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Abstract 
The objective of this study is to explore the interrelated mechanisms governing foam 

drainage and stability by modeling the foam column kinetics, measuring the 

interfacial properties of the air-water interface and conducting forced drainage 

experiments. Studies on foams are usually divided into four length scales: (i) a gas-

liquid interface (molecular scale), (ii) a liquid film (nanometer scale), (iii) a bubble 

(millimeter scale), and (iv) a foam (meter scale). Although much progress has been 

made in each length scale, the correlation between the different length scales 

remains poorly understood and quantified. The present study seeks to address this 

problem. In many industrial processes, such as froth flotation and foam fractionation, 

careful control of the foam or froth stability is required to optimize the process 

performance. Therefore, an understanding of the correlation between the different 

length scales is of paramount interest for industrial applications. The present study 

can be divided into three different parts: (1) foam column kinetics, (2) mechanisms 

governing foamability and foam stability, and (3) foam drainage in the presence of 

solid particles. 

The first part models foam column kinetics to predict the evolution of foam growth, 

liquid fraction, the transport of liquid and gas in growing foams and foam collapse by 

analogy with chemical kinetics. First, a modeling framework was formulated to 

categorize the foam or froth growth models into zeroth, first and second order, 

according to the dependence of the foam collapse rate on the foam volume or height. 

Then, a novel kinetic model was developed based on the mass balance of gas and 

liquid in the foam column to simulate the foam column kinetics. Finally, the 

simulation results were compared with the reported experimental data. Good 

agreement between model predictions and published experimental results confirms 

the validity of the analogy between foam column kinetics and reaction kinetics. 

Mechanisms governing the foamability and foam stability are crucial to 

understanding foam behaviors. The foamability and foam stability of surfactant blend 

and surfactant solutions in different electrolyte concentrations were examined to 

elucidate the different mechanisms that collectively determine foamability and foam 

stability. The foam growth kinetic model developed in the previous section was also 

applied here. First, the foamability of sodium dodecyl sulfate (SDS)-dodecanol (DOH) 
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solutions was investigated to test the conventional theories that apply to a single 

surfactant of pre-critical micelle concentration (CMC). The remarkable decrease in 

the foamability of SDS solutions caused by the addition of DOH could not be easily 

explained by the theories of surface tension and surface viscoelasticity. Instead, 

alternative mechanisms were proposed. Second, findings regarding the foamability 

of SDS-DOH solutions were extended to froth flotation, that is, the effect of a 

nonpolar collector (diesel oil) on the foamability of frother solutions (methyl isobutyl 

carbinol, MIBC). The results showed that the presence of diesel oil, even in trace 

amounts (e.g., 2 ppm), could effectively decrease the foam growth rate by 

accelerating the foam collapse process. Two mechanisms were proposed to explain 

the antifoam effect of diesel oil: (i) the spreading of the diesel oil droplets at the liquid 

film interface and (ii) the molecular interactions between the diesel oil and the frother 

molecules. Finally, the rupture of standing aqueous foams stabilized by SDS-DOH 

and SDS-NaCl mixtures was examined to obtain different values of the surface 

viscoelasticity and surface potential to elucidate the roles of surface rheology and 

intermolecular forces in foam stability.  

Foam drainage in the presence of solid particles is relevant to the field of froth 

flotation, where the wash water is commonly applied to the froth layer to improve the 

product’s grade. Forced drainage experiments were conducted to study the liquid 

flow within the foam stabilized by hexadecyltrimethylammonium bromide (CTAB) 

with glass beads. Two foam drainage models for aqueous foams were applied to 

simulate and interpret the experimental results. The simulation results showed that 

the presence of solid particles in foams increases the rigidity of the interfaces and 

the viscous losses in the channels (Plateau borders) of the foams, which 

consequently resulted in a decrease in the foam permeability. 

In summary, the present study focuses on modeling foam column kinetics, the 

effects of interfacial properties on the foamability and foam stability of surfactant 

solutions, and the effect of solid particles on foam drainage. To further understand 

the mechanisms governing foamability and foam stability, the interplay and 

magnitude of these mechanisms on the different stages of foam life should be 

addressed in future studies.  
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         Foams are highly concentrated dispersions of (dispersed phase) gas in a (continuous 

phase) liquid [1]. Because of their lightness and large specific surface area, foams are widely 

applied in our daily lives and in industry. Examples of applications in which foams are used 

include food, cosmetics, cleaning, surface treatment, building materials, reducing pollution 

and the extraction of natural resources, e.g., froth flotation [2]. This immense practical and 

industrial interest inevitably inspires fundamental studies of foams. Although many research 

efforts have been focused on foams [2, 3], numerous research questions remain unanswered. 

For example, what are the mechanisms that govern foam growth and collapse? What is the 

relationship between these processes? How do the interfacial properties influence the 

foaming capacity of a solution (foamability) and the lifetime of a foam (foam stability)? How 

does the presence of solid particles affect in foam drainage? In this chapter, the background 

of this project is introduced, followed by the research objectives and hypotheses of this work. 

Finally, a brief description of the thesis organization is presented.  

1. Background 

       Since being commercially introduced early in the 20
th

 century, froth flotation has become 

the most important and widely used separation method for minerals. In mineral flotation, the 

ore is first ground into particles of a certain size to liberate the valuable minerals from the 

gangue. A suspension of solid particles and water is then subjected to vigorous mixing in the 

flotation cell, followed by the introduction of fine bubbles that selectively attach to 

hydrophobic particles and carry them to the bulk surface. A froth phase is then formed above 

the surface, which transports the particles to the concentrate. Frothers and collectors are 

added to the suspension during froth flotation to make the particles hydrophobic and facilitate 

the formation of the froth phase by reducing the bubble coalescence rate in the pulp and froth 

phases. In froth flotation, two distinct zones have thus been recognized: the pulp zone and the 

froth zone. The overall performance of flotation relies on the collective results of these two 

zones. 

        Although the importance of the froth phase in flotation performance has been recognized 

[4-26], the behavior of the froth zone has not yet been fully described and quantified by 

universal models because of the complexity of the processes occurring in it [27]. In practice, 

“the production and maintenance of a satisfactory froth phase at different stages of a flotation 

process has been an art rather than a science and is often a problem to flotation operators” 

[27]. Therefore, it is crucially important to understand the mechanisms governing froth 

stability in order to manipulate it to optimize the flotation performance. However, the 
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presence of solid particles in the flotation froth makes it very difficult to study these 

mechanisms. Despite the absence of solid particles, studies on the aqueous foam properties, 

such as foam column kinetics, foamability, foam stability and foam drainage, will 

undoubtedly set the benchmark to study more complex three-phase flotation froths. 

         This project aims to develop a better understanding of the foam column kinetics, the 

mechanisms governing the foamability and foam stability, and the role of solid particles in 

the liquid drainage in foams by developing mathematical models, providing important data 

and elucidating mechanisms. 

2. Objectives of the thesis 

      The overall objective of this project is to elucidate the different mechanisms that 

collectively determine foam properties. More specifically, the objectives of this project are 

the following: 

 To develop mathematical models to simulate foam column kinetics and interrelate the 

growth, drainage and collapse of foams by analogy with reaction kinetics. 

 To elucidate the different mechanisms (e.g., surface tension, surface viscoelasticity, 

double-layer interactions, antifoam effects of nonionic surfactant and nonpolar 

collectors) that collectively determine foamability and foam stability.  

 To investigate the role of solid particles in foam drainage by conducting forced 

drainage experiments and applying drainage equations for aqueous foams. 

3. Hypotheses of the thesis 

 Foam column kinetics is determined by the competition between foam formation and 

foam collapse and can be simulated via analogy to reaction kinetics.  

 Different mechanisms collectively determine the foamability and foam stability, and 

each mechanism is only dominant for a certain foam system and stage of the foam life. 

 The presence of solid particles affects foam drainage by altering the interfacial 

properties of foams. 

4. Structure of the thesis 

        The thesis consists of eight chapters. Chapter 1 is a brief introduction of the background, 

objectives and hypotheses of the project. Chapter 2 provides a literature review on foam 

column kinetics, the mechanisms governing foamability and foam stability, and foam 

drainage in the presence of solid particles. Chapter 3 develops a mathematical model to 
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simulate foam column kinetics and interrelate the growth, drainage and collapse of foams by 

analogy with reaction kinetics. Chapter 4 explores the anomalous foam behaviors of 

surfactant blend foams and elucidates novel mechanisms. Chapter 5 investigates the effects of 

a nonpolar collector (i.e., diesel) that has been widely used in froth flotation on the 

foamability and foam stability of methyl isobutyl carbinol (MIBC) solutions (a common 

frother used in froth flotation). Chapter 6 focuses on the effects of surface rheology and 

double-layer interactions on the foam stability of surfactant blend foams. Chapter 7 presents 

the role of solid particles in the liquid drainage through the froth phase, which is relevant for 

froth flotation because the wash water is commonly applied to the froth layer to improve the 

product grade. The final chapter summarizes the conclusions and provides recommendations 

for future work. 
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Abstract 

This chapter focuses on the current knowledge regarding the (i) quantification of foam 

growth and collapse, (ii) the mechanisms governing foamability and foam stability, and (iii) 

foam drainage in the presence of solid particles. Limitations of the existing models of foam 

column kinetics are discussed. Special attention is paid to the interrelation between the 

growth and collapse of the foam column. Different mechanisms governing foamability and 

foam stability are reviewed to elucidate different length scales of foam properties. The 

current understanding of the effects of solid particles on foam drainage is discussed to 

highlight gaps in our present level of understanding.  

Keywords: foam, foam stability, foam drainage, foamability, solid particle 

1. Foam column kinetics 

       Foam column kinetics describes the transient behaviors of foams, including the growth, 

drainage and collapse of foams. Foam column kinetics is crucially important for many 

industrial applications. For example, the precise control over the froth phase becomes 

particularly important in froth flotation because of the strong dependence of its performance 

on the froth stability. Foam column kinetics has been used to predict the froth rising velocity, 

which can be linked to a key parameter in froth modeling and plant operation, that is, the 

fraction of bubbles bursting on the top surface of the froth [1-3]. Foam column kinetics has 

also been applied in glass-melting furnaces [4-7].  

1.1 Models of equilibrium foam height 

1.1.1 Hrma’s model 

      Bikerman introduced the concept of “unit of foaminess” as follows [8, 9]: 

                                                                                                                                 (1) 

where  is the equilibrium foam height under the superficial gas velocity, . Despite its 

wide application to represent the foam or froth stability [1-3, 5, 10, 11], this expression is 

limited by its dependence on the gas flow rate [5, 12]. An equation has been proposed to 

express the foam height as a function of the bubble radius, ; the critical gas flux, , beyond 

max

g

H

j
 

maxH
gj

r cj



8 

 

which the foam will grow without limit; the minimum gas flux required to generate foam, ; 

and the gas flux, , as follows [5]: 

                                                                                       (2) 

When , Eq. (2) can be expressed as , where  such that a 

liquid with a low gas velocity threshold is more “foamable”.  

1.1.2 Hartland’s model 

       The first attempt to predict the equilibrium foam height dates back to 1974 [13]. In this 

model, the foam height, , is related to the critical liquid film thickness, , in terms of the 

liquid density, , viscosity, , surface tension, , gas velocity, , and bubble diameter, , 

by the following expression: 

                                                                                                            (3) 

This model successfully predicts that the foam height will increase as the viscosity, gas 

velocity and bubble size increase but decrease as the density, surface tension and film 

thickness increase. However, the model assumes that the drainage of the films is represented 

by the axisymmetric drainage of liquid from between two flat discs, which allows the 

Reynolds equation to be applied. The problem with this assumption is that the interfaces are 

assumed to be rigid, whereas in reality, the interfaces of liquid films are mobile or partially 

mobile [14-16]. The assumption that the liquid film rupture occurs when the critical film 

thickness is reached is also problematic. It has been found that liquid films do not necessarily 

burst when their critical thickness is reached. Instead, the lifetime of a liquid film can be 

expressed as a function of two characteristic times: (i) the characteristic time of drainage, , 

and (ii) the lifetime of the critically thin film,  [4, 5, 17]:  

                                                                                                                               (4) 

Only when the foam is evanescent, . Even if the evanescent foam assumption is correct, 

in a real foam, the films are unlikely to burst at a single exerted pressure or critical thickness 

but will instead exhibit a distribution of bursting probabilities [18].  
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1.1.3 Pilon’s model 

        An equation for the equilibrium foam height of highly viscous fluids has been proposed 

based on dimensional analysis [7]: 

                                                                                                             (5) 

where , , and  are the Reynolds, Froude, and Capillary numbers, respectively, 

which are defined as: 

                                                                                                                    (6) 

                                                                                                                         (7) 

                                                                                                                        (8) 

by identifying two dimensionless numbers: 

                                                                                                                        (9) 

                                                                                                              (10) 

Please note that the relationship between  and  was established to compare the 

published forced drainage data [19, 20]. In these equations,  is the liquid density,  is the 

average bubble radius,  is the minimum superficial gas velocity for the onset of foaming 

[21],  is the liquid viscosity,  is the surface tension and  is the acceleration due to 

gravity. Because Eq. (5) neglects both bubble coalescence and inter-bubble gas diffusion, its 

application is limited to highly viscous liquids. Consider a third dimensionless number to 

represent the Ostwald ripening that occurs in surfactant foams:  

                                                                                                           (11) 
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where  is the diffusion coefficient,  is the Ostwald solubility coefficient, and  and  

are the characteristic times of the contact and permeation between bubbles, respectively. 

Therefore, the expression of equilibrium foam height in Eq. (5) was generalized as follows 

[22]: 

                                                                                         (12) 

1.1.4 Limitations of the models for equilibrium foam height 

          All of the above models assume that there is no bubble coalescence on the top of the 

foam before the equilibrium foam height is reached. Based on this assumption, the foam will 

reach its equilibrium height as soon as the bubbles burst at the top of the foam. However, a 

gentler transition from not bursting to bursting is much more common in growing foam or 

froth [1-3, 18]. This relatively gentle transition indicates that rupture of liquid films or 

bubbles of foams do not occur at the same time but instead exhibit a distribution of bursting 

probabilities [18]. Therefore, predicting the change in foam height with time becomes more 

important than the equilibrium foam height. 

1.2 Models of foam growth 

        Modeling foam growth has mainly focused on the collapse of standing foams [18, 23-

27]. A mass balance for the bubbling gas in a foam column has been introduced and rewritten 

as [27, 28]: 

                                                                                                         (13) 

where  is the superficial gas flow rate,  is the foam height,  is the volumetric liquid 

fraction and  is the collapsed foam height. The first term on the right-hand side of Eq. 

(13) represents the foam growth rate of stable foams (i.e., no bubble coalescence), and the 

second term is the foam collapse rate. The growth rate of transient foams, therefore, equals 

the growth rate of stable foam minus the foam collapse rate. In this section, the models of 

foam growth are categorized based on the treatment of the foam collapse rate: (i) the foam 

collapse rate is not considered; (ii) the foam collapse rate is expressed empirically; and (iii) 

the foam collapse rate is related to the critical film thickness or Plateau border size. 
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1.2.1 Models without consideration of foam collapse 

          An equation has been proposed to express the foam height as a function of the 

superficial gas velocity and average foam porosity (gas fraction), [4]: 

    if                                                                                                            (14) 

where  is the time for the foam height to reach its equilibrium value and  

                                                                                                             (15) 

The local foam porosity distribution has been represented as a second-order polynomial: 

                                                                                           (16) 

where the coefficients , , and  are determined based on the boundary conditions at the 

top and bottom of the foam layer, and the final expression of  is obtained from Eqs. (15) 

and (16): 

                                                                                                              (17) 

where  is the foam porosity on the top surface and  is the foam porosity at the 

bottom of the foam, which equals 0.74 and corresponds to the maximum packing of spherical 

bubbles of the same size[27, 29].  has been treated as follows [4]: (i) constant porosity 

at the top, (ii) an exponential function of time, and (iii) obtained based on an approximate 

solution of the drainage equation. A similar model for the build-up and breakdown of foam in 

a glass melt has also been derived based on the hydrodynamics of the drainage of liquid 

lamellae [6]. Please note that the application of the two models is limited to the assumption 

that there is no foam collapse before the time . 

1.2.2 Empirical expressions of the foam collapse rate 

        The half decay time ( ) was found by expressing the foam collapse rate as [30]: 
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                                                                                                                           (18) 

Integrating Eq. (18), the expression for the change of foam height with time becomes: 

                                                                                                  (19) 

where  is the original foam height,  is the half foam decay time, and  is a constant. 

Because the relationship between  and  is known,  can be obtained by fitting the 

foam collapse data [28].  

        An empirical equation for the froth growth in froth flotation has also been proposed [1-

3]:  

                                                                                                           (20) 

 is the fraction of air remaining in the froth at a given froth height , which is a 

crucial parameter in froth modeling and plant operation involving froth flotation; it is 

expressed as: 

                                                                                   (21) 

where  is the equilibrium foam height; is the average bubble lifetime, which equals 

the unit of foaminess, , defined by Eq. (1);  is the column cross-sectional area; and  is 

the gas flow rate to the flotation cell [2]. The growth rate of the froth height can be deduced 

from Eq. (20) as follows: 

                                                                                                                      (22) 

assuming that the liquid content is low. By comparing Eq. (22) with Eq. (13), we can see that 

the foam collapse rate is proportional to the foam height.  

         Although Eq. (19) and Eq. (20) have been proposed to describe the change in foam or 

froth height with time, these two empirical equations were developed without any 

fundamental basis.   
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 1.2.3 Expression for the foam collapse rate and the critical Plateau border size 

          Figure 1 shows an example of how the foam collapse rate is related to the critical 

Plateau border size, which is represented by the critical cross-sectional Plateau border area, 

 [18]. It was assumed that the foam grows initially with no bubble bursting inside the 

foam or at the top surface. That is, the growth rate of the foam equals the superficial gas 

velocity when the liquid content is low: 

                                                                                                                       (23) 

Once the Plateau border size at the top of the foam attains its critical value, bubble 

coalescence begins. The foam collapse rate for standing foams has been expressed as [18]: 

                                                                                                              (24) 

where 

                                                                                                                             (25) 

If the gas flow rate is high enough, the foam will continue to grow at a reduced growth rate: 

                                                                                                         (26) 

in which  is the liquid density,  is the acceleration due to gravity,  is the Plateau 

border drag coefficient and  is the liquid viscosity [31]. Additionally, the critical Plateau 

border area can be obtained based on the foam growth curve if the gas flow rate is 

sufficiently high: 

                                                                                          (27) 

Otherwise, the foam will attain its equilibrium height. 
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Figure 1. A typical simulated relationship between foam height and time for a gas rate that is 

sufficiently high such that the foam will grow indefinitely [18]. 

        Although the fundamental physics governing the foam collapse process have been 

considered, a considerable discrepancy between the simulated and experimental results for 

growing and collapsing foams or froth remains [1-3, 18]. This discrepancy has been 

explained as follows: “In a real foam, the films are unlikely to burst at a single exerted 

pressure, but rather are likely to exhibit a distribution in the bursting probabilities….This 

distribution in the film stabilities probably accounts for the more gentle transition from not 

bursting to bursting seen in the experiments [18].” However, this distribution is still not well 

understood or quantified.  

1.3 Summary  

        The equations to describe the equilibrium foam height and foam growth reported in the 

literature are summarized in Table 1.  
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Table 1. Summary of equations for the equilibrium foam height and foam or froth growth 

Source Equation Note 

Equations for equilibrium foam height 

[5]  - 

[13]  Rigid interface assumption 

[7]  For highly viscous fluids 

[22]  Applied for surfactant foams 

Equations for foam or froth growth 

[4]  No bubble coalescence 

[30]  Empirical equation 

[1]  Empirical equation 

[18]  After onset of bursting 

 

2. Mechanisms governing foamability and foam stability 

       Foamability and foam stability are two main foam properties of surfactant solutions. 

Foamability is a surfactant solution’s overall capacity to produce foams, whereas foam 

stability refers to the lifetime of a foam column. These two terms are interrelated. For 

example, the foamability of a transient foam is believed to depend on its stability. Although 

these two terms are commonly used in the literature, there are no universal physical 

parameters to quantify them. Foam height and foam lifetime have been applied to 

characterize foamability and foam stability [8, 9, 30]. However, these two criteria are not 

satisfactory because they are not only dependent on the foaming solution but also on how 

foams are generated. Moreover, a general theory to explain the mechanisms of foam 

formation and stability for all types of foam system does not exist [32-34] because the 

magnitude and mutual importance of the different types of effects can vary significantly 
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depending on the stage of foam life and the conditions of its existence [33]. Bearing in mind 

the complicated interplay of various mechanisms, here, we review the existing theories that 

describe the mechanisms governing foam formation and stability.  

2.1 Effects of interfacial properties on foam properties 

       The adsorption of surfactant molecules on the air-water interface alters the interfacial 

properties, and the foam properties change accordingly.  

2.1.1 Surface tension and foamability 

        It is clearly evident that the decrease in surface tension ensues as a result of the 

adsorption of surfactant molecules on the air-water interface. In the first stage of foam 

formation, bubbles are split into smaller ones because of the external forces that the bulk 

liquid subjects them to. The splitting of bubbles results in an increase in the specific surface 

area and surface energy. If the external energy imposed to generate the foams is constant, 

then lower surface tensions are achieved and higher surface areas can be produced. In other 

words, a lower surface tension will enhance the foamability of a solution as a function of the 

surface energy. Except for the surface energy, the critical Weber number, , is 

also introduced to predict the maximum stable bubble size for bubbles in the bulk phase [35-

38]. It is also evident that a lower surface tension corresponds to a smaller bubble size, 

indicating a better foamability with a constant (assumed) Weber number.  

         Although surface tension and foamability are dependent on surface energy and Weber 

number, choosing an appropriate characteristic time at which the dynamic surface tension 

should be applied remains difficult. Several research efforts using different designs have 

investigated the effect of dynamic surface tension on the foamability. For example, the 

relationship between foam formation and the dynamic surface tension of non-ionic and 

anionic surfactants has been studied using a rotor test, in which air is introduced to the 

surfactant solutions with the help a special stirring device [39]. A good correlation between 

foam formation and the dynamic surface tension values at , which is expressed as 

the relative surface pressure, has been found (Figure 2). Despite the choice of the 

characteristic time, , the authors found that the average lifetime of the bubbles at 

the solution-air interface should be chosen as the reference adsorption time. The relationship 

between foam formation and dynamic surface tension has also been investigated using the 

Ross-Miles test [40-42]. Recently, the foam formation at a sparger was related to the dynamic 

surface tension [43]. In that paper, the authors summarized the results from [42] and 
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correlated the foam height with the surface tension reduction rate, which is defined as [42, 

43]: 

                                                                                                                       (28) 

where  is the surface tension of the solvent,  is the meso-equilibrium surface tension at 

which the decrease rate of the surface tension is smaller than 1 mN/m per 30 seconds, and  

is the time when the surface tension is equal to . Here, we note that the surface 

tension reduction rate in Eq. (28) derived from [42, 44]  lacks a fundamental basis. Therefore, 

the correlation between the foam formation and the surface tension reduction developed in 

[43] is limited.  

 

Figure 2 The relative dynamic pressure at  and the rate of foam formation for the 

non-ionic surfactant C12(EO)6 (a, b) and the anionic surfactant C12SO3Na (a’, b’). The rate of 

foam formation refers to a rotor speed of 900 min
-1

. The graphs are reproduced from [39]. 

2.1.2 Surface viscoelasticity and foam properties 

         The adsorption of surfactant molecules on the air-water interface can not only decrease 

the surface tension, but also generate the surface viscoelasticity. Surface viscoelasticity is 

related to the non-equilibrium state of the adsorption layer [45]. A distortion of its existing 

equilibrium state and the absence of adsorption equilibrium at a freshly created interface are 
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the two main reasons underlying the non-equilibrium state of the adsorption layer. Because 

the interface has not yet attained its equilibrium adsorption coverage during foam generation, 

surface viscoelasticity plays a significant role in foamability. Moreover, regarding foam 

drainage, the surface tension gradients induced at the air-water interface can stabilize the 

foam films by retarding drainage [46].  

        A century ago the significance of the surface tension gradients for foam stability were 

described by Gibbs and Marangoni [47]. The first theory to discuss the surface tension 

gradient in terms of surface dilational elasticity was presented by Levich in 1941 [48]. It is to 

note that the new methodology for measuring the dilational rheology via a harmonically 

oscillating bubble in 1970 [49] paves the way for the first commercial instrument for routine 

experiments of the dilational surface elasticity [50], based on oscillating drops and bubbles. 

Various special aspects of surface viscoelasticity has been reviewed [51-55] and a book that 

is completely devoted to surface viscoelasticity has been published recently [56]. 

