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Abstract 

This thesis deals with a development of a number of novel schemes based on kinetic Monte 

Carlo (kMC) simulation. The advantages of kMC, as compared to the conventional Monte 

Carlo are: (1) the determination of chemical potential (a fundamental thermodynamic 

variable) with the kMC scheme is more accurate than the Widom method used in the 

conventional (Metropolis) Monte Carlo, and (2) the kMC algorithm is rejection-free, making 

its implementation simpler. The aim of this MPhil research is to extend the kMC method to 

other ensembles including: NPT (isothermal-isobaric systems), µVT (constant chemical 

potential, volume and temperature) also known as grand canonical (GC), and to the phase-

coexistence of bulk fluids (Gibbs ensemble), which are of significant interest in chemical 

engineering.  For the first time, a new scheme using NPT-kMC was developed to determine 

accurate chemical potentials for mixtures as these are used as input in the simulation of 

mixtures in open systems (GC-kMC).  Consistency between the results obtained with NPT-

kMC and GC-kMC had been achieved.  Finally to address the phase equilibria of bulk fluid 

mixtures, Gibbs ensemble kMC was developed as a potential alternative to the Metropolis 

method Gibbs-MC, and once again the advantage of Gibbs-kMC is the accurate determination 

of chemical potential of the two existing phases, especially for systems having a dense liquid 

phase where the conventional MC fails. 
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Chapter 1. Introduction 

Many theories have existed to describe adsorption processes on a surfaces.  Irving Langmuir 

was the first in 1917 to describe mono-layer adsorption [1] and his theory has been extended 

by many scientists. One of the most popular theories in this extension is the BET theory [2], 

which was developed by Brunauer, Emmett and Teller in 1938. It is able to describe 

multilayer adsorption, an improvement from Langmuir’s theory which ignores any 

interaction between particles (in the context of molecular simulation particle refers to a 

molecule, and this term will be used throughout the text). These theories encounter 

significant limitations, even for the description of the adsorption of simple species such as 

argon or nitrogen. This becomes more apparent for polyatomic molecules and for simple 

molecules with electrostatic interactions. 

The level of increasing electrostatic interactions for the adsorbates increases as follows; 

argon, nitrogen, carbon dioxide, methanol, ammonia and water.  The interplay between the 

adsorbate interaction and the solid-fluid interaction makes adsorption an interesting problem 

to study at the fundamental level. The phase equilibria and adsorption of simple fluids on 

carbon has been extensively reported in the literature but the number of studies done on 

associating fluids and mixtures is scarce. This is because the fundamental understanding of 

associating fluid alone has not been well established and its interaction with functional 

groups, in addition to its interaction with the graphene layers.    Simulation studies showed a 

similar trend because associating fluids cost more computing time as the complexity of fluid 

increases. However, with the rapid improvement in computer hardware and software, the 

simulation time required has been drastically reduced, paving the way for applying computer 

simulation to investigate complex systems.  The difficulty of making accurate determination 

of the chemical potential is another reason for the limited number of simulation studies on 

associating fluids and mixtures. 

The grand canonical Monte Carlo is commonly used as a tool to simulate open systems of 

bulk fluid and adsorption. However, it requires the chemical potential as an input which must 

be obtained for a given temperature and pressure. For single atom model such as argon, the 

chemical potential can be calculated from an equation of state, such as that of Johnson et al. 

[1] for Lennard-Jones molecules, or those presented in Lotfi et al. [2]. For molecules other 

than single Lennard-Jones fluid, such equations of state are not readily available and to 

overcome such deficiency, it is common to assume that the external phase is an ideal gas. 
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However, this approach is unlikely to give a good estimate of chemical potential when the 

fluid is non-ideal, where they exhibits predominantly non-dispersion forces of interaction. 

Therefore, the objective of this work is to develop a novel scheme of NPT in the form of 

kinetic Monte Carlo (kMC) in order to accurately determine the chemical potential of 

complex molecules as well as mixtures. This work also extends the use of GC-kMC to 

mixtures so as to validate the chemical potential determined from NPT-kMC. Finally, the 

Gibbs ensemble kMC was developed as an alternative to the Gibbs-NVT to simulate phase 

equilibria of bulk fluid. 

All simulations in this thesis is self-developed object orientated programing in Fortran 95. 

This thesis is constructed as follows: Chapter 2 gives an overview of kinetic Monte Carlo 

simulation, including the details for molecular simulation and the common algorithm for 

kMC simulation. The algorithm for NPT-kMC and the simulation results for bulk fluid 

properties will be presented in Chapter 3. The validation of the NPT-kMC results by using 

them as input for GC-kMC is presented in Chapter 4. Then, to complete the picture of phase 

studies, the Gibbs-NVT presented in Chapter 5 is applied to the simulation of the phase 

equilibria of bulk fluids. Finally, conclusions and suggestions for future work are given in 

Chapter 6. 

References  

1. Langmuir, I., The constitution and fundamental properties of solids and liquids. II. Liquids. 

Journal of the American Chemical Society, 1917. 39(9): p. 1848-1906. 

2. Brunauer, S., P. H. Emmett, and T. Edward, Adsorption of gases in multimolecular layers. 

Journal of the American Chemical Society, 1938. 60: p. 309 - 319. 

3. Johnson, J. K., J. A. Zollweg, and K. E. Gubbins, The Lennard-Jones Equation of State 

Revisited. Molecular Physics, 1993. 78(3): p. 591-618. 

4. Lotfi, A., J. Vrabec, and J. Fischer, Vapor-Liquid-Equilibria of the Lennard-Jones Fluid from 

the Npt Plus Test Particle Method. Molecular Physics, 1992. 76(6): p. 1319-1333. 
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Chapter 2.  Literature review 

Molecular Dynamics (MD) and Monte Carlo (MC) simulations are the two most common 

techniques used in molecular simulations [1, 2]. MD is commonly applied to studies related 

to dynamics and MC is applied to equilibria. Developed by Metropolis et al. [3] in 1953, MC 

simulations can be run in a number of ensembles: canonical (constant NVT), isobaric-

isothermal (constant NPT) and grand canonical (constant μVT) ensembles. Later, the Gibbs 

ensemble [4] (Gibbs-NVT) and Gibbs isobaric-isothermal [5] (Gibbs-NPT) was developed by 

Panagiotopoulos in 1987 and 1988, respectively.   

