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Abstract 

 Esophageal cancer is the eighth most commonly diagnosed cancer and the sixth most 

common cause of cancer related mortality globally. There are two different types of esophageal 

cancer, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), each 

accounting for half of the cases. EAC develops in the lower one third of the esophagus as a 

consequence of chronic gastroesophageal reflux disease (GERD) from precancerous metaplastic 

condition Barrett's esophagus (BE). Apart from GERD and BE which are major risk factors for 

EAC, other known risk factors include age, male gender, obesity, Caucasian race, low intake of 

fruits and vegetables in diet, and Helicobacter pylori negative status. Due to changing life style and 

prevalence of risk factors, the incidences of EAC have been rising for past few decades and now it 

has become one of the fastest growing malignancies. The survival rate is very poor with only 1 in 5 

patients survive more than 5 years after EAC diagnosis, likely due to diagnosis at late stages. To 

diagnose early treatable dysplastic changes in progression from BE to EAC, BE patients undergo 

routine endoscopy-biopsies, with the biopsy evaluated by a histopathologist to confirm the 

dysplastic changes. This current method is invasive and prone to sampling error as well as 

interobserver variability. Endoscopy requires patient hospitalization and specialist appointment, 

leading to high expense. Moreover, BE is an asymptomatic condition which means a pool of BE 

patients are undiagnosed hence not enrolled into the surveillance program. Collectively, it has been 

shown that current endoscopy-biopsies based diagnostic is impractical and expensive for population 

wide BE screening or surveillance programs. 

 In contrast to endoscopy-biopsy, biomarkers from the blood are amenable to population-

screening strategies, due to the ease of access and low cost of testing. Moreover, EAC pathogenesis 

has been associated with changes in the serum glycan profile. However, specific glycoproteins that 

undergo differential glycosylation are unknown. Therefore, the aims of this thesis were to (i) 

identify serum diagnostic glycoprotein biomarker candidates for BE and EAC using biomarker 

discovery pipeline, (ii) develop a targeted proteomics approach to measure biomarker candidates for 

timely verification, (iii) verify serum glycoprotein candidates in an independent patient cohort, and 

(iv) test feasibility of using electrochemical detection methodology for the glycoprotein detection.  

 This translational research project utilizes lectins, naturally occurring proteins with 

specificity to bind with glycan structures, as affinity agents to isolate glycoproteins with different 

glycan structures. Our laboratory has previously established lectin magnetic bead array (LeMBA) 

methodology to identify serum glycoprotein biomarker candidates showing differential lectin 
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binding (Loo et al., J Proteome Res 2010 and Choi et al., Electrophoresis 2011). With the help of a 

bioinformatician and biostatisticians, GlycoSelector database incorporating statistical analysis 

pipeline was developed for biomarker discovery using LeMBA platform 

(http://glycoselector.di.uq.edu.au). Serum samples from 29 patients (healthy - 9, BE - 10 and EAC - 

10) were screened using LeMBA-GlycoSelector pipeline. A ranked list of candidate glycoprotein 

biomarkers that distinguish (i) EAC from BE (ii) BE from healthy and (iii) EAC from healthy group 

was identified. GlycoSelector analysis resulted in identification of total 183 unique lectin-protein 

biomarker candidates for targeted verification. 

 Out of the 20 lectins employed for the biomarker discovery, 6 lectins showing differential 

binding with glycoprotein candidates were selected for verification. Multiple reaction monitoring-

mass spectrometry (MRM-MS) assay was set up for 41 promising glycoprotein candidates. After 

testing linearity and reproducibility of MRM-MS assay, serum samples from an independent patient 

cohort were screened using customized LeMBA coupled with MRM-MS. Online web-portal Shiny 

mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny) was used for statistical analysis. Of the 

246 glycoforms measured in the verification stage, 40 glycoforms (as measured by lectin affinity) 

verified as candidate serum markers. The top candidate for distinguishing healthy from BE was 

Narcissus pseudonarcissus lectin (NPL)-reactive Apolipoprotein B-100; BE vs EAC, Aleuria 

aurantia lectin (AAL)-reactive complement component C9; healthy vs EAC, Erythroagglutinin 

Phaseolus vulgaris (EPHA)-reactive gelsolin. A panel of 8 glycoforms showed an area under 

receiver operating characteristic curve (AUROC) of 0.94 to discriminate EAC from BE. Two 

biomarker candidates were independently verified by LeMBA-immunoblotting, confirming the 

validity of the relative quantitation approach employed. 

 Mass spectrometry methods employed for biomarker discovery and verification are best 

suited for research laboratories but not for routine clinical practice whereas electrochemical 

detection methods have been successfully applied for development of point-of-care diagnostics e.g. 

glucose biosensor. In this thesis, the feasibility of using electrochemical method for glycoprotein 

detection has been tested with success using a model glycoprotein ovalbumin with Sambucus nigra 

agglutinin (SNA lectin). A detection limit of 10 pg/mL was demonstrated, in the background of 

diluted human serum. 

 Taken together, this study firstly identified and then verified serum diagnostic glycoprotein 

biomarker candidates using two independent patient cohorts for BE/EAC. The biomarker candidates 

described here require further clinical evaluation in a large patient cohort including early dysplastic 

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
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patient samples. Electrochemical detection method described in the last part of this thesis can be 

developed further into in vitro diagnostic for clinical use employing glycoprotein biomarker 

candidates.        
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Chapter 1. Introduction 

1.1 General overview 

 The esophagus is 18 to 25 cm long muscular tube that connects pharynx to the stomach and 

pushes food toward the stomach. The upper and lower esophageal sphincter prevents the backflow 

of the food. The upper esophageal wall is composed of striated muscle and lower part is composed 

of smooth muscle while combination of both striated and smooth muscle make up the middle of the 

tissue. The gross anatomy of the food pipe along with blood supply and lymphatic is illustrated in 

the Figure 1.1. In particular, arteries, veins and lymph nodes for lower esophagus, where esophageal 

adenocarcinoma (EAC) develops, are highlighted.         

 

Figure 1.1. (A) Blood supply, (B) venous drainage and (C) lymph drainage of the esophagus. 

Adapted from Kuo and Daniela (4). 

 Following heart disease, cancer is the second leading cause of death globally. Four major 

cancer sites account for half of the cancer related mortalities: lung, colorectal, prostate in men and 

breast in women. In past two decades, a steady decrease in deaths of these four major site 

malignancies lead to an overall decrease in cancer related death rates in men and women (5, 6). In 

contrast, the incidence of EAC is increasing faster than any other cancer type. Before mid 1970s the 

incidence of EAC represented less than 5% of total esophageal cancer. Over a period of three 

decades, the incidence rose continuously and now almost half of the esophageal malignancy cases 

diagnosed are EAC type (7, 8). EAC together with esophageal squamous cell carcinoma (ESCC) is 

the eighth (tenth in USA) most prevalent cancer and the sixth (eighth in USA) most common cause 
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of cancer related death globally (6, 9). EAC is generally diagnosed at a late stage, leading to a poor 

5 year-survival of less than 20% (6, 10).  

 EAC arises in the distal one-third of the esophagus as a consequence of gastro-esophageal 

reflux disease (GERD) and Barrett's esophagus (BE). In response to chronic GERD, normal 

stratified squamous epithelium of esophagus gets converted into metaplastic columnar epithelium, a 

condition called Barrett's esophagus (BE) (11-13). BE is a successful adaptation of the distal 

esophagus in response to chronic GERD. Typically EAC develops through a metaplasia-dysplasia-

carcinoma sequence involving genetic and epigenetic modifications leading to uncontrolled cell 

proliferation. It is characterized by presence of intestinal metaplasia (IM) with low-grade (LGD) to 

high-grade dysplasia (HGD), the latter of which may develop into invasive carcinoma (14). Figure 

1.2 is schematic overview of EAC development. 

Figure 1.2. Schematic representation of EAC development. In response to chronic GERD, 

normal stratified squamous epithelium of esophagus is converted into acid resistant columnar 

epithelium, condition called Barrett's esophagus (BE). Up to 1% of BE patients develop dysplasia 

and EAC. The blue colored cells represent goblet cells. Adapted from Anaparthy and Sharma (15).    

 Majority of BE/EAC patients are asymptomatic hence it is difficult to identify early EAC. In 

advanced stages, patients may present symptoms like dysphagia (difficulty in swallowing), chest 

pain, weight loss and anemia. Significant number of patients are diagnosed accidentally when they 

undergo endoscopy for other gastrointestinal abnormalities (16). In majority of cases clinicians have 

very limited scope for the treatment as tumor has already reached advanced stage at the time of 

diagnosis. Treatment mainly includes surgery, radiation and chemotherapy either alone or in 

combination (17). Cisplatin in combination with fluorouracil is the drug of choice as a combination 

chemotherapy (18). Recent research on EAC has focused on understanding risk factors and 

identification of early diagnostic biomarkers.  
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1.2 Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) 

 Historically, esophageal ulcers resembling peptic ulcers of the stomach were first described 

by Albers in the year 1839 (19) and later on by many others including description of the columnar 

phenotype of the lower esophageal lesions (19-21). In fact until the mid 20
th

 century, confusion 

exists between the terms "esophagitis" and "peptic ulcer of the esophagus". Australian born 

physician Norman Rupert Barrett clearly demarcated the two terms in the article published in the 

year 1950 (22). According to the seminal article, "peptic ulcer of the esophagus" term was mainly 

used by pathologists and most of these cases were in fact examples of congenital short esophagus. 

On contrary, esophagitis had become a blunderbuss term which covered many different 

pathological lesions. So to describe the phenomenon of gastric acid reflux that can give rise to 

ulceration of esophagus, Dr. Barrett specifically coined the term "reflux esophagitis" (22). Although 

Dr. Barrett was not the first one to describe the columnar lining of the esophagus, the disease later 

termed as Barrett's esophagus in honor of contributions made by the pioneer thoracic surgeon (23). 

Although there is no universally accepted definition of BE, it is formally characterized by presence 

of metaplastic columnar epithelium in the proximity of the gastroesophageal junction (11). 

Disagreement still exists between physicians about esophageal intestinal metaplasia to be 

prerequisite for diagnosis of BE (24). In 1975, the clear link between this columnar lined lower 

esophagus (or BE) and EAC was established by patient follow-up using repeated esophagoscopies 

(25). Out of 140 cases of extensive columnar metaplasia followed, 10% of patients developed EAC 

and this disease progression was irreversible and could not be stopped by an anti-reflux operation 

(25).     

