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Abstract 

My PhD research project was designed to bring innovation into in vitro methods for 

identification of industrial chemicals, particularly epoxy resin systems (ERS), with skin 

sensitising potential as a means to minimise the use of animals for this purpose. In my 

research, the generalisability of two in vitro methods originally developed and validated for 

identification of small molecules to assess the skin sensitising potential of ERS was 

assessed. Specifically, my research focussed on (i) the human cell line activation test (h-

CLAT) which mimics the characteristics of Langerhans cells during the maturation process 

following their activation by chemical sensitisers, and (ii) the direct peptide reactivity assay 

(DPRA), that assesses the initial interaction between potential chemical sensitisers with 

human skin proteins. The ERS data generated using these in vitro methods were 

compared with the skin sensitisation data for the same compounds generated using the 

widely accepted murine local lymph node assay (LLNA) in order to gain insight into the 

accuracy and reliability of the in vitro methods.  

For h-CLAT, I optimised the assay conditions for a 96-well format using 1.6x105 cells/well 

as well as anti-CD54-FITC and anti-CD86-PE. The relative fluorescent intensity (RFI) of 

CD54 and CD86 on THP-1 cells was determined using three-coloured flow cytometry. A 

chemical was regarded as being a positive sensitiser if the RFI of CD54 was >200% 

and/or that for CD86 was >150%.  Five ERS tested in the h-CLAT assay, viz bisphenol A 

diglycidyl ether (DGEBA), trimethylolpropane triglycidyl ether (TMPTGE), 

poly(ethyleneglycol) diglycidylether (PEGGE)  tetraphenylolethae glycidyl ether (THETGE), 

and poly[(phenyl glycidyl ether)-co-formaldehyde] (PPGE) gave negative results. These 

findings imply that the h-CLAT assay undertaken in standard format may be unsuitable for 

assessing skin sensitisation potential of ERS as the CD54 and CD86 were not induced. 

To address this issue, I investigated the possibility that ERS induced cytokine release in 

the h-CLAT assay may be a more sensitive marker of skin sensitisation than changes in 

expression levels of CD54 and CD86 on THP-1 cells. Encouragingly, concentrations of the 

cytokines, IL-6 and IL-8, in the cultured THP-1 cell supernatant quantified using a Meso 

ScaleTM Discovery human pro-inflammatory multiplex immunoassay, were markedly 

increased in DGEBA, TMPTGE, THETGE and PPGE. 

For the DPRA, chemicals with known sensitising capacity were incubated with three 

synthetic heptapeptides, Cor1-C420 (Ac-NKKCDLF), heptapeptides containing cysteine 
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(Ac-RFAACAA) and lysine (Ac-RFAAKAA) in order to determine the optimal experimental 

conditions. The sensitising potential of the chemicals were correlated with depletion of 

each heptapeptide individually in a reaction mixture. The applicability of the DPRA to 

assess the skin sensitising potential ERS was investigated together with known positive 

and negative control compounds. The aforementioned heptapeptides were selected as 

they had been previously shown to have a high correlation with LLNA data when used to 

assess small molecules.  

My DPRA findings show that the optimal incubation temperature for incubation of all 

heptapeptides was 25°C. Importantly, my data also show that the apparent heptapeptides 

depletion level is affected by the tube materials used for the DPRA. Specifically, Cor1-

C420 was stable in polypropylene tubes but failed to meet the assay acceptance criteria 

for days 1-3 when borosilicate glass tubes were used. As for cysteine, it was not stable on 

day 3 post-incubation when glass was used for the assay. Although lysine was stable in 

both polypropylene and glass tubes during the course of the DPRA, the apparent extent of 

lysine depleted by the chemical, ethyl acrylate, differed between polypropylene (24.7 ± 

5.8%) and glass (47.3 ± 7.7%) vials. Another novel finding was instability of the peptide-

chemical complex (i.e. Cor1-C420-cinnamaldehyde and cysteine-2,4-

dinitrochlorobenzene) suggesting that the complex formation may be partially reversible. 

This information suggests that data generated by the DPRA in high-throughput format 

involving the screening of hundreds of chemicals simultaneously, may not be accurate. 

Poor aqueous solubility of ERS in in vitro assays is a considerable challenge. To address 

this issue, the solubility of five ERS using a range of solvent:reaction buffer combinations 

was compared. In brief, a solvent comprising a 1:1 methanol:acetonitrile containing 1% 

tert-butanol was effective in solubilising these five ERS in reaction buffer. Using this 

optimised solvent system for dissolution of DGEBA, TMPTGE, THETGE and PPGE, the 

DPRA data generated were significantly correlated with the LLNA data on skin 

sensitisation with the exception that PEGGE was positive in the DPRA but classified as a 

non-sensitiser in the LLNA. 

In summary, my findings show that there are many challenges to be overcome in future 

work beyond the scope of my PhD research project in terms of adapting the DPRA and h-

CLAT assays to high-throughput format in order to provide accurate information on the 

skin sensitisation potential of novel industrial chemicals. 
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1.1. Human skin 

Human skin is the largest organ in the human body.  It plays crucial roles against physical 

injury, primary defence against infection, prevents excessive water loss as well as 

detoxification and metabolism of xenobiotic compounds from our surroundings, such as 

pollutants, drugs and cosmetics (Kao and Carver, 1990, Brodell and Rosenthal, 2008). In 

general, human skin consists of several layers, the epidermis, dermis and the 

subcutaneous layer. The epidermis functions as a primary physical defence barrier against 

large molecules that are not permeable to the lipid bilayer of the skin (Lee et al., 2006). 

The epidermis is divided into various strata, with the stratum corneum comprising the 

outermost layer, followed by the stratum lucidum, stratum granulosum, stratum spinosum, 

and stratum basale before the dermis layer (Figure 1-1) (Venus et al., 2011). Within the 

stratum corneum, there are numerous cells and signalling mediators involved in mediating 

the cutaneous immune responses. 

Dermatological disorders or skin diseases refer to the physical impairment of the skin. Skin 

disease is a very common physical disorder as almost everyone in the community has 

been diagnosed with at least one skin condition once in their lifetime (Marks et al., 1999). 

The most common skin diseases reported in Australia are acne, atopic dermatitis, 

psoriasis and warts. Skin diseases vary immensely from mild conditions such as simple 

visible skin alterations, like a rash and redness to severe ailments which cause scarring, 

disfigurement or even fatality (Marks et al., 1999).  

Dermatitis is a skin condition clinically characterised by inflammation of the skin in 

response to external stress or irritants (Patel and Nijhawan, 2008). Exposure to exogenous 

causative allergens, including both naturally occurring and synthetic substances may lead 

to the elicitation of visible clinical symptoms such as eczema, erythema and pruritus 

(Bourke et al., 2009, Cashman et al., 2012). Dermatitis can be categorised into several 

types that include contact dermatitis, atopic dermatitis, stasis dermatitis, nummular 

dermatitis and seborrheic dermatitis. One of the most commonly reported types of 

dermatitis in the workplace is contact dermatitis (Lushniak, 2000).  
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Figure 1-1: Human skin structure. Human skin is divided into three main layers which are the epidermis, dermis and subcutaneous 

layers. The epidermis is further divided into several layers with the stratum corneum comprising the outermost layer. The stratum 

corneum is cornified with a layer of keratinocyte cells which act as an initial barrier to the penetration of exogenous compounds. 
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1.2. Contact dermatitis: The skin disease1 

Contact dermatitis is defined as an inflammatory reaction in response to foreign 

substances that come into contact with the skin (Patel and Nijhawan, 2008). It mainly 

affects exposed skin areas, such as the hands, legs, arms and face, although it may occur 

on other parts of the body (Belsito, 2005). Typically, it can be classified into three phases, 

acute, subacute and chronic inflammatory reactions (Ghosh, 2009). An acute inflammatory 

reaction is characterised by pruritus, erythema and vesiculation owing to vasodilation and 

migration of leukocytes to the site of invasion (Krasteva et al., 1999). This may be within a 

short period of time, which can be either minutes or delayed up to 24 hours after skin 

contact with exogenous compounds (Krasteva et al., 1999). A chronic inflammatory 

reaction involves pruritus, xerosis, lichenification, hyperkeratosis and fissuring as a result 

of prolonged and persistent inflammation caused by external stimuli (Bourke et al., 2009, 

Cashman et al., 2012). A state between acute and chronic reactions is known as subacute 

dermatitis. Similar to acute and chronic reactions, subacute dermatitis has noticeable 

erythema and scaling on the skin surface (Ghosh, 2009). 

Contact dermatitis is influenced by both intrinsic and extrinsic factors. Intrinsic factors 

include age, gender, ethnicity, epidermal barrier texture and genetic polymorphism whilst 

extrinsic factors comprise geographical and environmental factors, as well as biochemical 

properties of the exogenous compounds, all of which may have an impact on skin 

reactivity (Belsito, 2005, Cashman et al., 2012, Zhai et al., 2012, Landeck et al., 2012). 

Contact dermatitis accounts for up to 95% of reported work-related skin diseases 

(Lushniak, 2000). Epidemiological studies of contact dermatitis across different regions, 

such as in the United States (US), Europe, Africa and Asia illustrate that occupational 

contact dermatitis (OCD) is the most common occupational skin disease (Keegel et al., 

2009). OCD is frequently reported among medical practitioners, hairdressers, beauticians, 

chefs, cleaners, farmers, construction and specialised epoxy workers as well as those 

within manufacturing industries. This apparent higher incidence rate of OCD in the 

aforementioned professions is due to the use of distinctive chemical components in latex, 

hair dyes, cosmetics, pesticides, metals, cement and epoxy resins (Abbott et al., 2009, 

                                                 
1 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 
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Cahill and Andersen, 2010, Gimenez-Arnau, 2011, Idriss et al., 2012, Liippo and 

Lammintausta, 2011, Lowney and Bourke, 2011, Mahler, 2011, Mikov et al., 2011, Sosted, 

2011, Yasky et al., 2011). OCD has become both a significant public health concern in 

terms of employee pain and suffering as well as a considerable socioeconomic burden due 

to reduced productivity comprising lost work days and higher manufacturing costs 

(Cashman et al., 2012, Frosch et al., 2011, Lyons et al., 2013). In the US alone, the 

estimated annual direct and indirect costs of occupational skin diseases for 2012 

exceeded USD1 billion; a value that was likely underestimated due to many unreported 

cases that remain unaccounted for (Cashman et al., 2012, Lushniak, 2004). Additionally, 

the cost of dermatological treatments in the US is forecast to reach USD18.5 billion per 

annum by 2018 (Evers, 2013). 

1.3. Types of contact dermatitis 

Contact dermatitis can be classified into contact urticaria (CU), an immediate 

immunological or non-immunological reaction after external cutaneous contact with an 

exogenous stimulus (Davari and Maibach, 2011); irritant contact dermatitis (ICD), a non-

allergic inflammatory reaction by a combination of endogenous and exogenous factors 

(Slodownik et al., 2008); or allergic contact dermatitis (ACD) which involves sensitisation of 

the immune system in response to specific causative agents (Rustemeyer et al., 2011).  In 

most cases, the various types of contact dermatitis are indistinguishable clinically as they 

exhibit similar signs and symptoms involving similar basic underlying inflammatory 

pathways (Rustemeyer et al., 2011). 

1.3.1. Contact urticaria 

In general, contact urticaria (CU) is a less common type of contact dermatitis. According to 

Jacob and Steele (2006b), CU represented only approximately 0.5% of all reported contact 

dermatitis cases. CU is provoked by a type I hypersensitivity immune response where it 

evokes a rapid but transient vascular response of the skin upon direct contact with an 

exogenous stimulus (Grabbe, 2010, Davari and Maibach, 2011). The clinical appearance 

of CU is usually characterised by papules and plaques with erythematous patches 

(Kossard et al., 2006). Symptoms presented by CU normally resolve without scarring in a 

short period of time and rarely last for more than several days (Zuberbier et al., 2009). The 

underlying mechanism of CU is similar to that underpinning most types of hypersensitivity 

responses that involve the association of antigen with immunoglobulin E (IgE) molecules 

on the surface of basophils and mast cells (Harvell et al., 1994). The stimulation of IgE 
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leads to the local release of mediators, such as histamine resulting in the visible wheal-

and-flare clinical manifestation as well as itching and a localised burning sensation (Harvell 

et al., 1994). 

1.3.2. Irritant contact dermatitis 

Irritant contact dermatitis (ICD) is the most common type of OCD which comprises 80% of 

all occupational skin diseases (Sasseville, 2008). ICD is well recognised as non-

immunological local skin inflammation triggered by injury as a direct result of skin contact 

with caustic chemicals (Levin and Maibach, 2002). However, it has been suggested that 

multiple immunologic-like pathways may also trigger ICD (Levin and Maibach, 2002, 

Slodownik et al., 2008). ICD is commonly accompanied by erythema, oedema and 

corrosion following single or repeated exposure of an irritant to the same cutaneous site 

(Kartono and Maibach, 2006, Mathias and Maibach, 1978). 

ICD can be either an immediate or a cumulative reaction (Levin and Maibach, 2002). The 

immediate causative agents are often related to strong acid and alkaline agents with 

corrosive properties or highly concentrated chemicals that are capable of generating 

chemical burns rapidly after skin contact (Kartono and Maibach, 2006, Sasseville, 2008). 

In contrast, cumulative ICD occurs when an individual is continuously exposed to weak 

irritants such as detergents or wearing gloves over long periods of time (Sasseville, 2008). 

ICD is a consequence of cell disruption in the epidermis and dermis layers by direct 

cytotoxic action of the irritants (Ale and Maibach, 2010). The noticeable physical changes 

in the skin are due to alterations in the skin’s biological system, such as transepidermal 

water loss, epidermal barrier disruption as well as the release of vasoactive peptides and 

pro-inflammatory signalling molecules (Sasseville, 2008).  

The threshold of susceptibility to irritants is varied among individuals owing to multiple 

factors such as the thickness of the physical barrier, the volume and concentration of the 

irritant, as well as the frequency, duration and area of exposure (Landeck et al., 2012, 

Slodownik et al., 2008). The fundamental mechanisms involved in the inter-individual 

variation of susceptibility to skin irritants are yet to be defined (Watkins and Maibach, 

2009). Studies on the genetic susceptibility to ICD have mainly focused on genes involved 

in skin inflammation such as the pro-inflammatory cytokines, interleukin (IL)-1α, IL-1β, IL-8 

and tumour necrosis factor (TNF)-α and the anti-inflammatory cytokine, IL-10 (Kezic et al., 

2009). As TNF-α plays a role in inducing inflammation, its expression level were thought to 

affect an individual’s response towards irritants, which later led to the discovery of 
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polymorphic variants of TNF-α in normal and ICD individuals (Allen et al., 2000). Recently, 

Landeck and colleagues (2012) found that individuals with the TNF-α-308 polymorphism 

were more likely to develop ICD whereas the TNF-α-238 variant had a shielding effect 

against the development of ICD in those individuals. Hence, susceptibility to development 

of ICD appears to be associated with genetic heritability, at least in part. 

1.3.3. Allergic contact dermatitis2 

Allergic contact dermatitis (ACD) is a type IV delayed hypersensitivity cutaneous immune 

reaction which is mediated by T-lymphocytes occurring upon repeated skin exposure to 

contact allergens (Kimber et al., 2002a). Similar to ICD, the chances of an individual 

becoming sensitised to a particular chemical are dependent upon both the specific 

properties of the chemical as well as the particular individual’s susceptibility (Basketter and 

Maxwell, 2007). ACD develops in two stages, the sensitisation phase and the elicitation 

phase (Figure 1-2) (Kimber et al., 2011). 

1.3.3.1. Sensitisation phase 

During the sensitisation phase, skin sensitisers or haptens initially come into contact with 

the stratum corneum and subsequently gain access to the body system through the viable 

epidermis. The invasion of haptens triggers the local release of pro-inflammatory 

molecules which subsequently induce the binding of the haptens with skin proteins 

(Kimber et al., 2002a). The release of pro-inflammatory molecules also stimulate the 

disentanglement and subsequent migration of Langerhans cells (LCs) from the 

surrounding keratinocytes towards the hapten-protein complex (Schwarzenberger and 

Udey, 1996). The hapten-protein complex binds to the major histocompatibility complex 

(MHC) on LCs and is then transported into lymph nodes via the afferent lymphatics 

(Toebak et al., 2009). During the transitory migration to the lymph nodes, the activated 

LCs differentiate into mature antigen presenting cells (APCs) resulting in morphological 

changes such as the loss of endocytic/phagocytic receptors and the upregulation of co-

stimulatory molecules and MHC molecules (Toebak et al., 2009). The hapten-protein 

complex is presented by the APCs to the naïve hapten-responsive T-lymphocytes, 

followed by selective clonal expansion of effector and memory T-cells. The proliferated 

                                                 
2 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 
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population of primed antigen-specific T-lymphocytes are then disseminated into the blood 

circulation resulting in the sensitisation of an individual (Kimber et al., 2011). 

1.3.3.2. Elicitation phase 

Elicitation arises when a sensitised individual is re-exposed to the same or structurally 

similar haptens (Basketter and Maxwell, 2007). Elicitation is triggered when the haptens 

interact with the skin, either at the same or different skin site (Kimber et al., 2011).  Upon 

re-exposure, epidermal cells release a cocktail of pro-inflammatory cytokines and 

chemokines which draw the previously primed hapten-specific T-lymphocytes from the 

peripheral circulation into the epidermal layer (Kimber et al., 2011). The infiltrating T-cells 

produce inflammatory cytokines which in turn trigger the secretion of chemokines by 

keratinocytes, resulting in increased lymphocyte infiltration from blood vessels into the 

epidermal compartment leading to the development of ACD (Basketter and Maxwell, 2007, 

Toebak et al., 2009). 



Chapter 1 

9 
 

 

Figure 1-2: Schematic overview of the mechanisms underpinning skin sensitisation during the sensitisation and elicitation phases. 1. 

Haptens gain access through the viable epidermis. 2. Binding of haptens and skin proteins. 3. LCs bind to the hapten-protein complex 

and differentiate into matured DC’s during migration to the lymph node. 4. LCs present haptenated protein to the naïve T-lymphocytes. 5. 

Clonal expansion of specific effector and memory T-cells. 6. Proliferated T-lymphocytes disseminate into the blood circulation resulting in 

sensitisation of an individual. 7. Re-exposure of similar haptens to the same individual. 8. Release of pro-inflammatory cytokines and 

chemokines by epidermal cells. 9. Infiltration of T-cells from blood vessel into site of contact. 10. Development of ACD. 
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1.4. Mechanisms of ACD 

1.4.1. Haptens and skin proteins 

A hapten is generally a small compound with low molecular weight, generally less than 

500 Daltons, that is chemically reactive (Kaplan et al., 2012, Mowad, 2006). In addition to 

low molecular weight, a hapten is presumed to have a log Ko/w (octanol/water partition 

coefficient) in the range -1.4 to 4, which facilitates penetration of the stratum corneum 

(Kaplan et al., 2012, Martin, 2004, Chipinda et al., 2011a). In the epidermal compartment, 

the hapten modifies and binds with self-proteins in the skin which then further develop into 

immunogenic antigens, a process known as haptenation (Chipinda et al., 2011a). Haptens 

bind to skin proteins through an irreversible covalent modification or by establishing a 

chelation complex (Kaplan et al., 2012), with high bond energies varying between 200 and 

420 kJ/mol (Chipinda et al., 2011a). Specifically, the covalent binding between a hapten 

and a specific protein carrier is a result of a nucleophilic-electrophilic interaction between 

the nucleophilic residue of the skin protein and the electrophilic domain of the hapten 

(Basketter et al., 1995). 

Reactive skin proteins and their nucleophilic residues such as cysteine (-SH), histidine 

(=N-), lysine (-NH2), methionine (-S-), and tyrosine (-OH) are hapten-specific (Lepoittevin 

and Leblond, 1997, Vocanson et al., 2009).  Haptens contain distinct mechanistic domains 

that are accessible by specific skin proteins (Chipinda et al., 2011a). The most common 

mechanistic domains found on haptens are Michael acceptors, acylating agents, Schiff 

base formers, SNAr electrophiles and SN1/SN2 electrophiles (Divkovic et al., 2005, 

Chipinda et al., 2011a). These different types of nucleophilic-electrophilic binding 

mechanisms can influence the type and strength of adducts formed for downstream 

processing which subsequently affects the allergenic potency of chemicals (Chipinda et 

al., 2011a).  

Currently, 40% of skin sensitisers have been demonstrated to have electrophilic centres 

that are vulnerable toward nucleophilic attack (Chipinda et al., 2011a). The remaining skin 

sensitisers trigger the immunogenic system through different mechanisms that are 

independent of the nucleophilic-electrophilic interaction system. For instance, sensitising 

metal ions such as nickel and cobalt react with skin protein by forming non-covalent 

binding leading to the formation of protein-metal chelate complexes (Gamerdinger et al., 

2003). Regardless of the type of interactions, both processes are able to generate stable 



Chapter 1 

11 
 

bonding between hapten and skin protein to facilitate the activation of acquired immunity 

(Chipinda et al., 2011a).  

One of the most commonly identified haptens, 2,4-dinitrochlorobenzene (DNCB) is 

classified as a strong sensitiser based on human patch test and animal testing; it is widely 

used as a positive skin sensitiser control compound, for development of skin sensitisation 

assays (Gerberick et al., 2001). Extensive investigation into the sensitising chemical 

structure-activity relationships of haptens has led to the development of computer-based 

prediction models and peptide reactivity tests (Gerberick et al., 2004, Lepoittevin, 2006). 

However, some of the known sensitisers identified by the human patch test and in animal 

studies did not show any response when analysed using these non-animal testing 

methods. These false negative results suggested that not all chemical sensitisers were 

chemically reactive in nature and therefore could not be assigned into a single 

classification as haptens (Lepoittevin, 2006). 

Two distinct terms, prohapten and prehapten have since been designated to illustrate the 

different types of chemical sensitisers (Lepoittevin, 2006). These unique haptens are not 

reactive in their native forms and require additional modification in order to exhibit their 

sensitising potential (Lepoittevin, 2006). A prohapten describes a sensitising chemical that 

requires metabolic alteration by either an enzyme-induced reaction or oxidation to form a 

protein-conjugated hapten in order to activate the immune system (Aptula et al., 2007). 

Conversely, a prehapten is used to define a chemical sensitiser that requires abiotic 

transformation, not via biochemical processes to attain a protein-reactive derivative 

(Lepoittevin, 2006). Examples of pro- and prehaptens are listed in Table 1-1 (Troutman et 

al., 2011). On occasion, chemical sensitisers can act as both pro- and prehaptens given 

the optimal conditions (Aeby et al., 2008). For example, p-phenylenediamine undergoes 

enzyme activation at pH 9-10 with approximately 30 minutes exposure time, but it 

undergoes auto-oxidation when exposed to air or oxygen for more than 48 hours at pH 5-6 

(Aeby et al., 2008). 

The understanding of different chemical sensitisers and their derivatives/adducts is crucial 

for development of in vitro assays that can accurately identify potential sensitisers. To 

date, more than 4,350 chemicals have been identified as contact allergens through human 

patch tests with the number increasing over the years (De Groot and Frosch, 2011). It has 

been reported that an additional 675 new allergens were found between 1994 and 2008; 

an 18% increase over the last 14 years (De Groot and Frosch, 2011). With the increasing 
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number of potential allergens coming to light, there is an urgent need to develop high-

throughput screening assays to prospectively identify allergens. The currently available in 

vitro testing approaches for identification of chemicals with skin sensitisation potential, is 

discussed in Sections 1.8. 

1.4.2. Signalling mediators 

Pro-inflammatory cytokines, inflammatory cytokines as well as chemokines facilitate signal 

transduction pathways of immunological activation in response to a skin sensitiser (Kimber 

et al., 2002a). When the skin is first exposed to allergens or haptens, keratinocytes in the 

epidermal layer release numerous pro-inflammatory mediators (IL-1α, IL-1β , IL-18, TNF-α, 

prostaglandin E2), immunosuppressive mediators (transforming growth factor (TGF)-β, IL-

10 and IL-1 receptor antagonist) and growth factors (IL-6, IL-7, IL-15, and 

granulocyte/macrophage colony-stimulating factor (GM-CSF)) (Basketter and Maxwell, 

2007) to assist the subsequent activation of the immunogenic pathways. Activated 

keratinocytes will further induce the release of signalling mediators by innate immune 

resident-skin cells, such as LCs in the epidermis as well as mast cells, DCs and fibroblasts 

in the dermis (Basketter and Maxwell, 2007, Griffiths et al., 2005). 

During subsequent hapten exposure, Type I inflammatory cytokines such as gamma 

interferon (IFN-γ) and IL-4 are produced in addition to the abovementioned pro-

inflammatory cytokines (Toebak et al., 2009, Vocanson et al., 2009). These inflammatory 

cytokines stimulate the resident-skin cells, predominantly mast cells to produce TNF-α and 

IL-8 (also called CXCL8) which in turn generate the release of chemokines from 

keratinocytes such as CXCL9, CXCL10, and CXCL11 (Toebak et al., 2009). These 

chemokines attract diffusion of CXCR3+ T-cells to the site of allergen contact. CXCR3 is a 

receptor expressed on the surface of effector memory CD4+ and CD8+ T-cells (Toebak et 

al., 2009, Vocanson et al., 2009). The recruitment of the effector memory T-cells along 

with leukocytes, DCs and non-hapten-specific cells into the epidermal layer of the skin 

leads to the secretion of chemokines CCL5, CCL17, CCL18, CCL21, and CCL22 which in 

turn amplify T-cell influx into the epidermal layer (Goebeler et al., 2001, Serra et al., 2004). 

The rapid infiltration of these signalling mediator cocktails leads to development of ACD 

(Kimber et al., 2002a). 
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Table 1-1: Examples of pro- and prehaptens 

Prohaptens Prehaptens 

a) Eugenol 

b) Polyaromatic hydrocarbons 

c) Cinnamic alcohol 

d) Carvone oxime 

e) Diphenylthiourea 

f) p-phenylenediamine 

a) Geraniol 

b) Hydroquinone 

c) Isoeugenol 

d) Methylcatechol 

e) p-phenylenediamine 

f) D-limonene 

g) β-carophyllene 
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1.4.3. Langerhans and dendritic cells 

LCs are immature DCs that are largely found in the epidermis, particularly the stratum 

spinosum layer as well as in the lymph nodes. LCs are derived from CD34+ progenitor 

cells in the bone marrow which are thought to be equipped with both immuno-stimulatory 

and -regulatory features (Strunk et al., 1997, Streilein et al., 1990). LCs comprise the 

minority of the total cell population within the epidermal layer and are consistently spread 

throughout the epidermis. LCs are characterised by the presence of adhesins (CD11a, 

CD11b, CD54, and E-cadherin), co-stimulators (CD86 and CD40), major histocompatibility 

complex (MHC class I and class II), receptors (FcεRI, CD32, CD205 and CD207) and 

lineage restricted molecules (CD1a and CD1c) (Kimber et al., 2011). Furthermore, LCs 

contain a unique intracytoplasmic organelle known as Birbeck granule (BG) which is 

thought to play a role in receptor-mediated endocytosis and antigen-presentation (Kimber 

et al., 2000, Mc Dermott et al., 2002, Valladeau et al., 2000).  

As previously detailed in section 1.4.2, the invasion of haptens induces the local release of 

a number of signalling mediators by keratinocytes which lead to the engagement of LCs, 

specifically the pro-inflammatory mediators, IL-1β and TNF-α (Basketter and Maxwell, 

2007). The release of IL-1β and TNF-α down-regulates membrane-bound E-cadherin 

expression in LCs, thereby unravelling the LCs from the surrounding keratinocytes 

(Schwarzenberger and Udey, 1996). Along with the release of LCs and pro-inflammatory 

mediators, LCs are drawn toward the hapten-protein complex (Schwarzenberger and 

Udey, 1996). During the migration of the hapten-protein complex into draining lymph 

nodes, the LCs differentiate into mature DCs which in turn, function as APCs to present 

the hapten to specific T-cells in the lymph nodes (Ainscough et al., 2013). 

1.4.4. Proliferation and recruitment of hapten-specific T-cells 

T-cells are subdivisions of lymphocytes which have fundamental roles in the immune 

system. ACD development is highly dependent on the priming and expansion of T-cells 

(Vocanson et al., 2009, Kimber et al., 2011). There are two essential signals involved in 

regulating T-cell activation (Basketter and Maxwell, 2007). The initial signal encompasses 

the interaction of the T-cell receptor and an APC which is initiated by the presentation of 

the hapten-protein complex to naïve hapten-specific T-lymphocytes, CD4+ and CD8+ T-

lymphocytes within the groove of its MHC Class I and II surface molecules (Kaplan et al., 

2012). Allergen-specific effector CD8+ T-cells are activated by the APCs and further 

differentiated into cytotoxic T-cells (Tc1/Tc17) while CD4+ T-cells develop into T-helper 
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cells (Th1/Th17) (Vocanson et al., 2009). CD8+ T-cells primarily produce cytokines, 

typically IFN-γ and IL-2 which initiate the inflammatory reaction in ACD (Kimber et al., 

2011). CD4+ T-cells are speculated to have an immunoregulatory role in ACD where they 

regulate both priming and expansion of specific CD8+ T-cells in the lymphatics, along with 

activating CD8+ T-cells in the skin (Kimber et al., 2011, Vocanson et al., 2009). The 

second signal involves interaction of co-stimulatory molecules, CD28 on T-cells with the 

cell surface molecules, CD80 or CD86 on DCs, which promotes cell cycle progression, T-

cell activation and amplification (Basketter and Maxwell, 2007).  

1.5. Etiology of ACD3 

To date, more than 4000 chemicals are linked to induction of ACD in humans (Cahill et al., 

2012). The 18-year retrospective analysis of ACD patients identified a number of 

frequently defined contact allergens, some of which have been summarised in Table 1-2 

(Cahill et al., 2012). Human patch tests series including the North American Series, the 

European Baseline Series, the International Standard Series and the Thin-layer Rapid Use 

Epicutaneous Tests (TRUE) were developed to identify chemical sources of ACD. Their 

development involved compilation of chemical substances commonly implicated in the 

population of a given geographical area to cause ACD (Spiewak, 2008).  

1.5.1. Epoxy resin system (ERS) 

Epoxy resin-induced ACD was first reported in the 1950s, a time when extensive 

development of epoxy resin systems (ERS) was taking place in industry (Broughton, 

1965). The ERS is comprised of an epoxy resin, reactive diluent, hardener or other 

additives such as solvents, modifiers and fillers which together control the chemical and 

physical properties of the ERS (Geraut et al., 2009, Nixon et al., 2012). Both epoxy resins 

and reactive diluents contain epoxide groups in their molecules (Figure 1-3) (Muskopf and 

McCollister, 1987). In general, epoxy resins are defined by the coupling reaction of 

epichlorohydrin with compounds that have at least two reactive hydrogen atoms in their 

chemical structure (Gooch, 2007). 

ERS are regarded the third most common allergen type for occupational ACD after 

chromates and rubber allergens, with ERS reported as the primary source of ACD in the 
                                                 
3 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 
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plastics manufacturing industry (Geraut et al., 2009). The prevalence of ERS-induced ACD 

by country is summarised in Table 1-3. 

It was estimated that for individuals with ERS-associated ACD, 60-80% were sensitised 

to diglycidyl ether bisphenol A (DGEBA), an ERS that is widely used in industry (Björkner 

et al., 2011). This high prevalence resulted in the inclusion of DGEBA in the human patch 

test series since the 1960s (Geraut et al., 2009). Other epoxy resins including diglycidyl 

ether bisphenol F (DGEBF) and tetraglycidylmethylenedianiline are also associated with 

the induction of ACD (Nixon et al., 2012, Geraut et al., 2009). 

Apart from epoxy resins, epoxy hardeners, predominantly polyamine compounds such as 

triethylenetetramine (TETA) and diethylenetriamine (DETA), as well as reactive epoxy 

diluents (e.g. phenyl glycidyl ether and p-tert-butylphenyl glycidyl) (Geier et al., 2004), also 

cause ACD. A retrospective analysis of the records of 182 patients with ACD induced by 

epoxy resins over a 22-year period showed that 23.6% had developed an allergic 

response to epoxy hardeners (Jolanki et al., 2001). In a prospective study involving 92 

individuals with suspected and/or prior exposure to ERS, patch tests showed that they 

were responsive to the epoxy diluents, 1,6-hexanediol diglycidyl ether (19.5%) and 1,4-

butanediol diglycidyl ether (18.5%) (Geier et al., 2004), highlighting cross-reactivity 

between epoxy compounds for induction of ACD in humans.  

Although the high propensity of ERS to induce ACD is known, they are nevertheless used 

widely in commercial thermosetting products due to their strong adhesive bonding 

properties between different surfaces while exhibiting excellent resistance in harsh 

chemical and environmental conditions (Cahill et al., 2012). Worldwide demand for epoxy 

resins is forecast to reach 3 million tons by the end of 2017, with an estimated value of 

USD8.4 billion per annum (GIA forcasts the global market, 2012, Markets and Markets, 

2014). The high global demand for epoxy resins is due to their ever increasing utility in a 

wide range of industrial applications including automotive coatings, electronic coatings, 

construction and adhesive products (Dietrich and Mirasol, 2012, GIA forcasts the global 

market, 2012). At present, research on assessment of the generalisability of in vitro tests 

developed for identifying the skin sensitising potential of small molecules used in the 

toiletries and cosmetics industries, to that of industrial chemicals, is limited. Hence, this 

knowledge gap needs to be addressed.   
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Table 1-2: Common allergens and sources of exposure. 

Allergens Source 

Epoxy resin system (ERS) Adhesives, paints 

Formaldehyde Pesticides, home cleansers 

Fragrance mix Toiletries, cosmetics 

Neomycin sulphate Creams, deodorants 

Nickel sulphate Costume jewellery, tools 

 

 

Figure 1-3: Chemical structure of the epoxide group. 

 

Table 1-3: Reported prevalence of occupational ACD due to epoxy resin systems (ERS). 

Study 

Period 

Country Study Population 

(number of 

individuals) 

Prevalence of 

ERS-induced 

ACD (%) 

References 

1993-2002 Australia 1354 3.0 Cahill et al., (2005) 

1996-2006 North 

America 

2540 0.9 Amado and Taylor, (2008) 

1997-2001 Norway 2336 1.0 Romyhr et al., (2006) 

1999-2008 Portugal 2440 0.6 Canelas et al., (2010) 

2001-2010 Denmark 219 8.2 Mose et al., (2012) 

2001-2006 China 1354 8.5 Cheng et al., (2011) 

2005-2009 Denmark 20 808 1.3 Bangsgaard et al., (2012) 

2006-2008 Lithuania 816 1.5 Beliauskiene et al., (2011) 
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1.5.2. Diagnosis and prevention of ACD 

Currently, ACD is assessed via the human patch test or through physical examination and 

history taking by an experienced dermatologist (Geraut et al., 2009, Jacob and Steele, 

2006a). At present, ACD can be diagnosed by two different methods, the skin tests and 

immunological tests (Nosbaum et al., 2009). The skin tests include the human patch test 

which is detailed in Section 1.6.1 (Kanerva et al., 1999). The immunological tests involve 

assessment of allergen-specific T-cells in skin and/or blood by using methods such as 

immunohistochemistry, analysis of cytokines, culturing leucocytes from biopsy samples, 

the lymphocyte transformation test and an ELISPOT assay (enzyme-linked immunospot) 

(Nosbaum et al., 2009). Early diagnosis of ACD is crucial for appropriate prevention and 

treatment (Jacob and Steele, 2006a). Treatment is provided to severe cases by applying 

skin creams containing corticosteroids to reduce local inflammation and relieve itching 

(Cohen and Heidary, 2004).  

In order to reduce the incidence of ACD in Australia, an Australian Government statutory 

body, Safe Work Australia has made an effort to collate all cases of occupational diseases, 

including ACD, reported in Australia (Safe Work Australia, 2012). This governmental body 

aims to improve occupational health and safety of workers in Australia by providing the 

platform for risk management in the workplace (Safe Work Australia, 2012). In addition, 

the occupational skin disease database and Contact Allergen Bank Australia (CABA) have 

been established to collect national data on the incidence rates and allergens associated 

with occupational skin diseases to improve diagnosis as well as implement effective risk 

management policies (Safe Work Australia, 2012). Furthermore, awareness programs 

such as Resources about Skin Health (RASH) have been introduced to create awareness 

and educate workers on appropriate preventative measures towards OCD (Safe Work 

Australia, 2012). Since the establishment of education programs and risk assessments, 

the incidence rate of contact dermatitis in Australia based on workers’ compensation 

claims has declined significantly from 155 claims per million employees in 2005 to 98 

claims per million employees in 2009 (Safe Work Australia, 2012). 

Additionally, the prevention of ACD can be further improved by accurate identification of 

potential allergens that might lead to ACD through various skin sensitisation tests, which 

have commonly included the human patch test or animal testing (Geier et al., 2004, 

Kanerva et al., 1999, Gamer et al., 2008). The currently available skin sensitisation 

tests/assays are outlined in Section 1.6.  
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1.6. Contact allergens’ screening approaches 

Allergic contact dermatitis (ACD) is an indication of immunotoxicity in human skin (Kimber 

et al., 2002a). While it is a non-reversible skin disorder, it is a preventable disease. 

Therefore, it is important to understand the relevant biological and immunological 

mechanisms of skin sensitisation in developing new and enhanced screening approaches 

for hazard identification and characterisation. Several skin sensitisation assays have been 

developed since the early 20th century (Kligman, 1966a, Schwartz and Peck, 1944) and 

these will be discussed in the next section. 

1.6.1. Human test 

In the early 1940s, Schwartz and Peck developed the Schwartz-Peck Test (SPT) for 

estimating the total incidence rate of skin sensitisation in a population (Schwartz and Peck, 

1944). SPT was carried out by applying a test chemical on a healthy individual’s skin for 

24 to 48 hours. An interim resting period of two weeks was given to the individual before a 

new piece of test chemical patch was reapplied for the next 24 to 48 hours (Schwartz and 

Peck, 1944). The patching site was monitored throughout the study for the development of 

clinical symptoms such as erythema, oedema, papules and vesicles. The clinical 

manifestation of contact dermatitis at the re-exposure stage signified the test chemical as 

a prospective sensitiser (Kligman, 1966a, Schwartz and Peck, 1944).  

Likewise, the Human Maximisation Test (HMT) entailed a patch with test chemical applied 

on either the forearm or the lower leg in the calf region of a healthy volunteer (Kligman, 

1966c). Initially, the patch was placed for 48 hours, followed by five repeat treatments 

applied over alternate days. The individual was subsequently challenged with the same 

test article for an hour and the test site monitored closely to determine any physical 

abnormality (Kligman, 1966c). The advantage of HMT over SPT is the inclusion of the 

detergent sodium lauryl sulphate to provoke and utilise the resulting initial skin irritancy as 

a provocative agent for the subsequent application of the test chemical (Kligman, 1966d). 

Use of detergent in the HMT was to facilitate detection of a compound’s potential variability 

in its sensitisation capacity after being formulated into a different product, for example, 

drugs, cosmetics and industrial chemicals (Kligman, 1966c). The aim of the HMT was to 

give an estimate of potential hazard and the degree of impairment caused by chemicals, 

which were then classified accordingly by means of physical examination (Kligman, 

1966c). 
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However, a major concern of conducting human tests is the high possibility of a healthy 

individual being sensitised to a chemical eventually leading to ACD. Therefore, ethical 

issues with respect to human patch tests specifically human welfare, dignity, rights and 

safety have to be taken into consideration while conducting human research (Carlson et 

al., 2004). Further details on human research ethics with regard to sensitising chemical 

testing, are discussed in Section 1.7.  

Aside from ethical concerns, both SPT and HMT were only carried out within small 

populations and therefore could not provide an accurate reflection of the sensitisation rate 

of contact dermatitis within the wider and ethnically diverse population (Kligman, 1966b). 

For example, an individual with pigmented skin was found to be less responsive to 

inflammation caused by irritants and allergens (Kligman, 1966b). Furthermore, no clear 

consensus was made regarding exposure time, frequency, area and intensity that would 

ideally portray chemical exposure in real-life situations (Kligman, 1966c, Kligman, 1966b). 

Currently, the Human Repeated Insult Patch Test (HRIPT) (Kligman, 1966a) is an 

accepted human test (McNamee et al., 2008).  HRIPT involves nine repeated exposures to 

a test chemical patch applied for 24 hours over a three week period, followed by a two 

week incubation period and subsequent application of a challenge patch to a naïve site of 

the skin for 24 hours (McNamee et al., 2008, Politano and Api, 2008). The challenge site is 

then scored for skin responses, such as erythema, oedema, papules and vesicles for the 

next three days (Politano and Api, 2008). Patients exhibiting equivocal results undergo a 

rechallenge phase where both occlusive and semi-occlusive patches of the test article and 

vehicle control are placed upon the naïve sites. The post-application effect is then 

monitored over three consecutive days (McNamee et al., 2008, Politano and Api, 2008). 

HRIPT is primarily used to confirm the safety of finished products based on the threshold 

level derived from an animal model, quantitative structure-activity relationships (QSAR) or 

available human clinical data (Basketter et al., 2005). HRIPT does not assess dose-

response relationships of a test chemical as ACD largely depends on the frequency of 

chemical exposure rather than the initial induction dose (Basketter et al., 2005). HRIPT 

assists risk assessment processes by confirming a No Observed Effect Level (NOEL) of a 

chemical which is the maximum safety level that does not induce skin sensitisation in a 

healthy human population (Api et al., 2008, Gerberick and Robinson, 2000). NOEL in turn 

has been used as a data source for fostering the No Expected Sensitisation Induction 

Level (NESIL), which indicates the absence of an unfavourable response in humans to a 

particular formulation (Api et al., 2008).  
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However, as human tests are considered unethical with their results affected by numerous 

unclarified variable factors, extensive efforts have been made to provide alternative 

assessments that suitably represent a human’s immunological response to chemical 

sensitisation (Basketter, 2009). 