In MC simulation, the importance sampling algorithm is used to decide if a trial move (e.g. 

displacement, rotation, volume change, insertion or deletion) is accepted or rejected.  This 

technique however, is unsatisfactory for simulating dense systems because most trial moves 

are rejected.  However, it can be overcome by using kinetic Monte Carlo (kMC) where all 

moves are accepted and each configuration is weighted with their time durations.  

kMC was developed to study the kinetic behaviour of a system and was mostly used in 

simulation of crystal growth, atomic diffusion and chemical reactions. The use of kMC was 

later extended by Ustinov and Do [6], to study phase equilibria and adsorption systems [7-9], 

for the first time. In kMC simulation, the determination of chemical potential is embedded 

within the simulation [10], hence, no additional method or extra computing time are required 

to calculate the chemical potential.  In Metropolis Monte Carlo, the chemical potential is 

calculated using the Widom method in which ghost particles are inserted in a number of 

frozen configurations; this is very costly because many ghost particles are required to obtain a 

good estimate of chemical potential.  By contrast the calculated chemical potential from kMC 

is more accurate because the sampling of the configuration space is carried out with real 

particles.   

Application of NVT-kMC carried out by Fan et al. [8] successfully describes the 

thermodynamic properties of nitrogen over a range of temperature and is able to describe a 

constant chemical potential throughout both the dilute and dense regions. This technique has 

later been applied to analyse associating fluids and mixtures [11]. Since NVT-kMC deals with 

closed systems, which are rare in chemical engineering, the objective of this work is to 

extend the kMC method to (1) isothermal-isobaric systems where temperature and pressure 
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are specified, (2) open systems where chemical potential is specified and (3) system of two 

coexisting phases. 

2.1. Molecular simulation 

Molecular simulation is an experiment done in a computer [1, 2], and one of the essential 

steps in a simulation is the calculation of interaction energies between molecules and also 

between molecules and solid bodies. To reduce simulation time, a cut-off radius, Rcutoff, is 

commonly applied in the calculation of energy. To model a 3D fluid of infinite extent, we 

apply periodic boundary conditions in all directions as illustrated in Figure 2-1, and the 

minimum image convention is invoked, i.e. if the distance between the centres of mass of 

molecules i and j is greater than half of the length of the simulation box, the molecule j is 

replaced by its minimum image j’. 

 

Figure 2-1 Illustration of periodic boundary condition, the simulation box represents solid line and its images are 

in dashes. 

Different ensembles: canonical (NVT), Isothermal-Isobaric ensemble (NPT), grand canonical 

(GC) and Gibbs canonical ensemble (Gibbs-NVT) provide different output and they are 

summarised in Figure 2-2. The NVT can provide a complete van der Waals loop (vdW) of a 

bulk fluid at temperatures below the critical point, the NPT can only provide the stable and 

metastable states of the fluids, (either in gas or liquid phases) in terms of density versus 

Rcutoff 

j 

j' 
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pressure, the GC is similar to NPT, provides the stable and metastable states in terms of 

density versus chemical potential and the Gibbs-MC provides the states of the two existing 

phases.  

 

Figure 2-2 The working range of NVT, NPT, GC and Gibbs-NVT ensemble 

The density, pressure, chemical potential and volume in this work are presented in reduced 

units by scaling them against the collision diameter or the reduced well depth as follows:  

      

3

3

3

reduced

reduced

reduced

reduced

V V

P
P















 






   Eq. 2-1 

2.1.1. Potential models 

The molecules studied in this thesis only consist of dispersive sites described by the Lennard-

Jones potential model [12]. The interaction energy between a pair of molecules i and j is 

calculated by:  

    

12 6
, ,

,

, , ,
1 1 , ,

( ) 4
ji

SS n m n m
n m

i j n m n m
n m i j i j

r
r r

 
 

 

    
             

   Eq. 2-2 

where Si and Sj is the total number of sites of molecule i and j, 
,

,

n m

i jr is the distance between 

site n on molecule i and site m on molecule j, ,n m  is the collision diameter and ,n m is the 

reduced well depth calculated from the Lorentz-Berthelot mixing rule:   
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   Eq. 2-3 

With the pairwise interaction energy defined, the molecular energy of a molecule i can be 

defined as: 

      ,

1

N

i i j

j
j i

u 



     Eq. 2-4 

Argon is used as the benchmark in this work as it is the one of the simplest molecules to 

simulate, and it is modelled as a sphere with a single Lennard-Jones site [13]. In reality, 

argon exists as an atom but in this thesis, argon is recognised as a molecule so as to be 

consistency with all other species modelled within this thesis. Methane, ethane and propane 

with molecular parameters given by Martin and Siepmann [14] are selected in this study, 

where methane is modelled as a single Lennard-Jones fluid while ethane and propane are 

modelled as multi-centered Lennard-Jones fluids. In addition, mixtures of these alkanes are 

studied because they are relevant in the description of natural gas properties. 

 Units Argon Methane CH2 CH3 

Collision diameter (σ) nm 0.3405 0.373 0.375 0.395 

Well depth (ε) K 119.8 148 46 98 

Bond Length nm - - 0.154 0.154 

Bond angle o - - 114 114 

Table 2-1 Molecular parameters of argon model [13] and TraPPE models for methane, ethane and propane [14] 

2.1.2. Pressure 

The total pressure of a bulk fluid is calculated in three parts; 

     
Total Ideal Excess LRCP P P P      Eq. 2-5 

where the ideal gas pressure is: 

      
IdealP kT     Eq. 2-6 

The excess pressure, accounts for the interaction between molecules is calculated via the 

virial route 
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r .r 

  Eq. 2-7 

Here, ri,j is the distance between the centres of molecules i and j, and 
,

,

n m

i jr  is the distance 

between the site n of molecule i and the site m on molecule j.  The final term is the long range 

correction for pressure because of the cut-off in the pairwise calculation of energy for 

molecules whose distance is greater than RCutoff. 
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1 1
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3 3
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    Eq. 2-8 

2.2. Kinetic Monte Carlo Simulation 

2.2.1. Molecular Energy 

Given the molecular energy, ui, of the molecule i in Equation 2-4, its mobility is defined as: 

      exp i
i

B

u

k T


 
  

 
   Eq. 2-9 

The total mobility of the system the sum of all the molecular mobilities: 

     

1 1

exp
N N

i
i

i i B

u
R

k T


 

 
   

 
     Eq. 2-10 

Since this is a measure of how fast the system evolves, it means that the current configuration 

will exist, on average, for a time of: 

      
1

t
R

      Eq. 2-11 

There are many microscopic configurations that give the same total mobility R, and therefore 

the duration for a configuration will follow a Poisson distribution law, i.e. 

