lorenc et al., 2012), for accurate SNP discovery 

in large complex plant genomes during this PhD project. This pipeline was used to 

successfully discover polymorphisms in the group 7 chromosomes (7A, 7B and 7D) of 

wheat, as well as across the genome of B. napus. The pipeline includes scripts for gene 

and SNP annotation which uses SNAP gene prediction software, and SNPeff, a SNP 

annotation and effect prediction tool. In addition, SGSautoSNP can be used to find low 

SNP density regions and perform gene ontology analysis using goatools to find enrichment 
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of GO terms for genes in low or high SNP density regions. 

1.1. Species of interest 

1.1.1. Wheat 

1.1.1.1. Wheat production 

Wheat is Australia’s largest crop, followed by barley and Brassica napus canola 

(http://www.abs.gov.au/, 18 March 2014). Between 2006 and 2010 Australia was the fifth 

largest exporter of wheat, the ninth largest producer of wheat and the sixteenth largest 

consumer of wheat in the world (http://www.fas.usda.gov/psdonline/, 18 March 2014). In 

2009 Australia exported wheat to a value of $4.9 billion ((Australian-Bureau-of-Statistics, 

2010) http://www.csiro.au/Outcomes/Food-and-Agriculture/Cereal-varieties-crop-

management.aspx, 18 March 2014). From 1970 to 2012 Australia was able to increase 

wheat production from 7.9 to 29.9 million tonnes (380%), but production varied during this 

period because of environmental factors such as drought and disease (Figure 1.1). 

 

Wheat is important worldwide because it contributes nearly 20% of the world’s daily 

energy consumption. The consumption of wheat is expected to increase further in the 

coming years, because many Asian populations, which were dependent on rice as their 

primary food source, are eating an increasing quantity of wheat. 

 

 

Figure 1.1: Australian wheat production has grown from 1970 to 2011. 
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1.1.1.2. Wheat evolution 

In a divergence event, ancestral wheat split into three different diploid species between 2.5 

and 6 million years ago (MYA) (Chantret et al., 2005). Between 0.5 and 3 MYA an inter-

species hybridisation event occurred, which combined the genomes of Triticum urartu (AA) 

and an unknown species that provides the BB genome. The result of this was the 

production of the allotetraploid genome of T. turgidum (AABB). A second inter-species 

hybridisation event occurred between 7000-9500 years ago, after the domestication of 

wheat, and created the allohexaploid genome of T. aestivum (AABBDD) from 

domesticated T. turgidum (AABB) and Aegilops tauschii (DD). Allohexaploid means that its 

genome consists of six sets of chromosomes from three diploid genomes. In total T. 

aestivum has 42 chromosomes, because all three diploid donor had seven pairs of 

chromosomes (2n=6x=42). This evolution can be viewed in Figure 1.2.  

 

 

Figure 1.2: A graphical representation of the evolution of wheat species. Domesticated species are in squares and wild species 

are in circles. Unknown or ancestral species are surrounded by a dotted circle. Actual species are surrounded by a plain line circle 

(adapted from Chantret et al., 2005). 
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1.1.1.3. Wheat genome  

The bread wheat (Triticum aestivum) genome is 17 Gbp in size and around 6 times larger 

than the human genome (Paux et al., 2010). It consists of 75% - 90% repeats (Flavell et 

al., 1977, Wanjugi et al., 2009) and is hexaploid, containing the A, B and D genomes, each 

with 7 homoeologous chromosomes. Most of the repeats are found as transposable 

elements (TEs) with some low-complexity repeats. This makes it more difficult to assemble 

this genome sequence, because it is easier to assemble shotgun DNA sequence of unique 

genic regions rather than long regions of repetitive DNA. A further problem is that through 

polylpoidy many of the genic regions, which would normally be considered unique in 

diploid genomes, have homoeologous copies. In a genome with homoeologous 

chromosomes it is more difficult to identify the exact location of genes because of the 

difficulty differentiating between homoeologues (Gill et al., 1991, Pedersen and Langridge, 

1997). 

 

1.1.1.4. Wheat sequence availability  

Draft genome sequences of wheat were recently published; T. aestivum (Bread wheat) has 

a hexaploid AABBDD genome (Brenchley et al., 2012, International Wheat Genome 

Sequencing, 2014), A. tauschii has a diploid DD genome (Jia et al., 2013) and the T. urartu 

has a diploid AA genome (Ling et al., 2013).  Sequences of individual bread wheat 

chromosomes arms have also been published; group 1 (1A, 1B, 1D) (Wicker et al., 2011), 

4A (Hernandez et al., 2012), 5A (Vitulo et al., 2011), 5B (Sergeeva et al., 2014) and group 

7 chromosomes (7A, 7B and 7D) were (Berkman et al., 2013, Berkman et al., 2012b, 

Berkman et al., 2011).  

 

1.1.2. Brassica 

1.1.2.1. Brassica importance globally 

The Brassica genus contains many economically and agronomically important crop 

species with a variety of adaptation for cultivation under various environmental conditions 

(Batley et al., 2007). No other plant genus contains more agricultural and horticultural 

crops than the Brassicas (Hayward et al., 2012). Across many countries Brassica species 

are sources of condiments, fresh and preserved vegetables, vegetable oil, dietary fibre, 

vitamin C and anticancer compounds (Bohuon et al., 1998, Koo et al., 2011, Lan et al., 
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2000). Brassica species contribute to approximately 12% of the worldwide edible oil 

supplies and approximately 10% of the world's vegetable crop production (Mun et al., 

2010). The six major cultivated Brassica species include B. rapa (Chinese cabbage and 

turnip), B. oleracea (broccoli, cabbage and cauliflower), B. nigra (black mustard), B. napus 

(canola/rapeseed/oilseed rape), B. juncea (Indian mustard) and B. carinata (Ethiopian 

mustard). B. rapa (diploid AA genome) and B. oleracea (diploid CC genome) are grown 

mostly as vegetable crops. B. nigra (diploid BB genome) is used as a source of mustard 

condiment. B. napus (allotetraploid AACC genomes) is mainly an oil crop, B. juncea 

(allotetraploid AABB genomes) is both an oil and condiment crop, and B. carinata 

(allotetraploid BBCC genomes) is mainly a condiment crop. The Brassica family 

contributes significantly towards world food and fodder production. The relationship 

between the six Brassica species is described in the triangle of U (U, 1935) (see Figure 

1.3). 

 

 

Figure 1.3: U’s triangle depicting the genetic relationships between the six cultivated Brassica species. Chromosomes from each 

of the genomes A, B and C are represented by different colours. The letter n represents the number of chromosomes in each 

genome (adapted from http://en.wikipedia.org/wiki/Triangle_of_U). 
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1.1.2.2. Brassica evolution 

Brassica diverged from the model plant Arabidopsis thaliana approximately 20 Mya (Yang 

et al., 1999). In contrast, the lineages of the species B. rapa (A genome) and B. oleracea 

(C genome) diverged about 3.7 MYA (Inaba and Nishio, 2002). In 2000, the genome of A. 

thaliana became the first plant genome to be sequenced (Arabidopsis-Genome-Initiative, 

2000). The A. thaliana genome size is only 146 Mb, which is small compared to Brassica 

species (see Table 1.1) and contains few repetitive sequence regions (Bevan and Walsh, 

2005). Arabidopsis and Brassica share approximately 85% nucleotide identity in coding 

regions (Cavell et al., 1998). The high level of sequence similarity between Arabidopsis 

and Brassica allows the study of the structure of Brassica genomes without the complete 

Brassica genome sequence being available. The B. rapa genome sequence was 

published in 2011 by the multinational Brassica Genome Sequencing Project (Wang et al., 

2011). B. rapa was selected as the first Brassica species to be sequenced, because of its 

relatively small genome size of 529 Mb (Arumuganathan and Earle, 1991, Choi et al., 

2007) in comparison to other Brassica species sizes (see Table 1.1), and lower complexity 

compared to Brassica oleracea. Analysis has shown that 90% of the A. thaliana genome 

and 91% of the B. rapa genome could be aligned in collinear blocks (Wang et al., 2011). 

Chromosome rearrangements resulted in chromosome number variation for the three 

diploid Brassica species, B. nigra (B genome; n = 8), B. oleracea (C genome; n = 9), and 

B. rapa (A genome; n = 10) (Lysak et al., 2005).  

 

Hybridisation between diploid genomes, followed by chromosome doubling, produces 

polyploids. This lead to the creation of the amphidiploid Brassica species: B. juncea, B. 

carinata and B. napus. These species contain four genomes, derived from two different 

ancestral species. For example B. napus has 19 chromosomes (n = 19), 10 chromosomes 

from the AA genome and 9 chromosomes from the CC genome. Various Brassica species 

genome sizes currently can only be estimated with methods like Feulgen microdensity 

measurements and flow cytometry (see Table 1.1). . 
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Table 1.1: Brassica’s genome sizes (adapted from http://www.brassica.info/info/reference/genome-sizes.php). 

Species MBp Source Method Reference 

B. rapa (AA) 468 - 516  flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. rapa (AA) 507 var. chinensis Pak choi flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. rapa (AA) 511 var. rapifera turnip flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. rapa (AA) 529  flow cytometry (Johnston et al., 2005) 

B. oleracea (CC) 599 - 618 var. italica broccoli flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. oleracea (CC) 603 var capitata cabbage flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. oleracea (CC) 628 
var gemmifera Brussels 
sprout 

flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. oleracea (CC) 628 - 662 var botrytis cauliflower flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. oleracea (CC) 696  flow cytometry (Johnston et al., 2005) 

B. oleracea (CC) 752  feulgen (Bennett and Smith, 1991) 

B. oleracea (CC) 868  feulgen (Bennett and Smith, 1976) 

B. napus (AACC) 
1129-
1235 

rapeseed flow cytometry 
(Arumuganathan and Earle, 
1991) 

B. napus (AACC) 1132  flow cytometry (Johnston et al., 2005) 

 

1.1.2.2.1. Brassica rapa 

In India, Sweden and Finland, B. rapa is grown as an oilseed crop, but in China and Japan 

it is grown mostly as a leafy vegetable crop (Rakow, 2004). The leafy vegetable crops are 

separated into seven morphologically distinct vegetable varieties, including: var. 

pekinensis (Chinese cabbage), var. narinosa (Chinese savoy/taasai), var. chinensis (bok-

choi), var. parachinensis (false pak choi), var. japonica (Mizuna/Japanese salad green), 

var. campestris (annual turnip rape) and var. rapa (turnip) (Dixon, 2007, Rakow, 2004). 

Turnip is basically a cool climate crop which is resistant to frost. Its roots are also grown for 

feeding livestock during autumn and winter 

(http://www.hort.purdue.edu/newcrop/duke_energy/brassica_rapa.html, 04 October 2013). 

The winter oilseed types of B. rapa species have the advantage that they are cold tolerant 

and can be grown where temperatures are too low for B. napus. Spring types of B. rapa 

flower earlier compared to B. napus and contribute to oil production in northern and 

western Canada (Mendham and Salisbury, 1995).  
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1.1.2.2.2. Brassica oleracea  

B. oleracea represents the Brassica diploid CC genome and contains many vegetables 

including cabbage, kale, collard greens, Chinese broccoli, cauliflower, broccoli, Brussels 

sprouts and kohlrabi. It is rich in vitamins B and C, calcium, iron, magnesium, phosphorus, 

potassium and zinc. It also contains high levels of anti-oxidant and anti-cancer compounds 

(Weerakoon et al., 2009). B. oleracea are important vegetables in many countries, 

especially in Northern Europe and Central Asia. Cauliflower is the main vegetable in India 

because it can be stored without refrigeration. Cabbage and kohlrabi also have these 

benefits. Brussels sprouts are able to grow through a mild winter. 

 

1.1.2.2.3. Brassica napus  

B. napus is also known as canola, rapeseed or oilseed rape. Its genome is allopolyploid 

(AACC) and was produced by hybridisation between the B. rapa AA genome and B. 

oleracea CC genomes. Genetic mapping confirmed that the AA and CC genomes are 

intact in B. napus and have not been substantially rearranged (Parkin et al., 1995). B. 

napus is grown in Australia, East and South Asia, Europe and North and South America. It 

is used for bio-fuel, vegetable oil for human consumption (canola) and as a protein additive 

for animal stock feed. 

 

Canola (Canadian oil, low acid) must contain less than 2% erucic acid, a known toxin, as 

this level causes no harm to humans. Its seeds contain about 40-43% oil. The oil of canola 

is used in the production of margarine and cooking oil because it has low saturated fat 

content (less than 7%), and is high in monounsaturated fats and omega-3 fatty acids. 

Canola was first grown commercially in Australia in the 1970s, and from 1970 to 2011 

Australia increased production of canola from 13,000 tonnes to 299,200 tonnes per annum 

(see Figure 1.4). In Australia, canola is widely grown across south-east Australia and 

Western Australia (see Figure 1.5) 

 

In 2012 Australia was the 14th biggest producer of Canola worldwide with 299,200 tonnes. 

At the same time the worldwide production was 22,254,971 tonnes (http://www.fao.org) 

(see Figure 1.6). Australia's export markets are Japan, China, Pakistan, Europe and 

Bangladesh. Canola is now Australia's third-largest crop after wheat and barley 

(http://www.abs.gov.au/, 18 March 2014). Furthermore, Australia exports most of its 

canola.  
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..  

Figure 1.4: Production development of Canola in Australia between 1970 and 2011. 

 

 

Figure 1.5: Canola production regions within Australia (adapted from http://www.rirdc.gov.au/programs/established-rural-

industries/pollination/canola.cfm). 

 

 

Figure 1.6: Global Oil, rapeseed production in 2012 (scale refers to tonnes) (source http://faostat3.fao.org/faostat-

gateway/go/to/browse/Q/QC/E).  
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1.1.2.3. Brassica sequence availability 

Draft genome sequences for B. juncea (AABB) and B. nigra (BB) have been produced with 

the possibility of publication in the near future (Golicz et al., 2012). The B. rapa (AA) 

(Wang et al., 2011) and B. oleracea (CC) (Liu et al., 2014, Parkin et al., 2014) genomes 

have been published. In future research, the published B. oleracea or B. napus genomes 

could replace the proprietary C genome used in chapter 3 and the whole Brassica analysis 

of chapter 3 could consider all 19 chromosomes instead just the 10 chromosomes of the A 

genome. These genome sequences will enhance genetic studies and provide insight into 

the genetic basis of important agronomic traits including nutritional seed properties and 

resistance to biotic and abiotic stressors (Getinet et al., 1997). 

 

1.2. DNA sequencing technologies  

1.2.1. First Generation Sequencing 

The Sanger method (Sanger et al., 1977) is considered as a first-generation sequencing 

technology and was used from the 1970s until now (Metzker, 2010). In 2001 the first 

human genome was sequenced using this technology (Lander et al., 2001, Venter et al., 

2001). This technology produced reasonably long sequences, up to several hundred 

nucleotides, with a high degree of certainty regarding the sequence accuracy. 

Disadvantages of the technology are the time required to generate the sequence data, as 

well as the limited ability to parallelise the process in order to lower the overall cost to 

generate data in high volumes. 

1.2.2. Second Generation Sequencing 

Second Generation sequencing (SGS) was introduced in 2005 by 454 Life Sciences 

(http://www.454.com, Margulies et al., 2005). In late 2006 another SGS platform called the 

Genome Analyzer was released by Solexa. Solexa has been acquired by Illumina shortly 

after the release of this platform (http://www.illumina.com/). SGS has accelerated DNA and 

RNA sequencing by producing a series of iterations continually increasing volumes of 

sequence data with increasing quality and read length at a lower price and increased 

speed (Metzker, 2010). The cost per genome dropped down from $100 million in 2001 to 

$10,000 in 2011 (https://www.genome.gov/sequencingcosts/ 22 October 2013). Roche’s 

454 GS FLX Titanium technology (Margulies et al., 2005) is able to produce one million 

reads up to 1,000 nucleotides in length in one day (http://www.454.com). Illumina’s 
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HiSeq2000 is able to produce 600 billion nucleotides of sequence data with a read length 

of 150 nucleotides in around 10 days. The MiSeq can produce paired reads up to 300 bp 

long (http://www.illumina.com). The Illumina platforms are able to produce two different 

types of paired read libraries. The first library is called paired-end and can generate paired 

reads which have a maximum insert size under 1 Kbp. The second one is called mate-pair 

and is able to produce reads with maximum insert sizes of less than approximately 20 

Kbp. Life Technologies’ first SGS technology was called SOLiD, which is now 

discontinued, but was able to produce over 20 billion nucleotides per day, with a read 

length of up to 75 nucleotides. It was based on Polonator technology (Valouev et al., 

2008). Their second platform is the Ion Torrent which produces sequence reads of 400 bp, 

with up to 1 Gbp of data per run (http://www.lifetechnologies.com). Life technologies’ third 

technology is the Ion Proton which produces sequence read lengths of up to 200 bp and 

has a throughput of approximately 10 Gb per run 

(http://www.mrdnalab.com/ion_proton.html, 30 January 2014). 

1.2.3. Third Generation Sequencing 

Recently, new technologies were developed which promise greater volumes of sequence 

data and longer reads than Second Generation Sequencing. Pacific Biosciences’ SMRT 

(Single Molecule Real Time) sequencing technology produces read lengths of around 

1,000 bp with the potential to take snapshots of shorter reads over an extended fragment 

of over 10,000 bp (Eid et al., 2009). Oxford Nanopore introduced its USB size sequencer 

‘MinION’, and their bench top sequencer ‘GridION’. They produce extremely long reads of 

about 50,000 bases in length, while the ‘GridION’ can sequence the entire human genome 

in 15 minutes and the MinION’ in 60 minutes. However this nanopore technology has yet 

to be demonstrated in a public laboratory. 

 

1.3. Sequence analysis tools 

1.3.1. Quality control of Second Generation Sequencing 

SGS technologies have not reached yet the quality of sequence data compared to 

traditional Sanger sequencing (Robison, 2010). Each of the SGS technologies mentioned 

in the previous section has its own distinct error profile. Roche GS FLX technology has 

trouble in correctly interpreting homopolymer runs of nucleotides: it often deletes or inserts 

bases from the sequence output in these regions (Mardis, 2008). On the other hand, the 
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Illumina sequencing technology has a tendency to substitute C with A and G with T. 

Furthermore, the bases towards the 3’ end of Illumina sequence reads have a lower base 

quality (Erlich et al., 2009). Sequence reads produced using ABI SOLiD sequencing 

technology has a similar lower quality bases towards the 3’ end of the reads (Flicek and 

Birney, 2009). ABI SOLiD and Illumina sequencing technologies also share the trend to 

produce low sequence coverage of AT-rich repetitive sequences (Harismendy et al., 2009). 

The Ion Torrent personal genome machine (PGM) has insertion/deletion (indel) error types 

which are caused by incorrect flow calls. The reference genome comes in FASTA format 

which does not contain any quality information. However SGS data comes in FASTQ 

format which contains import base quality information. Both, FASTA and FASTQ, formats 

are described below. 

1.3.1.1. FASTA format 

The FASTA format was developed for and named after a biological sequence comparison 

algorithm (Pearson and Lipman, 1988). Until today, the FASTA format is widely used to 

store either DNA or amino acid sequences. Even reference genomes are stored in this 

format.  

 

FASTA files are stored in plain text and start always with a header line followed by one or 

more sequence lines. Header lines always begin with the symbol “>” followed by text 

which describes the sequence lines directly below. It is recommended that all lines are 

shorter than 80 characters. When the length of the sequence lines is longer than 80 

characters then the sequences are split across multiple lines. However, header line is 

never split in multiple lines. FASTA files which contains more than one header and 

sequence are named as multiple FASTA files. Figure 1.7 below gives an example of a 

multiple FASTA file. 

 

 

>seq1 

GTACGACGGAGTGTTATAAGATGGGAAATCGGATACCAGATGAAATTGTGGATCAGGTGCAAAAGTCGGC 

AGATATCGTTGAAGTCATAGGTGATTATGTTCAATTAAAGAAGCAAGGCCGAAACTACTTTGGACTCTGT 

CCTTTTCATGGAGAAAGCACACCTTCGTTTTCCGTATCGCCCGACAAACAGATTTTTCATTGCTTTGGCT 

>seq2  

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCC 

CCTGGAGGGTGGCCCCACCGGCCGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGC 

CTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGCCAGTGCCGGGCCCCTCATAGGAGAGG 

 

 

Figure 1.7: An example of a multiple FASTA file format  
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1.3.1.2. FASTQ format and visualistaion of sequencing errors  

The Wellcome Trust Sanger Institute invented a modified version of the standard FASTA 

format, FASTQ, to store sequenced reads together with the quality. Both, FASTA and 

FASTQ, are storing the sequence data as plain text. Each read entry contains four lines in 

FASTQ. The first line starts with “@”and is used as record identifier. The second line 

contains the read sequence. The third line contains “+” to signal the end of the read 

sequence. The last line contains the quality of the sequenced read. An example of this 

format is given in Figure 1.8 below. 

 

 

@HWUSI-EAS762_0026:3:120:16408:21310#0/1 

TAGGAGTTGGGATGAAGAAGTTATCCCAGTTTCAANNCAGGNGATTCCAGTNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 

+HWUSI-EAS762_0026:3:120:16408:21310#0/1 

ffef^ggea_faRfcfddffffWffggfggcdaacBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 

@HWUSI-EAS762_0026:3:120:16469:21305#0/1 

CTCGTATACTCCCACTTAGAAAAATCTTCATTATTGTAATCGAGTTTTTAGANNNNNNNNNNNNNNNNNNNNNNNNNNNN 

+HWUSI-EAS762_0026:3:120:16469:21305#0/1 

hhhhehghegfhhhheha[\ffff`efhahhhffh_fffffdhWeffff_BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 

 

 

Figure 1.8: An example of a multiple FASTAQ file format 

 

During sequencing process a program, called Phred, detects when a base may be wrong, 

and save it as a quality score. Phred quality score was developed by (Ewing et al., 1998) 

for Sanger sequences and later applied to SGS sequences. Phred scores are defined by 

the following formula:  

              

Phred quality score q is defined as a property which is logarithmically related to the base-

calling error probabilities p. Thus a one percent error rate (p = 0.01) corresponds to a 

recorded quality score of 20. The value of the quality score is typically encoded as a string 

of single ASCII characters. One ASCII character for each base in the sequence. 

 

Table 1.2 show the variations between these formats which exist in the relationship 

between ASCII characters and Phred quality scores (Cock et al., 2010). Unfortunately, 

FASTQ does not contain any information about which format was used for the quality 
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score. In order to be able to distinguish between these three formats a number of tools 

have been developed. One such tool is FastQC which is described below. 

 

Table 1.2: The four described FASTQ variants whereas the Illumina 1.8+ is the same as Sanger. Other columns are the range of 

ASCII characters permitted in the quality string and ASCII encoding offset. The last column describes possible range of scores 

(Cock et al., 2010). 

Description ASCII characters Quality score 

  Range Offset Range 

Sanger 33 - 126 33 0 - 93 

Solexa/Illumina 59 - 126 64 -67 

Illumina 1.3+ 64 - 126 64 0 - 62 

Illumina 1.8+ = Sanger 33 - 126 33 0 - 93 

 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is a quality control tool 

for high throughput sequence data which provides a quality control report which can find 

problems which originate either in the sequencer or in the starting library material. These 

problems could affect further analysis. Furthermore, it also provides box plot of average 

quality score versus read position which gives an idea of the overall quality of a 

sequencing run (see Figure 1.9). FastQC runs as a standalone interactive application for 

analysis of small numbers of FastQ files. However, it also runs in a non-interactive mode 

for the processing of large numbers of files.  

  



15 

 

 

Figure 1.9 shows a box plot of read quality versus base positiona for 100bp reads. All SGS platforms show an increase in the error 

rate towards the ends of the reads. 

 

1.3.2. Insert size improves accuracy of alignment 

The alignment of short reads to a reference is difficult because the reference genome is 

often extremely large, for example the B. napus genome is predicted to be 1235 Mbp and 

contains many repetitive regions (Arumuganathan and Earle, 1991). Short reads can also 

have sequencing errors and may have diverged from the reference genome. During the 

sequencing process the DNA is randomly cut in pieces and adaptors are attached. Illumina 

provides three options; single-end, paired-end or mate-pair sequencing. The last two 

sequencing methods provide an insert size which is a distance between two reads and are 

described more in detail below.  

Due to the short length of the reads, one read could match at many positions, but two 

reads separated by a gap of defined insert size provides a greater confidence of specific 

and accurate read mapping (Robison, 2010).  
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1.3.2.1. Paired-end sequencing 

In single-end (SE) sequencing, only one end of a DNA fragment is sequenced, but in the 

paired-end (PE) process both ends of the same DNA fragment are sequenced, producing 

two reads called A and B. PE reads are oriented towards each other (=>.....<=) and the 

length of A+B is usually shorter than the DNA fragment and therefore there is a gap 

between A and B which is called the insert size. Unfortunately, the sequence of the DNA 

fragment in the gap is unknown. However, the orientation and approximate distance of A 

and B are known which is helpful in the downstream analysis, such as aligning the reads 

to a reference genome, because one of the reads is more likely outside of the repeat. 

Therefore a 2x100 base paired-end read with a 600 base insert size is better than a single 

200 base read. Figure 1.10 shows a frequency plot of insert sizes for Illumina PE reads of 

B. napus cv. Skipton that have been aligned onto a reference sequence (chloroplast). 

 

 

Figure 1.10: The distribution of insert sizes for an paired-end-read library of B. napus cv. Skipton 

 

1.3.2.2. Mate-pair sequencing 

Mate-pair (MP) and paired-end (PE) sequencing have two differences. The first one is that 

the MP reads have a larger distance between them (insert size) compare to PE reads. The 

second difference is that MP reads are oriented away from each other (<=.....=>) whereas 

PE reads are oriented towards each other (=>.....<=). However, MP libraries are frequently 

contaminated with PE reads (the so-called shadow library) which occur frequently in the 

preparation process for MP libraries. The impact on the data is that for example, a library 
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produced with insert size of 4000 bp will mainly contain MP reads with an insert size 

around 4000 bp between them, but will also contain some PE reads with an insert size of 

300 bp (http://sequencetagdb.info/tagdb/cgi-bin/help, 21 January 2015). Figure 1.11 shows 

a frequency plot of insert sizes for Illumina MP reads reads of B. napus cv. Skipton that 

have been aligned onto a reference sequence (chloroplast).. 

 

 

Figure 1.11: The distribution of insert sizes for a mate-pair-read library of B. napus cv. Skipton 
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1.3.3. Aligner and file formats to store the mapping 

To be able to align short reads to the reference genome it is important choose an efficient 

and accurate aligner which can handle and analyse large-scale sequence data produced 

by SGS. However, to keep the aligner fast, memory-efficient and able to handle increasing 

read length, which happens almost every six months, aligners look for similar matches and 

not exact matches to the reference genome. Aligner algorithms can be roughly categorised 

into categories, as being based on hash tables or FM-index.  

 

1.3.3.1. Hash table based aligner 

All hash table indexing algorithms are based on the idea of Basic Local Alignment Search 

Tool (BLAST) (Altschul et al., 1990, Altschul et al., 1997, Li and Homer, 2010). BLAST is a 

fast comparison tool for biological sequences. It allows the comparison of a query 

sequence with a database of sequences and identifies database sequences that are 

similar to the query sequence. Different types of BLAST tools are available (see Table 1.3) 

for aligning different combinations of DNA, cDNA and protein sequence data (Altschul et 

al., 1990). 

 

Table 1.3: A table of BLAST-derived programs, as featured in NCBI-BLAST. 

Program Query sequence Subject sequence/database 

blastp Protein Protein 

blastn Nucleotide Nucleotide 

blastx Nucleotide Protein 

tblastn Protein Nucleotide 

tblastx Nucleotide Nucleotide 

 

The first step in the BLAST implementation is to use fast seeds detection. A hash table 

stores the k-mers of a specified size (word size) of the query sequence as the keys and 

their positions as values, and this is then searched through the database sequences. In 

the second step BLAST subsequently extends and joins the seeds with slower and more 

accurate dynamic programming Smith-Waterman (Farrar, 2007) algorithm (Shang et al., 

2014). BLAST outputs statistically significant local alignments which can be can be 

controlled by an e-value parameter. A hit associated with an e-value of 1 means that in a 

database can be expected to see 1 match with a similar score simply by chance. The 
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lower the e-value, the more significant the match is (http://blast.ncbi.nlm.nih.gov/, 24 

January 2015). 

 

BLAST compares all positions within a window, whereas SGS aligners use spaced seeds 

in order to improve the sensitivity of the alignment. However, spaced seeds use multiple 

windows in which positions can differ from the reference sequence.  In order to cover all 

different permutations of match and mismatch positions, multiple seed masks are 

necessary. For example, BFAST (Homer et al., 2009) uses empirically derived optimal 

seed masks for given read and genome sizes (Lindner and Friedel, 2012). Other spaced 

seed aligner are GNUMAP (Clement et al., 2010), MAQ (Li et al., 2008), MapReduce 

(Schatz, 2009), PerM (Chen et al., 2009b), RMAP (Smith et al., 2009), SeqMap (Jiang and 

Wong, 2008), and (Lin et al., 2008). Since spaced seed approach does not allow gapped 

alignment, other aligners have been developed to support gapped alignments, usually 

after seed extension, including AGILE (Misra et al., 2011), BLAT (Kent, 2002), RazerS 

(Weese et al., 2009), SHRiMP (Rumble et al., 2009) and SSAHA (Ning et al., 2001). 

1.3.3.2. FM-index based aligner 

In bioinformatics with SGS data, and in web information retrieval, it is important to be able 

to index large sequences or texts for inexact pattern matching and only allow limited 

amount of mismatches while searching. (Policriti and Prezza, 2014). The disadvantage of 

using hash table index is that an alignment must be performed for each copy of the 

repetitive DNA sequence (Li and Homer, 2010). On the other hand, suffix array or suffix 

tree are the most suitable data structures for indexing DNA sequence, because only one 

alignment is required for repetitive sequences in the reference sequence (Li et al., 2009b). 