1.6.2. Animal tests 

The use of various animal models in predicting skin sensitisation, developed since the mid-

1930s, was the first step to minimise and avoid human testing (Landsteiner and Jacobs, 

1935). 

1.6.2.1. Guinea pig model 

The guinea pig test on contact hypersensitivity was first developed in the mid-1930s (Voss, 

1958, Landsteiner and Jacobs, 1935, Draize et al., 1944). Guinea pig tests were later 

revised and named as the Buehler Test (BT) (Buehler, 1965) and the Guinea Pig 

Maximisation Test (GPMT) (Magnusson and Kligman, 1969). Both BT and GPMT mimic 

the induction and challenge phases in human skin tests, in that the test substance was 

initially applied to the back of a shaved guinea pig, followed by a subsequent application 

(challenge phase) two weeks later (Buehler, 1965, Magnusson and Kligman, 1969). The 

test site was observed and graded according to the severity of erythema manifested 

(Magnusson and Kligman, 1969, Robinson et al., 1990). GPMT which incorporated the use 

of Freund’s Complete Adjuvant (FCA) to enhance the immunological response of the 

animal was considered to a more sensitive test than BT in detecting chemical allergens 

(Maurer et al., 1994). While BT and GPMT have successfully identified numerous 

chemicals, false negative and inconsistent results were obtained in part due to the difficulty 

in determining the ideal exposure frequency and duration as well as concentration of test 

substance (Robinson et al., 1990, Maurer et al., 1994). Furthermore, inconsistencies in 

classification of the sensitisers were largely due to the subjective nature of determining the 

severity of the animal response, and therefore not quantifiable (Vial and Descotes, 1994). 

Overall, sensitivity and specificity of the guinea pig tests were reported to be 85% and 

83%, respectively when compared to known human clinical cases that involved 70 

selected chemicals (Vial and Descotes, 1994). 
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1.6.2.2. Mouse model 

The mouse Ear Swelling Test (MEST) was first described in the 1980s as an alternative 

assay to the guinea pig model in assessing contact allergens (Moller, 1984, Gad et al., 

1986). The mouse test was preferred over the guinea pig tests as the former was cost 

effective and had a shorter experimental period which entailed use of fewer animals and 

required less space (Gad et al., 1986). More importantly, Asherson and Ptak (1968) had 

successfully shown that the passive transfer of delayed-type contact hypersensitivity could 

be generated in a mouse.  

During the induction phase of MEST, intradermal injections of FCA emulsion followed by 

test substance are applied to the mouse (Gad et al., 1986). Application of the test 

substance was repeated on the abdomen for four consecutive days, and the mouse was 

challenged with a final application on the ears one week later with test substance and 

vehicle control substance, each on a separate ear of the mouse (Gad et al., 1986). MEST 

uses the swelling of mouse ears as a quantitative end point, by measuring the thickness of 

both ears. An increment of thickening of the ears as result of the applied test substance 

would indicate the sensitisation potential of the test substance (Gad et al., 1986).  

While MEST had been reported to successfully identify sensitisers (Gad et al., 1986), a 

later report contradicted the earlier findings whereby more than half of the same 

sensitisers tested using MEST at two separate laboratories resulted in inconsistent results 

(Dunn et al., 1990). Moreover, MEST was not thought to be a suitable assay for classifying 

weak or moderate sensitisers as these sensitisers would be unable to produce significant 

ear swelling and lead to false negative results (Gad, 1994). However, use of vitamin A as a 

supplement in MEST was suggested to boost the immune response in mice which could 

potentially help in detecting weak sensitisers (Maisey and Miller, 1986).  

Unlike MEST, the Local Lymph Node Assay (LLNA) uses T-cell proliferation in the lymph 

nodes as a quantitative endpoint (Basketter et al., 2002, Kimber et al., 1986, Kimber et al., 

1989, Kimber et al., 2002b). LLNA provides a better platform for discriminating the potency 

of allergens as LLNA has the advantage of producing a dose response to sensitisers, in 

that the extent of T-cell proliferation in the lymph nodes is proportional to the dose or 

potency of the sensitiser (Basketter et al., 2002). This basic mechanism underlying the 

LLNA is therefore similar to the sensitisation phase in humans (Figure 1-2) where naïve 

mice exposed to a test substance on the ears resulted in a corresponding degree of 

sensitisation by T-cell expansion that is measured by the amount of radiolabelled 
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thymidine (3H-thymidine) incorporation into the cellular DNA of draining lymph nodes 

(Kimber and Basketter, 1992). Moreover, the challenge phase is not required in the LLNA 

which reduces the duration and magnitude of animal pain and suffering (Kimber et al., 

1986). 

Results of each test treatment in the LLNA are expressed as a stimulation index (SI), 

which is the ratio of the T-cell proliferation in the treated group of mice to that of the 

concurrent vehicle/solvent control group (Omori and Sozu, 2007, Basketter et al., 1999b). 

A chemical with SI≥3 is regarded as a sensitiser (Basketter et al., 1999b). The potency of 

skin sensitisers are expressed as an EC3 value, which represents the estimated chemical 

concentration (as a percentage value) that is able to induce a three-fold increase in T-cell 

proliferation, i.e. SI=3 (Basketter et al., 1999b). The level of radiolabelled thymidine 

incorporated into the DNA of auricular draining lymph nodes is proportional to the potency 

of the hapten (Basketter et al., 1999a, Basketter et al., 1999b, Gerberick et al., 2001). The 

EC3 values derived from the LLNA correlates well with sensitising potencies of 

compounds obtained from human clinical data, with non-sensitisers having an EC3 value 

of more than 100% while strong sensitisers with low EC3 values, generally less than 1% 

(Basketter et al., 1999a, Gerberick et al., 2001, Kimber et al., 2003). This classification 

allowed haptens to be classified as non-sensitisers, weak, moderate, strong or extreme 

sensitising agents (Table 1-4) (Kimber et al., 2003).  

At present, there are two additional modified versions of the LLNA that employ different 

techniques in quantitating lymph node T-cell proliferation (OECD, 2010b, OECD, 2010c). 

The conventional LLNA employs the use of 3H-thymidine to determine the total 

radiolabelled thymidine incorporated into the DNA of newly divided T-cells in the lymph 

nodes (OECD, 2010a). However, while the conventional LLNA is well established and 

provides consistent data, there is a huge concern with using radioactive material in the test 

system (Takeyoshi et al., 2001). The current modifications made on the typical LLNA 

protocol incorporating the use of non-radioactive materials such as LLNA:BrdU-ELISA (5-

bromo-2-deoxyuridine-enzyme-linked immunosorbent assay) and LLNA:DA  (developed by 

Daicel Chemical Industries, Ltd.) for quantifying T-cell proliferation (OECD, 2010b, OECD, 

2010c). 

To date, the LLNA is the only in vivo method that has been subjected to a formal validation 

process by the Interagency Coordinating Committee on the Validation of Alternative 

Methods (ICCVAM, 1999). The LLNA has been accepted as a stand-alone testing method 
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for hazard identification and risk assessment of chemicals (ICCVAM, 1999). In addition, 

the LLNA was incorporated as a Test Guideline (No. 429) by the Organisation of Economic 

Cooperation and Development (OECD) in 2002 (OECD, 2002, OECD, 2010a). 

1.6.2.3. Rat model 

Apart from the guinea pig and mouse models, contact hypersensitivity has been tested in 

other animal models. Arts and colleagues (1996) performed contact hypersensitivity tests 

using five different rat strains. The experiment was performed similarly to the murine LLNA 

and the results were found to be comparable with those from the murine LLNA (Arts et al., 

1996). However, due to the larger ear surface and slower immune response in rats, the 

LLNA in rat models required a higher treatment volume of test chemicals and an additional 

day for radiolabelling proliferating T-cells (Arts et al., 1996). Additionally, both facial and 

auricular draining lymph nodes were required for analysing the proliferation of T-cells, as 

the facial lymph nodes in rats act as the draining lymph nodes from the ears (Tilney, 

1971). 

 

Table 1-4: Potency classification of LLNA (Kimber et al., 2003) 

EC3 Value (%) Potency Classification 

≥10 - ≤100 Weak 

≥1 - <10 Moderate 

≥0.1 - < 1 Strong 

<0.1 Extreme 
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1.7. Animal and human welfare  

The use of animals and humans as testing models for identifying potential skin sensitisers 

has long provoked much ethical debate (Basketter, 2009, Carlson et al., 2004). To that 

end, the Helsinki declaration produced by the World Medical Association since 1964 with 

six revisions (most recent revision in 2008) provides guidance on the involvement of 

humans as test subjects in research studies (WMA, 2008). It is also compulsory that 

approval from the Independent Ethics Committee has to be obtained prior to research 

commencement (WMA, 2008). A major concern of using human subjects in chemical 

sensitisation trials is the high risk potential for development of sensitisation after the first 

exposure to the test compound (WMA, 2008). Hence, strict documentation and care must 

be taken to protect the health and welfare of the individual participants in the trial (WMA, 

2008). 

In 2003, the European Union (EU) Member States adopted the 7th amendment to the 

Cosmetic Directive (76/768/EEC) which not only imposed a ban on testing finished 

cosmetic products and ingredients on animals (testing ban), but further prohibited the 

marketing of cosmetic products or any of their raw ingredients which have been tested on 

animals (marketing ban) (EU, 1976). Since July 2013, the Cosmetic Directive 

(76/768/EEC) was  replaced by a new regulatory act, the EC1223/2009 which similarly 

requires animal testing to be replaced by alternative methods and bans the marketing of 

any products that have been subjected to animal testing (EU, 2009). Without a validated 

alternative method of assessing potential sensitisers, the enforcement of the EC1223/2009 

regulation may severely affect the cosmetics and toiletries industries, in that the safety of 

the products for the end users remain undetermined due to the lack of animal data with 

respect to their toxicity, carcinogenicity and sensitisation potential (EU, 2009). 

Furthermore, the EU REACH regulation (registration, evaluation, authorisation and 

restriction of chemicals) EC1907/2006 that came into force on 1 June 2007, put pressure 

on the testing of thousands of chemicals that had not been previously assessed for skin 

sensitisation potential, further driving the necessity to seek alternative testing approaches 

that involve fast and cost effective screening (EU, 2006). 

At present, both the ICCVAM and European Centre for the Validation of Alternative 

Methods (ECVAM) have formed cooperative measures in implementing and validating 

alternative testing approaches (Stokes et al., 2002), which will be further discussed in 

Section 1.8. 
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1.8. Non-animal screening assays 

1.8.1. In chemico assays: Peptide-chemical interactions4 

Epoxy resins and/or epoxy resin composite materials, in common with other classes of 

haptens, react with skin proteins. The hapten-protein complex is then internalised and 

processed by LCs (Aleksic et al., 2007). Protein modification, in a process known as 

haptenation, is a key step in the initiation of skin sensitisation (Chipinda et al., 2011b). The 

majority of contact allergens are electrophilic in nature, comprising Michael acceptors, 

SNAr and SN2 electrophiles, Schiff base formers or acylating agents, which underpin their 

ability to react with the nucleophilic amino acid residues of skin proteins (Chipinda et al., 

2011b, Lalko et al., 2012). For epoxy resins, the electrophilic epoxide groups react with the 

nucleophilic moieties of skin proteins via SN1 or SN2 type nucleophilic reactions (Obach 

and Kalgutkar, 2010). 

This haptenation process is mimicked in vitro by the direct peptide reactivity assay (DPRA) 

(Figure 1-4(A)) that assesses depletion of small proteins (peptides) secondary to their 

interaction with potential haptens (Gerberick et al., 2007). Briefly, in this model, synthetic 

peptides containing nucleophilic residues including cysteine or lysine are incubated with 

test chemicals at a pre-determined ratio for 24 hours to allow the binding of the active side 

chain of the peptide to the hapten. Based upon the irreversible covalent bond formation 

that occurs between haptens and amino acid residues in proteins, the DPRA quantifies the 

amount of unbound (remaining) peptide in the reaction mixture using high performance 

liquid chromatography (HPLC). Subsequently, quantification of the bound (depleted) 

peptide is determined as a measure of reactivity of the test chemical (Gerberick et al., 

2004). At present, several detection methods and peptides have been used in the DPRA 

and these methods are summarised in Table 1-5. 

At present, the DPRA has been validated by the ECVAM for the assessment of contact 

allergens as a replacement for the in vivo LLNA (Troutman et al., 2011). A test guideline 

has been promulgated by the Organization for Economic Co-operation and Development 

(OECD) highlighting the generalisability of peptide reactivity for small molecules (OECD, 

                                                 
4 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 



Chapter 1 

27 
 

2015a). However, the suitability of the DPRA test system for other chemical classes such 

as epoxy resins that contain an epoxide group remains to be assessed. 

1.8.1.1. DPRA: Chemicals tested to date 

Use of the DPRA to assess the ability of 82 compounds that are mainly used as 

ingredients in cosmetic and toiletry products, to deplete cysteine-, lysine- and glutathione-

based peptides, indicated a significant correlation between peptide depletion and their 

sensitiser potency as previously established from the in vivo LLNA data (Gerberick et al., 

2007).  

Steps undertaken to improve the accuracy of the DPRA for identification of potential skin 

sensitising chemicals have included incorporation of oxidising agents such as horseradish 

peroxidase and hydrogen peroxide (HRP/P) as well as cytochrome P450 enzymes to 

metabolically activate unreactive haptens into their more reactive hapten form, a process 

that may take place in human skin in vivo (Bergström et al., 2007, Troutman et al., 2011). 

By incorporating HRP/P into the DPRA, 83% of 70 chemicals with known sensitising 

potential were identified accurately as compared with the standard DPRA reported 

previously (89%) (Troutman et al., 2011). The apparently reduced accuracy of the HRP/P-

added DPRA analysis is misleading however, as the initial chemical set used to evaluate 

the previous DPRA prediction model did not include pre-/pro-haptens (Gerberick et al., 

2007). 

More recent refinements aimed at increasing the robustness of the DPRA to identify skin 

sensitising chemicals include using pH conditions that more closely mimic human skin pH 

and measurement of concomitant chemical-specific mass changes indicative of peptide 

adduct formation (Dietz et al., 2013). In other work, the rate constant for reactivity of 

various test chemicals with the DPRA peptide was determined to assess the extent to 

which quantitative kinetic reactivity data generated by measuring cysteine depletion at 

multiple test chemical concentrations and at various incubation times, were correlated with 

their potency as sensitisers (Roberts and Natsch, 2009, Natsch et al., 2015). However, 

drawbacks of this approach are that chemical reactivity varies markedly between various 

functional groups and the reaction rate of test chemicals with the DPRA peptide may not 

be linearly related to their in vivo sensitisation potency (Roberts and Natsch, 2009).  
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1.8.1.2. DPRA: Application to ERS 

While heptapeptides containing cysteine and lysine are the most widely used for the in 

vitro DPRA, other modified peptides have been investigated. More recently, the utility of 

the DPRA for classifying the sensitising capacity of several epoxies including novel 

analogues of DGEBF and phenyl glycidyl ether (PGE), has been examined using a 

synthetic peptide, viz PHCKRM (Pro-His-Cys-Lys-Arg-Met). The extent of peptide 

(PHCKRM) depletion by six novel epoxy analogues and the parent epoxide, PGE, was 

correlated with the sensitising potency of these epoxies determined using in vivo LLNA 

assessment (Niklasson et al., 2009). The strong sensitiser, PGE produced 88% peptide 

depletion whereas the weak epoxide sensitisers, butyl glycidyl ether and butenyl glycidyl 

ether produced 46% and 54% peptide depletion, respectively (Niklasson et al., 2009).  In a 

DPRA evaluation of DGEBF (containing 2 epoxide groups) and two variants (Variant A and 

Variant B) using the same synthetic peptide (PHCKRM), the thiol (cysteine) binding of 

DGEBF and its variants appeared to be affected by the terminal epoxide groups (O'Boyle 

et al., 2012). Variant A (DGEBF without terminal epoxide groups) did not react with free 

thiols whereas variant B (DGEBF with 1 terminal epoxide group) did react with thiol groups 

albeit to a slightly lesser extent than the diepoxide DGEBF. Interestingly, the reaction rate 

for DGEBF that contains 2 terminal epoxide groups was slightly faster than that of variant 

B. These findings are aligned with the sensitising capacity of DGEBF and its variants 

determined using the LLNA and the KeratinoSens™ assay (O'Boyle et al., 2012). 

To date, reports on the applicability of the incorporation of enzymes into the DPRA, as a 

means of bioactivation for assessing the skin sensitisation potential of epoxy resins, are 

lacking. It is known that the enzyme, epoxide hydrolase, catalyses the hydrolysis of 

epoxides to their respective dihydrodiol metabolites which react readily with skin proteins. 

Conversely, the enzyme, glutathione-S-transferase catalyzes the detoxification of epoxides 

by formation of glutathione conjugates (Obach and Kalgutkar, 2010). Hence, future 

investigation involving incorporation of epoxide hydrolase and/or glutathione-S-transferase 

into the DPRA for analysis of epoxy resin compounds is warranted, to more closely mimic 

possible bioactivation and deactivation processes within human skin that produce reactive 

electrophilic intermediates and detoxified species, respectively.  

Issues relating to the poor aqueous solubility of industrial compounds that have high log 

Ko/w, present another obstacle for use of the DPRA to assess skin sensitising potential of 

compounds such as epoxy resins. Although various solvents including dimethylsulfoxide 
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(DMSO), methanol and acetonitrile have been used to dissolve lipophilic compounds, only 

small volumes of these solutions can be used due to their limited miscibility with an 

aqueous solution of the peptide to be depleted. To that extent, microemulsion systems 

have potential to improve miscibility between an organic solution of a lipophilic test 

compound and that of an aqueous peptide solution; preliminary data suggest that this 

approach is worthy of further investigation (Merckel et al., 2010). Additionally, the 

modulation of in vitro test systems such as the DPRA by organic solvents can limit the 

range of solvents that can be used for dissolution of epoxy resin compounds. This 

limitation will be addressed in more detail in Section 1.9.  

  



 

30 
 

 

Figure 1-4: Schematic diagram summarising the steps involved in the conduct of in vitro 

assays currently available for assessment of skin sensitisation potential. (A) Direct peptide 

reactivity assay (DPRA), (B) human cell line activation test (h-CLAT), (C) myeloid U937 

skin sensitisation test (MUSST), (D) KeratinoSensTM, (E) loose-fit coculture-based 

sensitisation assay (LCSA), (F) genomic allergen rapid detection (GARD) and (G) human 

T-cell priming assay (hTCPA). 

  



Chapter 1 

31 
 

Table 1-5: Summary of currently available detection methods and peptides used for haptenation. 

Detection Method Peptide/Nucleophile Measurement Endpoint Reference 

Spectrophotometric
 

Tripeptide: GSH 
Cys: RWAACAA  
Lys: RWAAKAA 
 
4-nitrobenzenethiol (NBT) 
Pyridoxylamine (PDA) 
 

Measure peptide depletion  Schultz et al. (2005) 
Jeong et al. (2013) 
 
 
Chipinda et al. (2010), 
Chipinda et al. (2014) 

HPLC-DAD Cys: RFAACAA 
Lys: RFAAKAA 
His: RFAAHAA 
 
CysReact: RFAACAA 
Keap-257: KYDCEQR 
Keap-297: DSRCKDY 
RP17-34: KRVCEEF 
Cor1-C420: NKKCDLF 
Cofill-138: QANVYEE 
 

Measure peptide depletion  
 
 
 
Measure peptide depletion and adduct 
formation 

Gerberick et al. (2004), 
Gerberick et al. (2007) 
 
 
Natsch et al. (2007) 

HPLC-UV Tripeptide: GSH 
Cys: RFAACAA 
Lys: RFAAKAA 
 
N-(2-(1-naphthyl)acetyl)-L-cysteine 
(NAC) 
α-N-(2-(1-naphthyl)acetyl)-L-lysine 
(NAL) 
 

Measure peptide depletion 
 
 
 
Measure peptide depletion 

Gerberick et al. (2007) 
 
 
 
Fujita et al. (2014) 
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Table 1-5: cont. 

Detection Method Peptide/Nucleophile Measurement Endpoint Reference 

LC-MS Corl-C420: NKKCDLF 
 

Measure peptide depletion, peptide oxidation, 
adduct formation and thiol reactivity 
 

Natsch and Gfeller 
(2008) 

LC-MS/MS Cys: RFAACAA 
Lys: RFAAKAA 

Measure peptide depletion with the presence 
and absence of horseradish peroxidase and 
hydrogen peroxide 
 

Gerberick et al. (2009), 
Troutman et al. (2011) 

HPLC-ESI-MS Hexapeptide: PHCKRM 
 

Measure peptide depletion Niklasson et al. (2009) 
 

EC-ESI-TOF/MS Tripeptide: GSH 
Cys: RFAACAA-COOH 
Lys: RFAAKAA-COOH 
KCN 

Determine autoxidation, oxidative 
biotranformation 

Jahn et al. (2012) 

MALDI-TOF/MS Dual Peptide: 
Peptide-20: 
LHKSMGRTWQFDYNPEAAVIK 
(minus Cys)  
Peptide-21: 
LHKSMGRTWQFDYNPEACVIK (plus 
Cys) 
 

Determine the chemical-specific peptide mass 
shifts and peptide depletion 
 

Dietz et al. (2013) 

GeLC-MS/MS Human Serum Albumin Determine the total modified amino acid 
residues on HSA 
 

Aleksic et al. (2007), 
Parkinson et al. (2014) 

GSH: Glutathione, Cys: Cysteine, Lys: Lysine, His: Histidine, KCN: Potassium cyanide 
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1.8.2. In vitro assays: cell-based models  

Human LCs and DCs play key roles in skin sensitisation (Coutant et al., 1999). Hence, 

there has been considerable research attention on development of in vitro systems that 

mimic the roles of LCs and DCs in skin sensitisation. Initial in vitro assays using LCs/DCs 

were limited due to the scarcity of available LCs and inter-donor variability of DCs 

(Yoshida et al., 2003). These factors were compounded by between-laboratory variability 

in cell isolation and cell culture techniques, which led to assay reproducibility problems 

(Yoshida et al., 2003). The inter-donor variability was circumvented by the use of human 

myeloid cell lines, such as KG-1, THP-1, MUTZ-3, and U937 that have the ability to 

differentiate into cells with DC-like characteristics (Yoshida et al., 2003, Hu et al., 1996, 

Koss et al., 1996). Several in vitro model systems using human cell lines to assess the 

skin sensitising potential of contact allergens have been developed and are discussed in 

the following sections. 

1.8.2.1. Human Cell Line Activation Test (h-CLAT) 

The human Cell Line Activation Test (h-CLAT) (Figure 1-4(B)) was developed by Ashikaga 

et al. (2006) using THP-1 cells as a model for the mechanism underpinning human skin 

sensitisation. THP-1 cells are human monocytic leukemia cells which were derived from 

the peripheral blood of a male with acute monocytic leukemia (Tsuchiya et al., 1980). THP-

1 was chosen for h-CLAT as THP-1 is easily cultured and re-capitulates several desired in 

vivo mechanisms, such as esterase activity, lysozyme production and phagocytosis 

(Tsuchiya et al., 1980, Ashikaga et al., 2006). In addition, naïve undifferentiated THP-1 

cells have low endogenous expression levels of typical monocytic surface markers such as 

CD54 and CD86 (Santegoets et al., 2008) that were upregulated by skin sensitisers 

(Sakaguchi et al., 2006). Previous research was mainly focused on expression levels of 

CD86 as it is a hallmark of DCs activation and maturation, and therefore a useful marker to 

differentiate potential skin allergens/sensitisers and irritants (Ashikaga et al., 2002). 

However, the singular assessment of CD86 expression level alone was insufficient as 

sensitisers such as metal allergens failed to augment CD86 expression but alternately 

induced CD54 expression (Yoshida et al., 2003). Inter-laboratory studies showed that 

inclusion of the assessment of the upregulation of CD54 together with CD86 in the h-CLAT 

improved both the sensitivity and reproducibility of the assay (Sakaguchi et al., 2006, 

Ashikaga et al., 2006, Sakaguchi et al., 2010). 
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Further improvements to the h-CLAT were established with respect to the optimal cell 

culture and fluorescent-labelled antibody conditions to facilitate optimum binding to and 

detection of the CD54 and CD86 surface molecules by flow cytometry analysis (Ashikaga 

et al., 2006). Inter-laboratory data further revealed that threshold limits for relative 

fluorescence intensity (RFI) of 200% and 150% for CD54 and CD86 respectively allowed 

for better predictive identification of potential skin sensitisers by h-CLAT (Sakaguchi et al., 

2007). However, as some of the sensitisers appeared to augment only CD54 or CD86 

(Sakaguchi et al., 2009), the use of a weight-of-evidence approach was proposed where a 

chemical would be considered a positive sensitiser, if two out of any three independent 

data values for any one concentration fell above the threshold limits for CD54 or CD86 

(Sakaguchi et al., 2006, Ashikaga et al., 2006, Sakaguchi et al., 2010). 

A comparative study of h-CLAT, LLNA and HRIPT found that the h-CLAT gave an 

accuracy of 93.1% for the 29 chemicals tested (Sakaguchi et al., 2009). In a separate 

study, accuracy was 83% for the 51 sensitisers tested (Nukada et al., 2011). The false 

negatives from h-CLAT were attributed to weak sensitisers and the inability of THP-1 cells 

to metabolise and oxidise prohaptens and prehaptens respectively (Ashikaga et al., 2010).  

1.8.2.2. Myeloid U937 Skin Sensitisation Test (MUSST) 

The Myeloid U937 Skin Sensitisation Test (MUSST) (Figure 1-4(C)) utilises the human 

myeloid cell line U937 to determine chemical sensitisers (Ade et al., 2006, Python et al., 

2006). U937 which originated from the histiocytic lymphoma of a male patient is able to 

differentiate in response to external stimuli to form macrophage-like morphology and 

features (Sundstrom and Nilsson, 1976, Ade et al., 2006, Python et al., 2007). MUSST 

was initially developed by L’Oréal (Ade et al., 2006) and Procter & Gamble (Python et al., 

2006) whereby the upregulation of U987 surface molecular marker CD86 expression and 

cell viability are determined after 48 h exposure to a range of test chemicals. A chemical is 

regarded as a sensitiser if it results in a concentration-dependent upregulation of CD86 at 

non-cytotoxic concentrations in two concordant experiments (Ade et al., 2006). MUSST 

was further modified to include the concurrent assessment of additional markers, IL-1β 

and IL-8, where a chemical showing significant upregulation of at least two markers was 

considered a sensitiser (Python et al., 2007). Further method improvement to increase the 

detection capacity of MUSST by optimising cell density, concentration and marker 

thresholds were undertaken during the Colipa (the European Cosmetics Association) 
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interlaboratory ring trials, with the supporting results currently submitted to ECVAM for pre-

validation (Aeby et al., 2010). 

1.8.2.3. KeratinoSensTM Assay 

The KeratinoSensTM assay (Figure 1-4(D)) is a cell-based reporter gene assay for 

screening chemical compounds that provides a full concentration-response assessment 

(Emter et al., 2010). The assay is based upon a stable transgenic immortal human 

keratinocyte (HaCaT) cell line that expresses luciferase under the control of an SV40 

promoter and an antioxidant response element (ARE) derived from the human AKR1C2 

gene (Emter et al., 2010). The ARE-driven luciferase reporting cell line was developed 

based on previous findings on the stimulation of the nuclear factor erythroid-derived 2-

related factor 2 (Nrf2)-Keap1-ARE regulatory pathways by skin sensitisers (Natsch and 

Emter, 2008, Vandebriel et al., 2010). Furthermore, gene expressions studies using 

microarray and reverse transcriptase-polymerase chain reaction (RT-PCR) found ARE as 

a reliable marker for screening skin sensitisers (Emter et al., 2010, Gildea et al., 2006, 

Ryan et al., 2004). Briefly, in the KeratinoSensTM assay, the transgenic cell line is treated 

with a range of test chemical concentrations and the resulting luciferase activity used to 

determine the EC1.5. The EC1.5 value is denoted as the chemical concentration that 

induces a 50% increase in luciferase expression above background (Emter et al., 2010). 

The KeratinoSensTM assay yielded high accuracy (85%) in predicting skin sensitisers with 

high reproducibility found within and between different laboratories (Natsch et al., 2011a). 

However, as expected, the KeratinoSensTM assay failed to predict sensitisers which do not 

activate the Nrf2-Keap1-ARE regulatory pathways, such as anhydrides which are reactive 

toward amine-groups (Emter et al., 2010). Interestingly, the KeratinoSensTM is able to 

predict some prohaptens as HaCaT cells are capable of metabolising prohaptens, such as 

the putative prohaptens cinnamic alcohol, ethylenediamine and diethylentriamine that were 

initially identified as non-sensitisers in  the DPRA (Emter et al., 2010). Recently, 

KeratinoSensTM has been formally validated and the OECD test guideline has been 

published (OECD, 2015b). 
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1.8.2.4. Loose-fit coculture-based sensitisation assay (LCSA)5 

An allergen-sensitive in vitro method that combines two layers of cells, termed the loose-fit 

coculture-based sensitisation assay (LCSA), was developed using human primary 

keratinocytes from healthy donors, and mobile DC-like cells viz peripheral blood 

mononuclear cells (PBMCs) (Figure 1-4(E)) (Schreiner et al., 2008). As keratinocytes are 

proposed to have a role in haptenation via maturation of DCs, this assay has the 

advantage of being able to detect prohaptens such as isoeugenol (Schreiner et al., 2008), 

that are not detected by many in vitro model systems. In short, inclusion of keratinocytes in 

this two-tiered cell-based system facilitated metabolic activation of prohaptens into 

sensitising agents akin to that which occurs in the skin in vivo (Wanner et al., 2010).  

Similarly to h-CLAT and MUSST (as depicted in Figure 1-4(B) and (C)), LCSA quantifies 

the increase in expression of the cell surface marker, CD86 (Schreiner et al., 2007). 

Additionally, LCSA accuracy and sensitivity for assessing metal allergens such as nickel 

and cobalt, were improved by measuring accumulation of the pro-inflammatory cytokine, 

IL-6 and the chemokine macrophage inflammatory protein 1-beta (MIP-1β) (Schreiner et 

al., 2008). In a comparative evaluation of the in vitro LCSA relative to the in vivo LLNA for 

assessing the skin sensitising potential of a group of textile disperse dyes, both methods 

identified 87.5% of these dyes as having skin sensitising potential. Hence, the LCSA is a 

promising in vitro method for identifying agents with skin sensitising potential for use in 

combination with other non-animal testing methods (Sonnenburg et al., 2012). However, 

the current challenges in using the LCSA include the necessity to obtain keratinocytes and 

PBMCs from healthy human donors which makes the method susceptible to inter-donor 

variability. Additionally, the complexity and time required for seeding keratinocytes and 

PBMCs in this co-culture assay makes it low throughput and so future innovation is 

required to adapt the LCSA to high-throughput format. 

                                                 
5 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 
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1.8.2.5. Genomic allergen rapid detection (GARD)6 

Apart from quantification of changes in cell surface expression of molecules of interest, 

genomic methods may offer an alternative or complementary in vitro testing paradigm. For 

example, genomic allergen rapid detection (GARD) employs the myeloid cell line, MUTZ-3 

that resembles skin DCs with respect to transcriptional profiles and the ability to activate 

specific T-cell populations (Figure 1-4(F)) (Johansson et al., 2013). GARD uses a 

complete genome expression array approach to measure expression levels of 200 

transcripts involved in the activation of various signalling pathways involved in skin 

sensitisation.  

Unlike the KeratinoSensTM, MUSST and h-CLAT in vitro methods that use specific markers 

for classifying sensitisers, GARD utilises ‘biomarker signatures’ for identifying skin 

sensitisers, thereby potentially increasing the predictive ability of the method. An added 

advantage of GARD is that it can distinguish respiratory and skin allergens by their unique 

biomarker signatures (Johansson et al., 2013). Encouragingly, use of GARD to assess 38 

chemicals with known skin sensitisation potential in a preliminary study, showed that the 

accuracy, sensitivity and specificity of the method was high at 99% (Johansson et al., 

2011).   

Recently, Albrekt et al. (2014) stressed that chemical reactivity properties were key factors 

for consideration when developing in vitro screening models of chemical sensitisers.  

Sensitising chemicals were divided into groups based upon their mechanistic reactivity and 

assessed against various cell-signalling pathways using the GARD assay. Interestingly, 

different chemical reactivity groups induced differential changes in various cell signalling 

pathways, particularly those involved in cell cycling and metabolism. Potency in 

modulating these pathways appeared to be correlated with skin sensitisation potential 

(Albrekt et al., 2014). However, care is required to avoid over-interpretation of these 

associations with respect to potential sensitiser classification. More work is clearly required 

using larger numbers of chemicals with a broad range of functional groups of varying 

reactivity, as well as a range of concentrations and reaction times. Nevertheless, the 

GARD assay can provide invaluable information on the various cell signalling pathways 

underpinning the sensitisation process which is invaluable in informing further 

                                                 
6 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 
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development of in vitro skin sensitisation test methods. Future research is warranted to 

assess the extent to which the epoxide group in ERS will modulate cell-signalling 

responses based upon their reactivity domain and/or their sensitising potency. 

1.8.2.6. Human T-cell priming assay (hTCPA) 7 

During skin sensitisation, specific effector and memory T-cells are activated by DCs 

triggered by sensitising agents. While activation and proliferation of T-cells reflect the 

ultimate step in inducing sensitisation, there are very few assays that address this aspect 

of the sensitisation process. At present, only the in vivo LLNA is used widely to evaluate 

the activation and expansion of T-cells. More recently, an in vitro assay known as the 

human T-cell priming assay (hTCPA) was developed to assess T-cell responses initiated 

by contact allergens (Figure 1-4(G)) (Dietz et al., 2010, Richter et al., 2013). The hTCPA 

uses naïve T-cells isolated from PBMCs of healthy donors that are depleted in CD25+ and 

CD45RO+ , a T-cell population responsible for regulating hapten-specific IFN-γ-producing 

T-cells in lymph nodes (Vocanson et al., 2013). The modified T-cells are co-cultured with 

hapten-treated monocyte-derived DCs at two stages, priming and re-stimulation. After re-

stimulation, the increase in T-cell production and the cytokines, IFN-γ and TNF-α, are 

quantified using an enzyme-linked immunosorbent assay (ELISA) and an intracellular 

cytokine assay (Richter et al., 2013, Vocanson et al., 2013).  

The hTCPA has been used successfully to assess the skin sensitising potential of the 

strong sensitisers, 2,4-dinitrochlorobenzene (DNCB), 2,4-dinitrobenzenesulfonic acid 

(DNBS) 2,4,6-trinitrobezene sulfonic acid (TNBS), and moderate/weak sensitisers, 

fluorescein isothiocyanate (FITC) and α-hexylcinnamaldehyde as well as the non-

sensitisers, methyl salicylate, DMSO and sodium lauryl sulfate (Vocanson et al., 2014). 

Hence, the hTCPA has considerable potential as an in vitro method for assessing the skin 

sensitising propensity of contact allergens. However, similar to the LSCA, this method is 

time-consuming and fraught with difficulty in assay reproducibility due to the scarcity of T-

cell donors and inter-donor variability. More work is warranted to assess the applicability 

and generalisability of the hTCPA system using a larger number and a wider range of 

chemical classes. For example the hydrophobicity of DNCB led to its reduced uptake by 

DCs which in turn did not stimulate T cell proliferation (Dietz et al., 2010). While the use of 

                                                 
7 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 
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nanoparticle encapsulation of lipophilic compounds significantly increased the ability of 

DNCB to stimulate T-cell proliferation and thus increase the assay sensitivity (Vocanson et 

al., 2013), inclusion of this additional step adds another level of complexity and increases 

assay costs. 

1.8.3. In silico assays: QSAR and expert system 

The QSAR and expert system were developed to predict the sensitisation potential of a 

novel compound using computer modelling (Cronin, 2010). While neither of these assays 

is suitable for stand-alone use for replacement of animal testing to identify potential skin 

sensitisers, they provide a widely acceptable tool for data mining and screening of large 

numbers of compounds (Gombar et al., 1997, Cronin, 2010). The primary function of 

QSAR studies is to predict the biological activity of a query compound based on the 

presence of its structural characteristics (Cronin, 2010). By contrast, the expert system is a 

tool that applies a database collection of computational rules, principles and facts that are 

derived from existing knowledge of known chemicals to provide a rational prediction on the 

activity of a query compound (Gombar et al., 1997). 

In general, QSAR can be divided into two models, the global and local models (Chaudhry 

et al., 2010, Vandebriel and van Loveren, 2010). The global model aims to read-across 

compounds in all chemical classes that have been identified previously from human and 

animal data as sensitisers (Chaudhry et al., 2010). The global model is suitable for 

identifying structurally dissimilar compounds with a range of different mechanistic actions 

(Chaudhry et al., 2010). Nevertheless, the global model has comparatively low predictive 

power as any target compound that fell outside the predicted range gave rise to an 

inaccurate prediction (Chaudhry et al., 2010). By contrast, the local model investigated 

compounds that belong to a similar class either structurally or mechanistically but may 

overlook the compounds in distinct classes during sensitisation estimation (Vandebriel and 

van Loveren, 2010). In addition, QSAR also categorise compounds based on mechanistic 

platforms (mechanistic models) and empirically derived statistical approaches (empirical 

models) (Vandebriel and van Loveren, 2010). Multiples QSAR and expert systems have 

been developed. Table 1-6 summarises the current in silico models used for classifying 

and identifying skin sensitisers. These in silico models have been validated according to 

the OECD validation principles for QSAR models (OECD, 2004). 
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Table 1-6: List of currently available in silico models for assessment of skin sensitisation potential of chemicals 

In silico approaches Description References 

TOPS-Mode 
(Topological Substructural 
Molecular Descriptors) 

 Developed based on 93 compounds 
 Predicts skin sensitisers based on various mechanisms involved in skin 

sensitisation 
 Prediction based on structural understanding of compounds in the database 

(Structural Alert) 
 Successfully identified prohaptens 

Estrada et al. (2003) 

TOPKAT 
(Toxicity Prediction by Komputer 
Assisted Technology) 

 Developed based on available guinea pig test data. 
 Provides prediction on toxicity endpoint 
 Provides an algorithm for reactivity and domain prediction information 
 Uses univariate analysis8 and optimum prediction space (OPS)9 system 

Gombar et al. (1996) 

DEREK Nexus  
(Deductive Estimation of Risk 
from Existing Knowledge) 
 

 Expert system 
 Predicts sensitisers using structural alert and rule-based approach 
 Associated with metabolism prediction program (METEOR) for prohapten 

prediction 

Ridings et al. (1996) 

MCASE 
(Multi Computer Automated 
Structure Evaluation) 

 Expert system 
 Developed based on human and animal studies 
 Rule-based approach 
 Prediction based on structural fragments (subunit) of compounds 
 Estimates potency of a target compound 
 Associated with metabolism tool (META) 

Saiakhov and 
Klopman (2008) 

  

                                                 
8 Univariate analysis: Statistical approach performed based on a single variable. 
9 Optimum prediction space (OPS): Prediction models are fine-tuned based on the multivariate space associated with target chemical. The model is applicable when 
the target compound is laid within or near the boundary of the training set. 
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Table 1-6: Cont. 

In silico approaches Description References 

SMARTS Patterns 
(Smiles Arbitary Target 
Specification) 

 Developed based on LLNA data 
 Defines target compound in the two dimensional string which allow database 

screening of SMILES strings 
 Identifies potential mechanisms of action which enable it to be categorised in an 

appropriate reactivity domain 
 Trend analysis carried out followed by assigning reactivity domain of target 

compound 

Enoch et al. (2008) 

TIMES-SS 
(Tissue Metabolism Simulator for 
Skin Sensitisation) 

 Expert system 
 Based upon the data from a consortium comprising industry and regulatory 

agencies 
 Utilises electrophilic mechanistic information 
 Integrates structure-toxicity and structure-metabolism relationships through a 

number of transformations simulating skin metabolism and interaction of the 
generated reactive metabolites with skin proteins 

 Incorporates Phase I and II skin enzymes that catalyse biotransformation reactions 
 Predicts the interaction between reactive target compound with skin proteins 
 Includes 3D QSAR submodel for evaluating compound reactivity (sensitisation 

rate) covering numerous alerting groups 

Patlewicz et al. 
(2007) 

OECD Application Toolbox  Served as a platform for incorporating various modules and databases 
 Identifies target compound based upon structural similarity, mechanism of action, 

similar metabolites 
 Predicts target compound by using read-across, trend analysis (interpolating or 

extrapolating from a trend in existing database) and/or QSAR models. 
 Predicts peptide binding potency 

OECD 
http://www.qsartoolbo
x.org/ 
 

VEGA  
(Virtual Models for Property 
Evaluation of Chemicals within a 
Global Architecture)  

 Read-across strategy where target compound assessment is based upon that of 
structurally related substances. 

 Provides algorithms that are discrete from other QSAR models where similar 
compounds will be identified and the applicability domain will be analysed. 

CAESAR 
http://www.vega-
qsar.eu/ 
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1.8.4. Ex vivo assays: Reconstructed human epidermis (RHE) 

Although the aforementioned alternative testing methods focused on the key events within 

the sensitisation phase, they did not take into account the initial penetration phase of 

haptens through the viable epidermis as well as enzymatic activities within the skin 

compartments. Human skin that mainly functions as a protective layer, affects the 

penetration rate of haptens (Berard et al., 2003). Aeby and colleagues (2004) revealed 

that haptens with similar sensitising characteristics in in vitro models possessed distinct 

sensitising properties when tested in in vivo models. Human skin is a metabolically active 

organ which contains various enzymes and signalling molecules (Gibbs et al., 2007). 

Hence, to ideally reflect the human skin response in ACD and accurately predict the 

sensitising properties of haptens in assays, it is important to consider factors such as the 

incorporation of metabolically active molecules/enzymes that simulate the actual skin 

environment as well as the filtering function of human skin to estimate the minimal 

concentration that lead to sensitisation (Frankart et al., 2012).  

