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Abstract

The mixture of factor analyzers (MFA) model provides a powerful tool for ana-

lyzing high-dimensional data as it can reduce the number of free parameters through

its factor-analytic representation of the component covariance matrices. This paper

extends the MFA model to incorporate a restricted version of the multivariate skew-

normal distribution for the latent component factors, called mixtures of skew-normal

factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need

of the normality assumption for the latent factors in order to accommodate skewness

in the observed data. The MSNFA model thus provides an approach to model-based

density estimation and clustering of high-dimensional data exhibiting asymmetric

characteristics. A computationally feasible Expectation Conditional Maximization

(ECM) algorithm is developed for computing the maximum likelihood estimates of

model parameters. The potential of the proposed methodology is exemplified using

both real and simulated data.
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1 Introduction

Factor analysis (FA) is a popular technique for explaining the covariance rela-

tionships among many variables through a fewer number of unobservable random

quantities known as latent factors. Finite mixture models (FMMs) have been widely

used as a flexible means to model heterogeneous data, in particular, for density esti-

mation and clustering. There are a number of monographs on mixture models; see,

for example, [14,19,26,40,47,51,60,69] and the references contained therein. Mixtures

of factor analyzers (MFAs), introduced by Ghahramani and Hinton [28], provide a

global non-linear approach to dimension reduction via the adoption of component

distributions having a factor-analytic representation for the component-covariance

matrices; see also [52]. McLachlan et al. [49,53] exploited the MFA model for cluster-

ing microarray gene-expression profiles. For data with clusters having longer than the

normal tails, McLachlan et al. [48] adopted the family of multivariate t-distributions

for the component factors and errors to establish a robust extension of MFA. More

recently, Baek et al. [9] proposed mixtures of common factor analyzers (MCFA) in

which the factors are taken to have a common distribution before their transforma-

tion to be white noise. A robust version of MCFA using t-component distributions,

called mixtures of common factor t analyzers (MCtFA), was subsequently provided

by Baek et al. [8]. Wang [74,75] extended the MCFA and MCtFA approaches to

accommodate high-dimensional data with possibly missing values. Bayesian treat-

ments of the MFA model have been investigated by Ghahramani and Beal [27] via

a variational approximation and Utsugi and Kumagai [71] using the Gibbs sampler

and a deterministic algorithm.

For computational convenience and mathematical tractability, component errors

and latent factors in the traditional MFA model are routinely assumed to follow

multivariate normal distributions. However, in many applied problems, the data to

be analyzed may contain a group or groups of observations whose distributions are

moderately or severely skewed. Just like other normal-based mixture models, a slight

deviation from normality may seriously affect the estimates of mixture parameters

and/or lead to spurious groups, subsequently misleading inference from the data.

Wall et al. [72] conducted several simulation studies to explore the influence of non-

normal latent factors in the estimation of parameters.

In recent years, there has been growing interest in studying mixtures of skew-
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normal distributions [37,39], both in the univariate and multivariate cases, as a

more general tool for handling heterogeneous data involving asymmetric behavior

across sub-populations. Pyne et al. [66] proposed other mixtures of multivariate

skew-normal and t-distributions based on a restricted variant of the skew-elliptical

family of distributions of Sahu et al. [67], which we shall refer to as the restricted

multivariate skew-normal (rMSN) distribution. The use of “restricted” was adopted

by Lee and McLachlan [33] since it is obtained by imposing the restriction that the

p latent skewing variables are all equal in the form of the class of skew elliptical dis-

tributions proposed by Sahu et al. [67]. The latter class without this restriction was

referred to as “unrestricted”. The rMSN distribution is equivalent to the skew nor-

mal distribution proposed by Azzalini and Dalla Valle [7]. Lee and McLachlan [35]

gave a systematic overview of various existing multivariate skew distributions and

clarified their conditioning-type and convolution-type representations. Also, Lee and

McLachlan [34] have provided the EMMIXuskew package, which implements a closed-

form expectation-maximization (EM) algorithm for computing the maximum likeli-

hood (ML) estimates of the parameters for mixtures of restricted and unrestricted

skew-normal and skew-t distributions.

There have been a few different proposals of mixtures of skew factor models in

the literature, see, for instance, mixtures of shifted asymmetric Laplace factor ana-

lyzers of Franczak et al. [24], mixtures of generalized hyperbolic factor analyzers of

Tortora et al. [70], and mixtures of skew-t factor analyzers (MSTFA) of Murray et al.

[63]. An unrestricted version of MSTFA was considered by Murray et al. [62]. Notice

that the form of the skew-t distribution used in Murray et al. [63] arises as a special

case of the generalized hyperbolic distribution [10], called the generalized hyperbolic

skew-t (GHST) distribution. More recently, Murray et al. [64] have put forward a

skew version of the MCFA model in which the common factors follow the GHST dis-

tribution. The model is henceforth referred to as mixtures of common skew-t factor

analyzers (MCSTFA). We should emphasize that the GHST distribution differs from

the restricted skew-t distribution in a number of ways, such as different behaviour

in its tails, for example in the univariate case, with one polynomial and the other

exponential [1]. Also, it does not become a skew normal distribution as a limiting

case [36].

In this paper, we propose mixtures of skew-normal factor analyzers (MSNFA)

where the latent component factors are assumed to follow the family of rMSN dis-
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tributions in an attempt to model the data adequately in the presence of skewed

sub-populations. The proposed model, which is a generalization of the MFA model,

can be viewed as a novel approach to achieving dimensionality reduction and rep-

resenting appropriately non-normal data. ML estimates of the parameters in the

model can be computed via the closed-form EM implementations [16,59], and the

estimated factor scores can be obtained as by-products within the estimation pro-

cedure. The asymptotic covariance matrix of the estimated mixture parameters is

obtained by inverting an approximation to the observed information matrix [30].

The rest of the paper is organized as follows. In Section 2, we establish nota-

tion and provide a preliminary account of the rMSN distribution. In Section 3, we

briefly present the formulation of the skew-normal factor analysis (SNFA) model and

study its related properties. Section 4 extends the work to the MSNFA model and

presents an EM-type algorithm for obtaining the ML estimates of model parameters.

Section 5 describes some practical issues, including the specification of starting val-

ues, the stopping rule, model selection and two indices for performance evaluation.

The proposed methodology is illustrated through both real and simulated data in

Section 6. Some concluding remarks are given in Section 7.

2 The restricted multivariate skew-normal distribution

We begin with a brief review of the rMSN distribution and a study of some

essential properties. A unification of families of MSN distributions and several vari-

ants and extensions can be found in [2,4]. To establish notation, let φp(· ; µ,Σ) be

the probability density function (pdf) corresponding to Np(µ,Σ), a p-dimensional

multivariate normal distribution with mean vector µ and variance-covariance ma-

trix Σ, and Φ(·) the cumulative distribution function (cdf) of the standard normal

distribution. Further, let TN(µ, σ2; (a, b)) denote the truncated normal distribution

for N(µ, σ2) lying within a truncated interval (a, b).