    
1 1 1

ln lnt t
rand R rand

   
      

   
   Eq. 2-12 

where rand is a random number (0 < rand < 1).  

2.2.2. Chemical potential 

For a simulation box with a mixture of N molecules,  
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1

CN

N N



     Eq. 2-13 

where Nβ is the number of molecules belonging to the component β, and NC is the number of 

components.  

In a canonical kMC simulation, the excess (configurational) chemical potential [10] of a 

component β is calculated as follows: 

     lnex
R

kT
N

 
 
 
 







     Eq. 2-14 

where Rβ is the total mobility rate of the component β, calculated using Equation 2-10 with 

only molecules of this component counted in the summation, and its time average is given by 

     

 ,

1

1

M

j j

j

M

j

j

t R

R

t


















    Eq. 2-15 

Here the subscript j denotes the j-th configuration in a sequence of M configurations, and ∆tj 

is its duration, calculated with Equation 2-12, which requires the total mobility of all 

molecules. The chemical potential of the component β is the sum of the excess chemical 

potential and the ideal gas chemical potential, which is given below [15]: 

   

3

lnIG ROT VIB ELEC
N

kT
V

 

      
 

     
 

   Eq. 2-16 

where   is the thermal de Broglie wavelength of the component β.  The first term of the 

above equation is the chemical potential due to translation, which is a function of density, and 

the second, third and fourth terms are intramolecular chemical potentials due to rotation, 

vibration and electronic transitions, respectively.  They can be lumped together as 
intra

   and 

the chemical potential written as the sum of the ideal gas and excess chemical potentials: 

   

3

intraln ln
RN

kT kT
V N

 

 



 
   
             

  Eq. 2-17 

which is simplified as: 



Chapter 2: Literature review 

 

9 

    

 

3

intra

intra 3

ln

ln

R
kT

V

kT

 

 

   

 

 

 
  
 
 

   

   Eq. 2-18 

  

where 𝛼𝛽 is the activity of the component β: 

      
R

V



      Eq. 2-19 

For a given temperature and pressure, an NPT-kMC simulation can be carried out to 

determine the chemical potential and the output of this simulation is a set of 
intra    for all 

components, which is then used as input to a GC-kMC simulation.   

2.3. Canonical ensemble 

In an NVT ensemble, a chain of configurations is generated by selecting a molecule and 

allowing it to sample the volume space uniformly.  To this end, we apply the Rosenbluth 

scheme [1] for selecting one molecule with high mobility but not necessarily the one with the 

highest mobility.  First, we calculate the partial sum of the mobilities from molecule 1 to 

molecule k (inclusive), irrespective of their identity: 

      
1

k

k j

j

R 


     Eq. 2-20 

that is, R = RN.  A molecule is selected (the k-th molecule) according to: 

     1k kR rand R R       Eq. 2-21 

Once the molecule k is selected, it is moved to a random position within the simulation box:  

      

new

new

new

x Rand Lx

y Rand Ly

z Rand Lz

 

 

 

   Eq. 2-22 

where x, y and z are the coordinates for the centre of the k-th molecule in the new position, 

Lx, Ly and Lz are the linear dimensions of the simulation box. For polyatomic molecules, the 

k-th molecule is given a new orientation using the quaternion [1] as follows: 
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 Eq. 2-23 

where Rmatrix is the rotation matrix, (q0, q1, q2, q3) is the vector on a four-dimensional unit 

sphere,  
2 2 2 2

0 1 2 31 q q q q     related to the Eulerian angles by: 

     

0

1

2

3

cos cos
2 2

sin cos
2 2

sin sin
2 2

cos sin
2 2
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q

  

  

  

  

 
  

 

 
  

 

 
  

 

 
  

 

    Eq. 2-24 

After the move has been executed, the molecular energies of all molecules are updated as 

follows: 

     
,

1

N
new new

i i j

j
j k

u 



     Eq. 2-25 

     , ,

new old new old

j j j i j iu u     ; for  i j    Eq. 2-26 

2.4. Sub-canonical ensemble 

The sub-canonical ensemble is a novel procedure for carrying out the isothermal-isobaric, 

grand canonical and Gibbs canonical kinetic Monte Carlo simulation. It is essentially a 

sequence of M local displacements in a sub-NVT block, followed by a specific move of either 

an exchange move (as in the case of GC-kMC and Gibbs-kMC) or volume move (in NPT-

kMC and Gibbs-kMC) as illustrated in Figure 2-3. 

 

Figure 2-3 Illustration of the new procedure with sub-NVT ensembles 

NVT-Block 

Specific Move 

 
NVT-Block 
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NVT-Block NVT-Block 
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The choice of M is made in such a way that we can make a reasonable estimate of a 

thermodynamic property X such as pressure, density, chemical potential and energy. The time 

average thermodynamic properties of this sub-NVT block can be calculated from: 

   
1 1

1

1

M M

j j j j M
j j

j jM
jM

j

j

t X t X

X X
T

t

 





 

  



 



    Eq. 2-27 

Hereafter, the time average of this sub-NVT block is called the block average. 

2.5. Special consideration 

Common to all ensembles, a molecule i might overlap significantly with other molecules.  In 

such cases, the pairwise potential energy between this molecule and its overlapping 

neighbours can be a large positive number, and this can cause a floating overflow.  To avoid 

this situation, we implement the following algorithm: If one of the site-site distances between 

two overlapping molecules is smaller than 0.8σ, we give the molecular pairwise potential 

energy a large positive value 

      
,

,

40
i j

i j




     Eq. 2-28 

for all overlapping neighbouring molecules j. 
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Chapter 3. Isothermal-Isobaric kinetic Monte Carlo 

3.1. Introduction 

In industry, it is common for engineers to describe the state of a system for a given pressure 

and temperature as they are readily measureable. To this end, a simulation of constant 

Number of molecules, Pressure and Temperature (NPT) is required. During the course of a 

simulation in this so called NPT ensemble, the size of the box is changed so that the pressure 

calculated with the virial route matches (within a statistically error) the specified pressure. 

This type of simulation can determine properties in the stable and metastable regions but not 

the unstable region as explained earlier in Figure 2-2. In this chapter, a methodology is 

developed to achieve a satisfactory volume change move. 