         The dilational elasticity modulus, , has been defined as the ratio of the surface tension 

change, , to the relative increase in surface area, , i.e., . Regarding 

the film elasticity, its value should be two times the value of , indicating the presence of 

two film interfaces. It should be noted that an analogy between the Gibbs elasticity and the 

surface dilational modulus has been made [57]. The Gibbs elasticity refers to the increase in 

the film’s surface tension resulting from a decrease in the surfactant concentration within the 

interlamellar solution caused by the small extension of the film relative to the film size. In the 

Gibbs mechanism, the film elasticity originates from the deterioration of the interstitial 

surfactant solution with the assumption that the thickness of the lamellae is very small. The 

Marangoni elasticity, as related to the Marangoni effect, originates from the transport of 

surfactant molecules from the adjacent bulk phase to the interface for the case of the non-

equilibrium state of thick foam films [58]. For soluble surfactants, the magnitude of the 

elasticity modulus depends on the frequency of external disturbances or the oscillation 

frequency. The adsorption layer will behave as an insoluble monolayer when the frequency is 

sufficiently high and the Marangoni dilational modulus reaches its limiting value,  [59, 

60]. At low frequencies, the adsorption layer behaves as a viscoelastic surface because of 

relaxation processes, i.e., diffusional exchange that occurs in and near the interface. 

Therefore, the modulus  has both elastic and viscous components. A review paper has 

analyzed the surface viscoelasticity of adsorption layers and the origin of the dilational 
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viscosity [61]. The dilational surface viscosity has been categorized as follows: (i) “true” 

dilational surface viscosity, which originates only from the transport of surfactant molecules 

at the interface, and (ii) “apparent” dilational surface viscosity caused by the surfactant 

diffusion from the bulk solution.  

        A good correlation between the liquid film or foam stability and the surface 

viscoelasticity has been reported [60, 62-78]. However, questions remain unanswered: Is the 

good correlation between film stability and surface rheology indicative of a similar 

correlation with foam stability? Are measurements at the interfaces (i.e., surface 

viscoelasticity) and on a single film (i.e., film stability) sufficient to understand and predict 

the foamability and foam stability [79]? What is the appropriate frequency at which the 

surface viscoelasticity can correlate with the foamability and foam stability? For the first and 

second questions, because the foams cannot be considered as a simple combination of foam 

films, the correlation between film stability and surface rheology cannot be directly applied to 

foam stability. Moreover, it is challenging to correlate the foam column stability with the 

liquid film stability [80, 81]. This discrepancy has been explained as “the conditions of the 

existence of the foams and of the single film were quite different and, therefore, the different 

types of forces could operate there [33].” For the last question, on the one hand, the 

frequency of the measurements of the surface viscoelasticity should be relevant to the surface 

age during foam generation (0.1–1 s) in terms of foamability. On the other hand, the two 

main processes that determine the foam lifetime, that is, Ostwald ripening and bubble 

coalescence, have been shown to be controlled by the low- and high-frequency surface 

elasticities, respectively [69]. Nevertheless, the roles of surface viscoelasticity in the 

foamability and foam stability remain poorly understood. The effects that contribute to the 

link between surface viscoelasticity and foam properties are summarized in a recent textbook 

as follows [79]:  

 Because a large dilational surface elastic modulus results in a smaller strain for a 

given applied stress, the foam film will stretch less and is less likely to rupture when 

subjected to certain disturbances.  

 The film elasticity will restore the interface by bringing back surfactants and by 

limiting the stretch of the interface.  

 The Marangoni effect will draw surfactants back to the interface and liquid into the 

film, thereby reducing the possibility of liquid film rupture.  
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 On the one hand, a value of surface viscoelasticity that is too low facilitates the 

stretching of the interface, resulting in liquid film rupture. On the other hand, a 

surface viscoelasticity that is too high will cause a solid-like response of the interface, 

leading to the possibility of fracture. 

 Surface elasticity modifies the process of drainage in the films and Plateau borders. 

 Surface elasticity controls the appearance of bell-shaped liquid drops that have a 

destabilizing effect on films. 

2.2 Effects of liquid film properties on foam properties 

         Any foam is made of single liquid film. Therefore, the link between liquid film 

properties and foam properties is most obvious. The fundamentals of the present knowledge 

in the field of foam films had been discovered by pioneers like Boyle, Hooke [82], Newton 

[83], Plateau [84] and Gibbs [47, 85] during 17 – 19
th

  centuries. The history of the scientific 

research on foam films has been compiled as the “chronicles” of foam films very recently 

[86]. The introduction of the disjoining pressure to the foam film and development of DLVO 

theory to describe the liquid film stability are considered as milestones in the theoretical 

development of foam films.  

          When two bubbles meet in foams, forces act between the two interfaces. These forces 

determine the stability of the liquid film that separates the foam bubbles. The disjoining 

pressure, , was introduced by Derjaguin in the late 1930s to characterize the force per unit 

area between the two interfaces of a liquid film [87, 88].  is based on the following 

attractive and repulsive interactions [35, 89-94].  

 London-van der Waals interactions originate from the interaction between two 

molecules. The attractive contribution of the London-van der Waals forces to the 

disjoining pressure is quantified as: 

                                                                                                          (29) 

where  is the Hamaker constant and  is the film thickness. It should be noted that 

van der Waals forces always make a film unstable. Therefore, repulsive forces 

induced by the presence of surfactant molecules are needed to balance this attractive 

force to stabilize the liquid film.  

 The electrostatic interaction becomes evident when the interfaces are electrically 

charged in the presence of ionic surfactants. The repulsion between the two charged 
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interfaces stabilizes the liquid film. However, the presence of an ionic solution such 

as NaCl will screen this repulsion. The Debye length defines the effective range of the 

electrostatic potential, , of a charged interface (Figure 3): 

                                                                                                           (30) 

where  is the relative permittivity of the fluid,  is Boltzmann's constant,  is the 

absolute temperature,  is the charged density, and  is the elementary charge. The 

repulsion can be clearly observed when the film thickness  falls below . The 

contribution of electrostatic interactions to the disjoining pressure has been found to 

be approximately: 

                                                                                                     (31) 

 The steric repulsion becomes evident when the liquid film thickness falls below the 

distance equal to the size of a few surfactant molecules. Therefore, the total disjoining 

pressure in a liquid film is the sum of the van der Waals, electrostatic, and steric 

contributions: 

                                                                                                (32) 
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 Figure 3. Electrostatic potential  of two charged thin film interfaces at a separation 

distance of .  is the effective range of the electrostatic potential . (a) There is no 

repulsive interaction as long as . At the center of the film, we can determine the 

electrostatic potential of the bulk (dash line). (b) For , the electrostatic potential in the 

film is nowhere equal to that in the bulk. The concentration of counter ions is greater than in 

the bulk, and this excess of counter ions is responsible for the repulsive force between the 

thin film interfaces. Reproduced from [79]. 

        The combination of  and  forms the famous DLVO theory [95-97]. The action 

of the disjoining pressure in foam films and the DLVO theory had been experimentally 

proved afterwards [98-103], especially with the help of the methodology of the microscopic 

foam film by Scheludko and Exerowa [104, 105]. A positive disjoining pressure in the film is 

fundamental to film stability and the existence of a foam. Therefore, a strong and long-range 

repulsive interaction in the film is necessary for good foamability and foam stability.  
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2.3 Effects of antifoam behaviors on foam properties 

        Antifoams are oils, hydrophobic solid particles or a mixture of both that are present in 

the solution and prevent the formation of a foam [106, 107]. Antifoams have been widely 

used in many industrial applications, such as pulp and paper production, food processing, 

textile dyeing, fermentation, wastewater treatment, and the oil industry [97, 106, 108-110]. In 

the froth flotation of naturally hydrophobic minerals, such as coal, graphite, sulfur and 

molybdenite, nonpolar collectors are used [111, 112]. They are commonly petroleum-based 

hydrocarbon liquids, such as diesel oil. Therefore, nonpolar collectors potentially exhibit 

antifoam behaviors and affect the froth stability (Chapter 5). Moreover, some nonionic 

surfactants, such as dodecanol, can also influence the foam properties by exerting antifoam 

actions (Chapter 4). In this section, the mechanisms of liquid antifoam actions and the effects 

of surfactants on antifoam activity are discussed. Systematic reviews discussing antifoams are 

available in the literature [106-108]. It should be noted that the terms “fast antifoams” and 

“slow antifoams” have been previously introduced [107]. The former term denotes “the 

antifoams whose globules are able to enter the surfaces of the foam films and to destroy these 

films in the early stages of film thinning”, whereas the latter indicates “antifoams whose 

globules first leave the foam films and destroy the foam after entering the walls of the PBs.” 

[107]. Here, only the mechanisms of “fast antifoams” are discussed on the basis that the 

antifoams used in this study belong to this category.  

2.3.1 Entry barrier 

       Antifoams must enter the liquid film to destroy a liquid film or foam layer. Antifoams 

with a low entry barrier completely collapse the foam in seconds, whereas antifoams with a 

high entry barrier require hours to destroy the foam. The interaction energy per unit area in an 

asymmetric oil-water-air film [113] and the so-called generalized entry coefficient [114-117] 

have been introduced to represent the entry barrier. However, the determination of their 

values is very difficult [107]. Alternatively, the capillary pressure of the air-water interface at 

the moment of oil drop entry, , has been proposed as a quantitative characteristic of the 

entry barrier because it is related to antifoam efficiency [118-126]. The film trapping 

technique (FTT) has also been developed to precisely measure the value of  [127, 128].  

        Because the antifoam activity strongly depends on the magnitude of the entry barrier 

[107], it is crucially important to understand the factors that affect the entry barrier. Here, the 
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two main points made in [107] concerning the factors that affect the entry barrier of an oil 

droplet are summarized.  

 Entry coefficient 

Antifoam activity has been correlated with the entry coefficient [106, 108]: 

                                                                                                  (33) 

where ,  and  are the surface tensions of an air-water interface, oil-water 

interface and oil-air interface, respectively. From the thermodynamic perspective, the 

condition for the emergence of an oil droplet at the air-water interface is . 

However, it has been correctly stated that a positive value of  does not guarantee 

high antifoam performance because, from the perspective of kinetics, the entry barrier 

also plays a crucial role [97, 106-109, 129-131]. Regarding their contributions to 

antifoam performance, the relationship between the entry coefficient  and the entry 

barrier is analogous to chemical thermodynamics and kinetics [107].  

 Surfactant concentration 

The effect of surfactant concentration on the entry barrier has been studied previously 

[122]. Figure 4 shows that the entry barrier increases as the surfactant concentration 

increases. It should be noted that the effect of the surfactant concentration has not yet 

to be fully understood [107]. 
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Figure 4. Entry barrier of hexadecane drops, , as a function of the SDDBS concentration, 

 [122]. Reproduced from [107]. 

2.3.2 Role of oil spreading in antifoam performance 

       When an oil droplet emerges at the air-water interface, depending on the sign of the 

spreading coefficient,  [132], it either spreads out ( ) or bridges the 

two interfaces ( ) [129, 131, 133-140]. Both outcomes result in rupture of the liquid film. 

Similar to the entry coefficient, ,  is also a thermodynamic property. A positive initial 

spreading coefficient  (defined using  without the spreading oil) has been shown to 

contribute to antifoam performance [138, 141]. Because the calculation of  requires the 

value of the oil-water surface tension, , which is difficult to measure, the spreading 

pressure, , which is defined as the reduction in the equilibrium surface 

tension of the air-water interface caused by the addition of an antifoam to the aqueous surface, 

was introduced [140]. and  are the equilibrium surface tensions of surfactant solutions 

with and without antifoams, respectively. A positive value of  indicates that it is 

thermodynamically favorable for antifoams to spread on the surface of the surfactant solution.  

2.3.3 Effect of adsorption kinetics of surfactants on the antifoam performance 

        Some antifoams have been found to only affect the foamability and exert no influence 

on foam stability [120, 121, 142]. For example, Figure 5 shows that in the presence of 

antifoams, the initial foam volume (foamability) generated by shaking AOT solutions 

(Bartsch) is several times larger than that of APG solutions. However, the foam stability of 

APG foams is much higher than that of AOT foams. Solutions without antifoams exhibit both 

good foamability and foam stability. The different effects of antifoams on the foam stability 

of AOT and APG are explained by the different entry barrier values ( Pa for APG 

solutions, and Pa for AOT solutions). The much higher entry barrier for APG 

solutions makes the entry of antifoams into the liquid film more difficult and results in more 

stable foams relative to AOT solutions. However, during foam generation, the antifoams 

become more active for the APG solutions because of the slow adsorption kinetics of APG 

molecules (Figure 6). The unsaturated adsorption layers make the entry of antifoams much 

easier relative to the fully saturated surfaces. It should be noted that the possible higher 
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surface viscoelasticity deduced from the slow adsorption kinetics of APG molecules may also 

contribute to the higher foam stability of APG foams relative to AOT foams. Additionally, 

the fast adsorption of AOT molecules on the air-water interface may facilitate foam 

formation and result in a higher foamability than the APG solutions (see Section 2.1.1).  

 

 

Figure 5. Foam volume vs. time for two surfactant solutions—10 mM AOT and 0.6 mM 

APG—containing 0.01 wt% PDMS-silica compound (Bartsch test). For comparison, in the 

absence of an antifoam, the initial foam volume was 180 ± 10 mL for AOT and 100 ± 10 mL 

for APG, and the foam was stable for the duration of this experiment [120]. Reproduced from 

[107]. 
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Figure 6. Dynamic surface tension of AOT and APG solutions measured by MBPM: 10 mM 

AOT and 0.6 mM APG were used in the foam tests (Figure 5). For comparison, the results for 

equal surfactant concentrations (i.e., 2.5 mM) are also shown [120]. Reproduced from [107]. 

3. Foam drainage in the presence of solid particles 

       Foam drainage is the passage of liquid through a foam. Foam drainage is crucially 

important for foam stability. There are three different mechanisms governing the lifetime of a 

foam: (i) the foam drainage caused by gravity, (ii) the coarsening caused by the transfer of 

gas between bubbles induced by the capillary pressure differences, and (iii) the bubble 

coalescence caused by the rupture of liquid films between neighboring bubbles [79]. Among 

these three mechanisms, foam drainage determines the liquid fraction of a foam, which is a 

key parameter for both coarsening and bubble coalescence [143-155]. It should be noted that 

different types of drainage configurations (i.e., forced, free and pulsed drainage) have been 

observed [16, 32, 79, 148, 156]. Here, only the forced drainage configuration is considered. 

       Despite the progress made in understanding aqueous foam drainage [32, 79], foam 

drainage in the presence of solid particles remains poorly understood. The study of the 

drainage of three-phase foams or froths is crucially important from an industrial point of view. 

For example, in froth flotation, the wash water is commonly applied to the froth phase to 

flush the entrained gangue out of the froth and consequently increase the product’s grade. In 

this section, the theories developed for the foam drainage of aqueous foams are presented. 

Then, the studies reported in the past 15 years on foam drainage in the presence of solid 

particles are reviewed. Finally, gaps in the knowledge of this topic are highlighted.  

 

3.1 Foam drainage for aqueous foams 

       During foam drainage, the liquid is confined in a network of channels or Plateau borders, 

which meet at nodes in fours. Therefore, modeling foam drainage primarily focuses on the 

liquid flow in the two foam structures. It should be noted that some researchers have also 

considered the contribution of the liquid film to the foam drainage [157, 158]. However, the 

liquid films have not been found to significantly contribute to the drainage process because of 

the relatively small amount of liquid contained in the films relative to that in the Plateau 

borders and nodes [157]. 
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         Studies on foam drainage can be categorized into microscopic and macroscopic 

investigations [157]. The former refers to studies at the scale of a single Plateau border, 

whereas the latter refers to studies at the scale of at least several bubbles. The first study on 

the microscopic modeling of foam drainage only considered the contribution of Plateau 

borders to the foam drainage [159, 160]. The drainage rate is thought to be dependent upon 

the mobility of the Plateau border wall or the surface shear viscosity. A Plateau-dominated 

approach to studying foam drainage was developed by subsequent researchers, who expanded 

on the initial microscopic modeling attempt [161, 162]. It should be noted that Nguyen 

improved on the numerical calculations of foam drainage and provided a numerical solution 

for the liquid flow velocity in a single Plateau border as a function of surface viscosity [159, 

163]. The Plateau border-dominated approach was challenged, and the assumption was 

modified when the contribution of nodes to the foam drainage was recognized and mobile 

Plateau border walls were assumed [14]. Since then, the standard foam drainage equation 

[159] has been modified [164], and foam drainage models that consider viscous losses from 

both the Plateau borders and nodes have been proposed [15, 16].  

         On the macroscopic level, foam drainage has been shown to be analogous to the liquid 

flow through a porous medium [79, 165]. However, two key differences between liquid 

drainage through a foam and that through a porous medium must always be considered. First, 

in a foam, the size of the network (i.e., Plateau borders and nodes) through which the liquid 

flows is not fixed but is actually dependent on the flow itself. That is to say, the bubbles can 

move apart to allow liquid to pass and then move back. Second, the interfaces are not 

completely rigid but are instead partially mobile in a foam, depending on the interfacial 

properties, such as surface shear viscosity. It has been demonstrated that the classic Darcy’s 

law that describes the fluid flow through a porous medium is also applicable to aqueous 

foams [14, 19, 143, 165, 166]. An alternative way to study foam drainage on the macroscopic 

level is to adopt dimensional analysis to compare the existing foam drainage data in a 

consistent manner and thus simplify the analysis [19]. 

3.2 Foam drainage for three-phase foams or froth 

        Theories of foam drainage for aqueous foams have established benchmarks for the study 

of three-phase foams in which solid particles are present. Logically, the following questions 

have been raised regarding foam drainage in the presence of solid particles: Can the foam 

drainage equations for aqueous foams apply to foams with solid particles? How does the 

presence of solid particles influence foam drainage? 
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         Not surprisingly, in the past 15 years, many studies on three-phase foams have focused 

on the transport or motion of solid particles in the flotation froth [167-169] or surfactant 

foams [170-173] because of their paramount importance for industrial applications. The solid 

particles in flotation froths have been divided into attached particles (i.e., hydrophobic 

particles), which follow the bubbles, and unattached particles (i.e., both hydrophobic and 

hydrophilic particles), which mainly follow the liquid [167]. On the one hand, attached or 

hydrophobic particles have been used to adsorb to the air-water interface and act as a barrier 

to prevent bubble coalescence and impede the coarsening process [174-177]. However, their 

effects on foam drainage remain unknown. On the other hand, studies on foam drainage in 

the presence of solid particles have primarily focused on the unattached or hydrophilic 

particles and nanoparticles [168, 171-173, 178-185]. Nevertheless, these studies contribute to 

our understanding of drainage behaviors in the presence of solid particles. For example, on 

the basis of the scaling behavior (power law) between the drainage velocity and the imposed 

flow rate in forced drainage experiments [180], the presence of nanoparticles has been found 

to induce a foam drainage transition from a node-dominated regime to a Plateau border-

dominated regime. Moreover, unusual phenomena, such as large foam permeability 

exponents and prefactors, which have not been observed in aqueous foams, have been 

recorded in three-phase foams [178]. It should be noted that these phenomena in three-phase 

foams cannot be explained simply based on the theories developed for aqueous foams. For 

example, the foam regime transition in aqueous foams is usually caused by a change in the 

surface viscosity or interface mobility [186, 187]. However, it is difficult to make the same 

claim in foams containing nanoparticles because the presence of hydrophilic solid particles 

can change the interfacial properties to only a small extent [180]. 

        To explain the foam drainage behaviors in the presence of hydrophilic particles, several 

mechanisms have been proposed, such as rheology of the powder suspension and clogging in 

the confined regions of the Plateau borders [172, 178, 181, 183-185]. Among them, the most 

important parameter controlling the drainage behaviors of foams with hydrophilic particles is 

the confinement parameter, , which relates the size of the particle to the maximum 

diameter of the circle inscribed in the Plateau border cross-section. For , particles are 

trapped in the foams, and the resulting drainage velocity is severely reduced [183-185].  
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3.3 Gaps in the knowledge of foam drainage in the presence of solid particles 

        The following knowledge gaps have been identified on the basis of the current 

understanding of foam drainage for aqueous and three-phase foams: 

 The effects of attached or hydrophobic particles on the foam drainage remain poorly 

understood. 

 The effects of solid particles on the stress state of the gas-liquid interface of foams 

remain poorly understood. 

 It is unclear whether the foam drainage equations for aqueous foams can be applied to 

three-phase foams.  

4. Concluding remarks 

      This chapter has reviewed different models for foam column kinetics, the mechanisms 

governing foamability and foam stability, and the effects of solid particles on foam drainage. 

The interrelation of different length scales of foam properties was emphasized. Although 

many research efforts have been made in each length scale, the correlation between their 

results, which is important for understanding foam drainage and stability, remains poorly 

understood and quantified. A more comprehensive model that includes the growth, drainage 

and collapse of foams is required to quantify and understand these complex foam behaviors.  

Acknowledgements 

       The authors gratefully acknowledge the China Scholarship Council (CSC) of the Chinese 

Government and The University of Queensland (UQ) for the CSC-UQ scholarship for JW. 

 

 

 

 

 

 



31 

 

References 

[1] N. Barbian, E. Ventura-Medina, J.J. Cilliers, Dynamic froth stability in froth flotation, Minerals 
Engineering, 16 (2003) 1111-1116. 

[2] N. Barbian, K. Hadler, E. Ventura-Medina, J.J. Cilliers, The froth stability column: linking froth 
stability and flotation performance, Minerals Engineering, 18 (2005) 317-324. 

[3] N. Barbian, K. Hadler, J.J. Cilliers, The froth stability column: Measuring froth stability at an 
industrial scale, Minerals Engineering, 19 (2006) 713-718. 

[4] L. Pilon, A. G. Fedorov, R. Viskanta, Analysis of transient thickness of pneumatic foams, Chemical 
Engineering Science, 57 (2002) 977-990. 

[5] P. Hrma, Model for a steady state foam blanket, Journal of Colloid and Interface Science, 134 
(1990) 161-168. 

[6] J. van der Schaaf, R.G.C. Beerkens, A model for foam formation, stability, and breakdown in glass-
melting furnaces, Journal of Colloid and Interface Science, 295 (2006) 218-229. 

[7] L. Pilon, A.G. Fedorov, R. Viskanta, Steady-State Thickness of Liquid–Gas Foams, Journal of Colloid 
and Interface Science, 242 (2001) 425-436. 

[8] J.J. Bikerman, Foam, Springer-Verlag, New York, 1973. 
[9] J.J. Bikerman, The unit of foaminess, Transactions of the Faraday Society, 34 (1938) 634-638. 
[10] S.I. Karakashev, P. Georgiev, K. Balashev, Foam production – Ratio between foaminess and rate 

of foam decay, Journal of Colloid and Interface Science, 379 (2012) 144-147. 
[11] S.I. Karakashev, P. Georgiev, K. Balashev, On the growth of pneumatic foams, Eur. Phys. J. E, 36 

(2013) 13. 
[12] R. McElroy, Air release from mineral oils,  Department of Pure and Applied Chemistry, 

Strathclyde University, 1978. 
[13] S. Hartland, A.D. Barber, A model for a cellular foam, Transactions of the Institution of Chemical 

Engineers, 52 (1974) 43-52. 
[14] S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Liquid Flow through Aqueous Foams: The Node-

Dominated Foam Drainage Equation, Physical Review Letters, 82 (1999) 4232-4235. 
[15] S.J. Neethling, H.T. Lee, J.J. Cilliers, A foam drainage equation generalized for all liquid contents, 

Journal of Physics: Condensed Matter, 14 (2002) 331. 
[16] S.A. Koehler, S. Hilgenfeldt, H.A. Stone, A Generalized View of Foam Drainage:  Experiment and 

Theory, Langmuir, 16 (2000) 6327-6341. 
[17] N.F. Djabbarah, D.T. Wasan, Foam stability: The effect of surface rheological properties on the 

lamella rupture, AIChE Journal, 31 (1985) 1041-1043. 
[18] S.J. Neethling, H.T. Lee, P. Grassia, The growth, drainage and breakdown of foams, Colloids and 

Surfaces A: Physicochemical and Engineering Aspects, 263 (2005) 184-196. 
[19] P. Stevenson, Dimensional analysis of foam drainage, Chemical Engineering Science, 61 (2006) 

4503-4510. 
[20] P. Stevenson, On the forced drainage of foam, Colloids and Surfaces A: Physicochemical and 

Engineering Aspects, 305 (2007) 1-9. 
[21] L. Pilon, R. Viskanta, Minimum superficial gas velocity for onset of foaming, Chemical 

Engineering and Processing: Process Intensification, 43 (2004) 149-160. 
[22] J.A. Attia, S. Kholi, L. Pilon, Scaling laws in steady-state aqueous foams including Ostwald 

ripening, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436 (2013) 1000-
1006. 