Following Lee and McLachlan [33], a p× 1 random vector X is said to follow a

rMSN distribution with location vector µ, dispersion matrix Σ and skewness vector

λ, denoted by X ∼ rSNp(µ,Σ,λ), if it can be represented as

X =λ|U1|+ U 2, U1 ⊥ U 2, (1)
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where U1 ∼ N(0, 1), U 2 ∼ Np(µ,Σ) and the symbol ‘⊥’ indicates independence.

Letting W = |U1|, a two-level hierarchical representation of (1) is

X | (W = w)∼Np(µ + λw,Σ),

W ∼TN (0, 1; (0,∞)) . (2)

For computing the moments of W , we use the following proposition.

Proposition 1 Let W ∼ TN(µ, σ2 ; (0,∞)). The density of W is

f(w) =
φ(w;µ, σ2)

Φ(µ/σ)
I(w > 0),

where I(·) is an indicator function. For positive integer k, the moments of W are

given by

E(W )=µ+ σ
φ(µ/σ)

Φ(µ/σ)
for k = 1,

E(W k)= (k − 1)σ2E(W k−2) + µE(W k−1) for k ≥ 2.

The pdf of X, expressed as a product of a multivariate normal density and a

univariate normal cdf, is given by

f(x) = 2φp(x; µ,Ω)Φ(ξ/σ), (3)

where Ω = Σ+λλ⊤, ξ = λ⊤Ω−1(x−µ), and σ2 = (1+λ⊤Σ−1λ)−1 = 1−λ⊤Ω−1λ.

The rMSN distribution falls into the class of fundamental skew-normal (FUSN)

distribution [3]. In addition, it can be treated as a simplified version of Sahu et al.

[67] or a modification of the traditional version of Azzalini and Dalla Valle [5,7]

via a reparameterization. The version allows us to develop computationally feasible

EM-type algorithms for parameter estimation in SNFA and MSNFA models.

Using Proposition 1 and the law of iterative expectations, it follows from (1)

that the mean and covariance matrix of X are

E(X) = µ + cλ and cov(X) = Σ + (1− c2)λλ⊤, (4)
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where c =
√

2/π. The higher order moments of X can be derived from the moment

generating function (mgf) given in the following proposition.

Proposition 2 If X ∼ rSNp(µ,Σ,λ), then the mgf of X is

MX(t) = 2 exp
(
t⊤µ +

1

2
t⊤Ωt

)
Φ(λ⊤t), t ∈ Rp.

The following result shows an appealing closure property of the rMSN distribu-

tion under affine transformation, which is useful for later methodological develop-

ments.

Proposition 3 Let X ∼ rSNp(µ,Σ,λ). For any full rank matrix L ∈ Rq×p (1 6
q 6 p), the distribution of the linear transformation LX is

LX ∼ rSNq(Lµ,LΣL⊤,Lλ).

The proof follows directly by applying Proposition 2 to the transformation LX.

3 The skew-normal factor analysis model

3.1 The model

We consider a generalization of the traditional FA model, namely the SNFA

model, in which the hidden factors are assumed to follow an rMSN distribution

within the family defined by (1). Suppose that Y = {Y 1, . . . , Y n} is a random

sample of n p-dimensional observations. The SNFA model can be written as





Y j = µ + BU j + εj, U j ⊥ εj ,

U j
iid∼ rSNq(−c∆−1/2λ,∆−1,∆−1/2λ), εj

iid∼ Np(0,D),

(5)

for j = 1, . . . , n, where µ is a p-dimensional location vector, B is a p × q matrix

of factor loadings, U j is a q-dimensional vector (q < p) of latent variables called

factors, εj is a p-dimensional vector of errors, and ∆ = Iq + (1− c2)λλT is a scale
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matrix. The elements of the factor loadings B indicate the strength of dependence

of each variable on each factor. Moreover, D is a positive diagonal matrix and Iq

stands for an identity matrix of order q.

Under model (5), an appealing property is that

E(U j) = 0 and cov(U j) = Iq. (6)

Hence, the chosen distributional assumption for U j makes the factor score estimates

of FA and SNFA models comparable. By Proposition 3, we can deduce that

Y j ∼ rSNp(µ− cα,Σ,α),

where Σ = B∆−1B⊤ + D and α = B∆−1/2λ. Clearly, the marginal distribution

of Y j belongs to the family of rMSN distributions in which the skewness parameter

α depends both on B and λ. It follows immediately from (4) that

E(Y j) = µ and cov(Y j) = BB⊤ + D. (7)

Another interesting feature of this model is that the parameter estimates of µ, B

and D can be used to recover the sample mean and sample covariance for both FA

and SNFA models. The important characteristics (6) and (7) were not considered in

Montanari and Viroli [61] nor in other developments in the literature.

3.2 Identifiability issues

For a hidden dimensionality q > 1, there is an identifiability issue associated

with the rotational invariance of the factor loading matrix B. For any orthogonal

matrix P of order q, model (5) still holds when B is replaced by BP and the latent

U j is changed to P TU j. Moreover, such an orthogonal transformation will leave the

covariance matrix in (7) invariant since BP (BP )T = BB⊤.

To circumvent this identifiability problem (rotational indeterminacy), one of the

most commonly used techniques is to constrain the loading matrix B so that the

upper-right triangle is zero and the diagonal entries are strictly positive, see, for

example, Fokoué and Titterington [21] and Lopes and West [43]. This means that

q(q − 1)/2 elements of B are constrained. The number of free parameters to be
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estimated is m = p(q + 2) + q − q(q − 1)/2.

The mixture model itself poses another identifiability problem raised by rela-

belling of components. More precisely, the likelihood is invariant under a permuta-

tion of the class labels in parameter vectors, and thus a label switching problem can

occur when some labels of the mixture classes permute [51]. However, the switching

of class labels is not a concern with the use of the EM algorithm and its variants to

compute the ML estimates.

4 Mixture of restricted skew-normal factors

4.1 Model formulation

Let Y j = (Yj1, . . . , Yjp)
⊤ be a p-dimensional vector of p feature variables (j =

1, . . . , n), where Y j comes from a heterogeneous population with a finite number,

say g, of groups. To denote which component Y j belongs in this finite mixture

framework, we introduce the latent membership-indicator vectors, Z1, . . . , Zn. Here

Zij = (Zj)i is one or zero, according to whether Y j belongs or does not belong to

the ith component (i = 1, . . . , g; j = 1, . . . , n). Accordingly, we have

Z1, . . . ,Zn
iid∼M(1; π1, . . . , πg),

where the pdf of the multinomial variate Zj is given by

f(zj; π) = π
z1j

1 π
z2j

2 · · ·πzgj
g , for j = 1, . . . , n,

and π = (π1, . . . , πg)
⊤ subject to

∑g
i=1 πi = 1.