1.2.1 Epidemiology and prevalence 

 Out of two major types of esophageal cancers, ESCC and EAC, the latter has undergone 

dramatic epidemiological changes in past few decades. The overall incidence rate of ESCC has 

remained stable or declined since 1970s (26). On the contrary, the incidence of EAC has risen 7-

fold from 3.6 cases per million in 1973 to 25.6 per million in 2006, both in men and women 

combined (26, 27). This rising incidences of EAC cannot be attributed to overdiagnosis due to 

improved imaging techniques implied in the screening program (26, 27). According to an estimate, 

the rate of rise in incidences has slowed down in the past decade and we may have reached a peak 

but this needs to be carefully monitored over next few years (27). EAC and ESCC showed marked 

differences in their geographical spread. EAC is more common in developed countries such as the 

UK (8 in 100,000 individuals) (28), Australia and the USA. Within Europe, southern Europe has the 
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highest EAC incidence (28). On the other side, ESCC is most common type of esophageal cancer 

amongst developing Asian countries (29). Racial disparity also occurs between the two types of 

esophageal cancer. ESCC is more prevalent amongst blacks while EAC is at least twice as common 

in whites as compared to other ethnic groups (30, 31). Once diagnosed, black patients showed 

poorer overall survival than whites (32, 33). Taken together, strong genetic and environmental 

factors relating to ethnicity and geographic distribution seem to be playing critical roles in the 

incidence of esophageal cancer. Studies also suggest possible link between socioeconomic status 

and prevalence of esophageal cancer phenotype (29). 

 As far as prevalence of gastroesophageal reflux disease (GERD) is concerned, it varies 

considerably according to geography. GERD affects 10-30% of the world population except East 

Asian countries where its prevalence has reported to be less than 10% (34). Although it is very 

challenging to screen the general population for the presence of BE using endoscopy, according to a 

study conducted in a Swedish cohort, around 1.6% of the population harbor either short or long 

segment BE (35). This number is estimated to be even higher around 5-6% according to 

mathematical modeling (36) which is very close to the results of endoscopic screening conducted in 

the patients undergoing colonoscopy (37, 38). Almost 95% and 80% of EAC patients have no prior 

diagnosis of BE or GERD respectively (39). The conversion rate from BE to EAC is estimated to be 

0.12-1.0% per patient-years with large cohort studies suggesting lower conversion rate, contrary to 

studies conducted in small sample size (40-42). Taken together, incidences of BE/EAC have been 

rising and show marked differences according to geography. 

1.2.2 Risk Factors 

 Esophageal cancer is unlikely to develop in individuals below age of 40 years, however after 

that its incidence rises significantly with each decade of life (32). Changing life style and food 

habits are primarily responsible for the dramatic epidemiological changes in EAC as described in 

reviews (10, 39, 43). Known EAC risk factors include accumulation of visceral fat in the abdomen 

(44), male gender, high intake of dietary fat and cholesterol with low intake of fruits and vegetables 

(45), tobacco smoking (46), reduction in Helicobacter pylori infections (47) and Barrett’s 

esophagus (BE), a metaplastic change to the esophageal lining. Individuals with BE carries 30-125 

times more risk for EAC development (48). 

1.2.2.1 Gastroesophageal reflux disorder (GERD) and Barrett’s esophagus (BE) 

 Patients suffering from recurrent GERD have 7 to 8 fold increased risk for developing 

specifically EAC without having any effect on development of ESCC, gastric cardia 
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adenocarcinoma or non-cardia gastric adenocarcinoma (49). The rate of EAC is even higher in 

individuals with bile reflux. Erosive reflux disease as compared to non-erosive reflux is responsible 

for esophageal inflammation and ulceration leading to EAC (43). However, GERD alone is not 

capable of explaining dramatic rise in the EAC incidences. Furthermore, only about 10% to 20% of 

GERD patients develop BE and this percentage even reduces when we consider EAC suggesting 

involvement of other risk factors (50).  

 Barrett’s esophagus (BE) is a successful adaptation in response to chronic GERD and 

characterized by replacement of normal stratified squamous epithelium with metaplastic columnar 

epithelium (39). Amongst three different types of columnar epithelium named as intestinal, cardia 

gastric fundic and gastric junctional, only intestinal metaplasia seems to be associated with 

increased cancer risk and histologically diagnosed by presence of mucous secreting goblet cells 

(50). Being a strongest risk factor for developing EAC, typically BE patients carry 100 folds 

increased risk for developing EAC equally for both men and women. The process of EAC 

development from BE typically involves stages like low-grade dysplasia (LGD), high-grade 

dysplasia (HGD), early EAC and invasive carcinoma (43, 51). The predominance of BE is almost 

double in men with typical age of diagnosis 50-59 years (51, 52).  

1.2.2.2 Obesity 

 At the same time while incidences of EAC are increased, obesity has reached epidemic level 

globally with more than 1.7 billion adults overweight and 300 million people are clinically obese 

(53). Epidemiological studies have shown strong implication between increasing body mass index 

(BMI) and risk of EAC, with 2-3 fold increased risk for those with BMI ≥ 30 kg/m
2
 and 1.5-2 fold 

in those with BMI = 25.0 to 29.9 kg/m
2
 independent of reflux (39, 44, 54). Obesity can cause hiatal 

hernia and can simply provoke reflux through increasing intra-abdominal pressure. Independent of 

reflux, obesity can also lead to EAC by other mechanisms (50, 55).  It has been realized that rather 

than only weight, it is actually distribution of the fat that affects the disease progress. Visceral fat is 

metabolically more active and has been associated with high levels of leptin, interleukin-6 (IL-6), 

tumor necrosis factor-α (TNF-α) and overall low serum level of adiponectin (56). This chronic low 

grade inflammation state in obesity can increase cell proliferation leading to cancer (39). Also high 

serum leptin levels are associated with BE in only men and not in women which may partly explain 

the male predominance of the disease (57).  
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1.2.2.3 Age and gender 

 EAC follows similar age distribution to that of other gastrointestinal malignancies with 

median age at the time of diagnosis of 60 years (54). Male: female occurrence ratio for EAC is 

reported to be 3-7:1, making it male predominating disease. The detailed underlying mechanism for 

this anomaly is yet to be discovered (58). One can obviously speculate a relationship between sex 

hormones and EAC development. Estrogen may be protecting female in early ages against EAC or 

it may be testosterone which predisposes men towards the disease. 

Three independent studies looking at expression levels of androgen receptor (AR) using 

immunohistochemistry in healthy, BE and EAC tissue samples (total n = 60) concluded no 

relationships between AR staining and either disease status or survival of EAC patients (59-61). In 

agreement with the tissue staining, the esophageal adenocarcinoma cell lines OE19 and OE33 do 

not express AR (62). However, stromal cells express AR which raises the possibility of indirect role 

of AR in BE/EAC (62). The paracrine effect of stromal AR and exposure with androgens i.e. serum 

testosterone can be mediated by fibroblast growth factor (FGF)/fibroblast growth factor receptor-1 

(FGFR-1) axis (62). Supporting this idea, OE19 xenografts grew faster in male mice in comparison 

with female mice along with high intensity staining for FGFR in male mice (62). In a large scale 

study including prostate cancer patients undergoing antiandrogen therapy it has been concluded that 

there is no relationship between antiandrogen therapy and secondary esophageal adenocarcinoma 

development (63). Another clinical study on prostate cancer patients concluded that risk of 

developing EAC, and not ESCC is lower in prostate cancer patient. This may be due to etiological 

factors related to prostate cancer or antiandrogen therapy (64). Overall based on the available 

evidences, testosterone alone cannot explain the gender bias for the disease. It appears that 

testosterone/AR may not have any direct role to play in EAC development; however, these studies 

are few in number and limited in scope hence require further confirmation. 

There is continuous decrease in male: female incidence ratio of EAC from more than 10:1 in 

some age groups of less than 50 years of age to 4:1 in mid 80s suggesting age associated factors 

related to sex may be playing role (58). Importantly role of ovarian hormones cannot be ruled out as 

ovarian function deteriorates with age in female. Estrogen has protective effect against certain GI 

tumors while in case of breast and ovarian cancer it promotes tumor progression however there is 

no such clear information regarding EAC (65, 66). This tissue specific anomaly of estrogen action 

is determined by distribution of estrogen receptors (ER) namely Estrogen Receptor α (ERα), 

Estrogen Receptor β (ERβ) and its downstream signaling. ERα is considered to be anti-apoptotic 
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while ERβ acts as a pro-apoptotic and both the receptors regulate expression of different set of 

genes in multiple possible ways (65). ERα and progesterone receptor (PR) are not expressed in 

EAC tissues (67-69). ERβ is present in EAC tissues (67-69) and its expression levels are correlated 

with tumor stage (69). ERβ localization also differs in BE and EAC tissue samples, in case of 

former they are present only in nucleus while EAC samples show staining for ERβ throughout 

cytosol and/or nucleus (68). Estrogen has also been found to protect against chemical carcinogen 

induced esophageal cancer in rat model (70). In another rat model using nitric oxide (NO), it has 

been confirmed that male rats showed more tissue damage in response to NO and it was suppressed 

by presence of 17-β-estradiol (71). In vitro, 2-methoxyestradiol, an endogenous by product of 17-β-

estradiol decreases cancer cell proliferation and migration by regulation of Bax/Bcl-2 and β-

catenin-E-cadherin signaling pathway. However, these effects seem to be independent of ERs (72). 

A clinical study has shown that post-menopausal women taking tamoxifen as a therapy for breast 

cancer has 60% statistically non-significant more risk of developing EAC (73). Tamoxifen is a 

selective estrogen receptor modulator (SERM) with antiestrogenic effect in breast in contrast to its 

estrogenic effect in bone and endometrium (73). If estrogen actually has a protective role against 

EAC then post-menopausal hormone use should decrease the risk for developing EAC but actually 

no correlation was found between post-menopausal hormonal medication and EAC (74). 