3.2. Simulation Details 

There are two ways to carry out a volume change move by using either (1) the instant 

pressure or (2) the time average pressure of a sub-NVT block also known as the block average 

as in Equation 2-27. The volume move can be done in a stochastic manner or 

deterministically. For the former, we define an auxiliary pressure as: 

      
*auxP P P      Eq. 3-1 

where P* is the specified pressure. If P, the pressure, is greater than Rand×Paux, then the 

pressure is taken to be too high and the volume is increased according   

     max'V V rand V      Eq. 3-2 

where Vmax is the maximum allowable volume change.  On the other hand, if P is less than 

Rand×Paux, then the instant pressure is taken to be too low and the volume is decreased 

     max'V V rand V      Eq. 3-3 

The volume change move done deterministically is as follows: if the pressure is greater than 

P*, the volume is expanded according to Equation 3-2 and on the other hand, if it is less than 

P*, the volume is decreased using Equation 3-3. After the volume of a box is changed, the 

cut-off radius is scaled accordingly to half of the new box length. 
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The standard protocol for performing an NPT simulation is as follows, unless otherwise 

stated:  A run at 120K comprised 20000 sub-NVT blocks with 15000 displacement moves per 

block and a volume change move at the end of each block. The block average pressure was 

used to decide on the volume change.  The initial volume and the number of particles were 

set at 27nm3 (cubic box) and 300, respectively.   

3.3. Setting Maximum Delta Volume  

In an NPT simulation, the maximum change in volume (∆Vmax) needs to be chosen with care. 

If it is too large there will be a large number of overlapping particles when a volume 

contraction is made and consequently a large number of local displacement moves would be 

needed to relax the system.  On the other hand, if ∆Vmax is too small, many volume change 

moves would be required as illustrated in Figure 3-1. Furthermore, it is found that if ∆Vmax 

was kept constant throughout the whole course of simulation, it was difficult to achieve 

equilibrium within a reasonable simulation time.  
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Figure 3-1 The effect of constant ∆Vmax with different magnitude.  

To overcome this problem, a dynamic change in ∆Vmax was adopted.  Initially ∆Vmax was 

given a sufficiently large value that the volume of the box quickly reaches a range close to 

the expected value.  ∆Vmax was then reduced to a smaller value such that the calculated 

pressure oscillates with smaller amplitude about the specified pressure and eventually 

converges to this value.  To find a new value for ∆Vmax a histogram of volume was obtained, 

generated by summing the total kMC time for a given volume (sub-NVT block) as shown in 

Figure 3-2a.  This volume distribution has an almost symmetrical distribution with a standard 

deviation (SD) that is a measure of how much the volume of the system fluctuates.  This SD 
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was then used as a basis for the next estimate of ∆Vmax.  By trial and error, it has been found 

that half the standard deviation was the optimum choice.  By applying this updated ∆Vmax on 

the fly the simulation is able to reach the desired volume more efficiently (Figure 3-2b) than 

keeping it constant as illustrated in Figure 3-1.  It was also noted that the value of ∆Vmax 

became smaller with progress of the simulation, rendering the fluctuation in pressure smaller.  

This procedure gives a much more reliable estimate of the calculated pressure, density and 

chemical potential. 
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Figure 3-2 (a) Volume distribution with constant ∆Vmax; (b) Volume distribution with dynamic ∆Vmax.  

3.4. A new method of averaging pressure and density 

It was found that the calculated time-weighted average pressure given by Equation 2-27 was 

consistently lower than the specified pressure and therefore there is a need for a new 

procedure to determine the block average pressure and density.  After one volume change has 

been made, the simulation is carried out in a sub-NVT ensemble (with only local 

displacements) to relax the system, from which the block average pressure and density can be 

obtained. The average pressure and density for the whole simulation was then calculated as 

the ensemble average of the block average pressures or densities: 

    1

BlockN

n
n

Block

P

P
N

   


 1

BlockN

n
n

BlockN

   

 

    Eq. 3-4 

where NBlock is the number of block. Figure 3-3a shows the average pressures obtained by this 

procedure or by time averaging using all the instantaneous pressure (Figure 3-3b) as a 
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function of density.  It is clear that the block average scheme gives much better description of 

the system. 
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Figure 3-3 Plots of reduced pressure versus density of argon at 120K. (a) Pressure and density calculated from 

averaging the block averages. (b) Pressure and density calculated from time averaging over the whole 

simulation. Solid line with symbols: calculated pressures, symbols: specified pressure.  

3.5. Instant or Block Average Pressure? 

Figure 3-4 shows the instant pressure and the block average pressure as function of the 

number of configurations at 120K where the block average pressure was used as the decision 

for the volume change move.  In this simulation, a sub-NVT block contain 100,000 local 

displacements instead of the standard protocol as the purpose of this simulation is to show the 

evolution of pressure with the number of configurations. The figure illustrates the strong 

fluctuations of the instant pressure about the block average pressure, confirming that the use 

of the block average pressure to decide the volume change move is a better choice. 

 

Figure 3-4 Plots of pressure versus the number of configurations. Filled circles are the block average pressure, 

unfilled triangles the instantaneous pressure.  The solid horizontal line is the specified input pressure. 
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To further justify the choice of the block average pressure, Figure 3-5 shows that the block 

average scheme reaches equilibrium faster than the scheme using the instant pressure. Hence, 

the block average procedure was used in all subsequent simulations. 
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Figure 3-5 Ensemble average pressure against number of cycles during the sampling stage. Solid line: volume 

change decision made with instant pressures. Dashed line: volume change decision made with block average 

pressures.  The horizontal dotted line is the specified pressure. 

3.6. Random or sequential scheme for volume move 

For a given number of local moves and volume moves, the choice of local move or volume 

change move can be made sequentially or in a random manner. By sequential, it is meant that 

a number of local moves are made in one block, followed by a volume move. This method 

ensures that the system has been relaxed sufficiently before a volume change move is made. 

The second choice retains the stochastic nature of Monte Carlo simulation by doing the 

volume change move at random within a set number of local displacement moves.  However, 

there are rare occurrences where the interval between two volume change moves is very 

small resulting in an undesirable perturbation.  Figure 3-6 shows a plot of the evolution of 

volume versus the number of configurations, and it is seen that there is no difference in the 

performance of these two methods.   
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Figure 3-6 Volume against number of configurations. Unfilled circles represent the results obtained from the fix 

block size method and filled circles represent results obtained from the random block size method. 