[23] G. Narsimhan, E. Ruckenstein, Hydrodynamics, enrichment, and collapse in foams, Langmuir, 2 
(1986) 230-238. 

[24] G. Narsimhan, A model for unsteady state drainage of a static foam, Journal of Food Engineering, 
14 (1991) 139-165. 

[25] R.J. Germick, A.S. Rehill, G. Narsimhan, Experimental investigation of static drainage of protein 
stabilized foams — Comparison with model, Journal of Food Engineering, 23 (1994) 555-578. 



32 

 

[26] A. Bhakta, E. Ruckenstein, Drainage of a Standing Foam, Langmuir, 11 (1995) 1486-1492. 
[27] A. Bhakta, E. Ruckenstein, Decay of standing foams: drainage, coalescence and collapse, 

Advances in Colloid and Interface Science, 70 (1997) 1-124. 
[28] A. Bhakta, E. Ruckenstein, Modeling of the Generation and Collapse of Aqueous Foams, 

Langmuir, 12 (1996) 3089-3099. 
[29] G. Narsimhan, E. Ruckenstein, Effect of bubble size distribution on the enrichment and collapse 

in foams, Langmuir, 2 (1986) 494-508. 
[30] E. Iglesias, J. Anderez, A. Forgiarini, J.-L. Salager, A new method to estimate the stability of 

short-life foams, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 98 (1995) 
167-174. 

[31] S.J. Neethling, J.J. Cilliers, E.T. Woodburn, Prediction of the water distribution in a flowing foam, 
Chemical Engineering Science, 55 (2000) 4021-4028. 

[32] D. Weaire, S. Hutzler, The Physics of Foams, Clarendon Press, Oxford, 1999. 
[33] K. Malysa, K. Lunkenheimer, Foams under dynamic conditions, Current Opinion in Colloid & 

Interface Science, 13 (2008) 150-162. 
[34] S. Farrokhpay, The significance of froth stability in mineral flotation — A review, Advances in 

Colloid and Interface Science, 166 (2011) 1-7. 
[35] A.V. Nguyen, H.J. Schulze, Colloidal science of flotation, Marcel Dekker, New York, 2004. 
[36] P.C. Duineveld, Bouncing and Coalescence of Bubble Pairs Rising at High Reynolds Number in 

Pure Water or Aqueous Surfactant Solutions, Flow, Turbulence and Combustion, 58 (1997) 
409-439. 

[37] P.C. Duineveld, Bouncing and coalescence of two bubbles in pure water, in: S. Morioka, L. Van 
Wijngaarden (Eds.) IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapour Two-Phase 
Systems, Springer Netherlands1995, pp. 151-160. 

[38] S.I. Karakashev, M.V. Grozdanova, Foams and antifoams, Advances in Colloid and Interface 
Science, 176–177 (2012) 1-17. 

[39] M. Buzzacchi, P. Schmiedel, W. von Rybinski, Dynamic surface tension of surfactant systems and 
its relation to foam formation and liquid film drainage on solid surfaces, Colloids and Surfaces 
A: Physicochemical and Engineering Aspects, 273 (2006) 47-54. 

[40] T. Tamura, Y. Kaneko, M. Ohyama, Dynamic Surface Tension and Foaming Properties of 
Aqueous Polyoxyethylene n-Dodecyl Ether Solutions, Journal of Colloid and Interface Science, 
173 (1995) 493-499. 

[41] R. Varadaraj, J. Bock, P. Valint Jr, S. Zushma, N. Brons, Relationship between fundamental 
interfacial properties and foaming in linear and branched sulfate, ethoxysulfate, and 
ethoxylate surfactants, Journal of Colloid and Interface Science, 140 (1990) 31-34. 

[42] M. Rosen, X. Hua, Z. Zhu, Dynamic Surface Tension of Aqueous Surfactant Solutions: IV 
Relationship to Foaming, in: K.L. Mittal, D.O. Shah (Eds.) Surfactants in Solution, Springer 
US1991, pp. 315-327. 

[43] D. Kawale, A.T. van Nimwegen, L.M. Portela, M.A. van Dijk, R.A.W.M. Henkes, The relation 
between the dynamic surface tension and thefoaming behaviour in a sparger setup, Colloids 
and Surfaces A: Physicochemical and Engineering Aspects. 

[44] H. Xi Yuan, M.J. Rosen, Dynamic surface tension of aqueous surfactant solutions: I. Basic 
paremeters, Journal of Colloid and Interface Science, 124 (1988) 652-659. 

   ] S.S. D  hin, G. Kretzs hmar,  .  iller, D nami s of adsorption at li  id interfa es, in: D.    i s, 
R. Miller (Eds.) Studies in interface science, Elsevier, Amsterdam, 1995. 

[46] D.A. Edwards, H. Brenner, D.T. Wasan, Interfacial transport processes and rheology, 
Butterworth-Heinemann, Boston, 1991. 

[47] J.W. Gibbs, Collected Works, vol. 1, Dover Publishing Co. Inc, New York, 1961. 
[48] V.G. Levich, The damping of waves by surface-active substances. Parts I, Acta Physicochim., 14 

(1941) 307-328. 



33 

 

[49] G. Kretzschmar, K. Lunkenheimer, Untersuchungen zur Bestimmung der Elastizität von 
Adsorptionsschichten löslicher grenzflächenaktiver Stoffe, Berichte der Bunsengesellschaft für 
physikalische Chemie, 74 (1970) 1064-1071. 

[50] J. Benjamins, A. Cagna, E.H. Lucassen-Reynders, Viscoelastic properties of triacylglycerol/water 
interfaces covered by proteins, Colloids and Surfaces A: Physicochemical and Engineering 
Aspects, 114 (1996) 245-254. 

[51] F.C. Goodrich, in: J.F. Danielli, M.D. Rosenberg, D.A. Cadenhead (Eds.) Progress in Surface and 
Membrane Science, Academic Press, New York, 1973. 

[52] L. Gupta, D.T. Wasan, Surface Shear Viscosity and Related Properties of Adsorbed Surfactant 
Films, Industrial & Engineering Chemistry Fundamentals, 13 (1974) 26-33. 

[53] F.C. Goodrich, in: K.L. Mittal (Ed.) Solution Chemistry of Surfactants, Plenum Press, New York, 
1979. 

[54] R. Miller, R. Wüstneck, J. Krägel, G. Kretzschmar, Dilational and shear rheology of adsorption 
layers at liquid interfaces, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 
111 (1996) 75-118. 

[55] M. A. Bos, T. van Vliet, Interfacial rheological properties of adsorbed protein layers and 
surfactants: a review, Advances in Colloid and Interface Science, 91 (2001) 437-471. 

[56] R. Miller, L. Liggieri, Interfacial Rheology,  Progress in Colloid and Interface Science Volume 1, 
Brill, Leiden and Boston, 2009. 

[57] E.H. Lucassen-Reynders, A. Cagna, J. Lucassen, Gibbs elasticity, surface dilational modulus and 
diffusional relaxation in nonionic surfactant monolayers, Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 186 (2001) 63-72. 

[58] D. Langevin, F. Monroy, Marangoni stresses and surface compression rheology of surfactant 
solutions. Achievements and problems, Advances in Colloid and Interface Science, 206 (2014) 
141-149. 

  9] K.  ał sa,  .  iller, K. L n enheimer,  elationship  etween foam sta ilit  and s rfa e elasti it  
forces: Fatty acid solutions, Colloids and Surfaces, 53 (1991) 47-62. 

 60] K.  ał sa, K. L n enheimer,  .  iller, C. Hempt, S rfa e elasti it  and d nami  sta ilit  of wet 
foams, Colloids and Surfaces, 16 (1985) 9-20. 

[61] I.B. Ivanov, K.D. Danov, K.P. Ananthapadmanabhan, A. Lips, Interfacial rheology of adsorbed 
layers with surface reaction: On the origin of the dilatational surface viscosity, Advances in 
Colloid and Interface Science, 114–115 (2005) 61-92. 

[62] K.-D. Wantke, H. Fruhner, Determination of Surface Dilational Viscosity Using the Oscillating 
Bubble Method, Journal of Colloid and Interface Science, 237 (2001) 185-199. 

[63] K.D. Wantke, J. Örtegren, H. Fruhner, A. Andersen, H. Motschmann, The influence of the 
sublayer on the surface dilatational modulus, Colloids and Surfaces A: Physicochemical and 
Engineering Aspects, 261 (2005) 75-83. 

[64] H. Zhang, G. Xu, T. Liu, L. Xu, Y. Zhou, Foam and interfacial properties of Tween 20–bovine 
serum albumin systems, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 
416 (2013) 23-31. 

[65] K.D. Martínez, C. Carrera Sánchez, J.M. Rodríguez Patino, A.M.R. Pilosof, Interfacial and foaming 
properties of soy protein and their hydrolysates, Food Hydrocolloids, 23 (2009) 2149-2157. 

[66] D. Langevin, Influence of interfacial rheology on foam and emulsion properties, Advances in 
Colloid and Interface Science, 88 (2000) 209-222. 

[67] D. Varade, D. Carriere, L.R. Arriaga, A.L. Fameau, E. Rio, D. Langevin, W. Drenckhan, On the 
origin of the stability of foams made from catanionic surfactant mixtures, Soft Matter, 7 (2011) 
6557-6570. 

[68] A. Stocco, D. Carriere, M. Cottat, D. Langevin, Interfacial Behavior of Catanionic Surfactants, 
Langmuir, 26 (2010) 10663-10669. 

[69] D. Georgieva, A. Cagna, D. Langevin, Link between surface elasticity and foam stability, Soft 
Matter, 5 (2009) 2063-2071. 



34 

 

 70] K. Want e, K.  ał sa, K. L n enheimer, A relation  etween d nami  foam sta ilit  and s rfa e 
elasticity, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 82 (1994) 183-
191. 

[71] H. Fruhner, K.D. Wantke, K. Lunkenheimer, Relationship between surface dilational properties 
and foam stability, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 162 
(2000) 193-202. 

[72] J.-L. Joye, G.J. Hirasaki, C.A. Miller, Asymmetric Drainage in Foam Films, Langmuir, 10 (1994) 
3174-3179. 

[73] J.-L. Joye, G.J. Hirasaki, C.A. Miller, Numerical Simulation of Instability Causing Asymmetric 
Drainage in Foam Films, Journal of Colloid and Interface Science, 177 (1996) 542-552. 

[74] A.A. Sonin, A. Bonfillon, D. Langevin, Thinning of Soap Films: The Role of Surface Viscoelasticity, 
Journal of Colloid and Interface Science, 162 (1994) 323-330. 

[75] V. Bergeron, Disjoining Pressures and Film Stability of Alkyltrimethylammonium Bromide Foam 
Films, Langmuir, 13 (1997) 3474-3482. 

[76] A. Espert, R.v. Klitzing, P. Poulin, A. Colin, R. Zana, D. Langevin, Behavior of Soap Films Stabilized 
by a Cationic Dimeric Surfactant, Langmuir, 14 (1998) 4251-4260. 

[77] C. Stubenrauch,  .  iller, Sta ilit  of Foam Films and S rfa e  heolog :  An Os illating B   le 
Study at Low Frequencies, The Journal of Physical Chemistry B, 108 (2004) 6412-6421. 

[78] E. Santini, F. Ravera, M. Ferrari, C. Stubenrauch, A. Makievski, J. Krägel, A surface rheological 
study of non-ionic surfactants at the water–air interface and the stability of the corresponding 
thin foam films, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298 (2007) 
12-21. 

[79] I. Cantat, S. Cohen-Addad, F. Elias, F. Graner, R. Hohler, O. Pitois, F. Rouyer, A. Saint-jalmes, 
Foams: Structure and Dynamics, CPI Group (UK) Ltd, Croydon, 2013. 

[80] A. Bhattacharyya, F. Monroy, D. Langevin, J.-F. Argillier, Surface Rheology and Foam Stability of 
 ixed S rfa tant−Pol ele trol te Sol tions†, Langm ir, 16 (2000) 8727-8732. 

[81] C. Stubenrauch, K. Khristov, Foams and foam films stabilized by CnTAB: Influence of the chain 
length and of impurities, Journal of Colloid and Interface Science, 286 (2005) 710-718. 

[82] R. Hook, On holes (black film) in soap bubbles, Commun. Roy. Soc (1672). 
[83] I. Newton, Optics, Dover, London, 1952. 
[84] J.A.F. Plateau, Statique experimentale et theoryque des liquides soumis aux seules forces 

molecularires, Gautier-Villars, Trubner et cie, F. Clemm, 2 Vols (1873). 
[85] J.W. Gibbs, On the Equilibrium of Heterogeneous Substances,  Trans. Connecticut Acad., III 

(1876) pp 108 - 248 and (1878) pp 343 - 524, as reprinted in The Scientific Papers of J. Willard 
Gibbs, Vol. I. Thermodynamics., Dover Publications, New York, 1961, pp. 302. 

[86] G. Gochev, D. Platikanov, R. Miller, Chronicles of foam films, Advances in Colloid and Interface 
Science. 

[87] B.V. Derjaguin, Theory of particles interaction in presence of double electric layers and 
aggregation stability of liophobic colloids and disperse systems, Bull. Acad. Sci. URSS Ser, 5 
(1937) 1153-1164. 

[88] B. Derjaguin, On the repulsive forces between charged colloid particles and on the theory of 
slow coagulation and stability of lyophobe sols, Transactions of the Faraday Society, 35 (1940) 
203-215. 

[89] B. Vance, Forces and structure in thin liquid soap films, Journal of Physics: Condensed Matter, 
11 (1999) R215. 

[90] K.J. Mysels, K. Shinoda, S. Frankel, Soap films: studies of their thinning, Pergamon Press, London, 
New York, Pairs, Los Angeles, 1959. 

[91] S. Cosima, K. Regine von, Disjoining pressure in thin liquid foam and emulsion films—new 
concepts and perspectives, Journal of Physics: Condensed Matter, 15 (2003) R1197. 

[92] N.V. Churaev, Derjaguin's disjoining pressure in the colloid science and surface phenomena, 
Advances in Colloid and Interface Science, 104 (2003) xv-xx. 



35 

 

[93] B.V. Derjaguin, M.M. Kussakov, Experimental investigations on solvation of surfaces with 
application to the development of a mathematical theory of the stability of lyophobic colloids, 
Bull. Acad. Sci. URSS Ser Chim, 5 (1937) 1119-1152. 

[94] B.V. Derjaguin, M.M. Kussakov, Anomalous properties of thin polymolecular - films V an 
experimental investigation of polymolecular solvate (adsorbed) films as applied to the 
development of a mathematical theory of the stability of colloids, Acta Phys. URSS, 10 (1939) 
25. 

[95] B.V. Derjaguin, L.D. Landau, Theory of the stability of strongly charged lyophobic sols and of the 
adhesion of strongly charged particles in solution of electrolytes, Acta Phys. URSS, 14 (1941) 
633-662. 

[96] E.J.W. Verwey, Theory of the Stability of Lyophobic Colloids, The Journal of Physical and Colloid 
Chemistry, 51 (1947) 631-636. 

[97] D. Exerowa, P.M. Kruglyakov, Foam and Foam Films - Theory, Experiment, Application, Elsevier, 
Amsterdam, 1998. 

[98] B.V. Derjaguin, A.S. Titijevskaya, Static and kinetic stability of free films and froths, Progress in 
Surface Science, 43 (1993) 74-82. 

[99] B.V. Derjaguin, A.S. Titijevskaia, I.I. Abricossova, A.D. Malkina, Investigations of the forces of 
interaction of surfaces in different media and their application to the problem of colloid 
stability, Discussions of the Faraday Society, 18 (1954) 24-41. 

[100] J.T.G. Overbeek, BLACK SOAP FILMS1, The Journal of Physical Chemistry, 64 (1960) 1178-1183. 
[101] E.M. Duyvis, The equilibrium thickness of free liquid films, University Utrecht, 1962. 
[102] A. Scheludko, D. Platikanov, E. Manev, Disjoining pressure in thin liquid films and the electro-

magnetic retardation effect of the molecule dispersion interactions, Discussions of the 
Faraday Society, 40 (1965) 253-265. 

[103] J. Lyklema, K.J. Mysels, A Study of Double Layer Repulsion and van der Waals Attraction in 
Soap Films, Journal of the American Chemical Society, 87 (1965) 2539-2546. 

[104] A. Scheludko, D. Exerowa, Über den elektrostatischen Druck in Schaumfilmen aus wässerigen 
Elektrolytlösungen, Kolloid-Zeitschrift, 165 (1959) 148-151. 

[105] A. Scheludko, D. Exerowa, Über den elektrostatischen und van der Waalsschen zusätzlichen 
Druck in wässerigen Schaumfilmen, Kolloid-Zeitschrift, 168 (1960) 24-28. 

[106] P.R. Garrett, The Science of Defoaming: Theory, Experiment and Applications,  Surfactant 
science series volume, CRC Press Taylor&Francis Group, Boca Raton, 2013. 

[107] N.D. Denkov, Mechanisms of Foam Destruction by Oil-Based Antifoams, Langmuir, 20 (2004) 
9463-9505. 

[108] P.R. Garrett, Defoaming: Theory and Industrial Applications New York, 1993. 
[109] D.T. Wasan, S.P. Christiano, Foams and Antifoams: A thin film approach, in: K.S. Birdi (Ed.) 

Handbook of Surface and Colloid Chemistry, CRC Press, New York, 1997. 
[110] R.K. Prud'homme, S.A. Khan, Foams: theory, measurements, and applications, Marcel Dekker, 

New York, 1996. 
[111] T. Wei, Y. Peng, S. Farrokhpay, Froth stability of coal flotation in saline water, Mineral 

Processing and Extractive Metallurgy (Trans. Inst. Min Metall. C), (2014). 
[112] M. Zanin, I. Ametov, S. Grano, L. Zhou, W. Skinner, A study of mechanisms affecting 

molybdenite recovery in a bulk copper/molybdenum flotation circuit, International Journal of 
Mineral Processing, 93 (2009) 256-266. 

[113] L. Lobo, D.T. Wasan, Mechanisms of aqueous foam stability in the presence of emulsified non-
aqueous-phase liquids: structure and stability of the pseudoemulsion film, Langmuir, 9 (1993) 
1668-1677. 

[114] V. Bergeron, M.E. Fagan, C.J. Radke, Generalized entering coefficients: a criterion for foam 
stability against oil in porous media, Langmuir, 9 (1993) 1704-1713. 



36 

 

[115] A.S. Aronson, V. Bergeron, M.E. Fagan, C.J. Radke, The influence of disjoining pressure on foam 
stability and flow in porous media, Colloids and Surfaces A: Physicochemical and Engineering 
Aspects, 83 (1994) 109-120. 

[116] V. Bergeron, C.J. Radke, Disjoining pressure and stratification in asymmetric thin-liquid films, 
Colloid & Polymer Sci, 273 (1995) 165-174. 

[117] V. Bergeron, J.E. Hanssen, F.N. Shoghl, Thin-film forces in hydrocarbon foam films and their 
application to gas-blocking foams in enhanced oil recovery, Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 123–124 (1997) 609-622. 

[118] E.S. Basheva, D. Ganchev, N.D. Denkov, K. Kasuga, N. Satoh, K. Tsujii, Role of Betaine as Foam 
Booster in the Presence of Silicone Oil Drops, Langmuir, 16 (2000) 1000-1013. 

[119] E.S. Basheva, S. Stoyanov, N.D. Denkov, K. Kasuga, N. Satoh, K. Tsujii, Foam Boosting by 
Amphiphilic Molecules in the Presence of Silicone Oil, Langmuir, 17 (2001) 969-979. 

 120] K.G.  arinova, N.D. Den ov, Foam Destr  tion     ixed Solid−Li  id Antifoams in Solutions of 
Al  l Gl  oside:  Ele trostati  Intera tions and D nami  Effe ts, Langm ir, 17 (2001) 2 26-
2436. 

[121] L. Arnaudov, N.D. Denkov, I. Surcheva, P. Durbut, G. Broze, A. Mehreteab, Effect of Oily 
Additives on Foamability and Foam Stability. 1. Role of Interfacial Properties, Langmuir, 17 
(2001) 6999-7010. 

[122] A. Hadjiiski, S. Tcholakova, N.D. Denkov, P. Durbut, G. Broze, A. Mehreteab, Effect of Oily 
Additives on Foamability and Foam Stability. 2. Entry Barriers, Langmuir, 17 (2001) 7011-7021. 

[123] K.G. Marinova, N.D. Denkov, P. Branlard, Y. Giraud, M. Deruelle, Optimal Hydrophobicity of 
Sili a in  ixed Oil−Sili a Antifoams, Langm ir, 18 (2002) 3399-3403. 

[124] K.G. Marinova, N.D. Denkov, S. Tcholakova, M. Deruelle, Model Studies of the Effect of Silica 
H dropho i it  on the Effi ien   of  ixed Oil−Sili a Antifoams, Langm ir, 18 (2002) 8761-
8769. 

[125] N.D. Denkov, S. Tcholakova, K.G. Marinova, A. Hadjiiski, Role of Oil Spreading for the Efficiency 
of  ixed Oil−Solid Antifoams, Langm ir, 18 (2002) 5810-5817. 

[126] K.G. Marinova, S. Tcholakova, N.D. Denkov, S. Roussev, M. Deruelle, Model Studies on the 
 e hanism of Dea tivation (Exha stion) of  ixed Oil−Sili a Antifoams, Langm ir, 19 (2003) 
3084-3089. 

[127] N.D. Denkov, K.G. Marinova, C. Christova, A. Hadjiiski, P. Cooper, Mechanisms of Action of 
 ixed Solid−Li  id Antifoams:  3. Exha stion and  ea tivation, Langm ir, 16 (2000) 2 1 -
2528. 

[128] A. Hadjiiski, S. Tcholakova, I.B. Ivanov, T.D. Gurkov, E.F. Leonard, Gentle Film Trapping 
Technique with Application to Drop Entry Measurements, Langmuir, 18 (2002) 127-138. 

[129] R. Aveyard, J.H. Clint, Liquid Droplets and Solid Particles at Surfactant Solution Interfaces, J. 
CHEM. SOC. FARADAY TRANS., 91 (1995) 2681-2697. 

[130] I.B. Ivanov, Thin liquid films: fundamentals and applications, Marcel Dekker, New York, 1988. 
[131] K. Koczo, L.A. Lobo, D.T. Wasan, Effect of oil on foam stability: Aqueous foams stabilized by 

emulsions, Journal of Colloid and Interface Science, 150 (1992) 492-506. 
[132] W.D. Harkins, A General Thermodynamic Theory of the Spreading of Liquids to Form Duplex 

Films and of Liquids or Solids to Form Monolayers, The Journal of Chemical Physics, 9 (1941) 
552-568. 

[133] S. Ross, The Inhibition of Foaming. II. A Mechanism for the Rupture of Liquid Films by Anti-
foaming Agents, The Journal of Physical and Colloid Chemistry, 54 (1950) 429-436. 

[134] P.R. Garrett, J. Davis, H.M. Rendall, An experimental study of the antifoam behaviour of 
mixtures of a hydrocarbon oil and hydrophobic particles, Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 85 (1994) 159-197. 

[135] R. Aveyard, P. Cooper, P.D.I. Fletcher, C.E. Rutherford, Foam Breakdown by Hydrophobic 
Particles and Nonpolar Oil, Langmuir, 9 (1993) 604-613. 



37 

 

[136] R. Aveyard, B.P. Binks, P.D.I. Fletcher, T.G. Peck, C.E. Rutherford, Aspects of aqueous foam 
stability in the presence of hydrocarbon oils and solid particles, Advances in Colloid and 
Interface Science, 48 (1994) 93-120. 

[137] G.C. Frye, J.C. Berg, Mechanisms for the Synergistic Antifoam Action by Hydrophobic Solid 
Particles in Insoluble Liquids, Journal of Colloid and Interface Science, 130 (1989) 54-59. 

[138] V. Bergeron, P. Cooper, C. Fischer, J. Giermanska-Kahn, D. Langevin, A. Pouchelon, 
Polydimethylsiloxane (PDMS)-based antifoams, Colloids and Surfaces A: Physicochemical and 
Engineering Aspects, 122 (1997) 103-120. 

[139] R. Aveyard, B.P. Binks, P.D.I. Fletcher, T.-G. Peck, P.R. Garrett, Entry and spreading of alkane 
drops at the air/surfactant solution interface in relation to foam and soap film stability, 
Journal of the Chemical Society, Faraday Transactions, 89 (1993) 4313-4321. 

 1 0] B.K. Jha, S.P. Christiano, D.O. Shah, Sili one Antifoam Performan e:  Correlation with Spreading 
and Surfactant Monolayer Packing, Langmuir, 16 (2000) 9947-9954. 