The drawback of using suffix array or suffix tree is the large memory requirement for the 

uncompressed data structures. In case of suffix tree it is 15-20 bytes per base of the 

reference (Kurtz et al., 2004) and for suffix array it is 10 bytes per base (Abouelhoda et al., 

2004). 

 

Ferragina and Manzini (Ferragina and Manzini, 2000) developed a FM-index which is 

compressed suffix array created from the Burrows Wheeler transformation (BWT) 

(Burrows and Wheeler, 1994) sequence rather than from the original reference sequence. 

BWT places the same bases side by side as a cluster and through this compression the 

FM-index uses only 0.5-2 bytes per base (Li and Homer, 2010) and is faster than their 

hash-based alternatives at the same sensitivity level (Flicek and Birney, 2009). Popular 
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FM-index based aligners for SGS such as Bowtie, BWA and SOAP2 (Yu et al., 2012) use 

less memory and achieve high mapping speed through some reduction in mapping 

sensitivity compare to hash table based methods (Nielsen et al., 2011). 

 

The downside of FM-index is that it only provides support for exact string matching 

(Policriti and Prezza, 2014). For example to align SGS reads it is necessary to support 

inexact match search in order to be able to deal with mismatches caused by sequencing 

errors and differences between reference and query organisms (Langmead et al., 2009).  

In order to be able to support inexact search, additional space efficient strategies such as 

backtracking or split-read strategy are used. The disadvantage of backtracking strategy is 

that query times rapidly grow exponentially and therefore it is not suitable for large patterns 

and numbers of errors. On the other hand the split-read strategy based technique does not 

suffer this exponential growth but it can be only used with a small number of errors, 

because split-read strategy are searched without errors (Policriti and Prezza, 2014). 

Bowtie and BWA use a backtracking strategy on the FM-index to search for inexact 

matches (Yu et al., 2012) and SOAP2 uses a split-read strategy on the FM index (Policriti 

and Prezza, 2014). 

 

Bowtie and BWA use a quality-aware backtracking algorithm to search for inexact 

matches. Both aligners perform a depth-first search until they find alignments that satisfy a 

specified alignment criterion. These criterions allow a limited number of mismatches and 

alignments where the sum of the PHRED score at all mismatched positions are low. The 

higher the PHRED score, the more accurate an alignment is. Bowtie did not implement 

support for paired-end alignment (Langmead et al., 2009, Yu et al., 2012). However, BWA 

supports paired-end mapping in two steps. In the first step, it finds the positions of all the 

good hits, sorts them according to the chromosomal coordinates. Finally, it scans through 

all the potential hits to pair the two ends together (Li and Durbin, 2009b). 

 

SOAP2 uses a split-read strategy to allow maximum two mismatches. A read is split into 

two fragments in order to allow only one mismatch. This mismatch can only exist in one of 

the two fragments. In order to allow two mismatches the read has to be split into three 

fragments, such that the mismatches can only exist in two of the three fragments. Paired-

end reads in SOAP2 are aligning in two steps. Firstly, the two reads belonging to a pair are 

aligned independently. In the second step, SOAP2 searches for the pair of hits with the 
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proper distance and correct orientation relationship. SOAP2 chooses the best hit of each 

read or read pair, which has small gaps or the lowest number of mismatches (Li et al., 

2009b). 

 

In order to find out which aligner performs best, a sequencing simulation and alignment 

evaluation software, Seal (SEquence ALignment evaluation suite, 

http://compbio.case.edu/seal/), has been developed. The developers compared the 

performance of Bowtie, BWA and SOAP2 with regard to accuracy and runtime. All three 

aligners have in common to build an index of a genome slowly, but to align the reads to the 

genome is very fast. However, the index can be reused for other reads and therefore it is 

not a bottleneck to build an index. Bowtie and BWA align many incorrect reads, because 

their algorithm tries not to miss any potential mappings. On the other hand, SOAP2 

mapping accuracy is quite high even in high error reads which is useful for genotyping 

SNPs (Ruffalo et al., 2011). 

 

1.3.3.3. Most popular file formats to store alignments  

The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read 

alignments with reference sequences, supporting single- and paired-end reads and 

combining reads produced by different sequencing platforms. All lines are TAB delimited. 

SAM format contains one header section and one alignment section. The lines in the 

header section start with character '@SQ' and lines in the alignment section do not. The 

header section represents the order of reference sequences. 

 

Binary Alignment/Map (BAM) is the equivalent binary representation of SAM and keeps 

exactly the same information as SAM. BAM is compressed by the BGZF library, which is 

part of SAMtools, and is zlib-compatible. To achieve fast random access of alignments 

overlapping a specified chromosomal region a BAM file has to be sorted by coordinate and 

then indexed by SAMtools. Using positional sorting and indexing, applications can access 

a specific genomic region without loading the entire file into memory.   
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SAMtools is a library and software package for parsing and manipulating SAM/BAM files. It 

supports sort, index and merge alignments, removes PCR duplicates and generates per-

position information in the pileup format and alignment viewer. SAMtools is implemented in 

both C and in Java, with slightly different functionality. Both are open-source and there are 

Perl and Python bindings to the C library. This has significantly improved the 

interoperability of SGS tools for alignment, visualisation and variant calling (Li et al., 

2009a).  

 

1.3.4. Duplicate removal tool 

Using programs such as MagicViewer (Chapter 1.7.3) or Tablet (Chapter 1.7.2) (Milne et 

al., 2013) it is possible to see in the alignment that there are many exact duplicates of a 

read which share the same alignment position. These duplicates were created from 

artefacts during PCR amplification and sequencing. Keeping them would give an uneven 

representation of that molecule compared to other molecules and could bias the SNP 

calling. Therefore duplicates should be removed from the alignment using Picard tools’ 

MarkDuplicates (http://www.cbs.dtu.dk/courses/27626/Exercises/BAM-

postprocessing.php) 

 

Picard provides Java-based command-line tools to manipulate SAM/BAM files 

(http://picard.sourceforge.net/). One of its tools, MarkDuplicates is able to detect duplicates 

in BAM files. It defines two pairs as duplicates if they align at the same position, both for 

their first and second reads. Only one of the duplicate read pairs with the highest average 

base quality is kept and the rest are deleted as duplicates using the option 

REMOVE_DUPLICATES=true (Pireddu et al., 2011).  
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1.4. Molecular genetic markers 

Genetic variation in species can increase the capability of an organism to adapt to a 

changing environment, which helps the survival of the species. In research, the genetic 

variation helps in the understanding of evolution, genetic improvements and management 

of natural resources (Chauhan and Kumar, 2010). By introducing new and favorable traits 

from wild germplasm, new sources of genetic variation can be created. Molecular genetic 

markers can aid in understanding the genetic variation in order to improve the species. In 

crop research, the aim is to improve crop productivity and be able to grow crop species in 

more difficult climatic environments. To do these, plant breeders need to have enough 

diversity available to allow the production of new varieties. Genome based markers have 

advantages over phenotypic markers in that they are not affected by the environment, 

relatively easy to assay and are highly heritable. Restriction Fragment Length 

Polymorphism (RFLP) markers were initially used in crop plants, followed by Amplified 

Fragment Length Polymorphisms (AFLPs). For major crop plants many Simple Sequence 

Repeats (SSR) markers were used (Korzun, 2002). However, development of high-

throughput genotyping with Single-Nucleotide Polymorphism (SNP) markers and linked 

diagnostic markers is now used for more effective molecular breeding and they are 

opening opportunities for genomic selection (Randhawa et al., 2013). 

 

1.4.1. RFLP: Restriction Fragment Length Polymorphism 

Restriction Fragment Length Polymorphism (RFLP) is a method that identifies variations in 

DNA sequences. In the first step a restriction enzyme digests the DNA sequence into 

fragments. Gel electrophoresis is used to separate the fragments according to their 

lengths. In the third step the results from gel electrophoresis are transferred to a 

membrane via the Southern blot method. A RFLP probe is a labelled DNA sequence that 

hybridises with one or more fragments of the digested DNA sample, and the hybridisation 

pattern reveals when a marker is polymorphic between individuals. Each fragment length 

is an allele and can be used in genetic analysis (Waikan and Dozy, 1978). RFLPs became 

obsolete because of the introduction of PCR based technologies. 

1.4.2. Amplified Fragment Length Polymorphisms 

Amplified Fragment Length Polymorphisms (AFLPs) are markers based on the selective 

amplification by PCR of fragments of genomic DNA (Vos et al., 1995). Firstly, it uses 
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restriction enzymes to digest genomic DNA, followed by ligation of adaptors to the sticky 

ends of the restriction fragments. Secondly, a subset of the restriction fragments are 

selected to be amplified with two PCR primers that have corresponding adaptor and 

restriction site specific sequences. Finally, the amplified fragments are separated and 

visualised using gel electrophoresis techniques. AFLPs are highly sensitive for detecting 

polymorphisms in DNA (Mueller and Wolfenbarger, 1999), without the need for a reference 

sequence, and without the cost of marker discovery, such as for SNPs and SSRs. AFLPs 

have the disadvantage that they are anonymous and therefore have no genome 

information. AFLPs have been widely used for the identification of genetic variation in 

between varieties or closely related species of Brassica (Zhao et al., 2005). 

 

1.4.3. Microsatellites/Simple Sequence Repeats 

Microsatellites or Simple Sequence Repeats (SSRs) are short tandem repeat sequences 

of DNA (Powell et al., 1995, Turnpenny and Ellard, 2011). The repeats usually have two, 

three or four nucleotides (di-, tri-, and tetranucleotide repeats respectively), and can be 

repeated 3 to >100 times (Whittaker et al., 2003). Dinucleotide repeats are the most 

common SSRs, followed by tri-, tetra-, and penta-nucleotide repeats (Hamarsheh and 

Amro, 2011). Most polymorphic SSRs are in intergenic regions, but some of them can be 

found in genes, these SSRs are generally less polymorphic. As there are sometimes 

several alleles present at an SSR locus, genotypes within pedigrees are often fully 

informative, in that the progenitor of a particular allele can often be identified. Therefore 

SSRs can be used for determining paternity, population genetic studies and recombination 

mapping. Regions flanking SSRs have an increased density of SNPs (Varela and Amos, 

2010). However, SSRs are frequently not identified from Second Generating Sequencing 

data, because the read length is to short, but this might change with Third Generation 

Sequencing data which provide longer reads (Edwards and Gupta, 2013).   
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1.4.4. Single Nucleotide Polymorphisms 

Single Nucleotide Polymorphisms (SNPs) represent a single base change between two 

individuals at a defined position (see Figure 1.12). SNPs have advantages over SSRs in 

terms of cheap automated high-throughput genotyping, they are less informative due to 

their predominantly bi-allelic nature. SNPs appear in two different forms: transitions 

(purine/purine or pyrimidine/pyrimidine; C/T or G/A) or transversions (purine/pyrimidine; 

C/G, A/T, C/A, or T/G) (see Figure 1.13). At any position a SNP could be bi-, tri- or tetra-

allelic, however in practice most SNPs are biallelic (Doveri et al., 2008). SNPs can be put 

in the following categories: intravarietal SNPs are differences between gene family 

members and homoeologues within a line, whilst varietal SNPs are differences between 

two varieties and can therefore be used as molecular markers (Barker and Edwards, 

2009).   

 

 

Figure 1.12: DNA molecule 1 differs from DNA molecule 2 at a single base-pair location (a C/T polymorphism) (adapted from 

http://en.wikipedia.org/wiki/Single-nucleotide_polymorphism). 

 

A synonymous SNP is a SNP that does not change the amino acid in the protein, whereas 

a non-synonymous SNP does. The genome-wide normalized ratio ω = N/S = non-

synonymous SNPs/synonymous SNPs, is by definition normalized to 1 in most 

evolutionary studies (Stoletzki and Eyre-Walker, 2011). A higher N/S ratio near the 

telomeres and centromeres and lower N/S ratios in the middle of the chromosome arms 

might be observed (Begun and Aquadro, 1992, Charlesworth et al., 1987). 
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Figure 1.13: The difference between transitional and tranversional nucleotide changes (adapted from 

http://en.wikipedia.org/wiki/Transversion). 

 

The low mutation rate of SNPs makes them excellent markers for studying complex 

genetic traits and as a tool for the understanding of genome evolution (Syvanen, 2001). 

SNPs represent the most frequent type of genetic polymorphism and provide a high 

density of markers near a locus of interest. With the introduction of Second Generation 

Sequencing (SGS) the cost of SNP discovery and genotyping has dropped significantly. 

 

The development of high-throughput methods for the detection of SNPs has led to a 

revolution in their use as molecular markers (Duran et al., 2010b, Gupta, 2008, Rafalski, 

2002, Varshney et al., 2009). SNPs may be considered the ultimate genetic marker as 

they represent the finest resolution of a DNA sequence, are generally abundant in 

populations and have a low mutation rate (Edwards et al., 2007a). The principal challenge 

in SNP discovery remains the discrimination between true genetic polymorphisms and the 

often more abundant sequence or read mapping errors. SNP discovery is further 

confounded in polyploid species where multiple related genomes are present within each 

nucleus. The identification of high confidence SNPs can be based on three methods: 
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sequence quality score, redundancy of the polymorphism in a sequence alignment and 

presence of conserved haplotypes at a locus (Barker et al., 2003, Edwards et al., 2007b). 

SNP redundancy provides an effective means for estimating confidence in the validity of 

SNPs independently of sequence quality scores and has been demonstrated to be an 

accurate method for SNP discovery in a range of species (Batley and Edwards, 2009b, 

Duran et al., 2009a, Duran et al., 2009b). SNPs are used routinely in agriculture as 

markers in crop and livestock breeding programs, e.g. for phylogenetic analysis, cultivar 

identification, genetic diversity analysis, characterisation of genetic resources and 

association with agronomic traits (Batley and Edwards, 2009b). 

 

1.5. In-silico Single Nucleotide Polymorphisms discovery and file formats 

Sequencing data contains errors as frequent as one error every one hundred base pairs. 

This incorrect base could be called a SNP in some prediction software, but it does not 

reflect biologically relevant polymorphisms. Formats were created for different visualisation 

tools in order to view the newly discovered SNPs together with the alignment. 

 

1.5.1. ACCUSA: accurate Single Nucleotide Polymorphisms calling  

ACCUSA is a SNP caller which considers both the read qualities as well as the reference 

genome quality. Therefore it is suited for SNP discovery from genome projects in draft 

status. ACCUSA accepts ACE file format 

(http://bozeman.mbt.washington.edu/consed/distributions/README.16.0.txt), as well as 

the SAMtools pileup format (Li, 2011a) as input files. The problem with pileup format is that 

these files are huge, because this format contains all base differences at each position 

compared to the reference. The reference genome must be in FASTQ format, which 

contains the reference base quality. ACCUSA uses Bayesian analysis to compute the 

probability of a SNP for all aligned short reads at a given genome assembly position and 

for the complete alignment column including the reference base (Frohler and Dieterich, 

2010).  
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1.5.2. AGSNP: an annotation-based, genome-wide Single Nucleotide 

Polymorphisms discovery pipeline 

AGSNP is an annotation-based, genome-wide SNP discovery pipeline using NGS data for 

large and complex genomes without a reference genome sequence. Shotgun reads of one 

individual are annotated in order to distinguish single-copy sequences and repeat junctions 

with RJPrimer (You et al., 2010). Multiple genome equivalents of shotgun reads of another 

individual are then mapped to the annotated reads using BWA (Li and Durbin, 2009a) in 

order to identify putative SNPs with SAMTools (You et al., 2011). AGSNP then filters the 

SAMtools pileup file to increase the accuracy of putative SNPs. Furthermore, AGSNP 

creates validation files for Illumina's GoldenGate or Infinium assays which require a 

minimum of 50 bp (60 bp preferred) of sequence on either side of each SNP and a 

minimum of 60 bp between two contiguous SNPs. In an example of the use of AGSNP, 

genomic DNA and cDNA of Ae. tauschii accession AS75, as well genomic DNA of Ae. 

tauschii accession AL8/78 were used. In a sample of 302 randomly selected putative 

SNPs, 84% in gene regions, 88% in repeat junctions, and 81% in uncharacterised regions 

were validated. The AGSNP pipeline package is available upon request (You et al., 2011). 

 

1.5.3. NGS-SNP: Next-Generation-Sequencing - Single Nucleotide 

Polymorphisms   

NGS-SNP (Next-Generation Sequencing SNP) is a collection of command-line Perl scripts 

for performing in-depth/rich annotation of SNPs using Maq (Li et al., 2008) or SAMtools (Li, 

2011a) as SNP discovery programs. Both SNP callers require a reference sequence. 

NGS-SNP works with SNPs which were identified by the sequencing of whole genomes 

from any organism with a reference sequence in Ensembl and also uses NCBI Entrez 

Gene (Maglott et al., 2011) and UniProt (Apweiler et al., 2013) as additional information 

sources. SNPs are classified as synonymous, non-synonymous, 3' UTR, etc. regardless of 

whether or not they match existing SNP records.  

 

NGS-SNP compares SNP positions to orthologous sequences to help to identify SNPs that 

affect conserved residues, or alter residues or genes linked to phenotypes in another 

species. This tool reports overlapping protein features or domains, provides gene ontology 

information, or provides flanking sequence for use in the design of validation assays. 

Known SNP sites in the flanking sequence and at the SNP position can be included in the 
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output as lower case IUPAC characters, and as potentially additional alleles at the SNP 

site. It also maps SNP-altered residues to a protein in another species to retrieve 

additional information.  

 

1.5.4. Atlas-SNP2: Atlas-Single Nucleotide Polymorphisms2 

Atlas-SNP2 is based on three steps. Firstly, to reduce the computational requirements, it 

divides the reference genome into smaller pieces and separates NGS reads into smaller 

batches, each with fewer reads. Secondly, the NGS reads are anchored and aligned onto 

the reference sequence using BLAT (Kent, 2002) and Cross_Match (http://www.phrap.org). 

Reads which have multiple best hits are discarded in order to avoid mis-mapping of 

repeats and also to remove duplicated reads. In the last step Atlas-SNP2 predicts error 

probabilities of mismatches in single reads using a logistic regression model followed by a 

Bayesian formula to combine the likelihood estimation from multiple reads mapped to the 

same locus with prior SNP probabilities. The estimated posterior SNP probability is used to 

distinguish true SNPs from sequencing errors (Shen et al., 2010). 

 

1.5.5. Popular file formats for Single Nucleotide Polymorphisms 

1.5.5.1. GFF3: Generic Feature Format version 3  

Generic Feature Format version 3 (GFF3) is based on the Generic Feature Format (GFF) 

and both were designed to describe genome annotation data, but GFF3, unlike GFF, is 

typed using a Sequence Ontology (SO). This means that the terminology being used to 

describe the data is standardised and organised by pre-specified relationships. This 

ontology was developed by the Gene Ontology Consortium (Ashburner et al., 2000) to 

describe the parts of genomic annotations, and how these parts relate to each other 

(Eilbeck et al., 2005). GFF, as well as GFF3, are tab-delimited flat file formats, which can 

be easily  modified with a text editor and processed with shell tools such as grep 

(http://www.sequenceontology.org/resources/gff3.html, 24.08.2011) (Reese et al., 2010). 

 

1.5.5.2. VCF: Variant Call Format 

The variant call format (VCF) is a standardised generic format for storing DNA 

polymorphism data such as SNPs, insertions, deletions and structural variants, together 

with rich annotations (Danecek et al., 2011). Meta-information within a VCF file provides 
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information about the file creation, version of the reference sequence and software used. 

Although the generic feature format (GFF) has been extended to standardise storage of 

variant information in genome variant format (GVF) (Reese et al., 2010), this is not suitable 

for storing information across many samples. VCF files can be compressed by bgzip, a 

program which uses the zlib-compatible BGZF library (Li et al., 2009a). Fast data retrieval 

can be achieved by indexing the genomic position using tabix (Li, 2011b), a generic 

indexer for TAB-delimited files. Bgzip and tabix, are part of the SAMtools package (Li et al., 

2009a). 

 

VCFtools is an open-source software suite which is split into two modules. The first 

module provides a Perl API, and allows format validation, merging, comparing, 

intersecting, and making complements and basic overall statistics on VCF files. The 

second module is written in C++ and is used to analyse SNP data in VCF format, allowing 

the user to estimate allele frequencies, levels of linkage disequilibrium and various quality 

control metrics. An alternative tool for VCF generation and manipulation is the GATK toolkit 

(McKenna et al., 2010) 
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1.6. Single Nucleotide Polymorphisms annotation  

SnpEff (SNP effect) is a platform independent open source variant effect predictor 

program. It annotates variants and predicts the effects of genetic variations, such as 

SNPs, insertions and deletions (INDELs) and multiple nucleotide polymorphisms (MNPs), 

based on gene annotations (Cingolani et al., 2012).  

 

Firstly, SnpEff requires a database with gene annotation information and currently SnpEff 

contains over 320 databases for different reference genome versions that can be 

analysed. If a database build is not available then it can be built using a reference genome 

in FASTA format and an annotation file format such as GTF, GFF or RefSeq table. 

However, if annotations are not available e. g. from ENSEMBL, UCSC Genome 

Bioinformatics website or other specific websites, such as TAIR then gene prediction tools 

such as SNAP (Korf, 2004) or GlimmerHMM (Majoros et al., 2004) could be used to 

generate gene annotations.  

 

Secondly, the potential effect of a SNP can be calculated with data in variant call format 

(VCF), which contains all SNPs and INDELs in a genome. Each variant queries the data 

structure to find and report all intersecting genomic regions. Whenever the regions include 

an exon, the coding effect of the variant is calculated. In VCF format, SNPeff stores the 

effect information in the information (INFO) fields using an effect (EFF) tag.  

 

1.7. Data visualisation and data growth 

In the last few years, researchers have become inundated with new exponentially growing 

sequencing data (see Figure 1.14), thanks to SGS technologies. Moore’s Law dictates that 

computer technology improvements double every two years (Moore, 1998). However, DNA 

sequencing overtook Moore’s Law, getting cheaper and faster than expected. The graph in 

Figure 1.14 shows data from 2001 to October 2007 representing the costs of generating 

DNA sequence using Sanger sequencing (First Generation Sequencing). From January 

2008, the data represents the costs of sequencing using SGS.  
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Figure 1.14: Cost of sequencing a human-sized genome. The cost of getting DNA data is dropping faster than the cost of 

processing data on computers (adapted from http://www.genome.gov/sequencingcosts/). 

 

Therefore, the field of biological sequence data visualisation is a rapidly expanding field 

that is required to address new tasks in order to cope efficiently with the vast amounts of 

data produced (Pavlopoulos et al., 2013). Continued improvements in tools and adapting 

new hardware technologies will help researchers make sense of large volumes of data.  

 

1.7.1. Generic Genome Browser   

Generic Genome browser (GBrowse or GGB) 2 (see Figure 1.15) gives users the ability to 

navigate genomic sequence information and visualise various features in a series of tracks 

within the context of a reference sequence. It is implemented in Perl as a series of CGI 

scripts and designed to display genome annotations on small or large genomes. GBrowse 

can either use a file as a relational database through use of special functions called 

adaptors, or connect to a database. There are several new major features in GBrowse2 
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over GBrowse (Donlin, 2009) including: 

 

 User accounts with authentication 

 User interface improvements through AJAX which avoids reloading the whole page 

to view a new region or data track. 

 Multiple processors and machines can be used to render data tracks in parallel 

 It allows tracks to come from different data sources and multiple servers in the 

same page e.g. one track could come from a database and the other from a BAM 

file. 

 

 

Figure 1.15: GGB2 showing Brassica napus AA genome SNPs called by SGSautoSNP. 

GBrowse2 also contains a Bio::DB::Sam adaptor to visualise BAM SGS short read data 

alignments. Overall, Gbrowse2 allows displaying SGS data along with other annotations. 

Gbrowse was implemented as open-source by the project called the Generic Model 

Organism Database and runs on LINUX/UNIX, Mac OSX, and Windows.  



34 

 

1.7.2. Tablet 

Tablet (see Figure 1.16) is a free graphical viewer for SGS assemblies and alignments. It 

provides high-quality visualisations showing data in packed (showing as many reads per 

line as possible without overlap) or stacked (showing one read per line) views, allowing 

navigation to any region of interest, whole contig overviews and data summaries. Tablet 

can import data from ACE, AFG, MAQ, SAM/BAM and SOAP. The latter four formats 

require the reference sequence to be imported separately as a FASTA file. It is also 

possible to import annotation features such as SNPs and indels in GFF3 format. This tool 

is written in Java so it can run platform independently in both 32- and 64-bit versions. It 

supports multi-core processor architectures to allow fast navigation of NGS data with low 

memory usage. Tablet has been implemented as a hybrid system that provides the 

advantages of memory-based (where all the data are loaded into memory) and disk 

cached data (only the visible segment of the dataset is loaded in the memory, and the 

remainder are stored on the disk).  

 

Memory-based applications are faster for viewing and navigation, but the amount of NGS 

data cannot be stored in a normal desktop computer's memory. Cache-based applications 

can be used for NGS data because of using a minimum of memory, but data access is 

slower which affects the navigation (Milne et al., 2010a). 

 

 

Figure 1.16: Tablet showing Brassica napus A genome SNPs called by SGSautoSNP. 
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1.7.3. MagicViewer 

MagicViewer (see Figure 1.17) was developed for short read alignment visualisation and 

annotation. It requires a reference genome sequence in FASTA format, a sorted BAM file 

containing the aligned short reads and an optional reference genome annotation file in 

GFF format. It uses a workspace where users can save and load their most frequently 

used resources for quick access. Through it, users can easily load, browse, further update 

and modify their previous results, instead of reconstructing a new project.  

 

MagicViewer allows the user to zoom into the image, from the whole chromosome to 

individual bases. When the mouse hovers on a specific read, a pop-up appears with read 

ID, location, base quality, read length and orientation. Users can change colours for 

nucleotide and background and font. The Genome Analysis Toolkit (GATK) (McKenna et 

al., 2010) is an open-source software framework to develop analysis tools for SGS data. It 

was built in MagicViewer to identify genetic variation between short reads and reference 

genomes. MagicViewer allows users to change parameters for heterozygosity, confidence 

threshold and max coverage. For candidate SNPs, it provides options (thresholds for 

coverage, quality, variant frequency and number of reads) for display and filtering to 

remove low confidence SNPs. The output of genetic variation calling is saved in a variable 

call format (VCF) (Danecek et al., 2011), which is the standard file format used by the 

1000 Genomes Project, and it displays the SNPs above the alignment. MagicViewer 

allows users to adjust parameters (primer length, Tm, GC content, product Tm and the 

number of primers) for Primer3 in order to generate a specific genomic flanking region 

primers. MagicViewer is written in Java and is a cache-based viewer which uses low 

memory (Hou et al., 2010).  
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Figure 1.17: MagicViewer showing Brassica napus A genom SNPs called by SGSautoSNP. 

 

1.7.4. Flapjack 

Flapjack (see Figure 1.18) is a visual interface for graphical genotyping applications in 

genetics and plant breeding. Based on the input of map, genotype and trait data Flapjack 

is able to provide a number of alternative graphical genotype views with individual alleles 

coloured by state, frequency or similarity to a given standard line. Flapjack supports a 

range of interactions with the data, including graphically moving lines or markers around 

the display, insertion or deletion of data, and sorting or clustering of lines by either 

genotype similarity to other lines, or by trait scores. Any map based information such as 

QTL positions can be aligned with graphical genotypes to identify associated haplotypes. 

All project results are saved in an XML-based project format and can also be exported as 

raw data or graphically as PNG files. Flapjack is freely available for Microsoft Windows, 

Mac OS X, Linux and Solaris. It is written in Java and can use multi-core processors in 

order to help to navigate around large or complex datasets (Milne et al., 2010b).  
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Figure 1.18: Flapjack showing Brassica napus A genome (genome markers called by SGSautoSNP). 

 

1.8. Summary and overview of projects presented in the following chapters  

It is very important to secure food production for the future rapidly growing population in 

the face of global environmental change. Brassica and wheat are important crops species 

for Australia and the rest of the world. Second Generation Sequencing has accelerated 

genome sequencing and made it more affordable. For Second Generation Sequencing a 

major challenge is to store and work with the huge amount of generated sequences. 

Therefore new bioinformatics tools have been developed to align, visualise and assemble 

Second Generation Sequencing data and to analyse the genomes of crop species.  

 

It is the purpose of this thesis is to establish and apply new bioinformatics tools for 

Brassica and wheat Second Generation Sequencing data, to provide researchers and 

breeders with data to assist them to develop new Brassica and wheat varieties that can 

address the global environmental challenges and feed the fast growing population.  

 

At the start of this thesis we were not satisfied by the already available in-silico SNP 

discovery tools reviewed in Chapter 1.5, because either they did not provide the 

functionality which was required for this project or they did not share the code with us. 

Most of SNP discovery tools were designed for human or simple bacterial genomes. 

However, these tools do not work well with crop genomes which are often highly 

homozygous (Batley and Edwards, 2009b, Duran et al., 2009c, Imelfort et al., 2009, Lee et 

al., 2012). Therefore, Chapter 2 describes the novel developed pipeline for the discovery 

of SNP in complex genomes. The SGSautoSNP (Second-Generation Sequencing 

AutoSNP) (Lorenc et al., 2012) pipeline calls SNPs between different individuals using 
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Illumina paired read data aligned to a reference genome. SGSautoSNP does not consider 

the reference genome for SNP discovery. Instead, the reference is used to assemble the 

reads, and SNPs are then called between these assembled reads. SGSautoSNP uses 

BAM (Binary Alignment/Map) format in order to save memory and space. Furthermore, the 

pipeline can take advantage of modern multi-core CPUs in order to speed up the SNP 

discovery. The discovered SNPs can be viewed using a broad range of visualisation tools 

reviewed in section 1.7 using BAM, GFF3, VCF and Flapjack output files. There is often a 

requirement to generate a consensus sequence based on the reads mapped to the 

reference and so SGSautoSNP can generate a consensus sequence as well as marker 

design files for Illumina GoldenGate or Infinium assay designs. Furthermore the pipeline 

has been updated after it was published in 2012 and includes scripts for gene and SNP 

annotation which uses SNAP, a gene prediction software and SNPeff, a SNP annotation 

and effect prediction tool. In additional it finds SNPs in low SNP density regions and uses 

gene ontology analysis and goatools to find enrichment of GO terms. 