3.7. Size of a sub-NVT block 

It is important that the number of displacement moves in (or the size of) a sub-NVT block is 

large enough to obtain an accurate estimation of the block average pressure.  If the size of a 

sub-NVT block is too small, the pressure may deviate too far from the specified value and 

consequently the volume change is incorrectly carried out.  On the other hand, an 

unnecessarily large sub-NVT block number would significantly increase the computational 

time taken to complete the simulation.  To illustrate this point, Figure 3-7 shows the 

fluctuation of the block average pressure against the number of configurations for different 

choices of block size. As expected, the fluctuation is lower for larger block size but, of 

course, at the expense of longer computation time.  
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Figure 3-7 The block average pressure of different block size 

The optimum choice of the block size depends on the density of the system. To test this to the 

extreme, the result for a very dense liquid argon at 120K is illustrated in Figure 3-8. The plot 

of the time average pressure shows that to achieve a good estimate of pressure in a single 

block, the block size increases with the density.  
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Figure 3-8 Accumulative time average pressure profile of different liquid density 

In order to determine the optimum number of displacement moves, three sub-NVT block sizes 

were examined. Figure 3-9a the plot of the volume versus the number of blocks for a number 

of local displacement moves per block and it shows that when the number of local 

displacement moves is 5k, the volume profile becomes noisy.  When this number is increased 

to 15k or to 50k, there is no significant improvement in the volume profile, suggesting that 

the block average pressures for 50k and 15k would be similar.  Despite the strong volume 



Chapter 3: Isothermal-Isobaric kinetic Monte Carlo 

20 

fluctuations for 5k local displacement moves per block, the simulation still reaches 

equilibrium but with lower accuracy, as seen in Figure 3-9b where the block average pressure 

is plotted against the number of configurations.  The run with 50k local displacement has the 

smallest error, but takes the longest total CPU time.  Therefore, 15k was selected as a 

compromise number for the number of local displacement moves per block. 
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Figure 3-9 (a) Volume against the number of blocks for the final 2000 blocks; (b) Ensemble block average 

pressure using Equation 3-4 against number of configurations.  The horizontal dotted line is the specified 

pressure. The numbers of displacement moves are:  Curve 1:50k; Curve 2: -15k; Curve 3: 5k 

3.8. Application to pure fluids and mixtures 

3.8.1. Pure fluid: Argon at 120K and 240K 

Liquid and gas phase simulations were run in a cubic box with initial linear dimensions of 

3nm and 5nm, respectively, at 120K (sub-critical temperature) and at 240K (supercritical 

temperature) in a cubic box with the initial linear dimension of 5nm, and 300 particles. Note 

that the pressure and density are calculated using the ensemble average of the block average 

and the chemical potential is calculated using the time average over the whole course of 

simulation. 

Figure 3-10 shows that the simulated density and chemical potential from kMC-NPT 

simulations are in good agreement with Tegeler et al. [1] and with the EOS of Johnson et al. 

[2] at both sub-critical (120K) and supercritical (240K) temperatures. 
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Figure 3-10 Simulated properties of argon (a) Pressure at 120K; (b) Chemical potential at 120K; (c) Pressure at 

240K and (d) Chemical potential at 240K as functions of density.  Circles are results obtained from NPT-kMC, 

the solid line is taken from Tegeler et al. [1] and the dotted line is plotted from the EOS of Johnson et al.[2]. 

3.8.2. Mixtures: CH4/ C2H6, CH4/C3H8 and CH4/ C2H6 /C3H8 at 300K 

As examples to illustrate the potential of the kMC-NPT method, mixture simulations of 

methane, ethane and propane at 300K were carried out in a cubic box with a side length of 

5nm.  For the binary systems, 150 molecules were used for each species (equal mole 

fractions) and for the ternary systems 100 molecules for each species.  

Figure 3-11a show the results in the bulk phase, and it is observed that the methane/ethane 

mixture has higher pressure than the methane/propane mixture because of the stronger 

molecular interactions in propane/methane mixture, compared to the other system. It is also 

seen that the calculated pressure agrees very well with the specified pressure, indicating the 

validity of the NPT scheme proposed in this thesis. Figure 3-11b and c show the chemical 

potentials of the methane/ethane and methane/propane mixture, respectively.   
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Figure 3-11 (a) Pressure plot of methane/ethane mixture (dashed line) and methane/propane mixture (solid line). 

The symbols show the input pressure. (b) Chemical potentials of methane/ethane mixture; and (c) Chemical 

potentials of methane/propane mixture. 

Figure 3-12 compares the chemical potentials calculated from NPT-kMC with the ideal gas 

chemical potential for the ternary system methane/ethane/propane system at 300K.   Except at 

very low densities, the ideal gas chemical potentials (dashed line) and the pure component 

(dotted line) chemical potentials deviate from the kMC chemical potentials (solid line) and is 

greater for the heavier components. 
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Figure 3-12 Chemical potential versus total density for a of methane/ethane/propane mixture. Solid line: NPT-

kMC results; dashed line ideal gas chemical potential. The dotted line is the chemical potential of the pure 

component. 
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Chapter 4. Grand Canonical kinetic Monte Carlo 

4.1. Introduction 

The grand canonical (GC) ensemble is the only Monte Carlo (MC) ensemble which allows the 

number of particles to fluctuate, making it the ensemble of choice for simulating an open system. 

For example, adsorption is one of the many studies that utilise GCMC [1-4] as the principal 

simulation tool. In this ensemble, the number of particles of each component fluctuates such that its 

chemical potential is equal (within statistical error) to the specified chemical potential. Since a set 

of chemical potentials of all components is the input to the grand canonical simulation, these must 

be calculated at a given temperature and pressure. For simple spherical molecules, such as argon, 

the chemical potential can be calculated from the EOS of Johnson et al [5]. However, for more 

complex molecules, this set of chemical potentials has to be determined form the NPT ensemble as 

addressed in Chapter 3. 

A kinetic Monte Carlo scheme for a grand canonical ensemble was developed by Ustinov and Do 

[6] and was applied to adsorption on a surface and a slit pore. However, the method was only 

developed for pure component systems. In this chapter, a new scheme to deal with mixtures has 

been developed the first time. The new scheme uses the sub-NVT block concept developed in 

Chapter 3 but the volume change move used in the NPT ensemble, is replaced with a move in which 

molecules are exchanged with the surroundings. 

4.2. Simulation Details 

As in the NPT-kMC in Chapter 3, the insertion-deletion steps in the grand ensemble are made by 

invoking the concept of sub-NVT ensembles.  Based on the findings in Chapter 3 where various 

ways of carrying out the volume change move were explored, only one algorithm to execute the 

insertion and deletion move was considered.  In this, a comparison of the block average chemical 

potentials (activity), instead of the instant chemical potentials, with the specified chemical 

potentials is made. 