[141] V. Bergeron, D. Langevin, Monolayer Spreading of Polydimethylsiloxane Oil on Surfactant 
Solutions, Physical Review Letters, 76 (1996) 3152-3155. 

[142] H. Zhang, C.A. Miller, P.R. Garrett, K.H. Raney, Mechanism for defoaming by oils and calcium 
soap in aqueous systems, Journal of Colloid and Interface Science, 263 (2003) 633-644. 

[143] A. Saint-Jalmes, Physical chemistry in foam drainage and coarsening, Soft Matter, 2 (2006) 836-
849. 

[144] S. Hutzler, D. Weaire, S. Shah, Bubble sorting in a foam under forced drainage, Philosophical 
Magazine Letters, 80 (2000) 41-48. 

[145] S. Hutzler, D. Weaire, Foam coarsening under forced drainage, Philosophical Magazine Letters, 
80 (2000) 419-425. 

[146] S. Hilgenfeldt, S.A. Koehler, H.A. Stone, Dynamics of Coarsening Foams: Accelerated and Self-
Limiting Drainage, Physical Review Letters, 86 (2001) 4704-4707. 

[147] A.E. Roth, C.D. Jones, D.J. Durian, Bubble statistics and coarsening dynamics for quasi-two-
dimensional foams with increasing liquid content, PHYSICAL REVIEW E, 87 (2013) 042304. 

[148] S.-J. Arnaud, L. Dominique, Time evolution of aqueous foams: drainage and coarsening, Journal 
of Physics: Condensed Matter, 14 (2002) 9397. 

[149] V. Carrier, A. Colin, Coalescence in Draining Foams, Langmuir, 19 (2003) 4535-4538. 
[150] G. Maurdev, A. Saint-Jalmes, D. Langevin, Bubble motion measurements during foam drainage 

and coarsening, Journal of Colloid and Interface Science, 300 (2006) 735-743. 
[151] I.B. Ivanov, D.S. Dimitrov, Hydrodynamics of thin liquid films, Colloid & Polymer Sci, 252 (1974) 

982-990. 
[152] E. Manev, A. Scheludko, D. Exerowa, Effect of surfactant concentration on the critical 

thicknesses of liquid films, Colloid & Polymer Sci, 252 (1974) 586-593. 
[153] A. Sharma, E. Ruckenstein, Critical thickness and lifetimes of foams and emulsions: Role of 

surface wave-induced thinning, Journal of Colloid and Interface Science, 119 (1987) 14-29. 
[154] A. Vrij, J.T.G. Overbeek, Rupture of thin liquid films due to spontaneous fluctuations in 

thickness, Journal of the American Chemical Society, 90 (1968) 3074-3078. 
[155] L. Wang, R.-H. Yoon, Role of hydrophobic force in the thinning of foam films containing a 

nonionic surfactant, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 282–
283 (2006) 84-91. 

[156] D. Weaire, S. Hutzler, G. Verbist, E. Peters, A Review of Foam Drainage,  Advances in Chemical 
Physics, John Wiley & Sons, Inc.2007, pp. 315-374. 

[157] S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Foam drainage on the microscale: I. Modeling flow 
through single Plateau borders, Journal of Colloid and Interface Science, 276 (2004) 420-438. 

[158] V. Carrier, S. Destouesse, A. Colin, Foam drainage: A film contribution?, PHYSICAL REVIEW E, 65 
(2002) 061404. 

[159] R.A. Leonard, R. Lemlich, A study of interstitial liquid flow in foam. Part I. Theoretical model 
and application to foam fractionation, AIChE Journal, 11 (1965) 18-25. 



38 

 

[160] R.A. Leonard, R. Lemlich, A study of interstitial liquid flow in foam. Part II. Experimental 
verification and observations, AIChE Journal, 11 (1965) 25-29. 

[161] G. Verbist, D. Weaire, A.M. Kraynik, The foam drainage equation, Journal of Physics: 
Condensed Matter, 8 (1996) 3715. 

[162] V. Goldshtein, I. Goldfarb, I. Shreiber, Drainage waves structure in gas-liquid foam, 
International Journal of Multiphase Flow, 22 (1996) 991-1003. 

[163] A.V. Nguyen, Liquid Drainage in Single Plateau Borders of Foam, Journal of Colloid and 
Interface Science, 249 (2002) 194-199. 

[164] L. Randriamanjatosoa, M. Zanin, S. Grano, Use of the foam drainage equation to model water 
flow in flotation froth,  CHEMECA, Engineering Australia, Melbourne, Australia, 2007, pp. 300-
306. 

[165] E. Lorenceau, N. Louvet, F. Rouyer, O. Pitois, Permeability of aqueous foams, THE EUROPEAN 
PHYSICAL JOURNAL E, 28 (2009) 293-304. 

[166] A. Saint-Jalmes, Y. Zhang, D. Langevin, Quantitative description of foam drainage: Transitions 
with surface mobility, THE EUROPEAN PHYSICAL JOURNAL E, 15 (2004) 53-60. 

[167] S.J. Neethling, J.J. Cilliers, Solids motion in flowing froths, Chemical Engineering Science, 57 
(2002) 607-615. 

[168] H.T. Lee, S.J. Neethling, J.J. Cilliers, Particle and liquid dispersion in foams, Colloids and 
Surfaces A: Physicochemical and Engineering Aspects, 263 (2005) 320-329. 

[169] P. Stevenson, S. Ata, G.M. Evans, Convective–dispersive gangue transport in flotation froth, 
Chemical Engineering Science, 62 (2007) 5736-5744. 

[170] N.A. Bennani, A. Fujiwara, S. Takagi, Y. Matsumoto, Coarse particles sedimentation within a 
quasi two-dimensional rising foam, Colloids and Surfaces A: Physicochemical and Engineering 
Aspects, 309 (2007) 7-12. 

[171] F. Rouyer, N. Louvet, C. Fritz, O. Pitois, Transport of coarse particles in liquid foams: coupling of 
confinement and buoyancy effects, Soft Matter, 7 (2011) 4812-4820. 

[172] F. Rouyer, C. Fritz, O. Pitois, The sedimentation of fine particles in liquid foams, Soft Matter, 6 
(2010) 3863-3869. 

[173] N. Louvet, R. Höhler, O. Pitois, Capture of particles in soft porous media, PHYSICAL REVIEW E, 
82 (2010) 041405. 

[174] B.P. Binks, Particles as surfactants—similarities and differences, Current Opinion in Colloid & 
Interface Science, 7 (2002) 21-41. 

[175] M. Abkarian, A.B. Subramaniam, S.-H. Kim, R.J. Larsen, S.-M. Yang, H.A. Stone, Dissolution 
Arrest and Stability of Particle-Covered Bubbles, Physical Review Letters, 99 (2007) 188301. 

[176] A. Cervantes Martinez, E. Rio, G. Delon, A. Saint-Jalmes, D. Langevin, B.P. Binks, On the origin 
of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic 
surface properties, Soft Matter, 4 (2008) 1531-1535. 

[177] O. Pitois, M. Buisson, X. Chateau, On the collapse pressure of armored bubbles and drops, THE 
EUROPEAN PHYSICAL JOURNAL E, 38 (2015) 1-7. 

[178] A. Britan, M. Liverts, G. Ben-Dor, S.A. Koehler, N. Bennani, The effect of fine particles on the 
drainage and coarsening of foam, Colloids and Surfaces A: Physicochemical and Engineering 
Aspects, 344 (2009) 15-23. 

[179] R.M. Guillermic, A. Salonen, J. Emile, A. Saint-Jalmes, Surfactant foams doped with laponite: 
unusual behaviors induced by aging and confinement, Soft Matter, 5 (2009) 4975-4982. 

[180] F. Carn, A. Colin, O. Pitois, M. Vignes-Adler, R. Backov, Foam Drainage in the Presence of 
Nanoparticle-Surfactant Mixtures, Langmuir, 25 (2009) 7847-7856. 

[181] S. Guignot, S. Faure, M. Vignes-Adler, O. Pitois, Liquid and particles retention in foamed 
suspensions, Chemical Engineering Science, 65 (2010) 2579-2585. 

[182] F. Carn, A. Colin, O. Pitois, R. Backov, Foam drainage study during plateau border 
mineralisation, Soft Matter, 8 (2012) 61-65. 



39 

 

[183] Y. Khidas, B. Haffner, O. Pitois, Capture-induced transition in foamy suspensions, Soft Matter, 
10 (2014) 4137-4141. 

[184] B. Haffner, Y. Khidas, O. Pitois, Flow and jamming of granular suspensions in foams, Soft 
Matter, 10 (2014) 3277-3283. 

[185] F. Rouyer, B. Haffner, N. Louvet, Y. Khidas, O. Pitois, Foam clogging, Soft Matter, 10 (2014) 
6990-6998. 

[186] M. Durand, G. Martinoty, D. Langevin, Liquid flow through aqueous foams: From the plateau 
border-dominated regime to the node-dominated regime, Phys. Rev. E: Stat. Phys., Plasmas, 
Fluids, Relat. Interdiscip. Top., 60 (1999) R6307-R6308. 

[187] A.V. Nguyen, H.J. Schulze, Colloidal Science of Flotation,  Surfactant Science Series, Marcel 
Dekker, Inc, 2004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



40 

 

Chapter 3: Foam Column Kinetics – Analogy to Reaction 

Kinetics 

 

Jianlong Wang
1
, Anh V Nguyen

1*
 and Saeed Farrokhpay

2 

1
School of Chemical Engineering, University of Queensland, Brisbane, Queensland 4072, 

Australia 
2
JKMRC, University of Queensland, Brisbane, Queensland 4072, Australia  

  
*
Correspondence: anh.nguyen@eng.uq.edu.au  

 

 

Highlights: 

• A model is proposed to relate foam column kinetics with reaction kinetics to 

interrelate the growth, drainage and collapse of foams. 

• The growth and collapse of the foams and the transport of the gas and liquid within 

the growing foams are simulated. 

• Two methods to calculate the foam collapse constant 2

2

ndk  are proposed and discussed. 

 

 

Graphical abstract: 

 

 

mailto:anh.nguyen@eng.uq.edu.au


41 

 

Abstract 

This chapter presents a novel kinetic model that interrelates the growth, drainage and collapse 

of foams to simulate the evolution of foam height, liquid fraction, transport of liquid and gas 

in growing foams and foam collapse by analogy with reaction kinetics. The model assumes 

that the foam growth rate is determined by the competition between foam formation and 

collapse. The foam column kinetics is categorized as zeroth, first and second order, according 

to the dependence of the foam collapse rate on the foam volume or height. The model 

predictions of foam growth and collapse show good agreement with the experimental results. 

The predictions also show that the average liquid fraction decreases with increasing gas 

velocity, despite the increase in the overall liquid content in the foam. At relatively low gas 

velocity, the foam collapse rate predicted for growing foams is very close to the rate for 

standing foams. The discrepancy of the collapse rates obtained from growing and collapsing 

foams at higher gas velocity is caused by the higher reflux of surfactants in the growing 

foams relative to the reflux in standing foams, which leads to increased surfactant 

accumulation on the top of rising foams and, in turn, a lower foam collapse rate. This chapter 

illustrates the complexity of the behavior of growing foams, which is determined by a 

combination of mechanisms.  

Keywords: foams, modeling, growth, drainage, collapse, kinetics 

1. Introduction 

         In textbooks [2, 3], studies on foams are categorized according to the foam structure, 

birth (foamability), life (foam stability) and death (drainage, coarsening, rupture and 

coalescence) of foams and foam rheology. Although it is reasonable to isolate each category 

for convenience, the interrelation between the different categories of foam properties should 

never be ignored. For example, foam drainage and coarsening have been found to be 

interrelated [4-8]. Foam column kinetics describes the transient behaviors of foams, including 

growth, drainage and collapse. Foam column kinetics is crucially important for many 

industrial applications. For example, the precise control of the froth phase becomes 

particularly important in froth flotation because of the strong dependence of flotation 

performance on froth stability. Foam column kinetics has been used to predict the froth rising 

velocity and to calculate the fraction of bubbles bursting on the top surface of the froth, 

which is a key parameter in froth modeling and plant operations [9-12]. Foam column 

kinetics has also been applied in glass-melting furnaces [13-16]. Growing foams have been 

simulated based on the foam drainage equation and the bursting of bubbles on the top surface 
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of the foam [17, 18]. In these simulations, the foam collapse was modeled by assuming that 

the liquid films will rupture when the critical pressure they experience is reached. Although 

the fundamental physics governing the foam collapse process have been elucidated, a 

significant discrepancy between the simulated and experimental foam height values remains 

[17]. This discrepancy has been described as follows: “In a real foam, the films are unlikely 

to burst at a single exerted pressure, but rather are likely to exhibit a distribution in the 

bursting probabilities. … This distribution in the film stabilities probably accounts for the 

more gentle transition from not bursting to bursting seen in the experiments.”  

          In this paper, instead of assuming that foam films begin to burst at a critical exerted 

pressure, we assume that the collapse of a foam follows reaction kinetics, which relates the 

foam collapse rate to the foam height. This correlation also corresponds to the explanation of 

the distribution of the film stabilities in [17]. For the first time, we derive a model for a 

growing foam that includes the effect of foam collapse on the foam growth by analogy with 

reaction kinetics. Then, we categorize the ‘foam collapse reaction’ as zeroth, first, and second 

order to reconcile the existing models for growing foams with our modeling framework. 

Together with the hydrodynamic theory of rising foams [19], we then interrelate the growth, 

drainage and collapse of foams using a series of mass balance equations for the foam growth, 

the evolution of the liquid fraction with time and the transport of liquid and gas in growing 

foams. Finally, we present the simulation results and make comparisons with the foam 

growth and collapse data reported in [17].  

2. Modeling 

2.1. Foam growth  

         We presume that the foam growth kinetics is controlled by two simultaneous processes: 

(1) foam formation and (2) foam collapse. It should be noted that no foam overflows from the 

foam column. The conservation balance for the gas phase gives: 

1 2 3G G G G  
                                                                                                                   (1) 

where G , 1G , 2G  and 3G  are the amounts of gas entering the foam column during agitation, 

gas of the bubbles in the pulp phase, gas of the bubbles in the foam and gas of the bursting 

bubbles leaving the foam, respectively. Here, we first assume the following: (1) the gas in the 
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pulp phase instantly attains a steady state, i.e.,  1G const , where the brackets represent the 

volume quantity. Likewise, the conservation balance for the liquid is described by: 

1 2 3L L L L                                                                                                                       (2) 

where L , 1L , 2L  and 3L  are the total amount of liquid in the system, the liquid in the pulp 

phase, the liquid between the un-burst bubbles in the foam and the liquid from the bursting 

bubbles, respectively. The second assumption is as follows: (2) the amounts of liquid among 

the un-burst bubbles and from the bursting bubbles are infinitesimally small relative to the 

amount of liquid in the pulp phase, i.e.,  1L const . 

         Foam growth kinetics can be described schematically and analogously as two series-

parallel “reactions” as follows: 

1

1 1

k
L G F                                                                                                                  (3) 

2

3 3

k
F L G                                                                                                                     (4) 

where 2 2F L G   is the foam, and 1k  and 2k  are foam formation and foam collapse 

constants, respectively. Eq. (3) is related to the foam formation process, whereas Eq. (4) is 

related to the foam collapse process. Consider the ‘foam formation reaction’ illustrated in Eq. 

(3): the foam formation in the foam column can be described by analogy to a chemical 

reaction [20]. Because  1L  remains approximately constant, it can be included in the rate 

constant 1k  to obtain a pseudo- -order foam formation rate equation: 

 
 1 1

d F
k G

dt


                                                                                                                     (5) 

We assume that the rate of bubbles bursting on the top of the foam layer and inside the foam 

is insignificant relative to the rate of bubbles entering the foam from the liquid phase. 

Therefore, we have the following approximation: 

 
 1 1

1

gvd F
k G

dt




 


                                                                                                        (6) 
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where   is the liquid fraction of the foam. The ‘foam collapse reaction’ in Eq. (4) must be 

considered during foam growth when bubbles burst. Therefore, the foam growth rate in Eq. 

(6) can be developed as: 

 
 2

1

gvd F
k F

dt




 


                                                                                                       (7) 

where   is the order of the ‘foam collapse reaction’.  

2.1.1 Zeroth-order ‘foam collapse reaction’ 

          In a zeroth-order foam collapse reaction, the collapse rate is independent of foam 

volume or height. Therefore, the second term on the right-hand side of Eq. (7) is replaced by 

a constant, k : 

 
1

gvd F
k

dt 
 


                                                                                                                    (8) 

A zeroth-order reaction applies to the foam growth regime in which the equilibrium foam 

volume or height cannot be attained. For the stable foams that neither experience internal 

coalescence nor burst at the top surface, the foam growth rate equals / (1 )gv   [13, 17]. 

Another case in this regime occurs when the bubbles begin to burst once the Plateau border 

size at the top of the foam reaches the critical value, but the foam continues to grow because 

of a sufficiently high gas flow rate, resulting in a foam growth rate that is smaller than the 

one in the former case [17]: 

 
1g crit

d F
v A

dt
                                                                                                                  (9) 

1
3 PB

g

C





                                                                                                                             (10) 

where critA ,  , g  and   are the critical Plateau border area, the interstitial liquid density, the 

acceleration due to gravity and the interstitial liquid dynamic viscosity, respectively. PBC  is 

the Plateau border drag coefficient, which is 50 for the immobile interface and decreases with 

increasing interfacial mobility. Please note that the liquid content of foams is negligible in Eq. 

(9).  
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2.1.2 First-order ‘foam collapse reaction’ 

         In the first-order foam collapse reaction, the foam collapse rate is proportional to the 

foam volume or height such that the following foam growth rate is obtained: 

 
 1

2
1

g st
vd F

k F
dt 

 


                                                                                                            (11) 

In the foam growth regime in which the foam will reach the equilibrium volume or height, 

the foam growth rate will equal zero when the steady state is attained, making the maximum 

foam volume or height equal to: 

  1max
2(1 )

g

st

v
F

k



                                                                                                                (12) 

where   is the average liquid fraction of the foam layer in the steady state. Integrating Eq. 

(11) with the low liquid content assumption ( 0  ) gives the first-order foam growth 

kinetics: 

   
1
2

max
(1 )

stk t
F F e


                                                                                                           (13) 

Furthermore, Eq. (13) can be recast as: 

    /

max
(1 )tF F e                                                                                                             (14) 

where  is the dynamic stability factor of the foam defined by Bikerman [21]. 

Actually, Eq. (14) is the empirical equation used to describe the froth growth of froth 

flotation in the literature [9-11, 22]. For the first time, we give a fundamental basis for this 

empirical equation. That is, the foam growth rate is controlled by the competition between 

foam formation and foam collapse.  

2.1.3 Second-order ‘foam collapse reaction’ 

         In the second-order foam collapse reaction, the foam collapse rate is proportional to the 

foam volume or height squared, which gives the following foam growth rate: 

 
 

22

2
1

g nd
vd F

k F
dt 

 


                                                                                                    (15) 

21/ k 
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Again, the foam growth rate equals zero when the steady state is attained, and the maximum 

equilibrium foam volume or height is expressed as: 

 

1

2

2max
2(1 )

g

nd

v
F

k

 
  

 
                                                                                                       (16) 

2.2. Liquid and gas transport in growing foams 

          In this section, we combine the foam collapse reaction and hydrodynamic theory of 

rising foam [23] to simulate the liquid and gas transport in growing foams. Please note that 

the simulation in this study only applies to the foam system that can attain an equilibrium 

volume or height.  

2.2.1 Assumptions and definitions  

         Understanding the practical growth of foams is challenging because they are complex 

systems with interrelated processes such as bubble coalescence within and on top of the foam 

and foam drainage. Thus, to proceed with the simulation, the following assumptions are made: 

(1) no bubble coalescence occurs within the foams, and thus, the bubble size remains constant; 

(2) the foam is one dimensional; (3) the second-order ‘foam collapse reaction’ applies; (4) all 

physical-chemical constants are considered to be fixed; and (5) the gas bubbles in the liquid 

phase instantly achieve steady state, i.e.,  1G const . Figure 1 shows the schematic diagram 

of growing foams coupled with foam collapse.  

 

 

 

 

 

 

 

Figure 1. Schematic diagram of a pneumatic foam being generated by bubbling coupled with 

foam collapse 
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2.2.2 Mass balance 

          By referring to Figure 1 and applying the second-order ‘foam collapse reaction’, we 

can express the foam height growth rate as follows: 

2 2

2
1

g nd
jdH

k H
dt 

 


                                                                                                             (17) 

where H  is the foam height at time t . The rate constant 2

2

ndk  in Eq. (15) is expressed as: 

2

2 2

max (1 )

gnd
j

k
H 




                                                                                                              (18) 

It is widely accepted that the liquid fraction in the foam is spatially variant and decreases to 

an asymptote within a few centimeters up the foam column [17]. Therefore, the average 

liquid fraction in the foam also changes with time. By applying the chain rule with the 

expression of the liquid profile in the foam in [19], the change in the average liquid fraction 

with time is obtained: 

1
2 2

22
1

1 1

q
g g ndb

f n

b

d d dH

dt dH dt

j jp gr
j k H

q gr m

 

  

    



 

      
        

       

                                 (19) 

The derivation of 
d

dH


 is shown in Appendix A. 

The following differential equations can be obtained by applying mass balance to the liquid 

among un-burst bubbles in the foam, 2L , the gas of bubbles in the foam, 2G , the liquid from 

the bursting bubbles in the foam, 3L , and the gas of bursting bubbles leaving the foam, 3G : 

2 22
2

1

g nd
jdL dH

A k H A
dt dt

 


 
   

 
                                                                                     (20) 

2 22
2(1 ) (1 )

1

g nd
jdG dH

A k H A
dt dt

 


 
     

 
                                                                     (21) 
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2 23
2

nddL
k H A

dt
                                                                                                                  (22) 

2 23
2(1 ) nddG

k H A
dt

                                                                                                         (23) 

where A  is the cross section of the foam column, which is equal to 
47 10 2m , as reported 

in [17]. Please note that an equation of the mass balance for the bubbling gas is given in [1], 

which combines Eqs. (21) and (23). 

2.2.3 Boundary conditions 

          At time zero, the following properties equal zero: 

2 2 3 3 0H L G L G                                                                                                      (24) 

The maximum possible liquid fraction defined in [19] is used as the boundary condition: 

1
*

1

n

n






                                                                                                                              (25) 

Please note that the liquid fraction of the foam at the foam-liquid interface was also 

considered to be 0.26 for the foams with close-packed and mono-dispersed bubbles, and the 

liquid fraction of the foam at the foam-liquid interface was set as 0.36 for the foams with 

random and mono-dispersed bubbles [24].  

2.3. Foam collapse in standing foam column 

         The equation for the simulation of foam collapse can be obtained using Eq. (17), with 

the gas flow rate, gj , set to zero. Because there is no liquid flux into the standing foam 

column, the low liquid content assumption, 0  , applies. Finally, we arrive at: 

2 2

2

nd

burst

dH
k H

dt

 
  

 
                                                                                                            (26) 

Integrating Eq. (26), the equation for foam height vs. time during foam collapse is obtained: 

2

2

max

1 1 ndk t
H H

                                                                                                                   (27) 
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The half-life of the collapsing foam is: 

1/2 2

2 max

1
nd

t
k H

                                                                                                                       (28) 

It should be noted that the foam collapse rate has been expressed as [25]: 

/
dH

k t
dt

                                                                                                                             (29) 

Therefore, the foam collapse process can be expressed as: 

 max 1/2/ ln / 0.5H H t t                                                                                                  (30) 

where 1/2t  is the half foam decay time and   is a constant. 1/2t  can be obtained by fitting the 

foam or froth collapse data [12, 26]. Here, we note that Eqs. (29) and (30) are simply 

empirical equations and that there is no fundamental basis for their development. Instead, we 

propose Eqs. (27) and (28) on the basis of foam collapse kinetics. The half foam decay time, 

1/2t , can also be calculated by Eq. (28). 

3. Results and discussion 

         In this section, we show the interrelation of foam drainage, growth and collapse. The 

data of forced drainage experiments and the growth and collapse of foams stabilized by 4 ml/l 

Teepol solution in [17] are used to proceed with the simulation.  

3.1. Forced drainage experiments 

         The liquid superficial drainage rate from a foam, dj , can be expressed as a Stokes-type 

number, Sk , as a power-law function of the liquid volumetric fraction,  [23]: 

nSk m                                                                                                                               (31) 

where m  and n  are two dimensionless adjustable constants that are dependent on the 

surfactant type and concentration and can be measured by forced drainage experiments. Sk  

is expressed as: 

2

d

b

j
Sk

gr




                                                                                                                             (32) 
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To obtain the foam drainage parameters m  and n , the forced drainage data for a 4 ml/l 

Teepol solution in [17] were re-plotted in Figure 2 to express the Stokes-type number, Sk , as 

a power-law function of the liquid volumetric fraction,   [23].  

