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Abstract 28	

Rifabutin used in HIV-infected tuberculosis shows highly variable drug exposure 29	

complicating dosing. Effects of SLCO1B1 polymorphisms on rifabutin 30	

pharmacokinetic were investigated in 35 African HIV-infected tuberculosis patients 31	

after multiple dosing. Nonlinear mixed-effects modelling found influential covariates 32	

on the pharmacokinetics were weight, sex and a 30% increased bioavailability 33	

amongst heterozygous carriers of SLCO1B1 rs1104581 (previously associated with 34	

low rifampicin concentrations). Larger studies are needed to understand the complex 35	

interactions of host genetics in HIV-infected tuberculosis patients. 36	

  37	
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Introduction 38	

Rifabutin is an alternative rifamycin for tuberculosis treatment. It is also used to treat 39	

other mycobacterial infections and to prevent Mycobacterium avium complex in 40	

patients with AIDS. Unlike rifampicin, rifabutin does not reduce concentrations of 41	

concomitantly administered protease inhibitors (PI) significantly (1). The 42	

pharmacokinetics of rifabutin are highly variable. (2-4) As a CYP3A4 substrate 43	

rifabutin is subject to drug interaction with CYP3A4 inhibitors, such as PIs and 44	

increases the exposure can result in an increased risk for adverse effects, particularly 45	

uveitis. Toxicity including uveitis, neutropenia and hepatotoxicity are a concern with 46	

high exposures (5). Conversely, low rifabutin exposures are associated with relapse 47	

and acquired rifamycin resistance (6). While therapeutic drug monitoring is advocated 48	

it is seldom available (5). Although a lack of suitable formulations and cost limit the 49	

widespread use of the drug in resource-constrained settings, its use is increasing in 50	

combination with PIs as ART programs mature and more patients are started on 2nd 51	

line PI-based regimens.  52	

 53	

In a process subject to autoinduction, arylacetamide deacetylase converts rifabutin to 54	

the active primary metabolite, 25-desacetyl rifabutin, which  is in turn metabolized by 55	

CYP3A4 (7, 8). Organic anion transporting polypeptide 1B1 (OATP1B1) mediates 56	

hepatocellular influx of diverse xenobiotics prior to excretion in bile (9). Functional 57	

single nucleotide polymorphisms (SNPs) in SLCO1B1, the gene encoding OATP1B1 58	

have been associated with significant alterations in drug pharmacokinetics. SLCO1B1 59	

rs4149032 and rs11045819 have been associated with lower rifampicin and lopinavir 60	

concentrations (10-12), while the rs4149056 SNP is associated with higher 61	

concentrations of lopinavir and other drugs including statins (13, 14). The SLCO1B1 62	



rs2306283 variant is associated with increased OATP1B1 expression (15). The allele 63	

frequencies of SLCO1B1 vary markedly between different populations (16). We 64	

recently showed that SLCO1B1 rs4149032 is carried by 70% of South Africans in 65	

whom it predicted reduced rifampicin concentrations (10). Since little is known about 66	

pharmacogenomic determinants of rifabutin exposure, we investigated the frequencies 67	

of SLCO1B1 SNPs rs4149032, rs11045819, rs4149056 and rs2306283, and their 68	

effects along with other covariate factors, on the pharmacokinetics of rifabutin in 69	

HIV-infected patients with tuberculosis prior to initiation of ART. 70	

Methods 71	

The pharmacokinetics and safety of rifabutin was investigated in 44 patients with 72	

HIV-associated tuberculosis as part of the ANRS 12150a trial (ClinicalTrials.gov 73	

registration no. NCT00640887). After 6 weeks on standard antituberculosis treatment, 74	

patients were switched from rifampicin to rifabutin 300 mg daily for the last 2 weeks 75	

of the intensive phase (with standard isoniazid doses, pyrazinamide and ethambutol) 76	

and for the first 2 weeks of the continuation phase (with standard isoniazid doses). All 77	

study participants had microbiologically confirmed pulmonary tuberculosis, HIV 78	

infection (CD4 lymphocyte count 50-200 cells/mm3), weight ≥50kg or BMI > 18, a 79	

