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Abstract

The major focus of this thesis is on the problem of occlusion handling in

monocular visual tracking and pedestrian detection for video surveillance ap-

plications. Despite all the progress in this field, robust and reliable tracking

in real world scenarios, including interacting objects with frequent occlusion

events, is still an open research problem. Various tracking systems require

different strategies for resolving occlusion situations due to their different

structural properties. The research described in this thesis advances state-of-

the-art with two significant occlusion handling methods, corresponding with

two typical visual tracking approaches: (i) Template based trackers; and

(ii) Detection based trackers, relying on off-line trained detectors. Tracking

performance in template-based trackers, is very dependent on a valid up-to-

date target model. In the first part of the research, we propose an occlusion

handling framework for template trackers, which provides a basis for pro-

tecting the target model against corruption in occlusion and drift situations.

The occlusion model is built upon motion dynamics of the targets, described

through multi-channel Spatio-temporal Oriented Energy features. The pro-

posed model is used for identifying the occlusion mode of the target in the

course of tracking, as well as estimating an occlusion mask to determine vis-

ible parts of the target in occlusion events. By focusing on visible parts of

the targets for template matching, an improved tracking performance is ob-

tained. In the second part, we introduce an efficient data association method

for multiple pedestrian tracking by detection, through a light-weight spa-

tiotemporal clustering framework. Such tracking approaches typically de-

pend on off-line trained object detectors, while tracking is performed by data

association among the detection results. Our proposed scheme resolves the

occlusion and confusion ambiguities among the interacting targets and si-

multaneously compensates for the general detection errors, such as missed

or false detections. The suggested method may be introduced as an im-

proved adaptive Non-Max-Suppression (NMS) method, which is aware of the

number of existing targets in the scene and provides a solid performance for

highly overlapped targets. The framework demonstrates a real-time perfor-

mance with high capability of occlusion handling in low resolution imagery.
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Chapter 1

Introduction

1.1 Motivation

Over the last decades intelligent video surveillance systems have become in-

creasingly important, due to the huge number of cameras used for security

and surveillance of public areas. According to a recent report from the British

Security Industry Association (BSIA), there are 4 to 5.9 million CCTV surveil-

lance cameras in the UK alone. Monitoring this huge amount of information

by direct human force is getting impractical. Hence security demands have

been arguably the most important driver of research in advanced vision sys-

tems. Reliable automatic processing of the collected video information is a

first step to initiate appropriate actions or to aid human agents in monitoring

centers. Visual tracking is one of the core technologies in automatic video

surveillance. An automatic visual tracking system is supposed to consistently

locate the targets of interest throughout the video. In addition to surveillance

systems, many other computer vision problems rely on visual tracking, in-

cluding automated traffic monitoring, human-computer interaction, robotics

and active camera systems.

However robust and reliable visual tracking is a very challenging problem

in real world situations. Some of the well known challenges of visual tracking

which may cause the system to fail in practice, include but are not limited to:

• Appearance variation of the targets due to pose changes, shadows, light-

ing variations, clothing, . . . .

• background clutter, noise and blur which may negatively affect the qual-
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Chapter 1. Introduction

ity of the image and targets’ appearance.

• Occlusions caused by the scene objects or other targets which affects

the perfect visibility of the target seen from the camera point of view.

Handling occlusion situations in visual tracking is a challenging problem

within uncontrolled environments. Tracking separated objects in the scene

which are not interacting and occluding each other, does not seem very chal-

lenging with todays computer vision advancements. However long term real

world scenarios always contain some sort of occlusion, like inter-object oc-

clusion, self-occlusion or occlusion by the static scene occluders. Reliable

tracking of the interacting targets would be more difficult, when they have

similar appearance characteristics. Occlusion handling would be significantly

more difficult when several targets in the scene cause frequent interactions

and occlusions. ‘Occlusion’ and ‘Confusion’ (similarity between objects) have

been recently classified to be among the most difficult challenges of visual

tracking [CS10]. Hence we strongly believe that a proper occlusion reason-

ing strategy will largely improve the tracking performance.

One approach to resolve the occlusion problem, is to avoid it by placing

cameras overhead, looking down on the plane of the moving targets [GSRL98,

TSK00]. Another major trend for resolving the occlusion situations and main-

taining the objects’ identity during their interactions in the scene, is to use

multiple cameras in order to resolve an occluded target by its other visible

views [CGO00, DT01, DT00, Bat04]. However the focus of this thesis is

on video surveillance with single cameras. Occlusion problem becomes in-

creasingly important in video surveillance applications with single cameras,

specifically when the camera is looking from a side view.

In visual tracking, occlusion events are a major cause for distractions and

loss of the target tracks. Occlusions occur when distant targets are concealed

by objects closer to the observer. Since an occluded object is not completely

visible, unpredicted uncertainty in localizing the target is expectable. A com-

mon approach to handle occlusion events in visual tracking systems, is to sup-

press the errors introduced by occlusions to the optimization problem. Such

approaches may blindly improve the robustness of the system in short term

partial occlusions. However, they are not aware about the targets’ visibility
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Chapter 1. Introduction

status. Hence failures in full occlusions or long-term partial occlusions are

very probable, due to gradual drifts and contamination of the target models.

Various occlusion handling methods have been proposed in the literature, in

accordance with different tracking frameworks. In this thesis, occlusion prob-

lem is studied for two types of visual tracking approaches separately, due to

their different natures:

• Template based tracking, with an online template updating scheme;

• Tracking by detection based on off-line trained detectors, followed by a

data association method;

Template-based trackers work by matching an appearance model of the

target to the most likely location in consecutive frames. The tracking per-

formance in such systems, is very dependent on the validity of the target

model. Consequently, an updating strategy is required to maintain an up-

to-date target model along the process. The updating process is crucial for

template-based trackers, to enable them cope with variations of the target

appearance in long term videos. However the online updating mechanisms,

make the trackers vulnerable against template corruption, if being updated

with improper candidates. Corruption of the target model is very probable in

occlusion situation and may lead to permanent loss of the target.

On the other hand, tracking by detection based on off-line trained detec-

tors, is a major trend in the context of multiple target tracking. Such track-

ers rely on off-line trained object models for detecting a category of objects,

rather than the appearance model of individual targets. Consequently there

is no online evolving target model in such tracking systems and thus no con-

cern for template corruption. However, the main problem with such trackers

is the general detection errors, such as missed detections and false alarms.

Data association methods take advantage of temporal information for resolv-

ing the ambiguities and failures, by exploring correspondence among the

detection results in consecutive frames. Missed detections are more probable

in occlusion situations, due to inefficiency of the full body models for de-

tecting the occluded objects. Furthermore the Non-Max-Suppression (NMS)

process tend to suppress the nearby detections, which increase the confu-

sion in occlusions and may lead to loosing the target tracks. The occlusion
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Chapter 1. Introduction

problem in this context, may be addressed in any of the tracking stages: 1.

Detection or 2. Data association. Occlusion handling in detection stage is

equivalent to building stronger detectors, which perform better in occlusion

situations. Despite various proposals for improving object detection in par-

tial occlusions, the general detection errors are unavoidable. Hence the data

association methods are supposed to handle the unresolved errors from the

detection stage, while resolving the occlusion ambiguities simultaneously.

In this thesis we present two different occlusion handling frameworks

for the two types of visual tracking systems, discussed above. An occlusion

handling framework proposed for template based tracking systems, provides

some tools for protecting the target model against corruption in occlusion

events. The proposed tools improve the tracking performance in occlusion

situation. Another occlusion handling method is developed for detection

based trackers, within a multiple target tracking system. The proposed meth-

ods are able to handle occlusions caused by the static scene objects, as well as

the inter-object occlusions. Self-occlusions are resolved to some extent, due

to intrinsic robustness of the proposed systems against appearance changes.

The proposed systems are applied for the purpose of pedestrian detection

and tracking. However the suggested approaches are potentially applicable

to other video surveillance areas, such as vehicles, animals, etc. Experiments

and evaluations are conducted on various publicly available video surveil-

lance datasets of pedestrians, which include challenging occlusion scenarios.

1.2 Main Contributions

The main objective of this thesis is to improve pedestrian detection and track-

ing in video surveillance, by providing some tools for occlusion handling. The

proposed frameworks are evaluated on publicly available crowd surveillance

videos. However, the provided tools are not specifically designed for human

targets and are potentially applicable to general visual tracking. We pro-

pose two different occlusion handling approaches, for two typical tracking

systems:

• Template based tracking systems ;

19



Chapter 1. Introduction

• Detection based tracking systems ;

The former proposal, incorporates multi-channel Spatio-temporal features

for occlusion handling. In order to estimate the possibility of incorporating

3D multi-channel oriented features in real-time systems, we have developed a

general purpose GPU engine, for evaluating the performance acceleration of

a typical multi-channel filter set. The acceleration problem and the relevant

GPU based parallel processing issues are discussed in a separate chapter of

the thesis.

A brief overview of the main thesis contributions are presented in the

following subsections. Further details of the proposed frameworks and con-

tributions are provided in the next chapters, attributed to each of the topics.

Occlusion handling in template-based tracking

• An occlusion analysis framework is developed which empowers the track-

ing system to compete with state-of-the-art algorithms. Occlusion detec-

tion in the proposed system considerably improves the template updat-

ing mechanism, towards maintaining a valid up-to-date target model.

This leads to substantial improvement of the tracking performance in

occlusion situation.

• The proposed framework incorporates a ‘Bayesian model’ based on Spatio-

temporal Oriented Energy features to determine state of the target in

the course of tracking and discriminate between ‘Partial’ and ‘Full’ oc-

clusions. This is very helpful in video surveillance scenarios of public

areas, due to frequent short-term occlusions. An adaptive template up-

date mechanism based on this model, helps to prevent template corrup-

tion in occlusion and drift situations.

• Detection of the Full Occlusion state, provides required ground for the

system to change the tracking strategy, when there is no visible target

in the scene to track. Such situations can easily lead to distraction,

if the tracking process is not aware of the occlusion event. Hence a

tracker could blindly match a new location to the target, regardless of

its visibility status and end up with a target loss.
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• The occlusion model involved in the framework is used to generate an

occlusion mask, which determines the visible target pixels. Hence the

tracking performance is improved in occlusion events, by concentrating

on visible parts of the targets.

• Qualitative and quantitative evaluations demonstrate the strength of

the proposed framework against alternative strong trackers such as IVT

[RLLY08], MIL [BYB11], SOE [CGW10] and sparse trackers L1-IVT [JLY12]

and L1-APG [BWLJ12]. These evaluations highlight the effectiveness of

the proposed system in occlusion situation.

Occlusion handling in pedestrian detection and tracking

• An efficient spatio-temporal clustering framework is designed to im-

prove Non-Max-Suppression (NMS) in occlusion events and compensate

for the general detection errors, like false alarms and missed detections.

The clustering cost function entails temporal consistency in the motion

and scale of the tracked targets across consecutive frames. The formal-

ization of the spatial and temporal terms in the proposed cost function,

provides a light-weight closed form solution for the problem which can

be solved in real-time with a general CPU.

• The clustering framework is based on a bounded cost function, which

leaves some non-associated members per frame. An instantiation method

is proposed to establish new clusters for the emergent targets through

monitoring the non-associated members. We propose to apply the stan-

dard NMS on non-associated members and combine the NMS results

with a specific confidence score, to increase the reliability of the in-

stantiated clusters. The confidence score is composed of a notion of

‘Detection Frequency’ and a ‘Depth/Height’ probability.

• A track consolidation method is developed to post-process the spatio-

temporal clustering results and remove low confidence tracks. we pro-

pose to utilize the scene ‘Entry/Exit’ information, along with a track

confidence score for consolidation. The track confidence score is esti-

mated based on an ‘Occlusion Matrix’ among the clusters per frame, as

well as a ‘Depth/Height’ confidence of the clusters along the track.
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• The proposed framework relies on a full-body pedestrian model, which

does not require high-resolution details of the body parts. Hence the

system is compatible with the existing infrastructures and low resolu-

tion cameras. This feature along with the real-time performance of the

system, make it attractive for practical video surveillance.

1.3 Dissertation Overview

This dissertation is comprised of six chapters. Following this introduction,

an overall literature review provides a proper context for the whole thesis,

by describing the research gaps in the current literature. However, all the

thesis chapters are self-contained, with their own literature review and ex-

periment section. The six chapters of the thesis, including the current one,

are summarized below:

• Chapter 1: Introduction. In this chapter the importance of the oc-

clusion handling problem in video surveillance and visual tracking has

been motivated and the research problems addressed by this thesis have

been briefly introduced.

• Chapter 2: An Overview on Visual Tracking and Occlusion Han-

dling. Chapter 2 provides a literature review on visual tracking and oc-

clusion handling approaches that are relevant to this dissertation. The

research gaps and shortcomings that exist in the current literature is

elaborated in more details to provide the proper context for the thesis.

• Chapter 3: Occlusion Handling in Template Tracking Systems. Chap-

ter 3 proposes an occlusion analysis framework, based on motion dy-

namics of the targets, for the purpose of robust template tracking in

video surveillance applications. The proposed system takes advantage

of the multi-channel ‘Spatio-temporal Oriented Energy’ (SOE) features

for representing the targets’ dynamics. Hence some background pre-

liminaries on SOE features are initially introduced in this chapter. We

demonstrate that protecting the target model against corruption and

maintaining a valid up-to-date target model in challenging real world
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scenarios, empowers the system to compete with state-of-the-art track-

ers.

• Chapter 4: Occlusion Handling in Pedestrian Detection and Track-

ing. Chapter 4 introduces an occlusion handling approach for multiple

pedestrian detection and tracking based on a spatio-temporal clustering

method. The proposed framework performs in real-time and demon-

strates a high capability for occlusion handling within a low resolution

context.

• Chapter 5: Hardware Acceleration, Parallel Processing. Chapter 5

presents a GPU-based hardware accelerator for extracting the biologi-

cally inspired multi-channel Gabor features. The GPU kernel imitates

the parallel structure of the initial visual cortex layers, composed of

‘Simple’ and ‘Complex’ cells. The Simple cells perform the main fea-

ture extraction, while the Complex units aggregate the features at com-

mon orientation and provide abstract information with local invariance,

which describe the orientational structure of the input image. The em-

pirical speedup gain of the GPU engine, indicates that the multi-channel

Spatiotemporal Oriented Energy features, applied in preceding chap-

ters, can be generated in real-time for VGA size frames.

• Chapter 6: Summary and Conclusions. Chapter 6 provides a sum-

mary on the main contributions of the thesis. Furthermore the possible

future directions and improvements for subsequent investigations are

discussed.
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Chapter 2

An Overview on Visual Tracking
and Occlusion Handling

2.1 Introduction

Visual tracking may be considered as a primary step in many video surveil-

lance applications, such as abnormality detection, action recognition, object

identification and object recognition. Other applications of visual tracking

may be seen in human-computer interaction, such as the Kinect input de-

vice developed by Microsoft [SFC+11] and active camera systems. An ac-

tive camera is supposed to automatically detect the moving targets, as they

appear in the field of view and keep their track through a smooth camera

motion [MBM+95]).

In order to put our research into a proper context, in this chapter we

briefly review some representative algorithms in the field of visual tracking

with single cameras. The methods discussed in this chapter, are parts of the

main stream in visual tracking with single camera, which have attained a

widespread attention in the research community. In the last decade, these

algorithms have seen significant advancements while being applied as basic

building blocks in various visual tracking systems. Hence these major trends

of monocular visual tracking, deserve a special attention in the context of this

thesis. More comprehensive reviews of visual tracking systems are available

in the computer vision literature [YJS06, Can08]. In the second part of this

chapter (c.f . section 2.3), we will shortly review the proposed approaches for
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occlusion handling in single camera visual tracking.

2.2 Visual Tracking Systems

Historically, tracking systems were initially introduced for following the point

targets in RADAR systems. In a RADAR system, the discrete points on the

screen represent the flying objects like airplanes. A major trend of sta-

tistical solutions for the problem of discrete point tracking in RADAR sys-

tems emerged between 1960’s to 1980’s [Kal60, Sit64, SS71]. However the

more recent deterministic point trackers in computer vision domain between

1980’s to 2000, relied on more basic assumptions such as point proximity

and constant velocity. The main challenge in discrete point trackers is about

following numerous targets with identical appearance. Thus the only cues to

seek correspondence between point targets in consecutive frames are their

position and velocity information. A typical approach in the deterministic

point trackers is to perform an inter-frame ”‘proximity”’ and ”‘velocity”’ based

matching between the points on a bunch of adjacent frames [SJ87]. Some

extensions expanded the point tracking systems with occlusion handling and

resolving entry/exit of the targets over time [SS90, RS91, SS03].

Computer vision as the science of automatic image and video processing,

started to flourish with the great advancements of computer technologies.

Hence, more detailed object descriptions and complex tracking algorithms,

were tractable following their initial introduction. The main stream of visual

tracking in computer vision has been established around some key tracking

algorithms. In this section we discuss some of the representative visual track-

ing approaches, along with part of their evolutions in the past decade.

Bayesian methods

The main algorithms among the stochastic methods are ‘Kalman filter’ and

‘particle filters’, also known as sequential Monte Carlo. These methods are

mathematical tools with diverse applications in many fields including signal

processing and control systems. Visual tracking in this context is cast as a

classic stochastic problem, where the statistically optimal state of the target

(i.e. position, scale, orientation, ...) in each frame, is estimated based on the
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observation variables (observed image/features) and state transition model,

through a recursive Bayesian framework.

Kernel-based object tracking

This category of trackers employ a histogram representation of some target

features (such as color, intensity, oriented gradient, ...), as the target model

for visual tracking. A histogram model inherently destroys the spatial distri-

bution of the target features and aggregates them all over the target support.

Application of kernel histograms in visual tracking was popularized with the

mean shift tracker introduced in 2000 by Comaniciu et al. [CRM00]. The

mean shift tracker constructs the target template histogram in the first frame,

which is used for tracking throughout the rest of video sequence. Iterations

of the mean shift algorithm estimates a target candidate which is an optimal

match for the target model. The Bhattacharyya coefficient was proposed as

the similarity metric for finding the best match at each frame [CRM00]. For

creating the histogram template, a kernel function is also applied to weight

the pixels in the model based on their distance to the target center. Thus

the closer pixels to the target center have a higher influence in constructing

the histogram model, due to their higher reliability for representing the tar-

get. In other words, off the center pixels are more likely to be related to the

background or other occluding objects in the scene. With this approach the

proposed tracker gains some level of robustness to partial occlusions.

In a proceeding work, Comaniciu et al. [CRM03] proposed to utilize

Kalman filter for predicting the target position in the next frame. This predic-

tion was used as the initial state for the mean shift iterations at each frame, to

help the mean shift tracker converge faster. Various extensions to the original

mean shift tracker have been suggested in the literature, including the pro-

posals for incorporating some level of spatial information in the histogram

representation by subdividing the target into cells and assigning a histogram

to each cell [NSHY08, ARS06].
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Kanade-Lucas-Tomasi (KLT) tracking

Motion estimation based on the original image alignment algorithm of Lucas-

Kanade [LK81], has been a major trend in visual tracking systems since its

original introduction in 1981. In this approach, the motion estimation tech-

nique is based on the brightness constancy constraint, which implies that the

intensity of the target pixels remain constant while they move throughout

the video frame. This simple criterion which has been the basic founda-

tion for optical flow estimation [BB95] and feature tracking [TK91, ST94],

opened a new horizon in computer vision since its initial introduction in early

1980s. The constancy constraint can be practically applied to any features of

the target pixels instead of intensities for motion estimation, i.e. the cri-

terion may be expressed more generally in this way: ”‘The features of the

target pixels remain constant while it is moving through the image frame”’

(F (x, t− 1) = F (x + ~u, t), where ~u = (ux, uy) and x = (x, y)).

Ideally this equation should hold for every single pixel. However due to

the mathematical approximations in derivation of the optical flow constraint,

as well as the noise and measurement errors, there is some non-zero error

in F (x, t − 1) − F (x + ~u, t). Consequently motion estimation turns out to a

minimization problem over the pixels within a local neighborhood. On this

line another class of trackers gradually emerged, with a primary component

which exploit the pixels’ features (mostly intensity), in order to estimate the

inter-frame motion of the target. In this framework tracking is cast as a min-

imization problem over the target support throughout the tracking process.

If the target is assumed as rigid, like the case of the original work of Locus

and Kanade [], then the the target motion is simply modeled by a translation

vector which describes the horizontal and vertical displacement of a target

region between two sequential frames. The estimated motion vector matches

a reference image region (target of interest), to the optimal location in the

next frame.

Inspired by this work, Bergen et al. [BAHH92] developed a model-based

motion estimation framework in 1992, that accommodates more complex

motions in addition to pure translation, such as rotation(2D or 3D), scal-

ing and shearing. This framework provides the foundation for estimating
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nonuniform motions of the pixels inside the target support. Thus the tar-

get deformations which occur due to change of pose throughout the video

frames, was modeled to some extent in this framework. The minimization

problem in this model-based motion estimation framework, will be:

argmin
k̃

∑
x g(F (x, t− 1)− F (x + ~u(x; k), t)),

where F is the pixel’s feature and motion vector ~u is defined as a para-

metric function of the pixel location with parameter vector k.

In this tracking framework, a target template is captured in the first frame

of the video from the specific target location (T (x, y) = F (x, y, t0)) with the

defined features F (intensity or ...). The tracker performs parametric match-

ing of the target template to the image sequence to find out optimal candidate

region in each frame. The estimated affine motion parameters, define the tar-

get’s motion among the image sequence and forms a trajectory. We have uti-

lized a similar KLT based tracking framework for part of our research, which

will be discussed further in Chapter 3. We address this category of trackers

as pixel based trackers in this dissertation.

Eigen Tracking

Eigen tracking initially emerged based on the idea of using lower-dimension

subspace representations (Eigen-spaces) for modeling the target, as it ap-

peared in works of Hager et al. [HB96] and Black et al. [BJ98] in late

1990s. A ‘Principal Component Analysis’ (PCA) was applied to calculate an

appearance-based object representation in Eigen-spaces. They demonstrated

that image variations due to illumination and pose change could be modeled

in low-dimensional subspace [HB96, BK96, BJ98]. Subsequently they pro-

posed tracking systems based on this Eigen representation which was shown

to be robust against illumination and pose variations. However the initial

Eigen trackers, required pre-training with a large set of training images (con-

taining the whole range of appearance variation), in order to construct the

eigen-basis. As a result the target model was fixed during the tracking and

could only handle the pre-trained cases.

Ten years later, the eigen trackers started to popularize with the Eigen

tracking system proposed by Ross et al. [RLLY08], which didn’t require a
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fixed pre-trained Eigen basis model prior to tracking. The proposed Eigen

tracker instantiated the target model in the first video frames and incre-

mentally updated the Eigen-basis on the fly. This was achieved by utilizing

an incremental principal component analysis (PCA) algorithm to adapt the

holistic appearance model to lighting and pose variations in the course of

tracking. Eliminating the pre-training stage and proposing an online evolv-

ing model which could adapt to considerable appearance changes, was an

important improvement which made the Eigen trackers suitable for practi-

cal visual tracking. Encouraged by this main contribution, they named their

system as Incremental Visual Tracker (IVT).

Sparse Tracking

Inspired by advancements in sparse representation and its applications in sig-

nal processing and computer vision (e.g., background subtraction [CSD+08],

face recognition [WYG+09], ...), Mei et al. introduced the first visual track-

ing system based on sparse representation in 2009 [ML09]. This tracker

models the target appearance sparsely through a set of representative tem-

plates, which are dynamically captured from the most reliable candidates

throughout the tracking process. Moreover, noise and corruption, occlu-

sion and changes in background are directly modeled by means of the pos-

itive/negative trivial templates. In the proposed framework by Mei et al.,
visual tracking is cast as a sparse approximation problem in a particle filter

framework, which is solved by `1 minimization formulation. More specifi-

cally target candidates in every new frame are represented by a sparse linear

combination of the basis target templates and trivial templates. Then the

optimal candidate with minimum error demonstrates the new target location

and the tracking continues by propagating the sample distributions within

the particle filter framework. Following the optimization method applied for

the problem, sparse trackers are sometimes referred to as `1 trackers in the

literature.

Other variants and applications of sparse trackers have been proposed

afterward [MLW+11, ML11, BWLJ12, JLY12]. For example, a ‘Structural Lo-

cal Sparse Appearance Model’ was introduced by Jia et al. [JLY12] which

exploits the strength of both sparse representation (`1 tracker) and the incre-
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mental subspace learning (IVT tracker). The so-called IVT-`1 tracker adapts

its positive/negative templates to the changes in target’s appearance with an

incremental updating strategy. To this end, a linear combination of the PCA

basis vectors and the `1 templates are utilized for modeling the estimated

target.

