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Abstract 

There is a growing trend to consider organic wastes as potential sources of renewable energy 

and value-add products. Fermentation products have emerged as attractive value-add option 

due to relative easy production and broad application range. However, pre-fermentation and 

extraction of soluble products may impact down-stream treatment processes, particularly 

energy recovery by anaerobic digestion. This paper investigates primary sludge pre-

fermentation at different temperatures (20, 37, 55, 70ºC), treatment times (12, 24, 48, 72h), 

and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-

fermentation at 20 and 37 ºC succeeded for VFA production with acetate and propionate 

being major products. Pre-fermentation at 37, 55 and 70 ºC resulted in higher solubilisation 

yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-

fermentation allowed both VFA recovery (43 gCODVFA kg
-1

VS) and improved methane 

potential. The latter phenomenon was linked to fungi that colonised the sludge top layer 

during pre-fermentation. 
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1 Introduction 

Municipal wastewater treatment is a core requirement of urban populations and results in 

generation of large amounts of sewage sludge where wastewater pollutants such as organic 

matter, nutrients, heavy metals, and pathogens are collected and concentrated. Sewage sludge 

management is a major issue since up to one-half of the costs of operating municipal waste 

water treatment plants are associated with sludge treatment and disposal (Lens, 2004). 

Sewage sludge is conventionally anaerobically digested to recover energy, but there is a 

growing trend to use sludge as a feedstock in other value-add processes (Zacharof & Lovitt, 

2013). 

Anaerobic digestion (AD) is a series of biochemical processes where organic matter is 

converted to biogas by a complex microbial community. The methane content of biogas is an 

important source of renewable energy, and generally AD processes are net-energy producing 

rather than net-energy consuming processes. AD also provides avenues to produce a variety 

of value-add products such as volatile fatty acids (VFA) (i.e. acetate, propionate, and 

butyrate). VFA are intermediate products during the AD process, thus they are being 

produced and consumed simultaneously. However, different strategies such as shortening 

digestion times or decoupling the biochemical reactions involved in the fermentation and 

methanogenic steps can promote the accumulation of VFA, which can be harvested. 

VFA have several potential applications within the wastewater treatment plant (WWTP); for 

instance, VFA can be used to aid biological nutrient removal, replacing expensive carbon 

sources, such as methanol (Münch et al., 1999). VFA also have stand-alone value as 

commodity chemicals or pre-cursors used in the production of renewable plastics and 

biotextiles (Zacharof & Lovitt, 2013). However, the desired VFA profile is highly dependent 

on its subsequent application, either within the WWTP or the commodity value. Within 

WWTP applications, the preferred VFA for denitrification is acetate followed by butyrate and 
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propionate (Elefsiniotis & Wareham, 2007; Gali et al., 2006), whereas biological phosphorus 

removal processes typically require an acetate to propionate ratio ranging from 0.25 to 0.75 

(Broughton et al., 2008; Yuan et al., 2012). Other bioprocesses, such as the production of 

bioplastics, require different VFA profiles depending on the desired polymers, for example 

acetate and butyrate are preferred for polyhydroxybutyrate (PHB) production, while 

propionate is required when producing polyhydroxyvalerate (PHV) (Shen et al., 2014). 

Pre-fermentation of primary sludge (PS) has been studied previously with yields varying 

from 0.1 – 0.4 gVFA g
-1

VS (Ahn & Speece, 2006; Cokgor et al., 2009; Eastman & Ferguson, 

1981; Ucisik & Henze, 2008). Nonetheless, little attention has been paid to the impact of a 

pre-fermentation step and VFA extraction on down-stream processes, particularly the energy 

production from AD. This is particularly important when considering the WWTP as an 

integrated process, since extracting VFA will decrease the amount of organic matter fed to 

AD, potentially decreasing the energy recovered. There is a need for research to determine if 

the benefits of VFA production and extraction from primary sludge outweigh the potential 

loss in methane value. Optimal configurations will be influenced by two main factors: (i) the 

cost (capital investment and operating expenses) of the extraction process and the revenues 

obtained from VFA use or sale; and (ii) the impact on methane production (Astals et al., 

2015). 