Karnofsky score Q ≥80% and no grade 3 or 4 clinical or laboratory findings according 80	

to DMID tables (17).  81	

After 4 weeks on rifabutin 300 mg daily without ART, patients were admitted for 82	

pharmacokinetic evaluation. Following an overnight fast, blood samples were drawn 83	

immediately before dosing and at 2, 3, 4, 5, 6, 8, 12 and 24 h after dosing. A standard 84	

hospital breakfast (oats with 2 slices of toast and tea) was served >2 hours after 85	

dosing. Samples were placed on ice, until the plasma was separated and stored 86	

at -800C, within 30 minutes of sampling. Forty-two patients provided additional 87	
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written informed consent for the pharmacogenetic testing. A whole blood sample was 88	

collected and stored for genetic analysis. 89	

Rifabutin and 25-desacetyl rifabutin were assayed by LC/MS/MS as described 90	

previously (18). For both analytes, inter-batch accuracy (%Nom) was 99.1-109.0% 91	

and precision (%CV) was <9.2% at low, medium and high QC levels. The calibration 92	

ranges were 3.91-1000 ng/ml and 0.780-200 ng/ml for rifabutin and 25-desacetyl 93	

rifabutin respectively.  94	

Genotyping for SLCO1B1 rs4149032, rs2306283, rs4149056 and rs11045819 was 95	

performed using real-time PCR allelic discrimination by standard methodology 96	

(Supplementary material).  97	

The pharmacokinetics of rifabutin and 25-desacetyl rifabutin were described using a 98	

population nonlinear mixed-effects model in NONMEM (19) (Supplementary 99	

material). Structural base model building was followed by covariate model 100	

development. Firstly, the influence of patient's weight and lean body weight, 101	

respectively, were investigated on all apparent clearance and apparent volume 102	

parameters of rifabutin using allometric scaling a priori (20). Influence of age, sex 103	

and the SNPs (SLCO1B1 rs414903, rs2306283 and rs11045819 respectively) on 104	

model parameters were then each investigated in a stepwise fashion. As only 1 subject 105	

carried rs4149056, this SNP was not included in the covariate analysis.  106	

The final model was used in Monte Carlo simulations (500 simulation of the original 107	

study design) to estimate area under the concentration–time curve (AUC) over the 108	

24h dosing interval (AUC0–24) for rifabutin, and metabolite (AUCM0–24) and 109	

investigate the relevance of dose adjustment based on significant covariate factors 110	

Differences in AUC measures between males and females and rs11045819 carriers 111	



and non-carriers were evaluated using the Mann-Whitney Wilcoxon test (Rstudio 112	

Version 0.98.501). 113	

Results 114	

Forty-four patients (61% males) with mean (sd) weight, height, body mass index, age 115	

and CD4 lymphocyte count of 60.7 (8.7) kg, 159.6 (7.7) cm, 22.8 (3.3) kg/m2, 116	

32.7(5.9) years and 126.1(44.0) cells/mm3 respectively, contributed 780 117	

pharmacokinetic observations. The Karnovsky score was 100 in all patients. All 118	

patients were of Black African ethnicity. Genetic samples were not available for 7 of 119	

these patients and in a further 2 patients analysis of rs4149032 was unsuccessful 120	

(Table 1). 121	

A 2-compartment model with first-order absorption after a lag-time and first-order 122	

elimination from the central compartment best described rifabutin pharmacokinetics. 123	

Simultaneously, metabolism to the 25-desacetyl rifabutin metabolite was modeled via 124	

a first order process. The metabolite model was also best described by 2-125	

compartments with linear elimination from the central compartment (Fig. S1 in the 126	

supplemental material). The final population parameter estimates are shown in Table 127	