 

 

Figure 2. Sk  vs.   re-plotted from a forced drainage experiment on a foam created from a 4 

ml/l Teepol solution [17], where 1  cP , 1000  kg 3m
, and 1br  mm , with 

1.580.0065Sk   superimposed on the plot. 

  The superficial liquid velocity up the column, fj , can be expressed as [19]: 

2

1 1

g g nb
f d

j j gr
j j m

  


  
   

 
                                                                                 (33) 

At equilibrium, the following relationships can be established [19]: 

0
fdj

d
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fj  can be readily solved using Eq. (33) together with Eq. (34), giving 
101.33 10fj   , 

103.16 10 , 107.35 10  and 92.09 10 /m s  at the superficial gas velocities of 58 10 , 

41.1 10 , 41.5 10  and 42.2 10 /m s , respectively. 

3.2. Simulation results  

3.2.1 Foam growth 

          The change in the foam height with time can be simulated by solving Eqs. (17)–(19). 

Please note that the maximum equilibrium foam height, maxH , is required to calculate the 

rate constant of foam collapse, 2

2

ndk . The last experimental point in each series of published 

foam growth data is considered to be maxH , giving maxH = 15.46, 21.53, 25.99 and 32.98 

cm, at the superficial gas velocities of 58 10 , 41.1 10 , 41.5 10  and 42.2 10 /m s , 

respectively. Please note that the gas velocities we have chosen for this study are well below 

the transition velocity (
43.8 10 /m s ) reported in [17]; at this point, the transition from 

reaching an equilibrium height to indefinite, continuous growth occurs. It should be noted 

that an expression for the steady-state foam height generated by bubbling nitrogen through 

high-viscosity solutions has been developed using three dimensionless parameters [16]. 

Recently, a more general expression for maxH  based on the thermo-physical properties of the 

liquid and gas phases and the operating conditions was given in [27]. Although we did not 

use those methods to predict the equilibrium foam height maxH  in this study, they do provide 

a possible way to predict the foam column kinetics without previous knowledge of maxH . 

            Figure 3 shows the comparison between the experimental and simulated foam heights 

of growing foams as a function of time. The good agreement between the experimental data 

and the simulation results confirms the assumption that the foam collapse rate is proportional 

to the foam height squared. The bursting bubbles on the top of the foam layer will release the 

surfactant to the layer immediately below, leading to the accumulation of the surfactant on 

the top foam layer and a stabilization of the foam as a whole [28]. Therefore, the foam 

collapse rate is reduced as the foam height decreases. The foam collapse will be discussed in 

Section 3.2.3. 
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Figure 3. Comparison between experimental (points) and simulated (lines) foam height vs. 

time for foams created from a 4 ml/l Teepol solution at various gas velocities for 1  cP , 

1000  kg 3m
, 1br  mm , 0.031  N

1m
[29], 9.81g  m

2s , 0.065m  , 1.58n  , 

1.28p  , and 0.46q  . The experimental points are re-plotted from [17]. 

3.2.2 Liquid and gas transport in growing foams 

           Figure 4 shows the simulation results of the average liquid fraction in growing foams 

by solving Eqs. (17)–(19). Higher gas velocities can be seen to lead to a smaller average 

liquid content in the foam at a given time, which causes the average liquid fraction to more 

quickly decrease to its equilibrium value. Because the liquid fraction will decrease to an 

asymptote within a few centimeters up the foam column [17], foams generated with a higher 

gas velocity will generate more foam, leading to a smaller average liquid fraction and less 

time to reach the steady state.  
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Figure 4. Average liquid fraction, , for foams created from a 4 ml/l Teepol solution as a 

function of time at various gas velocities. 

         Figures 5 and 6 illustrate the simulation results of liquid volume, 2L , and gas volume,

2G , for the growth foams by solving Eqs. (17)–(21). Although the average liquid fraction 

decreases as the gas velocity increases, the superficial liquid velocity up the column, fj , 

increases with gj  (please see Section 3.1), which increases the liquid volume in the growing 

foams. The evolution of the gas volume in the growing foams shows the same trend for foam 

height as in Figure 3.  
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Figure 5. Liquid volume, 2L , in foams created from a 4 ml/l Teepol solution as a function of 

time at various gas velocities. 

 

 

Figure 6. Gas volume, 2G , in foams created from a 4 ml/l Teepol solution as a function of 

time at various gas velocities. 
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        The simulation results of the volumes of liquid, 3L
,
 and gas, 3G

,
 from bursting bubbles 

are shown in Figures 7 and 8 by solving Eqs. (17)–(19) and Eqs. (22)–(23), respectively. 

Unlike the liquid volume in the growing foams, which shows a certain pattern relative to gas 

velocity, the volume of liquid from bursting bubbles, 3L , does not show any trend as the gas 

velocity is increased. Based on Eq. (22), we can see that the flow rate of the liquid from 

bursting bubbles is proportional to the average liquid fraction,  , and the foam height 

squared, 2H . Although the average liquid fraction decreases with gas velocity (Figure 4), the 

foam height increases (Figure 3), which leads to the complex variation of 3L  with gas 

velocity in Figure 7. Figure 8 shows the volume of gas from bursting bubbles, 3G , as a 

function of time at various gas velocities. When the foam height reaches the equilibrium 

value, the slope of each curve in Figure 8 equals the corresponding gas velocity. 

 

Figure 7. Volume of liquid from bursting bubbles, 3L , of foams created from a 4 ml/l Teepol 

solution as a function of time at various gas velocities. 
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Figure 8. Volume of gas from bursting bubbles, 3G , of foams created from a 4 ml/l Teepol 

solution as a function of time at various gas velocities. 

3.2.3 Foam collapse 

         Figure 9 shows a comparison between the experimental and simulated foam collapse 

according to Eq. (27) with the rate constant of foam collapse, 2

2

ndk , as a fitting parameter. 

The good agreement between the experimental and simulated results confirms the assumption 

that the foam collapse rate is proportional to the foam height squared in the development of 

Eq. (17). Because 2

2

ndk  can be calculated either by Eq. (18) with the assumption of zero 

liquid fraction or by fitting the foam collapse data using Eq. (27), for comparison, we plot 

two series of 2

2

ndk  calculated using each method in Figure 10. The difference between the 

two methods is that Eq. (18) applies to growing foams, whereas Eq. (27) is applicable to 

standing foams. Figure 10 shows that the value of 2

2

ndk  obtained for growing foams decreases 

with the gas velocity, whereas the value of 2

2

ndk  calculated by fitting the collapse curves of 

standing foams remains almost constant (varying between 0.0035–0.0038
1 1m s 

). The values 

of 2

2

ndk  calculated from growing foams are smaller than the ones from standing foams. 

Specifically, the values of 2

2

ndk  calculated by both methods are very close to each other for 

the foams generated at relatively low gas velocities (e.g., 0.008 cm/s). However, the gap 

widens as the gas velocity increases. Compared to the standing foams, more growing foams 
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collapse. Therefore, more surfactant molecules are released from collapsed foams and 

accumulate on the top of growing foams [28], leading to a relatively stable foam column (i.e., 

a smaller value of 2

2

ndk ). For this reason, the values of 2

2

ndk  calculated for growing foams are 

smaller than the ones calculated for standing foams. Higher gas velocities lead to more foam 

collapse (Figure 8), resulting in a smaller value of 2

2

ndk , as shown in Figure 10. Finally, 

smaller gas velocities indicate that the foam collapse behavior (i.e., the value of 2

2

ndk ) is more 

similar to the behavior in standing foams.  

 

Figure 9. Comparison of experimental (points) and simulated (lines) foam height vs. time 

according to Eq. (27) for collapsing foams created from a 4 ml/l Teepol solution at various 

gas velocities. The experimental points are re-plotted from [17]. 
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Figure 10. Comparison of the rate constant of foam collapse, 2

2

ndk , calculated by Eq. (18) 

with the zero liquid fraction assumption of growing foams and by fitting with Eq. (27) for 

standing foams at various gas velocities. 

4. Conclusions 

       This chapter has described a model for the foam column kinetics by analogy with 

reaction kinetics that interrelates the growth, drainage and collapse of foams with a series of 

mass balance equations (Eqs. (17)–(23)). The growth and collapse of foams and the transport 

of liquid and gas within the growing foams are predicted. The good agreement between the 

experimental and simulated results for foam growth and collapse verifies the assumption that 

the foam collapse follows reaction kinetics. The simulation results show that the average 

liquid fraction declines with the gas velocity despite an increase in the overall liquid content 

in the growing foams. The foam collapse constant, 2

2

ndk , is determined for both growing 

foams and standing foams. Because of the higher surfactant reflux from the growing foams, 

the k
2

2nd
 of growing foams is generally smaller than that of standing foams. Finally, higher 

gas velocities increase the discrepancy between the values of k
2

2nd
 determined for each foam 

(Figure 10). 
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Appendix A 

        When the liquid fraction is not constant with height, the capillary forces must be 

considered. Eq. (31) should be modified as [23]: 

(1 )nSk m                                                                                                                       (A1) 

where: 

1 q

b

q

pr g H

 

  


 


                                                                                                                (A2) 

and where   is the equilibrium surface tension; br  is the mean bubble diameter;   is the 

interstitial liquid density; g  is the acceleration due to gravity; p  and q  are the dimensional 

number and index in the equation where the radius of curvature of the Plateau border walls, 

respectively; and r  is expressed as a function of the liquid fraction and bubble radius: 

0.46/ 1.28q

br r p   . A discussion of the values of p  and q  can be found in [23]. By 

modifying Eq. (33) with Eq. (A1), an expression for /d dH  is obtained: 
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Abstract 

Conventional theories indicate that surfactant solutions with low equilibrium surface tension, 

fast adsorption kinetics and high interfacial viscoelasticity increase foamability. These 

theories are applicable to single surfactants of pre-CMC. Here, we examine whether these 

theories are applicable for surfactant mixtures. Specifically, we investigated the foamability 

of sodium dodecyl sulfate (SDS)-dodecanol (DOH) solutions. We found that the foamability 

of SDS-DOH solutions exhibited ‘anomalies’ that were unexplained by conventional theories. 

The remarkable decrease in the foamability of SDS solutions caused by the addition of DOH 

could not be easily explained by the theories of surface tension and surface viscoelasticity. 

Instead, we proposed alternative mechanisms to resolve these unexpected results. Below the 

DOH solubility limit, the displacement of SDS molecules by DOH molecules at the air-water 

interface results in a reduced surface potential, leading to a lower foamability. The antifoam 

effects of DOH droplets can account for the reduced foamability above this limit. We also 

developed a foam growth kinetic model to simulate the experimental results and interpret the 

antifoam effects of DOH. This chapter highlights the complexity of the foamability of 

surfactant blends. 

Keywords: foam, foamability, SDS, dynamic surface tension, surface viscoelasticity, 

antifoam 

1. Introduction 

           Foamability and foam stability are two of the most common types of foam properties. 

The foamability of a solution is a measure of its capacity to produce a foam [1], whereas the 

foam stability is the lifetime of a foam. To generate foams, surfactant must be present in the 

solution. The addition of surfactants increases the liquid (foam) film stability and alters the 

interfacial properties of the air-liquid interface, such as the static surface tension, dynamic 

surface tension and surface viscoelasticity, which are crucially important for foamability. 

Unlike surfactants, antifoams prevent foam formation. As a rule of thumb, solutions with low 

equilibrium surface tension, fast adsorption dynamics and high surface viscoelasticity are 

considered to be good foaming solutions [2-4]. However, foam properties are determined by 

many interrelated factors that can interact and produce synergistic or antagonistic effects. 

Therefore, a single interfacial property is often inadequate to dominate foam properties, 

particularly for complex foaming systems such as surfactant mixtures.  

           As an example, we chose anionic (SDS) and non-ionic (DOH) surfactant mixtures. It 

is to note that DOH is the most frequent contaminant of SDS and it is very difficult to remove 
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DOH from SDS due to the hydrolysis of SDS in aqueous solution [5-9]. When the SDS is 

studied, attention should also be paid to the criteria of purity of SDS solutions and the 

concept of ‘surface chemical purity’ [10-13]. It should be noted that the effect of DOH on the 

micellar stability of SDS solutions has been studied and correlated with foam properties [14]. 

The decreased foamability of SDS (25 to 200 mM) micellar solutions is attributed to the 

greater stability of SDS-DOH micelles relative to SDS micelles, which reduce the rate of 

micelle collapse and consequently decreases the rate of SDS molecules being transported to 

the air-water interface. Although the mechanisms controlling the foamability of SDS-DOH 

mixtures at SDS concentrations above the CMC has been well explained, we can ask the 

following question: What mechanisms are active below the CMC? 

            In this chapter, we study the foam properties of SDS-DOH surfactant mixtures (with 

SDS concentrations ranging from 0.5 to 2.0 mM, which are clearly below the CMC of 8.0 

mM) and correlate them with interfacial properties. First, we introduce the existing theories 

relating to the foam properties of surfactant solutions. Then, we develop a kinetic model to 

simulate the foam growth process. Subsequently, we measure the foam properties and 

relevant interfacial properties and uncover some ‘anomalies’ to illustrate the limitations of 

conventional theories. We also apply the model to simulate the foam growth data. Finally, we 

propose two mechanisms to rationalize the unexpected foam properties of surfactant mixtures. 

2. Theory 

2.1 Interfacial properties and foamability 

2.1.1 Equilibrium surface tension 

         Equilibrium (static) surface tension determines the foamability through two factors: 

surface energy and bubble breakup. The surface energy of the foam system, , is defined as:  

                                                                                                                                    (1) 

where  is the surface tension and  is the interfacial area of the foam. The surface energy 

increases as the foam creation increases. Therefore, if  is constant, a lower value of  will 

give a larger value of , which indicates relatively high foamability. Bubble breakup is the 

very first step of foam generation. Based on the theory of bubble or drop breakup in turbulent 

flows [15-17], the dimensionless number known as the Weber number is established: 

E

E A

 A

E 
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                                                                                                                              (2) 

where is the density of the foaming solution and is the mean square velocity difference 

over a distance , which is the bubble diameter. This value reflects the balance between the 

viscous forces that tend to deform the bubbles and the interfacial forces that tend to maintain 

their spherical shape. The Weber number indicates that bubble breakup is determined by both 

process parameters, such as rotational speed, and interfacial properties, such as surface 

tension. If an equilibrium is established between bubble coalescence and breakup, then the 

critical Weber number, , is reached. In this case, lower values of  give smaller bubble 

sizes, , again indicating relatively high foamability.  

2.1.2 Dynamics of adsorption 

         The surface tension term appears in both Eqs. (1) and (2), which describe surface 

energy and bubble breakup, respectively. However, it is not well defined or theoretically 

justified [15-17]. The following question, then, must be raised: What type of surface tension 

should be applied in these equations? To answer this question, we must first note that the 

equilibrium surface tension is not reached instantaneously. The evolution of the surface 

tension value is controlled by two processes: (i) the diffusion of surfactant molecules to the 

surface and (ii) the adsorption of surfactant molecules on the interface, which must overcome 

an associated energy barrier. Either of these processes may become the rate-determining step. 

Second, although we do not know the exact value, a rational choice of an adsorption 

reference time is the average lifetime of the bubbles at the solution/air interface during foam 

generation [18]. Therefore, if the adsorption dynamics is sufficiently fast, we can apply the 

equilibrium surface tension. Otherwise, the dynamic surface tension that is relevant to the 

time scale of foam generation should be used.  

2.1.3 Surface viscoelasticity 

         The adsorption of surfactants on the air-water interface forms an adsorbed layer, which 

gives rise to interfacial viscoelasticity. Two types of interfacial rheology have been 

observed—interfacial shear rheology and dilational rheology—which characterize the 

response of the surface to shear stress and to extensional stress, respectively. In this study, we 

only focus on the effects of dilational viscoelasticity on foamability [19]. The surface 
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dilational modulus, , is defined as the ratio of the surface tension change, , to the area 

change, , under dilational deformation: 

                                                                                                                                (3) 

In practice, the surface dilational modulus is expressed as two parts: (i) the surface dilational 

elasticity, , which measures the capacity of the air-water interface to resist a dilational 

deformation, and (ii) surface dilational viscosity, , which measures the speed of the 

relaxation processes restoring the equilibrium after the disturbance. During a harmonic 

deformation, if the change in the surface area is sufficiently small, then the induced surface 

tension oscillations will be sinusoidal and the surface viscoelastic modulus, , can be 

expressed as a complex number [19]: 

                                                                                (4) 

where , , ,  and  are the phase shift between the surface tension and area 

oscillations, the surface dilational modulus, the mean area, and the amplitudes of the surface 

tension and the surface area variation, respectively (Figure 1). It should be noted that the 

phase shift between the surface tension and area is caused by the diffusion of surfactant 

molecules from the bulk or air-water interface to the stretched area. We can calculate the 

surface dilational elasticity by  and the surface dilational viscosity by

, where  is the angular frequency of oscillation.   

         The total harmonic distortion (THD), which estimates the deviation from linear 

behavior, is used as an estimation of measurement accuracy. It is defined as the ratio of the 

higher harmonics amplitude to the amplitude at the measured basic frequency [19]: 

                                                                                                                    (5) 

where    is the amplitude value of the basic frequency and   ,   , …,    are amplitudes of 

the higher harmonics. In this work, the THD values are below 10% in most cases.  
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Figure 1. Schematic presentation of the thinning of a liquid film by stretching (top, 

reproduced from [20]). Expansion of a droplet in our experiments to simulate liquid film 

thinning (middle). Experimental results for a transient change in the surface tension and 

surface area of a SDS (0.5 mM)-DOH (5 mg/L) droplet oscillated at the frequency of 0.05 Hz 

(bottom). Amplitudes of surface tension and area, with a clear phase shift between the surface 

tension and surface area changes. 
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          Oscillatory area experiments were conducted to simulate liquid film thinning (Figure 1). 

Assuming that the surface area of the film elements increases while its volume and the total 

amount of the surfactants remain constant and that the diffusion of surfactant molecules can 

be ignored, the surface concentration of surfactant molecules decreases during liquid film 

thinning. The reduction in the surface concentration induces a local increase in surface 

tension, which in turn resists the stretching of the liquid film and foam film drainage; 

consequently, the bubble coalescence rate decreases. High values of surface viscoelasticity 

can potentially lead to the suppression of marginal regeneration and a reduced rate of foam 

film drainage, which enhance foam stability and foamability. 

2.2 Surface forces and foamability 

        When two bubbles meet, surface forces act on the two interfaces separated by the 

thickness of the liquid. The disjoining pressure, , was defined to characterize the forces 

per unit area between these two interfaces. Figure 2 illustrates the electrostatic, van der Waals, 

and steric contributions to the disjoining pressure in a film: 

                                                                                                             (6) 

To enable the existence of a stable film, repulsive forces, such as the electrostatic force, must 

act between the interfaces. In this case, a positive disjoining pressure is induced in the film to 

counterbalance the attractive interactions that tend to rupture the liquid film. Therefore, a 

strong repulsive interaction between the interfaces in a liquid film enhances foam stability 

and foamability.  

 

  

d

d dl van steric   



69 

 

 

Figure 2. Schematic representation of a disjoining pressure isotherm that includes 

contributions from ,  and , reprinted from [21]. 

2.3 Antifoam and foamability 

         The entry of antifoams to the liquid film is required to destroy a liquid film or a foam 

layer. The entry barrier is defined as the critical pressure that leads to rupture of the 

asymmetric oil-water-air film and entry of the drop at the water-air interface [22]. Antifoams 

with low entry barriers completely collapse the foam in seconds, whereas antifoams with high 

entry barriers require hours to destroy the foam. The entry barrier has been found to increase 

with the surfactant concentration [22]. Once entering the foam film, antifoams destabilize the 

liquid film either by spreading the solution/gas interface or by bridging the two interfaces of 

the film, depending on the sign of the spreading coefficient, , which is defined as follows 

[23]: 

                                                                                                                   (7) 

where ,  and  are the surface tension of the gas/antifoam interface, the 

solution/antifoam interface and the solution/gas interface, respectively. The conditions for 

spreading and bridging are  and , respectively [24]. The spreading pressure, 

, is defined as the reduction in the equilibrium surface tension of the air-water interface 

caused by the addition of antifoam to the aqueous surface [25]: 
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                                                                                                                        (8) 

where and  are equilibrium surface tensions of surfactant solutions with and without 

antifoams, respectively. A positive value of  indicates that it is thermodynamically 

favorable for antifoams to spread on the surface of the surfactant solution. For duplex 

antifoam films, the spreading pressure, , equals the spreading coefficient, [25, 26]: 

                                                                                  (9) 

In this study, the antifoam effect of DOH droplets is correlated with the spreading pressure,

, which is applied in more general situations.   

3. Foam growth kinetics 

         Figure 3 shows a schematic diagram of foam growth process in a foam column. We 

assume that the foam growth kinetics is controlled by two simultaneous processes: (1) foam 

formation and (2) foam collapse. It should be noted that no foam overflows the foam column. 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic diagram of the foam growth process 

The conservation balance for the gas phase gives: 

                                                                                                                  (10) 
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where , ,  and  are the amounts of gas entering the foam column during agitating, 

gas of the bubbles in the pulp phase, gas of the bubbles in the foam and gas of the bursting 

bubbles leaving the foam, respectively. Here, the first assumption we make is as follows: (1) 

the gas in the pulp phase instantly attains the steady state, i.e., , where the 

brackets indicate the volume quantity. Likewise, the conservation balance for the liquid is 

described by: 

                                                                                                                    (11) 

where , ,  and  are the total amount of liquid in the system, the liquid in the pulp 

phase, the liquid between un-burst bubbles in the foam and the liquid from the bursting 

bubbles, respectively. The second assumption is as follows: (2) the amounts of liquid 

between the un-burst bubbles and from the bursting bubbles are infinitesimally small relative 

to the amount of liquid in the pulp phase, i.e., . 

         Foam growth kinetics can be described schematically and analogously as two series-

parallel first-order “reactions” as follows: 

                                                                                                                (12) 

                                                                                                             (13) 

where  is the foam and  and  are the foam formation and foam decay 

constants, respectively. Eq. (12) is relevant to the foam formation process, whereas Eq. (13) 

relates to the foam decay process. By applying the conservation balances in the foam volume 

and considering the two aforementioned assumptions, the foam kinetics in the foam column 

can be described analogously to a first-order chemical reactions as follows [27]: 

                                                                                              (14) 

Integrating Eq. (14) gives: 

                                                                                                            (15) 
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where  is the largest value of the foam volume that can be obtained 

under the experimental conditions. Furthermore, Eq. (15) can be recast as follows: 

                                                                                                              (16) 

where  is the dynamic stability factor of the foam defined by Bikerman [28]. 

Actually, Eq. (16) is the empirical equation used to simulate the froth growth process in the 

literature [29-32]. However, for the first time, we give a fundamental basis to this empirical 

equation. That is, the foam growth rate is controlled by the competition between the foam 

formation and foam decay, which are quantitatively described by  and , respectively (Eq. 

(14)).  

4. Experimental 

4.1. Materials 

 Both sodium dodecyl sulfate (SDS) and 1-dodecanol (DOH) were purchased from 

Sigma-Aldrich (Castle Hill, NSW, Australia) with purities of 99% and 98%, respectively. All 

chemicals were used as received. The solubility of DOH in water at 29.5°C is 0.04 wt% (4 

mg/L), and the freezing point is 24°C [33]. All solutions were prepared using Milli-Q water 

(surface tension: 71.97 mN/m at 25°C; resistivity: 18.2 MΩcm at 25°C) [34]. A 10 mg/L 

DOH stock solution was prepared by ultrasonication in an ultrasonic bath for 15 min at a 

controlled temperature of 25°C. SDS-DOH mixtures were prepared by diluting the stock 

solution to the desired concentrations. The SDS-DOH solutions displayed a reduced surface 

activity over time because of the separation and consequent evaporation of DOH [35]. 

Therefore, only freshly prepared solutions were used in this study.  