The MSNFA model is a generalization of the MFA model by postulating a

mixture of g SNFA sub-models for the distribution of Y j . We consider the use of

the MSNFA model in an attempt to accommodate skewness arising frequently in

high-dimensional data without performing transformation.

Given Zij = 1, each Y j can be modelled as

Y j = µi + BiU ij + εij , with probability πi (i = 1, . . . , g), (8)
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for j = 1, . . . , n, where the factors U i1, . . . ,U in
iid∼ rSNq(−c∆−1/2

i λi,∆
−1
i ,∆

−1/2
i λi),

independently of the errors εij, which are distributed independently as Np(0,Di),

where ∆i = Iq + (1− c2)λiλ
T
i and Di is a positive diagonal matrix.

From model (8), the marginal pdf of Y j is

f(yj ;Θ) =
g∑

i=1

πiψ(yj ; θi),

where ψ(yj ; θi) is the pdf of rMSN distribution defined in (3), θi = (µi,Bi,Di,λi)

is composed of the unknown parameters of the ith mixture component, and Θ =

{θi}g
i=1 represents all the unknown parameters of the mixture model. Given a set of

n observations y = {y1, . . . ,yn}, ML estimation can be undertaken by maximizing

the log-likelihood function of Θ, given by

ℓ(Θ; y) =
n∑

j=1

log

( g∑

i=1

πiψ(yj; θi)

)
. (9)

Unfortunately, it is not straightforward to derive explicit analytical solutions

for ML estimator of Θ. To cope with this obstacle, one usually resorts to the EM-

type algorithm [16], which is a popular iterative device for ML estimation in models

involving latent variables or missing data.

Under model (8), it can be shown that

Y j | (Zij = 1)∼ rSNp(µi − cαi,Σi,αi), (10)

where Σi = Bi∆
−1
i B⊤

i + Di and αi = Bi∆
−1/2
i λi. To facilitate the derivation of

our inference procedure, we adopt the following scaling transformation:

B̃i
△
= Bi∆

−1/2
i and Ũ ij

△
= ∆

1/2
i U j .

Based on (2) and (10), a four-level hierarchical representation of model (8) is

Y j | (ũij , wj, Zij = 1)∼Np(µi + B̃iũij ,Di),

Ũ ij | (wj, Zij = 1)∼Nq

(
(wj − c)λi, Iq

)
,

Wj | (Zij = 1)∼TN
(
0, 1; (0,∞)

)
,

Zj ∼M(1; π1, . . . , πg). (11)
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In the EM framework, the augmented quadruples {Y j ,Zj , Ũ ij, wj}n
j=1 are re-

ferred to as the complete data. Using Bayes’ Theorem, it suffices to show that

Ũ ij | (Zij = 1, wj,yj)∼Nq

(
qij,Ci

)
,

Wj | (Zij = 1,yj)∼TN
(
aij , 1−α⊤

i Ω−1
i αi; (0,∞)

)
, (12)

where qij = Ci[vij +λi(wj− c)], vij = B̃
⊤
i D−1

i (yj−µi), Ci = (Iq + B̃
⊤
i D−1

i B̃i)
−1,

aij = α⊤
i Ω−1

i (yj − µi + cαi) and Ωi = Σi + αiα
⊤
i . As an immediate consequence,

we establish the following proposition, which is crucial for the calculation of some

conditional expectations involved in the proposed ECM algorithm.

Proposition 4 Given the hierarchical representation (12), we have the following

(the symbol “| · · ·” denotes conditioning on Zij = 1 and Y j = yj):

(a) The conditional expectation of Zij given Y j = yj is

E(Zij | yj) =
πiψ(yj ; θi)

f(yj ;Θ)
. (13)

(b) Some specific conditional expectations related to Wj and U j are

E(Wj | · · · ) = (1−α⊤
i Ω−1

i αi)
1/2

(
Aij +

φ(Aij)

Φ(Aij)

)
, (14)

E(W 2
j | · · · ) = (1−α⊤

i Ω−1
i αi)

[
1 + Aij

(
Aij +

φ(Aij)

Φ(Aij)

)]
, (15)

E(Ũ ij | · · · ) =Ci

(
vij + λi(E(Wj | · · · )− c)

)
, (16)

E(WjŨ ij | · · · ) =Ci

{
vijE(Wj | · · · )

+λi

[
E(W 2

j | · · · )− cE(Wj | · · · )
]}
, (17)

and

E(Ũ ijŨ
⊤
ij | · · · ) =

{
Iq + E(Ũ ij | · · · )v⊤ij

+
[
E(WjŨ ij | · · · )− cE(Ũ ij | · · · )

]
λ⊤i
}
Ci, (18)

where Aij = (1−α⊤
i Ω−1

i αi)
−1/2aij.
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4.2 ML estimation via the ECM algorithm

The EM algorithm has several attractive features such as simplicity of imple-

mentation and monotonic convergence properties. However, it can not be directly

applied for ML estimation of the MSNFA model because the M-step is difficult to

compute. To proceed further, we exploit a variant of the EM algorithm, called the

ECM algorithm [59], which is easy to implement and more broadly applicable than

EM. The key feature of ECM is to replace the M-step of the EM algorithm with a

sequence of simpler constrained or conditional maximization (CM) steps. Moreover,

it shares all appealing features of EM and can show faster convergence in terms of

number of iterations or total CPU time.

For notational convenience, let u = (u⊤1 , . . . ,u
⊤
n )⊤, w = (w1, . . . , wn)

⊤ and

z = (z⊤1 , . . . , z
⊤
n )⊤, which are treated as missing data in the EM framework. Accord-

ing to (11), the log-likelihood function of Θ that can be formed from the complete-

data vector yc = (y⊤,u⊤,w⊤, z⊤)⊤, aside from additive terms not involving the

parameters, is

ℓc(Θ; yc)=
g∑

i=1

n∑

j=1

zij

{
log πi −

1

2

[
log |Di|+ tr

(
D−1

i Υij

)

+(wj − c)2λ⊤i λi − 2(wj − c)λ⊤i ũij

]}
, (19)

where Υij = (yj − µi − B̃iũij)(yj − µi − B̃iũij)
⊤.