Currently, there are four commercially available reconstructed human skin models, also 

known as 3D-recontructed human epidermal (RHE) models, including EpiDermTM (MatTek 

Corporation), EpiSkinTM (Imedex) and SkinEthicTM (Laboratoire Skin Ethic) (Gibbs et al., 

2007). RHE is constructed of an acellular dermal matrix without fibroblasts that contains a 

combination of cytokine and growth factors to mimic the actual skin environment (Gibbs et 

al., 2007). In addition to RHE models, another model comprised of a keratinocyte and 

fibroblast populated dermal matrix is called the skin equivalent model (Bell et al., 1983). It 

is commercially available as TestSkinTM (Organogenesis Inc). These commercial skin 

models have been validated and accepted for use in skin corrosion and skin irritation tests 

(Gibbs et al., 2007).  However, at present, there is no commercially available skin model 

that contains DCs or LCs for predictive identification of skin sensitising compounds 

(Uchino et al., 2011). A recent promising study by Uchino et al. (2011) incorporated DCs, 

keratinocytes and fibroblasts into their newly reconstructed skin model and preliminary 

results showed that the skin model was responsive to sensitisers. 

Even though RHE models are more complete models mimicking human skin compared 

with other non-animal testing methods that only concentrate on a single key event in the 

ACD mechanism, the challenge remains for development of a complete human skin model 

that has high predictive capacity for skin sensitisation identification (McKim et al., 2012, 

Gibbs et al., 2007). This challenge is largely due to inter-individual differences at both the 
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cellular and molecular levels, including genotypic variation, different epidermal thickness, 

and different levels of metabolic activity and rates of skin cell differentiation (Gibbs et al., 

2007). 

More recently, EpiSensA, an in vitro skin sensitisation assay that utilises a commercially 

available RHE (Saito et al., 2013) has become available. In brief, using this skin model 

system, skin sensitising potential of test compounds is assessed based upon changes in 

the expression of genes related to the cellular stress response. Preliminary data obtained 

from the analysis of 16 test compounds using EpiSensA were promising (Saito et al., 

2013). Despite considerable progress, the challenge remains for a more complete human 

skin model system to become available that has a high degree of accuracy for correctly 

identifying and classifying the skin sensitisation potential of novel compounds. 

Nevertheless, EpiSensA has promise for improving in vitro assessment of the skin 

sensitising properties of compounds with poor aqueous solubility such as epoxy resins. 

1.9. Challenges in assessing epoxy resin compounds using in vitro model 

systems10 

Despite significant progress in the development and optimisation of non-animal testing 

assays, a major limitation in their use for accurately identifying the skin sensitising capacity 

of test compounds, is poor water solubility, particularly for aqueous-based assays (McKim 

et al., 2012). Maintaining a suitable balance between the final solvent composition, test 

compound solubility and deleterious solvent-related effects within the assay, is pivotal for 

generating meaningful data on skin sensitisation potential. In general, the solvent-related 

issues associated with in vitro assays are related to the toxicity and/or solvent-mediated 

modulation of the assay, thereby confounding assay readouts resulting in inaccurate 

assessment of skin sensitisation potential. High solvent concentrations in cell-based 

assays adversely affect cellular integrity, resulting in cell death (Tapani et al., 1996, 

Galvao et al., 2014). Concentration-related toxic effects of the solvent are needed to be 

evaluated to identify the maximum ‘no effect’ levels for each in vitro assay. The balance 

between acceptable solvent percentage in the aqueous cell-based test system whilst 

maintaining solubility of high molecular weight and low solubility test compounds, 

particularly industrial epoxy resin compounds is yet to be adequately addressed. This 
                                                 
10 This section of the literature review of my PhD thesis has been published in the journal, Frontiers in 
Pharmacology, as a review article. 
 
Wong C.L., Ghassabian S, Smith MT and Lam A (2015). In vitro methods for hazard assessment of 
industrial chemicals – opportunities and challenges. Front. Pharmacol. 6:94. doi: 10.3389/fphar.2015.00094. 
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issue is arguably the most significant obstacle to be overcome in adapting current in vitro 

skin sensitisation assays to assessment of epoxy resin hazard risk.  

Moreover, unacceptable modulation of the in vitro test system by organic solvents limits 

the range of solvents that can be used for dissolution of epoxy resin compounds. For 

example, organic solvents routinely used in laboratories inhibit cytochrome P450-mediated 

metabolic reactions, and may potentially fail to activate the enzyme-dependent sensitising 

chemicals in the test system (Troutman et al., 2011, Li et al., 2010). DMSO is unsuitable 

for use in the DPRA as its high reactivity means that it may react with assay peptides 

resulting in false positive results. The use of DMSO in the DPRA would require an 

additional costly step of purging the reaction system with an inert gas such as argon, to 

prevent oxidation of DMSO (Niklasson et al., 2009).  

While selection of solvents compatible with in chemico assays may improve the ability of 

the DPRA to identify epoxy resins that have skin sensitising properties, it is more difficult to 

attain a suitable balance between epoxy resin solubility and cell viability in aqueous 

culture-based assays. Moreover, future investigation is required regarding the fact that 

most test compounds are applied in solution to in vitro assays which may not necessarily 

be reflective of the situation in humans where there may be topical application of the 

compound in the solid state to the skin. To address this issue, the RHE has considerable 

potential. The RHE comprises an acellular dermal matrix mimicking the human skin 

epidermis layer. It has been used together with cytokines and growth factors to better 

represent the human skin microenvironment (Gibbs et al., 2007). Preliminary data using 

the RHE system showed that it was responsive to known sensitisers (Uchino et al., 2011).  

Apart from use of RHE model systems, the accuracy of in vitro methods for skin 

sensitisation assessment of industrial chemicals may be improved by including multiple 

assay readouts using an ‘assay panel’ approach (Bauch et al., 2012, Jaworska et al., 

2011, Natsch et al., 2009). However, questions on the generalisability of these in vitro 

methods to accurately identify chemicals containing very different functional groups, is as 

yet unclear. In particular, most in vitro methods were developed and evaluated using small 

molecule chemicals that are widely utilised in the manufacture of cosmetic and toiletry 

products. This is a significant limitation as it has now been shown that different functional 

groups with varying chemical reactivity produce differential engagement of cell signalling 

pathways (Albrekt et al., 2014).  
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For example, from a dataset of 145 chemical compounds assessed using the 

KeratinoSens™ and MUSST assays, those that were preferentially lysine-reactive resulted 

in false negatives (Natsch et al., 2013). These findings mirror work by others (Migdal et al., 

2013) whereby chemicals with high reactivity towards cysteine, and not lysine, activated 

the Nrf2-ARE pathway in THP-1 cells, a well-known toxicity pathway activated by skin 

sensitisers (Natsch, 2010) that underpins the design principles of both the KeratinoSensTM 

and LuSens tests. ERS compounds such as DGEBA, DGEBF and PGE react selectively 

with thiol groups (cysteine) (Natsch et al., 2013, O'Boyle et al., 2012). Hence, the 

KeratinoSensTM and LuSens assays that are based on the aforementioned pathway are 

worthy of future investigation for their applicability and reliability to assessment of the skin 

sensitising potential of epoxy resins.  

However, it is important to bear in mind that a single stand-alone method based upon a 

single mechanistic pathway may be an insufficient approach to assess novel derivatives of 

skin sensitisers. These compounds may evoke a different mechanistic pathway in the skin 

leading to skin sensitisation. Indeed, ECVAM recently recommended that both the 

KeratinoSensTM and DPRA can be used as part of an integrated assessment approach to 

assess skin sensitisers (ECVAM, 2014). Hence, future research is required to assess the 

applicability of current in vitro methods to assess the skin sensitising potential of a broader 

range of chemical compounds as a means to identify the most appropriate in vitro assays 

and assay readout ranges, for establishing benchmarks to use for classifying the skin 

sensitisation potency of novel compound classes.  

Another consideration to this discussion is the inherent accuracy of the LLNA itself with 

respect to existing human data. The LLNA is widely utilised as the benchmark for 

evaluating the predictive accuracy of non-animal methods. However, when compared 

against the human maximisation and patch test, the accuracy of the LLNA was only 72% 

(Anderson et al., 2011). More recently, a retrospective comparison of a moderately large 

dataset (>100) of test compounds revealed an 82% predictive accuracy for LLNA when 

compared with established human data (Urbisch et al., 2015). In other work, use of an 

integrated testing strategy-based on data from ‘two out of three in vitro prediction models’ 

resulted in a higher overall accuracy (≥90%) when compared with human data, as 

opposed to ≤83% using the LLNA dataset (Urbisch et al., 2015, Bauch et al., 2012). 

Factors potentially contributing to the discordance between human and LLNA data include 

the difference in skin penetration rates between the mouse and human, as well as the 

application method of the test compounds on the skin (Anderson et al., 2011; Delaine et 



 

46 
 

al., 2011). The volatility and cytotoxicity of compounds such as the components of ERS, 

could affect potency outcomes given the open nature of substance application to the 

mouse ear in the LLNA in contrast with the occluded dressing used in human patch tests 

(Delaine et al., 2011). Hence, where possible, it is important to compare data produced by 

various in vitro skin sensitisation tests with human data rather than relying solely on 

comparisons with LLNA data.  

1.10. Rationale for my PhD Research Project 

With worldwide economic growth, the global demand for epoxy resins is forecast to reach 

∼3 million tons by the end of 2017, projected at ~USD9.2 billion annually (GIA forcasts the 

global market, 2012). However, existing composite resin systems do not meet current and 

forthcoming manufacturing requirements as they are hazardous to both the environment 

and public health. Modification and improvement of current ERS are deemed unfeasible at 

this stage due to the complication of developing a non-sensitising composite resin with the 

desired chemical and physical characteristics. The prevalence of ACD in industrial workers 

dealing with ERS has increased considerably over the years and it is one of the most 

common occupational contact allergies reported (Niklasson et al., 2009). Hence, it is 

fundamental to develop a new generation of safe composite resins that still retain their 

high performance properties. At present, research on skin sensitisation has focused on 

use of the LLNA as it is widely accepted as a stand-alone method for identifying skin 

sensitisers and between-sensitiser discrimination based upon potency. In spite of the 

accessibility of the LLNA for skin sensitisation assessment of chemicals, ethical issues 

related to animal testing, has raised many concerns. The ethical mantra of the 3Rs, 

reduction, refinement and replacement in animal testing has gained political and economic 

momentum. As a result, a battery of validated high-throughput non-animal test methods to 

accurately identify the skin sensitisation potential of new resin composite materials and 

their constituents, will provide critical information that can be incorporated into the 

establishment of risk assessments. This in turn will lead to significant improvements in 

public health, including decreasing the socioeconomic burden due to reduced productivity 

comprising lost work days and higher manufacturing costs.  

1.10.1. Research hypothesis 

Optimisation of the current in vitro methods, DPRA and h-CLAT is required in order to 

improve the early detection of potential skin sensitisation caused by epoxy resin 

compounds. 
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1.10.2. Research objective and aims 

The specific aims to be achieved are to: 

 Optimise the DPRA to improve the efficacy of assessing chemicals, predominantly 

epoxy resins using peptides (with distinct side chains). 

 Determine the sensitivity of hapten prediction using various peptide combinations in the 

DPRA. 

 Optimise h-CLAT for assessment of hydrophobic chemicals, predominantly epoxy resin 

compounds and to explore potential biomarker use for refinement of the assay.  

 Assess sensitivity of the h-CLAT in a high-throughput format to accommodate 

screening of a large number of chemicals. 

 Compare the test outcomes of the DPRA and h-CLAT for assessment of the skin 

sensitisation potential of epoxy resins with that predicted by the available QSAR 

toolbox and murine LLNA methods. 
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Chapter 2: Establishment and optimisation of the THP-1 

human cell line for assessing the skin sensitisation potential 

of chemicals 
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2.1. Introduction 

As noted in Chapter 1, allergic contact dermatitis (ACD) is a T-cell mediated, delayed-type 

hypersensitivity immune response, which involves four key events in the skin, viz protein 

binding between the sensitising chemical and skin proteins (haptenation), keratinocyte 

activation, dendritic cell (DCs) activation and proliferation of hapten-specific T-cells 

(OECD, 2012a). Although several non-animal testing methods have been developed to 

examine these key events, none of these in vitro assays can be used as a stand-alone 

method for assessing skin sensitisation potential due to the complexity of the human 

response to a chemical allergen (Aeby et al., 2010).  

The focus of this chapter of my PhD thesis was to bring innovation into the in vitro method 

known as the human cell line activation test (h-CLAT) and then use this improved method 

to assess the skin sensitisation potential of representative test chemicals, i.e. epoxy resin 

systems (ERS). The h-CLAT (reviewed in Chapter 1, Section 1.8.2.1) uses THP-1 cells (a 

human monocytic cell line) as a model system to mimic the maturation of Langerhans cells 

(LCs) to DCs, an essential step in the human skin sensitisation pathway (Ashikaga et al., 

2006). THP-1 cells were chosen for the h-CLAT as they are readily cultured whilst 

maintaining several desired in vivo activities such as esterase activity, lysozyme 

production and phagocytosis (Tsuchiya et al., 1980, Ashikaga et al., 2006). More 

importantly, naïve undifferentiated THP-1 cells have low endogenous expression levels of 

typical cell surface markers such as CD54 and CD86 (Santegoets et al., 2008) that are 

specifically up-regulated when treated with skin sensitisers (Sakaguchi et al., 2006). 

In the past several decades, there has been exponential growth in the use of ERS in 

commercial applications due to their strong adhesive bonding properties when applied to a 

range of surface materials and their excellent resistance to harsh chemical and 

environmental conditions (Cahill et al., 2012).  However, this widespread use has led to 

many incidences of ACD in humans associated with the handling of epoxy resin 

compounds as raw materials in the workplace. Hence, it is crucial to have accurate and 

cost-effective methods that can be used to screen industrial chemicals for their potential as 

skin sensitisers for hazard assessment in the workplace.  

Previous work by others has shown that the h-CLAT has have high predictive capacity for 

identifying chemical allergens commonly found in preservatives, hair dyes and fragrances 

(Kosaka et al., 2010, Nukada et al., 2012, Okamoto et al., 2010, Sono et al., 2010). 

Specifically, the overall test accuracy of the h-CLAT was 84% and 83% compared with the 
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murine local lymph node assay (LLNA) and human data respectively, for 100 chemicals 

assessed (Ashikaga et al., 2010, Nukada et al., 2011). However, the suitability of h-CLAT 

as a screening method for industrial chemicals such as ERS, is unknown and this 

knowledge gap is addressed in this chapter. The h-CLAT is typically performed in a 24-

well plate using anti-CD54 and anti-CD86 that are conjugated to the same fluorochrome 

(Ashikaga et al., 2006). In this chapter, I investigate the feasibility to adapt h-CLAT into a 

96-well assay format using dual flurochrome antibody-staining of CD54 and CD86 in order 

to improve the efficiency of the h-CLAT. 

Apart from measurement of CD54 and CD86 up-regulation in response to sensitisers, 

several studies have assessed pro-inflammatory cytokine production, including interleukin 

(IL)-8, IL-12p40, tumour necrosis factor (TNF)-α, and IL-1β by DCs and/or surrogate cell 

lines (e.g. THP-1 cells) by allergens with sensitising potential (Aiba et al., 2003, De Smedt 

et al., 2001, Takahashi et al., 2011, Toebak et al., 2006). The augmentation of production 

of one or more pro-inflammatory cytokines by sensitising chemicals has been further 

assessed in keratinocytes and DC-type surrogate cells with a view to differentiating 

between contact allergens (skin sensitisers), respiratory allergens and irritants.  For 

example, IL-18 was induced following exposure of the human keratinocyte cell line, 

NCTC2455, to contact allergens but not to respiratory allergens or irritants (Corsini et al., 

2009). Apart from the cell surface molecular markers, CD86, CD54 and CD40, contact 

allergens but not non-allergens triggered the up-regulation of TNF-α and IL-8 expression in 

THP-1 cells (Miyazawa et al., 2007). Hence, in this chapter, the effect of contact allergens 

on cytokine production in THP-1 cells, specifically IL-1β, IL-12p70, IFN-γ, IL-6, IL-8, IL 10 

and TNF-α as potential biomarkers for ERS, was evaluated. Cytokine quantification was 

performed using a high-throughput multiplexed assay herein. 
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2.2. Materials and methods 

2.2.1. Chemicals and reagents 

2.2.1.1. Test chemicals 

Bisphenol A diglycidyl ether (DGEBA, CAS 1675-54-3), trimethylolpropane triglycidyl ether 

(TMPTGE, CAS 3454-29-3, technical grade), poly(ethylene glycol) diglycidyl ether 

(PEGGE, CAS 72207-80-8), tetraphenylolethane glycidyl ether (THETGE, CAS 7328-97-

4), poly[(phenyl glycidyl ether)-co-formaldehyde] (PPGE, CAS 28064-14-4), 2,4-

dinitrochlorobenzene (DNCB, CAS 97-00-7) and methyl salicylate (CAS 119-36-8) were 

supplied by Sigma-Aldrich Corporation (NSW, Australia).  

2.2.1.2. Reagents 

Dimethylsulfoxide (DMSO), bovine serum albumin (BSA), phosphate buffered saline 

(PBS), γ-globulin, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 

isopropanol, tetramethylbenzidine (TMB) liquid substrate system, and Tween-20  were 

purchased from Sigma-Aldrich Corporation (NSW, Australia). Monoclonal mouse anti-

human CD54-fluorescein isothiocyanate (FITC) (clone 6.5B5) was purchased from Dako 

(Japan). Monoclonal mouse anti-human CD86-phycoerythrin (PE) (clone FUN-1), 7-amino 

actinomycin D (7-AAD), and IL-6 OptEIATM Enzyme-linked Immunosorbent Assay (ELISA) 

kit (catalogue no. 555220), IL-8 OptEIATM ELISA kit (catalogue no. 555244), IL-10 

OptEIATM ELISA kit (catalogue no. 555157) and IL-1β OptEIATM ELISA kit (catalogue no. 

557953) were obtained from Becton Dickinson (BD) Biosciences (NJ, USA). Meso Scale 

Discovery® (MSD) human pro-inflammatory 7-plex tissue culture kit (catalogue number 

N75008B-1) was supplied by Meso Scale Diagnostics, LLC (MD, USA). 0.4% Trypan blue 

was obtained from Life Technologies Invitrogen (VIC, Australia). Sulphuric acid, formic 

acid, sodium carbonate anhydrous and sodium hydrogen carbonate were purchased from 

Ajax Finechem Pty. Ltd. (NSW, Australia) and sodium hydroxide was provided by Chem-

Supply (SA, Australia). 

2.2.1.3. Cell culture media 

Fetal bovine serum (FBS), PBS and RPMI 1640 (ATCC modification) media (catalogue no. 

A10491) were supplied by Life Technologies Invitrogen (VIC, Australia). 2-

mercaptoethanol was purchased from Sigma-Aldrich Corporation (NSW, Australia).  
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2.2.2. Experimental design 

2.2.2.1. Cell culture 

Monocytic THP-1 cells (catalogue no. TIB-202TM) were purchased from the American Type 

Culture Collection (ATCC; VA, USA). These cells were cultured in vented cell culture 

flasks, passaged and harvested as per the manufacturer’s instructions. The cell passages 

used in all experiments did not exceed 20 passages (after thawing). The cell cultures were 

routinely maintained at approximately 8x105 cells/mL in the cell culture flasks. THP-1 cells 

were propagated in a humidified incubator at 37°C (5% CO2: 95% air) in RPMI 1640 

medium supplemented with 10% FBS and 2-mercaptoethanol (0.05 mM). The 

concentration of viable THP-1 cells in suspension was determined by trypan blue 

exclusion assay prior to seeding of cells into 96-well cell culture plates. Briefly, a small 

aliquot (~20µL) of THP-1 cells was aseptically transferred to a small vial and diluted at a 

1:1 ratio with 0.4% trypan blue. The cell-trypan blue mixture was then loaded onto an 

Improved Neubauer haemocytometer to determine the number of viable (unstained) cells. 

The suspension of THP-1 cells was then harvested by centrifugation at 130 xg for 5 min. 

The resulting cell pellet was re-suspended in fresh growth medium to a final concentration 

of 2x105 viable cells/mL for maintaining the cell culture or to a final concentration of 2x106 

viable cells/mL for the purpose of seeding THP-1 cells (80 µL per well) into 96-well assay 

plates. 

2.2.2.2. Cytotoxicity test 

Prior to the selection of concentrations of each test chemical in subsequent cell-based 

assays (Sections 2.2.2.4), concentration-response curves for all test chemicals were 

established for THP-1 cells, to determine the concentration of each chemical that resulted 

in 75% cell viability (CV75). All test chemicals were freshly prepared on the day the assay 

was performed. Seven representative test chemicals (DNCB, methyl salicylate, DGEBA, 

PEGGE, TMPTGE, THETGE and PPGE) were prepared in DMSO at 250 mg/mL. A further 

11 working concentrations of each chemical were subsequently prepared by 2-fold serial 

dilutions of the 250 mg/mL chemical stock in a 96-well plate. Each of these 12 working 

stock concentrations were then further diluted 250-fold in cell culture medium and 

subsequently added in triplicate (80 µL per well) to 96-well culture plates containing 80 µL 

(per well) of 2x106 cells/mL. Essentially the assay plates contained a final THP-1 

concentration of 1x106 cells/mL and a final test chemical concentration of a 1/500 dilution 

of each of the previously prepared 12 working stock solutions for each test chemical. The 
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chemical-treated cells were incubated at 37°C (5% CO2: 95% air) for 24 (±1) h. The final 

concentration of the solvent, DMSO, used in this cell-based assay did not exceed 0.2%.  

After 24 h incubation, the chemical-treated cells were transferred to a 96-well v-bottomed 

plate and centrifuged at 300 xg at 4°C for 5 min. The cell culture medium was aspirated 

and discarded.  The cells were washed twice with fluorescent activated cell sorter (FACS) 

buffer (1x PBS supplemented with 0.1% BSA). The cell pellets were then resuspended in 

150 µL of 0.5 µg/mL 7-AAD, a cell-viability stain to gate out the dead cells and the cell 

viability of the chemically-treated cells were determined by flow cytometric analysis.  

The cell viability of each well was determined using the formula in Equation 1 below 

(OECD, 2014): 

Cell	viability	 % 	 	 	 	

	 	 	 	
100%      ----- (1) 

The concentration of each test chemical that gave CV75 was determined from a calibration 

curve using log-linear interpolation using the formula in Equation 2 below: 

log 75 	         ----- (2) 

Where 

A is the minimum value of cell viability over 75% in testing groups 

B is the maximum value of cell viability below 75% in testing groups 

C or D is the concentration showing the value of cell viability A or B 

2.2.2.3. Optimisation of antibodies for h-CLAT 

The optimal concentrations of anti-CD86-PE and anti-CD54-FITC for use in the h-CLAT 

(Section 2.2.2.4) were determined using an antibody titration curve. Specifically, THP-1 

cells were treated with the positive (sensitiser) control, DNCB, at four different 

concentrations based upon the CV75 determined from the cytotoxicity assay (Section 

2.2.2.2), i.e. 1.2 x CV75, 1 x CV75, 1/1.2 x CV75, and 1/1.22 x CV75. As per Section 

2.2.2.2, these four working stock concentrations were then further diluted 250-fold in cell 

culture medium and added in triplicate (80 µL) to 96-well culture plates containing 80 µL 

aliquots of the 2x106 cells/mL cell suspension. After 24 h incubation, the cells were 

transferred to a 96-well v-bottom plate and centrifuged at 300 xg at 4°C for 5 min. The 

resulting cell pellets were washed twice with FACS buffer where 150 µL/well of FACS 
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buffer was added and the plate was centrifuged at 300 xg at 4°C for 5 min. 1% BSA in 

PBS was added into each well (100µL/well) and incubated for at least 15 min on ice. After 

incubation, the plate was centrifuged at 300 xg at 4°C for 5 min and the resulting 

supernatant was discarded. The cell pellets were then washed twice with FACS buffer. 

Five working concentrations of each antibody were prepared by 2-fold serial dilution from 

the neat antibody solution (1/10, 1/20, 1/40, 1/80 and 1/160) using 1x PBS.  Each antibody 

concentration (50 µL aliquots) for anti-CD86-PE and anti-CD54-FITC were added to each 

set of DNCB-treated cells and incubated for at least 30 min on ice to allow the binding of 

the antibodies to the cell surface molecules, CD54 and CD86. The plate was then 

centrifuged at 4°C at 300x g for 5 min and washed twice with FACS buffer. The cells were 

then resuspended with 150 µL of FACS buffer containing 0.5 µg/mL 7-AAD and analysed 

by flow cytometry to determine the optimal dilution/concentration of anti-CD86-PE and 

anti-CD54-FITC that produced the highest signal-to-noise ratio. 

2.2.2.4. h-CLAT protocol 

Test chemicals with eight concentrations based upon their respective CV75 concentrations 

(predetermined in Section 2.2.2.2) were prepared as per the Organisation for Economic 

Co-operation and Development (OECD) draft guideline for the h-CLAT (OECD, 2014). 

Briefly, 1.2-fold serial dilution of the test chemicals (1.2 x CV75, 1 x CV75, 1/1.2 x CV75, 

1/1.22 x CV75, 1/1.23 x CV75, 1/1.24 x CV75, 1/1.25 x CV75 and 1/1.26 x CV75) were 

performed in 96-well plates using DMSO as the solvent. The THP-1 cells were treated and 

incubated in triplicates and three independent experiments were performed with the above 

range of chemicals as per section 2.2.2.2. After 24 h incubation, the cells were transferred 

to 96-well v-bottom plates and centrifuged at 300 xg at 4°C for 10 min. The cell culture 

supernatant was collected and stored at -80°C to be used for cytokine quantification as a 

separate experiment (Section 2.2.2.6). The cell pellets were washed twice with FACS 

buffer. The cell pellets were subsequently resuspended in 1% BSA in PBS and incubated 

for at least 15 min on ice and washed with FACS buffer. 50 µL aliquots of anti-CD54 and 

anti-CD86 antibodies (in FACS buffer) at their predetermined optimal concentrations 

(Section 2.2.2.3) were added to each well and incubated for at least 30 min on ice. The 

plate was then centrifuged at 4°C at 300x g for 5 min and the resulting cell pellets washed 

twice with FACS buffer. The cells were then resuspended with 150 µL of FACS buffer 

containing 0.5 µg/mL of 7-AAD. The plate was incubated on ice for at least 10 min prior to 

being analysed with flow cytometry. 



Chapter 2 

55 
 

2.2.2.5. Quantification of 7-AAD, CD54 and CD86 

3-coloured flow cytometry acquisition was performed using 96-well plate format, a BD 

LSRII analyser (BD Biosciences, USA) and an in-house designed autosampler unit 

integrated with a Gilson 232XL sampling injector at the Queensland Brain Institute (QBI), 

with the system parameters as summarised in Table 2-1 and Table 2-2, respectively. The 

autosampler was controlled by in-house designed software. The band-pass filters used for 

7-AAD were 660/20, 530/30 for FITC and 575/26 for PE. Spectral overlap was 

compensated for in channels using anti-CD54-FITC and anti-CD86-PE. The data were 

analysed using the BD FACSDiva Version 6.1.3 analysis software and the geometric mean 

fluorescence intensity (MFI) was obtained.  

The relative fluorescence intensities (RFIs) of CD54 and CD86 were calculated based 

upon Equation 3 below: 

	 	 	 %  

	 	 	
	 	 	 	 	

	 	 	
	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
100%  ----- (3) 

The RFI value was not calculated when the cell viability was less than 50% (CV50). The 

thresholds were set at RFI≥150% for CD86 and RFI≥200% for CD54. Finally, a chemical 

was classified as a sensitiser if a chemical at any concentration exceeded either of the 

CD86 or CD54 thresholds in two out of three independently conducted experiments. 
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Table 2-1: Instrument parameters used for analysing samples. The parameters were 

optimised by using the BD FACSDiva™ Software Version 6.1.3. 

Parameters Value 

FSC-A 305 volts 

SSC-A 348 volts 

Cy5-PE 667 volts 

Threshold 20,000 

Event 5,000 event 

Stopping time 20 seconds 

 
 
 
Table 2-2: The parameters used for analysing samples using a 96-well plate format. 

Parameters Value 

Flow rate 200 μL/min 

Injection volume 80 μL 

Rinsing volume 500 μL 
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2.2.2.6. Cytokine quantification 

Cytokine concentrations in the THP-1 cell culture supernatant from the h-CLAT 

experiments were quantified using the MSD human pro-inflammatory 7-plex tissue culture 

kit as per the manufacturer’s protocols. Three concentrations of each test chemical (i.e. 

CV75, CV75/1.2 and CV75/1.22) were used in the assay. All proprietary kit reagents and 

wash buffers used were supplied by the manufacturer.  Briefly, 150 µL of the 1% Blocker B 

in PBS was added to each well of the 96-well human pro-inflammatory 7-plex 

electrochemiluminescence (ECL) plate and allowed to incubate on a plate shaker at 700 

rpm at room temperature (RT) for 1 h. After incubation, the plate was washed three times 

with wash buffer. A range of eight calibrator concentrations (0.610 – 10 000 pg/mL) for 

each of IL-1β, IL-12p70, IL-6, IL-8, IL-10, TNF-α and IFN-γ were prepared. The calibrators 

and supernatant samples were aliquoted in duplicate wells (25 µL/well) and incubated on a 

plate shaker at 700 rpm at RT for 2 h. The plate was washed three times with wash buffer 

before the addition of 25 µL of the respective 1x detection antibody solution. The plate was 

incubated on a plate shaker at 700 rpm at RT for an additional 2 h. Lastly, the plate was 

washed three times with wash buffer and 150 µL of 2x Read Buffer T was added to all 

wells. The plate was read using the MSD Sector Imager 2400A (Meso Scale Diagnostics, 

LLC, MD, USA). The MSD Discovery Workbench Version 4.0.12 software was used to 

analyse the data. 

2.2.2.7. Cytokine stability test 

Cytokine stability was assessed using BD OptEIATM ELISA kits as per the manufacturer’s 

protocols. The cytokine (IL-1β, IL-6, IL-8 and IL-10) quality control (QC) samples were 

prepared at the following concentrations, IL-1β: 11.7, 125 and 200 pg/mL; IL-6: 14.1, 150 

and 240 pg/mL; IL-8: 9.4, 100 and 160 pg/mL; IL-10: 23.4, 250 and 400 pg/mL and stored 

at -80°C. Each of the prepared cytokine samples was treated according to the two 

following experimental conditions (1) incubation at 37°C for 24 h to determine the stability 

of the cytokines at the given temperature and (2) 1x, 2x, 3x and 4x freeze-thaw cycles 

prior to assay. For each freeze-thaw cycle, frozen samples were left at RT until they were 

fully thawed. Samples were then frozen with dry ice to ensure the samples were fully 

frozen prior to the second cycle of freeze-thaw.  

All cytokine test samples (37°C incubated and freeze-thawed) were stored at -80°C until 

analysis. Briefly, a 96-well ELISA plate was coated with 100 µL of anti-human IL-8 

monoclonal antibody (capture antibody) diluted 1 in 250 in 0.1 M sodium carbonate, pH 9.5 
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(coating buffer) overnight at 4°C (~18 h). The wells of the ELISA plate were washed three 

times with 0.05% Tween-20 in PBS (wash buffer). The plate was then blocked with 200 µL 

of 10% FBS in PBS (assay diluent) and incubated for 1 h at RT. Next, the standard 

calibration curve for IL-8 (3.13 - 200 pg/mL) was prepared in assay diluent. After 1 h 

incubation, the plate was washed three times with wash buffer and 100 µL aliquots of each 

calibration standard and cytokine test samples were pipetted in duplicate into appropriate 

wells. The plate was sealed with a plate sealer and incubated for 2 h at RT. The plate was 

washed five times with wash buffer and 100 µL aliquots of working detector (biotinylated 

anti-human IL-8 and streptavidin-horseradish peroxidase conjugate diluted 1/250 in assay 

diluent) were added to all wells and incubated for 1 h at RT. After incubation, the plate was 

washed with wash buffer seven times. 100 µL aliquots of TMB substrate solution were 

added to all wells and incubated for an additional 30 min at RT in the dark. 50 µL aliquots 

of 2 N sulphuric acid (stop solution) were then added to each well and absorbance of 450 

nm corrected to the background absorbance at 570 nm was measured using the TECAN 

SunriseTM reader (TECAN, Männedorf, Switzerland) coupled with Magellan Tracker 

Version 7.1. The stability of IL-6, IL-10 and IL-1β were similarly assessed using the above 

method. The concentrations range of the calibration curves for the three cytokines were 

prepared as followed, IL-1β: 3.91 – 250 pg/mL; IL-6: 4.69 – 300 pg/mL; IL-10: 7.81 – 500 

pg/mL. 

2.2.2.8. Data analysis 

The acceptance criterion for the cytokine concentrations measured using the MSD and 

ELISA assays was ±25% for both the LLOQ and ULOQ of the calibration curve. The 

accuracy of the low, medium and high QC samples was set at ±20%. The cytokine 

concentrations quantified using the MSD are presented as fold changes relative to those 

measured in the cell culture supernatant of vehicle-treated THP-1 cells (Equation 4). 

 

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
     ----- (4) 
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2.3. Results 

2.3.1. Cytotoxicity test 

Cell viability of the THP-1 cells incubated with the various test chemicals was assessed 

using the viability stain, 7-AAD, to distinguish between dead (stained) and live (unstained) 

cells (Figure 2-1). A total of 5,000 cells were used in all experiments. The chemical 

concentration that produced CV75 was calculated as described in Section 2.2.2.2 and 

these concentrations are listed in Table 2-3. 

2.3.2. Optimisation of anitibodes for h-CLAT 

For THP-1 cells treated with 4.6 µg/mL DNCB, the MFI for anti-CD86-PE and anti-CD54-

FITC determined by flow cytometry was found to plateau after the 1/40 dilution of the 

manufacturer-provided antibody solution (Figure 2-2). The area of plateau for the MFI of 

both antibodies were also similarly observed in THP-1 cells treated with the remaining 

three DNCB concentrations (2.7, 3.2 and 3.8 µg/mL) (data not shown) albeit to a lesser 

extent that of the 4.6 µg/mL DNCB-treated cells. Hence, the optimal antibody dilution 

chosen for both anti-CD54 and anti-CD86 for all subsequent h-CLAT assays was 1/40 of 

the manufacturer supplied antibody solution. 

2.3.3. h-CLAT 

Expression levels of CD54 and CD86 in THP-1 cells treated with the various chemicals 

were determined by three-coloured flow cytometry analysis (Figure 2-3). Consistent with 

expectations, DNCB was classified as a sensitiser by h-CLAT as the expression levels of 

both CD54 and CD86 at various concentrations exceeded the RFI thresholds of 200% 

and 150% respectively, in all three independent experiments (Figure 2-4). By contrast, 

the non-sensitiser, methyl salicylate, did not induce CD54 and CD86 (Figure 2-5). 

However, all five epoxy resins tested, viz DGEBA, PEGGE, TMPTGE, THETGE and 

PPGE failed to meet these criteria for classification as sensitisers, as the epoxy resin 

compounds did not induce expression of CD54 and CD86 in two out of three independent 

experiments at their respective tested concentrations. Hence, these chemicals were 

classified as negative sensitisers (Figure 2-6 to Figure 2-10).  
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Figure 2-1: Graphical representation of cell viability gating in flow cytometry using the BD 

FACSDiva Software Version 6.1.3. Forward scatter area (FSC-A) data estimate the 

relative size of the cells while side scatter area (SSC-A) data provide information on the 

cell granularity. Cy5-PE represents the cells stained with 7-AAD. (A) vehicle-treated cells 

with 98.1% live cells (B) 7.8 µg/mL DNCB-treated cells with 40.3% live cells. 

  

(A) 

(B) 
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Table 2-3: Chemical concentrations that result in cell viability of 75% (CV75). 

Chemicals CV75 (µg/mL) 

DNCB 4.63 

Methyl salicylate 500 

DGEBA 32.6 

PEGGE 98.5 

TMPTGE 27.8 

THETGE 27.4 

PPGE 79.5 

 

 

 

Figure 2-2: Determination of the optimal concentration of anti-CD54 and anti-CD86 

antibodies for use in the h-CLAT. THP-1 cells were incubated with DNCB at a 

concentration of 4.6 μg/mL for 24 h and stained with 6 different concentrations of 

antibodies (neat solution and five 2-fold serial dilution working concentrations). 
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Figure 2-3: Graphical representation of cell gating with 3-coloured fluorochromes used in the flow cytometry data analysis. The 

phycoerythrin area (PE-A) represents CD86 positive cells while the fluorescein isothiocyanate area (FITC-A) represents CD54 positive 

cells. The total live cells after incubation with DNCB at 4.6 g/mL were gated as per Figure 2-1 followed by subsequent gating for PE or 

FITC stained cells. (A) DNCB (4.6 g/mL)-treated cells without staining (B) DNCB (4.6 g/mL)-treated cells with CD54-FITC staining only 

(C) DNCB (4.6 g/mL)-treated cells with PE-CD86 staining only (D) DNCB (4.6 g/mL)-treated cells with both CD54-FITC and CD86-PE 

staining. 

(A) (B) 

(C) (D) 
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Figure 2-4: Expression levels of the cell surface molecules CD54 (■) and CD86 (▲) 

shown as RFI%, as well as percentage cell viability (●) of THP-1 cells incubated with 8 

concentrations of 1.2-fold serially diluted DNCB. The blue dotted line (---) represents the 

threshold value of CD54, RFI=200 while the red dotted line (---) represents the threshold 

value of CD86, RFI=150. DNCB was classified as a positive sensitiser. 
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Figure 2-5: Expression levels of the cell surface molecules CD54 (■) and CD86 (▲) 

shown as RFI%, as well as percentage cell viability (●) of THP-1 cells incubated with 8 

concentrations of 1.2-fold serially diluted methyl salicylate. The blue dotted line (---) 

represents the threshold value of CD54, RFI=200 while the red dotted line (---) represents 

the threshold value of CD86, RFI=150. Methyl salicylate was classified as a negative 

sensitiser. 
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Figure 2-6: Expression levels of the cell surface molecules CD54 (■) and CD86 (▲) 

shown as RFI%, as well as percentage cell viability (●) of THP-1 cells incubated with 8 

concentrations of 1.2-fold serially diluted DGEBA. The blue dotted line (---) represents the 

threshold value of CD54, RFI=200 while the red dotted line (---) represents the threshold 

value of CD86, RFI=150. DGEBA was classified as a negative sensitiser. 
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Figure 2-7: Expression levels of the cell surface molecules CD54 (■) and CD86 (▲) 

shown as RFI%, as well as percentage cell viability (●) of THP-1 cells incubated with 8 

concentrations of 1.2-fold serially diluted PEGGE. The blue dotted line (---) represents the 

threshold value of CD54, RFI=200 while the red dotted line (---) represents the threshold 

value of CD86, RFI=150.  PEGGE was classified as a negative sensitiser. 
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Figure 2-8: Expression levels of the cell surface molecules CD54 (■) and CD86 (▲) 

shown as RFI%, as well as percentage cell viability (●) of THP-1 cells incubated with 8 

concentrations of 1.2-fold serially diluted TMPTGE. The blue dotted line (---) represents 

the threshold value of CD54, RFI=200 while the red dotted line (---) represents the 

threshold value of CD86, RFI=150.  TMPTGE was classified as a negative sensitiser. 
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Figure 2-9: Expression levels of the cell surface molecules CD54 (■) and CD86 (▲) 

shown as RFI%, as well as percentage cell viability (●) of THP-1 cells incubated with 8 

concentrations of 1.2-fold serially diluted THETGE. The blue dotted line (---) represents the 

threshold value of CD54, RFI=200 while the red dotted line (---) represents the threshold 

value of CD86, RFI=150. THETGE was classified as a negative sensitiser. 
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Figure 2-10: Expression levels of the cell surface molecules CD54 (■) and CD86 (▲) 

shown as RFI%, as well as percentage cell viability (●) of THP-1 cells incubated with 8 

concentrations of 1.2-fold serially diluted PPGE. The blue dotted line (---) represents the 

threshold value of CD54, RFI=200 while the red dotted line (---) represents the threshold 

value of CD86, RFI=150.  PPGE was classified as a negative sensitiser. 
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2.3.4. Changes in cytokine concentrations following incubation of THP-1 cells with 

test chemicals 

Cytokine concentrations in the cell culture supernatant from THP-1 cells incubated with 

test chemicals in the h-CLAT assay were quantitated using the multiplex immunoassay 

MSD human pro-inflammatory 7-plex tissue culture kits. Three concentrations of each test 

chemical were selected based upon the CV75. Of the seven cytokines (IL-1β, IL-12p70, IL-

6, IL-8, IL-10, TNF-α and IFN-γ) assessed, the concentration of IFN-γ in the THP-1 cell 

culture supernatant was below the detectable range of the multiplex assay for all of the 

tested chemicals evaluated (data not shown). No/minimal induction of IL-10, IL-12p70 and 

IL-1β were observed (Figure 2-11) for cells incubated with any of the test chemicals 

relative to vehicle (0.2% DMSO).  

Induction of IL-6 was observed for cells incubated with DNCB and to a lesser extent with 

PPGE relative to vehicle-treated cells (Figure 2-11). IL-8 appeared to be up-regulated in 

THP-1 cells with the highest to lowest IL-8 concentrations observed in cells incubated with 

the test chemicals of interest, in the following order – DNCB (4213 pg/mL) > PPGE (3759 

pg/mL) > THETGE  (518 pg/mL) > DGEBA (205 pg/mL) > TMPTGE (98 pg/mL). No/ 

minimal IL-8 induction was detected for cells incubated with the epoxy resin, PEGGE, and 

the non-sensitiser, methyl salicylate (Figure 2-11). The TNF-α concentration (19.8 pg/mL) 

was markedly increased in the supernatant of THP-1 cells incubated with DNCB at 3.2 

µg/mL whereas there was no/minimal induction observed for cells incubated with the other 

seven test chemicals evaluated (Figure 2-11). 