Tracking by Classification

Some recent developments in visual tracking suggest improved performance

can be achieved if the tracker is coupled with a dynamic detector/classifier

component. In this context visual tracking is cast as a classification prob-

lem, in which a detector (static/dynamic) exploits the dissimilarity between

the object and background to localize the target of interest in consecutive

frames [Avi04, Avi07, BYB11, KMM12]. The general trend in most of the re-

lated studies, is to build a target appearance model in the first frame and up-

date the model during the process using machine learning techniques. Some

studies suggest to start with a target model which is trained offline and evolve

the model during the tracking process. Such approaches are mostly applied

in single target tracking.

One of the initial tracking systems in this line was proposed by Avidan

(2001) [Avi01, Avi04] who suggested to use an off-line trained SVM clas-

sifier in a mathematical framework which resembles the standard optical

flow equations. In this framework maximizing the SVM classification score

is taken as the optimization criterion instead of the optical flow constancy

constraint for computing the image gradients and locating the target. Hence

rather than performing the calculations on two successive frames, like con-

ventional optical flow systems, the support vectors take the role of the second

image. This implies that the new frame is matched against the patterns used

for training the classifier and calculations are performed on single frames. Al-

though this algorithm has demonstrated success in vehicle tracking, but the

static SVM classifier requires a lot of effort for pre-training with thousands of

images of vehicles and non-vehicles in various situations.

Avidan proposed another tracker based on binary classification in [Avi05,

Avi07]. A set of weak classifiers are trained online and combined into a

strong classifier using Adaboost. This classifier is used to discriminate be-
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tween the target pixels and the background pixels. The target of interest is

then located by estimating the peak of the confidence map calculated for tar-

get pixels. With every new detection, new weak classifiers are trained and

added to the ensemble of weak classifiers, to adaptively update the target

and background model. Collins et al. [CL03] also treated tracking as a binary

classification, in which the most discriminative RGB space is identified from

a set of different color features. The selected feature space is then used for

building a confidence map to discriminate the target from background and

estimate the target location. Several variants of online learning boosted clas-

sifiers have been proposed in the literature, such as the asymmetric boosted

classifiers by Pham et al. [PC07, PHC08], which are beyond the scope of this

study.

A major challenge in the typical adaptive classifiers, as mentioned above,

is that inaccurate tracking may lead to introduction of incorrect samples to

the target’s appearance model. This can gradually corrupt the target model

and cause failure in long-term tracking. As this is a general problem in visual

tracking, there has been various studies around it and some attempts to ame-

liorate the drifting and template corruption to some extent. However there

is no general solution to this challenging problem yet. To improve on this

issue, Babenko et al. [BYB11] proposed to generate a bag of templates from

blocks around the current estimation of the target, rather than picking only

one candidate for updating the model. Then a Multiple Instance Learning

(MIL) framework was proposed for object tracking and learning a generative

target model based on boosting weak classifiers into a strong classifier. In

this approach the candidates are collected in bags and labels are assigned to

the bags rather than individual samples. A positive bag normally contains

a few bounding boxes around each object. By definition, a positive bag is

assumed to have at least one positive sample, otherwise it is considered as

a negative bag. Using bag of positive and negative templates can potentially

improve the occlusion handling and drifting problem. However the ambigu-

ity for choosing the most proper sample from the bag of positive templates,

is passed to the learning algorithm. On the other hand training new weak

classifiers with all the samples inside a positive bag, can potentially degrade

the target model, since some of the samples inside the bag may be incorrect
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candidates.

Kalal et al. [KMM12] propose a long-term tracking system by combining a

tracker and a dynamic detector which bootstraps binary classifiers with struc-

tural constraints. In order to use more reliable candidates for online training

of the classifiers and object model, a pair of ‘P-N’ experts are introduced to

identify the detection errors at each iteration and use them for updating the

model. P-expert is designed based on temporal structure (smooth motion) to

identify false negatives and add them to the training set with positive labels.

While N-expert exploits the spatial structure to identify the false positives, to

be used as negative training samples. The dynamic classifier is updated by

using this labeled training set, to avoid similar errors in future frames. With

this approach drifting problem is alleviated to help long-term tracking.

Tracking by Detection

The visual tracking approaches discussed so far are generally adapted to sin-

gle target tracking systems. A more recent major trend in multiple target

tracking, is based on an object detection stage followed by data association.

Two main approaches for target detection in this context are:

• Detection of foreground moving objects via background subtraction ;

• Detection of foreground objects with offline trained object detectors ;

Following the initial detection stage, data association among detected regions

is supposed to merge the detection results across frames towards establishing

target tracks.

Senior et al. [SHT+06] proposed a visual tracking system based on back-

ground subtraction and blob detection. The foreground blobs in consecutive

frames are associated to form the target tracks. An appearance model is con-

structed on every blob which helps to improve the targets localization during

tracking. The generated target models are also used to solve track correspon-

dence in data association and resolve ambiguities in occlusions.

Andriluka et al. [ARS08] propose a part-based pedestrian detector within

a pictorial structure model for the first stage of the tracking system. The

offline trained detector is used to detect pedestrians in single frames. Tem-

poral coherency among the detection results are then exploited within a three
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stage probabilistic data association scheme in short, middle and long periods.

A generative appearance model is extracted from short term tracklets, which

is utilized along with a dynamical model to construct long term tracks of the

targets.

Andriyenko et al. [AS11, MRS14] use a sliding-window linear SVM de-

tector based on HOG [DT05] and HOF [WMSS10] features for pedestrian

detection. Then a non-convex cost function is introduced for data associa-

tion among the detection results in consecutive frames towards estimating

smooth target tracks. Appearance model of the targets along with an occlu-

sion model and a motion model are also incorporated in the proposed cost

function.

2.3 Occlusion Handling Approaches

Among various well known challenges of visual tracking discussed earlier in

section 1.1, occlusion problem is comparatively an under researched area in

video surveillance. Various tracking frameworks have different requirements

for handling occlusion situations due to their diverse natures. To deal with

the problem, in the first step we need to understand different issues that

occlusion may cause for a tracking system.

As mentioned previously ‘Tracking by Detection’ relying on off-line trained

detectors, is a major recent trend in the context of multiple target tracking.

However the template based trackers discussed in section 2.2 are generally

adapted to single target tracking. Although some of them may be extended

to multiple tracking systems as well. Different structures of the two men-

tioned tracking categories, naturally suggest distinct strategies for occlusion

handling. In the following we briefly review the the occlusion handling chal-

lenges and the proposed solutions for the two tracking approaches, to put

our research into a proper context. In the next two chapters we present two

different frameworks for occlusion handling in template based tracking and

detection based tracking.
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Occlusion Handling in Template based tracking

Template-based trackers typically contain two main components: 1) an ap-

pearance model which defines the target by some features, 2) a search strat-

egy for localizing the target in the frame through matching the target model

to the most likely location. Tracking performance in such systems which

rely on appearance model for tracking the target, is very dependent on the

validity of the target template along the process. Trackers which employ

static appearance models, generally learned on the first frame [BJ98, CRM00,

ARS06], are not able to adapt with appearance changes and cannot operate

in long-term. In real world video surveillance scenarios, the targets appear-

ance are constantly changing among the video due to various issues such as

non-rigidity of the targets, pose change, lighting variations, probable clothes

change, etc. Hence maintaining an up-to-date target template is critically im-

portant for high performance tracking in long term. Due to variations over

time, a template based tracking system is required to update its appearance

model progressively and keep it up-to-date.

There are two main challenges for occlusion handling in this context:

First, the occluded object which is not completely visible in the frame, may

cause unpredicted uncertainty in localizing the target. Second, the adaptive

schemes for maintaining up-to-data target model, are generally susceptible

to be corrupted in occlusion or drift situations. In other words, updating

the appearance model with occluded or inaccurate candidates captured from

the current tracker location, leads to degrading the target model and drifting

from the true target location.

Various approaches have been proposed in the literature to improve the

tracking performance and robustness in occlusion situations. However track-

ing the occluded targets, specially in long periods and template contamina-

tion due to occlusions are still open research problems in visual tracking. For

instance the multiple instance learning framework (MIL) in Babenko et al.
[BYB11], demonstrates some level of success in partial occlusions. This may

be a result of the multiple positive instances captured from around the target,

which slightly incorporates the background in the model and can guide the

tracker during the short-term partial occlusions. Some approaches propose to
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divide the target into cells and model each cell separately [ARS06, CPB09].

Hence by tracking separate cells, an improved performance in partial occlu-

sions is expected.

In the context of sparse tracking [ML09, ML11] noise, corruption and oc-

clusion is modeled at pixel level by means of the positive and negative trivial

templates, which can potentially improve the tracking performance in occlu-

sion situations. Furthermore the sparse coefficients can be used to build an

occlusion map, due to containing rich information about image corruptions

and occlusions [MLW+11, BWLJ12].

Senior et al. [SHT+06] proposed an example of a multiple target tracking

system based on background subtraction and blob detection, which main-

tains the appearance model of the tracked objects over time. The appearance

models are utilized to resolve occlusion situations through a layering process

which determines the depth ordering of the occluding targets. The appear-

ance models also improve the target localization during the tracking process.

In spite of the improvements for occlusion handling in the tracking litera-

ture, a common problem among most of the trackers is their blind updating

strategies. Hence the target models are susceptible to contamination during

long-term occlusions, which may lead to drifts and failures. In Chapter 3 we

propose an occlusion modeling framework based on Spatiotemporal Oriented

Energies, which protects the target model against corruption in occlusions.

We demonstrate that protection of the target model in template-based track-

ers, leads to significant improvement of tracking performance under chal-

lenging occlusion situations. A more detailed review of the existing occlusion

handling approaches for model-based tracking systems are also provided in

Chapter 3.

Occlusion Handling in Detection based Tracking

In this part we discuss the detection based tracking systems, which rely on

off-line trained object detectors rather than the appearance models of the

individual targets. Basically there is no template matching and evolving tar-

get templates in this context to be contaminated during an online updating

process. Hence the occlusion problem in this context is inherently different

compared to the template based systems, thus requiring new strategies for
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handling the problem. The multiple-target trackers in the current discus-

sion is composed of a general object detector followed by a data association

scheme, which temporally combines the detection results for generating the

tracks. Consequently occlusion inference may be performed in either stages:

• Occlusion handling in detection stage: developing stronger detectors

which are more robust to partial occlusions ;

• Occlusion handling in data association stage: seeking improved data

association schemes to resolve occlusion situations ;

It is well known that even for the strongest human detectors which stand

on the top of state-of-the-art [DABP14, FGMR10], the detection performance

significantly drops in occlusion situations [DWSP12], due to limited visibil-

ity of the occluded objects. Part-based detectors might be able to handle

certain partial occlusions, given the target resolution provide sufficient infor-

mation for detection [WU08]. However it has been demonstrated that even

a state-of-the-art part-based human detector like ‘Deformable Part Models -

DPM’ [FGMR10], starts to fail at low occlusion rates [TAS12].

One conventional approach for occlusion handling in the detection stage,

is to apply multiple part detectors which are trained for specific body parts

such as ‘Head, Torso, Legs’ [EESG10] or ‘Right, Left, Bottom and Upper’ body

parts [WWRS11]. Subsequently all the detection results are combined within

a specific framework to achieve an improved performance in partial occlu-

sions. However due to the general lower performance of the part detectors

compared to full-body detectors, achieving an acceptable performance in oc-

clusion situations is questionable.

Some studies propose to build an occlusion map for the scene and apply

the proper part detectors on visible areas of the targets [WHY09, GPK11,

EESG10, WWRS11]. Enzweiler et al. [EESG10] calculate discontinuities in

depth and motion of the objects based on dense stereo and optical flow to

estimate the occlusion boundaries. While Wojek et al. [WWRS11] propose a

light-weight approach to use the monocular scene geometry such as common

ground plane and objects height, for estimating the depth and constructing

the occlusion map. However the low performance of the part detectors is still

an issue in the mentioned approaches.
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Tang et al. [TAS12] propose a completely different approach for occlu-

sion handling in pedestrian detection. They take advantage pf the pedes-

trian/pedestrian overlapping patterns for improving the detection perfor-

mance in crowds, through training joint detectors to detect pair of occlud-

ing pedestrians. However scalability of this method and its generalization

to other typical occlusions, like occlusions with the scene occluders or other

moving objects, remain unsolved.

Undesirable errors of object detectors such as missed detections and false

alarms are still inevitable in spite of all the progress in this field. Data asso-

ciation methods are supposed to resolve such faulty situations by taking ad-

vantage of temporal information. In other words, correspondence between

the detections in consecutive frames are exploited to generate target tracks

and resolve the detection ambiguities.

Some studies suggest to combine occlusion handling strategies within the

data association framework. For instance, Milan(Andriyenko) et al. [AS11,

MRS14] propose an energy cost function incorporating spatial and tempo-

ral terms to explore the data correspondence in consecutive frames. An

occlusion model is integrated among the spatial terms to penalize existing

targets with no evidence. However the proposed cost function is highly non-

convex and computationally very intensive, which is far from a real-time

performance.

Andriluka et al. [ARS08] propose a probabilistic approach for data asso-

ciation among the position, scale and articulation of the detected body parts.

The proposed framework implements temporal coherency in three sequen-

tial stages. Coherency in the dynamics of the body limbs within a walking

cycle are exploited to extract short tracklets. The tracklets form longer tracks

between major occlusion events within a Hidden Markov model (HMM). Fi-

nally major occlusions are managed through association of estimated tracks

using an appearance model and a coarse motion model. Furthermore the

limbs dynamic model over a walking cycle, provides a means to somewhat

handle partial occlusions in short term. Besides the computational complex-

ity of the system, a sufficiently high resolution is required for such a detailed

representation of the body parts.
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Table 2.1: Summary of visual tracking paradigms regarding the occlusion problem;

Template based Tracking Tracking target cells [ARS06, CPB09, KNHH11]
. Sparse tracking [MLW+11, BWLJ12, JLY12]
. Layering multiple targets with appearance [SHT+06]
. Super-pixel tracking [WLYY11]

. Combining multiple part detectors on visible areas:

. [WHY09, GPK11, EESG10, WWRS11]
Detection based Tracking Occlusion map based on:
( Occlusion addressed ... SVM scores on target cells [WHY09]
in Detection stage ) Discontinuities in stereo depth and motion [EESG10]

. Depth estimation via monocular scene geometry [WWRS11]

. Detectors trained for overlapping patterns [TAS12]

Detection based Tracking Energy function comprising occlusion model [AS11, MRS14]
( Occlusion addressed ... Probabilistic association via HMM [ARS08]
in Data Association )

The above mentioned solutions for the occlusion problem in video-based

detection and tracking are summarized in Table 2.1. More details on the

occlusion handling approaches in the context of ‘Tracking by Detection’ is

provided in chapter 4, along with a novel solution for the occlusion prob-

lem in this context. In chapter 4 we present a data association cost function,

which explores temporal consistency in the motion and scale of the tracked

targets. The proposed cost function has an efficient closed form solution,

which provides a real-time performance. The proposed framework demon-

strates a high capability for occlusion handling in a low resolution context,

which makes it suitable for the existing infrastructures and low resolution

cameras.

2.4 Summary

To recapitulate, the field of visual tracking is wide and diverse, with a his-

tory of more than 50 years. The literature review provided by this chapter

is focused on monocular tracking with single cameras, to introduce a bigger

picture of the family of trackers employed in the current thesis. The existing

solutions to the problem of occlusion handling, are reviewed in two distinct

family of tracking methods separately, to provide a greater context for un-

derstanding the main contributions of this thesis. Different aspects of the

occlusion handling problem among the two distinct tracking approaches are
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introduced and their shortcomings within the field of tracking are discussed.

More specifically, the problems engaged with occlusion handling in ‘Template

based tracking’ and ‘Detection based tracking’ are comparatively discussed,

to establish the main research problems of this dissertation, which are ad-

dressed in the upcoming chapters.
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Chapter 3

Occlusion Handling in Template
Tracking Systems

3.1 Introduction

In this chapter, we introduce a framework to exploit motion dynamics of

non-rigid human targets for the purpose of occlusion handling in template-

based tracking systems. Although an extensive amount of research has been

dedicated to overcome the well-known challenges of visual tracking such as

illumination changes [Can08], comparatively little attention has been paid

to robust schemes for template updating. Template corruption is the Achilles’

heel in almost any tracking system and our motivation in this thesis is to

address this under-researched area, especially for video surveillance technol-

ogy.

Integrated analysis of videos in spatial and temporal domains is the de

facto standard in various computer vision applications, since their initial

introduction by Fahle and Poggio [FP81], Adelson and Bergen [AB85] and

Heeger [Hee88]. The ‘Spatiotemporal Oriented Energy (SOE)’ feature set is

an integrated and modern framework, proposed for analysis of dynamic pat-

terns based on their constituent space-time orientation structure in the video.

This framework has been successfully applied in various computer vision ap-

plications such as ‘Dynamic Texture Recognition and Scene Understanding’,

‘Action Recognition’ and ‘Visual Tracking’, to name a few [DW10, DSCW10,

DW11, DW12, DLDW12, CGW10, CW14].
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Modeling moving objects by SOE features for the purpose of visual track-

ing was first explored by Cannons et al. [CW07, CGW10, CW14]. For sim-

plicity in this chapter, we refer to this category of visual tracking systems as

SOE trackers. Though SOE trackers have been shown to yield good perfor-

mance in certain realistic situations [CW07, CGW10, CW14], their intrinsic

limitations may prove a hindrance in some others.

One example is the tailing effect in SOE features, which is an intrinsic con-

sequence of temporal filtering. Basically the presence of the moving target in

various locations of n successive frames, appears as an energy tail in the SOE

features. This makes the blobs of spatiotemporal energies look larger than

the actual target size. Therefore, the target bounding box oscillates around

the moving target over time, even for normal and non-occluded situations,

which could lead to incorrect or unstable target localization (c.f . experimen-

tal results of the surveillance video in [CGW10, Can10]). Obviously, larger

intra-frame target movements produce longer energy tails and higher inac-

curacies in localization.

Another problem appears in scenarios where multiple targets move to-

gether in the same direction. In such situations the targets’ energy blobs may

be confused with each other and cause tracking errors. This is mainly ac-

cording to the similar motion dynamics of the moving targets and the tailing

effect of the SOE features. Moreover, if the motion direction of the targets

rapidly changes in the video, their SOE based template will be invalid after-

wards, due to the slow nature of the updating scheme in [CGW10] and the

fast evolution of motion dynamics.

Unlike previous studies that utilize SOE features as fundamental track-

ing cues, we propose an SOE-based framework for occlusion modeling and

detection of tracking novelties. In this chapter novelty is defined as partial

occlusion events when the occluding objects have different motion dynamics

(c.f . §3.4.2). The proposed occlusion detection system is designed for non-

rigid human targets and works based on the targets’ motion dynamics which

are characterized through their ‘Spatio-temporal Oriented Energies’. We de-

sign a Bayesian state machine to discriminate between the ‘Partial Occlusion’

and ‘Full Occlusion’ states of the target. Hence template updating mechanism

is more reliable, as a result of protecting the target model against corruption
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in novelty situations. This leads to a significant performance improvement in

tracking under challenging occlusion situations. Furthermore, in ‘Full Occlu-

sion’ situations a different tracking strategy is sought due to invisibility of the

target. An occlusion mask is also estimated based on SOE features to distin-

guish non-occluded parts of the target. Hence tracking optimization can be

performed using the non-occluded target pixels. This approach enhances the

tracking performance in novelty situations, while avoiding the inaccuracies

caused by the confusion of similar SOE blobs in SOE trackers. The proposed

framework is extensively evaluated on several publicly available surveillance

datasets in short-term/long-term occlusions and compared against state-of-

the-art trackers. It is worth mentioning that our proposed framework can be

seamlessly fused with various tracking schemes, as a means to protect the

target template or the bag of templates.

3.2 Related Works

Handling occlusion in modern visual tracking is not overlooked by any means

but the theme adopted in many studies is not a dedicated approach. Gener-

ally speaking, occlusion can be handled implicitly or explicitly in a tracker.

In implicit solutions, the tracker mostly relies on a discriminative template

and usually is able to handle short term partial occlusions [RLLY08, KL11,

BYB11, ARS06, CPB09, ML09, ML11, JLY12, LYY13, ZYSL13, WCXY12, BL12,

HJZ+11]. On the contrary, in explicit solutions a dedicated mechanism is

foreseen to handle and guide tracker during severe occlusion [MLW+11,

KNHH11, WLYY11, BWLJ12]. In the following text, we briefly overview some

examples from each category.

Ross et al. suggested an incremental visual tracker (IVT) that incremen-

tally updates a low-dimensional subspace representation of the target [RLLY08].

This is achieved by utilizing an incremental principal component analysis

(PCA) algorithm to adapt the holistic appearance model to lighting and pose

variations in the course of tracking. Partial occlusions can be considered to

some extent in IVT, by involving a forgetting factor which reduces the effect

of new data in constructing the low-dimensional subspace. The larger the

forgetting factor, the lower is the sensitivity to short-term occlusions. Hence
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the system preserves the non-occluded representation for a short period of

time. Babenko and Yang [BYB11] proposed to generate a bag of templates

from blocks around the current estimation of target and multiple instance

learning framework for object tracking (MIL-Track). MIL-Track shows ro-

bustness against various appearance changes and partial occlusions to some

extent. This is due to capturing multiple positive instances around the target

which slightly incorporates the target background in the appearance model.

Consequently the surrounding blocks can guide the tracker during the short-

term occlusions. Such approaches could result in decent performance for

short-term occlusions, but obviously fails in more challenging long-term and

heavy occlusions.

A few recent studies adopted sparse representation for visual tracking,

where the target appearance is modeled sparsely through a set of templates

[ML09, ZYSL13, LYY13, ML11, WCXY12, JLY12, BL12, HJZ+11]. In these

so-called `1 trackers such as proposed in [ML09], noise and corruption, oc-

clusion and changes in background are directly addressed by means of the

positive/negative trivial templates and the `1 minimization formulation. Af-

ter all, occlusion is modeled at pixel level in the `1 tracker and though it might

be handled to some extent (as a result of sparse formulation) a dedicated

mechanism for detecting occlusions was not foreseen. Hence, the tracker

could still suffer from long-term occlusions, which could introduce occluded

templates to the tracker and cause drifting. A ‘Structural Local Sparse Ap-

pearance Model’ is introduced in [JLY12] which exploits the strength of

both sparse representation (`1 tracker) and the incremental subspace learn-

ing (IVT tracker). The so-called IVT-`1 tracker adapts its positive/negative

templates to the changes in target’s appearance with an incremental updat-

ing strategy. To this end, a linear combination of the PCA basis vectors and

the `1 templates are utilized for modeling the estimated target. To avoid

contaminating the target model with occluded frames, the template set is up-

dated by reconstructed target images using only the PCA basis vectors rather

than the raw estimated target. Consequently the IVT-`1 tracker can handle

partial occlusion by reducing the template contamination.

To achieve robustness against partial occlusion, some approaches divide

the target (and the background in some cases) into multiple fragments and
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model each fragment separately in the joint feature-spatial space [ARS06,

CPB09]. One could expect a level of robustness against occlusion by tracking

the fragments separately instead of the whole target. Nevertheless, similar to

`1 tracker the aforementioned methods do not exploit a dedicated machinery

for detecting occlusion. In this text methods such as `1 tracker which show

some level of robustness to occlusion without benefiting from a dedicated

and explicit mechanism are dubbed implicit approaches. The common prob-

lem among all of the tracking schemes incorporating implicit approaches for

handling occlusion, is that the appearance models are vulnerable to be con-

taminated during long-term occlusions due to their blind update strategies.

Hence the tracker is susceptible to failures or drifts when a heavily occluded

target is introduced into the template set.

Recently, a few general frameworks for explicit occlusion modeling have

been introduced [MLW+11, KNHH11, WLYY11, BWLJ12]. The ‘Bounded

Particle Resampling’ BPR-`1 tracker [MLW+11] detects occlusion by analyz-

ing the sparse coefficients obtained from the `1 minimization problem. The

sparse coefficients inherently contain rich information about image corrup-

tions and occlusion and can be used to build a binary occlusion map. The

small areas and holes in the binary map are removed by morphological op-

erations. The occlusion is then detected by measuring the largest connected

component in the occlusion map. In [BWLJ12] an improved real-time version

of the BPR-`1 tracker is proposed based on the accelerated proximal gradient

(APG) approach for solving the `1 minimization problem. The occlusion de-

tection mechanism in APG-`1 is similar to BPR-`1, while its tracking accuracy

is improved to some extent.

