Accepted Manuscript

Personalised Pathway Analysis Reveals Association between DNA Repair Pathway Dysregulation and Chromosomal Instability in Sporadic Breast Cancer

Chao Liu, Sriganesh Srihari, Samir Lal, Benoît Gautier, Peter T. Simpson, Kum Kum Khanna, Prof. Mark A. Ragan, Dr. Kim-Anh Lê Cao

PII: S1574-7891(15)00166-0

DOI: 10.1016/j.molonc.2015.09.007

Reference: MOLONC 720

To appear in: Molecular Oncology

Received Date: 17 June 2015

Revised Date: 19 August 2015

Accepted Date: 4 September 2015

Please cite this article as: Liu, C., Srihari, S., Lal, S., Gautier, B., Simpson, P.T., Khanna, K.K., Ragan, M.A., Lê Cao, K.-A., Personalised Pathway Analysis Reveals Association between DNA Repair Pathway Dysregulation and Chromosomal Instability in Sporadic Breast Cancer, *Molecular Oncology* (2015), doi: 10.1016/j.molonc.2015.09.007.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Personalised Pathway Analysis Reveals Association between
2	DNA Repair Pathway Dysregulation and Chromosomal
3	Instability in Sporadic Breast Cancer
4	
5	Chao Liu ^a , Sriganesh Srihari ^a , Samir Lal ^b , Benoît Gautier ^c , Peter T. Simpson ^{bd} , Kum
6	Kum Khanna ^e , Mark A. Ragan ^{a*} and Kim-Anh Lê Cao ^{c*}
7	
, 8	^a Institute for Molecular Bioscience. The University of Oueensland, St. Lucia, OLD 4067, Australia
9	^b The University of Queensland 110 Centre for Clinical Research Herston QLD 4029 Australia
10	^c University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD 4102,
11	Australia
12	^d School of Medicine, The University of Queensland, Herston, QLD 4006, Australia
13	^e QIMR-Berghofer Medical Research Institute, Herston, Brisbane, QLD 4029, Australia
14	
15	* Joint corresponding authors:
16	Dr. Kim-Anh Lê Cao, University of Queensland Diamantina Institute, Translational Research Institute, Level 5,
17	37 Kent Street, Woolloongabba, QLD 4102, Australia. Tel: +61 7 3443 7069; Fax: +61 7 3443 6966; Email:
18	k.lecao@uq.edu.au
19	
20	Prof Mark A. Ragan, Institute for Molecular Bioscience, The University of Queensland, Level 6, 306 Carmody
21	Rd, St. Lucia, QLD 4067, Australia. Tel.: +61 7 3346 2616; Fax: +61 7 3346 2101; E-mail: m.ragan@uq.edu.au
22 23	

24 Abstract

25 The Homologous Recombination (HR) pathway is crucial for the repair of DNA 26 double-strand breaks (DSBs) generated during DNA replication. Defects in HR repair have 27 been linked to the initiation and development of a wide variety of human malignancies, and 28 exploited in chemical, radiological and targeted therapies. In this study, we performed a 29 personalised pathway analysis independently for four large sporadic breast cancer cohorts to 30 investigate the status of HR pathway dysregulation in individual sporadic breast tumours, its 31 association with HR repair deficiency and its impact on tumour characteristics. Specifically, 32 we first manually curated a list of HR genes according to our recent review on this pathway 33 (Liu et al., 2014), and then applied a personalised pathway analysis method named Pathifier 34 (Drier et al., 2013) on the expression levels of the curated genes to obtain an HR score 35 quantifying HR pathway dysregulation in individual tumours. Based on the score, we 36 observed a great diversity in HR dysregulation between and within gene expression-based 37 breast cancer subtypes, and by using two published HR-defect signatures, we found HR 38 pathway dysregulation reflects HR repair deficiency. Furthermore, we identified a novel 39 association between HR pathway dysregulation and chromosomal instability (CIN) in 40 sporadic breast cancer. Although CIN has long been considered as a hallmark of most solid 41 tumours, with recent extensive studies highlighting its importance in tumour evolution and 42 drug resistance, the molecular basis of CIN in sporadic cancers remains poorly understood. Our results imply that HR pathway dysregulation might contribute to CIN in sporadic breast 43 44 cancer.

45

Keywords: DNA repair; homologous recombination; breast cancer; chromosomal instability;
 pathway analysis

48

49 Introduction

50 Chromosomal instability (CIN), defined as an increased rate of gain or loss of whole 51 chromosomes or large chromosomal fragments, is a hallmark of most solid tumours. CIN is 52 the primary form of genomic instability that is thought to be the major cause of genetic 53 heterogeneity in cancer (Burrell et al., 2013b), and is thus strongly implicated in tumour 54 evolution. CIN also has important clinical implications, as it has been linked to poor 55 prognosis e.g. by conferring intrinsic multidrug resistance (Lee et al., 2011). The molecular 56 basis of CIN in hereditary cancer is relatively clear, which has been attributed to mutations in 57 DNA repair genes (Negrini et al., 2010); however, the underlying mechanisms of CIN in 58 various sporadic cancers remain poorly understood. Carter and colleagues developed a gene 59 expression-based CIN signature, termed CIN25, based on 25 genes that are most 60 overexpressed in tumours with CIN (Carter et al., 2006). A considerable number of genes 61 involved in *replication* and *cell cycle* contribute to this signature, suggesting an important 62 link between these cellular processes and CIN. This was further corroborated by Negrini et 63 al. (2010), who proposed a replication stress model to explain CIN in sporadic tumours; this 64 model was recently validated in colorectal cancer (Burrell et al., 2013a).

65 Highly proliferative cancer cells undergo considerable replication stress that results in the stalling of replication forks. These stalled forks are usually stabilised and restarted after 66 67 the source of stress is removed via a complex replication stress response pathway (Zeman 68 and Cimprich, 2014). Lack of stabilisation and/or the prolonged persistence of a stalled fork 69 can generate DNA double-strand breaks (DSBs), which are subsequently repaired by DSB 70 repair machinery to restart the forks. However, in the absence of such a DSB repair 71 machinery the DSBs will develop into chromosomal breaks, resulting in CIN. *Homologous* 72 recombination (HR) is a crucial pathway responsible for repairing DSBs during replication. Using homologous sister chromatid as templates, HR presents a high-fidelity repair 73 74 mechanism that is crucial for error-free DNA replication.

The core components of HR are fairly well established for their specific roles i.e. monitoring, signalling and repairing of DSBs (Liu et al., 2014), and HR defects can be detected by investigating the loss-of-function mutations in these genes. However, the dysfunction of HR can also be caused by numerous other mechanisms. For example, changes or defects in chromatin remodelling (Price and D'Andrea, 2013; van Attikum and Gasser, 2009), microRNAs (Chowdhury et al., 2013; d'Adda di Fagagna, 2014; Sharma and Misteli, 2013), post-translational modifications such as ubiquitination and sumoylation (Bekker-

Jensen and Mailand, 2011; Dou et al., 2011; Ulrich, 2012), and inappropriate expression of 82 83 certain genes that are not directly involved in HR (Y. Peng et al., 2015; Watkins et al., 2015) 84 can considerably affect HR components, thereby causing aberrant HR function. As a 85 consequence, single-gene approaches or approaches focusing on one mechanism yield only 86 an incomplete picture of abnormal HR in a given tumour. On the other hand, HR-deficient 87 cells may compensate for the defect in a given HR gene by altering the expression level of 88 other HR genes (Pitroda et al., 2014). The most notable example is the overexpression of 89 DNA repair protein RAD51 homolog 1 (RAD51), which is observed when breast cancer 90 susceptibility gene 1 (BRCA1) (Martin et al., 2007), breast cancer susceptibility gene 2 (BRCA2) (Brown and Holt, 2009) or other key HR genes (Takata et al., 2001) are defective. 91 92 It is therefore of interest to determine a measure of HR *pathway* dysregulation, aggregating 93 the expression of all HR genes, which may reflect HR repair deficiency in tumours regardless 94 of the mechanism that has led to the deficiency.

95 The vast majority of breast tumours are sporadic, which accounts for 90%-95% of all 96 diagnosed breast cancer cases (Davis, 2011) and are characterised by their great heterogeneity in biological property and patient outcome. To dissect this heterogeneity, 97 98 estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 99 receptor 2 (HER2) have been used as standardised diagnostic markers in clinical practice to guide the choice of treatment. Gene expression profiling has defined five intrinsic subtypes 100 101 (also known as PAM50 subtypes) with clinical relevance: Luminal A, Luminal B, Basal-like, 102 HER2 and Normal-like (Hu et al., 2006; Parker et al., 2009; Perou et al., 2000; Sørlie et al., 103 2001). More-recent genomic studies, notably from the Cancer Genome Atlas (TCGA) and 104 Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), have 105 uncovered substantial heterogeneities within these receptor- or gene expression-based 106 subtypes, resulting in the definition of up to ten subtypes (Ciriello et al., 2013; Curtis et al., 107 2012; Koboldt et al., 2012; Lehmann et al., 2011; Yanagawa et al., 2012). However, it is 108 likely that heterogeneity exists even within these newly established subtypes. In the coming 109 age of personalised medicine, each tumour may be analysed individually.

Pathway analysis has become the first choice to gain functional insights from expression data, beyond the detection of differential genes. Numerous pathway analysis tools have been developed, however, most of them are designed for providing pathway dysregulation information at population level instead of tumour level. Among the recently proposed methods for personalised pathways analysis (Ahn et al., 2014; Drier et al., 2013; Vaske et al., 2010; Wang et al., 2015a; 2015b), Pathifier (Drier et al., 2013) has proven to be

particularly robust. It has been successfully applied to provide a pathway-based classification of breast cancer (Livshits et al., 2015), and when combined with Cox regression and L1 penalised estimation, has achieved better prognosis prediction compared with gene-based models (Huang et al., 2014).

120 In this study, we sought to perform a personalised pathway analysis to obtain a 121 comprehensive understanding of the status of HR pathway dysregulation in individual 122 sporadic breast tumours, its association with HR repair deficiency and its impact on tumour 123 characteristics (CIN in this case). To this end, we calculated for each breast tumour an HR 124 score that quantified the extent of HR pathway dysregulation in that tumour. Base on the 125 score, we observed a great diversity in HR dysregulation between and within the PAM50 126 subtypes, and by using two published HR-defect signatures, we found HR pathway dysregulation reflects HR repair deficiency. More importantly, we uncovered a novel 127 128 association between HR dysregulation and CIN, which indicates that dysregulated HR might 129 contribute to replication stress-induced CIN in breast cancer. This knowledge may help future studies to identify the causative factors of CIN in sporadic breast cancer as well as in other 130 131 cancer types.

132 Materials and Methods

133 **1. Genomic data**

Whole-genome gene expression data, DNA copy-number data, gene mutation data (only available for the TCGA samples) and related clinical data for four breast cancer cohorts (Table 1) were obtained from METABRIC (Curtis et al., 2012) and TCGA (Koboldt et al., 2012).

)		No. of				
Cohort	All	Basal-like	HER2	LumA	LumB	Normal-like	normal breast tissues
METABRIC Discovery	997	118	87	466	268	58	144
METABRIC Validation	995	213	153	255	224	144	144
TCGA RNA-seq	1068	188	80	549	213	38	113
TCGA Microarray	522	98	58	231	127	8	22

138 Table 1 Breast cancer cohorts analysed in this study

Gene-expression data and chromosomal-level DNA copy-number data from the
 METABRIC project (Genome-phenome Archive accession number EGAS0000000083)
 were made available upon request, and had already been preprocessed as described by Curtis

¹³⁹

143 et al. (Curtis et al., 2012). Gene-expression data from this project were based on the Illumina 144 HT-12 v3 Expression Beadchip (Illumina, San Diego, CA, USA). The probe-level 145 transcription estimates were mapped to gene-level estimates using the HT-12 v3 annotation 146 file downloaded from the Illumina website (http://www.illumina.com/). Where two or more 147 probes represented the same gene, the probe with the largest variation was chosen as the gene 148 representative. DNA copy-number data from METABRIC had been generated using 149 Affymetrix SNP 6.0 arrays (Affymetrix, Santa Clara, CA, USA). The corresponding PAM50 150 subtype assignment and clinical outcome were obtained from (Curtis et al., 2012).

151 The preprocessed gene-expression and DNA copy-number data (both chromosomelevel and gene-level) for the TCGA RNA-seq cohort were downloaded via the UCSC Cancer 152 153 Genomics Browser (https://genome-cancer.ucsc.edu/) on 13 October 2014. Gene-expression 154 data for this cohort were measured using the Illumina HiSeq 2000 RNA Sequencing 155 platform, and show the Expectation Maximization (RSEM)-normalised and percentile-ranked 156 gene-level transcription estimates. DNA copy-number data for this cohort had been generated 157 using Affymetrix SNA 6.0 arrays, with germline copy-number variation filtered out. PAM50 158 classifications for this cohort were obtained through personal communication with the TCGA 159 consortium. A subset of these 1068 cases also has gene expression data obtained from 160 microarray. The Level 3 gene-expression data for this TCGA Microarray cohort and the corresponding PAM50 classifications were downloaded from the TCGA data portal 161 publication site (https://tcga-data.nci.nih.gov/docs/publications/brca_2012/) on 3 June 2014. 162 These gene-expression data were based on Agilent custom 244K whole-genome microarrays 163 164 and had been preprocessed as described by Koboldt et al. (Koboldt et al., 2012). DNA copy-165 number data for this cohort were obtained as a subset of the TCGA RNA-seq cohort, as the 166 samples of the former cohort were covered by the later cohort.

167 The preprocessed gene mutation data for 982 TCGA samples, generated on an 168 IlluminaGA system, were downloaded via the UCSC Cancer Genomics Browser 169 (<u>https://genome-cancer.ucsc.edu/</u>) on 06 July 2015. Each gene had been assigned a value of 1 170 or 0, indicating whether a non-silent mutation was identified in the coding region of that gene 171 (value=1) or not (value=0). These data were matched to the two TCGA cohorts respectively 172 according to the sample ID.

173 **2.** HR pathway curation and calculation of *HR* score

Based on our recent review of the HR pathway (Liu et al., 2014), we manually curated a list of 82 genes with direct relevance to HR (Supplementary Table S1). We then

176 applied Pathifier (Drier et al., 2013) to the mRNA expression level of the curated HR genes 177 to calculate an HR score that quantifies HR pathway dysregulation in individual breast 178 tumours. Based on gene-expression profiles for tumours and normal breast tissues, Pathifier 179 transforms HR gene-expression measurements into a measure of HR pathway dysregulation 180 by fitting a principal curve (see Supplementary Figure S1 for a visualisation of the curve) that 181 captures the maximal variability of the expression levels of the HR genes in all samples, and 182 then projects each sample onto that curve. A sample's HR score is defined as its distance 183 along the curve from the centroid of the normal tissues (Drier et al., 2013).

184 Not all HR genes we curated were present in the gene expression data for each of the 185 four cohorts. We therefore calculated the *HR* score for each cohort based only on HR genes 186 that are available for that cohort (ranges from 67 to 72, see Supplementary Table S1). No 187 other ways for selecting HR genes were examined to minimize retrospective optimization for 188 the correlations with CIN (see below).

189

3. CIN measurements calculation

190 The numbers of chromosomal breakpoints and the proportions of the genome affected 191 by copy-number change (Genomic Instability Index, GII) for samples in the two METABRIC 192 cohorts were downloaded from a recent study (Vollan et al., 2015) in which the METABRIC 193 Group was involved. According to this study, a few samples with mismatched DNA/RNA were identified and excluded, resulting in 985 samples remaining in the Discovery cohort and 194 195 965 in the Validation cohort. To get the number of amplified/deleted genes for the same 196 samples, we first calculated the copy number of each gene using the chromosomal-level DNA copy-number data available for the two cohorts, then applied cut-offs (≥ 0.10 for 197 amplified genes and ≤ -0.15 for deleted genes) that are similar to those used by METABRIC 198 199 to define chromosomal regions with amplifications or deletions.

200 For the two TCGA cohorts, we used the chromosomal-level DNA copy-number data 201 to calculate number of breaks by counting the total number of chromosomal segments at least 202 1 kb in length. The calculation of GII was also based on the chromosomal-level DNA copy-203 number data after filtering out segments shorter than 1kb, and the same cut-offs as mentioned 204 above (≥ 0.10 for amplification and ≤ -0.15 for deletion) were used to identify chromosomal 205 regions with copy-number change. The number of amplified/deleted genes for each of the 206 two TCGA cohorts was obtained from the downloaded gene-level DNA copy-number data, 207 where +1 and +2 represent amplification and -1 and -2 represent deletion.

4. Survival analysis

Survival analysis for both of the METABRIC datasets was performed using the R package *survival* (http://cran.r-project.org/web/packages/survival/index.html). Patient followup time was limited to 15 years, and only breast cancer-related deaths were counted.

212 **Results**

1. An *HR* score for quantifying HR pathway dysregulation in individual breast

tumours

215 An *HR* score was developed for each breast tumour to quantify HR pathway 216 dysregulation in that tumour; a high HR score means that the expression of the HR genes as a 217 whole in an individual tumour is very different from the situation in normal breast tissues 218 (see Supplementary Figure S2 for HR gene expression in tumours with low to high HR 219 score). To calculate this score, we first manually curated a list of 82 HR genes 220 (Supplementary Table S1) according to our recent review on the HR pathway (Liu et al., 221 2014). This gene list provides more up-to-date knowledge about the content of HR compared 222 to publicly available pathway databases; for instance, it catalogues 54 more genes than the 223 HR pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000). The expression profiles of the curated HR genes were then employed as 224 225 input to the Pathifier method (Drier et al., 2013) to compute the score. To ensure 226 reproducibility of the results, we performed this pathway analysis independently for four 227 large breast cancer cohorts that also include data on normal breast tissues (Table 1). 228 Depending on data availability, the number of HR genes for calculating the score is slightly 229 different across the cohorts (Supplementary Table S1).

230 The boxplots in Figure 1 display the *HR* score distribution in each cohort with regard 231 to the PAM50 molecular subtypes, and in normal breast tissues. We observed a consistent 232 pattern across the four cohorts: basal-like tumours generally have the highest HR score, 233 followed by HER2 and Luminal B tumours, and then Luminal A and Normal-like tumours; 234 the normal breast tissues always have the lowest HR score as a consequence of being the 235 benchmark. Similar results can be seen in Supplementary Figure S3 showing *HR* score versus 236 the HR score-based rank of the tumours of different subtypes. The consistent distribution of 237 the *HR* score by tumour subtype across the different cohorts and gene-expression profiling 238 platforms (RNA-seq and microarray in TCGA) is strong evidence that the HR score is robust

and reproducible. Interestingly, we observed some variability in *HR* score within tumours of
the same subtype, as highlighted by some outliers in the boxplots, suggesting some
heterogeneity in HR pathway dysregulation within the subtypes.

242

2. The *HR* score is reflective of HR repair deficiency.

The *HR* score is gene expression-based, and measures the extent to which the HR pathway is dysregulated. To test whether there exists an association between HR pathway dysregulation and HR repair deficiency, we next asked whether the *HR* score is reflective of HR repair deficiency (i.e., whether a tumour with high *HR* score is likely to be HR-defective). We used two published HR-defect signatures, homologous recombination defect (HRD) (G. Peng et al., 2014) and Large-scale transitions (LSTs) (Popova et al., 2012), to test this hypothesis.

250

2.1. Comparison with the HRD signature

The HRD signature encompasses 230 genes that are differentially expressed between HR-intact and HR-deficient cells, and is intended to represent the global impact of HR defect on the transcriptome of a tumour cell (G. Peng et al., 2014). To identify tumours (or cell lines) with HR deficiency, Peng et al. performed a hierarchical clustering analysis based on the expression level of the 230 genes to divide samples into two clusters, one considered as HR-intact and the other HR-deficient (G. Peng et al., 2014).

257 In this study, we performed the same clustering analysis for each of the four cohorts 258 (Figure 2A for the METABRIC discovery cohort and Supplementary Figures S4, S5 and S6 259 for the three remaining cohorts). As shown in Figure 2A, tumours with low HR score (upper 260 horizontal bar, green) are mostly tumours belonging to the HR-intact cluster, whereas tumours with high HR score (upper horizontal bar, red) are mostly tumours belonging to the 261 262 HR-deficient cluster. To be more precise, Figure 2B shows the distribution of the HR score in the two HRD-based clusters for each of the four cohorts, demonstrating that tumours in the 263 264 HR-deficient cluster in general have significantly higher HR score compared with tumours in 265 the HR-intact cluster (p-values \leq 9.1e-63, Wilcoxon Signed-rank test). These observations 266 indicate that tumours with high HR scores are likely to be HR-defective, as predicted by the 267 HRD signature.

268

2.2. Comparison with the LST signature

LST refers to a chromosomal break whose flanking regions are at least 10 Mb in size. A tumour with a large number of LSTs indicates HR defect-related genomic scarring as a

measure of chromosomal instability (Popova et al., 2012). In this study, we estimated the 271 272 number of LSTs for each tumour using the DNA copy number data, and divided each cohort 273 into two groups according to the method and cut-offs described in (Popova et al., 2012): LST^+ (> 20 LSTs) and LST^- (< 20 LSTs). The numbers of LST^+ and LST^- tumours identified 274 in each cohort are summarised in Supplementary Table S2. As in the comparison with the 275 HRD signature, we found that LST⁺ tumours generally have higher HR scores compared with 276 LST⁻ tumours, even in the case of the METABRIC Discovery cohort where only nine LST⁺ 277 tumours were identified (Figure 3). This observation also supports the idea that the HR score 278 279 is indicative of HR defect.

280 Taken together, the results based on HRD and on LST demonstrate an association 281 between HR pathway dysregulation, as represented by the HR score, and HR repair 282 deficiency. In addition, in the two TCGA cohorts for which gene mutation data were 283 available, we also observe that tumours with at least one non-synonymous mutation in one of 284 six key HR genes have significantly higher HR score than do the tumours with no mutation in 285 any of these genes (see Supplementary Figure S7 for more details). All these results support the existence of a compensatory mechanism through which HR-deficient cells respond to 286 287 their HR defect by altering the expression level of HR genes. Interestingly, it has been proposed that melanoma cells exploit the overexpression of DNA repair genes, particular 288 289 those involved in DSB repair, to increase their DNA repair capacity that is necessary for 290 them to invade and give rise to distant metastases (Sarasin and Kauffmann, 2008). Consistent 291 with this, overexpression of certain DNA repair genes is utilised by polyploid cells to 292 overcome replication stress-induced senescence barriers (Zheng et al., 2012). All these results 293 indicate that altering the expression of DNA repair genes or pathways may be a 294 compensatory mechanism commonly exploited by tumour cells.

295

3. Association with CIN

Because replication stress has emerged as a common source of CIN in caner, and HR is the crucial pathway for the repair of replication stress-induced DSBs, we hypothesised that there might be a link between HR pathway dysregulation, which is indicative of HR repair deficiency as described above, and the degree of CIN in breast carcinomas. To test this hypothesis, we first examined the correlation between the *HR* score and the widely used CIN signature CIN25 (Carter et al., 2006). We then investigated the association between the *HR* score and each of the three common CIN measurements: number of chromosomal

breakpoints, fraction of the genome with copy-number alterations (genomic instability index, GII), and number of amplified/deleted genes. In particular, as data pre-processing and segregation algorithm can significantly affect the actual value of the CIN measurements, we downloaded the numbers of chromosomal breaks and GII for the two METABRIC cohorts from a recent publication (Vollan et al., 2015). We believe these measures from a third-party study provide more-objective results for our analysis.

309

3.1. Association with CIN25

310 Figure 4 displays a scatter plot between the CIN25 score, defined as the mean 311 expression value of the CIN25 genes (Carter et al., 2006), and the HR score for tumours from each of the four cohorts. Each cohort showed a high correlation between the CIN25 score and 312 313 the *HR* score (Spearman correlation coefficient r = 0.94 and r = 0.93 for the two METABRIC 314 cohorts, and r = 0.85 and r = 0.96 for the two TCGA cohorts), indicating that the *HR* score is 315 also correlated with CIN level. Moreover we found ten of the CIN25 genes (40%) to be 316 present among the 230 genes of the HRD signature mentioned in Section 2.1, which indicates 317 that HR defects might be one of the underlying biological mechanisms responsible for the 318 expression change of the CIN25 genes.

Overall, these results revealed that the *HR* score correlates with the CIN25 score, and support the hypothesis that there exists an association between HR pathway dysregulation, as represented by the *HR* score, and CIN level in tumours, as predicted by the CIN25 score.

322

3.2. Association with three common CIN measurements

323 Because the CIN25 score only indirectly estimates CIN level in tumours, we also 324 directly assessed the relationship between the HR score and each of the three common CIN 325 measures (breakpoints, GII and number of amplified/deleted genes). We asked whether 326 tumours with higher HR score tend to have a higher CIN level. To address this, we divided 327 tumours into four equal-sized groups based on the HR score quartiles, and statistically 328 examined the differences between adjacent groups for each of the three CIN measurements. 329 The boxplots in Figure 5 (METABRIC discovery cohort) show a high variability in each HR 330 score quartile group for each CIN measurement, indicating that other mechanisms can also 331 affect CIN. However, we observed a clear pattern that tumours with higher HR score indeed 332 tend to have higher CIN level (Wilcoxon Signed-rank test, one sided FDR p-value < 0.05), 333 with the exception of tumours in the third and fourth quartile groups in GII. Similar results 334 were obtained for the remaining three cohorts (Supplementary Figures S8, S9 and S10).

Overall, these results suggest an association between the extent of HR pathway dysregulationand the degree of CIN level in breast carcinomas.

337 As the *HR* score is based on gene expression, to ascertain whether the association 338 observed above is due to the gene expression-based PAM50 subtypes, we performed the 339 same analysis independently on tumours within each PAM50 subtype. In each analysis, the 340 samples were divided into high and low HR score groups according to the median. The 341 results for the METABRIC discovery cohort are summarised in Figure 6. For this cohort we 342 consistently observed that tumours in the high *HR* score group have more breakpoints than do 343 tumours in the low HR score group within the subtypes, despite the wide range of the 344 breakpoint numbers observed for each subtype. The difference in GII between the low and high HR score groups was significant in Basal-like, Luminal A and Normal-like tumours, but 345 not in HER2 and Luminal B tumours, while the difference in number of amplified/deleted 346 347 genes between the two groups was significant in all subtypes except HER2. For the other 348 cohorts (Supplementary Figures S11, S12 and S13) we observed some differences between cohorts. For example, in the METABRIC Validation cohort, all three CIN measurements are 349 350 significantly different between the two HR score groups for all subtypes, whereas the difference is significant in fewer subtypes in the TCGA Microarray cohort. These 351 352 discrepancies might be due to low sample size in the TCGA Microarray cohort (e.g. there are 353 only eight samples in its Normal-like subtype). Apart from these possible exceptions, the 354 above results support the hypothesis that tumours with more-deregulated HR pathway are 355 likely to have a higher degree of CIN, and this relationship can still be detected within the 356 gene expression-based PAM50 subtypes.

357

3.3. Association between the CIN measurements and other pathways

The scatter plots in Figure 5 (METABRIC discovery cohort) show that the *HR* score is moderately correlated with each of the three CIN measurements (breakpoints r = 0.60, GII r=0.39 and number of amplified/deleted genes r = 0.48). These moderate correlations are not surprising, given that we do not consider aberrant HR as the only mechanism that contributes to CIN. In this section we investigated whether there are other pathways whose dysregulation also correlates with CIN, and whether these moderate correlations are far from random.

We computed a score for each of the 186 KEGG pathways (Kanehisa and Goto, 2000) and for 674 Reactome pathways (Croft et al., 2010), using the same approach as for the *HR* score. Spearman correlation coefficients between these scores and each of the three CIN measures were recorded and compared against the respective correlations between the *HR*

368 score and the three CIN measurements. Figure 7 shows the results for the METABRIC Discovery cohort (KEGG pathways are in green and Reactome pathways in blue; similar 369 370 results for the other three cohorts are in Supplementary Figures S14, S15 and S16). We found 371 only a few KEGG or Reactome pathways whose dysregulation showed a similar level of 372 correlation with CIN as did the HR pathway. For example, only four (2.2%) KEGG pathways 373 (cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation and p53 signalling) 374 were more strongly associated with number of breakpoints than with the HR pathway (r =375 0.61- 0.63 compared to r = 0.60 for the HR pathway in Figure 7). Moreover, the strong associations of the oocyte meiosis, progesterone-mediated oocyte maturation and p53 376 377 signalling pathways with number of breakpoints is mainly due to their considerable overlap 378 in gene content with the KEGG cell cycle pathway: 37%, 34% and 36% genes from each of 379 these three pathways are also present in the cell cycle pathway (Supplementary Table S3). In 380 contrast, only two HR genes are present in the cell cycle pathway. After removing the 381 overlapping genes, association levels between each of these three pathways with number of 382 breakpoints significantly decreased (results not shown). Similarly, although there were 24 383 (3.6%) Reactome pathways whose dysregulation showed a similar level of correlation with 384 CIN as did the HR pathway, 18 of these are either the cell cycle pathway or its sub-pathways 385 (Supplementary Table S4).

As the KEGG and Reactome pathways do not cover all genes measured in the whole-386 387 genome gene expression profiling data analysed in this study, we also constructed 1000 388 "Random" pathways for each cohort to calculate an empirical p-value for the association 389 between the HR score and each of the three CIN measurements. Each Random pathway is of 390 the same length as HR but is composed of genes randomly selected from the gene-expression 391 profiling data, excluding those from HR and cell cycle pathways. Similar to the KEGG 392 pathways analysed above, we computed a score for each Random pathway, and compared the 393 correlation coefficients with the three CIN measures against those for the HR score. As 394 shown in Figure 7, only a few Random pathways (in pink) showed a level of association with 395 CIN similar to that of the HR pathway, as indicated by the empirical p-values. Similar results 396 for the other three cohorts were obtained (Supplementary Figures S14, S15 and S16).

397 Overall, these results indicate that the CIN level in tumours is associated with the 398 dysregulation of only a limited number of pathways (e.g., the cell cycle pathway), and that 399 the correlation between HR and CIN is far from being random.

400 **4.** Association with survival in ER⁺ tumours

401 The two METABRIC cohorts are annotated with disease-specific survival data that 402 are lacking for the two TCGA cohorts. We thus tested whether the HR score can predict patient survival in the two METABRIC cohorts. Figure 8 shows Kaplan-Maier plots for 403 patients with ER⁺ tumours from the METABRIC discovery (n=699; follow-up time ≤ 15 404 years) and validation cohorts (n=582; follow-up time ≤ 15 years). For each cohort, patients 405 406 were divided into high and low HR score groups based on the median HR score. For both 407 cohorts, we observed a significant difference in patient survival between the two HR score groups with ER^+ tumours (Figure 8; Cox proportional hazards regression test p-value = 8.4e-408 04 and 3.9e-09 for the two cohorts, respectively). However, we observed no significant 409 difference in survival between the two HR score groups for patients with ER tumours (data 410 not shown). As an association between CIN and prognosis in ER⁺ tumours has already been 411 412 documented (Przybytkowski et al., 2014; Smid et al., 2011), and after control for the number 413 of chromosomal breaks there is no significant difference in survival between the two HR 414 score-based groups (result not shown), we infer that the prognostic value of the HR score in ER^+ tumours is due to the association between the *HR* score and CIN. 415

416 **Discussion**

Multiple molecular mechanisms have been associated with the origin of CIN in 417 418 cancer, including replication stress, telomere dysfunction, aberrant DNA repair and various 419 defects in chromosome segregation (reviewed in (Abbas et al., 2013; Aguilera and García-420 Muse, 2013; Negrini et al., 2010; Thompson et al., 2010). Although CIN can be experimentally induced by exploiting any of these mechanisms, replication stress has been 421 422 recently identified as the first recurrent genetic defect associated with CIN in colorectal 423 cancer (Burrell et al., 2013a). In this scenario, CIN is induced during DNA replication in fast-424 dividing tumour cells, giving rise to frequent stalling of replication forks. Consequently, HR 425 as the primary pathway for repair of the resultant DSBs during replication becomes 426 overworked, and if HR is dysfunctional the frequency of replication stress-induced CIN is 427 likely to increase dramatically. Here we have shown that HR dysregulation as measured by 428 the HR score, which is indicative of aberrant HR repair, is prevalent in sporadic breast cancer 429 and correlates with the level of CIN. We thus propose that HR dysregulation might contribute 430 to replication stress-induced CIN at least in sporadic breast cancer. Consistent with this view,

431 overexpression of the key HR gene *RAD51*, which is commonly seen in breast cancer as well
432 as other cancer types, promotes chromosomal instability (Richardson et al., 2004), and two
433 other critical HR genes, *BRCA1* and *BRCA2*, were recently proposed as chromosome
434 custodians mainly due to their role in HR (Venkitaraman, 2014a; 2014b).

435 Dysfunction of the HR pathway, although not the primary cause, may increase the 436 level of replication stress-induced CIN in several ways. Firstly, it can cause inefficient repair 437 of DSBs, resulting in an accumulation of chromosomal breaks. Secondly, by triggering error-438 prone repair pathways including canonical non-homologous end-joining (C-NHEJ) and 439 alternative non-homologous end-joining (Alt-NHEJ, also called microhomology-mediated end joining (MMEJ)), HR dysfunction can lead to translocations, translocation-related 440 441 chromosomal breaks and DNA copy-number changes. Specifically, in contrast to HR that 442 requires homologous sequence to guide repair, C-NHEJ and Alt-NHEJ mediate the repair by 443 a direct ligation of the break ends after more-or-less end processing, and so do not ensure that the broken DNA strands are re-joined in the correct position. These two low-fidelity 444 445 pathways come to repair DSBs generated during DNA replication when HR is deficient, 446 resulting in translocation as well as translocation-related chromosomal breaks (Alexandrov et al., 2013; Bunting and Nussenzweig, 2013; Ottaviani et al., 2014; Villarreal et al., 2012). 447 448 Moreover, gene copy number changes also arise when the repair of broken replication forks 449 switched from HR to the two NHEJs, especially Alt-NHEJ (Hastings et al., 2009);

450 A third way in which HR pathway dysfunction can increase replication stress-induced CIN is by affecting mitosis and the proper functioning of telomeres. HR defects and the 451 452 consequent slow progression of replication forks can elicit alterations of mitosis, which 453 highlights the importance of HR at the interface of these two processes for protection against 454 CIN (Wilhelm et al., 2014). In addition, DSB repair is shut down during the M phase to avoid 455 telomere fusion and as a consequence, mitosis will continue even in the presence of DSBs or 456 fragmented chromosomes, giving rise to CIN (Orthwein et al., 2014). This emphasises the 457 importance of DSB repair during DNA replication, especially given the presence of DSBs 458 that result from replication stress. HR defects caused by BRCA2 mutations could also lead to 459 telomere dysfunction, a mechanism that has been proposed to explain, in part, the 460 chromosomal instability observed in BRCA2-deficient tumours (Badie et al., 2010). Taken together, HR dysfunction can increase CIN via diverse mechanisms, and the association 461 462 revealed in this study between HR dysregulation and CIN (Figures 4, 5 and 6) indicates that dysregulated HR might contribute to the CIN observed in highly replicative tumours. 463

464 The study of CIN in breast cancer has attracted immense interest in recent years following the recognition of its clinical relevance in disease heterogeneity, drug resistance 465 466 and patient response (A'Hern et al., 2013; Birkbak et al., 2011; Endesfelder et al., 2014; 467 Habermann et al., 2009; Roylance et al., 2011; Sansregret and Nepveu, 2011; Swanton et al., 468 2009; Vincent-Salomon et al., 2013); reviewed by (Wiechec, 2011). CIN induces evolution in 469 tumours, providing the heterogeneity from which aggressive and/or drug-resistant tumour 470 clones are selectively established. CIN aids tumour development by amplifying genomic 471 regions containing oncogenes and deleting regions containing tumour-suppressor genes, 472 thereby significantly influencing treatment response and survival in patients. Our results 473 further strengthen this connection by associating dysregulated HR with the extent of amplified/deleted genes and regions of the chromosome, and by showing that ER⁺ tumours 474 475 with high HR score or CIN levels display significantly poorer prognosis (Figure 8).

