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Spin-triplet superconductivity in a weak-coupling Hubbard model for
the quasi-one-dimensional compound Li0.9Mo6O17
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The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the
possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor
with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal
Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling,
using asymptotically exact perturbative renormalization group methods. We find that spin-triplet odd-parity
superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional
Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure
of the pairing gap. Notably, we find that the gap has more sign changes than required by the point-group
symmetry.
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I. INTRODUCTION

Understanding unconventional superconductors, character-
ized by a sign-changing order parameter, remains a chal-
lenge [1,2]. Most known unconventional superconductors
(cuprates, organic charge transfer salts, iron pnictides) involve
pairing in the spin-singlet channel. The leading candidates for
spin-triplet pairing are strontium ruthenate [3] and the heavy-
fermion compound UPt3. In general, it remains unclear how
the pairing symmetry is determined by the interplay of strong
electron correlations, low dimensionality, spin fluctuations [4],
multiple bands [5], Hund’s rule coupling, band structure
effects [6], and spin correlations in proximate Mott-insulating
states [7].

Li0.9Mo6O17, known more commonly as a “purple bronze,”
is a layered transition metal oxide that exhibits several
exotic properties arising from the effective low dimensionality
and strong electron correlations. At high temperatures, the
dynamics are primarily one-dimensional and the system
exhibits some properties that have been interpreted in a
Luttinger liquid framework [8–10]. At lower temperatures
the metallic phase is difficult to characterize, possibly due to
incipient charge density wave order [11,12]. Still, for magnetic
fields perpendicular to the easy transport axis (the crystalline
b axis), the magnetoresistance grows without bound as a
function of the field strength, as consistent with an open
Fermi surface [13]. There are several unconventional aspects
of the superconducting state that are worth noting. First, the
transition temperature Tc decreases with increasing disorder
(residual resistivity) [14], a signature of non-s-wave pairing
(for a review, see Ref. [15]). Second, the upper critical field
exhibits a great deal of anisotropy, consistent with a quasi-
one-dimensional system. In particular, for a magnetic field
applied along the b axis, the upper critical field exceeds the
Chandrasekhar-Clogston paramagnetic limit [16], suggesting
that the superconductivity may be spin-triplet in character.
However, this requires ruling out alternative explanations such
as the effects of spin-orbit coupling and quasi-one-dimensional
fluctuations [17].

A well-studied example of unconventional pairing in
quasi-one-dimensional systems is the organic Bechgaard salts
(TMTSF)2X. In these materials, there is evidence in favor
of nodal, spin-singlet pairing [18]. However, in the presence
of a strong in-plane magnetic field applied along the chains,
superconductivity in these systems also appears to exceed the
Chandrasekhar-Clogston limit. If a modest magnetic field can
induce a transition of this sort, it is quite natural to infer that
there is a near degeneracy of pairing in the spin-singlet and
spin-triplet channels. Indeed, weak-coupling considerations
based on Fermi surface nesting do indicate such a near
degeneracy in these systems [6,19]. Whether the pairing is
singlet or triplet remains a subject of debate [20]. Here we
explore the role of Fermi surface nesting, multiband effects,
and low dimensionality for unconventional superconductivity
in the context of Li0.9Mo6O17.

Despite evidence of strong correlation effects in purple
bronze, we take here a weak-coupling perspective. The
advantage of such an approach is that the solutions obtained
are well controlled, and robust trends suggesting a certain
pairing symmetry can easily be identified in this limit. The
qualitative information obtained this way may be relevant to
the experimentally relevant intermediate-coupling regime. In-
deed, for the cuprates it has been found that the weak-coupling
predictions of d-wave superconductivity are consistent with
spin-fluctuation approaches and strong-coupling approaches
such as RVB theory [4]. For simplicity, we consider a
four-band model Hamiltonian with on-site repulsive electron
interactions.