Apart from regulating reproduction related functions, estrogen is also implicated in the 

overall physiological metabolism in both sexes (65). High level of estrogen in premenopausal 

women by interaction with ERs in the brain and with leptin signaling can drive subcutaneous fat 

distribution which is less harmful in terms of EAC (61, 70). However, in the presence of relatively 

low levels of estrogen after menopause, visceral fat starts to accumulate predisposing women for 

increased risk of EAC (63, 70, 71, 73). The scenario for male is less clear as the majority of studies 

were done in females (65). 

 In summary, estrogen seems to play a role in EAC. Further studies in this regard may 

provide useful links to understand the male predominance of the disease. Depending upon the 

expression of the receptors and its downstream signaling in the tumor, estrogen can play either 

proliferative or apoptotic role which can be targeted using already available estrogen analogues, 

SERM or anti-estrogen to establish new supportive therapy for the deadly disease. 

1.2.2.4 Alcohol and smoking 

 Alcohol is a putative risk factor for the ESCC while there is no such correlation for EAC 

(46, 54, 75, 76). In contrast to alcohol, which is not considered to be a risk factor for the disease, 
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smokers have almost two times higher risk for EAC. The increased risk remains even a long time 

after smoking cessation (46, 75, 76).  

1.2.2.5 Helicobacter pylori Infection 

Plethora of evidences suggests inverse relationship between H. pylori infection and EAC 

(47, 55, 77). The mechanism proposed is due to the ability of H. pylori to induce atrophic gastritis 

which results in a decrease in gastric acid production. H. pylori produces ammonia from urea, 

changing the nature of refluxate which reduces the chances of esophageal damage due to reflux (10, 

54). The incidence of infection is declining in the developed countries which may contribute to the 

increased incidence of EAC (54). 

1.2.2.6 Diet 

Low intake of antioxidant rich foods, fibers, fruits and vegetables is associated with the 

incidence of the EAC (45, 78, 79). Furthermore, high intake of dietary fat, dietary cholesterol and 

animal protein are found to be potential risk factors for EAC (45). 

1.2.2.7 Medication 

 Non-steroidal anti-inflammatory drugs (NSAIDs) consumption is shown to have protective 

role against development of EAC as well as ESCC. In fact, individuals taking regular Aspirin have 

shown clinical benefits with respect to esophageal malignancy (80-83). These agents protect against 

the malignancy by reducing Cyclooxygenase-2 (COX-2) mediated inflammation (84). 

 Proton-pump inhibitors (PPIs) which reduce gastric acid production may protect against 

gastric acid mediated damage to esophagus hence show protective role against EAC. However, the 

data shows mixed results (39). 

 Overall GERD and related BE, obesity, smoking, change in dietary habits and decrease in H. 

pylori infection are responsible for increase in the EAC cases.  

1.2.3 Pathophysiology 

 Significant numbers of EAC arise as a consequence of BE and GERD. The development of 

BE is considered to be a two-step process (14). In response to chronic GERD, the first step involves 

the replacement of normal esophageal squamous mucosa to a simple columnar epithelium called 

cardiac mucosa (85-87). This first step is very rapid and can occur within 1-2 years. Cardiac mucosa 

is an unstable epithelium which can express gastric genes leading to gastric differentiation and 

formation of oxyntocardiac mucosa (88). This is considered to be a favorable change and it is not 
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premalignant. Alternatively, cardiac mucosa can express intestinal genes which cause the formation 

of goblet cells making this a pre-malignant mucosa BE. Typically goblet cells formation takes 

minimum of 5-10 years (89). 

 Different hypothesis prevail for cellular and molecular changes responsible for making 

columnar and more acid resistant epithelium in BE (12). During embryonic development, 

esophagus is initially lined by columnar epithelium which during late embryogenesis is replaced by 

squamous epithelium through the process of transdifferentiation (90, 91). On this basis it has been 

believed that columnar epithelium again develops in the esophagus as a consequence of GERD by 

reversal of the developmental pathway. In fact in vitro experiments have confirmed these changes 

(92-94). Contrary to the transdifferentiation hypothesis, the columnar epithelial cells may originate 

from the stem cells itself (12). The reprogramming of the stem cell situated in the basal layer of the 

normal squamous epithelium gives rise to metaplastic columnar type cells (12). Alternatively, stem 

cells residing in the submucosal glands of the esophagus or bone marrow derived stem cells can 

also give rise to metaplastic tissue (95, 96). 

 At the molecular level, the homebox gene CdX2 is essential for intestinal differentiation 

while CdX1 specify columnar cell phenotype (97, 98). Exposure of esophageal squamous 

epithelium to acid or bile salts can increase expression of these genes leading to phenotypic changes 

including formation of crypt like structure and expression of intestinal genes like villin and mucin 

(99, 100). SOX9 protein is shown to be expressed specifically in BE/EAC which plays a role in the 

formation of intestinal type goblet cells (101, 102). The role of developmental signaling pathways 

like Wnt signaling, Notch signaling, Hedgehog and bone morphogenic protein (Bmp) 4 pathways 

are also described in making Barrett's metaplasia (12).  

 Development of EAC from BE follows metaplasia-dysplasia-adenoma carcinoma sequence. 

Disruption of p16/Rb pathway and p53 pathway can drive molecular changes from BE towards 

EAC (12, 39). The pathogenesis involves development of early and late phase dysplasia resulting 

into invasive carcinoma (50, 103). The dysplasia is associated with the architectural and cytological 

changes in the columnar epithelium. Variations in nucleus size and shape, increased nuclear-to-

cytoplasm ratio, hyperchromatism, increased numbers of abnormal mitoses, villiform configuration 

of the mucosal surface and architectural abnormalities like budded, branched, crowded, or 

irregularly shaped glands are hallmark of dysplasia (103).   
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1.2.4 Current diagnosis scenario 

 Esophageal cancer patients do not present any symptoms until the disease is in advanced 

stages. Currently the majority of EAC patients are diagnosed symptomatically when patients 

present symptoms like dysphagia, anemia, fatigue, vomiting, and weight loss without trying etc 

(104). By this time, the tumor is already locally metastasized hence patients often show very poor 

survival (16). In contrast, more than 90% patients survive beyond 5-years if the diagnosis is made in 

the early stages of HGD before EAC develops (105).     

 In order to detect pathological changes leading to EAC development before onset of disease, 

current clinical practice involves endoscopic screening of high risk GERD patients and to 

characterize the degree of dysplasia in biopsy samples collected during endoscopy (106, 107). 

Patient enrollment into an endoscopic screening program may be facilitated by a patient 

questionnaire of self-evaluated symptoms/complications (108, 109). Once enrolled into the 

screening program, patient undergoes endoscopy-biopsy every 3 months to 2 years depending on 

the degree of dysplasia, during which 4 quadrant biopsy samples are taken every 1-2 cm and 

evaluated for histological changes by expert pathologists (106, 107). As a significant number of 

patients histologically diagnosed with HGD develop EAC, endoscopic mucosal ablation or 

esophageal resection (esophagectomy) are options to stop further disease progress in those high risk 

patients (110, 111). Significantly improved survival is observed in patients diagnosed at an early 

stage during surveillance endoscopy program as compared to symptomatically diagnosed EAC 

(112-115).  

 Although current screening methodology shows promise, outcome of endoscopy-biopsy in 

many cases is non-reproducible due to interobserver variability and sampling error (111, 116). 

Furthermore, histological dysplastic changes may be patchy and present heterogeneously in tissue 

sample. This makes the diagnosis challenging, especially in the early stages of transition to LGD 

(111, 117). In up to 40% of patients, invasive cancer has been found in resected tissue despite of 

endoscopic examination was negative for the malignancy (118). Moreover, false positive results 

also occur, meaning despite intramucosal carcinoma in a biopsy, the subsequently resected tissue 

has no signs of carcinoma (111). This evidence suggests dysplasia grading is an imperfect measure 

of cancer risk.  

 Despite extensive screening with currently available techniques, more than 80% of EAC are 

diagnosed without any prior diagnosis of BE or GERD (119, 120). According to an estimate more 

than 80% of BE are undiagnosed hence not getting benefit of the screening program (121). On the 
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other hand a large proportion of patients undergoing routine biopsy screening do not progress to 

EAC (39). These suggest inability of current methodologies in screening population to detect high 

risk patients and to distinguish between disease progressors from non-progressors. In addition, the 

screening procedure is not very cost-effective (122).  

1.2.5 Patient screening, surveillance, management and treatment 

 Table 1.1 summarizes current scenario for managing patients with GERD, BE, dysplasia and 

EAC. BE, being an asymptomatic condition by itself, is very difficult to diagnose symptomatically 

in the patients. So at present, older obese Caucasian males suffering from chronic GERD who has 

highest likelihood of BE are screened using endoscopic techniques for metaplastic/dysplastic 

changes (110). However, 44% of BE patients in the Swedish patient cohort did not present any 

GERD related symptoms and would have been not included in the BE screening according to 

current guidelines (35). Although the effectiveness of screening to reduce EAC associated mortality 

is not clearly established, emergence of newer techniques such as esophageal capsule endoscopy 

could provide a non-invasive and convenient way to diagnose columnar lining of esophagus (123). 

 For early detection of EAC in patients diagnosed with BE, routine patient surveillance is 

performed using endoscopy-biopsies method and the degree of dysplasia is determined by an expert 

pathologist as a measure of disease progression. The degree of dysplasia determines the frequency 

of screening. Patients with LGD are followed-up every 6 months while HGD requires follow-up 

every 3 months (110). Patients diagnosed with HGD can be intervened using either endoscopic 

mucosal resection technique or mucosal ablation therapy such as photodynamic therapy, 

radiofrequency balloon catheter ablation, or thermal techniques and showed improved survival 

(124). Once the patient is diagnosed with EAC, treatment depends upon the stage of the disease. For 

early stage EAC, surgery is the best option. When the disease is locally metastatic, neoadjuvant 

chemotherapy or neoadjuvant chemoradiation therapy along with surgery has become standard of 

care. Once EAC is metastasized to distant organs there are not many treatment options available. So 

patients are managed using chemotherapy and supportive care (17). Once EAC is developed then 

irrespective of stage and treatment, 5-year survival is less than 20% unfortunately.  
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Table 1.1. Current strategies to manage and treat patients in the progression from GERD to 

EAC.  