476 A measure of HR dysregulation such as the one adopted here can be extremely 477 valuable to guide therapeutic options. The observation that cancer cells deficient in HR are 478 profoundly sensitive to PARP inhibitors (Bryant et al., 2005; Farmer et al., 2005) has already 479 led to the development of targeted PARP therapies for sporadic breast and ovarian cancers 480 with defects in core HR genes such as BRCA1 and BRCA2, a condition termed as "BRCAness" (Turner et al., 2004). PARP is an important protein family whose members 481 482 function in restarting stalled replication forks and diverting DSBs to HR-mediated repair. It 483 has been proposed that accumulated chromosomal instability arising from the continued 484 stalling of replication forks, accompanied by deficiency in repairing DSBs and thereby triggering a genomic catastrophe, may explain how PARP inhibition kills HR-deficient 485 486 cancer cells (Bryant et al., 2005; Farmer et al., 2005). Although focusing on a mechanistic 487 explanation for PARP-based cancer therapy, these models indirectly suggest an underlying 488 relationship among replicative stress, dysfunctional HR and the accumulation of 489 chromosomal instability.

In conclusion, we performed a personalised pathway analysis by calculating an *HR* score that quantifies HR pathway dysregulation in individual breast tumours, with the behaviour of HR in normal breast tissues serving as a benchmark. Our results are reproducible across four large breast cancer cohorts (~ 3000 tumours in total). We found HR is dysregulated to various extents between and within the gene expression-based PAM50 subtypes, which may reflects their HR repair deficiency. More importantly, we uncovered a novel association between HR dysregulation and CIN. Although HR has a well-known role in

16

497 maintaining genomic integrity, this work is the first large-scale study to assess the correlation
498 between HR dysregulation and CIN in sporadic breast cancer. As such our results will be
499 useful for future studies that aim to identify causative factors of CIN in sporadic breast cancer
500 as well as in other cancer types.

501 Acknowledgments

502 This study makes use of data generated by the Molecular Taxonomy of Breast Cancer 503 International Consortium funded by Cancer Research UK and the British Columbia Cancer 504 Agency Branch. We also thank TCGA for providing the genomic data. This study was 505 funded by the Australian National Health and Medical Research Council (NHMRC) Project 506 Grant (ID: 1028742) to PTS and MAR. KALC was supported in part by the Australian 507 Cancer Research Foundation (ACRF) for the Diamantina Individualised Oncology Care Centre at The University of Queensland Diamantina Institute and the NHMRC Career 508 509 Development fellowship (ID: APP1087415). KKK is an NHMRC Senior Principal Search Fellow (ID: 613638) supported by the NHMRC Project Grant (ID: 1017028). 510

511 **References**

- 512 A'Hern, R.P., Jamal-Hanjani, M., Szász, A.M., Johnston, S.R.D., Reis-Filho, J.S., Roylance, 513 R., Swanton, C., 2013. Taxane benefit in breast cancer--a role for grade and 514 chromosomal stability. Nat Rev Clin Oncol 10, 357-364. doi:10.1038/nrclinonc.2013.67 Abbas, T., Keaton, M.A., Dutta, A., 2013. Genomic instability in cancer. Cold Spring Harbor 515 516 Perspectives in Biology 5, a012914. doi:10.1101/cshperspect.a012914 Aguilera, A., García-Muse, T., 2013. Causes of genome instability. Annu. Rev. Genet. 47, 1– 517 32. doi:10.1146/annurev-genet-111212-133232 518 519 Ahn, T., Lee, E., Huh, N., Park, T., 2014. Personalized identification of altered pathways in 520 cancer using accumulated normal tissue data. Bioinformatics 30, i422–9. 521 doi:10.1093/bioinformatics/btu449 522 Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Aparicio, S.A.J.R., Behjati, S., Biankin, A.V., 523 Bignell, G.R., Bolli, N., Borg, A., Børresen-Dale, A.-L., et al., 2013. Signatures of 524 mutational processes in human cancer. Nature 500, 415–421. doi:10.1038/nature12477 525 Badie, S., Escandell, J.M., Bouwman, P., Carlos, A.R., Thanasoula, M., Gallardo, M.M., Suram, A., Jaco, I., Benitez, J., Herbig, U., Blasco, M.A., Jonkers, J., Tarsounas, M., 526 527 2010. BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. 528 Nature Structural & Molecular Biology 17, 1461–1469. doi:10.1038/nsmb.1943 529 Bekker-Jensen, S., Mailand, N., 2011. The ubiquitin- and SUMO-dependent signaling 530 response to DNA double-strand breaks. FEBS Letters 585, 2914–2919. 531 doi:10.1016/j.febslet.2011.05.056 Birkbak, N.J., Eklund, A.C., Li, Q., McClelland, S.E., Endesfelder, D., Tan, P., Tan, I.B., 532 Richardson, A.L., Szallasi, Z., Swanton, C., 2011. Paradoxical relationship between 533
- 534 chromosomal instability and survival outcome in cancer. Cancer Research 71, 3447–

535 3452. doi:10.1158/0008-5472.CAN-10-3667 536 Brown, E.T., Holt, J.T., 2009. Rad51 overexpression rescues radiation resistance in BRCA2-537 defective cancer cells. Mol. Carcinog. 48, 105-109. doi:10.1002/mc.20463 538 Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., 539 Meuth, M., Curtin, N.J., Helleday, T., 2005. Specific killing of BRCA2-deficient 540 tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913-917. 541 doi:10.1038/nature03443 542 Bunting, S.F., Nussenzweig, A., 2013. End-joining, translocations and cancer. Nat Rev 543 Cancer 13, 443-454. doi:10.1038/nrc3537 544 Burrell, R.A., McClelland, S.E., Endesfelder, D., Groth, P., Weller, M.-C., Shaikh, N., 545 Domingo, E., Kanu, N., Dewhurst, S.M., Gronroos, E., Chew, S.K., Rowan, A.J., Schenk, 546 A., Sheffer, M., Howell, M., Kschischo, M., Behrens, A., Helleday, T., Bartek, J., 547 Tomlinson, I.P., Swanton, C., 2013a. Replication stress links structural and numerical 548 cancer chromosomal instability. Nature 494, 492–496. doi:10.1038/nature11935 549 Burrell, R.A., McGranahan, N., Bartek, J., Swanton, C., 2013b. The causes and consequences 550 of genetic heterogeneity in cancer evolution. Nature 501, 338–345. doi:10.1038/nature12625 551 552 Carter, S.L., Eklund, A.C., Kohane, I.S., Harris, L.N., Szallasi, Z., 2006. A signature of 553 chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet. 38, 1043–1048. doi:10.1038/ng1861 554 Chowdhury, D., Choi, Y.-E., Brault, M.E., 2013. Charity begins at home: non-coding RNA 555 556 functions in DNA repair. Nat Rev Mol Cell Bio 14, 181–189. doi:10.1038/nrm3523 Ciriello, G., Sinha, R., Hoadley, K.A., Jacobsen, A.S., Reva, B., Perou, C.M., Sander, C., 557 558 Schultz, N., 2013. The molecular diversity of Luminal A breast tumors. Breast Cancer 559 Res Treat 141, 409-420. doi:10.1007/s10549-013-2699-3 560 Croft, D., O'Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., 561 Gopinath, G., Jassal, B., Jupe, S., Kalatskaya, I., Mahajan, S., May, B., Ndegwa, N., Schmidt, E., Shamovsky, V., Yung, C., Birney, E., Hermjakob, H., D'Eustachio, P., Stein, 562 563 L., 2010. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research 39, D691–D697. doi:10.1093/nar/gkq1018 564 565 Curtis, C., Shah, S.P., Chin, S.-F., Turashvili, G., Rueda, O.M., Dunning, M.J., Speed, D., 566 Lynch, A.G., Samarajiwa, S., Yuan, Y., Gräf, S., et al., 2012. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 1–7. 567 doi:10.1038/nature10983 568 569 d'Adda di Fagagna, F., 2014. A direct role for small non-coding RNAs in DNA damage 570 response. Trends in Cell Biology 24, 171–178. doi:10.1016/j.tcb.2013.09.008 571 Davis, J.D., 2011. DNA damage and breast cancer. WJCO 2, 329. 572 doi:10.5306/wjco.v2.i9.329 573 Dou, H., Huang, C., Van Nguyen, T., Lu, L.-S., Yeh, E.T.H., 2011. SUMOylation and de-574 SUMOylation in response to DNA damage. FEBS Letters 585, 2891–2896. 575 doi:10.1016/j.febslet.2011.04.002 576 Drier, Y., Sheffer, M., Domany, E., 2013. Pathway-based personalized analysis of cancer. 577 Proceedings of the National Academy of Sciences 110, 6388-6393. 578 doi:10.1073/pnas.1219651110 579 Endesfelder, D., Burrell, R.A., Kanu, N., McGranahan, N., Howell, M., Parker, P.J., 580 Downward, J., Swanton, C., Kschischo, M., 2014. Chromosomal instability selects gene 581 copy-number variants encoding core regulators of proliferation in ER+ breast cancer. 582 Cancer Research 74, 4853-4863. doi:10.1158/0008-5472.CAN-13-2664 583 Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N.J., Johnson, D.A., Richardson, T.B., Santarosa, 584 M., Dillon, K.J., Hickson, I., Knights, C., Martin, N.M.B., Jackson, S.P., Smith, G.C.M.,

585	Ashworth, A., 2005. Targeting the DNA repair defect in BRCA mutant cells as a
586	therapeutic strategy. Nature 434, 917–921. doi:10.1038/nature03445
587	Habermann, J.K., Doering, J., Hautaniemi, S., Roblick, U.J., Bündgen, N.K., Nicorici, D.,
588	Kronenwett, U., Rathnagiriswaran, S., Mettu, R.K.R., Ma, Y., Krüger, S., Bruch, HP.,
589	Auer, G., Guo, N.L., Ried, T., 2009. The gene expression signature of genomic
590	instability in breast cancer is an independent predictor of clinical outcome. Int. J. Cancer
591	124, 1552–1564. doi:10.1002/ijc.24017
592	Hastings, P.J., Lupski, J.R., Rosenberg, S.M., Ira, G., 2009. Mechanisms of change in gene
593	copy number. Nat Rev Genet 10, 551–564. doi:10.1038/nrg2593
594	Hu, Z., Fan, C., Oh, D.S., Marron, J.S., He, X., Qaqish, B.F., Livasy, C., Carey, L.A.,
595	Reynolds, E., Dressler, L., Nobel, A., Parker, J., Ewend, M.G., Sawyer, L.R., Wu, J., Liu,
596	Y., Nanda, R., Tretiakova, M., Ruiz Orrico, A., Dreher, D., Palazzo, J.P., Perreard, L.,
597	Nelson, E., Mone, M., Hansen, H., Mullins, M., Quackenbush, J.F., Ellis, M.J., Olopade,
598	O.I., Bernard, P.S., Perou, C.M., 2006. The molecular portraits of breast tumors are
599	conserved across microarray platforms. BMC Genomics 7, 96. doi:10.1186/1471-2164-7-
600	96
601	Huang, S., Yee, C., Ching, T., Yu, H., Garmire, L.X., 2014, A novel model to combine
602	clinical and pathway-based transcriptomic information for the prognosis prediction of
603	breast cancer. PLoS Comput Biol 10, e1003851, doi:10.1371/journal.pcbi.1003851
604	Kanehisa M. Goto S. 2000 KEGG: kvoto encyclopedia of genes and genomes. Nucleic
605	Acids Research 28, 27–30
606	Koholdt D.C. Fulton R.S. McLellan M.D. Schmidt H. Kalicki-Veizer I. McMichael
607	IF Fulton L.L. Dooling D.I. Ding L. Mardis F.R. et al. 2012 Comprehensive
608	molecular portraits of human breast tumours. Nature 490, 61–70
600	doi:10.1038/nature11/12
610	Lee AIX Endesfelder D Rowan AI Walther A Birkhak NI Eutreal PA
611	Downward I Szallasi Z Tomlinson IPM Howell M Kschischo M Swanton C
612	2011 Chromosomal instability confers intrinsic multidrug resistance. Cancer Research
613	71 1858 1870 doi:10.1158/0008-5472 CAN-10-3604
614	Lehmann B.D. Bauer I.A. Chen X. Sanders M.F. Chakravarthy A.B. Shyr Y
615	Pietennol I A 2011 Identification of human triple-negative breast cancer subtypes and
616	preclinical models for selection of targeted therapies. J. Clin. Invest. 121, 2750, 2767
617	doi:10.1172/ICI45014
618	Liu C. Sriberi S. Lâ Cao K. A. Chanaviy Tranch G. Simpson D.T. Dagan M.A.
610	Khanna K K 2014 A fine scale dissection of the DNA double strend break repair
620	machinery and its implications for broast concer thereby. Nucleic Acids Descereb 42
621	6106 6127 doi:10.1002/nor/alw284
621	0100-0127. doi:10.1095/ild/gRu264
022 (22	Livshits, A., Git, A., Fuks, G., Caldas, C., Domany, E., 2015. Painway-based personalized
623	analysis of breast cancer expression data. Molecular Oncology.
624	doi:10.1016/J.moionc.2015.04.006
625	Martin, R.W., Orelli, B.J., Yamazoe, M., Minn, A.J., Takeda, S., Bishop, D.K., 2007. RAD51
626	up-regulation bypasses BRCAT function and is a common feature of BRCAT-deficient
627	breast tumors. Cancer Research 67, 9658–9665. doi:10.1158/0008-5472.CAN-07-0290
628	Negrini, S., Gorgoulis, V.G., Halazonetis, T.D., 2010. Genomic instabilityan evolving
629	hallmark of cancer. Nat Rev Mol Cell Bio 11, 220–228. doi:10.1038/nrm2858
630	Orthwein, A., Fradet-Turcotte, A., Noordermeer, S.M., Canny, M.D., Brun, C.M., Strecker, J.,
631	Escribano-Diaz, C., Durocher, D., 2014. Mitosis inhibits DNA double-strand break repair
632	to guard against telomere fusions. Science 344, 189–193. doi:10.1126/science.1248024
633	Ottaviani, D., LeCain, M., Sheer, D., 2014. The role of microhomology in genomic structural
634	variation. Trends Genet. 30, 85–94. doi:10.1016/j.tig.2014.01.001

635 Parker, J.S., Mullins, M., Cheang, M.C.U., Leung, S., Voduc, D., Vickery, T., Davies, S., 636 Fauron, C., He, X., Hu, Z., Quackenbush, J.F., Stijleman, I.J., Palazzo, J., Marron, J.S., 637 Nobel, A.B., Mardis, E., Nielsen, T.O., Ellis, M.J., Perou, C.M., Bernard, P.S., 2009. 638 Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27, 639 1160-1167. doi:10.1200/JCO.2008.18.1370 Peng, G., Chun-Jen Lin, C., Mo, W., Dai, H., Park, Y.-Y., Kim, S.M., Peng, Y., Mo, Q., 640 641 Siwko, S., Hu, R., Lee, J.-S., Hennessy, B., Hanash, S., Mills, G.B., Lin, S.-Y., 2014. 642 Genome-wide transcriptome profiling of homologous recombination DNA repair. Nature 643 communications 5, 3361. doi:10.1038/ncomms4361 Peng, Y., Dai, H., Wang, E., Lin, C.C.-J., Mo, W., Peng, G., Lin, S.-Y., 2015. TUSC4 644 645 functions as a tumor suppressor by regulating BRCA1 stability. Cancer Research 75, 378-386. doi:10.1158/0008-5472.CAN-14-2315 646 647 Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., 648 Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams, C., 649 Zhu, S.X., Lønning, P.E., Borresen-Dale, A.L., Brown, P.O., Botstein, D., 2000. 650 Molecular portraits of human breast tumours. Nature 406, 747–752. doi:10.1038/35021093 651 Pitroda, S.P., Pashtan, I.M., Logan, H.L., Budke, B., Darga, T.E., Weichselbaum, R.R., 652 653 Connell, P.P., 2014. DNA repair pathway gene expression score correlates with repair 654 proficiency and tumor sensitivity to chemotherapy. Sci Transl Med 6, 229ra42. 655 doi:10.1126/scitranslmed.3008291 656 Popova, T., Manié, E., Rieunier, G., Caux-Moncoutier, V., Tirapo, C., Dubois, T., Delattre, 657 O., Sigal-Zafrani, B., Bollet, M., Longy, M., Houdayer, C., Sastre-Garau, X., Vincent-658 Salomon, A., Stoppa-Lyonnet, D., Stern, M.-H., 2012. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. 659 660 Cancer Research 72, 5454-5462. doi:10.1158/0008-5472.CAN-12-1470 Price, B.D., D'Andrea, A.D., 2013. Chromatin remodeling at DNA double-strand breaks. Cell 661 152, 1344-1354. doi:10.1016/j.cell.2013.02.011 662 Przybytkowski, E., Lenkiewicz, E., Barrett, M.T., Klein, K., Nabavi, S., Greenwood, C.M.T., 663 Basik, M., 2014. Chromosome-breakage genomic instability and chromothripsis in breast 664 cancer. BMC Genomics 15, 579. doi:10.1186/1471-2164-15-579 665 Richardson, C., Stark, J.M., Ommundsen, M., Jasin, M., 2004. Rad51 overexpression 666 promotes alternative double-strand break repair pathways and genome instability. 667 Oncogene 23, 546–553. doi:10.1038/sj.onc.1207098 668 Roylance, R., Endesfelder, D., Gorman, P., Burrell, R.A., Sander, J., Tomlinson, I., Hanby, 669 A.M., Speirs, V., Richardson, A.L., Birkbak, N.J., Eklund, A.C., Downward, J., 670 671 Kschischo, M., Szallasi, Z., Swanton, C., 2011. Relationship of extreme chromosomal 672 instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomarkers Prev. 20, 2183–2194. doi:10.1158/1055-9965.EPI-11-673 674 0343 675 Sansregret, L., Nepveu, A., 2011. Gene signatures of genomic instability as prognostic tools 676 for breast cancer. Future Oncol 7, 591-594. doi:10.2217/fon.11.34 677 Sarasin, A., Kauffmann, A., 2008. Overexpression of DNA repair genes is associated with 678 metastasis: a new hypothesis. Mutat Res 659, 49–55. doi:10.1016/j.mrrev.2007.12.002 Sharma, V., Misteli, T., 2013. Non-coding RNAs in DNA damage and repair. FEBS Letters 679 680 587, 1832-1839. doi:10.1016/j.febslet.2013.05.006 Smid, M., Hoes, M., Sieuwerts, A.M., Sleijfer, S., Zhang, Y., Wang, Y., Foekens, J.A., 681 682 Martens, J.W.M., 2011. Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes. Breast Cancer Res Treat 128, 23–30. 683 doi:10.1007/s10549-010-1026-5 684

685 Swanton, C., Nicke, B., Schuett, M., Eklund, A.C., Ng, C., Li, Q., Hardcastle, T., Lee, A., Roy, R., East, P., Kschischo, M., Endesfelder, D., Wylie, P., Kim, S.N., Chen, J.-G., 686 Howell, M., Ried, T., Habermann, J.K., Auer, G., Brenton, J.D., Szallasi, Z., Downward, 687 688 J., 2009. Chromosomal instability determines taxane response. Proceedings of the National Academy of Sciences 106, 8671-8676. doi:10.1073/pnas.0811835106 689 690 Sørlie, T., Perou, C.M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T., Eisen, 691 M.B., van de Rijn, M., Jeffrey, S.S., Thorsen, T., Quist, H., Matese, J.C., Brown, P.O., 692 Botstein, D., Lønning, P.E., Borresen-Dale, A.L., 2001. Gene expression patterns of 693 breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. 694 Acad. Sci. U.S.A. 98, 10869-10874. doi:10.1073/pnas.191367098 695 Takata, M., Sasaki, M.S., Tachiiri, S., Fukushima, T., Sonoda, E., Schild, D., Thompson, 696 L.H., Takeda, S., 2001. Chromosome instability and defective recombinational repair in 697 knockout mutants of the five Rad51 paralogs. Molecular and Cellular Biology 21, 2858-698 2866. doi:10.1128/MCB.21.8.2858-2866.2001 699 Thompson, S.L., Bakhoum, S.F., Compton, D.A., 2010. Mechanisms of chromosomal 700 instability. Curr Biol 20, R285-95. doi:10.1016/j.cub.2010.01.034 Turner, N., Tutt, A., Ashworth, A., 2004. Hallmarks of "BRCAness" in sporadic cancers. Nat 701 702 Rev Cancer 4, 814-819. doi:10.1038/nrc1457 703 Ulrich, H.D., 2012. Ubiquitin and SUMO in DNA repair at a glance. Journal of Cell Science 704 125, 249–254. doi:10.1242/jcs.091801 705 van Attikum, H., Gasser, S.M., 2009. Crosstalk between histone modifications during the 706 DNA damage response. Trends in Cell Biology 19, 207–217. 707 doi:10.1016/j.tcb.2009.03.001 Vaske, C.J., Benz, S.C., Sanborn, J.Z., Earl, D., Szeto, C., Zhu, J., Haussler, D., Stuart, J.M., 708 709 2010. Inference of patient-specific pathway activities from multi-dimensional cancer 710 genomics data using PARADIGM. Bioinformatics 26, i237-45. 711 doi:10.1093/bioinformatics/btq182 712 Venkitaraman, A.R., 2014a. Cancer suppression by the chromosome custodians, BRCA1 and 713 BRCA2. Science 343, 1470-1475. doi:10.1126/science.1252230 714 Venkitaraman, A.R., 2014b. Tumour suppressor mechanisms in the control of chromosome 715 stability: insights from BRCA2. Mol. Cells 37, 95–99. doi:10.14348/molcells.2014.2346 716 Villarreal, D.D., Lee, K., Deem, A., Shim, E.Y., Malkova, A., Lee, S.E., 2012. Microhomology directs diverse DNA break repair pathways and chromosomal 717 718 translocations. PLoS Genet 8, e1003026. doi:10.1371/journal.pgen.1003026 719 Vincent-Salomon, A., Benhamo, V., Gravier, E., Rigaill, G., Gruel, N., Robin, S., de Rycke, 720 Y., Mariani, O., Pierron, G., Gentien, D., Reyal, F., Cottu, P., Fourquet, A., Rouzier, R., 721 Sastre-Garau, X., Delattre, O., 2013. Genomic instability: a stronger prognostic marker 722 than proliferation for early stage luminal breast carcinomas. PLoS ONE 8, e76496. 723 doi:10.1371/journal.pone.0076496 724 Vollan, H.K.M., Rueda, O.M., Chin, S.-F., Curtis, C., Turashvili, G., Shah, S., Lingjaerde, 725 O.C., Yuan, Y., Ng, C.K., Dunning, M.J., Dicks, E., Provenzano, E., Sammut, S., 726 McKinney, S., Ellis, I.O., Pinder, S., Purushotham, A., Murphy, L.C., Kristensen, V.N., 727 METABRIC Group, Brenton, J.D., Pharoah, P.D.P., Børresen-Dale, A.-L., Aparicio, S., 728 Caldas, C., 2015. A tumor DNA complex aberration index is an independent predictor of 729 survival in breast and ovarian cancer. Molecular Oncology 9, 115–127. 730 doi:10.1016/j.molonc.2014.07.019 731 Wang, H., Cai, H., Ao, L., Yan, H., Zhao, W., Qi, L., Gu, Y., Guo, Z., 2015a. Individualized 732 identification of disease-associated pathways with disrupted coordination of gene 733 expression. Briefings in Bioinformatics. doi:10.1093/bib/bbv030 734 Wang, H., Sun, Q., Zhao, W., Qi, L., Gu, Y., Li, P., Zhang, M., Li, Y., Liu, S.-L., Guo, Z.,

- 2015b. Individual-level analysis of differential expression of genes and pathways for
 personalized medicine. Bioinformatics 31, 62–68. doi:10.1093/bioinformatics/btu522
- Watkins, J., Weekes, D., Shah, V., Gazinska, P., Joshi, S., Sidhu, B., Gillett, C., Pinder, S.,
 Vanoli, F., Jasin, M., Mayrhofer, M., Isaksson, A., Cheang, M.C.U., Mirza, H., Frankum,
- 739 J., Lord, C.J., Ashworth, A., Vinayak, S., Ford, J.M., Telli, M.L., Grigoriadis, A., Tutt,
- A.N.J., 2015. Genomic Complexity Profiling Reveals That HORMAD1 Overexpression
 Contributes to Homologous Recombination Deficiency in Triple-Negative Breast
- 742 Cancers. Cancer Discov 5, 488–505. doi:10.1158/2159-8290.CD-14-1092
- Wiechec, E., 2011. Implications of genomic instability in the diagnosis and treatment of
 breast cancer. Expert Rev. Mol. Diagn. 11, 445–453. doi:10.1586/erm.11.21
- Wilhelm, T., Magdalou, I., Barascu, A., Técher, H., Debatisse, M., Lopez, B.S., 2014.
 Spontaneous slow replication fork progression elicits mitosis alterations in homologous
 recombination-deficient mammalian cells. Proceedings of the National Academy of
 Sciences 111, 763–768. doi:10.1073/pnas.1311520111
- Yanagawa, M., Ikemot, K., Kawauchi, S., Furuya, T., Yamamoto, S., Oka, M., Oga, A.,
 Nagashima, Y., Sasaki, K., 2012. Luminal A and luminal B (HER2 negative) subtypes of
 breast cancer consist of a mixture of tumors with different genotype. BMC Res Notes 5,
 376. doi:10.1186/1756-0500-5-376
- Zeman, M.K., Cimprich, K.A., 2014. Causes and consequences of replication stress. Nat. Cell
 Biol. 16, 2–9. doi:10.1038/ncb2897
- Zheng, L., Dai, H., Zhou, M., Li, X., Liu, C., Guo, Z., Wu, X., Wu, J., Wang, C., Zhong, J.,
 Huang, Q., Garcia-Aguilar, J., Pfeifer, G.P., Shen, B., 2012. Polyploid cells rewire DNA
 damage response networks to overcome replication stress-induced barriers for tumour
 progression. Nature communications 3, 815. doi:10.1038/ncomms1825
- 759

Figure 1 - Distribution of the *HR* score across the PAM50 subtypes and normal breast tissues (in green) for the four cohorts.

Figure 2 – Comparison of the *HR* score with the HRD signature. A: HRD-based hierarchical clustering of tumours from the METABRIC Discovery cohort. B: Distribution of the *HR* score in the two HRD-based clusters for each of the four cohorts. Colour represents the HRD-based cluster. P-values were obtained using a Wilcoxon signed-rank test.

Figure 3 - Distribution of the *HR* **score in LST⁺ tumours and LST⁻ tumours for each of the four cohorts.** Colour represents LST status. P-values were obtained using a Wilcoxon signed-rank test.

Figure 4 - Correlations between the CIN25 score and the *HR* score for each of the four cohorts.

Figure 5 - *HR* score versus the three CIN measurements for the METABRIC Discovery cohort. Left: Boxplots of the three CIN measurements versus the four *HR* score quartile groups; stars indicate statistical significance according to a Wilcoxon signed-rank test: ns means not significant, * means 0.01 < p-value < 0.05, ** means 0.001 < p-value < 0.01, and *** means p-value < 0.001. Right: Scatter plots of the *HR* score versus each of the three CIN measurements; r represents Pearson Correlation Coefficient.

Figure 6 - *HR* score versus the three CIN measurements within PAM50 subtypes (METABRIC Discovery cohort). For each plot, the two *HR* score groups were divided according to the median *HR* score in each subtype; stars indicate the significance according to a Wilcoxon signed-rank test for each pair of groups: ns means not significant, * means 0.01 , ** means <math>0.001 , and *** means <math>p < 0.001.

Figure 7 - Distributions of the correlations between pathway scores and the three CIN measurements (METABRIC Discovery cohort). Results for KEGG pathways are in green, Reactome pathways in blue and Random pathways in pink. Spearman correlation coefficients (r) are represented on the x-axis. Pathway score were calculated with Pathifier. The vertical dashed line in each histogram indicates the value of r between the *HR* score and each of the three CIN measurements, and p represents an empirical p-value for that value of r.

Figure 8 - Kaplan-Maier plot for disease specific survival in the METABRIC Discovery cohort (left) and Validation cohort (right). Patients with ER^+ tumour were divided into two equal-sized groups based on the median *HR* score in each cohort.

Figure S1 – Principal curve of the HR pathway for each of the four cohorts. For each cohort, the black points represent samples in that cohort. The samples are projected onto the principal curve and are coloured according to their PAM50 assignment. The data points and the principal curve are projected on the three leading principal components for visualisation.

Figure S2 – The expression of the HR genes in tumours from the METABRIC Discovery cohort. The HR genes are ranked in decreasing importance according to their contribution to the first principal component.

Figure S3 – Scatter plots of the *HR* score versus the rank of tumours according to their *HR* score, colour by the PAM50 assignment.

Figure S4 - Hierarchical clustering of tumours from the METABRIC Validation cohort based on the HRD signature.

Figure S5 - Hierarchical clustering of tumours from the TCGA RNA-seq cohort based on the HRD signature.

Figure S6 - Hierarchical clustering of tumours from the TCGA Microarray cohort based on the HRD signature.

Figure S7 - *HR* score versus HR gene mutation for the two TCGA cohorts. *Mutant* refers to tumours with at least one nonsynonymous mutation in any of the six key HR genes (*BRCA1*, *BRCA2*, *RAD51*, *PALB2*, *DNA2* and *EXO1*). *Wild type* refers to tumours with no mutations in these six genes. Normal refers to normal breast tissues. P-values were obtained using a Wilcoxon signed-rank test, for the comparison between wild type and mutant tumours.

Figure S8 - *HR* score versus the three CIN measurements for the METABRIC Validation cohort. Left: Boxplots of the three CIN measurements versus the four *HR* score quartile groups; stars indicate statistical significance according to a Wilcoxon signed-rank test: ns means not significant, * means 0.01 < p-value < 0.05, ** means 0.001 < p-value < 0.01, and *** means p-value < 0.001. Right: Scatter plots of the *HR* score versus each of the three CIN measurements; r represents Pearson Correlation Coefficient.

Figure S9 - *HR* score versus the three CIN measurements for the TCGA RNAseq cohort. Left: Boxplots of the three CIN measurements versus the four *HR* score quartile groups; stars indicate statistical significance according to a Wilcoxon signedrank test: ns means not significant, * means 0.01 < p-value < 0.05, ** means 0.001 <p-value < 0.01, and *** means p-value < 0.001. Right: Scatter plots of the *HR* score versus each of the three CIN measurements; r represents Pearson Correlation Coefficient.

Figure S10 - *HR* score versus the three CIN measurements for the TCGA Microarray cohort. Left: Boxplots of the three CIN measurements versus the four *HR* score quartile groups; stars indicate statistical significance according to a Wilcoxon signed-rank test: ns means not significant, * means 0.01 < p-value < 0.05, ** means 0.001 < p-value < 0.01, and *** means p-value < 0.001. Right: Scatter plots of the *HR* score versus each of the three CIN measurements; r represents Pearson Correlation Coefficient.

Figure S11 - *HR* score versus the three CIN measurements within PAM50 subtypes (METABRIC Validation cohort). For each plot, the two *HR* score groups were divided according to the median *HR* score in each subtype; stars indicate the significance according to a Wilcoxon signed-rank test for each pair of groups: ns means not significant, * means 0.01 , ** means <math>0.001 , and *** means <math>p < 0.001.

Figure S12 - *HR* score versus the three CIN measurements within PAM50 subtypes (TCGA RNA-seq cohort). For each plot, the two *HR* score groups were divided according to the median *HR* score in each subtype; stars indicate the significance according to a Wilcoxon signed-rank test for each pair of groups: ns means not significant, * means 0.01 , ** means <math>0.001 , and *** means <math>p < 0.001.

Figure S13 - *HR* score versus the three CIN measurements within PAM50 subtypes (TCGA Microarray cohort). For each plot, the two *HR* score groups were divided according to the median *HR* score in each subtype; stars indicate the significance according to a Wilcoxon signed-rank test for each pair of groups: ns means not significant, * means 0.01 , ** means <math>0.001 , and *** means <math>p < 0.001.

Figure S14 - Distributions of the correlations between pathway scores and the three CIN measurements (METABRIC Validation cohort). Results for KEGG pathways are in green, Reactome pathways in blue and Random pathways in pink. Spearman correlation coefficients (r) are represented on the x-axis. Pathway score were calculated with Pathifier. The vertical dashed line in each histogram indicates the value of r between the *HR* score and each of the three CIN measurements, and p represents an empirical p-value for that value of r.

Figure S15 - Distributions of the correlations between pathway scores and the three CIN measurements (TCGA RNA-seq cohort). Results for KEGG pathways are in green, Reactome pathways in blue and Random pathways in pink. Spearman correlation coefficients (r) are represented on the x-axis. Pathway score were calculated with Pathifier. The vertical dashed line in each histogram indicates the value of r between the *HR* score and each of the three CIN measurements, and p represents an empirical p-value for that value of r.

Figure S16 - Distributions of the correlations between pathway scores and the three CIN measurements (TCGA Microarray cohort). Results for KEGG pathways are in green, Reactome pathways in blue and Random pathways in pink. An additional 100 CIN-related genes were excluded prior to the construction of the Random pathways as the Pathifer method was sensitive to the addition or removal of a small number of genes in this cohort. Spearman correlation coefficients (r) are represented on the x-axis. Pathway score were calculated with Pathifier. The vertical dashed line in each histogram indicates the value of r between the *HR* score and each of the three CIN measurements, and p represents an empirical p-value for that value of r.

HRD-based cluster

Tumour Type

TCGA RNA-seq

0.50

HR score

0.75

Subtype

0.25

r = 0.85

- 01 CIN25 score

6

0.00

Subtype • Basal-like • HER2 • LumA • LumB • Normal-like

METABRIC Discovery

ACCEPTED MANUSCRIPT

METABRIC Validation

- Homologous recombination (HR) pathway dysregulation is quantified at tumour level.
- HR dysregulation is indicative of HR repair deficiency.
- An association between HR dysregulation and chromosomal instability is uncovered.
- The results are reproducible across four large breast cancer cohorts.