Our principal findings may be summarized as follows: Un-
like the case of Bechgaard salts, the near degeneracy between
the dominant triplet and the dominant singlet solutions is
absent; the trivial pairing channel is significantly penalized, as
the bare on-site repulsion takes effect in multiple sublattices.
Significantly, the leading pairing instability is in the odd-parity
channel; there is a sign change in the gap function (not required
by symmetry) across the two nearly degenerate Fermi surfaces,
and additional accidental nodes develop in the inner surface
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when the parameter inducing the splitting of the two Fermi
surfaces as well as their warping is sufficiently large.

II. THE MODEL

In Li0.9Mo6O17, the low-energy electronic degrees of
freedom reside on ladders built from dxy orbitals of Mo
atoms [22–24], which run along the crystallographic b axis.
Based on this observation, the electronic structure was recently
described by a four-band tight-binding model near quarter
filling, i.e., nel = 1.9 out of 8 per unit cell, in Ref. [11].
(Similar but slightly different models have been presented
in Refs. [10,25].) In this model, bonds within each chain
are formed by the hopping amplitude t , whereas t⊥ connects
two nearest chains to make a ladder, and neighboring ladders
are coupled by t ′ (Fig. 1). The resulting single-particle
Hamiltonian can be represented in the momentum space as
follows:
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FIG. 1. (Color online) Tight-binding lattice model. Each circle
corresponds to a single Mo atom and there are four atoms per unit
cell. Filled and empty circles denote two types of crystallographically
inequivalent Mo atoms, i.e., Mo(1) and Mo(4), within a layer of
Li0.9Mo6O17. The horizontal orange line defines a plane of mirror
symmetry, and the green dot an axis of C2-rotation symmetry. (The
reflection is only an approximate symmetry in the real material, which
is slightly monoclinic [21].)

hττ ′(k) = −

⎛
⎜⎜⎜⎝

0 t⊥ t ′e−ikc (1 + e−ikb ) t(1 + e−ikb )

t⊥ 0 t(1 + e−ikb ) 0

t ′eikc (1 + eikb ) t(1 + eikb ) 0 t⊥

t(1 + eikb ) 0 t⊥ 0

⎞
⎟⎟⎟⎠. (1)

Here, τ and τ ′ are sublattice indices, and in the basis used
to construct the above matrix, the order of sublattices is 1,
4, 1′, and 4′. (See Fig. 1.) We denote the nth eigenvalue
of hττ ′(k) as ατ (n,k) and the corresponding band dispersion
as ε(n,k).

So long as |t⊥|,|t ′| � |t | and the filling fraction is near
one-quarter, two nearly degenerate Fermi surfaces exist. They
are open along the c axis, and there is an approximate interband
nesting between them at Q ≡ (0,πnel/2) = (0,0.95π ) (Fig. 2).
To identify a robust tendency that does not involve a fine-tuning
of the tight-binding band structure, we introduce the warping
parameter ηw, where t⊥ = −0.048ηwt and t ′ = 0.072ηwt . As
ηw is increased, the splitting between the two Fermi surfaces
and the warping of them become larger; at the same time, the
nesting becomes less perfect. The band structure is reduced to
that described in Ref. [11] at ηw = 1.

We further add on-site repulsive interactions that lead to a
Hubbard model with the following Hamiltonian:

H = H0 + Hint,

H0 =
∑

k,τ,τ ′,σ

hττ ′(k) c
†
kτσ ckτ ′σ , (2)

Hint = U

N

∑
{ki },τ

c
†
k1τ↑c

†
k2τ↓ck4τ↓ck3τ↑, (3)

with the understanding that k4 ≡ k1 + k2 − k3. Spin in-
dices are denoted as σ and σ ′, and number of unit cells
as N .