In the E-step of the algorithm, we need to calculate the Q-function, denoted by

Q(Θ; Θ̂
(k)

), which is the conditional expectation of (19) given the observed data y

and the current estimate Θ̂
(k)

. To evaluate the Q-function, the necessary conditional

expectations include ẑ
(k)
ij = E(Zij | yj, Θ̂

(k)
), ŵ

(k)
1ij = E(Wj | Zij = 1,yj , Θ̂

(k)
),

ŵ
(k)
2ij = E(W 2

j | Zij = 1,yj , Θ̂
(k)

), κ̂
(k)
ij = E(WjŨ ij | yj, Θ̂

(k)
), η̂

(k)
ij = E(Ũ ij |

yj, Θ̂
(k)

) and Ψ̂
(k)

ij = E(Ũ ijŨ
⊤
ij | yj , Θ̂

(k)
). Therefore, we have

Q(Θ; Θ̂
(k)

) =
g∑

i=1

n∑

j=1

ẑ
(k)
ij

{
log πi −

1

2

[
log |Di|+ tr

(
D−1

i Υ
(k)
ij

)

+ĥ
(k)
ij λ⊤i λi − 2λ⊤i ζ̂

(k)

ij

]}
, (20)
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where ĥ
(k)
ij = ŵ

(k)
2ij − 2cŵ

(k)
1ij + c2, ζ

(k)
ij = κ̂

(k)
ij − cη̂

(k)
ij and

Υ
(k)
ij = (yj − µi − B̃iη̂

(k)
ij )(yj − µi − B̃iη̂

(k)
ij )⊤ + B̃i(Ψ̂

(k)

ij − η̂
(k)
ij η̂

(k)⊤

ij )B̃
⊤
i , (21)

which involves free parameters µi and B̃i for i = 1, . . . , g.

In summary, the implementation of the ECM algorithm proceeds as follows:

E-step: Given Θ = Θ̂
(k)

, compute ẑ
(k)
ij ,ŵ

(k)
1ij , ŵ

(k)
2ij , κ̂

(k)
ij , η̂

(k)
ij and Ψ̂

(k)

ij by using

(13)-(18), for i = 1, . . . , g and j = 1, . . . , n.

CM-step 1: Calculate π̂
(k+1)
i = n̂

(k)
i /n, where n̂

(k)
i =

∑n
j=1 ẑ

(k)
ij .

CM-step 2: Update µ̂
(k)
i by maximizing (20) over µi, which gives

µ̂
(k+1)
i =

1

n̂
(k)
i

n∑

j=1

ẑ
(k)
ij

(
yj − ˆ̃B

(k)
i η̂

(k)
ij

)
.

CM-step 3: Fix µi = µ̂
(k+1)
i , update B̃

(k)

i by maximizing (20) over B̃i, which gives

ˆ̃B
(k+1)
i =

n∑

j=1

ẑ
(k)
ij

[
(yj − µ̂

(k+1)
i )η̂

(k)⊤

ij

]


n∑

j=1

ẑ
(k)
ij Ψ̂

(k)

ij



−1

.

CM-step 4: Fix µ = µ̂
(k+1)
i and B̃i = ˆ̃B

(k+1)
i , update D̂

(k)

i by maximizing (20)

over Di, which leads to

D̂
(k+1)

i =
1

n̂
(k)
i

Diag




n∑

j=1

ẑ
(k)
ij Υ̂

(k)

ij


,

where Υ̂
(k)

ij is Υ
(k)
ij in (21) with (µi, B̃i) replaced by (µ̂

(k+1)
i , ˆ̃B

(k+1)
i ), respectively.

CM-step 5: Update λ̂
(k)

i by maximizing (20) over λi, which gives

λ̂
(k+1)

i =

∑n
j=1 ẑ

(k)
ij ζ̂

(k)

ij
∑n

j=1 ẑ
(k)
ij ĥ

(k)
ij

.

The E- and CM-steps are alternated repeatedly until a suitable convergence

rule is satisfied, e.g., the difference in successive values of the log-likelihood is less

than a tolerance value. Upon convergence, the ML estimate of Θ is denoted by

Θ̂ = {π̂i, µ̂i, B̂i, D̂i, λ̂i}g
i=1, where B̂i = ˆ̃Bi∆̂

1/2

i and ∆̂i = Iq + (1 − c2)λ̂iλ̂
⊤
i .
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Consequently, the conditional prediction of factor scores are estimated by

Û j =
g∑

i=1

π̂i∆̂
−1/2

i η̂ij , (22)

where η̂ij can be calculated through (16) with Θ evaluated at Θ̂.

4.3 Computing standard errors via numerical differentiation

The asymptotic covariance matrix of the ML estimator can be approximated by

the inverse of the observed information matrix; see Efron and Hinkley [18]. Specifi-

cally, the observed information matrix

I(Θ̂; y) = −∂
2ℓ(Θ; y)

∂Θ∂Θ⊤

∣∣∣∣
Θ=Θ̂

is a m × m matrix of the negative of second-order partial derivatives of the log-

likelihood function with respect to each parameter, where m is the number of distinct

parameters in Θ. The asymptotic standard errors of Θ̂ can be calculated by taking

the square roots of the diagonal elements of [I(Θ̂; y)]−1.

In the literature, there have been a few strategies recommended for efficiently

computing I(Θ̂; y) when implementing the ECM algorithm; see, for example, Louis

[44] and Meng and Rubin [58]. A problem raising from these methods is that they

require the second-order derivatives of the Q-function, which is rather cumbersome

to calculate in FA models.

To approximate I(Θ̂; y) numerically, Jamshidian [30] suggested using the central

difference. Let s(Θ; y) = ∂ℓ(Θ; y)/∂Θ be the score vector of ℓ(Θ; y) and sc(Θ; y) =

∂ℓc(Θ; yc)/∂Θ be the complete-data score of ℓc(Θ; yc). Moreover, it can be verified

that s(Θ; y) = E[sc(Θ; yc) | y], see McLachlan and Peel [51]. Explicit expressions

for the elements of s(Θ; y) are available upon request.

Let G = [g1 | · · · | gm] be a m×m matrix with the rth column being

gr =
s(Θ̂ + h∗rer; y)− s(Θ̂− h∗rer; y)

2h∗r
, r = 1, . . . , m,

where er is a unit vector corresponding to the rth element. The values of h∗r are

small numbers chosen based on the scale of problem. In later data analysis, we
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use h∗r = max(η, η|Θ̂r|) with Θ̂r denoting the rth of element of Θ̂, where values

such as η = 10−4 should be sufficiently small to approximate and large enough to

avoid the roundoff error. Since G may not be symmetric, it is suggested to use

Ĩ(Θ̂; y) = −(G + G⊤)/2 to approximate I(Θ̂; y).

5 Strategies for implementation

5.1 Initialization

As described in Section 4, the MSNFA parameters are estimated through the

ECM algorithm. However, the EM-type algorithm has an intrinsic limitation that

there is no guarantee of convergence to the global optimum [78]. For modeling multi-

model distributions, the iterations may converge to a local maximum or to a saddle

point. Sometimes, the quality of the final solution depends heavily on starting values.

To cope with such potential problems, we recommend a simple way of obtaining

suitable initial values for the ECM algorithm below.