2. Body weight allometrically scaled (20) on rifabutin apparent clearances (from the 128	

central compartment; inter-compartmental clearance; clearance to the metabolite) and 129	

apparent central and peripheral volume of distribution improved the model (change in 130	

objective function value (ΔOFV)=-6.79). Males had a 1.84 times higher central 131	

volume of distribution for rifabutin than females (ΔOFV=-20.9), accounting for a 132	

31.3% reduction in between subject variability (BSV) on V/F. After weight and 133	

gender were included in the model the effects of rs4149032, rs2306283 and 134	

rs11045819 were evaluated on bioavailability (F; with the nominal population value 135	

of 1), apparent oral metabolism clearance to des-rifabutin (CLe/F), rifabutin 136	
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intercompartmental clearance (Q), apparent oral clearance of des-rifabutin (CLm/F), 137	

and volumes of distribution of the parent and metabolite. The rs11045819 SNP was 138	

associated with a 30% increase in F (ΔOFV=-6.5) and reduced BSV on F by 8.9%.  139	

 140	

Although the drop in OFV was significant, the changes visible in the visual predictive 141	

check (VPC) were minor. Inclusion of other SNP effects on the pharmacokinetic 142	

parameters did not statistically improve the model fit. The VPC (Fig. S2 in the 143	

supplemental material) displayed good model predictability and other goodness-of-fit 144	

plots (Fig. S3 in the supplemental material) further validated the final model. The 145	

influence of all covariate effects on overall exposures (AUC0–24, AUCM0–24) of 146	

rifabutin and the metabolite for subpopulations can be found in supplemental material 147	

Table S1.  148	

Discussion 149	

We investigated the effect of SLCO1B1 polymorphisms, weight and sex on rifabutin 150	

concentrations in an African population with HIV-associated tuberculosis. We found 151	

that rifabutin bioavailability was 30% higher amongst heterozygous carriers of the 152	

SLCO1B1 rs11045819 polymorphism compared to non-carriers. The effect on 153	

bioavailability was significant within the model, resulting in a significant difference 154	

between the estimated exposures for carriers and non-carriers (Supplemental material 155	

Table 1). Larger studies are needed to confirm the effect and characterize its effect on 156	

rifabutin exposure in patients. Interestingly, prior studies associated this 157	

polymorphism with reduced rifampicin and lopinavir concentrations (11, 12). 158	

SLCO1B1 rs4149032 was also associated with reduced rifampin exposure in South 159	

African tuberculosis patients (10). We did not find this polymorphism to affect 160	

rifabutin exposure; however our study included insufficient carriers of this 161	



polymorphism to exclude an association. While rs4149056 is more frequent in Asian 162	

and Caucasian populations, the low frequency of this SNP in our study (Table 1) is 163	

consistent with the reported population frequency (0.7-11.5%) in sub-Saharan Africa 164	

(21).  165	

Relationships between drug concentrations and OATP1B1 variants are complex. 166	

SNPs may be associated with altered OATP1B1 expression, or loss of function (12-167	

14). Moreover, rifampicin inhibits OATP1B1 (13), while rifampicin but not rifabutin 168	

induced OATP1B1 mRNA expression in hepatocytes incubated with 0.5, 5, or 10 μM 169	

concentrations of the drugs (9). A better understanding of these complex factors is 170	

necessary to explain the disparate effects of SLCO1B1 rs1104581 on rifampicin and 171	

rifabutin. As lopinavir is a substrate and inhibitor of OATP1B1 (22) and, like 172	

rifabutin and 25-desacetyl rifabutin, is a CYP3A4 substrate, further studies are needed 173	

to evaluate the impact of genetic variants on rifabutin pharmacokinetic, safety and 174	

efficacy with concomitant lopinavir/ritonavir.  175	

A further finding in this study is the effect of gender on the distribution of rifabutin 176	

after adjusting for weight. A possible explanation for the importance of both weight 177	

and gender effects could be differences in body composition between men and 178	

women (23, 24). However, allometric scaling using lean body weight and total body 179	

weight, respectively, were tested in the model and total body weight was superior.  180	