In [KNHH11] an occlusion detection technique is proposed through ap-

plying a classifier based on observation likelihoods of the target regular grid

cells. In [WLYY11] a discriminative appearance model based on superpix-

els is utilized for tracking and a target-background confidence map is used

for computing a maximum a posterior estimate of target location. The tar-

get confidence of the MAP estimate is then used as a clue to detect heavy

or full occlusions, which in turn helps maintaining the target information in

long-duration occlusions.

The proposed framework in this chapter, analyzes the targets’ motion dy-
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namics based on SOE features for the purpose of occlusion modeling and

novelty detection. We start by introducing the ‘Spatiotemporal Oriented En-

ergies’.

3.3 Spatiotemporal Features

In this section we briefly review the basics of SOE features, which are funda-

mentally a decomposition of the video stream into spatiotemporal oriented

energy planes. This serves as foundation for future development in this chap-

ter, in definition of the targets motion model.

Decomposition of a video sequence into space-time oriented energy planes

is performed by filtering the video sequence with a set of 3D band-pass filters

in various space-time orientations and combining the resulting energy chan-

nels within a specific model. In this work, we will make use of the second

derivative of 3D Gaussian filters G2(θ) and their Hilbert transforms H2(θ)

for space-time filtering of videos, where θ specifies the 3D direction of the

filter axis of symmetry. A sample quadrature pair filter along the x-axis is

shown in figure 3.1-(a). The functions G2(θ) and H2(θ) along any orienta-

tion θ can be synthesized through a linear combination of a small set of basis

functions [FA91, DG05]. For instance, figure 3.1-(b) demonstrates all the 3

dimensional basis functions of the second derivative of Gaussian G2(θ) for

any θ. However ten basis functions are required to span the space of func-

tions H2(θ) (Hilbert transform of G2(θ)) for all θ. Hence the quadrature pair

filters (G2, H2) are broadly tunable, separable and steerable filters.

.

(a) . (b)

Figure 3.1: (a) Iso-surface profile of quadrature pair filters (G2, H2) along the x axis, θ =
(1, 0, 0). (b) 3D basis functions of Gaussian derivatives G2(θ) for all θ.
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Let I(x, y, t) be the intensity of a point (x, y) at time t. Given θ, a measure

of oriented spatio-temporal energy is obtained using:

Eθ (x) =
[
G2(~θ) ∗ I(x, y, t)

]2

+
[
H2(~θ) ∗ I(x, y, t)

]2

, (3.1)

where ∗ denotes the convolution operator.

An efficient way of calculating Eqn. (3.1) for various space-time orienta-

tions is to first convolve the input sequence by the set of basis functions of

G2 and H2. Then the filtered response along the orientation θ, i.e., Eθ can be

obtained by a linear combination of the filtered basis images, where the coef-

ficients of this linear combination are functions of the space-time orientation

θ [DG05].

A 3D band-pass filter does not respond to space-time patterns oriented

along its axis of symmetry. Instead it is most responsive to all space-time

patterns orthogonal to the 3D filter orientation [Sim93]. To make it clear,

figure 3.2 illustrates a moving one dimensional pattern (x − t) and its fre-

quency response. As shown in the figure, the power spectrum of the pattern

lies on a line perpendicular to the motion direction. More generally the fre-

quency response of a single oriented space-time(/3D) pattern, such as a rigid

moving object, manifests itself in a plane perpendicular to the orientation of

the moving object.

Figure 3.2: A moving one-dimensional pattern on left and the corresponding power spec-
trum on right (Courtesy of Simoncelli [Sim93]).

In order to span the frequency plane of the spatiotemporal patterns along

specific space-time orientations, a set of at least (N + 1) perpendicular Gaus-
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sian derivative filters of order N are required [FA91]. Hence summation of

the (N +1) equally spaced SOE filters Eθi, extracts the dynamic energy along

the perpendicular direction regardless of the local spatial structure [DW10]

(c.f . figure 3.3):

Ẽn(x) =
N∑
i=0

Eθi(x) , (3.2)

where θi represents the (N + 1) equally spaced orientations orthogonal to

motion direction n and each Eθi is calculated via the oriented energy filtering

in Eqn. (3.1). Simoncelli [Sim93] demonstrated that summation of the ring

of (N + 1) equally spaced filters in a plane, produce a smooth ‘donut’ shape,

as illustrated in figure 3.3 and called it ‘donut mechanism’.

Figure 3.3: Left: A set of 3 equally spaced 2nd derivative of Gaussian filters in a plane ,
Right: The corresponding level surface of the sum of power spectra of the filters, which is
maximally responsive to the orthogonal spacetime orientation

For a plane with a unit normal vector ~n, the set of (N +1) unit-length and

equally spaced in-plane vectors are given as:

~θi = cos

(
πi

N + 1

)
θa(~n) + sin

(
πi

N + 1

)
θb(~n) (3.3)

∀ i ∈ [0, N ] , θa(~n) =
~n× ex
‖~n× ex‖

and θb(~n) = ~n× θa(~n) ,

where ex is the unit vector along the x axis. If ux and uy denote the velocities

along x and y axis, ~n (the space-time motion direction) is obtained as ~n =

(ux, uy, 1)/‖(ux, uy, 1)‖.
In this work, we utilize (N + 1) = 3 equally spaced 3D oriented filters
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to measure space-time single orientation pattern or motion direction. The

response of 3D oriented filters are combined into five space-time orientations,

namely, leftward L = (−1, 0, 1)/
√

2, rightward R = (1, 0, 1)/
√

2, upward

U = (0,−1, 1)/
√

2, downward D = (0, 1, 1)/
√

2, and the static/no motion

channel S = (0, 0, 1) along the time axis. The resulting energy measurements

are dependent on local intensity contrast, while in our application just the

relative contributions of space-time orientations are important. Therefore,

a pixel-wise normalization of the energy measures is performed in the final

step as follows:

Eni
(x) =

Ẽni
(x)

ε+
∑Γ

j=1 Ẽnj
(x)

, (3.4)

where Γ is the number of applied space-time orientations (Γ = 5) and ε is a

noise floor constant to avoid instabilities at points with small overall energy.

For visual purposes, figure 3.4 illustrates different channels of SOE fea-

tures extracted from a synthetic video through the equation 3.4. The video

sequence contains two square blocks which turn around the frame in par-

allel and opposite directions. A static structure is also placed in the center

of the frame. Figure 3.4-(a) demonstrates the responses of SOE channels

to horizontal motion of the blocks (rightward and leftward), as well as the

static structure. Figure 3.4-(b) presents the responses of SOE channels to

vertically moving blocks (upward and downward). We observe that every

channel strongly responds only to the relevant motion dynamics, while the

response to other motion directions are weaker.

Besides the aforementioned features, we need a notion of lack of structure

(O) in this work. Eqn. (3.5) represents such a notion in video regions with

insufficient information for estimating the flow:

EO(x) =
ε

ε+
∑Γ

j=1 Ẽnj
(x)

. (3.5)

A significant amount of energy in EO channel shows that the pixel neigh-

borhood is devoid of sufficient structure to determine its motion dynamics.

This implies that the value of dynamic energy channels Eni
are not reliable

for a voxel when EO attains a high value. The features Eni
along the five
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(a)

.

(b)

Figure 3.4: Responses of SOE feature channels to various motion dynamics: (a) Rightward,
Leftward, Static. (b) Upward, Downward, Static.

spatiotemporal orientations and the unstructured channel provide a space-

time description of the pixels’ dynamics. We note that from Eqn. (3.4) and

Eqn. (3.5):

∑
ni

Eni
= 1 , ni ∈ {S,R, L, U,D,O} . (3.6)

Following the original works in the literature [DW09, DW10], we use the

term ‘Marginalised SOE’ or the abbreviated form ‘MSOE’, for the introduced

features.
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3.4 Technical Approach

We start this section by providing a high-level description of the components

of our proposed tracking system, followed by a detailed explanation for each

and every one of them. A conceptual diagram of our proposed tracking sys-

tem is shown in Fig. 3.5.

The tracker module exploits the pixel intensities to calculate an average

inter-frame motion vector for the whole target. Therefore, the motion of

non-rigid target is modeled by one motion vector. The target of interest is

described by two separate models, indicated by “Appearance” and “Motion

Dynamics”. The appearance model is employed by the pixel tracker for cal-

culating the target motion vector. The motion model is exploited to estimate

the dynamic status of the target as well as the novelty situation. The motion

model is also utilized for calculating an “Occlusion Mask” which determines

parts of the target window that most probably belong to the target of interest

in novelty situation.

The “Novelty Detection” module prevents template updating in occlusions

and novelties and serves as a mean to avoid template corruption and miti-

gate the drift problem. The “State-Machine” module estimates the state of

the target in the course of tracking, to change the tracking strategy in occlu-

sion situations. When the target is fully occluded and invisible, the system

temporarily predicts the target location according to its most recent motion

dynamics. The target models are adaptively updated in the course of track-

ing, while protected against corruption and non-desirable changes by means

of the ‘Novelty Detector’.

3.4.1 Tracking

In this work, we employ a customized version of the generic intensity based

pixel tracker [BA96]. More specifically, let M ∈ {0, 1}w×h be a binary ma-

trix of size w × h representing the occlusion mask (later will be defined)

of the target Tw×h. Moreover, let u(x, y;a) be the flow model of the tar-

get parametrized by the vector a. Then the tracking problem is cast as a

minimization problem to estimate an average motion for the whole target as
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Figure 3.5: Block Diagram of Tracking System ; Red lines are Control Signals and Blue lines
represent Data

follows:

arg min
a
E(a) =

∑
x,y∈T

M(x, y) · ρ
(
∇I(x, y)Tu(x, y;a) +

∂I(x, y, t)

∂t
, σ

)
,

(3.7)

in which ∇I = (∂I(x, y, t)/∂x, ∂I(x, y, t)/∂y)T and ρ : R × R → R+ is an

error function with the scaling parameter σ. In this work we use the Geman-

McClure robust estimator as error function (ρ) which not only diminishes the

effect of outliers but also smooths out the effect of articulated object motions

inside the target window [BA96].

ρ(x, σ) =
x2

σ2 + x2
. (3.8)

The binary occlusion mask M is defined based on relevancy of pixels to

the target of interest. Consequently only highly probable target pixels with

closely relevant “Motion Signatures” contribute to the optimization process.

In order to estimate the flow vectors within a closed form solution, the

flow field can be modeled as a parametric function of the image coordinates.

Common models of image flow to restrict motion vectors include constant,

affine and quadratic. We use a constant velocity model in this work. However

extension to more complex parametric models is straightforward [BA96].

The constant model u(x, y;a) = (a0, a1)T considers a constant average mo-

tion for all of the target pixels.

Optimization over the error function E(a) is performed through a gradi-
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ent descent procedure, i.e., optimum model parameters which compose the

motion vectors are estimated through a recursive equation:

a(k+1) = a(k) − β∂E(a)

∂a
(3.9)

Optimization is accomplished in a hierarchical coarse-to-fine framework,

to cope with the large target motions. Further details about the optimization

process and parameters can be found in [BA96].

In “Full Occlusion” which is defined as the temporary disappearance of

the object, the tracking strategy is changed to a short-term ‘tracking by pre-

diction’. In this situation, target location is estimated according to its recent

average velocity. At the same time the tracker searches for the lost target

energy blob with a similar ‘Motion Signature’ with respect to the last valid

‘Motion Signature’ of the lost target. The target is reported as lost, if the

energy blob is not found within a predefined time period.

3.4.2 Occlusion Modeling

In this section we describe various components of our occlusion modeling

system, which works based on the motion dynamics of the targets. We start

by elaborating on the proposed motion model.

Target Motion Model

Normalized energies from Eqn. (3.4) and Eqn. (3.5) are used to determine

the presence of particular spatiotemporal oriented structures related to spe-

cific motion directions. The coherent motion of target throughout the video

frames corresponds to a single space-time orientation, which results in a

dominant response in one component of the spatiotemporal oriented chan-

nels [DW09].

Target motion is modeled based on the extracted MSOE features of the

pixels inside the target window (ES, ER, EL, EU , ED, EO). According to Eqn.

(3.6), scalar variables of the six-tuple MSOE features are dependent. Further-

more the pairs of scalar variables (ER, EL) and (EU , ED) are pairwise depen-

dent. In other words, an increase of energy in one channel corresponds to a

decrease of energy in the opposite channel, due to the single motion of pixels
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at a time instant. Hence two new variables are defined which correspond to

horizontal and vertical motion dynamics of the pixels:

EH = (ER − EL) ; EV = (EU − ED) (3.10)

The triple {ES, EH , EV } is called the “Motion Signature” in this thesis. In

object tracking, it is realistic to assume that most of the pixels of moving tar-

get demonstrate a coherent motion. This is especially true for rigid objects,

though the outlier pixels such as the included background can cause some

incoherencies. For non-rigid targets such as humans, more incoherencies

among pixels might be expected. Nevertheless, it is still a valid assumption

that for a joined moving object, the majority of target pixels behave coher-

ently.

In light of the above discussion, the target MSOE feature variables are in-

terpreted as random variables whose distributions are estimated and utilized

for statistical modeling of the target motion dynamics. Due to the major con-

centration of the motion signature variables around a mean which is relevant

to the target motion direction, a Gaussian distribution is considered for mod-

eling. More specifically, the random variables {ES, EH , EV } are separately

modeled by 1D Gaussian functions to construct the compound target motion

model:

{ NS(µS, σS) ; NH(µH , σH) ; NV (µV , σV ) } (3.11)

where (µi, σi), i ∈ {S,H, V } are the mean and variance of the motion vari-

ables Ei over the target window, respectively. The variance of the Gaussian

models are related to the nonrigidity level of the targets.

Target Status Determination

The various states of the target which can be segregated in the course of

tracking include the non-occluded states ‘Moving’ and ‘Stationary’, as well

as ‘Partial’ and ‘Full’ occlusions. In order to determine the target states, the

system needs to evaluate the target status probabilities in non-occluded situa-

tions, while detecting the occlusion events simultaneously. This is performed

53



Chapter 3. Occlusion Handling in Template Tracking Systems

as elaborated in the following sections.

Status Probabilities

In non-occluded situations where the target of interest is completely visible,

the mean of the Gaussian motion models represent the status of the target.

Referring to Eqn. (3.4) and Eqn. (3.6), the Γ channel of normalised MSOE

features Eni
are in the range (0, 1) and dependently fluctuate around (1/Γ).

Hence the oriented energy channels approach zero in non-structured regions,

while EO grows according to Eqn. (3.5). Consequently the energies in ES,

EH and EV are proportional to the status of the target, whether it is static

or moving in a particular direction. For instance a static pixel demonstrates

higher energy in ES channel rather than horizontal (EH) or vertical (EV ) en-

ergy channels. Using sigmoid functions, the energy values can be converted

to pseudo-probability figures to represent the target status:

PS =
1

1 + e−β(µS−α)
; Phv =

1

1 + e−β(|µH |−|µV |)
(3.12)

PH = (1− PS) · Phv ; PV = (1− PS) · (1− Phv)

where α is an energy threshold for ‘Static’ energy channel (ES) to discrimi-

nate between ‘Static’ and ‘non-Static’ situations and β represents the slope of

the Sigmoid curve in the transition area. The sharper the transition of Sig-

moid curve, the closer is the system to binary decision making. The variable

Phv is defined as a transitional compound probability measure to simplify the

declaration of PH and PV . We note that

PS + PH + PV = 1, (3.13)

which supports the intuition that the target ‘Static’ situation is mutually ex-

clusive with its ‘Horizontal’ or ‘Vertical’ moving status.

Novelty Detection

Novelty in our problem is defined as partial occlusion events, where the oc-

cluding objects demonstrate different motion dynamics. In such situations
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where more than one coherent motion is available in the target bounding

box, the assumption for calculating Gaussian models of the target motion

in 3.4.2 are violated. Consequently motion novelties can be detected by

checking the validity of the Gaussian modeling, as in this situation motion

random variables can not be modeled with single Gaussians.

To this end, we propose a straightforward approach to detect novelties.

We note that two major motion dynamics in the target bounding box indicate

the occlusion situation and the sample variance of the motion variables are

affected in this case. Accordingly we propose the following metric to detect

the novelty:

σNov = PS · σS + PH · σH + PV · σV , (3.14)

where {σS, σH , σV } are sample variance of the motion variables inside the

target bounding box, related to energy channels {S,H, V }. We note that the

motion novelty may appear in more than one motion variable based on the

status of occluding objects. For example when the target of interest and the

occluding object are both moving horizontally, novelty appears just in the

horizontal channel. While in the case that the target is moving diagonally, it

obviously exhibits energy in both horizontal and vertical channels (PH and

PV ). Consequently depending on the status of the occluding object, novelty

may appear in both channels. Since the coherent motion of the target is

reflected in high energy channels, we expect to observe novelties mostly in

the channels with high energies and probabilities.

In normal (non-occluded) situations, the variance of the Gaussian motion

models represent the nonrigidity level of the target along with the effect of

outliers, which varies for different targets and situations. Thus novelty can

be detected only if a good estimate of the expected variance of the target

motion model is available. For this purpose a simple model is trained online

to adaptively estimate the expected variance of the motion random variables

{RS, RH , RV } (which will be described in § 3.4.3). The Ri values are com-

puted during non-occluded states to evaluate the normal nonrigidity level of

the target in three motion channels. This way the difference between the
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drift of σi in occlusion and non-occluded situation is coded. Based on the at-

tributes Ri, an adaptive reference level (RTh) is defined to represent normal

nonrigidity of the target:

RTh = PS ·RS + PH ·RH + PV ·RV . (3.15)

Having RTh as a reference for novelty detection at our disposal, the fol-

lowing figure is utilized to detect novelties:

FNov = gu(σNov/RTh − τNov), (3.16)

where gu is a unit step function and τNov is a threshold for estimating the logic

decision about novelty detection. In all our experiments, we have applied

τNov = 1.5, i.e., if σNov is 50% larger than RTh, an occlusion is reported

through the logic Novelty figure FNov. It is worth mentioning that through

the proposed approach, change of motion direction is reflected in the motion

models and hence differentiated from novelty situations.

State Machine

In the proposed system, a ‘State Machine’ is designed to estimate state of the

target in the course of tracking, as demonstrated in Figure 3.6. ‘Moving’ and

‘Stationary’ denote the status of a moving or static target, where it is com-

pletely visible and normally tracked. In ‘FullOcclusion’ the object of interest

is temporarily not visible in the scene. If the object does not reappear within

a certain period of time, state is set to ‘Disappear’ and the tracking process is

stopped. In detecting partial occlusions (our focus here), three scenarios are

possible based on the motion models. The three possible partial occlusions,

differentiated by the state machine, are named as ‘MovOccMov’, ‘StatOcc-

Mov’ and ‘MovOccStat’. In the first and second case, the target of interest

is moving while partially occluded by another moving or stationary object in

the scene. In the third case, the target of interest is stationary while partially

occluded by another moving object. The partial occlusion state will be trig-

gered, if any of the three states is fired. The state machine transitions are

controlled by the target ‘Static’ probability PS and Novelty figure calculated

through the equations Eqn. (3.12) and Eqn. (3.16). The proposed Novelty
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Figure 3.6: Tracker State Machine with transition metrics

figure in Eqn. (3.16) inherently detects partial occlusion situations. While

the status probability PS introduced in Eqn. (3.12), provides a measure of the

static energy in the target bounding box. Due to previous target state and the

probability PS, the three partial occlusion states can be discriminated, when

Novelty is activated. ‘FullOcclusion’ may only follow a partial occlusion state.

This transition occurs when the target visible area represented by occlusion

mask (cf., § 3.4.2) is less than a threshold (in all of our experiments we set

the threshold as 20%.).

In the proposed tracker three important mechanisms are controlled ac-

cording to the target states. Firstly, change of tracking strategy in ‘FullOc-

clusion’ state to a short-term tracking by prediction and searching for target

energy blob is achieved. This situation frequently happens in surveillance ap-

plications, in which a target of interest disappears temporarily. Secondly, an

adaptive update strategy for target appearance model is deployed according

to the target state. Thirdly, the state machine enables us to accurately capture

the dynamics of the target, since only in the ‘Moving’ and ‘Stationary’ states

(in which the target is fully visible) the Motion Signatures are attained.
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Occlusion Mask

In the proposed approach to tracking, the target motion model is utilised

to generate an ‘Occlusion Mask’ which identifies the relevant pixels inside

the target window for the Gradient-Descent optimizer during the tracking

process. The Occlusion Mask improves the performance of tracking, since

the effect of outliers is minimized in the optimization process. This is ac-

complished by distinguishing and eliminating the irrelevant pixels related to

interfering objects in case of occlusion, as well as removing background sta-

tionary pixels in the target window. Hence the proposed method is capable of

discriminating between objects with different motion dynamics. It also helps

to reduce the effect of general aperture problem by removing the pixels in

non-textured areas of the target which are devoid of sufficient structure. The

aperture problem is about the ambiguity in the motion of non-textured areas,

as their motion can not be determined without considering the surrounding

structures.

For generating the occlusion mask, the motion signature of each pixel in-

side the target window is evaluated using the Gaussian functions of the target

motion model. Since motion channels with higher average energies represent

the status of target motion, we deem to weight them more in generating the

occlusion mask. Hence, a linear combination of model functions weighted by

target status probabilities (PS, PH , PV ) is suggested for computing the occlu-

sion mask as follows:

Mω(x) = PS ·GS(x) + PH ·GH(x) + PV ·GV (x),

Gi(x) = Ni( Ei(x) | µi, σi ) , i ∈ {S,H, V }. (3.17)

The problem is that the motion signature of the target pixels provide valid

information only in textured areas of the target window. According to equa-

tions Eqn. (3.4) and Eqn. (3.5), the oriented energies in non-structured re-

gions drop to zero, while EO grows. Thus the mask coefficients as calculated

by Eqn. (3.17) are invalid in non-texture areas. Hence mask pixels need

to satisfy two conditions simultaneously. That is, they should have enough

texture and also be relevant to motion model as depicted below:
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P (x ∈M) = P (Ti ∩ Ōi) = P (Ōi) · P (Ti|Ōi) (3.18)

The probability P (Ōi) represents the probability that pixel ‘x’ has enough

texture and P (Ti|Ōi) exhibits the probability that pixel ‘x’ belongs to target

of interest ( x ∈ Ti ), given it is in a textured area. This probability is Mω

as calculated in Eqn. (3.17). The probability P (Ōi) may be easily estimated

by applying a Sigmoid function to EO to convert it to probability values. To

speed up the computations, we have set a threshold on EO, to produce a

binary mask MŌ for representing pixels with enough texture:

MŌ(x) = (EO(x) < τo) ,

MR(x) = (Mω(x) > τω),

M(x) = MŌ(x) ·MR(x). (3.19)

Hence by utilizing this mask, only the pixels with highly relevant “Motion

Signature” (MR) contribute to the optimization process, while non-textured

areas of the target which are prone to the aperture problem will be removed

from the mask via MŌ. Experiments suggest the parameter values τω = 0.5

and τo = 0.05 yield satisfactory performances.

For illustrative purposes the estimated optimization masks in two different

states have been demonstrated in Figure 3.7. As can be seen, the optimiza-

tion mask removes the majority of irrelevant pixels from the target window

through satisfactory discrimination between the object of interest and the

undesired interfering objects, as well as realizing the non-textured areas.

3.4.3 Updating The Target Model

In the proposed tracking system, targets are described by an “Appearance

Model” and a “Motion Model”, which are adaptively updated in the course

of tracking. In the following text we elaborate on how this is done for each

model.
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Figure 3.7: ‘Optimization Masks’ in two states of Pop-Machines video (York
dataset [Can10]) .

Appearance Model

In real world scenarios the appearance of the targets changes over time. This

is one of the challenges for tracking algorithms that are dependent on a tar-

get appearance model (template) as a matching reference. Hence, a reliable

template adaptation mechanism is necessary to maintain an accurate repre-

sentation of the target. The basic update mechanism applied in this work

is an exponential average, which calculates a weighted combination of the

previous template T (k) and the optimally aligned candidate C(x, y) in the

current frame:

T (k+1)(x, y) = αT (k)(x, y) + (1− α)C(x, y), 0 ≤ α ≤ 1, (3.20)

where the constant α controls the rate of template updating. We note that the

appearance model will be updated faster for α → 0 and vice versa for α →
1. Unlike conventional blind adaptation schemes, it is possible to employ

smaller α here, since template updating is suspended in undesired states.

Furthermore, one can adopt different updating rates by utilizing the states

seamlessly.