		A CCE PTE Presence in Col		CRIPT	Presence in other	signatures
In the review [*]	METABRIC Discovery	METABRIC Validation	TCGA RNA-seq	TCGA Microarray	CIN25	HRD
ATM	4	4	4	4	×	×
ATRX	1	1	4	-	×	×
BABAM1	×	×	×	×	×	×
BARD1	1	\checkmark	4	1	×	×
BLM	×	×	~	~	×	~
BRCA1	4	×	4	4	×	-
BRCA2	4	×	4	4	×	×
BRCC3	×	×	4	4	×	×
BRE	4	4	4	4	×	×
CHD4	4	4	4	4	×	×
CSNK2A1	4	4	4	4	×	×
CSNK2A2	4	4	4	4	×	×
CSNK2B	4	4	4	4	×	×
DNA2	4	<u> </u>	4	×	×	×
FMF1	4	4	1	×	×	×
FRCC1	4	4	1	4	×	×
FRCC4			1	1) <u>x</u>	×
FXO1			1		×	<u>_</u>
EAN/175A	× ×	×	1		× ·	×
GEN1			1		×	Sec. 1
H2AFX			1		× ·	~
HERC2			1		×	\sim
KAT5					× ·	\sim
					\sim	\sim
					~	\sim
					~	\sim
					\sim	\sim
NRN					×	\sim
	×	¥		×	\sim	\sim
	\sim	\sim	\sim	\sim	\sim	\sim
					\sim	\sim
					\sim	\sim
	×			×	\sim	\sim
					▼	▼
PIASI					\sim	\sim
					\sim	
POLDI	₩ ₩		4	4	\sim	▼
POLDZ			4	4	\sim	\sim
POLD3			4	4	~	~
POLD4			4	4	~	\sim
			4	4	\sim	\sim
RAD50			4	4	~	~
RAD51		4	4	4	~	~
RAD51AP1		×	*	~	× ×	~
RADSIB		~	~	~	~	~
RAD51C	×	×	×	×	*	~
RAD51D	*	*	*	*	*	*
KAU52	N	N	*	*	~	~
KAD54B	×	×	*	*	*	•
RAD54L	×	V	*	*	*	V
KAD54L2	×	*	~	*	*	*
RBBP8	×	×	~	×	*	×
RMI1			×	V	*	*
RMI2	×	×	×	×	×	×
RNF168	V		V	×	×	×
RNF20	~	~	4	4	×	×

RNF40	×	ACCEPT	ED MANUS	CRIPT	×	×
RNF8	4	4	4	4	×	×
RPA1	1	~	-	~	×	×
RPA2	1	1	-	~	×	×
RPA3	4	4	4	~	×	×
RPA4	4	\checkmark	4	4	×	×
RTEL1	\checkmark	4	4	~	×	×
SHFM1	\checkmark	\checkmark	\checkmark	~	×	×
SLX1A	×	×	×	×	×	×
SLX1B	×	×	×	×	×	×
SLX4	×	×	×	×	×	×
TOP3A	\checkmark	1	-	\checkmark	×	× ×
TOP3B	\checkmark	1	-	\checkmark	×	×
TRIP12	1	~	-	~	×	×
UBE2N	1	~	-	~	×	×
UBR5	4	~	4	~	×	×
UIMC1	4	4	4	× _	×	×
USP3	4	\checkmark	4	4	×	×
XRCC2	4	\checkmark	4	~	×	×
XRCC3	4	~	4	4	×	×
BRIP1	4	\checkmark	4		×	×
ZNF365	4	\checkmark	4		×	×
PSIP1	4	4	4	\checkmark	×	×
PARP1	4	\checkmark	4		×	×
TP53BP1	4	4	4	~	×	×
RIF1	4	4	4	~ ~	×	×
Total = 82	69 present	69 present	72 present	67 present	2 present	7 present

* Chao Liu et al., NAR, 2014, 6106-6127

	ACCE	PTED MANU
Cohort	LST+	LST-
METABRIC Discovery	9	976
METABRIC Validation	25	940
TCGA RNA-seq	77	820
TCGA Microarray	42	405

JSCRIPT

Correlations between the Pathifier score of each KEGG pathway and three CIN measurements in the four breast cancer cohorts

Note:

1. Overlap = length of the overlap with the CELL CYCLE pathway in KEGG

2. Percentage = percentage of the overlap with the CELL CYCLE pathway in KEGG

Pathway Name		Length Overlan Bercentage			METABR	C Discovery Cohort		METABR	IC Validation Cohort		TCGA	RNA-seq Cohort		TCGA Microarray Cohort			
		orenap	. creentage	No. of breal	ks GII	No. of amplified/deleted genes	No. of break	cs GII	No. of amplified/deleted genes	No. of breaks	GII	No. of amplified/deleted genes	No. of breaks	GII	No. of amplified/deleted genes		
OOCYTE MEIOSIS	114	42	36.84%	0.63	0.29	0.43	0.61	0.32	0.48	0.52	0.47	0.50	0.57	0.50	0.52		
CELL CYCLE	128	128	100.00%	0.62	0.30	0.42	0.60	0.35	0.48	0.61	0.57	0.59	0.56	0.52	0.52		
PROGESTERONE MEDIATED OOCYTE MATURATION	86	29	33.72%	0.61	0.32	0.44	0.59	0.34	0.48	0.56	0.51	0.54	0.54	0.47	0.48		
P53 SIGNALING PATHWAY	69	25	36.23%	0.61	0.28	0.42	0.56	0.29	0.45	0.51	0.48	0.49	0.55	0.48	0.49		
PYRIMIDINE METABOLISM	98	0	0.00%	0.58	0.30	0.43	-0.05	0.19	0.04	0.38	0.36	0.36	0.52	0.48	0.48		
SMALL CELL LUNG CANCER	84	15	17.86%	0.57	0.23	0.39	0.50	0.22	0.37	0.45	0.45	0.44	0.50	0.44	0.49		
BASE EXCISION REPAIR	35	1	2.86%	0.56	0.35	0.44	0.56	0.43	0.52	0.57	0.53	0.53	0.51	0.52	0.50		
UBIQUITIN MEDIATED PROTEOLYSIS	138	21	15.22%	0.55	0.41	0.42	0.30	0.23	0.23	0.30	0.30	0.32	0.53	0.40	0.47		
PATHWAYS IN CANCER	328	32	9.76%	0.54	0.23	0.36	0.48	0.35	0.40	0.25	0.31	0.22	0.49	0.39	0.44		
DNA REPLICATION	36	7	19.44%	0.54	0.31	0.38	0.52	0.35	0.45	0.53	0.53	0.52	0.49	0.54	0.52		
HOMOLOGOUS RECOMBINATION	28	0	0.00%	0.52	0.25	0.37	0.45	0.30	0.38	0.41	0.37	0.38	0.53	0.51	0.49		
PROSTATE CANCER	89	15	16.85%	0.52	0.20	0.33	0.45	0.24	0.30	0.25	0.29	0.22	0.25	0.27	0.21		
CYSTEINE AND METHIONINE METABOLISM	34	0	0.00%	0.51	0.12	0.34	0.46	0.15	0.32	0.44	0.37	0.39	0.54	0.49	0.52		
MISMATCH REPAIR	23	1	4.35%	0.51	0.27	0.40	0.43	0.30	0.45	0.48	0.50	0.50	0.48	0.53	0.52		
BLADDER CANCER	42	11	26 19%	0.51	0.16	0.31	0.47	0.23	0.34	0.31	0.33	0.32	0.32	0.23	0.30		
PROPANOATE METABOLISM	33	0	0.00%	0.51	0.13	0.29	0.28	0.04	0.13	0.44	0.38	0.42	0.27	0.18	0.21		
FATTY ACID METABOLISM	42	0	0.00%	0.49	0.32	0.38	0.20	0.35	0.27	0.22	0.27	0.12	0.18	0.22	0.16		
DEPOVISOME	70	0	0.00%	0.49	0.15	0.30	-0.05	0.55	0.07	0.22	0.10	0.07	0.15	0.16	0.16		
	150	0	0.00%	0.49	0.15	0.35	-0.05	0.21	0.07	0.10	0.10	0.07	0.15	0.10	0.10		
	139	0	0.00%	0.49	0.20	0.37	0.47	0.25	0.41	0.42	0.39	0.41	0.55	0.47	0.48		
	17	0	0.00%	0.49	0.14	0.33	0.47	0.18	0.36	0.52	0.49	0.51	0.41	0.39	0.39		
	42	0	0.00%	0.48	0.14	0.30	0.36	0.12	0.24	0.41	0.36	0.33	0.42	0.36	0.37		
	1/	0	0.00%	0.48	0.19	0.30	0.47	0.26	0.35	0.46	0.40	0.41	0.53	0.43	0.45		
	50	0	0.00%	0.48	0.11	0.30	0.30	0.00	0.18	0.47	0.45	0.45	0.36	0.31	0.29		
GLYCINE SERINE AND THREONINE METABOLISM	31	0	0.00%	0.47	0.09	0.30	0.44	0.17	0.32	0.54	0.46	0.50	0.47	0.40	0.40		
LYSINE DEGRADATION	44	0	0.00%	0.47	0.15	0.27	0.36	0.18	0.24	0.47	0.41	0.43	0.53	0.50	0.51		
VALINE LEUCINE AND ISOLEUCINE DEGRADATION	44	0	0.00%	0.47	0.07	0.25	0.35	0.08	0.20	0.47	0.41	0.48	0.36	0.21	0.26		
AMINOACYL TRNA BIOSYNTHESIS	41	0	0.00%	0.47	0.15	0.31	0.47	0.26	0.34	0.52	0.47	0.50	0.42	0.44	0.50		
REGULATION OF ACTIN CYTOSKELETON	216	0	0.00%	0.47	0.11	0.26	0.31	0.05	0.16	0.18	0.24	0.17	0.21	0.27	0.19		
PANCREATIC CANCER	70	15	21.43%	0.46	0.30	0.35	0.40	0.43	0.40	0.18	0.23	0.16	0.07	0.14	0.06		
NEUROTROPHIN SIGNALING PATHWAY	126	9	7.14%	0.46	0.09	0.25	0.32	0.07	0.17	0.38	0.38	0.39	0.20	0.10	0.20		
PPAR SIGNALING PATHWAY	69	0	0.00%	0.45	0.28	0.36	0.50	0.22	0.39	0.13	0.17	0.11	0.34	0.25	0.31		
COLORECTAL CANCER	62	10	16.13%	0.45	0.16	0.27	0.41	0.23	0.31	0.38	0.39	0.37	0.57	0.52	0.52		
HISTIDINE METABOLISM	29	0	0.00%	0.45	0.08	0.25	0.38	0.14	0.24	0.39	0.32	0.31	0.33	0.22	0.20		
TRYPTOPHAN METABOLISM	40	0	0.00%	0.45	0.03	0.23	0.37	-0.01	0.17	0.41	0.32	0.32	0.38	0.19	0.28		
PYRUVATE METABOLISM	40	0	0.00%	0.44	0.13	0.31	0.33	0.13	0.27	0.40	0.39	0.38	0.06	-0.02	0.04		
NON HOMOLOGOUS END JOINING	14	2	14.29%	0.44	0.29	0.35	0.45	0.31	0.37	0.36	0.32	0.36	0.46	0.48	0.49		
NUCLEOTIDE EXCISION REPAIR	44	4	9.09%	0.44	0.30	0.42	0.34	0.25	0.36	0.38	0.38	0.38	0.45	0.54	0.49		
SELENOAMINO ACID METABOLISM	26	0	0.00%	0.44	0.25	0.34	0.41	0.29	0.35	0.21	0.25	0.24	0.48	0.44	0.46		
PARKINSONS DISEASE	133	0	0.00%	0.42	0.17	0.22	0.17	0.15	0.24	0.28	0.25	0.24	0.43	0.36	0.39		
CHRONIC MYELOID LEUKEMIA	73	21	28.77%	0.42	0.16	0.23	0.28	0.23	0.22	0.20	0.21	0.17	0.51	0.49	0.49		
PROTEASOME	48	0	0.00%	0.41	0.02	0.24	0.20	0.22	0.15	0.47	0.35	0.43	0.28	0.19	0.25		
RNA POLYMERASE	29	0	0.00%	0.41	0.24	0.39	0.45	0.36	0.51	0.31	0.32	0.33	0.40	0.42	0.42		
TERPENOID BACKBONE BIOSYNTHESIS	15	0	0.00%	0.41	0.15	0.30	0.42	0.28	0.37	0.07	0.04	0.06	0.08	0.14	0.18		
GLIOMA	65	11	16.92%	0.40	0.14	0.21	0.46	0.29	0.35	0.05	0.13	0.02	-0.04	0.01	-0.09		
MELANOMA	71	11	15.49%	0.39	0.18	0.21	0.41	0.27	0.31	0.24	0.31	0.22	0.12	0.18	0.10		
CIRCADIAN RHYTHM MAMMAL	13	0	0.00%	0.39	0.17	0.35	0.19	0.07	0.12	0.32	0.35	0.33	0.13	0.16	0.20		
LYSOSOME	121	0	0.00%	0.39	-0.05	0.17	0.21	-0.03	0.03	0.13	0.12	0.15	-0.10	-0.04	-0.07		
GLYOXYLATE AND DICARBOXYLATE METABOLISM	16	0	0.00%	0.39	0.13	0.27	0.44	0.23	0.35	0.51	0.47	0.51	0.45	0.38	0.44		
SPLICEOSOME	128	0	0.00%	0.39	0.12	0.33	0.17	0.02	0.19	0.43	0.39	0.42	0.56	0.58	0.58		
ARGININE AND PROLINE METABOLISM	54	0	0.00%	0.39	0.11	0.21	0.28	0.19	0.21	0.37	0.32	0.30	-0.27	-0.19	-0.19		
FOLATE BIOSYNTHESIS	11	0	0.00%	0.39	0.15	0.30	0.33	0.09	0.28	0.46	0.43	0.48	0.37	0.35	0.42		
GLYCOLYSIS GLUCONEOGENESIS	62	0	0.00%	0.39	0.03	0.27	0.29	0.23	0.26	0.45	0.45	0.46	0.43	0.38	0.39		
ARACHIDONIC ACID METABOLISM	58	0	0.00%	0.38	0.32	0.34	0.16	0.01	0.14	0.24	0.27	0.20	-0.04	-0.02	-0.08		
APOPTOSIS	88	3	3.41%	0.38	0.01	0.23	0.14	-0.13	-0.03	0.23	0.25	0.16	0.02	0.04	-0.02		
AMYOTROPHIC LATERAL SCLEROSIS ALS	53	1	1.89%	0.37	-0.07	0.18	0.35	0.10	0.32	0.46	0.43	0.45	0.39	0.42	0.35		
PENTOSE PHOSPHATE PATHWAY	27	0	0.00%	0.37	0.02	0.23	0.35	0.05	0.32	0.40	0.42	0.44	0.29	0.42	0.30		
VIBRIO CHOI FRAF INFECTION	56	0	0.00%	0.37	0.07	0.23	0.27	0.05	0.07	0.42	0.42	0.15	_0 11	-0.16	_0.19		
	50	U	0.00%	0.57	0.09	0.22	0.05	0.04	0.07	0.17	0.21	0.15	-0.11	-0.10	-0.10		

PHENYLALANINE METABOLISM	18	0	0.00%	0.36	0.06	0.20	0.35	0.09	0.23	0.33	0.25	0.24	0.30	0.20	0.19
FRUCTOSE AND MANNOSE METABOLISM	34	0	0.00%	0.35	0.11	0.25	0.34	0.14	0.23	0.05	0.02	0.02	0.19	0.19	0.19
TYPE II DIABETES MELLITUS	47	0	0.00%	0.35	0.00	0.15	0.25	0.03	0.09	0.38	0.36	0.39	0 33	0.22	0.29
	42	1	2 200/	0.34	0.00	0.24	0.20	0.05	0.24	0.22	0.37	0.34	0.11	0.10	0.10
	42	2	2.38%	0.34	0.14	0.24	0.32	0.12	0.24	0.33	0.37	0.34	0.11	0.13	0.10
PATHOGENIC ESCHERICHIA COLI INFECTION	29	3	5.08%	0.33	-0.09	0.17	0.23	-0.06	0.12	0.23	0.22	0.18	-0.21	-0.17	-0.24
JAK STAT SIGNALING PATHWAY	155	6	3.87%	0.33	0.07	0.14	0.24	-0.03	0.06	0.23	0.29	0.20	0.19	0.21	0.13
CITRATE CYCLE TCA CYCLE	32	0	0.00%	0.33	0.10	0.20	0.14	0.04	0.01	0.33	0.37	0.37	0.37	0.31	0.34
RENIN ANGIOTENSIN SYSTEM	17	0	0.00%	0.30	0.16	0.20	0.33	0.24	0.25	0.25	0.29	0.23	0.41	0.34	0.40
AMINO SUGAR AND NUCLEOTIDE SUGAR METABOLISM	44	0	0.00%	0.30	0.02	0.18	0.26	0.09	0.15	0.26	0.28	0.33	0.30	0.30	0.32
N GLYCAN BIOSYNTHESIS	46	0	0.00%	0.30	0.28	0.32	0.05	0.05	0.11	0.34	0.34	0.37	0.25	0.24	0.23
	10	0	0.00%	0.30	0.20	0.11	0.05	0.05	0.02	0.01	0.07	0.01	0.11	0.24	0.25
	10	0	0.00%	0.30	0.01	0.11	0.00	-0.05	-0.03	0.01	-0.02	-0.04	0.11	0.02	0.08
NON SMALL CELL LUNG CANCER	54	9	16.67%	0.30	0.10	0.11	0.29	0.20	0.19	0.00	0.06	-0.03	0.06	-0.01	-0.04
NOTCH SIGNALING PATHWAY	47	4	8.51%	0.29	0.07	0.22	0.34	0.15	0.33	0.34	0.35	0.33	0.38	0.37	0.32
GALACTOSE METABOLISM	26	0	0.00%	0.28	-0.03	0.18	0.24	0.02	0.12	0.12	0.06	0.08	0.16	0.12	0.19
GAP JUNCTION	90	1	1.11%	0.28	0.00	0.15	0.43	0.29	0.35	0.25	0.32	0.25	-0.07	0.02	-0.04
RIBOFLAVIN METABOLISM	16	0	0.00%	0.27	0.04	0.21	0.27	0.14	0.21	0.18	0.20	0.22	-0.07	0.04	0.05
	160	1	0.50%	0.27	0.01	0.12	0.22	0.10	0.28	0.22	0.21	0.18	0.51	0.48	0.50
	103	-	0.00%	0.27	0.01	0.13	0.23	0.15	0.02	0.23	0.21	0.18	0.51	0.48	0.00
	102	0	0.00%	0.27	-0.12	0.04	0.22	-0.15	0.03	0.22	0.15	0.20	0.25	0.12	0.22
ALPHA LINOLENIC ACID METABOLISM	19	0	0.00%	0.26	0.14	0.23	0.21	0.06	0.20	-0.16	-0.10	-0.17	-0.14	-0.13	-0.15
HEDGEHOG SIGNALING PATHWAY	56	1	1.79%	0.26	-0.03	0.13	0.38	0.16	0.26	0.08	0.12	0.03	-0.13	-0.05	-0.15
CARDIAC MUSCLE CONTRACTION	80	0	0.00%	0.25	0.34	0.28	0.35	0.14	0.31	-0.06	-0.03	-0.10	-0.18	-0.13	-0.21
NITROGEN METABOLISM	23	0	0.00%	0.25	0.22	0.28	0.35	0.07	0.27	0.41	0.39	0.43	0.33	0.41	0.34
FOCAL ADHESION	201	4	1 99%	0.25	0.35	0.23	0.28	0 34	0.29	0.26	0 34	0.26	0.00	-0.09	-0.05
	64	0	0.00%	0.25	0.25	0.28	0.21	0.26	0.21	0.15	0.26	0.21	0.28	0.40	0.20
	204	2	1.120/	0.25	0.35	0.28	0.21	0.20	0.02	0.13	0.20	0.21	0.38	0.40	0.33
CYTOKINE CYTOKINE RECEPTOR INTERACTION	267	3	1.12%	0.25	-0.15	0.01	0.19	-0.16	0.02	0.17	0.23	0.13	0.18	0.23	0.12
CHEMOKINE SIGNALING PATHWAY	190	1	0.53%	0.25	-0.18	0.02	0.20	-0.16	0.01	0.13	0.21	0.11	0.18	0.06	0.14
SNARE INTERACTIONS IN VESICULAR TRANSPORT	38	0	0.00%	0.24	0.29	0.21	0.16	0.22	0.19	0.42	0.36	0.38	0.33	0.28	0.28
SYSTEMIC LUPUS ERYTHEMATOSUS	140	0	0.00%	0.22	0.10	0.20	0.14	0.06	0.11	0.38	0.32	0.31	0.14	0.12	0.13
LINOLEIC ACID METABOLISM	29	0	0.00%	0.22	-0.02	0.16	0.12	-0.02	0.11	0.04	0.08	0.03	-0.12	-0.14	-0.17
LONG TERM DEPRESSION	70	0	0.00%	0.20	0.07	0.07	-0.06	0 17	0.02	0.02	0 10	0.03	0.01	0.03	-0.03
	125	0	0.00%	0.20	0.22	0.35	0.00	0.16	0.24	0.02	0.10	0.15	0.02	0.05	0.03
	155	0	0.00%	0.20	0.25	0.23	0.18	0.10	0.24	0.20	0.10	0.10	0.03	0.03	-0.02
DRUG METABOLISM UTHER ENZYMES	51	0	0.00%	0.20	0.19	0.24	0.37	0.21	0.28	0.48	0.43	0.42	0.48	0.43	0.44
B CELL RECEPTOR SIGNALING PATHWAY	75	1	1.33%	0.19	-0.13	-0.04	0.14	-0.14	-0.04	0.06	0.12	0.03	-0.10	-0.14	-0.13
TIGHT JUNCTION	134	1	0.75%	0.19	0.40	0.26	0.28	0.36	0.30	0.24	0.29	0.23	0.18	0.10	0.08
LEUKOCYTE TRANSENDOTHELIAL MIGRATION	118	0	0.00%	0.19	0.23	0.13	0.23	0.02	0.08	0.16	0.25	0.16	0.36	0.45	0.34
T CELL RECEPTOR SIGNALING PATHWAY	108	2	1.85%	0.19	-0.18	-0.06	0.13	-0.19	-0.06	0.02	0.08	0.00	0.04	-0.07	0.02
TGE BETA SIGNALING PATHWAY	86	19	22 09%	0.18	0.29	0.16	0.21	0.31	0.21	0.26	0.29	0.27	-0.04	-0.11	-0.11
	21	0	0.00%	0.17	0.12	0.11	0.11	0.11	0.05	0.14	0.02	0.07	0.20	0.12	0.10
	21	0	0.00%	0.17	-0.15	0.11	0.11	-0.11	0.03	0.14	0.05	0.07	0.28	0.12	0.19
	97	0	0.00%	0.17	-0.22	-0.01	0.18	0.10	0.08	0.05	0.12	0.01	-0.12	-0.06	-0.16
ASCORBATE AND ALDARATE METABOLISM	25	0	0.00%	0.16	0.12	0.12	0.20	0.12	0.15	0.22	0.20	0.22	-0.13	-0.10	-0.12
MATURITY ONSET DIABETES OF THE YOUNG	25	0	0.00%	0.15	0.07	0.11	0.20	0.09	0.12	0.09	0.02	0.04	0.27	0.25	0.28
NICOTINATE AND NICOTINAMIDE METABOLISM	24	0	0.00%	0.14	-0.04	-0.03	0.15	-0.06	0.05	0.40	0.33	0.39	0.13	0.14	0.11
ADIPOCYTOKINE SIGNALING PATHWAY	67	0	0.00%	0.14	0.35	0.26	0.37	0.32	0.31	0.19	0.22	0.16	0.05	0.15	0.05
ERBB SIGNALING PATHWAY	87	5	5 75%	0 14	0.20	0.10	0.11	0.28	0.16	-0.04	0.00	-0.06	0.09	0.04	-0.01
	52	0	0.00%	0.14	0.27	0.12	0.16	0.20	0.15	0.16	0.22	0.18	0.44	0.48	0.44
	71	0	0.00%	0.14	0.27	0.12	0.10	0.25	0.15	0.10	0.23	0.18	0.44	0.48	0.44
RIG I LIKE RECEPTOR SIGNALING PATHWAY	/1	0	0.00%	0.14	0.05	0.05	0.17	0.07	0.05	0.01	-0.01	0.04	-0.07	-0.11	-0.04
RIBOSOME	88	0	0.00%	0.13	0.10	0.18	-0.04	-0.07	0.01	0.08	0.13	0.09	0.18	0.23	0.20
NATURAL KILLER CELL MEDIATED CYTOTOXICITY	137	0	0.00%	0.12	-0.27	-0.10	0.07	-0.26	-0.10	0.01	0.10	-0.02	0.47	0.34	0.36
PORPHYRIN AND CHLOROPHYLL METABOLISM	41	0	0.00%	0.12	0.09	0.18	0.23	0.19	0.26	0.18	0.18	0.23	-0.02	0.04	0.03
MAPK SIGNALING PATHWAY	267	9	3.37%	0.11	0.27	0.08	0.38	0.17	0.24	0.27	0.33	0.25	0.50	0.52	0.48
ACUTE MYELOID LEUKEMIA	60	3	5.00%	0.11	0.29	0.12	0.06	0.21	0.09	0.09	0.06	-0.01	0.24	0.23	0.15
	25	0	0.00%	0.11	-0.27	-0.11	0.02	-0.21	-0.15	0.00	-0.06	0.06	0.04	-0.06	0.08
	24	0	0.00%	0.11	-0.27	-0.11	0.02	-0.51	-0.15	0.00	-0.00	0.00	0.04	-0.00	0.08
	24	0	0.00%	0.10	0.07	0.09	0.19	0.03	0.16	0.33	0.24	0.27	0.39	0.32	0.35
EPITHELIAL CELL SIGNALING IN HELICOBACTER PYLORI INFECTION	68	0	0.00%	0.10	0.38	0.23	0.17	0.17	0.12	0.00	0.06	-0.02	-0.16	-0.10	-0.18
BIOSYNTHESIS OF UNSATURATED FATTY ACIDS	22	0	0.00%	0.10	0.14	0.07	0.03	0.05	-0.02	-0.22	-0.17	-0.25	0.08	0.00	-0.01
PENTOSE AND GLUCURONATE INTERCONVERSIONS	28	0	0.00%	0.10	0.23	0.19	0.28	0.32	0.29	0.31	0.30	0.30	0.27	0.27	0.27
GLYCOSPHINGOLIPID BIOSYNTHESIS GANGLIO SERIES	15	0	0.00%	0.09	0.04	0.11	0.09	0.04	0.12	0.35	0.33	0.33	-0.07	-0.07	-0.09
ANTIGEN PROCESSING AND PRESENTATION	89	0	0.00%	0.09	-0.26	-0.09	0.01	-0.30	-0.15	0.28	0.21	0.29	-0.06	-0.13	-0.03
CYTOSOLIC DNA SENSING PATHWAY	56	0	0.00%	0.09	-0.17	-0.03	0.09	-0.06	0.00	0.38	0.35	0.40	0.22	0.18	0.22
	124	0	0.00%	0.00	-0.26	_0.10	0.05	-0.26	-0.10	0.55	0.33	0.14	_0.01	-0.07	0.22
	154	0	0.00%	0.08	-0.20	-0.10	0.05	-0.20	-0.10	0.19	0.24	0.14	-0.01	-0.07	-0.02
ALAININE ASPAKTATE AND GLUTAMATE METABOLISM	32	U	0.00%	0.08	-0.03	U.U6	0.23	0.06	0.13	0.49	0.43	0.47	0.26	0.24	0.30
DORSO VENTRAL AXIS FORMATION	25	0	0.00%	0.08	0.36	0.16	0.09	0.31	0.19	0.03	0.08	0.01	-0.06	0.00	-0.08
GLYCOSPHINGOLIPID BIOSYNTHESIS LACTO AND NEOLACTO SERIES	26	0	0.00%	0.08	0.01	0.10	0.14	0.03	0.12	-0.08	-0.04	-0.14	-0.07	-0.03	-0.11
AUTOIMMUNE THYROID DISEASE	53	0	0.00%	0.08	-0.16	-0.07	0.03	-0.23	-0.12	0.01	-0.08	-0.01	0.12	0.24	0.13

AXON GUIDANCE	129	2	1.55%	0.08	0.37	0.15	0.11	0.32	0.20	0.21	0.27	0.19	0.13	0.19	0.11
INOSITOL PHOSPHATE METABOLISM	54	0	0.00%	0.08	0.37	0.21	0.06	0.32	0.19	0.04	0.08	0.01	0.00	0.07	-0.04
GLYCOSAMINOGLYCAN BIOSYNTHESIS CHONDROITIN SULFATE	22	0	0.00%	0.07	0.21	0.08	0.07	0.17	0.06	-0.14	-0.15	-0.12	0.01	0.04	-0.04
HYPERTROPHIC CARDIOMYOPATHY HCM	85	3	3.53%	0.07	0.36	0.14	0.30	0.30	0.29	0.30	0.34	0.30	-0.03	0.01	-0.05
GLYCEROLIPID METABOLISM	49	0	0.00%	0.07	0.35	0.14	0.15	0.31	0.18	0.09	0.14	0.07	0.01	0.07	0.00
	24	0	0.00%	0.07	0.04	0.04	0.10	0.01	0.10	0.05	0.24	0.25	0.01	0.07	0.00
	34	0	0.00%	0.00	-0.04	0.04	-0.10	0.05	-0.05	0.42	0.34	0.35	0.40	0.30	0.40
ABCTRANSPORTERS	44	0	0.00%	0.06	0.23	0.16	0.19	0.18	0.11	0.47	0.48	0.49	0.19	0.20	0.17
METABOLISM OF XENOBIOTICS BY CYTOCHROME P450	70	0	0.00%	0.06	0.28	0.17	-0.14	0.09	-0.05	0.20	0.26	0.20	-0.10	-0.07	-0.15
GRAFT VERSUS HOST DISEASE	42	0	0.00%	0.05	-0.28	-0.12	0.00	-0.32	-0.16	0.10	0.14	0.11	0.30	0.29	0.24
SULFUR METABOLISM	13	0	0.00%	0.05	0.19	0.24	0.08	0.07	0.17	0.25	0.18	0.23	0.21	0.20	0.29
HEMATOPOIETIC CELL LINEAGE	88	0	0.00%	0.05	-0.31	-0.15	0.03	-0.29	-0.14	0.19	0.23	0.12	0.20	0.22	0.13
ALLOGRAFT REJECTION	38	0	0.00%	0.04	-0.28	-0.13	-0.02	-0.33	-0.17	0.12	0.17	0.15	0.03	0.11	-0.02
ETHER LIPID METABOLISM	33	0	0.00%	0.04	0.28	0.10	0.13	0.28	0.20	0.03	0.10	0.02	-0.06	-0.03	-0.08
VIRAL MYOCARDITIS	73	2	2 74%	0.04	-0.30	-0.13	0.00	-0.30	-0.14	0.23	0.26	0.16	0.13	0.05	0 14
GLYCOSAMINOGLYCAN BIOSYNTHESIS KERATAN SUI FATE	15	0	0.00%	0.03	0.02	0.04	0.00	0.07	0.14	0.02	0.02	0.01	-0.20	-0.21	-0.26
	15	5	0.00%	0.03	0.02	0.04	0.13	0.07	0.14	0.02	0.02	0.01	-0.23	-0.21	-0.20
ADREKENS JOINCTION	/5	5	0.07%	0.03	0.58	0.10	0.14	0.54	0.20	0.55	0.56	0.30	0.07	-0.01	-0.04
INTESTINAL IMMUNE NETWORK FOR IGA PRODUCTION	48	1	2.08%	0.03	-0.29	-0.13	-0.03	-0.34	-0.18	0.41	0.38	0.37	0.13	0.22	0.08
GLYCOSAMINOGLYCAN BIOSYNTHESIS HEPARAN SULFATE	26	0	0.00%	0.03	0.12	0.03	0.19	-0.08	0.09	0.02	-0.01	-0.04	0.15	0.02	0.05
TYPE I DIABETES MELLITUS	44	0	0.00%	0.02	-0.27	-0.13	0.01	-0.32	-0.15	-0.02	-0.07	0.04	0.11	0.09	0.18
ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY ARVC	76	0	0.00%	0.01	0.17	0.01	0.10	0.21	0.11	0.20	0.24	0.28	-0.06	-0.01	-0.08
ENDOMETRIAL CANCER	52	4	7.69%	0.01	0.14	-0.01	0.02	0.15	0.04	0.00	0.00	-0.08	-0.03	0.00	-0.07
OTHER GLYCAN DEGRADATION	16	0	0.00%	0.01	0.00	0.04	0.04	0.16	0.13	-0.15	-0.15	-0.14	0.00	0.05	0.08
TASTE TRANSDUCTION	52	0	0.00%	0.00	0.21	0.10	0.12	0.19	0.17	0.09	0.12	0.08	-0.20	-0.13	-0.16
VEGE SIGNALING PATHWAY	76	0	0.00%	0.00	0.24	0.07	0.05	0.31	0.17	-0.12	-0.04	-0.13	-0.03	0.02	-0.08
DRUG METABOLISM CYTOCHROME D4E0	70	0	0.00%	0.00	0.24	0.14	0.05	0.31	0.17	0.12	0.04	0.15	0.05	0.02	0.00
	72	0	0.00%	0.00	0.28	0.14	0.08	0.27	0.15	0.34	0.55	0.29	0.00	0.08	0.01
	/2	3	4.17%	0.00	-0.30	-0.13	-0.03	-0.29	-0.15	0.18	0.19	0.20	0.25	0.24	0.29
VASCULAR SMOOTH MUSCLE CONTRACTION	115	0	0.00%	0.00	0.29	0.09	0.11	0.31	0.18	0.25	0.31	0.24	-0.13	-0.05	-0.15
THYROID CANCER	29	3	10.34%	-0.02	0.23	0.02	-0.02	0.16	0.01	0.05	0.01	-0.04	0.10	0.06	-0.02
REGULATION OF AUTOPHAGY	35	0	0.00%	-0.03	0.05	-0.04	0.03	0.10	0.02	0.06	0.06	0.06	-0.06	-0.06	-0.06
NEUROACTIVE LIGAND RECEPTOR INTERACTION	272	0	0.00%	-0.03	0.35	0.13	0.18	0.37	0.26	0.56	0.55	0.54	0.02	0.09	-0.01
BASAL CELL CARCINOMA	55	2	3.64%	-0.03	0.29	0.09	0.03	0.20	0.06	0.04	0.05	-0.02	-0.02	0.00	-0.05
OLFACTORY TRANSDUCTION	389	0	0.00%	-0.03	-0.01	0.04	-0.09	-0.08	-0.08	0.31	0.27	0.25	0.43	0.35	0.38
STARCH AND SUCROSE METABOLISM	52	0	0.00%	-0.03	0.04	0.02	-0.01	0.10	0.07	-0.07	-0.13	-0.13	-0.01	-0.09	-0.08
	70	2	2.86%	-0.04	0.04	0.02	0.01	0.10	0.15	0.05	0.13	0.06	0.01	0.05	0.00
	70	2	2.80%	-0.04	0.28	0.08	0.00	0.27	0.15	0.00	0.14	0.00	0.33	0.40	0.35
PHOSPHATIDTLINOSITOL SIGNALING STSTEIM	/0	0	0.00%	-0.04	0.31	0.11	0.08	0.33	0.19	0.09	0.14	0.07	0.01	0.08	-0.05
INSULIN SIGNALING PATHWAY	137	1	0.73%	-0.04	0.18	0.00	0.07	0.24	0.12	0.04	0.11	0.07	0.13	0.23	0.15
GLYCEROPHOSPHOLIPID METABOLISM	77	0	0.00%	-0.04	0.23	0.12	0.04	0.21	0.17	-0.05	0.01	-0.06	-0.14	-0.12	-0.18
GLYCOSPHINGOLIPID BIOSYNTHESIS GLOBO SERIES	14	0	0.00%	-0.05	0.10	0.03	0.03	0.10	0.07	0.12	0.07	0.07	0.10	0.04	0.02
ECM RECEPTOR INTERACTION	84	0	0.00%	-0.05	-0.04	0.04	0.05	0.02	0.06	0.30	0.30	0.25	-0.06	-0.15	-0.09
FC EPSILON RI SIGNALING PATHWAY	79	0	0.00%	-0.05	0.34	0.14	0.34	0.23	0.36	0.12	0.11	0.16	-0.03	-0.03	-0.11
PRION DISEASES	35	0	0.00%	-0.05	0.29	0.08	0.08	0.29	0.15	0.12	0.21	0.11	0.07	0.11	0.05
RENAL CELL CARCINOMA	70	6	8.57%	-0.06	0.28	0.03	0.05	0.29	0.14	0.11	0.16	0.11	-0.02	0.07	-0.02
STEROID HORMONE BIOSYNTHESIS	55	0	0.00%	-0.06	0.07	0.08	0.02	0.09	0.08	-0.10	0.00	-0.09	-0.01	0.01	0.03
	30	0	0.00%	-0.06	-0.33	-0.18	-0.12	-0.28	-0.24	-0.16	-0.20	-0.08	0.02	0.17	0.03
	10	0	0.00%	0.00	0.03	0.01	0.12	0.00	0.01	0.10	0.12	0.00	0.00	0.19	0.05
	10	0	0.00%	-0.07	-0.07	-0.01	0.04	-0.02	0.01	0.09	0.15	0.13	0.19	0.18	0.13
PANTOTHENATE AND COA BIOSYNTHESIS	16	0	0.00%	-0.08	0.23	0.04	-0.04	0.22	0.03	0.12	0.15	0.05	-0.20	-0.10	-0.13
PROXIMAL TUBULE BICARBONATE RECLAMATION	23	0	0.00%	-0.08	0.17	0.09	0.34	0.09	0.23	0.43	0.41	0.44	0.20	0.28	0.22
SPHINGOLIPID METABOLISM	40	0	0.00%	-0.08	0.26	0.05	-0.05	0.20	0.05	0.29	0.30	0.27	0.04	0.18	0.19
ENDOCYTOSIS	183	1	0.55%	-0.09	0.32	0.09	0.03	0.27	0.13	-0.03	0.04	-0.03	-0.13	-0.08	-0.16
GNRH SIGNALING PATHWAY	101	0	0.00%	-0.09	0.30	0.06	-0.03	0.18	0.08	-0.04	0.01	-0.08	-0.10	-0.07	-0.13
NOD LIKE RECEPTOR SIGNALING PATHWAY	62	0	0.00%	-0.12	-0.14	-0.07	-0.07	-0.16	-0.07	0.04	0.11	0.02	0.12	0.18	0.05
PRIMARY BILE ACID BIOSYNTHESIS	16	0	0.00%	-0.13	0.08	-0.01	0.34	0.26	0.30	-0.18	-0.16	-0.20	-0.03	-0.03	-0.06
BASAL TRANSCRIPTION FACTORS	36	0	0.00%	-0.13	0.08	-0.08	-0.06	0.09	-0.01	0.31	0.28	0.32	0.12	0.16	0.12
	25	0	0.00%	-0.13	0.20	0.07	-0.10	-0.01	0.00	-0.12	-0.03	-0.09	-0.21	-0.03	-0.13
	170	0	0.00%	-0.13	0.20	0.07	-0.10	0.01	0.00	-0.12	-0.05	-0.03	-0.21	-0.03	-0.13
	1/8	0	0.00%	-0.13	0.30	0.04	0.01	0.27	0.13	0.19	0.25	0.16	-0.14	-0.02	-0.13
CONFLEMENT AND COAGULATION CASCADES	69	U	0.00%	-0.14	0.24	U.U6	0.05	0.30	0.19	0.30	0.37	0.28	0.19	0.28	0.20
HUNTINGTONS DISEASE	185	5	2.70%	-0.14	0.17	-0.04	0.28	0.15	0.30	0.27	0.25	0.24	-0.15	-0.15	-0.18
DILATED CARDIOMYOPATHY	92	3	3.26%	-0.15	0.20	0.01	0.22	0.00	0.11	0.29	0.33	0.28	-0.05	0.01	-0.05
VASOPRESSIN REGULATED WATER REABSORPTION	44	0	0.00%	-0.15	0.00	0.00	-0.13	0.15	-0.02	-0.27	-0.13	-0.18	-0.20	-0.13	-0.11
WNT SIGNALING PATHWAY	151	15	9.93%	-0.16	0.03	0.00	0.11	0.31	0.17	-0.06	0.00	-0.08	0.05	0.04	-0.01
BETA ALANINE METABOLISM	22	0	0.00%	-0.18	0.00	-0.04	0.09	0.03	0.03	0.42	0.39	0.36	0.14	0.18	0.17
MELANOGENESIS	102	3	2.94%	-0.18	0.18	-0.01	-0.04	0.22	0.06	-0.03	0.02	-0.08	-0.15	-0.08	-0.11
VALUE LEUCINE AND ISOLEUCINE BIOSYNTHESIS	11	0	0.00%	-0.19	0.14	-0.02	0.00	0.17	0.05	0.05	0.24	0.22	-0.15	0.00	0.00
	50	0	0.00%	-0.19	0.10	-0.02	0.00	0.27	0.05	0.21	0.24	0.22	0.13	0.39	0.00
	22	0	0.00%	-0.19	0.10	-0.07	0.51	0.57	0.47	0.55	0.55	0.55	0.44	0.50	0.35