In conclusion, we explored factors contributing to wide variability in rifabutin 181	

exposures in HIV-infected patients with tuberculosis. The SLCO1B1 rs1104581 182	

polymorphism, weight and gender appear to play important roles, however, larger 183	

studies are needed to confirm these effects before they could be used to optimize 184	

dosing.   185	



9	
	

Tables  186	

Table 1. Allele Frequencies 187	

Allelle  Numbers of patients with the polymorphism   

(Number of patients with missing data regarding the 

polymorphism) 

SLCO1B1 rs4149032 CC=5,  CT=11, TT=17, (9) 

SLCO1B1 rs2306283 AG=8,  GG=27,             (7) 

SLCO1B1 rs4149056 CC=34, CT=1,               (7) 

SLCO1B1 rs11045819 AC=5,  CC=30,              (7) 



Table 2: Population pharmacokinetic parameter estimates of the base model and the final model for rifabutin and des-rifabutin 188	

  Final model Bootstrap results 

Median (RSE %) 

Base model 

OFV -1413.8 -1432.5 (7.8) -1386.4 

Rifabutin parameters   BSV (%)  BSV (%)  BSV (%)

Clearance Cl/F (L/h/70 kg) 116.5 12.0 108.2 (18.2) 11.6 (126.8) 114.3 16.0

Central volume of distribution V/F 

(L/70kg) 

117.8 49.0 121.7.6 (53.8) 52.3 (54.0) 148.8 58.0

Absorption rate constant ka (1/h) 0.24 23.9 0.22 (47.7) 24.9 (81.5) 0.21 26.0

Lag time (h) 1.6 24.7 1.7 (8.6) 20.2 (69.2) 1.5 25.0

Bioavailability F (Fixed) 1 33.0 1 28.3 (35.2) 1 34.0

Q/F (L/h/70 kg) 123.8   121.9 (23.0) 111.9   

Vper/F (L/70kg) 4897.8   4904.8 (116.1) 4663.8   

Cle/F (metabolism of RBN to des-RBN) 21.2   21.2 (52.5) 18.8   

des-Rifabutin parameters           

Clm/F (L/h) 196.7 30.0 200.4 (53.8) 27.5 (20.5) 174.1 30.0
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Vm/F (L) 3.9   3.8 (77.8) 3.5   

Qm/F (L/h) (Fixed) 0.15    0.15   

Vm-per/F (L) (Fixed) 536.8    536.8   

Residual error           

Proportional error rifabutin (%) 34.6   33.8 (18.3) 34.6   

Proportional error des-rifabutin (%) 34.6   34.2 (28.6) 33.2   

Additive error  rifabutin (ng/ml) 14.0    12.8 (13.9) 14.4   

Additive error  des-rifabutin (ng/ml) 1.2   1.3 (24.7) 1.17   

Covariate effects            

Increase of V/F for males (factor)  1.8   1.3 (33.3)     

Increase in bioavailability F (%) for 

rs11045819 genotype 

30.4  39.7 (71.6)     

 189	

Cl-clearance, V= volume of distribution for rifabutin in the central compartment, Vper- volume of distribution for rifabutin in the peripheral compartment, ka- 190	

first order absorption rate constant, F- bioavailability,  Q- intercompartmental clearance for rifabutin, Cle- clearance of rifabutin to des-rifabutin, BSV – 191	



between subject variability, Clm- clearance of des-rifabutin, Vm- volume of distribution for des-rifabutin in the central compartment, Vm-per- volume of 192	

distribution for des-rifabutin in the peripheral compartment, the base model included weight allometricaly scaled on CL/F, V/F, Q/F and  Vper/F 193	

 194	
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Supplemental Material 

Detailed methods used to detect single nucleotide polymorphisms (SNPs): 

Total Genomic DNA was isolated using the QIAamp DNA mini kit according to 

manufacturer’s instructions. Purity was assessed following extraction by comparing 

the A260 and A280 ratio. DNA was normalised to 20ng/µl. Genotyping for SLCO1B1 

rs4149032, rs2306283, rs4149056 and rs11045819 was performed by real-time PCR 

allelic discrimination by standard methodology (95˚C for 15 min, then 40 cycles of 

95˚C for 15 sec and 60˚C for 1 min). The Applied Biosystems assay IDs for the first 

three SNPs were C_1901709_10, C_1901697_20 and C_30633906_10, respectively. 