The weak-coupling regime corresponds to the case that
|t |,|t⊥|,|t ′| � U . In this limit, it is desirable to work in the

band basis that makes H0 diagonal as follows:

ckτσ =
∑

n

ατ (n,k) cnkσ (4)

and

H0 =
∑
n,k,σ

ε(n,k) c
†
nkσ cnkσ . (5)
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FIG. 2. (Color online) The Fermi surface and the sign structure
of the (triplet) gap function for ηw = 1. The inner and outer curves
correspond to Fermi surface sheets associated with distinct bands. The
vertical arrow depicts the nesting vector Q ≡ (0,0.95π ). The oblique
arrows denote an example of two points on the Fermi surface whose
crystal momenta approximately sum to Q; the gap function changes
sign between these points although not required by symmetry.
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III. PERTURBATIVE RENORMALIZATION GROUP METHOD

We implement a renormalization group (RG) method [5,6,26] to investigate superconducting instabilities á la Kohn and
Luttinger [27]. The effective interaction at energy scales asymptotically close to the Fermi surface is given by the following
expression:

�↑↓(n,k̂; n′,k̂′) = �
(1)
↑↓(n,k̂; n′,k̂′) + �

(2)
↑↓(n,k̂; n′,k̂′), �

(1)
↑↓(n,k̂; n′,k̂′) ≡ U

∑
τ

|ατ (n,k̂)|2|ατ (n′,k̂′)|2,

�
(2)
↑↓(n,k̂; n′,k̂′) ≡ −U 2

∑
m,m′

∫
BZ

d2p
(2π )2

{
f (ε(m′,p) − μ) − f (ε(m,p + k̂ + k̂′) − μ)

ε(m′,p) − ε(m,p + k̂ + k̂′)

×
∣∣∣∣∣
∑

τ

ατ (n,k̂)∗ ατ (m,p + k̂ + k̂′) ατ (m′,p)∗ ατ (n′, − k̂′)

∣∣∣∣∣
2
⎫⎬
⎭. (6)

Here, f is the Fermi function at zero temperature, and μ is the
chemical potential. It represents a process where two electrons
of opposite spins scatter from (n′,±k̂′) to (n,±k̂) without spin
flip. It is unnecessary to consider the corresponding object for
equal-spin electrons: due to spin-rotation invariance, Eq. (6)
accounts for both the singlet and triplet channels.

Different pairing channels are identified by solving the
following integral eigenequation defined along the Fermi
surface:∑

n′

∫
ds(k̂

′
n′ )

(2π )2v(n′,k̂
′
n′ )

�↑↓(n,k̂n; n′,k̂
′
n′ ) ψα(n′,k̂

′
n′ )

= λαψα(n,k̂n).

(7)

Here, k̂n denotes a point on the Fermi surface in the nth band,
ds(k̂n) is an infinitesimal length element of this Fermi surface,
and v is the Fermi velocity. The pair wave function ψα is
classified according to its parities under the transformations
kc → −kc and kb → −kb. These symmetry operations in the
momentum space are derived from the symmetry in the real
space shown in Fig. 1.

Negative eigenvalues of �↑↓ indicate the sectors in which
the effective interaction is attractive. These attractive in-
teractions grow under further renormalization. The eigen-
function with the most negative eigenvalue (denoted as λ0)
is responsible for superconductivity; pairing instability sets
in at the energy scale of We−1/|λ0|, where W ≡ 4t is the
bandwidth. This energy scale is also identified with the
transition temperature Tc, and the gap structure is inherited
from ψ0(n,k̂n).

Notice that in the asymptotic weak-coupling limit, the bare
on-site repulsion �

(1)
↑↓ in Eq. (6) is infinitely larger than the

other term �
(2)
↑↓. Hence, attraction can arise only if the pair wave

function completely avoids the effect of �
(1)
↑↓, i.e., belongs to

its null space:

∑
n

∫
ds(k̂n)

(2π )2v(n,k̂n)
|ατ (n,k̂n)|2ψα(n,k̂n) = 0 (8)

for all four possible values of the sublattice index τ . In practice,
one should solve Eq. (7) with �↑↓ replaced by �

(2)
↑↓ while

enforcing the above conditions.
It should be noted that Eq. (8) is automatically satisfied by

pair wave functions that are odd under kc → −kc or kb → −kb.