The block average activity of a component β in a sub-NVT block of M local displacement moves is 

calculated as follows: 



Chapter 4: Grand Canonical kinetic Monte Carlo 

 

25 

     

, ,

1 1

1

M M

j j j j

j j

M

M
j

j

t t

T
t

 



 



   

  



 


   Eq. 4-1 

where αβ,j is the activity of the component β at the configuration j, with duration given by Equation 

2-11 and TM is the total duration of the M configurations in the sub-NVT block. These block average 

chemical potentials (activities) are then used for the exchange move.  For a set of specified 

chemical potentials of all components   
*

intra

   , where the superscript * denotes “specified”, 

the specified activity of the component β is: 
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   Eq. 4-2 

At the end of a sub-NVT block, we calculate the average activities for all components according to 

Equation 4-1 and the exchange decision rests on the comparison between these and the specified 

values from Equation 4-2. First, a component is selected at random so that all components have an 

equal chance for the exchange move. Let this component be the component β. The exchange could 

be done in a deterministic manner as follows: If the block average activity of the component β is 

less than the specified value, *

    , a molecule of that component is added; otherwise a 

molecule is selected from the sub-population of component β using the Rosenbluth algorithm and is 

deleted.  However, to maintain the stochastic character of kMC, we implement the Rosenbluth 

algorithm [7] in the exchange decision as follows:  For a configuration j in a sub-NVT block, we 

calculate the molecular activity, ,i j


, of molecule i of component β: 
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     Eq. 4-3 

At the end of the sub-NVT block, the block average molecular activity of this molecule is: 
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   Eq. 4-4 

The block average activity of component β from molecule 1 up to molecule k is: 
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      Eq. 4-5 

Since the activity is specified in a grand canonical ensemble we define an auxiliary activity as: 

      
*aux           Eq. 4-6 

The decision to insert or delete is based on the inequality: 

     
, 1 ,

aux

k krand          Eq. 4-7 

which determines the value of k.  If k is less than or equal to Nβ, the system is too energetic with 

respect to this component, and the kth molecule is then deleted from the system.  On the other hand, 

if k=Nβ+1, a molecule is inserted into the system at a random position and given a random 

orientation.   

4.3. Size of a sub-NVT block 

Similar to NPT-kMC in Chapter 3, the size of the sub-NVT block has to be determined in such a 

way that the block average activity gives a reasonably accurate description of the system. A 

canonical-kMC simulation of a liquid argon at 120K for a series of densities was done to estimate 

the block size for a system of 500 particles. Figure 4-1 shows that it would require approximately 

200,000 displacement moves for the activity to relax the system at a reduced density of 0.74, 

representing a liquid phase above the saturation density (0.7). This means that each particle has 

statistically 400 moves. It is also obvious that more displacement moves are required for higher 

densities. 
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Figure 4-1 Evolution of activity with configuration 

To further reduce the CPU time for a simulation, a series of different block sizes for liquid argon 

(reduced density of 0.71) at 120K was simulated in the grand canonical ensemble and the results 

plotted in Figure 4-2. As expected, the fluctuation decreases as the block size increases. 100 

displacement per particle per block is seen to be the optimal choice as the larger block size does not 

yield any significant improvement. 
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Figure 4-2 The block average activity of different block size 

4.4. Application to pure gas and mixtures 

Simulations for argon were run in a cubic box at supercritical temperatures of 240K and 400K, and 

400K for methane, ethane, propane and methane/ethane/propane mixture. The dimensions of the 
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simulation box in Table 4-1 were selected in such a way that there will be between 100-300 

particles at the end of the simulation. The size of a sub-NVT block in the equilibration and sampling 

stages was taken to be 100 displacement move per particle.  

Argon 

Fluid Density* (-) ρ < 0.001 0.001 < ρ ≤ 0.01 0.01 < ρ ≤ 0.04 0.04 < ρ ≤  0.2 0.2 < ρ 

Box Length (nm) 20 15 10 5 3 

Methane/Ethane/Propane mixture at 400K 

Total Density* (-) ρ < 0.001 0.001 < ρ ≤ 0.01 0.01 < ρ ≤ 0.04 0.04 < ρ ≤  0.2 0.2 < ρ 

Box Length (nm) 20 15 10 5 3 

Table 4-1 Dimensions of the simulation box. *Density was determined from NPT-kMC simulations 

Figure 4-3 shows the pressure-density plots for argon obtained from the new grand canonical 

simulations and compares with the NPT-kMC result determined in Chapter 3.  Both the calculated 

reduced pressure and reduced density are in excellent agreement with the corresponding results 

from NPT-kMC.   
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Figure 4-3 Simulated properties for argon at (a) 240K and (b) 400K, reduced pressure (unfilled shapes) and chemical 

potential (filled shapes) as functions of total reduced density.  Triangles are results obtained from GC-kMC and solid 

lines with circles are results obtained from NPT-kMC.   

The GC-kMC and NPT-kMC results for the pure components and equimolar 

methane/ethane/propane mixtures are shown in Figure 4-4, and once again are in excellent 

agreement for both pressure and chemical potential throughout the range of density tested.   
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Figure 4-4 Simulated reduced pressure (unfilled shapes) and chemical potential (filled shapes) at 400K as functions of 

total density for (a) Methane (triangle); (b) Ethane (square); (c) Propane (diamond); and (d) methane/ethane/propane 

mixture. Red symbols are results from GC-kMC and lines with black symbols are obtained from NPT-kMC. 
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Chapter 5. Gibbs Canonical kinetic Monte Carlo 

5.1. Introduction 

Simulations of a bulk fluid at temperatures below its critical temperature with a canonical 

(NVT) ensemble yield a loop of chemical potential (or pressure) versus density, of van der 

Waals type, with three distinct branches: (1) stable and metastable branch where the chemical 

potential increases with density, (2) unstable branch where the chemical potential decreases 

with density and (3) equilibrium branch where the chemical potential is constant with respect 

to density (Figure 5-1a).  The constant chemical potential of the equilibrium branch is the 

coexistence chemical potential of the two phases in contact to each other [1].  On the unstable 

branch chemical potential is dependent on the choice of the system parameters, for example 

the box size as shown in Figure 5-1b. 