For rs11045819, the forward primer, reverse primer, VIC probe and FAM probe were 

5΄CAGTGATGTTCTTACAGTTACAGGTATTCTAA3΄, 

5΄GAAGACTTTTTACTGTCAATATTAATTCTTACCTTTTCC3΄, 5΄-

ACTATCTCAGGTGATGCT-VIC, and 5΄-CACTATCTCAGTTGATGCT-FAM, 

respectively. 

 

Detailed population modeling methods 

Data was analysed using NONMEM (version 7.1.2)(19) and PSN v.3.4.2.(25). 

Population pharmacokinetic parameter estimates, between-subject variability 

modelled exponentially, and residual variability were obtained with the first-order 

estimation method with interaction (FOCE+I). The objective function value (OFV), 

‘goodness-of-fit’ plots and visual predictive checks were used to evaluate and guide 

model building, a bootstrap (n=200) was performed for model validation. 

Proportional, additive and combined residual error models were tested separately for 

rifabutin and 25-desacetyl rifabutin. Nested models were hypothesis-tested using the 
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likelihood ratio test in which the change in OFV approximates the Χ2 distribution 

(Χ2
1,0.05 > 3.84). Non-nested models were compared using the Akaike information 

criterion (AIC).  



 

Table S1: Expected mean±SD area under the concentration–time curve over 24 h (AUC0–24) for rifabutin and des-rifabutin (AUCM0–24) for 

specific subpopulations based on 500 simulations from the final model. 

 Female Male Carrier Non-Carrier Female 

Carrier 

Male Carrier Female non-

Carrier 

Male non-

Carrier 

AUC0–24 (ng.h/L) 2830.4±160.2 2607.2±145.2 3050.4±187.3 2646.9±147.2 3142.9±176.8 2989.3±152.4 2788.1±153.6 2559.3±141.3 

p-value < 0.001 < 0.001 0.015 

< 0.001# 

< 0.001 

< 0.001† 

AUCM0–24 (ng.h/L) 277.1±18.9 272.3±19.3 327.8±26.6 267.1±19.2 328.5±25.4 327.2±29.2 270.3±17.5 265.3±19.2 

p-value 0.032 < 0.001 0.70 

< 0.001# 

0.035 

< 0.001† 

# comparing female heterozygous carriers of SLCO1B1 rs1104581 versus female non-carriers, † comparing male heterozygous carriers of 

SLCO1B1 rs1104581 versus male non-carriers  
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FIG  S1. Structural model for rifabutin and 25-desacetyl rifabutin (des-Rifabutin).  

F- bioavailability, ka- first order absorption rate constant, Q- intercompartmental clearance for 

rifabutin, Qm- intercompartmental clearance for des-rifabutin, Cl-clearance of rifabutin, Cle- clearance 

of rifabutin to des-rifabutin, Clm- clearance of des-rifabutin 



 

FIG S2. Prediction-corrected visual predictive check of the final model for rifabutin (top) and des-

rifabutin (bottom) separated for rs1104581 carriers (left) and non-carriers (right). The solid upper, middle 

and lower lines represent the 90th, 50th and 10th percentile of the patients’ observations. The dashed upper, 

middle and lower lines represents 90th , 50th and 10th percentile of simulated data. The grey shaded areas are 

the simulated confidence intervals for the corresponding percentiles.
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FIG S3. Goodness-of-fit plots for rifabutin (closed circles, top row) and des-rifabutin (open circles, bottom row) for the final model. 2	