 

Chapters 3 and 4 show the successfully predicted polymorphisms by SGSautoSNP 

pipeline in Brassica and wheat group 7 chromosomes.  The Brassica results were stored 

in a novel database described in Chapter 5. The wheat group 7 chromosomes results were 

stored in WheatGenome.info (http://www.wheatgenome.info) which provides an integrated 

database and a range of web application tools to search wheat data (Lai et al., 2012a). 

These include links to wheat genetic maps using CMap and CMap3D (Duran et al., 2010a, 

Youens-Clark et al., 2009), and a wheat genome viewer based on GBrowse2 with a 

BLAST search portal. WheatGenome.info aims to accelerate wheat genome research and 

contains all data for wheat group 7 chromosomes (Berkman et al., 2013, Berkman et al., 

2012a, Berkman et al., 2011). It also includes links to wheat genome data hosted at other 

research organisations. 

 

Chapter 5 describes the development of a novel platform to store all SNP information 

discovered by SGSautoSNP. The novel platform is called SGSautoSNPdb and its 

database is not based on a traditional Relational Database Management System (RDMS), 

Instead SGSautoSNP uses a document-oriented database which has the advantage that 

all SNP information can be stored in one document rather than spread in multiple tables. 

This makes it easier for biologists to understand. Furthermore, SGSautoSNPdb is capable 

to manage large volumes of data produced by advances in genome technologies 
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efficiently and fast. All information is cross linked to other databases in order to give the 

researcher results only a click away, instead of having to copy a particular ID and search 

manually in a search engine. 
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Chapter 2: Second Generation Sequencing Auto Single 

Nucleotide Polymorphisms (SGSautoSNP) computational 

SNP discovery and annotation pipeline 

2.1. Introduction 

Single nucleotide polymorphisms (SNPs) are becoming the dominant form of molecular 

marker for genetic and genomic analysis. The advances in second generation DNA 

sequencing provide opportunities to identify very large numbers of SNPs in a range of 

species. However, SNP identification remains a challenge for large and polyploid genomes 

due to their size and complexity, caused by an abundance of transposable elements 

(Leitch and Leitch, 2008, Meyers and Levin, 2006).  

 

The rapidly expanding genome datasets, driven by advances in second generation DNA 

sequencing, present a challenge for their management and application (Batley and 

Edwards, 2009a). At the start of this thesis we were not satisfied by the already available 

in-silico SNP discovery tools reviewed in Chapter 1 such as ACCUSA (Frohler and 

Dieterich, 2010), AGSNP (You et al., 2011), NGS-SNP (Grant et al., 2011) and Atlas-SNP2 

(Shen et al., 2010), because either they did not supported BAM files, did not use multi-core 

CPUs, did not calls SNPs between different individuals, instead they called SNPs between 

the reference genome, or they did not share the code with us. Furthermore, most SNP 

discovery tools were designed for human or simple bacterial genomes. However, these 

tools do not work well with crop genomes which are often highly homozygous (Batley and 

Edwards, 2009b, Duran et al., 2009c, Imelfort et al., 2009, Lee et al., 2012). Therefore, this 

chapter describes SGSautoSNP (Second-Generation Sequencing AutoSNP) (Lorenc et 

al., 2012) pipeline development which solved the above short comings from other SNP 

caller. For example, SGSautoSNP was developed from original concepts used in autoSNP, 

SNPServer and autoSNPdb (Batley and Edwards, 2009b, Duran et al., 2009a, Savage et 

al., 2005). Rather than attempting to identify all possible SNPs across a genome, 

SGSautoSNP is used to identify as many SNPs as possible with the highest confidence, 

with the acknowledgement that not all biologically present SNPs will be identified. 

SGSautoSNP method does not consider the reference genome for SNP discovery. 

Instead, the reference genome is used to assemble the reads, and SNPs are then called 

between these assembled reads. In SGSautoSNP, mismapped reads produce a 
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heterozygous genotype call at a locus, allowing their distinction from true homozygous 

SNPs. Three steps were used in order to avoid calling SNPs between homeologs. Firstly, 

SGSautoSNP discards SNP positions where it is a base conflict within a cultivar. Secondly, 

only paired reads mapping to a unique location in the genome were kept for further 

analysis, which is guaranteed by SOAPaligner parameter (-r 0) (Li et al., 2009b). Lastly, an 

additional genome for Brassica project (see Chapter 3) and an additional chromosome 

arm for wheat project (see Chapter 4) were used to align whole genome sequenced 

cultivars. In the case of wheat, cultivars were mapped to the reference bread wheat 

chromosome arm shotgun assemblies representing homoelogous chromosomes 7A, 7B 

and 7D (Berkman et al., 2013), as well as 4AL (Hernandez et al., 2012). In the absence of 

one of the homoeologues, cultivar specific reads from the missing homoeologue would 

likely map to one of the other homoeologous genomes, confounding SNP discovery. The 

SGSautoSNP method does not consider read quality score because these scores are not 

very reliable, with erroneous nucleotide calls often having high quality scores caused by 

processes used for the generation of sequence libraries. 

 

The SGSautoSNP pipeline produces output in GFF3, VCF, Flapjack or Illumina Infinium 

design, this output in particular is used as a format for further genotyping diverse 

populations. As well as providing an unprecedented resource for diversity analysis, the 

SGSautoSNP method establishes a foundation for high resolution SNP discovery in large 

and complex genomes. 

 

After the SGSautoSNP pipeline was first published (Lorenc et al., 2012) new features were 

implemented as additional code units. It is now possible to associate SNPs with predicted 

genes, find SNPs in low SNP density regions and associate SNPs in genes with gene 

ontology classifications. Together this information from the SGSautoSNP pipeline helps us 

to understand how natural selection has shaped the evolution of plant genomes and 

provides information which can be applied for crop improvement. SGSautoSNP is freely 

available on request for academic use.  
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2.2. Methods 

2.2.1. Parallel programming: with a Worker-Queues Model 

To handle large and complex genomes it was necessary to develop SGSautoSNP, which is 

written in the Python programming language, to enable use of multi-core CPUs. However, 

the current and future versions of CPython, which is the default interpreter for Python, 

implement the Global Interpreter Lock (GIL). The GIL itself prevents more than a single 

native thread from running within the interpreter at any given point in time. GIL is required 

because CPython's memory management is not thread-safe 

(https://wiki.python.org/moin/GlobalInterpreterLock, 11 April 2014). Thread-safe describes 

a piece of code that can be called from multiple threads without causing unwanted 

interaction of shared data structures by multiple threads at the same time 

(http://en.wikipedia.org/wiki/Thread_safety, 11 April 2014). 

 

In order to take advantage of multi-core CPU systems, Python has to start multiple 

interpreters and shares the data between them. Just to open and close a new interpreter 

would take too much time and therefore some SGSautoSNP pipeline scripts are based on 

a the Worker-Queue Model also know as Worker-Crew Model (Garg and Sharapov, 2001). 

The original published concept is based on threads. Because of the GIL it was not possible 

to use threads and therefore instead the SGSautoSNP pipeline uses a different Python 

interpreter in order to maximize concurrency, because all workers should complete their 

task at the same time. When using workers without a queue it is more difficult to distribute 

the load among workers equally. Therefore it is better to use a queue because the script 

can then split the task dynamically into smaller tasks and put them in a queue. Worker-

Queue Model belongs to a Symmetric multiprocessing (SMP) environment, because the 

task queue has to be shared across all workers. 

 

Some of the SGSautoSNP scripts first create workers on different Python interpreters 

which are then just there waiting for work on a different CPU core. In the next step the 

work is passed to each worker in the form of a share queue which contains all tasks. Each 

worker takes a task out of the queue and processes it. After a worker finishes a task a 

worker takes a new task without the need to create a new interpreter. As soon as a worker 

cannot get a new task it shuts down the interpreter, because all tasks have been 

processed or are still being processed by other workers. In order to distribute 
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SGSautoSNP scripts across multiple compute nodes, each chromosome was processed 

by the SGSautoSNP pipeline script on a single compute node on Barrine (see Appendix). 

With this strategy all chromosomes could be processed in parallel. More details on how 

some SGSautoSNP pipeline scripts work are described in Section 2.2.2.  

 

2.2.2. SGSautoSNP workflow 

The SGSautoSNP pipeline workflow is built out of multiple scripts, a graphical 

representation of this is shown in Figure 2.1. The user starts with SOAPalinger.py script 

and finishes the full analysis with the last script, SGSautoSNP_summary.py, in the 

SGSautoSNP pipeline. Figure 2.1 shows that after some scripts, for example 

MarkDuplicates.py, two arrows point away to other scripts. In such case the user has to 

make the choice whether it wants this step or not. Usually, the user can follow all arrows 

and include scripts. However, MarkDuplicates.py is a special case, because after it the 

user has to make a choice whether they want to discover SNPs from a pseudo 

chromosome or not. 
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Figure 2.1: This flowchart shows the general workflow of the SGSautoSNP pipeline and each box shows the different stages of the process of this pipeline. 
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2.2.2.1. Mapping reads to the reference 

There were three reasons why SOAP (Li et al., 2009b) was choosen to align cultivar 

specific reads to the reference genome sequences for the SGSautoSNP pipeline. Firstly 

the SOAP algorithm is fast as described in Chapter 1. Secondly, SOAPaligner does not 

produce SAM or BAM files, but the developer provides a soap2sam.pl 

(http://soap.genomics.org.cn/down/soap2sam.tar.gz) script which converts SOAP results 

to SAM format. SOAPaligner.py uses this script and also uses SAMtools (Li et al., 2009a) 

which allows users to convert SAM to BAM format, and sort and index BAM files. 

Furthermore, SAMtools also helps SOAPaligner.py to fill in mate coordinates, ISIZE and 

mate related flags in alignments. Lastly, SOAP has an option, (-r 0), which removes reads 

where they match multiple positions equally well. This option aims to increase SNP calling 

accuracy by ignoring read pairs that cannot be accurately positioned on the reference. 

Similarly, only reads that mapped as a pair were used for SNP discovery. Due to the short 

length of the reads, a single read could possibly match many positions, but two reads 

separated by a gap of defined approximate insert size provides a greater confidence of 

specific and accurate read mapping. The calling of SNPs between reads aligned to a 

reference, while ignoring the reference allele, allows this pipeline to be applied to 

accurately call SNPs between individuals using a reference from a divergent species. The 

aim is to identify a large number of highly confident SNPs rather than all possible 

polymorphisms. Regions such as duplicate regions where it is not possible to accurately 

map sequence reads tend to lead to false SNP calls and so these regions are ignored. 

Regions of heterozygosity and low sequence coverage also lead to reduced SNP 

representation. While this pipeline does not attempt to call all biological SNPs, the very 

large numbers of highly accurate SNPs identified are valuable for genetic studies and the 

association of agronomic traits with candidate genes. 
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$ python SOAPaligner.py –h 

 

usage: SOAPaligner.py [-h] --FastQC [FASTQC] --data_cfg [DATA_CFG] --data_nos 

                      [DATA_NOS] --reference [REFERENCE] --tmp_dir [TMP_DIR] 

                      --res_dir [RES_DIR] --CPUs [CPUS] 

 

It runs SOAPalingner and creates a statistics file for the alignment 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --FastQC [FASTQC]     Path to FastQC 

  --data_cfg [DATA_CFG] Please provide a config file with all reads! 

  --data_nos [DATA_NOS] A particular no. (0 or 1 or 2 ...) from data.cfg or 

                        all for everything 

  --reference [REFERENCE] Genome reference FASTA file! 

  --res_dir [RES_DIR]   Results directory! 

  --CPUs [CPUS]         Please provide how many CPUs are available. 

 

 

Figure 2.2: The command-line of the SOAPaligner.py script, showing the various usage options. 

 

SOAP generates three results files for each cultivar: paired-end; single mapped reads; and 

unmapped reads. Only mapped paired reads were used for further analysis. To be able to use 

SOAP in an easier way and provide additional functionality, a wrapper, SOAPaligner.py, was 

written. There are a number of parameters that have to be passed to the script. The help message 

(-h) parameter outlines the parameters available for use (Figure 2.2). Using the config file (--

data_cfg) parameter, the user provides all information about the reads which have to be aligned, 

including the insert size (minimum and maximum), cultivar abbreviation, read names and location 

of the files. A config file example is shown in Figure 2.3. Numbers in brackets represent the data set 

number 0..N and are used for the data set parameter (--data_nos) in SOAPaligner.py. This 

parameter makes it possible for each computing node to grab a particular dataset and align the 

reads. SOAPaligner.py can automatically extract reads with the file extension “gz” and “bz2”. For 

“bz2” it is recommended to have lbzip2 (http://lbzip2.org/), a parallel bzip2 compression utility 

installed to speed up the unpacking of the reads. A further advantage of the config file is that can 

be used as quality control. For example, after the project has been completed it is easy to store all 

relevant information about the run in the related config file. 
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[0] 

lane number = 2 

species = Species name 

cultivar = cultivar_A 

library name = H45_03_001 

read length = 100 

read_a = <My project folder/tmp/fastq>/cultivar_A_Read_a.gz 

read_b = <My project folder/tmp/fastq>/cultivar_A_Read_b.gz 

min_isize = 60 

max_isize = 580 

cultivar abbreviation = A 

 

[1] 

lane number = 3 

species = Species name 

cultivar = cultivar_Bn 

library name = H45_03_001 

read length = 100 

read_a = <My project folder/tmp/fastq>/cultivar_Bn_Read_a.bz2 

read_b = <My project folder/tmp/fastq>/cultivar_Bn_Read_b.bz2 

min_isize = 60 

max_isize = 580 

cultivar abbreviation = Bn 

 

[N] 

lane number = 4 

species = Species name 

cultivar = cultivar_T 

library name = H45_03_001 

read length = 100 

read_a = <My project folder/tmp/fastq>/cultivar_T_Read_a.gz 

read_b = <My project folder/tmp/fastq>/cultivar_T_Read_b.gz 

min_isize = 60 

max_isize = 580 

cultivar abbreviation = T 

 

 

Figure 2.3: Config file for SOAPaligner.py which contains all information about the reads to be aligned. Numbers in brackets 

represent the data set number 0..N. 

 

2.2.2.2. Generating chromosome BAM files  

The reference genome used for this analysis contains all chromosomes, which has the 

advantage that reads align accurately to the correct chromosome. However, for further 

analysis and SNP calling it is better to split the alignments by chromosome which allows 

reference to a particular chromosome in a genome. To allow the detection of different 

cultivars in the BAM files, each read ID has to be modified. All these requirements are 

performed using GenerateSubsetBAM.py (Figure 2.4).   
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$ python GenerateSubsetBAM.py -h 

usage: GenerateSubsetBAM.py [-h] --bam [BAM] --ref_path [REF_PATH] --chrs_refs 

                            [CHRS_REFS] --cultivar [CULTIVAR] --res_dir 

                            [RES_DIR] --cpu [CPU] 

 

Creates a subset BAM files for each chromosome 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --bam [BAM]           BAM file name from which subset will be created! 

  --ref_path [REF_PATH] 

                        Path to reference files folder 

  --chrs_refs [CHRS_REFS] 

                        A list of unique chromosome abbreviation and reference 

                        fasta file name seperated by ':' e.g.: 

                        'chr1:ex1.fa;chr2:ex2.fa' 

  --cultivar [CULTIVAR] 

                        Cultivar abbreviation e.g. AP1 which will be inserted 

                        in the BAM file in front of read ID 

  --res_dir [RES_DIR]   Results directory! 

  --cpu [CPU]           How many cpus/cores is permited to use 

 

 

Figure 2.4: The command-line of the GenerateSubsetBAM.py script, showing the various usage options. 

 

GenerateSubsetBAM.py uses a Workers-Queue Model where workers are created first on 

different Python interpreters and then wait for tasks. The jobs are passed to each worker in 

the form of a share queue which contains all chromosome names and the FASTA file 

locations. Each worker takes a task out of the queue and inserts in front of each read ID 

the cultivar name and at the same time creates a BAM file for the chromosome. After a 

task has finished the worker takes a new task without the need to create a new interpreter. 

As soon as a worker cannot get a new task it shuts down the interpreter, because all tasks 

have been processed or are still being processing by other workers. To speed this process 

up even more, each cultivar could be processed by a separate compute node. 

 

2.2.2.3. Merging chromosome BAM files 

During the above processing, each cultivar was split into chromosome BAM files (cultivar1-

lane1-chr1, cultivar1-lane1-chr2) and were then combined together for each chromosome. 

The SGSautoSNP pipeline provides a script called MergeChrs.py (Figure 2.5). To produce 

one BAM file for each chromosome, which contains all cultivars, MergeChrs.py has to be 

run twice. The reason is that in the folder e.g. <My Project folder>/tmp/subset/cult1 there 

are more chromosome 1 BAM files of the same cultivar (cultivar1-lane1-chr1, cultivar1-

lane2-chr1) from different sequencing lanes. Therefore, in the first run it is necessary to 
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combine these lanes together (cultivar1-lane1and2-chr1) and in the next step to combine 

all of a cultivar’s chromosomes BAM files together (cultivar1-lane1and2-chr1 + cultivar2-

lane1and2-chr1). Therefore each chromosome BAM file contains all cultivars 

(cultivar1and2-lane1and2-chr1). MergeChrs.py uses a Worker-Queue-Model following the 

same process as the previous examples. 

 

 

$ python MergeChrs.py -h 

usage: MergeChrs.py [-h] --BAM_path [BAM_PATH] --out_file [OUT_FILE] --chrs 

                    [CHRS] --res_dir [RES_DIR] --cpu [CPU] 

 

Merge chromosome specific BAM files 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --BAM_path [BAM_PATH] 

                        Path to BAM files directory 

  --out_file [OUT_FILE] 

                        Output file name template which out containing unique 

                        chromosome abbreviation 

  --chrs [CHRS]         A list of unique chromosome abbreviation e.g.: 

                        'chr1;chr2' 

  --res_dir [RES_DIR]   Results directory! 

  --cpu [CPU]           How many cpus/cores is permited to use 

 

 

Figure 2.5: The command-line of the MergeChrs.py script, showing the various usage options. 

 

2.2.2.4. Duplicate removal 

Biased representation of DNA inserts like GC content percentages and size differences 

can be caused by PCR amplification of DNA libraries (Dabney et al., 2013). Read 

sequences with the same positions on reference genome are most likely of the same 

insert and therefore these PCR duplicates have to be removed (Schubert et al., 2014). 

Picard-tools provide Java-based command-line tools to manipulate SAM/BAM files 

(http://picard.sourceforge.net/). One of the tools, MarkDuplicates.jar, is able to detect 

duplicate mapped reads in BAM files. It defines two pairs as duplicates if they align at the 

same position, both for their first and second reads. Only one of the duplicate paired reads 

with the highest average base quality is kept and the rest are deleted as duplicates using 

the option REMOVE_DUPLICATES=true (Pireddu et al., 2011). MarkDuplicates.py (Figure 

2.6) is a wrapper for MarkDuplicates.jar and provides a Worker-Queue-Model to distribute 

the tasks where workers are created first on different Python interpreters and wait for 

tasks.  
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$ python MarkDuplicates.py -h 

usage: MarkDuplicates.py [-h] --MarkDuplicates_path [MARKDUPLICATES_PATH] 

                         --BAM_path [BAM_PATH] --res_dir [RES_DIR] --cpu [CPU] 

 

Removes clones from BAM files with MarkDuplicates.jar 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --MarkDuplicates_path [MARKDUPLICATES_PATH] 

                        Path to directory where Markduplicates is stored e. g. 

                        /home/mictadlo/apps/picard-tools/picard-tools 

  --BAM_path [BAM_PATH] Path to substet BAM files directory 

  --res_dir [RES_DIR]   Results directory!  

  --cpu [CPU]           How many cpus/cores is permitted to use 

 

 

Figure 2.6: The command-line of the MarkDuplicates.py script, showing the various usage options. 

 

Each worker grabs a BAM file name out of a share queue which contains all BAM file 

names and runs MarkDuplicates.jar internally. After a task has finished, the worker takes a 

new task without the need to create a new interpreter. As soon as a worker cannot get a 

new task it shuts down the interpreter, because all tasks have been processed or are still 

being processing by other workers. To speed this process up even more, each cultivar 

could be processed by a separate compute node. 

 

2.2.2.5. Pseudo-chromosome building 

For the Brassica work it was necessary to build pseudo chromosomes; the 

multiple_to_single_fasta.py (Figure 2.7) script creates them. A multiple FASTA file has to 

be provided as input to the script. During the process the sequences from each entry are 

concatenated, and filler sequence, e.g. 100 Ns, are inserted between each sequence. 

Furthermore, the script produces an additional output file in GFF3 which contains the start 

and end positions of the sequences (see Figure 2.8). 
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$ python multiple_to_single_fasta.py -h 

Usage: multiple_to_single_fasta.py -v Chr1 -f t.m.fasta -s fasta -r r -n 100 

multiple_to_single_fasta.py -v 7DS_PSMOL_0.3 -f t.m.fasta -s 

ACPFG_pseudomolecule -r - -n 2000 

 

Options: 

  -h, --help            show this help message and exit 

  -v PSMOLVER, --path=PSMOLVER 

                        Please give PSMOL name and version eg. 7DS_PSMOL_0.3 

                        or chromosome eg. Chr1 

  -f MFASTA, --fasta=MFASTA 

                        Please give a multiple fasta files eg. t.m.fasta. 

  -s SOURCE, --source=SOURCE 

                        Please give the source where the data comes from eg. 

                        ACPFG_pseudomolecule or fasta. 

  -r REVERSE, --reverse=REVERSE 

                        Please specify what character is the orientation eg. r 

                        or -. 

  -n SPACERNO, --spacer=SPACERNO 

                        Please give how many N do you want as spacer. 

 

 

Figure 2.7: The command-line of the multiple_to_single_fasta.py script, showing the various usage options. 
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##gff-version 3 

       ##sequence-region XA07_v3.0 1 22305823 

     XA07_v3.0 fasta contig 1 359785 . + . ID=XA_0158;Name=XA_0158 

XA07_v3.0 fasta contig 359886 956461 . + . ID=XA_0117;Name=XA_0117 

XA07_v3.0 fasta contig 956562 1177385 . + . ID=XA_0181;Name=XA_0181 

XA07_v3.0 fasta contig 1177486 1782250 . + . ID=XA_0116;Name=XA_0116 

XA07_v3.0 fasta contig 1782351 5098604 . - . ID=XA_0017r;Name=XA_0017r 

XA07_v3.0 fasta contig 5098705 5484666 . + . ID=XA_0153;Name=XA_0153 

XA07_v3.0 fasta contig 5484767 6809755 . - . ID=XA_0069r;Name=XA_0069r 

XA07_v3.0 fasta contig 6809856 11170108 . - . ID=XA_0012r;Name=XA_0012r 

XA07_v3.0 fasta contig 11170209 18223632 . + . ID=XA_0003;Name=XA_0003 

XA07_v3.0 fasta contig 18223733 21429098 . - . ID=XA_0019r;Name=XA_0019r 

XA07_v3.0 fasta contig 21429199 22305823 . + . ID=XA_0101;Name=XA_0101 

 

Figure 2.8: GFF3 file which contains the start and end positions of the sequences for Chromosome 7 of the Brassica napus AA genome. 
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2.2.2.6. SNP discovery 

SGSautoSNP is different from most SNP callers in that the reference is used to assemble 

the reads, but SNPs are then called between these assembled reads and not between the 

reads and the reference. The SGSautoSNP.py algorithm uses two steps to call a SNP at 

each locus. Primary SNP calling requires a SNP redundancy score of at least 2. The SNP 

redundancy score is the minimum number of reads calling the SNP allele at the locus. To 

understand the SNP score better let’s consider a random position in an alignment where 

cultivars contain the following bases: 

 

 cultivar1 has 6 As 

 cultivar2 has 1 G 

 cultivar3 has 1 G 

 

In the above example there are 2 Gs and 6 As, two Gs is the minimum and therefore the 

SNP score is 2. As at least 2 reads are required, each from at least 2 cultivars to call a 

SNP, the minimum read coverage at a locus to call a SNP is therefore 4. After this initial 

SNP call, the algorithm asks if all bases within each cultivar at a locus are the same, which 

would be expected for homozygous genomes. This process identifies erroneously called 

SNPs that are due to mis-mapping of reads.  

 

SGSautoSNP.py uses a Worker-Queue Model which differs from the above scripts 

because it has also a results queue in addition to the tasks queue. Workers are created 

first on different Python interpreters and wait. In the next step the work is passed to each 

worker in the form of the share queue which contains all contigs names. Each worker 

takes a contig name out of the queue and processes it, and after it finishes this worker 

passes the result to a share results queue.  

 

SGSautoSNP.py (Figure 2.9) produces five output types. A statistics file with the file extension 

‘.stat’ contains SNP calling statistics including: (i) scaffold name (ii) SNP number (iii) SNP types 

(transitions and transversions) (iv) scaffold length (see Figure 2.10). The end of this file contains a 

summary of all scaffolds. The first results file with the extension ‘.snp’ contains human readable 

SNP information in text format which can be easily parsed to other formats. Information includes: 

(i) scaffold name (ii) SNP position on the scaffold (iii) SNP position on the chromosome (iv) SNP 
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score (v) genotypes (which base and how many appear in a particular cultivar) (vi) allele (vii) SNP 

ID (see Figure 2.11). Three further results formats are produced. VCF (Danecek et al., 2011) files 

are created to allow the user to view the SNPs in MagicViewer (Hou et al., 2010) and to annotate 

the SNP using SnpEff (Cingolani et al., 2012) (see Figure 2.12 and Figure 2.13), whereas the 

chromosome VCF file only will be created by using “--chr_output” and “--chr_offset” parameters. 

GFF3 format (see Figure 2.14 and Figure 2.15), whereas the chromosome GFF3 file only will be 

created by using “--chr_output” and “--chr_offset” parameters. These results are produced for 

viewing in the GBrowse generic genome browser (Donlin, 2009) and Tablet (Milne et al., 2013). 

The help message (-h) parameter outlines the parameters available for SGSautoSNP.py (Figure 

2.9).  

 

 

$ python SGSautoSNP.py -h 

usage: SGSautoSNP.py [-h] --bam [BAM] --fasta [FASTA] --snp_id_prefix 

                     [SNP_ID_PREFIX] --contig_output [CONTIG_OUTPUT] 

                     [--chr_offset [CHR_OFFSET]] [--chr_output [CHR_OUTPUT]] 

                     --cultivars [CULTIVARS] --cpu [CPU] 

 

SGSautoSNP a parallel SNP discovery tool for BAM files 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --bam [BAM]           bam file need bai file! 

  --fasta [FASTA]       Input single/multiple fasta file ! 

  --snp_id_prefix [SNP_ID_PREFIX] 

                        Please provide the prefix of each SNP ID. eg. UQ01F 

  --contig_output [CONTIG_OUTPUT] 

                        Please provide an output file name. SGSautoSNPwill 

                        attached the following suffix to it: gff3, vcf, snp 

                        and stat 

  --chr_offset [CHR_OFFSET] 

                        Provide an offset file and it will offset contig 

                        positions on chromosome. You have to use --chr_output, 

                        too. 

  --chr_output [CHR_OUTPUT] 

                        Please provide an GFF3 output file name for 

                        chromosome. You have to use --chr_offset, too. 

  --cultivars [CULTIVARS] 

                        Give all cultivars which are in BAM files eg. 

                        "J,E,A,S,M1,M2,Bn,Sr" 

  --cpu [CPU]           How many CPUs/Cores you would like to use 

 

 

Figure 2.9: The command-line of the SGSautoSNP.py script, showing the various usage options. 
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scaffolds 

SNPs 

no. mutations 

XA_0158 456 A/C=49;A/G=112;A/T=67;C/G=39;C/T=133;G/T=56 

XA_0117 892 A/C=85;A/G=253;A/T=150;C/G=82;C/T=223;G/T=99 

XA_0181 615 A/C/T=2;A/C=63;A/G=183;A/T=91;C/G/T=1;C/G=36;C/T=178;G/T=61 

XA_0116 154 A/C=15;A/G=44;A/T=20;C/G=14;C/T=42;G/T=19 

XA_0017r 6984 A/C/T=2;A/C=756;A/G/T=1;A/G=2030;A/T=970;C/G=495;C/T=1969;G/T=761 

XA_0153 1041 A/C/G=1;A/C=118;A/G/T=1;A/G=275;A/T=168;C/G=77;C/T=257;G/T=144 

XA_0069r 4062 A/C/T=1;A/C=469;A/G/T=1;A/G=1145;A/T=588;C/G/T=1;C/G=271;C/T=1141;G/T=445 

XA_0012r 15140 A/C/G=6;A/C/T=8;A/C=1673;A/G/T=9;A/G=4176;A/T=2222;C/G/T=2;C/G=1048;C/T=4247;G/T=1749 

XA_0003 21644 A/C/G=4;A/C/T=9;A/C=2412;A/G/T=11;A/G=5890;A/T=3302;C/G/T=4;C/G=1682;C/T=5930;G/T=2400 

XA_0019r 6652 A/C/G=2;A/C/T=4;A/C=731;A/G/T=2;A/G=1830;A/T=998;C/G/T=2;C/G=550;C/T=1813;G/T=720 

XA_0101 2744 A/C/G=1;A/C=285;A/G/T=1;A/G=729;A/T=429;C/G=221;C/T=747;G/T=331 

Total 60384 A/C/G=14;A/C/T=26;A/C=6656;A/G/T=26;A/G=16667;A/T=9005;C/G/T=10;C/G=4515;C/T=16680;G/T=6785 

 

Figure 2.10: A statistics file contains information about SNP calling for chromosome 7 of Brassica rapa genome. The end of this file contains a summary of all scaffolds. 