In this work, to prevent corrupting the target template, updating is dis-

abled in occluded states, i.e., α is set to one. In the two states ‘Moving’ and

‘Stationary’, we suggest two different updating rates. The template is up-

dated faster in the ‘Stationary’ state. This is mainly motivated by the obser-
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vation that changes in motion direction and pose are more probable through

the stationary situation. Based on empirical evaluations, the parameter α is

set to 0.9 in ‘Stationary’ and 0.95 in ‘Moving’.

Motion Model

The dynamics of the targets are always changing in the course of tracking as

a result of changes in target motion direction and status. Hence the tracking

system needs a reliable motion model for the target of interest. For this

purpose, similar to the appearance model, an exponential average scheme is

utilized. Whenever no novelty is detected in the aligned candidate region,

a weighted combination of the previous motion model {µi(k), σi
(k)} and the

current motion model {µi, σi} is assigned as the new motion model of the

target in the current frame:

{µi(k+1), σi
(k+1)} = β{µi(k), σi

(k)}+ (1− β){µi, σi},

i ∈ {S,H, V }, 0 ≤ β ≤ 1. (3.21)

Similarly, the non-rigidity thresholds of the target in three motion chan-

nels are updated with a much slower update rate by:

Ri
(k+1) = γRi

(k) + (1− γ)σi,

i ∈ {S,H, V }, 0 ≤ γ ≤ 1, (3.22)

where {RS, RH , RV } are non-rigidity thresholds of the target. The non-rigidity

thresholds are defined as the expected variance of the motion random vari-

ables {ES, EH , EV } in the target motion model. Variables {µi(k), σi
(k)} and

Ri
(k) are initialized by the values of {µi(1), σi

(1)} in the first video frames

since it is presumed that the target starts from a non-occluded state. The

parameter values β = 0.7 and γ = 0.95 are used for experiments.
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3.5 Experiments

In this section, we compare and contrast our tracker against six state-of-

the-art trackers in several challenging scenarios. As the focus of this thesis

is surveillance applications, the tracker is evaluated on several surveillance

datasets with stationary cameras including CAVIAR [CAV04] , PETS2007 [PET07]

, i-LIDS [iLI06] and York dataset [YOR10] In the following text, we refer to

our proposed tracker as IMSOE, as it works based on ‘Intensity’ and ‘MSOE’

features. A video result of the proposed system on i-LIDS scenario is available

on ‘youtube’, for visual demonstration 1.

The reference trackers for our experimental evaluations are the ‘SOE Pixel-

wise Tracker’ [CGW10], IVT [RLLY08], MILTrack [BYB11], Online AdaBoost

(OAB) [GGB06], L1-APG [BWLJ12] and L1-IVT [JLY12]. The L1-APG and

L1-IVT trackers incorporate an ‘Occlusion Detection’ mechanism, as elabo-

rated in section § 3.2. To demonstrate the difficulty of selected scenarios,

we also assess the performance of the basic mean-shift tracker [CRM03] on

gray-scale videos. The size of the targets in our experiments varies in the

range of (25 × 70 = 1750) to (40 × 170 = 6800) pixels. However based on

our experimental observations, the proposed system can perform a reliable

tracking for the target sizes above 25× 25 pixels. The parameter values used

for the experiments are shown in table 3.1.

Table 3.1: Tracking Parameter notations, values and description ;

Parameters Value Eq.No. Description

τNov 1.5 Eq. 3.16 Threshold for Novelty detection
τω 0.5 Eq. 3.19 Threshold for motion relevancy
τo 0.05 Eq. 3.19 Threshold for Non-textured area detection

αStat 0.9 Eq. 3.20 Template Update rate in ‘Stat’ state
αMov 0.95 Eq. 3.20 Template Update rate in ‘Mov’ state
β 0.7 Eq. 3.21 Update rate of motion model
γ 0.95 Eq. 3.22 Update rate of non-rigidity thresholds

Since novelty detection in our algorithm plays a significant role for main-

taining an up-to-date and valid target template, the precision and recall

rates of novelty detection are also presented in the end. To the best of our

knowledge, the accuracy of occlusion detection in the recent visual trackers
1Occlusion Handling in Single Target Tracking
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equipped with this mechanism, hasn’t been independently evaluated hith-

erto. In the literature [MLW+11, KNHH11, WLYY11, BWLJ12], the improve-

ment caused by occlusion detection is demonstrated in terms of the tracking

accuracy.

The IMSOE system was initialized using the ground truth box from the

first video frame with the assumption that the target of interest in the first

frame is non-occluded. Henceforth, frame to frame target motion is captured

through parametric motion estimation with respect to intensity template Ti.

The Spatiotemporal Oriented Energy filters are implemented via separable

convolution. Consequently efficient computation of ‘Motion Signatures’ is

achieved through basic mathematical operations (point-wise addition, squar-

ing and division).

Qualitative Comparison

Five experiments are designed for evaluating the tracking system. In each

experiment, our tracker has been compared against six competitors and the

mean-shift tracker as a baseline. In the first experiment, the tracker is tested

on ‘Pop-Machines’ video provided in [Can10]. Second and third experi-

ments are designed to test the tracker in two different scenarios from CAVIAR

dataset. The fourth experiment is performed on PETS-2007 and the fifth one

is carried out with i-LIDS dataset.

Experiment 1 has been conducted on Pop-Machines video which includes

two occluding subjects with similar appearance. The man walking from the

left is considered as the target of interest, since it is occluded twice during the

video sequence in two different states (partial and full occlusion). The sub-

jective results of the SOE, IVT and IMSOE trackers are illustrated in Fig. 3.8

for illustrative purposes.

L1-IVT, L1-APG, IVT, OAB and Mean-shift tracker lose the target after

full occlusion. This could be attributed to their tracking strategy as it is not

changed in full occlusion (in full occlusion there is no visible target to track).

In general, one could expect the aforementioned trackers to find the target

after occlusion if

• the duration of full occlusion is short enough
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• or a large search area is utilized during tracking.

Needless to say, the former is a limitation and the latter decreases the ac-

curacy of tracker and increases the computational cost drastically. Neverthe-

less, we will see in the follow-up experiments instances where the competitor

trackers are able to find the target after full-occlusion.

Good performance of MIL may be due to capturing multiple instances

around the target which models the background around the target to some

extent. As shown in Fig. 3.8, SOE tracker demonstrates an unstable situa-

tion during the tracking due to the tailing effect, however it doesn’t lose the

target in the two occlusions. While the SOE tracker is not equipped with an

occlusion analyzer, keeping the track of target in full occlusions should be a

by-product of the tailing effect. The SOE features are calculated by analyz-

ing a series of previous and future frames. Hence within a couple of frames

following the full occlusion event or prior to the reappearance of target in

the next frames, its energy blob is observable in the SOE feature space which

makes it trackable.

The behavior and performance of IVT, L1-IVT and L1-APG are very similar

in this experiment. While these trackers lose the target in the full occlusion,

they seem to be smoother and more stable than SOE tracker in partial oc-

clusion and non-occluded situation prior to the full occlusion event. Our

proposed tracker shows a stable behavior in this scenario, while following

the target in both occlusion events.

Experiments 2 and 3 have been performed on a surveillance video from

CAVIAR dataset. The scenario includes two subjects with an occlusion event

and severe pose change throughout the video. Some samples of the final

tracking results for the SOE, MIL, L1-APG and IMSOE trackers are demon-

strated in Fig. 3.9.

In experiment 2 the target of interest is the woman walking toward the

camera. The IVT, L1-IVT, L1-APG and IMSOE equivalently perform well

among the whole scenario of experiment 2, including the short-term partial

occlusion at the end of video. The robustness against the partial occlusion is

due to the effect of forgetting factor in updating the IVT appearance model

(IVT and L1-IVT) and the occlusion analysis support in L1-IVT, L1-APG and

IMSOE trackers.
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. Fr#(140) Fr#(146) Fr#(150) Fr#(161)

SOE

IVT

IMSOE

Figure 3.8: Tracking results for Exp.1 (Pop-Machines, York dataset [Can10]). Result of the
studied tracker is shown in red and the Ground Truth is shown in white.

The SOE tracker in experiment 2 rapidly loses the target of interest at the

final partial occlusion event (Frame#224-Frame#235). Since the woman’s

location changes very slowly throughout the video, the SOE features of the

target window resemble dynamics of a nearly static object. Consequently tar-

get dynamics represented by SOE template could be similar to background

static areas. This issue causes two main problems for the SOE tracker in this

scenario. The first problem is unstable tracking before target occlusion, as

the tracker could not sufficiently discriminate between the target and back-

ground in some areas. Secondly, in case of occlusion by another moving

object, the background areas which have similar SOE features to the tem-

plate are incorrectly detected as the target of interest. Thus the target will be

lost as shown in Fig. 3.9(a).

Experiment 3 is conducted on the walking man in this CAVIAR video.

There is no occlusion event in this experiment. However, the target exhibits

severe pose variations when the man turns around and moves in the opposite

direction. Except for the SOE tracker, Mean-Shift and to some extent the L1-

APG, the other five trackers perform roughly well in this scenario.

The L1-APG presents a poor performance in this experiment, probably

due to the high similarity of the target-background. Although there is no
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occlusion or other special events in the scenario, the L1-APG tracker shows

an unstable behavior throughout the video and finally loses the target at the

end of experiment. The L1-IVT demonstrates a robust performance which

is an indication of its superiority to L1-APG in modeling the target appear-

ance structure. Furthermore, the IVT and L1-IVT trackers perform slightly

better than IMSOE in this scenario, especially during the pose and direction

variations. This might be attributed to more involved appearance modeling

in IVT compared to our simple appearance model. Nevertheless IVT, L1-IVT

and IMSOE robustly follow the target of interest through the whole video.

As shown in Fig. 3.9(b), the SOE tracker starts losing the target after

the target turns around in the opposite direction. This is mainly because of

the rapid changes of dynamic in the SOE features which are used as target

template. The general template updating scheme used in the SOE tracker

is too slow to follow the drastic template evolutions. This updating scheme

is deliberately designed for slow template updating in order to overcome

short term occlusions, as the SOE tracker is not capable of discriminating

occlusions from normal changes of motion dynamics.

Experiment 4 evaluates performance of the trackers on a video from the

PETS-2007 dataset. The scenario is similar to experiment 2, where the target

of interest is fully occluded twice. The tracking results for the SOE, MIL, OAB

and IMSOE trackers are demonstrated in Fig. 3.10.

Similar to the experiment 2 the IVT, L1-IVT, L1-APG and IMSOE trackers

demonstrate a good performance in this scenario. However, IMSOE performs

slightly better than the other mentioned competitors. The satisfactory per-

formance for L1-IVT, L1-APG and IMSOE is not surprising, as each of them is

armed with an occlusion analyzer. The IVT tracker also performs well due to

the short period of occlusion situation and also the effect of forgetting factor

in IVT updating mechanism.

On the contrary, the OAB tracker loses the target at the first occlusion

event. The MIL tracker follows the target till the second occlusion and gets

distracted and consequently loses the target afterwards. As discussed before,

learning multiple instances around the target for appearance modeling, helps

the MIL tracker to partially model the target background and cope with occlu-

sions. The SOE tracker is easily distracted when the static target of interest
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(a) Fr#(172) Fr#(224) Fr#(227) Fr#(235)

SOE

MIL

IMSOE

(b) Fr#(154) Fr#(162) Fr#(217) Fr#(232)

SOE

L1-APG

IMSOE

Figure 3.9: Tracking results of (a) Exp.2, (b) Exp.3 for CAVIAR dataset. Result of the
studied tracker is shown in red and the Ground Truth is shown in white.

is occluded by the first moving person. This is due to the similarity of the

target’s dynamics with respect to dynamics of the surrounding static areas.

The appearance of the occluding targets and the target of interest in ex-

periment 4 are distinct. For the L1-IVT and L1-APG trackers, which analyze
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. Fr#(158) Fr#(175) Fr#(189) Fr#(205)
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Figure 3.10: Tracking results of Exp.4 (PETS2007). Result of the studied tracker is shown
in red and the Ground Truth is shown in white.

the occlusion based on the appearance, we expect to see good performances

in this scenario. Nevertheless, L1-IVT and L1-APG don’t change the tracking

strategy in full occlusion event and will probably fail in full occlusions within

a longer period. In the next experiment we consider a scenario in which the

occluding objects have similar appearance to the target of interest within a

crowded scene and longer occlusions happen.

Experiment 5 is performed on a video sequence from the i-LIDS dataset.

The quality of the selected sequence is lower than other videos used in previ-

ous experiments. Low illumination and poor quality cause higher similarities

in the appearance of the blurry targets. In this scenario several occlusions

happen in a crowded scene throughout the video. The tracking results for

the SOE, IVT, MIL, OAB, L1-APG, L1-IVT and the proposed IMSOE are shown

in Fig. 3.11.

L1-APG and SOE tracker lose the target at early frames of the sequence.

However OAB, MIL, IVT and L1-IVT last longer up to the middle of the se-
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quence prior to distraction. The SOE tracker is distracted at initial frames of

the video sequence due to the similarities between the dynamics of the per-

sons walking together. These two targets cannot be discriminated by the SOE

tracker as shown in Fig. 3.11. We note that in the follow-up frames, occluded

targets with different motion directions are discriminated by the SOE tracker.

The L1-APG also performs poorly and fails to track the target due to the high

resemblance of the moving objects’ appearance and probably low contrast of

the whole scene.

As demonstrated in Fig. 3.11, the IVT and L1-IVT trackers are confused

by occlusions in the crowded area. Although the L1-IVT is equipped with

an occlusion analyzer, it fails to discriminate among the similar targets of

the scene. Furthermore, the forgetting factor of the IVT does not help in

this situation, due to the frequent occurrence of lengthy occlusion events.

Consequently the IVT based trackers permanently lose track of the target at

this point, due to contamination of the template batch and subspace model

caused by the occluded frames.

Our proposed tracking system outperforms all the competitors in this sce-

nario, due to the strength of the occlusion analyzer and novelty detector,

which discriminate among similar occluding targets and help protecting the

target model throughout the video.

Quantitative Comparison

The quantitative performance of the proposed tracking system is compared

against seven competitors in this section. Due to low performance of the

Mean-Shift tracker in our experiments, we didn’t include its qualitative track-

ing results in previous section. However, the quantitative results are pre-

sented in this section as a base-line for comparison.

For objective evaluations, we have utilized center location error, i.e., ‘Eu-

clidean distance’ between the target and the ground truth centers in the form

of precision plots. Beside location error, we assess the performance of all

trackers in terms of the MOTP metric [BS08]. Practically speaking beyond a

certain boundary around the target, tracking error in terms of distance and

position is not sensible, as the target is lost in such situation. Hence the

system is actually tracking something else. The MOTP metric measures the
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Figure 3.11: Tracking results for Exp.5 (i-LIDS dataset). Result of the studied tracker is
shown in red and the Ground Truth is shown in white.

tracking precision by calculating the overlap of the bounding boxes, i.e., the

intersection of the estimated box with the ground truth area (see [BS08] for

details).
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The average center location errors for all the studied methods are shown

in table 3.2. We note that the proposed method achieves the lowest error

in 3 out of 5 sequences. IMSOE is the second best method for the Exp.2

and the third best in Exp.3, while its performance is marginally close to the

winners. The results of Exp.5 demonstrate a large difference between the

tracking performance of IMSOE and the competitors, as a result of the target

loss in occluded frames of this scenario.

Table 3.2: Average Tracking Error for the studied methods in terms of center location
error; Table is color coded for the 1st (green), 2nd (magenta) and 3rd (blue) best
results.

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

MnShft [CRM03] 33.7 8.0 83.0 13.4 201
OAB [GGB06] 29.3 11.5 6.4 17.6 45.5
MIL [BYB11] 6.8 6.4 6.5 17.4 43.2
SOE [CGW10] 9.1 5.6 14.4 59.1 63.4
IVT [RLLY08] 17.4 1.8 3.2 3.3 148
L1APG [BWLJ12] 23.6 3.4 5.9 2.8 145
L1-IVT [JLY12] 21.6 3.8 3.0 2.8 134
IMSOE 5.7 2.6 3.8 2.3 2.5

Table 3.3 shows the average Overlap of bounding boxes in terms of MOTP

metric. Based on the MOTP criterion, our proposed method achieves the

highest tracking precision in Exp.5, standing significantly above the competi-

tors. IMSOE demonstrates the second best precision in 3 other experiments

and stands in the third place in Exp.3. Ranking-wise, it is clear that the pro-

posed IMSOE tracker is the first choice based on both center location and

MOTP metric.

Further to the reported average errors, frame by frame tracking errors

in terms of location are compared in Fig. 3.12 for all the eight trackers per

experiment. As shown in Fig. 3.12, the Mean-Shift tracker failed in the early

frames of scenarios 3 and 5 as a result of the low contrast between target and

background and also simple appearance modeling. It also performs poorly in

scenarios 1, 2 and 4 and fails during the occlusions.

The L1-APG and L1-IVT both incorporate an occlusion analysis scheme

and demonstrate decent performances in experiments 1, 2 and 4. However,

in experiments 3 and 5, the L1-APG doesn’t perform as good as L1-IVT. This
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Table 3.3: Average MOTP (Overlap of Bounding Boxes) for the studied methods
over all experiments. Table is color coded for the 1st (green), 2nd (magenta) and
3rd (blue) best results

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

MnShft [CRM03] 0.42 0.80 0.11 0.80 0.04
OAB [GGB06] 0.47 0.81 0.84 0.68 0.36
MIL [BYB11] 0.81 0.84 0.86 0.69 0.36
SOE [CGW10] 0.65 0.82 0.64 0.32 0.08
IVT [RLLY08] 0.53 0.94 0.92 0.90 0.40
L1APG [BWLJ12] 0.53 0.90 0.84 0.95 0.08
L1-IVT [JLY12] 0.56 0.85 0.94 0.93 0.44
IMSOE 0.78 0.91 0.88 0.94 0.93

could be a result of appearance modeling by subspaces in L1-IVT as com-

pared to the pure L1 sparse modeling of appearances in L1-APG. We also

note that in the experiments conducted here, L1-IVT performs marginally

better than IVT. The advantage of L1-IVT over IVT becomes more significant

where long occlusion of targets with sufficiently distinctive appearances oc-

cur [JLY12]. In such scenarios even the forgetting factor in IVT updating

mechanism, doesn’t suffice to protect the subspace model. More specifically,

when the occlusion lasts for a considerable amount of time, the IVT algo-

rithm will end up corrupting the batch of target templates as a result of the

incremental updating scheme and can never recover from this. The occlu-

sion analysis of the L1-IVT based on sparse coefficients may improve this

problem to some extent. Hence incorporating sparse analysis into template

updating mechanism of L1-IVT, provides a higher level of protection for the

template batch against corruption. However, both IVT and L1-IVT trackers

fail in Exp.5, perhaps due to low quality of the video and similar appearance

of the occluding objects.

Performance of Novelty Detection

Template contamination is a general problem for all tracking algorithms. In

our proposed tracking system such situations are recognized as novelties to

prevent corrupting the template with wrong information. Due to the impor-

tance of this mechanism, the performance of the ‘Novelty Detection System’

is separately evaluated in this work. To this end, four sequences used in

72



Chapter 3. Occlusion Handling in Template Tracking Systems

130 135 140 145 150 155 160 165 170 175
0

10

20

30

40

50

60

70

80

90

100

Frame No.

T
ra

ck
in

g 
E

rr
or

 (
 E

xp
1 

)

 

 
IMSOE
SOE
IVT
L1−APG
L1−IVT
MIL
OAB
Mean−Shift

150 160 170 180 190 200 210 220 230 240
0

10

20

30

40

50

60

70

80

90

100

Frame No.

T
ra

ck
in

g 
E

rr
or

 (
 E

xp
2 

)

 

 
IMSOE
SOE
IVT
L1−APG
L1−IVT
MIL
OAB
Mean−Shift

100 120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

90

100

Frame No.

T
ra

ck
in

g 
E

rr
or

 (
 E

xp
3 

)

 

 
IMSOE
SOE
IVT
L1−APG
L1−IVT
MIL
OAB
Mean−Shift

120 140 160 180 200 220 240
0

10

20

30

40

50

60

70

80

90

100

Frame No.

T
ra

ck
in

g 
E

rr
or

 (
 E

xp
4 

)

 

 
IMSOE
SOE
IVT
L1−APG
L1−IVT
MIL
OAB
Mean−Shift

.

3540 3560 3580 3600 3620 3640 3660
0

10

20

30

40

50

60

70

80

90

100

Frame No.

T
ra

ck
in

g 
E

rr
or

 (
 E

xp
5 

)

 

 
IMSOE
SOE
IVT
L1−APG
L1−IVT
MIL
OAB
Mean−Shift

Figure 3.12: Tracking Error diagrams per experiment; Error is the center to center Eu-
clidean distance of the groundtruth and the tracked box

experiments were hand-labeled to provide the ground truth data for target

state in every frame. The Precision = tp
(tp+fp)

and Recall = tp
(tp+fn)

figures for

novelty detection were evaluated per experiment, where tp represents total

number of true novelty detections, fp shows false novelty detections and fn

implies false disregarded novelties. All the target states except ‘Moving’ and

‘Stationary’ are considered as ‘Novelty’ situations, in which updating the tar-
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get model is stopped due to partial or full occlusion status. The measured

Precision-Recall rates for all experiments are reported in Fig. 3.13, except for

‘Exp.3’ whose scenario includes no novelty situations.

100 100 
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Precision/Recall for Novelty Detection 

Recall Precision

Figure 3.13: Precision/Recall rates of ‘Novelty Detection’ for experiments Exp1, Exp2, Exp4
and Exp5

Fig. 3.13 reveals that the proposed method detects the novelties with a

very high precision. Due to the high performance of the system, only highly

reliable information is utilized for updating the target models. Consequently

the models are protected against corruptive changes in occlusion situations.

The proposed mechanism can offer a great improvement to any tracking sys-

tem by maintaining a valid target model throughout the process. The track-

ing results in all of the test scenarios and experiments, illustrate the efficacy

of the proposed tracking system.

Novelty detection combined with other trackers

In this part, we show the improvement of another tracking system by the

proposed occlusion detection module. Previously, we have demonstrated

that the proposed “Novelty Detection” system, enables the base pixel tracker

to successfully track non-rigid objects in challenging real world scenarios.

To provide further evidence on the benefits of the proposed method, we in-

corporated the novelty detection component into the state-of-the-art L1-IVT
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tracker [JLY12]. For this purpose, the SOE features of the target of interest

are calculated in parallel with the L1-IVT tracking process. The extracted

energies are utilized by the Novelty Detection modules to perform occlusion

analysis and determine the state of the target in the course of tracking.

Upon detecting a ‘Full Occlusion’, the normal tracking process is paused

to avoid distractions. In this situation the target is temporarily tracked by

prediction based on the most recent movements of the target. Furthermore

updating the target model will be stopped in partial and full occlusion states.

Hence, the incorporated modules protect the template batch against corrup-

tion in occlusion events and assist the tracker when the target is invisible.

The ‘Novelty equipped L1-IVT’ tracker was evaluated on our most chal-

lenging experiment, i.e., Exp.5, as well as the Exp.1 where the original L1-

IVT tracker fails as a result of the full occlusion event. The gain obtained by

the novelty detection system for the experiments 2, 3 and 4 is not significant,

due to performance of the L1-IVT tracker in these scenarios. The tracking er-

ror diagrams of the figure 3.14, demonstrate that the original L1-IVT tracker

loses the target of interest in the middle sequences of the video in Exp.1 and

Exp.5. However the novelty detection system enables it to perform a robust

tracking in the severe occlusions of the scenarios. The average center location

errors in Exp.1 and Exp.5 are also reported in table 3.4.

Table 3.4: Average Center Location Errors of (‘L1-IVT’ vs. ‘L1-IVT + Nov’) in experi-
ments Exp.1 and Exp.5

Exp.1 Exp.5

L1-IVT 21.6 134.4
L1-IVT+Nov 5.4 3.8

On a related note, our application (and hence the experiments performed

in this work) requires the tracking system to deal with non-rigid objects.

Since the proposed framework is able to learn the non-rigidity level of the

targets, one could expect to gain superior performances when the target is

rigid. To investigate this point, we conducted an experiment on the ‘Tiger2’

sequence 2 which comprised a rigid object. The original L1-IVT tracker failed

after 75 frames in this experiment, due to corruption of the target model
2http://vision.ucsd.edu/~bbabenko/project_miltrack.html
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Figure 3.14: Tracking Error diagrams of ‘Novelty equipped L1-IVT’ vs. original ‘L1-IVT’ for
Exp.1 and Exp.5

in consecutive occluded frames. However, a noticeable improvement was

observed when the tracker was equipped with the proposed novelty detection

component and the system tracked the target successfully.