1. Perform the k-means algorithm initialized with a random seed. Then, initialize

the zero-one membership indicator ẑ
(0)
j = {ẑ(0)

ij }g
i=1 according to the k-means

clustering result. The initial values for the mixing proportions and component

locations are then given by π̂
(0)
i = n−1∑n

j=1 ẑ
(0)
ij and µ̂

(0)
i =

∑n
j=1 ẑ

(0)
ij yj/

∑n
j=1 ẑ

(0)
ij .

2. Subtract each observation from its initial cluster means. Then, do a FA fit to these

k “centralized samples” via the ML estimation (default) or the PCA method. The

resulting estimates of factor loadings and error covariance matrices are taken as

the initial values, namely B̂
(0)

i and D̂
(0)

i for i = 1, . . . , g. Next, compute the

corresponding factor scores of each cluster via the conditional prediction method

such as (22). The initial values for the skewness parameters λ̂
(0)

i are obtained by

fitting the rMSN distribution to the k samples of factor scores via the R package

EMMIXskew [73].

The k-means is the most widely used method for getting an initial partition of

groups, but it can sometimes be very inadequate for non-spherical data, especially

when the dimension of the data is high [46,56]. The use of deterministic initialization
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such as the agglomerative nesting [77], the model-based hierarchical clustering of [22]

implemented using the R package mclust [23] and the multistage procedure of [45]

provide further choices of starting values. There are other popular approaches based

on stochastic initialization schemes which may alleviate the potential drawbacks of

k-means. For instance, the emEM [13] employs some short runs of EM algorithm

from a number of random initializations. Each short run is stopped according to a

loose convergence criterion. The solution with the highest log-likelihood value is used

as a starter of the single long EM with a strict convergence criterion. Maitra [45]

proposed a simple modification of emEM, called the ranEM, which skips running

the short-EM by just evaluating the likelihood of each valid initial random start and

choosing the parameters with the highest log-likelihood value as the initializer for

the long-EM. Other extraordinary strategies of searching optimal starting values to

promote algorithmic efficiency can be referred to [31,57].

The above procedure provides a quick and convenient strategy to initialize the

parameters. Once the ECM algorithm has converged, we can determine the cluster

membership according to the maximum a posteriori (MAP) classification rule. That

is, each observation yj is assigned to the component with the highest posterior

probability.

The ECM procedure can get stuck in one of the many local maxima of the

likelihood function [59]. To overcome such a flaw, it is recommended to initialize the

algorithm with various choices of starting values for searching for all local maxima

[50]. This can be done by specifying a variety of other starting points such as random

starts [51]. The ML estimate Θ̂ can be taken to be the maximizer corresponding to

the highest log-likelihood value.

5.2 Model selection

A number of information criteria have been proposed to facilitate identifying an

appropriate model. The most frequently employed index is the Bayesian Information

Criterion (BIC) [68]

BIC = −2ℓmax +m log n,

where m is the number of free parameters, and ℓmax is the maximized log-likelihood

value. Empirical evidence [8,9,54] has shown that BIC is useful in choosing the true
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number of classes of a given mixture model and an ideal number of latent factors.

As outlined by Biernacki et al. [12], an alternative promising measure for esti-

mating the proper number of clusters is based on the integrated completed likelihood

(ICL), defined as

ICL = BIC + 2ENT(ẑ),

where ENT(ẑ) = −∑g
i=1

∑n
j=1 ẑij log ẑij is the entropy used to measure the overlap

of clusters, where ẑij is the posterior probability of yj classified to class i. Notably,

ICL penalizes complex models more severely than BIC and thus favors models with

fewer latent classes.

In general, a smaller BIC or ICL value indicates a better fitted model. We note

by passing that there is no clear consensus regarding which criterion is better to use.

This depends on the problem at hand and usually a combined use would be of help

to screen reasonable candidate models.

5.3 Convergence assessment

To monitor the convergence by using the likelihood increasing property of the

ECM algorithm, the default stoping rule is ℓ(Θ̂
(k)|y)/ℓ(Θ̂

(k−1)|y)−1 < ǫ, where ǫ is

a user-specified tolerance. Another recommendation is to adopt the Aitken’s acceler-

ation criterion [50] which estimates the asymptotic maximum of the likelihood and

allows to detect an early convergence. In our analysis, the algorithm is terminated

if the maximum number of iterations kmax =5,000 is reached or when the relative

difference between two successive log-likelihood values is less than ǫ = 10−8.

5.4 Performance evaluation

To assess the model-based classification accuracy, we use the correct classification

rate (CCR) and the adjusted Rand index (ARI) as proposed by Hubert and Arabie

[29]. The CCR is calculated by considering all permutations of the class labels and

the one with the lowest misclassification error can be treated as the final class

membership assignment. As a measure of class agreement, the ARI accounts for the

fact that a random classification may correctly classify some instances. The ARI has
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expected values of 0 under random classification and 1 for perfect classification. For

both CCR and ARI, larger values indicate better classification results.

6 Application

6.1 Fishers’ Iris data

As a motivating example, we use the Versicolor subset of Fisher’s Iris data [20].

There are a total of 50 samples with each containing four-dimensional measurements

in centimeters on the attributes of petal length, petal width, sepal length and sepal

width. First, we employ a one-factor FA using the ML method for the data. Fig. 1

depicts the histogram of estimated factor scores in which the patterns are markedly

skewed to the left with sample skewness equal to –0.52. Table 1 reports the ML re-

sults obtained by fitting the FA and SNFA models with q = 1 to the Versicolor data.

The proportion of the total sample variances explained by the factor is larger under

SNFA (69.7%) than under FA (66.6%). The ML estimate of the skewness parameter

λ is −5.68 and its standard error is 0.29, supporting strongly non-normality of the

underlying factor.

Since the maximized likelihood values of the two fitted models are obtained, we

perform the likelihood ratio test (LRT) for testing the hypothesis H0 : λ = 0 (FA)

against H1 : λ 6= 0 (SNFA). The resulting LRT statistic is 4.52 with p-value 0.034,

which is significant compared with a χ2
1 distribution, giving the other indication that

the SNFA model is superior to the conventional FA. The χ2
1 distribution would be

the limiting null distribution if regularity conditions hold [17]. Moreover, the sample

skewness of the factor scores estimated by SNFA is –0.65, which exhibits a stronger

left skew than does FA. In this regard, the “missed skewness” by the FA is then

corrected to some extent by the SNFA.

We consider also the fitting of the MSNFA model to the full set of Fisher’s Iris

data, which contains four geometric measurements of 50 samples from each of the

three species of Iris (Setosa, Versicolor, and Virginica). For this illustration, the true

number of clusters is taken to be unknown. Hence, the MSNFA model was applied

to the data with g ranging from 1 to 4. The number of latent factors q is fixed at 1

to satisfy the restriction (p− q)2 ≥ (p + q) as given by Eq. (8.5) of McLachlan and

17



Peel (2000). For comparison, we also implement the MSTFA and MCSTFA models

via the alternating expectation conditional maximization (AECM) algorithms de-

scribed by [59,60], respectively. When implementing the estimating procedure, the

component dfs are restricted to be equal for stabilizing the convergence. A summary

of the results are listed in Table 2.