        

Figure 5-1 Van der Waals loop (a) with three distinct branches: 1 - stable and metastable region, 2 - unstable 

region and 3 – the phase co-existing region, and (b) dependency on box size 

Extending the horizontal section of the equilibrium branch to both sides intersects with the 

stable-metastable branches of the vdW loop at the saturation gas and liquid densities.  This, in 

principle, will provide the saturation densities and pressure, but this is an extremely 

expensive course.  Simulations using NPT ensembles, as described in Chapter 3, only trace 

the stable and metastable branches of pressure versus density, and likewise simulations using 
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µVT ensembles, as described in Chapter 4, will only trace the stable and metastable branches 

of chemical potential versus density.  Like the NVT ensemble, the simulation of these 

ensembles is very expensive and is not recommended for the determination of saturation 

properties.  To this end, Panagiotopoulos in 1987 [2] and in subsequent papers [3-5] 

developed a very ingenious ensemble to obtain these properties in a single simulation, 

avoiding the huge costs associated with the other ensembles.  This ensemble is known as the 

“Gibbs” ensemble in honour of Josiah Willard Gibbs, who developed the thermodynamic 

foundations of phase equilibria.  The algorithm used by Panagiotopoulos rests on the 

importance sampling of Metropolis.  In the spirit of using kinetic Monte Carlo we develop in 

this chapter, for the first time, the so-called Gibbs-kMC.   Like the traditional Gibbs-MC, the 

kMC simulation involves two boxes representing the two phases of a bulk fluid, and to 

achieve the chemical and mechanical equilibrium interchange of molecules between the two 

boxes and changing their volumes are necessary: the interchange is similar to the grand 

canonical of Chapter 4 while the volume change is similar to the NPT of Chapter 3.   

5.2. Simulation Details 

The algorithm for the Gibbs-kMC simulation is similar to that developed in Chapters 3 and 4.  

The sub-NVT ensembles (with local displacement in each box as the only move) were used as 

a block in a chain of configurations, and the so called block average properties were then 

utilized to execute the transfer of molecules and the volume change to achieve equal chemical 

potential and pressure in a sufficiently long chain of configurations.  Thus it could be viewed 

that the chain is composed of a sequence of NVT blocks with either mass exchange or volume 

change at the end of each block.  The probability of choosing either mass exchange or 

volume change will be discussed in Section 5.4. 

The local displacement, the mass interchange and the volume change moves are given below: 

1. Local move:  This is carried out in each sub-NVT block, and its purpose is to relax the 

two boxes to “equilibrium” as described in Chapter 2.3.  A molecule is selected in 

each box and displaced randomly throughout the volume of its respective box. At the 

end of the block, the block average thermodynamic properties (pressure, chemical 

potentials and configurational energy) of each box are calculated using Equation 2-27. 

2. Exchange move: The purpose of this move is to equalize the chemical potentials of 

each component β in the two boxes (chemical equilibrium).  At the end of a 
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sufficiently long sub-NVT block, the time average chemical potentials (or activities) 

of all components are “expected” to be the same, written below for component β (the 

selection of component β is done at random, for example in a binary system, a 

component is selected with 0.5 probability): 

      
(I) (II)

        Eq. 5-1 

The exchange move could be done in a deterministic manner by comparing the block 

average activity.  If the block average activity of Box 1 is less than that of Box 2, a 

molecule of component β is selected in Box 2 and moved to Box 1.  However, to 

maintain the stochastic nature of  kMC, the Rosenbluth algorithm is implemented and 

this is done as follows:  The auxiliary activity is defined as the sum of the block 

average activities of the two boxes: 

     

(I) (II)aux

     
     Eq. 5-2 

 If the block average activity of Box 1 is less than or equal to 
auxrand   : 

     
(I) auxrand         Eq. 5-3 

a molecule is selected from the sub-population of component β in Box 2, using the 

Rosenbluth scheme, and moved to Box 1; otherwise a molecule is selected in Box 1 

and move it to Box 2. The durations for the configurations of the two boxes, after the 

exchange move, are calculated as in Equation 2-12. 

3. Volume move:  The purpose of this move is to equalize the pressures of the two boxes 

(mechanical equilibrium).  This could be done in three ways:  (a) using the instant 

pressures of two boxes at the end of a block (b) using the block average pressures, 

and (c) using the averages of the time averaged pressures of all blocks between two 

consecutive volume moves, as shown in the equation below.  

   
(I) (I)

1

1 exN

n
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P p
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II II

n
nex

P p
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     Eq. 5-4 

 where n is the n-th block in a sequence of Nex blocks between two consecutive volume 

moves. To carry out the volume change, an auxiliary pressure is defined as: 
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(I) (II)auxP P P       Eq. 5-5 

where the pressures in the RHS of the above equation could be one of the three 

different uses of pressure as discussed in the above paragraph.  A box is chosen to 

expand (and the other is contracted to maintain constant total volume) as follows.  If 

(I) auxP rand P  , then Box 1 is expanded, because its pressure is statistically high, 

according to the following equation 

     

'(I) (I)

max

(II) (I)' 'total

V V rand V

V V V

   

 
    Eq. 5-6 

where rand is a random number and Vmax is the maximum allowable volume change.  

On the other hand, if (I) auxP rand P  , Box 2 is expanded instead using Equation 5-

6. Similar to the NPT-kMC, the cut-off radius is adjusted to half of the new box length 

after a volume change move is done.  The maximum change in volume (∆Vmax) has 

been addressed in Chapter 3.3. 

5.3. The size of a sub-NVT block 

Like the NPT and µVT ensembles, the choice of the size of a sub-NVT block before an 

exchange move or volume is made, is very important. To determine this size, a canonical-

kMC simulation of a bulk liquid at saturation was carried out and the control charts of the 

running time average activity and pressure were observed. The bulk liquid densities were 

taken from Tegeler et al. [6] and 250 particles were used in the simulation box. Figure 5-2 

shows that the number of configurations required to relax the system increases with lower 

temperatures, due to higher saturation densities.  It is very interesting to make an observation 

that the pressures for very low temperatures, 70K and 60K, take about 4 times longer to 

stabilize because of the system is solid-like at these temperatures.  With the exception of the 

solid-like phase, we have found that the optimum size of a sub-NVT is 100 local displacement 

moves per particle, and this will be used in the subsequent simulations. 
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Figure 5-2 Accumulative time average (a) activity and (b) pressure of a series of temperatures against number of 

configurations.   