Tuning the Parameters.

Seven parameters, depicted in Table. 3.1, control the behavior of the pro-

posed framework. We kept the values of these parameters fixed in all ex-

periments performed for this thesis. Nevertheless, we study the effect of

each parameter on the performance of the tracking system below and pro-

vide heuristic guidelines on how to tune them if it is required for a specific

application.

The template update rates, i.e., αMov and αStat smooth out stochastic vi-

brations of the target box, through computing an exponential average of

the recent best candidates. Following previous work (e.g., Cannons et al.
[CGW10]), a value close to one is deemed for the update rates in ‘Mov’ and

‘Stat’ states. This results in having a more robust template adaptation, while

ensuring that the target representation remains up-to-date, i.e., follows the

changes in target appearance. With smaller values of α, any undesired tem-

porary changes will be rapidly introduced into the target template and may

cause distraction. For the update rate of Non-rigidity thresholds, i.e., γ, a

value close to one is chosen, as the non-rigidity of a target is not expected to

evolve much during a scenario. On the contrary, as the target motion dynam-

76



Chapter 3. Occlusion Handling in Template Tracking Systems

ics may change rapidly within a few frames, the corresponding parameter,

i.e., β, should allow fast updates. In our experiments, we have never ob-

served that choosing a value rather than the suggested ones for (αMov, αStat,

β, γ) result in significant improvement on the overall performance of the

tracking system and one could safely keep the updating values fixed accord-

ing to Table. 3.1.

As for the threshold values, i.e., τNov, τω and τo, the proposed normaliza-

tion process provides heuristics for success range of each threshold. More

specifically, automatic learning of the targets’ normal non-rigidity level (Eqs.

3.15 and 3.22), normalized novelty detection metric (Eq. 3.16) and normal-

ization of the SOE features (Eq. 3.6) prior to applying the thresholds, makes

the tuning process straightforward. Table 3.5 demonstrates the range of

threshold values which were tested for tuning the system. The success range

represents the range of parameters for which the tracking system didn’t lose

the target in our tests. The failure column shows the threshold values for

which the tracking has failed. In the success range, we have conducted sev-

eral experiments for validating the threshold values τNov, τω and τo. Each of

the thresholds depicted in Table. 3.1 are set as the mid-value of the success

range for final assessments. It is worth mentioning that slight changes of the

parameters, do not largely affect the performance.

Table 3.5: Parameter Tuning: Range of success and failures ;

Success Range Failure Range

τNov [1.4 1.6] (0, 1.2] Or [1.8,∞)
τω [0.4 0.6] (0, 0.2] Or [0.8, 1)
τo [0.03 0.06] (0, 0.02] Or [0.08, 1)

Computational complexity

For calculating the target SOE features based on Gaussian Derivatives (cf.
§ 3.3), we need to calculate the three dimensional G2 and H2 basis functions

across the target. We note that the SOE features are calculated over the target

box of size (m,n), not the whole video frame.

The basis functions of 3D Gaussian Derivatives are separable in x, y and

t. So we need to apply three one dimensional filters of size p for each basis
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function. Please note that only p consecutive video frames are processed

together along the time axis t (in this work p = 9). Consequently, with six G2

basis functions and ten H2 basis functions, (6+10)× (3×m×n×p) = 48mnp

FLOPs are required to perform the convolutions. A final low pass filter (of

length ‘p’ or less) is also applied to the calculated energy planes (5 channels),

to smooth out the energy values across the target. This incurs an additional

complexity of 5×m× n× p, which brings it up to a total of 53mnp FLOPs for

computing SOE features. The complexity of Bayesian modeling is negligible

compared to computational load of SOE filters. The major calculation in this

part is the computation of ‘Mean’ and ‘Standard Deviation’ (µi, σi) for the

Gaussian motion models of the target (NS ; NH ; NV ).

A Matlab implementation of the proposed algorithm can process 10 frames

per second on a 3.00GHz Intel machine with a target of size 30×126. However

this target size only requires 53mnp = 1.8 (MFLOPs) for the calculations. The

low reported frame rate is due to the Matlab overhead. Hence an efficient

C/C++ implementation can easily perform in real time in the case of single

target tracking. In order to apply the method to a multiple-target tracking

system, the SOE energy features of the whole frame may be required. For a

VGA size frame (640 × 480), the complexity order of the SOE calculation is

about 150 MFLOPs per frame, which implies 4.5 (GFLOPS) processing power

in a rate of 30 fps. Hence considering the additional required optimizations

for tracking or other applications, hardware acceleration will benefit the sys-

tem for real-time performance.

Table 3.6 provides the performance speed of the studied competitors ac-

cording to their original papers. For a fair comparison among the track-

ers, comparable implementations (by Matlab or C++ in similar platforms),

should be evaluated on a unique hardware. However, we don’t have all the

required source codes of the competing trackers or their comparable com-

plexity reports. Some of the available codes are in C/C++ or just executable

files (MIL & OAB) and others are in Matlab incorporating Mex functions (IVT,

L1-IVT & L1-APG). In spite of these facts, the available information are gath-

ered in Table 3.6 as an overview.
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Table 3.6: Computational Complexity of the competitor trackers

Frame Rate Year Notes

OAB [GGB06] 20 (fps) 2006 1.6 GHz CPU, 512 MB RAM
MIL [BYB11] 25 (fps) 2011 C++
SOE [CGW10] N.A. 2010
IVT [RLLY08] 7.5 (fps) 2008 MATLAB with MEX, 2.8 GHz CPU
L1APG [BWLJ12] 26 (fps) 2012 MATLAB, 3.4 GHz i7 Core CPU
L1-IVT [JLY12] 1.5 (fps) 2012 MATLAB, 2.7 GHz Dual Core CPU, 2GB RAM

3.6 Discussion and summary

In this chapter we introduced a novel approach to take advantage of ‘Spa-

tiotemporal Oriented Energy’ features for the purpose of robust template

tracking in video surveillance applications. The proposed occlusion analy-

sis framework with its three modules (‘Novelty Detection’, ‘Occlusion Mask’

and ‘State Machine’), provides enough strength for the tracking system to

compete with state-of-the-art algorithms. Novelty detection in our system

largely improves the template update mechanism and helps to maintain a

valid up-to-date target model.

All the experiments in this work are based on the stationary camera as-

sumption. However we believe the proposed system is potentially applicable

to moving camera situations, as long as the camera motion does not cause

abrupt relocation of the tracked object in the video frames. In the other word,

sudden camera motions do not provide suitable grounds to describe errati-

cally moving objects by motion signatures, as no specific motion direction

can be defined for objects in such videos.

One important limitation of the current approach is the lack of explicit

appearance modeling for novelty detection, as the proposed framework is

solely based on motion models. Hence for objects moving roughly in the same

direction, the proposed system is not able to detect a novelty situation and

the ‘Occlusion Mask’ generator can not discriminate between the occluding

targets. This weak point of the algorithm may cause template contamination

and distraction in such scenarios.

Future works: In order to overcome the weak points of the algorithm, we

propose to include an efficient appearance model in the framework for the

purpose of novelty detection and occlusion analysis. The developed tools may
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be applied to modern tracking systems and particle filter based frameworks.

Furthermore the framework may be extended to multiple target tracking in

template based trackers. More advanced occlusion models may be estab-

lished for discriminating the occluding targets based on the interaction of

the target tracks and the scene geometry. A glimpse of such approach is

presented in the next chapter. Re-identification of the lost targets based on

effective appearance models is another item to be investigated. This may be

applied for recovering the lost targets after long-term occlusions.

80



Chapter 4

Occlusion Handling in Pedestrian
Detection and Tracking

4.1 Introduction

Effective pedestrian detection and tracking under short-term and long-term

occlusions is still a challenging research problem in computer vision with

many commercial applications. Although state-of-the-art human detectors

(e.g., ACF detector [DABP14] and Deformable Part Models-DPM [FGMR10])

have shown promising results in challenging sequences, it is well known that

they fail to robustly detect people in the presence of partial occlusions and

perform poorly at low resolutions [DWSP09, DWSP12]. Low detection rates

for significantly occluded targets, can be considered as an obvious conse-

quence of two technical issues:

• The non-maximal suppression (NMS) procedure for detectors tends to

ignore spatially nearby detections (c.f . figure 4.1-(e,f)).

• The full body models are inappropriate for detecting partially visible

pedestrians(c.f . figure 4.1-(d)). .

The above-mentioned issues can be observed in Figure 4.1, which demon-

strates the detection results of a state-of-the-art pedestrian detector [DABP14]

in various occlusion situations of a PETS-2009 scenario. We note in fig-

ure 4.1-(a,d), there is no reported detection for the partially occluded pedes-

trian in the center of the frame (partial occlusion caused by a fixed scene
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.

. (a) (b) (c)

.

. (d) (e) (f)

Figure 4.1: (a), (b), (c) All the ACF detections prior to NMS at frames #21, #46 & #47.
(d), (e), (f) The ACF detections after NMS (PETS2009, S2L1, V01)

occluder, the lamp post). Furthermore the close detections in figure 4.1-(b,c)

are merged to one detection by NMS.

It is generally expected that human detectors which work based on models

of body parts (such as the state-of-the-art DPM detector [FGMR10]), be more

robust to partial occlussions. However it has been shown that DPM starts to

fail at about 20% occlusion for the tested scenarios in [TAS12], while for

occlusions beyond 40% true detections become a mere chance.

The problem of tracking by detection for multiple targets has been in-

vestigated to some extent in order to improve both tracking and detection

accuracy, by taking advantage of the strengths of both [ARS08]. However

the task of multiple-object tracking under occlusion is still an open research

problem with a few recent attempts around it [MRS14, WTSB12].

Having this in mind, we propose an efficient method to improve over the

NMS limitations in occlusion situations and compensate for the unavoidable

general detection errors (missed/false detections). Furthermore the system

performance does not drop in low resolutions, thus making it suitable for

the existing infrastructures and low resolution cameras. The proposed sys-

tem may also be considered as a multiple-pedestrian detection and tracking,

designed for video surveillance applications with static cameras. The system
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has shown significant improvement over the state-of-the-art pedestrian de-

tectors [DABP14] for pedestrian analysis in sparse video sequences and per-

forms in real-time on a general CPU. This is a very first step towards solving

the more challenging problem of real time crowd analysis. In the next sec-

tion (4.2), we review some of the related studies and proposed approaches

for occlusion handling in pedestrian detection and multiple-person tracking.

The proposed framework and the system components are discussed in sec-

tion 4.3. We finish this chapter by providing experimental results on publicly

available pedestrian datasets.

4.2 Related Works

Pedestrian detection in the context of video surveillance can be cast as a mul-

tiple target tracking problem. A major trend in multiple tracking systems,

is to combine a general object detector with a data association unit, which

merges the detection results to establish target tracks. Hence occlusion in-

ference in this context may be pursued in two stages: (1) ‘Detection’ and

(2) ‘Data Association’. In other words, developing stronger detectors that

are more robust to partial occlusions is the main theme in the first approach,

while the second method seeks a better data association scheme.

We continue with a short overview on the first category of systems incor-

porating occlusion handling in the detection stage. One common approach is

to train multiple classifiers for various particular occlusion types. More specif-

ically, different detectors are trained for typical occlusion cases, which are

supposed to detect specific body parts such as ‘Head, Torso, Legs’ [EESG10]

or ‘Right, Left, Bottom & Upper’ body parts [WWRS11]. Then all the de-

tectors are evaluated everywhere on the image and the detection results are

merged together, to achieve a more robust performance in various situations.

An example of such systems is the Franken-Classifiers [MBTG13], which pro-

pose an efficient method for training an exhaustive set of occlusion-specific

detectors, rather than the typical 3 to 6 classifiers.

One drawback of such systems is the computation cost of applying several

detectors on each frame, which limits their practical usage in real-time appli-
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cations. Furthermore, it is well known that the smaller an object model is,

the lower will be the detection performance and accuracy. For instance, per-

formance of a ‘Head & Shoulder’ detector is much lower than a ‘Full Body’

detector, due to less information contained in the former model. In other

words, obtaining a properly modeled part detector, requires sufficient res-

olution to provide a rich enough representation of the parts. However, in

many practical video surveillance applications, such resolution might not be

available.

Some studies propose explicit occlusion inference within the detection

framework, so that the part detectors can be utilised within a smarter scheme

for improving the detection performance [WHY09, GPK11, EESG10, WWRS11].

The main rationale behind such proposals is that the occluded target parts

decrease the discriminative power of the detector, resulting in an increased

miss rate. Hence improved performance is expected by applying the right

detectors on visible target areas.

Various approaches have been suggested for constructing a 3D scene model

for estimating the depth and visibility of the objects in the scene. Enzweiler

et al. [EESG10] use dense stereo and optical flow to estimate occlusion bound-

aries of the objects based on discontinuities in depth and motion. While Wo-

jek et al. [WWRS11] suggest much simpler monocular priors and 3d scene

geometry such as common ground plane and objects height for inferring the

depth. Depths information are then utilized to determine Objects’ visibility

and occlusion map. Eventually decision of the detector is concentrated on

non-occluded body parts, according to their visibility level. More specifically

full-body and component detectors are combined in a mixture-of-experts

framework, weighted by the expected visibility of parts [WWRS11, EESG10].

Hence experts are the part detectors and expert weights are proportional to

the visibility degree of the associated component. Wang et al. [WHY09],

proposed another approach for estimating the occlusion map on distinct tar-

get cells through utilizing a full-body HOG/SVM classifier. The classification

scores of HOG blocks are used to infer the visibility within the cells. Then sim-

ilar to previous methods, the Part detectors (‘Upper body’ and ‘Lower body’)

are applied on non-occluded areas of the target, in case of ambiguity and par-

tial occlusion. The major improvement over the state-of-the-art in [WHY09]
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is due to the utilizing of the joint features HOG-LBP. Independent perfor-

mance of the occlusion estimation unit is not presented in the paper, except

some sample images. However the improvement offered by the occlusion es-

timation over the original HOG-LBP is minor, according to the performance

curves of the paper. Furthermore the part classifiers alone are not robust

enough for calculating the final score, due to their low performance [Sal14].

Contrary to previous approaches for explicit occlusion handling, Tang

et al. [TAS12] suggest to leverage the person/person overlapping patterns as

indicative information for improving the detection performance in crowds.

Hence a joint detector is trained to detect pair of occluding pedestrians with

various levels of occlusions. With this approach, not only several pairs of

occluded pedestrians should be trained, but also generalization ability of the

method to handle other occlusion cases is questionable, i.e., occlusions with

other types of moving objects and scene occluders need to be trained sepa-

rately.

The second occlusion handling approach in mutli-target tracking systems,

addresses the occlusion problem in the data association stage. The output of

a general detector prior to NMS, is fed to the system as input information.

Then a data association technique is utilized to estimate the targets’ locations

in consecutive frames.

In [RC13] an objective function incorporating merely spatial information,

is proposed as a replacement to NMS for detection of spatially overlapped

pedestrians. The proposed spatial cost function is composed of single detec-

tion scores and pairwise overlap constraints. The proposed system demon-

strates some improvement over simple NMS in detection of overlapping tar-

gets, when it comes to deciding which overlapping detections should be sup-

pressed. However the temporal information is completely ignored in this

framework and the missed detections/false alarms still remain unsolved.

Despite all progress in pedestrian detection, undesired errors such as

missed detections and false alarms are still unavoidable, especially in pres-

ence of occlusions. Such ambiguities can be resolved by taking advantage of

temporal information in data association stage. Perhaps one of the simplest

approaches for feeding the temporal information to the system is proposed

by Brown et al. [BFP14]. In this work a temporal Non-Max-Suppression
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(tNMS) is proposed to compensate for spatial overlaps of the targets. The

detection results of n consecutive frames are combined in a batch. Then a

standard NMS is applied on the whole batch to produce the final detection

results for the middle frame. In spite of the improvement over the standard

NMS, false positives problem still remains unsolved.

Other examples among data association methods, propose some cost func-

tion to perform spatial and temporal association among the detection results.

Spatial association estimates optimal states for the targets based on the dis-

tribution of detection results in the frame. Temporal association explores

the correspondence of objects across-time and tends to estimate smooth tar-

get tracks. For instance, Milan(Andriyenko) et al. [AS11, MRS14] propose

an energy cost function which incorporates constraint terms on observa-

tion/detection evidence, targets’ appearance, smooth motion and collision

avoidance. The motion term is a constant velocity model which encodes the

distance between target velocity in consecutive frames. An occlusion model

is also integrated in the observation term of the global objective function,

to penalize existing targets with no evidence. However the proposed occlu-

sion model burdens a heavy computation load on the system, cutting down

the system performance to one frame per second. The proposed objective

function is highly non-convex due to several ad-hoc energy terms involved.

Consequently the suggested gradient descent optimization, largely depends

on good initialization and improvised sampling heuristics to avoid local min-

ima.

Andriluka et al. [ARS08] propose a probabilistic tracking-by-detection

framework rather than utilising a global data association cost function. The

proposed data association scheme incorporates three stages to exploit tem-

poral coherency in short, middle and long periods. Initially the position,

scale and rough articulation of the body parts is estimated with a part-based

model in single frames. Then dynamics of the individual limbs are mod-

eled with a hierarchical Gaussian process latent variable model (hGPLVM),

to obtain temporal coherency within a walking cycle (tracklets consisting 6

consecutive frames). In the second step, a hidden Markov model (HMM)

is utilised to extend the tracklets to longer people tracks through a recur-

sive Viterbi algorithm, between major occlusion events. The suggested HMM

86



Chapter 4. Occlusion Handling in Pedestrian Detection and Tracking

works based on a generative appearance model extracted from tracklets and

a dynamical model composed of Gaussian position dynamics and the GPLVM

articulation dynamics. In the third step, the generated tracks are associated

using the appearance model and a coarse motion model, to track people over

even long periods of time. The proposed part-based model and the dynamic

model of the limbs over a walking cycle, provide a principled way to handle

partial occlusions. However such detailed representation requires sufficient

resolution to properly model the parts’ appearances. The Computational cost

of the complex process and the high resolution requirement of the system,

restricts its practical value for real-time applications.

We believe more efficient solutions are required to perform robustly on

existing video surveillance infrastructures given their practical limitations,

such as limited resolution, limited processing resources along with the real-

time speed requirements.

4.3 Technical Approach

We propose a data driven spatio-temporal clustering framework which lever-

ages the consistency in the motion and scale of the tracked targets across

frames. The system is computationally very efficient and provides a real-time

performance. The proposed cost function helps to maintain a smooth track

for every target. It is also able to handle occlusion situations when the tar-

gets have different scales or motion directions. The method can be seen as an

improved adaptive Non-Max-Suppression (NMS) method, which is aware of

the number of existing targets in the scene and provides a solid performance

for highly overlapped targets. Moreover, we have taken advantage of the

notions ‘Depth/Height Map’, the ‘Scene Entry/Exit’ and an ‘Overlap Matrix’

to post-process the results of the optimization and consolidate the estimated

tracks. The track consolidation module takes care of integrating the incom-

plete tracks which don’t start or end at Entry/Exit areas. It also removes

spurious tracks with low confidence.

Figure 4.2 demonstrates a high level block diagram of our proposed pedes-

trian analysis system. The input to system is the detection results of a pedes-

trian detector prior to NMS, which are processed by our data association

87



Chapter 4. Occlusion Handling in Pedestrian Detection and Tracking

framework. The proposed system optimizes a track for each target within a

clustering framework, while it realizes new pedestrians entering the scene.

Hence a new cluster is defined for every emergent target within the frames,

which is constantly updated along the video sequence. The module dedi-

cated to ‘New Cluster Evaluation’, applies NMS on non-associated members

reported by ‘Clustering Unit’ and evaluates the NMS results with a confidence

score (based on Depth-Height Map & Detection Frequency), in order to in-

stantiate additional clusters for the new entrant targets. The above men-

tioned clustering cost function along with the proposed scheme for cluster

instantiation, seems to be adequate enough to mitigate the need for Fore-

ground/Background modeling towards reducing the false positives. The pro-

posed framework significantly improves the detection performance in sparse

crowds, by removing most of the false positive detections.

Cluster Killing  
& Instantiation 

Clustering Unit Consolidation Unit 

New Cluster 
Evaluation 

Non‐Associated 
Members  Empty Clusters 

Update Clusters 

Bounding 
Boxes 

Target Tracks 

New 
Clusters 

Pedestrian 
detector 

Detections 
Prior to NMS 

Figure 4.2: High-level Block Diagram of the Multi-Pedestrian Tracking System

4.3.1 Data association framework

We first describe our technical approach on how to merge multiple detec-

tions in frame t, given a known number of objects (N) in the frame. The

problem is cast as estimating accurate states of the targets through robust

clustering of the raw detection results. We define our data driven loss func-

tion based on a bounded Euclidean distance measure, which is inspired by

the work of Burgos et al. [BHPD13] on pose estimation. Let (X t, St) =

{(xti, sti)|∀i, 1 ≤ i ≤ nt}, be the nt detector estimations and their relevant de-

tection scores at frame t. A cluster is defined for every target in the frame

and Y t = {ytj|1 ≤ j ≤ N} represent the cluster centers at frame t. Then a

data loss term related to the cluster predictions Y t = {ytj ∈ RD, 1 ≤ j ≤ N},
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is defined as below:

LData(Y
t) =

1

St
·
nt∑
i=1

sti ·min
j
db(x

t
i, y

t
j) (4.1)

St =
nt∑
i=1

sti , db(x, y) = min(τ, ‖x− y‖2
2))

where db is an Euclidean distance bounded at a maximum threshold τ and

data loss function LData is normalised by summation of all the detection

scores, St. The threshold τ represents the extent (maximum radius) of the

identified clusters. The constant threshold τ can be set according to the phys-

ical constraints of the environment as the average width of the objects in the

scenario. This threshold is comparable to the overlapping threshold in Non-

Max Suppression (NMS) post-processing of the object detectors. Suppressing

the overlapped targets in occluded scenarios is a major drawback of the NMS

process. However we will show that the proposed framework minimizes this

undesired drawback of the NMS method, due to the system awareness about

the number of existing targets in a local area, which is leveraged to pre-

vent suppression of overlapped targets. Apparently, introducing incorrect

number of targets to the system may mislead the optimisation framework.

Hence, good performance of the system is dependent on having a reliable

estimate about the number of existing targets and their initial states. The

proposed method for target detection and new cluster instantiation among

the scenario, is discussed in section 4.3.2. This approach leads to improved

occlusion handling in certain situations.

In order to minimize the loss function in Equation (4.1), each cluster

center is updated to the weighted mean state of its own members at each

step. The cluster members are within a distance τ of the cluster center ytj
based on definition. More specifically, a member {xi} pertains to cluster yj if

it satisfies the following conditions:

(xi ∈ yj) if :

‖xi − yj‖2 < ‖xi − yk‖2 , ∀k 6= j

‖xi − yj‖2 ≤ τ
(4.2)

The proposed clustering cost function in Equation 4.1, is in spirit similar to
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the standard weighted K-Means. However its behavior is practically different,

as it performs locally within the bounding threshold τ to minimize the effect

of outliers. This can be seen more clearly if we rewrite Equation (4.1) in a

linear form by substituting an indicator function (1A) for the nonlinear ‘minj ’

function:

LData(Y
t) =

Stā
St

+
1

St

nt∑
i=1

N∑
j=1

mt
ijs

t
i ‖xti − ytj‖2

2, (4.3)

mt
ij = 1A

(
‖xi − yj‖2 ≤ ‖xi − yk‖2, ∀k & ‖xi − yj‖2 < τ

)
,

where Stā is sum of the detection scores sti that are not associated with any

cluster.

In the standard k-means, each step is optimal due to the well-known

mathematical lemma which states: The function f(yj) =
∑

iwi‖xi − yj‖2
2

is minimized with respect to variable yj by substituting yj =
∑

iwixi/
∑

iwi

in the function. However in the proposed bounded K-Means, this replace-

ment is only guaranteed to be locally optimal, i.e., the estimated ytj will be

the optimal solution within the τ neighborhood of its recent location. In-

tuitively speaking, St
ā/St appears as a constant in the equation and does not

play a role in the optimization. However with each update of the cluster

center, the cluster members and Stā are prone to change, which implies an

iterative operation until a steady state is reached. The convergence occurs

when the cluster center and thus the cluster members are settled down and

don’t change further. To escape from the local traps, frequent execution of

the algorithm with various different initializations, is a common approach

which of-course implies an excessive computation load. However the pro-

posed initialization scheme in our framework (discussed in subsection 4.3.2),

has practically demonstrated enough robustness to mitigate the need for ran-

dom initialization and frequent execution of algorithm.