 

The aim of the present study is to evaluate the impact of a pre-fermentation step on 

subsequent methane yield from primary sludge. The pre-fermentation conditions considered 

different temperatures (20, 37, 55, and 70 ºC), fermentation periods (12, 24, 48, and 72 h), 

and oxygen availability (semi-aerobic or anaerobic conditions). The anaerobic 

biodegradability after pre-fermentation was evaluated using biochemical methane potential 

(BMP) tests and mathematical modelling.  
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2 Materials and Methods 

2.1 Substrate and inoculum 

Primary sludge (PS) was obtained from a municipal WWTP in Queensland (Australia). PS 

was collected after being thickened by centrifugation and before being mixed with waste 

activated sludge and fed into the mesophilic AD treatment. PS was pre-fermented 

immediately after collection. The solid fraction of the pre-fermented sludge was stored at 

4 ºC prior to BMP testing (max. 4 days). A second batch of PS was collected from the same 

municipal WWTP to replicate and validate the results obtained from the first pre-

fermentation trial (see details below). Table 1 summarises the main characteristics of the two 

sets of PS used in this study. 

Inoculum for the BMP tests was collected from the same WWTP.  The inoculum was taken 

from a 5,500 m
3
 digester that treats mixed sewage sludge (50% primary and 50% secondary 

sludge on VS-basis) at a hydraulic retention time of 23-24 days and a temperature of 35-

37°C. The inoculum was degassed at 37 ºC for 4 days prior to utilisation. A second batch of 

inoculum was collected from the same location and degassed at 37 ºC for 4 days to replicate 

and validate the results obtained from one of the pre-fermentation conditions (20 °C semi-

aerobic conditions). 

 

2.2 Experimental set-up  

2.2.1 Pre-fermentation experiments 

The experimental set-up consisted of two separate steps. First step was pre-fermentation, 

where 100 g of fresh PS were added to 300 mL glass bottles under semi-aerobic or anaerobic 

conditions. Semi-aerobic conditions were carried out by leaving the bottles open to the 

environment, while anaerobic conditions were ensured by flushing the headspace of bottles 

with N2 (99.9%), and sealing each bottle with a rubber septum and a screw cap. The first set 
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of experiments was performed anaerobically at 20, 37, 55, and 70 ºC, and semi-aerobically at 

20 ºC with four treatment times at each temperature: 12, 24, 48 and 72 h. All experiments 

were performed without agitation. All tests were conducted in duplicate. A second set of 

experiments were performed under semi-aerobic conditions at 20 °C only with treatment 

times of 24, 48, 72 and 96 h. The second set of semi-aerobic experiments was also performed 

in duplicate.  

Destructive sampling was used, where serum bottles were discarded after each treatment 

time. For each test condition, the liquid fraction was separated by centrifuging the pre-

fermented sludge at 2500x g for 5 min. Chemical analyses to determine the extent of 

solubilisation and VFA production where done after filtering the liquid fraction through a 

0.45 µm PES Millipore® filter. In the anaerobic pre-fermentation tests, the headspace 

composition of each serum bottle was analysed just before processing the sample.  

 

2.2.2 Anaerobic digestion experiments 

The second step was determination of the methane potential of the solid fraction separated 

after pre-fermentation; and this was evaluated using the biochemical methane potential 

(BMP) tests. BMP tests were carried out following the procedure defined by Angelidaki et al. 

(2009) at mesophilic temperature (37±1 ºC). BMP tests were performed in triplicate in 160 

mL serum bottles sealed with rubber septa and aluminium caps. The serum bottles contained 

inoculum and the amount of substrate required to achieve an initial inoculum to substrate 

ratio of 2 (VS-basis). Blank assays containing only inoculum were used to correct for the 

background methane potential of the inoculum. Next, the headspace of each bottle was 

flushed with 99.9% N2 for one minute (4 L min
-1

). Finally, the bottles were placed in an 

incubator set at 37 °C. Serum bottles were manually mixed by swirling before each sampling 

event. Accumulated volumetric methane production was calculated from the pressure 



  

7 

 

increase and methane composition of the headspace at each sampling event. Methane yields 

are reported at standard conditions (i.e. 0 ºC and 1 bar).  