O GLYCAN BIOSYNTHESIS	30 0 0	.00% -0.32 -0.04	-0.18	-0.22 -0.05	-0.11	0.22 0.23	0.17	-0.13 -0.15	-0.13

Contraction with the cost

Correlations between the Pathifier score of each Reactome pathway and three CIN measurements in the four breast cancer cohorts

Note:

Overlap = length of the overlap with the CELL CYCLE pathway in Reactome
 Percentage = percentage of the overlap with the CELL CYCLE pathway in Reactome

Pathuay Name	Longth	Overlan	Percentage		METABRIC Discovery Cohort		METABRIC Validation Cohort			C Validation Cohort		TCGA	CGA RNA-seq Cohort		TCGA Microarray Cohort	
r aliway kome	Lengen	overlap	reicentage	No. of break	s GII No	of amplified/delet	ted genes No. of	f breaks	s GII I	No. of amplified/deleted genes	lo. of breaks	GII	No. of amplified/deleted genes N	o. of breaks	GII No.	of amplified/deleted genes
CELL CYCLE	421	421	100.00%	0.65	0.32	0.45	0	0.59	0.36	0.50	0.63	0.57	0.59	0.57	0.52	0.52
CELL CYCLE MITOTIC	325	325	100.00%	0.64	0.32	0.45	0	J.62	0.36	0.51	0.65	0.59	0.61	0.57	0.52	0.52
	51	51	100.00%	0.64	0.33	0.44	0	J.50 J.22	0.30	0.48	0.59	0.50	0.53	0.57	0.52	0.53
DNA REPLICATION	192	192	100.00%	0.64	0.31	0.44	0	0.62	0.26	0.51	0.65	0.59	0.61	0.57	0.52	0.52
MITOTIC M M G1 PHASES	172	172	100.00%	0.64	0.31	0.44	0	0.62	0.35	0.50	0.65	0.58	0.60	0.57	0.51	0.51
MITOTIC PROMETAPHASE	87	87	100.00%	0.64	0.33	0.44	0	0.60	0.36	0.50	0.63	0.58	0.59	0.55	0.50	0.50
RECRUITMENT OF MITOTIC CENTROSOME PROTEINS AND COMPLEXES	66	66	100.00%	0.63	0.32	0.47	0	0.27	0.10	0.27	0.43	0.38	0.41	0.54	0.51	0.53
CELL CYCLE CHECKPOINTS	124	124	100.00%	0.63	0.29	0.44	0	0.49	0.24	0.41	0.52	0.45	0.50	0.58	0.53	0.53
MHC CLASS II ANTIGEN PRESENTATION	91	14	15.38%	0.63	0.26	0.43	0	0.41	0.13	0.30	0.39	0.35	0.40	0.55	0.49	0.49
SIGNALING BY SCF KIT	78	5	6.41%	0.62	0.35	0.48	0	0.31	0.08	0.16	0.09	0.12	0.06	0.46	0.38	0.41
FACTORS INVOLVED IN MEGAKARYOCYTE DEVELOPMENT AND PLATELET PRODUCTION	132	13	9.85%	0.62	0.32	0.44	0	J.62	0.38	0.51	0.32	0.34	0.34	0.56	0.51	0.50
INTIBITION OF THE PROTECT TIC ACTIVITY OF APC C REQUIRED FOR THE UNSET OF ANAPHASE BY MITOTIC SPINDLE CHECKPOINT COMPONENTS DEGILIATION OF MITOTIC CELL CYCLE	24	24	100.00%	0.62	0.31	0.46	0	J.53 1.49	0.27	0.45	0.46	0.42	0.40	0.57	0.49	0.50
APC CDC20 MFDIATED DEGRADATION OF NEK2A	28	28	100.00%	0.62	0.35	0.44	0	0.56	0.34	0.49	0.37	0.31	0.32	0.56	0.49	0.51
MITOTIC G1 G1 S PHASES	137	137	100.00%	0.62	0.29	0.43	0	0.61	0.33	0.49	0.59	0.54	0.57	0.56	0.52	0.53
KINESINS	24	6	25.00%	0.62	0.34	0.43	0	0.60	0.39	0.51	0.56	0.53	0.51	0.54	0.49	0.47
CYCLIN A B1 ASSOCIATED EVENTS DURING G2 M TRANSITION	15	15	100.00%	0.61	0.33	0.42	0	0.60	0.38	0.50	0.59	0.54	0.57	0.56	0.50	0.50
G0 AND EARLY G1	25	25	100.00%	0.61	0.30	0.42	0	0.60	0.34	0.49	0.60	0.55	0.56	0.56	0.51	0.53
METABOLISM OF NUCLEOTIDES	72	3	4.17%	0.61	0.29	0.44	0	0.46	0.23	0.38	0.41	0.34	0.36	0.53	0.47	0.47
	125	17	13.60%	0.61	0.32	0.44		0.08	0.03	0.03	0.36	0.33	0.34	0.57	0.54	0.54
	45	45	100.00%	0.60	0.32	0.41	0	J.57	0.38	0.49	0.58	0.50	0.56	0.50	0.53	0.52
STRITESS OF DIVA	35	35	100.00%	0.00	0.28	0.43	0	0.57	0.30	0.45	0.00	0.55	0.56	0.57	0.33	0.33
APC C CDH1 MEDIATED DEGRADATION OF CDC20 AND OTHER APC C CDH1 TARGETED PROTEINS IN LATE MITOSIS EARLY G1	72	72	100.00%	0.60	0.22	0.42	0	0.44	0.16	0.35	0.48	0.38	0.44	0.60	0.49	0.53
G1 S SPECIFIC TRANSCRIPTION	19	19	100.00%	0.59	0.25	0.39	0	0.58	0.30	0.44	0.60	0.55	0.55	0.52	0.47	0.46
ACTIVATION OF ATR IN RESPONSE TO REPLICATION STRESS	38	38	100.00%	0.59	0.31	0.39	0	0.55	0.37	0.47	0.58	0.56	0.56	0.55	0.53	0.52
APC C CDC20 MEDIATED DEGRADATION OF CYCLIN B	26	26	100.00%	0.59	0.33	0.44	0	0.46	0.32	0.42	0.39	0.34	0.35	0.56	0.49	0.51
M G1 TRANSITION	81	81	100.00%	0.59	0.25	0.40	0	0.56	0.27	0.43	0.44	0.37	0.43	0.56	0.52	0.52
DNA REPAIR	112	29	25.89%	0.58	0.39	0.51	0	0.01	0.15	0.04	0.37	0.34	0.35	0.52	0.53	0.52
SLC MEDIA IED TRANSMEMBRANE TRANSPORT	241	<i>(r</i>	2.90%	0.58	0.20	0.36	0	J.23	0.30	0.23	-0.23	-0.17	-0.26	-0.01	-0.03	-0.10
ASSEMBLT OF THE PRE REPLICATIVE COMPLEX	12	12	100.00%	0.58	0.22	0.38	0	J.5Z	0.21	0.39	0.58	0.44	0.50	0.57	0.51	0.52
	38	38	100.00%	0.57	0.27	0.36	0	0.48	0.45	0.37	0.54	0.50	0.50	0.51	0.44	0.45
ASSOCIATION OF LICENSING FACTORS WITH THE PRE REPLICATIVE COMPLEX	14	14	100.00%	0.57	0.25	0.37	0	0.54	0.30	0.40	0.58	0.54	0.55	0.53	0.50	0.49
FANCONI ANEMIA PATHWAY	25	9	36.00%	0.56	0.46	0.48	0	0.53	0.42	0.50	0.43	0.47	0.45	0.48	0.50	0.49
RNA POL II TRANSCRIPTION	105	3	2.86%	0.56	0.37	0.49	0	0.47	0.31	0.43	0.40	0.36	0.40	0.56	0.54	0.56
APC C CDC20 MEDIATED DEGRADATION OF MITOTIC PROTEINS	73	73	100.00%	0.56	0.19	0.38	0	0.20	0.17	0.13	0.53	0.41	0.47	0.57	0.48	0.51
APOPTOSIS	148	53	35.81%	0.56	0.19	0.41	0	0.20	0.13	0.09	0.48	0.41	0.46	0.52	0.39	0.44
	23	23	100.00%	0.56	0.30	0.37	0	1.55	0.30	0.43	0.30	0.34	0.43	0.56	0.55	0.55
DEADERVIATION DEPENDENT MRNA DECAY	48	0	0.00%	0.56	0.33	0.49	0	0.53	0.40	0.49	0.38	0.36	0.37	0.42	0.33	0.33
LATE PHASE OF HIV LIFE CYCLE	104	15	14.42%	0.56	0.23	0.39	0	0.50	0.31	0.40	0.35	0.32	0.34	0.55	0.56	0.56
GLUCOSE TRANSPORT	38	7	18.42%	0.55	0.26	0.38	0	0.48	0.25	0.35	0.50	0.46	0.51	0.48	0.50	0.52
SIGNALLING BY NGF	217	19	8.76%	0.55	0.18	0.36	0	0.35	0.26	0.28	0.42	0.41	0.43	0.40	0.40	0.36
DNA STRAND ELONGATION	30	30	100.00%	0.55	0.32	0.39	0	0.52	0.36	0.45	0.56	0.56	0.55	0.52	0.56	0.54
EXTENSION OF TELOMERES	27	27	100.00%	0.55	0.36	0.45	0	J.47	0.35	0.48	0.52	0.55	0.54	0.45	0.52	0.49
CITCLINE ASSOCIATED EVENTS DOKING GET TRANSITION	112	112	100.00%	0.55	0.15	0.35	0	0.40	0.15	0.37	0.62	0.45	0.45	0.57	0.47	0.52
HEMOSTASIS	466	23	4.94%	0.54	0.22	0.33	0	0.39	0.10	0.22	0.26	0.34	0.26	0.57	0.50	0.53
E2F ENABLED INHIBITION OF PRE REPLICATION COMPLEX FORMATION	10	10	100.00%	0.54	0.32	0.39	0	0.51	0.36	0.45	0.57	0.55	0.55	0.49	0.49	0.49
PROTEIN FOLDING	53	4	7.55%	0.53	0.37	0.50	0	0.43	0.27	0.42	0.50	0.43	0.48	0.60	0.50	0.55
INTERACTIONS OF VPR WITH HOST CELLULAR PROTEINS	33	7	21.21%	0.53	0.17	0.36	0	0.46	0.21	0.34	0.49	0.44	0.47	0.48	0.49	0.51
LAGGING STRAND SYNTHESIS	19	19	100.00%	0.53	0.33	0.42	0	0.51	0.36	0.49	0.51	0.54	0.53	0.44	0.51	0.49
ANTIGEN PROCESSING UBIQUITINATION PROTEASOME DEGRADATION	212	71	33.49%	0.53	0.19	0.38	0	0.48	0.23	0.32	0.42	0.37	0.42	0.11	0.13	0.08
	25	19	25.93% 51.42%	0.52	0.21	0.37	0	J.48 D.40	0.23	0.38	0.38	0.28	0.32	0.47	0.50	0.51
Apoptotic of payage of the full as proteins	40	2	5.00%	0.52	0.55	0.40	0	0.46	0.25	0.36	0.00	0.45	-0.03	0.35	0.34	0.31
CHROMOSOME MAINTENANCE	122	122	100.00%	0.52	0.34	0.42	0	0.41	0.31	0.37	0.25	0.20	0.21	0.42	0.37	0.37
RECYCLING PATHWAY OF L1	27	0	0.00%	0.52	0.32	0.38	0	0.42	0.31	0.32	0.24	0.28	0.22	0.52	0.44	0.41
NUCLEOTIDE EXCISION REPAIR	51	18	35.29%	0.52	0.33	0.48	0	0.44	0.29	0.44	0.42	0.42	0.42	0.48	0.54	0.51
CDC6 ASSOCIATION WITH THE ORC ORIGIN COMPLEX	11	11	100.00%	0.52	0.18	0.31	0	0.25	0.14	0.24	0.58	0.56	0.57	0.53	0.50	0.49
MICRORNA MIRNA BIOGENESIS	23	0	0.00%	0.52	0.19	0.38	0	0.42	0.24	0.35	0.34	0.34	0.34	0.54	0.54	0.56
PREFOLDIN MEDIATED TRANSFER OF SUBSTRATE TO CCT TRUE	28	4	14.29%	0.52	0.29	0.43	0	J.47	0.22	0.40	0.63	0.53	0.57	0.55	0.48	0.51
TRANSPORT OF WAR ORE WINKA DENDADED FROM AN INTROVICES TRANSPORT	72	2	21.21%	0.52	0.20	0.36	0	0.44	0.22	0.35	0.48	0.40	0.47	0.30	0.50	0.31
REGULATION OF GLUCOKINASE BY GLUCOKINASE REGULATORY PROTEIN	27	7	25.93%	0.51	0.20	0.36	0	0.45	0.20	0.36	0.45	0.45	0.46	0.48	0.51	0.51
UNWINDING OF DNA	11	11	100.00%	0.51	0.27	0.32	0	0.52	0.34	0.41	0.55	0.53	0.52	0.52	0.53	0.52
MRNA SPLICING	111	1	0.90%	0.51	0.30	0.47	0	0.32	0.11	0.30	0.47	0.41	0.44	0.58	0.53	0.54
METABOLISM OF CARBOHYDRATES	247	14	5.67%	0.51	0.26	0.34	0	0.44	0.30	0.35	0.21	0.26	0.20	0.55	0.49	0.51
POLSWITCHING	13	13	100.00%	0.51	0.34	0.43	0	0.48	0.35	0.48	0.53	0.54	0.53	0.42	0.50	0.48
	69	7	10.14%	0.51	0.24	0.36	-0	U.05	0.13	0.01	0.44	0.44	0.45	0.41	0.39	0.40
STRITESIS AND INTERCONVERSION OF NUCLEOTIDE DI AND TRIPPOSPHATES	19	67	5.20%	0.51	0.25	0.42	0	J.38 117	0.19	0.32	0.57	0.32	0.34	0.50	0.41	0.41
REGULATION OF MINA STABILITY BY PROTEINS THAT BIND AU RICH ELEMENTS	84	47	55.95%	0.51	0.13	0.35	0	0.32	0.26	0.24	0.46	0.37	0.42	0.45	0.36	0.39