As mentioned earlier, the proposed clustering framework has another ad-

vantage over the standard NMS in inter-person occlusion situations. It is

known that standard NMS suppresses the overlapping detections within a

fixed surrounding area (c.f . figure 4.3, Fr#46-b & Fr#47-b). However as

demonstrated in figure 4.3 (rows a & b), the extent of the clusters in the pro-
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Figure 4.3: (a) & (b): Green bounding boxes demonstrate the ACF detector results before and after
NMS; White dots are the bounding box centers; Blue and Red circles show the estimated target clusters
by the system; (c): The final results of our proposed clustering framework

posed framework is intrinsically adjusted depending on the proximity of the

existing clusters in the scene. This unique property is enabled by the compet-

ing term in the definition of membership function mt
ij in Equations (4.3) and

(4.2) (‖xi − yj‖2 < ‖xi − yk‖2). Hence, although the threshold τ is fixed, this

term makes the cluster boundaries flexible in occlusion events.

The clusters shown in figure 4.3-(a,b), are a rough projection of the real

clusters on (x-y) plane for visualization, as the target clusters and features

have four dimensions in our system. The threshold τ determines the max-

imum extent of the clusters. However the inherent competition among the

data members for associating to overlapping clusters (Equation (4.2)), re-

duces the neighboring threshold among them (c.f . figure 4.3, rows a & b). In

this case the members in the overlapping area are divided into groups based

on their proximity to the cluster centers. In other word, each of the data

members in the overlapping area are associated to only one cluster which has
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a closer center. This is a result of the system awareness about the number of

existing targets in the overlapping area. This approach might lead to inac-

curate localization of the clusters in some occlusion situations. However the

system maintains the recognized identities rather than killing or suppressing

an occluded target cluster. Furthermore, the localization uncertainty of the

overlapped targets will be improved by introducing temporal terms into the

data association framework, which will be discussed later. Further improve-

ment can be achieved by utilizing appearance models of the existing targets

in the clustering algorithm. However this is considered for future extensions

of the proposed system.

More interestingly, as demonstrated in figure 4.3, reduction of the clus-

ter radial extent occurs only along the orientation that the two clusters are

overlapping, while for other directions the cluster members may spread up-

to the maximum radial distance τ . In terms of NMS process, we can think

of variable directional overlapping thresholds for different situations. This

property occurs due to the competing term of the membership function mt
ij

in Equation (4.3), as discussed earlier. In an occlusion event, the neighboring

threshold of the overlapping clusters are flexibly reduced along their overlap-

ping direction, due to the competition among the data members, induced by

membership function mt
ij. Hence upon establishment of a new cluster for an

emerging target, the system does not kill the cluster due to short term oc-

clusions or missed detections in the middle of scenario. Even if two clusters

are severely occluding each other, non of them will be suppressed. However,

there might be some localization inaccuracy in such cases.

In the next step, we need to attain temporal consistency among the subse-

quent detections throughout the video sequence. To this end, it is common to

involve smoothing terms across multiple frames in the loss function. So let’s

consider two additional terms, namely a ‘Constancy’ term and a ‘Smoothness’

term, in our loss function as below:

LCnst(Y
t, Y t−1) =

1

N

N∑
j=1

‖ytj − yt−1
j ‖2

2, (4.4)

LSmth(V
t, V t−1) =

1

N

N∑
j=1

‖vtj − vt−1
j ‖2

2,
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where vt = dy/dt = (yt − yt−1). Then the overall loss function over a specific

interval becomes:

L(Y ) =

t2∑
t=t1

{
LData(Y

t) + λ1LCnst(Y
t, Y t−1) + λ2LSmth(V

t, V t−1)
}
, (4.5)

The constants λ1 and λ2 controls the influence of temporal terms. The ‘Con-

stancy’ term in the loss function tends to keep the estimations in consecutive

frames close to each other, encouraging a constant target state. On the other

hand the ‘Smoothness’ term boosts a smooth target motion, encouraging a

constant velocity for the targets. Although the proposed terms can both po-

tentially improve the localization performance, they are contrary by defini-

tion. Apparently the two terms may cancel out the effect of each other in

the loss function, as they encourage constancy and smooth motion simulta-

neously.

We propose a framework to take advantage of both temporal terms, in a

way that their stabilization influence on the estimation process will be accu-

mulated towards handling occlusion situations. More specifically two types

of indications are leveraged in our system for occlusion handling:

• While the nearby overlapping detections are consistently merged in the

framework, overlaps at far different scales should not be fused.

• The overlapping targets moving in different directions, can be separated

due to their different motions.

These indications are formulated in the ‘Data’ term and ‘temporal’ terms

of the proposed cost function. To provide a more clear intuition about the

objective of the proposed loss terms in the cost function (discussed later), we

note that:

• The data term in the clustering function, naturally separates very far

points in position or scale through the introduced distance metric.

• The ‘Constancy’ temporal term of the cost function further improves the

separability on the scale axis.

• The ‘Smoothness’ temporal term in the cost function provides the basis

93



Chapter 4. Occlusion Handling in Pedestrian Detection and Tracking

for discriminating the overlapping targets with different motion direc-

tions, even in close scales.

In order to achieve the mentioned goals, we propose to split the feature

vector into separate parts and apply the temporal terms on relevant chunks.

More specifically the feature vector used in detection results X t = {xti | 1 ≤
i ≤ nt} and cluster states Y t = {ytj | 1 ≤ j ≤ N} contains two types

of information. Let’s define two functions fP and fS to retrieve ‘Position’

and ‘Size (Scale)’ information from the feature vector: fP (X) = (x, y) and

fS(X) = (w, h) (or fS(X) = s, representing the scale number in the feature

vector). Then X = (fP (X), fS(X)), Y = (fP (Y ), fS(Y )) and we define the

temporal terms for the loss function as below:

L S
Cnst(t) = LCnst(fS(Y t), fS(Y t−1)) =

1

N

N∑
j=1

‖fS(ytj)− fS(yt−1
j )‖2

2 , (4.6)

L P
Smth(t) = LSmth(fP (V t), fP (V t−1)) =

1

N

N∑
j=1

‖fP (vtj)− fP (vt−1
j )‖2

2 ,

where fP (vtj) = fP (∂yj/∂t) ≈ fP (ytj) − fP (yt−1
j ). Hence the ‘Constant’ term

is defined based on the scale/size features and ‘Smoothness’ term is defined

based on spatial position. The introduced temporal terms L S
Cnst and L P

Smth

encourage constant size and smooth motion (constant velocity) in adjacent

frames respectively and collaboratively improve the robustness of the system.

Apparently applying each of the temporal terms on the irrelevant chunk of

the feature vector negatively affects the system performance. For the special

case of target motions along the camera view line (for example towards the

camera), the above mentioned assumptions are still valid, due to the fact that

the temporal terms are defined on few adjacent frames. In the light of above,

we define our loss function as below:

L (Y ) =

t2∑
t=t1

{
LData(Y

t) + λ1L
S
Cnst(t) + λ2L

P
Smth(t)

}
, (4.7)

The constants λ1 and λ2 are experimentally tuned, to control the influence

of temporal terms towards an acceptable occlusion handling performance.

The empirical values used in our experimental setup are (λ1, λ1) = (10, 10).
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However our observations demonstrate that the system is not very sensitive

to the exact parameter values, i.e., 25% variation in λ1 and λ2 do not cause a

sensible change in the system results.

Now we need a solution for minimizing the cost function L (Y ) in Equa-

tion (4.7). Due to linearity of the Euclidean distance metric, we know that

‖x− y‖2
2 = ‖fP (x− y)‖2

2 + ‖fS(x− y)‖2
2. Hence the ‘Data’ term can be split in

two parts. By using Equation (4.3), the loss function is formulated as:

L (Y ) =
Stā
St

+

t2∑
t=t1

{L S
Data(t) + λ1L

S
Cnst(t)}+

t2∑
t=t1

{L P
Data(t) + λ2L

P
Smth(t)},

L φ
Data(t) =

1

St

nt∑
i=1

N∑
j=1

mt
ijs

t
i ‖fφ(xti)− fφ(ytj)‖2

2 , ∀φ ∈ {P, S}, (4.8)

We note that the two parts of the feature vectors retrieved by (fP , fS) are

independent from each other. Hence the two summations in Equation (4.8)

are independent, due to independence of their variables. Consequently for

minimizing the loss function (α+ L1 + L2) in Equation (4.8), the two terms

L1 and L2 can be independently optimized. Each part of the target state

vector (fP (Y ), fS(Y )), will be estimated by optimizing the relevant terms

(L2,L1). We perform the optimization through a frame-by-frame strategy,

i.e., the optimum Y t on frame t is estimated, while all the other frames are

frozen with fixed clusters (Y). To this end, we first rearrange the indepen-

dent loss functions (L1,L2) in Equation (4.8) in a form to contain the terms

depending on Y t. Then L1 and L2 can be minimized with respect to Y t.

L1(Y t) =
1

St

nt∑
i=1

N∑
j=1

mt
ijs

t
i ‖fS(xti − ytj)‖2

2 + · · · (4.9)

+
λ1

N

N∑
j=1

{
‖fS(ytj − yt−1

j )‖2
2 + ‖fS(ytj − yt+1

j )‖2
2

}
,

L2(Y t) =
1

St

nt∑
i=1

N∑
j=1

mt
ijs

t
i ‖fP (xti − ytj)‖2

2 + · · · (4.10)

+
λ2

N

N∑
j=1

{
‖fP (vtj − vt−1

j )‖2
2 + ‖fP (vtj − vt+1

j )‖2
2 + ‖fP (vt+1

j − vt+2
j )‖2

2

}
,
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where vtj = ytj − yt−1
j . Through factorizing

∑N
j=1 , formulation of L1 and L2

will turn into a standard K-Means problem:

L1(Y t) =
N∑
j=1

nt+2∑
i=1

ŝi · ‖fS(ytj)− fS(x̂i)‖2
2 ⇒ fS(ytj) =

∑
i ŝi · fS(x̂i)∑

i ŝi

L2(Y t) =
N∑
j=1

nt+3∑
i=1

ŝi · ‖fP (ytj)− fP (x̂i)‖2
2 ⇒ fP (ytj) =

∑
i ŝi · fP (x̂i)∑

i ŝi
(4.11)

The proposed optimization will be executed recursively on each frame

up to the convergence point (usually a couple of times suffice). By using a

reliable initialization scheme in our system which provides decent estimate

of the existing targets in the scene, we don’t need to use random initializa-

tions and sweep forward and backward among the video frames to reach an

optimal solution (as suggested in [BHPD13]). During the optimization, all

the clusters/tracks are constantly monitored and the empty clusters that are

void of any members for a minimum number of frames (set to 5 in our ex-

periments), are considered as Zombie centers and killed. Concurrently the

non-Associated members are monitored throughout the optimization process

for instantiating new clusters. As soon as new targets appear in the frame,

the initialization unit instantiates new clusters. Hence the number of tar-

gets are robustly estimated during the process. Since the temporal terms in

the loss function incorporate two neighboring frames, the optimization is se-

quentially performed on small space-time volumes of the video. The process

sweeps the entire video sequence frame by frame, in order to form all the

targets’ tracks simultaneously. Furthermore one round of K-means optimiza-

tion on the whole video sequence, provides an initial reliable estimation of

the tracks within the scenario.

4.3.2 Cluster instantiation and Track Consolidation

In this section we address two important processes in our multi-pedestrian

tracking system. The first critical mechanism is the cluster instantiation prob-

lem during optimization, due to the fact that the good performance of the

proposed clustering optimization is highly dependent on a reliable initial

states. The second important process, is the final stage of ‘Track Consoli-
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dation’. Following the extraction of the target tracks in the video, a post

processing is required to consolidate the incomplete tracks, remove the spu-

rious tracks and refine the final solution. Details of the proposed initialization

scheme and the track consolidation framework, are described in this section.

Cluster instantiation

Without a reliable initial estimation of the target states, we need to run the

system with various random initializations, to increase the chance of find-

ing an optimal solution. Apparently this approach reduces the certainty of

the system, while slowing down the process due to the extra computational

load. In order to obtain a reliable initial state for our optimization frame-

work, we propose to use a Non-Max-Suppression (NMS) approach combined

with a composite confidence metric. The proposed confidence metric largely

reduce the possibility of introducing false positive detections into our opti-

mization framework. In spite of the fair reliability of the introduced initial-

ization mechanism, the probable improper instantiations will be analyzed in

the final ‘Consolidation’ stage.

The compound confidence metric introduced as a complementary crite-

rion to the NMS process for initialization, is based on ‘Detection Frequency’

and ’Depth-Height Map’ scores. It is intuitively known that more overlap-

ping detections in the neighborhood of a detected target, implies a higher

probability of a true positive in that region. Hence the number of suppressed

overlapping detections in NMS process is considered as ‘Detection Frequency’

and utilized as a confidence measure for the detection. The second criterion

for the confidence score is based on ‘Depth-Height Map’, which implies the

probability of a correct detection according to the relevancy of detection size

and position in the frame.

We model the ‘Depth-Height Map’ by a first order polynomial, which de-

scribes the geometry of the scene, i.e., the relationship between the average

height of the pedestrians with their foot location in the frame (h, yf ). An

algebraic least square method is utilized to fit the first order model to the

data. The model can be estimated based on sample ground truth-ed frames.

Otherwise a weighted least square estimation may be utilized to recursively

calculate and update the model on the fly, given the detection results. As-
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sume a Depth-Height model {(p1, p0)| h = p1 · yf + p0} is estimated for the

scenario, which represents the scene geometry. Then a confidence score is

defined for every detection, as below:

C = exp

(
ka ·

(
hp − h

min(hp, h)

)2
)
, ka = ln(α), (4.12)

where h is the detected height of the target and hp is the expected height

based on the foot location (hp = p1 · yf + p0). α determines the confidence

value at half or double size of expected Height. We have set α = 0.1 in our

system, which results in C = 0.91 for a 20% height deviation with respect to

the model and C = 0.56 for a 50% height deviation. The introduced ‘Depth-

Height Confidence’ score is used for two purposes in our system:

• Defining cluster confidence used for instantiation of new target clusters,

• Defining track confidence used for track consolidation (described later),

The non-associated members, that are not assigned to any clusters, are

constantly monitored during the optimization. As soon as the number of non-

associated members with a minimum confidence exceeds a specific limit in ‘n’

consecutive frames, the NMS process is applied on non-associated members.

If a minimum detection frequency and Depth-Height confidence is attained,

new clusters will be instantiated during the clustering process.

Track Consolidation

Following a single round of clustering optimization throughout the whole

video sequence, a good estimation of target tracks is acquired by the system.

A final post-processing stage is required to distinguish reliable tracks among

the whole set and remove spurious ones, while consolidating the incomplete

tracks.

It is well known that the geometry of the scene is a strong notion in video

surveillance applications, which can be leveraged to improve the system per-

formance. For instance the knowledge of Entry/Exits in the scene is a useful

notion to improve the reliability and efficiency of the system. More specifi-

cally when a pedestrian walks out a gateway or the vision field, the system
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should logically stop searching for it, given the gateways are known. These

are the type of information that humans use for their daily visual inspections.

Hence equipping the system with such information is potentially expected to

improve the system reliability. We believe taking advantage of the critical

knowledge about the scene geometry is an important step towards obtaining

reliable video surveillance systems.

In this work, we have used the information of Entry/Exit areas to define

the completeness or integrity of the tracks. The intuition behind this defini-

tion is that, given an infinite video stream, a track can only start and finish in

a gateway. This apparent criterion is utilized in our system to distinguish the

incomplete tracks. These tracks are the main candidates for post-processing

in the ‘Consolidation’ stage. The scene Entry/Exit areas can be the frame

boundaries or the building doors, gateways, etc., which are defined by a set

of bounding boxes (c.f . figure 4.4). Since the focus of this thesis is on video

surveillance with static cameras, Entry/Exit areas are manually defined as

one of the camera calibration steps during the system installation. Automatic

detection of Entry/Exit areas based on the flow of the crowd is a possible

extension to this work. However we don’t consider this manual setting as a

limitation in the proposed system, since it is a one-time simple adjustment.

Furthermore for the PTZ cameras, the Entry/Exit areas can be updated with

the camera movements, based on the known camera parameters and motion.

By performing the integrity test, incomplete tracks whose head or tail

are not consistent with the scene gateways are recognized. Some probable

situations in which incomplete tracks may emerge in the system, are:

• occlusions by static scene occluders or other moving targets may cause

missed detections or confusion over an interval,

• when two closely moving targets split at some point within the scenario,

and the system instantiates a new track for the newly emerged non-

associated members,

The incomplete tracks should be resolved, mainly through joining to other

extracted tracks, if their confidence scores (defined later) are above a thresh-

old. This is due to the fact that all the reliable (high confidence) detections

in the system have been already associated with clusters/tracks during the
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Fr# 100:  0 non−Associated Dets out of   0 Dets

Figure 4.4: Manually configured Entry/Exit data for the scenario (PETS2009, S2L1, V01)

data association stage.

We introduce two types of confidence scores for the tracks in our system,

namely a ‘Total Confidence Score’ and a ‘Distinct Confidence Score’, which

are utilized in consolidation process. ‘Cluster Confidence’ scores of a target

along its whole track, is the common basis for defining both track confidence

measures. The ‘Cluster Confidence’ is characterized by the average ‘Depth-

Height Confidence’ of the cluster members in a frame. Assume Ĉj(i) is the

Depth-Height confidence of cluster center related to the target j in frame i.

Then the ‘Total Confidence Score’ of the target track Tj is defined as:

STot(Tj) =
T∑
i=H

Ĉj(i), (4.13)

where ‘H ’ & ‘T ’ stand for ‘Head’ & ‘Tail’ of the track Tj in the video sequence.

On the other hand, the ‘Distinct Confidence Score’ of a target track Tj

characterizes the independent confidence score of the track, i.e., the amount

of non-overlapped clusters that support the track. In other words the more

a target is overlapped with other targets throughout the track length, the

lower will be its ‘Distinct Confidence Score’. In the light of above the ‘Distinct
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Confidence’ is defined as:

SDis(Tj) =
T∑
i=H

Ĉj(i) ·
(

1−max
k(6=j)

O (Tj(i), Tk(i))

)
, (4.14)

where O (Tj(i), Tk(i)) represents the overlap of the target j with any other

target k(k 6= j) in frame i. Overlap of two targets (Tj, Tk) in a frame is

defined as:

O(Tj, Tk) =
area [intersect(Tj, Tk)]

area[min (Tj, Tk)]
, (4.15)

In Equation (4.14) we have negligently assumed that maxk(6=j) O (Tj(i), Tk(i))

represents the true overlap of the target j with all other targets in the frame.

This is predominantly a true assumption in sparse crowds, where the target

is not usually overlapped by more than one other target.

Duplicate tracks that are majorly overlapped throughout their whole length,

demonstrate a very low ‘Distinct Confidence Score’. Such spurious tracks

might be generated in the clustering optimization stage, as well as the consol-

idation stage (discussed below). Hence the counterfeit tracks are recognized

based on the proposed metric and removed from the system.

Our proposed consolidation framework, is a light-weight rule-based sys-

tem which works based on the introduced metrics. Consider that the con-

fidence scores deliberately contain a notion of tracks’ lengths, as they are

not normalized by the length of tracks. The tracks are resolved one at a

time, in descending order of the ‘Total confidence score’ (STot). Furthermore

at each round of consolidation, the tracks with a low ‘Distinct Confidence

Score’ (SDis < ϕ) are killed, where the threshold ϕ is manually set in the

system. In the first step the integrity of each track is checked and the incon-

sistent borders (tracks’ incomplete ‘Head’ and ‘Tail’) are determined. Then

the incomplete boundaries of the tracks are completed by other tracks or

through extension to the closest gateways in the scene. Such extensions can

only occur over a few frames, due to the possibility of missed detections for

the partially visible targets at gateways. A high-level flowchart of the track

consolidation process is presented in figure 4.5.

The sequential rule-based consolidation process for incomplete tracks is

accomplished in descending order of their total score STot, as described be-
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Figure 4.5: High-level Flowchart of the track consolidation process

low. We note that the set of incomplete tracks may change during the process

due to the ‘Split’ and ‘Join’ operations.

• The distance of the track’s incomplete boundary to the closest gateway,

is estimated based on the target velocity at the boundary frame.

• Given the boundary is close enough to a gateway, the track will be

smoothly extended to the specified gateway.

• If not extended, the track is completed by joining to other proper tracks

through replacing or copying the track piece (described below).

• The distinct score SDis of the remaining tracks are recalculated and low

confidence tracks are removed from the system.

We define a ‘Correspondence’ loss function for joining two tracks, to as-

sure a smooth transfer among them. Hence the most homogeneous track

with the highest similarity in position, motion and size of the target is iden-

tified for completing the specified boundary. The intuition behind joining

tracks is the fact that moving targets in the scene may join or split among the

video. This may result in estimation of incomplete tracks during the cluster-

ing optimization. The proposed ‘Correspondence’ loss function is similar in
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spirit to the temporal terms of the clustering loss function (c.f . Equation (4.6)

in section 4.3.1). Suppose Y t0
k is the incomplete boundary of track k at time

t0 and Y ti
i is a joining point on track i at time instant ti. Then the energy loss

for connecting Y t0
k to Y ti

i is defined as:

LCor(k, i) = λ1

{
‖fS(Y t0

k )− fS(Y ti
i )‖2

2

}
+ · · ·

λ2

3

{
‖fP (V t0

k − Vtr)‖
2
2 + ‖fP (Vtr − V ti

i )‖2
2 + ‖fP (V t0

k − V
ti
i )‖2

2

}
, (4.16)

where
(
fP (V t0

k ), fP (V ti
i )
)

are the target speeds on tracks (k, i) at time instants

(t0, ti) and fP (Vtr) defines the transition speed between the joining points of

the two tracks at (t0, ti):

V
t0(/ti)
k(/i) = fP (Y

t0(/ti)
k(/i) )− fP (Y

t0(/ti)±1
k(/i) ),

Vtr =
(fP (Y t0

k )− fP (Y ti
i ))

|t0 − ti|
, (4.17)

The first term in the ‘Correspondence’ loss function (Equation (4.16)) ad-

dresses the scale constancy constraint, which ensures similar target sizes. The

second term assures the adjacency of the connection points and smooth trans-

fer between the two tracks. The variable Vtr, encodes the relative position of

the joining points on the tracks in terms of a transfer velocity. The proximity

of the joining points on the tracks are not directly encouraged through the

loss function. The reason is that the optimal connection point on a track, is

not always the closest point. This is due to the fact that confusion of tracks

occurs in occlusion situation, where there is not enough clarity about the ac-

curate target locations. Consequently it is reasonable to look for the optimal

joining point on each track, which is usually before the time an occlusion

starts. Hence the solution to our problem is the optimal track Ti and the opti-

mal joining point ti on it, which minimizes the ‘Correspondence’ loss function

for completing the track Tk:

(ψ, tψ) = arg min
i,ti

LCor (Tk, Ti(ti)) , (4.18)

where ψ is the index of the optimal track Tψ and tψ is the best connection
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point on Tψ which results in a smooth transfer between the identified tracks.

We look for the optimal joint on each track within a limited interval in prox-

imity of the incomplete boundary of track k.

The proposed energy minimization and motion terms of the correspon-

dence energy loss in Equation (4.16), has some common ground to the en-

ergy minimization framework of [MRS14]. However, [MRS14] applies the

motion model within a non-convex minimization problem with a high com-

putational cost, for data association and extraction of target tracks. While

at this stage of our method, the high confidence detections are already asso-

ciated to tracks. Hence, the proposed correspondence energy minimization

deals with the few incomplete boundaries of the established tracks rather

than the numerous detection results. The minimization process explores best

combination of the established tracks with negligible cost, in order to form

complete tracks.

Following the recognition of the optimal track for completing the bound-

ary of track k, we propose two strategies for joining two tracks, namely ‘Join

by Copy’ or ‘Join by Replace’. We use the ‘Distinct Confidence Score’ (c.f .
Equation (4.14)) of the remaining part of track Tψ to decide which joining

strategy is suitable. More specifically, if SDis(Tψ) < ϕ, then we apply a ‘Join

by Replace’ strategy, in which the track part will be removed from Tψ and at-

tached to Tk (The remaining Tψ will be removed later due to the low distinct

score, SDis). Otherwise the mentioned track piece will be copied to Tk and

form a duplicate track in the copied section of the track. The intuition behind

this proposal is based on the fact that overlapping targets that are moving to-

gether within the scenario, may split at some point. The constant threshold

ϕ is empirically set to (ϕ = 20) in our system. However, our experiments

show that any value in the range
(
ϕ ∈ [15 50]

)
performs well and provides a

similar performance.