To compare the clustering performance of these models, we report in Table 2

the associated ARI and CCR values for each model considered. It can be observed

that BIC selects the correct number of clusters (g = 3) for the MSNFA model and

it attains its highest CCR and ARI for g = 3 (CCR=0.980 and ARI=0.941). The

MSTFA model also attains its highest values for g = 3, which are not as high as for

the MSNFA model (CCR=0.973 and ARI=0.922). Also, BIC suggests g = 2 rather

than g = 3 clusters for MSTFA. The use of the ICL criterion selects g = 2 clusters

for both the MSNFA and MSTFA models. The performance of the MCSTFA model

can be seen to be much poorer than that for the MSNFA and MCSTFA models.

Cross-tabulation of the true and predicted class memberships (Table 3) shows that

both models can perfectly separate Setosa and Virginica samples from the other two

species. The MCSTFA approach does not perform relatively well for this dataset as

not a large number of parameters are needed to characterize the structure of clusters.

6.2 The WDBC dataset

Breast cancer is a major cause of death for women. Early detection of breast

cancer through classification can avoid unnecessary surgery. As another illustration,

we applied our method to the Wisconsin Diagnostic Breast Cancer (WDBC) data,

which are available from the UCI Machine Learning data repository [25]. These data

consist of n = 569 instances with a total of 32 different attributes. The first two at-

tributes correspond to the ID number and the diagnosis status, of which 357 have the

diagnosis benign and 212 have the diagnose malignant. The rest p = 30 attributes

are ten real-valued measurements (Radius, Texture, Perimeter, Area, Smoothness,

Compactness, Concavity, Concave points, Symmetry and Fractal dimension) com-

puted from a digitized mammography image of a fine needle aspirates (FNA) of

breast tissue, together with their associated mean, standard error and the mean of

the three largest (‘worst’) values, respectively. Fig. 2 displays the scatterplots of the
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first 10 quantitative features. One can observe that many of these plots are appar-

ently bimodal and appear to have rather non-elliptical patterns for both benign and

malignant samples.

Fig. 3 shows the histograms of sample skewness of the corresponding 30 vari-

ables in benign and malignant samples. It is readily seen that most of the variables

exhibit highly positive skewness. There are indeed over half of the variables with

skewness greater than one. This motivates us to advocate the use of MSNFA model

to analyze this dataset.

Since there are two known classes, we implemented two-component MFA and

MSNFA models with q ranging from 1 to 10. To fit the models via the ML method,

the ECM algorithm developed in Section 4.2 was employed under twenty different

initializations for the parameters. The resulting ML solutions, including the maxi-

mized log-likelihood values, the number of parameters together with the BIC and

ICL values are listed in Table 4. To compare the classification accuracy, we also

computed the ARI and CCR for each q. As can be seen, the best fitted model is

MSNFA with q = 9, no matter which model selection criterion was used. In addi-

tion, the resulting ARI (0.712) and CCR (0.923) under the fitted MSNFA (q = 9)

are higher than all those under MFA models, although the MSNFA reaches its best

ARI (0.762) and CCR (0.937) when q = 7. The result confirms that the MSNFA

is more appropriate for this dataset, providing more accurate classification for this

dataset, which exhibits a departure from normality. Finally, we did attempt to com-

pare our MSNFA method with the MSTFA and MCSTFA models [63,64], but we

encountered certain convergence problem when implementing the latter two models

for this dataset.

6.3 Seeds data

Our third example concerns the seeds dataset analyzed by Charytanowicz and

Niewczas [15]. Seven geometric features (area, perimeter, compactness, length of

kernel, width of kernel, asymmetry coefficient, and length of kernel groove) were

measured from the X-ray images of 210 wheat kernels. These grains belong to three

different wheat varieties, namely Kama, Rosa, and Canadian. We consider the fitting

of the MFA, MSNFA, MSTFA, and MCSTFA models to this dataset, with q varying
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from 1 to 3. Focusing first on the case where g is a priori known to be 3, it can be

observed from Table 5 that the model with q = 3 is preferred by both the BIC and

ICL for the MFA and MSTFA models. For the GHST factor models (see Table 6), the

MSTFA model obtained its lowest BIC and ICL values when q = 3, whereas q = 2

is preferred by BIC and ICL for the MCSTFA model. However, their performances

in clustering were relatively poor in terms of ARI and CCR.

We consider also the fitting of these factor models to the seeds data when g

is taken to be unknown. The MFA, MSNFA, MSTFA, and MCSTFA models were

applied to the data with g ranging from 1 to 4. As above, the number of latent

factors q varies from 1 to 3. On comparing their results reported in Tables 5 and 6,

it can be observed that the model corresponding to g = 3 and q = 3 is preferred by

both BIC and ICL for the MFA and MSNFA model, with the latter obtaining lower

BIC and ICL values. For the MSTFA and MCSFTA models, a model with g = 2

would be chosen based on BIC and ICL. In this example, the highest ARI and CCR

is given by the MSNFA model with q = 3 (ARI=0.7505 and CCR=0.9095), which

coincides with the model selected by BIC and ICL. We note in Table 6 that the

likelihood does not always increase with g and/or q for the MSTFA and MCSTFA

models, indicating the convergence problems we encountered in the fitting of these

two models.

6.4 A simulation study

We undertook a simulation study to examine the goodness of fit and clustering

ability in simulated data by applying the proposed MSNFA model. To conduct

experimental studies, we generated data sets in R10 of size n each from a 3-component

MSNFA model with q = 2 factors. The presumed parameters are given as

w1 = w2 = w3 = 1/3, µ1 = 1110, µ2 = 2110, µ3 = 3110

Bi = Unif(10, 2), Di = diag{Unif(10, 1)}, λi = λ12, (i = 1, 2, 3),

where Unif(r, s) denotes a r × s matrix of random numbers drawn from a uniform

distribution on the unit (0, 1) interval and 1p is a p× 1 vector of ones.

As pointed out by Wall et al. [72], the skewness of generated latent factors may

become much smaller than the actual population values when the sample size n is
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not large enough. In this study, we therefore consider somewhat large sample sizes

(n = 600, 1200, and 2400) to enhance the skewness effects. The specific values of λ

are chosen as 0, 5, and 10. The higher the value of λ, the stronger the departure

from the normality, while the zero-skewness λ = 0 corresponds to be normal factors.