Condition Patient management and treatment 

GERD 

Majority of patients are diagnosed symptomatically. Severity and nature of 

reflux can be determined using impedance-pH measurement. PPIs are 

prescribed to control reflux. 

Barrett's 

esophagus 

High risk patients undergo endoscopy-biopsies screening to diagnose columnar 

lining of esophagus. Once diagnosed patients are enrolled into surveillance 

program to detect early dysplastic changes. However around 44% of patients 

diagnosed with BE have no prior symptomatic representation of GERD which 

means they don't get benefit of screening. Patients are managed with PPIs and 

acid control therapies. 

Early grade 

dysplasia 

Patients are followed-up with surveillance every 6 months to carefully monitor 

disease progression. 

Late grade 

dysplasia 

Patients undergo endoscopy-biopsies every 3 months to identify early 

neoplastic changes. Patients can be treated at this stage using ablation 

techniques. 

Esophageal 

adenocarcinoma 

The line of therapy is decided according to TNM staging of the tumor. Early 

stage patients are treated using surgery alone while locally metastatic patients 

are treated with surgery and chemotherapy or chemoradiotherapy. For 

metastatic disease, supportive care is the only option. 

 Taken together, an ideal strategy will be to identify BE population and monitor their 

progression for LGD/HGD when patients can be treated to reduce morbidity and mortality 

associated with EAC. To overcome challenges in the current endoscopy-biopsies based screening 

program, adjunct use of biomarker has been proposed. 

1.3 Biomarkers 

 According to United States National Institutes of Health a biological marker or a biomarker 

is "A characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention" (125). 

Biomarkers have clinical application during all stages of the disease management starting from 

early diagnosis, monitoring disease progression and predicting therapeutic response (126). A 

biomarker addresses a clinically relevant question and provides valuable information that can be 

used for patient management and decision making by the clinician. Ideal biomarker test should be 

accurate, non-invasive, easy to perform, quick, and informative (127). 
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 Based on sequence of events from exposure to disease development and therapeutic 

response (126), biomarkers can be classified into exposure (128), susceptibility [BRCA1/2 

mutations in breast cancer] (129), diagnostic [prostate-specific antigen in prostate cancer] (130), 

predictive [estrogen and progesterone receptor to predict response to endocrine therapy in breast 

cancer] (131), pharmacodynamic [receptor tyrosine kinases (RTKs) phosphorylation measurement 

to monitor pharmacological effect of RTK inhibitors] (132), and prognostic [higher CA 19-9 levels 

are associated with poor survival in pancreatic cancer] (131) markers. Any biomolecule DNA, 

RNA, protein, metabolite or lipid including circulating tumor cell and imaging measurement can 

qualify as a biomarker.   

1.3.1 Biomarker discovery and development phases 

 National Cancer Institute Early Detection Research Network (EDRN) guidelines outline 

biomarker discovery and development to a 5 phase process summarized here (133) and depicted in 

Figure 1.3. This thesis focused on Phase I and early Phase II of the 5 phase development.   

 Phase I - Preclinical exploratory study: It compares normal vs. cancer samples (body 

fluids/tissue) using technologies such as genomics, microarray expression, proteomics, 

immunohistochemistry or immunoblotting to detect significant changes in 

proteins/genes/metabolites between the groups. 

 Phase II - Clinical assay development and validation: It is aimed at developing a clinical 

assay using a minimally invasive sample collection method. The assay is meant to be robust, 

reproducible and suitable for stored clinical samples to be used in later phases of development. 

Sensitivity and specificity are determined at this stage. Sensitivity of an assay is the ability of the 

test to correctly identify those patients with the disease while specificity of a test refers to the ability 

of an assay to correctly assign patients without the disease. At the end of this phase one should 

expect high specificity and sensitivity for the assay. However, it remains to be determined how 

early the biomarker can predict the disease. 

 Phase III - Retrospective longitudinal repository studies: The assay is applied on 

prospectively collected stored samples to determine ability of biomarker to detect the disease before 

clinical presentation. If so then criteria for positive screening is determined for future use. 

 Phase IV - Prospective screening: The test is prospectively applied to real population to 

detect extent and characteristic of disease detected by the biomarker. This phase gives positive 

predictive value for the test and gives idea about feasibility for last phase of control trials. 
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 Phase V - Cancer control studies: It comprises of large scale clinical trial to determine 

impact of new screening process on the disease burden in the community.  

1.4 Biomarkers for BE/EAC 

 In transit from IM to LGD to HGD to EAC, cells acquire abilities to become self sufficient 

for growth, evade apoptosis, proliferate uncontrollably, promote angiogenesis, invade underlined 

epithelium and start to metastasize. These changes are accompanied with histological changes in 

tissue architecture, genomic instability, development of tumor microenvironment, modulation of 

immune response and therefore reflected in body fluids (serum/plasma/mucus/urine) or tissue 

samples and differentiate in terms of their genome/proteome/metabolome profile (134). Thus, a 

biomarker can be from any of these sources and reflect underlying pathological or homeostatic 

changes. Table 1.2 summarizes different classes of biomarkers proposed for BE/EAC.  

Table 1.2. Comprehensive summary of different classes of BE/EAC biomarkers. 

Biomarker Class References 

Tissue Biomarkers 

Genomic abnormalities (Ploidy and LOH) (135-139) 

DNA methylation Refer to Table 1.3 

SNPs/expression array studies Refer to Table 1.4 

Inflammatory Markers 

COX-2 

NF-κB 

Cytokines 

MMPs 

 

(140-146) 

(147-150) 

(148, 150-156) 

(157-163) 

Cell cycle abnormalities (164-166) 

miRNA Refer to Table 1.5 

Glycosylation changes (167-170) 

Circulatory Biomarkers 

DNA methylation changes (171-174) 
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Biomarker Class References 

Glycan alterations (175-180) 

Metabolic profiling (181-184) 

 With respect to EAC, none of the biomarkers, including high grade dysplasia, have been 

evaluated in phase V while very few are evaluated in phase III and IV. Figure 1.3 summarizes 

proposed EAC biomarkers and how well they are characterized in the process of biomarker 

discovery. The following sections will discuss some of the classes of BE/EAC biomarkers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Summary of current BE/EAC biomarkers with respect to EDRN clinical phase of 

development. 

1.4.1  Genomic instability 

 Many groups have studied genomic instability induced by aneuploidy, tetraploidy, DNA 

methylation, allelic loss and demonstrated some predictive power for these changes. A role for 

hypermethylation in the promoter regions of tumor-suppressor genes during the development of 

EAC has also been well-established. Table 1.3 summarizes DNA methylation changes associated 

with metaplasia-dysplasia-carcinoma development. In the majority of patients, methylation changes 

are acquired very early during EAC development, hence these alterations could be used as an early 

diagnostic biomarker. Apart from discriminating patients at different stages of EAC development, 
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DNA methylation signatures may be useful as predictors for progression from BE to EAC (185, 

186), and to monitor response to chemotherapy and survival in EAC patients (187, 188).       

 Although the individual genomic abnormality has the potential to diagnose disease at 

different stages, best results are obtained when they are used in combination (135-137). Loss of 

heterozygosity (LOH) at chromosome 9p and 17p locus are considered to be early events during BE 

pathogenesis (138). If present with other chromosomal alterations like aneuploidy and tetraploidy, it 

increases 10-year risk for development of EAC from 12% to   80% (139). However, with the current 

flow cytometry technology, it is technically very challenging for clinical laboratories to assess these 

genomic biomarkers in the patient samples which limits widespread use of these biomarkers in the 

clinic. 

  Alternatively, genomic alterations can be detected at the protein level using 

immunohistochemistry. One of the most common and earliest genomic abnormalities occurs at 

chromosome 17p which codes for tumor suppressor p53 protein. Loss of p53 protein expression in 

tissue samples correlates very well with disease progression (189). However, as p53 expression 

only reflects alterations at one particular gene, it has lower predictive value as compared to 

techniques monitoring multiple genomic abnormalities. Furthermore, sensitivity drops as mutations 

or deletions at genomic level may not necessarily be detected at the protein level (190). 

 In line with genomic abnormalities described above, single nucleotide polymorphisms 

(SNP) based genotyping can also stratify cancer risk in BE patients. As summarized in Table 1.4, in 

the past decade, several studies conducted using advanced genomic techniques such as an array-

comparative genomic hybridization (aCGH) and SNP arrays confirmed previously reported copy 

number alterations and identified novel genomic loci undergoing changes during process of 

metaplasia-dysplasia-carcinoma development (191-197). It has been shown that as the disease 

progress from early to late stages, SNP abnormalities increases from ~2% to ~30% (191, 194). The 

total number of SNP alterations in tissue samples is tightly correlated with previously reported 

DNA abnormalities such as aneuploidy, copy number alterations and LOH highlighting the 

application of SNP based genotyping to assess genomic abnormalities (191-197). Thus, SNP based 

genotyping provide an alternative way to assess genomic abnormalities during EAC pathogenesis.  

 Studies on gene expression changes in EAC have been propelled by recent progress in 

genomic technologies, each identifying unique sets of gene expression profile which can be used as 

a biomarker panel for disease diagnosis, prognosis or to predict response to therapy (Table 1.4). 

Moreover, determination of the gene expression changes has been extremely helpful to understand 
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detailed pathogenesis and will form basis for developing future therapies. However, future 

validation using independent sample cohorts will be necessary for the majority of these potential 

biomarkers.        

 Apart from genomic abnormalities associated with the disease progression, inheriting 

genetic factors are also implicated for EAC development. Risk for BE/EAC, GERD is increased by 

2-4 fold when a first-degree relative is already affected by any of these conditions (198). A study 

conducted by The Esophageal Adenocarcinoma Genetics Consortium and The Wellcome Trust 

Case Control Consortium identified link between SNPs at the MHC locus and chromosome 16q24.1 

with risk for BE (199). They also identified SNPs associated with body weight measures were 

present with more than expected frequency in BE samples supporting epidemiological findings 

regarding obesity as a risk factor for BE and EAC (199). Wu and colleagues examined the 

relationship between presence of risk genotypes and onset of EAC. They identified 10 SNPs 

associated with the age of EAC onset. Genes associated with 5 of the 10 SNPs identified were 

known to be involved in apoptosis (200). 