 

2.3 Analytical methods 

Total solids (TS) and volatile solids (VS) were measured according to Standard Method 

2540G (APHA, 2012); volatile fatty acids (VFA) and alcohols losses were taken into account 

to correct the final TS and VS value (Peces et al., 2014). Total chemical oxygen demand 

(tCOD) and soluble chemical oxygen demand (sCOD) were measured using a Merck COD 

Spectroquant® test kit (range 0.5-10 g L
-1

) and a Move 100 colorimeter (Merck, Germany). 

Individual VFA (acetate, propionate, butyrate, valerate, and caproate) and alcohols 

(methanol, ethanol, and butanol) were analysed with an Agilent 7890A gas chromatograph 

equipped with an Agilent DB-FFAP column. Biogas composition (CH4, CO2, and H2) was 

determined using a Shimadzu GC-2014 gas chromatograph equipped with a HayeSep Q 

column as for Astals et al. (2015). 

 

2.4 Model implementation and data analysis 

The impact of pre-fermentation and separation of soluble products on methane yield was 

assessed by mathematical analysis of the BMPs. Degradation extent and apparent degradation 

kinetics were the two targeted parameters to compare the performance of different pre-

fermentation conditions. As hydrolysis was considered to be the rate-limiting step during the 

AD of PS, BMPs were modelled using first order kinetics following Eq. 1 (Jensen et al., 

2011).  

r = f� · k��	,� · X� · C� Eq. 1 
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where r is the methane production rate (L COD-CH4 day
-1

), fi is the substrate biodegradability 

(-), khyd,i is the first order hydrolysis rate constant of the substrate (day
-1

), Xi is the substrate 

concentration (g VS L
-1

), and Ci is the measured COD-to-VS ratio of the substrate (COD:VS 

= 1.40 gCOD gVS
-1

). To normalise and analyse model outputs, the biodegradability (fi) was 

estimated as per Eq. 2. 

 

f� =
B�

B�,���
		 Eq. 2 

 

where B0 is the measured methane yield, and B0,max is the maximum theoretical methane yield 

at standard conditions (350 · COD:VS =  490 mL CH4 g
-1

 VS). 

 

The model was implemented in Aquasim 2.1d. Parameter estimation and uncertainty analysis 

were simultaneously estimated, with a 95% confidence limit, as described in  Batstone et al. 

(2009) and Jensen et al. (2011). Parameter uncertainty was estimated based on a two-tailed t-

test on parameter standard error around the optimum, and non-linear confidence regions were 

tested to confirm the linear estimate was representative of true confidence. The objective 

function used was the sum of squared errors (χ
2
), where average data from triplicate 

experiments were used. 

 

2.5 Data analysis 

2.5.1 Solubilisation and acidification yields 

The solubilisation yield and the acidification yield were calculated following Eq. 3 and Eq. 4, 

respectively.  

solubilisation yield = 
sCODf	- sCOD0

VS0

 Eq . 3 
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acidification yield = 
VFAf	- VFA0

VS0

 Eq . 4 

 

 

where sCODf and sCOD0 are the soluble COD (g COD L
-1

) at the end and at the beginning of 

the pre-fermentation; and VFAf and VFA0 are the total VFA concentration expressed in COD 

equivalents  (g COD L
-1

) at the end and at the beginning of the pre-fermentation; and VS0 is 

the initial concentration of volatile solids (kgVS L
-1

). Solubilisation and acidification yields 

can be converted to COD-basis by dividing by 1.40 (COD:VS ratio of the PS). 

 

2.5.2 Overall methane yield (B’) 

The overall methane yield (B’) expresses the methane yield of the pre-fermented sludge in 

terms of the PS initial organic matter content (Eq. 5). B’ is used to normalise the PS methane 

yield by taking into account the organic matter losses occurring during waste processing 

(Astals et al., 2015).  

 

B'=	B0	∙	(1	-	ρ) Eq. 5 

 

where B’ is the overall methane yield (LCH4 kg
-1

VS), B0 is the methane yield of the waste 

after the pre-fermentation (LCH4 kg
-1

VS), and ρ is the organic matter losses expressed as per 

unit (gVSfinal g
 - 1

VSinitial).  
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3 Results and Discussion 

3.1 Extraction of valuable compounds from primary sludge 

3.1.1 Organic matter solubilisation 

Fig. 1 represents the breakdown of COD during pre-fermentation at all tested conditions. 