Figure 2-12 shows the mean fold increase of the IL-6, IL-8 and TNF-α concentrations in 

the supernatant for THP-1 cells incubated with a range of test chemicals concentrations 

relative to THP-1 cells incubated with vehicle. The maximum mean fold increase in 

cytokine concentrations produced by each test chemical are summarised in Table 2-4. For 

DNCB, a known strong sensitiser, there was a 410-fold significant increase in the IL-8 

concentration. The corresponding maximum increases for, IL-6 and TNF-α were 52-fold 

and 18-fold respectively (Table 2-4). By contrast, the corresponding extent to which the 

concentrations of IL-8, IL-6 and TNF-α increased were only 2.2-fold, 1.6-fold and 3.5-fold 

respectively for cells incubated with the non-sensitiser, methyl salicylate. 

Of the five epoxy resin compounds incubated with THP-1 cells, DGEBA and THETGE 

increased supernatant IL-8 concentrations by up to 20- and 50-fold higher respectively 
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compared with vehicle-treated cells (Table 2-4). By contrast, for THP-1 cells incubated 

with PPGE, IL-6, IL-8 and TNF-α concentrations were increased by up to 14-, 365- and 

4.9-fold relative to cells incubated with vehicle (Table 2-4). The epoxy resin compounds, 

PEGGE and TMPTGE, did not significantly alter supernantant cytokine concentrations for 

THP-1 cells relative to vehicle (Table 2-4). 

2.3.5. Cytokines stability test with ELISA 

2.3.5.1. Effect of incubation temperature on cytokines 

Assessment of the stability and hence accuracy of the measured cytokine concentrations 

in the supernatant from cultured THP-1 cells incubated with the test chemicals of interest 

in the h-CLAT (Section 2.3.4), showed that the concentrations of IL-6, IL-8 and IL-10 

remained stable at the incubation temperature of 37°C for 24 h (Table 2-6 to Table 2-8) as 

all of the QC samples were within ±20% of their respective nominal concentrations. By 

contrast, IL-1β was unstable at 37°C for 24 h and this was most marked at low and high 

concentrations where the deviation from the nominal concentrations was more than 20% 

(Table 2-5). 

2.3.5.2. Effect of freeze-thaw cycle on cytokines 

As the cytokine-containing cell culture supernatant samples from h-CLAT were collected 

and stored at -80°C prior to analysis (in Section 2.3.4) it was important to assess the 

effects of freeze-thaw on the cytokine stability . IL-1β, IL-8 and IL-10 were stable for up to 

four freeze-thaw cycles as the measured concentrations were within ±20% of their 

respective nominal concentrations) (Table 2-5, Table 2-7 and Table 2-8). However, the 

stability of IL-6 appeared to be adversely affected by four freeze-thaw cycles especially at 

the low QC concentrations (Table 2-6). 
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Figure 2-11: Supernatant cytokines concentrations (pg/mL ± SEM) from cultured THP-1 

cells incubated with three different concentrations (µg/mL) of DNCB (strong sensitiser), 

methyl salicylate (non-sensitiser) and five epoxy resin compounds relative to vehicle. 

Cytokine assays were undertaken using MSD human pro-inflammatory 7-plex tissue 

culture kits. 
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Figure 2-11: Cont.  
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Figure 2-12: Mean fold change in IL-6, IL-8 and TNF-α concentrations in supernatant from 

cultured THP-1 cells incubated with three different concentrations (µg/mL) of DNCB, 

methyl salicylate and five epoxy resin compounds relative to vehicle-treated THP-1 cells. 

Cytokine assays were undertaken using MSD human pro-inflammatory 7-plex tissue 

culture kits.  
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Table 2-4: Fold-increase in the supernatant concentrations of IL-6, IL-8 and TNF-α for 

THP-1 cells incubated with the test chemicals of interest, relative to vehicle. The data 

presented below are the test chemical concentrations that induced the maximum fold 

increase in the cytokine concentrations. 

Chemicals 
(µg/mL) 

IL-6  
(fold increase) 

IL-8  
(fold increase) 

TNF-α 
(fold increase) 

DNCB 
(3.9) 

52.4 410 18.3 

Methyl 
Salicylate 

(500) 
1.60 2.20 3.50 

DGEBA 
(15.4) 

1.36 20.0 4.01 

PEGGE 
(48.1) 

0.441 1.82 1.06 

TMPTGE 
(11.3) 

1.14 9.47 1.61 

THETGE 
(18.2) 

9.41 50.4 2.29 

PPGE 
(33.7) 

13.7 365 4.94 
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Table 2-5: Summary of QC sample concentrations for IL-1β. The acceptance criterion for accuracy of QC samples was set at ±20% of 

the nominal concentration. 

37 °C 1x freeze-thaw 2x freeze-thaw 3x freeze-thaw 4x freeze-thaw 

QC Concentration 
(pg/mL) 

11.7 125 200 11.7 125 200 11.7 125 200 11.7 125 200 11.7 125 200 

Mean 
concentration 

(pg/mL) 
8.50 106 160 11.5 129 179 10.1 126 181 9.90 124 174 10.2 125 170 

SD 0.5 9.7 10.2 0.4 4.3 4.3 4.4 4.4 12.2 0.2 1.1 4.9 0.8 5.5 5.5 

Precision 5.9 9.2 6.4 3.9 3.4 2.4 1.7 3.5 6.7 2.2 0.9 2.8 7.9 4.4 3.2 

Accuracy 27.6* 15.3 20.2* 2.1 -3.2 10.7 13.8 -0.9 9.6 15.3 0.5 12.8 12.8 0.2 15.2 

*failed accuracy acceptance criteria 
 

Table 2-6: Summary of QC sample concentrations for IL-6. The acceptance criterion for accuracy of QC samples was set at ±20% of the 

nominal concentration. 

37 °C 1x freeze-thaw 2x freeze-thaw 3x freeze-thaw 4x freeze-thaw 

QC Concentration 
(pg/mL) 

14.1 150 240 14.1 150 240 14.1 150 240 14.1 150 240 14.1 150 240 

Mean 
concentration 

(pg/mL) 
12.0 142 255 11.5 132 231 10.8 130 212 10.8 119 200 10.3 122 196 

SD 0.7 4.6 7.7 0.2 4.3 2.9 4.0 4.0 8.6 0.3 3.7 5.9 0.2 2.1 6.7 

Precision 5.6 3.3 3.0 1.7 3.3 1.3 2.3 3.1 4.0 2.8 3.1 3.0 2.1 1.8 3.4 

Accuracy 14.8 5.7 -6.1 18.6 11.8 3.6 23.3* 13.1 11.6 23.5* 20.9* 16.6 26.9* 18.6 18.3 

*failed accuracy acceptance criteria 
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Table 2-7: Summary of QC sample concentrations for IL-8. The acceptance criterion for accuracy of QC samples was set at ±20% of the 

nominal concentration. 

37 °C 1x freeze-thaw 2x freeze-thaw 3x freeze-thaw 4x freeze-thaw 

QC Concentration 
(pg/mL) 

9.38 100 160 9.38 100 160 9.38 100 160 9.38 100 160 9.38 100 160 

Mean 
concentration 

(pg/mL) 
7.50 87.2 138 8.00 91.7 135 7.70 85.8 135 7.70 92.6 137 8.50 91.1 136 

SD 0.2 3.5 5.4 0.2 1.3 3.7 2.6 2.6 6.2 0.2 1.6 5.2 0.4 2.1 4.0 

Precision 2.5 4.0 3.9 3 1.4 2.7 4.7 3.1 4.6 2.6 1.8 3.8 4.4 2.3 3.0 

Accuracy 19.7 12.8 13.7 14.9 8.3 15.5 18.6 14.2 15.9 18.3 7.4 14.1 9.5 8.9 15.1 

 

 
Table 2-8: Summary of QC sample concentrations for IL-10. The acceptance criterion for accuracy of QC samples was set at ±20% of 

the nominal concentration. 

37 °C 1x freeze-thaw 2x freeze-thaw 3x freeze-thaw 4x freeze-thaw 

QC Concentration 
(pg/mL) 

23.4 250 400 23.4 250 400 23.4 250 400 23.4 250 400 23.4 250 400 

Mean 
concentration 

(pg/mL) 
19.6 204 337 20.3 215 344 20.8 215 348 20.0 207 343 19.5 209 353 

SD 0.6 5.1 9.6 0.6 4.5 4.6 3.8 3.8 20.0 0.9 4.2 6.6 0.3 21.3 17.7 

Precision 3.0 2.5 2.9 3.1 2.1 1.3 2.3 1.7 5.8 4.4 2.0 1.9 1.7 10.2 5.0 

Accuracy 16.1 18.3 15.9 13.4 14 14 11.1 13.8 12.9 14.6 17.3 14.3 16.8 16.6 11.8 
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2.4. Discussion 

For industrial applications involving the screening of large numbers of new chemicals 

using the h-CLAT for assessment of skin sensitisation potential, it is essential that this test 

be run in high-throughput format.  To address this issue, I have successfully converted the 

h-CLAT to 96-well plate format as a means to improve assay efficiency. Additionally, I 

used FITC- and PE-labelled antibodies to enable simultaneous readouts of CD54 and 

CD86, a step that is essential for running this method in high-throughput format. In 

addressing the issue of generalisability of the h-CLAT to chemicals other than small 

molecule fragrances used primarily in the cosmetics and toiletry industries, I found that 

readouts other than CD54 and CD86 are needed in order to distinguish skin sensitisers 

from non-sensitisers for the epoxy resin chemical class. 

To improve h-CLAT efficiency, I adapted the assay from its typical 24-well format with 

1x106 THP-1 cells per well and FITC-labelled antibodies for quantification of the cell 

surface markers, CD54 and CD86, to 96-well plate format. This change in assay format 

required re-optimisation of the experimental conditions, including the total number of 

cells/well, the antibody concentrations and the parameters for flow cytometry analysis. To 

adapt the h-CLAT to the reduced well volume in 96-well plate format, the optimal number 

of cells per well were found to be 1.6x105 cells in an assay volume of 160 µL. Thus the 

total cell concentration was maintained at 1x106 cells/mL during test chemical incubation, 

as per the published method (Ashikaga et al., 2006). Detection efficiency for CD54 and 

CD86 was improved by simultaneous use of both FITC- and PE-labelled antibodies, 

respectively within a single well. The antibody concentrations were re-optimised the 96-

well plate assay format based upon the concentrations that gave the highest signal-to-

noise ratio. In my 96-well assay format, the optimal anti-CD54 and anti-CD86 

concentrations were both 1/40 dilutions from the neat solution (i.e. 1.25 µL/1.6x105 

cells/50µL). By contrast, the concentrations for the same clonal CD54 and CD86 

antibodies previously determined were 3/25 (i.e. 6 µL/3x105 cells/50µL) for CD86 and 3/50 

(i.e. 3 µL/3x105 cells/50µL) for CD54 (Ashikaga et al., 2006). Perusing the OECD 

recommended RFI thresholds for the h-CLAT (OECD, 2014), the positive control strong 

sensitiser, DNCB, was clearly identified as a sensitiser in my optimised h-CLAT method in 

96-well format, akin to previous h-CLAT findings in 24-well plate format for DNCB 

(Ashikaga et al., 2006, Nukada et al., 2012). 
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Using my optimised 96-well plate format, I then assessed the generalisability of the h-

CLAT for identifying skin sensitisers amongst a group of five epoxy resin compounds. 

Challengingly, four of the five epoxy resins compounds, DGEBA, PEGGE, THETGE and 

PPGE had relatively low solubility in aqueous solution.  The highest technical dose (HTD) 

of 500 µg/mL was selected for all five epoxy resin compounds which was the maximum 

solubilisation of the chemical in cell culture. The final concentration of DMSO in culture did 

not exceed 0.2%, the threshold percentage that could be used in this cell-based assay. 

Importantly, the selected HTD level selected ensured that the test chemical did not 

precipitate out from the aqueous solution when added to the cultured THP-1 cells. It is 

important to recognise that the accuracy of the h-CLAT, in common with many other cell-

culture based assays, is limited for test chemicals that have low aqueous-solubility. This 

point is emphasised by the findings of Ashikaga et al. (2010) who showed that eight of 

nine false negatives in the h-CLAT were for water-insoluble chemicals which limited their 

ability to augment CD54 and/or CD86 expression by cultured THP-1 cells. 

Importantly, my novel findings suggest that use of the h-CLAT in conventional mode based 

primarily upon up-regulation of CD54 and CD86 expression levels on cultured THP-1 cells, 

is unsuitable for assessing the skin sensitisation potential of high molecular weight 

compounds such as epoxy resin compounds. Specifically, the h-CLAT failed to identify the 

tested epoxy resin compounds known to have sensitising capacity (i.e. DGEBA, TMPTGE 

and PPGE; refer to Chapter 4 for LLNA data) as the cell surface expression levels of the 

molecular markers, CD54 and CD86, were not up-regulated by these compounds. It is 

known that some skin sensitisers may only stimulate either CD54 or CD86 (Sakaguchi et 

al., 2009) or possibly other biomarkers. For instance, biodegradable polymers only 

induced the expression of CD54, but not CD86 by THP-1 cells (Jung et al., 2011). In other 

work, 1,4-phenylenediamine, diethyl sulphate and geraniol increased cell surface 

expression of CD86 above the RFI threshold of 150% but CD54 expression was not 

increased above its RFI threshold (200%) whereas propyl gallate, resorcinol and linalool 

only induced CD54 expression levels but not CD86 (Nukada et al., 2012, Takenouchi et 

al., 2013).  

Apart from CD54 and CD86 as biomarkers in the h-CLAT, the potential of several other 

biomarkers for discriminating between sensitising and non-sensitising chemicals or 

compounds, have been investigated.  Various quantitative and qualitative endpoints in skin 

sensitisation pathways, such as pro-inflammatory cytokine and chemokine readouts (e.g. 

IL-1β, IL-18), activation of Keap1/Nrf2/ARE pathways, protein expression and 
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transcriptional profiles of several genes in different cell types, have been evaluated in 

preliminary work and appear to be promising (Reisinger et al., 2015).  

To date, in vitro work aimed at identifying the skin sensitising potential of epoxy resin 

compounds is very limited. Hence, I extended my interest in assessing and improving the 

generalisability of the h-CLAT to chemicals other than chemical compounds used in toiletry 

and cosmetic products, e.g. ERS. To this end, I evaluated secretion of pro-inflammatory 

cytokines by THP1-cells exposed to a range of test chemicals, as another possible assay 

endpoint.  

Specifically, I used the commercially available multiplexed MSD human pro-inflammatory 

7-plex tissue culture kit that allowed rapid and simultaneous quantification of seven 

cytokines, namely lL-1β, IL-6, IL-8, IL-10, IL-12p70, TNF-α and IFN-γ, Encouragingly, my 

data show for the first time that incubation of cultured THP-1 cells for 24 h with sensitising 

epoxy resin compounds stimulated a marked increase in the release of the pro-

inflammatory cytokines, IL-8 and IL-6, into the supernatant.  

Specifically, DNCB (sensitiser) but not methyl salicylate (non-sensitiser) induced a marked 

increase in the h-CLAT supernatant concentration of IL-8 by 410-fold.  My findings are in 

agreement with a previous report that sensitisers but not non-sensitisers (2.2-fold), 

increased IL-8 expression significantly (P<0.01) in a cell culture assay that used THP-1 

cells (Miyazawa et al., 2007, Nukada et al., 2008). Furthermore, published work by others 

also suggests that IL-8 may be a promising biomarker for assessing chemicals as potential 

skin sensitisers (Toebak et al., 2006, Python et al., 2007, Nukada et al., 2008, Takahashi 

et al., 2011). More recently, the stable cell line, THP-G8 was established from the THP-1-

derived IL-8 reporter cell line (Takahashi et al., 2011).  

For the tested epoxy resins, IL-8 was induced by DGEBA, TMPTGE and PPGE which 

were classified as strong, moderate and weak sensitisers respectively, based upon animal 

LLNA data (refer to Chapter 4 for LLNA data). In addition, human patch test studies 

revealed that both DGEBA and TMPTGE caused ACD in humans (Aalto-Korte et al., 

2015). However, the specificity of increased IL-8 expression requires further investigation 

as THP-1 cells incubated with THETGE also produced an increase in IL-8 expression, 

although this epoxy resin compound was classified as a non-sensitiser by my LLNA data 

(Chapter 4).  
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Incubation of cultured THP-1 cells with DNCB in my present work increased the TNF-α 

concentration in the supernatant by 18-fold relative to vehicle in a manner similar to that 

reported by Miyazawa et al. (2007). However, the five epoxy resin compounds tested did 

not have a major impact on the release of TNF-α into the supernatant in a manner similar 

to that for the non-sensitiser, methyl salicylate. The low level of TNF-α production by epoxy 

resins may potentially explain the low levels of CD54 observed in the h-CLAT, as TNF-α 

stimulated the expression of CD54 in concentration-dependent manner (Miyazawa et al., 

2008b). The levels of secreted TNF-α by DNCB-treated cultured THP-1 cells reportedly 

decreased at 24 h post-treatment compared with earlier time-points (Miyazawa et al., 

2008b). This apparent reduction may possibly be underpinned by instability of TNF-α in the 

cell culture supernatant for a 24 h period. Hence, future work directed at measuring the 

secretion of TNF-α by cultured THP-1 cells incubated with epoxy resin compounds over 

the course of the experiment, are needed.  

In addition, the concentration of IL-6 in the supernatant of cultured THP-1 cells incubated 

with the potent skin sensitiser DNCB for 24 h was also markedly elevated. Although my 

findings differ from those of Miyazawa et al. (2007) where IL-6 was not induced in cultured 

THP-1 cells incubated with DNCB, the most parsimonious explanation may be attributed to 

the different analytical methods used to measure IL-6 concentrations. An ELISA method 

that had an LLOQ of 3.12 pg/mL was used to measure IL-6 concentrations by Miyazawa et 

al. (2007). By contrast in my research herein, I used an 25-fold more sensitive ECL-

based MSD immunoassay to quantify IL-6 concentrations that had an LLOQ of 0.130 

pg/mL. This more sensitive MSD immunoassay with a larger dynamic range of IL-6 

detection allowed the IL-6 concentrations in my THP-1 supernatant samples to be 

measured (~0.3 pg/mL pre-treatment to 3.2 µg/mL post-DNCB treatment). Additionally, of 

the five tested epoxy resins, elevated concentrations of IL-6 were observed only for 

THETGE (9.4-fold) and PPGE (14-fold). These findings differ from the corresponding 

LLNA data as THETGE and PPGE (refer to Chapter 4) were classified by the LLNA as a 

non- and weak sensitiser respectively. While LLNA data are widely accepted as the gold 

standard against which the predictive accuracy of non-animal methods are compared, it is 

important to note that there is a degree of discordance between the predictive accuracy of 

the LLNA compared with the human maximisation and patch tests (Anderson et al., 2011, 

Urbisch et al., 2015). The induction of IL-6 by THETGE and PPGE may be examples of 

this discordance but there are no published human data on these two epoxy resin 

compounds with which to compare. Nevertheless, my findings serve to emphasise the risk 
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to accuracy with oversimplification or limitation on the number of endpoints used in non-

animal methods for assessing the skin sensitisation capacity of a given chemical.  

Of the four other cytokines quantified in the supernatant of cultured THP-1 cells in my 96-

wel plate h-CLAT assay format, IL-1β was detected only after incubation with the strong 

sensitiser, DNCB. My finding is aligned with the fact that IL-1β mRNA was up-regulated by 

incubation of cultured human DCs with 2,4-dinitrofluorobenzene (DNFB; a skin sensitiser) 

in contrast to the fact that IL-6 and IL-18 mRNA were not up-regulated (Pichowski et al., 

2000). Additionally, my data showed that there was an insignificant increase in the cultured 

THP-1 cell supernatant concentrations of IL-10, IL-12p70 and IFN-γ after incubation of 

these cells with the five epoxy resin compounds of interest. Previously, the metal 

sensitiser, nickel sulphate, was shown to stimulate the production of IL-12p40 (monomer), 

but not IL-12p70 (heterodimer) in human monocyte-derived DCs with the release of the 

latter subunit occurring only after the addition of IFN-γ (Antonios et al., 2010). In other 

work, there was up-regulated expression of IL-12p40 mRNA and protein as well as IL-

12p70 protein in the draining lymph nodes of mice treated with the contact sensitiser, 

DNFB (Toichi et al., 2008). In the same study, it was also noted that UV-irradiated skin 

treatment in mice resulted in an up-regulation of IL-10 mRNA expression but down-

regulation of IL-12p70 when mice were treated with DNFB (Toichi et al., 2008). These 

findings by others serve to illustrate the complexity of the immune response following 

exposure to a given chemical under various experimental conditions and/or the types of 

cells/tissues assessed. Epoxy resin compounds may differentially affect the expression of 

particular markers compared with nickel sulphate. For example, nickel sulphate induced 

IL-6, IL-8 and IL-12p40 in human DCs whereas only IL-8 expression was stimulated in 

DNCB-treated cells (Ade et al., 2007). This promising line of investigation warrants 

examination of a wider array of chemicals, particularly epoxy resin compounds, as well as 

a broader panel of cytokines as a means to assess whether there are particular immune 

profiles produced by cultured THP-1 cells exposed to various chemical classes, that may 

act as ‘signatures’ for skin sensitisation potential. This remains for future work beyond the 

scope of that described in my thesis. 

From the analytical perspective, accurate quantification of cytokines in the supernatant of 

cultured THP-1 cells in the h-CLAT, it is important to understand the impact of the assay 

and sample storage conditions on the chemical stability of individual cytokines. In this 

chapter, I assessed the stability of four cytokines, viz IL-1β, IL-6, IL-8 and IL-10 with 

particular attention focussed on IL-6 and IL-8, as these two cytokines have been proposed 
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by others as biomarkers for skin sensitisation potential (Miyazawa et al., 2008a, Jung et 

al., 2012). Indeed, my findings showed that three of the five epoxy resin compounds tested 

resulted in elevated supernatant concentrations of IL-6 and IL-8 in the h-CLAT. 

Importantly, I also showed that IL-1β, IL-8 and IL-10 were stable for at least four freeze-

thaws cycle whereas IL-6 was not stable after the second freeze-thaw cycle. Information 

on the stability of TNF-α and IFN-γ has been published recently by Ozbey et al. (2014) 

who showed that the initial cell culture supernatant concentration of TNF-α was 

approximately halved after the first freeze-thaw of the sample with subsequent freeze-thaw 

events having limited adverse impact. On the other hand, multiple freeze-thaw cycles did 

not appear to affect the integrity of IFN-γ, IL-6, IL-10 and IL-12 in these samples (Ozbey et 

al., 2014, Hosnijeh et al., 2010). Together, my findings with those of others suggest that h-

CLAT supernatant samples should undergo more than two freeze-thaw cycles to ensure 

cytokine integrity. The small discrepancy between my findings and those of Ozbey et al. 

(2014) may be more of a reflection of the execution of the freeze-thaw process, such as 

the length of time the sample was stored frozen between each freeze-thaw cycle. 

It is important to note that previous work (Ozbey et al., 2014, Hosnijeh et al., 2010) 

assessed the stability of cytokines in samples of cell culture supernatant, plasma or serum 

only, with respect to the effects of storage conditions. As Miyazawa et al. (2008b) reported 

an apparent decrease in the h-CLAT supernatant concentrations of TNF- at 24 h 

compared with that measured at earlier time-points, these observations may be 

underpinned at least in part by the chemical instability of TNF-α in the collected samples 

over such an extended time period. In my PhD research described in this chapter, I 

investigated the stability of secreted cytokines in h-CLAT supernatant by the addition of 

known amounts of cytokines (QCs) into cell culture media, followed by an incubation for 24 

h at 37°C to mimic the assay conditions. IL-6, IL-8 and IL-10 were not adversely affected 

by incubation at 37°C for 24 h whereas IL-1β was unstable under the same experimental 

conditions and study duration. Hence, the instability of IL-1β suggests that it is likely 

unsuitable as a biomarker for skin sensitisation in the h-CLAT.  Future investigation on the 

temporal stability of cytokines secreted into cultured THP-1 supernatant in the h-CLAT 

over the 24 h incubation period is warranted to gain further insight on the accuracy of 

cytokine measurements in this in vitro test of skin sensitisation. 
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2.5. Conclusion 

Research on the generalisability of the h-CLAT developed originally for assessment of the 

skin sensitisation potential of small molecules widely used in the cosmetics and toiletries 

industries, for assessment of a broader range of chemical classes including epoxy resin 

components, for their skin sensitising potential, is limited. In this chapter, the h-CLAT was 

optimised using a 96-well plate to improve assay efficiency. However, my PhD research 

also shows that the h-CLAT requires adaptation before it can be regarded as suitable for 

assessment of the skin sensitising potential of epoxy resin compounds. My findings on 

quantification of the pro-inflammatory cytokine concentrations in supernatant samples from 

cultured THP-1 cells after incubation with epoxy resin compounds for 24 h at 37°C, 

suggest that adaptation of the h-CLAT in this regard are promising. Specifically, my pilot 

data show that the concentrations of IL-6 and IL-8 measured in samples of cultured THP-1 

cell supernatant, hold promise as quantitative endpoints for screening epoxy resin 

compounds for sensitisation potential. Clearly, a larger number of epoxy resin compounds 

need to be screened in future work to more fully evaluate the feasibility of using 

supernatant cytokine concentrations as quantitative endpoints in the h-CLAT for assessing 

the skin sensitisation potential of epoxy resin compounds. Additionally, use of MSD 

immunoassays provides a sensitive and rapid approach for simultaneous quantification of 

seven or more cytokines in h-CLAT supernatant samples. Finally, it is also important to 

bear in mind that cytokine quantification in cell-based assays such as the h-CLAT requires 

rigorous assessment of the stability of cytokines in the sample matrix under the real assay 

conditions. This is essential to avoid experimental artefacts from negatively impacting on 

the accuracy and usefulness of the assay results. 
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Chapter 3: Optimisation of the performance of direct 

peptide reactivity assay (DPRA) for assessment of the skin 

sensitisation potential of chemicals 
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3.1. Introduction11 

Allergic contact dermatitis (ACD) is the clinically significant consequence of skin 

sensitisation that negatively affects approximately 15-20% of the general population 

(Peiser et al., 2012). At present, more than 4000 chemicals are linked to induction of ACD 

in humans (Cahill et al., 2012). A number of contact allergens, including fragrances, epoxy 

resin systems, formaldehyde, neomycin sulphate and nickel sulphate are commonly 

reported to induce ACD in humans (Cahill et al., 2012, Pesonen et al., 2015).  

At present, the murine local lymph node assay (LLNA) is globally accepted as the ‘gold 

standard’ for screening potential haptens (contact allergens) (Wong et al., 2015). However, 

according to the European Cosmetic Directive (EC1223/2009), products subjected to 

animal testing were prohibited from being marketed in the European Union (EU) from 2013 

(EU, 2009).  Furthermore, implementation of the 3Rs, reduction, refinement and 

replacement of animal testing, has driven the need to adopt alternative non-animal skin 

sensitisation screening methods. Without a validated alternative method for identifying 

potential skin sensitisers, enforcement of the EC1223/2009 regulation has the potential to 

negatively affect the cosmetics and toiletries industries, in that the safety of products for 

end users may remain undetermined due to the absence of animal data on their toxicity, 

carcinogenicity and skin sensitisation potential (EU, 2009). Furthermore, the EU REACH 

regulation (registration, evaluation, authorization and restriction of chemicals), 

EC1907/2006, which came into force on 1 June 2007, imparted pressure on the testing of 

thousands of chemicals that had not been previously tested for skin sensitisation potential, 

further driving the necessity for development and implementation of alternative fast and 

cost effective in vitro screening methods (EU, 2006). To this end, multiple non-animal 

testing methods have been developed and evaluated (Ade et al., 2006, Ashikaga et al., 

2006, Emter et al., 2010, Python et al., 2007, Sakaguchi et al., 2006, Bauch et al., 2012). 

The data thus generated can be incorporated into the establishment of risk assessments in 

the workplace, potentially leading to significant improvement in terms of public health and 

reduced socioeconomic costs comprising lost work days and consequent higher 

manufacturing costs. It was anticipated that in vitro methods would have the ability to 

                                                 
11 This chapter of my PhD thesis has been submitted to the Frontiers  in Pharmacology, as an original 
research article. 
 
Wong C.L., Lam A, Smith MT and Ghassabian S (2015). Optimisation of the performance of the direct 
peptide reactivity assay (DPRA) for assessment of the skin sensitisation potential of chemicals. Front. 
Pharmacol. (under review). 
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screen hundreds of chemicals concurrently, which is not feasible with methods utilising 

animal models. Although animal models are often regarded as a superior test system for 

assessing skin sensitisation potential, this is not always the case as the findings do not 

necessarily correlate directly with humans due to inter-species differences in anatomy, 

physiology and biochemistry with regard to response to different chemicals (Jamei et al., 

2009).  

The direct peptide reactivity assay (DPRA) is accepted by the Organisation for Economic 

Co-operation and Development (OECD) for use in the risk assessment of chemicals as 

potential skin sensitisers (OECD, 2015a). The ability of haptens to bind with skin proteins 

is regarded as the initial key event in skin sensitisation. Hapten-protein complexes are 

formed via covalent modification of amino acid side chains of proteins. This process, 

known as haptenation, provides the scientific basis underpinning the DPRA (Gerberick et 

al., 2004, Gerberick et al., 2007). Most sensitising chemicals are electrophilic in nature, 

comprising Michael acceptors, SNAr and SN2 electrophiles, Schiff base formers or 

acylating agents and so possess the ability to react with the nucleophilic amino acid 

residues of skin proteins (Lalko et al., 2012, Chipinda et al., 2011a). While lysine and 

cysteine are more commonly found to covalently bind to these electrophiles, other 

residues such as histidine and methionine have been reported to react with haptens also 

(Gerberick et al., 2009). Irreversible covalent bond formation between haptens and amino 

acid residues of skin proteins is mimicked in the DPRA whereby the amount of unreacted 

exogenous peptide is quantified in the presence and absence of potential skin sensitising 

chemicals (Gerberick et al., 2004).  

The sensitivity and accuracy of various amino acid combinations for simulation of skin 

proteins in the DPRA have been investigated. Gerberick et al. (2007) proposed a 

classification tree model that examined various ratios and combinations of glutathione, 

cysteine and lysine as a means to determine the optimum amino acid combinations for 

accurately identifying skin sensitisers, thereby eliminating the need for analysing a large 

panel of peptides to ensure reliability of the DPRA for predictive use. Based upon this 

classification tree model, the use of peptides containing cysteine or lysine, at a 1:10 or 

1:50 molar ratio to the test chemicals of interest, respectively, gave the best predictive 

power for the DPRA (Gerberick et al., 2007). In addition, a synthetic peptide containing 

both cysteine and lysine residues (Cor1-C420) which had the added advantage of high 

aqueous solubility in reaction buffer, showed high reactivity towards electrophiles 
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(Dennehy et al., 2006, Natsch et al., 2007).  Cor1-C420 heptapeptides had previously 

showed promising results in identifying skin sensitisers (Natsch and Gfeller, 2008).  

In order to develop high-throughput approaches and minimise inter and intra-laboratory 

variability in results, it is important to ensure that the DPRA is robust, accurate and 

reproducible according to criteria that are commonly utilised in the validation of 

bioanalytical methods (EMA, 2011, FDA, 2011). Hence, the aims of our research 

described herein were to develop and optimise the performance of three LC-MS/MS 

bioanalytical methods for quantification of the concentrations of three heptapeptides 

containing lysine, cysteine and Cor1-C420, following their reaction with various test 

chemicals of interest. Bioanalytical method parameters optimised included accuracy, 

precision, carry-over, stability of peptides under various incubation temperatures, influence 

of solvent composition, autosampler stability, and impact of vial materials on assay 

performance. 

3.2. Materials and methods 

3.2.1. Chemicals and reagents 

3.2.1.1. Peptides 

Leucine enkephalin acetate salt hydrate (YGGFL) (>98%) was supplied by Sigma-Aldrich 

Corporation (NSW, Australia), α-N-acetyl leucine enkephalin (Ac-YGGFL) (>95%), 

cysteine-containing heptapeptide (Ac-RFAACAA) (>94%), lysine-containing heptapeptide 

(Ac-RFAAKAA) (>97%) and Cor1-C420 heptapeptide (Ac-NKKCDLF) (>98%) 

heptapeptides were supplied by GL Biochem (Shanghai, China). 

3.2.1.2. Test chemicals 

2,4-dinitrochlorobenzene (DNCB, CAS 97-00-7), cinnamaldehyde (CAS 104-55-2), ethyl 

acrylate (CAS 140-88-5), glutaraldehyde (CAS 111-30-8), isoeugenol (CAS 97-54-1) and 

methyl salicylate (CAS 119-36-8) were supplied by Sigma-Aldrich Corporation (NSW, 

Australia). 

3.2.1.3. Reagents 

Ammonium hydroxide, bovine serum albumin (BSA), DL-dithiothreitol (DTT) and 

deferoxamine mesylate salt were supplied by Sigma-Aldrich Corporation (NSW, Australia), 

HPLC grade methanol and acetonitrile were supplied by Merck (Darmstadt, Germany), 

sodium hydroxide and ammonium acetate were supplied by Chem-Supply (SA, Australia). 
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Sodium phosphate dibasic and monosodium phosphate were purchased from 

ThermoFisher Scientific (VIC, Australia). 

3.2.2. Experimental design 

3.2.2.1. LC conditions 

The high performance liquid chromatography (HPLC) apparatus was a Shimadzu 

chromatographic system. A reversed phase C18 column (Gemini 2.0 × 150 mm, particle 

size 5 μm; Phenomenex, NSW, Australia) and a C18 security guard column (Gemini, 

Phenomenex, NSW, Australia) was used for all three heptapeptides. The column oven and 

autosampler temperatures were set at 40°C and 4°C, respectively. The injection volume 

for all samples was 5 μL. The mobile phase for the Cor1-C420 heptapeptides comprised 

mobile phase A (10 mM ammonium acetate, pH 9.5) and mobile phase B (acetonitrile) and 

the flow rate was 0.4 mL/min. The mobile phases for the heptapeptides containing 

cysteine or lysine comprised mobile phase A (10 mM ammonium acetate, pH 9.5) and 

mobile phase B (methanol) and the flow rate was 0.5 mL/min. A stepwise gradient elution 

program summarised in Figure 3-1 was used for each heptapeptide. The acquisition and 

processing of data were performed using the Applied Biosystems Sciex AnalystTM
 

software, version 1.6.1. 

3.2.2.2. MS/MS conditions 

Mass spectrometry (MS) detection was carried out using an Applied Biosystems Sciex API 

3200 triple quadruple MS equipped with an electrospray ionisation source. The highest 

abundant product ions were selected for each analyte. Positive ionisation mode was 

chosen for all three heptapeptides and the corresponding internal standards. The first 5 

min of the chromatographic run time were acquired by the MS. To tune the parameters for 

the heptapeptides and internal standards, molecular ions were identified by direct infusion 

of the solutions of interest and the parameters were automatically acquired by the Analyst 

software. Multiple reaction monitoring (MRM) in positive ionisation mode was used to 

monitor the analytes. The MS parameters for each heptapeptide and internal standard are 

listed in Table 3-1. The predicted fragments of three tested heptapeptides were detailed in 

Table 3-2 to Table 3-4. The chromatographic methods and peak area integration were 

performed using Analyst software version 1.6.1. 

  



 

90 
 

3.2.2.3. Preparation of peptide standards, calibration curves, quality control 

(QC) samples and test compounds with known sensitising capacity 

An eight-point calibration curve for each heptapeptide (Cor1-C420 heptapeptides, 5 - 50 

µM; cysteine-containing heptapeptides, 2-100 µM; lysine-containing heptapeptides 2 - 

100µM) was prepared. Duplicates of three standard QC samples (three times the LLOQ, 

50% of the ULOQ, 80% of the ULOQ) were prepared in 0.1 M phosphate buffer (pH7.4) for 

Cor1-C420 and the heptapeptide containing cysteine, whereas 0.1 M ammonium acetate 

buffer (pH10) was used for the heptapeptide containing lysine. The QC concentrations for 

Cor1-C420 were 15 µM, 25 µM and 40 µM whereas the QC concentrations for the 

heptapeptides containing cysteine and lysine were 6 µM, 50 µM and 80 µM. Triplicate of 

test chemicals with known sensitising capacity were used as total peptide depletion 

controls. The experiment was repeated in three independent experiments. DNCB (extreme 

sensitiser), isoeugenol (moderate sensitiser), cinnamaldehyde (moderate sensitiser) and 

methyl salicylic acid (non-sensitiser) were used to assess the stability of the Cor1-C420 

and cysteine-containing heptapeptide complexes after their formation. For the lysine-

containing heptapeptide, glutaraldehyde (strong sensitiser) and ethyl acrylate (weak 

sensitiser) were used in place of DNCB and isoeugenol. These chemicals were prepared 

in acetonitrile; the final percentage of organic solvent (acetonitrile) did not exceed 27% in 

the buffer solution. The final reaction volume was 300 µL. The molar ratio of the Cor1-

C420 and cysteine-containing heptapeptides to test chemical in the incubation mixtures 

was 1:10. By comparison the corresponding ratio for the lysine-containing heptapeptide 

and the test chemicals was 1:50. 

3.2.2.4. Peptide reactivity assessment 

After 24 h of incubation, leucine enkephalin acetate salt hydrate (75 µL, 12 µg/mL) or α-N-

acetyl leucine enkephalin (75 µL, 100 µg/mL) as internal standard, was added to the 

samples prior to 1 in 20 dilution for the cysteine- and lysine-containing heptapeptides, and 

1 in 8 dilution for Cor1-C420 in 5% acetonitrile in water prior to final analysis. For the 

cysteine-containing heptapeptide, an additional step was needed to prevent dimerization 

of the thiol groups. Specifically, 10 µL aliquots of 16 mM DTT were added to each diluted 

sample (final volume 200 µL) followed by incubation for 30 min at 40°C. 
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3.2.2.5. Carry-over assessment and lower limit of quantification (LLOQ) 

The LLOQ was assessed using the criteria that the analyte response at the LLOQ must be 

five times the baseline noise and it should have an accuracy of ±20% of the nominal 

concentration (EMA, 2011). The carry-over was assessed by injecting the highest 

concentration, the upper limit of quantification (ULOQ) of the analyte followed by a “blank” 

sample that did not contain the analyte of interest. The carry-over should not be more than 

20% of the LLOQ (EMA, 2011). 

3.2.2.6. Incubation temperature stability 

All samples from Section 3.2.2.3 were incubated at each of three temperatures, viz 4°C, 

25°C or 37°C for a time period of 24 (±1) h. The peptide concentrations were then 

assessed as per the methods described in Section 3.2.2.4. 

3.2.2.7. Adsorption of heptapeptides on polypropylene and glass materials 

To assess the extent to which there were adsorptive losses of each of the three 

heptapeptides of interest onto the vial materials over time, standard calibration curves, 

standard QC samples and four test chemical control samples as described in Section 

3.2.2.3, were prepared in both 96-well polypropylene plate and borosilicate glass vials 

throughout the course of experiment. These samples were incubated at 25°C for a period 

of 24 (±1) h and were placed in the autosampler and injected once every 24 h for a 3 day 

period. The calculated concentrations on days 1, 2 and 3 were compared with that 

determined on day 0. 

3.2.2.8. Peptide-chemical complex stability in the autosampler 

Standard calibration curves, QC samples and test chemical control samples with known 

sensitising capacity were prepared as per the description in Section 3.2.2.3. After a time 

period of 24 (±1) h incubation at 25°C, the standard calibration curve samples, standard 

QC samples and test chemical control samples were placed in the autosampler at 4°C and 

the stability of the heptapeptides was monitored for 3 days post-incubation. The back-

calculated concentration of the calibration standards should be within ±15% of the nominal 

value, except for the LLOQ for which it should be within ±20% (EMA, 2011). At least 75% 

of the calibration standards must fulfil these acceptance criteria for assay validation. QC 

sample accuracy should be within ±15% of the nominal values. At least 67% of the QC 

samples should comply with these criteria. If any of these criteria was not met, then the 

analytical batch was rejected. 



 

92 
 

3.2.2.9. Linearity 

Calibration curve linearity was assessed on three separate occasions. A linear least 

squares regression model with 1/x weighting was applied to all calibration curves. The 

assay range was considered linear when the back calculated concentrations and the 

coefficient of variation (CV) of the calibration standards were within ±15% of the nominal 

concentrations, except for the LLOQ for which ±20% was acceptable. The same criteria 

were applied to the peptide depletion response by the reference control (i.e. 50 µM Cor1-

C420 and 100 µM cysteine- or lysine- containing heptapeptides).  

3.2.2.10. Data analysis 

The percent heptapeptide depletion was calculated using Equation 5.  Our findings were 

compared with the OECD TG442C for reactivity classification and DPRA prediction 

(OECD, 2015a). The average of total depletion of Cor1-C420 and lysine-containing 

heptapeptide from three independent experiments were compared against the values in 

Table 3-5 as Cor1-C420 contains both cysteine and lysine side chains. The average of 

total cysteine heptapeptide depletion from three independent experiments was compared 

against the values in Table 3-6. 

%	Depletion	
Mean peptide concentration 

in the absence of test chemical
  - 

Mean peptide concentration 
in the presence of test chemical

Mean peptide concentration in the absence of the test chemical
 × 100%   ----- (5) 
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Figure 3-1: Mobile phase gradient elution of (A) Cor1-C420 (B) cysteine- and (C) lysine-

containing heptapeptides.  

  

(A) 

(B) 

(C) 



 

94 
 

Table 3-1: MS/MS Conditions for all analytes. 