4.2. Foaming experiments 

     The foam tester device shown in Figure 4 was used to determine the foamability of the 

solutions. The device consists of (1) a 1.5 L glass cylinder used to hold the solution and the 

created foam, (2) a standard Rushton turbine agitator with baffles for creating foam by 

stirring the solution at a constant rotational speed, and (3) a sensor system with vertically 

mounted needle electrodes (Foam Tester R-2000, SITA Messtechnik, Germany) that can 

automatically move up and down to detect the foam surface. The sensor needles were 

obtained from SITA Messtechnik and permit accurate measurements of the foam volume 

with uneven foam surfaces in the presence of foam bubbles. The sensor system is connected 
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to a computer and controlled by a software program developed by SITA Messtechnik. The 

software also calculates the foam volume from the sensor positions. The device can 

reproducibly generate foams by stirring the solution at a constant rotational speed and stirring 

time and can automatically measure the foam volume at different times during foam 

generation. The sample volume was kept constant at 300 mL. Foams were generated by 

stirring the solution at 500 rpm and stopping every 10 seconds so that the sensor unit could 

measure the foam volume, which required approximately 9 seconds. For each solution, the 

experiments were repeated, and averaged results were obtained. The room temperature was 

kept constant at 25°C. The relative humidity of the room was also kept constant (50–60%). 

 

Figure 4. Schematic diagram of the experimental setup used to create the foam by stirring 

using Ruston impellers with baffles and to measure the transient foam volume from the 

transient electrical contact between the top foam surface and a SITA Messtechnik sensor 

system with vertically mounted needle electrodes, which can automatically move up and 

down to detect the foam surface. 

4.3. Measurements of static (equilibrium) surface tension  

         The surface tension of SDS-DOH solutions was measured by the Wilhelmy plate 

method [36] using a platinum rectangular thin plate. The plate was connected to a sensitive 

force balance. All measurements were conducted at a temperature of 25°C. The surface 

tension of deionized water at the temperature reported in the literature was used to calibrate 

the surface tension measurements. 
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4.4. Measurements of dynamic surface tension and surface viscoelasticity  

 Measurements of dynamic surface tension and surface viscoelasticity were performed 

by a drop profile analysis tensiometer (PAT-1, SINTERFACE Technologies, Germany). The 

surface tension is determined from the shape of the pendant drop, and the active control loop 

of this instrument allows long-duration experiments with a constant drop volume or area. The 

solution drop was subjected to harmonic oscillations at a frequency of 0.05 Hz with 

oscillation amplitudes of 5–6% to measure the surface viscoelasticity. The room temperature 

was kept constant at 25°C. We used a drop formed at a steel capillary with a tip diameter of 1 

mm by supplying the solution through an external tube. The drop shape was recorded at 

different times and fitted with the Young-Laplace equation to obtain the dynamic surface 

tension and surface elasticity and viscosity. The principles of this methodology are described 

in detail in the literature [37, 38]. 

4.5. Measurements of surface (zeta) potential of air bubbles in surfactant solutions 

           The zeta potential of micro air bubbles was measured by a Microelectrophoresis 

Apparatus Mk II (Rank Brothers Ltd, Cambridge, England). The equipment configuration 

and measurement procedures are described in detail elsewhere [39]. In each solution, more 

than 40 microbubbles were measured to obtain mean values of the bubble zeta potential and 

standard error. The room temperature was kept constant at 25°C. 

5. Results and discussion 

5.1. Foam growth 

          Figure 5 shows a comparison between the experimental foam growth data and the 

simulated data. At relatively low SDS concentrations (e.g., 0.5 mM), the effect of DOH on 

the foam growth of SDS foams is prominent: foam growth slows as the DOH concentration 

increases. However, the effect of DOH becomes weaker as the SDS concentration increased, 

and this weakening was especially obvious at the highest SDS concentration (i.e., 2.0 mM), 

for which the addition of DOH has essentially no impact on the foam growth. Although the 

addition of DOH reduces the foam growth of SDS solutions, the maximum equilibrium foam 

volume is higher for SDS solutions containing 10 mg/L of DOH than for the solutions 

containing no DOH.  
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Figure 5. Experimental (points) and theoretical (lines) foam growth data of SDS-DOH 

solutions simulated by Eq. (16). The error bars show the standard errors of the mean. 
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          The dynamic stability factor, , in Eq. (16), which corresponds to the simulated 

results in Figure 5, is presented in Figure 6. This figure shows that the dynamic stability 

factor increases as the DOH concentration increases. Notably,  decreases as the SDS 

concentration increases at the highest DOH concentration (10 mg/L), which contradicts the 

observation that foam stability is usually proportional to the surfactant concentration below 

the CMC. Figure 7 shows the changes in the initial foam volume with various surfactant 

concentrations. The initial foam volume decreases as the DOH concentration increases but 

rises as the SDS concentration increases. The foam growth results demonstrate to the curious 

effect of DOH on SDS foam behaviors, which suggest that DOH acts as both a foam 

stabilizer and a foam depressant. 

 

 

 

Figure 6. Dynamic stability factor, , as a function of reagent concentration. The lines are 

intended to act solely as visual guides. 
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Figure 7. Initial foam volume (second experimental point in each curve in Figure 5) as a 

function of surfactant concentration. The lines are intended to act solely as visual guides. 

5.2. Adsorption dynamics and surface viscoelasticity 

        As mentioned in Section 2.1.2, a rational choice of an adsorption reference time is the 

average lifetime of the bubbles at the solution/air interface during foam generation [18]. 

Usually, the characteristic surface ages during foam generation are in the range of 0.1–1 s 

[40]. Figure 8 presents the dynamic surface tension data of a 1.0 mM SDS-10 mg/L 

( mol/L) DOH solution from 0.1 s to 1500 s by combining the data from [41] with 

the data collected in our study. This figure shows that the adsorption of SDS attains 

equilibrium before the adsorption of DOH begins, indicating that SDS and DOH adsorb in 

different time domains [41]. It should be noted that DOH has been reported to increase the 

dynamic surface tension of SDS solutions at concentrations (e.g., 15 mM) above the CMC 

(i.e., 8 mM) within the lifetime of a bubble smaller than 0.15 s because the SDS-DOH 

micelles are stable compared with the SDS micelles; this effect decreases the rate of transport 

of the SDS molecules to the air-water interface [14]. Therefore, DOH acts as a foam booster 

when gentle foam generation methods, such as bubbling, are used but can also act as a foam 

depressant when more intense methods, such as shaking and agitating, are applied, depending 

on the rate of foam generation [14]. The dynamic surface tension results shown in Figure 8, 

however, reveal that the decreased foamability of SDS-DOH mixtures at SDS concentrations 

below the CMC (i.e., 0.5–2.0 mM) compared with the SDS alone cannot be explained by the 

increased dynamic surface tension at low surface age (0.1-1 s). Therefore, the mechanisms 
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that control the foamability of SDS-DOH mixtures at the SDS concentration above and below 

the CMC are entirely different.  

 

 

Figure 8. Dynamic surface tension of a 1.0 mM SDS-10 mg/L ( mol/L) DOH 

solution measured by the inclined plate method (diamond), replotted from [41], and the 

pendant drop method (solid line). The dashed line indicates the equilibrium surface of 1.0 

mM SDS solutions, mN/m [41]. 

         Figure 9 compares the dynamic surface pressure with the dynamic surface 

viscoelasticity (0.05 Hz) of SDS-DOH solutions to determine the transition of the adsorption 

layer from a liquid-like layer to a solid-like layer with surface age. It should be noted that the 

surface viscoelasticity was measured at a relatively low frequency (i.e., 0.05 Hz). Therefore, 

the measurements do not accurately represent the surface viscoelasticity relevant to foam 

generation when the surface age is 0.1–1 s. The surface viscoelasticity measurements of SDS-

DOH mixtures at high frequency (e.g., 1–500 Hz) have been reported [42] and show that the 

addition of DOH also dramatically increases the surface viscoelasticity of SDS solutions at 

relatively high frequencies. Nevertheless, our results at low frequency can be correlated with 

the foam stability quantified according to the dynamic stability factor in Figure 6. Foam 

stability is controlled by foam drainage, followed by film rupture (coalescence) and Ostwald 

ripening (coarsening). Film rupture occurs very rapidly and is controlled by the surface 
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viscoelasticity at high frequency. However, coarsening is slow [43]; therefore, the 

measurements at low frequency in our study are relevant. Surface pressure graphs in Figure 9 

show that the value of the surface pressure remains constant with the addition of DOH for the 

first few seconds and subsequently begins to increase gradually because of the different time 

scales of SDS and DOH adsorption. Surface elasticity and viscosity graphs indicate that the 

addition of DOH strongly increases the rheological properties of the air-water interface of 

SDS solutions. If we compare the surface pressure graphs to the surface viscoelasticity graphs, 

we can divide the adsorption process into three stages relative to the phase transition. Before 

the phase transition, the air-water interface is liquid-like, and the surface pressure and 

viscoelasticity increase with the adsorption of surfactant molecules. At the phase transition 

stage, the adsorption layer passes the region where the liquid and solid phases coexist, and 

the surface pressure remains constant, resulting in the disappearance of surface viscoelasticity. 

This phase transition phenomenon, which is induced by the adsorption of DOH, has been 

observed by direct methods, such as Brewster angle microscopy (BAM) [44-47] and grazing 

incidence X-ray diffraction (GIXD) [46, 47]. Beyond the phase transition, the air-water 

interface becomes solid-like, and the surface pressure continues to increase to a plateau. 

Correspondingly, the surface viscoelasticity increases dramatically until reaching its 

equilibrium values. It should be noted that solutions with higher DOH concentrations but 

lower SDS concentrations exhibit higher surface rheological properties. This result can be 

correlated with the dynamic stability factor in Figure 6, where foams stabilized by solutions 

with higher DOH concentrations but lower SDS concentrations are relatively stable. 

           According to the dynamic surface pressure and surface viscoelasticity results, the 

SDS-DOH solutions appear to exhibit satisfactory foamability. SDS is relatively soluble in 

water but is less surface active, whereas DOH is less soluble but more surface active [45, 46]. 

Therefore, in mixed solutions, SDS molecules adsorb quickly and increase the bubble 

breakup process, whereas DOH molecules adsorb later and prevent bubble coalescence by 

increasing the surface viscoelasticity of the air-water interface. Similar sequential adsorptions 

were also reported in a surfactant-protein system [48]. In addition, the high values of surface 

viscoelasticity caused by the presence of DOH in SDS solutions can potentially lead to the 

suppression of marginal regeneration and a reduced rate of foam film drainage [49-51]. 

Therefore, the high values of surface viscoelasticity can not only enhance the foam stability 

but also increase the foamability if the increased surface viscoelasticity is developed on 

bubble surfaces during foam generation with a surface age of 0.1–1 s. The enhanced surface 

viscoelasticity in this time scale has been reported [42] with a frequency range of 1–500 Hz. 
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However, as shown in Figures 5 and 7, the foamability of SDS solutions decreases with the 

addition of DOH. Therefore, we must consider other contributions, such as the surface forces 

between interfaces in the liquid film and the antifoam effects of DOH droplets [52]. 

 

Figure 9. Dynamic surface pressure, surface elasticity, , and surface viscosity, , as a 

function of SDS and DOH concentrations, where the surface viscoelasticity was measured at 

a frequency of 0.05 Hz. The lines are intended to act solely as visual guides. 
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5.3. Surface potential 

         Figure 10 shows the surface (zeta) potential data of air bubbles in SDS solutions with 

and without 2 mg/L of DOH. The concentration of DOH is reasonably below its solubility 

limit (4 mg/L at 29.5°C, as shown in Section 3.1). The displacement of SDS molecules by 

DOH molecules, which is caused by the considerably higher surface activity of DOH relative 

to SDS, results in a significant decrease in the surface potential. As a result, the liquid film 

becomes less stable because of the decreased electrostatic repulsion between the interfaces. 

Figure 10 also shows the surface potential increases with SDS concentration, indicating the 

increased electrostatic interactions that favor liquid film stability. The surface potential 

results are consistent with the foamability results in Figure 7, in which the initial foam 

volume decreases with increased DOH concentration but increases with increased SDS 

concentration. 

 

Figure 10. Comparison of the surface (zeta) potential of air bubbles in SDS solutions with 

and without 2 mg/L of DOH. The lines are intended to act solely as visual guides. 

5.4. Antifoam effects 

         Table 1 shows the equilibrium surface tension values of SDS solutions with and without 

10 mg/L of DOH and the corresponding spreading pressure. The equilibrium surface tension 

of SDS solutions without DOH decreases with SDS concentration, which confirms the fact 

that lower equilibrium surface tension results in higher foamability. However, this 

phenomenon is not observed in SDS-DOH solutions. In such solutions, the DOH 

concentration is far beyond its solubility limit, indicating that DOH exists in the form of a 
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droplet. Therefore, we hypothesize that DOH droplets act as antifoams in SDS solutions. 

Figure 11 shows a convincing correlation between the relative antifoam efficacy, , and 

the spreading pressure, , that supports our hypothesis. The antifoam efficacy, , is 

calculated as the change in the initial foam volume upon the addition of DOH and is 

expressed as a fraction relative to the volume without DOH [26]: 

                                                                                                                            (17) 

                                                                                                                        (18) 

where and  are the initial foam volumes in the absence and the presence of DOH, 

respectively. As shown in Figure 11, because the entry barrier of DOH droplets increases 

with SDS concentration, which diminishes the antifoam effect, the relative antifoam efficacy,

, decreases with the SDS concentration. The increase of the entry barrier as the SDS 

concentration increases also explains the observation that the antifoam effect of DOH 

weakens as the SDS concentration increases (Figure 5). A similar correlation between the 

relative antifoam efficacy, , and the spreading pressure, , has been reported to 

demonstrate the antifoam effects of polydimethylsiloxane [26]. 

Table 1. DOH film spreading data of SDS solutions with 10 mg/L of DOH 

 SDS 

concentration 

(mM) 

Equilibrium surface 

tension of SDS 

without DOH, σ
i
 

(mN/m) 

Equilibrium 

surface tension of 

SDS with DOH, σ
f
 

(mN/m) 

Spreading 

pressure, σAW 

(mN/m) 

0.5 69.18±0.065 28.26±0.055 40.91 

1.0 65.89±0.28 28.31±0.040 37.58 

2.0 57.64±0.40 28.02±0.18 29.61 
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Figure 11. Correlation between the relative antifoam efficacy, , and the spreading 

pressure, , of SDS solutions with 10 mg/L of DOH. The lines are intended to act solely 

as visual guides. 

6. Conclusions 

        Herein, we examined the foamability of SDS-DOH mixtures at SDS concentrations 

below the CMC and attempted to correlate this property with interfacial properties, such as 

the equilibrium and dynamic surface tension, dynamic surface viscoelasticity, surface 

potential and DOH droplet spreading on the liquid film. We also developed a foam growth 

kinetic model to simulate the foam growth data and interpret the experimental results. In 

mixed solutions, SDS molecules adsorb quickly and increase the bubble breakup process, 

while DOH molecules adsorb later, preventing bubble coalescence by increasing the surface 

viscoelasticity of the air-water interface. These foam growth results exhibited unexpected 

effects of DOH on SDS foam behaviors. Collectively, the results suggest that DOH acts as 

both a foam stabilizer and a foam depressant. The unexpected decrease in the foamability is 

explained by the displacement of SDS molecules by DOH molecules at the air-water 

interface below the DOH solubility limit and by the antifoam effects of DOH droplets above 

the limit. Our study reveals the complex foam behavior of surfactant mixtures.   

relV
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 Diesel oil was found to decrease the foam growth rate of MIBC solutions. 

 A model was developed and applied to simulate foam growth kinetics. 

 The antifoam efficacy of diesel was correlated with its spreading pressure. 

 The antifoam effect was explained by oil-frother molecular interactions.  
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Abstract 

Froth stability determines the quality of the final concentrate in flotation. However, 

understanding of the factors that control the froth stability remains limited. We hypothesize 

that the commonly used nonpolar collectors in the flotation of naturally hydrophobic minerals 

may have a significant impact on foam stability. As an example, we chose diesel oil as a 

nonpolar collector to study its effects on the foam properties of MIBC solutions. We 

developed a quantitative foam growth measurement using a non-overflowing flotation cell 

and imaging analysis of the foam system. We also developed a foam growth model with two 

parameters (i.e., foam formation and foam decay rate constants, 1k and 2k ) to simulate the 

behavior of the foam column kinetics. The results revealed that the presence of diesel oil, 

even in trace amounts (2 ppm), can effectively decrease the foam growth rate by accelerating 

the foam decay process. We proposed two mechanisms to explain the observed antifoam 

effects of diesel oil: (i) the spreading of diesel oil droplets at the liquid film interface, which 

is quantified by the spreading pressure, and (ii) the molecular interactions between the diesel 

oil and frother molecules. This study establishes a benchmark for investigating the effect of 

nonpolar collectors on three-phase froth stability.  

Keywords: nonpolar collector, diesel, MIBC, antifoam 

1. Introduction 

         Appropriately managing the froth phase can effectively improve the performance of 

froth flotation [1-6]. However, the froth phase is probably the most complex aspect of the 

froth flotation process. Although frothers are added to produce the froth phase, these 

ingredients alone do not control froth stability. For example, froth stability is also influenced 

by the size, shape and hydrophobicity of solid particles, the presence of other reagents (e.g., 

collectors and modifiers), the pH of the pulp phase, the process water chemistry and 

operational factors [1, 7-11]. Therefore, the production and maintenance of a satisfactory 

froth phase during the various stages of a flotation process is an art rather than a science and 

is often problematic for flotation operators.  

         Nonpolar collectors are used in the flotation of naturally hydrophobic particles, such as 

coal, graphite and molybdenite [12, 13]. Among these nonpolar collectors, diesel oil is most 

commonly used for coal and molybdenite flotation. The primary function of diesel oil is to 

increase the affinity of solid particles for the air bubbles by intermolecular van der Waals 

forces. However, oil droplets are also known to be antifoams [14-17]. Therefore, we can ask 



89 

 

the following question: Does diesel oil exert some additional “side effects” on froth stability? 

Here, for the sake of simplicity, we will initially only focus on foam stability. The aim of this 

work is to gain a better understanding of the effect of the nonpolar collector on foam stability 

for future reference and to serve as a benchmark for understanding the stability of three-phase 

flotation froth. First, we describe the experimental procedures and provide a new 

mathematical model for foam kinetics to simulate the foam growth process. Second, we 

analyze the experimental results and simulate the foam growth process using the proposed 

model. Finally, we discuss some possible antifoam mechanisms involving diesel oil. 

2. Experimental 

2.1. Materials 

         MIBC with a purity of +99% was purchased from Acros Organics (New Jersey, US). 

Diesel oil was purchased from CALTEX (QLD, Australia). All chemicals were used as 

received. All solutions were prepared using tap water (Brisbane, Queensland, Australia).  

2.2. Foaming experiments 

         The foaming experiments were conducted in a 1.5 L JK Tech (Brisbane, Australia) 

Batch Flotation cell [13] by the addition of 0.8 L of water with an air flow rate of 3.3 L/min 

and an agitation speed of 1200 rpm. MIBC and diesel oil were added simultaneously to the 

bulk solution and conditioned for 1 minute prior to the foaming experiments. When the 

airflow was directed into the flotation cell, the foam height was recorded using a digital 

camera (Canon A650 IS). One minute was required to reach the equilibrium maximum foam 

height. The videos were processed using software (Launch ImageGrab v 5.0, Paul Glagla, 

France) to extract images at different foaming times. Foam volumes at various times were 

calculated based on these images. Overflow of the foam from the cell did not occur. All 

experiments were conducted at an ambient temperature of 22°C.  

2.3. Surface tension measurements 

      Please refer to Section 4.3 in Chapter 4 for details. 

3. Quantification of foam growth 

      Please refer to Section 3 in Chapter 4 for details. 
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4. Results and discussion 

4.1. Experimental results   

         Figure 1 shows the variation of the foam volume versus time for solutions with different 

reagent concentrations. The maximum equilibrium foam volume decreases with the diesel oil 

concentration. As expected, the equilibrium foam volume increases with the MIBC 

concentration.  

         The antifoam efficacy, relV , is calculated as the change in the equilibrium foam 

volume upon the addition of diesel oil and is expressed as a fraction relative to the volume 

without diesel oil (Please refer to Eq. 17 and Eq. 18 for the definition of ). 

Figure 2 shows the dependence of the relative antifoam efficacy on the reagent 

concentrations. As expected, the relative antifoam efficacy increases with the diesel oil 

concentration but decreases with MIBC concentration. The most significant antifoam effect 

of diesel oil was observed in the solutions with the lowest MIBC concentration (10 ppm). 

         Fuel oil has been reported to decrease the froth stability in the presence of an anionic 

frother. However, this phenomenon does not occur with polyglycol (nonionic) frothers [10]. 

This anomaly is because of the higher adsorption capacity of the nonionic frother at the air-

water interface relative to the ionic frother [18]. The stronger affinity of polyglycol for the 

air-liquid interface exceeds the effect of the fuel oil. Instead of using polyglycol as a nonionic 

frother, we used the relatively weak frother MIBC. For the first time, we confirm that fuel oil 

can also decrease foam stability in the presence of a nonionic frother.  

relV
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Figure 1. Variation of foam volume with time for MIBC-diesel solutions. The error bars 

indicate the standard errors of the mean. 
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Figure 2. Dependence of relV  on the diesel oil and MIBC concentrations 

4.2. Simulation of foam growth  

         In this section, we use the mathematical model developed previously to quantify and 

simulate the foam growth kinetics. First, the foam decay constant, 2k , is calculated by

2 max/gk v V , where gv  equals 55 mL/s (3.3 L/min) and maxV  was measured as in the 

previous section. Then, the foam column kinetic behavior is simulated using Eq. 15 from 

Chapter 4. 

         Figure 3 shows the comparison between the experimental and simulated results. The 

difference between these results, especially for the highest MIBC concentration (50 ppm) in 

Figure 3, is caused by the presence of liquid in the foam, which makes the experimental foam 

growth more rapid than the simulated foam growth. 
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Figure 3. Experimental (points) and theoretical (lines) foam growth data of MIBC-diesel 

solutions (we use the same legends as in Figure 3) according to Eq. (15) in Chapter 4, where 

the gas flow rate is 55 mL/sgv   
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Figure 4. Foam decay constant, 2k , of MIBC-diesel solutions calculated by 2 max/gk v V  

         Figure 4 shows the foam decay constant, 2k , as a function of MIBC and diesel 

concentrations. We found that 2k  decreases with MIBC concentration. There are two reasons 

for the decreased 2k : (1) the presence of MIBC inhibits bubble coalescence [19-23] and (2) 

the presence of MIBC stabilizes the liquid films between the bubbles [24-27].  

         We also observed that 2k  increased with the diesel oil concentration. The increased 

foam decay rate is caused by the antifoam effect of the diesel oil droplets, which can destroy 

the foam [14, 15, 17, 28]. The antifoam effect of diesel oil is most significant in the solutions 

containing the lowest concentration of MIBC (10 ppm). 

4.3. Antifoam mechanisms of diesel oil  

4.3.1.   Correlation between antifoam efficacy and spreading pressure 

         Please refer to Section 2.3 in Chapter 4 for details about the definition of AW . 

         In this study, the antifoam effect of DOH droplets was correlated with the spreading 

pressure AW , which is applied in more general situations. Table 1 shows the values of the 

surface tension and spreading pressure in 10 ppm MIBC containing different diesel oil 

concentrations. Figure 5 shows the correlation between the relative antifoam efficacy, relV , 
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and spreading pressure, AW , which supports our hypothesis that diesel oil acts as an 

antifoam in MIBC solutions. 

Table 1. Oil film spreading data of 10 ppm MIBC solutions 

 Diesel concentration 

(ppm) 

Surface tension, σ (mN/m) Spreading pressure, ΔσAW 

(mN/m) 

0 72.32±0.10 0.00 

2 70.48±0.44 1.84 

5 69.88±0.01 2.44 

10 68.56±0.22 3.76 

50 64.06±1.04 8.26 

100 58.72±0.12 13.60 

 

 

Figure 5. Correlation between the relative antifoam efficacy, relV , and the spreading 

pressure, AW , of 10 ppm MIBC solutions with different diesel oil concentrations. 

4.3.2.   Interactions between diesel oil and frother molecules 

        Figure 6 illustrates the molecular interactions between diesel oil droplets and MIBC 

molecules in the flotation cell. There are two consequences of this interaction: (i) the MIBC 
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molecules align themselves at the oil-water interface with the hydrophilic group in the water 

and the hydrophobic tail in the oil and (ii) the MIBC molecules act as an emulsifier to form a 

stable emulsion by reducing the oil-water interfacial tension. Both outcomes facilitate the 

foam decay process. The adsorption of MIBC molecules on the oil-water interface depletes 

the MIBC molecules in the water phase, resulting in a less stable foam layer. The adsorption 

of MIBC molecules on the oil-water interface can also increase the stability of the oil droplets 

that act as antifoams. Therefore, the foam decay constant, 2k , increases with the diesel oil 

concentration, as illustrated in Figure 5. The increase in 2k  is most evident for the solutions 

containing the lowest MIBC concentration (10 ppm).  