 The comparative genomic analysis between EAC and ESCC reported by Agrawal and 

colleagues (201) confirmed previously very well described association of p53 gene mutations with 

esophageal cancer development. The authors also performed comparative genome-wide analysis 

between matched BE and EAC patient tissue samples and concluded that the majority of genomic 

changes occur early during EAC development, at the stage of BE (201). Similar conclusions were 

made by next-generation sequencing of matched biopsy samples obtained from the same patient at 

the stage of BE and EAC (202). The authors also identified ARID1A as novel tumor-suppressor 

gene and around 15% of EAC patient showed loss of ARID1A protein in tissue samples. In vitro 

studies suggested it to be associated with cell growth, proliferation and invasion (202). Recently 

published high-resolution methylome analysis has provided first evidence for methylation changes 

at genomic regions that encode non-coding RNAs. The authors identified long non-coding RNA, 

AFAP1-AS1 to be severely hypomethylated in BE and EAC tissue samples. Silencing of which 

significantly reduced aggressiveness of EAC cell lines OE33 and SKGT4 (203).  

 Recently published two major cancer genome sequencing studies analyzed tissue samples 

collected from more than 300 patients in total and provided deeper insights into the genomic 

abnormalities associated with EAC pathogenesis (204, 205). Dulak and colleagues sequenced 149 

tumor-normal pairs using exome sequencing including 15 pairs were subjected to whole genome 

sequencing. They identified high prevalence of A>C transversions at AA dinucleotides in EAC 
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tissue as compared to paired normal samples. Apart from identifying mutations in TP53, CDKN2A, 

SMAD4, ARID1A and PIK3CA genes which is very well-known, they identified 21 potentially novel 

genes showing mutation in EAC. Functional analyses suggested activation of the RAC1 pathway in 

EAC condition (204). In order to study the timing of these mutations in progression towards EAC, 

Weaver and colleagues analyzed mutation status of 26 genes across 66 non-dysplastic BE (NDBE) 

patients (no signs of dysplasia for median follow-up for 58 months) and 43 HGD samples. Notably, 

more than half of NDBE patients harbor mutations that are found in EAC samples suggesting 

genomic abnormalities occur very early during the pathogenesis (205).  

 Taken together, genomic abnormalities play key roles during each stage of transformation 

from normal squamous epithelium to EAC. The majority of key mutations are already acquired at 

the metaplastic stage of BE and only few driver mutations lead to progression of dysplasia and EAC 

(201, 202, 205). This finding raises the possibility of more functional level changes (e.g. protein 

expression, protein glycosylation, metabolic changes etc.) driven by early genomic alterations to be 

associated with development of dysplasia/carcinoma from metaplastic condition. 
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Table 1.3. Summary of hypermethylated genes during BE/EAC development. 

Gene Location Function Method Number (percentage) of samples showing 

hypermethylation or study findings 

Ref. 

Normal BE LGD HGD EAC 

p16 (or CDKN2A 

or INK4A) 

9p21 Cyclin 

dependent 

kinase inhibitor 

Methylation 

specific PCR 

5/9 (56%) 14/18 

(77%) 

- - 18/21 

(85%) 

(206) 

Methylation 

sensitive single-

strand 

conformation 

analysis 

0/10 (0%) 4/12 (33%) 3/11 

(27%) 

3/10 

(30%) 

18/22 

(82%) 

(207) 

Methylation 

specific PCR 

0/17 (0%) 14/47 

(30%) 

9/27 

(32%) 

10/18 

(56%) 

22/41 

(54%) 

(208) 

Methylation 

specific PCR 

2/64 (3%) 14/93 

(15%) 

- - 34/76 

(45%) 

(209) 

Methylation 

specific PCR 

- 3/10 (30%)  - - 5/11 

(45%) 

(210) 

Methylation 

specific PCR 

- 27/41(66%) 21/45 

(47%) 

17/21 

(81%) 

65/107 

(61%) 

(211) 
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Methylation 

specific PCR 

0% 1/15 (7%) 4/20 

(20%) 

12/20 

(60%) 

8/15 

(53%) 

(212) 

Methylation 

specific PCR 

Separately determined exon 1 and exon 2 methylation. 5/16 

(31%) exon-1, 8/16 (50%) exon 2 in EAC patient samples 

showed hypermethylation. Exon 2 methylation correlates with 

stage of the tumor (p=0.01) 

(213) 

O
6
-

Methylguanine-

DNA 

Methyltransferase 

(or MGMT) 

10q26 DNA repair Methylight 

technique 

2/10 (20%) 8/13 (62%) - - 84/132 

(64%) 

(214) 

Methylation 

specific PCR 

6/29 (21%) 24/27 

(89%) 

13/13 (100%) 37/47 

(79%) 

(215) 

APC 5q21-q22 Wnt/β-catenin 

signaling 

Methylation 

specific PCR 

0/17 (0%) 24/48 

(50%) 

14/28 

(50%) 

14/18 

(78%) 

20/32 

(63%) 

(208) 

Methylation-

sensitive single-

strand 

conformation 

analysis and 

methylation-

sensitive dot 

blot assay 

0/16 (0%) 11/11 

(100%) 

- - 20/21 

(95%) 

(216) 

8 out of 14 histologically normal gastric mucosa adjacent to 

EAC showed significantly different methylation of APC 

promoter. 

(217) 

GSTM2 1p13.3 Anti-oxidants Bisulfite <10% ~50% ~55% 69% (218) 
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GSTM3 
and protection 

against DNA 

damage 

pyrosequencing 

(Sample size: 

EAC-100, BE-

11, Dysplasia-

11, Normal 

esophageal/gastr

ic mucosa-37) 

<10% ~13% ~37% 15% (218) 

GPX7 1p32 <10% ~18% ~80% 67% (218) 

GPX3 5q23 

<10% ~90% ~88% 62% 

(218) 

Methylation 

specific PCR 

2/12 (17%) 13/21(62%) 9/11 (82%) 30/34 

(88%) 

(219) 

TIMP-3 22q12.3 MMP inhibitor Methylight 

technique 

1/8 (13%) 6/12 (50%) - - 9/13 

(69%) 

(220) 

Death-associated 

protein kinase 

(DAPK) 

DAPK1: 

9q21.33 

DAPK2: 

15q22.31 

DAPK3: 

19p13.3  

Tumor-

suppresor and 

mediator of 

apoptosis 

Methylation 

specific PCR 

4/20 (20%) 14/28 

(50%) 

11/21 (53%) 21/35 

(60%) 

(221) 

Tachykinin-1 

(TAC1) 

7q21-22 Smooth muscle 

contractility, 

epithelial ion 

transport, 

vascular 

permeability 

Methylation 

specific PCR 

5/67 (7.5%) 38/60 

(63.3%) 

12/19 

(63.2

%) 

11/21 

(52.4

%) 

41/67 

(61.2%) 

(222) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=1612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=23604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=1613
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and immune 

function 

Reprimo 2q23 Regulates p53-

mediated cell 

cycle arrest in 

G2 phase 

Methylation 

specific PCR 

0/19 (0%) 9/25 (36%) - 7/11 

(64%) 

47/75 

(63%) 

(223) 

E-Cadherin 16q22.1 Ca
+2

-dependent 

intercellular 

adhesion and 

maintains 

normal tissue 

architecture 

Methylation 

specific PCR 

0/4 (0%) - - - 26/31 

(84%) 

(224) 

SOCS-3 

 

17q25.3 Inhibits 

cytokine 

signaling 

Methylation 

specific PCR 

0% 4/30 (13%) 6/27 

(22%) 

20/29 

(69%) 

14/19 

(74%) 

(225) 

 

SOCS-1 16p13.13 0% 0/30 (0%) 1/27 

(4%) 

6/29 

(21%) 

8/19 

(42%) 

Secreted frizzled-related proteins (SFRP) 

SFRP1 8p11.21 Wnt antagonist Methylation 

specific PCR 

7/28  (25%) 30/37 

(81%) 

- - 37/40 

(93%) 

(226) 

SFRP2 4q31.3 18/28  (64%) 33/37 

(89%) 

- - 33/40 

(83%) 
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SFRP1 8p11.21 Methylation-

sensitive single-

strand 

conformation 

analysis and 

methylation-

sensitive dot 

blot assay 

1/12 (8%) 6/6 (100%) - - 23/24 

(96%) 

(216) 

SFRP2 4q31.3 11/15 (73%) 6/6 (100%) - - 19/25 

(76%) 

SFRP4 7p14.1 Methylation 

specific PCR 

9/28 (32%) 29/37 

(78%) 

- - 29/40 

(73%) 

(226) 

SFRP5 10q24.1 6/28 (21%) 27/37 

(73%) 

- - 34/40 

(85%) 

Plakophilin-1 

(PKP1) 

1q32 Cell adhesion 

and intracellular 

signaling 

Methylation 

specific PCR 

5/55 (9.1%) 5/39 

(12.8%) 

- 1/4 

(25%) 

20/60 

(33.3) 

(227) 

GATA-4 8p23.1-p22  Transcription 

factor and 

regulate cell 

differentiation 

Methylation 

specific PCR 

0/17 (0%) - - - 31/44 

(71%) 

(228) 

GATA-5 20q13.33 0/17 (0%) - - - 24/44 

(55%) 

CDH13 (or H-

cadherin or T-

cadherin) 

16q24 Cell adhesion Methylation 

specific PCR 

0/66 (0%) 42/60 

(70%) 

15/19 

(78.9

%) 

16/21 

(76.2) 

51/67 

(76.1%) 

(229) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=2626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=140628
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NELL-1 (nel-like 

1) 

11p15 Tumor 

suppressor 

Methylation-

specific PCR 

0/66 (0%) 28/60 

(46.7%) 

8/19 

(42.1

%) 

13/21 

(61.9%) 

32/67 

(47.8%) 

(230) 

Eyes Absent 4 6q23 Apoptosis 

modulator 

Methylation-

Specific PCR 

2/58 (3%) 27/35 

(77%) 

- - 33/40 

(83%) 

(231) 

A-kinase 

anchoring protein 

12 (or Gravin 

orAKAP12) 

6q24-25.2 cell signaling, 

adhesion, 

mitogenesis and 

differentiation 

Methylation-

Specific PCR 

0/66 (0%) 29/60 

(48.3%) 

10/19 

(52.6

%) 

11/21 

(52.4%) 

35/67 

(52.2) 

(232) 

Vimentin 10p13 Cytoskeleton 

protein 

Methylation-

specific PCR 

0/9 (0%) 10/11 

(91%) 

- 5/5 

(100%) 

21/26 

(81%) 

(233) 

RUNX3 1p36 Transcription 

factor  

Methylation-

specific PCR 

1/63 (2%) 23/93 

(25%) 

- - 37/77 

(48%) 

(209) 

HPP1 19pter-p13.1 Tumor-

suppressor 

2/64 (3%) 41/93 

(44%) 

- - 55/77 

(71%) 

3-OST-2 16p12 Sulfotransferase 

enzyme 

1/57 (2%) 47/60 

(78%) 

- - 28/73 

(38%) 

Wnt inhibitory 

factor-1 (WIF-1) 

12q14.3 Wnt antagonist Methylation 

specific PCR 

81% of BE patients suffering from EAC showed 

hypermethylated WIF-1 as compared to 20% BE patients 

without EAC 

(234) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=2070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=7431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=9956
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CHFR 

(checkpoint with 

forkhead 

associated and 

ring finger) 

12q24 Mitosis check 

point protein 

Bisulfite 

pyrosequencing 

EAC samples 31% (18/58) showed significantly higher CHFR 

promoter methylation as compared to normal samples 

(p=0.01). 