MS Condition Cor1-C420 

Cysteine-

containing 

heptapeptide 

Lysine-containing 

heptapeptide 

α-N-acetyl leucine 

enkephalin 

Leucine 

enkephalin acetate 

salt hydrate 

Collision-induced 
dissociation (CAD) gas 

9 5 5   

Curtain gas (CUR) 40 30 30   

Nebuliser 65 55 55   

Ion spray temperature 
(TEM) 

550 550 550   

Collision energy (CE) 45 95 27 63 71 

Collision cell exit 
potential (CXP) 

4 4 4 4 4 

Declustering potential 
(DP) 

41 111 51 51 51 

Entrance potential (EP) 7 11.5 9 9.5 9.5 

MS/MS transition 
(Parent mass  
fragment mass) 

455.3  120.0 751.3  120.0 389.0  129.3 598.4  120.1 556.2  120.1 
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Table 3-2: Predicted fragments of Cor1-C420 in MS/MS. The value in red showed the 
predicted site of bond cleavage and predicted fragment mass. 

 

Formula Mono. Mass Mass Difference Formula Difference 

C5H9N2O2 129.0664 779.3762 C35H55N8O10S 

C9H9O2 149.0603 759.3823 C31H55N10O10S 

C6H9N2O3 157.0613 751.3813 C34H55N8O9S 

C9H10NO2 164.0712 744.3714 C31H54N9O10S 

C6H10N3O3 172.0722 736.3704 C34H54N7O9S 

C10H10NO3 192.0661 716.3765 C30H54N9O9S 

C11H21N4O3 257.1614 651.2812 C29H43N6O9S 

C15H20NO3 262.1443 646.2983 C25H44N9O9S 

C15H21N2O3 277.1552 631.2874 C25H43N8O9S 

C12H21N4O4 285.1563 623.2863 C28H43N6O8S 

C12H22N5O4 300.1672 608.2754 C28H42N5O8S 

C16H21N2O4 305.1501 603.2925 C24H43N8O8S 

C19H25N2O6 377.1713 531.2713 C21H39N8O6S 

C17H33N6O4 385.2563 523.1863 C23H31N4O8S 

C19H26N3O6 392.1822 516.2604 C21H38N7O6S 

C18H33N6O5 413.2512 495.1913 C22H31N4O7S 

C20H26N3O7 420.1771 488.2655 C20H38N7O5S 

C18H34N7O5 428.2621 480.1804 C22H30N3O7S 
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Table 3-3: Predicted fragments of cysteine-containing heptapeptides in MS/MS. The value 
in red showed the predicted site of bond cleavage and predicted fragment mass. 

 

Formula Mono. Mass Mass Difference Formula Difference 

C4H10N3 100.0875 650.2608 C28H40N7O9S 

C4H6NO3 116.0348 634.3135 C28H44N9O6S 

C6H10NO3 144.0661 606.2822 C26H40N9O6S 

C6H11N2O3 159.077 591.2713 C26H39N8O6S 

C7H15N4O 171.1246 579.2237 C25H35N6O8S 

C7H11N2O4 187.0719 563.2764 C25H39N8O5S 

C8H15N4O2 199.1195 551.2288 C24H35N6O7S 

C8H16N5O2 214.1304 536.2179 C24H34N5O7S 

C9H15N2O4S 247.0753 503.273 C23H35N8O5 

C9H16N3O4S 262.0862 488.2621 C23H34N7O5 

C10H16N3O5S 290.0811 460.2672 C22H34N7O4 

C12H20N3O5S 318.1124 432.2359 C20H30N7O4 

C16H24N5O2 318.193 432.1553 C16H26N5O7S 

C12H21N4O5S 333.1233 417.225 C20H29N6O4 

C17H24N5O3 346.1879 404.1604 C15H26N5O6S 

C13H21N4O6S 361.1182 389.2301 C19H29N6O3 

C17H25N6O3 361.1988 389.1495 C15H25N4O6S 
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Table 3-4: Predicted fragments of lysine-containing heptapeptides in MS/MS. The value in 
red showed the predicted site of bond cleavage and predicted fragment mass. 

 

Formula Mono. Mass Mass Difference Formula Difference 

C4H10N3 100.0875 675.3466 C31H47N8O9 

C4H6NO3 116.0348 659.3993 C31H51N10O6 

C6H10NO3 144.0661 631.368 C29H47N10O6 

C6H11N2O3 159.077 616.3571 C29H46N9O6 

C7H15N4O 171.1246 604.3095 C28H42N7O8 

C7H11N2O4 187.0719 588.3622 C28H46N9O5 

C8H15N4O2 199.1195 576.3146 C27H42N7O7 

C8H16N5O2 214.1304 561.3037 C27H41N6O7 

C12H22N3O4 272.161 503.273 C23H35N8O5 

C12H23N4O4 287.1719 488.2621 C23H34N7O5 

C13H23N4O5 315.1668 460.2672 C22H34N7O4 

C16H24N5O2 318.193 457.2411 C19H33N6O7 

C15H27N4O5 343.1981 432.2359 C20H30N7O4 

C17H24N5O3 346.1879 429.2462 C18H33N6O6 

C15H28N5O5 358.209 417.225 C20H29N6O4 

C17H25N6O3 361.1988 414.2353 C18H32N5O6 

C16H28N5O6 386.204 389.2301 C19H29N6O3 
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Table 3-5: Percent peptide depletion model based upon cysteine 1:10 and lysine 1:50 
(OECD, 2015a). 

Mean of cysteine and lysine % 
depletion 

Reactivity class DPRA prediction 

0% ≤ mean % depletion ≤ 6.38% No/minimal reactivity Negative 

6.38% < mean % depletion ≤ 22.62% Low reactivity 

Positive 22.62% < mean % depletion ≤ 42.47% Moderate reactivity 

42.47% < mean % depletion ≤ 100% High reactivity 

 

Table 3-6: Percent peptide depletion model based upon cysteine 1:10 (OECD, 2015a). 

Cysteine % depletion Reactivity class DPRA prediction 

0% ≤ % depletion ≤ 13.89% No/minimal reactivity Negative 

13.89% < mean % depletion ≤ 23.09% Low reactivity 

Positive 23.09% < mean % depletion ≤ 98.24% Moderate reactivity 

98.24% < mean % depletion ≤ 100% High reactivity 
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3.3. Results 

3.3.1. Chromatography 

The MS/MS transitions and optimised MS parameters as well as the chromatograms of the 

peptides and internal standards are presented in Table 3-1 and Figure 3-2 respectively. 

3.3.2. Carry-over assessment and LLOQ 

Carry-over was observed for Cor1-C420, such that the peak area of the heptapeptide 

detected in the blank was 10% of the LLOQ. However, this carry-over was within the 

acceptance criteria of not more than 20% of the LLOQ. No carry-over was observed for 

cysteine- and lysine-containing heptapeptides as well as for the internal standard. The 

LLOQ for Cor1-C420 was 5 µM whereas the LLOQ for both the cysteine- and lysine-

containing heptapeptides was 2 µM. 

3.3.3. Incubation temperature stability 

Statistical analysis was performed using repeated measures two-way analysis of variance 

(ANOVA) followed by the Bonferroni test to assess the stability of heptapeptides between 

incubation temperatures. Statistical analysis was carried out using the GraphPad PrismTM 

(Version 6.04) and the statistical significance criterion was p<0.05.  

The standard calibration curves for Cor1-C420 that was incubated at 25°C and 37°C were 

significantly different (P<0.05 and P<0.0001, respectively) from that for the freshly 

prepared standard calibration curve. This could be due to instability of Cor1-C420 at 

ambient or high temperatures. No significance difference was observed for the peptide 

standards that were incubated at 4°C for a period of 24 (±1) h (P>0.05). By contrast, the 

cysteine- and lysine-containing heptapeptides remained stable for 24 h at 4°C, 25°C and 

37°C with no significant difference (P>0.05) observed for each peptide at the various 

incubation temperatures. 
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Cor1-C420 

 

α-N-acetyl leucine enkephalins 

Retention Time: 2.80 Peak area: 144000 Retention Time: 2.90 Peak area: 210000 

Cysteine 

 

Lysine 

Retention Time: 2.45 Peak area: 1290000 Retention Time: 2.72 Peak area: 199000 

Figure 3-2: Sample chromatograms of (A) Cor1-C420 (B) internal standard (IS) α-N-acetyl 

leucine enkephalins (C) cysteine- and (D) lysine-containing heptapeptides. 

(B) (A) 

(C) (D)
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3.3.4. Adsorption of heptapeptides onto polypropylene and borosilicate glass 

vessels 

Peptide stability was assessed for Cor1-C420 (at 15, 25 and 40 µM) and for the 

heptapeptides containing lysine or cysteine (at 6, 50 and 80 µM) over 3 days in vessels 

made of polypropylene and borosilicate glass materials. Our data show that the Cor1-

C420 concentration for QC samples prepared at low, medium and high concentrations 

remained unchanged in polypropylene vials (Table 3-7). The accuracy of all three Cor1-

C420 QC samples across 3 days was within ±15% of their respective nominal 

concentrations. By contrast, all Cor1-C420 analytical batches incubated in borosilicate 

glass vials were rejected for days 1-3 as the repeated analyses did not meet the 

acceptance criteria as specified in Section 3.2.2.9 (supplementary Table 3-S1). The Cor1-

C420 standard curve failed the linearity assessment and hence the accuracy of the QC 

samples for this peptide (in glass) was not determined.  

The concentration of the cysteine-containing heptapeptide QC samples remained 

unchanged when stored in vessels made from polypropylene materials throughout the 

course of the experiment (Table 3-8). Additionally, the cysteine-containing heptapeptide 

QC samples remained unchanged for up to two days post incubation in borosilicate glass 

vials. However, the cysteine-containing heptapeptide standard curve failed the linearity 

assessment on day 3 (supplementary Table 3-S2).  As for the lysine-containing 

heptapeptide, the standard curves remained unchanged in vessels made from both 

polypropylene (Table 3-9) and borosilicate glass (supplementary Table 3-S3) for up to 

three days post-incubation.  

3.3.5. Peptide-chemical complex stability in autosampler 

Stability of the peptide-chemical complexes stored in HPLC autosampler plates was 

assessed using chemicals with known sensitising capacities, viz DNCB, isoeugenol, 

cinnamaldehyde and methyl salicylate, with Cor1-C420 and the heptapeptide containing 

cysteine (Table 3-10 and Table 3-11 respectively). The corresponding data for 

glutaraldehyde, cinnamaldehyde, ethyl acrylate and methyl salicylate incubated with the 

heptapeptide containing lysine are shown in Table 3-12. The autosampler stability of the 

peptide-chemical complexes was determined to assess the feasibility of injecting a large 

number of samples in a single analytical experiment without adversely affecting sample 

integrity which would be a requirement for conducting the DPRA in high-throughput format. 
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Stability of the peptide-chemical complexes was assessed in polypropylene plates for the 

Cor1-C420 and cysteine-containing heptapeptides due to the significant adsorptive losses 

of both peptides onto glass materials as reported in Section 3.3.4. The total peptide 

depletion of chemicals with known sensitising potential for days 1-3 was compared against 

those determined on day 0. Following incubation of each of DNCB and cinnamaldehyde 

with Cor1-C420, there was a decrease in percent peptide depletion over the 3-days 

assessment period (i.e. an increase in peptide concentration), albeit not extensive such 

that the classification of these chemicals with respect to skin sensitisation capacity did not 

change. However, following incubation of isoeugenol and methyl salicylate with Cor1-

C420, the reverse trend was observed such that there was a marked increase in peptide 

depletion over the 3-day assessment period (Table 3-10), that would lead to eventual 

misclassification of the sensitising reactivity of each of these chemicals. For example, 

cinnamaldehyde was initially assessed as having moderate peptide reactivity when 

assessed on day 0 which was in line with LLNA data, with the reactivity gradually 

decreasing with minimal/no reactivity by 48 hours post-chemical incubation  (day 1). 

Test chemicals incubated with cysteine-containing heptapeptide showed a decrease in 

peptide depletion over the 3-day assessment period (i.e. an increase in peptide 

concentration) for DNCB, isoeugenol and cinnamaldehyde (Table 3-11). In particular, the 

change in peptide depletion over time resulted in cinnamaldehyde initially being 

categorised as having moderate reactivity on day 0 but with this changing to low reactivity 

from day 1 onwards. 

As there were no adsorptive losses of the lysine-containing heptapetide in glass or 

polypropylene vessels (Section 3.3.4), the stability of the formed peptide-chemical 

complexes for the test chemicals, glutaraldehyde, cinnamaldehyde, ethyl acrylate and 

methyl salicylate were assessed using vessels made from both types of materials. With 

the exception of cinnamaldehyde, the extent of lysine peptide depletion over the 3-day 

assessment period remained unchanged for glutaraldehyde, ethyl acrylate and methyl 

salicylate in reactions carried out in polypropylene vials (Table 3-12).  However, the total 

lysine heptapeptide depletion by ethyl acrylate (weak sensitiser) was approximately 20% 

higher overall for the entire 3-day assessment period when the reaction was carried out in 

borosilicate glass vials (supplementary Table 3-S3) compared with the corresponding data 

generated using polypropylene plates (Table 3-12).  This apparent difference in the extent 

of lysine peptide depletion between reactions carried out in polypropylene versus 

borosilicate glass vials was not evident for glutaraldehyde, cinnamaldehyde and methyl 
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salicylate as the total lysine depletion was similar (±15%) for reactions conducted in both 

polypropylene and borosilicate glass vials.  

Overall our present data indicate that the stability of the covalent bonds formed between 

the test chemical and heptapeptide of interest, appears to be dependent upon the type of 

chemical being assessed as well as the heptapeptides utilised. Although the number of 

test chemicals assessed was small, our data suggest that the total elapsed time for 

conduct of the DPRA irrespective of the heptapeptide used, should not exceed 24 h in 

order to maximise assay accuracy. 

3.3.6. Linearity 

Calibration curves were linear and the slope, y-intercept and regression coefficient (R2) 

were determined.  Data showing calibration curve linearity for all three heptapeptides using 

polypropylene vials are summarised in Table 3-13 to Table 3-15. Our calibration data 

showed high precision (<10%) and high accuracy (<10%) between each replicate and 

days of the assay. The mean slope for Cor1-C420, cysteine- and lysine-containing 

heptapeptides were 0.0351, 0.0521 and 0.0306 while the mean R2 values were 0.9876, 

0.9951 and 0.9958, respectively. 
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Table 3-7: Summary of calculated concentrations for QC samples for the Cor1-C420 heptapeptide in 96-well polypropylene plate 

assessed at 24 h intervals for Days 0-3. The accuracy of QC samples was within the acceptance criterion, i.e. ±15% from the nominal 

concentration. 

 Day 0 (n=3) Day 1 (n=3) Day 2 (n=3) Day 3 (n=3) 

QC Concentration (µM) 15 25 40 15 25 40 15 25 40 15 25 40 

Mean concentration (µM) 15.18 26.12 38.98 15.02 25.60 38.15 15.23 26.07 38.82 14.78 25.78 39.75 

SD 0.96 1.80 3.30 0.92 1.90 1.78 1.01 2.87 5.10 1.75 3.43 4.14 

Precision 6.3 6.9 8.5 6.1 7.4 4.7 6.6 11.0 13.1 11.8 13.3 10.4 

Accuracy 1.20 4.47 -2.55 0.11 2.40 -4.62 1.56 4.27 -2.96 -1.47 3.12 -0.63 

 

Table 3-8: Summary of calculated concentrations for QC samples for the cysteine-containing heptapeptide in 96-well polypropylene plate 

assessed at 24 h intervals for Days 0-3. The accuracy of QC samples was within the acceptance criterion, i.e. ±15% from the nominal 

concentration.  

 Day 0 (n=3) Day 1 (n=3) Day 2 (n=3) Day 3 (n=3) 

QC Concentration (µM) 6 50 80 6 50 80 6 50 80 6 50 80 

Mean concentration (µM) 5.57 47.78 78.04 6.38 50.17 80.05 5.96 50.10 77.58 5.74 49.28 78.15 

SD 0.37 2.65 3.60 0.48 3.81 3.59 0.29 1.79 4.15 0.42 1.74 4.41 

Precision 6.7 5.5 4.6 7.4 7.6 4.5 4.9 3.6 5.4 7.4 3.5 5.6 

Accuracy -7.3 -4.4 -2.5 6.4 0.3 0.1 -0.7 0.2 -3.0 -4.4 -1.4 -2.3 
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Table 3-9: Summary of calculated concentrations of QC samples for the lysine-containing heptapeptide in 96-well polypropylene plate 

assessed at 24 h intervals for Days 0-3. The accuracy of QC samples was within the acceptance criterion, i.e. ±15% from the nominal 

concentration.  

 Day 0 (n=3) Day 1 (n=3) Day 2 (n=3) Day 3 (n=3) 

QC Concentration (µM) 6 50 80 6 50 80 6 50 80 6 50 80 

Mean concentration (µM) 5.55 49.80 76.47 5.74 48.80 75.43 5.59 49.00 75.15 5.67 49.22 74.17 

SD 0.33 1.72 4.56 0.34 0.75 4.86 0.21 1.04 6.79 0.27 0.79 8.66 

Precision 5.9 3.4 6.0 6.0 1.5 6.4 3.7 2.1 9.0 4.8 1.6 11.7 

Accuracy -7.4 -0.4 -4.4 -4.4 -2.4 -5.7 -6.8 -2.0 -6.1 -5.4 -1.6 -7.3 
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Table 3-10: Percent depletion of the Cor1-C420 heptapeptide incubated with representative test chemicals in 96-well polypropylene plate 

for a period of 24 (±1) h post-incubation (n=3). Day 0 in the table denotes the first day of sample storage in an autosampler at 4°C. The 

mean depletion is calculated based on the data from three replicates from each of three independent experiments. 

Test Chemicals Day post 
incubation 

Mean % depletion (±SD) Mean Difference  from 
Day 0 

Classification of Test 
Chemical12 

DNCB 
(Strong sensitiser) 

 

0 97.14 (±1.0)  High reactivity 

1 93.78 (±0.7) 3.350 High reactivity 

2 92.86 (±1.5) 4.279 High reactivity 

3 92.56 (±3.4) 4.578 High reactivity 

Isoeugenol 
(Moderate sensitiser) 

 

0 64.08 (±1.2)  High reactivity 

1 72.96 (±2.1) -8.881 High reactivity 

2 80.37 (±6.0) -16.29 High reactivity 

3 82.07 (±5.0) -17.99 High reactivity 

Cinnamaldehyde 
(Moderate sensitiser) 

 

0 33.83 (±8.1)  Moderate reactivity 

1 17.66 (±12.7) 16.17 Low reactivity* 

2 10.47 (±10.9) 23.36 No/minimal Reactivity* 

3 5.21 (±6.3) 28.62 No/minimal Reactivity* 

Methyl salicylate 
(Weak sensitiser) 

0 7.54 (±7.1)  No reactivity 

1 11.24 (±8.0) -3.699 Low reactivity* 

2 14.56 (±9.4) -7.021 Low reactivity* 

3 19.18 (±10.7) -11.64 Low reactivity* 

*change in reactivity class 

  

                                                 
12 Category of test chemical is based on the OECD TG442C  (Table 3-5) 
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Table 3-11: Percent depletion of the cysteine-containing heptapeptide incubated with representative test chemicals in 96-well 

polypropylene plate for a period of 24 h (±1) h post incubation (n=3). Day 0 in the table denotes the first day of sample storage in an 

autosampler at 4°C. The mean depletion is calculated based on the data from three replicates from each of three independent 

experiments. 

Test Chemicals Day post 
incubation 

Mean % depletion (±SD) Mean Difference  from Day 0 Classification of Test 
Chemical13 

DNCB 
(Strong sensitiser) 

 

0 88.74 (±2.5)  Moderate reactivity 

1 81.36 (±1.0) 7.375 Moderate reactivity 

2 75.71 (±1.6) 13.03 Moderate reactivity 

3 75.83 (±0.9) 12.9 Moderate reactivity 

Isoeugenol 
(Moderate sensitiser) 
 

0 32.84 (±7.0)  Moderate reactivity 

1 29.41 (±3.9) 3.433 Moderate reactivity 

2 24.54 (±6.2) 5.328 Moderate reactivity 

3 28.73 (±7.0) 4.114 Moderate reactivity 

Cinnamaldehyde 
(Moderate sensitiser) 
 

0 27.40 (±2.9)  Moderate reactivity 

1 22.65 (±0.5) 4.751 Low reactivity* 

2 21.10 (±2.8) 6.306 Low reactivity* 

3 22.66 (±4.0) 4.744 Low reactivity* 

Methyl salicylate 
(Weak sensitiser)  

0 0.50 (±0.9)  No/minimal reactivity 

1 0.00 (±0.0) 1.112 No/minimal reactivity 

2 0.95 (±1.6) 0.2706 No/minimal reactivity 

3 0.84 (±1.5) 0.49 No/minimal reactivity 

*change in reactivity class 

                                                 
13 Category of test chemical is based on the OECD TG442C  (Table 3-6) 
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Table 3-12: Percent depletion of the lysine-containing heptapeptide incubated with representative test chemicals in 96-well 

polypropylene plate for a period of 24 h (±1) h post incubation (n=3). Day 0 in the table denotes the first day of sample storage in an 

autosampler at 4°C. The mean depletion is calculated based on the data from three replicates from each of three independent 

experiments. 

Test Chemicals Day post 
incubation 

Mean % depletion (±SD) Mean Difference  from Day 0 Classification of Test 
Chemical14 

Glutaraldehyde 
(Strong sensitiser) 

 
 

0 49.23 (±5.8)  High reactivity 

1 49.03 (±5.2) 0.1989 High reactivity 

2 49.61 (±5.3) -0.3756 High reactivity 

3 51.25 (±6.2) -2.019 High reactivity 

Cinnamaldehyde 
(Moderate sensitiser) 
 
 

0 7.18 (±6.7)  Low Reactivity 

1 4.89 (±5.2) 2.29 No/minimal Reactivity* 

2 4.36 (±4.7) 2.82 No/minimal Reactivity* 

3 4.08 (±4.6) 3.104 No/minimal Reactivity* 

Ethyl acrylate 
(Weak sensitiser) 

 
 

0 24.73 (±9.8)  Moderate reactivity 

1 23.54 (±7.7) 1.191 Moderate reactivity 

2 23.68 (±6.4) 1.056 Moderate reactivity 

3 23.42 (±6.6) 1.312 Moderate reactivity 

Methyl salicylate 
(Non-sensitiser) 

 
 

0 9.14 (±9.4)  Low Reactivity 

1 8.02 (±7.6) 1.119 Low Reactivity 

2 7.72 (±6.5) 1.417 Low Reactivity 

3 7.94 (±6.6) 1.203 Low Reactivity 

*change in reactivity class 

  

                                                 
14 Category of test chemical is based on the OECD TG442C  (Table 3-5) 
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Table 3-13: Calibration curve linearity for the Cor1-C420 heptapeptide (n=3) in 96-well polypropylene plate over 3 days. 

Mean Measured Concentration (Cm)

Nominal 

Conc. 

(µM) 

Replicate 1 Replicate 2 Replicate 3

Mean SD 
Precision 

(%) 

Accuracy 

(%) 
Day

0 

Day 

1 

Day 

2 

Day

3 

Day

0 

Day

1 

Day

2 

Day

3 

Day 

0 

Day

1 

Day

2 

Day

3 

5 4.72 5.10 5.20 5.16 4.66 5.09 4.94 5.42 4.96 5.24 5.61 5.77 5.16 0.33 6.4 3.1 

10 9.65 9.74 9.43 9.50 10.0 9.91 9.70 9.14 10.6 10.0* 8.93 8.59* 9.61 0.55 5.7 -3.9 

15 15.4 14.9 14.9 15.6 15.1 14.6 14.2 14.4 14.3 14.2 15.1 14.8 14.78 0.46 3.1 -1.4 

20 20.1 19.8 19.5 20.4 20.5 19.8 21.5 20.4 18.7 21.6 20.0 19.3 20.13 0.83 4.1 0.7 

25 27.0 25.5 25.9 23.4* 26.1 25.2 26.0 25.8 25.8 22.8 22.8 21.9 24.85 1.67 6.7 -0.6 

30 31.4 29.5 30.6 28.7* 30.9 30.9 29.9 29.0* 30.8 30.5* 30.8 29.9 30.24 0.85 2.8 0.8 

40 39.4 41.7 40.8 37.7* 40.8 40.0 41.7 40.6 40.6 41.8 41.0 43.0 40.76 1.33 3.3 1.9 

50 47.3 48.7 48.7 51.9 46.9 49.5 47.1 49.8 49.2 49.8 50.8 51.1 49.25 1.60 3.3 -1.5 

a 0.0580 0.0465 0.0325 0.0336 0.0483 0.0446 0.0453 0.0453 0.0234 0.0165 0.0139 0.0138 0.0351 

b -0.0546 -0.1400 -0.1220 -0.1490 -0.0330 -0.1250 -0.1640 -0.2050 -0.0344 -0.0383 -0.0492 -0.0597 -0.0979 

R2 0.9800 0.9972 0.9830 0.9762 0.9938 0.9980 0.9889 0.9835 0.9881 0.9878 0.9907 0.9839 0.9876 

*denotes single data point was used 
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Table 3-14: Calibration curve linearity of cysteine-containing heptapeptide (n=3) in 96-well polypropylene plate over 3 days. 

Mean Measured Concentration (Cm)

Nominal 

Conc. 

(µM) 

Replicate 1 Replicate 2 Replicate 3

Mean SD 
Precision 

(%) 

Accuracy 

(%) 
Day 

0 

Day  

1 

Day  

2 

Day 

3 

Day 

0 

Day 

1 

Day 

2 

Day 

3 

Day  

0 

Day 

1 

Day 

2 

Day 

3 

2 2.34 2.11* N/A 2.15 1.84 1.81 N/A 2.03 N/A N/A 1.87 N/A 2.02 0.19 9.6 1.1 

5 4.78 4.76* N/A 4.82 4.90 4.89 N/A 4.99 N/A 5.56* 4.97 N/A 4.96 0.26 5.2 -0.8 

10 9.29 9.06* 8.98 9.62 10.5 10.4 8.91 9.64 10.9 9.99 10.1 10.9 9.85 0.71 7.2 -1.5 

20 18.0 20.4 20.5 19.2 20.7 21.1 21.2 20.3 19.0 18.9 20.6 18.6 19.88 1.07 5.4 -0.6 

30 30.2 29.4* 32.1 30.6 30.8 31.0 31.8 30.5 28.5 29.4 30.7 28.6 30.30 1.14 3.8 1.0 

50 51.2 52.7 52.3 50.5 51.2 51.3 51.3 49.7 49.6 50.5 52.2 50.7 51.10 0.98 1.9 2.2 

80 80.8 80.5 79.0 81.0 78.7 78.2 78.0 79.9 81.2 80.3 79.5 80.9 79.85 1.13 1.4 -0.2 

100 100.4 97.2 97.0 99.0 98.4 98.2 98.7 99.9 101 101 97.1 100 99.06 1.55 1.6 -0.9 

a 0.0291 0.0429 0.0529 0.0376 0.0432 0.0442 0.0547 0.0351 0.0489 0.0755 0.1030 0.0577 0.0521    

b -0.0255 -0.0217 0.1920 -0.0198 0.0165 0.0262 0.2060 0.0031 -0.2070 -0.1580 0.0116 -0.2620 -0.0199    

R2 0.9981 0.9903 0.9919 0.9979 0.9968 0.9957 0.9950 0.9993 0.9954 0.9942 0.9944 0.9922 0.9951    

*denotes single data point was used; N/A denotes the points were excluded 
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Table 3-15: Calibration curve linearity of lysine-containing heptapeptide (n=3) in 96-well polypropylene plate over 3 days. 

Mean Measured Concentration (Cm)

Nominal 

Conc. 

(µM) 

Replicate 1 Replicate 2 Replicate 3

Mean SD 
Precision 

(%) 

Accuracy 

(%) 
Day

0 

Day 

1 

Day 

2 

Day

3 

Day

0 

Day

1 

Day

2 

Day

3 

Day 

0 

Day

1 

Day

2 

Day

3 

2 1.96 1.93 1.92 1.85 1.87 1.95 1.96 1.97 1.84 1.92 1.86 1.92 1.91 0.05 2.5 -4.4 

5 4.94 5.08 4.98 4.98 4.92 4.92 4.86 4.80 4.98 4.96 4.94 5.00 4.95 0.07 1.4 -1.1 

10 9.89 10.0 9.93 9.98 10.4 10.4 10.2 10.1 10.2 10.0 10.3 9.99 10.13 0.18 1.7 1.3 

20 20.4 20.4 20.8 21.1 20.9 20.4 20.6 21.0 20.8 20.5 20.8 20.3 20.67 0.27 1.3 3.3 

30 30.7 29.8 30.6 31.4 31.0 30.4 30.7 30.8 31.0 30.8 30.8 31.0 30.74 0.38 1.2 2.5 

50 50.7 50.3 50.7 50.9 49.3 48.8 49.2 48.4 51.0 50.6 50.2 51.0 50.09 0.92 1.8 0.2 

80 79.9 79.4 78.7 78.4 77.2 76.5 77.5 78.9 78.7 79.5 79.7 79.5 78.65 1.08 1.4 -1.7 

100 98.6 100 99.4 98.4 101.5 104 102 101 98.4 98.6 98.4 98.4 99.87 1.77 1.8 -0.1 

a 0.0367 0.0332 0.0379 0.0378 0.0251 0.0257 0.0293 0.0302 0.0264 0.0279 0.0289 0.0280 0.0306    

b 0.0037 0.0016 0.0075 0.0098 0.0067 0.0035 0.0013 0.0033 0.0065 0.0043 0.0036 0.0007 0.0044    

R2 0.9845 0.9984 0.9990 0.9973 0.9952 0.9968 0.9977 0.9976 0.9958 0.9950 0.9962 0.9959 0.9958    
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3.4. Discussion 

We used a comprehensive and systematic approach to identify the optimal 

experimental conditions for conducting the DPRA in 96-well plate format with LC-

MS/MS quantification of the extent of peptide depletion. Specifically, the optimal 

assay incubation temperature was 25°C for the three heptapeptides assessed, 

(Cor1-C420, cysteine- and lysine-containing containing), as incubation at 37°C 

adversely affected Cor1-C420 peptide stability. Our data comparing the effects of 

using a 96-well polypropylene plate relative to borosilicate glass vials on adsorptive 

losses of heptapeptides as well as on the stability of peptide-chemical complexes is 

novel. Importantly, we found that polypropylene plates were preferable to glass vials 

in terms of minimising adsorptive losses of the peptides of interest even though glass 

vials are more commonly used for heptapeptide reactivity assessments in the DPRA. 

Our findings extend the existing DPRA especially for the example of the lysine-

containing heptapeptide-ethyl acrylate complex where total lysine depletion was 

~20% lower when the assay was conducted in polypropylene compared with glass 

vials under the same assay preparation conditions. Furthermore, our findings show 

that the DPRA may not be suitable for screening a large number of chemicals in 

single experiment due to the potential for instability of test chemical-peptide 

complexes such that the peptide concentration may change significantly when stored 

in an autosampler over a 3-day period.  

Our present findings on the effects of varying the incubation temperature employed 

in the DPRA, mimicking the various temperatures used by laboratories globally, on 

the stability of the heptapeptides, are also novel. Natsch and Gfeller (2008) used 

37°C for incubating various test chemicals with the Cor1-C420 heptapeptide, 

whereas Gerberick et al. (2007) and the OECD guideline, TG442C, recommend an 

incubation temperature of 25°C for test chemicals with the cysteine- and lysine-

containing heptapeptides with an incubation period of 24 h (OECD, 2015a). Herein, 

we compared the effect of these two incubation temperatures (25°C and 37°C) for 

representative test chemicals with a range of concentrations of all three 

heptapeptides, viz, Cor1-C420, heptapeptides containing cysteine or lysine with that 

of freshly prepared samples as the control condition. Our findings show that an 

incubation temperature of 37°C may induce loss of Cor1-C420. By comparison, a 

temperature of 4°C did not significantly alter the stability of these three 
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heptapeptides. A temperature of 25°C was selected as the optimal temperature for 

subsequent reactions of test chemicals with each of the three heptapeptides of 

interest as it had a minimal effect on the stability of these heptapeptides after 24 (±1) 

h of incubation. Incubation time of 24 (±1) h was adopted in the experiment as 

previously, Gerberick et al. (2004) performed the kinetics activity of peptide depletion 

and showed that the optimal incubation period for obtaining high predictive power for 

skin sensitisers was at 24 h. 

Next, we assessed the impact of the reaction vial composition (polypropylene or 

borosilicate glass) used for test chemical incubation reactions on apparent peptide 

depletion. Our data clearly show that the Cor1-C420 and cysteine-containing 

heptpeptides were less affected by polypropylene than by borosilicate glass as the 

Cor1-C420 and cysteine-containing heptapeptide QC samples did not pass the 

acceptance criteria for samples processed in glass vials after autosampler storage at 

4°C for periods of 24 h (day 1) and 72 h (day 3) respectively in contrast to similar 

samples processed in polypropylene plate where the QC samples passed the assay 

acceptance criteria. The use of either polypropylene or glass materials for the 

incubation step did not appear to cause non-specific adsorptive losses of lysine-

containing peptide, with the concentrations of all QC samples within the acceptance 

criterion of ±15% of the nominal peptide concentrations. However, incubation of ethyl 

acrylate (weak sensitiser) with lysine-containing heptapeptide in glass or 

polypropylene materials showed that the apparent total lysine depletion was 47.3% 

or 24.7% respectively when assessed within 24 h of test chemical addition to the 

peptide. However, in work by others, ethyl acrylate reportedly gave a different 

percentage of lysine depletion, 2.1% and 93.7% (Gerberick et al., 2007, Troutman et 

al., 2011), a result that would misclassify ethyl acrylate as a no/minimal to strong 

reactivity class, respectively. Our total lysine depletion results determined using 96-

well polypropylene plates more closely reflect the classification of ethyl acrylate as 

weak sensitiser by the LLNA (Gerberick et al., 2005). The different observation 

reported for total lysine depletion with ethyl acrylate could be due to different 

experimental conditions employed.  

Chemical reaction of amino acid residues with test chemicals involves irreversible 

covalent bond formation mimicking the reaction of haptens with amino acid residues 
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of skin proteins (Gerberick et al., 2004). However, a major challenge with the existing 

DPRA method is that the stability over an extended period of the covalent bond 

formed between heptapeptides and test chemicals, as may be required by high-

throughput DPRA screening of large batches of chemicals, is unknown. In our 

present work, we identified the maximum period that sample analysis could be 

performed accurately based upon the stability of the peptide-test chemical 

complexes formed. Our data show for the first time that peptide-chemical complex 

formation appears to be partially reversible in some instances. For example, 

following incubation of cinnamaldehyde with Cor1-C420 or the cysteine-containing 

heptapeptide, apparent peptide depletion decreased by 5% and 13% respectively by 

day 3 following initiation of the peptide-chemical reactions. In these instances, the 

magnitude of these changes did not alter the skin sensitisation classifications. The 

stability of peptide-test chemical complex formed was assessed against standard QC 

samples (without test chemical) stored for the same length of time in the 

autosampler at 4°C. As the concentrations of the heptapeptide standard QC samples 

remained consistent throughout the course of experiment, this means that any 

changes observed in apparent levels of peptide depletion during the 3-day storage 

period in the autosampler to cause a change in the chemical reactivity classification 

of the test chemicals, were not due to instability of the heptapeptides. Instead, our 

findings suggest that some of the peptide-chemical complexes were held together by 

slowly reversible covalent bonds. Indeed, our findings are aligned with similar 

findings in work by others on the kinetic profiles of test chemical-peptide reactions for 

periods ranging from 5 min to 24 h post-incubation (Roberts and Aptula, 2014, 

Natsch et al., 2011b). Our findings extend previous findings to suggest that 

dissociation of peptide-chemical complexes appear to be more prominent for 

autosampler storage periods longer than 24 h.  

Additionally our data indicate that the peptide-chemical complex dissociation rate is 

chemical-specific. For example, change in apparent peptide depletion was prominent 

for the Cor1-C420-cinnamaldehyde complex such that during the first 24 h of 

complex formation, it was classified correctly as a moderate sensitiser. However, it 

would have been incorrectly classified as a non-sensitiser if assessed only on day 3 

post-incubation. By contrast, the extent of peptide depletion determined following 

incubation of DNCB with the Cor1-C420 differed by ≤5% over several days of 
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storage at 4°C in an autosampler. Work involving assessment of the kinetic reactivity 

profiles of test chemicals with the cysteine-containing heptapeptide showed that the 

extent of cysteine depletion was dependent upon both the test chemical 

concentration and the incubation time, thereby potentially affecting the chemical 

potency classification (Roberts and Natsch, 2009, Natsch et al., 2015). Although 

future investigation is required to characterise the dissociation rate kinetics of 

peptide-chemical complex formation for a broad range of chemicals, we recommend 

based upon our present findings showing time-dependent changes in apparent 

peptide depletion by a range of heptapeptides and chemicals, that all DPRA samples 

be analysed within 24 h of initiation of incubation (at 25°C) between the 

heptapeptides of interest and a test chemical.  

Our present research highlights the importance of optimising the reaction conditions 

in a systematic and comprehensive manner when evaluating the applicability of an 

assay such as the DPRA for assessing a wide range of chemical classes. It is crucial 

to determine the choice of peptide for DPRA as not all sensitisers will react with thiol 

and/or amine side chains. For instance, DNCB is thiol reactive and therefore it binds 

with the thiol side chain of Cor1-C420 and cysteine-containing heptapeptide which 

will then activate the nuclear factor erythroid-derived 2-related factor 2 (Nrf2)-ARE 

pathway in cells that is a well-known toxicity pathway activated by skin sensitisers 

(Natsch, 2010). In contrast, DNCB did not bind with the amine group in lysine and 

therefore it was replaced with glutaraldehyde, a lysine reactive compound in our 

lysine depletion assay.  Due to the nature of the chemical reactivity of compounds, 

peptides with different side chains should be included in the DPRA.  

We used MS/MS herein rather than an ultraviolet (UV) detector as per the OECD 

TG442C (OECD, 2015a), because MS/MS is more sensitive and selective compared 

with UV-based detection systems (Natsch and Gfeller, 2008). Use of MS/MS 

detection enabled us to adapt the DPRA to a smaller reaction volume prepared in 

96-well plate format.  This 96-well assay format improved assay efficiency with the 

potential to be further developed into a high-throughput assay.  

Overall, our findings show that the optimal peptide-chemical incubation conditions for 

the DPRA are a 25°C incubation temperature using polypropylene plates/vials. 

Observations of adsorptive loss of heptapeptides onto the surface of vial/plate 
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materials in the DPRA are novel, and not hitherto reported. This effect may not have 

been significant in the classical DPRA method which used a higher peptide 

concentration (Gerberick et al., 2004) with analyte adsorption more significant at 

lower concentrations (Goebel-Stengel et al., 2011). In particular, peptide adsorption 

was noted for Cor1-C420 (15, 25 and 40 µM) in glass vials, with the measured QC 

sample concentrations falling outside the acceptance criterion of ±15% of the 

nominal concentration.  

3.5. Conclusion 

In summary, our present work, we investigated systematically a number of critical 

aspects of the DPRA that may potentially confound the accuracy and reproducibility 

of the data generated by the DPRA. Use of three different heptapeptides in the 

DPRA has the potential to increase assay specificity for detection of skin sensitisers 

that may bind more favourably to a particular amino-acid on one peptide rather than 

another. Hence optimisation of the assay protocol to provide favourable assay 

conditions for both peptide and the chemical class being assessed is recommended 

to ensure that accurate and meaningful data are obtained from the DPRA. 

Additionally, our findings show that conduct of the DPRA in large batch sizes may 

result in inaccurate data due to instability of chemical bond formation between 

heptapeptides and some compounds. These observations further highlight the 

difficulty in adapting in vitro methods to high-throughput formats for screening of 

large numbers of chemicals whilst ensuring that the data produced are both accurate 

and reproducible.  
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3.6. Supplementary Data 

Table 3-S1: Percent depletion of the Cor1-C420 heptapeptide incubated with representative test chemicals in boroslicate glass vials for a 

period of 24 (±1) h post-incubation (n=3). Day 0 in the table denotes the first day of sample storage in an autosampler at 4°C. The mean 

depletion is calculated based on the data from three replicates from each of three independent experiments. 

Test Chemicals Day post 
incubation 

Mean % depletion (±SD) Mean Difference  with 
Day 0 

Classification of Test 
Chemical15 

DNCB 
(Strong sensitiser) 

  

0 98.18 (±1.6)   High reactivity 

1 N/A     

2 N/A     

3 N/A     

Isoeugenol 
(Moderate sensitiser) 

   

0 70.07 (±5.5)   High reactivity 

1 N/A     

2 N/A     

3 N/A     

Cinnamaldehyde 
(Moderate sensitiser) 

  

0 35.76 (±5.8)   Moderate reactivity 

1 N/A     

2 N/A    

3 N/A     

Methyl salicylate 
(Weak sensitiser) 

0 8.84 (±5.4)   Low reactivity 

1 N/A     

2 N/A     

3 N/A     

*change in reactivity class 
N/A denotes the batch failed acceptance criteria

                                                 
15 Category of test chemical is based on the OECD TG442C (Table 3-5) 
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Table 3-S2: Percent depletion of the cysteine-containing heptapeptide incubated with representative test chemicals in boroslicate glass 

vials for a period of 24 h (±1) h post incubation (n=3). Day 0 in the table denotes the first day of sample storage in an autosampler at 4°C. 

The mean depletion is calculated based on the data from three replicates from each of three independent experiments. 