To see this, observe that |ατ (n,k̂n)|2 is an even function of
both kc and kb. This fact is a result of the reflection (see
Fig. 1) and time-reversal symmetries. When ψα(n,k̂n) is an
odd function of either kc or kb, the contributions from different
quadrants of the Brillouin zone cancel out in the integral in
Eq. (8). On the other hand, the four conditions given by Eq. (8)
lead to additional constraints on solutions that are even in
both kc and kb. However, due to the C2-rotation symmetry,
Eq. (8) becomes identical for τ = 1,1′ as well as for τ = 4,4′
(Fig. 1), and the number of constraints is two as opposed to
four.

In addition to constraints set by the bare repulsion, nesting
properties of the Fermi surface play an important role in
determining the gap structure. In our case, �

(2)
↑↓(n,k̂; n′,k̂′)

in Eq. (6) is considerably enhanced when the momentum
transfer k̂ + k̂′ is close to the approximate nesting vector
Q = (0.95π,0) (Fig. 2). Moreover, from its definition, we
see that �

(2)
↑↓ is always positive. Summing up, the nesting

condition k̂ + k̂′ ≈ Q leads to a large positive off-diagonal
matrix element connecting k̂ and k̂′. Therefore, one can expect
that a pair wave function with a large negative eigenvalue tends
to change sign between two points on the Fermi surface whose
crystal momenta sum to Q.

Together with the repulsive Hubbard interaction, the nesting
property of the Fermi surface shown in Fig. 2 causes spin
density wave (SDW) fluctuations of wave vector Q. In view
of this fact, the previous paragraph is about how SDW
fluctuations enhance superconductivity and determine the gap
structure. Notice that within our weak-coupling approach, such
nonsuperconducting fluctuations are never strong enough to
compete with superconductivity unless an extreme fine-tuning
is made. That is, as long as the band dispersion is invariant
under k → −k, the perfect nesting in the particle-particle
channel makes superconductivity dominant over other types
of instabilities except at certain special points in the parameter
space (e.g., Van Hove singularity, perfect nesting in the
particle-hole channel). The one-dimensional limit (ηw = 0)
corresponds to such a special point, but we avoided it. Then,
as we know that the ground state is superconducting, it is
indeed a valid approach to investigate the form of pairing
that leads to the strongest instability of the Fermi sea without
considering nonsuperconducting instabilities. Correct descrip-
tion of the 1D physics at ηw = 0 is beyond the scope of this
study.
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FIG. 3. (Color online) Dominance of triplet pairing is insensitive
to the extent of warping of the Fermi surface. The pairing strength in
the triplet and singlet channels is shown as a function of the parameter
ηw that determines warping of the Fermi surface. Reference [11]
estimates that ηw � 1.

IV. RESULTS OF THE WEAK-COUPLING ANALYSIS

Figure 3 shows the dominant pairing strength in the triplet
and singlet channels as functions of the warping parameter
ηw. (We have plotted the dimensionless quantity λ̃ ≡ λW 2

U 2 .) To
obtain this result, we numerically solved Eq. (7) by discretizing
each of the two Fermi surfaces into 128 segments and evaluated
�

(2)
↑↓ in Eq. (6) by discretizing the Brillouin zone into a 2048 ×

2048 grid [28]. The primary conclusion to draw from the weak-
coupling analysis is that the pairing instability is in the spin-
triplet channel. For a broad range of ηw, the dominant pairing
solution is a “py-wave state” that is even in kc and odd in kb.
The associated pair wave function for ηw = 1.0 is shown in
Fig. 4.

Notice that there are more sign changes in the pairing
gap than dictated by parities under kc → −kc or kb → −kb.
Most importantly, it has opposite signs between two nearly
touching Fermi surface sheets. This fact is consistent with the
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-1 -0.5 0 0.5 1

ψ

kc/π

Outer
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FIG. 4. (Color online) The pair wave function for ηw = 1 on the
inner and outer Fermi surfaces in the upper half of the Brillouin zone.

observation in the previous section that the pair wave function
has a propensity to change sign between two points k̂ and k̂′
satisfying k̂ + k̂′ ≈ Q (Fig. 2).