After pre-fermentation at 20 ºC (semi-aerobic and anaerobic) and 37 ºC the soluble COD in 

the effluent was completely composed of VFA. In contrast, after thermophilic (55 – 70 ºC) 

pre-fermentation approximately 65% of soluble COD in effluent was undetermined soluble 

substances (e.g. saccharides, amino acids, and long chain fatty acids). In all scenarios, the 

solubilisation yield increased with the temperature and the treatment time. At 20 ºC, the 

sCOD increased gradually up to 8% of the initial tCOD (anaerobic, 72 h), while at 70 ºC the 

sCOD increased more rapidly to 16% of the initial tCOD (anaerobic, 72 h) (Fig. 1E). These 

results indicate that when VFA recovery is the main process objective, pre-fermentation 

should occur at psychrophilic or mesophilic conditions. Nonetheless, pre-fermentation at 

20 ºC and at 37 ºC also resulted in 9 and 14% COD losses (anaerobic, 72 h), respectively, due 

to carbon mineralisation (Table SI - supplementary data). COD mineralisation was not related 

to methanogenesis or hydrogen production, since these products accounted for less than 1% 

of the initial COD at 20 ºC (anaerobic) and approximately 1% of the initial COD at 37 ºC 

after 72 h of pre-fermentation. Therefore, the COD mineralisation was hypothesised to be due 

the COD consumption from other processes such as sulphate reduction. COD mineralisation 

at thermophilic conditions was negligible. This factor should be considered when estimating 

energy recovery in the WWTP, since uncontrolled COD mineralisation during pre-

fermentation reduces VFA recovery efficiency as well as the organic matter available for 

methane production in the subsequent anaerobic digestion step.  
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3.1.2 VFA distribution 

Controlling fermentation products during mixed culture fermentation of complex substrates is 

a difficult task with process performance depending on several factors such as substrate 

composition, temperature, pH, retention time, and the microbial community. Despite this, 

some VFA distribution trends could be observed depending on the pre-fermentation 

temperature and treatment time (Fig. 2).  

Acetate was, regardless the treatment time, the major VFA contributor at 20 ºC (semi-aerobic 

and anaerobic), 55 ºC and 70 ºC. Among them pre-fermentation at 20 ºC, either semi-

aerobically or anaerobically, delivered the richest acetate stream (1.63, and 2.26 gAcetate L
-1

, 

respectively). PS pre-fermentation at 37 ºC favoured propionate production (Fig. 2D), with an 

acetate to propionate ratio of 0.77 (COD-basis) after 72h pre-fermentation. Propionate was 

also obtained, in lower amounts, after 20 ºC pre-fermentation; whereas 55ºC pre-fermentation 

led to the accumulation of butyrate and ethanol (Fig. 2E). Similar VFA distribution profiles 

have been reported by Ahn and Speece (2006) and Ucisik and Henze (2008) when fermenting 

PS under similar conditions. In terms of net VFA production, the highest acidification yield 

was reached at 37 ºC (143 gCODVFA kg
-1

VS) followed by 20 ºC anaerobic (65 gCODVFA kg
-

1
VS) and 20 ºC semi-aerobic (43 gCODVFA kg

-1
VS). The lowest acidification yields were 

obtained at thermophilic conditions, with 23 gCODVFA kg
-1

VS at 55 ºC, and negligible at 

70 ºC (Table 2). Therefore, different pre-treatment conditions would be required depending 

on the amount of VFA required and the desired profile. 

The low acidification yields observed at 55 and 70 ºC could be attributed to the slow 

development of an anaerobic thermophilic culture during pre-fermentation, since no adapted 

inoculum was used, and the test conditions relied on the activity of native PS 

microorganisms. However, higher acidogenic activities have been reported at thermophilic 

temperatures up to and exceeding 70 ºC (Bolzonella et al., 2007; Ge et al., 2011; Lu et al., 
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2008), suggesting that different results might be observed when using microbes acclimatised 

to this temperature range. 