BADEBADESA																
Shore ImageShore Imag	SIGNALING BY FGFR MUTANTS	4	4 2	4.55%	0.51	0.11	0.29	0.40	0.13	0.24	0.37	0.35	0.32	0.32	0.28	0.2
Matcher <t< td=""><td>SCFSKP2 MEDIATED DEGRADATION OF P27 P21</td><td>5</td><td>5 56</td><td>100.00%</td><td>0.51</td><td>0.15</td><td>0.37</td><td>0.00</td><td>0.10</td><td>-0.03</td><td>0.50</td><td>0.41</td><td>0.47</td><td>0.58</td><td>0.49</td><td>0.5</td></t<>	SCFSKP2 MEDIATED DEGRADATION OF P27 P21	5	5 56	100.00%	0.51	0.15	0.37	0.00	0.10	-0.03	0.50	0.41	0.47	0.58	0.49	0.5
matched formmatched form </td <td>PYRUVATE METABOLISM AND CITRIC ACID TCA CYCLE</td> <td>4:</td> <td>в О</td> <td>0.00%</td> <td>0.50</td> <td>0.15</td> <td>0.33</td> <td>0.15</td> <td>0.11</td> <td>0.07</td> <td>0.31</td> <td>0.31</td> <td>0.34</td> <td>0.38</td> <td>0.31</td> <td>0.3</td>	PYRUVATE METABOLISM AND CITRIC ACID TCA CYCLE	4:	в О	0.00%	0.50	0.15	0.33	0.15	0.11	0.07	0.31	0.31	0.34	0.38	0.31	0.3
Backer of an analysisBacker of an analysi	INFLUENZA LIFE CYCLE	20	3 13	6.40%	0.50	0.15	0.35	0.06	0.00	0.11	0.13	0.16	0.14	0.34	0.36	0.3
INSIDEINSIDEINSIDEINS </td <td>TRANSPORT OF MATURE TRANSCRIPT TO CYTOPLASM</td> <td>5</td> <td>4 7</td> <td>12.96%</td> <td>0.50</td> <td>0.23</td> <td>0.38</td> <td>0.41</td> <td>0.20</td> <td>0.36</td> <td>0.55</td> <td>0.51</td> <td>0.54</td> <td>0.50</td> <td>0.52</td> <td>0.5</td>	TRANSPORT OF MATURE TRANSCRIPT TO CYTOPLASM	5	4 7	12.96%	0.50	0.23	0.38	0.41	0.20	0.36	0.55	0.51	0.54	0.50	0.52	0.5
Mathematical symbolMathematical symbolMath	TRANSCRIPTION COUPLED NER TC NER	4	5 18	40.00%	0.50	0.34	0.47	0.42	0.28	0.43	0.40	0.41	0.41	0.49	0.54	0.5
CharacteringControl </td <td>PROCESSIVE SYNTHESIS ON THE LAGGING STRAND</td> <td>1</td> <td>5 15</td> <td>100.00%</td> <td>0.50</td> <td>0.33</td> <td>0.40</td> <td>0.47</td> <td>0.34</td> <td>0.43</td> <td>0.47</td> <td>0.49</td> <td>0.48</td> <td>0.40</td> <td>0.48</td> <td>0.4</td>	PROCESSIVE SYNTHESIS ON THE LAGGING STRAND	1	5 15	100.00%	0.50	0.33	0.40	0.47	0.34	0.43	0.47	0.49	0.48	0.40	0.48	0.4
CharacterizeConstraint <td>CHOLESTEROL BIOSYNTHESIS</td> <td>24</td> <td>4 0</td> <td>0.00%</td> <td>0.50</td> <td>0.21</td> <td>0.35</td> <td>0.44</td> <td>0.28</td> <td>0.35</td> <td>0.31</td> <td>0.30</td> <td>0.32</td> <td>0.48</td> <td>0.39</td> <td>0.3</td>	CHOLESTEROL BIOSYNTHESIS	24	4 0	0.00%	0.50	0.21	0.35	0.44	0.28	0.35	0.31	0.30	0.32	0.48	0.39	0.3
Horizont intermediation for the intermediation of the intermediatis of t	CYTOSOLIC TRNA AMINOACYLATION	24	4 0	0.00%	0.50	0.13	0.31	0.47	0.16	0.32	0.54	0.44	0.49	0.42	0.33	0.3
CAS 1 SUM ADDRCAS 1 PCAS 1 P <thcas 1="" p<="" th="">CAS 1 P<</thcas>	REMOVAL OF THE FLAP INTERMEDIATE FROM THE C STRAND	10	0 10	100.00%	0.49	0.29	0.36	0.46	0.31	0.44	0.31	0.34	0.33	0.42	0.50	0.5
NUMBERNUMBE	CLASS B 2 SECRETIN FAMILY RECEPTORS	8	в О	0.00%	0.49	0.15	0.31	0.40	0.25	0.31	-0.08	-0.09	-0.09	0.06	0.04	0.0
International matrix products of the sectorInternational matrix products of the sectorIn	IRON UPTAKE AND TRANSPORT	3	5 0	0.00%	0.49	0.29	0.41	0.34	0.23	0.27	0.35	0.35	0.29	0.48	0.47	0.4
InductorInducto	TRANSMEMBRANE TRANSPORT OF SMALL MOLECULES	41	.3 10	2.42%	0.49	0.35	0.39	0.42	0.19	0.30	0.29	0.32	0.27	0.48	0.43	0.4
Alter for the sectorAlter <th< td=""><td>HYALURONAN UPTAKE AND DEGRADATION</td><td>10</td><td>0 C</td><td>0.00%</td><td>0.49</td><td>0.33</td><td>0.41</td><td>0.43</td><td>0.31</td><td>0.40</td><td>0.32</td><td>0.33</td><td>0.29</td><td>0.43</td><td>0.39</td><td>0.3</td></th<>	HYALURONAN UPTAKE AND DEGRADATION	10	0 C	0.00%	0.49	0.33	0.41	0.43	0.31	0.40	0.32	0.33	0.29	0.43	0.39	0.3
Marcing contractionMarcing contractionMarc<	PLATELET SENSITIZATION BY LDL	1	59	56.25%	0.49	0.17	0.25	0.42	0.16	0.26	-0.18	-0.11	-0.18	0.42	0.28	0.3
THE AMERYON FORMERY FOR THE AMERYON FOR THE AM	APOPTOTIC EXECUTION PHASE	5	4 2	3.70%	0.49	0.15	0.34	0.50	0.22	0.39	0.01	0.06	-0.01	-0.03	-0.05	-0.0
<tt> remultand controls 2</tt>	TRNA AMINOACYLATION	43	2 0	0.00%	0.49	0.15	0.32	0.49	0.23	0.37	0.52	0.46	0.49	0.40	0.40	0.4
Mathematic Action Mathematic Act	FORMATION OF TUBULIN FOLDING INTERMEDIATES BY CCT TRIC	2	2 4	18.18%	0.49	0.26	0.37	0.49	0.27	0.42	0.62	0.52	0.56	0.54	0.47	0.5
MODEL	METABOLISM OF AMINO ACIDS AND DERIVATIVES	20	0 43	21.50%	0.48	0.16	0.32	-0.01	0.16	0.06	0.51	0.42	0.48	0.57	0.42	0.4
<tt> PMADE MEMOLY MADE 2</tt>	MAP KINASE ACTIVATION IN TLR CASCADE	51	0 6	12.00%	0.48	0.20	0.32	0.37	0.16	0.22	0.33	0.33	0.33	0.41	0.31	0.3
singenering in angle of angle	PYRIMIDINE METABOLISM	24	4 2	8.33%	0.48	0.37	0.36	0.42	0.36	0.37	0.30	0.33	0.24	0.43	0.42	0.4
Ammine functional of the functi	P53 DEPENDENT G1 DNA DAMAGE RESPONSE	5	7 57	100.00%	0.48	0.12	0.34	0.17	0.21	0.17	0.49	0.39	0.46	0.54	0.44	0.4
Model scale in a	ANTIVIRAL MECHANISM BY IFN STIMULATED GENES	6	5 11	16.67%	0.48	0.10	0.28	0.48	0.19	0.32	0.06	0.05	0.10	0.54	0.47	0.5
matched ma	NRAGE SIGNALS DEATH THROUGH JNK	4	30	0.00%	0.48	0.41	0.49	0.42	0.41	0.44	0.12	0.13	0.10	0.50	0.50	0.4
add matrix for add matrix for <b< td=""><td>PROCESSING OF CAPPED INTRON CONTAINING PRE MRNA</td><td>14</td><td>0 8</td><td>5.71%</td><td>0.48</td><td>0.18</td><td>0.39</td><td>0.38</td><td>0.18</td><td>0.33</td><td>0.53</td><td>0.46</td><td>0.50</td><td>0.61</td><td>0.55</td><td>0.5</td></b<>	PROCESSING OF CAPPED INTRON CONTAINING PRE MRNA	14	0 8	5.71%	0.48	0.18	0.39	0.38	0.18	0.33	0.53	0.46	0.50	0.61	0.55	0.5
IDMAIDM	BASIGIN INTERACTIONS	3	0 C	0.00%	0.48	0.13	0.32	0.46	0.19	0.36	0.48	0.42	0.48	0.34	0.23	0.3
HEALLOWNEDHEALLOWNEDHEAL	ELONGATION ARREST AND RECOVERY	3	2 0	0.00%	0.47	0.27	0.39	0.48	0.34	0.46	0.29	0.27	0.28	0.52	0.51	0.5
<tt>Instruct marked mar</tt>	REGULATORY RNA PATHWAYS	2	5 0	0.00%	0.47	0.12	0.31	0.55	0.30	0.49	0.35	0.35	0.36	0.55	0.55	0.5
HEAM SUPPLY HEAM SUPPLY <br< td=""><td>PLATELET HOMEOSTASIS</td><td>7</td><td>B 9</td><td>11.54%</td><td>0.47</td><td>0.23</td><td>0.28</td><td>0.43</td><td>0.24</td><td>0.30</td><td>0.31</td><td>0.36</td><td>0.29</td><td>0.46</td><td>0.42</td><td>0.4</td></br<>	PLATELET HOMEOSTASIS	7	B 9	11.54%	0.47	0.23	0.28	0.43	0.24	0.30	0.31	0.36	0.29	0.46	0.42	0.4
HCD HERENESCH VACTORSHCD ACT </td <td>REPAIR SYNTHESIS FOR GAP FILLING BY DNA POL IN TC NER</td> <td>14</td> <td>4 14</td> <td>100.00%</td> <td>0.47</td> <td>0.30</td> <td>0.40</td> <td>0.44</td> <td>0.32</td> <td>0.46</td> <td>0.50</td> <td>0.52</td> <td>0.51</td> <td>0.42</td> <td>0.49</td> <td>0.4</td>	REPAIR SYNTHESIS FOR GAP FILLING BY DNA POL IN TC NER	14	4 14	100.00%	0.47	0.30	0.40	0.44	0.32	0.46	0.50	0.52	0.51	0.42	0.49	0.4
Lick at Transmission of a set of a	HOST INTERACTIONS OF HIV FACTORS	13	2 59	44.70%	0.47	0.12	0.31	0.30	0.28	0.28	0.42	0.35	0.40	0.50	0.40	0.4
BALE LODEN REAM BALE	L1CAM INTERACTIONS	8	5 0	0.00%	0.47	0.42	0.39	0.40	0.30	0.32	0.26	0.31	0.25	0.25	0.30	0.2
Machine Longenion (sen) Insochange (sen) Machine Longenion Machi	BASE EXCISION REPAIR	1	97	36.84%	0.47	0.30	0.33	0.43	0.40	0.43	0.28	0.29	0.29	0.38	0.38	0.3
Sci Bit ProcessingSci BitSci BitSc	ABORTIVE ELONGATION OF HIV1 TRANSCRIPT IN THE ABSENCE OF TAT	2	30	0.00%	0.47	0.28	0.37	0.44	0.30	0.43	0.35	0.33	0.33	0.49	0.48	0.4
MINE CARLAGE MARK THE CLULAR LEPART HACEALINARYNo. <td>SCF BETA TRCP MEDIATED DEGRADATION OF EMI1</td> <td>5</td> <td>1 51</td> <td>100.00%</td> <td>0.46</td> <td>0.08</td> <td>0.30</td> <td>0.22</td> <td>0.14</td> <td>0.12</td> <td>0.53</td> <td>0.38</td> <td>0.45</td> <td>0.51</td> <td>0.37</td> <td>0.4</td>	SCF BETA TRCP MEDIATED DEGRADATION OF EMI1	5	1 51	100.00%	0.46	0.08	0.30	0.22	0.14	0.12	0.53	0.38	0.45	0.51	0.37	0.4
MITABLOX PINA MITABLOX	NEP NS2 INTERACTS WITH THE CELLULAR EXPORT MACHINERY	2	7 8	29.63%	0.46	0.17	0.34	0.46	0.18	0.30	0.38	0.28	0.33	0.49	0.50	0.5
Instrumentant 14 0 0.00000000000000000000000000000000000	METABOLISM OF RNA	33	0 58	17.58%	0.46	0.16	0.37	0.19	0.06	0.21	0.40	0.34	0.38	0.50	0.47	0.4
Signal prime of mode from Si	HYALURONAN METABOLISM	14	4 0	0.00%	0.46	0.35	0.42	0.43	0.30	0.40	0.30	0.30	0.27	0.44	0.40	0.4
bit Norther Stand Advect CHERGENT Stand	SIGNALING BY RHO GTPASES	11	.3 0	0.00%	0.46	0.12	0.26	0.54	0.40	0.50	0.30	0.35	0.26	0.50	0.46	0.4
MMM MMM <td>P53 INDEPENDENT G1 S DNA DAMAGE CHECKPOINT</td> <td>5</td> <td>1 51</td> <td>100.00%</td> <td>0.46</td> <td>0.11</td> <td>0.30</td> <td>0.24</td> <td>0.17</td> <td>0.15</td> <td>0.48</td> <td>0.37</td> <td>0.44</td> <td>0.49</td> <td>0.39</td> <td>0.4</td>	P53 INDEPENDENT G1 S DNA DAMAGE CHECKPOINT	5	1 51	100.00%	0.46	0.11	0.30	0.24	0.17	0.15	0.48	0.37	0.44	0.49	0.39	0.4
signal and refers signal si	MRNA PROCESSING	16	1 11	6.83%	0.46	0.16	0.37	0.33	0.13	0.29	0.46	0.43	0.44	0.55	0.54	0.5
right regist	SIGNALING BY FGFR1 MUTANTS	31	0 2	6.67%	0.46	0.24	0.34	0.46	0.22	0.31	0.40	0.31	0.24	0.23	0.22	0.1
EARLY MULE CIVIL CP 9.25% 0.8 0.26 0.26 0.38 0.41 0.37 0.40 0.34 0.40 SACCATION FINCT 0 0.00 0.46 0.27 0.38 0.41 0.37 0.40 0.31 <t< td=""><td>FORMATION OF RNA POL II ELONGATION COMPLEX</td><td>4</td><td>53</td><td>6.67%</td><td>0.46</td><td>0.25</td><td>0.38</td><td>0.41</td><td>0.32</td><td>0.44</td><td>0.34</td><td>0.34</td><td>0.34</td><td>0.49</td><td>0.52</td><td>0.5</td></t<>	FORMATION OF RNA POL II ELONGATION COMPLEX	4	53	6.67%	0.46	0.25	0.38	0.41	0.32	0.44	0.34	0.34	0.34	0.49	0.52	0.5
ASSOCATION OF THE CET WITH MADE INFORMED GROWN THESIS 27 0 0.00 0.10	EARLY PHASE OF HIV LIFE CYCLE	2	1 2	9.52%	0.46	0.16	0.26	0.49	0.23	0.38	0.41	0.37	0.40	0.34	0.40	0.3
MICH DAMPORT MICH DAMPORT <td< td=""><td>ASSOCIATION OF TRIC CCT WITH TARGET PROTEINS DURING BIOSYNTHESIS</td><td>2</td><td>70</td><td>0.00%</td><td>0.46</td><td>0.29</td><td>0.40</td><td>0.31</td><td>0.17</td><td>0.31</td><td>0.62</td><td>0.54</td><td>0.58</td><td>0.52</td><td>0.51</td><td>0.5</td></td<>	ASSOCIATION OF TRIC CCT WITH TARGET PROTEINS DURING BIOSYNTHESIS	2	70	0.00%	0.46	0.29	0.40	0.31	0.17	0.31	0.62	0.54	0.58	0.52	0.51	0.5
METABOLISM OF POLVAMINES METABOLISM OF ACUAS METAL IDNS AND ARAME ACODS METAL IDNS	MITOCHONDRIAL PROTEIN IMPORT	5	B 0	0.00%	0.46	0.25	0.32	0.23	0.25	0.30	0.41	0.37	0.39	0.43	0.40	0.3
DOWNSTRAM SIGNALING F. WELL RECEIVED RECK 9 5	METABOLISM OF POLYAMINES	1	5 0	0.00%	0.45	0.07	0.27	0.39	0.08	0.24	0.44	0.31	0.32	0.19	0.14	0.1
TRAME DOF G GLUCSG AND DURE SUGASS BLIES AND MAINE COMPOUNDS 9 0 0.06 0.16 0.12 0.30 0.18 0.15 0.21 0.43 0.14 0.13 0.13 0.14 0.13 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.13 0.14 0.13 0.13 0.13 0.14	DOWNSTREAM SIGNALING EVENTS OF B CELL RECEPTOR BCR	9	7 52	53.61%	0.45	0.04	0.28	0.31	0.14	0.17	0.43	0.35	0.41	0.46	0.31	0.3
S PHASE ID 10.0% 0.45 0.24 0.31 0.00 0.22 0.48 0.62 0.55 0.53 0.53 MERADIGUO FON CODING FANC AND ALP X RASE UPON TUR Z OB 9 ACTIVATION 70 9 11.0% 0.65 0.14 0.17 0.31 0.18 0.12 0.39 0.37 0.33 0.31 0.35 0.31 0.35 0.31 0.35 0.31 0.31 0.35 0.31 0.31 0.35 0.31 0.35 0.31 0.31 0.32 0.31 <	TRANSPORT OF GLUCOSE AND OTHER SUGARS BILE SALTS AND ORGANIC ACIDS METAL IONS AND AMINE COMPOUNDS	8	90	0.00%	0.45	0.16	0.29	0.39	0.19	0.30	-0.18	-0.15	-0.21	-0.16	-0.17	-0.1
METABOLISM OF NAN CODING NAM. 7 1 2 0.45 0.25 0.45 0.25 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45 0.47 <td< td=""><td>S PHASE</td><td>10</td><td>9 109</td><td>100.00%</td><td>0.45</td><td>0.24</td><td>0.31</td><td>0.60</td><td>0.32</td><td>0.48</td><td>0.62</td><td>0.56</td><td>0.59</td><td>0.58</td><td>0.55</td><td>0.5</td></td<>	S PHASE	10	9 109	100.00%	0.45	0.24	0.31	0.60	0.32	0.48	0.62	0.56	0.59	0.58	0.55	0.5
THAFE MUDUCINO OF NERS AND DAY NURSES UPON TLYS OR 9 ACTIVATION 97 9 1.16 % 0.45 0.27 0.31 0.12 0.35 0.37 0.37 0.37 0.32 0.23 0.21 0.11 0.25 0.24 0.25 0.21	METABOLISM OF NON CODING RNA	4	97	14.29%	0.45	0.26	0.37	0.48	0.29	0.45	0.47	0.42	0.45	0.51	0.53	0.5
sign All by GPC R 920 9 9.8% 0.45 0.10 0.23 0.21 0.21 0.25 0.24 0.25 0.24 0.25 0.24 0.25 0.24 0.25 </td <td>TRAF6 MEDIATED INDUCTION OF NFKB AND MAP KINASES UPON TLR7 8 OR 9 ACTIVATION</td> <td>7</td> <td>79</td> <td>11.69%</td> <td>0.45</td> <td>0.14</td> <td>0.27</td> <td>0.34</td> <td>0.15</td> <td>0.21</td> <td>0.39</td> <td>0.37</td> <td>0.37</td> <td>0.08</td> <td>0.12</td> <td>0.0</td>	TRAF6 MEDIATED INDUCTION OF NFKB AND MAP KINASES UPON TLR7 8 OR 9 ACTIVATION	7	79	11.69%	0.45	0.14	0.27	0.34	0.15	0.21	0.39	0.37	0.37	0.08	0.12	0.0
CDT1 ASSOCIATION WITH THE COCE ORC WIGIN COMPLEX 56 56 10.00% 0.45 0.77 0.29 0.23 0.14 0.16 0.56 0.36 0.42 0.51 0.41 PURINE WICE AND COMPLEX 33 0 0.00% 0.44 0.25 0.25 0.12 0.13 0.36 0.45 0.46 0.49 0.45 0.40 0.53 PURINE WICE AND COMPLEX 27 2.56% 0.44 0.67 0.30 0.30 0.30 0.30 0.40 0.35 0.40 0.37 0.27 SULPLIA MAND ACID METABOLISM 21 0 0.00% 0.44 0.40 0.4	SIGNALING BY GPCR	92	0 9	0.98%	0.45	0.10	0.23	0.29	-0.01	0.11	0.25	0.34	0.25	0.23	0.25	0.1
FORMATION OF THE HWIZ EARLY LEDNEATION CATION COMPLEX 34 3 8 828 0.44 0.25 0.35 0.12 0.14 0.08 0.35 0.35 0.35 0.35 UPLIKE MERZADE 251 72 28.6% 0.44 0.05 0.27 0.30 0.01 0.30 0.25 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.43 0.40 <td>CDT1 ASSOCIATION WITH THE CDC6 ORC ORIGIN COMPLEX</td> <td>5</td> <td>5 56</td> <td>100.00%</td> <td>0.45</td> <td>0.07</td> <td>0.29</td> <td>0.23</td> <td>0.14</td> <td>0.14</td> <td>0.50</td> <td>0.36</td> <td>0.42</td> <td>0.51</td> <td>0.41</td> <td>0.4</td>	CDT1 ASSOCIATION WITH THE CDC6 ORC ORIGIN COMPLEX	5	5 56	100.00%	0.45	0.07	0.29	0.23	0.14	0.14	0.50	0.36	0.42	0.51	0.41	0.4
PURINE METABOLISM 33 0 0.00% 0.44 0.17 0.30 0.15 0.31 0.40 0.45 0.44 0.44 0.45 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 0.35 0.40 </td <td>FORMATION OF THE HIV1 EARLY ELONGATION COMPLEX</td> <td>34</td> <td>4 3</td> <td>8.82%</td> <td>0.44</td> <td>0.25</td> <td>0.35</td> <td>0.12</td> <td>0.14</td> <td>0.08</td> <td>0.36</td> <td>0.35</td> <td>0.35</td> <td>0.51</td> <td>0.53</td> <td>0.5</td>	FORMATION OF THE HIV1 EARLY ELONGATION COMPLEX	34	4 3	8.82%	0.44	0.25	0.35	0.12	0.14	0.08	0.36	0.35	0.35	0.51	0.53	0.5
CLASS INFL PAC 22 23 0.06 0.27 0.30 0.01 0.19 0.40 0.35 0.40 0.37 0.40 SUBLERA ANION CACID METABOLISM 12 0 0.00% 0.44 0.40 0.40 0.46 0.30 0.36 0.48 0.52 0.40 0.42 0.57 G ALPHA SIGNALLING VENTS 12 0 0.00% 0.44 0.40 0.40 0.46 0.30 0.36 0.48 0.52 0.40 0.42 0.57 0.43 0.36 0.47 0.55 0.45 0.42 0.55 0.46 0.32 0.40 0.52 0.44 0.52 0.40 0.53 0.40 0.59 0.44 0.55 0.45 0.41 0.52 0.45 0.41 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 0.40 0.53 <t< td=""><td>PURINE METABOLISM</td><td>3</td><td>30</td><td>0.00%</td><td>0.44</td><td>0.17</td><td>0.30</td><td>0.39</td><td>0.15</td><td>0.30</td><td>0.52</td><td>0.46</td><td>0.49</td><td>0.48</td><td>0.44</td><td>0.4</td></t<>	PURINE METABOLISM	3	30	0.00%	0.44	0.17	0.30	0.39	0.15	0.30	0.52	0.46	0.49	0.48	0.44	0.4
SULPUR AMINO ACLD METABOLISM 24 0 0.00% 0.44 0.13 0.22 0.20 0.37 0.27 OLPLAR SSTONALLING EVENTS 24 8 33.33% 0.44 0.40 0.40 0.40 0.36 0.36 0.48 0.52 0.48 0.52 0.50 0.48 AUTODEGRADATION OF CORL BY CORL AYC C 64 30.30% 0.44 0.36 0.36 0.48 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.40 0.52 0.41 0.52 0.42 0.52 0.42 0.52 0.42 0.52 0.42 0.52 0.42 0.52 0.42 0.52 0.42 0.52 0.42 0.53 0.44 0.52 0.42 0.53 0.44 0.52 0.42 0.53 0.44 0.52 0.42 0.53 0.44 0.53 0.42 0.53 0.44 0.53 0.42 0.53 0.44 0.53 0.42 0.53 0.42 0.55 0.52 0.54 </td <td>CLASS I MHC MEDIATED ANTIGEN PROCESSING PRESENTATION</td> <td>25</td> <td>1 72</td> <td>28.69%</td> <td>0.44</td> <td>0.06</td> <td>0.27</td> <td>0.30</td> <td>0.01</td> <td>0.19</td> <td>0.40</td> <td>0.35</td> <td>0.40</td> <td>0.53</td> <td>0.40</td> <td>0.4</td>	CLASS I MHC MEDIATED ANTIGEN PROCESSING PRESENTATION	25	1 72	28.69%	0.44	0.06	0.27	0.30	0.01	0.19	0.40	0.35	0.40	0.53	0.40	0.4
GALPHA SSIGNALLING FEWINS 121 0 0.00% 0.44 0.40 0.40 0.46 0.40 0.46 0.40 0.46 0.40 0.46 0.40 0.46 0.40 0.46 0.40 0.46 0.40 0.40 0.49 0.42 0.44 0.45 0.44 0.45 0.44 0.45 0.44 0.45 0.42 0.42 0.42 0.42 0.44 0.45 0.43 0.45 0.43 0.45 0.42 0.42 0.42 0.44 0.45 0.42 0.42 0.42 0.42 0.44 0.45 0.42 0.42 0.44 0.45 0.42 0.42 0.44 0.45 0.42 0.42 0.44 0.44 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 <	SULFUR AMINO ACID METABOLISM	24	4 0	0.00%	0.44	0.13	0.32	0.40	0.17	0.30	0.30	0.22	0.20	0.37	0.27	0.2
DOUBLES TRAND BREAK REPAIR 24 8 33,33 0.44 0.36 0.39 0.34 0.40 0.19 0.24 0.22 0.50 0.44 AUTODEGRADADTION OF CUPLI BY CDN 1APC 64 64 30.23* 0.44 0.36 0.24 0.29 0.65 0.22 0.42 0.35 0.40 0.59 0.44 DESTABILIZATION OF MIRA BY SKP 17 0 0.00% 0.43 0.66 0.29 0.44 0.33 0.42 0.33 0.42 0.33 0.42 0.40 0.49 0.36 0.42 0.41 0.49 0.36 0.42 0.61 0.42 0.61 0.42 0.51 0.42 0.42 0.5 0.44 0.49 0.36 0.42 0.33 0.42 0.3 0.43 0.43 0.43 0.40 0.44 0.47 0.33 0.33 0.26 0.32 0.31 0.43 0.34 0.34 0.34 0.35 0.42 0.27 0.41 0.33 0.44 0.35 0.42 0.27 0.32 0.31 0.43 0.43 0.42 0.47 <td>G ALPHA S SIGNALLING EVENTS</td> <td>12</td> <td>1 0</td> <td>0.00%</td> <td>0.44</td> <td>0.40</td> <td>0.40</td> <td>0.46</td> <td>0.30</td> <td>0.36</td> <td>0.48</td> <td>0.52</td> <td>0.48</td> <td>0.12</td> <td>0.17</td> <td>0.1</td>	G ALPHA S SIGNALLING EVENTS	12	1 0	0.00%	0.44	0.40	0.40	0.46	0.30	0.36	0.48	0.52	0.48	0.12	0.17	0.1
AUTODEGRADATION OF CDH1 BY CDH1 APC C 0.47 0.47 0.18 0.47 0.15 0.45 0.45 0.41 0.52 0.40 DESTABILIZATION OF MINN BY KSRP 17 0 0.00% 0.43 0.36 0.49 0.38 0.46 0.32 0.31 0.33 0.32 0.42 COX MEDIATED CLEAVAGE OF CYTOSKELETAL PROTEINS 13 0 0.00% 0.43 0.55 0.41 0.33 0.36 0.36 0.49 0.38 0.46 0.32 0.34 0.36 0.32 0.34 0.33 0.35 0.25 0.44 0.35 0.42 0.33 0.32 0.34 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.34 0.35 0.42 0.35 0.42 0.33 0.32 0.34 0.35 <td>DOUBLE STRAND BREAK REPAIR</td> <td>24</td> <td>4 8</td> <td>33.33%</td> <td>0.44</td> <td>0.36</td> <td>0.39</td> <td>0.34</td> <td>0.31</td> <td>0.40</td> <td>0.19</td> <td>0.24</td> <td>0.22</td> <td>0.50</td> <td>0.48</td> <td>0.4</td>	DOUBLE STRAND BREAK REPAIR	24	4 8	33.33%	0.44	0.36	0.39	0.34	0.31	0.40	0.19	0.24	0.22	0.50	0.48	0.4
HV INPLLION 207 64 30.92% 0.43 0.03 0.24 0.29 0.02 0.42 0.43 0.40 0.99 DESTABILIZATION OF MINA BY KSP 17 0 0.00% 0.43 0.36 0.25 0.44 0.17 0.33 0.32 0.26 0.32 0.29 0.40 CASPASE MEDIATED CLEAVAGE OF CYTOSKLETAL PROTEINS 13 0 0.00% 0.43 0.36 0.25 0.44 0.17 0.33 0.33 0.26 0.32 0.29 0.40 COX MEDIATED CLEAVAGE OF CYTOSKLETAL PROTEINS 13 0 0.00% 0.42 0.25 0.41 0.33 0.39 0.34 0.35 0.40 0.52 0.52 TRANSPORT OF VITAMINS NUCLEOSIDES AND RELATED MOLECULES 13 3 2.26% 0.42 0.17 0.32 0.41 0.36 0.34 0.35 0.43 0.35 0.24 0.25 0.32 0.34 0.34 0.35 0.25 0.25 0.22 0.26 0.23 0.34 0.35 0.42 0.27 0.30 0.24 0.23 0.20 0.44 </td <td>AUTODEGRADATION OF CDH1 BY CDH1 APC C</td> <td>6</td> <td>4 64</td> <td>100.00%</td> <td>0.44</td> <td>0.08</td> <td>0.29</td> <td>0.24</td> <td>0.17</td> <td>0.15</td> <td>0.45</td> <td>0.35</td> <td>0.41</td> <td>0.52</td> <td>0.40</td> <td>0.4</td>	AUTODEGRADATION OF CDH1 BY CDH1 APC C	6	4 64	100.00%	0.44	0.08	0.29	0.24	0.17	0.15	0.45	0.35	0.41	0.52	0.40	0.4
Destrantization of MRNA BY KSMP 17 0 0.00% 0.43 0.36 0.49 0.48 0.42 0.31 0.33 0.34 0.34 0.35 0.44 COK MEDIATED CLEVAGE OF CYTOSKETAL PROTEINS 61 3 4.92 0.42 0.42 0.42 0.42 0.41 0.33 0.39 0.34 0.35 0.52 0.52 TRANPOLI PRETARMSKIPTION EVENTS 31 0 0.00% 0.42 0.16 0.23 0.31 0.34 0.33 0.35 0.43 0.35 0.44 0.35 0.44 0.35 0.44 0.34 0.35 0.44 0.34 0.35 0.42 0.25 0.35 0.41 0.33 0.34 0.35 0.42 0.26 0.26 <	HIVINFECTION	20	64	30.92%	0.43	0.03	0.24	0.29	0.05	0.22	0.42	0.35	0.40	0.59	0.49	0.5
CASP ASE MEDIATED CLAVAGE OF CYTOSKLETAL PROTEINS 13 0 0.00% 0.43 0.05 0.25 0.44 0.17 0.33 0.35 0.26 0.32 0.23 0.12 CASP ASE MEDIATED CLAVAGE OF CYTOSKLETAL PROTEINS 48 48 10.00% 0.42 0.05 0.15 0.12 0.49 0.36 0.42 0.52 0.52 TRANSPORT OF VITAMINS NUCLEOSIDES AND RELATED MOLECULES 31 0 0.00% 0.42 0.15 0.12 0.19 0.36 0.34 0.33 0.52 0.52 TRANSPORT OF VITAMINS NUCLEOSIDES AND RELATED MOLECULES 0.14 0.32 0.12 0.19 0.36 0.34 0.33 0.25 0.52 DIABETES PATHWAYS 22 9 1.25 0.42 0.12 0.19 0.36 0.34 0.35 0.27 VIF MEDIATED CLAVAGE OF APOPTOSIS 58 46 79.31% 0.42 0.06 0.29 0.42 0.25 0.23 0.31 0.34 0.35 0.27 INHERDICLE OF ADATION INTATION OF APOPTOSIS 58 46 79.31% 0.42 0.04 0.26 <td>DESTABILIZATION OF MRNA BY KSRP</td> <td>1</td> <td>7 0</td> <td>0.00%</td> <td>0.43</td> <td>0.36</td> <td>0.36</td> <td>0.49</td> <td>0.38</td> <td>0.46</td> <td>0.32</td> <td>0.31</td> <td>0.33</td> <td>0.37</td> <td>0.44</td> <td>0.4</td>	DESTABILIZATION OF MRNA BY KSRP	1	7 0	0.00%	0.43	0.36	0.36	0.49	0.38	0.46	0.32	0.31	0.33	0.37	0.44	0.4
LDX MEDIATED PHOSHNORTALINA AND REMOVAL OF LDGs 48 48 100.00% 0.42 0.00 0.27 0.11 0.12 0.49 0.35 0.42 0.50 0.50 TRANSPORT OF VITAMINS NUCLEOSIDES AND RELATED MOLECULES 31 0 0.00% 0.42 0.25 0.35 0.41 0.33 0.39 0.34 0.34 0.33 0.25 0.21 NERA DNA IMPE TRANSCRIPTION EVENTS 13 0 0.00% 0.42 0.17 0.32 0.41 0.19 0.36 0.34 0.33 0.34 0.33 0.25 0.23 DIABETES PATHWAYS 72 9 12.50% 0.42 0.66 0.29 0.42 0.16 0.23 0.31 0.44 0.34 0.35 0.42 0.35 0.41 0.19 0.42 0.35 0.41 0.33 0.31 0.34 0.33 0.34 0.33 0.34 0.33 0.34 0.34 0.34 0.34 0.35 0.42 0.27 0.30 0.25 0.32 0.34 0.34 0.34 0.35 0.42 0.27 0.30 0.24	CASPASE MEDIATED CLEAVAGE OF CYTOSKELETAL PROTEINS	1	3 0	0.00%	0.43	0.05	0.25	0.44	0.17	0.33	0.33	0.26	0.32	0.23	0.12	0.1
RNA POLI IPNE TRANSPORT OF VENTS 0.4 0.42 0.25 0.35 0.41 0.33 0.39 0.34 0.34 0.35 0.52 0.52 TRANSPORT OF VITAMINS NUCLEOSIDES AND BLATED MOLECULES 31 0 0.00% 0.42 0.17 0.32 0.41 0.19 0.36 0.34 0.35 0.25 0.23 NRBA AND MAP KINASES ACTIVATION MEDIATED BY TLAS ISGNALING REPERTOIRE 72 9 12.50% 0.42 0.17 0.32 0.14 0.19 0.36 0.34 0.35 0.36 0.34 0.35 0.28 INBERTS ANTIMAN SOLUTION OF APOPTOSIS 58 46 79.31% 0.42 0.26 0.16 0.23 0.13 0.48 0.35 0.42 0.36 0.34 0.34 0.34 0.34 0.35 0.26 INHEDITION OF APOPTOSIS 58 46 79.31% 0.42 0.26 0.16 0.23 0.20 0.44 0.34 0.35 0.42 0.36 0.25 0.32 0.42 0.44 0.34 0.36 0.35 0.42 0.37 0.26 0.32 0.20	CDK MEDIA ED PHOSPHORYLATION AND REMOVAL OF CDC6	4	5 48	100.00%	0.42	0.06	0.27	0.21	0.15	0.12	0.49	0.36	0.42	0.50	0.40	0.4
TRANSPORT OF VITAMINS NUCLEOSIDES AND RELATED MOLECULES 31 0 0.00% 0.42 0.17 0.32 0.41 0.19 0.36 0.34 0.33 0.25 0.23 NER AND MARKATED MUNASES ACTIVATION MEDIATED BY THAY SIGNALING REPERTOIRE 13 3 2.26% 0.42 0.16 0.23 0.32 0.34 0.34 0.35 0.13 0.16 DIABETES PATHWAYS 133 3 2.26% 0.42 0.16 0.23 0.12 0.19 0.34 0.34 0.35 0.24 0.26 VIF MEDIATED BY THAY SIONALING REPERTOIRE 13 3 2.26% 0.42 0.05 0.26 0.16 0.23 0.13 0.48 0.35 0.42 0.27 VIF MEDIATED BY THAY SIONAL MARGED DNA BY RB 12F1 13 13 100.00% 0.42 0.27 0.30 0.28 0.20 0.44 0.34 0.40 0.34 0.43 0.44 0.35 0.27 INHIGHTON OF REPLICATION INTATION OF DAMAGED DNA BY RB 12F1 13 13 100.00% 0.42 0.27 0.30 0.28 0.20 0.44 0.34 0.45 <td>RNA POL II PRE TRANSCRIPTION EVENTS</td> <td>6</td> <td>1 3</td> <td>4.92%</td> <td>0.42</td> <td>0.25</td> <td>0.35</td> <td>0.41</td> <td>0.33</td> <td>0.39</td> <td>0.34</td> <td>0.34</td> <td>0.35</td> <td>0.52</td> <td>0.52</td> <td>0.5</td>	RNA POL II PRE TRANSCRIPTION EVENTS	6	1 3	4.92%	0.42	0.25	0.35	0.41	0.33	0.39	0.34	0.34	0.35	0.52	0.52	0.5
NRBARD MAP RINALS ACTIVATION MEDIATED BY TLKA SIGNALING REPERTURKE 12 9 1.2 MP 0.42 0.14 0.15 0.34 0.34 0.35 0.13 0.16 DIABETES FATTIWAYS 133 3 2.26% 0.42 0.16 0.23 0.12 0.19 0.34 0.34 0.35 0.13 0.16 REGULATION OF APOPTOSIS 58 46 79.31% 0.42 0.06 0.29 0.42 0.23 0.13 0.48 0.35 0.42 0.34 0.35 0.42 0.34 0.35 0.42 0.34 0.35 0.42 0.34 0.35 0.42 0.35 0.26 0.24 0.23 0.13 0.48 0.35 0.42 0.35 0.26 0.24 0.23 0.13 0.48 0.35 0.42 0.35 0.26 0.26 0.24 0.23 0.20 0.49 0.44 0.34 0.40 0.35 0.42 0.37 0.30 0.28 0.20 0.16 0.18 0.13 0.39 0.38 0.37 0.39 0.38 0.35 0.42 0.35 0.42	TRANSPORT OF VITAMINS NUCLEOSIDES AND RELATED MOLECULES	3	1 0	0.00%	0.42	0.17	0.32	0.41	0.19	0.36	0.30	0.34	0.33	0.25	0.23	0.2
DABLETS PATHWAYS 13 3 2.26% 0.42 0.09 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.29 0.42 0.20 0.13 0.48 0.35 0.24 0.27 VIF MEDIATED DEGRADATION OF APOPTOSIS 52 46 88.46% 0.42 0.26 0.26 0.24 0.23 0.20 0.44 0.40 0.40 0.45 0.27 INHIBITION OF RAMAGED DNA BY RB1 E2F1 13 13 13 0.00% 0.42 0.02 0.20 0.99 0.16 0.18 0.31 0.39 0.32 ALIPHA LINDLENCACID ALA METABOLISM 12 0 0.00% 0.42 0.44 0.28 0.36 0.15 0.25 0.31 0.33 0.37 0.39 0.32 ALIPHA LINDLENCACID ALA METABOLISM 12 0 0.05 0	NEKB AND MAP KINASES ACTIVATION MEDIATED BY TLR4 SIGNALING REPERTOIRE	7.	2 9	12.50%	0.42	0.16	0.23	0.32	0.12	0.19	0.36	0.34	0.35	0.13	0.16	0.1
REGULATION OF APOPTOSIS S8 46 79:31% 0.42 0.04 0.26 0.16 0.23 0.13 0.48 0.35 0.42 0.34 0.27 VIM FIDIATED DEGRADATION OF APOBEC3G 52 46 83.46% 0.42 0.05 0.26 0.24 0.23 0.20 0.44 0.34 0.40 0.35 0.42 0.37 INHIBITION OF REPLICATION INTATION OF DAMAGED DNA BY RBI E2F1 13 13 100.00% 0.42 0.27 0.30 0.28 0.20 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.32 CUL RECEPTION INITATION OF DAMAGED DNA BY RBI E2F1 118 9 7.63% 0.42 0.42 0.26 0.26 0.26 0.29 0.49 0.49 0.49 0.33 0.37 0.39 0.32 ALPHA LINOLENC ACLD ALA METABOLISM 12 0 0.00% 0.42 0.41 0.26 0.35 0.49 0.35 0.42 0.31 0.22F ALINO ACLD SYNTHESIX AND INTRECONVERSION TRANSAMINATION 47 0 0	DIABETES PATHWAYS	13	3 3	2.26%	0.42	0.06	0.29	0.42	0.25	0.32	0.39	0.34	0.38	0.39	0.28	0.3
Vir MEDIATED LEGRADATION OF AFØLELGS 92 40 88.46% 0.42 0.05 0.24 0.23 0.20 0.44 0.34 0.40 0.54 0.27 INHIBITION OF AFØLELGS 13 100.0% 0.42 0.25 0.26 0.24 0.23 0.20 0.44 0.34 0.40 0.54 0.27 INHIBITION OF PARAGED DNA BY RB1E2F1 13 100.0% 0.42 0.27 0.30 0.28 0.20 0.19 0.49 0.49 0.49 0.49 0.49 0.39 0.32 ALPHA LINGLINK CALL 18 9 7.63% 0.42 0.44 0.28 0.20 0.99 0.16 0.18 0.13 0.39 0.32 ALPHA LINGLINK CALL 0 0.00% 0.42 0.44 0.28 0.35 0.25 0.49 0.35 0.42 0.31 0.22 0.02 0.99 0.16 0.18 0.33 0.37 0.38 REGULATION OF INTINE DECARBOXYLASE ODC 49 3 7.76 0.42 0.05 0.26 0.26 0.36 0.25 0.24 0.31 <td>REGULATION OF APOPTOSIS</td> <td>5</td> <td>B 46</td> <td>79.31%</td> <td>0.42</td> <td>0.04</td> <td>0.26</td> <td>0.16</td> <td>0.23</td> <td>0.13</td> <td>0.48</td> <td>0.35</td> <td>0.42</td> <td>0.34</td> <td>0.27</td> <td>0.3</td>	REGULATION OF APOPTOSIS	5	B 46	79.31%	0.42	0.04	0.26	0.16	0.23	0.13	0.48	0.35	0.42	0.34	0.27	0.3
INTERDITION OF REFLUCATION INFLATION OF DAMAGED UNA ST RELEFI 15 15 100,00% 0.47 0.27 0.30 0.28 0.20 0.19 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.32 CUL RECEPTION CASCADES 118 9 7.63% 0.42 0.40 0.28 0.36 0.15 0.25 0.31 0.33 0.37 0.39 0.38 ALPHA LINDLENC ACID ALA METABOLISM 12 0 0.00% 0.42 0.40 0.28 0.36 0.15 0.25 0.49 0.33 0.37 0.39 0.38 REGULATION OF ONITHING ECABOLYLASE MAINATION 19 2.3 7.75% 0.42 0.40 0.45 0.25 0.49 0.35 0.42 0.49 0.34 0.42 0.49 0.46 0.42 0.49 0.34 0.42 0.40 0.44 0.40 0.44 0.40 0.44 0.40 0.44 0.40 0.44 0.40 0.44 0.40 0.40 0.4	VIEWIEUTEU DEGRADATION OF APUBEL3G	7 5	2 46	88.46%	0.42	0.05	0.26	0.24	0.23	0.20	0.44	0.34	0.40	0.35	0.27	0.3
10LL RECEPTION CASCADES 118 9 7.63% 0.42 0.08 0.21 0.22 0.09 0.16 0.18 0.13 0.39 0.32 ALPHA LINGUENCACID ALM BETABOLISM 12 0 0.09% 0.42 0.41 0.28 0.36 0.15 0.25 0.11 0.33 0.37 0.39 0.32 REGULATION OF ORNITHINE DECARBOXYLASE ODC 49 43 87.76% 0.42 0.05 0.26 0.36 0.08 0.25 0.49 0.35 0.42 0.31 0.27 AMINO ACID SYNTHESIS NAD INTERCONVERSION TRANSAMINATION 17 0 0.00% 0.42 0.07 0.24 0.43 0.16 0.28 0.34 0.36 0.42 0.40 0.44 VIST EVENTS IN EBBAS IGNALING FOR COP1 38 3 7.89% 0.41 0.25 0.26 </td <td>INHIBITION OF KEPEICATION IN FIATION OF DAMAGED DNA BY RB1 EZF1</td> <td>1</td> <td>s 13</td> <td>100.00%</td> <td>0.42</td> <td>0.27</td> <td>0.30</td> <td>0.28</td> <td>0.20</td> <td>0.19</td> <td>0.49</td> <td>0.49</td> <td>0.49</td> <td>0.44</td> <td>0.38</td> <td>0.4</td>	INHIBITION OF KEPEICATION IN FIATION OF DAMAGED DNA BY RB1 EZF1	1	s 13	100.00%	0.42	0.27	0.30	0.28	0.20	0.19	0.49	0.49	0.49	0.44	0.38	0.4
ALTITAL HUNCLEWIG ALLID ALL ME LABOLISMI 12 0 0.00% 0.42 0.14 0.28 0.35 0.25 0.31 0.33 0.37 0.39 0.38 REGULATION OF FORTHINE DECARBOXYLASE DOC 49 43 87.76% 0.42 0.05 0.26 0.36 0.08 0.25 0.49 0.35 0.42 0.31 0.28 AMINO ACID SYNTHESIS AND INTERCONVERSION TRANSAMINATION 17 0 0.00% 0.42 0.07 0.24 0.43 0.16 0.28 -0.34 -0.36 0.40 0.44 PISK EVENTS IN ERBAS SIGNALING 38 3 7.8% 0.41 0.29 0.33 0.11 0.17 0.10 0.25 0.24 0.43 0.16 0.25 0.24 0.43 0.10 0.14 0.10 0.25 0.25 0.24 0.10 0.10 0.15 0.50 0.36 0.41 0.21 0.30 0.19 0.15 0.50 0.26 0.29 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.	I ULL RELEFI UK CASCADES	11	.a 9	7.63%	0.42	0.08	0.21	0.22	-0.02	0.09	0.16	0.18	0.13	0.39	0.32	0.3
REGULATION OF UNITINITY DEVANDATIONS UNC. 49 43 87.70% 0.42 0.25 0.36 0.03 0.25 0.49 0.35 0.42 0.31 0.22 ANINO ACID SYNTHESIS AND INTERCONVERSION TRANSAMINATION 17 0 0.06% 0.42 0.43 0.16 0.28 -0.34 -0.28 -0.34 0.42 0.43 0.16 0.28 -0.24 -0.38 0.41 0.21 0.33 0.11 0.17 0.10 0.25 0.24 0.41 0.04 VICTODEGRADATION OF THE SUBJUCTIVIN LIGASE COP1 38 3 7.89% 0.41 0.29 0.33 0.11 0.17 0.10 0.25 0.24 0.11 0.10 AUTODEGRADATION OF THE SUBJUCTIVIN LIGASE COP1 51 10.00% 0.41 0.50 0.26 0.20 0.19 0.15 0.50 0.36 0.43 0.21 0.30 0.41 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24 0.30 0.24	ALPTA LINULENIC ACID ALA METABOLISM	1	2 0	0.00%	0.42	0.14	0.28	0.36	0.15	0.25	0.31	0.33	0.37	0.39	0.38	0.4
AMIND ALL STRIPTS AND INTERCUTVENSION TRANSAMINATION 17 0 0.00% 0.42 0.07 0.24 0.43 0.16 0.28 -0.28 -0.28 -0.36 0.40 0.44 PISK EVENTS INFORMATION OF THE ESD SIGNALING 38 3 7.89% 0.41 0.29 0.33 0.11 0.10 0.25 0.24 0.14 0.01 SIGNALING BY FGRE SIGNALING 51 51 100.00% 0.41 0.05 0.26 0.20 0.19 0.15 0.50 0.36 0.43 0.21 SIGNALING BY FGRE SIGNALING TO ALL SECOP1 19 2 10.53% 0.41 0.21 0.30 0.49 0.34 0.39 0.44 0.30 0.26 0.09 0.94 VICULINE WING SET SIGNALING AND ALL SET ALL SET	REGULATION OF ORNITHINE DECARBOXYLASE ODC	4	9 43	87.76%	0.42	0.05	0.26	0.36	0.08	0.25	0.49	0.35	0.42	0.31	0.22	0.2
The CURRENT Representation OF The EQUIPARTIES HUMAN LTAY 38 3 7.89% 0.41 0.24 0.33 0.11 0.11 0.10 0.25 0.24 0.13 0.10 AUTODEGRADATION OF THE EQUIPARTINE OF THE SUBJURTIN LIGASE COP1 51 51 100.0% 0.41 0.05 0.26 0.20 0.19 0.15 0.53 0.41 0.21 SIGNALING BY FERE FUSION MUTARTS 19 2 10.53% 0.41 0.21 0.30 0.49 0.34 0.39 0.44 0.30 0.26 0.09 0.09 MUCLUM NUMER STER AUTORIAND AUTOR AND AUTOR AUTOR AND AUTOR	ANTINU ACID STINTESIS AND INTERCUNVERSIUN TRANSAMINATION	1	/ U	0.00%	0.42	0.07	0.24	0.43	0.16	0.28	-0.34	-0.28	-0.36	0.40	0.44	0.4
ACTOLOGOMERATION OF THE ES OBIQUITIN LONGE COT SI ST 100.00% U/4 U/S U/26 U/20 U/39 U/15 U/30 U/43 U/30 U/21 SIGNALING BY FGREF DUSCEMENDANT AT UNAN TAX1 SIGNAL SIGNAL SUBJECT SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SIGNAL SUBJECT SIGNAL		5	5 3 1 Fr	100.000	0.41	0.29	0.33	0.11	0.17	0.10	0.25	0.25	0.24	0.11	0.10	0.0
3 03/04/01/04 01 19/12 01/23/07 01/14 02/1 0.30 0/49 0.39 0/40 0.20 0/9 0/9 0/9 0/9 0/9 0/9 0/9 0/9 0/9 0/	AUTODEGRADATION OF THE ES UBIQUITIN LIGASE COPT	5	1 51 5 7	10.00%	0.41	0.05	0.26	0.20	0.19	0.15	0.50	0.30	0.43	0.30	0.21	0.2
	SIGNALING DI FORME FUSION MUTANTS INK CILIN KINASES DHOSDHORVLATION AND ACTIVATION MEDIATED BY ACTIVATED HIMANI TAKA	1	, 2	10.53%	0.41	0.21	0.30	0.49	0.34	0.39	0.44	0.30	0.26	0.09	0.09	0.0
and contrained in a contrained interview inter	CROSS PRESENTATION OF SOLURI F EXOGENOUS ANTIGENS ENDOSOMES	1	5 U 8 /2	89 58%	0.41	0.00	0.26	0.30	0.04	0.20	0.28	0.25	0.27	0.43	0.50	0.3

10 0 0.00% 0.41 0.14

0.32

0.23 0.09

0.15

0.29 0.32

0.28

-0.04 0.05

-0.01

IRAK1 RECRUITS IKK COMPLEX

0.42 0.34 0.35 0.08 0.30 0.25 0.50 0.32 0.22 0.22 0.44 0.35 0.28 0.27 0.31 0.32 17 64 17 29 0.00% 76.56% 0.42 0.25 0.40 0.26 0.25 0.41 0 0.41 0.37 49 8 0 0.41 0.03 HOMOLOGOUS RECOMBINATION REPAIR OF REPLICATION INDEPENDENT DOUBLE STRAND BREAKS PKR MEPIATED FVENTS 47.06% 0.41 0.36 0.40 0.35 0.28