Test Chemicals Day post 
incubation 

Mean % depletion (±SD) Mean Difference  with Day 0 Classification of Test 
Chemical16 

DNCB 
(Strong sensitiser) 

  

0 85.13 (±1.7)   Moderate reactivity 

1 73.83 (±2.6) 11.3 Moderate reactivity 

2 64.09 (±2.7) 21.04 Moderate reactivity 

3 N/A     

Isoeugenol 
(Moderate sensitiser) 

   

0 38.77 (±6.9)   Moderate reactivity 

1 35.90 (±0.5) 2.872 Moderate reactivity 

2 30.99 (±2.5) 7.778 Moderate reactivity 

3 N/A     

Cinnamaldehyde 
(Moderate sensitiser) 

   

0 35.26 (±2.3)   Moderate reactivity 

1 24.34 (±7.5) 10.91 Moderate reactivity 

2 16.82 (±6.7) 18.44 Low reactivity* 

3 N/A     

Methyl salicylate 
(Weak sensitiser)  

0 5.94 (±3.3)   No/minimal reactivity 

1 0.45 (±4.5) 5.486 No/minimal reactivity 

2 1.72 (±0.9) 4.223 No/minimal reactivity 

3 N/A     

*change in reactivity class 
N/A denotes the batch failed acceptance criteria

                                                 
16 Category of test chemical is based on the OECD TG442C  (Table 3-6) 
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Table 3-S3: Percent depletion of the lysine-containing heptapeptide incubated with representative test chemicals in boroslicate glass 

vials for a period of 24 h (±1) h post incubation (n=3). Day 0 in the table denotes the first day of sample storage in an autosampler at 4°C. 

The mean depletion is calculated based on the data from three replicates from each of three independent experiments. 

Test Chemicals Day post 
incubation 

Mean % depletion (±SD) Mean Difference  with Day 0 Classification of Test 
Chemical17 

Glutaraldehyde 
(Strong sensitiser) 

  
  

0 55.33 (±4.0)   High reactivity 

1 58.68 (±3.7) -3.349 High reactivity 

2 61.98 (±4.8) -6.654 High reactivity 

3 66.51 (±7.4) -11.18 High reactivity 

Cinnamaldehyde 
(Moderate sensitiser) 

  
  

0 9.89 (±6.1)   Low Reactivity 

1 6.28 (±2.4) 3.608 No/minimal Reactivity* 

2 4.88 (±1.7) 5.008 No/minimal Reactivity* 

3 4.40 (±0.8) 5.492 No/minimal Reactivity* 

Ethyl acrylate 
(Weak sensitiser) 

  
  

0 47.28 (±7.7)   High reactivity 

1 43.40 (±5.9) 3.882 High reactivity 

2 42.05 (±6.1) 5.229 Moderate reactivity* 

3 42.18 (± 6.2) 5.099 Moderate reactivity* 

Methyl salicylate 
(Non-sensitiser) 

  
  

0 3.52 (±5.5)   No/minimal Reactivity 

1 2.89 (±1.7) 0.6289 No/minimal Reactivity 

2 1.52 (±0.4) 1.997 No/minimal Reactivity 

3 1.90 (±0.7) 1.618 No/minimal Reactivity 

*change in reactivity class 
N/A denotes the batch failed acceptance criteria

                                                 
17 Category of test chemical is based on the OECD TG442C  (Table 3-5) 
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Chapter 4: Comparative evaluation of in vitro approaches 

for hazard assessment of epoxy resin compounds relative to 

the in vivo local lymph node assay (LLNA) 
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4.1. Introduction  

Early diagnosis of allergic contact dermatitis (ACD) is crucial for prevention and treatment 

of disease (Jacob and Steele, 2006a). At present, there is no effective treatment for ACD 

other than application of skin creams containing corticosteroids to reduce local 

inflammation and relieve itch (Cohen and Heidary, 2004). For this reason, skin sensitiser 

screening methods were introduced in the early 1940s such that individuals suspected of 

having ACD would undergo patch testing to identify the causative allergens. However, a 

major shortcoming of this approach is that the human patch tests were conducted only 

after symptoms of ACD had occurred. To address this issue, animal models were 

introduced for à priori detection of potential skin sensitisers in raw ingredients of consumer 

products. The currently accepted standalone in vivo method is the murine local lymph 

node assay (LLNA) where the sensitising capacity of skin allergens was found to be 

proportional to the extent of T-cell proliferation in the local lymph nodes of the tested mice 

(Basketter et al., 2002). Nevertheless, due to animal welfare concerns, the implementation 

of non-animal testing has been required in accordance with the ethical principles of the 

3Rs.  

The mechanism underpinning development of ACD is underpinned by four key biological 

events that form the Adverse Outcome Pathway (AOP) for skin sensitisation (OECD, 

2012a). These four events are protein binding between the sensitising chemical and skin 

proteins (haptenation), keratinocyte activation, dendritic cell (DC) activation and 

proliferations of hapten-specific T-cells (OECD, 2012a). Multiple non-animal approaches 

have been designed to address each of the four AOP key events. To date,  the DPRA 

(Gerberick et al., 2004), KeratinoSens™ (Emter et al., 2010) and h-CLAT (Ashikaga et al., 

2006) that map to the first three AOP events respectively, have undergone validation by 

the European Union Reference Laboratory for Alternatives to Animal Testing (EURL-

ECVAM). While several methods hold great potential, it is recognised by most experts in 

the field that a single in vitro method is inadequate to represent the complex mechanisms 

underpinning ACD development. Hence, the acceptance of an in vitro method for à priori 

screening of chemicals as potential skin sensitisers will be dependent upon important 

factors that include accuracy, sensitivity, specificity and cost-effectiveness of the assay. 

The generalisability of these in vitro methods for accurately identifying skin sensitisers 

from a broad range of chemical classes including epoxy resin compounds is as yet 
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unclear. This is because evaluation of the performance of most in vitro methods developed 

to date used chemicals that are primarily utilised in the manufacture of cosmetic and 

toiletry products. However, a recent 9-year retrospective assessment on occupational 

contact dermatitis in 11 European countries has identified epoxy resin compounds as the 

second most common allergen type for inducing occupational-related ACD (Pesonen et 

al., 2015). With the increasing global demand for epoxy resin compounds for industrial 

applications, it is imperative to address the knowledge gap with regards to the 

generalisability of the current in vitro skin sensitisation tests for hazard assessments of 

these chemicals.  

The findings of my doctoral research program described in Chapters 2 and 3 of this thesis, 

have brought innovation into and new insights on the limitations of two in vitro methods, 

the h-CLAT and DPRA, that were developed by others to assess the skin sensitisation 

potential of chemical compounds.  

My work described in this chapter, evaluated the predictive accuracy of my optimised h-

CLAT method for assessing the skin sensitisation potency of five epoxy resin compounds 

relative to the corresponding data produced by the LLNA and/or Organisation of Economic 

Co-operation and Development (OECD) quantitative structural activity relationship (QSAR) 

toolbox herein. For ethical reasons, the sensitising potency of the five representative 

epoxy resin compounds assessed herein were drawn from either previous published 

animal or human data and/or existing information from the OECD QSAR toolbox. The 

QSAR toolbox, outlined in Chapter 1 Section 1.8.3, is a software application that uses 

interpolation to fill data gaps regarding assessment of chemical hazards. The database in 

the OECD QSAR toolbox contains data from experimental studies as well as accumulated 

knowledge on structural alerts (characteristics) that can be used to identify chemical 

hazards and to interpolate/extrapolate experimental values by using read-across analysis, 

trend analysis and QSAR models. For the epoxy resin compounds where the skin 

sensitising potency data did not exist, they were assessed using the murine LLNA to 

determine their sensitising capacity.  

Additionally, I evaluated the accuracy of my optimised DPRA method described in Chapter 

3 for assessment of the skin sensitisation potency of a set of 19 molecules that are widely 

used in the cosmetics and toiletries industries. Additionally, I evaluated the feasibility of the 

DPRA to accurately identify and classify the sensitising potential of five epoxy resin 

compounds.   
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4.2. Materials and methods 

4.2.1. Chemicals and reagents 

4.2.1.1. Test chemicals 

Bisphenol A diglycidyl ether (DGEBA, CAS 1675-54-3), trimethylolpropane triglycidyl ether 

(TMPTGE, CAS 3454-29-3, technical grade), poly(ethylene glycol) diglycidyl ether 

(PEGGE, CAS 72207-80-8), tetraphenylolethae glycidyl ether (THETGE, CAS 7328-97-4), 

poly[(phenyl glycidyl ether)-co-formaldehyde] (PPGE, CAS 28064-14-4), 2,4-

dinitrochlorobenzene (DNCB, CAS 97-00-7), 2-mercaptobenzothiazole (CAS 149-30-4), 3-

methylcatechol (CAS 488-17-5), 5-amino-o-cresol (CAS 2835-95-2), benzalkonium 

chloride (CAS 63449-41-2), benzocaine (CAS 94-09-7), cinnamaldehyde (CAS 104-55-2), 

cinnamyl alcohol (CAS 104-54-1), ethyl acrylate (CAS 140-88-5), eugenol (CAS 97-53-0), 

geraniol (CAS 106-24-1), glutaraldehyde (CAS 111-30-8), glycerol (CAS 56-81-5), 

imidazolidinyl urea (CAS 39236-46-9), isoeugenol (CAS 97-54-1), isopropanol (CAS 67-

63-0), lactic acid (CAS 50-21-5), methyl salicylate (CAS 119-36-8), resorcinol (CAS 108-

46-3), salicylic acid (CAS 69-72-7), α-hexylcinnamaldehye (CAS 101-86-0) were 

purchased from Sigma-Aldrich Corporation (NSW, Australia). 

4.2.1.2. Reagents 

Acetone, olive oil, trichloroacetic acid were supplied by Sigma-Aldrich Corporation (NSW, 

Australia). Tritium thyimidine (3HTdR) and Ultima GoldTM liquid scintillation cocktail were 

purchased from PerkinElmer (MA, USA). Phosphate buffer saline (PBS) was obtained 

from Life Technologies Invitrogen (VIC, Australia). 
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4.2.2. Experimental design 

4.2.2.1. OECD QSAR toolbox 

Before using the QSAR toolbox, the Chemical Abstract Service (CAS) registration 

numbers and simplified molecular-input line-entry system (SMILES) of the test chemicals 

used in my work described this chapter were obtained from the website ChemSpider 

(http://www.chemspider.com/) and this information is listed in Table 4-1. This information 

was used as the input data into the OECD QSAR Toolbox version 3.3.2 (downloadable 

from http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm) to 

generate the main characteristics of each test chemical utilised herein, according to 

several predefined classification schemes, namely mechanisms or modes of action (MOA) 

as well as observed and/or simulated metabolites of each chemical. More specifically, the 

profiling methods selected within the MOA classification for characterising these potential 

skin sensitisers were DPRA cysteine peptide depletion, DPRA lysine peptide depletion, 

protein binding by OASIS v1.3 (Laboratory of Mathematical Chemistry (LMC), Bourgas, 

Bulgaria), protein binding by the OECD (European Chemicals Agency (ECHA); OECD), 

keratinocyte gene expression (Laboratory of Mathematical Chemistry (LMC), Bourgas, 

Bulgaria) and protein binding alerts for skin sensitisation by OASIS v1.3.  

The profiling methods/options selected in the QSAR to generate the chemical features 

based upon observed/simulated metabolites of the queried chemical, included data on in 

vivo metabolism in the rat, rat liver S9 metabolism data,  as well as data from the 

autoxidation simulator, autoxidation simulator (alkaline medium), rat liver S9 metabolism 

simulator and skin metabolism simulator. The retrieval of existing information and data 

from experimental studies for the queried test chemicals were sourced from the various 

OECD QSAR databases, such as the chemical reactivity COLIPA (European Cosmetic 

Association), DC COLIPA, GSH experimental RC50 (Unilever, International QSAR 

Foundation, University of Tennessee, Knoxville, USA), keratinocyte gene expression 

Givaudan (Givaudan International AG, Switzerland), skin sensitisation (Unilever; Procter & 

Gamble; ExxonMobil; OECD) and skin sensitisation ECETOC (ECETOC Belgium) 

databases. If no experimental data were available, the chemical was placed into one of the 

available chemical categories, namely protein binding by OASIS v1.1 as recommended by 

the OECD (2012b). For chemicals without predefined skin sensitisation information, a 

read-across analysis was performed as a means to predict the sensitisation capacity of the 

given chemical.  
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Table 4-1: List of chemicals, the Chemical Abstract Service (CAS) registration and the molecular-input line-entry system (SMILES) used 

in the OECD QSAR Toolbox  

Chemical Name Molecular Weight 

(g/mol) 

Purity 

(%) 

SMILE CAS Number 

2,4-dinitrochlorobenzene 

(DNCB) 

202.55 99.8 ClC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O 97-00-7 

2-Mercaptobenzothiazole 167.25 99.9 SC1=NC2=CC=CC=C2S1 149-30-4 

3-Methylcatechol 124.14 99.6 OC1=CC=CC(C)=C1O 488-17-5 

5-amino-o-cresol 123.15 99.7 OC1=CC(N)=CC=C1C 2835-95-2 

Benzalkonium Chloride 364.60 64.8 CCCCCCCCCCCCCC[N+](C)(C)C1=CC=CC=C1.O.[Cl-] 63449-41-2 

Benzocaine 165.19 100 NC1=CC=C(C(OCC)=O)C=C1 94-09-7 

Bisphenol A Diglycidyl 

Ether (DGEBA) 

340.41 - CC(C1=CC=C(OCC2CO2)C=C1)(C)C3=CC=C(OCC4CO

4)C=C3 

1675-54-3 

Cinnamaldehyde 132.16 98.4 O=C/C=C/C1=CC=CC=C1 104-55-2 

Cinnamyl alcohol 134.18 98.7 OC/C=C/C1=CC=CC=C1 104-54-1 

Ethyl Acrylate 100.12 100 O=C(C=C)OCC 140-88-5 

Eugenol 164.20 99.4 OC1=CC=C(CC=C)C=C1OC 97-53-0 

Geraniol 154.25 99.0 CC(C)=CCC/C(C)=C/CO 106-24-1 

Glutaraldehyde 100.12 25.0 O=CCCCC=O 111-30-8 

Glycerol 92.09 - OC(CO)CO 56-81-5 

“-” denotes purity was not specified in the certificate of analysis and 100% purity was used in calculation.  
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Table 4-1: cont. 

Chemical Name Molecular Weight 

(g/mol) 

Purity 

(%) 

SMILE CAS Number 

Imidazolidinyl urea 388.29 - O=C(N1)N(CO)C(NC(NCNC(NC(C(N2)=O)N(CO)C2=O)=

O)=O)C1=O 

39236-46-9 

Isoeugenol 164.20 99.0 OC1=CC=C(/C=C/C)C=C1OC 97-54-1 

Lactic Acid 90.08 90.2 CC(O)C(O)=O 50-21-5 

Methyl Salicylate 152.15 99.4 OC1=CC=CC=C1C(OC)=O 119-36-8 

Poly(ethylene glycol) 

diglycidyl ether (PEGGE) 

526.00 - C1(CO1)COCCOCC2CO2 72207-80-8 

Poly[(phenyl glycidyl 

ether)-co-formaldehyde] 

(PPGE) 

570.00 - C=O.C1(OCC2CO2)=CC=CC=C1 28064-14-4 

Resorcinol 110.11 99.8 OC1=CC=CC(O)=C1 108-46-3 

Salicylic Acid 138.12 99.4 OC1=CC=CC=C1C(O)=O 69-72-7 

Tetraphenylolethane 

glycidyl ether (THETGE) 

622.70 - C1(C(C(C(C=C2)=CC=C2OCC3OC3)C4=CC=C(C=C4)O

CC5OC5)C(C=C6)=CC=C6OCC7CO7)=CC=C(C=C1)OC

C8CO8 

7328-97-4 

Trimethylolpropane 

triglycidyl ether technical 

grade (TMPTGE) 

302.36 - CCC(COCC1CO1)(COCC2CO2)COCC3CO3 3454-29-3  

 

α-Hexylcinnamaldehye 216.32 97.8 O=C/C(CCCCCC)=C/C1=CC=CC=C1 101-86-0 
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4.2.2.2. Murine local lymph node assay (LLNA) 

Approval was obtained from the Animal Ethics Committee of The University of Queensland 

for the murine LLNA. For ethical reasons, the LLNA was performed only for those epoxy 

resin compounds (PEGGE, THETGE and PPGE) where there was no published LLNA 

data available and there was not enough data within QSAR to make an informed 

prediction on skin sensitisation potency. The murine LLNA was performed according to the 

OECD Test Guideline 429 (OECD, 2010a) (Figure 4-1). Briefly, female mice of the CBA 

strain were chosen for the LLNA. Before performing the LLNA, all existing toxicological 

information, including acute toxicity and dermal irritation as well as structural and 

physicochemical information on the test chemicals were taken into account for dose 

selection. In the absence of such information, a pre-screen test was carried out for dose 

selection.  

The maximum concentration of each test chemical was used as the initial concentration for 

topical application. Maximum concentration is defined as the maximum solubility of a 

chemical in vehicle. Acetone:olive oil (AOO, 4:1, v/v) was selected as the solvent/vehicle 

for all the tested chemicals. Briefly, pre-screen tests involved topical application of three 

concentrations of a test chemical (i.e. starting from the highest concentration, 100%, 50%, 

25%, 10%,…etc) on the dorsal surface of both mouse ears for three consecutive days 

(n=2 mice/test item). The topical application of test chemicals was performed in a blinded 

manner to avoid inadvertent bias in scoring erythema three days later (day 6) as shown in 

Table 4-2. Clinical signs and behaviour of these mice were monitored throughout the test. 

The assessment of lymph nodes was not performed in the pre-screen test.  

The main LLNA test was carried out similarly to the pre-screen test for the first 5 days 

(Figure 4-1). Three concentrations of each test chemical, starting with the concentration 

that did not induce erythema to the mouse ears in the pre-test were applied topically (n=4). 

Additionally, a 25% solution of α-hexylcinnamaldehyde (weak sensitiser) in AOO and 

vehicle AOO (negative control) were also applied to the ears of mice in parallel with the 

test chemicals in each cohort. After a two-day rest period, the mice were administered a 

single bolus intravenous dose (150 µL dose volume) of 20 µCi radiolabelled thymidine 

(3HTdR) in sterile 1x PBS via tail injection. The mice were euthanised at 5 h post-injection 

and the auricular draining lymph nodes were excised (Figure 4-2). The auricular lymph 

nodes from mice within the same treatment group were pooled (n=4) in 1 mL of iced cold 

1x PBS and the lymph nodes were mechanically disaggregated using a 35µm nylon mesh 
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cell strainer. The cells were then washed with 3 mL of 1x PBS and centrifuged at 200 xg 

for 10 min at 4°C. The supernatant was discarded and the cells were given two times 

washes with 3 mL of 1x PBS at 4°C. The washed cells were then resuspended in 3 mL of 

5% (v/v) trichloroacetic acid in deionised water and were incubated at 4°C for 18 h. After 

incubation, the cells were centrifuged at 200 xg for 10 min at 4°C. The supernatant was 

discarded and resuspended in 1 mL of 5% trichloroacetic acid. The resuspended cells 

from each treatment group were transferred into individual glass scintillation vials, followed 

by the addition of 10 mL of Ultima GoldTM liquid scintillation cocktail in all vials. The 

radioactivity level of 3HTdR was determined using a LS6500 multi-purpose scintillator 

counter (Beckman Coulter, Fullerton, CA, USA). The data were captured using the LS6000 

Data Capture/Network Software Version 2.11 and expressed as disintegrations per minute 

(dpm). 

4.2.2.3. SI and EC3 values determination for LLNA 

Using dpm data from the scintillator counter, the results of each treatment were calculated 

and expressed as a stimulation index (SI), which was a ratio of the T-cell proliferation in 

the treated group to that in the corresponding vehicle-treatment negative control group 

(Equation 6). A sensitiser was defined as a chemical with one or more doses with an SI≥3. 

The potency of a skin sensitiser was expressed as an EC3 value (as a percentage), which 

was the estimated chemical concentration that was able to induce a 3-fold increase in T-

cell proliferation, i.e. SI=3. EC3 values were calculated as per Equation 7. The level of 
3HTdR incorporated into the DNA of auricular draining lymph nodes was proportional to 

the potency of the hapten which facilitated further sub-division of a hapten as a non-

sensitiser, weak, moderate, strong or extreme sensitising agent (Table 4-3). 

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
   ------- (6) 

 

3	 %         ------- (7) 

where  

a is the dose concentration in percentage immediately above SI=3 

b is the SI immediately above 3 

c is the dose concentration in percentage immediately below SI=3 

d is the SI immediately below 3 
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Figure 4-1: Pre-test and main test of the murine LLNA 
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Table 4-2: Erythema scores for the pre-test in the murine LLNA (OECD, 2010a). 

Observation Score 

No erythema 0 

Very slight erythema (barely perceptible) 1 

Well-defined erythema 2 

Moderate to severe erythema 3 

Severe erythema (beet redness) to eschar formation preventing grading of 

erythema 

4 

 

Table 4-3: Potency classification using the mouse LLNA (Kimber et al., 2003) 

EC3 Value (%) Potency Classification 

≥10 - ≤100 Weak 

≥1 - <10 Moderate 

≥0.1 - < 1 Strong 

<0.1 Extreme 
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Figure 4-2: Ventral dissection of the mouse. The auricular lymph nodes were extracted on 

the sixth day after the initial application of a test chemical to the ears.  
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4.2.2.4. Human cell line activation test (h-CLAT) 

My optimised h-CLAT method was performed on five representative epoxy resin 

compounds using the methods described in Chapter 2 Section 2.2.2.2 and Section 2.2.2.4. 

4.2.2.5. Direct peptide reactivity assay (DPRA) 

My optimised DPRA method (described in Chapter 3) was used to assess the skin 

sensitisation potential of five representative epoxy resin compounds. Preliminary 

assessment showed that further optimisation work was required in order to assess these 

epoxy resin compounds particularly aimed at addressing the issues of solvent selection for 

dissolution and minimising adsorptive losses of the heptapeptides used in the DPRA on 

vessel walls. 

4.2.2.5.1. Solvent selection for epoxies 

A range of solvents were evaluated for their effects on depletion of heptapeptides in the 

peptide-epoxies test system. The DPRA using the Cor1-C420 peptide was performed 

using a range of solvents and their combinations, such as acetonitrile, methanol, 1:1 

Acetonitrile:Methanol, 1:1 Acetonitrile:Methanol with 1% tert-butanol, 1:1 Acetonitrile: 

Methanol with 1% methylbutanol, and dimethylsulfuxide (DMSO). These solvents were 

mixed with phosphate buffer (pH7.4) at varying ratios (v/v), specifically 50%, 25%, 12.5%, 

6.25% and 3.125% solvent in phosphate buffer (pH7.4). 

4.2.2.5.2. Effect of bovine serum albumin (BSA) on Cor1-C420 heptapeptide 

The effect of including BSA, a commonly employed blocking agent in assays to reduce 

adsorptive losses of peptides onto vessel walls, on DPRA performance was also 

assessed. Peptide reactivity using 1:10, 1:5 and 1:2.5 (peptide:test chemical ratio) of the 

Cor1-C420 heptapeptide with DGEBA (strong sensitiser), TMPTGE (moderate sensitiser) 

and PEGGE (non-sensitiser), respectively, were determined in the presence and absence 

of 1% BSA during the 24 (±1) h incubation period.  
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4.3. Results 

4.3.1. OECD QSAR toolbox 

Based upon the information in the databases of the OECD QSAR toolbox, DGEBA has a 

measured EC3 value of 1.5% and so it is classified as a moderate sensitiser. Both 

TMPTGE and THETGE were predicted to be sensitisers with an EC3 value of 16% 

according to the read across methodology.  The prediction results were based upon four 

measured (experimental) LLNA values from structural analogues. Hence, to assess the 

accuracy of the predicted value for these two epoxy resins, LLNA data were required (see 

next section). The sensitisation capacity of the two epoxy resin compounds, PEGGE and 

PPGE could not be predicted by QSAR due to the lack of existing training datasets within 

the QSAR databases. The QSAR predicted/measured values for each of the five epoxy 

resin compounds which were the EC3 value in LLNA and EC1.5, EC2 and EC3 of the 

KeratinoSensTM
 assay are summarised in Table 4-4. 

4.3.2. Murine local lymph node assay (LLNA) 

4.3.2.1. Pre-test 

The pre-screen test was performed using PEGGE, THETGE and PPGE to determine the 

appropriate doses for the main LLNA test. For ethical reasons, TMPTGE was not tested in 

the LLNA as published data indicate that this compound was a moderate sensitiser 

(Gamer et al., 2008). Three concentrations of each of PEGGE, THETGE and PPGE were 

applied to mice ears (n=2 per compound), with the highest concentration equal to the 

maximum solubility of the test chemical (Table 4-5). AOO was used as the vehicle for all 

test chemicals. The severity of erythema on both ears was scored on day 0 (pre-dose 

application) and Day 6 post-application. 

During the LLNA, there was a small decrease in body weights of mice treated with test 

chemicals up to 4 days post-dose application. Overall, the maximum body weight loss was 

≤10% for mice treated with THETGE which is acceptable (Figure 4-3). The body weights of 

all mice increased on days 5 and 6 post-application of test compound. 

Using the erythema scoring paradigm shown in Table 4-2, the ears of mice in the LLNA 

were assessed on day 6. Importantly, the tissue on and around the ears appeared healthy 

and there was no evidence of erythema prior to test chemical application (Figure 4-4(A)). 
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For mice where vehicle was applied to the ears, erythema was not observed at the site of 

application (Figure 4-4(B)). For mice treated with 25% and 50% of PEGGE, The ears of 

one of two mice per group treated were inflamed and dried test chemical was observed on 

the surface of the ears (Figure 4-4(C)). The mice also displayed pain behaviour when 

touched gently on the ear skin and so were assigned a score of 3. The mice treated with 

the highest dose of 33.3% PPGE tested, there was well-defined erythema and alopecia on 

the ears and so they were assigned a score of 2 (Figure 4-4(D)). For the mice 

administered 50% THETGE on the ears, there was well-defined erythema (score = 1) 

observed. A summary of erythema scores for mice in the LLNA test is shown in Table 4-5. 

For the main LLNA test, the selected chemical concentration range was reduced if any of 

the previously tested concentrations in the pre-screen test gave an erythema score of 3 

and above. Based upon the scores shown in Table 4-5, the test chemical concentrations 

for the main test were 50% (v/v), 25% and 10% for THETGE; 12.5%, 5% and 2.5% for 

PEGGE; 33.3%, 16.7% and 8.3% for PPGE. 
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Table 4-4: Predicted skin sensitisation potency of five epoxy resin compounds obtained 

from the OECD QSAR toolbox. 

Chemicals QSAR 

Predicted/measured 

Potency18 

Comments 

DGEBA Moderate sensitiser - 

TMPTGE Weak sensitiser  Read-across prediction of EC3, based upon 3 

values of the structurally similar compounds 

 The log Kow (-0.5) for the target chemical is 

outside the range of the values for compounds 

(1.08-7.79) 

PEGGE N/A19  There is not enough data to make a prediction or 

build a model 

THETGE Weak sensitiser  Read-across prediction of EC3, based upon 3 

values from structurally similar compounds 

PPGE N/A19  There is not enough data to make a prediction or 

build a model 

 

  

                                                 
18 QSAR predicted/measured potency was based upon the predicted/measured value of EC3 of LLNA and 
EC1.5, EC2 and EC3 of KeratinoSensTM 
19 N/A denotes data not able to be predicted in the database 
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Table 4-5: LLNA: Erythema scores on mice ears (n=2).  

Treatment(s) Chemical Concentration 

(%) 

Erythema score 

Day 0 Day 6 

PEGGE 50.0 0 3 

0 1 

25.0 0 3 

0 1 

12.5 0 1 

0 1 

PPGE 33.3 0 2 

0 2 

16.7 0 1 

0 1 

8.3 0 0 

0 0 

THETGE 50.0 0 2 

0 1 

25.0 0 0 

0 0 

10.0 0 0 

0 0 
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Figure 4-3: Mean percentage weight gain or loss in mice (n=2) from the pre-dose group. 

The following compounds (A) PEGGE, (B) PPGE and (C) THETGE were topically applied 

to both ears. Weight loss was <10% in all mice treatment groups.  
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Figure 4-4: Representative images from the ears of mice at (A) day 0 before any treatment and day 6 after treatment with (B) 25% 

THETGE: no erythema observed, score = 0 (C) 50% PEGGE: well-defined erythema observed and pain behaviour when touched lightly, 

score = 3 (D) 33.3% PPGE: slight erythema and alopecia were observed, score = 2. 

(A) (B) 

(C) (D) 
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4.3.2.2. Main test 

Three concentrations for each test chemical (as described in Section 4.3.2.1) were applied 

to both ears of mice (n=4/concentration). The highest selected concentration was gave an 

erythema score of ≤2. Similar to the pre-test, there was a gradual decrease in body weight 

of ~ 4 – 6% in the first 4 days for mice treated with test chemicals, followed by body weight 

gain on the fifth and sixth day (Figure 4-5). On the sixth day, the body weights of mice 

were in the range of 16.5 – 24.0 g.  Hence, the volume of 20 µCi 3HTdR injected was 150 

µL, i.e. did not exceed 1% of body weight. 

Based upon the 3HTdR radioactivity level (expressed in dpm) from the extracted lymph 

nodes, the SI values for the positive control (25% α-hexylcinnamaldehyde) from three 

independent experiments were 3.4, 4.4 and 3.7, respectively (Figure 4-6), thereby fulfilling 

the criteria (SI≥3) for classification as a sensitiser and verifying the validity of the 

experiment. The SI for all three tested concentrations for PEGGE (Figure 4-6(A)) and 

THETGE (Figure 4-6(C)) were well below the threshold of SI≥3, and were thus classified 

as non-sensitisers.  Conversely, two of the three tested PPGE concentrations (16.7% and 

8.3%) resulted in SI values of 3.6 and 2.1 respectively, with a calculated EC3 of 13.3% 

and hence was designated as a weak sensitiser (Figure 4-6(B)). A summary of the LLNA 

potency classification of the five epoxy resin compounds assessed in my PhD thesis is 

shown in Table 4-6. 

 



 

140 
 

 

Figure 4-5: Percentage body weight gain or loss (mean ± SEM) for LLNA mice (n=4) in 

the initial pre-dose experiment. Mice were received topical application to the ears of three 

different concentrations of (A) PEGGE, (B) PPGE and (C) THETGE. The positive control 

was mice (n=4) treated with 25% α-hexylcinnamaldehyde while the vehicle control was 

mice (n=4) treated with 4:1 AOO. There was insignificant weight loss in all mice groups. 
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Figure 4-6: SI and EC3 values of (A) PEGGE, (B) PPGE and (C) THETGE-treated mice 

(n=4). In each experiment, there was a positive control group (n=4) that received 25% α-
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hexylcinnamaldehyde applied topically to the ears and a corresponding vehicle-treated 

control group (n=4) that received 4:1 AOO applied topically to both ears. 

Table 4-6: LLNA potency classification of five representative epoxy resin compounds 

Chemicals Measured Potency Reference 

DGEBA Strong sensitiser Gamer et al. (2008) 

TMPTGE Moderate sensitiser Gamer et al. (2008) 

PEGGE Non-sensitiser In this study (Figure 4-6) 

THETGE Non-sensitiser In this study (Figure 4-6) 

PPGE Weak sensitiser In this study (Figure 4-6) 
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4.3.3. Human cell line activation test (h-CLAT) 

The h-CLAT results for the five representative epoxy resin compounds as well as DNCB 

and methyl salicylate were presented in Chapter 2, Figure 2-4 to Figure 2-10, and Table 

2.4. These data are compared with the corresponding LLNA data described in this chapter. 

4.3.4. DPRA 

4.3.4.1. Heptapeptides (Cor1-C420, cysteine and lysine) depletion 

The peptide depletion data for the 19 chemicals and the five representative epoxy resin 

compounds using Cor1-C420, cysteine and lysine heptapeptides in the optimised DPRA 

methods described in Chapter 3, Sections 3.2.2.1 to 3.2.2.4, are shown in Table 4-7. Due 

to time constraints, DPRA analyses with the cysteine heptapeptide for 17 chemicals were 

not performed, and so these data were sourced from previously published work by others 

(Gerberick et al., 2009, Gerberick et al., 2007, Natsch and Gfeller, 2008).  

My findings showed that DNCB reacts with the cysteine and Cor1-C420 heptapeptides and 

not the lysine heptapeptide where 69% and >96% depletion was observed for cysteine 

and Cor1-C420 heptapetides, respectively, but no/minimal depletion was detected with the 

lysine heptapetide (Table 4-7). Conversely, no/minimal peptide reactivity was observed for 

all three heptapeptides with salicylic acid (non-sensitiser). It is interesting to note that ethyl 

acrylate, designated by LLNA as a weak sensitiser showed >96% Cor1-C420 depletion 

(Table 4-7). Overall, my results for the 16 out of 19 chemicals showed total Cor1-C420 and 

cysteine heptapeptides depletion that correlated to previously published LLNA data. 

Following assessment of the five epoxy resin compounds with all three heptapeptides in 

the DPRA, two of these, viz PEGGE and TMPTGE, showed moderate peptide reactivity 

with all three heptapeptides. The remaining three epoxy resins, viz DGEBA, THETGE and 

PPGE had low reactivity with each of the three heptapeptides. This lack of peptide 

reactivity for the known skin sensitiser, DGEBA, was unexpected. Hence, further work was 

undertaken to optimise the assay conditions for the DPRA with respect to the assessment 

of epoxy resin compounds with a particular focus on solvent composition and the use of 

BSA to block nonspecific adsorptive heptapeptide losses. 
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Table 4-7: DPRA Results using 27% acetonitrile in phosphate buffer (pH 7.4) as solvent. 

Chemicals Total % depletion (±SD) 

Cor1-C420 Cysteine Lysine 

Extreme/Strong sensitiser 

2,4-dinitrochlorobenzene >96 69.07 (±0.7) 0.25 (±0.8) 

3-Methylcatechol >96 80.3 (±2.5)20 31.97 (±1.2) 

Glutaraldehyde 95.67 (±2.9) 30.2 (±0.5)2 63.15 (±1.5) 

Moderate sensitiser 

2-Mercaptobenzothiazole 97.8 (±3.7)21 97.5 (±4.2)22 1.59 (±2.2) 

5-amino-o-cresol 38.62 (±7.1) ND 4.38 (±1.2) 

Cinnamaldehyde 47.9 (±0.9)1 70.6 (±1.0)2 5.97 (±1.7) 

Isoeugenol 64.91 (±1.5) 78.5 (±4.2)1 1.61 (±2.0) 

Resorcinol 8.38 (±3.5) 1.6 (±5.6)2 7.02 (±3.3) 

Weak Sensitiser    

Benzocaine 1.10 (±2.2) ND 2.23 (±2.5) 

Ethyl Acrylate >96 96.4 (±0.3)2 17.10 (±2.4)

Eugenol 19.76 (±3.1) 13.0 (±4.8)3 0.13 (±0.2) 

Geraniol ND 2.4 (±4.4)3 0.96 (±1.0) 

Imidazolidinyl Urea 97.9 (±3.7)1 52.3 (±6.0)2 2.06 (±1.7) 

α-Hexylcinnamaldehye 2.3 (±3.5) -0.3 (±1.2)2 1.42 (±1.7) 

Non-sensitiser   

Benzalkonium Chloride 11.85 (±4.5) 20.4 (±2.5)2 ND 

Glycerol 3.40 (±2.5) -3.8 (±5.2)2 3.28 (±1.3)

Lactic Acid 0.09 (±0.2) -0.9 (±0.3)2 1.15 (±1.5)

Methyl Salicylate 7.69 (±6.5) 0.86 (±1.6) 2.87 (±1.3) 

Salicylic Acid 0.96 (±2.2) 5.3 (±5.5)2 3.10 (±2.8) 

Epoxy resin compounds classification to be determined in this chapter 

DGEBA 1.86 (±2.5) 0.63 (±1.3) 0.16 (±0.5) 

PEGGE 28.61 (±4.3) 21.28 (±1.7) 41.16 (±3.6) 

TMPTGE 39.79 (±3.7) 30.13 (±3.2) 27.83 (±4.7) 

THETGE 14.75 (±2.3) 0.37 (±0.6) 5.04 (±4.1) 

PPGE 3.85 (±3.0) 0.00 (±0.0) 2.26 (±3.4) 

  

                                                 
20 Data obtained from Gerberick et al. (2009) 
21 Data obtained from Natsch et al. (2008) 
22 Data obtained from Gerberick et al. (2007) 
Note: 25% acetonitrile was used as the final solvent concentration in Gerberick et al. (2007, 2009) and 
Natsch et al. (2008)  
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4.3.4.2. Solvent selection for epoxy resins 

Solvents comprising acetonitrile:methanol (1:1) with 1% methylbutanol, and DMSO were 

unsuitable for use in DPRA as there was Cor1-C420 peptide depletion at all solvent 

concentrations assessed (Figure 4-7). The four other solvents evaluated, viz acetonitrile, 

methanol, acetonitrile:methanol (1:1) and acetonitrile:methanol (1:1) with 1% tert-butanol, 

had minimal effects on total Cor1-C420 depletion, especially when used at concentrations 

≤25% in the DPRA (Figure 4-7). However, acetonitrile, methanol, acetonitrile:methanol 

(1:1) were unsuitable as solvents for PEGGE, THETGE and PPGE because although 

these epoxy resins initially dissolved in acetonitrile and/or methanol, they precipitated out 

of solution after aliquots were added into 0.1 M phosphate buffer (pH7.4) during the DPRA 

incubation step. The most suitable solvent composition was acetonitrile:methanol (1:1) 

with 1% tert-butanol at a final assay concentration of ~25% for the five representative 

epoxy resin compounds. Importantly, the solvent alone had a minimal effect on peptide 

depletion and dissolution of the epoxy resin compounds was maintained during the DPRA.  

Total peptide depletion data for all three heptapeptides in the DPRA for the five epoxy 

resins dissolved in acetonitrile:methanol (1:1) with 1% tert-butanol, are summarised in 

Table 4-8. Peptide reactivity was classified according to the criteria specified in Table 4-9 

for the Cor1-C420 peptide and the lysine heptapeptide, as well as Table 4-10 for the 

cysteine heptapeptide. Using the peptide reactivity criteria for Cor1-C420, the five epoxy 

resin compounds were classified as sensitisers because total peptide depletion for was 

greater than 6.38%. Additionally, as DGEBA, PEGGE and TMPTGE induced total cysteine 

depletion greater than 13.89%, they were designated sensitisers. By contrast, THETGE 

and PPGE were classified as non-sensitisers due to their no/minimal cysteine peptide 

reactivity. Based upon the total lysine depletion data and the reactivity criteria presented in 

Table 4-9, only PEGGE was categorised as a sensitiser but with low peptide reactivity of 

12% depletion. By contrast, the remaining four tested epoxy resin compounds were 

classified as negative sensitisers because they showed no/minimal reactivity with the 

lysine heptapeptide. 
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Figure 4-7: Effect of solvent composition on Cor1-C420 heptapeptide depletion. 

 
 
Table 4-8: Percent heptapeptide depletion using a solvent comprising 27% 

acetonitrile:methanol (1:1) with 1% tert-butanol and their respective buffers and reaction 

ratio. 

Test chemicals 

% Depletion (±SD) 

(Reactivity Class23) 

Cor1-C420 Cysteine Lysine 

DGEBA 
40.3 (±1.9) 

(Moderate reactivity) 

44.6 (±8.5) 

(Moderate reactivity) 

1.7 (±1.3) 

(No/minimal reactivity) 

PEGGE 
28.9 (±6.3) 

(Moderate reactivity) 

49.2 (±4.4) 

(Moderate reactivity) 

12.0 (±3.5) 

(Low reactivity) 

TMPTGE 
37.7 (±3.5) 

(Moderate reactivity) 

31.9 (±2.4) 

(Moderate reactivity) 

6.4 (±3.9) 

(No/minimal reactivity) 

THETGE 
12.4 (±1.9) 

(Low reactivity) 

2.6 (±4.3) 

(No/minimal reactivity) 

4.1 (±3.3) 

(No/minimal reactivity) 

PPGE 
34.1 (±8.2) 

(Moderate reactivity) 

10.9 (±5.8) 

(No/minimal reactivity) 

1.3 (±1.0) 

(No/minimal reactivity) 

                                                 
23 Reactivity class of heptapeptides was based upon the criteria listed in Table 4-9 for Cor1-C420 and lysine 
and Table 4-10 for cysteine. 
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Table 4-9: Percent peptide depletion model based upon heptapetide: test chemical ratios  

of 1:10 for cysteine and 1:50 for lysine (OECD, 2015a). 

Mean of cysteine and lysine % 
depletion 

Reactivity class DPRA prediction 

0% ≤ mean % depletion ≤ 6.38% No/minimal reactivity Negative 

6.38% < mean % depletion ≤ 22.62% Low reactivity 

Positive 22.62% < mean % depletion ≤ 42.47% Moderate reactivity 

42.47% < mean % depletion ≤ 100% High reactivity 

 

Table 4-10: Percent peptide depletion model based upon a heptapetide: test chemical 

ratio  of 1:10 for cysteine (OECD, 2015a). 

Cysteine % depletion Reactivity class DPRA prediction 

0% ≤ % depletion ≤ 13.89% No/minimal reactivity Negative 

13.89% < mean % depletion ≤ 23.09% Low reactivity 

Positive 23.09% < mean % depletion ≤ 98.24% Moderate reactivity 

98.24% < mean % depletion ≤ 100% High reactivity 
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4.3.4.3. Effect of BSA on Cor1-C420 heptapeptide 

BSA at a concentration of 1% was added into each well of the polypropylene assay plate 

prior to performing the Cor1-C420-chemical reactions using three concentrations of each 

of DGEBA, TMPTGE and PEGGE. Inclusion of 1% BSA alone (in the absence of any test 

chemical) in the DPRA increased Cor1-C420 depletion to 17% compared with only 3% 

depletion in the absence of BSA (Figure 4-8). There was also a similar trend for the Cor1-

C420-epoxy resin reactions where in the presence of 1% BSA, peptide depletion was 

higher than for the corresponding samples without the addition of BSA. These findings 

suggested that BSA was binding to the Cor1-C420 leading to apparently higher Cor1-C420 

peptide depletion in the DPRA and so 1% BSA was not included in the assay. 
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Figure 4-8: Effect of addition of 1% BSA to the DPRA incubation mixture on total depletion 

of the Cor1-C420 heptapeptide. 
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4.4. Discussion 

My findings described in this chapter show that the h-CLAT correctly identified the 

sensitising capacity of four out five epoxy resins compounds based upon the extent to 

which the release of the cytokines, IL-6 and IL-8, were increased in cultured THP-1 cell 

supernatant. By contrast, use of the h-CLAT in classical mode to quantify expression 

levels of the cell surface markers, CD54 and CD86, failed to correctly classify the five 

epoxy resin compounds evaluated.  