 

sca. sca. pos chr. pos SNP score genotypes allele SNP id 

XA_0158 1802 1802 2 A=2*G;Bn=2*G;N=12*G;S=3*G;Sr=2*C;T=24*G C/G UQXAH070000001 

XA_0158 2136 2136 9 A=1*C;Bn=7*C;N=9*G;S=1*C;Sr=1*C;T=16*C C/G UQXAH070000002 

… 

XA_0117 6471 366356 2 A=2*G;Bn=0*X;N=4*G;S=2*T;Sr=1*G;T=0*X G/T UQXAH070000457 

XA_0117 11659 371544 2 A=1*G;Bn=1*C;N=32*C;S=2*C;Sr=1*G;T=16*C C/G UQXAH070000458 

… 

XA_0101 876248 22305446 10 A=0*X;Bn=2*A;N=5*G;S=0*X;Sr=5*G;T=12*A A/G UQXAH070060383 

XA_0101 876498 22305696 2 A=0*X;Bn=0*X;N=0*X;S=0*X;Sr=2*T;T=2*G G/T UQXAH070060384 

 

Figure 2.11: A snippet of the ".snp" file which contains human readable SNP information of chromosome 7 for the Brassica rapa genome. 
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##fileformat=VCFv4.0 

   
##filedate=20131031 

   
##source=SGSautoSNP 

   
##reference=XA07m_v3.0.fa 

   
##phasing=allhomozygote 

   
##INFO=<ID=DP,Number=1,Type=Integer,Description="Read depth over all samples"> 

   
##INFO=<ID=PL,Number=0,Type=String,Description="Panel"> 

   
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT A Bn N S Sr T 

XA07_v3.0 1802 UQXAH070000001 C G 2 . DP=45 GT:DP 1/1:2 1/1:2 1/1:12 1/1:3 0/0:2 1/1:24 

XA07_v3.0 2136 UQXAH070000002 G C 9 . DP=35 GT:DP 1/1:1 1/1:7 0/0:9 1/1:1 1/1:1 1/1:16 

… 

XA07_v3.0 22305446 UQXAH070060383 G A 10 . DP=24 GT:DP ./.:0 1/1:2 0/0:5 ./.:0 0/0:5 1/1:12 

XA07_v3.0 22305696 UQXAH070060384 T G 2 . DP=4 GT:DP ./.:0 ./.:0 ./.:0 ./.:0 0/0:2 1/1:2 

 

Figure 2.12: A snippet of the ".vcf" file which contains chromosome SNP information of chromosome 7 for the Brassica rapa genome. 

##fileformat=VCFv4.0 

    
##filedate=20131031 

    
##source=SGSautoSNP 

    
##reference=XA07m_v3.0.fa 

    
##phasing=allhomozygote 

    
##INFO=<ID=DP,Number=1,Type=Integer,Description="Read depth over all samples"> 

    
##INFO=<ID=PL,Number=0,Type=String,Description="Panel"> 

    
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT A Bn N S Sr T 

XA_0158 1802 UQXAH070000001 C G 2 . DP=45 GT:DP 1/1:2 1/1:2 1/1:12 1/1:3 0/0:2 1/1:24 

XA_0158 2136 UQXAH070000002 G C 9 . DP=35 GT:DP 1/1:1 1/1:7 0/0:9 1/1:1 1/1:1 1/1:16 

… 

XA_0101 876248 UQXAH070060383 G A 10 . DP=24 GT:DP ./.:0 1/1:2 0/0:5 ./.:0 0/0:5 1/1:12 

XA_0101 876498 UQXAH070060384 T G 2 . DP=4 GT:DP ./.:0 ./.:0 ./.:0 ./.:0 0/0:2 1/1:2 

 

Figure 2.13: A snippet of the ".vcf" file which contains contig SNP information of chromosome 7 for the Brassica rapa genome.  
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##gff-version 3               
XA07_v3.0 SGSautoSNP SNP 1802 1802 . . . Name=UQXAH070000001;ID=UQXAH070000001;Contig name=XA_0158;SNP score=2; 

SNP pos. on scaffold=1802;Genotype A=2*G;Genotype Bn=2*G;Genotype N=12*G; 

Genotype S=3*G;Genotype Sr=2*C;Genotype T=24*G;Changes=C/G 

… 
XA07_v3.0 SGSautoSNP SNP 22305696 22305696 . . . Name=UQXAH070060384;ID=UQXAH070060384;Contig name=XA_0101;SNP score=2; 

SNP pos. on scaffold=876498;Genotype A=0*X;Genotype Bn=0*X;Genotype N=0*X; 

Genotype S=0*X;Genotype Sr=2*T;Genotype T=2*G;Changes=G/T 
 

Figure 2.14: A snippet of the ".gff3" file which contains chromosome SNP information of chromosome 7 for the Brassica rapa genome. The last column had to be split in order to fit on this side. 

##gff-version 3 

              XA_0158 SGSautoSNP SNP 1802 1802 . . . Name=UQXAH070000001;ID=UQXAH070000001;Contig name=XA_0158;SNP score=2; 

SNP pos. on scaffold=1802;Genotype A=2*G;Genotype Bn=2*G;Genotype N=12*G; 

Genotype S=3*G;Genotype Sr=2*C;Genotype T=24*G;Changes=C/G 
… 

XA_0101 SGSautoSNP SNP 876498 876498 . . . Name=UQXAH070060384;ID=UQXAH070060384;Contig name=XA_0101;SNP score=2; 

SNP pos. on scaffold=876498;Genotype A=0*X;Genotype Bn=0*X;Genotype N=0*X; 

Genotype S=0*X;Genotype Sr=2*T;Genotype T=2*G;Changes=G/T 
 

Figure 2.15: A snippet of the ".gff3" file which contains contig SNP information of chromosome 7 for the Brassica rapa genome. The last column had to be split in order to fit on this side. 
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2.2.2.7. SNP filtering 

While SNP calling may use many individuals or cultivars, SNPs that differentiate between 

two specific individuals or cultivars are frequently required for downstream analysis. The 

filter_SNPs.py script (Figure 2.16) parses the text ‘.snp’ file which was generated by 

SGSautoSNP.py and recognises all available cultivars. In the next step it processes each 

SNP position and rejects cultivars which have an X as the base, which means that this 

cultivar was not represented at the locus position. Then it creates all cultivar combinations 

and generates the same format output files as SGSautoSNP.py for each cultivar 

combination, but specifically for SNPs between every pair of individuals. This script also 

produces a .matrix file which details the number of SNPs between all combinations of 

cultivars.  

 

 

$ python filter_snps.py  -h 

usage: filter_snps.py [-h] --contig_output [CONTIG_OUTPUT] --fasta [FASTA] 

                      [--chr_output [CHR_OUTPUT]] [--chr_name [CHR_NAME]] 

                      --snps [SNPS] --dir [DIR] 

 

Filter SNPs between cultivars 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --contig_output [CONTIG_OUTPUT] 

                        Please provide an output file name template. 

  --fasta [FASTA]       Input fasta file ! 

  --chr_output [CHR_OUTPUT] 

                        Please provide an GFF3 output file name for 

                        chromosome. You have to use --chr_name, too. 

  --chr_name [CHR_NAME] 

                        For GFF3 eg. XA10_v4.0. You have to use --chr_output, 

                        too. 

  --snps [SNPS]         SNP file! 

  --dir [DIR]           Ouput directory for results files. 

 

 

Figure 2.16: The command-line of the filter_snps.py script, showing the various usage options. 

 

2.2.2.8. Creating Flapjack files 

The SGSautoSNP pipeline provides a flapjack_files.py script (Figure 2.17) to generate 

Flapjack (Milne et al., 2010b) input files. Flapjack allows the visualisation of markers, lines 

and their corresponding SNP calls per chromosome. It allows the selection of lines and 

markers from datasets. Furthermore it allows the filtering of lines by markers. 
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$ python create_flapjack_files.py –h 

usage: create_flapjack_files.py [-h] --snp [SNP] --species [SPECIES] 

                                [--chr_name [CHR_NAME]] --output [OUTPUT] 

                                --dir [DIR] 

 

It creates Flapjack files 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --snp [SNP]           SNP file 

  --species [SPECIES]   eg. "Brassica napus" 

  --chr_name [CHR_NAME] 

                        eg. Chr1 

  --output [OUTPUT]     Please provide an output file name template. 

  --dir [DIR]           Ouput directory for results files. 

 
 

Figure 2.17: The command-line of the create_flapjack_files.py script, showing the various usage options. 

 

2.2.2.9. SNP density 

SNP density analysis helps to identify regions of high sequence conservation and enables 

a greater understanding of their evolutionary history and selection. Regions with high SNP 

density are least conserved and regions with the lowest SNP density are the most 

conserved. The SGSautoSNP pipeline provides a script called 

snp_density_coverage_percentage.py (Figure 2.18) which was designed to map SNP 

density across each chromosome. 
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$ python snp_density_coverage_percentage.py -h 

Usage: snp_density_coverage_percentage.py --chr <chromosome tag> --bam 

<alignments.bam> --contigs <chr_contig.gff3> --plot <png | svg | eps> [--low 

<lower_coverage_limit>] [--up <upper_coverage_limit>] [--window <window_size>] 

[--snp <chromosome.snp>] 

 

Options: 

  -h, --help            show this help message and exit 

  --chr=CHR             input chromosome tag 

  --bam=BAM_FILE_NAME   input bam file 

  -c CONTIGS_FILE_NAME, --contigs=CONTIGS_FILE_NAME 

                        input contig location gff file 

  --snp=SNP_FILE_NAME   input snp location gff file 

  -l LLIM, --low=LLIM   input lower coverage limit [default=4] 

  -u ULIM, --up=ULIM    input upper coverage limit [default=100] 

  -w WINDOW_SIZE, --window=WINDOW_SIZE 

                        input window size [default=5000] 

  --cov_step=COV_STEP   coverage step size (positive integer 1-100) 

                        [default=1] 

  -p PLOT_FORMAT, --plot=PLOT_FORMAT 

                        output plot format 

 
 

Figure 2.18: The command-line of the snp_density_coverage_percentage.py script, showing the various usage options. 

 

2.2.2.10. Generating consensus sequence 

The bam2consensus_seqs.py script accepts an alignment in BAM format and generates a 

consensus sequence for each scaffold (Figure 2.19). The script goes through all 

nucleotide positions and generates a consensus sequence using the following rules: (i) if 

no base exists at the position then an N will be inserted; (ii) if only a single read covers the 

locus then the algorithm uses this read sequence (iii) if more than one read covers the 

position, and all nucleotides are the same, this nucleotide will be inserted; (iv) if more than 

one read covers the position, and one single read conflicts with the others, this single read 

is assumed to be an error and ignored, the majority base is inserted; (iv) if more than one 

read covers the position, and more than one read conflicts with the others, a degenerate 

base is inserted using IUPAC notation (see Table 2.1).  
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Table 2.1: Summary of single-letter code recommendations represented by IUPAC notation (adapted from 

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html). 

Symbol Bases represented Origin of designation 

G G Guanine 

A A Adenine 

T T Thymine 

C C Cytosine 

R G or A puRine 

Y T or C pYrimidine 

M A or C aMino 

K G or T Keto 

S G or C Strong interaction (3 H bonds) 

W A or T Weak interaction (2 H bonds) 

H A or C or T not-G, H follows G in the alphabet 

B G or T or C not-A, B follows A 

V G or C or A not-T (not-U), V follows U 

D G or A or T not-C, D follows C 

N G or A or T or C aNy 
 

This script uses a Worker-Queue Model, which is the same as developed for 

SGSautoSNP.py, because it has also a results queue additional to the tasks queue. Firstly 

the workers are created on different Python interpreters and wait for tasks. As soon as the 

share task queue has been filled with all contigs names, each worker takes a contig name 

out of the queue and processes it in parallel with the other workers. The output file is one 

multiple FASTA file which include all contigs in the original BAM file. 

 

 

$ python bam2consensus_seqs.py -h 

usage: bam2consensus_seqs.py [-h] --bam [BAM] --fasta [FASTA] --cpu [CPU] 

                             --output [OUTPUT] 

 

It creates from alignment a consensus sequence with help of IUPAC 

 

optional arguments: 

  -h, --help         show this help message and exit 

  --bam [BAM]        Bam file name! 

  --fasta [FASTA]    Input single/multiple fasta file ! 

  --cpu [CPU]        How many CPUs/Cores you would like to use 

  --output [OUTPUT]  Output file name template for the consensus sequence. 

 

 

Figure 2.19: The command-line of the bam2consensus_seqs.py script, showing the various usage options.  
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2.2.2.11. Generating Illumina marker assay files 

The SGSautoSNP pipeline can generate Illumina marker assay files for the design of 

Illumina Infinium and GoldenGate genotyping arrays. The SNP2Markers.py script requires 

as an input file the consensus sequence in FASTA format generated by 

bam2consensus_seqs.py, and the text SNP file with a ‘.snp’ extension generated by 

SGSautoSNP.py. Additional parameters include (i) species (ii) number of cultivars (iii) SNP 

library name (iv) version number (v) chromosome name (vi) output directory for the results 

files (see Figure 2.20). 

 

The script extracts the 5' and 3' sequence surrounding each predicted SNP in the following 

way: (i) the nucleotide sequence 150 bases each side of the SNP is extracted together 

with the SNP position in the format [A/C]; (ii) as the Illumina GoldenGate and Infinium 

assays designs probes up to 60 bp adjacent to the SNP, assays are discarded if this 

region contains any N characters within the consensus sequence.  

 

This script uses a Worker-Queue Model together with a tasks and a results queue as 

previously described. Output files include a file of summary statistics ‘*_marker.stat’ and a 

marker assay file for input into the Illumina SNP assay design ‘*_GoldenDB.csv’. 

 

 

$ python SNPs2Markers.py -h 

usage: SNPs2Markers.py [-h] --fasta [FASTA] --snp [SNP] --species [SPECIES] 

                       --germplasm [GERMPLASM] --library [LIBRARY] --panel 

                       [PANEL] --chr_name [CHR_NAME] --cpu [CPU] --output 

                       [OUTPUT] 

 

SNPs2Markers creates 5' and 3' sequences around SNPs 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --fasta [FASTA]       Consensus sequence fasta 

  --snp [SNP]           SNP file 

  --species [SPECIES]   eg. "Brassica napus" 

  --germplasm [GERMPLASM] 

                        eg. 8_canola_lines 

  --library [LIBRARY]   eg. UQ_BNSNP 

  --panel [PANEL]       eg. UQ_BNSNP_A_V4.0 

  --chr_name [CHR_NAME] 

                        eg. Chr1 

  --cpu [CPU]           How many CPUs/Cores you would like to use 

  --output [OUTPUT]     Please provide an output file name. SNPs2Markers will 

                        attached the suffix to it: 

 

 

Figure 2.20: The command-line of the SNPs2Markers.py script, showing the various usage options.  
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2.2.2.12. Gene annotation 

Working with new genomes has the disadvantage that they may not have any annotation 

available. The gene_annotation.py script has been developed to provide basic annotation 

for such genomes. In the first step it uses SNAP (Korf, 2004), a gene prediction software, 

and then it runs BLASTp on the predicted genes to find out whether any of the genes hit a 

Swiss-Prot entry. Swiss-Prot is a high-quality, manually annotated, non-redundant protein 

sequence database maintained by the UniProt consortium. It combines information 

extracted from scientific literature and computational analysis. The aim of Swiss-Prot is to 

provide all known relevant information about a particular protein. New releases are 

published every 2 weeks and can be downloaded (Boutet et al., 2007). If a predicted gene 

does not match any Swiss-Prot entry it will be rejected. This has advantage of reducing the 

number of falsely predicted genes. In case a predicted gene has a hit with a Swiss-Prot 

entry it will save the Swiss-Prot accession number and description.  

 

The UniProt Gene Ontology Annotation (UniProt-GOA) project at the European 

Bioinformatics Institute (EBI) (Barrell et al., 2009) provides a file which is in tab-delimited 

format that associates a Swiss-Prot accession number with one or more Gene Ontology 

(GO) terms (Ashburner et al., 2000). GO maintained by the Gene Ontology Consortium 

(http://www.geneontology.com). It is a major bioinformatics project to unify the 

representation of gene and gene product attributes across all genomes including plant, 

animal and microbial genomes. The ontology covers three domains:  

 A cellular component is an anatomical structure (e.g. rough endoplasmic reticulum 

or nucleus) or a gene product group (e.g. ribosome, proteasome or a protein dimer).  

 Molecular function describes activities, such as catalytic or binding activities, that 

occur at the molecular level. It does not specify where or when, or in what context, 

the action takes place.A biological process is series of events with a defined start 

and end, accomplished by sets of molecular functions.  

The UniProt-GOA file was downloaded and extracted from the following server: 

 

ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT/gene_association.goa_uniprot.gz 

 

The gene_annotation.py script (Figure 2.21) will combine all results from SNAP, BLASTp 

and the GOA association file to create an annotation file in GFF3 format which can be 

used for further analysis steps.  
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$ python gene_annotation.py -h 

usage: gene_annotation.py [-h] --fasta [FASTA] --out_dir [OUT_DIR] --hmm [HMM]                                                                                                                  

                          [--xml [XML]] [--blastDB [BLASTDB]] --goa [GOA]                                                                                                                       

                          [--contig_output [CONTIG_OUTPUT]]                                                                                                                                     

                          [--chr_offset [CHR_OFFSET]]                                                                                                                                           

                          [--chr_output [CHR_OUTPUT]] --cpus [CPUS]                                                                                                                             

                                                                                                                                                                                                

Gene prediction and annotation                                                                                                                                                                  

                                                                                                                                                                                                

optional arguments:                                                                                                                                                                             

  -h, --help            show this help message and exit                                                                                                                                         

  --fasta [FASTA]       Input reference fasta file!                                                                                                                                             

  --out_dir [OUT_DIR]   Output directory                                                                                                                                                        

  --hmm [HMM]           Hmm file for SNAP prediction                                                                                                                                            

  --xml [XML]           If you have a Blast XML file                                                                                                                                            

  --blastDB [BLASTDB]   If you need to run Blast than give Blast DB location                                                                                                                    

  --goa [GOA]           Please provide gene_association.goa_uniprot                                                                                                                             

  --contig_output [CONTIG_OUTPUT]                                                                                                                                                               

                        Please provide an output file name will attached the 

                        following suffix to it: gff3, vcf, snp and stat 

  --chr_offset [CHR_OFFSET] 

                        Provide an offset file and it will offset contig 

                        positions on chromosome. You have to use --chr_output, 

                        too. 

  --chr_output [CHR_OUTPUT] 

                        Please provide an GFF3 output file name for 

                        chromosome. You have to use --chr_offset, too. 

  --cpus [CPUS]         How many CPUs/Cores you would like to use 

 

 

Figure 2.21: The command-line of the gene_annotation.py script, showing the various usage options. 

 

2.2.2.13. SNP annotation 

The SnpEff variant annotation tool (Cingolani et al., 2012) was used to predict the effect of 

the identified SNPs from SGSautoSNP.py using the annotation GFF3 file of 

gene_annotation.py within different genomic DNA sequences, including putative exons, 

introns, and gene upstream and downstream sequences. In addition, the patterns of codon 

usage and the ratio of transitions/transversions resulting from SNPs were also calculated. 

SnpEff is a command line software tool, but before it can be used it is necessary to modify 

the config file called snpEff.config in the following way: 

 

$ cp ~/jars/snpEff/snpEff.config <My project folder>/ 

$ vim <My project folder>/snpEff.config  
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The below information has to be inserted in the snpEff.config file so that SnpEff is aware of 

the chromosome sequences. 

 

# Databases are stored here 

data_dir = <My project folder> 

# Databases & Genomes 

# My project name 

Chr1.genome : Chr1 

Chr2.genome : Chr2 

ChrN.genome : ChrN 

 

After the configuration file has been saved it is possible to execute SnpEff.jar (Figure 

2.22).  

 

 

$ java  -jar snpEff.jar -h 

snpEff version SnpEff 3.5h (build 2014-04-01), by Pablo Cingolani 

Usage: snpEff [eff] [options] genome_version [input_file] 

 

        variants_file                   : Default is STDIN 

 

Options: 

        -a , -around: Show N codons and amino acids around change (only in     

                      coding regions). Default is 0 codons. 

        -chr <string>: Prepend 'string' to chromosome name (e.g. 'chr1' instead 

                       of '1'). Only on TXT output. 

        -download: Download reference genome if not available. Default: false 

        -i <format>: Input format [ vcf, txt, pileup, bed ]. Default: VCF. 

        -fileList: Input actually contains a list of files to process. 

        -o <format>: Ouput format [ txt, vcf, gatk, bed, bedAnn ]. Default: VCF. 

        -s , -stats: Name of stats file (summary). Default is  

                     'snpEff_summary.html' 

        -noStats: Do not create stats (summary) file 

        -csvStats: Create CSV summary file instead of HTML 

 

Sequence change filter options: 

        -del: Analyze deletions only 

        -ins: Analyze insertions only 

        -hom: Analyze homozygous variants only 

        -het: Analyze heterozygous variants only 
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        -minQ X, -minQuality X: Filter out variants with quality lower than X 

        -maxQ X, -maxQuality X: Filter out variants with quality higher than X 

        -minC X, -minCoverage X: Filter out variants with coverage lower than X 

        -maxC X, -maxCoverage X: Filter out variants with coverage higher than X 

        -nmp: Only MNPs (multiple nucleotide polymorphisms) 

        -snp: Only SNPs (single nucleotide polymorphisms) 

 

Results filter options: 

        -fi , -filterInterval  <file>: Only analyze changes that intersect with 

                                       the intervals specified in this file (you  

                                       may use this option many times) 

        -no-downstream: Do not show DOWNSTREAM changes 

        -no-intergenic: Do not show INTERGENIC changes 

        -no-intron: Do not show INTRON changes 

        -no-upstream: Do not show UPSTREAM changes 

        -no-utr: Do not show 5_PRIME_UTR or 3_PRIME_UTR changes 

 

Annotations options: 

        -cancer: Perform 'cancer' comparisons (Somatic vs Germline).  

                 Default: false 

        -cancerSamples <file>: Two column TXT file defining 'oringinal \t  

                               derived' samples. 

        -geneId: Use gene ID instead of gene name (VCF output). Default: false 

        -hgvs: Use HGVS annotations for amino acid sub-field. Default: false 

        -lof: Add loss of function (LOF) and Nonsense mediated decay (NMD) tags. 

        -oicr: Add OICR tag in VCF file. Default: false 

        -sequenceOntolgy: Use Sequence Ontolgy terms. Default: false 

 

Generic options: 

        -c , -config: Specify config file 

        -d , -debug: Debug mode (very verbose). 

        -dataDir <path>: Override data_dir parameter from config file. 

        -h , -help: Show this help and exit 

        -if , -inOffset: Offset input by a number of bases.  

                         E.g. '-inOffset 1' for one-based TXT input files 

        -of , -outOffset: Offset output by a number of bases. E.g.  

                          '-outOffset 1' for one-based TXT output files 

        -noLog: Do not report usage statistics to server 

        -t: Use multiple threads (implies '-noStats'). Default 'off' 

        -q ,  -quiet: Quiet mode (do not show any messages or errors) 

        -v , -verbose: Verbose mode 
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Database options: 

        -canon: Only use canonical transcripts. 

        -interval: Use a custom intervals in TXT/BED/BigBed/VCF/GFF file (you  

                   may use this option many times) 

        -motif: Annotate using motifs (requires Motif database). 

        -nextProt: Annotate using NextProt (requires NextProt database). 

        -reg <name>: Regulation track to use (this option can be used add 

                     several times). 

        -onlyReg: Only use regulation tracks. 

        -onlyTr <file.txt>: Only use the transcripts in this file. Format: One  

                            transcript ID per line. 

        -ss , -spliceSiteSize <int>: Set size for splice sites (donor and  

                                     acceptor) in bases. Default: 2 

        -ud , -upDownStreamLen <int>: Set upstream downstream interval length  

                                      (in bases) 

 

 

Figure 2.22: The command-line of the snpEff.jar, showing the various usage options. 

 

2.2.2.14.  Gene analysis 

The gene_analysis.py script (Figure 2.23) identifies genes in low SNP density regions and 

creates the following files: 

 

 A file with the suffix “_SNPID_geneID_GO_LOW.tab” is a tabular separated file 

which contains (i) low SNP id, (ii) gene Id and (iii) GO terms 

 The population and study are gene lists with one gene ID per line, which include the 

genes you want to compare. In our case the study file contains genes in low SNP 

density regions compared with the population of all genes. 

 The association file contains the gene to GO term mapping which is a two-column 

tabular file, (i) geneID and (ii) GO terms (separated by “;” if there are multiple 

terms).  

 

The population, study and association file are used for the SGSautoSNP_summary.py 

script to identify over-representation and under-representation of certain GO terms using 

goatools (https://github.com/tanghaibao/goatools).  
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$ python gene_analysis.py  -h 

Usage: gene_analysis.py --bam <alignments.bam> --pred <snap_uniref.gff3> --loc 

<contig.gff3> --snp <location.snp> --fasta <multiple.fasta> -g 

<output_gene_seq.fasta> [-w <bin_size] [-s <step_size>] [-c 

<coverage_cutoff_percentage] [--low <lower_coverage_limit>] [--up 

<upper_coverage_limit>] 

 

Options: 

  -h, --help            show this help message and exit 

  --bam=BAM_FILE_NAME   input bam file 

  --pred=PRED_GENES_FILE_NAME 

                        input gff file 

  --loc=LOC_FILE_NAME   Optional. Input contig location gff file 

  --snp=SNP_FILE_NAME   input SNP location file 

  --fasta=FASTA_FILE_NAME 

                        input multiple fasta file 

  --dir=DIR             Please give provide output dir full path. 

  --output_filename=OUTPUT_FILENAME 

                        Is file name template and script extend it. 

  --snp_cut=SNP_CUT     input SNP cutoff [default=2] 

  --ud=UD               gene loci up and downstream amount [default=5000]. 

                        E.g. for --ud 5000 a gene locus will include 5000 

                        bases upstream and 5000 bases downstream 

  -w BIN_SIZE           input window size [default=10000] 

  -s STEP_SIZE          input step size [default=1000] 

  -l LLIM, --low=LLIM   input lower coverage limit [default=4] 

  -u ULIM, --up=ULIM    input upper coverage limit [default=20] 

  -c COV_CUT, --cov_cut=COV_CUT 

                        input the percentage coverage cutoff value 

                        [default=20] 

 

 

Figure 2.23: The command-line of the gene_analysis.py script, showing the various usage options. 

 

2.2.2.15.  SGSautoSNP summary  

The SGSautoSNP_summary.py script was designed to combine results from all 

chromosomes in order to provide a quick overview. It also uses goatools 

(https://github.com/tanghaibao/goatools) which is a Python library to process over- and 

under-representation of certain GO terms, based on Fisher's exact test. Goatools also 

provides several correction routines including Bonferroni, Sidak, and false discovery rate 

(FDR). GO is part of a larger classification effort, the Open Biomedical Ontologies (OBO), 

which has defined a formalised ontology for cross-species classification for genes and 

their protein products. GO is a structured and controlled vocabulary with a defined file-

format which attempts to achieve the following goals: 

 

 Human readability 

 Ease of parsing 



69 

 

 Extensibility 

 Minimal redundancy 

 

Furthermore it is a formal declaration of legal relationships between terms in the ontology 

(Figure 2.24, http://www.geneontology.org/GO.ontology-ext.relations.shtml). The OBO file 

format can be downloaded from: 

 

http://www.geneontology.org/ontology/obo_format_1_2/gene_ontology.1_2.obo 

 

[Term] 

id: GO:0000003 

name: reproduction 

namespace: biological_process 

alt_id: GO:0019952 

alt_id: GO:0050876 

def: "The production by an organism of new individuals that contain 

some portion of their genetic material inherited from that organism." 

[GOC:go_curators, GOC:isa_complete, ISBN:0198506732 "Oxford Dictionary 

of Biochemistry and Molecular Biology"] 

subset: goslim_generic 

subset: goslim_plant 

subset: gosubset_prok 

synonym: "reproductive physiological process" EXACT [] 

is_a: GO:0008150 ! biological_process 

 

Figure 2.24 shows an example of a GO term from OBO 1.2 file format which is used by goatools. 

 

SGSautoSNP_summary.py creates three output files: 

 

 A file with this suffix “_snps_similarity_matrix.tab” which summarises all similarity 

matrices in to one. 

 Another file with the suffix “_snpseffs.tab” creates a table of SnpEff chromosome 

results. 

 The last output contains a table for all chromosomes gene enrichment results. 

 

It is possible to run SGSautoSNP_summary.py on a modern PC with the following 

command (see Figure 2.25). 
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$ python SGSautoSNP_summary.py -h                    

usage: SGSautoSNP_summary.py [-h] --project_dir [PROJECT_DIR] 

                             --chromosome_names [CHROMOSOME_NAMES] 

                             --output_filename [OUTPUT_FILENAME] --dir [DIR] 

                             --obo [OBO] [--alpha ALPHA] [--pval [PVAL]] 

                             [--compare] [--ratio [RATIO]] [--indent] 

 

Provide a summary of all chromosomes 

 

optional arguments: 

  -h, --help            show this help message and exit 

  --project_dir [PROJECT_DIR] 

                        Please give provide project dir full path. 

  --chromosome_names [CHROMOSOME_NAMES] 

                        Please provie chromosome list name 'X1;X2;X3' 

  --output_filename [OUTPUT_FILENAME] 

                        Is file name template and script extend it. 

  --dir [DIR]           Ouput directory for results file. 