For comparison purposes, each simulated data set was fitted under the MFA and

MSNFA scenarios along with the MSTFA model of Murray et al. [63] with g = 3 and

q = 2. The total number of free parameters in the three models are 119, 125 and

152, respectively. Compared with the formulation of MSNFA, the MSTFA model

involves a much larger number of unknown parameters because its factor analytic

representation applies to the error terms rather than the latent factors.

A total of 100 replications were run across each combination of n and λ. The com-

parison between the three models is made using BIC and ARI, which are commonly

adopted to evaluate model fitting and classification performances, respectively. Ta-

ble 7 lists the average BIC and ARI values and the corresponding standard devia-

tions. To evaluate the objective use of the criteria, the frequencies preferred by BIC

and ARI are also listed in the table. When λ = 0, it is not surprising that MFA

is more likely to be selected. When focusing on the cases of non-zero skewness, the

BIC scores provide a 53%–100% agreement with the specification of MSNFA, and

the percentage of correctly choosing the true model increases with the sample size

and the value of skewness parameter. In this study, the MSTFA model does not

work well as it is strongly penalized due to over-fitting.

With regard to the MAP classification, the results indicate that when the la-

tent factors approach normality (λ = 0), all three models produce comparable ARI

values. When the latent factors are moderately and highly skewed (λ = 5, 10), the

MSNFA model yields slightly higher classification accuracies and is preferred more

often than the other two models. Such a phenomenon becomes apparent as the sam-

ple size increases. In summary, the MNSFA model can provide greater flexibility in

model fitting and superiority for clustering in the presence of skew factors, at least

for the setting of parameters used in this study.
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7 Conclusion

We have proposed the MSNFA model by replacing the normal latent factors

in the classical MFA model with the rMSN distributed factors for each component.

This family of mixture factor analyzers has emerged as an attractive tool since it can

account for groups in the data exhibiting patterns of asymmetry and multimodal-

ity which are commonly seen in high-dimensional data. For estimating parameters,

an analytically simple ECM algorithm is developed under a four-level hierarchical

framework. Some computational strategies related to the specification of starting

values, convergence assessment and provision of standard errors are provided. Two

main identification problems regarding invariant likelihood caused by factor inde-

terminacy and label switching are also discussed. We should mention that both of

which do not affect the clustering results. Numerical results on model choice based

on information-based criteria and apparent error rate for summarizing classification

accuracy indicate the effectiveness and superiority of the proposed method when

compared with the traditional MFA.

There are a number of possible extensions of the current work. While the pro-

posed MSNFA has shown its flexibility in modeling asymmetric features among

heterogeneous data, its robustness against outliers could still be unduly influenced

by heavy-tailed observations. Mixtures of factor analyzers based on a more general

family of distributions such as the skew t-distribution and its variants [6,32,38,66,67]

would be of interest for future research. For identifying the optimal number of clus-

ters, an effective method is to design a mixture component merging procedure using

entropy as the criterion suggested by Baudry et al. [11]. Melnykov [55] further de-

rived the asymptotic distribution of entropy and applied it to find good cluster

partitions. Another worthwhile task is to develop workable Markov chain Monte

Carlo algorithms for drawing inferences under a Bayesian paradigm. Although the

proposed ECM procedure is quite easy to implement, its convergence can be slow

in certain situations. Therefore, pursuing some modified algorithms such as [76,79]

toward fast convergence deserves further investigation.
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Table 1
ML results for the Versicolor subset of the Iris data. Values within parentheses are the
corresponding standard errors of ML estimates.

Variable
MFA (g = q = 1) MSNFA (g = q = 1)

µ B d µ B d

Sepal Length
5.936 0.395 0.105 5.942 0.403 0.105

(0.072) (0.063) (0.025) (0.090) (0.069) (0.029)

Sepal Width
2.770 0.198 0.057 2.773 0.201 0.058

(0.044) (0.041) (0.012) (0.054) (0.053) (0.013)

Petal Length
4.260 0.442 0.021 4.267 0.454 0.019

(0.066) (0.052) (0.015) (0.090) (0.097) (0.005)

Petal Width
1.326 0.162 0.012 1.329 0.163 0.013

(0.028) (0.023) (0.003) (0.038) (0.027) (0.003)

Proportion of
0.666 0.697

variance explained

m 12 13

ℓmax –16.488 –14.229

LRT (p-value) 4.517 ( 0.034)

29



Table 2
Comparison of the fitted MSNFA, MSTFA and MCSTFA models on the Iris data.

Model g ℓmax m BIC ICL ARI CCR

1 -419.3 13 903.8 903.8 0.000 0.333

MSNFA
2 -231.6 27 598.4 598.4 0.568 0.667

3 -192.8 41 591.2 600.6 0.941 0.980

4 -184.6 55 644.6 672.8 0.757 0.820

1 -387.4 17 860.0 860.0 0.000 0.333

MSTFAa
2 -214.4 34 599.2 599.2 0.568 0.667

3 -176.8 51 609.2 617.6 0.922 0.973

4 -170.7 68 680.8 692.6 0.727 0.807

1 -700.3 14 1470.8 1470.8 0.000 0.333

MCSTFAb
2 -686.4 21 1478.0 1583.8 0.185 0.553

3 -680.5 28 1501.2 1624.8 0.140 0.460

4 -676.1 35 1527.6 1698.2 0.238 0.440

MSTFAa and MCSTFAb indicate the mixture of skew-t factor analyzers [63] and the mixture of common skew-t factor analyzers [64],

respectively, based on the generalized hyperbolic skew-t distribution.

Table 3
Cross-tabulations of true and predicted class memberships for the selected MSNFA and
MSTFA models on the Iris data.

MSNFA MSTFA

1 2 3 1 2 3

Setosa 50 0 0 50 0 0

Versicolor 0 47 3 0 46 4

Virginica 0 0 50 0 0 50
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Table 4
Comparison of MFA and MSNFA fitting results and implied clustering versus the true
membership of WDBC data.

Model q ℓmax m BIC ICL ARI CCR

1 9624.8 181 -18101.4 -18083.8 0.520 0.861

2 12362.7 239 -23209.2 -23193.2 0.396 0.817

3 13962.5 295 -26053.6 -26043.4 0.359 0.803

4 15616.8 349 -29019.6 -29013.6 0.658 0.907

MFA
5 15726.5 401 -28909.2 -28897.4 0.595 0.888

6 16691.4 451 -30521.6 -30513.4 0.630 0.898

7 17017.2 499 -30868.8 -30862.0 0.670 0.910

8 17248.6 545 -31039.8 -31030.6 0.595 0.888

9 18467.3 589 -33198.0 -33190.8 0.700 0.919

10 17692.3 631 -31381.6 -31370.0 0.624 0.896

1 9632.8 183 -18104.8 -18086.2 0.515 0.859

2 12441.3 243 -23341.0 -23325.2 0.373 0.808

3 14117.8 301 -26326.2 -26317.2 0.397 0.817

4 15700.5 357 -29136.2 -29127.6 0.658 0.907

MSNFA
5 15830.1 411 -29053.0 -29042.6 0.618 0.895

6 16933.3 463 -30929.4 -30918.6 0.718 0.924

7 17486.8 513 -31719.2 -31712.0 0.762 0.937

8 17572.5 561 -31586.0 -31579.0 0.681 0.914

9 18598.8 607 -33347.0 -33340.4 0.712 0.923

10 18000.9 651 -31872.0 -31862.8 0.700 0.919
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Table 5
Comparison of the fitted MFA and MSNFA models on the seeds data.