4.4 Experiments

Evaluation of the system has been performed in terms of detection accu-

racy on one of the the most challenging datasets publicly available (sparse

scenarios from PETS-2009-S2L1). The improvement over a state-of-the-art
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pedestrian detector (ACF detector [DABP14]) has been presented. The tested

scenario includes about 15 low resolution pedestrians, entering and exiting

the scene at various time instants. Several occlusion events (more than 40

cases, some of which last for up to 15 frames) occur during the video se-

quence. Occlusions are due to the scene occluders or the inter-person occlu-

sions, sometimes among pedestrians with similar appearances. The proposed

framework demonstrates a robust behavior to the occlusion situations, while

it is able to preserve the target identities in most of the the cases among

the scenario. The overall system precision measured over the entire video

sequence (tp/(tp+ fp)) is increased by about 15% with respect to the state-of-

the-art. This improvement is due to the elevated system stability in occlusions

and the large reduction in false positive detections. Further quantitative re-

sults are provided in this section to substantiate the robustness of the pro-

posed method through the numerous occlusion events of the tested scenario.

A video result of the proposed system is also available on ‘youtube’, for visual

demonstration 1. The system is adapted to various number of targets along

the sequence, through the online mechanisms for updating the active clusters

per frame. As shown in Figure 4.2 and discussed at the end of section 4.3.1,

entering and exiting targets are detected through the process and their rele-

vant clusters are updated. Hence the system is aware of the targets number

in the scene, through updating the active clusters per frame. The evaluation

results on the system counting accuracy is presented later on.

A MATLAB implementation of the proposed framework on a ‘2.4GHz, In-

tel Core-i7’, performs at a rate higher than 125 frames per second. This rate

is calculated based on the required time for clustering optimization and track

consolidation, regardless of the detection time. Hence according to the ef-

ficiency of the ACF detector, the whole system presents a real-time perfor-

mance.

Figures 4.6 and 4.7 demonstrate sample outputs of the proposed frame-

work in various major occlusions, for visual purposes. The numbers above

the bounding boxes demonstrate the number of cluster members for each tar-

get. This is equivalent to the detection frequency discussed in section 4.3.2

and represents the number of the pre-NMS ACF detections which are asso-
1Occlusion Handling in Multiple Target Detection and Tracking
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ciated to the cluster. We notice that in some frames the system represents a

bounding box with ‘0’ members. Such situations arise when the ACF detector

does not report any relevant detection in that area, while our system is still

able to localize the target, thanks to the temporal terms of the clustering loss

function.
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Figure 4.6: Sample results on (PETS2009, S2L1, V01), The number of cluster members are
shown above the bounding boxes

The detection performance is evaluated based on PASCAL criterion [PBE+06]

which considers a detection to be correct (true positive) if the overlap of

the detected and ground-truth bounding box (intersection over union) is

greater than a sufficient threshold (typically 0.5). We have used three dif-

ferent thresholds (Thr = 0.25, 0.5, 0.75) for comparing the performance of

our system against the ACF detector. For lower thresholds, a higher perfor-

mance is reported, since a smaller overlap is accepted as a correct match

between the detection and ground truth.

For Thr = 0.5, the overall system precision tp/(tp + fp) over the whole

sequence), is increased from 83% in ACF detector to 96% in our proposed

system, due to the large reduction of false positives. For Thr = 0.25, the

overall precision of the ACF detector is 84.7%, while our system demon-

strates 99.3% overall precision! This is due to the fact that our system keeps

the track of targets among the video, although in some frames the bounding

box may not be completely localized and the overlap with the ground-truth

falls below 50%. Such detections are reported as an unmatched detection
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Figure 4.7: Sample results on (PETS2009, S2L1, V01), The number of cluster members are
shown above the bounding boxes

with Thr = 0.5, while they are considered as a true match with Thr = 0.25.

The ROC curves of figure 4.8 for Thr = 0.25 and Thr = 0.75 clearly

demonstrate the improved performance of our system as compared to the

ACF detector. As shown in the curves, for Thr = 0.25 we get a 95% per-

formance at fppi = 0.04, which is far above the ACF performance curve.

However for Thr = 0.5 we get a 92% performance at fppi = 0.22, still above

the ACF curve, but the trend of the ROC curve shows that we will have a

much higher detection rate at higher fppi values, compared to the ACF per-

formance which saturates at 91%.

We also evaluate a ‘Counting Error’ rate in the system, which is defined as

the difference of the number of ground truth and detected targets per frame.

The counting error was decreased from 14.5% in ACF detector to 3.8% in our

system, i.e., the number of targets per frame can be reported smoothly and

reliably.

We notice that during the experiment one identity switch occurs between
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Figure 4.8: ROC curves for the two methods (ACF + NMS. vs. ACF + Spatiotemporal
Clustering - STC.), on PETS09-S2L1-V01 scenario with three different overlap thresholds of
PASCAL criterion (25%, 50%, 75%). The horizontal axis represents the False Positive Rate.
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frames #425 to #430. The current proposed cost function is defined just

based on the detector output features and no appearance model is incorpo-

rated in the framework yet. In the next step, we are planning to explore how

to integrate an elegant appearance model in our optimization framework in

order to resolve the identity switch problem, while obtaining a more accurate

localization which will improve the detection rate of the system.

4.5 Summary and Discussion

We propose an efficient spatio-temporal clustering framework to improve

NMS in occlusion events and simultaneously compensate for the general de-

tection errors, namely the missed detections and false alarms. Effective oc-

clusion handling in the proposed framework is a direct consequence of the

system awareness about the number of existing clusters/targets in the frame.

Spatial and temporal data association is combined in a principled framework,

which entails consistency in the motion and scale of the tracked targets across

frames and provides an efficient closed form solution for the problem. While

the proposed cost function helps maintaining a smooth track for every target,

it is also able to handle occlusion situations when the targets have different

scales or motion directions. Moreover, we have taken advantage of the no-

tions ‘Depth/Height Map’, the ‘Scene Entry/Exit’ and an ‘Overlap Matrix’ to

post-process the results of the optimization and consolidate the estimated

tracks within a light-weight rule-based system. The track consolidation mod-

ule removes spurious tracks with low confidence and takes care of integrating

the incomplete tracks which don’t start or end at Entry/Exit areas.

The proposed system optimizes a track for each target through a cluster-

ing framework, while it realizes new pedestrians entering the scene. Hence

a new cluster is defined for every emergent target within the frames, which

is constantly updated along the video sequence. We suggest to use standard

NMS along with a specifically designed confidence score to instantiate new

clusters for new entrant targets. The above mentioned clustering cost func-

tion along with the proposed scheme for cluster instantiation, seems to be

adequate enough to mitigate the need for Foreground/Background modeling

towards reducing the false positives. The proposed framework significantly
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improves the detection performance in sparse crowds, by removing most of

the false positive detections.

The proposed framework demonstrates a high capability for occlusion

handling within a low resolution context, given a proper pedestrian detector

is utilized. We use an efficient state-of-the-art pedestrian detector [DABP14]

with a full-body pedestrian model in the first stage of our system. Hence the

whole system is computationally very efficient and provides a real-time per-

formance on a standard CPU. As mentioned above, the proposed framework

is suitable for processing both high or low resolution video sequences. Hence

the system performance does not decrease very much with low quality videos,

due to using a whole body model in detection. The above mentioned proper-

ties, including the system compatibility with the existing infrastructures and

low resolution cameras, make it attractive for practical video surveillance.

Future works: One potential extension to the current framework is to in-

corporate the targets’ appearance models in the clustering optimization and

track consolidation. This is expected to improve the system performance

further in occlusion situation and resolve the remaining confusions. More

clearly when the motion and size information alone do not suffice to resolve

the ambiguities and identity switch among the targets are probable, an ele-

gant appearance model is expected to improve the system behaviour. We are

curious to investigate how much this generalization can improve the detec-

tion and tracking performance in medium and dense crowds, scenarios like

people walking in a mall or exiting a stadium. Moreover we are aware that

further experiments and more thorough evaluation could help to improve

and demonstrate the strength and stability of the system for practical video

surveillance applications.
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5.1 Introduction

It is well known that human and primates outperform all the existing com-

puter vision systems by almost any measure in various visual tasks such as

recognition. Hence building artificial vision systems that emulate the capabil-

ities of the brain cortex layer has always been an attractive idea. Biologically

inspired research in computer vision has produced a number of promising

models which replicate the lowest levels of the visual cortex for extracting

visual features [WRC08]. In this primary level, visual cells extract local ori-

ented features in various scales and orientations, to be used as fundamental

cues for constructing a detailed representation of the vision field.

Different types of multi-scale and multi-Orientation filters have been pro-

posed in the computer vision literature for extracting local oriented fea-

tures [Kub95]. Among the existing models, ‘Gabor’ filters and ‘Gaussian

Derivatives’ [SWP05, Dia06] are the most popular ones which simulate the

function of simple cells in visual cortex. The proposed models are multi-

channel filter banks, where all the channels are generated from one mother

wavelet through dilation and rotation. Each filter channel represents a spe-

cific scale and orientation in 2D or 3D space.

In the last decades multichannel decomposition of images and videos have

been applied in various computer vision applications. The Spatiotemporal
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Oriented Energy features which we used in previous chapters for the purpose

of space-time video analysis (c.f . Chapter 3), are a 3D extension of ‘Gaussian

Derivative’ functions in space-time (x, y, t). Increasing application of biolog-

ically inspired features in computer vision along with their relatively high

computational cost, motivates using parallel computing technologies such as

GPUs. The importance of hardware acceleration in computer vision is un-

subtle due to the fact that a wide range of applications in video surveillance,

robotics and human computer interaction require real-time processing of a

streaming video. The profoundly parallel nature of biological vision systems

and neural networks is also a good support for this approach.

In a pilot plan prior to our main research, we developed a GPU engine of

a 2D filter bank, to evaluate the best achievable performance for extraction

of multichannel features. In this chapter we present details of a Gabor GPU

kernel for extraction of the 2D multichannel Orientational Gabor features in

real-time. The design of the GPU kernel mimics the initial layers of visual cor-

tex composed of ‘Simple’ and ‘Complex’ cells. ‘Simple’ units perform a pattern

matching with the Gabor wavelets in different scales and orientations by fil-

tering the image. The filtering operation is conducted through convolving the

image with the filter masks. Then ‘Complex’ units aggregate the outputs of

the ‘Simple’ units at common orientations to provide local spatial invariance.

5.2 Related Works

Multi-scale and multi-directional processing are fundamental concepts in ar-

tificial and natural vision systems for perceiving the environment. This is due

to the fact that real world objects and structures appear in different orienta-

tions and scales depending on their relative position to the observer. Hence a

legitimate visual perception of the environment without considering the no-

tion of scale is impossible. In other words a reasonable solution is required

to handle the multi-scale nature of real-world objects and their dynamics. In

absence of any prior information about the relevant image scales, a common

approach is to build an image pyramid representing the visual information

at multiple scales. In such a multi-scale representation, the coarse pyramid

levels are simplified versions of the corresponding structures at fine scales
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with less details. The most well known pyramids which are widely applied

in various applications, are Gaussian pyramids [Bur81] and Laplacian pyra-

mids [BA83].

Inspired by the function of the visual cortex cells, more principled ap-

proaches have been proposed to handle the multi-scale and multi-orientation

analysis in a unified framework. Gabor filters and ‘Gaussian Derivatives’ are

the most popular multi-scale orientational filters in the field of computer vi-

sion. The Gabor model for the response of simple cortical cells was first pro-

posed by Marcelja in 1980 [Mar80]. However the mathematical functions

are often credited to Dennis Gabor in 1946, who supported their application

in communication systems [Gab46]. Gabor filters have been widely applied

in various computer vision applications, such as facial recognition [LW03],

iris recognition [MWT02], fingerprint recognition [AJP00], texture segmen-

tation [JF91], etc. The second model of cortical receptive fields, known as

Gaussian Derivatives, was first proposed by Young in 1986 [You86]. Due to

their natural bond with Gaussian pyramids, Gaussian Derivatives have been

widely applied for multi-scale processing of images and videos [Lin94, Bur81,

BA83].

Gabor model is a set of complex valued functions, characterized as the

product of a Gaussian kernel and sinusoidal plane waves expressed by com-

plex exponential. However Gaussian Derivatives are real valued functions

represented as product of a Gaussian kernel and the generalized Hermite

polynomial. Hermit polynomials are generated through partial derivations of

the Gaussian kernel [YL01]. Gaussian Derivatives are also known as the nth

Derivative of Gaussian (DoG).

Gaussian derivatives and Gabor functions have adjustable spectral band-

widths and can be rotated to construct a filter bank. Orientation in Gabor

filters is an explicit parameter which is directly tunable and makes the filter

intrinsically steerable [WC05]. While the DoG filters are synthesized from

linear combinations of basis functions [FA91]. For visual demonstration, the

basis functions of 2nd Derivative of Gaussian filters are shown in Figure 5.1.

The steerable filters used in previous chapters are complex quadrature pair

filters constructed based on DoG functions and their Hilbert transform, which

were first introduced by Freeman [FA91].
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Figure 5.1: Basis functions of 2nd Gaussian Derivatives

Many variants of multi-scale and multi-orientation transforms, have been

developed in the last two decades. To name a few, ‘Dual-Tree Complex

Wavelet Transform’ [Kin99, SBK05], ‘Pyramidal Dual-Tree Directional Filter

Bank’ [NO08, NO06], ‘Contourlet’ Transform [DV05] and ‘Curvelet’ Trans-

form’ [EJCY06, NC10]. The scaling factor and bandwidths of the filters in all

of these multi-channel filter banks, are designed to efficiently cover the whole

spacial frequency domain (c.f . Figure 5.2). Hence all the filter banks provide

a rich and efficient description of the visual domain. However only some of

them provide a perfect reconstruction scheme for reverse transform. For in-

stance the Gabor wavelets are not orthogonal and do not produce a perfect

reconstruction scheme. They are highly redundant due to unlimited possible

number of orientations and produce an overcomplete representation of im-

age. We refer interested readers to [VO08], for further comparative details

about the above-mentioned multi-channel transforms.

Due to the wide application of Gabor filters in computer vision and their

intensive computations, we conducted our pilot plan for parallel processing

on Gabor filters. To obtain a Gabor filter bank with certain number of scales

and orientations, all the filters are generated from one mother wavelet by

dilation and rotation. The two-dimensional Gabor filter in spatial domain, is

a Gaussian kernel modulated by complex sinusoidal plane waves:

g(x, y) =
ej(2πx

′/λ+ψ)

2πσx · σy
. exp

(
−1

2
(
x′2

σ2
x

+
y′2

σ2
y

)

)
, (5.1)

Where λ is the wavelength of the sinusoidal factor and ψ is the phase offset.

Moreover σx and σy represent the standard deviation of the Gaussian enve-

lope along the x and y directions. Hence
(
σx , σy

)
= (σ , σ/γ), while σ is
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Figure 5.2: 2D Frequency response of Multi-Channel Wavelet Transforms: (a) Steerable
pyramid (2nd DoG): (NS , Nθ) = (3, 8) , (b) Gabor Wavelets: (NS , Nθ) = (4, 6) , (c) Dual-Tree
Complex Wavelet Transform: (NS , Nθ) = (3, 8) , (d) Contourlet transform: (NS , Nθ) = (3, 8)
, (e) Pyramidal Dual-Tree Directional Filter Bank: (NS , Nθ) = (3, 8) , (f) Uniform Curvelet
Transform: (NS = 3, Nθ = 4, 8, 16).

the total standard deviation along the filter orientation and γ indicates the

spatial aspect ratio relevant to the ellipticity of the Gabor support. x′ and y′

are functions of the filter orientation θ, as defined below:

(
x′ y′

)
=
(
x y

)
·

(
cos θ − sin θ

sin θ cos θ

)
(5.2)

Filtering is carried out across multiple channels at different frequencies

(f = 1/λ) and orientations (θ), through spatial domain convolution [HX05,

LW02]. Gabor filters are non-separable filters by nature, thus requiring a 2D

convolution for filtering operation. The order of complexity in spatial con-

volution is O(M2.N2), where (M,N) are the sizes of image and filter mask.

Many research efforts have been made to improve the computational com-

plexity of Gabor filtering [NNPT98, AWT04, AWST05a]. Due to separability

of the Gabor functions in horizontal and vertical directions, some studies pro-

pose to reconstruct the image along the filter orientation [AWST05b]. Hence
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following the reconstruction process, the separable functions may be applied

rather than the 2D Gabor filters. However such methods require a resampling

process on the image for every single orientation. This implies a costly 2D

interpolation on the whole image per filter channel, which increase the com-

putational complexity of the system. Some other studies suggest to perform

the convolution operation in frequency domain [ATB09]. In frequency do-

main convolution, Fast Fourier Transform (FFT) of the image is multiplied by

the FFT transformed Gabor filter. Then the multiplication result is converted

back to spatial domain using the inverse FFT. Performing filtering process in

the frequency domain reduces the computational complexity to an order of

O(M2. logN). One issue in this approach is that the generic FFT formulation

is limited to signals with an even length (2n). Furthermore the FFT based

methods require large memories for keeping the intermediate results among

the process [ATB09]. As described in the next section, optimizing memory

transactions is a critical designing issue in GPUs, which can affect the total

performance. Hence in this work we use a spatial domain convolution for

designing our GPU engine.

5.3 Background on GPUs

GPUs are inexpensive parallel processors that have been widely employed in

many applications as powerful coprocessors. The power of GPUs as hardware

accelerators stem from their high memory bandwidth and large number of

programmable cores. Thousands of hardware thread contexts execute the

programs within a SPMD model(Single Program, Multiple Data). GPUs are

flexible and easy to program, thanks to the high level languages and avail-

able APIs which encapsulates the hardware details. Compared to FPGA de-

sign process which requires frequent hardware corrections, modifying a GPU

function is straightforward through recompiling a modified code.

In this work, we use OpenCL API within the CUDA architecture for devel-

oping a GPU kernel of Gabor filter bank. OpenCL which stands for ‘Open

Computing Language’, is a framework for writing programs that execute

across heterogeneous platforms consisting of CPUs, GPUs, and other pro-

cessors. OpenCL provides access to the Graphical Processing Unit (GPU) for
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non-graphical applications through the existing APIs. CUDA represents the

nVIDIA ”‘Unified Device Architecture”’. In CUDA, the GPU is treated as a

coprocessor that executes data-parallel kernels with thousands of threads.

Threads are grouped into thread blocks, which share data using fast shared-

memories. There is no communication among thread blocks or working

groups, i.e., their execution is completely independent. The coordination

of the thread blocks is conducted through a large global memory, which is

much slower compared to the dedicated shared memories.

Execution Model - CUDA Architecture

The CUDA architecture corresponds to the OpenCL architecture. CUDA de-

vice is built based on a scalable array of multithreaded Streaming Multipro-

cessors (SMs). A multiprocessor executes a thread block for each OpenCL

work-group. A kernel is executed over an OpenCL ‘N ’ dimensional grid of

thread blocks (NDRange). As illustrated in Figure 5.3, each of the thread

blocks is uniquely identified by a work-group ID. Moreover each single thread

is identified by a unique global ID or through a combination of a local ID and

the work-group ID [Ope09].

Every work-group in the grid has access to a limited high-speed shared

memory. Typically, each work-group invokes hundreds of threads. Generally

every 32 scalar threads are combined in a warp which is defined as a working

group in the SIMD (Single Instruction, Multiple Data) model. A common

strategy for GPU programming is to split the problem into blocks with similar

function, operating on different parts of the information (SIMD). Hence the

kernel blocks execute in parallel on distinct data.

Memory Hierarchy

Memory bandwidth is a critical issue in GPUs. The memory resources should

be dedicated wisely, in order to optimize memory transactions. Otherwise

data transmission might be much more time consuming than the actual pro-

cess, due to massive parallel computing resources and their data transactions

in the GPU. When programming on GPU, the programmer has direct access to

any part of the memory hierarchy. In fact it is encouraged to design applica-
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Figure 5.3: CUDA Execution Model

tion specific memory hierarchy to optimize the transactions and therefore the

execution time. Three types of memory is provided in the GPU architecture:

• Local registers: Each GPU core has some local registers which serve as

the fastest read-write locations available to the threads.

• Shared memory: CUDA exposes a fast shared memory region amongst

all the threads in a block. Multiple blocks running on the same Stream-

ing Multiprocessor (SM), use separate parts of a shared memory. This

high-speed memory is used as an interface cache memory between the

global memory and active threads, due to its higher speed and band-

width compared to the global memory.

• Global memory: The GPU’s global memory may be accessed by all

threads and blocks. However it is several times slower than the shared

memory, as it requires several hundred cycles for each data transfer.

This large latency may be hidden, if the communication cost is much
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lower than the computational cost. Furthermore the average transac-

tion latency may be decreased, given the kernels are designed for opti-

mum coalesced access to the global memory.

5.4 Technical Approach

The biological studies of the simple cells in visual cortex, indicate that the

typical aspect ratio (γ) in the Gabor model is in the range of 0.2 and 1 (0.23 <

γ < 0.92) [PK97]. An aspect ratio less than unit, implies an elliptical rather

than a circular support for the Gabor function. In this case, a rectangular filter

mask might be more suitable for representing the elliptical envelope. General

trend in the literature is to assume Gabor filters as square masks, to simplify

the system design specially in FPGA based processors. A direct consequence

of this simplification is that a lot of practically zero coefficients in the mask,

lead to extra computational cost for the system. On the other hand some non-

zero coefficients may be removed from the mask which causes computational

errors or inaccuracies in the estimated features (c.f . Figure 3.7).

To improve on these issues, we designed an adaptive Gabor engine for

convolution operation in spatial domain. The proposed engine supports non-

square filter masks with a variable size adaptable to different channels. In

other words, the filter mask size in various orientations is adjustable to the

shape of Gabor support. Hence the computational cost is minimized without

sacrificing the accuracy. Optimum size of the filter mask depends on orienta-

tion of the filter, as well as the standard deviation of the Gaussian envelope.

We propose to calculate the width and height of the Gabor masks (FW , FH)

through the following equation:

FW =1 + 2 max( |nsσx cos(θ)| , |nsσy sin(θ)| ), (5.3)

FH =1 + 2 max( |nsσx sin(θ)| , |nsσy cos(θ)| ),

σ = a · λ , (σx , σy) = (σ ,
σ

γ
) ,

where λ is the wavelength of Gabor oscillation in pixels and θ is the filter ori-
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entation. (σx, σy) represent the standard deviation of the Gaussian envelope

along x and y axis and γ is its spatial aspect ratio, specifying the ellipticity

of the envelope. The constant integer number ns is manually set to define

the half-length of a base symmetrical mask. Furthermore the constant ‘a’ is a

function of the filter bandwidth (BW ), as defined in Equation 5.4 [WRC08],

with the bandwidth specified in octaves.

a =
k

π
· 2BW + 1

2BW − 1
, k =

√
ln 2

2
. (5.4)

Definition of the filter sizes in Equation 5.3 assures a minimum accuracy

in feature extraction, since the filter coefficients above a certain threshold

will not be discarded. The kernel is designed to calculate real and imaginary

parts of the complex Gabor transform separately. Hence two separate matri-

ces are calculated for every channel which represent the energy and phase

features of the image in that specific channel. ”‘Feature Pooling”’ with Max

and Histogram methods is the last layer in the proposed Gabor engine, with

a negligible additional load on the system. This layer emulates the function

of ”‘Complex cells”’ in visual cortex, by spacial aggregation of the calculated

features in similar channels.

The nVIDIA CUDA framework enables us to use the Graphics Processor

Unit as a general purpose computing device. We implemented our Gabor en-

gine on nVIDIA GTX285 device (c.f . Figure 5.4) by using OpenCL. The nVIDIA

GeForce GTX285 is comprised of 30 Streaming Multiprocessors (SM). Each

SM has 8 Streaming Processors (SPs), which implies a total 240 SP cores.

Furthermore each of the SP cores are deeply multithreaded. The maximum

number of active warps per multiprocessor (SM) is 32, which indicates 4

warps or 128 threads per SP. As a result the number of active threads per SM

is limited to a maximum of 1024. Hence GTX285 is capable of executing a

maximum number of 30720 (30×1024) threads in parallel. However this pro-

cessing capability is dependent on many conditions including the limitations

of shared memory and local registers.

GTX285 provides 16KB shared memory per multiprocessor, organized into

16 memory banks. Furthermore 2048 local registers are provided per SP, de-

noting a total number of 16384 registers per SM. This implies that for acti-
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Figure 5.4: nVIDIA GeForce GTX285 device

vating the maximum number of threads on a multiprocessor (1024 threads),

only 16 registers can be dedicated to each thread [CUD09]. The architecture

of the designed kernel along with the implementation details are discussed

in the following section.