	17	0	0.000/	0.41	0.27	0.42	0.42	0.24	0.40	0.22	0.22	0.25	0.20	0.25	0.20
DESTABILIZATION OF MINA BY TRISTETRAPROLIN TTP	1/	0	0.00%	0.41	0.37	0.42	0.42	0.34	0.40	0.22	0.22	0.25	0.29	0.35	0.38
ACTIVATION OF NF KAPPAB IN B CELLS	64	49	76.56%	0.41	0.03	0.25	0.35	0.08	0.26	0.44	0.35	0.41	0.32	0.20	0.28
HOMOLOGOUS RECOMBINATION REPAIR OF REPLICATION INDEPENDENT DOUBLE STRAND BREAKS	17	8	47.06%	0.41	0.36	0.40	0.30	0.25	0.35	0.28	0.27	0.28	0.50	0.47	0.45
PKB MEDIATED EVENTS	29	0	0.00%	0.41	0.22	0.36	0.50	0.32	0.44	0.31	0.32	0.34	0.45	0.27	0.28
P75 NTR RECEPTOR MEDIATED SIGNALLING	81	7	8.64%	0.41	0.28	0.36	0.44	0.16	0.35	0.44	0.39	0.42	0.21	0.31	0.25
FORMATION OF TRANSCRIPTION COUPLED NER TC NER REPAIR COMPLEX	30	3	10.00%	0.41	0.22	0.39	0.24	0.20	0.31	0.32	0.33	0.33	0.44	0.50	0.49
DESTABILIZATION OF MRNA BY AUF1 HNRNP DO	53	46	86.79%	0.41	0.04	0.26	0.35	0.07	0.24	0.49	0.35	0.42	0.31	0.21	0.26
MRNA CAPPING	30	3	10.00%	0.41	0.16	0.30	0.14	0.19	0.25	0.29	0.29	0.29	0.49	0.51	0.51
PI3K CASCADE	71	0	0.00%	0.41	0.22	0.26	0.33	0.26	0.25	0.43	0.39	0.41	0.52	0.39	0.40
SIGNALING BY INSULIN RECEPTOR	108	1	0.93%	0.41	0.42	0.33	0.28	0.27	0.24	0.37	0.36	0.36	0.35	0.26	0.24
GPCR LIGAND BINDING	408	0	0.00%	0.40	0.13	0.21	0.31	-0.03	0.12	0.17	0.24	0.14	0.51	0.44	0.47
PIP3 ACTIVATES AKT SIGNALING	29	3	10.34%	0.40	0.11	0.24	0.08	0.14	0.07	0.18	0.19	0.17	0.27	0.26	0.25
GASTRIN CREB SIGNALLING PATHWAY VIA PKC AND MAPK	205	1	0.49%	0.40	0.11	0.24	0.41	0.37	0.40	0.20	0.27	0.18	-0.26	-0.17	-0.27
REGULATION OF HYPOXIA INDUCIBLE FACTOR HIF BY OXYGEN	25	4	16.00%	0.40	0.19	0.36	0.36	0.14	0.33	0.36	0.33	0.37	0.38	0.32	0.37
PERK REGULATED GENE EXPRESSION	29	0	0.00%	0.40	0.39	0.43	0.45	0.40	0.45	0.32	0.31	0.33	0.24	0.32	0.31
ACTIVATION OF GENES BY ATF4	26	0	0.00%	0.40	0.34	0.34	0.45	0.41	0.45	0.24	0.28	0.30	0.25	0.35	0.33
SIGNALING BY WNT	65	58	89.23%	0.40	0.02	0.25	0.34	0.07	0.25	0.47	0.37	0.44	0.09	0.03	0.07
IL1 SIGNALING	39	3	7.69%	0.40	-0.04	0.22	0.36	0.04	0.22	0.24	0.26	0.21	-0.07	-0.02	-0.09
ADAPTIVE IMMUNE SYSTEM	539	99	18.37%	0.39	0.00	0.19	0.24	-0.04	0.08	0.31	0.24	0.30	0.49	0.39	0.45
IMMUNE SYSTEM	933	107	11.47%	0.39	-0.01	0.18	0.24	-0.04	0.08	0.42	0.39	0.38	0.50	0.36	0.42
GLYCOLYSIS	29	5	17.24%	0.39	0.17	0.25	0.39	0.20	0.30	0.47	0.41	0.44	0.44	0.34	0.38
TAK1 ACTIVATES NEKB BY PHOSPHORYLATION AND ACTIVATION OF IKKS COMPLEX	23	0	0.00%	0.39	0.05	0.24	0.34	0.07	0.23	-0.10	-0.03	-0.09	-0.07	-0.01	-0.11
G ALPHA O SIGNALLING EVENTS	184	0	0.00%	0.39	0.10	0.24	0.43	0.37	0.40	0.31	0.38	0.29	0.50	0.50	0.48
MRNA 3 END PROCESSING	35	0	0.00%	0.38	0.19	0.29	0.46	0.26	0.42	0.41	0.39	0.41	0.43	0.41	0.40
PROCESSING OF CAPPED INTRONLESS PRE MRNA	23	0	0.00%	0.38	0.25	0.36	0.35	0.21	0.36	0.45	0.41	0.43	0.48	0.47	0.49
PVRIVATE METABOLISM	19	0	0.00%	0.38	0.17	0.26	0.41	0.17	0.34	-0.18	-0.16	-0.23	0.33	0.26	0.30
SHC MEDIATED CASCADE	28	0	0.00%	0.38	0.11	0.20	0.11	0.06	0.06	0.10	0.33	0.20	0.22	0.20	0.14
DESTABILIZATION OF MRNA BY BRE1	17	0	0.00%	0.30	0.33	0.21	0.40	0.31	0.38	0.22	0.27	0.29	0.20	0.44	0.45
SIGNALING BY CONSTITUTIVELY ACTIVE EGED	19	4	22.22%	0.30	0.35	0.33	0.36	0.27	0.27	-0.02	-0.01	-0.04	-0.01	-0.02	-0.07
DEPOSITION OF NEW CENDA CONTAINING NUCLEOSOMES AT THE CENTROMEDE	64	64	100.00%	0.37	0.27	0.31	0.30	0.27	0.27	0.02	0.22	0.21	0.01	0.03	0.42
CEAVINGE OF REW CENTRAL CONTRACTION THE TERMINATION PERION	44	0	0.00%	0.37	0.27	0.35	0.38	0.30	0.27	0.30	0.32	0.43	0.40	0.44	0.42
	12	0	0.00%	0.37	0.25	0.37	0.30	0.20	0.37	0.44	0.41	0.45	0.30	0.40	0.30
APOPTOSIS INDOLED DIA PRAGMENTATION DEADENVIATION CE MANA	13	0	0.00%	0.37	0.25	0.50	0.35	0.25	0.034	0.41	0.55	0.37	0.37	0.28	0.34
DEADENTEATION OF WINNA SIGNALING BY THE & CELL BECENTOR BCD	126	52	41.27%	0.37	0.20	0.20	0.08	0.09	0.02	0.37	0.33	0.33	0.33	0.23	0.31
	120	32	41.27%	0.37	-0.00	0.18	0.22	0.15	0.15	0.56	0.31	0.37	0.28	0.17	0.25
	01	40	/5.41%	0.37	-0.03	0.17	0.28	-0.04	0.14	0.41	0.30	0.39	0.22	0.14	0.20
	21	0	0.00%	0.37	0.32	0.30	0.43	0.57	0.45	0.43	0.44	0.40	0.03	0.20	0.20
MTD88 MALECASCADE INITIATED UN PLASMA MEMBRANE	83	9	10.84%	0.30	0.20	0.21	0.32	0.15	0.21	0.20	0.22	0.17	0.02	0.06	-0.02
VIRAL DIESSENGER KINA STRITIESIS	14	10	0.00%	0.36	0.19	0.33	0.30	0.16	0.35	0.38	0.34	0.36	0.36	0.29	0.29
ININA E IMMUNE STSTEIM	279	10	3.58%	0.30	-0.02	0.15	0.19	-0.06	0.05	0.20	0.25	0.15	0.18	0.22	0.11
MIRINA SPELICING MINOR PAIRWAY	45	0	0.00%	0.36	0.22	0.33	0.29	0.10	0.27	0.42	0.37	0.41	0.50	0.50	0.50
SLEP DEPENDENT PROCESSING OF REPLICATION DEPENDENT HISTONE PRE MIKNAS	11	0	0.00%	0.36	0.26	0.33	0.32	0.20	0.32	0.47	0.43	0.46	0.46	0.44	0.44
RNA POL III TRANSCRIPTION INITIATION FROM TYPE 2 PROMOTER	23	0	0.00%	0.35	0.33	0.40	0.40	0.38	0.42	0.24	0.28	0.29	0.38	0.44	0.41
PORTINE RIBONUCLEOSIDE MONOPHOSPHATE BIOSYNTHESIS	11	0	0.00%	0.35	0.15	0.24	0.38	0.21	0.30	0.50	0.46	0.47	0.39	0.38	0.42
ACTIVATION OF BH3 ONLY PROTEINS	17	5	29.41%	0.35	-0.04	0.20	0.16	0.05	0.19	0.39	0.37	0.40	0.49	0.41	0.48
INTRINSIC PATHWAY FOR APOPTOSIS	30	5	16.67%	0.35	-0.10	0.17	0.28	-0.05	0.17	0.47	0.42	0.48	0.50	0.43	0.48
PORINE SALVAGE	13	0	0.00%	0.35	0.14	0.26	0.13	-0.01	0.10	0.39	0.32	0.37	0.38	0.28	0.29
ERK MAPK TARGETS	21	5	23.81%	0.35	0.26	0.23	0.36	0.27	0.30	0.27	0.31	0.29	0.28	0.27	0.25
LATENT INFECTION OF HOMO SAPIENS WITH MYCOBACTERIUM TUBERCULOSIS	33	0	0.00%	0.35	0.19	0.27	0.24	0.03	0.14	0.21	0.18	0.18	0.23	0.15	0.19
PROCESSING OF INTRONLESS PRE MRNAS	14	0	0.00%	0.35	0.24	0.32	0.37	0.25	0.35	0.41	0.38	0.37	0.41	0.40	0.40
MYOGENESIS	28	0	0.00%	0.35	0.11	0.24	0.37	0.20	0.28	0.25	0.28	0.25	0.16	0.24	0.16
DEVELOPMENTAL BIOLOGY	396	5	1.26%	0.35	0.39	0.32	0.17	0.31	0.20	0.41	0.39	0.40	-0.20	-0.21	-0.24
P75NTR SIGNALS VIA NFKB	14	3	21.43%	0.35	0.02	0.22	0.35	0.06	0.25	0.45	0.39	0.43	0.14	0.19	0.14
CTLA4 INHIBITORY SIGNALING	21	9	42.86%	0.35	0.01	0.10	0.28	0.07	0.11	0.01	0.01	-0.09	0.20	0.09	0.21
INTEGRATION OF PROVIRUS	16	0	0.00%	0.35	0.11	0.18	0.37	0.15	0.29	0.02	-0.05	-0.01	0.07	-0.02	0.03
CELL DEATH SIGNALLING VIA NRAGE NRIF AND NADE	60	6	10.00%	0.34	0.39	0.38	0.23	0.31	0.28	0.42	0.42	0.43	0.44	0.35	0.40
P75NTR RECRUITS SIGNALLING COMPLEXES	12	3	25.00%	0.34	0.01	0.22	0.35	0.07	0.26	0.31	0.30	0.32	0.14	0.19	0.13
DCC MEDIATED ATTRACTIVE SIGNALING	13	0	0.00%	0.34	0.23	0.32	0.48	0.26	0.39	0.38	0.39	0.41	0.19	0.24	0.24
NEGATIVE REGULATION OF FORK SIGNALING	37	6	16.22%	0.34	0.15	0.17	0.30	0.19	0.18	0.34	0.35	0.33	0.26	0.23	0.19
SUS INFEDIATED SIGNALLING	14	1	7.14%	0.34	0.04	0.14	0.26	0.12	0.15	0.35	0.30	0.32	0.34	0.29	0.31
IELOMERE MAIN IENANCE	75	15	100.00%	0.34	0.29	0.34	0.35	0.31	0.35	0.34	0.32	0.31	0.08	0.07	0.08
GPCR DOWNSTREAM SIGNALING	805	0	0.00%	0.34	-0.07	0.13	0.28	-0.07	0.08	0.27	0.36	0.27	0.50	0.49	0.47
	80	3	3.75%	0.34	0.04	0.29	0.31	0.09	0.27	0.32	0.28	0.31	0.18	0.17	0.21
RNA POLITI TRANSCRIPTION PRE INITIATION AND PROMOTER OPENING	41	3	7.32%	0.33	0.11	0.29	0.36	0.30	0.39	0.36	0.34	0.36	0.49	0.48	0.49
SIGNALLING TO ERKS	36	1	2.78%	0.33	0.18	0.20	0.27	0.21	0.21	-0.22	-0.14	-0.14	0.25	0.23	0.28
MIRINA DECAT BY 3 TO 5 EXORIBOINDUCEASE	11	0	0.00%	0.33	0.28	0.32	0.40	0.33	0.41	-0.19	-0.08	-0.10	0.16	0.16	0.21
	31		0.00%	0.33	0.01	0.17	0.38	0.11	0.25	0.30	0.25	0.32	0.40	0.35	0.42
IRANSCRIPTION	210	44	20.95%	0.33	0.28	0.36	0.32	0.29	0.34	0.40	0.35	0.36	0.11	0.10	0.11
RNA POE III CHAIN ELONGATION	17	0	0.00%	0.33	0.27	0.34	0.40	0.39	0.43	0.27	0.30	0.32	0.09	0.17	0.16
GAP JUNCTION DEGRADATION	10	0	0.00%	0.33	0.13	0.20	0.21	-0.01	0.04	0.36	0.21	0.23	0.23	0.08	0.10
ACTIVATED TARL MEDIATES P38 MAPK ACTIVATION	18	U	0.00%	0.33	0.07	0.21	0.32	0.09	0.21	0.03	0.05	0.05	0.15	0.21	0.18
IN LEGAL ION BETWEEN LEAND ANKYKINS	7 23	U	0.00%	0.33	0.20	0.23	0.20	0.19	0.14	0.30	0.36	0.29	0.32	0.33	0.33
	116	80	68.97%	0.33	0.26	0.33	0.37	0.32	0.33	U.33	0.29	0.29	0.21	0.16	0.17
MININA DELAY BY 5 TO 3 EXORIBONUCLEASE	15	0	0.00%	0.33	0.21	0.34	0.07	0.09	0.15	0.32	0.29	0.27	0.34	0.24	0.19
REGULATION OF PTRUVALE DEHYDROGENASE PDH COMPLEX	13	U	0.00%	0.33	0.09	0.27	0.31	0.17	0.29	0.04	0.05	0.00	0.39	0.37	0.38
ACTIVATION OF CHAPEKONE GENES BY XBPIS	46	3	b.52%	0.32	0.01	0.25	0.34	0.22	0.27	U.46	0.41	0.43	0.22	0.24	0.22
INSULIN STNT ITESIS AND PROLESSING	21	U	0.00%	0.32	0.19	0.23	0.24	0.17	0.17	0.35	0.31	U.35	0.21	0.16	0.17
PEPTIDE LIGAND BINDING RELEPTORS	188	U	0.00%	0.32	-0.09	0.12	0.31	-0.01	0.15	0.21	0.26	0.19	0.37	0.32	0.36
PASSIVE TRANSPORT BY AQUAPURINS	11	U	0.00%	0.32	0.09	0.25	0.33	0.17	0.28	0.26	0.29	0.27	0.01	-0.01	-0.07
AUTIVATED TERA SIGNALING	93	9	9.68%	0.32	0.16	0.17	0.28	0.10	0.15	0.26	0.26	0.23	0.44	0.35	0.43
NUCLEAR EVEN IS NINASE AND I KANSCKIPI ION FACTOR ACTIVATION	24	5	20.83%	0.32	0.23	0.20	0.31	0.29	0.28	0.23	0.27	0.25	0.31	0.26	0.27
SEMARAD INDUCED CELL MIGRATION AND GROWTH CONE COLLAPSE	27	U	0.00%	0.31	-0.04	0.14	0.37	0.37	0.39	0.13	0.04	0.08	0.08	-0.11	0.01
THE KULE OF NET IN HIVI KEPLICATION AND DISEASE PATHOGENESIS	28	υ	0.00%	0.31	0.25	0.31	0.07	0.34	0.22	0.12	0.13	0.18	0.12	0.14	0.12

PI 3K CASCADE	56	i 3	5.36%	0.31	0.22	0.22	0.19	0.17	0.13	0.33	0.33	0.31	0.27	0.26	0.19
SIGNALLING TO RAS	27	1 1	3.70%	0.31	0.19	0.18	0.27	0.20	0.20	0.13	0.06	0.06	0.32	0.24	0.30
PROLONGED ERK ACTIVATION EVENTS	19) 1	5.26%	0.31	0.10	0.15	0.25	0.17	0.19	0.02	0.08	0.07	0.24	0.29	0.25
INTEGRIN CELL SURFACE INTERACTIONS	79	9 0	0.00%	0.31	0.10	0.14	0.21	0.03	0.09	0.23	0.28	0.22	-0.09	-0.23	-0.12
FACILITATIVE NA INDEPENDENT GLUCOSE TRANSPORTERS	12	2 0	0.00%	0.31	-0.01	0.16	0.25	-0.02	0.11	-0.01	-0.01	-0.07	-0.01	-0.04	-0.15
SIGNALING BY ERBB4	90) 10	11.11%	0.31	-0.08	0.18	-0.03	0.24	0.08	0.22	0.24	0.21	-0.16	-0.05	-0.11
TRYPTOPHAN CATABOLISM	11	0	0.00%	0.31	-0.02	0.14	0.18	-0.12	0.02	-0.36	-0.27	-0.36	0.29	0.13	0.21
RESOLUTION OF AP SITES VIA THE MULTIPLE NUCLEOTIDE PATCH REPLACEMENT PATHWAY	17	7 7	41.18%	0.31	0.26	0.30	0.44	0.39	0.42	0.25	0.27	0.26	0.37	0.36	0.32
CLASS A1 RHODOPSIN LIKE RECEPTORS	30	5 0	0.00%	0.31	-0.08	0.09	0.26	-0.08	0.07	0.29	0.35	0.25	0.37	0.32	0.37
CROWTH HORMONE RECEPTOR SIGNALING	2/		0.00%	0.30	0.11	0.19	0.20	-0.01	0.06	0.24	0.21	0.21	0.20	0.24	0.20
		. 16	60.52%	0.30	-0.08	0.13	0.20	0.28	0.00	0.34	0.20	0.31	0.10	0.10	0.50
ANTIGEN FIGUES INTERACTIONS AT THE VASCILLAR WALL		0	0.00%	0.30	0.00	0.12	0.30	0.20	0.14	0.35	0.30	0.10	0.15	0.10	0.10
CELE SURFACE INTERACTIONS AT THE VASCULAR WALL	5.		0.00%	0.30	-0.11	0.11	0.27	-0.05	0.14	0.22	0.20	0.15	0.30	0.21	0.29
CIRCADIAN REPRESSION OF EXPRESSION BY REV ERBA	2:		0.00%	0.30	0.17	0.20	0.28	0.14	0.19	-0.01	0.00	0.00	0.12	0.03	0.04
POST CHAPERONIN TOBOLIN FOLDING PATHWAY	19	4	21.05%	0.30	0.28	0.34	0.38	0.24	0.39	0.44	0.42	0.46	0.34	0.34	0.37
SHC RELATED EVENTS	1.	1	5.88%	0.30	0.07	0.13	0.28	0.11	0.17	0.27	0.13	0.14	0.33	0.25	0.28
MEIOTIC RECOMBINATION	86	50	58.14%	0.30	0.24	0.31	0.31	0.28	0.31	0.29	0.26	0.25	0.11	0.11	0.11
FRS2 MEDIATED CASCADE	36	0 1	2.78%	0.30	0.15	0.17	0.15	0.13	0.09	0.22	0.27	0.25	0.20	0.19	0.14
POTASSIUM CHANNELS	98	8 0	0.00%	0.30	0.03	0.23	0.24	0.06	0.20	0.30	0.33	0.25	-0.15	-0.05	-0.12
TIE2 SIGNALING	17	0	0.00%	0.29	0.13	0.23	0.46	0.30	0.36	0.00	-0.04	-0.06	0.21	0.11	0.09
FORMATION OF INCISION COMPLEX IN GG NER	23	6	26.09%	0.29	0.25	0.34	0.09	0.12	0.20	0.27	0.25	0.27	0.47	0.39	0.45
SIGNALING BY PDGF	12	27	5.74%	0.29	0.32	0.25	0.33	0.31	0.28	0.31	0.35	0.29	-0.02	0.04	-0.05
GLUCAGON TYPE LIGAND RECEPTORS	33	8 0	0.00%	0.29	0.08	0.23	0.31	0.13	0.26	0.14	0.11	0.17	0.48	0.38	0.42
EGFR DOWNREGULATION	25	5 3	12.00%	0.29	0.27	0.25	0.24	0.28	0.23	0.15	0.20	0.14	-0.04	0.00	-0.05
ARMS MEDIATED ACTIVATION	17	1 1	5.88%	0.29	0.12	0.17	0.26	0.19	0.21	-0.01	0.07	0.06	0.23	0.28	0.24
SPRY REGULATION OF FGF SIGNALING	14	6	42.86%	0.29	0.24	0.17	0.30	0.19	0.17	0.21	0.21	0.17	0.28	0.20	0.23
PROSTACYCLIN SIGNALLING THROUGH PROSTACYCLIN RECEPTOR	19	9 0	0.00%	0.29	0.15	0.25	0.35	0.22	0.27	0.38	0.36	0.33	0.36	0.35	0.35
GABA B RECEPTOR ACTIVATION	38	8 0	0.00%	0.29	0.02	0.21	0.28	0.08	0.22	0.27	0.28	0.20	0.32	0.34	0.33
RAF MAP KINASE CASCADE	10) 1	10.00%	0.29	-0.02	0.16	0.30	0.15	0.21	0.39	0.36	0.35	0.26	0.14	0.17
INFLAMMASOMES	17	0	0.00%	0.28	-0.09	0.11	0.22	-0.10	0.07	0.52	0.49	0.51	-0.20	-0.03	-0.09
PLATELET AGGREGATION PLUG FORMATION	36	5 0	0.00%	0.28	0.07	0.20	0.34	0.11	0.22	0.46	0.48	0.42	-0.01	-0.13	-0.04
GABA RECEPTOR ACTIVATION	5	0	0.00%	0.28	0.03	0.21	0.29	0.08	0.23	0.30	0.31	0.23	0.43	0.44	0.43
REGULATION OF INSULIN LIKE GROWTH FACTOR IGF ACTIVITY BY INSULIN LIKE GROWTH FACTOR BINDING PROTEINS IGEBPS	16	5 0	0.00%	0.28	0.21	0.25	0.37	0.21	0.28	0.38	0.39	0.35	0.31	0.21	0.29
G ALPHA Z SIGNALLING EVENTS	44		0.00%	0.28	-0.02	0.17	0.41	0.30	0.34	0.51	0.50	0.50	0.46	0.37	0.43
TRANS GOLGENETWORK VESICLE RUDDING	60	0	0.00%	0.28	-0.08	0.13	0.40	0.11	0.30	0.20	0.22	0.26	0.21	0.19	0.16
	11		41.67%	0.20	0.00	0.15	0.40	0.10	0.30	0.20	0.20	0.28	0.21	0.19	0.20
SHC MEDIATED SIGNALLING	11	. 1	6.67%	0.28	0.17	0.13	0.31	0.13	0.21	0.20	0.25	0.11	0.25	0.15	0.24
	1	, 1	0.07%	0.20	0.07	0.04	0.20	0.12	0.02	0.24	0.12	0.00	0.20	0.15	0.13
	10		0.00%	0.28	-0.01	0.04	0.10	-0.08	-0.02	0.07	0.07	0.05	-0.10	-0.17	-0.15
ROKA ACTIVATES CIRCADIAN EXPRESSION	24		0.00%	0.28	0.17	0.20	0.27	0.10	0.18	-0.07	-0.05	-0.05	0.11	0.03	0.04
	1.		0.00%	0.27	-0.05	0.05	0.11	-0.18	-0.07	0.18	0.24	0.13	0.16	0.18	0.06
ADENTLATE CYCLASE INHIBITORY PATHWAY	1:	5 0	0.00%	0.27	-0.01	0.18	0.30	0.04	0.20	0.39	0.40	0.40	0.04	0.10	0.10
SIGNALING BY HIPPO	22	2 2	9.09%	0.27	-0.01	0.12	0.20	-0.01	0.06	0.11	0.11	0.06	0.04	0.04	-0.01
G ALPHA1213 SIGNALLING EVENTS	74	i 0	0.00%	0.27	-0.02	0.15	0.31	0.19	0.32	0.05	0.10	0.06	0.51	0.48	0.48
INTEGRIN ALPHAIIB BETA3 SIGNALING	21	0	0.00%	0.27	0.05	0.19	0.27	0.09	0.16	0.45	0.45	0.42	0.02	-0.13	-0.02
TRIF MEDIATED TLR3 SIGNALING	74	1 9	12.16%	0.27	0.16	0.16	0.31	0.11	0.17	0.36	0.34	0.35	0.17	0.20	0.15
NFKB ACTIVATION THROUGH FADD RIP1 PATHWAY MEDIATED BY CASPASE 8 AND10	12	2 0	0.00%	0.27	0.16	0.16	0.27	0.07	0.17	0.07	0.02	0.09	-0.21	-0.10	-0.14
EXTRINSIC PATHWAY FOR APOPTOSIS	13	8 0	0.00%	0.27	0.32	0.23	0.32	0.29	0.31	0.20	0.24	0.13	0.11	0.17	0.04
CRMPS IN SEMA3A SIGNALING	14	i 0	0.00%	0.27	0.31	0.25	0.33	0.39	0.33	0.19	0.26	0.18	0.19	0.29	0.18
RNA POL I TRANSCRIPTION	89	44	49.44%	0.27	0.23	0.29	0.24	0.26	0.26	0.29	0.26	0.25	0.13	0.11	0.12
AMYLOIDS	83	41	49.40%	0.27	0.23	0.28	0.27	0.29	0.29	0.28	0.26	0.24	0.13	0.11	0.12
INITIAL TRIGGERING OF COMPLEMENT	16	5 O	0.00%	0.27	0.34	0.29	0.27	0.37	0.34	0.31	0.32	0.23	-0.35	-0.23	-0.30
RNA POL I RNA POL III AND MITOCHONDRIAL TRANSCRIPTION	12	2 44	36.07%	0.27	0.26	0.30	0.24	0.26	0.28	0.28	0.26	0.24	0.12	0.10	0.11
IL 2 SIGNALING	4:	1	2.44%	0.26	-0.11	0.03	0.16	-0.13	-0.03	0.13	0.17	0.09	0.04	-0.05	0.07
FGFR LIGAND BINDING AND ACTIVATION	22	2 0	0.00%	0.26	-0.06	0.11	0.17	-0.01	0.06	0.34	0.36	0.32	0.22	0.22	0.14
NFKB IS ACTIVATED AND SIGNALS SURVIVAL	13	. 3	27.27%	0.26	-0.04	0.14	0.23	0.11	0.18	0.28	0.28	0.26	0.14	0.20	0.14
NGF SIGNALLING VIA TRKA FROM THE PLASMA MEMBRANE	13	7 12	8.76%	0.26	0.25	0.16	0.27	0.25	0.23	0.38	0.39	0.38	0.38	0.36	0.38
ASPARAGINE N LINKED GLYCOSYLATION	8:	1	1.23%	0.26	0.20	0.28	0.07	0.08	0.13	0.29	0.29	0.31	0.03	0.06	0.04
TRAF6 MEDIATED IRF7 ACTIVATION IN TLR7 8 OR 9 SIGNALING	10	0 0	0.00%	0.26	-0.11	0.09	0.15	-0.15	-0.01	0.04	-0.04	0.04	-0.08	-0.14	-0.02
A TETRASACCHARIDE LINKER SEQUENCE IS REQUIRED FOR GAG SYNTHESIS	25	6 0	0.00%	0.26	0.29	0.18	0.25	0.28	0.23	0.22	0.23	0.19	-0.01	-0.06	0.02
ADENYLATE CYCLASE ACTIVATING PATHWAY	10	0 0	0.00%	0.26	-0.03	0.18	0.31	0.06	0.21	0.38	0.40	0.41	-0.03	0.07	0.09
DIGESTION OF DIETARY CARBOHYDRATE	1:	0	0.00%	0.26	0.09	0.26	0.25	0.10	0.25	0.06	0.04	0.04	0.08	0.05	0.07
LIGAND GATED ION CHANNEL TRANSPORT	2.	0	0.00%	0.26	-0.07	0.10	0.22	-0.02	0.08	0.25	0.26	0.26	0.13	0.17	0.23
MEIOTIC SYNAPSIS	7	73	100.00%	0.25	0.23	0.28	0.25	0.28	0.27	0.33	0.29	0.28	0.08	0.07	0.08
SYNTHESIS OF SUBSTRATES IN N GLYCAN BIOSYTHESIS	14	i o	0.00%	0.25	0.14	0.23	0.24	0.16	0.23	0.07	0.05	0.04	0.06	0.08	0.06
INTEGRATION OF ENERGY METABOLISM	12	0 8	6.67%	0.25	0.04	0.19	0.26	0.27	0.24	0.41	0.41	0.42	0.46	0.43	0.46
RNA POL L PROMOTER OPENING	6	V41	66 13%	0.25	0.20	0.26	0.20	0.22	0.24	0.77	0.41	0.73	0.12	0.11	0.12
	11	0	0.00%	0.25	0.14	0.16	0.20	0.22	0.22	0.29	0.42	0.27	0.22	0.40	0.22
	1		0.00%	0.25	0.14	0.10	0.20	0.15	0.10	0.30	0.45	0.41	0.37	0.40	0.35
PROTECTION CLEAVAGE OF SIVARE CONTEXT PROTEINS	17	0 16	0.00%	0.23	0.14	0.23	0.20	0.15	0.15	0.49	0.55	0.41	0.55	0.29	0.30
	27	0 10	3.55%	0.25	-0.10	0.07	0.28	0.56	0.01	0.17	0.13	0.15	0.43	0.29	0.37
			0.00%	0.25	-0.03	0.03	0.17	-0.03	0.01	-0.01	0.01	-0.10	-0.14	-0.04	-0.14
	10		0.00%	0.25	0.19	0.18	0.24	0.24	0.18	0.26	0.30	0.31	0.25	0.33	0.26
	7 19	. U	0.00%	0.25	-0.15	U.Ub	0.44	0.44	0.45	0.53	0.48	0.54	0.40	0.42	0.40
	12	: 0	0.00%	0.25	0.34	0.20	0.28	0.33	0.26	0.21	0.20	0.15	0.06	-0.02	0.06
GABL SIGNALUSUME	38	\$ 3	7.89%	0.24	0.18	0.15	0.11	0.15	0.08	0.14	0.16	0.13	-0.12	-0.05	-0.11
PRE NUICH IRANSCRIPTION AND TRANSLATION	29	96	20.69%	0.24	-0.12	0.16	0.33	0.07	0.15	0.28	0.30	0.30	0.53	0.48	0.49
AXUN GUIDANCE	25	1 3	1.20%	0.24	0.41	0.22	0.19	0.32	0.24	0.25	0.30	0.23	0.35	0.45	0.34
RESPONSE TO ELEVATED PLATELET CYTOSOLIC CA2	89	1	1.12%	0.24	0.37	0.25	0.26	0.38	0.31	0.28	0.36	0.27	0.15	0.07	0.11
SYNTHESIS OF PC	18	8 0	0.00%	0.24	0.04	0.16	0.14	0.20	0.20	0.11	0.13	0.09	-0.17	-0.17	-0.17
SIGNALING BY FGFR IN DISEASE	12	7 15	11.81%	0.24	0.22	0.15	0.21	0.24	0.19	0.34	0.35	0.33	0.27	0.25	0.18
SHC1 EVENTS IN ERBB4 SIGNALING	20) 1	5.00%	0.24	0.18	0.12	0.30	0.09	0.16	0.08	0.05	0.03	0.20	0.18	0.20
BILE SALT AND ORGANIC ANION SLC TRANSPORTERS	11	. 0	0.00%	0.24	0.05	0.15	0.29	0.12	0.22	0.00	0.04	-0.02	-0.09	-0.06	-0.03
REGULATION OF IFNG SIGNALING	14	۰ I	0.00%	0.24	0.26	0.18	0.23	0.27	0.23	0.23	0.24	0.23	-0.04	-0.10	0.00
MAPK TARGETS NUCLEAR EVENTS MEDIATED BY MAP KINASES	30) 5	16.67%	0.24	0.26	0.14	0.30	0.25	0.24	0.26	0.29	0.26	0.21	0.20	0.24