(235) 

Metallothionein 3 

(or MT3) 

16q13 Metal 

homeostasis and 

protection 

against DNA 

damage 

Bisulfite 

pyrosequencing 

(Sample size: 

Normal-33, BE-

5, EAC-78) 

Identified two regions (R2 and R3) of CpG nucleotides which 

showed significantly higher methylation in EAC as compared 

to normal epithelium (FDR<0.001). Increased DNA 

methylation of MT3 promoter R2 correlates with advanced 

tumor stage (p=0.005) and lymph node metastasis (p=0.03). 

DNA methylation of MT3 promoter R3 correlates with tumor 

staging (p=0.03) but not with lymph node status (p=0.4). 

(236) 

Methylation marker panel 

Sample size Method Findings Ref. 

EAC-35 undergoing 

chemoradiation therapy 

Methylation specific 

PCR 

Combined mean of promoter methylation of p16, Reprimo, p57, p73, RUNX-

3, CHFR, MGMT, TIMP-3, and HPP1 was lower in patients who responded 

to chemoradiotherapy (13/35) as compared to patients who didn't respond 

(22/35). (p=0.003). 

(188) 

BE-62 (28 BE patients 

progressed to EAC and 

remaining 34 BE patients 

were non-progressors) 

Methylation specific 

PCR 

3 tiered stratification model was developed using methylation index (p16, 

HPP1, and RUNX3), BE length and pathology. Combined model based on 2 

year (AUROC: 0.8386) and 4 year (AUROC: 0.7910) prediction was able to 

categorize BE patients into low-risk, intermediate-risk and high-risk groups 

for EAC development. 

(186) 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=full_report&list_uids=4504
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BE-195 (145 BE patients 

progressed to EAC and 

remaining 50 BE patients 

were non-progressors) 

Methylation specific 

PCR 

HPP1 (p = 0.0025), p16 (p=0.0066) and RUNX3 (p=0.0002) were 

significantly hypermethylated in progressors as compared to non-

progressors. In combination, panel of 8 methylation markers (p16, HPP1, 

RUNX3, CDH13, TAC1, NELL1, AKAP12 and SST) showed sensitivities of 

0.443 and 0.629 at specificity of 0.9 and 0.8 for EAC progression in BE 

patients using combined model designed based on 2 and 4 years of follow-

up.   

(185) 

EAC-41 (Adjacent normal 

samples as control) 

Methylation specific 

PCR 

Patients having >50% of their genes methylated (APC, E-cadherin, MGMT, 

ER,p16, DAP-kinase and TIMP3) showed significantly poor 2-year survival 

(p=0.04) and 2-year relapse-free survival (p=0.03) as compared to the 

patients having <50% methylation. 

(187) 

BE-18, EAC-38 (Multiple 

biopsies were taken and 

classified into normal, BE, 

HGD and EAC) 

Bisulphite modified 

DNA with PCR 

The methylation frequencies of nine genes (APC, CDKN2A, ID4, MGMT, 

RBP1, RUNX3, SFRP1, TIMP3, and TMEFF2) found to be 95%, 59%, 76%, 

57%, 70%, 73%, 95%, 74% and 83% respectively in EAC samples while 

95%, 28%, 78%, 48%, 58%, 48%, 93%, 88% and 75% respectively in BE 

samples which was significantly higher as compared to normal squamous 

epithelium. The methylation frequency for CDKN2A and RUNX3 was 

significantly higher for EAC as compared to BE biopsy samples. 

(237) 

Normal-30, BE-29, HGD-8, 

EAC-29 

Illumina GoldenGate 

methylation bead array 

Overall median methylation at the total 706 numbers of most informative 

CpG sites gradually increased from normal-BE-HGD/EAC (p<0.001). The 

authors differentiated between EAC vs. normal, HGD vs. normal, BE vs. 

normal, EAC vs. BE and HGD vs. BE based on 422, 225, 195, 17 and 3 

numbers of CpG sites which is showing differential methylation between 

respective groups.  

(238) 
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Identification phase (BE-22, 

EAC-24); Retrospective 

validation phase (BE-60, 

LGD/HGD-36, EAC-90); 

Prospective validation phase 

(98 patients under 

surveillance). 

Identification phase: 

Illumina Infinium assay; 

Retrospective/ 

Prospective validation 

phase: Pyrosequencing  

Based upon initial identification phase, 7 genes (SLC22A18, ATP2B4, PIGR, 

GJA12, RIN2, RGN, TCEAL7) showing most prominent methylation changes 

were selected for validation. Combination of 4 genes (AUROC 0.988) 

SLC22A18, PIGR, GJA12 and RIN2 showed sensitivity of 94% and 

specificity of 97%. This panel of 4 genes showing differential methylation, 

stratified patients into low, intermediate and high risk groups for EAC 

development in prospective validation.  

(239) 

Non dysplastic BE (Not 

progressed to EAC)-16, BE 

mucosa from patients 

progressed to EAC-12  

Methylation-sensitive 

single-strand 

conformation analysis 

and methylation-sensitive 

dot blot assay 

BE samples collected from patients who progressed to EAC in 12 months 

time period showed 100%, 91% and 92% hypermethylation of APC, TIMP-3  

and TERT respectively as compared 36%, 23%, and 17% in BE mucosa 

collected from patients who didn't progress to EAC. 

(240) 

Table 1.4. Summary of gene expression profiling studies for BE/EAC. [aCGH:array-comparative genomic hybridization] 

Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

BE-21 (Paired normal 

esophageal and gastric 

samples as control) 

Serial analysis of 

gene expression 

Disease 

progression 

534 tags were significantly differentially expressed between 

normal esophageal squamous epithelium and BE. The most up-

regulated genes in BE as compared to normal epithelium were 

identified to be trefoil factors, annexin A10 and galectin-4 with 

each different type of tissue showed an unique cytokeratin 

expression.  

No (241) 

BE and HGD -11 cDNA microarray  Disease Using 2.5-fold cut-off, identified 131 up-regulated and 16 down- Real-time (242) 
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Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

(Matched biopsy 

samples) 

 progression regulated genes in HGD. 24 out of 28 most significantly different 

genes showed similar changes during validation.  

PCR  

EAC-91 Oligo-microarray Disease 

progression 

A 4-gene panel consists of deoxycytidine kinase, 3’- 

phosphoadenosine 5’-phosphosulfate synthase 2, sirtuin-2 and 

tripartite motif-containing 44 predicted 5-year survival. 

Immunohis

tochemistr

y  

(243) 

23 paired BE and 

normal epithelium 

samples 

Transcriptional 

profiling and 

proteomics 

Disease 

progression 

Identified 2822 genes to be differentially expressed between BE 

and normal epithelium. Significantly over-expressed genes 

during BE belonged to cytokines and growth factors, constituents 

of extracellular matrix, basement membrane and tight junctions, 

proteins involved in prostaglandin and phosphoinositol 

metabolism, nitric oxide production and bioenergetics. While 

genes encoding heat shock protein and various kinases were 

down-regulated. 

No (244) 

Lymph node metastatic 

(n=55) and non-

metastatic (n=22) EAC 

samples 

Oligo-microarray Disease 

progression 

Lymph node positive samples showed significant down-

regulation of Argininosuccinate synthetase as compared to 

lymph node non-metastatic samples (p=0.048). 

No (245) 

EAC-6 and gastric 

cardia cancer-8 

aCGH Disease 

progression 

Identified HGF(45%) and BCAS1 (27%) to be most frequently 

over-expressed genes respectively at 7q21 and 20q13 locus. 

No (246) 

11 matched sample 

sets (healthy-BE-EAC 

SNP microarray Disease 60% of BE and 57% of EAC samples contained at least one of 

the genomic alterations in the form of deletions, duplications, 

No (247) 
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Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

matched-6, normal-BE 

matched-4 and normal-

EAC matched-1) 

progression amplifications, copy-number changes and neutral loss of 

heterozygosity. 

Normal-39, BE-

25,EAC-38 and ESCC-

26 

cDNA microarray Disease 

progression 

Clustering showed the separation of samples into 4 distinct 

groups. 2158 clones were differentially expressed between 

normal and BE samples while 1306 between BE and EAC. 

BE/EAC samples showed differential expression of hydrolases, 

lysozyme, fucosidase, transcription factors, mucins and the 

trefoil factors. 

No (248) 

BE-20, LGD-19, 

HGD-20 and EAC-42 

SNP microarray Disease 

progression 

Increasing numbers of SNPs and loss of chromosomes with 

disease progression. Chromosomal disruption was identified in 

the FHIT, WWOX, RUNX1, KIF26B, MGC48628, PDE4D, 

C20orf133, GMDS, DMD, and PARK2 genes in EAC.  

No (249) 

EAC-75 specimens 

from 64 patients, 

Adjacent paired 

Normal tissue from 

EAC patients-28 

DNA microarray Disease 

progression 

Identified AKR1B10, CD93,CSPG2, DKK3, LUM, MMP1, 

SOX21, SPP1, SPARC and TWIST1genes as biomarker based on 

transcriptomics data. Quantitative real-time PCR identified 

SPARC and SPP1 genes to be associated with EAC patient 

survival (p < 0.024).  