  --obo [OBO]           Location of gene_ontology.1_2.obo file 

  --alpha ALPHA         Test-wise alpha for multiple testing [default: 0.05] 

  --pval [PVAL]         Family-wise alpha (whole experiment), only print out 

                        Bonferroni p-value is less than this value. [default: 

                        None] 

  --compare             the population file as a comparison group. if this 

                        flag is specified, the population is used as the study 

                        plus the `population/comparison` 

  --ratio [RATIO]       only show values where the difference between study 

                        and population ratios is greater than this. useful for 

                        excluding GO categories with small differences, but 

                        containing large numbers of genes. should be a value 

                        between 1 and 2. 

  --indent              indent GO terms 

 

 

Figure 2.25: The command-line of the SGSautoSNP_summary.py script, showing the various usage options. 

 

2.3. Results and Discussion 

SOAPaligner provides an option (-r) on how to report repeat hits (0=none; 1=random one; 

2=all). This option aims to increase SNP calling accuracy by ignoring read pairs that 

cannot be accurately positioned on the reference. Ningyou culivar paired-end reads (80 

bp) were mapped against our B. napus reference genome with different values for –r 

option in order to find out how this option effect the number of mapped reads (see Table 

2.2).   
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Table 2.2 shows SOAPalinger's -r option benchmark. Ningyou culivar paired-end read (80 bp) was mapped against B. napus 

reference genome. 

 Option -r 

 0 1 2 

Total Pairs 35638181 35638181 35638181 

Paired 681924 (1.91%) 1522645 (4.27%) 1522645 (4.27%) 

Singled 18923834 (26.55%) 40722853 (57.13%) 40722853 (57.13%) 

Total Elapsed Time 5756.12 sec 5878.56 sec 9397.81 sec 

Load Index Table  11.79 sec 12.75 sec 14.09 sec 

Alignment  5744.33 sec 5865.81 sec 9383.72 sec 

 

SOAPaligner.py performance for mapping six B. napus cultivars against our B. napus 

reference is shown in Table 2.4. GenerateSubsetBAM.py required 02:05:31 to extract all 

10 Brassica AA chromosomes from the alignments created by SOAPaligner.py.  

MergeChr.py performance is presented in Table 2.4 for merging six cultivar libraries for 10 

Brassica AA chromosomes. 

 

SGSautoSNP.py needs, on average, 20 min to process each Brassica AA chromosome on 

a 4 CPU core computer to predict SNPs (see Figure 2.26). The higher CPU core speed up 

is not linear. The performance of other SGSautoSNP pipeline scripts can be found in Table 

2.5. The final SGSautoSNP pipeline script SGSautoSNP_summary.py , just takes 00:01:19 

to created the whole project summary.  
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Figure 2.26: Benchmark of SGSautoSNP.py across all 10 Brassica AA chromosomes. Each chromsome was run on 1 to 4 CPUs 

cores. 

 

Table 2.3: Number of contigs for all 10 Brassica AA chromosome. 

Chromosome names Number of contigs in each chromosome 

chr01 29 

chr02 19 

chr03 12 

chr04 20 

chr05 22 

chr06 16 

chr07 11 

chr08 19 

chr09 37 

chr10 7 
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Table 2.4 shows the performance of SOAPaligner.py for mapping six B. napus cultivars against our B. napus reference. Additional MergeChr.py performance is presented here for merging six 

cultivar libraries chromosomes across 10 Brassica AA chromosomes. 

 Ag Spectrum (A) BLN (Bn) Ningyou (N) Skipton (S) Surpass (Sr) Tapidor (T) 

SOAPaligner.py 02:40:12 04:09:36 26:31:48 02:43:12 04:37:12 19:15:00 

MergeChr.py 00:06:04 00:09:29 01:00:14 00:06:11 00:10:30 00:43:42 

 

 

Table 2.5 shows seven SGSautoSNP pipeline script performance for 10 Brassica AA chromosomes. 

 Chr01 Chr02 Chr03 Chr04 Chr05 Chr06 Chr07 Chr08 Chr09 

bam2consensus_seqs.py 00:06:31  00:07:11 00:09:52 00:05:50 00:08:40 00:07:40 00:07:27 00:06:40 00:09:56 

create_flapjack_files.py 00:00:46 00:00:55 00:01:10 00:00:59 00:00:50 00:00:70 00:00:54 00:00:38 00:00:58 

filter_snps.py 00:01:29 00:01:36 00:03:06 00:02:47 00:02:59 00:02:58 00:02:57 00:03:04 00:03:27 

gene_analysis.py 00:01:59 00:02:25 00:04:01 00:02:14 00:03:03 00:03:26 00:04:41 00:03:07 00:04:42 

gene_annotation.py 03:26:57 03:25:25 03:50:52 02:50:17 02:55:48 03:09:17 03:02:57 02:51:40 03:26:25 

multiple_to_single_fasta.py 00:01:20 00:00:59 00:00:50 00:00:40 00:00:30 00:00:30 00:00:30 00:00:20 00:00:20 

snpEff.jar 00:00:59 00:01:06 00:01:31 00:02:56 00:02:08 00:01:57 00:02:08 00:02:44 00:01:22 
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2.4.  Conclusion 

SGSautoSNP is a SNP discovery and annotation pipeline and has been successfully 

applied to Second Generation Sequence datasets for Brassica and wheat group 7 

chromosomes. These results are described in detail in the following two chapters. This 

pipeline can be used on any plant species for which Second Generation Sequence 

datasets exists. Furthermore, the pipeline can handle different data coming from different 

sequencing technologies as long they can produce BAM files. SOAP aligner could be 

replaced by any other aligner for short reads, such as BWA.  

 

It turns out to ignore all repeats with –r 0 option also decreases the alignment time 

(5744.33 seconds) compared to report all repeats with –r 2 option (9383.72 seconds) (see 

Table 2.2). There is no difference in percentage of align paired and single reads (4.27% 

and 57.13%, respectively) by using –r 1 or 2, but there is big difference compare to the –r 

0 option (1.91% and 26.55%, respectively). The other observation is that only a fraction of 

reads were able to align as a pair in order to provide a greater confidence of specific and 

accurate read mapping, because a single read could possibly match many positions, but 

two reads separated by a gap of defined approximate insert size are more likely to match 

to correct position. In other research reads have been trimmed from both the 5’ and 3’ 

ends until reaching a base with PHRED score greater than 20 and allowing at most two Ns 

in each read (Yu et al., 2012). As result they found that the number of reads for alignments 

has decreased after trimming, but more reads align. 

 

Figure 2.26 shows that SGSautoSNP.py almost achieved a linear speeup on 3 CPUs 

cores for some chromosomes. However, using 4 CPU cores the speedup declined for all 

chromosomes. This is caused by a small number of contigs on each chromosomes and 

their length (see Table 2.3). Three workers finished, but one worker is still working on a 

contig which is longer and has more coverage. 

 

Future work could include simplifying running the SGSautoSNP pipeline, because some 

users are unable to write PBS scripts. A solution would be to integrate the SGSautoSNP 

pipeline into a general bioinformatics workflow management system such as Galaxy Tool 

Shed (Blankenberg et al., 2014) and Yabi (Hunter et al., 2012). These systems have been 

designed for research scientists who do not have computer programming experience. 



75 

 

The SNPs identified using SGSautoSNP can be used for genotyping by sequencing, using 

low coverage skim sequencing of segregating populations, and calling genotypes where 

the low coverage sequence data aligns to a previously predicted polymorphic position. In 

addition, the software could be extended for applications in species which demonstrate 

heterozygosity. 
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Chapter 3: Application of SGSautoSNP in Brassica 

3.1. Introduction 

Brassica rapa has a diploid genome and B. napus has an allotetraploid genome. These 

genomes are both large, complex and contain many repetitive elements. These factors 

make it difficult to sequence and to discover SNPs in Brassica species for crop 

improvement. SNP discovery from Second-Generation Sequencing technologies is 

challenging due to short reads and high error rates. It is difficult to distinguish between real 

SNPs and sequence errors. However, we were able to reduce this issue with help of 

SGSautoSNP algorithm and other software included in this pipeline which is described in 

detail in Chapter 2. 

 

SNP discovery has previously been performed in B. napus: Trick et al. discovered 41,593 

putative SNPs (1 SNP/1.2 kb) between the cultivars Tapidor and Ningyou 7, through 

generating approximately 20 million expressed sequence tags (ESTs) from each of these 

two cultivars, sequenced using the Illumina Solexa platform (Trick et al., 2009). As a 

reference sequence they used approximately 94,000 Brassica species unigenes. From the 

detected SNPs 87.5 - 91.2% were ‘hemi-SNPs’ which are inter-varietal. In a different EST 

SNP discovery project a total of 604 SNPs were identified, one SNP in every 42 bp 

(Durstewitz et al., 2010). For this SNP analysis 100 amplicons derived from ESTs from B. 

napus varieties were compared. In the B. rapa genome 21,311 SNPs were discovered 

between 8 genotypes from re-sequencing 1,398 sequence-tagged sites (STSs). The SNP 

frequency was one SNP every 103 bp in exons and one SNP per 54 bp in introns (Park et 

al., 2010).  

 

A total of 20,835 SNPs, one SNP every 446 bp, were discovered in eight B. napus inbreds, 

in 113,221 restriction site associated DNA markers (RAD) clusters from a KpnI library (Bus 

et al., 2012). Huang et al. chose samples from B. napus accessions which were parents of 

reference mapping populations or elite cultivars (Zhongshuang11, 73290, 08-806-2, 

09CB01, Tapidor, XY15, 09CB03, PY-2, Westar, PY-1). These reads were aligned against 

the reference B. rapa and B. oleracea sequences using SOAP2. As result they discovered 

892,536 SNPs by excluding 6,331,887 SNPs that were heterozygous in at least in one 

individual in the  genome. In 13,552 predicted genes a total of 36,458 non-synonymous 
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SNPs were predicted (Huang et al., 2013b). A total of 505 non-synonymous SNPs 

transformed amino acid codons to stop codons, whereas non-synonymous SNPs 

transformed stop codons to amino acid codons and their validation rate was 92% using the 

GoldenGate genotyping platform (Huang et al., 2013b). More than 200,000 SNPs were 

discovered between B. rapa and three oleiferous lines in RNA sequence data using the 

Illumina GAIIX sequencer (Paritosh et al., 2013). 

 

The SGSautoSNP pipeline uses SnpEff for annotation and to predict the effect the SNPs 

on genes. This was applied here to the 10 Brassica napus AA genome chromosome 

sequences. SNPs were categorised on the basis of their structural occurrence in the 

exons, introns and intergenic region. Furthermore, the functional relevance of the SNPs 

was predicted. Proteins have a unique amino acid sequence which is specified by the DNA 

coding sequence. Changes to this sequence could influence protein function. Non-

synonymous SNPs (nonsense or missense) change the amino acid sequence of a protein. 

Therefore these SNPs could have an important functional relevance to the trait studied. On 

the other hand synonymous SNPs do not change the codon sequence. These SNPs could 

modulate translation rates and protein folding and impact the protein function (Zhang et al., 

2014).  

 

3.1.1. Project aims 

In this chapter the application of SGSautoSNP (Second-Generation Sequencing 

AutoSNP), a SNP discovery pipeline described in chapter 2, is presented for SNP 

discovery in the Brassica AA genome. These SNPs are valuable for detailed diversity 

analysis, marker assisted selection and genotyping by sequencing. The results in this 

chapter have been generated using the new SGSautoSNP pipeline, which contains more 

features than the orginal version published in 2012 (Lorenc et al., 2012). This include 

scripts for gene annotation, which uses SNAP (Korf, 2004) a gene prediction tool and 

SNPeff (Cingolani et al., 2012) a SNP annotation and effect prediction tool. This chapter 

demonstrates that the SGSautoSNP pipeline is suitable for high resolution SNP discovery 

and annotation and can be applied to other large and complex genomes datasets.  
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3.2. Material and Methods 

Six B. napus cultivars: Ag Spectrum, BLN, Ningyou, Skipton, Surpass and Tapidor, with 

sequence coverage between 7.2× and 71.5×, were used for SNP discovery. Ningyou and 

Tapidor were sequenced on Illumina HiSeq 2000 and the others were sequenced on 

Illumina GAIIx. 

 

 At the start of this analysis we did not have a public B. napus reference genome and 

therefore we used the public B. rapa sequence (Wang et al., 2011) AA genome combined 

with Bayer’s proprietary B. oleracea CC genome. Table 3.1 provides information about the 

chromosome and genome sizes for the B. rapa AA and B. oleracea CC genomes which 

were used to align the reads from the six cultivars.  

 

The SGSautoSNP pipeline was used with default settings (see Chapter 2), except for 

SOAPaligner.py which requires the insert-size for each library. These insert-sizes can be 

found in Table 3.3. The pipeline was run on the Barrine computer cluster at the University 

of Queensland (see Appendix). 

 

Since this work was completed two public B. oleracea CC genomes have been published 

(Liu et al., 2014, Parkin et al., 2014) and the public B. napus AACC genome is expected to 

be published in 2014. This B. napus genome would be more appropriate to use in future 

studies than the diploid progenitors. 

 

Table 3.1: Chromosome and genome sizes for Brassica napus AA and CC genomes used in this study for sequence read 

alignment. 

Chromosomes AA (bp) CC (bp) 

chr01 26,740,857 18,290,447 

chr02 27,846,329 14,513,690 

chr03 32,228,999 25,073,557 

chr04 20,225,473 14,202,440 

chr05 23,939,834 17,430,407 

chr06 26,271,742 2,917,136 

chr07 22,304,823 18,811,192 

chr08 21,231,227 13,194,272 

chr09 37,194,012 9,244,411 

chr10 17,624,101 - 

Genome size 255,607,397 133,677,552 
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3.3. Results and Discussion 

3.3.1. Reads mapping  

Paired read data, between 9.38 and 67.51 Gbp, for six B. napus cultivars were generated (Table 

3.2). These paired reads were analysed using the SGSautoSNP pipeline and mapped onto the B. 

napus reference genome which was created from the B. rapa and B. olerecea genomes. For the B. 

napus (AACC) reads it was necessary that the reference contains B. rapa and B. oleracea genomes, 

because if the C genome was absent from the reference, CC genome specific reads could map to 

the AA genome, which could confound SNP discovery. Only paired reads mapping to a unique 

location in the genome were kept for further analysis, which is guaranteed by SOAPaligner 

parameter (-r 0) (Li et al., 2009b). This option aims to increase SNP calling accuracy by ignoring 

read pairs that cannot be accurately positioned on the reference. Similarly, only reads that 

mapped as a pair were used for SNP discovery. Due to the short length of the reads, one read 

could match at many positions, but two reads separated by a gap of defined insert size provides a 

greater confidence of specific and accurate read mapping. Table 3.2 shows the results for all six B. 

napus cultivars paired-read mapping and Table 3.3 shows the minimum and maximum insert sizes 

used for SOAPalinger. Of these reads, between 4.76% and 7.72% mapped to the B. rapa genome 

and 5.64% and 9.62% mapped to the B. oleracea genome.  
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Table 3.2: Summary of Brassica napus cultivar data and mapping against the B. napus reference, which was made out of the B. rapa (AA) and B. oleracea (CC) genomes. The variety column 

contains in brackets the cultivar name abbreviation. The mapping information has been split into AA and CC genomes. The table also contains the growth habit and origin of the B. napus 

varieties. 

B. napus variety National origin Growth habit Data generated Data mapped 
to AA 

Read pairs 
mapped (AA) 

Data mapped 
to CC 

Read pairs 
mapped (CC) 

Ag Spectrum (A) Australia Spring 9.38 Gbp 0.52 Gbp 5.59% 0.62 Gbp 6.58% 

BLN (Bn) Australia Spring 14.60 Gbp 1.13 Gbp 7.72% 1.40 Gbp 9.62% 

Ningyou (N) China Spring 93.06 Gbp 4.57 Gbp 4.91% 6.10 Gbp 6.56% 

Skipton (S) Australia Spring 9.55 Gbp 0.47 Gbp 4.88% 0.54 Gbp 5.64% 

Surpass (Sr) Australia Spring 16.22 Gbp 0.77 Gbp 4.76% 1.05 Gbp 6.50% 

Tapidor (T) France Winter 67.51 Gbp 3.98 Gbp 5.90% 6.39 Gbp 9.47% 
 

Table 3.3: The minimum and maximum insert sizes used during the alignment with SOAPalinger for the six B. napus cultivars paired-reads. 

B. napus variety Minimum insert sizes (bp) Maximum insert sizes (bp) 

Ag Spectrum (A) 350 - 2500 500 - 4000 

BLN (Bn) 350 500 

Ningyou (N) 120 - 410 350 - 820 

Skipton (S) 400 - 2500 600 - 4000 

Surpass (Sr) 350 - 390 510 – 550 

Tapidor (T) 50 - 5600 280 - 11000 
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Figure 3.1 shows that for all 10 A genome chromosomes most read positions have 

coverage equal to or more than 4 and only a few have coverage between 1 and 3. 

However, the number of unmapped reads across all chromosomes is similar, except for 

chromosome 4, 9 and 10. Table 3.4 shows the number of bases in the genome that have 

coverage of at least 4 reads. SGSautoSNP requires at least two reads, each from at least 

two cultivars to call a SNP, the minimum coverage at a locus to call a SNP is therefore 

four. In tomato, (Causse et al., 2013) used a minimum coverage of eight reads to call 

SNPs by restricting the read coverage to eight or greater, they lost several SNPs 

previously detected by Sanger sequencing (Ranc et al., 2012). This confirms that it is a 

good approach to a minimum coverage of four to call SNPs for SGSautoSNP and allows 

analysis of 91.07 - 93.66% of total reads mapped to the reference (see Figure 3.1 and 

Table 3.4). To increase confidence in the SNP calling it is recommended to validate some 

of the SNPs for example with a GoldenGate Genotyping Assay (Durstewitz et al., 2010).  

  

 
Figure 3.1: The depth of coverage of the Illumina reads at 0, 1 - 3 and >= 4 reads are shown for the assembled Brassica AA 

genome. 
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Table 3.4: The number of reads, with a minimum coverage of 4 that are mapped on each chromosome. 

 Coverage more than 4 

Chromosome Reads no. Reads no. in % 

A01 20145576 92.13 

A02 21668216 93.17 

A03 25192374 92.90 

A04 15871687 92.83 

A05 18216551 92.34 

A06 20929709 93.66 

A07 17014836 92.05 

A08 15636483 91.48 

A09 27312495 91.07 

A10 13944935 92.83 

 

3.3.2. Single Nucleotide Polymorphisms calling  

The SNP discovery was performed only on the B. napus AA genome, as the CC genome 

was proprietary. Using the SGSautoSNP pipeline a total of 638,593 SNPs were identified 

across the 10 chromosomes of the AA genome, between six B. napus cultivars (Lorenc et 

al., 2012). SGSautoSNP provides a SNP score (the polymorphism must be present in a 

minimum of two sequence reads and is in detailed described in Chapter 2) which is a 

measure of confidence in SNP prediction. In this study, the SNP score ranged from 2 to 

133, with an average of 7.88.  

 

Figure 3.2 shows that most SNPs, for all 10 chromosomes in the AA genome, had 

coverage between 4 and 50 reads. It also shows that all 10 chromosomes have a similar 

curve and trend in the number of SNPs. Some SNPs had high coverage of between 118 

(chromosome 10) to 381 (chromosome 7). Higher levels of coverage and the addition of 

more cultivars could identify more SNPs or remove previously discovered SNPs. Losing 

SNPs could happen because SGSautoSNP rejects a SNP if not all bases within each 

cultivar at a locus are the same, which is expected for homozygous genomes, and these 

instances are more likely to be observed with higher read coverage.   
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Figure 3.2: A graphical representation of the relationship between coverage and SNPs for all 10 chromosomes in the Brassica AA 

genome. 

 

A similarity matrix was created with the number of SNPs between lines between all six 

cultivars in the A genome (Table 3.5). Most of the pairwise SNPs (378,652) were called 

between the cultivars Ningyou (N) and Tapidor (T). This may be because they are very 

diverse lines; Tapidor is a French winter cultivar type (i.e. it has a strong vernalisation 

requirement) and Ningyou 7 is a Chinese spring cultivar (i.e. it has no vernalisation 

requirement) (Table 3.2 and (Trick et al., 2009)). Additionally, both these cultivars had 

higher levels of sequence coverage. On the other hand, the lowest the number of pairwise 

SNPs (63,409) were called between the cultivars BLN (Bn) and Skipton (S). These 

Australian cultivars are both Australian spring types and therefore there may be little 

diversity between them (Table 3.2).  
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Table 3.5: The number of pairwise SNPs between the 6 cultivars in the 10 chromosomes of the B. napus AA genome.  

 

Ag Spectrum BLNBn Ningyou Skipton Surpass Tapidor 

Ag Spectrum 0 90781 228647 69498 104018 178444 

BLN 
 

0 295025 63409 115434 207930 

Ningyou 
  

0 228546 269133 378652 

Skipton 
   

0 101992 168265 

Surrpass 
    

0 177828 

Tapidor 
     

0 

 

3.3.3. Single Nucleotide Polymorphisms validation 

In a previous project (Dalton-Morgan et al., 2014), SNPs were discovered by the 

SGSautoSNP pipeline. These SNPs were validated by Sanger sequencing of PCR 

products and on a high-density, 6 K Infinium™ array for B. napus. This array is also able to 

characterise the diploid Brassica genomes, B. rapa, B. oleracea and B. nigra. Sequence 

libraries for B. napus were prepared for the Australian cultivars Ag-Spectrum, BLN2672, 

Skipton, Surpass 400 using the Illumina’s Genomic DNA Sample Prep Kit according to the 

manufacturer’s instructions. These cultivars were sequenced with the Illumina GAIIx 

platform to generate paired-end sequence reads between 75 and 100 bp length, with a 

coverage over the four varieties averaging 9.9X (Table 3.6). 

 

Table 3.6: Sequence data used for SNP discovery (Dalton-Morgan et al., 2014) 

Sample Read number Total read 

length (Gbp) 

Estimated total 

read depth 

Skipton 104,368,328 9.55 7.96× 

Ag-Spectrum 103,918,490 9.38 7.81× 

BLN2672 109,825,900 12.441 10.37× 

Surpass 400 110,431,492 16.22 13.52× 

 

SGSautoSNP discovered 871,806 SNPs between four cultivars with an average of one 

SNP per 730 bases. Of theses SNPs  498,759 were transitions (A>G or C>T) and 375,340  

were transversions (A>C, A>T, C>G or G>T). However, the A genome contains 196,451 

transitions and 152,956  transversions.  
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Initial validation of the SNPs predicted in this study was performed on 20 random selected 

SNPs using Sanger sequencing of PCR products and the SNP prediction accuracy was 

exacty 95% (Table 3.7; (Dalton-Morgan et al., 2014)). The validated SNPs all had SNP 

scores greater than 2, but for the one heterozygote the SNP score was 2. More extensive 

validation was performed using a B. napus 6k Infinium™ array. After the SNP prediction 

with the SGSautoSNP pipeline, the following filters were applied to the SNPs to build the 

6k Infinium™ array: 

 

 Within 60 bp on either side of the SNP position should be no other SNP 

 For this anlaysis we only used SNP where sequence information was available for 

all cultivars to avoid bias from missing data 

 In order to avoid the likelihood of rare alleles, SNPs were selected where the minor 

allele was present in more than one cultivar 

 Illumina's Assay Design Tool (ADT) score has to be greater than 0.6 

 All A>T and C>G tranversions were removed  in order to maximise the number of 

positions assayed on the array, as these SNPs require two probes per locus to 

assay, as compared to transitions which only require one probe 

 

The 6k Infinium™ array (Brassica_napus_UQEvie_6k_11581453) contains 5,306 SNPs 

evenly distributed over the entire A and C genomes of B. napus. Of these SNPs, 3,706 

(69.9 %) were transitions and 1,600 (30.1 %) were tranversions. Due to poorly separated 

clusters, 186 (3.5 %) of the total 5,306 SNPs failed. Of these, 69 (37.1 %) were located on 

the A genome. After ignoring 283 (5.5 %) monomorphic SNPs out of 5,120 SNPs across 

the assayed samples, 4,837 (94.5 %) SNPs were successfully predicted (Dalton-Morgan 

et al., 2014). 
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Table 3.7: Summary of SNP validation (Dalton-Morgan et al., 2014). 

SNP name Forward primer Reverse Primer SNP score Validation 

1 GTTGGGTGGGACTAGAAAC GCATGGAAGGCAACAC 6 True SNP 

2 CTTTTAACAGTAAAGAGGGATC GTGAGCTCCTTTCTATTTT 4 True SNP 

3 CTCTTTCATTCTCCTCCATGG AAGTATTCATAGTAAACCGAT 4 True SNP 

4 CGTCATCTTCGCTTTAGGCCT TCAAGTTTTCCTCACCAAA 4 True SNP 

5 CAATGTCTTTAGCATCGTTAC GTTAATTATTGTTCTTGTTCA 4 True SNP 

6 CTCAGCCTCCTGCTCCTCAG AGTGAGAGGGTTTTGACTCTT 4 True SNP 

7 GCACCACTAATCAAACTTACCA GTATTTCAAATGCAGAGAGATC 4 True SNP 

8 CAATCCTGTAATCATAATATATGT CAAACCCATTGATAAGTATTC 5 True SNP 

9 TGCAAGCTCAGGCTCTCTTC CAAGTTACCATCTTTAGCATC 5 True SNP 

10 TCTAGTTTTGTTACTCTTGAA AAATCACAGTACGGCGTCCC 5 True SNP 

11 ACAGATCAAGCAGAACTACAGCA CCTCATTGGTAACAAGTCTG 4 True SNP 

12 AAACCATCCCTTTGTTTTCAAT ATTATCCCAGACATTGATGAG 4 True SNP 

13 TGATCGATCTATCTCTCGGT TAACTAGACCAAAGTGAGTAG 4 True SNP 

14 CACCTCGGGATAGTCCTC GATGTGTGGGAGATGTTCAAG 22 True SNP 

15 CATCCGTGTACATACTAAGAAC GTATGGAAACTACAAACCAGC 15 True SNP 

16 CTCGCTGAGGTAAGCTGAC CGAATTATAGCTGCTCCACTC 6 True SNP 

17 CTCGCTGAGGTAAGCTGAC CGAATTATAGCTGCTCCACTC 2 Failed 

18 CTCGCTGAGGTAAGCTGAC CGAATTATAGCTGCTCCACTC 3 True SNP 

19 CTCGCTGAGGTAAGCTGAC CGAATTATAGCTGCTCCACTC 12 True SNP 

20 CTCGCTGAGGTAAGCTGAC CGAATTATAGCTGCTCCACTC 8 True SNP 

 

3.3.4. Single Nucleotide Polymorphisms characterisation 

Annotation for the 10 AA genome chromosomes was generated using the SGSautoSNP 

pipeline script, gene_annotation.py as described in Chapter 2. This generated gene 

models which are predicted based on those publically available from several organisms. 

For each of the 10 AA genome chromosomes a SnpEff database, including the reference 

genome and the genome annotation, was created and used to categorise the effects of 

SNPs. The output of SnpEff (Cingolani et al., 2012) provided detailed information on the 

number of changes and the change rate per chromosome based on the annotation. Each 

SNP effect was classified according to SNPeff into four classes (i) “high effect” for SNPs 

which modify splice sites, start or stop codons (gain or loss), (ii) “low effect” for SNPs in 

coding regions which do not lead to an amino acid sequence change, (iii) “moderate effect” 

for SNPs which led to amino acid sequence change and (iv) “modifier effect” for the SNPs 

located outside the genes, in introns or in non transcribed regions. Table 3.8 shows the 

proportion of variants in each class and that the overall impact of all variants is largely 
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modifying (92.3% - 93.3%), followed by moderate (4.1% - 4.6%), low (2.1% - 2.5%), and 

high impact (0.5%). Most changes (28.3 - 30.5%) were downstream (5 kb downstream of 

the most distal polyA addition site) and upstream (26.3 - 29.1%) (5 kb upstream of the 

most distal transcription start site). The lowest frequency change was the Non 

Synonymous Start type and Start Lost, with 0 to 3 and 0 to 5 events between all 

chromosomes. The changes in the intergenic regions of the chromosomes range between 

21.1 - 27.8% of the total, while the changes in introns represented between 3.7 - 4.5% of 

the changes. The portion of changes within the exon regions ranged between 6.6 - 7.7%. 

Table 3.9 shows that the non synonymous/synonymous ratio ranges from 1.8 to 2.0 across 

all 10 Brassica AA chromosomes.  Table 3.10 shows for all 10 AA genome chromosomes 

the three effects per functional class, between 63.47 and 65.07% missense changes, 

31.61 and 33.27% silent changes, and a small fraction of nonsense changes (3.13 to 

3.59%). The Missense/Silent ratio for all chromosomes ranges between 1.91 and 2.06. 

These values are comparable to results observed in peach cultivars where the 

missense/silent ratio ranged from 1.43 - 1.53 (Fresnedo-Ramirez et al., 2013). 

 

There were 25,323 - 45,066 transitions (Ts) and 20,300 - 37,420 transversions (Tv) 

identified, giving and a Ts/Tv ratio from 1.20 to 1.26 across all 10 chromosomes (Table 

3.11). Table 3.11 shows that overall more transitions than transversions were predicted.  