INWARDLY RECTIFYING K CHANNELS	31	0	0.00%	0.24	0.03	0.18	0.21	0.04	0.17	0.04	0.07	-0.04	0.40	0.39	0.39
G BETA GAMMA SIGNALLING THROUGH PI3KGAMMA	25	0	0.00%	0.24	0.16	0.11	0.28	0.17	0.20	0.23	0.27	0.17	0.35	0.36	0.33
ADP SIGNALLING THROUGH P2RY1	25	0	0.00%	0.23	0.07	0.19	0.22	0.06	0.17	0.18	0.23	0.17	0.26	0.26	0.24
YAP1 AND WWTR1 TAZ STIMULATED GENE EXPRESSION	24	0	0.00%	0.23	0.17	0.17	0.27	0.19	0.20	-0.03	-0.03	-0.08	0.39	0.30	0.34
MTORC1 MEDIATED SIGNALLING	11	0	0.00%	0.23	0.08	0.26	0.34	0.24	0.36	0.38	0.23	0.23	0.45	0.26	0.26
SIGNAL ATTENUATION	14	0	0.00%	0.23	0.13	0.10	0.17	0.08	0.17	0.31	0.23	0.28	0.32	0.26	0.28
DEGRADATION OF THE EXTRACELLULAR MATRIX	29	0	0.00%	0.23	0.06	0.17	0.14	0.24	0.16	0.01	-0.05	0.02	0.23	0.09	0.18
SEMA3A PAK DEPENDENT AXON REPULSION	15	1	6.67%	0.23	0.19	0.14	0.30	0.23	0.22	0.32	0.32	0.26	0.14	0.17	0.09
RETROGRADE NEUROTROPHIN SIGNALLING	13	0	0.00%	0.23	0.04	0.11	0.11	0.04	0.06	0.33	0.20	0.23	0.17	0.04	0.10
NEF MEDIATES DOWN MODULATION OF CELL SURFACE RECEPTORS BY RECRUITING THEM TO CLATHRIN ADAPTERS	21	0	0.00%	0.23	-0.06	0.08	0.09	0.28	0.18	0.14	0.21	0.15	0.16	0.18	0.13
IL RECEPTOR SHC SIGNALING	27	0	0.00%	0.23	-0.09	0.00	0.11	-0.17	-0.07	0.10	0.15	0.03	0.16	0.06	0.09
TRAF6 MEDIATED NFKB ACTIVATION	21	0	0.00%	0.23	0.10	0.12	0.24	0.11	0.11	0.13	0.13	0.13	-0.01	0.04	-0.02
INHIBITION OF VOLTAGE GATED CA2 CHANNELS VIA GBETA GAMMA SUBUNITS	25	0	0.00%	0.23	0.03	0.18	0.19	0.05	0.17	0.13	0.16	0.06	0.40	0.39	0.38
ACTIVATED AMPK STIMULATES FATTY ACID OXIDATION IN MUSCLE	19	0	0.00%	0.23	0.27	0.20	0.20	0.24	0.17	0.18	0.19	0.21	-0.08	-0.06	-0.11
GOLGI ASSOCIATED VESICLE BIOGENESIS	53	0	0.00%	0.22	0.02	0.25	0.04	0.23	0.08	0.19	0.21	0.24	0.09	0.10	0.03
NEUROTRANSMITTER RECEPTOR BINDING AND DOWNSTREAM TRANSMISSION IN THE POSTSYNAPTIC CELL	137	2	1.46%	0.22	-0.03	0.15	0.19	-0.01	0.14	0.31	0.33	0.29	-0.02	0.09	-0.02
ADHERENS JUNCTIONS INTERACTIONS	27	0	0.00%	0.22	0.04	0.14	0.32	0.19	0.22	0.39	0.39	0.39	-0.20	-0.14	-0.22
HS GAG BIOSYNTHESIS	31	0	0.00%	0.22	-0.03	0.17	0.30	0.06	0.19	0.38	0.32	0.38	0.11	-0.02	0.06
G PROTEIN ACTIVATION	27	0	0.00%	0.22	0.07	0.19	0.11	0.01	0.10	0.14	0.18	0.13	0.34	0.34	0.32
THROMBIN SIGNALLING THROUGH PROTEINASE ACTIVATED RECEPTORS PARS	32	0	0.00%	0.22	0.01	0.15	0.07	-0.08	0.03	0.25	0.32	0.33	0.41	0.28	0.33
PACKAGING OF TELOMERE ENDS	48	48	100.00%	0.22	0.20	0.25	0.17	0.22	0.20	0.29	0.24	0.23	0.10	0.09	0.10
MUSCLE CONTRACTION	48	0	0.00%	0.22	0.36	0.24	0.27	0.34	0.28	0.24	0.29	0.22	0.11	0.08	-0.01
CTNNB1 PHOSPHORYLATION CASCADE	16	9	56.25%	0.22	0.15	0.13	0.25	0.22	0.20	0.14	0.09	0.08	0.28	0.18	0.24
KERATAN SULFATE KERATIN METABOLISM	30	0	0.00%	0.22	0.21	0.10	0.25	0.25	0.21	0.36	0.41	0.36	0.34	0.40	0.36
LYSOSOME VESICLE BIOGENESIS	23	0	0.00%	0.22	0.02	0.20	0.09	-0.07	0.07	0.14	0.18	0.21	0.34	0.25	0.27
ADP SIGNALLING THROUGH P2RY12	21	0	0.00%	0.22	0.08	0.19	0.13	0.04	0.11	0.23	0.29	0.23	0.37	0.36	0.35
REGULATION OF RHEB GTPASE ACTIVITY BY AMPK	10	0	0.00%	0.22	0.06	0.20	0.21	0.00	0.19	-0.03	0.01	-0.09	-0.15	-0.06	-0.06
ACTIVATION OF KAINATE RECEPTORS UPON GLUTAMATE BINDING	31	0	0.00%	0.22	0.11	0.22	0.27	0.16	0.26	0.11	0.18	0.10	0.39	0.37	0.37
G BETA GAMMA SIGNALLING THROUGH PLC BETA	20	0	0.00%	0.22	0.09	0.20	0.12	0.04	0.11	0.08	0.15	0.07	0.40	0.38	0.39
TGF BETA RECEPTOR SIGNALING ACTIVATES SMADS	26	5	19.23%	0.22	0.14	0.27	0.24	0.32	0.24	-0.01	0.03	0.02	0.41	0.43	0.40
NITRIC OXIDE STIMULATES GUANYLATE CYCLASE	25	0	0.00%	0.22	0.29	0.26	0.29	0.31	0.33	0.24	0.31	0.26	-0.19	-0.10	-0.16
BIOSYNTHESIS OF THE N GLYCAN PRECURSOR DOLICHOL LIPID LINKED OLIGOSACCHARIDE LLO AND TRANSFER TO A NASCENT PROTEIN	29	0	0.00%	0.22	0.27	0.28	0.25	0.10	0.13	0.16	0.17	0.18	0.14	0.16	0.12
INHIBITION OF INSULIN SECRETION BY ADRENALINE NORADRENALINE	25	0	0.00%	0.21	0.04	0.17	0.23	0.06	0.18	0.37	0.42	0.41	0.41	0.36	0.38
G PROTEIN BETA GAMMA SIGNALLING	28	0	0.00%	0.21	0.14	0.09	0.28	0.16	0.19	0.16	0.20	0.11	0.35	0.37	0.34
INSULIN RECEPTOR RECYCLING	23	0	0.00%	0.21	0.24	0.23	0.31	0.24	0.28	0.01	0.03	0.01	-0.05	-0.06	-0.09
GLYCOSAMINOGLYCAN METABOLISM	111	0	0.00%	0.21	0.34	0.15	0.16	0.26	0.15	0.21	0.27	0.18	0.38	0.45	0.41
CELL JUNCTION ORGANIZATION	78	0	0.00%	0.21	0.35	0.25	0.36	0.24	0.31	0.23	0.30	0.23	0.22	0.19	0.21
RNA POL I TRANSCRIPTION TERMINATION	22	3	13.64%	0.21	0.34	0.29	0.19	0.26	0.27	0.34	0.34	0.35	0.37	0.43	0.44
THROMBOXANE SIGNALLING THROUGH TP RECEPTOR	23	0	0.00%	0.21	0.05	0.16	0.12	-0.02	0.10	0.31	0.34	0.33	0.43	0.38	0.39
GRB2 SOS PROVIDES LINKAGE TO MAPK SIGNALING FOR INTERGRINS	15	0	0.00%	0.21	0.06	0.20	0.41	0.26	0.34	0.36	0.35	0.34	0.00	-0.14	-0.03
SYNTHESIS OF PE	11	0	0.00%	0.21	0.29	0.29	0.10	0.23	0.27	-0.06	-0.06	-0.08	0.04	0.02	0.04
ABACAVIR TRANSPORT AND METABOLISM	10	0	0.00%	0.21	0.14	0.24	0.34	0.17	0.29	0.47	0.50	0.47	0.28	0.31	0.27
SIGNAL AMPLIFICATION	31	0	0.00%	0.21	0.06	0.16	0.19	0.03	0.16	0.16	0.21	0.15	0.26	0.29	0.27
ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT ESCRT	27	3	11.11%	0.21	0.25	0.21	-0.09	0.03	0.03	0.01	0.04	0.04	-0.05	0.00	-0.04
CREATION OF C4 AND C2 ACTIVATORS	10	0	0.00%	0.21	0.19	0.14	0.04	0.32	0.17	0.16	0.24	0.13	-0.05	0.02	-0.02
AMINE DERIVED HORMONES	15	0	0.00%	0.21	0.19	0.16	0.15	0.09	0.08	0.13	0.15	0.14	0.18	0.17	0.15
DOWNREGULATION OF TGF BETA RECEPTOR SIGNALING	23	5	21.74%	0.20	0.10	0.26	0.26	0.18	0.31	-0.01	0.06	0.02	0.33	0.39	0.40
SMOOTH MUSCLE CONTRACTION	25	0	0.00%	0.20	0.28	0.18	0.28	0.28	0.28	0.25	0.30	0.22	0.07	0.11	0.06
ANDROGEN BIOSYNTHESIS	10	0	0.00%	0.20	0.18	0.16	0.18	0.13	0.17	0.05	0.01	0.03	0.05	0.00	-0.02
INTERFERON SIGNALING	159	12	7.55%	0.20	-0.10	0.04	0.25	0.36	0.31	0.05	0.09	0.04	0.25	0.15	0.22
RAS ACTIVATION UOPN CA2 INFUX THROUGH NMDA RECEPTOR	17	1	5.88%	0.20	0.13	0.13	0.18	0.18	0.16	0.14	0.10	0.15	0.31	0.20	0.20
ETHANOL OXIDATION	10	0	0.00%	0.20	0.37	0.25	0.26	0.32	0.25	0.26	0.31	0.24	0.23	0.29	0.23
CHONDROITIN SULFATE DERMATAN SULFATE METABOLISM	49	0	0.00%	0.20	0.29	0.15	0.22	0.29	0.21	0.09	0.13	0.06	-0.10	-0.16	-0.09
P130CAS LINKAGE TO MAPK SIGNALING FOR INTEGRINS	15	0	0.00%	0.20	0.04	0.20	0.30	0.14	0.22	0.39	0.42	0.40	0.00	-0.14	-0.03
ACTIVATION OF THE AP1 FAMILY OF TRANSCRIPTION FACTORS	10	0	0.00%	0.20	0.27	0.16	0.18	0.25	0.19	-0.03	0.06	0.04	0.17	0.18	0.19
TRANSPORT TO THE GOLGI AND SUBSEQUENT MODIFICATION	33	1	3.03%	0.20	-0.10	0.07	-0.08	0.09	0.03	0.18	0.20	0.20	0.01	-0.03	0.04
P38MAPK EVENTS	13	0	0.00%	0.20	0.25	0.19	0.14	0.21	0.12	-0.18	-0.12	-0.08	0.19	0.08	0.10
KERATAN SULFATE BIOSYNTHESIS	26	0	0.00%	0.20	0.18	0.09	0.28	0.25	0.23	0.26	0.29	0.22	0.25	0.23	0.31
CHEMOKINE RECEPTORS BIND CHEMOKINES	57	0	0.00%	0.20	-0.20	-0.03	0.16	-0.18	-0.01	0.06	-0.04	0.08	0.31	0.20	0.28
SIGNALLING TO P38 VIA RIT AND RIN	15	1	6.67%	0.20	-0.06	0.16	0.25	0.07	0.20	0.30	0.25	0.26	0.26	0.13	0.10
RECYCLING OF BILE ACIDS AND SALTS	11	0	0.00%	0.20	0.14	0.18	0.19	0.10	0.19	0.06	0.14	0.12	0.25	0.25	0.30
AQUAPORIN MEDIATED TRANSPORT	51	3	5.88%	0.19	0.01	0.15	0.35	0.11	0.25	0.46	0.48	0.47	0.43	0.44	0.43
ACTIVATION OF CHAPERONE GENES BY ATF6 ALPHA	11	0	0.00%	0.19	0.01	0.07	0.20	0.19	0.27	0.11	0.11	0.11	0.16	0.23	0.26
ELEVATION OF CYTOSOLIC CA2 LEVELS	10	0	0.00%	0.19	-0.05	0.06	0.09	-0.10	-0.01	0.24	0.26	0.22	0.25	0.25	0.18
SIGNALING BY TGF BETA RECEPTOR COMPLEX	63	14	22.22%	0.19	0.04	0.22	0.42	0.31	0.43	0.14	0.16	0.18	0.33	0.38	0.43
TRANSCRIPTIONAL ACTIVITY OF SMAD2 SMAD3 SMAD4 HETEROTRIMER	38	12	31.58%	0.19	0.02	0.21	0.16	0.01	0.19	0.16	0.17	0.19	0.42	0.41	0.48
CHONDROITIN SULFATE BIOSYNTHESIS	21	0	0.00%	0.19	0.34	0.20	0.28	0.30	0.25	0.01	0.06	-0.02	-0.03	-0.10	0.03
NOREPINEPHRINE NEUROTRANSMITTER RELEASE CYCLE	10	0	0.00%	0.19	0.22	0.24	0.29	0.12	0.19	0.48	0.41	0.45	0.12	0.10	0.13
SHC1 EVENTS IN EGFR SIGNALING	15	1	6.67%	0.18	0.11	0.10	-0.11	0.09	-0.06	-0.01	-0.02	-0.05	-0.09	-0.07	-0.12
SIGNAL REGULATORY PROTEIN SIRP FAMILY INTERACTIONS	12	0	0.00%	0.18	0.35	0.26	0.15	0.02	0.02	0.13	0.14	0.07	-0.05	0.04	-0.09
THE NLRP3 INFLAMMASOME	12	0	0.00%	0.18	0.37	0.26	0.24	0.36	0.31	0.29	0.30	0.20	-0.16	-0.01	-0.13
REGULATION OF IFNA SIGNALING	24	0	0.00%	0.18	0.08	0.08	0.00	-0.16	-0.15	0.13	0.19	0.13	0.10	0.00	0.12
REGULATION OF WATER BALANCE BY RENAL AQUAPORINS	44	3	6.82%	0.18	0.02	0.14	0.29	0.28	0.29	0.45	0.48	0.47	0.37	0.42	0.41
TGF BETA RECEPTOR SIGNALING IN EMT EPITHELIAL TO MESENCHYMAL TRANSITION	16	3	18.75%	0.18	0.36	0.26	0.28	0.37	0.35	-0.03	0.02	-0.05	0.33	0.36	0.37
PLATELET ACTIVATION SIGNALING AND AGGREGATION	208	1	0.48%	0.18	0.42	0.28	0.25	0.40	0.33	0.20	0.29	0.20	0.13	0.13	0.09
CONVERSION FROM APC C CDC20 TO APC C CDH1 IN LATE ANAPHASE	22	22	100.00%	0.18	0.15	0.09	0.56	0.32	0.46	0.19	0.21	0.21	0.57	0.48	0.51
TRAFFICKING AND PROCESSING OF ENDOSOMAL TLR	14	0	0.00%	0.18	-0.12	-0.01	0.10	-0.14	-0.08	0.17	0.14	0.17	-0.09	-0.19	-0.04
REGULATION OF INSULIN SECRETION	93	3	3.23%	0.18	0.02	0.15	0.12	-0.07	0.06	0.33	0.34	0.33	0.49	0.47	0.48
NEGATIVE REGULATORS OF RIG I MDA5 SIGNALING	31	4	12.90%	0.18	0.03	0.14	0.18	-0.01	0.04	-0.17	-0.08	-0.11	0.04	-0.02	0.06
SMAD2 SMAD3 SMAD4 HETEROTRIMER REGULATES TRANSCRIPTION	27	11	40.74%	0.17	-0.01	0.19	0.15	0.02	0.18	-0.18	-0.12	-0.16	0.42	0.41	0.46
FGFR1 LIGAND BINDING AND ACTIVATION	14	0	0.00%	0.17	0.03	0.11	0.16	0.05	0.12	0.12	0.16	0.08	0.21	0.22	0.20
NUCLEOTIDE BINDING DOMAIN LEUCINE RICH REPEAT CONTAINING RECEPTOR NLR SIGNALING PATHWAYS	46	0	0.00%	0.17	-0.25	0.00	0.14	-0.08	0.01	0.40	0.39	0.42	-0.19	-0.06	-0.14

DECRIPATORY ELECTRON TRANSPORTATE CVALUERED BY CHEMICENOTIC COURTING AND LIFAT REPORTED BY UNCOURTING REPORTED	00	0	0.000/	0.17	0.20	0.22	0.17	0.14	0.22	0.20	0.10	0.17	0.02	0.02	0.05
RESPIRATORY ELECTRON TRANSPORT ATP STNTHESIS BY CHEMIOSMOTIC COOPLING AND HEAT PRODUCTION BY UNCOUPLING PROTEINS	98	0	0.00%	0.17	0.20	0.23	0.17	0.14	0.23	0.20	0.19	0.17	0.02	0.02	-0.05
PIMETABOLISM	48	0	0.00%	0.17	0.05	0.10	0.23	0.25	0.21	0.20	0.21	0.21	0.11	0.12	0.04
OPIOID SIGNALLING	78	8	10.26%	0.17	0.07	0.17	0.31	0.31	0.29	0.36	0.41	0.38	-0.19	-0.08	-0.18
GRB2 EVENTS IN ERBB2 SIGNALING	22	1	4.55%	0.17	0.24	0.12	0.28	0.10	0.16	-0.06	-0.02	-0.07	0.05	-0.05	-0.06
	11	0	0.00%	0.17	0.00	0.11	0.18	0.07	0.12	0.20	0.26	0.28	-0.05	0.01	0.02
	11		0.00%	0.17	0.00	0.11	0.10	0.07	0.15	0.25	0.20	0.20	-0.05	0.01	0.02
SIGNALING BY NODAL	18	0	0.00%	0.17	0.21	0.13	0.13	0.15	0.08	0.23	0.26	0.29	-0.04	-0.08	-0.01
INSULIN RECEPTOR SIGNALLING CASCADE	87	1	1.15%	0.17	0.33	0.18	0.29	0.23	0.21	0.37	0.36	0.37	0.45	0.35	0.35
METABOLISM OF MRNA	284	51	17.96%	0.17	0.10	0.12	0.07	-0.02	0.10	0.09	0.04	0.08	0.43	0.38	0.36
SEMA4D IN SEMAPHORIN SIGNALING	32	0	0.00%	0.17	-0.19	0.00	0.13	-0.14	0.00	0.04	0.06	0.01	-0.05	-0.14	-0.04
	52		0.00%	0.17	0.17	0.00	0.13	0.14	0.00	0.04	0.00	0.01	0.00	0.14	0.04
IN EKFEKUN GAMMA SIGNALING	63	0	0.00%	0.17	-0.17	-0.01	0.12	-0.20	-0.04	0.22	0.24	0.20	0.00	-0.11	0.03
STRIATED MUSCLE CONTRACTION	27	0	0.00%	0.17	0.36	0.25	0.19	0.31	0.24	0.11	0.17	0.10	0.04	0.07	-0.02
ADVANCED GLYCOSYLATION ENDPRODUCT RECEPTOR SIGNALING	13	0	0.00%	0.17	-0.06	0.06	0.19	0.01	0.13	0.11	0.15	0.08	0.07	0.12	0.04
EGER4 LIGAND BINDING AND ACTIVATION	12	0	0.00%	0.17	-0.02	0.06	0.14	0.00	0.04	0.33	0.35	0.31	0.21	0.22	0.18
HIGHLY CALCULAR DEMARKABLE DOSTSVILATIONIC ALCOTINIC ACETYLCHOLINE DECEDTORS	12	0	0.00%	0.16	0.05	0.00	0.10	0.00	0.10	0.35	0.35	0.51	0.27	0.20	0.20
HIGHET CALCIONI PERMIEABLE POSTSTNAFTIC NICOTINIC ACETTECHOLINE RECEPTORS	15	0	0.00%	0.10	0.05	0.10	0.10	0.02	0.10	-0.20	=0.20	-0.23	-0.57	-0.25	-0.50
INTERFERON ALPHA BETA SIGNALING	64	1	1.56%	0.16	-0.05	0.04	0.15	-0.08	0.01	0.08	0.05	0.12	-0.02	-0.07	0.01
SIGNALING BY NOTCH2	12	0	0.00%	0.16	0.15	0.19	0.18	0.14	0.24	0.30	0.37	0.38	-0.03	0.12	0.09
COMMON PATHWAY	14	0	0.00%	0.16	0.26	0.18	0.23	0.22	0.22	0.16	0.20	0.14	0.28	0.32	0.27
HERADAN CI II FATE HERADIN HE CAC METADOLISM	E 2	0	0.00%	0.16	0.20	0.10	0.12	0.24	0.12	0.11	0.17	0.10	0.02	0.15	0.05
NEPARAN SULFATE REPARTING GAG INETADULISM	52	0	0.00%	0.10	0.50	0.10	0.12	0.24	0.12	0.11	0.17	0.10	-0.05	-0.15	-0.05
CELL EXTRACELLULAR MATRIX INTERACTIONS	14	0	0.00%	0.16	0.24	0.17	0.34	0.24	0.30	-0.01	0.08	0.00	0.01	0.06	-0.03
TCA CYCLE AND RESPIRATORY ELECTRON TRANSPORT	141	0	0.00%	0.16	0.18	0.23	0.17	0.13	0.23	0.20	0.18	0.17	-0.06	-0.07	-0.11
GLUCAGON SIGNALING IN METABOLIC REGULATION	34	3	8 82%	0.16	0.05	0.14	0.17	0.06	0.15	0.29	0.34	0.31	0.33	0.27	0.29
	24	~	0.00%	0.10	0.05	0.14	0.21	0.00	0.15	0.20	0.34	0.31	0.05	0.02	0.25
RNA POLIII TRANSCRIPTION INITIATION FROM TYPE 3 PROMOTER	26	0	0.00%	0.16	0.35	0.20	0.21	0.34	0.28	0.20	0.21	0.20	-0.01	0.03	-0.02
PRESYNAPTIC NICOTINIC ACETYLCHOLINE RECEPTORS	12	0	0.00%	0.16	0.02	0.13	0.06	-0.03	0.05	0.08	0.04	0.08	-0.39	-0.34	-0.31
TRAF6 MEDIATED IRF7 ACTIVATION	30	0	0.00%	0.16	0.00	0.05	0.17	0.02	0.04	0.00	-0.03	0.01	-0.10	-0.12	-0.05
TRAF3 DEPENDENT IRE ACTIVATION PATHWAY	14	0	0.00%	0.15	0.04	0.07	0.14	0.00	0.03	0.08	0.05	0.10	-0.04	-0.07	0.01
	19		5.400/	0.15	0.01	0.07	0.12	0.00	0.03	0.00	0.05	0.10	0.01	0.07	0.00
RIGTINDAS MEDIATED INDUCTION OF IFN ALPHA BETA PATHWAYS	/3	4	5.48%	0.15	0.01	0.03	0.13	-0.01	0.01	-0.03	-0.05	0.00	-0.01	-0.05	0.00
CD28 DEPENDENT VAV1 PATHWAY	11	0	0.00%	0.15	0.01	0.01	0.12	-0.02	0.04	0.10	0.04	0.06	0.05	-0.03	0.06
N GLYCAN TRIMMING IN THE ER AND CALNEXIN CALRETICULIN CYCLE	13	0	0.00%	0.15	0.02	0.07	0.18	0.10	0.12	0.13	0.12	0.11	-0.05	0.01	0.02
ACETVI CHOLINE RINDING AND DOWNSTREAM EVENTS	16	0	0.00%	0.15	0.04	0.15	0.00	0.02	0.09	-0.26	-0.17	-0.22	-0.27	-0.29	-0.30
	10	0	0.00%	0.15	0.10	0.15	0.09	0.02	0.09	-0.20	-0.1/	-0.22	-0.57	-0.23	-0.50
AMINE LIGAND BINDING RECEPTORS	38	0	0.00%	0.15	0.10	0.15	0.24	0.16	0.20	0.42	0.43	0.36	0.41	0.40	0.38
BINDING AND ENTRY OF HIV VIRION	10	0	0.00%	0.15	0.20	0.23	0.08	-0.04	0.07	0.29	0.22	0.25	0.26	0.21	0.24
REGULATION OF GENE EXPRESSION IN BETA CELLS	20	0	0.00%	0.15	0.10	0.09	0.20	0.11	0.08	0.06	0.08	0.02	0.30	0.26	0.22
	10	ő	0.00%	0.15	0.10	0.03	0.10	0.11	0.00	0.00	0.00	0.02	0.30	0.20	0.21
N GLYCAN ANTENNAE ELONGATION IN THE MEDIAL TRANS GOLGI	18	0	0.00%	0.14	-0.14	0.03	-0.10	0.12	0.02	-0.19	-0.17	-0.24	-0.31	-0.22	-0.31
NOD1 2 SIGNALING PATHWAY	30	0	0.00%	0.14	-0.16	0.04	0.13	-0.15	0.03	0.11	0.15	0.05	0.13	0.17	0.05
PI3K AKT ACTIVATION	38	3	7.89%	0.14	0.20	0.09	0.13	0.15	0.10	0.29	0.28	0.28	0.41	0.36	0.35
ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF CLASS LMHC	21	1	4 76%	0 14	-0.16	-0.03	0.11	-0.19	-0.04	0.13	0.08	0.16	0.00	-0.04	0.04
		-	4.70%	0.14	0.10	0.05	0.11	0.15	0.04	0.15	0.00	0.10	0.00	0.04	0.07
CHYLOMICKON MEDIATED LIPID TRANSPORT	16	0	0.00%	0.14	-0.06	0.05	0.08	-0.03	0.03	-0.01	-0.02	-0.02	0.06	0.00	0.07
HORMONE LIGAND BINDING RECEPTORS	10	0	0.00%	0.14	0.16	0.15	0.06	0.07	0.07	0.12	0.08	0.02	0.04	-0.09	-0.10
REGULATION OF COMPLEMENT CASCADE	14	0	0.00%	0.14	0.35	0.21	0.40	0.31	0.34	0.25	0.32	0.21	0.28	0.34	0.23
DECIDATORY ELECTRON TRANSPORT	70	0	0.00%	0.14	0.19	0.21	0.17	0.17	0.22	0.19	0.17	0.15	0.20	0.26	0.20
	/5	0	0.00%	0.14	0.10	0.21	0.17	0.17	0.23	0.18	0.17	0.13	0.50	0.20	0.50
COSTIMULATION BY THE CD28 FAMILY	63	9	14.29%	0.14	-0.24	-0.10	0.06	-0.28	-0.12	-0.01	-0.04	-0.04	0.16	0.01	0.13
SIGNALING BY NOTCH4	12	0	0.00%	0.14	0.10	0.16	0.18	0.15	0.25	0.39	0.42	0.44	0.15	0.14	0.13
SIGNALING BY EGER	112	13	11.61%	0.14	0.17	0.09	0.17	0.22	0.16	0.34	0.35	0.33	0.27	0.23	0.18
	20		0.000/	0.14	0.10	0.03	0.10	0.15	0.10	0.10	0.55	0.03	0.27	0.20	0.10
REGULATION OF BETA CELL DEVELOPMENT	30	0	0.00%	0.14	0.18	0.13	0.19	0.15	0.10	0.10	0.13	0.07	0.33	0.28	0.31
SEMAPHORIN INTERACTIONS	68	1	1.47%	0.14	-0.11	0.03	0.30	0.02	0.17	0.23	0.28	0.21	0.29	0.30	0.27
IL 3 5 AND GM CSF SIGNALING	43	0	0.00%	0.14	-0.10	-0.04	0.11	-0.22	-0.08	0.13	0.21	0.10	0.03	-0.06	-0.03
CD28 CO STIMULATION	22	0	0.00%	0.14	-0.01	-0.04	0.07	0.22	0.17	0.04	0.00	-0.02	0.12	0.01	0.07
	52		0.00%	0.14	-0.01	-0.04	0.07	0.52	0.17	0.04	0.05	-0.02	0.12	0.01	0.07
APOBEC3G MEDIATED RESISTANCE TO HIVE INFECTION	12	0	0.00%	0.14	-0.15	-0.04	-0.10	-0.26	-0.22	0.39	0.35	0.36	0.08	0.03	0.04
ACTIVATION OF CHAPERONES BY ATF6 ALPHA	13	0	0.00%	0.14	0.14	0.27	0.21	0.19	0.29	0.15	0.14	0.13	0.11	0.15	0.18
ACETYLCHOLINE NEUROTRANSMITTER RELEASE CYCLE	10	0	0.00%	0.14	0.16	0.22	-0.19	-0.01	-0.06	0.27	0.19	0.17	0.08	0.10	0.11
ADODTOTIC CLEAVAGE OF CELL ADVESION DROTEINS	12	0	0.00%	0.12	0.00	0.02	0.24	0.02	0.14	0.04	0.06	0.06	0.02	0.00	0.05
	12		0.00%	0.15	-0.05	-0.02	0.24	-0.02	0.14	0.04	0.00	0.00	0.02	0.00	-0.05
IN TRINSIC PATHWAY	1/	0	0.00%	0.13	0.35	0.28	0.35	0.41	0.37	0.26	0.33	0.24	0.07	0.10	0.07
RNA POL I TRANSCRIPTION INITIATION	25	3	12.00%	0.13	0.25	0.23	0.22	0.29	0.33	0.28	0.29	0.30	0.45	0.45	0.45
REGULATION OF SIGNALING BY CBL	18	0	0.00%	0.13	0.24	0.13	-0.04	-0.33	-0.22	0.02	0.05	-0.05	-0.03	-0.01	-0.10
REGULATION OF INSULIN SECRETION BY GUICAGON LIKE PEPTIDE1	43	3	6.98%	0.13	-0.01	0.10	0.30	0.08	0.20	0.22	0.26	0.27	0.37	0.39	0.40
	-15	~	0.50%	0.15	0.01	0.10	0.50	0.00	0.20	0.22	0.20	0.10	0.57	0.55	0.40
GLYCOPROTEIN HORMONES	12	0	0.00%	0.13	0.20	0.16	0.12	0.12	0.13	0.20	0.23	0.18	-0.01	-0.15	-0.10
TANDEM PORE DOMAIN POTASSIUM CHANNELS	12	0	0.00%	0.13	-0.02	0.15	0.07	0.01	0.02	0.21	0.14	0.20	0.13	0.06	0.10
PI3K EVENTS IN ERBB2 SIGNALING	44	3	6.82%	0.12	0.33	0.19	0.07	0.15	0.06	0.17	0.21	0.16	0.07	0.00	0.00
METABOLISM OF PROTEINS	518	9	1.74%	0.12	0.18	0.20	0.20	0,12	0.24	0.44	0.38	0.41	0.27	0.33	0.25
	515		E EGW	0.12	0.10	0.20	0.10	0.06	0.08	0.42	0.45	0.42	0.10	0.22	0.13
	54	3	5.50%	0.12	-0.10	0.03	0.10	0.06	0.08	0.43	0.45	0.43	0.10	0.22	0.13
RECRUITMENT OF NUMA TO MITOTIC CENTROSOMES	10	10	100.00%	0.12	0.14	0.19	0.39	0.28	0.40	0.31	0.22	0.25	0.45	0.44	0.42
OTHER SEMAPHORIN INTERACTIONS	15	0	0.00%	0.12	0.00	0.09	0.04	-0.05	0.05	0.14	0.16	0.19	0.33	0.32	0.31
DOPAMINE NEUROTRANSMITTER RELEASE CYCLE	11	0	0.00%	0.12	0.17	0.18	0.13	0.13	0.16	0.41	0.38	0.39	0.07	0.09	0.08
	-		0.00%	0.12	0.17	0.10	0.15	0.15	0.10	0.41	0.50	0.55	0.07	0.03	0.00
PPARA ACTIVATES GENE EXPRESSION	104	0	0.00%	0.12	0.22	0.09	0.46	0.24	0.33	-0.11	-0.06	-0.09	0.49	0.37	0.41
PEPTIDE CHAIN ELONGATION	153	4	2.61%	0.12	0.09	0.15	0.39	0.22	0.36	0.09	0.13	0.10	0.20	0.25	0.21
CGMP EFFECTS	19	0	0.00%	0.12	0.26	0.20	0.23	0.30	0.28	0.25	0.32	0.26	0.10	0.16	0.12
CELL COMMUNICATION	120	0	0.00%	0.12	0.37	0.20	0.08	0.31	0.18	0.10	0.16	0.07	0.38	0.27	0.37
	12	2	22 000/	0.11	0.00	0.20	0.00	-0.02	-0.01	0.17	0.10	0.07	0.10	0.17	0.15
HORMONE SENSITIVE LIPASE HIS MEDIATED TRIACTEDICEROL HTDROETSIS	15	2	23.00%	0.11	0.08	0.08	0.09	-0.05	-0.01	0.17	0.27	0.22	0.12	0.17	0.15
HS GAG DEGRADATION	20	0	0.00%	0.11	0.09	0.17	0.27	0.05	0.21	-0.09	-0.01	-0.05	-0.04	-0.07	-0.02
TIGHT JUNCTION INTERACTIONS	29	0	0.00%	0.11	0.39	0.24	0.23	0.39	0.35	0.52	0.49	0.49	0.21	0.16	0.25
SIGNAL TRANSDUCTION BY L1	34	0	0.00%	0.11	0.24	0.10	0.03	0.23	0.09	0.07	0.14	0.09	-0.05	-0.01	-0,07
	160	5	2 06%	0.11	0.07	0.11	0.34	0.20	0.24	0.09	0.12	0.08	0.22	0.27	0.24
	109	-	2.50%	0.11	0.07	0.11	0.34	0.20	0.54	0.08	0.12	0.06	0.23	0.27	0.24
FORMATION OF ATP BY CHEMIOSMOTIC COUPLING	16	0	0.00%	0.11	0.06	0.10	0.03	-0.05	0.05	0.28	0.21	0.23	0.04	0.07	0.07
TRANSLATION	222	4	1.80%	0.11	0.09	0.13	0.09	0.00	0.13	0.14	0.17	0.13	0.24	0.28	0.22
PEPTIDE HORMONE BIOSYNTHESIS	14	0	0,00%	0.11	0.21	0.13	0.08	0.08	0.10	0.11	0.15	0.14	-0.02	-0.11	-0.06
ANTICEN ACTIVATES & CELL RECEDED LEADING TO CENERATION OF CECONS MESSENCESS		~	0.00%	0.10	0.21	0.10	0.00	0.00	0.10	0.11	0.10	0.04	0.02	0.02	0.00
ANTIGEN ACTIVATES & CELL ACCEPTOR LEADING TO GENERATION OF SECOND MESSENGERS	29	0	0.00%	0.10	-0.2/	-0.10	0.03	-0.2/	-0.12	0.00	0.05	-0.04	-0.06	-0.03	-0.09
HUL MEDIATED LIPID TRANSPORT	15	0	0.00%	0.10	-0.02	0.05	0.03	0.01	0.02	0.06	0.07	0.02	0.07	0.09	-0.02
COMPLEMENT CASCADE	32	0	0.00%	0.10	0.40	0.21	0.26	0.41	0.33	0.34	0.39	0.30	0.26	0.35	0.23
LIPOPROTEIN METABOLISM	28	0	0.00%	0.10	-0.01	0.05	0.03	0.00	0.01	0.09	0.10	0.05	0.11	0.07	0.09
CLUTAMATE NEUDATDANSMITTED DELEASE CYCLE	15	0	0.00%	0.10	0.17	0.05	-0.03	0.14	0.07	0.00	0.20	0.22	-0.24	.0.29	-0.31
	12	-	0.00%	0.10	0.1/	0.1/	-0.03	0.14	0.07	0.55	0.50	0.52	-0.34	-0.25	-0.31
NEF MEDIATED DOWNREGULATION OF MHC CLASS I COMPLEX CELL SURFACE EXPRESSION	10	0	0.00%	0.10	-0.09	0.01	0.02	0.24	0.13	-0.09	-0.04	-0.04	0.22	0.11	0.13
PLATELET ADHESION TO EXPOSED COLLAGEN	12	0	0.00%	0.10	0.03	0.04	0.17	0.10	0.12	0.00	0.05	-0.06	-0.17	-0.19	-0.16