 

 

 

 

 

 

 

 

 

Figure 6. Schematic of the interactions between oil droplets and MIBC molecules in the 

flotation cell 

5. Conclusions 

        We conducted experiments to examine the effects of a nonpolar collector on the foam 

growth kinetics of MIBC solutions. We found that diesel oil, which is a commonly used 

nonpolar collector in the flotation of naturally hydrophobic minerals, could decrease the foam 

growth rate by accelerating the foam decay process. We developed a kinetic model to 

quantify the foam growth process. The model describes the foam growth rate in terms of the 

competition between foam formation and foam decay. We found that the presence of diesel 

Diesel droplets 

MIBC molecules 

Gas bubbles 

Foam 

Liquid phase 

Rotator 
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oil increased the value of the foam decay constant, 2k , whereas the presence of MIBC 

decreased it. The antifoam effect of diesel oil was explained based on the entry barrier and 

spreading pressure. We also discussed the interactions between diesel oil and frother 

molecules to illustrate diesel oil’s antifoam effects. 
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Highlights: 

• A model is proposed for foam collapse that was inspired by chemical kinetics. 

• The stability of SDS-DOH foams is dominated by surface viscoelasticity, despite the 

decreased double-layer repulsion. 

• The stability of SDS-NaCl foams is dominated by double-layer repulsion at the same 

surface concentration of SDS molecules. 
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Abstract 

Here, we examine the rupture of standing aqueous foams stabilized by the anionic surfactant 

SDS, using DOH and sodium chloride (NaCl) respectively to produce different surface 

viscoelasticities and surface potentials in order to elucidate the roles of surface rheology and 

intermolecular forces in foam stability. A model is proposed that is analogous to reaction 

kinetics, which is used to quantify the foam collapse process. The presence of DOH in the 

SDS solutions can significantly increase the surface viscoelasticity and foam stability, despite 

the decreased surface potential caused by the displacement of SDS molecules by DOH 

molecules at the air-water interface. The correlation between surface viscoelasticity and foam 

stability is explained by the decrease in foam drainage and the enhancement of liquid film 

stability. For SDS-NaCl mixtures with the same value of the mean ionic product (1 mM), an 

increased concentration of NaCl in the SDS solution reduces the surface potential and the 

Debye length because of the screening effect resulting from the binding of sodium counter 

ions to the sulfate head groups. The foam stability decreases because of the weakened 

repulsive interactions between the two interfaces of the liquid films, despite the presence of 

the same surface concentration of SDS molecules, as indicated by the same equilibrium 

surface tension. This chapter highlights two different mechanisms that dominate foam 

stability.  

Keywords: foam, foam stability, surface rheology, surface potential 

1. Introduction 

       Foam consists of a mixture of a large volume of gas with a much smaller amount of 

liquid. Because of its large surface area, a foam is thermodynamically unstable and 

irreversibly evolves and disappears with time [1]. The lifetime of a foam is known to depend 

on three interrelated mechanisms: the foam drainage caused by gravity, the coarsening caused 

by gas transfer between bubbles induced by capillary pressure differences, and the bubble 

coalescence caused by the rupture of liquid films between neighboring bubbles [2]. However, 

the mechanisms that determine foam collapse remain poorly understood. For example, 

although many research efforts have focused on the stability of liquid films, which constitute 

one of the elementary building blocks of foams (with the other being the Plateau borders) [4-

6], the correlation between the stability of an isolated film and the stability of the entire foam 

layer is not fully understood [2, 7]. The rupture of a single liquid film in foams has been 

shown to depend on previous rupture events; in other words, rupture occurs in correlated 

bursts [8-11]. Further, it has been correctly noted that [12], “In a real foam, the film are 
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unlikely to burst at a single exerted pressure, but rather are likely to exhibit a distribution in 

the bursting probabilities.” However, little is known with regard to this distribution of 

bursting. Similarly, the dependence of foam collapse on the interfacial properties is also not 

well understood [2].  

         In this chapter, we first review the theories regarding foam stability in terms of the 

interfacial properties and the surface forces in a single liquid film. Then, we propose a novel 

model inspired by chemical kinetics to describe the collapse of standing foams. Finally, we 

study the foam stability of SDS-DOH and SDS-NaCl foams to elucidate the effects of surface 

rheology and surface potential on foam stability.  

2. Theory 

2.1 Surface viscoelasticity and foam stability 

      Please refer to Section 2.1.3 in Chapter 4 for details. 

2.2 Surface forces and foam stability 

      Please refer to Section 2.2 in Chapter 4 for details. 

3. Modeling of foam column collapse 

      Foam collapse kinetics can be described schematically and analogously to a chemical 

reaction [13] as follows: 

kF L G                                                                                                                         (1) 

where F  is the foam, L  is the liquid released from the collapsed foam, G  is the gas leaving 

the burst bubbles and k  is the foam collapse constant. Assuming a second-order foam 

collapse reaction, the foam collapse rate is proportional to the foam volume squared: 

2dV
kV

dt
                                                                                                                               (2) 

where V  is the foam volume and t  is the foam collapse time. Integrating Eq. (2) with a 

scaled foam volume gives: 

max/

21
0

t
V V dV

k dt
V

                                                                                                                   (3) 
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max

1
V t

V t
 


                                                                                                                       (4) 

where 1/ k   is the half lifetime of the foam. Please note that the unit of the foam collapse 

constant, k , changes from 
1 1ml s 

 to 
1s  after normalization of the foam volume. It should 

be noted that the fundamental physics of foam collapse are described by Eq. (4), which can 

be generalized as follows: 

max

1
n

n n

V t

V t
 


                                                                                                                    (5) 

By applying the first derivative of the scaled foam volume with respect to time and 

expressing the time as a function of the scaled foam volume, we can obtain the prefactor of 

the foam collapse rate, /n  , as follows: 
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                                                                (8) 

4. Experimental 

4.1. Materials 

        Both SDS and DOH were purchased from Sigma-Aldrich (US) with purities of 99% and 

98%, respectively. NaCl was purchased from Univar (Australia) with a purity of 99%. All 

chemicals were used as received. The solubility of DOH in water at 29.5°C is 0.04 wt% (4 

mg/L), and the freezing point is 24°C [14]. All solutions were prepared using Milli-Q water 

(surface tension: 71.97 mN/m at 25°C; resistivity: 18.2 MΩcm at 25°C) [15]. A 10 mg/L 

DOH stock solution was prepared by ultrasonication in an ultrasonic bath for 15 min at a 

controlled temperature of 25°C. SDS-DOH mixtures were prepared from the stock solution 

by dilution to the desired concentrations. The SDS-DOH solutions displayed a reduced 
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surface activity over time because of the separation and consequent evaporation of DOH [16]. 

Therefore, only freshly prepared solutions were used in this study.  

4.2. Foam collapse measurements 

      Please refer to Section 4.2 in Chapter 4 for details about the foam tester. 

      During foam collapse, the foam volume was measured by the sensor unit every 30 

seconds. For each solution, the experiments were repeated, and averaged results were 

obtained. The room temperature was kept constant at 25°C. The relative humidity of the 

room was also kept constant (50–60%). 

4.3. Measurements of dynamic surface tension and surface viscoelasticity  

      Please refer to Section 4.4 in Chapter 4 for details. 

4.4. Measurements of surface (zeta) potential of air bubbles in surfactant solutions 

      Please refer to Section 4.5 in Chapter 4 for details. 

5. Results and discussion 

5.1 Foam stability of SDS-DOH mixtures 

5.1.1 Foam collapse for SDS-DOH foams 

         Figure 1 shows the foam collapse curves for SDS-DOH mixtures and the simulation 

results fitted by Eq. (5). The simulation results fit the experimental data very well, indicating 

the validity of the model developed in Section 3. The presence of DOH is found to 

significantly increase the foam stability of SDS foams, and its efficacy is proportional to the 

DOH concentration. To quantify the foam collapse process and make comparisons, the half 

foam lifetime,  , in Eq. (5) and the prefactor of the foam collapse rate, /n  , in Eq. (8) are 

plotted as a function of the DOH and SDS concentrations, as shown in Figure 2. The half 

foam lifetime,  , increases with the SDS and DOH concentrations. Conversely, the prefactor 

of the foam collapse rate, /n  , decreases with the SDS and DOH concentrations.  
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Figure 1. Scaled foam volume vs. time for collapsing SDS-DOH foams. Symbols and lines 

indicate the experimental data and simulation results fitted by Eq. (5), respectively. The error 

bars represent the standard errors of the mean. The value of maxV  for each solution is 

indicated. 
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Figure 2. The half foam lifetime,  , in Eq. (5) and the prefactor of foam decay, /n  , in Eq. 

(8) for collapsing SDS-DOH foams.  

5.1.2 Dynamic surface tension and surface viscoelasticity  

         Please refer to Section 5.2 in Chapter 4 for details. 

5.1.3 Surface potential  

          Figure 3 (Figure 10 in Chapter 4) shows the surface (zeta) potential data of air bubbles 

in SDS solutions with and without 2 mg/L of DOH. The concentration of DOH is reasonably 

below its solubility limit, which is 4 mg/L at 29.5°C, as shown in Section 4.1. The 

displacement of SDS molecules by DOH molecules results in a substantial decrease in the 

surface potential, which is caused by the considerably higher surface activity of DOH relative 

to SDS. Similarly, the surface charge of TTAB solutions has been shown to be decreased by 

the addition of DOH because of the replacement of TTAB molecules by DOH molecules [17]. 

Despite the reduced double-layer repulsion, the presence of DOH increases the foam stability 
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of SDS foams because of the dominant effect of the surface viscoelasticity. The surface 

potential also increases with the SDS concentration, indicating increased electrostatic 

interactions that favor the liquid film and foam stability.  

 

 

Figure 3. Comparison of the surface (zeta) potential of air bubbles in SDS solutions with and 

without 2 mg/L of DOH. 

5.2 Foam stability of SDS-NaCl mixtures 

5.2.1 Dependence of adsorption on the mean ionic product, 
*c  

         The adsorption and surface tension have been shown to depend on the mean ionic 

activity rather than the surfactant concentration when an inorganic electrolyte, such as NaCl, 

is present [18-20]. To elucidate the effect of NaCl on the stability of SDS foams, we carefully 

selected the molar concentration ratio of SDS to NaCl to maintain a constant surface tension 

(Figure 4) by adjusting the mean ionic activity, * 1/2( )SDS NaCl SDSc f c c  
,
 to 1 mM. f  is the 

average activity coefficient of ions in the solution and is calculated using the Debye-Hückel 

equation as follows: 

0.5115
log 0.055

1 1.316

I
f I

I



   

 
                                                                                      (9) 

where I  is the ionic strength in mol/l and the numerical constants correspond to 25°C [21].   
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Figure 4. Dynamic surface tension of SDS-NaCl solutions with the same value of the mean 

ionic activity, 
*c  1 mM. 

         Figure 4 indicates that as a result of the reduced electrostatic double-layer repulsion, the 

presence of NaCl in SDS solutions promotes the adsorption of SDS molecules on the air-

water interface, despite the relatively low concentration of SDS in the solution. The effect of 

NaCl on the foam stability of the solutions containing 0.1 mM of SDS was previously 

examined [6] by simple shaking tests [22]. An increased foam lifetime was recorded as the 

NaCl concentration was increased from 0 mM to 1 mM. However, when the NaCl 

concentration was increased further to 10 mM and 100 mM, the foam lifetime decreased. The 

increased foam lifetime was partially ascribed to the rapid decrease in the hydrophobic force 

in foam films, whereas the decreased foam stability was attributed to the decreased 

electrostatic repulsion in the foam films. We agree with the above conclusions. However, we 

wish to emphasize that the increased foam stability caused by increasing the NaCl 

concentration in SDS solutions with a constant SDS concentration (0.1 mM) shown in [6] 

was also caused by the enhanced adsorption of SDS molecules on the air-water interface 

resulting from the decreased double-layer repulsion.  

5.2.2 Foam collapse for SDS-NaCl foams 

         Figure 5 shows the foam collapse curves for SDS-NaCl mixtures and the simulation 

results fitted by Eq. (5). The simulation results fit the experimental data very well, again 
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indicating the validity of the model developed in Section 3. The presence of NaCl is found to 

significantly reduce the foam lifetime of SDS foams, and the efficacy is proportional to the 

NaCl concentration. To quantify the foam collapse process and make comparisons, the half 

foam lifetime,  , in Eq. (5) and the prefactor of the foam collapse rate, /n  , in Eq. (8) are 

plotted as a function of NaCl concentration in Figure 6. The half foam lifetime,  , decreases 

with the NaCl concentration in SDS solutions. Conversely, the prefactor of the foam collapse 

rate, /n  , increases with the NaCl concentration. 

 

Figure 5. Scaled foam volume vs. time for collapsing SDS-NaCl foams with the same value 

of the mean ionic activity, 
*c  1 mM. Symbols and lines indicate the experimental data and 

simulation results fitted by Eq. (9), respectively. Arrows in the graph indicate the direction of 

the increase in the NaCl concentration from 0 mM to 20 mM. The values of maxV  are 188.5 

mL, 178.0 mL, 169.5 mL, 141.0 mL, 126.0 mL and 115.0 mL for SDS-NaCl solutions with 

NaCl concentrations of 0 mM, 1 mM, 2 mM, 5 mM, 10 mM and 20 mM, respectively. 
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Figure 6. The half foam lifetime,  , in Eq. (5) and the prefactor of foam decay, /n  , in Eq. 

(8) for collapsing SDS-NaCl foams with the same value of the mean ionic activity, 
*c  1 

mM.  

5.2.3 Correlation between foam stability and surface (zeta) potential  

        To correlate the foam stability of SDS-NaCl mixtures with the surface (zeta) potential of 

air bubbles in the solution and the characteristic thickness of the electrical double-layer 

(EDL), we conducted measurements of the zeta potential of air bubbles in SDS-NaCl 

solutions and calculated the Debye length, 1  . For the monovalent electrolytes, 1   is 

mathematically described by [23]: 

1 0

22

r B

A

k T

N e I

 
                                                                                                                      (10) 
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where 0  is the permittivity of vacuum, r  is the dielectric constant, Bk  is Boltzmann’s 

constant, T  is the absolute temperature in Kelvin, AN  is Avogadro’s number, e  is the 

elementary charge and I  is the ionic strength of the solution in 
3/mol m . For a monovalent 

electrolyte at 25°C, the Debye length of aqueous solutions can be expressed as a function of 

ionic strength only [24]: 

1 0.304

I
                                                                                                                            (11) 

where 1   is measured in nm  and the ionic strength I  is measured in /mol L . Please note 

that the magnitude of the Debye length depends only on the properties of the solution rather 

than on any property of the surface, such as its charge or potential.  

        Table 1 shows the zeta potential,  , of air bubbles, the Debye length, 1  , and the half 

foam lifetime,  , for SDS-NaCl solutions with the same value of the mean ionic activity, 

*c  1 mM but different values of the ionic strength I . For comparison, the zeta potential 

data of SDS micelles with different NaCl concentrations from [25] are also shown. Because 

of the screening effect caused by the binding of sodium counter ions to the sulfate head 

groups [26], the absolute value of the zeta potential,  , decreases from 69.2 mV to 34.1 mV 

when the NaCl concentration increases from 0 mM to 20 mM in SDS solutions. The absolute 

value of the zeta potential for 1 mM SDS without NaCl (69.2 mV) is reasonably lower than 

the zeta potential of SDS micelles (87.0 mV). Similar to the effect of NaCl concentration on 

the zeta potential of SDS micelles [25], the presence of 1 mM NaCl significantly reduces the 

absolute value of the zeta potential for SDS solutions with 
*c  1 mM from 69.2 mV to 42.6 

mV. However, when the NaCl concentration increases from 1 mM to 20 mM, the absolute 

value of the zeta potential for SDS solutions with 
*c  1 mM decreases from 42.6 mV to 34.1 

mV. Because of the increased ionic strength in the solution, the Debye length decreases from 

9.6 nm to 2.1 nm when the NaCl concentration increases from 0 mM to 20 mM for the SDS 

solutions with 
*c  1 mM, indicating that the presence of NaCl decreases the distance within 

which the electrostatic interactions between the two charged interfaces become significant. 

Because of the decreased repulsion and characteristic thickness of the electrical double layer, 

the half foam lifetime,  , decreases from 1724.1 s to 5.1 s when the NaCl concentration 
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increases from 0 mM to 20 mM for the SDS solutions with 
*c  1 mM. Please note that the 

increased surface mobility of SDS foams in the presence of NaCl may also contribute to the 

decreased foam stability [27]. 

Table 1. Zeta potential,  , of air bubbles, Debye length, 1  , and half foam lifetime,  , for 

SDS-NaCl solutions with the same value of the mean ionic activity, 
*c  1 mM, and the zeta 

potential data of SDS micelles with different NaCl concentrations from [25] highlighted by 

gray shading. 

SDSC (mM) NaClC (mM) 

Mean ionic 

activity, 
*c

(mM) 

Zeta 

potential,   

(mV) 

Debye 

length, 1   

(nm) 

Half foam 

lifetime,   

(s) 

1.00 0 1.0 -69.2±2.2 9.6 1724.1 

0.66 1.0 1.0 -42.6±2.2 7.5 903.0 

0.45 2.0 1.0 -41.9±2.4 6.1 309.8 

0.22 5.0 1.0 -37.0±2.5 4.2 34.1 

0.12 10.0 1.0 -36.0±1.3 3.0 7.6 

0.066 20.0 1.0 -34.1±1.3 2.1 5.1 

17.3 0 above CMC -87.0 - - 

1.7 42.8 above CMC -50.8 - - 

1.7 85.6 above CMC -49.3 - - 

1.7 128.3 above CMC -45.8 - - 

1.7 171.1 above CMC -43.5 - - 

6. Conclusions 

        The foam stability of SDS-DOH and SDS-NaCl foams was studied to elucidate the 

mechanisms by which foams collapse. For SDS-DOH foams, the high surface viscoelasticity 

caused by the presence of DOH is responsible for the highly stable foams, despite the 

decreased double-layer repulsive forces between the interfaces of the liquid films caused by 

the replacement of SDS molecules by DOH molecules. In contrast, for SDS-NaCl foams, the 

deceased double-layer repulsion in the presence of NaCl caused by the binding of sodium 

counter ions to the sulfate head groups results in a significant decrease in the stability of the 

SDS foams, regardless of whether the same amount of SDS molecules is adsorbed on the 
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interface. Additionally, we proposed a novel model to describe the foam collapse that is 

inspired by chemical kinetics.  
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Abstract 

We conducted forced drainage experiments to study the liquid flow within the foams 

stabilized by a cationic surfactant (CTAB) in the presence of partially hydrophobic glass 

beads with a floatable size ( 0.8 86.6d m ). The results show that the presence of solid 

particles, even when present in small amounts (0.093 g/L), can significantly decrease the 

foam permeability. The scaling behavior (power law) between the drainage velocity and the 

imposed flow rate indicates that the presence of solid particles in the foams triggers a 

transition of the foam drainage regime from a node-dominated regime to a Plateau border-

dominated regime. We applied two foam drainage equations for aqueous foams to simulate 

the experimental data and interpret the transition. The simulation results show that the 

presence of solid particles in the foams increases the rigidity of the interfaces and the viscous 

losses in the channels (Plateau borders) of the foams, and decreases the foam permeability. 

This study explores the liquid drainage in the three-phase froth and is relevant to the field of 

froth flotation, in which the wash water is commonly applied to the froth layer to improve the 

product’s grade.  

Keywords: foam, foam drainage, froth flotation, solid particle 

1. Introduction 

        Foams are widely applied in our daily lives and in industries because of their lightness 

and large specific surface area. A recent textbook summarized their applications, including 

food, cosmetics, cleaning, surface treatment, building materials, reducing pollution and the 

extraction of natural resources (e.g., froth flotation) [1]. Their immense practical and 

industrial importance has motivated fundamental studies of foams. The lifetime of a foam 

depends on three different mechanisms: the foam drainage caused by gravity, the coarsening 

caused by the gas transfer between bubbles induced by capillary pressure differences, and the 

bubble coalescence caused by the rupture of liquid films between neighboring bubbles [1]. 

Because foam drainage influences the liquid fraction of a foam, which determines both the 

coarsening and bubble coalescence [2-8], it is crucially important with regard to the lifetime 

of a foam. In the earliest work on modeling foam drainage [9], it was assumed that the 

viscous losses caused by the liquid flow occur only in the Plateau borders (i.e., the channels) 

with rigid walls. This assumption was applied by subsequent researchers [10, 11], and a 

Plateau border-dominated approach for the study of foam drainage was developed. This 

approach was challenged when the contributions of the nodes, where the channels meet, were 
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recognized and mobile Plateau border walls were assumed [12]. Since then, the standard 

foam drainage equation [9] has been modified [13] and foam drainage models that consider 

viscous losses from both the Plateau borders and nodes have been proposed [14, 15]. All of 

these foam drainage models have been applied only to two-phase aqueous foams. In practice, 

however, three-phase foams or froths in which solid particles are present are more common 

in industrial processes, such as froth flotation. In froth flotation, the wash water is commonly 

applied to the froth phase to flush the entrained gangue out of the froth and consequently 

increase the product’s grade. Although froth washing has been widely applied in froth 

flotation, a complete understanding of the liquid flow in a three-phase froth is lacking.    

        Recently, foam drainage results in the presence of suspended particulate matter, such as 

coal fly ashes [16], clays [17], and particulate suspensions [18, 19], together with 

fundamental studies on the drainage behavior of liquid and hydrophilic particles in foams 

[20-26], have been reported. Nevertheless, few studies have focused on foam drainage in the 

presence of partially hydrophobic particles (i.e., hydrophobized by the adsorption of a 

surfactant to the particle surface) with sizes in the most floatable region (approximately 10 

micron to 70 micron), which is of paramount interest for froth flotation. The partial 

hydrophobization of (and addition of a negative charge to) silica particles by cationic 

surfactants, such as hexadecyltrimethylammonium bromide (CTAB) [27] and dodecylamine 

acetate [28], with sizes of 10 m  and 45 m , respectively, can increase the stability of 

foams and liquid films. Although the decreased drainage of liquid films by these partially 

hydrophobic particles with sizes larger than the average film thickness has been ascribed to 

the dispersion of surface waves [27], which is caused marginal regeneration [29], an 

understanding of the drainage behavior remains lacking. In the present study, we conducted 

forced drainage experiments to investigate the liquid flow within the foams stabilized by a 

cationic surfactant (i.e., CTAB) in the presence of partially hydrophobic glass beads. We also 

applied two existing foam drainage equations for two-phase aqueous foams to the 

experimental results for three-phase froths. This chapter attempts to address the following 

questions: How does the presence of solid particles affect foam drainage? Can the foam 

drainage equations for aqueous foams be applied to describe the foam drainage of three-phase 

foams? What are the effects of solid particles on the stress state of the gas-liquid interface of 

foams? 

 



117 

 

2. Theory 

2.1. Foam permeability 

        The flow of liquid through a foam layer is analogous to the fluid flow through a porous 

medium. However, it must be recalled that there are two significant differences between 

liquid drainage through a foam and that through a porous medium [1]. First, in a foam, the 

size of the network (i.e., Plateau borders and nodes) through which the liquid flow is not 

fixed but is actually dependent on the flow itself. That is to say, the bubbles can move apart 

to allow liquid to pass and then move back. Second, the interfaces are not completely rigid 

but are instead partially mobile in a foam, depending on the interfacial properties, such as the 

surface shear viscosity. The classic Darcy’s law that describes the fluid flow through a porous 

medium is also applicable to aqueous foams [8, 12, 30-32]. For a gravity-driven flow, we 

obtain [30]: 

dj g




                                                                                                                                 (1) 

where dj  is the superficial liquid velocity imposed on the top of the foam layer,   is the 

foam permeability,   is the liquid dynamic viscosity,   is the liquid density and g  is the 

acceleration due to gravity. The permeability is usually scaled with the square of the bubble 

size to obtain a dimensionless foam permeability, 2/ br  [30]. Here, we correlate the 

dimensionless foam permeability for the liquid fraction,  , using two existing foam drainage 

equations [14, 33] for aqueous foams to study the effects of glass beads on foam permeability.  