5.4. Percentage of exchange and volume change moves 

At the end of a sub-NVT block, either an exchange move or a volume move were carried out, 

but what are their optimal probabilities?  A high percentage of volume move could lead to the 

liquid box becoming too small in size and this is undesirable because: (1) the cut-off radius is 

too small to get accurate calculation of energy, (2) the number of molecules in the liquid box 

is too low and (3) the total configuration energies have to be recalculated each time a volume 

change is made because of the scaling of the positions of all molecules.  Therefore, a good 

choice would be one that has a low probability for the volume move.  This is illustrated in 

Figure 5-3, the Gibbs-kMC simulation results at 120K with 250 argon molecules in each 

cubic box having a linear dimension of 3.2nm.  It is shown that simulations with a high 

percentage of volume moves fail to describe the gas phase correctly, and as expected the ones 

with 0.01 probability of volume moves give the best splitting into two phases of correct 

respective densities.  This choice will be used in the remaining parts of this chapter. 
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Figure 5-3 Series of different percentage of exchange move at 120K, the simulations uses block average 

pressure for volume move decision and activity with Rosenbluth selection for exchange move decision. 

5.5. Scheme for volume change move 

The simulation results for the system of argon at 120K with 250 molecules in each cubic box 

of 3.2nm linear dimension are shown in Figure 5-4 to show the different choices of pressure, 

as detailed in Section 5.2. Since all of the schemes give a similar result, the block average 

pressure will be selected for the decision of volume change move.  
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Figure 5-4 Different schemes for volume change move at 120K. The black vertical line represent the density of 

coexisting liquid and gas argon by Tegeler et al. [6] at 120K. 
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5.6. Block average activity or logarithm of block average activity 

As shown in Chapter 4 that the block average activity of the liquid phase fluctuates with a 

very large amplitude.  The possibility of using the logarithm of the block average activity in 

the mass exchange move are explored in this section, i.e. the decision of the direction of 

molecule transfer is done as in Equations 5-2 and 5-3, by replacing 
  by ln 

 .  

The simulation results of the block average activity and logarithm of the block average 

activity are shown in Figure 5-5 for a system of argon at 120K and 250 molecules in each 

cubic box of 3.2nm linear dimension.  Both choices give a similar result and it is found that 

the deterministic route to move molecules requires a lower number of configurations than the 

random Rosenbluth route. 

Number of configurations

0.0 5.0e+7 1.0e+8 1.5e+8 2.0e+8 2.5e+8

D
e

n
s
it
y 

(-
)

0.0

0.2

0.4

0.6

0.8

Activity Rosenbluth 

ln(Activity) Deterministic

Activity Deterministic

Tegeler et al. [6]

 

Figure 5-5 Different schemes for exchange move at 120K 

5.7. Application to Argon 

Figure 5-6 shows the simulation results of the liquid vapour equilibrium of argon as plots of 

densities of the two phases as a function of temperature.  The results obtained in this 

investigation are comparable to those obtained with the conventional Gibbs-MC of 

Panagiotopoulos [3], although there are some deviations between the two results at 

temperatures close to the critical points. These are most likely due to the high thermal 
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fluctuations. This is the subject of further investigation as one of the issues recommended in 

the Recommendation section.  
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Figure 5-6 Liquid-vapour equlibrium of argon, triangles and circles are the results obtained by GEkMC using the 

block average pressure (triangle) and ensemble average of the block average pressure (circle) for the decision of 

volume change move, crosses are results obtained by GEMC simulation done by Panagiotopoulos et al. [3] and 

solid line refers to Tegeler et al. [2]. 
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Chapter 6. Conclusions and Recommendations 

6.1. Conclusions 

The aim of this thesis is to develop new simulation tools to determine the chemical potential 

of mixtures accurately. This objective has been achieved with the new method proposed in 

Chapter 3 which performs kMC simulations in the NPT ensemble.  Two types of move are 

required to perform the NPT-kMC: displacement and volume change.  Displacement moves 

are made using the Rosenbluth algorithm with no rejection.  Volume changes need careful 

calibration to establish an optimum value for the maximum allowable volume change, ∆Vmax.  

The concept of a sub-NVT ensemble within the NPT simulation is introduced which improves 

the accuracy of calculated properties. The technique has been applied to pure argon and to 

mixtures of methane with ethane and with ethane and propane.  

As a validation process for the chemical potential obtained in the NPT-kMC simulations, a 

new grand canonical kinetic Monte Carlo procedure was developed. A key feature is the 

improvement in the calculation of chemical potential of dense phase fluid, gained by 

employing sub-NVT ensembles within the grand canonical simulation.  The new procedure is 

illustrated by simulations of supercritical argon, methane, ethane and propane and their 

mixtures.   The new GC-kMC scheme is tested by comparison with NPT-kMC simulations 

and excellent agreement has been achieved. 

Finally, a novel method to predict the properties of coexisting fluids is proposed via Gibbs 

canonical kinetic Monte Carlo. The concept of sub-NVT ensembles were once again 

introduced and require three types of move: displacement, exchange and volume change. The 

displacement move is done to achieve internal equilibrium within each of the boxes, the 

exchange move and the volume change move are done to achieve chemical and mechanical 

equilibrium between two boxes, respectively. Once this is done, the two boxes represent the 

two coexisting phases of different densities. This procedure was applied to argon and the 

coexistence was achieved with reasonably accurate densities, pressure and chemical potential 

of the two phases.  
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6.2. Recommendations  

The progress of research into mixtures in fluid and adsorption systems is somewhat limited 

because of the difficulty in getting the chemical potential of mixtures, which are required in a 

simulation of an open system where temperature and pressure are specified. The NPT 

ensemble developed in this thesis provide a fundamental step in this direction. Therefore, it is 

expected that it will provide a tool to study bulk fluids and adsorption of many systems of 

practical interest in engineering: 

- Better understanding with microscopic behaviour of bulk mixtures in terms of the roles 

of attraction and repulsion in pressure and chemical potential, relative to ideal gas 

pressure and chemical potential. 

- Adsorption of complex fluids and its mixtures, for example mixtures of polar and non-

polar compounds. 

- Adsorption of mixtures in simple pores to build a foundation of mixture adsorption, 

followed by adsorption in complex pores, for example ink-bottle pores and disordered 

amorphous solids. 

- Vapour liquid equilibrium of mixtures over a wide range of temperatures. 

- Extend Gibbs-NVT-kMC to simulate bulk mixtures. The sub-NVT concept introduced in 

this work will be further explored to optimise the procedure in order to speed up the 

calculation. In addition, it could be implemented into a new ensemble of Gibbs-NPT-

kMC. 