 

. 
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Table 3.8: SNPeff results for all 10 Brassica AA chromosomes. 

  chr01 chr02 chr03 chr04 chr05 chr06 chr07 chr08 chr09 chr10 

High effect (Total) 700 0.5% 841 0.5% 1287 0.5% 770 0.5% 741 0.5% 1036 0.5% 861 0.5% 646 0.5% 933 0.5% 866 0.5% 

SPLICE_SITE_ACCEPTOR 18 0.0% 32 0.0% 46 0.0% 33 0.0% 23 0.0% 46 0.0% 31 0.0% 26 0.0% 35 0.0% 32 0.0% 

SPLICE_SITE_DONOR 31 0.0% 29 0.0% 49 0.0% 33 0.0% 27 0.0% 47 0.0% 30 0.0% 34 0.0% 40 0.0% 19 0.0% 

START_LOST 1 0.0% 4 0.0% 3 0.0% 0 0.0% 0 0.0% 5 0.0% 4 0.0% 1 0.0% 1 0.0% 2 0.0% 

STOP_GAINED 355 0.2% 406 0.2% 613 0.2% 372 0.2% 375 0.2% 476 0.2% 399 0.2% 301 0.2% 454 0.2% 428 0.3% 

STOP_LOST 295 0.2% 370 0.2% 576 0.2% 332 0.2% 316 0.2% 462 0.2% 397 0.2% 284 0.2% 403 0.2% 385 0.2% 

Low effect (Total) 3,683 2.4% 3,963 2.3% 5,977 2.4% 3,540 2.1% 3,367 2.2% 5,066 2.4% 3,928 2.4% 3,091 2.4% 4,401 2.3% 4,122 2.5% 

NON_SYNONYMOUS_START 1 0.0% 2 0.0% 0 0.0% 1 0.0% 0 0.0% 0 0.0% 3 0.0% 0 0.0% 2 0.0% 0 0.0% 

SYNONYMOUS_CODING 3,619 2.3% 3,884 2.2% 5,851 2.3% 3,464 2.1% 3,298 2.1% 4,965 2.3% 3,830 2.3% 3,023 2.3% 4,297 2.2% 4,039 2.5% 

SYNONYMOUS_STOP 63 0.0% 77 0.0% 126 0.1% 75 0.0% 69 0.0% 101 0.0% 95 0.1% 68 0.1% 102 0.1% 83 0.1% 

Moderate effect (Total) 6,800 4.4% 7,560 4.3% 11,343 4.5% 6,951 4.1% 6,383 4.1% 9,217 4.4% 7,157 4.4% 5,841 4.5% 8,183 4.2% 7,520 4.6% 

NON_SYNONYMOUS_CODING 6,800 4.4% 7,560 4.3% 11,343 4.5% 6,951 4.1% 6,383 4.1% 9,217 4.4% 7,157 4.4% 5,841 4.5% 8,183 4.2% 7,520 4.6% 

Modifier effect (Total) 143,645 92.8% 162,138 92.9% 231,512 92.6% 157,202 93.3% 144,188 93.2% 195,971 92.7% 151,668 92.7% 119,624 92.6% 179,595 93.0% 149,604 92.3% 

DOWNSTREAM 45,227 29.2% 49,810 28.5% 76,277 30.5% 48,078 28.5% 43,825 28.3% 60,249 28.5% 46,692 28.5% 38,040 29.4% 55,495 28.7% 48,017 29.6% 

INTERGENIC 37,384 24.1% 45,082 25.8% 52,769 21.1% 46,862 27.8% 42,998 27.8% 53,899 25.5% 41,543 25.4% 30,281 23.4% 50,297 26.0% 36,715 22.6% 

INTRON 6,307 4.1% 6,895 4.0% 11,205 4.5% 6,310 3.7% 6,211 4.0% 9,567 4.5% 7,168 4.4% 5,824 4.5% 8,096 4.2% 7,022 4.3% 

UPSTREAM 43,593 28.2% 48,048 27.5% 72,749 29.1% 44,757 26.6% 40,713 26.3% 57,030 27.0% 44,380 27.1% 35,961 27.8% 52,265 27.1% 45,393 28.0% 

EXON 11,134 7.2% 12,303 7.1% 18,512 7.4% 11,195 6.6% 10,441 6.8% 15,226 7.2% 11,885 7.3% 9,518 7.4% 13,442 7.0% 12,457 7.7% 

Total number of effects 154,828   174,502   250,119   168,463   154,679   211,290   163,614   129,202   193,112   162,112 
 

 

Table 3.9: Non synonymous, synonymous and Non synonymous/synonymous ratio for all 10 Brassica AA chromosomes. 

 
chr01 chr02 chr03 chr04 chr05 chr06 chr07 chr08 chr09 chr10 

Synonymous  3,682 3,961 5,977 3,539 3,367 5,066 3,925 3,091 4,399 4,122 
Non synonymous  6,801 7,562 11,343 6,952 6,383 9,217 7,160 5,841 8,185 7,520 
Non synonymous/synonymous ratio 1.8 1.9 1.9 2.0 1.9 1.8 1.8 1.9 1.9 1.8 

 



89 

 

Table 3.10: The missense, nonsense, silent and missense/silent ratio for all 10 Brassica AA chromosomes. 

  chr01 chr02 chr03 chr04 chr05 chr06 chr07 chr08 chr09 chr10 

MISSENSE 7,097 63.74% 7,936 64.51% 11,922 64.40% 7,284 65.07% 6,699 64.16% 9,684 63.60% 7,561 63.62% 6,126 64.36% 8,589 63.90% 7,907 63.47% 

NONSENSE 355 3.19% 406 3.30% 613 3.31% 372 3.32% 375 3.59% 476 3.13% 399 3.36% 301 3.16% 454 3.38% 428 3.44% 

SILENT 3,682 33.07% 3,961 32.20% 5,977 32.29% 3,539 31.61% 3,367 32.25% 5,066 33.27% 3,925 33.03% 3,091 32.48% 4,399 32.73% 4,122 33.09% 

MISSENSE/ 

1.93 2.00 1.99 2.06 1.99 1.91 1.93 1.98 1.95 1.92  SILENT 

 ratio 

 

Table 3.11: SNP information and chromosome length for the 10 Brassica AA genome chromosomes. 

  chr01 chr02 chr03 chr04 chr05 chr06 chr07 chr08 chr09 chr10 

Density (SNP/Mbp) 2,050 2,309 2,559 3,182 2,492 2,995 2,717 2,149 1,931 3,189 

Chromosome length 26,743,657 27,848,129 32,230,099 20,227,373 23,941,934 26,273,242 22,305,823 21,233,027 37,197,612 17,624,701 

SNPs no. 54,825 64,291 82,486 64,373 59,659 78,694 60,599 45,623 71,843 56,200 

Transitions 30,314 35,368 45,066 35,944 33,317 43,741 33,429 25,323 39,785 31,247 

A > G 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 

C > T 50% 50% 50% 50% 50% 50% 50% 50% 50% 50% 

Transversions 24,511 28,923 37,420 28,429 26,342 34,953 27,170 20,300 32,058 24,953 

A > T 33% 33% 33% 34% 32% 32% 33% 32% 32% 32% 

A > C 25% 25% 25% 24% 25% 25% 24% 25% 25% 25% 

G > T 25% 25% 25% 25% 25% 25% 25% 25% 25% 25% 

C > G 17% 17% 17% 17% 17% 17% 17% 18% 17% 17% 

Ts/Tv ratio 1.24 1.22 1.20 1.26 1.26 1.25 1.23 1.25 1.24 1.25 
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3.3.5. Single Nucleotide Polymorphisms density 

Using the SGSautoSNP pipeline a total of 638,593 SNPs were identified in the AA genome 

and the SNP frequency varied from 1,931 SNPs/bp to 3,189 SNPs/Mbp across the 10 

chromosomes (Figure 3.3). Table 3.11 shows that the total number of SNPs varied 

between the different chromosomes and also shows that the highest number of SNPs 

were identified on chromosome 3 (82,486 SNPs) followed by chromosome 6 (78,694 

SNPs) and the least numbers of SNPs were discovered on chromosome 8 (45,623 SNPs) 

followed by chromosome 1 (54,825 SNPs). Next the SNPs were normalised by dividing 

SNPs by chromosome length in Mbp. Figure 3.3 shows the normalised SNPs were the 

highest number of SNPs was identified on chromosome 10 followed by chromosome 4 and 

the least numbers of SNPs were discovered on chromosome 9 followed by chromosome 

1.  

 

 

 

Figure 3.3: Distribution of the numbers of normalized SNPs in the B. napus AA genome between six B. napus cultivars. 

 

The assembled sequence length of all 10 chromosomes varies from 17,624,701 bp 

(chromosome 9) to 37,197,612 bp (chromosome 10) (Table 3.11). In most cases the SNP 

numbers appear to be related to the physical size of the chromosomes. On the longest 

chromosome (chromosome 9, 37,197,612 bp long) 71,843 SNPs were discovered giving a 

density of 1,931 SNPs/Mbp, while in the shortest chromosome (chromosome 10, 

17,624,701 bp long) 56,200 SNPs were discovered giving a density of 3,189 SNPs/Mbp. 

However, there are exceptions, for example chromosome 8 is 21,233,027 bp long and has 
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45,623 SNPs (2,149 SNPs/Mbp), but chromosome 4 (20,227,373 bp) is shorter and has 

more SNPs (64,373, 3174 SNPs/Mbp) than chromosome 8. The distribution of the SNPs 

along each chromosome also showed high variation as illustrated in Figure 3.4 and Figure 

3.5.  

 

Genome regions with low SNP densities could be caused by functional conservation of 

coding regions between otherwise diverse individuals. These regions could correspond to 

chromosomal regulatory or housekeeping genes blocks regions essential for an 

organism’s survival and/or reproduction (She et al., 2009). For most of chromosomes a 

few regions appeared with a low SNP density in the middle of chromosomes, except 

chromosome 4, 6, 7 and 10 (see Figure 3.4 and Figure 3.5). The regions of low SNP 

density may relate to centromere positions. 
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Figure 3.4: Comparison in the density distribution for Brassica AA 1 to 6 chromosomes. The density is given in number of genes 

and SNPs per 100 bases for a particular position in the chromosome. SNPs are blue, genes are red and the overlay between them 

is purple. 
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Figure 3.5: Comparison in the density distribution for Brassica AA 1 to 6 chromosomes. The density is given in number of genes 

and SNPs per 100 bases for a particular position in the chromosome. SNPs are blue, genes are red and the overlay between them 

is purple.. 

 

3.4. Conclusion 

Second Generation Sequencing has introduced a revolution in plant research and genetics 

and made sequencing affordable. In this study we show that it was possible to predict 

thousands of SNPs in the B. napus AA genome using the SGSautoSNP pipeline. Paired 

reads from six B. napus cultivars were mapped between 4.76% and 7.72% mapped to the 

B. rapa genome and 5.64% and 9.62% mapped to the B. oleracea genome. This is most 

likely due to many read pairs mapping to multiple locations in this highly repetitive genomes 

and subsequently being ignored due to the SOAPaligner -r 0 option, which minimises false 

SNP calls in repetitive regions and provides confidence in the SNP prediction. 

Furthermore, it helps to make sure that SNPs are only predicted in single-copy regions of 

the reference genome. This unmapped rate is much higher than compare for example in a 
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tomato research from (Causse et al., 2013) who cleaned first its reads (average coverage 

being 11.2x) and 82 to 90% of the reads remained which were than mapped. Only 3 - 5% 

of the reads did not map using the stringent criteria. Other research groups could not map 

15% of reads in rice (Subbaiyan et al., 2012) and 20% in tomato (S. pimpinellifolium) (Sato 

et al., 2012). The reason could be that the other genomes have lower percentage of 

repeated sequences. 

 

SGSautoSNP does not consider the reference genome for SNP discovery. The calling of 

SNPs between reads aligned to a reference while ignoring the reference allele allows this 

pipeline to be applied to accurately call SNPs between individuals using a reference from a 

divergent species. While this pipeline does not attempt to call all biological SNPs, the very 

large numbers of SNPs identified are valuable for genetic studies and the association of 

traits with candidate agronomic genes. SGSautoSNP was successfully applied in calling 

SNPs in Brassica napus, wheat (Lorenc et al., 2012) and Leptosphaeria maculans (Zander 

et al., 2013). These three genomes vary in size and complexity (B. napus 1,300 Mb; 

Triticum aestivum (wheat), 16,000 Mb; L. maculans, 45.12 Mb), with the B. napus genome 

being allotetraploid, wheat is a hexaploid and L. maculans genome is haploid. This 

demonstrates the flexibility of the pipeline for a broad range of organisms. One limitation of 

the SGSautoSNP presented in this thesis is that it is designed for homozygous species 

and does not work efficiently when heterozygocity is present. However it has since been 

extended by another student for application in heterozygous species. 

 

Firstly, we presented the application of SGSautoSNP pipeline to Brassica napus to identify 

more than 638,593 SNPs with an accuracy of greater than 95% using Sanger sequencing 

and 94.5 % of the successfully assayed SNPs were validated as polymorphic on the 6 K 

Infinium™ array. These validations rates exceed those recorded in the below B. napus 

studies and clearly demonstrating the accuracy of the SGSAutoSNP pipeline. Eight B. 

napus lines were used for Restriction Site Associated DNA (RAD) marker sequencing and 

validated by Sanger Sequencing with an accuracy of around 84% (Bus et al., 2012). 

Ninety-four genotypes from the Tapidor × Ningyou7 (TNDH) population were genotyped in 

order to desing a B. napus InfiniumTM assay which is composed of SNPs obtained from 

EST data and reached an accuracy of around 77 % (Delourme et al., 2013).  

 

In this study 6 cultivars were used and 638,593 SNPs were discovered, this is more than 
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50% more SNPs than idenfiried with four cultivars reflecting the additional data and 

diversity (Dalton-Morgan et al., 2014). 

 

In this study the Ts/Tv ratios range from 1.2 to 1.26 across all 10 chromosomes (Table 

3.11) which is very similar to other B. napus studies such 1.29 (Dalton-Morgan et al., 2014) 

and 1.39 (Bus et al., 2012). These values are lower than Ts/Tv ratios observed in other 

plants such as 1.6 in eggplant (Barchi et al., 2011), 3.9 in maize, 1.9 in alfalfa, 1.6 in eikorn 

wheat (Triticum monococcum L.), 2.5 in barley and Lotus (Vitte and Bennetzen, 2006) and 

3.29 - 3.63 peach (Fresnedo-Ramirez et al., 2013). Between 23,763 to 60,299 transitions 

(Ts) and 34,020 to 132,024 transversions (Tv) and a Ts/Tv ratio from 1.77 to 1.28 across 

all wheat group 7 chromosome arms are presented in Chapter 4. The differences in Ts/Tv 

ratio between different species could be caused by differential abundance of methylated 

cytosine in CpG dinucleotides, because methylated cytosine can be deaminated and 

coverted to thymine resulting in this Ts/Tv bias. 

 

By combining the SGSautoSNP pipeline together with SnpEff it was possible to determine 

whole genome SNP trends, like transition to transversion ratios across chromosomes. 

Very low numbers of “high effect” SNPs (splice site acceptors, splice site donors, start lost 

codons, stop gained codons, and stop lost codons) were predicted. These SNPs could 

impact the structure of the proteins by changing the length of the open reading frame 

(ORF) or the amino acid transcripts. 

 

A study of eight tomato cultivars identified more than 4 million SNPs (Causse et al., 2013). 

These SNPs caused more than 98% modifier effects which was around 5% higher than in 

this study. The moderate SNPs were 0.93 to 1.5%, but in this study they ranged from 4.1 – 

4.6%. Low effects were 0.80 to 1.3%, but here they ranged from 2.1 – 2.5%. Finally, the 

high effect variants represented 0.05 to 0.1%, but in the present study they were 0.5%. 

Overall this study found a similar trend in the distribution of SNP effects in these 4 classes. 

The tomato study found 57% of SNPs were located in intergenic regions, more than 

double the amount found in this study. This may reflect the poor mapping of reads in the 

intergenic region of this polyploid species. They found 34% of SNPs in downstream or 

upstream regions of genes which is around 4% for downstream and 5% for upstream 

higher than our study. 
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Our non synonymous/synonymous ratio are slightly bigger (1.8 to 2.0) than those detected 

in cherry tomato cultivars (1.34) and cultivated tomato cultivars (1.48) (Causse et al., 

2013), in wild soybean (1.36) and cultivated soybean (1.38) (Lam et al., 2010) and rice 

(1.2) (Subbaiyan et al., 2012). A synonymous SNP is when a DNA sequence changes, but 

the translated amino acid stays the same, non-synonymous SNPs mean that the 

translated amino acid will change. Phenotypic change can be caused by non-synonymous 

SNPs within transcribed genes; because an organism’s interaction with the environment 

can be affected by alteration of the protein function or structure. Non-synonymous SNPs 

which can be linked to phenotypic change are the best markers (Edwards et al., 2007a). 

Non-synonymous SNPs are more readily tolerated in a polyploid 
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Chapter 4: Application of SGSautoSNP in wheat  

4.1. Introduction 

Bread wheat (Triticum aestivum) has an allohexaploid genome which is very large, 

complex and contains many repetitive elements. These factors make it difficult to 

sequence and to discover SNPs in wheat. A common way to address the above issues is 

to select only a portion of the genome to simplify the sequencing. One example used in 

wheat is to isolate and sequence individual chromosome arms, which eliminates 

homoeology resulting from multiple genomes and decreases the genome complexity and 

size (Vrana et al., 2000). SNP discovery from Second-Generation Sequencing 

technologies is challenging due to short reads and high error rates. It is difficult to 

distinguish between real SNPs and sequence or read mapping errors (Duran et al., 2009c, 

Imelfort et al., 2009). However, we were able to reduce this issue with help of the 

SGSautoSNP algorithm and other software included in this pipeline which is described in 

detail in Chapter 2. 

 

In an early study there were 903 SNPs discovered, with a frequency of 1 SNP per 540 bp, 

among EST sequences in a collection of 12 wheat genotype from Brazil, Canada, China 

and Mexico (Somers et al., 2003). In another study, twenty six hexaploid wheat genotypes 

from diverse origins and growth habits were analysed. BAC (bacterial artificial 

chromosome) sequences from T. aestivum were used to design PCR primers and a total of 

64 SNPs were discovered between the 26 genotypes (Ravel et al., 2006). An additional 

twenty-one SNPs were detected with a frequency of one in 76.1 bases from 56 sequences 

from three species of einkorn wheat (T. monococcum ssp. aegilopoides, T. monococcum 

ssp. monococcum and T. urartu accessions) (Chen et al., 2009a). A total of 2,659 SNPs 

were identified in tetraploid durum wheat (Triticum durum Desf.) between 12 cultivars. In 

this study, two reduced representation libraries (RRLs) were sequenced from the inbred 

line crosses Colosseo × Lloyd and Meridiano × Claudio using the Roche 454 GS FLX 

sequencer. For the SNP validation, 768 SNPs were chosen and assayed using the 

Illumina BeadExpress genotyping system. Only 275 (35.8%) of SNPs could be validated 

(Trebbi et al., 2011). Allen et al. (2011) identified 14,078 putative SNPs in 6,255 distinct 

reference sequences with Illumina GAIIx ESTs data from the wheat lines Avalon, Cadenza, 

Rialto, Savannah and Recital (Allen et al., 2011). The validation rate from a subset of 
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1,659 was 67%, using the KASPar genotyping platform. In a separate project, (Lai et al., 

2012b) identified a total of 38,928 candidate SNPs from bread wheat Roche 454 

transcriptome data, with an accuracy of 78%. These SNPs are presented in an online 

database (http://autosnpdb.appliedbioinformatics.com.au/). You et al. (2011) identified 

SNPs between two accessions of one of the diploid progenitors of bread wheat, Aegilops 

tauschii (You et al., 2011). Roche 454 sequencing of Ae. tauschii accession AL8/78 was 

combined with Applied Biosystems SOLiD sequencing of genomic DNA and cDNA from 

Ae. tauschii accession AS75 to identify a total of 497,118 candidate Ae. tauschii SNPs. In 

another project, Roche 454 sequence reads from nine wheat accessions originating from 

Australia, China, Mexico and USA were assembled into reference transcripts (RTs). SNP 

discovery was performed by mapping transcriptomes of 26 hexaploid wheat accessions, 

sequenced using Roche 454 and Illumina (GAIIx and HiSeq2000). A total of 25,454 SNPs 

were indentified with a validation rate of 85 - 90% on a 9K iSelect Beadchip Assay 

(Cavanagh et al., 2013).  

 

4.1.1. Project aims 

In this chapter we present the results of the application of SGSautoSNP (Second-

Generation Sequencing AutoSNP), a SNP discovery pipeline described in chapter 2 to 

hexaploid bread wheat. Validation suggests greater than 93% of SNPs represent 

polymorphisms between wheat cultivars and hence are valuable for diversity analysis, 

marker assisted selection and genotyping by sequencing. The work in this chapter 

demonstrates that the SGSautoSNP pipeline is suitable for high resolution SNP discovery 

in very large and complex genomes (Lorenc et al., 2012). 

 

4.2. Material and Methods 

We demonstrate the potential of the SGSautoSNP pipeline by identifying SNPs between 

four Australian wheat cultivars; Drysdale, Gladius, Excalibur and RAC875. We used 

Illumina whole-genome paired read sequence data which had coverage between 8.8x and 

10.8x. These sequence data were downloaded from the Bioplatforms web site 

(http://www.bioplatforms.com.au/datasets/wheat, 17 August 2012) (Edwards et al., 2012). 

The wheat group 7 (7A, 7B and 7D) chromosomes arms had been sorted by the flow 

cytometry method (Vrana et al., 2000). The DNA of these chromosome arms were 
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isolated, sequenced using Illumina GAIIx and HiSeq 2000 platforms, and assembled using 

Velvet (Zerbino and Birney, 2008) and affterwards syntenic build were created by 

(Berkman et al., 2013, Berkman et al., 2012b, Berkman et al., 2011). Syntenic builds are 

contigs which have been ordered based on similarity to related cereal genomes. Table 4.1 

shows the group 7 chromosome arm, syntenic build sizes and sequence coverage. The 

data for the four cultivars were mapped to the reference bread wheat chromosome arm 

shotgun assemblies representing homoelogous chromosomes 7A, 7B and 7D (Berkman et 

al., 2013), as well as 4AL (Hernandez et al., 2012). In the absence of one of the 

homoeologues, cultivar specific reads from the missing homoeologue would likely map to 

one of the other homoeologous genomes, confounding SNP discovery. An assembly from 

chromosome arm 4AL was included as this arm contains a reciprocal translocation with 

7BS (Berkman et al., 2011). Assemblies for each of the wheat 7A, B and D chromosomes, 

including the syntenic builds and extra contigs were as described by (Berkman et al., 

2011) and are accessible at the wheatgenome.info web site (Lai et al., 2012a) 

(http://www.wheatgenome.info, 17 August 2012).  

 

The SGSautoSNP pipeline was used with default settings (see Chapter 2), except for 

SOAPaligner.py which requires insert-size for each read. These insert-sizes can be found 

in Table 4.3. The pipeline runs on a computer cluster (Barrine) at the University of 

Queensland (see Appendix). 

 

Table 4.1: Summary of wheat group 7 chromosome data including remaining assembled contigs (extra contigs) (Berkman et al., 

2013). 

Chromosome 
arm 

Chromosome arm 
size in Mbp 

Syntenic builds 
length in Mbp 

Extra contigs 
length in Mbp 

7AS 407 6.85 203.95 

7AL 407 7.75 248.89 

7BS 360 6.62 214.51 

7BL 540 5.97 248.14 

7DS 381 7.47 203.38 

7DL 346 13.48 224.77 

 

A total of 40 SNPs were randomly selected from the three group 7 reference genomes for 

validation. The validation work described below was performed by Jacqueline Batley and 

Satomi Hayashi. The SNPs represented 18, 9 and 13 SNPs from the A, B and D genomes 

respectively and had a range of redundancy scores. Genomic DNA was isolated from the 
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four wheat cultivars Drysdale, Gladius, Excalibur and RAC875, according to a protocol 

adapted from (Fulton et al., 1995). PCR amplification of the 40 loci was performed using 

primers designed to conserved sequence surrounding the SNPs (Table 4.5 and Table 4.6) 

in a 20 μL reaction volume containing 1 × iTaq PCR buffer (containing 100 mM Tris-HCl 

and 500 mM KCl, pH 8.3) (Bio-Rad), 200 μM each dNTP (Bio-Rad), 0.5 μM each primer, 

1.5 U iTaq DNA polymerase (Bio-Rad), RNase and DNase free water (Gibco) and 60 ng 

DNA. Thermocycling conditions for the reaction were 94 °C for 2 min, followed by 35 

cycles of: 94 °C for 30 s, annealing for 1 min at 60 °C and extension for 1 min at 72 °C. 

Final extension was performed at 72 °C for 10 min. Gel electrophoresis on a 1% (w/v) 

agarose gel in 1 × TAE buffer (Sambrook and Russell, 2001) containing ethidium bromide 

resolved products, which were excised and purified using a silica method based on (Boyle 

and Lew, 1995). The purified PCR products were Sanger sequenced using BigDye 3.1, 

using forward PCR primers, and analysed using an ABI3730xl. The sequences for each 

locus and cultivar were aligned and compared using Geneious Pro v5.4.6 (Kearse et al., 

2012) with a cost matrix of 65%, a gap open penalty of 6, and a gap extension penalty of 

3, and each of the SNPs assessed. 

 

4.3. Results and Discussion 

4.3.1. Reads mapping  

The paired reads for each of the varieties (see Table 4.2) were processed by the 

SGSautoSNP pipeline and mapped onto reference genome using the SOAPaligner.py 

script, which is a wrapper around SOAPaligner (Li et al., 2009b). The reference consists of 

the group 7 chromosomes (7A, 7B and 7D) combined with 4AL. The −r 0 option of 

SOAPaligner was applied which removes reads where they match multiple positions 

equally well. This option aims to increase SNP calling accuracy by ignoring read pairs that 

cannot be accurately positioned on the reference. Similarly, only reads that mapped as a 

pair were used for SNP discovery. Due to the short length of the reads, one read could 

match at many positions, but two reads separated by a gap of defined insert size provides 

a greater confidence of specific and accurate read mapping. Table 4.3 shows the minimum 

and maximum insert sizes used for SOAPalinger. Of the reads used for mapping, between 

3.10% and 5.14% mapped to the group 7/4AL reference as read pairs (see Table 4.2). As 

the group 7 reference is estimated to cover approximately 14% of the complete genome, the 

number of mapped reads is less than predicted. This is due to of the large number of 
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repeats in the wheat genome (Brenchley et al., 2012, Flavell et al., 1977) which prevents 

the reads from mapping to a unique specific location and the fact that the genome 

assemblies do not represent the complete chromosome arms. 

 

Table 4.2: Summary of wheat cultivar data and mapping reference genome which is made out of the group 7 chromosomes (7A, 

7B and 7D) combined with 4AL. The wheat variety column contains in brackets the cultivar name abbreviation. 

Wheat variety Data generated (Gbp) Data mapped to reference (Gbp) % read pairs mapped 

Drysdale (D) 168 8.65 5.14 
Excalibur (E) 146 5.36 3.66 

Gladius (G) 180 8.47 4.70 
RAC875 (R) 132 4.1 3.10 

 

Table 4.3: The minimum and maximum insert sizes used during the alignment with SOAPalinger for four wheat cultivars paired-

reads. 

Wheat variety Minimum Insert sizes Maximum insert sizes 

Drysdale (D) 80 480 

Excalibur (E) 60 520 

Gladius (G) 60 600 

RAC875 (R) 60 370 
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4.3.2. Single Nucleotide Polymorphism calling 

A total of 881,289 SNPs were identified across the group 7 chromosomes from the four 

Australian wheat varieties using the SGSautoSNP pipeline (Lorenc et al., 2012). These 

SNPs consisted of 63 - 70% transitions and 30 - 37% transversions (Table 4.4). The SNP 

frequency on the syntenic build varies across the three group 7 chromosomes, 963.3 

SNPs/Mb (7A), 746.2 SNPs/Mb (7B) and 149.7 SNPs/Mb (7D). SGSautoSNP provides a 

SNP score which is a measure of confidence in SNP prediction. In this study, the SNP 

score ranged from 2 to 60, with an average of 4. All predicted SNPs have been included in 

a public wheat genome GBrowse database hosted at the wheatgenome.info web site (Lai 

et al., 2012a).  

 

Table 4.4: Information about SNPs in 7A, 7B and 7D chromosome arms. 

  
Total Syntenic build 

 
SNP 7A 7B 7D 7A 7B 7D 

Transitions 
A/G 150,760 119,165 30,215 5030 3248 1014 

C/T 150,494 118,466 30,084 4724 3198 973 

Transversions 

A/C 37,919 33,117 9,360 1137 814 325 

A/T 24,838 22,695 8,102 911 642 284 

C/G 31,057 27,182 7,383 1149 775 247 

G/T 38,210 32,737 9,175 1107 713 294 

 
A/C/G 25 34 11 - 3 - 

 
A/C/T 41 38 15 - 1 - 

 
A/G/T 37 47 10 1  - 

 
C/G/T 29 36 7 - 2 - 

Biallelic SNPs no. 
 

433,278 353,362 94,319 14058 9390 3137 

Triallelic SNPs no. 
 

433,410 353,517 94,362 14059 9396 - 

Transitions (Ts) 
 

301,254 237,631 60,299 9754 6446 1987 

Transversions (Tv) 
 

132,024 115,731 34,020 4304 2944 1150 

Ts/Tv ratio 
 

2.28 2.05 1.77 2.26 2.19 1.73 
 

There were between 237,631 to 60,299 transitions (Ts) and 34,020 to 132,024 

transversions (Tv) and the Ts/Tv ratio ranged from 1.77 to 2.28 across all group 7 

chromosome arms (Table 4.4).  
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4.3.3. Single Nucleotide Polymorphisms validation 

 

Validating individual SNPs in a hexaploid species is a challenge as the amplification of loci 

requires the design of homoeologue specific PCR primers. Of 40 SNPs selected for 

validation, 12 did not produce clean PCR amplification products or Sanger sequence. This 

reflects inefficiency in validation rather than SNP calling errors and so these SNPs were 

ignored. Of the 28 SNPs that did produce clean Sanger sequence data, 26 (93%) 

produced the expected genotype. One SNP was homozygous across cultivars and not a 

true SNP, while one appeared to be heterozygous, suggesting a SNP between the 

homoeologous genomes rather than between cultivars. SGSautoSNP predicted correct 

SNPs even for the minimum SNP score of 2, although the monomorphic SNP has a score 

of 2 while the SNP between homeologues had a SNP score of 6 (Lorenc et al., 2012, 

Zander et al., 2013, Trebbi et al., 2011, Allen et al., 2011, Lai et al., 2012b, Cavanagh et 

al., 2013). 
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Table 4.5: Summary of single nucleotide polymorphism (SNP) validation in wheat chromosome 7A. 