2.2. Foam drainage model I: Liquid flow through a single Plateau border 

        The velocity profile within a single Plateau border has been numerically calculated. The 

expression for the mean liquid velocity through a vertical Plateau border, u , has also been 

proposed [33]:  

0.5

0.628

0.0655
0.02

0.209

A dp Bo
u

dz Bo

 
  

 
                                                                                       (2) 

where A  is the cross-sectional area of the Plateau borders, /dp dz  is the pressure gradient 

(positive downward), and the Boussinesq number is defined by /sBo r  , where s  is the 

surface shear viscosity and r  is the radius of curvature of the Plateau border walls. If we 
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suppose that the angles between the liquid films that form the Plateau border are 120°, the 

area of the Plateau border cross-section is   23 / 2A r   [1, 10], where r  has been 

approximated to be a function of the liquid fraction,  , and the bubble radius, br  [34]:

0.46/ 1.28br r  , using the equation in [14], which was developed from geometrical 

arguments. Consider the random orientation of the Plateau borders in the foams: the average 

distance between two points along the Plateau borders is three times the straight line distance 

between the points [10, 14], i.e.,
 

3 /du j  . Additionally, bearing in mind Eqs. (1) and (2), 

the dimensionless foam permeability, 2/ br , can be expressed as a function of the liquid 

fraction,   [32]: 

0.5
1.92

2 0.628
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0.088 0.02

0.209b

Bo

r Bo




 
  

 
                                                                              (3) 

Please note that Eq. (3) assumes that all losses occur in the Plateau borders with a finite 

surface shear viscosity. If we assume that the walls of the Plateau borders are rigid (i.e., Bo  

is infinite), Eq. (3) can be re-written as 2 1.92/ 0.0018br   [32]. The dimensionless foam 

permeability as a function of the liquid fraction can be calculated with Eq. (3) for Bo 

constant and s  constant.  

2.3. Foam drainage model II: Viscous losses contribution from nodes 

       The advantage of Eq. (3) is that the surface shear viscosity can be estimated if the 

relationship between 2/ br  and   can be obtained by forced drainage experiments. However, 

because the contribution of the viscous losses from the nodes is ignored, the applicability of 

Eq. (3) is limited, especially for the node-dominated foam drainage regime [12, 35]. 

Alternatively, a foam drainage equation that can account for the effects of both the Plateau 

borders and nodes has been proposed [14] and can be re-written as: 
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(4) 

where pbC  is the Plateau border loss coefficient that equals 50 if the walls of the Plateau 

borders are rigid, and VC  is the vertex (node) loss coefficient.  
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3. Experimental 

3.1. Materials 

      CTAB was purchased from Sigma-Aldrich with a purity 99% . The glass beads were 

obtained from the mining lab of The University of Queensland.  

3.2. Forced drainage experiment 

        The forced drainage experimental method was first introduced in [36]. Briefly, foams 

were prepared within a transparent perspex column (internal diameter: 90 mm; length: 500 

mm) filled with 450 mL of 1 mM CTAB solution containing different concentrations of glass 

beads (0, 1 and 2 wt%) while blowing bubbles of nitrogen through a sparger plate (sintered 

bronze) at the bottom of the column. The low solubility of nitrogen can effectively prevent 

the bubble coalescence within the foam column. Subsequently, the gas flow was stopped, and 

the foam column was left to drain under gravity for 15 minutes. Finally, an additional volume 

of 1 mM CTAB was introduced onto the top of the foam column using a burette with 

different volumetric flowrates, Q . The foam column was then divided by the wet front into 

the wet zone above the front and the dry zone below it. A power law relationship between the 

superficial velocity of the wet front, fV , and the imposed liquid flowrate, Q , was reported 

[37]. For convenience, we use the superficial velocities in this study, and as a result, fV  is 

also proportional to a power of the superficial drainage velocity in the foams: 

f d

Q
V j

A



 
  
 

                                                                                                                      (5) 

It has been found that 1/ 2   corresponds to a Poiseuille flow through rigid Plateau borders 

[38] or a Plateau border-dominated regime [35], whereas 1/ 3   corresponds to a plug flow 

through a mobile gas-liquid interface or node (vertice)-dominated regime [12]. The 

volumetric liquid fraction,  , of the foams in the wet zone can be calculated by: 

d

f

j

V
                                                                                                                                        (6) 

Therefore, the most striking advantage of the forced drainage experiment is that the liquid 

fraction can be readily controlled by altering the liquid flowrate imposed on the top of the 

foam column. The concentration of the glass beads within the foam column was estimated by 
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measuring the dry weight of the glass beads from the collected overflow foams and the 

volume of the overflow foams. The images of the foam layer captured by a digital camera 

were processed using an image processing software (ImageJ, NIH, US) to measure the bubble 

size. More than 100 bubbles were measured for each solution to obtain the Sauter mean 

diameter, 32d . Please note that the potential errors involved in this method of measuring the 

bubble size have been discussed previously [39]. The Sauter mean bubble diameter, 32d , for 

foams stabilized by 1 mM CTAB solutions with 0, 1 and 2 wt% glass beads are 0.92, 1.28 

and 1.57 mm, respectively. The value of 32d  for 0.8 mM CTAB foam is 1.07 mm. 

3.3. Particle size measurement 

        Particle size measurements were conducted with a Mastersizer 2000 from Malvern 

Instruments using laser diffraction. The intensity of the light scattered as a laser beam passes 

through a dispersed particulate sample was measured. Then, the light intensity was analyzed 

to calculate the size of the particles that created the scattering pattern. The particle size 

distribution of the glass beads is shown in Figure 1. The 50% ( 0.5d ) and 80% ( 0.8d ) sizes of 

the glass bead sample are 59.4 m  and 86.6 m , respectively. 

 

 

Figure 1. The cumulative size distribution of the glass bead sample. 
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3.4. Contact angle measurement 

         A glass bead was carefully attached to a bubble produced by a capillary to measure the 

contact angle. A capillary was connected to a hole with an internal diameter of 1 mm on the 

wall of a perspex container of dimensions 5580 mm that was filled with 1 mM CTAB 

solution. A glass bead was dropped into the hole, and a microsyringe and microsyringe pump 

system were used to produce one bubble attached to the glass bead. With the glass bead 

attached to the interface of the bubble, an image (Figure 2) was captured by a CCD camera 

(Potron, Japan). The edges of the bubble and the glass bead were digitalized, and the contact 

angle (33.8°) was calculated based on the image using Matlab software. The contact angle 

value indicates that the negatively charged surface of the glass bead is partially 

hydrophobized by the cationic surfactant CTAB. Although this contact angle is still low for 

flotation purposes, our study remains relevant to the froth phase in froth flotation where large 

amounts of hydrophobic particles attach to the air-water interface, resulting in changes in the 

interface mobility. 

 

Figure 2. Image of the bubble with one glass bead attached to calculate the contact angle. 

4. Results and discussion 

4.1. Transition of foam drainage regime 

          Figure 3 summarizes the forced drainage data for CTAB foams with different glass 

bead concentrations. The CTAB foams without glass beads where 0.34   for 1 mM CTAB 

(above the CMC of 0.92 mM) foams and 0.36   for 0.8 mM CTAB foams exhibit a foam 

drainage regime similar to the node-dominated regime where 1/ 3  , and the flow in the 

Plateau borders is plug-like [12]. The similar   values indicate that the transition of the foam 

drainage regime is independent of the surfactant concentration. Notably, the power law 

1 mm 
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exponent increases from 0.34 for 1 mM CTAB foams without glass beads to 0.51 for the 

same foams with 0.0932 g/L glass beads and further increases to 0.64 for a higher glass bead 

concentration (0.203 g/L). We recall that a value of   close to 1/ 2  indicates a Plateau 

border-dominated regime, where the flow in the Plateau borders is Poiseuille-like. Therefore, 

the presence of glass beads in the CTAB foams triggers a transition of the foam drainage 

regime from a node-dominated regime to a Plateau border-dominated regime. A similar 

transition has also been reported in foams stabilized by SiO2 nanoparticle-cationic surfactant 

(TTAB) mixtures [18]. To investigate the effects of glass beads on the foam permeability and 

interfacial properties of CTAB foams, the two foam drainage equations in Section 2 are 

applied to interpret the experimental data.  

 

 

Figure 3. Forced drainage results for CTAB foams with different glass bead concentrations 

in foams. The different lines correspond to power law fits of experimental data.  

4.2. Dimensionless foam permeability 

         Figure 4 shows the dimensionless foam permeability as a function of the liquid fraction 

for 1 mM CTAB foams with different glass bead concentrations. A decrease in dimensionless 

foam permeability has been observed as the glass bead concentration increases. The decrease 

in foam permeability caused by the presence of solid particles has previously been 

established in surfactant foams containing SiO2 nanoparticles [18], clay particles [17] and 



123 

 

coal fly ash [16]. Please note that the effects of the size, shape and hydrophobicity of solid 

particles on the stability of foams and liquid films have been known for a long time [40-46]. 

Specifically, the maximum stability of the froth with quartz particles (26–44 m ) was 

observed at an intermediate degree of hydrophobicity, and the hydrophilic particles did not 

exert a noticeable influence on the froth stability [43]. This effect of the hydrophobicity of 

solid particles on froth stability indicates that the attached partially hydrophobic solid 

particles may alter the stress state of the interface and thereby affect the liquid drainage and 

the froth stability as a whole. 

          As expected, fits of the forced drainage data for 1 mM CTAB foams with Eq. (3) for 

both Bo  constant and s  constant are less ideal than those for the foams with glass beads 

because Eq. (3) only accounts for the viscous losses in the Plateau borders, whereas the liquid 

flow in 1 mM CTAB foams without glass beads is node dominated. In contrast, the foam 

drainage equation that accounts for the contribution of viscous losses from both the Plateau 

borders and the nodes fits the forced drainage data for CTAB foams both with and without 

glass beads fairly well. Table 1 summarizes the power law exponent, , in Eq. (5), the 

constants Bo  and s  in Eq. (3), and the constants PBC  and VC  in Eq. (4) for 1 mM CTAB 

foams with and without glass beads. As the glass bead concentration in CTAB foams 

increases,   also increases from 0.34 to 0.64, indicating a transition from the node-

dominated regime to the Plateau border-dominated regime. Please note that a large power law 

index, such as 0.64  , exceeds the limit of the Plateau border-dominated regime, which is 

0.5  . A similar phenomenon has been reported for surfactant foams with coal fly ash [16], 

for which the large permeability exponents and prefactors are attributed to the rheology of the 

powder suspension and clogging in the confined regions of the Plateau borders. Because the 

draining liquid used in this study is a surfactant solution rather than a powder suspension, we 

can assume that only the second mechanism applies. To verify this clogging effect, we 

calculated the confinement parameter [19, 21, 24-26], which compares the size of the particle 

with the maximum diameter of the circle inscribed in the Plateau border cross-section:

lim/d d  , where  lim 2 2 / 3 1d r  . To find the maximum possible value of limd  (i.e., 

the smallest value of  ), we applied the largest bubble radius ( 0.635br  mm) observed for 

foams stabilized by 1 mM CTAB with 2 wt% glass beads with a liquid fraction of 5%   

(i.e., well above the experimental values shown in Figure 4) to calculate the radius of 
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curvature of the Plateau border walls: 0.46/ 1.28br r  . Finally, we obtain the value of 

lim 62d m . By applying 0.8 86.6d m , we obtain the smallest possible value of 1.4  . It 

has been reported that for 1  , particles are trapped in the foams, and the resulting 

drainage velocity is strongly reduced [24-26]. Please note that we attribute the decreased 

foam permeability only to the mobility of the interfaces that is quantified by Bo  and s . It is 

reasonable to conclude that the increase in Bo  and s  in the presence of particles is partially 

caused by clogging effects. 

          Correspondingly, Bo  increases from 0.044 to 0.20 for Bo  constant fits with Eq. (3), 

and s  increases from 
80.74 10 . .Pa m s  to 

83.47 10 . .Pa m s  for s  constant fits with Eq. 

(3), indicating a decrease in interface mobility when the glass bead concentration in the 

foams increases from 0 g/L to 0.203 g/L. The effects of solid particles on the enhancement of 

interface rigidity have been previously reported [43]. Additionally, an investigation of the 

surface dilational rheology of mixed silica nanoparticle-CTAB interfacial layers showed the 

transfer or accumulation of solid particles at the liquid interface can increase the surface 

viscoelasticity [47]. The Plateau border loss coefficient, PBC , increases from 1.91 to 29.19, 

whereas the vertex (node) loss coefficient, VC , decreases from 16.08 to 4.96 for the fits with 

Eq. (4) when the glass bead concentration increases from 0 g/L to 0.203 g/L, again indicating 

a transition of the foam drainage regime.   
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Figure 4. Dimensionless foam permeability as a function of the liquid fraction. Solid lines: 

fitting curves with Eq. (3) for Bo  constant. Dotted lines: fitting curves with Eq. (3) for 

s  constant. Dashed lines: fitting curves with Eq. (4) for ,PB VC C  constant. The Sauter 

mean bubble radii for 1 mM CTAB foams with 0 g/L, 0.0932 g/L and 0203 g/L glass beads in 

foams are 0.46 mm, 0.64 mm and 0.78 mm, respectively. 

Table 1. Exponent,  , in Eq. (5) and constants in Eqs. (3) and (4) 

System   Bo  810 ( . . )s Pa m s   pbC  
VC  

1 mM CTAB foams 0.34 0.044 0.74 1.91 16.08 

1 mM CTAB foams 

with 0.0932 g/L glass 

beads 

0.51 0.13 2.01 17.30 8.75 

1 mM CTAB foams 

with 0.203 g/L glass 

beads 

0.64 0.20 3.47 29.19 4.96 

 

 



126 

 

5. Conclusions 

       We conducted forced drainage experiments to study the effects of partially hydrophobic 

glass beads on the liquid drainage in CTAB foams. Two existing foam drainage equations for 

aqueous foams were successfully applied to simulate the forced drainage results for foams in 

the presence of solid particles. The simulation results show that the presence of solid particles 

triggers a transition from a node-dominated foam drainage regime to a Plateau border-

dominated foam drainage regime because of the increased surface shear viscosity of the 

interface and viscous losses in the Plateau borders of the foams.  
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Chapter 8: Conclusions and Recommendations for Future 

Research 
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1. Conclusions 

       This thesis has focused on the modeling of foam column kinetics, the effects of 

interfacial properties on foamability and foam stability and the effect of solid particles on 

foam drainage. The following conclusions can be reached based on the research presented 

here: 

(1) A novel kinetic model has been proposed to interrelate the growth, drainage and collapse 

of foams to simulate the foam collapse and the evolution of foam height, liquid fraction, and 

the transport of liquid and gas in growing foams by analogy with reaction kinetics. Models to 

describe the foam column kinetics were summarized and categorized as zeroth, first and 

second order, according to the dependence of the foam collapse rate on the foam volume or 

height. The model predictions of foam growth and collapse show good agreement with the 

reported experimental results. 

(2) Investigation of the foamability of the surfactant blend (i.e., SDS and DOH) revealed an 

anomalous effect of DOH on the foamability of SDS solutions. The remarkable decrease in 

foamability of SDS solutions caused by the addition of DOH cannot be easily explained by 

the theories of surface tension and surface viscoelasticity. Instead, alternative mechanisms 

were proposed to resolve these unexpected results. Below the DOH solubility limit, the 

displacement of SDS molecules by DOH molecules at the air-water interface results in a 

reduced surface potential, leading to a lower foamability, whereas the antifoam effects of 

DOH droplets account for the decreased foamability above the DOH solubility limit. The 

model developed in Chapter 3 was used to simulate the experimental results and interpret the 

antifoam effects of DOH. 

(3) Examination of the effects of a nonpolar collector on the stability of two-phase froth 

showed that the presence of diesel oil, even in trace amounts (2 ppm), can effectively 

decrease the foam growth rate by accelerating the foam decay process. Two mechanisms 

were proposed to elucidate the observed antifoam effects of diesel oil: (i) the spreading of 

diesel oil droplets at the liquid film interface, which is quantified by the spreading pressure, 

and (ii) the molecular interactions between diesel oil and the frother molecules. Additionally, 

the model developed in Chapter 3 was used to simulate the experimental results and interpret 

the antifoam effects of diesel oil. 

(4) The study addressing the rupture of a standing foam column stabilized by an anionic 

surfactant, that is, SDS with DOH and NaCl, indicates different roles of surface 
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viscoelasticity and intermolecular forces in foam stability. The presence of DOH in the SDS 

solutions was found to significantly increase the surface viscoelasticity and foam stability, 

despite the decreased surface potential caused by the displacement of SDS molecules by 

DOH molecules at the air-water interface. The retarded foam drainage and enhanced liquid 

film stability result in the relatively high stability of SDS-DOH foams compared with SDS 

foams. For SDS-NaCl mixtures with the same value of the mean ionic product (1 mM), the 

increased concentration of NaCl in SDS solutions reduces the surface potential and the Debye 

length because of the screening effect caused by the binding of sodium counter ions to the 

sulfate head groups. The foam stability decreases as a result of the weakened repulsive 

interactions between the two interfaces of the liquid films, despite the presence of the same 

surface concentration of SDS molecules, as indicated by the same equilibrium surface tension. 

Again, the model developed in Chapter 3 was used to simulate the experimental results and 

interpret the foam collapse behavior. 

(5) Forced drainage experiments were conducted to study the liquid flow within the foams 

stabilized by a cationic surfactant (CTAB) in the presence of partially hydrophobic glass 

beads of floatable size ( 0.8 86.6d m ). A significant decrease in foam permeability was 

observed and ascribed to the presence of solid particles in the foams. Additionally, a 

transition of foam drainage was triggered according to the scaling behavior (power law) 

between the drainage velocity and the imposed flow rate. Moreover, two foam drainage 

equations for aqueous foams were applied to simulate the experimental data and interpret the 

transition. The simulation results showed that the presence of solid particles in the foams 

increases the rigidity of the interfaces and the viscous losses in the channels (Plateau borders) 

of the foams, resulting in a decrease in foam permeability.  

2. Recommendations for future research 

       The present study represents an ongoing effort to study foam behavior and its governing 

mechanisms. Despite substantial research in this area, the behaviors of foam remain poorly 

understood. Indeed, thus far, there exists no general theory to explain foam properties for all 

types of foam systems. A variety of mechanisms have been proposed, but none can 

individually determine the foam properties. Thus, the complicated interplay of these 

mechanisms should always be considered when discussing foam properties. For foams in the 

presence of solid particles, the situation is even more complex because of the effect these 

particles exert on the interfacial properties and particle-particle interactions. Nevertheless, 
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investigation of the two-phase foam properties will undoubtedly establish useful benchmarks 

and contribute to our understanding of three-phase froth behavior. For future research, the 

following recommendations are made: 

(1) The present study has shown that foam column kinetics can be simulated if the foam 

drainage parameters m and n, the superficial gas velocity, gj , and the equilibrium foam 

height, maxH , are known. In future studies, it may be possible to relax the conditions used in 

modeling the foam column kinetics if maxH  is predictable.  

(2) To further understand the mechanisms governing foamability and foam stability, it would 

be desirable to study the interplay and magnitude of these mechanisms in the different stages 

of foam life. For example, when the liquid film thickness is exceeds the range of the 

electrostatic repulsions, the surface viscoelasticity becomes crucial, but the disjoining 

pressure does not play a critical role in the film stability.  

(3) Studying the effect of solid particles (e.g., glass beads) on foam drainage (CTAB foams) 

is relevant to froth flotation, in which the wash water is commonly applied to the froth layer 

to improve the product’s grade. In future studies, more attention should be given to real froth 

systems, where both mineral particles and chemical reagents play roles in froth stability. 
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Appendix A. Matlab code for numerical solutions of Eq. (17) – (23) in Chapter 3 

A1. Function file: Foam_f.m 

% Foam growth kinetics function routine: Mass balance only 
% 
% Mass balance only model 
% 
% Foam decay dynamics is: 
%            F -> L3 + G3  (k2) 
% 
% Uses Foam_d.m as the driver routine 
% 
function f = Foam_f(t,y) 

  
% Local variable assignment 
e = y(1);       % Liquid fraction in the foam                  [1] 
H = y(2);       % m of Foam height                             [2] 
L3 = y(3);      % m of Liquid height from bursting bubbles     [3] 
G3 = y(4);      % m of Gas from bursting bubbles               [4] 
L2 = y(5);      % m of Liquid height from un-bursting bubbles  [5] 
G2 = y(6);      % m of Gas from un-bursting bubbles            [6] 

                                             
% Constants and parameters to be set 
u  = 1e-3;        % interstitial liquid dynamic viscosity (Pa.s) 
rol = 1000;       % interstitial liquid density (kg.m^-3) 
rb = 1e-3;        % mean bubble radius (m) 
tau = 0.031;      % equilibrium surface tension (N.m^-1) 
g = 9.81;         % acceleration due to gravity (m.s^-1) 
m = 0.0065;       % dimensionless number used in Eq. (1) 
n = 1.58;         % dimensionless index used in Eq. (1) 
p = 1.28;         % dimensionless number used in Eq. (1) 
q = 0.46;         % dimensionless index used in Eq. (1) 
jg = 8e-5;        % surperficial gas velocity (m.s^-1) jg = 8e-5; 11e-5; 

15e-5 and 22e-5                        
hmax = 15.468e-2;  % maximum equilibrium foam height (m) hmax = 15.46e-2; 

21.53e-2; 25.99e-2 and 32.98e-2 
A = 7e-4;         % cross-section of foam column (m^2) 
jf = 1.33e-10;    % superficial liquid velocity up the column (m/s) jf = 

1.33e-10; 3.16e-10; 7.35e-10 and 2.09e-9 

  
% Algebraic equations, in precedence order 

  
k2 = jg/(1-e)/hmax^2;    % Foam decay rate constant (1/(s.m)) [7] 

  
% RHS of differential equations 
f(1) = (p*rol*g*rb*e^(1+q)/q/tau*((e*jg/(1-e)-jf)*u/rol/g/rb^2/m/e^n-

1))*(jg/(1-e)-k2*H^2);             % [f1] 
f(2) = jg/(1-e)-k2*H^2;            % [f2] 
f(3) = e*k2*H^2;                   % [f3] 
f(4) = (1-e)*k2*H^2;               % [f4] 
f(5) = e*(jg/(1-e)-k2*H^2);        % [f5] 
f(6) = (1-e)*(jg/(1-e)-k2*H^2);    % [f6] 
f=f'; 
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A2. Drive file: Foam_d.m 

% Foam Growth Model 
% Mass balance only model  
% Extensive model 
% clear memory of any previous data 
clear all 
% Set the integration range and initial conditions 
t0 = 0; tf = 5000;         % integration interval (s) 
y0(1) = (1.58-1)/(1.58+1); % boundary condition of liquid fraction of the 

foam, e () 
y0(2) = 0;                 % boundary condition of foam height, H (m) 
y0(3) = 0;                 % boundary condition of liquid from bursting 

bubbles, L3 (m) 
y0(4) = 0;                 % boundary condition of gas from bursting 

bubbles,G3 (m) 
y0(5) = 0;                 % boundary condition of liquid from un-bursting 

bubbles, L2 (m) 
y0(6) = 0;                 % boundary condition of gas from bursting 

bubbles,G2 (m) 
% Set the error per step tolerance 
toler = 1e-6;           % integration tolerance 

  
% Set start of execution time 
starttime = cputime;  

  
% Set the integrator options 
opts=odeset('AbsTol',toler,'RelTol',toler);  

  
% Call solver 
[t,y]=ode45('Foam_f',[t0,tf],y0,opts);  

  
% Compute execution time of solution  
elap = cputime - starttime;  

  
% Print out the execution time 
fprintf('Execution time = %5.3f seconds\n',elap) 

  
% Plot results 
y1 = y(:,1)*100; 
plot(t,y1); 
xlabel('Time (s)'); 
ylabel('Liquid Fraction in the Foam (%)'); 
ylim([0,30]) 

  
figure; 

  
y2 = y(:,2)*100; 
plot (t, y2); 
xlabel('Time (s)'); 
ylabel('Foam Height, H (cm)'); 
ylim([0,20]) 

  
figure; 
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y3 = y(:,3)*7e-4*1e6; 
plot (t, y3); 
xlabel('Time (s)'); 
ylabel('Liqud Volume from Bursting Bubbles, L3 (mL)'); 
ylim([0,0.25]) 

  
figure; 

  
y4 = y(:,4)*7e-4*1e6; 

  
plot (t, y4); 
xlabel('Time (s)'); 
ylabel('Gas Volume from Bursting Bubbles, G3 (mL)'); 
ylim([0,200]) 

  
figure; 

  
y5 = y(:,5)*7e-4*1e6; 
plot (t, y5); 
xlabel('Time (s)'); 
ylabel('Liquid Volume in the Foam, L2 (mL)'); 
ylim([0,1.2]) 

  
figure; 

  
y6 = y(:,6)*7e-4*1e6; 
plot (t, y6); 
xlabel('Time (s)'); 
ylabel('Gas Volume in the Foam, G2 (mL)'); 
ylim([0,110]) 

  

  
%legend('e ','H (m)','L1 (mL)','G1 (mL)','L3 (ml)','G3 (ml)') 

  
% End of code 
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Appendix B. Surface tension oscillations of SDS-DOH solutions at a frequency of 0.05 

Hz for the calculations of dynamic surface elasticity and viscosity of Figure 9 in Chapter 

4 
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