COPI MEDIATED TRANSPORT	1	.0 0	0.00	% 0	0.10	0.07	0.15	0.24	0.19	0.25	0.19	0.20	0.19	-0.04	0.04	0.01
RIP MEDIATED NFKB ACTIVATION VIA DAI	1	.8 0	0.00	% 0	0.10	-0.06	-0.02	0.03	0.00	-0.04	0.03	0.03	-0.02	0.01	0.06	0.00
ENERGY DEPENDENT REGULATION OF MTOR BY LKB1 AMPK	1	.8 0	0.00	% 0	0.10	0.24	0.14	0.05	0.18	0.09	0.28	0.30	0.31	-0.24	-0.14	-0.15
P2Y RECEPTORS	1	2 0	0.00	% 0	0 10	-0.16	-0.03	0.25	0.15	0.22	0.38	0.40	0.31	0.07	-0.05	0.08
	-	2 0	0.00	× 0	1 00	0.12	0.05	0.12	0.10	0.19	0.36	0.40	0.41	0.16	0.05	0.00
		2 0	0.00	~ U	0.09	0.12	0.14	0.15	0.10	0.19	0.50	0.40	0.41	0.10	0.15	0.14
VOLTAGE GATED POTASSIUM CHANNELS	4	3 0	0.00	% 0	0.09	0.09	0.15	-0.13	0.11	0.01	0.44	0.46	0.42	0.06	0.16	0.11
NEGATIVE REGULATION OF THE PI3K AKT NETWORK		э о	0.00	% 0	0.09	0.05	0.00	0.00	0.02	-0.08	0.06	0.09	0.03	0.17	0.13	0.14
METABOLISM OF VITAMINS AND COFACTORS	5	1 2	3.92	% 0	0.09	0.36	0.15	0.33	0.20	0.23	0.45	0.43	0.46	0.31	0.38	0.38
SYNTHESIS OF PIPS AT THE GOLGI MEMBRANE	1	.7 0	0.00	% 0	0.09	0.19	0.17	0.16	0.23	0.19	0.20	0.21	0.25	-0.02	0.02	-0.02
N GLYCAN ANTENNAF FLONGATION	1	4 0	0.00	% 0	0.09	-0.10	0.01	-0.04	0.14	0.03	-0.16	-0.16	-0.22	0.15	0.15	0.18
	-	5 0	0.00	× 0	0.00	0.27	0.15	0.08	0.19	0.11	0.14	0.12	0.14	-0.06	0.00	-0.02
			0.00	/0 O	0.00	0.27	0.15	0.00	0.15	0.11	0.14	0.15	0.14	-0.00	0.00	-0.05
ENDOSOMAL VACUOLAR PATHWAT		9 0	0.00	% U	1.09	-0.18	-0.06	0.07	-0.20	-0.07	0.01	-0.03	0.06	-0.06	-0.09	0.00
OXYGEN DEPENDENT PROLINE HYDROXYLATION OF HYPOXIA INDUCIBLE FACTOR ALPHA	1	.8 4	22.22	!% 0	0.09	0.13	0.13	0.06	0.25	0.19	0.19	0.20	0.20	0.06	0.20	0.14
PROSTANOID LIGAND RECEPTORS	1	.0 0	0.00	% 0	0.08	0.35	0.25	0.18	0.25	0.22	0.23	0.29	0.19	0.11	0.23	0.12
SYNTHESIS OF PIPS AT THE PLASMA MEMBRANE	3	1 0	0.00	% 0	0.08	-0.11	-0.05	0.12	-0.01	-0.01	0.22	0.26	0.22	0.10	0.02	-0.02
TETRAHYDROBIOPTERIN BH4 SYNTHESIS RECYCLING SALVAGE AND REGULATION	1	3 3	23.08	% 0	0.08	0.11	0.01	0.26	0.15	0.21	0.18	0.13	0.13	0.02	0.04	-0.03
TRANSPORT OF ORGANIC ANIONS	1	1 0	0.00	% 0	0.08	0.32	0.21	0.33	0.32	0.44	0.34	0.39	0.35	-0.01	0.05	0.02
			10.00	,	0.00	0.11	0.02	0.01	0.02	0.05	0.34	0.35	0.33	0.01	0.03	0.02
CA DEFENDENT EVENTS			10.00	176 U	5.08	-0.11	0.05	0.01	0.02	0.03	0.21	0.50	0.24	-0.14	-0.07	-0.12
EXTRACELLULAR MATRIX ORGANIZATION	٤	7 0	0.00	% 0	3.08	-0.05	0.07	0.15	0.04	0.13	0.17	0.12	0.18	0.12	-0.01	0.08
DOWNREGULATION OF ERBB2 ERBB3 SIGNALING	1	.2 3	25.00	1% 0	0.08	0.04	0.02	-0.04	-0.03	-0.12	0.17	0.18	0.13	0.05	-0.03	-0.05
CREB PHOSPHORYLATION THROUGH THE ACTIVATION OF CAMKII	1	5 1	6.67	% 0	0.08	-0.05	0.05	-0.03	-0.05	0.01	0.12	0.11	0.14	0.31	0.19	0.21
IMMUNOREGULATORY INTERACTIONS BETWEEN A LYMPHOID AND A NON LYMPHOID CELL	7	0 0	0.00	% 0	0.07	-0.28	-0.13	0.01	-0.31	-0.16	-0.28	-0.19	-0.28	0.16	0.16	0.20
TCR SIGNALING		4 0	0.00	% 0	07	-0.29	-0.13	0.00	-0.34	-0.17	-0.08	-0.07	-0.01	-0.03	0.08	-0.05
		7 0	0.00	× 0	0.07	0.20	0.13	0.00	0.34	0.19	0.00	0.09	0.01	0.00	0.14	0.03
	-		0.00	~ U	0.07	-0.29	-0.12	-0.01	-0.34	-0.18	-0.05	-0.08	-0.01	-0.22	-0.14	-0.22
LIPID DIGESTION MOBILIZATION AND TRANSPORT	4	6 3	6.52	% 0	J.07	0.02	0.03	0.09	0.04	0.03	0.18	0.22	0.17	0.22	0.19	0.20
GLUTATHIONE CONJUGATION	2	3 0	0.00	% 0	0.07	0.25	0.13	0.10	0.18	0.10	-0.01	-0.01	-0.08	-0.06	-0.06	-0.10
GLYCOGEN BREAKDOWN GLYCOGENOLYSIS	1	.8 0	0.00	% 0	0.07	-0.08	0.04	0.23	0.25	0.27	-0.06	0.01	-0.01	0.01	-0.07	-0.06
ACTIVATION OF IRF3 IRF7 MEDIATED BY TBK1 IKK EPSILON	1	.4 3	21.43	% 0	0.07	-0.12	-0.04	0.09	0.00	-0.01	0.15	0.13	0.11	0.30	0.33	0.27
BOTULINUM NEUROTOXICITY	1	9 0	0.00	% 0	0.06	0.18	0.16	0,13	0.18	0.19	0.46	0.37	0.39	0.32	0.26	0.26
NEPHRIN INTERACTIONS		0 0	0.00	. 0 % 0	0.06	0.29	0.22	0.22	0.26	0.30	0.19	0.15	0.18	0.11	0.06	0.01
	4		0.00	,. U	0.00 D 06	0.00	0.22	0.22	0.20	0.04	0.13	0.10	0.10	0.11	0.12	0.01
DAG AND IP3 SIGNALING	-	2 3	9.38	% U	J.06	-0.08	0.06	-0.01	0.00	0.04	-0.12	-0.10	-0.12	0.04	0.13	0.09
PLC BETA MEDIATED EVENTS	4	3 3	6.98	% 0	0.06	-0.14	0.00	0.04	0.05	0.08	0.11	0.20	0.12	-0.18	-0.09	-0.14
PKA MEDIATED PHOSPHORYLATION OF CREB	1	.8 3	16.67	'% 0	0.06	-0.11	0.04	0.04	-0.08	0.01	0.33	0.37	0.38	-0.14	-0.01	0.03
SIGNALING BY ILS	1	07 4	3.74	% 0	0.06	0.07	0.17	0.28	-0.07	0.10	0.12	0.17	0.08	0.04	0.15	0.01
CREB PHOSPHORYLATION THROUGH THE ACTIVATION OF RAS	2	7 1	3.70	% 0	0.06	0.34	0.11	0.24	0.31	0.24	0.16	0.18	0.13	0.34	0.32	0.27
OPSINS	1	0 0	0.00	% 0	0.06	-0.04	0.13	0.05	-0.08	0.05	-0.06	-0.02	-0.02	0.01	0.07	0.15
	-	2 0	0.00	× 0	0.06	0.27	0.17	0.10	0.21	0.17	0.17	0.22	0.10	0.04	0.11	0.02
SEVIASA PLEXIV REPUBJION SIGINALING BEINHIBEITING INTEGRITA ADRESION		.5 0	0.00	~ U	0.00	0.27	0.17	0.15	0.21	0.17	0.17	0.22	0.19	0.04	0.11	0.02
3 UTR MEDIATED TRANSLATIONAL REGULATION	1	/6 4	2.27	% 0	J.06	0.04	0.08	0.42	0.29	0.39	0.07	0.12	0.08	0.22	0.26	0.22
CELL CELL JUNCTION ORGANIZATION	5	6 0	0.00	% 0	0.06	0.37	0.20	0.34	0.41	0.37	0.32	0.36	0.32	0.18	0.13	0.20
GLUCONEOGENESIS	3	4 2	5.88	% 0	0.06	-0.09	0.05	0.49	0.32	0.45	0.43	0.43	0.44	0.48	0.45	0.48
CYTOSOLIC SULFONATION OF SMALL MOLECULES	1	.4 0	0.00	% 0	0.05	0.11	0.19	0.08	0.03	0.11	0.20	0.21	0.21	0.16	0.22	0.23
TRIGLYCERIDE BIOSYNTHESIS	3	8 0	0.00	% 0	0.05	0.31	0.17	0.29	0.33	0.29	0.01	0.06	-0.06	0.10	0.13	0.00
MEMBRANE TRAFFICKING	1	29 4	3.10	% 0	0.05	-0.05	0.13	0.33	0.10	0.23	0.26	0.25	0.27	0.03	0.00	-0.02
	-	1 0	0.00	× 0	0.05	0.05	0.14	0.07	0.24	0.23	0.02	0.07	0.05	0.05	0.10	0.02
GPVI MEDIATED ACTIVATION CASCADE	-		0.00	% U	J.05	-0.25	-0.14	-0.07	-0.34	-0.23	-0.03	-0.07	-0.05	-0.12	-0.10	-0.14
SYNTHESIS SECRETION AND DEACYLATION OF GHRELIN	1	.6 0	0.00	% 0	0.05	0.01	0.05	-0.01	-0.09	-0.01	0.10	0.03	0.02	0.04	0.09	0.01
FGFR2C LIGAND BINDING AND ACTIVATION	1	2 0	0.00	% 0	0.05	0.07	0.08	0.09	0.07	0.10	0.33	0.35	0.30	0.21	0.13	0.12
RECEPTOR LIGAND BINDING INITIATES THE SECOND PROTEOLYTIC CLEAVAGE OF NOTCH RECEPTOR	1	2 3	25.00	1% 0	0.05 📐	0.10	0.12	0.07	0.06	0.14	0.16	0.22	0.21	0.14	0.19	0.14
PLATELET CALCIUM HOMEOSTASIS	1	.8 0	0.00	% 0	0.04	0.03	-0.04	0.05	-0.03	-0.05	0.10	0.01	0.03	-0.04	-0.03	-0.06
SIGNALING BY NOTCH1	7	0 7	10.00	1% 0	0.04	0.18	0.15	0.07	0.04	0.12	-0.13	-0.06	-0.14	-0.17	-0.15	-0.25
SIGNALING BY FGFR3 MILTANTS	1	1 0	0.00	% 0	0.04	0.15	0.08	0.12	0.23	0.14	0.31	0.32	0.28	0.13	0.16	0.08
			0.00	× 0	0.04	0.15	0.00	0.12	0.25	0.14	0.51	0.32	0.20	0.15	0.10	0.00
		.0 0	0.00	70 0	J.04	0.16	-0.09	0.14	0.00	0.09	0.26	0.26	0.20	-0.07	-0.10	-0.06
GENERATION OF SECOND MESSENGER MOLECULES	4	/ 0	0.00	% 0	J.04	-0.31	-0.16	-0.03	-0.36	-0.20	-0.05	-0.08	-0.04	-0.31	-0.19	-0.25
BILE ACID AND BILE SALT METABOLISM	2	7 0	0.00	% 0	0.04	0.11	0.10	-0.05	0.02	-0.02	-0.19	-0.16	-0.19	0.04	0.05	0.07
TERMINATION OF O GLYCAN BIOSYNTHESIS	2	4 0	0.00	% 0	0.04	0.03	0.04	0.01	0.05	0.00	0.08	0.08	-0.01	-0.03	-0.05	-0.05
SIGNALING BY ACTIVATED POINT MUTANTS OF FGFR1	1	.1 0	0.00	% 0	0.04	0.04	0.03	0.02	0.03	0.04	0.15	0.18	0.17	0.18	0.20	0.17
IL 6 SIGNALING	1	1 0	0.00	% 0	0.04	0.14	0.13	-0.05	0.08	0.10	0.24	0.19	0.13	0.03	0.00	0.02
PD1 SIGNALING	1	8 0	0.00	% 0	0.04	-0.31	-0.16	-0.04	-0.36	-0.21	-0.07	-0.13	-0.01	-0.02	-0.12	0.03
REGULATION OF THE FANCONI ANEMIA PATHWAY		1 9	72 72	% 7 n	0.04	-0.11	-0.11	0.26	0.07	0.15	0.21	0.22	0.19	0.38	0.35	0.36
	-	4 0	0.00	N 0	0.00	0.02	0.01	0.20	0.07	0.01	0.01	0.02	0.05	0.10	0.13	0.50
STNTHESIS SECRETION AND INACTIVATION OF GIP		.4 0	0.00	76 0	J.U3	0.02	0.05	-0.04	-0.09	-0.01	0.01	-0.03	-0.05	-0.12	-0.12	-0.12
INCRETIN SYNTHESIS SECRETION AND INACTIVATION	2	2 0	0.00	% 0	0.03	0.02	0.05	-0.03	-0.09	-0.01	0.04	0.00	-0.02	-0.10	-0.02	-0.05
SYNTHESIS SECRETION AND INACTIVATION OF GLP1	1	.9 0	0.00	% 0	0.03	0.01	0.05	-0.03	-0.09	-0.01	0.04	0.00	-0.02	-0.10	-0.02	-0.05
GLUCURONIDATION	1	.8 0	0.00	% 0	0.03	0.14	0.08	0.05	0.15	0.05	-0.14	-0.17	-0.18	-0.10	-0.11	-0.14
DARPP 32 EVENTS	2	5 8	32.00	1% 0	0.03	0.09	0.03	0.14	0.24	0.16	0.20	0.23	0.20	0.23	0.15	0.13
SEROTONIN RECEPTORS	1	2 0	0.00	% 0	1 03	0.04	0.06	-0.01	-0.04	-0.02	0.29	0.31	0.27	0.12	0.09	0.03
SYNTHESIS OF DIDS AT THE FADLY ENDOSOME MEMBRANE		2 10	0.00	× 0	1.02	0.09	0.05	0.01	0.00	-0.04	-0.22	-0.26	-0.29	-0.12	-0.14	-0.18
		- 0	0.00	× 0	0.02	0.05	0.05	0.01	0.00	-0.04	-0.22	-0.20	-0.25	-0.12	-0.14	-0.10
IKANSFERRIN ENDOCTIOSIS AND RECICLING	4	5 0	0.00	% U	J.02	0.23	0.11	0.34	0.21	0.26	0.04	0.05	0.02	0.00	-0.02	-0.06
FORMATION OF FIBRIN CLOT CLOTTING CASCADE	-	2 0	0.00	% 0	0.02	0.29	0.15	0.13	0.30	0.21	0.30	0.37	0.29	0.07	0.12	0.08
PHOSPHORYLATION OF CD3 AND TCR ZETA CHAINS	1	.6 0	0.00	% 0	0.02	-0.32	-0.16	-0.05	-0.37	-0.21	-0.08	-0.14	-0.02	-0.06	-0.16	-0.01
SYNTHESIS OF PA		7 0	0.00	% 0	0.02	0.25	0.12	0.02	0.25	0.15	0.00	0.05	-0.04	-0.13	-0.11	-0.15
ACYL CHAIN REMODELLING OF PG	1	.6 0	0.00	% 0	0.02	0.12	0.03	0.06	0.13	0.06	-0.06	-0.03	-0.11	-0.12	-0.13	-0.16
CD28 DEPENDENT PI3K AKT SIGNALING	X 2	2 0	0.00	% 0	0.02	0.10	-0.03	0.25	-0.02	0.11	0.08	0.12	0.04	0.19	0.14	0.13
TRANSLOCATION OF 7AP 70 TO IMMUNOLOGICAL SYNAPSE	1	4 0	0.00	% [~]	0.02	-0.32	-0.17	-0.05	-0.37	-0.22	-0.09	-0.15	-0.03	0.22	0.24	0.17
			0.00	U	0.02	0.32	-0.17	-0.03	0.25	0.15	0.00	0.15	0.05	0.22	0.2.7	0.17
	-	o 7	7.37	70 Ü	0.02	0.27	0.08	0.13	0.25	0.15	0.33	0.34	0.30	0.23	0.22	0.17
DOWNREGULATION OF SMAD2 3 SMAD4 TRANSCRIPTIONAL ACTIVITY	2	.u 5	25.00	170 0	J.U2	-0.05	0.12	0.01	-0.05	0.06	0.09	0.14	0.16	0.11	0.13	0.18
IONOTROPIC ACTIVITY OF KAINATE RECEPTORS	1	1 0	0.00	% 0	J.02	0.03	0.00	0.20	0.27	0.28	0.16	0.19	0.15	-0.06	-0.13	-0.16
RAP1 SIGNALLING	1	.7 2	11.76	i% 0	0.01	-0.03	-0.04	0.02	-0.07	-0.03	0.37	0.43	0.39	0.00	0.09	0.02
OLFACTORY SIGNALING PATHWAY	3	28 0	0.00	% 0	0.01	-0.01	0.06	-0.06	-0.04	-0.03	0.32	0.27	0.26	0.39	0.32	0.35
ACYL CHAIN REMODELLING OF PI	1	.5 0	0.00	% 0	0.01	0.13	0.03	0.02	0.10	0.03	-0.07	-0.05	-0.12	-0.12	-0.12	-0.15
PROLACTIN RECEPTOR SIGNALING	-	4 2	21 / 2	1% O	0.01	0.08	0.09	0.12	0.08	0.15	0.50	0.39	0.40	-0.37	-0.23	-0.30
			21.43	~~ U	0.01	0.02	0.05	0.12	0.00	0.06	-0.10	-0.07	-0.05	-0.57	0.04	-0.30
		U	0.00	/0 U	0.01	0.03	0.05	0.06	0.04	0.00	-0.10	-0.07	-0.05	-0.07	0.04	0.08
SRP DEPENDENT COTRANSLATIONAL PROTEIN TARGETING TO MEMBRANE	1	/9 4	2.23	70 0	J.U1	0.02	0.02	0.02	-0.04	0.07	0.09	0.13	0.09	0.24	0.28	0.24
FORMATION OF THE TERNARY COMPLEX AND SUBSEQUENTLY THE 43S COMPLEX	7	4 3	4.05	% 0	00.0	0.00	0.01	0.01	-0.06	0.05	0.05	0.08	0.05	0.20	0.22	0.18

SYNTHESIS OF BILE ACIDS AND BILE SALTS VIA 7ALPHA HYDROXYCHOLESTEROL	15	0	0.00%	0.00	0.17	0.12	0.24	0.13	0.25	0.30	0.28	0.30	-0.22	-0.21	-0.21
POST NMDA RECEPTOR ACTIVATION EVENTS	33	1	3.03%	0.00	-0.08	0.01	-0.03	-0.10	-0.04	0.17	0.23	0.17	0.15	0.14	0.08
NCAM SIGNALING FOR NEURITE OUT GROWTH	64	1	1.56%	0.00	0.34	0.13	0.29	0.37	0.31	-0.08	-0.04	-0.10	-0.23	-0.33	-0.26
ACTIVATION OF THE MRNA UPON BINDING OF THE CAP BINDING COMPLEX AND EIFS AND SUBSEQUENT BINDING TO 43S	84	3	3.57%	0.00	0.01	0.00	0.39	0.29	0.39	0.03	0.07	0.03	0.24	0.24	0.22
AMINE COMPALING STANDBORTERS	27	0	0.00%	-0.01	-0.01	-0.04	-0.05	-0.05	-0.04	0.20	0.11	-0.19	-0.31	-0.20	-0.30
PRE NOTCH EXPRESSION AND PROCESSING	44	6	13.64%	-0.01	0.00	0.02	0.23	0.05	0.22	0.51	0.48	0.49	0.37	0.35	0.32
NOTCH HLH TRANSCRIPTION PATHWAY	13	0	0.00%	-0.01	-0.10	-0.01	0.01	-0.07	0.05	0.07	0.12	0.07	0.06	0.08	0.07
PURINE CATABOLISM	10	0	0.00%	-0.01	0.23	0.07	0.25	0.21	0.20	-0.08	-0.06	-0.09	0.27	0.26	0.23
NONSENSE MEDIATED DECAY ENHANCED BY THE EXON JUNCTION COMPLEX	176	7	3.98%	-0.01	0.00	0.00	0.28	0.19	0.30	0.08	0.13	0.09	0.22	0.27	0.22
FATTY ACYL COA BIOSYNTHESIS	18	0	0.00%	-0.01	0.22	0.06	0.08	0.26	0.16	0.04	0.07	-0.05	0.04	0.05	-0.05
BMAL1 CLOCK NPAS2 ACTIVATES CIRCADIAN EXPRESSION	36	0	0.00%	-0.01	0.19	0.05	0.09	0.16	0.11	0.10	0.11	0.09	0.35	0.28	0.29
FATTY ACID TRIACYLGLYCEROL AND KETONE BODY METABOLISM	168	0	0.00%	-0.02	0.30	0.06	0.34	0.14	0.31	-0.07	-0.02	-0.07	0.18	0.17	0.11
	26	0	0.00%	-0.02	0.20	-0.15	0.23	0.11	0.14	0.01	0.05	0.34	0.28	0.19	0.00
TRAFFICKING OF AMPA RECEPTORS	28	1	3.57%	-0.02	0.24	0.09	0.00	0.25	0.10	0.01	0.10	0.01	-0.07	-0.01	-0.02
RNA POL III TRANSCRIPTION	33	0	0.00%	-0.02	0.28	0.09	0.09	0.27	0.15	-0.11	-0.10	-0.11	-0.08	-0.05	-0.12
SYNTHESIS OF BILE ACIDS AND BILE SALTS VIA 24 HYDROXYCHOLESTEROL	10	0	0.00%	-0.02	0.16	0.08	-0.06	0.08	0.02	-0.02	-0.05	-0.10	-0.08	-0.10	-0.18
ACYL CHAIN REMODELLING OF PS	15	0	0.00%	-0.02	0.12	0.01	0.00	0.09	0.02	-0.05	-0.03	-0.11	-0.12	-0.12	-0.15
NOTCH1 INTRACELLULAR DOMAIN REGULATES TRANSCRIPTION	46	7	15.22%	-0.02	0.16	0.06	-0.03	0.17	0.02	-0.15	-0.07	-0.17	-0.28	-0.22	-0.33
	22	0	0.00%	-0.02	0.12	0.01	0.00	0.10	0.01	-0.05	-0.03	-0.09	-0.14	-0.14	-0.17
	11	0	0.00%	-0.02	0.12	-0.01	-0.01	0.03	0.00	0.03	0.00	-0.12	0.13	0.12	0.09
CIRCADIAN CLOCK	53	8	15.09%	-0.03	0.18	0.07	0.07	0.19	0.10	0.03	0.05	0.01	0.25	0.19	0.15
SIGNALING BY EGFR IN CANCER	109	11	10.09%	-0.03	0.33	0.11	0.23	0.26	0.22	0.30	0.32	0.30	0.09	0.06	0.02
ENOS ACTIVATION AND REGULATION	20	3	15.00%	-0.03	0.17	-0.02	0.32	0.14	0.18	0.59	0.56	0.58	0.05	0.10	0.04
TRAFFICKING OF GLUR2 CONTAINING AMPA RECEPTORS	16	0	0.00%	-0.03	0.19	0.05	-0.09	0.19	0.05	-0.09	0.00	-0.07	-0.07	0.03	0.00
POST TRANSLATIONAL MODIFICATION SYNTHESIS OF GPI ANCHORED PROTEINS	26	0	0.00%	-0.03	0.24	0.17	0.00	0.07	0.11	0.08	0.16	0.14	-0.09	0.08	0.00
ACTIVATION OF KAC	14	0	0.00%	-0.04	0.23	0.03	0.01	0.20	0.06	-0.07	-0.02	-0.09	-0.16	0.08	-0.01
	41	0	0.00%	-0.04	-0.01	0.13	0.01	0.25	0.18	0.00	0.03	-0.01	-0.10	-0.03	-0.10
GAP JUNCTION TRAFFICKING	27	Ő	0.00%	-0.04	-0.01	0.07	0.17	0.10	0.18	0.35	0.31	0.31	-0.08	-0.10	-0.05
GABA A RECEPTOR ACTIVATION	12	0	0.00%	-0.04	-0.03	-0.02	-0.02	0.00	-0.04	0.00	0.02	-0.01	0.10	0.19	0.22
EFFECTS OF PIP2 HYDROLYSIS	25	0	0.00%	-0.04	0.00	-0.09	0.26	0.32	0.36	0.37	0.39	0.35	0.24	0.24	0.24
ROLE OF SECOND MESSENGERS IN NETRIN1 SIGNALING	11	0	0.00%	-0.04	-0.06	-0.04	-0.09	-0.12	-0.10	0.21	0.17	0.14	0.14	0.18	0.22
SIGNALING BY BMP	23	1	4.35%	-0.04	0.14	-0.01	0.04	0.18	0.06	0.20	0.27	0.23	-0.12	-0.04	-0.12
PHASE II CONJUGATION	70	0	0.00%	-0.04	0.23	0.11	-0.07	0.16	0.03	-0.0b	-0.01	-0.10	-0.02	-0.03	-0.09
ABC FAMILE FROTEINS MEDIALED TANISTON	16	0	0.00%	-0.04	0.04	0.08	0.00	0.19	0.14	0.25	0.31	0.21	0.19	0.03	0.03
ACTIVATED NOTCH1 TRANSMITS SIGNAL TO THE NUCLEUS	27	3	11.11%	-0.05	-0.02	0.04	0.19	0.17	0.26	0.30	0.34	0.34	-0.04	-0.07	-0.12
AKT PHOSPHORYLATES TARGETS IN THE CYTOSOL	12	3	25.00%	-0.05	0.04	0.04	-0.04	0.02	-0.06	-0.07	-0.05	-0.09	0.06	0.12	0.05
RNA POL III TRANSCRIPTION TERMINATION	19	0	0.00%	-0.05	0.25	0.06	0.30	0.24	0.27	-0.05	-0.02	-0.08	-0.10	-0.05	-0.10
ACTIVATION OF NMDA RECEPTOR UPON GLUTAMATE BINDING AND POSTSYNAPTIC EVENTS	37	1	2.70%	-0.05	0.21	0.08	0.05	0.26	0.15	0.19	0.25	0.19	0.12	0.13	0.07
SIGNALING BY ERBB2	101	11	10.89%	-0.06	0.30	0.10	0.12	0.22	0.14	0.29	0.30	0.30	0.10	0.02	0.03
IKAF6 MEDIATED INDUCTION OF TAKET COMPLEX BASE DEE STIGAD ENGSPLATE DEMOVAL VIA THE SINGLE NUCLEOTIDE DEDLACEMENT DATHWAY	14	3	21.43%	-0.06	0.07	0.01	-0.09	-0.02	-0.05	0.09	0.10	0.06	-0.06	-0.08	-0.06
CLASS C 3 METABOTROPIC GLUTAMATE PHEROMONE RECEPTORS	15	0	0.00%	-0.06	0.00	0.00	0.30	0.09	0.23	-0.15	-0.12	-0.13	0.01	0.02	-0.02
ABCA TRANSPORTERS IN LIPID HOMEOSTASIS	18	0	0.00%	-0.06	0.28	0.05	-0.02	0.18	0.05	0.15	0.19	0.15	-0.11	-0.08	-0.09
GABA SYNTHESIS RELEASE REUPTAKE AND DEGRADATION	17	0	0.00%	-0.06	0.11	0.10	-0.02	0.15	0.07	0.54	0.43	0.48	-0.20	-0.14	-0.17
VITAMIN B5 PANTOTHENATE METABOLISM	11	0	0.00%	-0.06	0.19	0.01	0.14	0.14	0.20	-0.11	-0.12	-0.16	-0.20	-0.08	-0.11
AMINO ACID AND OLIGOPEPTIDE SLC TRANSPORTERS	49	0	0.00%	-0.07	-0.06	-0.02	0.26	0.23	0.23	0.44	0.41	0.41	-0.12	-0.10	-0.07
IRAK2 MEDIATED ACTIVATION OF TAKE COMPLEX UPON TEK7 8 OR 9 STIMULATION	9	12	33.33%	-0.07	0.02	-0.01	-0.13	0.01	-0.09	0.00	-0.01	-0.03	0.07	0.03	0.01
MEMBRARE RINDING AND TARGETTING OF GAG PROTEINS	103	3	30.00%	-0.07	0.12	0.10	0.11	0.01	0.12	-0.13	-0.00	-0.13	-0.21	-0.14	-0.23
DOWNSTREAM SIGNALING OF ACTIVATED FGFR	100	7	7.00%	-0.07	0.27	0.09	0.11	0.22	0.14	0.32	0.35	0.32	0.22	0.20	0.16
MITOCHONDRIAL FATTY ACID BETA OXIDATION	14	0	0.00%	-0.07	0.05	-0.02	0.24	0.16	0.27	0.30	0.28	0.30	0.20	0.12	0.13
ACTIVATED POINT MUTANTS OF FGFR2	16	0	0.00%	-0.07	0.05	0.00	0.20	0.07	0.16	0.13	0.21	0.12	0.16	0.19	0.13
O LINKED GLYCOSYLATION OF MUCINS	59	0	0.00%	-0.08	-0.11	-0.06	-0.14	-0.09	-0.11	-0.17	-0.12	-0.21	-0.27	-0.25	-0.29
GLYCEROPHOSPHOLIPID BIOSPN HESIS	82	0	0.00%	-0.08	0.21	0.03	-0.07	0.16	0.10	-0.14	-0.06	-0.17	-0.14	-0.12	-0.15
GAWWA CARDONTATION TRANSPORTAND AWING TERMINAL CLEAVAGE OF FROTEINS	94	0	0.00%	-0.08	0.10	0.04	0.03	0.20	0.10	-0.14	-0.09	-0.19	-0.37	-0.31	-0.36
PRE NOTCH PROCESSING IN GOLGI	16	Ő	0.00%	-0.08	0.04	-0.09	-0.03	0.05	-0.04	0.26	0.20	0.19	-0.16	-0.15	-0.17
ZINC TRANSPORTERS	15	0	0.00%	-0.08	0.18	0.10	0.14	0.24	0.22	0.22	0.21	0.26	0.16	0.17	0.22
PHOSPHOLIPID METABOLISM	198	0	0.00%	-0.09	0.26	0.04	-0.02	0.26	0.11	0.23	0.26	0.22	-0.15	-0.07	-0.16
UNBLOCKING OF NMDA RECEPTOR GLUTAMATE BINDING AND ACTIVATION	15	1	6.67%	-0.09	-0.01	-0.06	-0.08	-0.05	-0.06	0.08	0.14	0.08	0.32	0.17	0.23
PYRIMIDINE CATABOLISM	12	0	0.00%	-0.09	0.28	0.06	0.00	0.29	0.08	0.02	0.08	0.00	-0.07	0.02	-0.04
METABOLISM OF LIPIDS AND LIPOPROTEINS DESOLITION OF AS SITES VIA THE SINGLE OTHER DEDLACEMENT DATHWAY	4/8	3	0.63%	-0.09	0.31	0.04	0.00	0.22	0.06	0.16	-0.04	0.16	-0.12	0.45	0.47
NA CL DEPENDENT NEUROTRANSMITTER TRANSPORTERS	17	0	0.00%	-0.10	-0.05	-0.08	-0.02	-0.01	-0.07	0.11	0.04	0.13	-0.12	-0.17	-0.02
NRIF SIGNALS CELL DEATH FROM THE NUCLEUS	15	4	26.67%	-0.10	0.19	0.11	0.11	0.12	0.18	0.21	0.26	0.27	0.05	0.15	0.13
ROLE OF DCC IN REGULATING APOPTOSIS	10	0	0.00%	-0.10	-0.02	-0.07	-0.03	0.09	-0.05	0.26	0.21	0.24	-0.18	-0.21	-0.16
STEROID HORMONES	29	0	0.00%	-0.11	0.20	-0.01	-0.03	0.19	0.03	-0.12	-0.16	-0.15	0.10	0.11	0.09
SPHINGOLIPID DE NOVO BIOSYNTHESIS	31	0	0.00%	-0.11	0.24	0.03	-0.04	0.23	0.07	0.18	0.26	0.21	0.15	0.21	0.13
	42	U	0.00%	-0.11	-0.26	-0.17	-0.14	-0.31	-0.19	0.01	0.04	-0.03	0.15	0.20	0.09
	35	0	0.00%	-0.11	-0.19	-0.01	-0.03	-0.18	0.01	-0.09	0.33 -0.12	-0.06	-0.03	-0.11	-0.12
REGULATED PROTEOLYSIS OF P75NTR	10	0	0.00%	-0.11	0.16	0.10	-0.01	0.13	0.05	0.23	0.29	0.28	0.04	0.15	0.12
IKK COMPLEX RECRUITMENT MEDIATED BY RIP1	10	0	0.00%	-0.11	-0.07	-0.09	-0.02	0.25	0.06	0.01	0.08	0.00	0.13	0.19	0.10
BIOLOGICAL OXIDATIONS	139	0	0.00%	-0.12	0.27	0.06	-0.01	0.24	0.10	0.20	0.22	0.14	0.07	0.08	0.01
PHASE1 FUNCTIONALIZATION OF COMPOUNDS	70	0	0.00%	-0.13	0.20	0.00	0.05	0.26	0.12	0.31	0.32	0.25	0.28	0.28	0.23
XENOBIOTICS	16	0	0.00%	-0.13	0.04	-0.04	-0.04	-0.03	0.05	0.23	0.14	0.18	0.10	0.03	0.05
STNTRESIS OF BILE ACIDS AND BILE SALTS	19	0	0.00%	-0.13	0.08	-0.01	-0.13	0.03	-U.U3	0.31	U.28	0.27	-0.19	-0.17	-0.18

SYNTHESIS OF GLYCOSYLPHOSPHATID/UNOSITOL GPI REGULATION OF INSULIN SECRETION BY ACTIVICHOLINE SPHINGOLIPID METABOLISM (EVERSIBLE HYDRATION OF CABBON DIOXIDE GENERIC TRANSCRIPTION PATHWAY PTM GAMMA CABBOXYLATION HYPUSINE FORMATION AND ARYLSULFATASE ACTIVATION ION TRANSPORT BY P TYPE ATPASES ENDOGENOUS STEROLS NUCLEAR SIGNALINE BY ERBA GLYCOSPHINGOLIPID METABOLISM NEUROTRANSNITTER RELASE CYCLE ORGANIC CATION ANION ZWITTERION TRANSPORT CYTOCHROME PEGS ORRANGED BY SUBSTRATE TYPE METAL ION SLC TRANSPORTERS SYNTHESIS OF VENY LONG CHAIN FATTY ACYL COAS NCAMI INTERACTIONS SYNTHESIS OF VENY LONG CHAIN FATTY ACYL COAS NCAMI INTERACTIONS SYNTHESIS OF PIPS AT THE LATE ENDOSOME MEMBRANE TRANSMISSION ACROSS CHEMICAL SYNAPSES BRANCHED CHAIN AMIND ACID CATABOLISM PEROXISMAL UPID METABOLISM NEURONANIS LATONAL PORTEIN MODIFICATION NEURONAL SYSTEM THE ACTIVATION OF ARYLSULFATASES NUCLEAR RECEPTOR TRANSCRIPTION PATHWAY	$\begin{array}{ccccccc} 17 & 0 & 0.00'\\ 11 & 0 & 0.00'\\ 69 & 0 & 0.00'\\ 12 & 0 & 0.00'\\ 352 & 12 & 3.41'\\ 27 & 0 & 0.00'\\ 34 & 0 & 0.00'\\ 15 & 0 & 0.00'\\ 38 & 3 & 7.89'\\ 38 & 0 & 0.00'\\ 13 & 0 & 0.00'\\ 13 & 0 & 0.00'\\ 13 & 0 & 0.00'\\ 13 & 0 & 0.00'\\ 13 & 0 & 0.00'\\ 14 & 0 & 0.00'\\ 10 & 0 & 0.00'\\ 16 & 2 & 1.08'\\ 17 & 0 & 0.00'\\ 16 & 2 & 1.08'\\ 17 & 0 & 0.00'\\ 188 & 1 & 0.53'\\ 279 & 2 & 0.72'\\ 12 & 0 & 0.00'\\ 49 & 0 & 0.00'\\ 49 & 0 & 0.00'\\ \end{array}$	% - 0.14 0.13 % - 0.14 0.20 % - 0.15 0.26 % - 0.15 0.17 % - 0.15 0.17 % - 0.16 0.20 % - 0.17 0.09 % - 0.17 0.09 % - 0.18 0.25 % - 0.20 0.11 % - 0.22 0.09 % - 0.22 0.09 % - 0.22 0.11 % - 0.22 0.09 % - 0.22 0.09 % - 0.22 0.09 % - 0.22 0.11 % - 0.22 0.09 % - 0.22 0.11 % - 0.22 0.09 % - 0.23 -0.26 % - 0.24 0.16 % - 0.25 0.10 % - 0.25 0.10 % - 0.26 0.07 % - 0.27 0.17 % - 0.27 0.17 % - 0.28 0.03 % - 0.31 0.10	-0.02 -0.05 0.02 -0.09 0.08 -0.09 0.01 0.18 -0.05 -0.11 0.01 -0.08 -0.08 -0.07 0.02 -0.05 -0.03 0.18 0.02 -0.05 -0.03 0.18 0.04 -0.17 -0.09 -0.07 -0.08 0.14 -0.14 -0.16 -0.01 0.03 -0.04 0.13 -0.06 0.13 -0.10 0.08 -0.17 0.04 -0.08 0.23 -0.10 0.08 -0.17 0.04 -0.08 0.29 -0.04 0.38 -0.11 -0.01	0.05 0.06 0.15 -0.01 0.22 0.04 0.14 0.07 0.20 0.07 0.20 0.07 0.20 0.07 0.20 0.07 0.25 0.10 0.66 0.07 0.16 -0.05 0.17 0.01 0.22 0.18 0.29 0.20 0.27 0.26 -0.01 -0.08 0.23 0.12 0.10 -0.01 0.08 0.15 0.23 0.12 0.10 -0.01 0.08 0.12 0.10 -0.01 0.03 0.13 0.39 0.38 -0.02 -0.09 0.24 0.10	$\begin{array}{cccc} -0.26 & -0.12 \\ -0.16 & -0.08 \\ 0.26 & 0.28 \\ 0.11 & 0.17 \\ 0.32 & 0.27 \\ 0.07 & 0.13 \\ 0.07 & 0.19 \\ 0.04 & 0.03 \\ 0.54 & 0.48 \\ 0.37 & 0.34 \\ 0.35 & 0.31 \\ 0.03 & 0.10 \\ 0.06 & 0.08 \\ -0.16 & -0.12 \\ 0.04 & 0.07 \\ 0.01 & 0.03 \\ 0.13 & 0.12 \\ 0.04 & 0.07 \\ 0.01 & 0.03 \\ 0.13 & 0.12 \\ 0.28 & 0.34 \\ 0.42 & 0.37 \\ 0.31 & 0.30 \\ 0.31 & 0.30 \\ 0.36 & 0.37 \\ 0.31 & 0.30 \\ 0.39 & 0.22 \\ 0.26 \\ -0.24 & -0.19 \\ 0.41 & 0.40 \\ \end{array}$	-0.19 -0.15 0.25 0.15 0.30 0.07 0.17 -0.03 0.51 0.38 0.33 0.07 -0.01 -0.21 -0.05 -0.02 0.15 0.25 0.44 0.32 0.20 0.38 0.17 -0.28 0.17 -0.28 0.42	$\begin{array}{cccc} -0.16 & -0.03 \\ -0.24 & -0.15 \\ -0.04 & -0.14 \\ -0.22 & -0.18 \\ -0.12 & -0.08 \\ -0.24 & -0.23 \\ -0.03 & -0.02 \\ -0.22 & -0.11 \\ -0.17 & -0.22 \\ -0.34 & -0.28 \\ -0.19 & -0.14 \\ -0.33 & -0.02 \\ -0.11 & 0.16 \\ -0.02 & -0.05 \\ -0.19 & -0.25 \\ -0.16 & -0.19 \\ -0.16 & -0.19 \\ -0.16 & -0.19 \\ -0.25 & -0.25 \\ -0.05 & -0.25 \\ -0.03 & -0.01 \\ -0.34 & -0.25 \\ -0.03 & -0.01 \\ -0.34 & -0.25 \\ -0.03 & -0.01 \\ -0.34 & -0.25 \\ -0.25 & -0.25 \\ -0.03 & -0.01 \\ -0.34 & -0.25 \\ -0.25 & -0.25 \\ -0.03 & -0.01 \\ -0.25 & -0.25 \\ -0.03 & -0.01 \\ -0.25 & -0.25 \\ -0.23 \\ -0.25 & -0.23 \\ -0.23$	-0.05 -0.24 0.05 -0.23 -0.24 -0.08 -0.17 -0.24 -0.08 -0.17 -0.22 -0.07 -0.22 -0.07 -0.22 -0.07 -0.22 -0.27 -0.21 -0.27 -0.29 -0.21
		R H						

Subtype • Basal-like • HER2 • LumA • LumB • Normal-like • Normal

Sample Type

Sample Type

Subtype • Basal-like • HER2 • LumA • LumB • Normal-like

1.00

Subtype • Basal-like • HER2 • LumA • LumB • Normal-like

HR score group

HR score group