 

3.2 Extraction of soluble compounds and influence on PS methane yield 

Fig. 3 displays the experimental methane production profiles of the solid fraction of pre-

fermented PS for all experimental conditions. The results show that the pre-fermentation step 

under anaerobic conditions neither favoured nor decreased the solid-fraction B0 with values 

of approximately 340 LCH4 kg
-1

VS for all anaerobic pre-fermentation temperatures and 

treatment times (Table 2), showing no statistical differences between themselves and the 

control (see Fig.SI -  supplementary data). However, 20 ºC semi-aerobic conditions 

significantly increased B0 compared to the control. Specifically, B0 after 72h pre-

fermentation increased from 336 ± 14 LCH4 kg
-1

VS to 381 ± 14 LCH4 kg
-1

VS (P=0.0091), 

which represents a methane potential increase of 14%.  

 

Substrate B0 is a common parameter for assessing the feasibility and expected performance of 

AD processes. However, this parameter does not reflect the methane losses due to removal 

and/or mineralisation of organic material during waste processing (e.g. pre-treatment, 

VFA/product recovery, sulphate reduction) (Astals et al., 2015). Therefore, the overall 

methane yield (B’) was used to evaluate the influence of product extraction and uncontrolled 

COD losses on the methane production in terms of PS initial organic matter content. As 

shown in Table 2, anaerobic pre-fermentation decreased sludge B’ up to a 21%. Thus, under 

anaerobic conditions VFA recovery and COD losses, significant at 20 ºC (9%) and 37 ºC 

(14%), contributed to reduce the methane production in the subsequent AD step. 

Nevertheless, 20 ºC semi-aerobic pre-fermentation resulted in a minor, but statistically 

significant increased methane yield even after VFA removal and COD losses (5%) occurring 
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during the pre-fermentation. This phenomenon coincided with the formation of a white 

mouldy-like layer on the top of the sludge. The layer was not uniform and consisted of white 

round patches distributed along the sludge surface, being more spread and prominent after 

48h treatment time (especially noticeable at 72h and 96h). Considering the test conditions and 

the physical appearance of the biomass, it is hypothesised that the organisms were fungi (Fig. 

4). 

Several groups of fungi have been found in municipal sewage sludge (Fakhru’l-Razi et al., 

2002; Kacprzak et al., 2005). These fungi are versatile organic matter consumers, especially 

at low pH, where bacterial growth is hindered (More et al., 2010). However, in this study the 

pH of the sludge varied from 5.1 to 4.8, high enough to sustain acidogenic activity. 

Therefore, in the semi-aerobic conditions, where fungi was observed, fungi may have 

partially depolymerised complex structures and made available a greater portion of the PS to 

the fermentative bacteria. Fungi have the capability to degrade cellulose, hemicellulose and 

polysaccharides by excreting extracellular enzymes (Pointing, 2001) although they are best 

known for excreting extracellular lignin modifying enzymes that perform lignin degradation. 

This quality is much less common in anaerobic microorganisms and has prompted the use of 

fungi as a pre-treatment to enhance the methane potential of lignocellulosic substrates, 

otherwise difficult to degrade anaerobically (Zheng et al., 2014). In the present study, fungi 

may have improved the biodegradability of the pre-fermented sludge under semi-aerobic 

conditions making it more accessible for the subsequent anaerobic microbes; thereby 

enhancing the overall methane yield (B’).  

While the specific role of fungi in this study is not completely elucidated, results were 

repeatable and confirmed the phenomenon (Table 2). However, the magnitude of the effect in 

the replicated experiment, in terms of acidification yield and methane production, was lower 

than for the first batch of PS. In either way, results clearly indicate that 20 °C semi-aerobic 
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pre-fermentation was the only configuration that allowed both VFA recovery and an increase 

methane production, thereby enhancing overall resource recovery. Results also suggest that a 

similar phenomenon (i.e. VFA recovery and increased methane recovery) could happen at 37 

°C and, to a minor degree, 20 °C anaerobic pre-fermentation if the COD mineralisation 

mechanisms could be minimised (Table SI - supplementary data). 
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4 Conclusions 