Real-time 

PCR 

(250) 

EAC-8, Gastric cardia 

cancer-3 

aCGH and cDNA 

microarray 

Disease 

progression 

Transcriptomics data identified 11 genes to be differentially 

expressed (ELF3, SLC45A3, CLDN12, CDK6, SMURF1, 

ARPC1B, ZKSCAN1, MCM7, COPS6, FDFT1 and CTSB). IHC 

No (251) 
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Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

analysis revealed significant over-expression of CDK6 a cell-

cycle regulator in tumor samples. 

BE-20 aCGH arrays and 

high density SNP 

genotyping  

Disease 

progression 

Copy number losses were detected at FRA3B (81%), FRA9A/C 

(71.4%), FRA5E (52.4%) and FRA 4D (52.4%) sites in early 

BE. Validation study confirmed loss of FRA3B and FRA16D in 

early BE samples. 

Real-time 

PCR and 

Pyroseque

ncing  

(252) 

BE-11, Gastro-

esophageal junction 

(GEJ) 

adenocarcinoma-11 

aCGH with a whole  

chromosome 8q 

contig array 

Disease 

progression 

Over-expression of MYC and EXT1 while down-regulation of 

MTSS1, FAM84B and C8orf17 is significantly associated with 

GEJ adenocarcinoma. 

 (253) 

BE-14, EAC-5, ESCC-

3 

cDNA microarray Disease 

progression 

Identified 160 genes that can differentiate between BE and 

esophageal cancer. 

No (254) 

24 paired samples of 

normal, BE and EAC 

phenotype 

cDNA microarray Disease 

progression 

214 differentially regulated genes could differentiate between 

normal, BE and EAC phenotype. Genes involved in epidermal 

differentiation are under-expressed in EAC as compared to BE. 

Expression ratio of GATA6 to SPRR3 can differentiate between 

three phenotypes studied.  

No (255) 

Pooled biospy samples 

from BE, esophageal 

squamous, gastric and 

Oligo-microarray Disease 

progression 

Differentiate different tissue clusters based on gene expression 

profile. Identified 38 genes that are up-regulated in BE tissue 

cluster which belong to cell cycle (P1cdc47, PCM-1), cell 

migration (urokinase-type plasminogen receptor, LUCA-

No (256) 
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Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

duodenum 1/HYAL1), growth regulation (TGF-β superfamily protein, 

amphiregulin, Cyr61), stress responses (calcyclin, ATF3, TR3 

orphan receptor), epithelial cell surface antigens (epsilon-BP, 

ESA, integrin β4, mesothelin CAK-1 antigen precursor) and four 

mucins. 

Normal-24, BE-18, 

EAC-9 

cDNA microarray Disease 

progression 

Identified 457, 295 and 36 differentially expressed genes 

respectively between normal-EAC, normal-BE and BE-EAC 

groups.  

No (257) 

89-EAC cDNA-mediated 

annealing, selection, 

extension, and 

ligation assay with 

502 known cancer 

related genes 

Disease 

progression 

Identified differential gene expression between early stages of 

EAC (T1 and T2) vs. late (T3 and T4). Gene expression profile 

revealed ERBB4, ETV1, TNFSF6, MPL genes to be common 

between advanced tumor stage and lymph node metastasis.  

No (258) 

Normal esophageal 

mucosa-9, esophagitis-

6, BE-10, EAC-5, GEJ 

adenocarcinoma-9, 

stomach samples-32 

(normal mucosa-11, 

IM-9, intestinal-type 

adenocarcinoma-7, and 

cDNA microarray Disease 

progression 

Based on the expression profile, genes associated with the lipid 

metabolism and cytokine nodule are found to be significantly 

altered between EAC and other groups. 

No (259) 
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Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

diffuse carcinoma-5) 

17 paired samples of 

normal, BE/EAC 

cDNA microarray Disease 

progression 

Each tissue type expresses distinct set of genes which can 

differentiate between their phenotypes. BE and EAC expresses 

similar set of stromal genes that are different from normal 

epithelium.  

No (260) 

BE-19, EAC-20 (98 

tissue specimens were 

collected and 

categorized into 

different groups) 

Based on previous 

microarray studies 

23 genes were 

validated using 

Real-time PCR  

Disease 

progression 

Out of 23 genes, panel of 3 genes (BFT, TSPAN, TP) was able to 

discriminate between BE and EAC in internal validation with 0% 

classification error. 

N.A. (261) 

Normal-30, BE-31, 

Gastric mucosa-34, 

Duodenum-18 

Biomarkers for BE 

were identified 

using three 

publically available 

microarray datasets 

and validated using 

Real-time PCR and 

Immunohistochemis

try. 

Disease 

progression 

Out of 14 genes identified, dopa decarboxylase (DDC) and 

Trefoil factor 3 (TFF3) were validated to be up-regulated in BE. 

N.A. (262) 

EAC-56 Oligonucleotide 

microarray and 

Disease 

progression 

Identified four new genes (EGFR, WT1, NEIL2 and MTMR9) to 

be over-expressed in 10-25% EAC. Expression levels of these 

Immunohis

tochemistr

(263) 
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Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

aCGH four genes differentiated EAC patients into three groups namely 

good, average and poor depending upon their prognosis (p < 

0.008) 

y 

BE/LGD-72, HGD-11, 

EAC-15 

Bacterial Artificial 

Chromosome array 

comparative 

genomic 

hybridization 

Disease 

progression 

Copy number changes were more common and larger as disease 

progress to later stages. Patients having copy number alterations 

involving >70 Mbp were at increased risk of progression to EAC 

(p=0.0047) 

No (197) 

EAC-30, BE-6, LGD-

9, HGD-10 

Genome-wide CGH Disease 

progression 

Loss of 7q33-q35 was found in HGD as compared to precursor 

LGD (p=0.01). Loss of 16q21-q22 and gain of 20q11.2-q13.1 

was significantly different between HGD and EAC (p=0.02 and 

p=0.03 respectively). 

No (193) 

EAC-30, Lymph node 

metastasis-8, HGD-11, 

LGD-8 and BE-6 from 

30 EAC patient biopsy 

samples 

CGH Disease 

progression 

Identified regions undergoing copy number loss and 

amplification during each stage of transition. Average number of 

chromosomal imbalance sequentially increased from BE-LGD-

HGD-EAC-lymph node metastasis. 

No (191) 

42 patients represent 

different stages of 

disease 

SNP array Disease 

progression 

SNP abnormalities increases from 2% to more than 30% as the 

disease progress from BE to EAC. Total number of SNP 

alterations in tissue samples is tightly correlated with DNA 

abnormalities such as aneuploidy and LOH. 

No (194) 
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Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

EAC-27 and matched 

normal-14 

SNP array Disease 

progression 

Confirmed previously described genomic alterations such as 

amplification on 8q and 20q13 or deletion/LOH on 3p and 9p. 

Also identified alterations in several novel genes and DNA 

regions in EAC samples.  

No (195) 

EAC-26 SNP array Disease 

progression 

Confirmed previously reported frequent changes to FHIT, 

CDKN2A, TP53 and MYC genes in EAC. Identified PDE4D and 

MGC48628 as tumor-suppressor genes. 

No (196) 

EAC-35  cDNA microarray Response to 

chemotherap

y 

Identified 165 differentially expressed genes between poor 

(n=17) and good outcome (n=18) patient groups. Top functional 

pathway based on differential gene expression was identified to 

be TOLL-receptor signaling. 

No (264) 

EAC-47 (locally 

advanced tumor) 

cDNA microarray Response to 

chemotherap

y 

Identified 86 genes showing at least 2-fold difference between 

chemotherapy responders (n=28) and non-responders (n=19). 

Ephrin B3 receptor, which showed highest difference between 

the groups, showed strong membrane staining in chemotherapy 

responding tumors using immunohistochemistry.   

No (265) 

EAC-19 patients 

undergoing 

chemoradiotherapy 

Oligo-microarray Response to 

chemoradiot

herapy 

Reduced expression of IVL, CRNN, NICE-1, S100A2, and SPPR3 

gense correlated with poor survival and non-response to 

chemotherapy.  

No (266) 

19 patients (EAC-16, Oligo-microarray Response to Lower expression for panel of genes PERP, S100A2, and SPRR3 No (267) 



36 

 

Sample Size Array Description Outcome  Findings External 

validation 

Ref. 

ESCC-2 and 

adenosquamous 

carcinoma-1) 

undergoing 

chemoradiotherapy 

chemoradiot

herapy 

was associated with non-response to therapy. Pathway analysis 

identified down-regulation of apoptosis in non-responders. 

EAC-174, ESCC-36 SNPs associated 

with the 

chemotherapy drug 

action pathway  

Response to 

chemoradiot

herapy 

Identified association between genetic polymorphisms and 

response to pre-operative chemotherapy (fluorouracil and 

platinum compounds) and radiotherapy.    

No (268) 
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1.4.2 Cancer related inflammation 

 Gastric and bile acid exposure in the esophageal epithelium leads to the development of 

chronic inflammatory conditions mainly driven by elevated levels of pro-inflammatory cytokines. 

Chronic inflammatory responses induce cell survival and increase cell proliferation hence play key 

roles in the development of EAC (156, 269). Expression of various inflammatory molecules like 

Cyclooxygenase-2 (COX-2), NF-κB, IL-6, IL-8 and Matrix metalloproteinases (MMPs) have been 

evaluated as prognostic biomarkers for BE/EAC development.   

 Exposure to gastric/bile acid and cytokines leads to increased COX-2 expression (142). 

COX-2 is a rate-limiting enzyme that regulates synthesis of prostaglandins from its precursor 

arachidonic acid. COX-2 directly increases cell proliferation and promote tumor invasion (142), and 

COX-2 mediated increase in prostaglandins synthesis could result in tumor growth and 

angiogenesis (270). COX-2 expression has been detected in disease-free esophageal tissue 

homogenates using immunoblotting (142). In comparison to GERD, patients suffering from erosive 

reflux show slightly higher gene expressions of this enzyme in tissue samples (271). Several studies 

have shown significantly increased COX-2 expression correlating with the disease progression from 

BE to dysplasia and EAC (140-144). Furthermore, expression levels of COX-2 have been 

demonstrated to have a prognostic value in EAC with higher levels associated with poor survival 

and increased chances of tumor relapse (145, 146).  