SNP primer name Forward primer Reverse primer SNP score Validation 

UQ7A27 TAACATAAGCAAAGTTCTATTA TTTGGAACACAATCGGAACTT 6 Failed 

UQ7A1397 TCTATTGGATTCTTTCCGAT TCACCCTGTGGAATGAAAGA 5 Failed 

UQ7A5622 TTAGCCAAAATGGACCCAAA CCTCTTTATTCAATCTGGAAACG 2 True SNP 

UQ7A129835 TTCTTACTGTGGCTGCATCA GCCATCCTAAACGACCTTCA 5 True SNP 

UQ7A9400 GCCCATATGCAGTTCATGGT AGAGCCAAACCTTCCCTGAT 2 Failed 

UQ7A7915 CATGCCAACCCAAGTAGACC GAAGCGTGAAAATTTCGTGA 6 True SNP 

UQ7A6107 TGGTGTTTACGCTGAAGTTACC CTGGCCTGGGCACTACATA 6 True SNP 

UQ7A2603 GTCACCAACCAGCTCGAAAT TTGTAGCTTTGCCTCTGTGAA 2 Failed 

UQ7A3491 AGTCGCCGGCAGTAAAAATA CCGAAGAAAATGTGGTGGAG 4 True SNP 

UQ7A4532 TTTCCTCTAGATCTGTGCAAAATG CATCCAGGACTGCATAAGCTC 6 True SNP 

UQ7A100138 TCCCTGGTCCACGAGTTATT AAATGGTTTGAGCCTTGTGC 7 Failed 

UQ7A136305 CATCATCTTTGAAAAATCCTAGCC TGTTCTGCAAGCTTCGTCTG 5 True SNP 

UQ7A155877 AAGCTGTTGTGCCAGTGTTG GAGCTAGCGTCGCTGACATA 4 True SNP 

UQ7A180868 GACCGTCATCGAATGTAGCA TCGTCCACCCAGACCTTATC 3 True SNP 

UQ7A287189 GGCGATCATCACTTAAGAAACC CAGTAATGAGGTTTCTGCTTGG 2 Failed 

UQ7A322716 TCTGTTCGCAAACCAACG GTGCGTTATCAGGGGAACAT 11 True SNP 

UQ7A57227 ATGGGTGAAGGGAATACAGC TGCATGCACATACAACCAAA 5 True SNP 

UQ7A87191 TCAGTTCGGTAAGGATGAAGA GAAGCAGTATGCATCTAAACTTTG 6 Heterozygous 
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Table 4.6: Summary of single nucleotide polymorphism (SNP) validation in wheat chromosomes 7B and 7D. 

SNP primer name Forward Primer Reverse Primer SNP score Validation 

UQ7B21 GCAGGGTTAATTTCTAGCAAGC GCCTTTTATCCAAAGCCATC 8 Failed 

UQ7B484 CTCAACCTCCCAAGCATGA GCTATCCAGCTACCCTGTGC 11 Failed 

UQ7B3940 GCCAGAGGCACTAGCATCAC GGTAATTGTGGAGCAAGCAA 6 True SNP 

UQ7B4960 GCATGGCATTTCAAGATCAG GGAGGAGGACAAAGCCAGAT 5 True SNP 

UQ7B5991 CCAAGCCACCACCCTTTAT TAATCCCCGTCATCTCGAAG 4 True SNP 

UQ7B120997 CTCCTCAGATGACCAATTTGC CACCAAAATATGCTGTACAATTCTATG 7 Failed 

UQ7B256895 GCAGCAGAGGTAGGCACTTC GAAATGCTTCGAGTGTGGTG 11 True SNP 

UQ7B64318 GGGTCCAGACTTCCACGTTA CCCACATTAATTTGTACGACCTC 6 Failed 

UQ7B97303 TGATTCGAGCCCATATAGGAA AGCCATGCGGAAATATTGAG 8 True SNP 

UQ7D283 TGAGTAAGACAACAATCAGAGCA CAATGCGAGCAAAAAGATCA 5 True SNP 

UQ7D429 TGTGCTGACGTGGCATCTAT GCATGTGGAAAACGAGTGTG 3 True SNP 

UQ7D689 CATCTGGCCTCAACATCAAA TGTTGGTAGTGAGGCACTTCTT 9 Failed 

UQ7D948 GGCGATACTCGATGAAAGAAA TTGGAAACTACAATTGCACAAC 9 True SNP 

UQ7D1189 GCGTGGAGTAGAGGGACAAG TCCAAAAAGCAAAACAAATGC 4 True SNP 

UQ7D1491 AGCGCAAGGAGGAGGTTAGT GAGCCAAGTCCTTGTCAATTT 7 True SNP 

UQ7D1846 AATGTGTTCCATCCAAGACG GCCAAGGTCGACATGTGATA 10 True SNP 

UQ7D2314 AAACAAGTCTGTGTTGCGTCA TGCAGATACATGGCTCCAGA 2 Monomorphic 

UQ7D20375 CTGCCACCAAACGGATTAAC AATGCATTGGCAGTCACAAG 6 True SNP 

UQ7D27168 TAATGCTATGCCGTGTCAGC GCCACCTATTATTGAAGGCATC 2 True SNP 

UQ7D38754 GAGCGAGCAATGCTAGTGTG GAACCCATTTGATAACCGTGA 3 Failed 

UQ7D59683 CGTCCACATTGTTGCAAATC TTGACCCTGAAGGAAGGATG 6 True SNP 

UQ7D68910 TTGCTTTATGCCACTGGAGA TAGGCCGTGAAACATCAACA 3 True SNP 
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4.3.4. Single Nucleotide Polymorphisms characterization 

Syntenic build gene annotations for the wheat group 7 (7A, 7B and 7D) chromosomes 

arms were used from (Berkman et al., 2013). For each of the 3 chromosomes arms a 

SnpEff (Cingolani et al., 2012) database was created and used to categorise the effects of 

SNPs. The output of SnpEff provided detailed information on the number of changes and 

the change rate per chromosome based on the annotation.  

 

Each SNP effect was classified according to SNPeff into four classes (i) “high effect” for 

SNPs which modify splice sites, start or stop codons (gain or loss), (ii) “low effect” for 

SNPs in coding regions which do not lead to an amino acid sequence change, (iii) 

“moderate effect” for SNPs which led to amino acid sequence change and (iv) “modifier 

effect” for the SNPs located outside the genes, in introns or in non transcribed regions.  

 

Table 4.7: SNPeff results for all three wheat group 7 Syntenic build chromosome arms. 

  7A_SynBuild_v2.0 7B_SynBuild_v2.0 7D_SynBuild_v2.0 

High effect (Total) 186 0.1% 162 0.2% 62 0.2% 

SPLICE_SITE_ACCEPTOR 21 0.0% 18 0.0% 6 0.0% 

SPLICE_SITE_DONOR 6 0.0% 12 0.0% 2 0.0% 

START_LOST 0 0.0% 0 0.0% 0 0.0% 

STOP_GAINED 96 0.1% 101 0.1% 45 0.1% 

STOP_LOST 63 0.1% 31 0.0% 9 0.0% 

Low effect (Total) 6610 5.3% 1885 2.7% 1375 4.5% 

NON_SYNONYMOUS_START 0 0.0% 0 0.0% 0 0.0% 

SYNONYMOUS_CODING 6,610 5.3% 1,875 2.7% 1,375 4.5% 

SYNONYMOUS_STOP 0 0.0% 10 0.0% 0 0.0% 

Moderate effect (Total) 4,341 3.5% 2,530 3.6% 626 2.0% 

NON_SYNONYMOUS_CODING 4,341 3.5% 2,530 3.6% 626 2.0% 

Modifier effect (Total) 113,341 91.1% 65,603 93.5% 28,555 93.3% 

DOWNSTREAM 41,899 33.7% 25,998 37.0% 10,295 33.6% 

INTERGENIC 9,718 7.8% 6,298 9.0% 2,345 7.7% 

INTRON 10,126 8.1% 6,708 9.6% 3,578 11.7% 

UPSTREAM 40,488 32.5% 22,052 31.4% 10,282 33.6% 

EXON 11,110 8.9% 4,547 6.5% 2,055 6.7% 

Total number of effects 124,478   70,180   30,618 
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Table 4.7 shows the proportion of variants in each class and that the overall impact of all 

variants is largely modifying (91.1 - 93.5%), followed by low (2.7 - 5.3%), moderate (2% - 

3.6%), and high impact (0.1 - 0.2%). Most changes (33.6 - 37%) were downstream (5 kb 

downstream of the most distal polyA addition site) and upstream (31.4 – 33.6%) (5 kb 

upstream of the most distal transcription start site). The lowest frequency change was the 

Splice Site Donor, with 2 to 12 events between all 3 group 7 chromosome arms. The 

changes in the intergenic regions of the chromosomes range between 7.7 - 9% of the total, 

while the changes in introns represented between 8.1 – 11.7% of the changes. The portion 

of changes within the exon regions ranged between 6.5 – 8.9%.  

 

Table 4.8 shows Non synonymous, synonymous and Non synonymous/synonymous ratio for all 3 Syntenic build wheat group 7 

chromosome arms. 

  7A_SynBuild_v2.0 7B_SynBuild_v2.0 7D_SynBuild_v2.0 

Synonymous  6,610 1,885 1,375 

Non synonymous  4,341 2,530 626 

ratio 0.66 1.34 0.46 

 

Table 4.8 shows that the non synonymous/synonymous ratio ranges from 0.46 to 1.34 

across all 3 Syntenic build wheat group 7 chromosome arms.   

 

Table 4.9 shows the missense, nonsense, silent and missense/silent ratio for all 3 Syntenic build wheat group 7 chromosome 

arms. 

  7A_SynBuild_v2.0 7B_SynBuild_v2.0 7D_SynBuild_v2.0 

MISSENSE 4,404 63.74% 2,561 64.51% 635 64.40% 

NONSENSE 96 3.19% 101 3.30% 45 3.31% 

SILENT 6,610 33.07% 1,885 32.20% 1,375 32.29% 

MISSENSE/ 

0.67 1.36 0.46  SILENT 

 ratio 

 

Table 4.9 shows all 3 Syntenic build wheat group 7 chromosome arms the three effects per 

functional class, between 63.74 and 64.51% missense changes, 32.20 and 33.07% silent 

changes, and a small fraction of nonsense changes (3.19 to 3.31%). The Missense/Silent 

ratio for all chromosomes ranges between 0.46 and 1.36.  
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4.4. Conclusion 

Second generation sequencing has introduced a revolution in plant research and genetics 

and made the generation of large quantities of data affordable. In these studies, we 

demonstrate that it was possible to predict hundreds of thousands of SNPs associated 

with wheat group 7 chromosome arms using the SGSautoSNP pipeline, offering new tools 

for researchers and plant breeders.  

 

We show the application of SGSautoSNP pipeline to wheat chromosomes 7A, 7B and 7D 

to identify 881,289 SNPs with an accuracy of greater than 93%. These polymorphisms are 

available in a GBrowse genome viewer at the wheatgenome.info web site 

(http://www.wheatgenome.info). The successful application of the SGSautoSNP pipeline 

method to hexaploid wheat, diploid Brassica AA genome and Leptosphaeria maculans 

(Zander et al., 2013) demonstrates that this approach should work for SNP discovery in 

other large and complex genomes. Recently, the SGSautoSNP pipeline discovery of 4 

millions SNPs across the group 7 chromosomes between 16 Australian bread wheat 

cultivars (Lai et al., 2015). Using more cultivars results in more SNPs, because many 

reference genome positions did not have enough coverage. Both studies have in common 

that less SNPs were found on syntenic build and significantly more SNPs are on 

chromosomes 7A and 7B, compared to 7D. This is consistent with previous results (Chao 

et al., 2009) and most likely due to early gene flow between T. aestivum, the tetraploid and 

hexaploid species resulted in greater sequence diversity within the A and B genomes than 

compare to D genome (Caldwell et al., 2004, Dvorak et al., 2006, Talbert et al., 1998).  

 

Only 3.1 to 5.1% paired reads from 4 wheat cultivars mapped to the group 7 chromosome 

arm reference (Table 4.2). This is likely due to read pairs mapping to multiple locations in 

this highly repetitive genome and subsequently being ignored due to the SOAPaligner –r 0 

option. This option reduces false SNP calls through the mismapping of reads and provides 

confidence in the SNP prediction. Furthermore, it helps to ensure that SNPs are only 

predicted in low-copy regions of the genome for subsequent accurate genotyping. One 

caveat of this approach is that we do not find all possible SNPs but only SNPs which can 

be predicted and genotyped with a high accuracy.   
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In this chapter presented Ts/Tv ratios (1.73 to 2.28) are comparable with values seen in 

other plants such as 1.6 in eggplant (Barchi et al., 2011), 1.9 in alfalfa and 1.6 in einkorn 

wheat (Triticum monococcum L.). For all 10 Brassica napus AA chromosomes presented in 

chapter 3 the Ts/Tv ratio ranges from 1.20 to 1.26. This bias in transition/transversion ratio 

is commonly observed in SNP discovery and reflects the high degree of methlyl C to U 

mutation in genomes (Coulondre et al., 1978). It may be expected that the bread wheat 

genome is highly methylated due to the two rounds of polyploidy and high repeat content. 

The observed transition/transversion bias provides a level of confidence in SNP prediction 

accuracy since erroneously called SNPs caused by sequence read errors or mismapping 

would be unlikely to display such a bias. 

 

SGSautoSNP has been applied to call SNPs in canola, wheat (4 culitvars), wheat (6 

cultivars) and in the fungal genome of L. maculans with a prediction accuracy of 95%, 

93%, 95% and 90%, respectively (Dalton-Morgan et al., 2014, Lorenc et al., 2012, Lai et 

al., 2015, Zander et al., 2013). This compares to an accuracy of 35.8% in tetraploid durum 

wheat (Triticum durum Desf.) in a study of 12 cultivars (Trebbi et al., 2011), a validation 

rate of 67% from wheat EST data (Allen et al., 2011) and 78% from bread wheat Roche 

454 transcriptome data (Lai et al., 2012b). The previous highest validation rate for wheat 

SNPs was 85 - 90% in a wheat reference transcripts (RTs) project (Cavanagh et al., 2013). 

Hence, SGSautoSNP is a highly accurate SNP discovery pipeline and can be used for 

large, complex genomes. 

 

Table 4.7 shows that the three wheat group 7 chromosomes arms (Syntenic build) missing 

Start Lost, Non Synonymous Start and Synonymous Stop effects, but the SNPeff results 

for Brassica described in Table 3.8 shows that (i) only chromosomes 4 and 5 missing Start 

Lost, (ii) chromosomes 3, 5, 6, 8 and 10 missing Non Synonymous Start and (iii) all 10 

Brassica chromosomes have Synonymous Stop. Table 4.7 shows for Syntenic builds that 

7A has the most amount of effects (124,478) follow by 43.3% less for 7B and 75.4% less 

for 7D. Comparing the results to Brassica (Table 3.8) this species has more equal number 

of effects distribution (129,202 - 250,119). On the other hand, the Syntenic builds’ Non 

synonymous/Synonymous ratio for 7B is the highest (1.34), but the 7D has only 0.46 

(Table 4.8). The Non synonymous/Synonymous ratio for all 10 Brassica chromosomes in 

Table 3.9 are equal distributed and range between 1.8 and 2. Table 4.9 shows for Syntenic 

builds that 7B has the highest Missense/Silent ratio of 1.36, but 7D has only 0.46. The 
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Missense/Silent ratio for Brassica of 1.91 – 2.06 across the 10 chromosomes is slightly 

higher and almost constant (Table 3.10) 

 

Genome wide identification of hexaploid bread wheat SNPs using our pipeline is limited by 

the lack of publically available chromosome sequences. It is expected that draft assemblies 

of the remaining chromosome shotgun arms will be available to the public soon and this will 

enable extension of this method to whole genome SNP discovery in this species and the 

identification of 881,289 SNPs across the group 7 chromosomes suggests that genome 

wide discovery would identify a total of more than 6 million SNPs across the genome. For 

this project four wheat cultivars were used, however Bioplatforms Australia have now 

sequenced a total of 16 cultivars (Edwards et al., 2012). The detailed analysis of genetic 

variation in these additional cultivars is being undertaken by Kaitao Lai as part of his PhD 

project. 
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Chapter 5: SGSautoSNPdb: a database which stores all 

SGSautoSNP results 

5.1. Introduction 

It is important to develop interactive web based applications which store molecular 

markers, genes, genetic and marker annotations and gene ontology. Furthermore, the 

information from one web service should be connected to others in order to save time in 

finding additional information. The advantage would be that search results could be 

visualised in a way that a researcher can mouse over it and find more information e.g. in a 

chart. This would allow researchers to access information in a biologist friendly manner.  

 

SGSautoSNP is able to discover millions of SNPs. These large numbers of SNPs require 

new and innovative approaches to help turn massive amounts of data into usable 

information. Therefore SGSautoSNPdb has been developed as a web application with a 

database which will aim to fulfil the above goals in order to provide plant breeders with 

more information about SNP markers; such as SNP annotation, primers for validation, 

whether the SNP is in a low SNP density region, whether the SNP has been validated, in 

which genes a SNP is located and GO terms. Furthermore, SGSautoSNPdb could link 

gene ids and GO terms to Uniprot (Apweiler et al., 2013) and QuickGO (Binns et al., 2009) 

respectively. This information will help plant breeders to identify SNPs and genes for 

important agronomic traits like drought and disease resistance (Gupta et al., 2013) which 

could be used for breeding new varieties in order to increase the world crops production 

and keep up with the growing population around the world.  

 

5.1.1. Choosing flexible cache and database for SGSautoSNPdb 

5.1.1.1. A flexible and scalable database 

The most widespread database for bioinformatics services are based on a relational 

model. The first step in using relational database management systems (RDBMSs) is to 

design a schema of tables which defines the relationship between those tables. In the next 

step the data has to be split into multiple tables which have to satisfy the predefined 

schema of the RDBMS (Rascovsky et al., 2012). Since the data is split in different tables, 

an issue arise for biologists how to make sense off all different tables. The solution is to 
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use a Structured Query Language (SQL) to join the different tables together. Joins are very 

slow in RDSMS. On the other hand, many new databases are based on a non-relational or 

NoSQL model (http://nosql-database.org). The advantages of these new databases are 

scalability and flexibility. Avoiding designing a database schema allows making changes to 

the database when the requirements change while continuing access to the existing data. 

NoSQL is increasingly being used for cloud computing services like Google and Amazon 

(Manyam et al., 2012). SGSautoSNPdb uses Apache CouchDB database 

(http://couchdb.apache.org/), which belongs to the group of NoSQL databases. 

 

CouchDB is an open source NoSQL, schema-free, document-oriented database which 

stores data in the JavaScript Object Notation (JSON) format unlike the different tables 

used by relational databases. Biologists will understand all relationships in one document 

rather than split in different tables like in RDBMS. Each document gets a version number 

and, if not specified, a unique id. Furthermore, CouchDB allows storing any types of files 

as “attachments”. This database is written in the Erlang and JavaScript programming 

language. Simultaneous access by users of SGSautoSNPdb would not lead to blocking 

database access, because of CouchDB's non blocking concurrency implementation 

(Silbermann et al., 2013).  

 

CouchDB does not support SQL queries like RDBMS, but it uses the MapReduce method 

introduced by Google for databases (Pike et al., 2005). This is a new method of querying 

large databases fast and is completely different to SQL (see Figure 5.1). MapReduce is 

based on two functions, Map and Reduce. On each document the Map function is 

executed to compute a list of key-value pairs based on the search filter criteria. The 

optional Reduce function must merge the list of key-value pairs from the Map function to a 

single value. The MapReduce method in CouchDB is written in JavaScript and stored in a 

“view” file together with the database. CouchDB keeps the results from the initial run of the 

“view” file until new documents are added or modified and only then it applies the 

MapReduce method on the new or updated documents. Therefore, CouchDB is able to 

provide fast responses when performing queries on views (Redmond and Wilson, 2012). 

In contrast, the SQL query must always recalculate all current data stored in the RDBMS 

(Rascovsky et al., 2012). In order to limit the response from querying a “view”, CouchDB 

API offers parameters key, startkey, endkey and limit (Manyam et al., 2012). 
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Figure 5.1: The difference between RDBMS and CouchDB (adopted from (Rascovsky et al., 2012)). 
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5.1.1.2. In memory cache to store user data 

Redis (http://redis.io) is an open source in memory key-value cache unlike CouchDB which 

is a persistent document-oriented database. SGSautoSNPdb uses Redis to store user 

session and query result ids on the server which are necessary for the pagination.  

 

5.1.2. New trends in website design  

In 2014 Mobile Internet users have overtaken Desktop Internet users (see Figure 5.1). 

Responsive Web Design uses the same front-end code for the website across devices of 

various sizes in order to provide the same user experience across all devices and screen 

sizes. SGSautoSNPdb uses Twitter's Bootstrap (http://getbootstrap.com/) which is the 

most popular open source HTML5, CSS and JavaScript framework for developing 

responsive websites in order to allow biologists to do research anywhere, anytime and on 

any device. Bootstrap uses CSS media queries in order to adjust the website layout for 

mobile or desktop devices. 

 

 

Figure 5.2: Number of global users in millions (adapted from http://smustalks.appspot.com/japan-12, 05 March 2015) 
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5.2. Material and Methods 

5.2.1. Architecture of SGSautoSNPdb 

SGSautoSNPdb uses a three-tier architecture which contains a presentation, application 

and database layer. The presentation layer contains the user interface which allows users 

to perform queries and retrieve results. This layer uses Twitter’s Bootstrap 3 in order to 

adjust automatically the SGSautoSNPdb’s user interface to different screen sizes. The 

database layer contains CouchDB which stores all the SNP data discovered by 

SGSautoSNP. The application layer is built with Flask (http://flask.pocoo.org/) which is a 

Python web framework. This layer is responsible to interact between the application and 

database layer. Furthermore, it uses Redis store user session and query result ids which 

are necessary for the fast pagination. 

 

5.2.2. Loading Brassica SNPs to SGSautoSNPdb 

For reading and updating (add, delete, edit) database documents CouchDB provides a 

RESTful (Representational state transfer) API (Application Programming Interface) which 

uses standard HTTP (Hypertext Transfer Protocol) methods (GET, PUT, POST, or 

DELETE). Any programming language which supports HTTP requests can interact with 

CouchDB and as response it returns JSON format. 

 

In order to avoid using HTTP requests directly from the SGSautoSNPdb's loading script, 

loadDB.py (Figure 5.3), it uses a Python CouchDB driver (CouchDB-Python, 

https://code.google.com/p/couchdb-python/) that wraps REST requests into a convenient 

Python API. The wheat project described in Chapter 4 used SGSautoSNP version 1 and 

the method and results were published (Lorenc et al., 2012, Berkman et al., 2013). After 

SGSautoSNP version 1 was first published, new features were implemented to 

SGSautoSNP version 2. In SGSautoSNP v2, each output file contains a unique SNP id 

which makes it simple to build a SNP document out of different files and load it to 

SGSautoSNPdb. Furthermore, the loading script uses a SnpEff parser from the open 

source project (Paila et al., 2013). SGSautoSNPdb requires that the results were run with 

SGSautoSNP version 2. Therefore, only Brassica results described in Chapter 3 were 

loaded to SGSautoSNPdb. Further software dependencies can be found in Appendix. 
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$ python loadDB.py -h 

usage: loadDB.py [-h] --project_dir [PROJECT_DIR]  

                      --chr_name [CHR_NAMES] --specie [SPECIE]  

                      --db_name [DB_NAME] 

 

Load data to SGSautoSNPdb 

 

optional arguments: 

   -h, --help            show this help message and exit 

  --project_dir [PROJECT_DIR] 

                 Please give provide project dir full path. 

  --chr_names [CHR_NAMES] 

                        A list of unique chromosome abbreviation and 

                        Chromosome folder name seperated by ':' e.g.: 

                        'chr1:XA01_v3.0;chr2:XA02_v3.0' 

  --specie [SPECIE]     Name of the specie e.g. "Brassica napus". 

  --db_name [DB_NAME]   Name to the new database. 

 

 

Figure 5.3: The command-line of the loadDB.py script, showing the various usage options.  
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Figure 5.4 shows one SNP document in JSON format taken out of SGSautoSNPdb by 

using CouchDB’s Futon, it is an administration tool which allows management of 

databases and modification of individual documents in the database (Silbermann et al., 

2013). SNP id (_id), scaffold position (scaffoldPos), chromosome position (chrPos), 

scafffold name (scaffoldName), allele, SNP score (snpScore) and genotypes (genoTypes) 

are retrieved from the "chrN/SNPs/fileN_cont_out.snp" file. Whether a SNP is located in a 

low SNP density region (lowSNPregion) has been taken from the 

"chrN/gene_analysis/fileN_LOW_SNPID_geneID_GO.tab" file. Lines 6 - 18 contain all 

gene information, which comes from the 

"chrN/gene_analysis/fileN_SNPID_geneID_GO.tab" file and SNP annotation information 

(lines 24 - 36) is retrieved from the "chrN/snpEff/fileN_chr_out_only_genes.vcf" file. More 

information about the snpEff fields are described in Table 5.1. Marker specific information 

(lines 39-45) is retrieved from the "chrN/markers/fileN_GoldenDB.csv" file. Species and 

chromosome name (chrName) are given as a parameter to loadDB.py. 
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1 { 39    "marker": { 

2    "_id": "UQXAH010000004", 40        "germplasm": "6_canola_lines", 

3    "_rev": "1-e7157a93624cc8ef1e63c9c85c524202", 41        "fivePrimer": "ACAA...GAGC", 

4    "lowSNPregion": false, 42        "threePrimer": "GAGT...AAGG", 

5    "specie": "Brassica napus", 43        "library": "UQ_BNSNP", 

6    "genes": [ 44        "panel": "UQ_BNSNP_H_V3.0" 

7        { 45    }, 

8            "geneEnd": 5754, 46    "snpScore": 2, 

9            "uniprotId": "Q3TPR7", 47    "genotypes": [ 

10            "geneStart": 4609, 48        { 

11            "goIds": [ 49            "baseNo": 7, 

12                "GO:0003674", 50            "base": "T", 

13                "GO:0008150", 51            "cultivar": "A" 

14                "GO:0016020", 52        }, 

15                "GO:0016021" 53        { 

16            ] 54            "baseNo": 1, 

17        } 55            "base": "C", 

18    ], 56            "cultivar": "Sr" 

19    "mapping": { 57        }, 

20        "scaffoldPos": 5442, 58        { 

21        "chrPos": 5442 59            "baseNo": 1, 

22    }, 60            "base": "C", 

23    "chrName": "chr1", 61            "cultivar": "Bn" 

24    "snpEff": { 62        }, 

25        "effectSeverity": "LOW", 63        { 

26        "isCoding": false, 64            "baseNo": 19, 

27        "aaLength": null, 65            "base": "T", 

28        "exon": null, 66            "cultivar": "N" 

29        "codonChange": null, 67        }, 

30        "isExonic": false, 68        { 

31        "isLof": false, 69            "baseNo": 1, 

32        "gene": "Q811P0", 70            "base": "T", 

33        "transcript": "Transcript_XA_0011r-snap.5", 71            "cultivar": "S" 

34        "aaChange": null, 72        }, 

35        "biotype": null 73        { 

36    }, 74            "baseNo": 8, 

37    "scaffoldName": "XA_0011r", 75            "base": "T", 

38    "allele": "C/T", 76            "cultivar": "T" 

  
77        } 

  
78    ] 

  
79 } 

 
Figure 5.4: One SNP document in JSON format taken out of SGSautoSNPdb. 
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Table 5.1: The effect types predicted by SnpEff and load into SGSautoSNPdb. 

Effect type Effect description 

effectSeverity Effect severity (LOW, MED, HIGH) 

isCoding Whether SNP is located in a coding region (except 3' & 5' UTR's of exons) 

aaLength CDS lenght in number of amino acids 

exon Exon information for SNPs that are exonic 

codonChange Codon change 

isExonic Whether the SNP affect an exon for this transcript 

isLof Whether the SNP is LOF? 

gene Gene affected by the SNP. 

transcript Transcript affected by the SNP. 

aaChange What kind of amino acid change? 

biotype Type of transcript e.g. protein-coding, rRNA etc. 
 

5.3. Results and Discussion 

5.3.1. Two search interfaces 

The aim of this project was to develop a responsive website in order to allow biologists to 

do research with the results produced by SGSautoSNP pipeline anywhere, anytime and on 

any device. SGSautoSNPdb provides two different ways to search for SNPs. The first one 

provides advanced search options (see Figure 5.5A) such as: 

 

 find SNPs between two cultivars 

 find SNPs in range (start to end) 

 find SNPs which have a particular SNP effect severity (see Figure 5.5B) 

 

Experienced users who are already familiar with SGSautoSNPdb can use the quick search 

option. This option can be found by clicking SGSautoSNPdb's menu icon (  ) on the top 

right side (see Figure 5.5 C). Quick search options allow searching for SNPs with known 

property ids such: 

 

 for SNP id with this syntax SNP:”SNP id” for example SNP:UQXAH010000004 

 for SNPs which have SNP effect gene id with this syntax EFF: “Uniprot ID”  for 

example EFF:Q811P0 

 for SNPs with a particular GO id with  the syntax GO: ID for example GO:0000001 
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A 

 

B 

 

 

C 

 

 

Figure 5.5: SGSautoSNPdb provides two search interfaces. Figure A shows the advanced search option and Figure B show the 

four possibilities for SNP effect severtity. On the other hand, Figure C shows the quick search interface for user who familiar with 

SGSautoSNPdb. 