Primary sludge pre-fermentation conditions affected solubilisation yields, VFA profile and 

methane recovery potential. At 20 and 37 ºC, solubilised COD was mainly VFA with acetate 

and propionate the major contributors; at 55 and 70 ºC, solubilised COD was mainly other 

organic compounds. Anaerobic sludge pre-fermentation (37, 55 and 70 ºC) led to higher 

solubilisation yields but reduced subsequent methane potential by 20%. However, semi-

aerobic pre-fermentation at 20 ºC allowed VFA production (43 gCODVFA kg
-1

VS) and a 

statistically significant improvement in methane potential. The latter phenomenon was linked 

to fungi observed growing on the top layer of sludge during pre-fermentation. 
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Fig. 1. COD fractionation (in percentage) for each pre-fermentation condition. (A) 20 ºC Semi-aerobic, 

(B) 20 ºC Semi-aerobic replicated, (C) 20 ºC Anaerobic, (D) 37 ºC Anaerobic, (E) 55 ºC Anaerobic, and 

(F) 70 ºC Anaerobic. (                                                                          ) 

 

http://ees.elsevier.com/bite/download.aspx?id=1463201&guid=f2118aeb-6a71-480b-aaa3-787a2c632cf0&scheme=1
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Fig. 2. VFA distribution depending of (A) 20 ºC Semi-Aerobic, (B) 20 ºC Semi-Aerobic (batch 2), (C) 20 ºC 

Anaerobic, (D) 37 ºC Anaerobic,  (E) 55 ºC Anaerobic, and (F) 70 ºC Anaerobic, at the different exposure times 

applied. (                                                            ) 
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A 

 

B 

 

C 

 

D 

 
E 

 

F 

 
Fig 3. Cumulative specific methane production curves after pre-fermentation at different temperatures, exposure time, 

and control. (A) 20 ºC Semi-Aerobic, (B) 20 ºC Semi-Aerobic (batch 2), (C) 20 ºC Anaerobic, (D) 37 ºC Anaerobic,  

(E) 55 ºC Anaerobic, and (F) 70 ºC Anaerobic. 

 

http://ees.elsevier.com/bite/download.aspx?id=1463203&guid=dce92106-e6c4-41b1-ae76-9f30ad0ff888&scheme=1
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Fig. 4. Primary sludge after 72 h of pre-fermentation (20 ºC Semi-Aerobic). (A) Graphic 

representation. (B) Photograph. 1: liquid rich in VFA; 2: residual sludge; and 3: semiaerobic layer 

colonised by fungi. 

 

http://ees.elsevier.com/bite/download.aspx?id=1463204&guid=6839efe9-f076-454c-aa34-b9035af023d6&scheme=1


  

Table 1. Characterisation of primary sludge  

 Units Batch 1 Batch 2 

TS gTS L
-1

  47.9 ± 0.3 52.9 ± 0.2 

VS gVS L
-1

 41.6 ± 0.2 45.4 ± 0.2 

tCOD gCOD L
-1

 57.9  ± 0.6 72.1 ± 2.7 

sCOD gCOD L
-1

 2.0  ± 0.1 2.4 ± 0.1 

pH - 5.1 ± 0.1 4.9 ± 0.1 

VFA gCOD L
-1

 2.0 ± 0.1 2.4 ± 0.1 

Alcohols gCOD L
-1

 b.d.l* b.d.l 

* b.d.l., below detection limit (< 1 mg L
-1

) 

 



  

Table 2. Summary of solubilisation and acidification yields and methane yields for all the pre-fermentation conditions 

 Pre-fermentation    Anaerobic digestion  

 

Solubilisation yield 

(g sCOD kg
-1

VS) 

Acidification yield 

(gCODVFA kg
-1

VS) 



(gVSfinal g
 - 1

VSin)

B0 

(LCH4 kg
-1

VS) 

fi 

(-) 

B' 

(LCH4 kg
-1

VS) 

B’ 

increase 

(%) 