In this chapter, my DPRA data generated using the optimised experimental conditions 

developed in Chapter 3, correctly identified the sensitising potential of 16/19 chemicals 

tested, thereby demonstrating that conversion of the DPRA to a 96-well format to increase 

assay throughput, did not adversely affect assay accuracy. Additionally, my optimised 

DPRA method correctly classified the skin sensitising potential of three from five epoxy 

resin compounds using acetonitrile:methanol (1:1) with 1% tert-butanol as the test solvent.  

My novel findings collectively illustrate that the current h-CLAT and DPRA methods need 

to be adapted to enhance the accuracy of these methods when applied to assessment of 

the skin sensitisation potential of chemical classes such as epoxy resin compounds that 

differ markedly from the chemicals that were used to originally validate these methods. 

The sensitising potency of the five representative epoxy resin compounds was assessed 

initially using information in the OECD QSAR toolbox that is drawn from existing 

experimental in vivo and in vitro datasets (Cronin, 2010). Using this toolbox, DGEBA gave 

an  EC3 of 1.5% (moderate sensitiser) based upon published data (Gerberick et al., 2005). 

In a separate study, the EC3 value for DGEBA was estimated at 0.1% and hence it was 

classified as a strong sensitiser (Gamer et al., 2008). This classification discrepancy may 

potentially be underpinned by the difference in chemical grades of DGEBA used and/or 

dissolution solvents utilised as Gerberick et al. (2005) and Gamer et al. (2008) used AOO 

and acetone as solvents respectively. The solvent used in the LLNA may alter the 

solubility and/or the volatility of the test compounds as well as the penetration of the 

compound into the stratum corneum, thus affecting the potency classification of a chemical 

(Jowsey et al., 2008, Anderson et al., 2011).   

Herein, DGEBA was classified as a moderate to strong sensitiser. On the other hand, 

TMPTGE and THETGE were predicted as weak sensitisers based upon QSAR read-

across analysis of four structurally similar compounds whereas no prediction could be 

made for PEGGE and PPGE due to the lack of available information in the QSAR 
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databases. By comparison, TMPTGE was categorised as a moderate sensitiser based 

upon LLNA data (Gamer et al., 2008). In a retrospective analysis of 79 patients suspected 

of ACD who underwent patch-testing, only one patient reacted positively to TMPTGE 

(Aalto-Korte et al., 2015).  This low incidence rate may reflect the fact that this epoxy resin 

diluent is not encountered as commonly as DEGBA. Nevertheless, this showed that the 

QSAR prediction of sensitisation potential for lesser studied epoxy resin components may 

not be accurate due to the sparse experimental information on their mode of action and/or 

on structurally similar compounds within the database. Of the 120 tested chemicals with 

established in vivo skin sensitisation data, the read-across algorithm in the OECD QSAR 

Toolbox had a predictive accuracy of 77% (Strickland et al., 2015).  

Due to the lack of animal and human data on PEGGE and PPGE, and the inability of the 

QSAR method to predict their skin sensitisation potential, the LLNA was performed on 

these compounds, TMPTGE, whilst designated by QSAR as a weak sensitiser was also 

tested in the LLNA as TMPTGE was outside the prediction range for its log octanol-water 

partition coefficient (log Kow) of 1 – 7 raising the likelihood that the QSAR prediction may 

not be accurate. As published LLNA data were available for the other two epoxy resin 

compounds, this work was not repeated so as to reduce the total number of animals used 

for testing in accordance with the 3Rs principles. PPGE was classified in the LLNA as a 

weak sensitiser with an EC3 value of 13.3% whereas both THETGE and PEGGE were 

non-sensitisers. The LLNA data for the five epoxy resin components either generated 

herein or from previously published work by others was used for comparison with my 

corresponding results generated using my optimised h-CLAT and DPRA methods.  

Using my optimised 96-well plate-based DPRA method described in Chapter 3, a dataset 

of 19 chemicals with published skin sensitisation data were tested to assess the validity of 

my newly optimised method. All chemicals with the exception of benzocaine, α-

hexylcinnamaldehyde and benzalkonium chloride were correctly identified using the Cor1-

C420 and cysteine heptapeptides when compared with the mouse LLNA data (Table 4-7). 

For chemicals that appear to give incorrect results, care should be taken with respect to 

potential over-reliance on comparisons with the LLNA data. This is because although there 

is high concordance between the LLNA and human patch test data (Urbisch et al., 2015), 

assignation of the skin sensitising potential of a given chemical should include all available 

information including human patch test data including on structurally related compounds. 
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For example, for oxalic acid that was classified by the LLNA as a weak sensitiser, there 

are no reported cases affecting humans to date (Gerberick et al., 2007). 

Using my optimised DPRA method (Chapter 3), there was no peptide depletion induced by 

the five representative epoxy resin compounds dissolved in acetonitrile, for all three 

heptapeptides utilised (Table 4-7). This result was surprising as DGEBA is one of the most 

common sensitising epoxy resin compounds identified, as it has tested positive in human 

patch testing of many individuals (Aalto-Korte et al., 2015), as well as being classified as a 

sensitiser when tested in both in vivo and in vitro testing (Gamer et al., 2008, Ponten et al., 

2009, Majasuo et al., 2012, Natsch et al., 2013). In previous work by Natsch et al. (2013), 

DGEBA dissolved in acetonitrile depleted cysteine and lysine heptapeptides by 42.5% and 

1.1% respectively. The major difference between my results for DGEBA and those of 

Natsch et al (2013) may be due to the technical modifications in my assay. For example, 

the final concentration of cysteine and Cor1-C420 heptapeptides within the individual wells 

of the 96-well plate DPRA method was lower than that used by others (Gerberick et al., 

2007, Natsch and Gfeller, 2008). However, my DPRA reaction ratio (peptide:test chemical) 

at 1:10 for Cor1-C420 and cysteine heptapeptides, and 1:50 for the lysine heptapeptide 

were similar to those used previously by others (Gerberick et al., 2004, Gerberick et al., 

2007, Natsch and Gfeller, 2008). Nevertheless, it is possible that the lower concentrations 

of both peptides and test chemicals used in my DPRA reactions may have decreased the 

overall sensitivity of the assay.  

Another difference is that my assay was performed using a polypropylene 96-well plate 

instead of the borosilicate glass vials utilised by Gerberick et al. (2007) and Natsch and 

Gfeller (2008).  My results described in Chapter 3 showed that neither polypropylene nor 

glass materials appeared to affect the extent of peptide depletion for either cysteine or 

Cor1-C420, when analysed after the 24 h incubation period. However, it is important to 

note that the effect of vessel materials on peptide depletion by chemicals was determined 

only with a small subset of chemicals that did not include epoxy resin compounds. For 

example, lysine heptapeptide depletion within the 24 h incubation period was consistent 

across borosilicate glass and polypropylene for all tested chemicals with the exception of 

ethyl acrylate which induced more pronounced peptide depletion in borosilicate glass 

(47%) than in polypropylene (25%) (Chapter 3). Further work to evaluate peptide depletion 

by epoxy resin compounds in the DPRA undertaken in polypropylene plates relative to 

borosilicate glass vials requires future investigation. 
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Three of the five epoxy resin compounds evaluated in my research had low aqueous 

solubility such that PEGGE, THETGE and PPGE precipitated out of solution when added 

to the DPRA reaction buffer. As such, a series of solvents of varying composition were 

assessed to ensure that that the most suitable solvent system was selected to optimise 

solubility equilibrium between the epoxy resin compounds and the assay reaction buffer. 

Of the five solvent systems tested, only acetonitrile:methanol (1:1) with 1% tert-butanol 

was acceptable for all five epoxy resin compounds as this solvent avoided the precipitation 

issue for the three aforementioned epoxy resin compounds. Most importantly the solvent 

comprising acetonitrile:methanol (1:1) with 1% tert-butanol alone, did not induce significant 

depletion of the heptapeptides. Using acetonitrile:methanol (1:1) with 1% tert-butanol as a 

solvent, Cor1-C420 peptide depletion by the epoxy resin compounds, DGEBA, TMPTGE, 

PPGE and PEGGE, was 40%, 37%, 34% and 29% respectively. Total depletion of 

THETGE was 12% and so it was classified as having low peptide reactivity. Interestingly, 

cysteine and lysine heptapeptide depletion with DGEBA using acetonitrile:methanol (1:1) 

with 1% tert-butanol as solvent were 44.6% and 1.7% respectively. These findings were 

similar to the findings of Natsch et al. (2013) whereby total cysteine and lysine 

heptapeptide depletion by DGEBA were 42.5% and 1.1% respectively.  

Overall, the epoxy resin compounds assessed appeared to react primarily with the Cor1-

C420 and/or cysteine heptapeptides, with limited or no reactivity with the lysine 

heptapeptide. This is likely due to the fact that epoxy resin compounds bind to the thiol 

side chain of Cor1-C420 and cysteine. More recently, DPRA analysis of several epoxy 

resin compounds with a hexapeptide, PHCKRM showed promising results such that 

several epoxy resin compounds covalently bound to the cysteine and proline residues of 

PHCKRM (Niklasson et al., 2009, O'Boyle et al., 2012, O'Boyle et al., 2014). However, the 

peptide reactivity assay using the PHCKRM hexapeptide may not be cost effective for 

large sample analysis or adapted to high-throughput as it requires a continuous stream of 

expensive argon gas to displace air from the reaction mixture to prevent oxidation of the 

DMSO used as the test chemical solvent in this assay. In the absence of argon gas, 

DMSO was found to react with the PHCKRM peptide leading to a false positive result (N 

O’Boyle 2014, pers. comm., 19 March) Further investigation in using other solvents in this 

test system may eliminate the requirement for argon gas. Nevertheless, these data 

highlight the importance of appropriate peptide selection for use in the DPRA such that the 

reactive peptide residues including cysteine (-SH), histidine (=N-), lysine (-NH2), 

methionine (-S-), and tyrosine (-OH) are chemical-specific (Lepoittevin and Leblond, 1997, 
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Vocanson et al., 2009).  Skin sensitisers that contain distinctive mechanistic domains can 

influence the type and strength of adducts formed for downstream processing which 

subsequently affects their allergenic potency (Chipinda et al., 2011a).  

In my work herein, I have used three different heptapeptides to gauge their ability to 

accurately assess the skin sensitisation potential of epoxy resin compounds. I propose that 

chemicals which show reactivity to two out of three heptapeptides should be classified as 

positive skin sensitisers whereas those that show no/minimal reactivity for two out of three 

heptapeptides, should be categorised as non-sensitisers. Using this proposed 

classification approach, three of the epoxy resin compounds, DGEBA, TMPTGE and 

THETGE were accurately identified relative to the corresponding LLNA data. For the other 

two epoxy resin compounds (PEGGE and PPGE), one was a false positive and the other a 

false negative respectively (Table 4-11). 

By comparison, my optimised h-CLAT method described in Chapter 2 performed poorly as 

all five epoxy resin compounds including the known sensitiser DGEBA, were classified as 

non-sensitisers as they failed to up-regulate cell surface expression levels of CD54 and 

CD86 above the OECD threshold criteria of RFI≥200 and RFI≥150 respectively (OECD, 

2014).  Conversely, in recent work by others, DGEBA was reported as a positive sensitiser 

based upon up-regulated expression of CD54 and CD86 in the h-CLAT (Takenouchi et al., 

2013). It is noted however, that the CV75 for DGEBA used in my h-CLAT experiment was 

15.4 µg/mL whereas that used by Takenouchi et al. (2013) was 36 µg/mL. Hence, this 

difference is a possible factor contributing to these between-laboratory differences. It is 

also of note that between-laboratory differences in the extent to which expression levels of 

CD54 and/or CD86 are up-regulated by the same chemical, e.g. DNCB, have been 

reported (Ashikaga et al., 2006, Jung et al., 2011).  

To address the failure of the h-CLAT method to correctly classify the skin sensitisation 

potential of any of the five epoxy resin compounds evaluated, I then assessed the potential 

utility of increased secretion of the pro-inflammatory cytokines IL-6 and IL-8 by cultured 

THP-1 cells, as alternative assay endpoint measures. Using a >5-fold induction of pro-

inflammatory cytokine secretion by a test chemical relative to vehicle as a positive assay 

readout, DGEBA, PEGGE, TMPTGE and PPGE were accurately identified whereas 

THETGE was a false positive (Table 4-11).  

Although the generalisability of my results on epoxy resin compounds is limited by the 

relatively small number of compounds utilised, my findings nevertheless indicate that both 
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the h-CLAT and DPRA have the potential to be adapted to identify sensitisers amongst 

this chemical class. Clearly, future work on a broader range of epoxy resin compounds is 

needed to determine the appropriate assay endpoints and/or the technical specifications to 

optimise the predictive accuracy of h-CLAT and DPRA for this chemical class. Although 

false results were obtained for both the h-CLAT and DPRA, these instances appeared to 

be predominantly for compounds classified by the LLNA as weak or non-sensitisers. Of 

particular interest, the LLNA reportedly has poor predictive accuracy for detecting low to 

moderate sensitisers and therefore the LLNA data should be used prudently to avoid 

misclassification of sensitisers (ECVAM, 2013). Additionally, the predictive accuracy of the 

LLNA is only 82% compared with human data (Urbisch et al., 2015) showing that the LLNA 

does not always reflect the actual human response to skin allergens.  

It is acknowledged that the limited number of epoxy resin compounds tested in my PhD 

research is insufficient to propose an integrative strategy for skin sensitisation potential of 

epoxy resin compounds. Nevertheless, my preliminary data provide insight into the 

considerations required in the application of in vitro methods to a chemical class dissimilar 

to those used to develop and validate the method in the first place. Future work directed to 

assess generalisability of the currently utilised in vitro methods of skin sensitisation 

assessment is an area of research endeavour that requires concerted attention. 

4.5. Conclusion 

ACD involves the activation of a series of complex signalling pathways in human skin. 

Cross-talk between these multiple pathways in ACD cannot be replaced by a single in vitro 

method. Hence, several non-animal testing methods directed at specific key events in the 

development of skin sensitisation have been developed and further optimised by my work 

described in this thesis. In this chapter, the feasibility of using the h-CLAT and DPRA 

methods for evaluating the skin sensitising potential of epoxy resin compounds was 

investigated. Using my optimised DPRA method and an alternative quantitative endpoint in 

the h-CLAT (cytokine secretion), the utility of these in vitro test methods for assessing the 

skin sensitising potential of epoxy resin compounds, was encouraging. However, future 

work involving assessment of a large number of epoxy resin compounds is required to 

more thoroughly evaluate these in vitro assays for screening the skin sensitising potential 

of epoxy resin compounds.  
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Table 4-11: Compilation of data from human, animal and in vitro methods for classifying representative skin sensitisers of interest. 

Chemicals 
Human 

Data 
QSAR LLNA 

DPRA24 
h-CLAT25 

Expression Fold increase 
+/-
26 Cor1-C420 Cysteine Lysine +/-

CD54 

(RFI≥200%) 

CD86 

(RFI≥150%) 

IL-6 

(≥5-fold) 

IL-8 

(≥5-fold) 

DNCB Sensitiser
Strong 

sensitiser 

Strong 

sensitiser

High 

reactivity 

High 

reactivity 

No/minimal 

reactivity 
+ Yes Yes Yes Yes + 

Methyl 

Salicylate 

Non-

sensitiser

Non-

sensitiser 

Non-

sensitiser

No/minimal 

reactivity 

No/minimal 

reactivity 

No/minimal 

reactivity 
- No No No No - 

DGEBA Sensitiser
Moderate 

sensitiser 

Moderate/ 

strong 

sensitiser

Moderate 

reactivity 

Moderate 

reactivity 

No/minimal 

reactivity 
+ No No No Yes + 

PEGGE N/A27 N/A9 
Non-

sensitiser

Moderate 

reactivity 

Moderate 

reactivity 

Low 

reactivity 
+ No No No No - 

TMPTGE Sensitiser
Weak 

sensitiser 

Moderate 

sensitiser

Moderate 

reactivity 

Moderate 

reactivity 

Low 

reactivity 
+ No No No Yes + 

THETGE N/A9 
Weak 

sensitiser 

Non-

sensitiser

Low 

reactivity 

No/minimal 

reactivity 

No/minimal 

reactivity 
- No No Yes Yes + 

PPGE N/A9 N/A9 
Weak 

sensitiser

Moderate 

reactivity 

No/minimal 

reactivity 

No/minimal 

reactivity 
- No No Yes Yes + 

                                                 
24 DPRA: Chemical is classified as a sensitiser (+) if reactivity is observed in two out of three heptapeptides, otherwise is classified as non-sensitiser (-). 
25 h-CLAT: “Yes” represents the data above threshold value of CD54 and CD86 expression as well as cytokine fold-induction, otherwise categorised as “No”. 
26 h-CLAT: Chemical is classified as a sensitiser (+) if ‘yes’ is observed in either CD54, Cd86, IL-6 or IL-8, otherwise is classified as non-sensitiser (-). 
27 N/A denotes that data is not available from the respective test. 
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Chapter 5: Summary, conclusions and future directions
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5.1. Summary and conclusions 

With the growth of global demand for epoxy resins, the existing composite resin systems 

do not meet current and forthcoming manufacturing requirements as they are hazardous to 

both the environment and public health. The prevalence of allergic contact dermatitis 

(ACD) in industrial workers dealing with epoxy resin systems (ERS) has increased 

considerably over the years and it is one of the most common occupational contact 

allergies reported (Niklasson et al., 2009). At present, the ‘gold standard’ method for 

assessing the skin sensitisation liability of chemical compounds is the mouse local lymph 

node assay (LLNA). This stand-alone in vivo method is accepted widely for identifying and 

classifying chemicals for their potency as skin sensitisers. In spite of this, ethical concerns 

have been raised on the use of animal testing for this purpose. To address these 

concerns, multiple validated non-animal test methods have been introduced for 

incorporation to identify and classify chemicals with skin sensitisation potential and for 

incorporation into risk assessments (Goebel et al., 2012). 

The mechanism underpinning ACD has been divided into four key biological events that 

form the Adverse Outcome Pathway (AOP) for skin sensitisation (OECD, 2012a). These 

four mechanistic events comprise the binding of the sensitising chemical with skin proteins 

(haptenation), keratinocyte activation, dendritic cell (DC) activation and the proliferation of 

hapten-specific T-cells (OECD, 2012a). While many in vitro methods have considerable 

potential for identifying and classifying chemicals as skin sensitisers (Wong et al., 2015), a 

single in vitro method is inadequate for representing the complex interplay and cross-talk 

between mechanisms involved in the development of ACD in humans.  

My PhD research was directed to bringing innovation into two of these in vitro methods, viz 

the direct peptide reactivity assay (DPRA) which represents the initial interaction between 

skin sensitisers and skin proteins, and the human cell line activation test (h-CLAT) that 

mimics the maturation of Langerhans cells (LCs) to DCs. The DPRA and h-CLAT together 

with the KeratinoSensTM have been subjected to formal validation. Test guidelines for use 

of all three of these in vitro methods for assessment of skin sensitisation potential have 

been promulgated by the OECD (OECD, 2014, OECD, 2015a, OECD, 2015b). Recently, 

evaluation of the performance of a panel comprising all three of these methods for 

assessing the skin sensitisation potential of various test chemicals showed that it had an 

accuracy of 90% compared with the corresponding LLNA data (Urbisch et al., 2015). 

However, a significant limitation of these in vitro assays is that they were developed for 
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screening small molecules that are typically used in products manufactured by the 

cosmetics and toiletries industries. Hence, there are knowledge gaps with respect to their 

generalisability beyond small molecules. To date, reports on the applicability of the DPRA 

and the h-CLAT in vitro methods for assessing the skin sensitising potential of ERS, are 

limited. Hence, another major aim of my PhD research was to address this knowledge gap 

and assess the generalisability of the DPRA and the h-CLAT for evaluating the skin 

sensitisation potential of various components of ERS. As already noted, during the course 

of my PhD research, I brought innovation into these methods by improving and optimising 

their throughput and efficiency for the in vitro screening of large numbers of new chemical 

compounds. The data generated using my optimised h-CLAT and DPRA for assessing the 

skin sensitising potential of five representative epoxy resin compounds were compared 

with the corresponding in vivo LLNA data as well as both experimental and/or predicted 

data from the databases in the OECD QSAR toolbox.  

With regard to bringing innovation into the h-CLAT method for assessing skin sensitisation 

potential of test chemicals that comprised the first aspect of my doctoral research, I re-

designed and re-optimised this method to improve its throughput, efficiency and cost-

effectiveness. I then used my re-configured h-CLAT method to evaluate its generalisability 

for hazard assessment of ERS chemical components. To increase the efficiency of the h-

CLAT, I converted the assay from the typical 24-well plate format into a 96-well format. 

When performed in 24-well plate format, the h-CLAT typically has a total of 1x106 THP-1 

cells per treatment per well and it uses FITC-conjugated antibodies for quantification of 

both of the following cell surface markers, CD54 and CD86 (Ashikaga et al., 2006).  

In my research aimed at improving the h-CLAT, I showed that the optimal number of THP-

1 cells/well in 96-well format was 1.6x105 and that the optimal antibody concentrations for 

targeting the CD54 and CD86 cell surface molecules were both 1/40 dilution of the 

manufacturer supplied antibody solutions (1.25 µL/1.6x105 cells/50µL). Additionally, I 

introduced use of FITC- and PE-labelled antibodies to facilitate simultaneous quantification 

of the cell surface expression levels of CD54 and CD86. Importantly, the positive control 

strong sensitiser, DNCB, showed induction of the cell surface expression levels of CD54 

and CD86 above the relative fluorescence intensity (RFI) thresholds of 200% and 150% 

respectively, and the negative control, methyl salicylate, was accurately identified as a 

non-sensitiser. My results correspond with previously published data generated using both 

the LLNA and h-CLAT (Ashikaga et al., 2008). Taken together, my findings show that use 

of fewer THP-1 cells together with FITC-labelled antibodies for simultaneous quantification 
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of CD54 and CD86 expression levels to bring innovation into the h-CLAT by adapting it to 

96-well plate format to improve efficiency and throughput, retained the ability of this 

method to discriminate between representative small molecules known to be strong and 

non-sensitisers. 

My PhD research directed at evaluation of the generalisability of the conventional h-CLAT 

based upon up-regulation of CD54 and CD86 expression levels on cultured THP-1 cells, 

show that it is unsuitable for assessing the skin sensitisation potential of epoxy resin 

compounds. Specifically, of the five representative epoxy resin compounds assessed, the 

h-CLAT failed to identify those known to have skin sensitising capacity, viz DGEBA, 

TMPTGE, and PPGE, as expression levels of the THP-1 cell surface molecular markers, 

CD54 and CD86, were not up-regulated by these compounds.  

Several other biomarkers have been proposed as possibilities for discriminating between 

sensitising and non-sensitising compounds. Quantitative and qualitative endpoints 

proposed include pro-inflammatory cytokine and chemokine (e.g. IL-1β, IL-18) readouts, 

activation of Keap1/Nrf2/ARE cell signalling pathways, as well as transcriptional profiles 

and protein expression encoded by genes expressed by various cell types relevant to skin 

sensitisation (Reisinger et al., 2015). These have been evaluated in preliminary work and 

appear to be promising (Reisinger et al., 2015). Hence, in the next part of my PhD 

research, I evaluated the extent to which there were changes in the secretion of pro-

inflammatory cytokines by THP1-cells in the h-CLAT, to determine the feasibility of this 

approach for use as an h-CLAT assay endpoint for epoxy resin compounds. 

Specifically, I used a Meso ScaleTM Discovery (MSD) system and highly-sensitive MSD 

human pro-inflammatory 7-plex tissue culture kits to quantify the concentrations of seven 

cytokines, namely lL-1β, IL-6, IL-8, IL-10, IL-12p70, TNF-α and IFN-γ, simultaneously, in 

aliquots of h-CLAT supernatant. Encouragingly, my findings showed for the first time that 

incubation of epoxy resin compounds with cultured THP-1 cells for 24 h increased the 

concentrations of IL-8 and IL-6 in the h-CLAT cell culture supernatant. Specifically, the 

epoxy resin compounds, DGEBA, TMPTGE, THETGE and PPGE, induced a marked 

increase in the release of IL-8 and to a lesser extent, IL-6, in aliquots of supernatant from 

cultured THP-1 cells in the h-CLAT. My findings are reminiscent of work by others, 

whereby incubation of cultured human osteoblastic (U2OS) cells with epoxy resin-based 

root canal sealants stimulated IL-8 and to a lesser extent IL-6 mRNA production by these 

cells (Huang et al., 2005).  
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Following incubation of cultured THP-1 cells in 96-well plate format with the strong skin 

sensitiser, DNCB for 24 h in my optimised h-CLAT method, there was a 410-fold increase 

in the IL-8 concentration in aliquots of cell culture supernatant whereas incubation with the 

non-sensitiser, methyl salicylate for 24 h, produced only low levels of IL-8 release from the 

cultured THP-1 cells. My findings are similar to those of a previous report whereby 

incubation of cultured THP-1 cells with DNCB but not methyl salicylate, increased the IL-8 

concentration significantly (P<0.01) in supernatant aliquots (Miyazawa et al., 2007, 

Nukada et al., 2008). For the epoxy resins tested, IL-8 release into the THP-1 cell culture 

medium was stimulated by the epoxy resin compounds, DGEBA, TMPTGE and PPGE, 

that were classified by LLNA data as strong, moderate and weak sensitisers respectively 

(Gamer et al., 2008). However, future investigation on the specificity of elevated IL-8 

secretion by cultured THP-1 cells incubated with various epoxy resin compounds is 

required, as THETGE, classified as a non-sensitiser by my LLNA data, also increased the 

secretion of IL-8 by THP-1 cells. However, it is also plausible that the LLNA data may be 

inaccurate in this instance as it has been documented that the LLNA data accuracy 

relative to human data is only 82% (N=111) (Urbisch et al., 2015). 

With regard to my findings on IL-6, incubation of cultured THP-1 cells in my optimised h-

CLAT method in 96-well plate format with the strong sensitiser, DNCB for 24 h, increased 

the IL-6 concentration in aliquots of cell culture supernatant in contrast to previous work by 

others who reported that the IL-6 concentration was not increased in the supernatant of 

similarly treated cultured THP-1 cells (Miyazawa et al., 2007). However, these apparently 

opposing findings likely reflect the fact that I used a highly sensitive MSD 7-plex cytokine 

assay for quantification of IL-6 whereas Miyazawa et al. (2007) used an ELISA method. 

The MSD 7-plex cytokine immunoassay has a larger dynamic range for quantification of 

IL-6 concentrations in the range ~0.3 pg/mL to 3.2 µg/mL whereas the LLOQ for the ELISA 

used by Miyazawa et al. (2007) was 3.2 µg/mL. Interestingly, increased concentrations of 

IL-6 in aliquots of supernatant from cultured THP-1 cells in my optimised h-CLAT method 

were only observed after incubation of cells with THETGE and PPGE for 24 h.  

Encouragingly, the cytokine induction profiles (Chapter 4; Table 4-11), showed that four of 

five tested epoxy resin compounds were accurately identified in my optimised h-CLAT 

method in 96-well plate format.  Hence, future work aimed at characterising the cytokine 

induction profiles for a broad range of epoxy resin compounds as well as other chemical 

classes, is warranted to further assess the potential value of this method for accurate 

identification of epoxy resin components with skin sensitisation potential.  
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In my h-CLAT experiments described in Chapter 2, I also investigated the effects of the 

assay and storage conditions on the accuracy of the cytokine measurements. Cytokine 

instability in various sample matrices under conditions of high temperature and/or multiple 

freeze-thaw events has been reported previously (Ozbey et al., 2014, Zhou et al., 2010). 

Hence, it was imperative to assess the stability of the four cytokines of interest, viz IL-1, 

IL-6, IL-8 and IL-10 using known concentrations of cytokines (QCs) added to aliquots of 

cell culture medium incubated at 37°C for 24 h in order to gauge the accuracy of the data 

generated in my h-CLAT experiments.  Additionally, I assessed the impact of four freeze (-

80°C)-thaw cycles on cytokine stability in cell culture medium. Importantly, my data show 

that the concentrations of IL-6, IL-8 and IL-10, but not IL-1β, in aliquots of cell culture 

medium remained stable following incubation at 37°C for 24 h. Additionally, following four 

freeze-thaw cycles, the concentrations of IL-1β, IL-8 and IL-10 remained unchanged 

whereas that of IL-6 decreased markedly, particularly at the lower QC concentrations. This 

information is key to affirming the accuracy of the large increases in the IL-8 

concentrations measured in aliquots of supernatant from cultured THP-1 cells incubated 

with skin sensitisers at 37°C for 24 h in the h-CLAT and then stored at -80°C prior to 

analysis. These data on cytokine integrity under usual assay and sample storage 

conditions underpin evaluation of the usefulness of increased cytokine concentrations in 

the h-CLAT as a potential biomarker for determining skin sensitisation potency.   

In work by others, investigation of the temporal profile of TNF-α secreted into cell culture 

medium by THP-1 cells incubated with each of nickel sulphate and DNCB, showed that the 

maximum TNF-α concentration was found at 12 h with a lower concentration observed at 

24 h of incubation,  in contrast to IL-8 (Miyazawa et al., 2008b). This apparent decrease in 

the TNF-α concentration in aliquots of cell culture supernatant, may reflect instability of this 

cytokine under the assay conditions at 37°C; however this remains for future investigation. 

In Chapter 3, I used a comprehensive and systematic approach to identify the optimal 

experimental conditions for conducting the DPRA in 96-well plate format with LC-MS/MS 

quantification of the extent of peptide depletion. My findings on the effects of varying the 

incubation temperature employed in the DPRA, mimicking the various temperatures used 

by laboratories globally, on the stability of the heptapeptides, are novel. Natsch and Gfeller 

(2008) used 37°C for incubating various test chemicals with the Cor1-C420 heptapeptide 

(Ac-NKKCDLF), whereas Gerberick et al. (2007) and the OECD guideline, TG442C 

(OECD, 2015a) recommend an incubation temperature of 25°C for test chemicals with the 

cysteine (Ac-RFAACAA) and lysine heptapeptides (Ac-RFAAKAA) with an incubation 
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period of 24 h. Herein, I found that 25°C was the optimal incubation temperature between 

heptapeptides and test chemicals as there was minimal impact on the concentrations of 

these three-heptapeptides.  

Next, I investigated the effect of different types of vial materials used for the DPRA 

incubation step as work by others had shown this to be an important consideration with 

regard to apparent heptapeptide depletion through adsorptive losses onto surfaces 

(Goebel-Stengel et al., 2011). In overview, my findings showed that both polypropylene 

and borosilicate glass vials were suitable for use in the DPRA provided that the peptide: 

test chemical reactivity assessment was performed within 24 h after incubation at 25°C. 

Adsorptive losses of Cor1-C420 and cysteine heptapeptides appeared to be minimal for 

polypropylene vials compared with borosilicate glass such that the QCs of each peptide 

failed to meet the acceptance criteria when samples were stored in glass vials in an 

autosampler at 4°C for periods of 24 and 72 h. Conversely, neither polypropylene nor 

glass materials appeared to be associated with adsorptive losses of the lysine 

heptapeptide during the incubation step, as there were no significant differences in QC 

sample concentrations after storage in an autosampler at 4°C for periods of up to 3 days.   

Overall, my novel findings show that polypropylene vials are preferable to glass vials in 

terms of minimising adsorptive losses of these three peptides in the DPRA, and this is 

particularly so if the DPRA analysis is extended for periods longer than 24 h. This major 

finding has important implications if the DPRA is to be for extended periods of time in high-

throughput format in the future.  

In the next series of experiments, I investigated the feasibility of converting the DPRA to a 

higher throughput assay by analysing a large number of samples in polypropylene 96-well 

plates as a single analytical experiment as a means to assess the extent to which sample 

integrity was affected. To that end, the stability of the peptide-chemical complex in the 

autosampler at 4°C was investigated by measuring the concentration of free heptapeptides 

in the reaction buffer over 3 days post-chemical incubation at 25°C. My data showed that 

total depletion of the Cor1-C420 heptapeptide following reaction with each of DNCB and 

cinnamaldehyde appeared to decrease over the 3-day assessment period, characterised 

by an increase in free peptide concentration. Conversely, following incubation of the Cor1-

C420 heptapeptide with isoeugenol or methyl salicylate, there was marked increase in 

apparent peptide depletion over a 3-day period post-incubation. The extent of change in 

peptide depletion for DNCB and isoeugenol was relatively small such that the classification 
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of these two chemicals with respect to skin sensitisation capacity remained unchanged. 

However, for cinnamaldehyde and methyl salicylate, the marked changes in apparent 

peptide depletion over a 3-day period post-incubation led to eventual misclassification of 

the sensitising reactivity of both chemicals.  

Similarly for the cysteine heptapeptide incubated with cinnamaldehyde, there was an 

apparent decrease in peptide depletion over the 3-day period post-incubation such that it 

was initially categorised as having moderate reactivity but after 3-days it was mis-classified 

as having low reactivity. The extent of lysine peptide depletion over the 3-day post-

incubation assessment period remained unchanged for glutaraldehyde, ethyl acrylate and 

methyl salicylate but not cinnamaldehyde, for reactions carried out in polypropylene 

vessels. 

Comparison of the extent of lysine heptapeptide depletion by ethyl acrylate for reactions 

conducted in borosilicate glass and polypropylene materials showed that it was 47.3% and 

24.7% at 24 h post-incubation. This difference was not due to adsorptive losses of peptide 

as the lysine heptapeptide QCs with known concentrations remained unchanged when 

stored in vessels comprised of either type of material, for up to 3 days. However, in work 

by others, the extent of lysine depletion by ethyl acrylate reported by others were 2.1% 

and 93.7% (Gerberick et al., 2007, Troutman et al., 2011), results that would misclassify 

ethyl acrylate as either a no/minimal sensitiser or a strong sensitiser, respectively. My total 

lysine depletion results determined using 96-well polypropylene plates are aligned with the 

classification of ethyl acrylate as weak sensitiser by the LLNA (Gerberick et al., 2005). 

Overall, my DPRA data suggest that the stability of the covalent bonds formed between 

the test chemical and the heptapeptide of interest, appears to be dependent upon both the 

type of chemical being assessed as well as the heptapeptide utilised. Although the number 

of test chemicals assessed was small, my data provide novel insight showing that use of 

the DPRA for screening a large number of chemicals in a single experiment with 

autosampler storage extending over several days post-chemical/peptide incubation, is 

unwise. This is because of the potential instability of test chemical-peptide complexes such 

that the apparent heptapeptide concentration may change markedly, resulting in chemical 

misclassification.   

After successfully converting the DPRA to 96-well plate format and re-optimising the assay 

parameters in my research described in Chapter 3, I next examined its accuracy for 

correctly classifying 19 chemicals against their corresponding LLNA skin sensitisation data 
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(Chapter 4). Overall, my findings were similar to previously published data whereby DNCB 

reacted with the thiol group of the cysteine and Cor1-C420 peptides but not the amine 

group of the lysine heptapeptide (Natsch, 2010, Natsch and Gfeller, 2008).  Conversely, 

there was no/minimal peptide reactivity for all three heptapeptides with salicylic acid, a 

finding in agreement with previously published data (Gerberick et al., 2007, Natsch and 

Gfeller, 2008). Importantly, there was no/minimal reactivity of the Cor1-C420 heptapeptide 

with α-hexylcinnamaldehyde (2.3% depletion) in contrast to the 93% of Cor1-C420 

depletion reported by Natsch and Gfeller (2008). My DPRA data more accurately reflects 

the LLNA classification of α-hexylcinnamaldehyde as a weak sensitiser.  

Next, I assessed the applicability of my optimised DPRA for assessing skin sensitisation 

potential of five representative epoxy resin compounds. Specifically, PEGGE and 

TMPTGE depleted all three heptapeptides. Somewhat surprisingly, DGEBA had 

no/minimal reactivity for all three tested heptapeptides whereas it was classified by the 

LLNA as a moderate to strong sensitiser and it is reportedly the most common sensitising 

chemical based on human data (Aalto-Korte et al., 2015, Gamer et al., 2008). Poor 

aqueous solubility of compounds such as epoxy resins can pose a major challenge in in 

vitro assays. To address this solubility issue, I evaluated a range of solvents and solvent 

mixtures regarding their ability to successfully dissolve epoxy resin compounds without 

adversely affecting DPRA accuracy. Herein, I showed for the first time that a solvent 

mixture comprising methanol:acetonitrile 1:1 containing 1% tert-butanol, was effective in 

solubilising all five epoxy resin compounds following addition of suitable aliquots to the 

DPRA reaction buffer. Importantly, this solvent mixture alone had minimal effect on peptide 

depletion for all three heptapeptides. Using my optimised solvent system for dissolution of 

all five tested epoxy resin compounds and the Cor1-C420 heptapeptide in the DPRA, the 

epoxy resin compounds, DGEBA, TMPTGE, PPGE and PEGGE were all classified as 

having moderate reactivity whereas THETGE was classified as having low reactivity. For 

DGEBA, my findings were total cysteine depletion of 44.6% and total lysine depletion of 

1.7% using methanol:acetonitrile 1:1 containing 1% tert-butanol as solvent, in a manner 

similar to a recent report by Natsch et al. (2013). 

Skin sensitisation in humans involves cross-talk between multiple pathways and so this 

complexity ultimately limits the accuracy of any single in vitro test to identify skin allergens. 

Hence, in the last part of my PhD research, I evaluated the predictive capacity of my 

optimised h-CLAT and DPRA methods relative to the corresponding data generated using 

the in vivo LLNA test (Chapter 4; Table 4-11). In the spirit of the 3Rs, I performed the ‘gold 
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standard’ mouse LLNA only for the epoxy resin compounds of interest where there were 

no previously published LLNA data or it was not possible to make accurate predictions 

using the information in the OECD QSAR skin sensitiser databases. Using the LLNA, I 

showed for the first time that the skin sensitising potency of PPGE is that of weak 

sensitiser with an EC3 value of 13.3% whereas PEGGE and THETGE were categorised 

as non-sensitisers. 

Based upon the afore-mentioned LLNA data, my optimised h-CLAT method showed that it 

accurately classified four out of the five epoxy resin compounds assessed whereas the 

and DPRA correctly classified three of five epoxy resins compounds relative to the 

corresponding LLNA data. Despite the small number of epoxy resin compounds assessed, 

my findings suggest that both the h-CLAT and the DPRA have the potential to be adapted 

to successfully identify skin sensitisers amongst epoxy resin compounds. At this early 

stage, it is not possible to identify the ideal strategy for in vitro evaluation of the sensitising 

potential of epoxy resin compounds. Nonetheless, adaptation of the DPRA and h-CLAT 

methods holds promise in hazard assessment.  

In summary, during my doctoral research program, I have successfully adapted and 

optimised the DPRA and h-CLAT in vitro methods for assessing the sensitising capacity of  

industrial chemicals, primarily epoxy resin compounds, that to date have not been widely 

assessed using in vitro test methods (Wong et al., 2015). Additionally, my findings showed 

for the first time the use of a solvent mixture comprising acetonitrile:methanol with addition 

of 1% tert-butanol improved the solubility of epoxy resin compounds and the capacity of 

the DPRA for correctly classifying the sensitising potency of these compounds. Also, my h-

CLAT data show that cultured THP-1 cells incubated with epoxy resin compounds induced 

increased secretion of IL-8 and IL-6 by THP-1 cells into the culture media, raising the 

possibility that pro-inflammatory cytokines such as IL-8 may have potential as a 

quantitative endpoint for assessing skin sensitisation potency. My data on the sensitisation 

potential of the three epoxy resin compounds, PEGGE, THETGE and PPGE as 

determined by LLNA, are novel and they will extend the LLNA database within the OECD 

QSAR toobox. It is acknowledged that there are many challenges that remain to be 

addressed in future work beyond the scope of that encompassed by my PhD research 

program that was focused on bringing innovation into both the DPRA and h-CLAT 

methods and then applying these methods to a representative set of five epoxy resin 

compounds.  
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5.2. Future directions 

 My PhD research findings show that the optimised h-CLAT and DPRA methods that I 

developed hold considerable promise for assessing the skin sensitisation potential of 

epoxy resin compounds. However, a large number of epoxy resin compounds need to 

be assessed in the future before conclusions can be drawn with confidence on the 

accuracy of these methods for correctly classifying epoxy resin compounds. 

 

 My findings also showed that the stability of the covalent bond formed in the peptide-

test chemical complex in the DPRA appears to be dependent upon the chemical class 

being assessed as well as the heptapeptides utilised. Further investigations are 

warranted to examine the stability of the covalent bond in peptide-chemical complexes 

by monitoring adduct formation (and their reversal) between the heptapeptide of 

interest and a range of test chemicals, using MS/MS. Such information will be very 

informative on the maximum number of samples that can be analysed in a single assay 

and the possibility of adapting the DPRA to high-throughput assay. 

 

 Previous work by others have incorporated the use of enzymes such as horseradish 

peroxidise (HRP) alone and in combination with hydrogen peroxide (HRP/P) (Gerberick 

et al., 2009), or aroclor-induced rat liver microsomes (S9) (Chipinda et al., 2011b), and 

skin-like recombinant human cytochrome P450 cocktails (Bergström et al., 2007) for 

assessing the skin sensitisation potential of chemical compounds that become 

sensitisers after metabolic activation (i.e. prohaptens and/or prehaptens). This 

approach improves the identification of potential skin sensitisers. In my DPRA work 

PPGE gave a false negative result. Hence, it is possible that it may require metabolic 

activation before becoming a sensitiser. Therefore, this requires future investigation. 

 

 My present findings showed that the pro-inflammatory cytokine, IL-1β, was unstable in 

cell culture at 37°C for a period of 24 h. Hence, future work aimed at defining the time-

dependent kinetic profiles of cytokines released from cultured THP-1 cells incubated 

with various chemical compounds for 24 h in the h-CLAT, will be an invaluable 

contribution to the field. 
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 In addition, the incorporation of a flow through device such as a transwell cell culture 

system may improve the throughput of cytokine sampling in my h-CLAT. Future work is 

warranted to optimise and assess the feasibility of using the above device in h-CLAT. 