5.4.1 GPU Kernel Structure

The proposed adaptive Gabor kernel, divides the input image into blocks of

16×16 pixels for processing. Hence a preprocessing step on the input image is

required to pad the width and height of the image to multiples of 16 pixels.

Similarly, dimensions of the filter masks are considered as multiples of 16.

This doesn’t impose any limitations on the filter size, as the zero padding

may be applied to any filter size. Given a non-unit aspect ratios (γ < 1),

various channels of the Gabor filters have different sizes corresponding to

their orientation (θ). Hence the GPU thread blocks concurrently process the

same image with filters of variable sizes.

When the convolution process is finalized in all of the thread in a ”‘Work-

ing Group”’, an efficient ”‘Spatial Feature Pooling”’ is conducted through

”‘Parallel Reduction”’ technique. For every block of 16 × 16 pixels, two types

of aggregated features are provided per channel:

• Maximum of the Gabor features in the block,

• Summation of Gabor features in the block, to be used as one of the

Histogram bins.
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The additional computation cost for pooling is negligible compared to the

convolution operation. However the abstract results provide meaningful in-

formation about the image structure at common orientations, with some level

of spatial invariance. The produced integral Gabor features have been widely

applied in many studies.

Processing Resources

Our kernel is executed over an OpenCL 3DRange, within a 3 dimensional

grid of thread blocks. Every thread block consists of 16 × 16 × 1 = 256

threads. Each thread is responsible for calculating the filtered value of a

single pixel, by convolving the filter mask on a sub-image block around the

pixel. The Multiplication-Addition operations of the two convolutions for real

and imaginary parts of the features, are sequentially conducted in a thread.

In this structure every thread block is responsible for processing 256 pixels in

an image block to produce one channel of the Gabor features for all pixels.

Based on the assumptions, the image is divided into a grid of blocks. Sup-

pose there are Nx block columns in the image width and Ny block rows along

the height. Also assume the filter bank has NS scales and Nθ orientations.

Then a 3DRange grid of processing blocks is organized in the GPU for par-

allel processing and extracting the Gabor features. Hence, the 3DRange grid

dimensions SGrid are defined as:

SGrid = {Nx, Ny, NCh} & NCh = NS ·Nθ , (5.5)

where NCh represents the number of filter channels. For the purpose of

demonstration, Figure 5.5 shows the real and imaginary parts of Gabor chan-

nels in a typical Gabor bank with 3 scales (NS = 3) and 6 orientations

(Nθ = 6). As discussed beforehand, the size of filter masks used in our engine

are variable in different channels, depending on their scale and orientation.

The proposed architecture may be described as NCh processing layers.

Each hypothetical layer, consists of Nx × Ny thread blocks which apply one

Gabor channel to the whole input image in parallel. Every layer use a distinct

filter mask corresponding to the relevant scale and orientation of the Gabor

channel. Hence all the NS ×Nθ Gabor channels concurrently apply on a sin-
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Figure 5.5: A Gabor bank with 18 channels (NS = 3 and Nθ = 6)

gle image within the GPU processing grid. Input frames are sequentially fed

into the engine. To have a better understanding of the whole computational

space inside the GPU, let’s assume the physical processing resources are un-

limited. Given the image width IW and image height IH , the total number of

simultaneously active threads is:

SGlobal = IW × IH ×NCh. (5.6)

However SGlobal is much larger than the available processing cores. Hence

the GPU controller manages an optimal parallel-serial scenario to execute all

the thread blocks efficiently, until the whole process is accomplished. Given

the local memories and internal registers are efficiently utilized, one Stream-

ing Multiprocessor (SM) in the GTX285 is capable of simultaneously running

1024 threads or 4 image blocks of 16 × 16 pixels. Hence all the 30 SMs to-

gether, can potentially process 120 blocks in parallel. This is equivalent to a

total 120× 256 = 30720 concurrent convolution operations.
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Memory Resources

One of the the most critical issues in GPU is the memory bandwidth and data

transactions. Huge amount of information transfer among the processing

units and GPU memories might turn to a system bottleneck. For instance,

one 2D convolution operation with a typical Gabor mask of size 16 × 16,

requires 2 × 256 data fetches for accessing the image and filter information

in the memory. Apparently performing 30720 concurrent convolutions can

put a considerable strain on the GPU memory bandwidth. Hence optimal

strategies for data fetching and memory management are required to achieve

good performance.

All the threads in a thread block work with the same filter matrix, for

filtering various pixels of an image block. Thus fetching a filter matrix is

performed through a ‘Broadcast’ to all of the threads in a block. Due to low

speed of the global memory, the filter matrix is cached prior to broadcast-

ing. Size of the Gabor filter masks are fairly large and the filter elements

are float numbers, taking four bytes per element. Consequently, due to the

limited space of the local memory, catching the whole filter mask may lead

to a memory overload. To address all these technical issues, the system is de-

signed to buffer 16 elements of the mask per transaction. Hence a coalesced

access to global memory is performed to minimize the transaction delay. For

proper management of the filter information in the thread blocks, the width

of the masks are padded to multiples of 16. In this way every row of the

filter mask is fetched in one or two transactions, depending on the size of

the mask. Filter masks are fetched in 16 packs and the filtering process is

conducted sequentially inside a thread.

On the other hand, every thread dedicated to processing a pixel, requires

an image block around the pixel for filtering. For minimum access to the

low speed global memory, every 16 × 16 thread block caches a larger area

around the image block by coalesced accessing to global memory. Then every

single thread in the working group, reads the buffered image by parallel

access to non conflicting local banks. We use single channel images with

8 bit depth in this work. Thus the required cache memory for storing the

image block is less than the local memory limits. For example with a filter
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mask of size 32 × 36, each 16 × 16 thread block caches an image area of

size (16 + 32) · (16 + 36) = 2496(B) in local memory. Through this strategy

the access to global memory for fetching the image data is optimized by

coalescing and the total number of accesses is considerably reduced. In order

to calculate one channel of the Gabor features for the whole image, the total

number of fetching the image data from the global memory is given by:

(Nx ×Ny)× (SB + FW )× (SB + FH)

(Nx × SB ×Ny × SB)
= (1 +

FW
SB

)× (1 +
FH
SB

), (5.7)

where SB is the block size (SB = 16), FW is the mask width and FH is the

height of the filter mask. For (FW , FH) = (32, 36), the source image is fetched

less than 10 times and for (FW , FH) = (16, 16), the source image is only

fetched 4 times.

5.5 Experiments

For evaluation of the proposed adaptive Gabor engine, we used gray-scale

VGA size (640 × 480) images. The engine throughput is reported by frame

rate (FPS) and pixel rate (MP/S), for various fixed size filter banks. Further-

more, the throughput of the adaptive Gabor engine with variable filter sizes,

is evaluated and compared against the performance of the fixed size filter

banks. We finally present the speedup performance of the proposed GPU

engine compared to an efficient CPU implementation.

Table 5.1 presents the throughput of a 12-channel Gabor bank, comprised

of 4 orientations and 3 scales, with fixed size kernel.

Table 5.1: Throughput of fixed size 12 channel Gabor engines vs. the kernel size

Filter Size 7× 7 11× 11 15× 15 19× 19 25× 25 35× 35 45× 45

FPS 59 42 33 23 14 6 4
MP/S 18.3 13.1 10.2 7.3 4.4 1.9 1.4

For evaluation of the adaptive Gabor engine, the filter bandwidth is set to

one octave (BW = 1.0) and the aspect ratio of the Gaussian envelope is fixed

on γ = 0.8. The optimum mask sizes for different channels are calculated by

the engine, based on Equations 5.3 and 5.4. The mask size depends on the

standard deviation of the Gaussian envelope and the filter orientation. Lower
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frequencies indicate larger wave lengths, which leads to a larger Gaussian en-

velope and filter mask. Table 5.2 demonstrates the mask sizes of 16 different

channels in a Gabor bank with 4 Orientations and 4 Scales.

Table 5.2: Filter mask sizes (FW , FH) vs. filter channels (λ, θ)

PPPPPPPPλ
θ

λ = 2 λ = 4 λ = 6 λ = 8

θ = 0 (9, 11) (15, 19) (23, 27) (29, 35)
θ = π/4 (7, 7) (13, 13) (19, 19) (25, 25)
θ = π/2 (11, 9) (19, 15) (27, 23) (35, 29)
θ = 3π/4 (7, 7) (13, 13) (19, 19) (25, 25)

Performance of the adaptive Gabor engine is evaluated with a 12-channel

Gabor Bank in order to be comparable against the results of Table 5.1. Four

orientations and the three first scales in Table 5.2 (λ = 2, 4, 6) are used to

build up the Gabor channels. The throughput of the adaptive engine with

variable kernel, is measured as 30 VGA frames per second or equivalently

9.2 MPixels per second. This is comparable to throughput of a 15 × 15 fixed

size kernel, as shown in Table 5.1, in spite of using mask sizes up to 23 × 27

in specific channels. As discussed earlier in this chapter, using fixed size filter

banks may lead to truncation of useful mask coefficients on some channels.

On the other hand, it may cause unnecessary computational cost for zero-

multiplications on other channels.

Figure 5.6 illustrates three optional filter masks for a Gabor function at

orientation θ = π/6. The largest filter mask is a non-optimal choice due to

many zero coefficients in the mask, which cause unnecessary computational

cost. The smallest mask is also not a good choice, as truncating the useful

coefficients may lead to inaccurate features. The middle rectangle is consid-

ered as an optimum mask in the proposed solution, which provides accurate

results with minimum cost.

In the last experiment, the speedup performance of the proposed GPU

engine is evaluated. To this end the adaptive GPU engine is compared against

a CPU based implementation of the proposed Gabor bank. The CPU engine is

designed based on the standard OpenCV library with an efficient C++ code.

Evaluation of the CPU engine has been conducted on an Intel Dual Core CPU

6400 @ 2.13 GHZ. Table 5.3 demonstrates the execution time of the CPU and
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.

Figure 5.6: Optimum filter mask for a Gabor function at orientation θ = π/6

GPU engines with various kernel sizes, for filtering a single VGA size frame.

As demonstrated in the table, the speed up gain achieved by the GPU, grows

with the size of filter masks.

Table 5.3: GPU-CPU Performance Comparison for the 12 Channel Gabor Filter Bank

Filter Size 7× 7 9× 9 11× 11 13× 13 15× 15 17× 17 19× 19 25× 25

CPU (ms) 3936 5436 7320 9564 12192 15372 18600 30780
GPU (ms) 16.7 20.0 23.3 26.6 29.8 34.5 42.0 69.6
speedup 235 271 314 359 409 445 442 442

5.6 Summary and Discussion

Increasing application of the multi-scale oriented features in computer vision

and their relatively high computational complexity, encourages using paral-

lel computing technologies. In this chapter, we presented a high throughput

GPU engine for extraction of 2D multichannel Gabor features with real-time

performance on VGA frame sizes. The proposed adaptive Gabor engine sup-

ports ‘Non-Square’ kernels, while adjusting the kernel size per channel, for

efficient and precise estimation of the multi-channel features. The design

of the GPU kernel follows the parallel structure of the initial visual cortex

layers, composed of ‘Simple’ and ‘Complex’ cells. Simple units apply various

Gabor filter channels with different scales and orientations to the input im-

age. Complex units aggregate the extracted features by the Simple units at
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common orientation and scale. Aggregation is performed through a feature

pooling with ‘Maximum’ and ‘Histogram’ methods. The aggregated features

provide abstract information with local spatial invariance, about the orienta-

tional structure of the input image.

This GPU accelerator was developed prior to our main research, to evalu-

ate the speedup performance for extraction of the multichannel features. The

achieved gain by the proposed engine, indicate that GPU acceleration on the

multi-channel Spatiotemporal Oriented Energies (utilized in other chapters),

may obtain real-time performance. Further research is required to investigate

the effect of filter size variations, non-square filter masks and elliptic Gabor

functions (γ < 1), in the performance of applications such as detection and

recognition. Application specific metrics should be employed to evaluate the

flexible kernel, towards obtaining optimal and efficient solutions.
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Summary and Conclusions

This dissertation contributed mainly towards occlusion handling in pedes-

trian detection and tracking for video surveillance applications. The pro-

posed methods are potentially applicable to general visual tracking as well.

However the established frameworks have been only evaluated on challeng-

ing video sequences of pedestrians and crowds.

Chapter 1 of the dissertation served to motivate the importance of the oc-

clusion handling problem in video surveillance and visual tracking, introduce

the research gaps addressed by the thesis and overview the thesis contribu-

tions and outline.

Chapter 2 reviewed some representative methods in visual tracking with

single camera, along with their recent evolutions in the literature. Further-

more the relevant occlusion handling approaches for two typical families of

tracking systems were discussed. The limitations and shortcomings of the

existing approaches were elaborated to prepare a proper context for the re-

search problems addressed by this thesis.

Chapter 3 presented an occlusion analysis framework for template track-

ing systems, based on Spatiotemporal Oriented Energy (SOE) features of the

targets. SOE features provide a rich description about motion dynamics of

the targets, which are applied for the purpose of occlusion modeling. Back-

ground preliminaries on SOE features are discussed prior to presentation of

the main framework.

Chapter 4 proposed a spatio-temporal clustering framework for occlusion

handling in the context of multiple tracking by detection, based on an off-line
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trained full-body model of pedestrians.

Chapter 5 discussed parallel processing and hardware acceleration based

on GPUs for speeding up the intensive calculations. A GPU engine for extrac-

tion of 2D multi-channel features was developed to demonstrate the speedup

gain by the proposed hardware accelerator.

The major contributions of this thesis have been made in three areas:

(i) Occlusion handling in template-based visual tracking; (ii) Occlusion han-

dling in detection-based tracking; and (iii) GPU-based hardware accelera-

tion. In the following sections we summarize the contributions in each area

and suggest possible extensions and future research directions.

6.1 Occlusion Handling in Template-based Tracking

Chapter 3 presented an occlusion handling framework based on motion dy-

namics of the targets. Motion dynamics are described through the multi-

channel Spatio-temporal Oriented Energy (SOE) features. The system pro-

vides bases for protecting the target model against corruption and improving

the tracking performance in occlusion situation. The proposed method has

been evaluated on a single target tracker, for the proof of concept. However

the proposed method is not limited to single target tracking and may be ap-

plied to any template based tracking system, in order to resolve occlusion

situations. At this point, we highlight the significant aspects of the proposed

system in Chapter 3:

• Spatio-temporal Oriented Energy (SOE) features, representing the mo-

tion dynamics of the targets, are applied within a ‘Bayesian model’ to

determine the visibility status of the targets in the course of tracking.

Various modes of occlusion, namely the ‘Partial’ and ‘Full’ occlusion, are

discriminated through this model.

• Perceiving the occlusion mode is very beneficial in video surveillance of

public areas, due to frequent short-term occlusion events. The proposed

‘Bayesian model’ and the estimated occlusion modes are utilized as a

means to establish an adaptive updating mechanism, in order to protect

the target models against corruption in occlusion and drift situations.
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• An integral Gaussian motion model is defined for every target, based

on SOE features of the target pixels. The proposed model is used for

estimating an occlusion mask which identifies the visible target pixels,

against the occluded parts and the background pixels. Hence an im-

proved tracking performance is expected, specially in occlusion situa-

tions, by concentrating the tracking optimization on visible parts of the

targets.

• Due to invisibility of the targets in ‘Full Occlusion’ events, the tracking

strategy is temporarily changed to a ‘tracking by prediction’ and concur-

rent searching for the lost target. In this situation, the system looks for

the SOE energy blob of the disappeared target, for reporting reacquisi-

tion of the lost target.

• We demonstrate that maintaining a valid up-to-date template by pro-

tecting the target model against corruption or undesired changes in

challenging real world scenarios, enables the system to perform more

robustly and compete with state-of-the-art trackers.

• Utilizing motion dynamics of the targets, for the purpose of occlusion

modeling, alleviates the confusion problem among similar targets in

occlusion events.

Suggestions for future research

In this part we discuss some of the shortcomings of the proposed system,

which may be addressed in future research and suggest potential extensions

to the current work:

• One limitation of the proposed system, is the lack of an explicit ap-

pearance model in the occlusion modeling framework. The suggested

occlusion model in the current system is solely based on motion dynam-

ics. This model mitigates the confusion problem, when similar targets

with different motion dynamics overlap. However for targets moving

in a similar direction, an occlusion event may not be detected. In other

words, the proposed occlusion model does not discriminate between the

occluding targets with similar motion dynamics. In such scenarios, the

131



Chapter 6. Summary and Conclusions

system is still vulnerable to template contamination and distraction in

long term occlusions, although in short term the tracker might perform

well due to the gradual template updating scheme. To overcome this

limitation, we suggest to incorporate an efficient appearance model in

the framework for the purpose of occlusion analysis. The appearance

and motion models may play a complementary role for resolving occlu-

sion situations, when the targets have similar motion or appearance.

• Another issue is about reacquisition of the targets following the full oc-

clusion events, where the targets are totally invisible within a period of

time. We proposed a tracking-by-prediction strategy when there is no

visible target for tracking, while the system explores the surrounding

area to recover the lost target. The current recovery scheme is based on

exploring the target’s motion blob corresponding to its motion model

prior to obstruction. However incorporating an appearance model in

the reacquisition scheme, may improve robustness of the system for the

purpose of crowd analysis. A combination of motion and appearance or

even automatic selection of the optimal mode for the target recovery af-

ter full occlusions, are the issues which are worth further investigation.

• The experimental evaluation of the proposed system has been conducted

on surveillance videos from stationary cameras. The framework as-

sumptions suggest that it may be applicable to moving camera videos,

subject to smooth camera motion. In other words unstable or shaky

videos may not provide suitable grounds for estimating motion mod-

els of the targets, unless video stabilization is applied prior to tracking

process. video stabilization is supposed to eliminate the undesirable

camera motions from the video, which are caused by hand-held or me-

chanical vibrations. Investigating the applicability of the proposed sys-

tem to scenarios from moving cameras, is another potential extension

to the current work.
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6.2 Occlusion Handling in Detection-based Tracking

Chapter 4 introduced an occlusion handling method in the context of multi-

ple target tracking by detection, based on a spatio-temporal clustering method.

Such tracking approaches are composed of an object detector, followed by a

data association method. In our system, a state-of-the-art pedestrian detec-

tor with an off-line trained full-body model, is used as the first stage of the

system. Occlusions and confusions of interacting targets are resolved in the

data association stage. In this part, we underscore the representative contri-

butions of the proposed system in Chapter 4:

• The detection results from a pedestrian detector prior to NMS (Non-

Max-Suppression), is processed through an efficient spatio-temporal clus-

tering framework, as a substitute for NMS process. The spatial and tem-

poral terms are combined within a principled framework, to improve

NMS method in occlusion situations and simultaneously compensate for

the general detection errors, such as missed/false detections. Temporal

terms formulate motion and scale consistency of the tracked targets in

successive frames. The proposed cost function, obtains a light-weight

closed form solution which can be solved in real-time with a standard

CPU.

• The proposed cost function is based on a bounded distance metric,

which performs a local clustering within a neighborhood of each clus-

ter center. The remaining non-associated members at each round of

clustering optimization, is used for detecting new emergent targets and

establishing new clusters. The non-associated members are processed

with standard NMS and evaluated with a specific confidence metric, to

increase the reliability of the instantiated clusters. The confidence met-

ric is based on ‘Depth/Height’ probability of the NMS results and their

‘Detection Frequency’, which implies the number of suppressed detec-

tions per NMS result.

• The clustering results are post-processed within a consolidation frame-

work, for resolving the remaining issues and consolidating the esti-

mated tracks. The consolidation method uses the scene ‘Entry/Exit’
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information as a metric to determine the incomplete tracks, which re-

quire further processing. The incomplete tracks which do not start or

end at Entry/Exit areas are integrated through joining consistent tracks.

Furthermore a confidence score is defined for every track based on:

(i) summation of the clusters’ Depth/Height confidence along the track,

which contains the track length information; and (ii) an ‘Occlusion Ma-

trix’ denoting the overlap of clusters per frame. This confidence score is

used for detecting spurious tracks and removing low confidence ones.

• Due to utilizing a full-body pedestrian model for detection, high res-

olution details are not required for good performance. Consequently

the proposed framework is appropriate for existing infrastructures with

low resolution cameras. Compatibility of the system with low resolu-

tion videos, along with its real-time performance, make the proposed

framework suitable for practical video surveillance.

Suggestions for future research

In this section we discuss some of the imperfections of the proposed frame-

work, which may be addressed in future research, and suggest potential ex-

tensions to the current system:

• Temporal terms of the clustering cost function, associate the motion

and scale of the estimated clusters in consecutive frames. In normal

situation where there is no interaction among the targets or in occlu-

sion events where the interacting targets have different scales or mo-

tion directions, the proposed temporal terms are capable for resolving

the ambiguity. However in cases that the overlapping targets have simi-

lar scales and motion directions, the proposed temporal terms do not

suffice to discriminate among the occluding targets. Hence identity

switches among the targets are probable in such occasions. Incorporat-

ing a proper appearance model within the temporal terms of the cluster-

ing cost function, may resolve the remaining confusions in such events.

In other words, an appearance model may play a complementary role

alongside the other temporal terms in resolving the ambiguities, when

the overlapping targets have similar scales and motion directions.
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• In the current consolidation framework, immature tracks are completed

by joining to other consistent tracks. Consistency of tracks is identified

based on the motion and scale coherency of their corresponding clusters

at the connection area. However, when more than two targets with

similar motion directions overlap, an appearance model may help to

resolve the confusion of tracks. Hence we suggest to incorporate an

appearance model for detection of the consistent tracks, in order to

improve the robustness of the system for the purpose of crowd analysis.

• The current consolidation scheme takes advantage of the Entry/Exit in-

formation, for detection of the incomplete tracks. In this work, En-

try/Exit areas are manually defined as a one-time set-up through cali-

bration of cameras. A possible extension to this approach, is to include

an online incremental learning scheme for gradual grasping of scene ge-

ometry and Entry/Exit information, through the flow of crowd in time.

• Information of the scene geometry such as the Entry/Exit areas, can be

very helpful in video surveillance scenarios with static cameras. How-

ever, for extending the framework to moving cameras, such as in work-

ing robots, we need to develop other robust schemes for track con-

solidation. we suggest to use a track confidence score composed of:

(i) Depth/Height confidence along the track; (ii) Consistency of ap-

pearance along the track; and (iii) Overlap of clusters along the track.

• The proposed occlusion handling framework is designed for sparse crowds,

where the targets are expected to be completely visible for a period of

time among their presence in the scene. This provides enough basis

for instantiation of new clusters, identifying their correct scale and mo-

tion pattern and for capturing a valid appearance model of the targets.

To improve the performance in medium and dense crowds, it may be

beneficial to apply flow information like optical flow, SOE features or

other similar cues, for identifying the coherently moving targets and to

estimate their correct motion patterns.

• This work was a first step towards solving the more challenging prob-

lem of real time crowd analysis. It is worth to investigate how far
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the above mentioned generalizations can improve the performance in

medium and dense crowds.

6.3 GPU-based Hardware Acceleration

Chapter 5 presented a high throughput GPU engine for accelerating the com-

putation and extraction of 2D multi-channel Gabor features. Evaluation of

the system indicates a real-time performance for a 12 channel non-separable

filter on VGA size frames. The speedup gain demonstrated by the GPU en-

gine, suggests that the separable multi-channel SOE features used in preced-

ing chapters, may be also extracted in real-time. The main contribution in

the proposed hardware accelerator are:

• The proposed engine provides an adaptive kernel, supporting non-unit

aspect ratios or non-square kernels. More clearly, the engine config-

ures the kernel size per channel, for efficient computation and accurate

estimation of the feature channels.

• The parallel structure of the GPU kernel, is similar to initial layers of

the visual cortex, composed of ‘Simple’ and ‘Complex’ cells. Simple

units perform filtering operation in separate channels implying different

scales and orientations. Complex units comprise the final layer of the

processor, which aggregates the features provided by Simple units, at

common orientations and scales. Aggregation is performed through fea-

ture pooling with ‘Maximum’ and ‘Histogram’ methods, that are widely

applied in various applications. The abstract information provided by

the Complex layer of the engine, describe the orientation structure of

the input image with some level of local invariance.

Suggestions for future research

We suggest to use application specific metrics for investigating the effects of

filter size variations, elliptic Gabor functions and non-square filter masks, on

the performance of different tasks. Then the optimum kernel figures for the

specific problems may be introduced, to efficiently use the flexibility of the

kernel towards achieving the best performance for real time applications.
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