Another notable feature is the gap suppression near kc = 0,
as seen in Fig. 4. A gap minimum exists on the outer
Fermi surface at kc = 0 for the entire range of ηw shown in
Fig. 3 and also on the inner Fermi surface for ηw � 0.8. For
larger warping, two closely spaced accidental nodes develop
around kc = 0 on the inner Fermi surface. The reason for this
gap suppression can be again understood from the nesting
condition k̂ + k̂′ ≈ Q. From Fig. 2, one sees that most of
crystal momentum pairs satisfying the nesting condition exist
across the inner and outer Fermi surfaces. However, near
kc = 0, the two Fermi surfaces almost coincide, and a pair of
crystal momenta on the same Fermi surface, as well as a pair
across different Fermi surfaces, can meet the nesting condition.
Hence, there is frustration in the resulting sign change of the
gap, leading to the suppression.

We remark that from the above consideration of the nesting
properties, one may expect that that there exists a closely
competing singlet solution, which has the same gap structure in
the upper (or lower) half of the Brillouin zone as the dominant
triplet solution but is even in both kc and kb. However, the
numerical result shows that this is not the case. Indeed, for
solutions that are even in both kc and kb, one has to additionally
apply constraints given by Eq. (8). As a result, what appears to
be a nearly degenerate singlet solution is in fact significantly
disfavored.

V. ROLE OF LONGER-RANGE COULOMB
INTERACTIONS AND SPIN-ORBIT COUPLING

We also briefly considered the possible effects of off-site
Coulomb interaction parameters introduced in Ref. [11], and
set them to be of order U 2/t [29]. However, if one neglects
screening, there are a large number of these parameters. A
representative investigation of the full parameter space would
require another separate study. Here, we just note that we did
find that these interactions could change the pairing symmetry
and/or the number of accidental nodes in the pairing amplitude.
We also found that the repulsion between diagonal neighbors
has a much more significant effect than that between nearest
neighbors along or in the direction perpendicular to the zigzag
chain. Whether this sensitivity to longer-range interactions is
an artifact of the weak-coupling analysis may only be revealed
by numerical investigations of the intermediate- to strong-
coupling regime.

Another important question is the direction of the 
d vector
associated with the triplet pairing. This will be determined by
spin-orbit coupling and we plan to address this in a future study.

VI. PROPOSED FUTURE EXPERIMENTS

One signature of triplet pairing is the temperature inde-
pendence of the Knight shift in nuclear magnetic resonance
(NMR) below Tc [3]. Hence, we propose measurements
using 7Li, 17O, and/or 95Mo NMR. Recently, 7Li NMR
measurements were performed on the normal state of this
materia [30]. In the past, 95Mo NMR has been difficult due to
the very low resonance frequency. However, recent advances
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in high-field NMR have seen its use in studies of a range
of molybdenum oxides [31]. Evidence for the nodes in the
superconducting energy gap will be a power-law temperature
dependence of thermodynamic quantities such as the specific
heat and the superfluid density at temperatures much less than
Tc. A recent theoretical study investigated the difference in the
temperature dependence of the upper critical field for triplet
states in a quasi-one-dimensional superconductor with and
without nodes [32]. However, the differences are small and
subtle, making definitive conclusions about the presence or
absence of nodes difficult.

VII. CONCLUSIONS

We used asymptotically exact perturbative renormalization
group methods to analyze a minimal Hubbard model for
Li0.9Mo6O17. We found that spin-triplet odd-parity supercon-
ductivity is the dominant instability, with a gap having more
sign changes than required by the point-group symmetry.

Hopefully, our study will stimulate further experimental
studies of the superconducting state of this material, to find
definitive evidence for triplet pairing and/or nodes in the energy
gap.

Note added. Recently we learned of a work by Lera and
Alvarez [33] that performed a multiorbital RPA analysis of
a similar Hubbard model and reached similar conclusions to
ours.
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