 

 Recently, Urbisch et al. (2015) used a ‘two out of three’ prediction model of skin 

sensitisation whereby the combination of the DPRA, h-CLAT and KeratinoSensTM 

assays (another in vitro method as outlined in Chapter 1 Section 1.8.2.3) increased the 

accuracy of skin sensitiser identification to 90% (N=101) and 82% when compared with 

known human and LLNA data respectively. Previous work showed that the 

KeratinoSensTM assay accurately identified DGEBA as a skin sensitiser (Natsch et al., 

2013). Hence, future work aimed at assessing the accuracy of a panel of in vitro 

assays comprising my optimised DPRA and h-CLAT methods as well as the 

KeratinoSensTM assay, for assessing the skin sensitising potential of epoxy resin 

compounds, has considerable potential. 
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Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction
mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily
on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins
implicated as one of the most common causes of ACD. Efficient high-throughput
in vitro screening for accurate identification of compounds and materials that may
pose hazardous risks in the workplace is crucial. At present, the murine local lymph
node assay is the ‘method of choice’ for predicting the sensitizing potency of contact
allergens. As the 3Rs principles of reduction, refinement, and replacement in animal
testing has gained political and economic momentum, several in vitro screening
methods have been developed for identifying potential contact allergens. To date, these
latter methods have been utilized primarily to assess the skin sensitizing potential of
the chemical components of cosmetic products with scant research attention as to the
applicability of these methods to industrial chemicals, particularly epoxy resins. Herein
we review the currently utilized in vitro methods and identify the knowledge gaps with
regard to assessing the generalizability of in vitro screening methods for assessing the
skin sensitizing potential of industrial chemicals.

Keywords: allergic contact dermatitis, epoxy resins, in vitro methods, skin sensitization, integrated hazard
classification

Introduction

Occupational skin diseases (OSDs) are a significant public health concern both in terms of
employee pain and suffering as well as socioeconomic burden. In 2012 for the U.S. alone, the esti-
mated annual direct and indirect costs of OSDs exceeded USD1 billion per annum (Lushniak,
2004; Cashman et al., 2012). Additionally, the cost of dermatological treatments is forecast to
reach USD18.5 billion per annum by 2018 (Evers, 2013). These high socioeconomic costs have
provided the impetus for development of efficient in vitro screening methods for accurately identi-
fying chemicals with high skin sensitization risk so that their industrial use can be avoided, thereby
reducing OSDs. One of the most commonly reported OSDs is contact dermatitis, which accounts
for up to 95% of occupation-related skin diseases (Lushniak, 2000) in the areas of medicine, beauty
products, manufacturing, and the construction industries (Gimenez-Arnau, 2011; Lowney and
Bourke, 2011; Sosted, 2011).

Contact dermatitis is an inflammatory skin reaction resulting from direct contact with
foreign substances, mainly affecting exposed skin areas such as the hands, arms, legs, and
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face (Belsito, 2005). Contact dermatitis can be classified into irri-
tant contact dermatitis and allergic contact dermatitis (ACD).
In this review, we address (i) ACD and its associated contact
allergens, with particular attention on epoxy resins and their con-
stituents and (ii) in vitro methods that may be used for risk
assessment of ACD.

Allergic contact dermatitis is a type IV delayed hypersen-
sitivity cutaneous immune reaction that is mediated by T-
lymphocytes, and which occurs upon repeated skin exposure to
contact allergens (Kimber et al., 2002a). Briefly, ACD develops
in two stages, the sensitization phase and the elicitation phase
(Figure 1; Toebak et al., 2009; Kimber et al., 2011). During the
sensitization phase, contact allergens/haptens initially come into
contact with the stratum corneum, the outermost layer of the
skin and subsequently gain access to the body system through
the viable epidermis. The invasion of haptens triggers the local
release of proinflammatory molecules which subsequently induce
the binding of haptens to skin proteins (Kimber et al., 2002a). The
release of proinflammatory molecules also stimulates the disen-
tanglement and subsequent migration of Langerhans cells (LCs)
from the surrounding keratinocytes toward the hapten–protein
complex (Schwarzenberger and Udey, 1996). The hapten–protein
complex binds to the major histocompatibility complex (MHC)
on LCs and is then transported into the lymph nodes via the

afferent lymphatics (Toebak et al., 2009). During the transitory
migration to the lymph nodes, the activated LCs differentiate into
mature antigen presenting cells (APCs) resulting in morpholog-
ical changes such as the loss of endocytic/phagocytic receptors
and the upregulation of co-stimulatory molecules and MHC
molecules (Toebak et al., 2009). The hapten–protein complex is
presented by the APCs to the naïve hapten-responsive T-cells,
followed by selective clonal expansion of effector and memory
T-cells. The proliferated population of primed antigen-specific
T-cells is then disseminated into the blood circulation result-
ing in the sensitization of an individual (Kimber et al., 2011).
Elicitation is triggered when the haptens interact with either the
same or a different skin site (Kimber et al., 2011). Upon re-
exposure, epidermal cells release a cocktail of proinflammatory
cytokines and chemokines which draw the hapten-specific T-cells
from the peripheral circulation into the epidermal layer (Kimber
et al., 2011). The infiltrating T-cells produce pro-inflammatory
cytokines which in turn trigger the secretion of chemokines
by keratinocytes, resulting in increased infiltration of T-cells
from blood vessels into the epidermis leading to the devel-
opment of ACD (Basketter and Maxwell, 2007; Toebak et al.,
2009).

To date, more than 4000 chemical substances are linked to
induction of ACD in humans (Cahill et al., 2012). The 18-year

FIGURE 1 | Schematic overview of the mechanisms underpinning skin
sensitization during sensitization and elicitation phases: (1) Haptens gain
access through the viable epidermis. (2) Binding of haptens and skin proteins.
(3) Langerhans cells (LCs) bind to the hapten–protein complex and differentiate
into matured dendritic cells (DCs) during migration to the lymph node. (4) LCs
present haptenated protein to the naïve T-lymphocytes. (5) Clonal expansion of

specific effector and memory T-cells. (6) Proliferated T-lymphocytes disseminate
into the blood circulation resulting in sensitization of an individual.
(7) Re-exposure of similar haptens to the same individual. (8) Release of
proinflammatory cytokines and chemokines by epidermal cells. (9) Infiltration of
T-cells from blood vessels into the site of contact. (10) Development of allergic
contact dermatitis (ACD).
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retrospective analysis of ACD patients identified a number of
frequently defined contact allergens, some of which have been
summarized in Table 1 (Cahill et al., 2012). These chemicals
have been compiled in several human patch tests series includ-
ing the North American Series, the European Baseline Series,
the International Standard Series and the Thin-layer Rapid Use
Epicutaneous Tests (TRUE). In brief, these series identify chemi-
cal substances commonly implicated in the population of a given
geographical area, to cause ACD (Spiewak, 2008).

Epoxy resin-induced ACD was first reported in the 1950s, a
time when there was extensive development of epoxy resin sys-
tems (ERSs) in industry (Broughton, 1965). In general, an ERS is
comprised of an epoxy resin, hardener, reactive diluent, or other
additives such as solvents, modifiers and fillers which together
control the chemical and physical properties of the ERS (Geraut
et al., 2009; Nixon et al., 2012).

Epoxy resin system components are the third most common
allergen types for occupational ACD after chromates and rubber
allergens, with ERS the primary source of ACD in the plastics
manufacturing industry (Geraut et al., 2009). The prevalence of
ERS-induced ACD by country is summarized in Table 2.

It was estimated that for individuals with ERS-associated
ACD, ∼60–80% were sensitized to diglycidyl ether bisphenol A
(DGEBA), an ERS that is widely used in industry (Björkner et al.,
2011). This high prevalence resulted in the inclusion of DGEBA
in the human patch test series since the 1960s (Geraut et al.,
2009). Other epoxy resins including diglycidyl ether bisphenol
F (DGEBF) and tetraglycidylmethylenedianiline, are also asso-
ciated with induction of ACD (Geraut et al., 2009; Nixon et al.,
2012).

Apart from epoxy resins, epoxy hardeners, predominantly
polyamine compounds such as triethylenetetramine (TETA) and
diethylenetriamine (DETA), as well as reactive epoxy diluents

TABLE 1 | Common allergens and sources of exposure.

Allergens Source

Epoxy resin system (ERS) Adhesives, paints

Formaldehyde Pesticides, home cleansers

Fragrance mix Toiletries, cosmetics

Neomycin sulfate Creams, deodorants

Nickel sulfate Costume jewelry, tools

(e.g., phenyl glycidyl ether and p-tert-butylphenyl glycidyl; Geier
et al., 2004), also cause ACD. A retrospective analysis of the
records of 182 patients with ACD induced by epoxy resins over
a 22-year period showed that 23.6% had developed an allergic
response to epoxy hardeners (Jolanki et al., 2001). In a prospec-
tive study involving 92 individuals with suspected and/or prior
exposure to ERS, patch tests showed that they were responsive to
the epoxy diluents, 1,6-hexanediol diglycidyl ether (19.5%), and
1,4-butanediol diglycidyl ether (18.5%; Geier et al., 2004), high-
lighting cross-reactivity between epoxy compounds for induction
of ACD in humans.

Although the high propensity of ERS to induce ACD is known,
they are nevertheless used widely in commercial thermoset-
ting products due to their strong adhesive bonding properties
between different surfaces while exhibiting excellent resistance
in harsh chemical and environmental conditions (Cahill et al.,
2012). Worldwide demand for epoxy resins is forecast to reach
∼3 million tons by the end of 2017, with an estimated value
of USD9.2 billion per annum (GIA forecasts the global mar-
ket, 2012; Markets and Markets, 2014). The high global demand
for epoxy resins is due to their ever increasing utility in a wide
range of industrial applications including automotive coatings,
electronic coatings, construction and adhesive products (Dietrich
and Mirasol, 2012; GIA forecasts the global market, 2012). At
present, research on assessment of the generalizability of in vitro
tests developed for identifying the skin sensitizing potential of
small molecules used in the toiletries and cosmetics industries,
to that of epoxy resins and their components, is limited. Hence,
this knowledge gap needs to be addressed. Herein, we review
recent developments in non-animal tests for screening industrial
chemicals for skin sensitization potential, with particular atten-
tion to the applicability of these tests to the epoxy resin chemical
class.

Contact Allergens Screening
Approaches

Development of the first animal models more than 80 years ago,
to substitute for human skin patch testing of chemical com-
pounds as potential contact allergens, was a landmark in terms
of minimizing if not altogether avoiding the need for human test-
ing (Landsteiner and Jacobs, 1935). About 40 years later, animal

TABLE 2 | Reported prevalence of occupational allergic contact dermatitis (ACD) due to epoxy resin systems (ERS).

Study period Country Study population
(number of individuals)

Prevalence of
ERS-induced ACD (%)

Reference

1993–2002 Australia 1354 3.0 Cahill et al. (2005)

1996–2006 North America 2540 0.9 Amado and Taylor (2008)

1997–2001 Norway 2336 1.0 Romyhr et al. (2006)

1999–2008 Portugal 2440 0.6 Canelas et al. (2010)

2001–2010 Denmark 219 8.2 Mose et al. (2012)

2001–2006 China 1354 8.5 Cheng et al. (2011)

2005–2009 Denmark 20 808 1.3 Bangsgaard et al. (2012)

2006–2008 Lithuania 816 1.5 Beliauskiene et al. (2011)
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models were introduced for assessing the sensitizing capacity of
ERS (Thorgeirsson and Fregert, 1977; Thorgeirsson, 1978; Gamer
et al., 2008; Ponten et al., 2009). At present, the murine local
lymph node assay (LLNA) is the ‘gold standard’ for assessing
the skin sensitization potential of contact allergens. However,
the use of animals for this type of testing has provoked much
ethical debate (Carlson et al., 2004; Basketter, 2009) and pro-
vided the impetus over the past decade for the development of
in vitro methods to replace, reduce, and refine (3Rs) this type of
animal testing (Flecknell, 2002). Although several of these non-
animal testing methods are at the pre-validation stage, they have
been used primarily to assess the skin sensitization potential of
small molecules (molecular weights <500 Da) such as those used
in the manufacture of cosmetic and toiletry products (Kaplan
et al., 2012). However, their applicability for assessment of the
skin sensitization potential of ERS is largely unexplored. Hence
this knowledge gap needs to be addressed to enable the best
method or combination of methods to be identified for the reli-
able assessment of the skin sensitization potential of epoxy resin
compounds. In the following sections we review the current non-
animal testing approaches that have been developed based upon
key mechanistic events in the process of skin sensitization and
address the limitations of these methods for assessing the skin
sensitization potential of ERS.

In Chemico Assays: Peptide–Chemical
Interactions
Epoxy resins and/or epoxy resin composite materials, in com-
mon with other classes of haptens, react with skin proteins. The
hapten–protein complex is then internalized and processed by
LCs (Aleksic et al., 2007). Protein modification, in a process
known as haptenation, is a key step in the initiation of skin sen-
sitization (Chipinda et al., 2011). Majority of contact allergens
are electrophilic in nature, consisting of Michael acceptors, SNAr
and SN2 electrophiles, Schiff base formers, or acylating agents,
which underpin their ability to react with the nucleophilic amino
acid residues of skin proteins (Chipinda et al., 2011; Lalko et al.,
2012). For epoxy resins, the electrophilic epoxide groups react
with the nucleophilic moieties of skin proteins via SN1 or SN2
type nucleophilic reactions (Obach and Kalgutkar, 2010).

This haptenation process is mimicked in vitro by the direct
peptide reactivity assay (DPRA; Figure 2A) which assesses deple-
tion of small proteins (peptides) secondary to their interac-
tion with potential haptens (Gerberick et al., 2007). Briefly, in
this model, synthetic peptides containing nucleophilic residues
including cysteine or lysine are incubated with test chemicals
at a pre-determined ratio for 24 h to allow the binding of the
active side chain of the peptide to the hapten. Based upon the
irreversible covalent bond formation that occurs between hap-
tens and amino acid residues in proteins, the DPRA quantifies
the amount of unbound (remaining) peptide in the reaction mix-
ture using high performance liquid chromatography (HPLC).
Subsequently, the quantification of the bound (depleted) pep-
tides is determined as a measure of reactivity of the test chemical
(Gerberick et al., 2004).

At present, the DPRA has been validated by the European
Centre for the Validation of Alternative Methods (ECVAMs)

for the assessment of contact allergens as a replacement for the
in vivo LLNA (Troutman et al., 2011). A test guideline has been
promulgated by the Organization for Economic Co-operation
and Development (OECD) highlighting the generalizability of
peptide reactivity with small molecules (OECD, 2015). However,
the suitability of the DPRA test system for chemicals such
as epoxy resins that contain an epoxide group remains to be
assessed.

DPRA: Chemicals Tested to Date
Use of the DPRA to assess the ability of 82 compounds that
are mainly used as ingredients in cosmetic and toiletry prod-
ucts, to deplete cysteine-, lysine-, and glutathione-based peptides,
indicated a significant correlation between peptide depletion and
their sensitizer potency as previously established from in vivo
LLNA data (Gerberick et al., 2007).

Steps undertaken to improve the accuracy of the DPRA
for identification of potential skin sensitizing chemicals
have included incorporation of oxidizing agents such as
horseradish peroxidase and hydrogen peroxide (HRP/P) as well
as cytochrome P450 enzymes to metabolically activate unreactive
haptens into their more reactive hapten form, a process that
may take place in human skin in vivo (Bergström et al., 2007;
Troutman et al., 2011). By incorporating HRP/P into the DPRA,
83% of 70 chemicals with known sensitizing potential were iden-
tified accurately as compared with the standard DPRA reported
previously (89%; Troutman et al., 2011). This apparently reduced
accuracy of the HRP/P-added DPRA analysis is misleading,
however, as the initial chemical set used to evaluate the previous
DPRA prediction model did not include pre-/pro-haptens
(Gerberick et al., 2007).

More recent refinements aimed at increasing the robustness of
the DPRA to identify skin sensitizing chemicals include using pH
conditions that more closely mimic human skin pH andmeasure-
ment of concomitant chemical-specific mass changes indicative
of peptide adduct formation (Dietz et al., 2013). In other work,
the rate constant for reactivity of various test chemicals with
the DPRA peptide was determined to assess whether quanti-
tative kinetic reactivity data generated by measuring cysteine
depletion at multiple test chemical concentrations and at various
incubation times, were correlated with their potency as sensi-
tizers (Roberts and Natsch, 2009; Natsch et al., 2014). However,
drawbacks of this approach are that chemical reactivity varies
markedly between various functional groups and the reaction
rate of test chemicals with the DPRA peptide may not be linearly
related to their in vivo sensitization potency (Roberts and Natsch,
2009).

DPRA: Application to ERS
While cysteine and lysine are the most widely utilized peptides
for the in vitro DPRA, other modified peptides have been investi-
gated. More recently, the utility of the DPRA for classifying the
sensitizing capacity of several epoxies including novel analogs
of DGEBF and phenyl glycidyl ether (PGE), has been examined
using a synthetic peptide, viz PHCKRM (Pro-His-Cys-Lys-Arg-
Met). The extent of peptide (PHCKRM) depletion by six novel
epoxy analogs and the parent epoxide, PGE, was correlated with
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FIGURE 2 | Schematic diagram summarizing the steps involved
in the conduct of in vitro assays currently available for
assessment of skin sensitization potential. (A) Direct peptide
reactivity assay (DPRA), (B) human cell line activation test (h-CLAT),

(C) myeloid U937 skin sensitization test (MUSST), (D) KeratinoSensTM,
(E) loose-fit coculture-based sensitization assay (LCSA), (F) genomic
allergen rapid detection (GARD), and (G) human T-cell priming assay
(hTCPA).

the sensitizing potency of these epoxies determined using in vivo
LLNA assessment (Niklasson et al., 2009). The strong sensitizer,
PGE produced 88% peptide depletion whereas the weak epoxide

sensitizers, butyl glycidyl ether, and butenyl glycidyl ether pro-
duced 46 and 54% peptide depletion, respectively (Niklasson
et al., 2009). In a DPRA evaluation of DGEBF (containing two
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epoxide groups) and two variants (Variant A and Variant B)
using the same synthetic peptide (PHCKRM), the thiol (cysteine)
binding of DGEBF and its variants appeared to be affected by
the terminal epoxide groups (O’Boyle et al., 2012). Variant A
(DGEBF without terminal epoxide groups) did not react with
free thiols whereas variant B (DGEBF with one terminal epoxide
group) did react with thiol groups albeit to a slightly lesser extent
than the diepoxide DGEBF. Interestingly, the reaction rate for
DGEBF that contains two terminal epoxide groups was slightly
faster than that of variant B. These findings are aligned with
the sensitizing capacity of DGEBF and its variants determined
using the LLNA and the KeratinoSensTM assay (O’Boyle et al.,
2012).

To date, reports on the applicability of the incorporation of
enzymes into the DPRA, as a means of bioactivation for assess-
ing the skin sensitization potential of epoxy resins, are lacking.
It is known that the enzyme, epoxide hydrolase, catalyzes the
hydrolysis of epoxides to their respective dihydrodiol metabo-
lites which react readily with skin proteins. Conversely, the
enzyme, glutathione-S-transferase catalyzes the detoxification of
epoxides by formation of glutathione conjugates (Obach and
Kalgutkar, 2010). Hence, future investigation involving incorpo-
ration of epoxide hydrolase and/or glutathione-S-transferase into
the DPRA for analysis of epoxy resin compounds is warranted,
to more closely mimic possible bioactivation and deactivation
processes within human skin that produce reactive electrophilic
intermediates and detoxified species, respectively.

Issues relating to the poor aqueous solubility of industrial
compounds that have high octanol/water partition coefficients,
present another obstacle for use of DPRA to assess com-
pounds such as epoxy resins. Although various solvents including
dimethylsulfoxide (DMSO), methanol and acetonitrile have been
used to dissolve lipophilic compounds, only small volumes of
these solutions can be used due to their limited miscibility with
an aqueous solution of the peptide to be depleted. To that extent,
microemulsion systems have potential to improve miscibility
between an organic solution of a lipophilic test compound and
that of an aqueous peptide solution; preliminary data suggest that
this approach is worthy of further investigation (Merckel et al.,
2010).

Unacceptable modulation of the test systems by organic sol-
vents limits the range of solvents that can be used for dissolution
of epoxy resins. For example, organic solvents routinely used in
laboratories inhibit cytochrome P450-mediated metabolic reac-
tions, and may potentially fail to activate the enzyme-dependent
sensitizing chemicals in the test system (Li et al., 2010; Troutman
et al., 2011). DMSO is unsuitable for use in the DPRA as its high
reactivity means that it may react with assay peptides resulting
in false positive results. The use of DMSO in the DPRA would
require an additional costly step of purging the reaction system
with an inert gas such as argon, to prevent oxidation of DMSO
(Niklasson et al., 2009).

In Vitro Assays: Cell-Based Models
Human LCs and dendritic cells (DCs) play key roles in skin sensi-
tization (Coutant et al., 1999). Hence, there has been considerable
research attention on development of in vitro systems that mimic

the roles of LCs and DCs in skin sensitization. Initial in vitro
assays using LCs/DCs were limited due to the scarcity of avail-
able LCs and inter-donor variability of DCs (Yoshida et al., 2003).
These factors were compounded by between-laboratory variabil-
ity in cell isolation and cell culture techniques, which led to assay
reproducibility problems (Yoshida et al., 2003). The inter-donor
variability was circumvented by the use of human myeloid cell
lines, such as KG-1, THP-1, MUTZ-3, and U937 that have the
ability to differentiate into cells with DC-like characteristics (Hu
et al., 1996; Koss et al., 1996; Yoshida et al., 2003). Several in vitro
model systems using human cell lines to assess the skin sensi-
tizing potential of contact allergens have been developed. These
include the human cell line activation assay (h-CLAT), myeloid
U937 skin sensitization test (MUSST), the KeratinoSensTM test
(Figures 2B–D) and the LuSens which were under ECVAM
evaluation (Ade et al., 2006; Ashikaga et al., 2006; Sakaguchi
et al., 2006; Python et al., 2007; Emter et al., 2010; Bauch et al.,
2012). These methods have been reviewed extensively by others
(Mehling et al., 2012; Vocanson et al., 2013), and hence will not
be covered in this review.

Loose-Fit Coculture-Based Sensitization Assay
(LCSA)
An allergen-sensitive in vitro method that combines two layers
of cells, termed the loose-fit coculture-based sensitization assay
(LCSA), was developed using human primary keratinocytes from
healthy donors, and mobile DC-like cells viz peripheral blood
mononuclear cells (PBMCs; Figure 2E; Schreiner et al., 2008).
As keratinocytes are proposed to have a role in haptenation
via maturation of DCs, this assay has the advantage of being
able to detect prohaptens such as isoeugenol (Schreiner et al.,
2008), that are not detected by many in vitro model systems. In
short, inclusion of keratinocytes in this two-tiered cell-based sys-
tem facilitated metabolic activation of prohaptens into sensitizing
agents akin to that which occurs in the skin in vivo (Wanner et al.,
2010).

Similarly to MUSST and h-CLAT (as depicted in
Figures 2B,C), LCSA quantifies the increase in expression
of the cell surface marker, CD86 (Schreiner et al., 2007).
Additionally, LCSA accuracy and sensitivity for assessing metal
allergens such as nickel and cobalt, was improved by measuring
accumulation of the proinflammatory cytokine, interleukin-6
(IL-6) and the chemokine macrophage inflammatory protein 1-β
(MIP-1β; Schreiner et al., 2008). In a comparative evaluation of
the in vitro LCSA relative to the in vivo LLNA for assessing the
skin sensitizing potential of a group of textile disperse dyes, both
methods identified 87.5% of these dyes as having skin sensitizing
potential. Hence, the LCSA is a promising in vitro method for
identifying agents with skin sensitizing potential for use in com-
bination with other non-animal testing methods (Sonnenburg
et al., 2012). However, the current challenges in using the LCSA
include the necessity to obtain keratinocytes and PBMCs from
healthy human donors which makes the method susceptible to
inter-donor variability. Additionally, the complexity and time
required for seeding keratinocytes and PBMCs in this co-culture
assay makes it low throughput and so future innovation is
required to adapt the LCSA to high throughput format.
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Genomic Allergen Rapid Detection (GARD)
Apart from quantification of changes in cell surface expression
of molecules of interest, genomic methods may offer an alterna-
tive or complementary in vitro testing paradigm. For example,
genomic allergen rapid detection (GARD) employs the myeloid
cell line, MUTZ-3 that resembles skin DCs with respect to tran-
scriptional profiles and the ability to activate specific T-cell popu-
lations (Figure 2F; Johansson et al., 2013). GARDuses a complete
genome expression array approach to measure expression levels
of 200 transcripts involved in the activation of various signaling
pathways involved in skin sensitization.

Unlike the KeratinoSensTM, MUSST and h-CLAT in vitro
methods that use specific markers for classifying sensitizers,
GARD utilizes ‘biomarker signatures’ for identifying skin sensi-
tizers, thereby potentially increasing the predictive ability of the
method. An added advantage of GARD is that it can distinguish
respiratory and skin allergens by their unique biomarker signa-
tures (Johansson et al., 2013). Encouragingly, use of GARD to
assess 38 chemicals with known skin sensitization potential in
a preliminary study, showed that the accuracy, sensitivity, and
specificity of the method was high at 99% (Johansson et al.,
2011).

Recently, Albrekt et al. (2014) stressed that chemical reactiv-
ity properties were key factors for consideration when developing
in vitro screening models of chemical sensitizers. Sensitizing
chemicals were divided into groups based upon their mechanis-
tic reactivity and assessed against various cell-signaling pathways
using the GARD assay. Interestingly, different chemical reactivity
groups induced differential changes in various cell signaling path-
ways, particularly those involved in cell cycling and metabolism.
Potency in modulating these pathways appeared to be correlated
with skin sensitization potential (Albrekt et al., 2014). However,
care is required to avoid over-interpretation of these associations
with respect to potential sensitizer classification. More work is
clearly required using larger numbers of chemicals with a broad
range of functional groups of varying reactivity, as well as a range
of concentrations and reaction times. Nevertheless, the GARD
assay can provide invaluable information on the various cell sig-
naling pathways underpinning the sensitization process which is
invaluable in informing further development of in vitro sensiti-
zation test methods. Future research is warranted to assess the
extent to which the epoxide group in ERS will modulate cell-
signaling responses based upon their reactivity domain and/or
their sensitizing potency.

T-cell Activation Model
During skin sensitization, specific effector and memory T-cells
are activated by DCs triggered by sensitizing agents. While acti-
vation and proliferation of T-cells reflect the ultimate step in
inducing sensitization, there are very few assays that address this
aspect of the sensitization process. At present, only the in vivo
LLNA is used widely to evaluate the activation and expansion
of T-cells. More recently, an in vitro assay known as the human
T-cell priming assay (hTCPA) was developed to assess T-cell
responses initiated by contact allergens (Figure 2G; Dietz et al.,
2010; Richter et al., 2013). The hTCPA uses naïve T-cells isolated
from PBMCs of healthy donors that are depleted in CD25+ and

CD45RO+, a T-cell population responsible for regulating hapten-
specific interferon-γ (IFN-γ)-producing T-cells in lymph nodes
(Vocanson et al., 2013). Themodified T-cells are co-cultured with
hapten-treated monocyte-derived DCs at two stages, priming and
re-stimulation. After re-stimulation, the increase in T-cell pro-
duction and the cytokines, IFN-γ and TNF-α (tumor necrosis
factor-α), are quantified using an enzyme-linked immunosorbent
assay (ELISA) and an intracellular cytokine assay (Richter et al.,
2013; Vocanson et al., 2013).

The hTCPA has been used successfully to assess the
skin sensitizing potential of the strong sensitizers, 2,4-
dinitrochlorobenzene (DNCB), 2,4-dinitrobenzenesulfonic
acid (DNBS) 2,4,6-trinitrobezene sulfonic acid (TNBS), and
moderate/weak sensitizers, fluorescein isothiocyanate (FITC),
and α-hexyl cinnamaldehyde (HCA) as well as the non-
sensitizers, methyl salicylate, DMSO, and sodium lauryl sulfate
(SLS; Vocanson et al., 2014). Hence, the hTCPA has potential
as an in vitro method for assessing the sensitizing potential of
contact allergens. However, similar to the LSCA, this method
is time-consuming and fraught with difficulty in assay repro-
ducibility due to the scarcity of T-cell donors and inter-donor
variability. More work is warranted to assess the applicability
and generalizability of this cell-based model system using a
larger number and a wider range of chemical compound classes.
For example, the hydrophobic compound, DNCB that reduced
DCs uptake did not stimulate T-cell proliferation (Dietz et al.,
2010). While the use of nanoparticle encapsulation of lipophilic
compounds significantly increased the ability of DNCB to stim-
ulate T-cell proliferation and thus increase the assay sensitivity
(Vocanson et al., 2013), inclusion of this additional step adds
another level of complexity and increases the cost of the assay.

Cell-Based Models and ERS
Despite significant progress in the development and optimiza-
tion of non-animal testing assays, a major limitation in their
use for accurately identifying the skin sensitizing capacity of test
compounds, is poor water solubility, particularly for aqueous cell-
based assays (McKim et al., 2012). To date, few ERS compounds
have been assessed using cell-based in vitromodel systems. While
the KeratinoSensTM assay has been used successfully to clas-
sify the skin sensitizing potential of DGEBA, DGEBF, and PGE
(Delaine et al., 2011; O’Boyle et al., 2012; Natsch et al., 2013) to
match the LLNA results, the generalizability of other in vitro cell-
based methods reviewed herein is a knowledge gap and remains
to be determined.

Maintaining a suitable balance between the final solvent
composition, test compound solubility and deleterious solvent-
related effects within the assay, is pivotal for generating meaning-
ful data on skin sensitization potential. In general, the solvent-
related issues associated with in vitro assays relate to toxic-
ity and/or solvent-mediated modulation of the assay response,
thereby confounding assay readouts resulting in inaccurate
assessment of skin sensitization potential. High solvent concen-
trations in cell-based assays adversely affect cellular integrity,
resulting in cell death (Tapani et al., 1996; Galvao et al., 2014).
Concentration-related toxic effects of the solvent need be evalu-
ated to identify the maximum ‘no effect’ levels for each in vitro
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assay. The balance between acceptable solvent percentage in the
aqueous cell-based test system whilst maintaining solubility of
high molecular weight and low solubility test compounds, par-
ticularly industrial epoxy resins is yet to be adequately addressed.
This issue is arguably themost significant obstacle to be overcome
in adapting current in vitro skin sensitization assays to assessment
of epoxy resin hazard risk.

Skin Models

While selection of solvents compatible with in chemico assays
may improve the ability of the DPRA to identify epoxy resins
that have skin sensitizing properties, it is more difficult to attain
a suitable balance between epoxy resin solubility and cell viability
in aqueous culture-based assays. Moreover, future investigation
is required regarding the fact that most test compounds are
applied in solution to in vitro assays which may not necessarily
be reflective of the situation in humans where there may be top-
ical application of the compound in the solid state to the skin.
To address this issue, the reconstructed human epidermis (RHE)
has considerable potential. The RHE comprises an acellular der-
mal matrix mimicking the human skin epidermis layer. It has
been used together with cytokines and growth factors to bet-
ter represent the human skin micro-environment (Gibbs et al.,
2007). Preliminary data using the RHE system showed that it was
responsive to known sensitizers (Uchino et al., 2011).

More recently, EpiSensA, an in vitro skin sensitization assay
that utilizes a commercially available RHE has become avail-
able (Saito et al., 2013). In brief, using this skin model system,
skin sensitizing potential of test compounds is assessed based
upon changes in the expression of genes related to the cellu-
lar stress response. Preliminary data from 16 test compounds
were promising (Saito et al., 2013). Despite considerable progress,
the challenge remains for a more complete human skin model
system to become available that has a high degree of accuracy
for correctly identifying and classifying the skin sensitization
potential of novel compounds. This challenge is multi-factorial
encompassing inter-individual differences at both the cellular
and molecular levels such as genotypic variation, differences in
epidermal thickness and metabolic activity of the skin, as well
as inter-individual differences in rates of skin cell differentia-
tion (Gibbs et al., 2007). Nevertheless, EpiSensA has promise
for improving in vitro assessment of the skin sensitizing prop-
erties of compounds with poor aqueous solubility such as epoxy
resins.

Challenges in Assessing Epoxy Resin
Compounds Using non-Animal Testing
Systems

Apart from use of RHE model systems, the accuracy of in vitro
methods for skin sensitization assessment of industrial chemicals
may be improved by including multiple assay readouts using an
‘assay panel’ approach (Natsch et al., 2009; Jaworska et al., 2011;
Bauch et al., 2012). However, questions on the generalizability of

these in vitromethods to accurately identify chemicals containing
very different functional groups, is as yet unclear. In particular,
most in vitro methods were developed and evaluated using small
molecule chemicals that are widely utilized in the manufacture
of cosmetic and toiletry products. This is a significant limitation
as it has now been shown that different functional groups with
varying chemical reactivity produce differential engagement of
cell signaling pathways (Albrekt et al., 2014).

For example, a dataset of 145 chemical compounds assessed
using the KeratinoSensTM and MUSST assays, those that were
preferentially lysine-reactive resulted in false negatives (Natsch
et al., 2013). These findings mirror work by others (Migdal
et al., 2013) whereby chemicals with high reactivity toward
cysteine, and not lysine, activated the nuclear factor erythroid-
derived 2-related factor 2 (Nrf2)-ARE pathway in THP-1 cells,
a well-known toxicity pathway activated by skin sensitizers
(Natsch, 2010) that underpins the design principles of both
the KeratinoSensTM and LuSens tests. ERS compounds such as
DGEBA, DGEBF, and PGE react selectively with thiol groups
(cysteine; O’Boyle et al., 2012; Natsch et al., 2013). Hence, the
KeratinoSensTM and LuSens assays that are based on the afore-
mentioned pathway are worthy of future investigation for their
applicability and reliability to assessment of the skin sensitizing
potential of epoxy resins.

However, it is important to bear in mind that a single stand-
alone method based upon a single mechanistic pathway to assess
novel derivatives of ERS compounds is fraught as the novel
derivatives may produce skin sensitization by a different mecha-
nistic pathway. To address this issue, ECVAM recommendations
are that the KeratinoSensTM be used as part of an integrated
assessment approach that may also include the DPRA (ECVAM,
2014). Hence, future research is required to assess the applica-
bility of current in vitro methods to assess the skin sensitizing
potential of a broader range of chemical compounds as a means
to identify the most appropriate in vitro assays and assay readout
ranges, for establishing benchmarks to use for classifying the skin
sensitization potency of novel compound classes.

Another consideration to this discussion is the inherent accu-
racy of the LLNA itself with respect to existing human data.
The LLNA is widely utilized as the benchmark for evaluating
the predictive accuracy of non-animal methods. However, when
compared against the human maximization and patch test, the
accuracy of the LLNA was 72% (Anderson et al., 2011). More
recently, a retrospective comparison of a moderately large dataset
(>100) of test compounds revealed an 82% predictive accuracy
for LLNA when compared with established human data (Urbisch
et al., 2014). In other work, use of an integrated testing strategy-
based on data from ‘2 out of 3 in vitro prediction models’ resulted
in a higher overall accuracy (≥90%) when compared with human
data, as opposed to ≤83% using the LLNA dataset (Bauch et al.,
2012; Urbisch et al., 2014). Factors potentially contributing to the
discordance between human and LLNA data include the differ-
ence in skin penetration rates between the mouse and human,
as well as the application method of the test compounds on the
skin (Anderson et al., 2011; Delaine et al., 2011). The volatility
and cytotoxicity of compounds such as the components of ERS,
could affect potency outcomes given the open nature of substance
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application to the mouse ear in the LLNA in contrast with the
occluded dressing used in human patch tests (Delaine et al.,
2011). Hence, where possible, it is important to compare data

produced by various in vitro skin sensitization tests with human
data where available rather than relying solely on comparisons
with LLNA data.

FIGURE 3 | Schematic overview of mechanisms underpinning
non-animal methods for assessing the sensitizing potential of chemical
compounds. (1) Penetration of haptens through the viable epidermis:
Quantitative Structure–Activity Relationship (QSAR). (2) Activation of
keratinocytes in the epidermal layer by haptens: KeratinoSensTM, LuSens. (3)
Secretion of danger signals from the epidermal compartment due to invasion of

haptens: ROS production, genomic fingerprints, and proteomics biomarkers. (4)
Formation of the hapten–protein complex: DPRA, peroxidase peptide reactivity
assay (PPRA) and QSAR, Allergen-peptide/protein interaction assay (APIA). (5)
Maturation of DCs when migrating from epidermal compartment to auricular
lymph nodes via afferent lymphatics: h-CLAT, MUSST, LCSA. (6) T-cell
proliferation in auricular lymph nodes: hTCPA.

TABLE 3 | In vitro methods used in combination for classifying and predicting skin sensitization potential of novel chemical compounds.

Combination methods Description Accuracy Reference

(a) Peptide reactivity
(b) Cell-based ARE† assay
(c) TIMES-SS‡ computer modelling
(d) Calculated octanol-water partition coefficient

• Scores of 0–4 for each individual test
• A binary system is applied for in silico test results

88% (based on LLNA data)
(116 test substances)

Natsch et al. (2009)

(a) DPRA
(b) LuSens (similar principle with

KeratinoSensTM assay) or KerotinoSensTM

assays
(c) h-CLAT or MUSST

• A sensitizer if DPRA and LuSens yield negative
results and MUSST is positive

• If contradictory results between DPRA and
LuSens, or h-CLAT, then weight of evidence
approach is used

94% (based on human data)
83% (based on LLNA data)
(54 test substances)

Bauch et al. (2012)

Bayesian network Integrated Testing Strategy
(a) TIMES§

(b) DPRA
(c) ARE luciferase activity
(d) MUSST

• Adaptive testing strategy where the choice and
sequence of tests performed are based on
available information

• Reduces uncertainty of the sensitizing capacity of
a test substance before proceeding to the
experiment.

– Jaworska et al. (2011)

†ARE, antioxidant response element.
‡TIMES-SS, tissue metabolism simulator for skin sensitization.
§ TIMES, tissue metabolism simulator.

Frontiers in Pharmacology | www.frontiersin.org 9 May 2015 | Volume 6 | Article 94

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Wong et al. Hazard assessment of industrial chemicals

Integrating Non-Animal Assay
Readouts: Classifying Potential Skin
Sensitizers

The OECD has proposed that the hazard classifying system for
chemicals should consider the potential severity of allergic man-
ifestations from human and animal-based epidemiological data
[Organisation for Economic Co-operation and Development
(OECD), 1998]. A strong sensitizer is defined as a compound
that has a high occurrence of sensitization within an exposed
population whereas low to moderate sensitizers produce a low
or moderate frequency or severity of sensitization [Organisation
for Economic Co-operation andDevelopment (OECD), 1998]. At
present, this chemical classification system is based solely on the
‘gold standard’ LLNA which assesses the potency of skin sensitiz-
ers based on the extent to which they induce T-cell proliferation
in the auricular lymph nodes of mice (Kimber et al., 2002b).
Current and future research aimed at gaining a deeper under-
standing of the various cellular and immunological mechanisms
and their interplay that contribute to the extent of sensitiza-
tion evoked, is essential. Such new knowledge will be invaluable
for informing future research aimed at optimization of in vitro
methods for hazard identification of industrial chemicals, partic-
ularly ERS, as well as enable quantitative risk assessments to be
performed (Kimber et al., 2011).

The available non-animal testing methods for assessing the
various stages of ACD are summarized in Figure 3. This
schematic diagram clearly shows that single testing methods are
unable to evaluate potential cross-talk between the various phases
of the skin sensitization process. Thus, a single in vitro test repre-
sentative of a single event in the human skin response to contact
allergens cannot adequately capture the complexity of the human
response to a contact allergen, thereby potentially leading to gen-
eration of false negative results (Aeby et al., 2010). Thus, a panel
of complementary non-animal tests that together mimic the com-
plexity inherent in in vivo test methods (e.g., LLNA, human patch
test), has considerable potential utility as a screening tool for
more accurately classifying novel compounds as extreme, strong,
moderate or weak sensitizers.

An integrated hazard classification scheme involving assess-
ment of multiple steps in the skin sensitization process, including

bioavailability, structural alerts, formation of hapten–protein
conjugates, DC maturation, and T-cell proliferation, has been
proposed (Kimber et al., 2003; Jowsey et al., 2006). Using this
approach, greater weight is given to in vitro tests that produce
quantitative data. An index of sensitizing potency is calculated
based upon the product of values obtained from each test repre-
senting a key step in the skin sensitization process, for compari-
son of skin sensitization potency with the corresponding mouse
LLNA data (Kimber et al., 2003; Jowsey et al., 2006). Various non-
animal test combinations proposed for identifying potential skin
sensitizers are summarized in Table 3.

Conclusion

A strategy encompassing the integration of readouts from mul-
tiple in vitro tests as a means to improve the accuracy for
identification of novel compounds that are contact allergens
has merit. However, implementation of such a strategy requires
extensive validation and assessment of its generalizability for
multiple chemical classes before gaining widespread acceptance.
Additionally, use of an integrated panel of in vitro methods
to screen large numbers of industrial chemicals is likely to be
unattractive from a cost and time perspective and so develop-
ment of a hierarchy of individual high throughput in vitro tests
is needed.

At present, single in vitro assays in high throughput format
enable large numbers of compounds to be screened in a short
time frame. However, the choice of in vitromethod for screening
purposes, either as part of an integrated or hierarchical strategy,
should be informed by knowledge of the chemical class/domain.
In conclusion, the choice of in vitro methods for inclusion in a
panel for assessing skin sensitization potential will be the best
balance between predictive power of the selected tests relative
to the time and cost of generating the data and its value to the
organization that requires the data.
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