Model g q ℓmax m BIC ICL ARI CCR

1 1 75.74 21 -39.20 -156.80 0.0000 0.3333

1 2 105.05 27 -65.73 -262.93 0.0000 0.3333

1 3 680.75 32 -1190.39 -4761.58 0.0000 0.3333

2 1 265.34 43 -300.75 -1176.00 0.4191 0.6571

2 2 274.18 55 -254.28 -998.27 0.4388 0.6571

MFA 2 3 1026.80 65 -1706.03 -6814.15 0.4685 0.6667

3 1 419.77 65 -491.98 -1945.11 0.4261 0.7667

3 2 385.98 83 -328.14 -1286.14 0.4189 0.7619

3 3 1201.36 98 -1878.71 -7503.86 0.6875 0.8810

4 1 396.86 87 -328.52 -1294.94 0.4891 0.7429

4 2 540.57 111 -487.61 -1925.27 0.4430 0.6476

4 3 1255.09 131 -1809.72 -7218.28 0.6043 0.7381

1 1 80.68 22 -43.73 -174.92 0.0000 0.3333

1 2 112.00 29 -68.94 -275.77 0.0000 0.3333

1 3 685.99 35 -1184.82 -4739.29 0.0000 0.3333

2 1 303.42 45 -366.21 -1416.58 0.2868 0.6000

2 2 278.44 59 -241.39 -937.19 0.4257 0.6524

MSNFA 2 3 1034.95 71 -1690.26 -6751.42 0.4720 0.6667

3 1 505.52 68 -647.44 -2570.41 0.1253 0.5238

3 2 476.50 89 -477.10 -1878.65 0.2363 0.6333

3 3 1207.38 107 -1842.61 -7357.09 0.7505 0.9095

4 1 368.88 91 -251.18 -961.32 0.4517 0.7238

4 2 816.30 119 -996.29 -3951.51 0.2632 0.5143

4 3 1280.77 143 -1796.90 -7167.82 0.5971 0.7333
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Table 6
Results of the fitted MSTFA and MCSTFA models on the seeds data.

Model g q ℓmax m BIC ICL ARI CCR

1 1 535.65 29 -916.24 -3664.95 0.0000 0.3333

1 2 565.63 35 -944.12 -3776.47 0.0000 0.3333

1 3 673.56 40 -1133.25 -4532.98 0.0000 0.3333

2 1 809.71 59 -1303.94 -5193.91 0.4268 0.6524

2 2 733.04 71 -1086.44 -4331.91 0.4372 0.6286

MSTFA 2 3 1047.10 81 -1661.07 -6624.61 0.4685 0.6667

3 1 469.99 89 -464.09 -1808.96 0.5216 0.8238

3 2 829.82 107 -1087.50 -4314.84 0.4664 0.7476

3 3 1071.08 122 -1489.81 -5940.30 0.3975 0.6333

4 1 542.17 119 -448.04 -1656.63 0.3651 0.6333

4 2 754.36 143 -744.08 -2939.44 0.5776 0.7762

1 1 -609.55 23 1342.08 5368.33 0.0000 0.3333

1 2 113.49 30 -66.58 -266.30 0.0000 0.3333

1 3 -301.87 36 796.23 3184.93 0.0000 0.3333

2 1 -607.92 34 1397.64 5594.50 0.0000 0.3381

MCSTFA 2 2 -751.58 44 1738.43 6953.74 2.0096 0.3333

2 3 540.83 54 -792.92 -3167.05 0.0002 0.3429

3 1 -978.40 45 2197.43 9006.83 0.2199 0.5571

3 2 175.25 58 -40.38 -27.31 0.5103 0.8048

3 3 -893.33 72 2171.64 8821.90 0.1243 0.5000
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Table 7
Simulation results based on 100 replications.

λ = 0 λ = 5 λ = 10

MFA MSNFA MSTFAa MFA MSNFA MSTFAa MFA MSNFA MSTFAa

n = 600

Mean –7746.56 –7762.45 –7821.87 –7746.58 –7743.88 –7816.90 –7871.05 –7865.28 –7939.25

BIC Std 341.70 342.46 342.47 335.16 362.39 337.12 358.66 362.49 359.65

Freq 98 2 0 47 53 0 40 60 0

Mean 0.717 0.716 0.706 0.719 0.732 0.714 0.680 0.697 0.672

ARI Std 0.092 0.092 0.099 0.088 0.085 0.092 0.097 0.095 0.104

Freq 37 34 29 15 65 20 15 69 16

n = 1200

Mean –15319.82 –15338.41 –15409.79 –15246.60 –15228.07 –15318.34 –15330.90 –15307.24 –15399.61

BIC Std 785.44 785.75 785.97 804.30 807.57 805.04 784.52 792.12 787.92

Freq 98 2 0 24 76 0 15 85 0

Mean 0.715 0.715 0.708 0.728 0.742 0.729 0.713 0.730 0.713

ARI Std 0.080 0.080 0.082 0.089 0.084 0.089 0.094 0.088 0.094

Freq 25 44 31 11 68 21 10 75 15

n = 2400

Mean –30409.19 –30428.81 –30513.46 –30178.59 –30129.58 –30245.06 –30423.53 –30350.51 –30488.06

BIC Std 1407.30 1405.85 1405.87 1390.61 1400.14 1393.94 1422.68 1433.58 1426.50

Freq 98 2 0 1 99 0 0 100 0

Mean 0.727 0.727 0.723 0.727 0.739 0.730 0.721 0.739 0.726

ARI Std 0.075 0.075 0.077 0.071 0.067 0.069 0.087 0.082 0.085

Freq 35 37 28 4 76 20 1 84 15

MSTFAa indicates Murray et al.’s [63] approach based on the generalized hyperbolic skew-t distribution.
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Fig. 1. Histogram of the factor scores obtained by fitting FA (q = 1) together with the
fitted skew-normal (solid line) and normal (dot-dashed line) densities.
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Fig. 2. Pairwise scatterplots of the first 10 quantitative features. The blue dot represents
benign samples, and the red cross represents malignant samples.
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Fig. 3. Histograms of sample skewness of the corresponding 30 quantitative in benign and
malignant samples.
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