Raw PS (Batch 1)           - - 0.03 336 ± 9 0.68 ± 0.02 326 ± 12 - 

20 ºC Semi-aerobic   

12 h 14.8 ± 0.3 11.0 ± 2.5 0.06 326 ± 15 0.66 ± 0.02 305 ± 15 -6 

24 h 15.6 ± 2.0 15.6 ± 3.2 0.05 340 ± 8 0.69 ± 0.02 323 ± 13 -1 

48 h 38.3 ± 1.8 38.3 ± 1.0 0.06 364 ± 9 0.73 ± 0.02 340 ± 10 4 

72 h 42.6 ± 1.2 42.6 ± 5.3 0.11 382 ± 14 0.78 ± 0.02 338 ± 14 4 

20 ºC Anaerobic   

12 h 14.0 ± 0.6 14.0 ± 3.5 0.08 331 ± 12 0.67 ± 0.02 306 ± 12 -6 

24 h 23.1 ± 4.0 23.1 ± 0.7 0.10 349 ± 6 0.71 ± 0.03 315 ± 9 -3 

48 h 51.0 ± 2.6 51.0 ± 0.1 0.13 331 ± 4 0.68 ± 0.02 298 ± 10 -11 

72 h 64.4 ± 1.5 64.4 ± 1.8 0.14 349 ± 9 0.71 ± 0.02 302 ± 14 -7 

37 ºC Anaerobic   

12 h 46.1 ± 1.1 46.1 ± 4.1 0.13 325 ± 5 0.66 ± 0.02 283 ± 8 -13 

24 h 74.2 ± 2.0 74.2 ± 1.1 0.15 336 ± 14 0.69 ± 0.03 285 ± 15 -12 

48 h 141.9 ± 4.3 141.9 ± 2.6 0.23 342 ± 9 0.70 ± 0.03 263 ± 15 -19 

72 h 142.7 ± 4.8 142.7 ± 10.5 0.25 347 ± 11 0.71 ± 0.02 259 ± 10 -21 

55 ºC Anaerobic   

12 h 112.0 ± 2.5 11.5 ± 0.1 0.15 325 ± 6 0.65 ± 0.02 276 ± 8 -15 

24 h 122.8 ± 2.4 11.4 ± 1.1 0.17 328 ± 9 0.66 ± 0.02 271 ± 9 -17 

48 h 155.8 ± 3.2 14.6 ± 0.5 0.19 324 ± 10 0.66 ± 0.02 263 ± 10 -19 

72 h 156.2 ± 2.7 23.3 ± 0.5 0.16 321 ± 7 0.65 ± 0.02 271 ± 7 -17 

70 ºC Anaerobic   

12 h 127.3 ± 0.4 0.0 ± 0.0 0.19 328 ± 13 0.66 ± 0.02 266 ± 11 -18 

24 h 142.1 ± 0.5 4.7 ± 0.7 0.21 333 ± 9 0.67 ± 0.02 264 ± 11 -19 

48 h 176.3 ± 2.9 2.4 ± 0.1 0.18 323 ± 11 0.65 ± 0.02 264 ± 10 -19 

72 h 172.2 ± 2.6 1.2 ± 0.2 0.18 326 ± 5 0.66 ± 0.02 266 ± 5 -18 

 

Raw PS (Batch 2)            -                  - 0.04 299 ± 3 0.54 ± 0.02 287 ± 7 - 

20 ºC Semi-Aerobic   

24 h 24.5 ± 0.8 23.4 ± 0.9 0.04 309 ± 4 0.55 ± 0.01 298 ± 5 4 

48 h 31.1 ± 0.2 31.4 ± 1.3 0.05 323 ± 3 0.58 ± 0.02 307 ± 7 6 

72 h 38.1 ± 0.9 37.3 ± 1.2 0.07 318 ± 4 0.57 ± 0.01 296 ± 10 3 

96 h 56.1 ± 0.1 48.3 ± 1.3 0.08 321 ± 4 0.58 ± 0.02 295 ± 12 2 

 



  

18 

 

Highlights 

• Temperature of primary sludge fermentation affected acidification yield and profile 

• Fermentation at 20 & 35°C led to VFA, while 55 & 70°C led to other soluble material 

• VFA removal after 37, 55 & 70ºC fermentation lowered 20% sludge methane 

potential 

• Semi-aerobic conditions at 20°C improved methane yield even after VFA removal 

• Fungi colonised the sludge top layer under 20°C semi-aerobic conditions 

 