 

5.3.2. Step by step cultivar and range search 

Figure 5.6 and Figure 5.7 shows screenshots of a step by step cultivar and range search 

in SGSautoSNPdb. Figure 5.6 A shows chromosome 1, SNPs between cultivars Ningyou 

(N) and Tapidor (T), all SNP effect severtity and the range from 1 to 10000 has been 

chosen. After clicking the search button, SGSautoSNPdb shows the first 20 SNPs (Figure 

5.6 B). In this search SGSautoSNPdb has found 21 SNPs which means that pagination 

has been activated in order to show the additional SNP on next page. By clicking one of 

the SNP ids SGSautoSNPdb shows following SNP details (Figure 5.6 C and Figure 5.7 D - 
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F): 

 General information, 

 Genotypes information, 

 SNP effects and 

 Marker information. 

 

Almost all entries in SNP effects contain an information icon ( ) which shows explanation 

from Table 5.1 when the users mouse over it. Since SGSautoSNPdb is a web application it 

can easily link the GO and UniProt ids to corresponding entries to third parties databases 

(Table 5.2). 

 

Table 5.2 shows prefixes used in SGSautoSNPdb links for GO and UniProt Ids to their entries in the corresponding web-based 

repositories. The bold<ID> are place holder for real Ids. 

Annotation Prefix URL 

Gene Ontology http://www.uniprot.org/uniprot/<Id> 

SwissProt http://www.ebi.ac.uk/QuickGO/GTerm?id=<Id> 

 

 

 

 



 

122 

 

A 

 

B 

 

C 

 

Figure 5.6 shows an example search (A-B) and detail overview of a SNP (C-F). Screenshots of the desktop version can be found in Appendix. 
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D 

 

E 

 

F

 

F 

 

Figure 5.7 shows an example search (A-B) and detail overview of a SNP (C-F) (continue). 
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5.3.3. Benchmarks of SGSautoSNPdb  

It took 7.5 hours to load all 10 Brassica AA chromosome SNP data discovered in Chapter 

3 into SGSautoSNPdb with help of loadDB.py script. For all SGSautoSNPdb possible 

queries it was required to generate 13 CouchDB views (see Appendix) which took on 

average 20 minutes to generate. Searching for SNPs in SGSautoSNPdb takes in average 

2 seconds, but as soon as the results were found and stored in cache, pagination throught 

the results takes 1 second. 

 

5.4. Conclusion 

SGSautoSNPdb collects all SNPs and annotation data discovered by the SGSautoSNP 

pipeline and stores them into a flexible database. These data are accessible by any device 

and any display size, providing a valuable source of cultivar identification and annotated 

SNPs for applications such as genetic diversity analysis. Furthermore, SGSautoSNPdb 

provides addition links to third party resources for GO and UniProt ids.  

 

Future work should include the expansion of loading data from all Brassica species, 

chickpea and wheat. Funding or developing a genome browser which also supports a 

Responsive Web Design and SGSautoSNPdb could link SNP positions to it and 

graphically visualize what happens at the SNP position and around it. The reason why it 

took 7.5 hours to load all 10 Brassica AA chromosome SNPs data to couchdb is because 

loadDB.py script collects all information for one SNP and then sends it to couchdb. After 

sending SNP data to couchdb, loadDB.py waits for confirmation that the SNP has been 

saved in couchdb. In order to avoid the waiting period, two improvements could be 

implemented. The first one would be to collect all SNP data for one chromosome and then 

send it to couchdb as a batch job. Secondly, loadDB.py could be extended to use more 

than one CPU core in order to process more than on chromosome at a time. 
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Chapter 6: Concluding remarks and future directions 

6.1. Concluding remarks 

The data for Brassica and wheat in this thesis were derived from Second Generation 

Sequencing (SGS) technology. SGS has revolutionized biological research in the 21st 

century. Since the introduction of this technology in 2005, by 454 Life Sciences and 

commercialised by Roche as the GS20 (Margulies et al., 2005), the price of sequencing 

“per bp” has been decreasing with the rapid increase of sequencing speed and amount of 

sequencing data generated per run. SGS has been successfully used for de novo genome 

sequencing, as well as re-sequencing of genomes. Researchers are now able to perform 

their research on complex reference crop genomes instead of only model organisms. 

Model organisms were previously selected for genome sequencing due to their small 

genome size, low complexity and fast life-cycle, however they frequently had little 

application in the field. In some cases they can also be related to crop species of interest, 

for example Brassica’s ancestor is shared with Arabidopsis thaliana. Researchers were 

using these model organisms to understand the fundamental structure and functions of 

important agricultural crop species. Using reference genomes of important crop species, 

rather than translation from model organisms, will allow researchers to understand 

evolution, functionality and genetic structure questions much better than ever before. 

 

Many SGS sequencing technologies are able to produce paired-read sequences with 

different fragment and insert sizes. These paired-end sequences help to overcome 

repetitive sequence issues (Robison, 2010). Illumina will be producing longer reads 

through the newly acquired Moleculo technology. This new technology breaks DNA into 

large fragments that are than sequenced using Illumina’s standard sequencing 

technologies. Longer reads can be used to increase the haplotype resolution and will help 

to explore the changes in haplotype structure and composition.  

 

The rapid increase in sequence data produced by SGS is significantly exceeding the rate 

of increase in disk space through the production of longer reads and increasing volumes of 

data per run. A solution to use less disk space and to be able to rapidly access reads in a 

particular position could be a reference-based compression method (Fritz et al., 2011). In 

this method the sequences are aligned to a reference genome and then only the 
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differences between the reference genome and the aligned sequence are saved, unlike 

BAM files which store the whole alignment (Li et al., 2009a).  

 

In chapter 2 the SGSautoSNP pipeline (Lorenc et al., 2012) is described. This was 

designed to call SNPs for homozygous species. This method does not consider the 

reference genome for SNP discovery. Instead, the reference is used to assemble the 

cultivar reads, and SNPs are then called between these assembled reads. In 

SGSautoSNP, mismapped reads produce a heterozygous genotype call at a locus, 

allowing their distinction from true homozygous SNPs. SGSautoSNP is able to cope with 

increasing input data sizes generated by SGS technologies. It was designed to run on 

multi-core processors and uses a workaround for Python's Global Interpreter Lock (GIL) 

issue. GIL prevents multiple threads to make effective use of multiple core CPUs.  

 

In Bioinformatics many formats are not properly defined or implemented which makes it 

difficult to transfer them between different tools. Many new file formats were developed to 

solve previous file format problems or to introduce new features. However, often new 

formats were no longer compatible to the previous format. For example, GFF3 (General 

Feature Format) is not compatible to the older GFF2. Because of the incompatibility, new 

software libraries have to be written to enable access to the new file format information.  

 

Usually a person or organisation who invented a new format provides a library in a 

particular language e.g. in C, but programmers are using different programming languages 

e.g. Python. Therefore a wrapper has to be written so Python can use the C library. This 

has problems, because each time the C library gets improved, the wrapper for Python has 

also to be updated which leads to a delay in using the new improvements or bug fixes. It 

would be ideal if all bioinformatics libraries would use a “Simplified Wrapper and Interface 

Generator” (SWIG, http://www.swig.org) which is a software development tool that 

connects programs written in C and C++ with a variety of high-level programming 

language such as Python.  

 

Instead of developing new file formats it may be possible to use comma or tab delimited 

file formats. This would work e.g. for FASTA format which contain no relations between 

each entry, but it would not work where relationships between entries are important such 

as in GFF3. Relationship information could be stored in file formats which already exist 
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such eXtensible Markup Language (XML, www.w3.org/TR/REC-xml), JavaScript Object 

Notation (JSON, http://json.org) or YAML Ain't Markup Language (YAML, 

http://www.yaml.org).   

 

Many programming languages provide parsers for these three formats. Storing the same 

information with the smallest file size could be achieved with YAML and JSON but a larger 

file size is required with XML, mainly because of XML's closing tags. XML and JSON 

provide a binary format, Efficient XML Interchange (EXI, www.w3.org/TR/exi/) and Binary 

JSON (BSJON, http://bsonspec.org). EXI makes XML data up to hundreds of times 

smaller, increases processing speed, and increasing the transmission speed of XML 

across existing networks (http://www.agiledelta.com/product_efx.html, 16 November 

2013). BSON provides efficient encoding/decoding compared to JSON, but the file size 

might be bigger than the plain JSON format.  

 

Before we started to develop SGSautoSNP we decided to support previously available 

bioinformatics tools and formats to prevent duplication of work. It was a challenge to get 

SGSautoSNP output files to work with other tools because some of the file formats used 

by other tools are not well documented.  

 

The SGSautoSNP pipeline produces a variety of output formats for visualisation and 

validation. The SGSautoSNP pipeline provides an unprecedented resource for diversity 

analysis, and establishes a foundation for high resolution SNP discovery in large and 

complex genomes. After the SGSautoSNP method and its application for wheat SNP 

discovery were published (Berkman et al., 2013, Lorenc et al., 2012), more features were 

implemented gaining more information than was previously possible. The SGSautoSNP 

pipeline now includes scripts for gene annotation, which uses SNAP (Korf, 2004), a gene 

prediction tool, and SNPeff (Cingolani et al., 2012), a SNP annotation and effect prediction 

tool.  SGSautoSNP now uses a predefined directory structure to satisfy the compatibility 

requirements of SnpEff. In addition, the SGSautoSNP pipeline identifies SNPs in low SNP 

density regions and gene ontology analysis can be performed using goatools 

(https://github.com/tanghaibao/goatools) to identify if there is an enrichment of GO terms. 

The challenge in developing this pipeline was various formats which SGSautoSNP has to 

support to allow compatibility with other bioinformatics tools. It would be desirable that the 

current formats would be better documented rather than new formats invented. 
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Chapters 3 and 4 describe the result of using the SGSautoSNP pipeline for Brassica and 

wheat, respectively. Between 10.5 and 17.3% of paired Brassica reads could be mapped 

to the reference genome which was more than the wheat mapping for four wheat cultivars 

where only 3.1 to 5.1% of paired reads mapped to the group 7/4AL chromosomes arms. 

This is due to read pairs mapping to multiple locations in repetitive genomes and 

subsequently being ignored due to the SOAPaligner –r 0 option and the fact that only a 

portion of the wheat genome is represented in the arm references. 

 

Understanding heritable traits in crops has been accelerated worldwide by the application 

of molecular markers, because they allow the selection of plant characteristics without the 

requirement and expense of phenotyping. The rapid increase in the accessibility of 

genome sequence data allows the identification of genetic markers and genes underlying 

key traits for use in molecular breeding and crop improvement. A total of 638,593 SNPs in 

the Brassica AA genome and 881,289 SNPs in the wheat group 7 chromosome arms were 

identified using the SGSautoSNP pipeline. Validation of 20 B. napus AA genome SNPs 

resulted in a SNP prediction accuracy of around 95%. Of the 28 wheat SNPs that were 

used for validation of the SGSautoSNP pipeline, 26 (93%) produced the expected 

genotype. In another project Zander et al. identified 21,814 SNPs in Leptosphaeria 

maculans between two isolates. Of the 20 L. maculans SNPs that were used for validation, 

18 (90%) produced the expected genotype (Zander et al., 2013). The Brassica, L. 

maculans and wheat validation confirms that the SGSautoSNP algorithm is accurate and 

works in small, as well as large and complex genomes, producing homoeologue specific 

markers. By combining the SGSautoSNP pipeline together with SnpEff it was possible to 

determine whole genome SNP trends, transition to transversion ratios and SNP 

frequencies across chromosomes. Annotation of B. napus AA genome SNPs have 

revealed that 0.5% of predicted SNPs are classified as “high effect” SNPs, and these could 

impact the structure of the proteins or the amino acid transcripts. Furthermore, the 

transition/transversion (Ts/Tv) ratio ranges from 1.20 to 1.26 across all 10 Brassica napus 

AA chromosomes. These values are comparable with other plants such as 1.6 in eggplant 

(Barchi et al., 2011), 3.9 in maize, 1.9 in alfalfa, 1.6 in eikorn wheat (Triticum monococcum 

L.), and 2.5 in barley and Lotus (Vitte and Bennetzen, 2006).   
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Chapter 5 describes the development of SGSautoSNPdb which is a web application with 

responsive web design in order to allow researchers to work on any device, any screen 

sizes and anywhere. As a database SGSautoSNPdb uses couchDB which is a document-

oriented database. For biologists a document-oriented database is easier and faster to 

understand than RDBMS where the data is spread across different tables. 

SGSautoSNPdb at the moment contains only the SNPs and annotations discovered by 

SGSautoSNP from Brassica 10 AA chromosomes described in chapter 3.  

 

Together the SGSautoSNP pipeline and SGSautoSNPdb provide tools to help us to 

understand how natural selection has shaped the evolution of crop genomes and SNPs 

that can be applied to improve crops. 

 

6.2. Future direction 

With the continued decrease in the “per bp” price of SGS sequencing and advent of the 

successor; Third Generation Sequencing technologies, an increasing amount of sequence 

data will be generated which allows the discovery and application of molecular markers. 

The use of these markers will assist breeders and researchers to speed up crop 

improvement in a greater diversity of species than ever before. The massive amount of 

data generated by SGS or 3GS will require new efficient bioinformatics tools which are 

able to be easily scaled up. 

 

Draft genome sequences of wheat were recently published; Triticum aestivum (Bread 

wheat) has a hexaploid AABBDD genome (Brenchley et al., 2012), Aegilops tauschii has a 

diploid DD genome (Jia et al., 2013) and Triticum urartu has a diploid AA genome (Ling et 

al., 2013).  Genome sequence of individual bread wheat chromosomes arms have also 

been published; group 1 (1A, 1B, 1D) (Wicker et al., 2011), 4A (Hernandez et al., 2012), 

5A (Vitulo et al., 2011), 5B (Sergeeva et al., 2014) and group 7 (7A, 7B and 7D) (Berkman 

et al., 2013, Berkman et al., 2012b, Berkman et al., 2011).  

 

The B. rapa AA (Wang et al., 2011) and B. oleracea CC (Liu et al., 2014, Parkin et al., 

2014) genomes have been published. In addition, draft genome sequences for B. napus, 

B. juncea AABB and B. nigra BB have been produced with the possibility of publication in 

the near future (Golicz et al., 2012). In future research, the published B. oleracea genome 
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could replace the proprietary one used in Chapter 3 and the whole Brassica analysis of 

Chapter 3 could be published with all 19 B. napus chromosomes instead just the 10 

chromosomes. However, the public B. napus genome will soon be published, which would 

be more appropriate to use than the diploid progenitors.  

 

These draft genome sequences will enhance genetic studies and provide insight into the 

genetic basis of important agronomic traits including nutritional seed properties and 

resistance to biotic and abiotic stressors (Getinet et al., 1997). A more complete genome 

might improve the mapping accuracy, because reads previously mapped could mapped 

better on a new genome positions. These could affect positive the SNP discovery, because 

miss mapped reads could cause conflict between cultivars, which could cause of losing 

true SNPs. 

 

SGSautoSNP is being used for a new method called Skim Based Genotyping by 

Sequencing (skimGBS). SkimGBS is an alternative genotyping approach for trait mapping 

and can be applied to characterise recombination and for genome-wide association 

studies. Furthermore, it can be used to improve genome assemblies or assess structural 

variation. In the first step, the genomes of parents of a mapping population are re-

sequenced and data aligned to the reference genome. This is followed by using 

SGSautoSNP to predict SNPs. Next, multiple individuals from the population are skim re-

sequenced at low coverage, for example between 0.1 -1.5x and their reads are mapped to 

the reference genome to genotype the previously predicted SNPs. Due to the low level of 

sequencing, coverage is not even along the whole genome and therefore some SNPs may 

not be identified in certain parts of the genomes. For these missing SNPs imputation is 

applied by using haplotype block information to replace missing genotypes. In order to 

increase the genotyping resolution of a selected individual additional sequence data can 

be generated (Golicz et al., 2012).  

 

By re-running the SGSautoSNP pipeline with additional cultivars we could discover more 

novel SNPs, however, previously validated SNPs could disappear because the new 

cultivar might introduce a conflict. To avoid the loss of SNPs, loadDB.py could be modified 

in the following way. The loading script could check in SGSautoSNPdb whether the new 

SNP position is already allocated, if yes the new SNP could replace the old SNP and keep 

the old SNP id. If the new SNP position is not stored in SGSautoSNPdb then this SNP will 
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be stored in the database with a modified SNP id e.g. attached suffix which is not part of 

other SNP ids. A new SNP id has to be created because it very likely that the SNP id is 

already assigned. Another way to limit the number of new redundant SNP IDs is by only 

generating a new ID if the SNP has not been seen before. It could be possible to 

implement an option in SGSautoSNP to accept a ".snp" file from previous SNP calling. 

From this file SGSautoSNP could limit the number of new redundant SNP IDs by only 

generating a new ID if we have not seen the SNP before. These would prevent that a 

predicted and/or validated SNP from the past would be removed by adding more cultivars 

which could cause a conflict. Not only adding new cultivars could remove a SNP because 

of a conflict, but updating to a newer version of reference genome could also cause this. 

Where previously the reads could align at a particular locus position, now with the updated 

genome the cultivar reads might not be able to align. In order to allow mapping of  the 

cultivar reads to the new updated genome a new aligner called BWBBLE can be 

introduced which allows the user to include SNP information from previous SNP calling 

during the alignment (Huang et al., 2013a). However, the current BWBBLE version only 

supports single reads, but for this project paired reads were used. 
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Appendix A Cloud computing environment 

Cloud computing is a system to run a program on many connected computers at the same 

time in a cluster. A High-Performance Computing (HPC) cluster called Barrine is located at 

the University of Queensland's St. Lucia campus. It hosts Bioinformatics Resource 

Australia-EMBL (BRAEMBL, http://braembl.org.au/), provides programmatic access to 

various data resources and analysis tools via Web Services technologies, and is used by 

scientists from all over Australia. Barrine contains 384 compute nodes with over 3000 CPU 

cores connected via an Infiniband fabric network. The majority of nodes have 24 GB of 

memory and 8 CPU cores. However three nodes have 1 TB memory and 32 CPU cores. 

Data storage includes a 92 TB parallel network file system (Panasas) and offline storage 

of 2PB. In order to provide the researcher a short response time and avoid overload of any 

one of the login nodes, Barrine uses a load balancer to distribute researcher workloads 

(https://ncisf.org/barrinehpc, 11 April 2014). 

Job submission and execution in Barrine is handled by the Portable Batch System (PBS) 

which is used to provide computing resources across the available nodes in the Linux 

cluster. It provides tools to submit monitor and delete user jobs. PBS has three 

components, a job server, a job executor and job scheduler. A job server (pbs_server) 

receives the user job request and protects it against system crashes. A job executor 

(pbs_mom) receives a copy of the job from the job server, runs the job and returns the 

job's output to the user. Policy control manages which, where and when a job is run. 

 

As described in the Chapter 1, crop genomes are large and complex, and Second 

Generation Sequencing technologies produce a huge amount of sequence data. Although 

the SGSautoSNP pipeline is not hugely compute intensive, the large amounts of data 

available for this project required extensive computing power to process the data in a 

reasonable timeframe. Barrine was used to distribute SGSautoSNP scripts across multiple 

compute nodes, and each chromosome was processed by the SGSautoSNP pipeline 

script on a single compute node. With this strategy all chromosomes could be processed 

in parallel. 

 

In order to be able to submit a job to Barrine, a custom Bash script, also called a PBS 

script, has to be prepared (see Figure 6.1), which is a request for the resources from the 
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compute node that will be needed, including the number of CPU cores, how long it will run, 

information about where the data is stored and where the working directory is. Table 6.1 

provides an explanation about the commands used in the PBS script. This script is 

submitted to the pbs_server, and jobs that use more resources than allocated by the user 

in the PBS script are terminated by the policy controller. 

 

 

#!/bin/bash 

 

# Usage: qsub -J 1-11 -o $HOME/SGSautoSNP_XA.^array_index^.out  

-e $HOME/SGSautoSNP_XA.^array_index^.err -v PROJECT_DIR=<My project 

folder>,CULTIVARS="T;N;A;S;Bn;Sr",SNP_ID="UQXAH" SGSautoSNP_PBS.sh 

 

# QCIF PBS commands  

#PBS -N SGSautoSNP  

#PBS -l select=1:ncpus=6:mem=60G:NodeType=large 

#PBS -l walltime=10:00:00 

#PBS -A sf-Y82 

 

# Generic PBS commands 

 

source /usr/share/modules/init/bash; 

module load python; 

 

sleep $(( ($PBS_ARRAY_INDEX % 10) * 15 )) 

 

cd $PROJECT_DIR; 

COUNTER=`printf "%02d" ${PBS_ARRAY_INDEX}`; 

bam=`basename BAMs/*${COUNTER}*.bam .bam` 

fasta_m=genomes_m/*${COUNTER}*.fa 

fasta=`basename genomes/*${COUNTER}*.fa .fa` 

outputfile=$bam"_"$fasta 

 

COMMAND="SGSautoSNP.py --bam BAMs/*${COUNTER}*.bam --fasta $fasta_m --chr_offset 

genomes/*${COUNTER}*.gff3 --cultivars $CULTIVARS --snp_id_prefix $SNP_ID$COUNTER 

--contig_output $PROJECT_DIR/$fasta/SNPs/${outputfile}_contig_output --

chr_output $PROJECT_DIR/$fasta/SNPs/${outputfile}_chr_output --cpu $NCPUS"; 

 

echo $COMMAND; 

$COMMAND; 

 
 

Figure 6.1: A sample of the PBS script for running SGSautoSNP.py. The qsub command submits the job and allocates 11 nodes 

with the parameter -J 1-11.  
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Table 6.1: PBS options in a PBS job script file. 

PBS options Description 

-o Path and file name for standard output. 

-e Path and file name for standard error. 

-V  All environment variables to the job such as Path to project directory, cultivars used and 
SNP ID.  

-N Job name such as the name of the PBS script  

-l 
 

The number of CPU cores (ncpus), memory (mem), the type of node (NodeType) and the 
maximum run time (walltime) 
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Appendix B SGSautoSNP pipeline dependencies 

The SGSautoSNP pipeline is implemented in Python 2.7 and runs from the command line 

on any operating system where Python is available. It is recommended not to install 

software dependencies, such as sudo or root user, because later it makes it easier to 

clean up a folder where only SGSautoSNP dependencies are installed. To do this it is 

necessary to create the following folder structure with the mkdir Linux command: 

 

$ mkdir -p <My Python path>/lib/python2.7/site-packages/ <My Python path>/lib64/python2.7/site-

packages  

 

In order that easy_install, a Python package installer, can install the dependencies in the 

new directory structure it is necessary to update the users’ bashrc. The best way to 

perform this, is to use any text editor e.g. Vim to open the bashrc file.  

 

$ vim ~/.bashrc 

 

In the bashrc file users have to insert the following line: 

 

export PYTHONPATH=<My Python path>/lib/python2.7/site-packages: <My Python 

path>/lib64/python2.7/site-packages:$PYTHONPATH 

 

After this, the file has to be saved, and to make the changes active this command has to 

be executed: 

 

$ source ~/.bashrc 

 

The following commands are to install all Python packages which SGSautoSNP requires, 

with the help of easy_install a Python package installer: 
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o $ easy_install --prefix=<My Python path> -UZ numpy 

 Scientific computing library for Python  

o $ easy_install --prefix=<My Python path> -UZ biopython 

 To access bioimformatics files (Cock et al., 2009) 

o $ easy_install --prefix=<My Python path> -UZ pysam 

 To access SAM/BAM formats 

o $ git clone git://github.com/chapmanb/bcbb.git 

$ easy_install --prefix=<My Python path> -UZ bcbb/gff 

o To access GFF formats 

o $ git clone https://github.com/tanghaibao/goatools.git 

$ easy_install --prefix=<My Python path> -UZ . 

$ easy_install --prefix=/home/mictadlo/apps/pymodules -UZ fisher 

 To find enrichment of GO terms 

o $ easy_install --prefix=<My Python path> -UZ pandas 

 Easy-to-use data structures and data analysis tools 

o $easy_install --prefix=<My Python path> -UZ lxml 

 Support for XML and HTML parsing for Pythyon  

o $ easy_install --prefix=<My Python path> -UZ beautifulsoup4  

 To parse HTML files 

 

Other non Python requirements which are necessary for the SGSautoSNP pipeline are: 

 

 FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) a quality 

control tool for high throughput sequence data. 

 SOAP (Li et al., 2009b) a tool for short read alignment. 

 soap2sam.pl (http://soap.genomics.org.cn/down/soap2sam.tar.gz) is used to covert 

SOAP results to SAM format. 

 SAMtools (Li et al., 2009a) which provide various tools for manipulating alignments 

in the SAM/BAM format, including sorting, merging, indexing and converting SAM 

to BAM. 

 Picard tools (Li et al., 2009a) provides MarkDuplicates.jar a tool to remove 

duplicates in alignments. 

 Flapjack (Milne et al., 2010b) visualisation tool for genotyping. 

 Semi-HMM-based Nucleic Acid Parser (SNAP) gene prediction tool (Korf, 2004). 

 SnpEff (Cingolani et al., 2012) a variant annotation and effect prediction tool. 

 Blast+ (Camacho et al., 2009) an alignment search tool. 
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Appendix C SGSautoSNP project structure 

SnpEff (Cingolani et al., 2012) is a command line application, but it requires that all files 

have to be stored in special directories. However, SGSautoSNP allows input files which 

are stored in different or the same location, but it creates a lot of results files during the 

analysis. The SGSautoSNP pipeline extended SnpEff’s directory structure in order to avoid 

the requirement to copy SGSautoSNP’s files to the SnpEff directory structure and to 

provide a better overview of the SGSautoSNP’s result files. To create the 

SGSautoSNP/SnpEff directory structure the following commands need to be executed: 

 

 $ mkdir <My project folder> 

 $ cd <My project folder> 

 $ mkdir genomes genomes_m BAMs  

o genomes folder contains all chromosomes files in FASTA format where each of the 

sequences is concatenate by 100 Ns and GFF3 files which contains information about 

where original the sequence started.  

o genome_m folder contains all chromosomes files in FASTA format, but their sequences 

where not concatenated.  

 $ mkdir -p tmp/{fastq,mapping,markDupl,merge,subset} 

o fastq folder contains all fastq files for all cultivars. 

 $ mkdir -p tmp/mapping/{cult1,cult2,cult3} 

o mapping folder contains the results from SOAPaligner.py and sorted by cultivar names 

(cult1, cult2, cult3, …) 

 $ mkdir -p tmp/markDupl/{cult1,cult2,cult3} 

o markDupl folder contains the results from MarkDuplicates.py  

 $ mkdir -p tmp/subset/{cult1,cult2,cult3} 

o subset folder contains the results from GenerateSubsetBAM.py  

 $ mkdir -p tmp/merge/{cult1,cult2,cult3} 

o merge folder contains the results from MergeChrs.py  

o BAMs folder contains for each chromosome a BAM file and its index file from MergeChrs.py 

 $ for i in {1..11}; do mkdir -p `printf "XA%02d_v3.0" 

$i`/{consensus_seqs,gene_analysis,gene_predictions,genomes_contigs,markers, 

SNP_density,SNPs,SNPs_between_cultivars,snpEff}; done  

o In the above for loop the user can specify how many chromosomes are available. In the 

above example there were 11 chromosomes 

o gene_analysis folder stores the output of gene_analysis.py script 

o gene_predictions folder stores the output of gene_annotation.py script 

o SNP_density folder stores the output of snp_density_coverage_percentage.sh script 

o SNPs folder stores the output of SGSautoSNP.py script 
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o SNPs_between_cultivars folder stores the output of filter_snps.py script 

o snpEff folder stores the output of SnpEff.jar application 

 

Figure 6.2 shows a tree representation of the project directory structure. SnpEff does not 

recognize FASTA file with the “.fasta” extension and therefore the extension must be 

changed to “.fa”. The best way to do this is to use the “rename” Linux command for all files 

in a directory in the following way: 

 

 $ <My project folder>/genomes> rename .fasta .fa *.fasta 

 $ <My project folder>/genomes_m> rename .fasta .fa *.fasta 

 

 

Figure 6.2: Recommended SGSautoSNP pipeline project structure. 
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Appendix D SGSautoSNPdb software dependencies 

SGSautoSNPdb uses Python in the backend and for the frontend JavaScript, HTML5 and 

CSS3. These are Python software dependencies: 

 

o $ easy_install --prefix=<My Python path> -UZ Flask 

 Flask is a webframework for Python 

o  easy_install --prefix=<My Python path> -UZ flask-paginate 

 Flask-paginate is a paginate extension for flask 

o easy_install --prefix=<My Python path> -UZ flask-wtf  

 Flask-wtf is a Flask extension for WTForms which provides forms validation. 

o easy_install --prefix=<My Python path> -UZ CouchDB==0.9  

 CouchDB driver for Python. 

o easy_install --prefix=<My Python path> -UZ redis  

 Redis driver for Python. 

o easy_install --prefix=<My Python path> -UZ cyvcf 

 A fast Python library for VCF files. 

o easy_install --prefix=<My Python path> -UZ gemini 

 This projected contains a SNPeff parser which loadDB.py uses. 

 

Other non Python backend requirements: 

 

o CouchDB (http://couchdb.apache.org/) 

o Redis (http://redis.io/) 

 

The frontend dependencies are: 

 

o Twitter’s Bootsrap (http://getbootstrap.com/) 

 Allows Responsive Web Design 

o Bootstrap-select (https://github.com/silviomoreto/bootstrap-select) 

o An extension for Bootstrap to display nice looking select and multiselect dropdown menus. 
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Appendix E Desktop version of SGSautoSNPdb 

Screenshots of a step by step cultivar and range search in SGSautoSNPdb 

 

Figure 6.3 shows an example how to search between two cultivars and in range (step 1). 

 

Figure 6.4 shows all SNPs which satisfied the search criteria from Figure 6.3 (step 2). 
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Figure 6.5: By clicking an SNP id in Figure 6.4 the user gets a detailed description of a SNP (step 3) 

 

 

Figure 6.6: This is a continuation from Figure 6.5. 
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