 Another well studied inflammatory biomarker NF-κB is activated in response to exposure 

with bile acid and elevated NF-κB expression levels are found in BE, dysplasia, and 

adenocarcinoma (147-149). Activated NF-κB translocates from cytoplasm to nucleus and up-

regulates transcription of the genes involved in inflammatory processes. Moreover, nuclear NF-κB 

expression has been shown to be correlated with the patient response to chemoradiation therapy. All 

of the patients who showed complete response to chemoradiation therapy had elevated NF-κB 

levels pre-treatment and showed lack of active NF-κB post-treatment (150).  

 In line with NF-κB and COX-2, expression of individual or combinations of pro-

inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α is significantly increased in BE and EAC as 

compared to squamous epithelium (151, 152, 154). IL-1β and IL-8 expression levels also correlate 

with the stage of EAC (148). Patients who responded to neoadjuvant chemotherapy treatment 

showed significantly reduced expressions of IL-8 and IL-1β in post-chemotherapy esophageal tissue 

sections (150). IL-6 is activated in response to reflux and the IL-6/STAT3 anti-apoptotic pathway 

may underlie the development of dysplasia and tumor (153). Serum IL-6 levels was reported to 
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provide 87% sensitivity and 92% specificity for EAC diagnosis in a retrospective study (155). 

However, the study only compared between healthy and EAC groups. It would be interesting to see 

how early it can diagnose EAC during the process of metaplasia-dysplasia. Combination of 

cytokines IFN-γ, IL-1α, IL-8, IL-21, IL-23 along with platelet proteoglycan and miRNA-375 

expression profiling has been demonstrated to build an inflammatory risk model which has clinical 

utility to determine prognosis for EAC patients (156). 

 MMPs are a family of proteolytic enzymes involved in the degradation of extracellular 

matrix components. MMPs play a role in both inflammation and tumor metastasis. 

Immunohistochemical staining for MMP-1, MMP-2, MMP-7 and MMP-9 has been reported to be 

significantly higher in EAC as compared to healthy individuals (157, 158). Higher level of MMP-1 

expression has been associated with the lymph node metastases and possibly poor patient survival 

(159). Expression of MMP-9 is shown to be an early event during the EAC transformation and its 

expression levels are correlated with the progression of the disease (160-162). Activity of MMPs is 

inhibited by a family of proteins called tissue inhibitors of metalloproteinases (TIMPs). 

Specifically, TIMP-3 gene is methylated in EAC development and its reduced expression is 

associated with stage of the tumor and patient survival (163). On contrary, Salmela et al. described 

elevated TIMP-1 and TIMP-3 expression in EAC tumor samples (158).  

 Although the underlying tissue inflammation is very closely associated with EAC 

development and several inflammatory related biomarkers have been identified, these remain to be 

validated in large scale biomarker studies. 

1.4.3 Cell cycle-related abnormalities 

 To compensate for the tissue damage induced by gastric/bile acid, the underlying epithelium 

starts to proliferate rapidly and become uncontrolled resulting in neoplasia. In order to meet the 

proliferation requirements, the cells have to overcome cell cycle check points. CyclinD1 over-

expression is one such means by which cells overcome G1/S-checkpoint, and cyclinD1 

immunohistochemical staining has been proposed to identify BE patients with an increased risk for 

EAC (164). In contrast to cyclinD1, expression of p16 protein results in cell cycle arrest in G1 

phase as it has been shown to inhibit cyclin dependent kinase-induced phosphorylation of 

retinoblastoma protein. Early genomic abnormalities during EAC development significantly affects 

p16 protein expression which can be determined using immunostaining and implemented as a 

potential biomarker (165). Further large scale trials are required to confirm cell cycle abnormalities 

during EAC development to implement them as a biomarker. 
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 Bottom of the pyramid in Figure 1.3 represents list of biomarkers in initial stages of 

development. Tumors harboring over-expression of growth factor receptors (EGFR and HER-2) are 

associated with poor patient survival (272, 273), while those over-expressing apoptosis regulator 

Bcl-2 protein showed prolonged survival (274). Incipient angiogenesis is a marked feature of BE 

and underlining tissue expresses angiogenesis markers VEGF and its receptors (275). 

Neovascularization continues as the disease progress from BE to EAC. Measuring degree of 

neovascularization correlated with histopathological grade of the tumor and associated with the 

patient survival (276). Expressions of two prominent cell proliferation markers, PCNA and Ki-67 

have been described to be altered during BE-EAC development (166). 

1.4.4 microRNA 

 MicroRNA (or miRNA) was first discovered in Caenohabditis elegans (277) and from then 

it has been widely studied in range of biological phenomena. These short stretches of approximately 

21 nucleotides do not code for protein but play important roles in gene regulation by either 

suppressing protein synthesis or cause mRNA cleavage. Unlike siRNA, miRNA can target multiple 

genes on remote loci hence control diverse group of proteins. Several key properties of 

carcinogenesis have been demonstrated to be regulated via miRNA, for example, angiogenesis and 

metastasis (278). 

 With increased biological understanding of miRNAs and their role in cancer, they have been 

proposed in several different clinical applications including cancer diagnosis and tumor prognosis, 

tumor classification and also as a therapeutic target for disease intervention. Differential tissue 

miRNA expression has been observed in several different malignancies and these changes can be 

utilized for diagnosis and classification of the tumors (278). MicroRNA arrays were first used to 

show differential miRNA expression in healthy, BE and EAC tissue samples (279). Since then, a 

number of different studies have identified miRNA changes associated with the development of the 

BE/EAC. Table 1.5 summarizes primary findings of miRNA expression profiling studies along with 

statistical significance and fold change values. Biological significance for some of the miRNA 

related changes is discussed below.  

 Smith and colleagues identified reduced expression of miR-200 and miR-141 in BE and 

EAC tissue samples. They performed bioinformatics analysis and correlated these miRNA 

expression changes with cellular processes such as cell cycle, cell proliferation, apoptosis and cell 

migration (280). MiR-196a, which is described as a marker of progression from BE to EAC, can 

increase cell proliferation and anchorage-independent growth and inhibit apoptosis in EAC cell 



40 

 

lines in vitro (281). The down-stream target for miR-196a are verified to be Annexin A1, S100 

calcium-binding protein A9, Small proline-rich protein 2C and Keratin 5 which showed reduced 

expression in EAC patient tissue samples as compared to normal epithelium (281, 282). Several 

studies described in Table 1.5 report over-expression of miR-192 during EAC carcinogenesis. MiR-

192 has been reported to be a target of p53 and has been able to suppress cancer progress in 

osteosarcoma and colon cancer cell lines through p21 accumulation and cell cycle arrest (283). As 

shown in Table 1.5 miR-21 is over-expressed during BE/EAC and it can function as an oncogene as 

shown in tumors of breast, brain, lung, prostate, pancreas, colon, liver and chronic lymphocytic 

leukemia. It negatively regulates tumor and metastasis suppressor genes PTEN, TPM1, PDCD4 and 

Sprouty2 (284-287). MiR-194 expression is regulated by hepatocyte nuclear factor (HNF)-1α 

transcription factor which is induced during BE/EAC and may lead to up-regulation of miR-194 

(284). Higher expression of miR-194 is also observed in metastatic pancreatic cell lines (288). 

Amongst miRNAs found to be down-regulated during EAC development, let-7 family of miRNAs 

are tumor-suppressor and negatively regulates Ras oncogene. Fassan and colleagues confirmed up-

regulation of HMGA2 which is one of the targets of let-7 miRNA using immunohistochemistry in 

tissue samples (285, 287, 289).  

 A study published by Wu and colleagues compared miRNA expression profile between 

healthy (adjacent normal), BE and EAC patient tissue samples (Adjacent normal-35, BE-11, LGD-

13, HGD-10, EAC-36) using real-time PCR-based TaqMan Human Micro-RNA array that enabled 

accurate quantitation of 754 human miRNAs (290). Unsupervised hierarchical clustering according 

to miRNA expression profiling suggested that there is clear distinction between healthy and 

BE/EAC phenotype in terms of miRNA expression, whereas BE and EAC samples were 

indistinguishable from each others as they showed clear overlap. In comparison with healthy 

samples, 148 and 122 miRNAs were found to be up-regulated in BE and EAC tissue respectively 

whereas 16 miRNAs were down-regulated in BE and EAC sample as compared to normal 

epithelium. Amongst handful of miRNAs that were significantly different between BE and EAC 

include miR-375 (down-regulated in EAC) and miR-106-3b, miR-18, miR-18-3p, miR-20b, and 

miR-92a-1-3p (up-regulated in EAC). Furthermore, they compared miRNA profiling results with 

mRNA expression in normal, BE and EAC tissue samples previously published by Nancarrow and 

colleagues (291). Interestingly, they found that 19 of the top 20 differentially expressed miRNAs 

targeted one or more of 54 most frequently altered mRNAs from the list published by Nancarrow 

and colleagues. Moreover, 77.8% (42 of 54) of the differentially expressed mRNAs were potential 
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targets for the top 20 differential miRNAs which includes miR-203 with 12 potential target mRNAs 

and let-7c with 11 target mRNAs (290).  

 Another study by Streppel and colleagues attempted to validate previous published 7 

different miRNAs targets in BE/EAC (292). Out of 7 target miRNAs studies, 5 miRNAs (miR-

199a/b-3p, -199a-5p, -199b-5p, -200b, and -223) were found to be significantly different between 

EAC and adjacent normal tissue. Out of 5, only miR-223 showed a stepwise increase during EAC 

development (292). Functional characterization of miR-223 using miR-223 over-expressing OE33 

and JHesoAD1 showed more aggressive phenotype and also showed higher sensitivity for DNA-

damaging agents (292).  

 Further studies in the regards of miRNA and miRNA target genes will improve the 

biological understanding of EAC pathogenesis and may also provide novel molecular targets for 

disease intervention. Notably, miRNAs are found to be stable in serum encapsulated in 

microvesicles hence can be accessed easily (293). In fact circulating miRNA profiling has shown 

distinct expression patterns in a number of cancers, other than EAC (294). This opens up new 

avenues for circulating miRNA changes as a potential biomarker for EAC. 

Table 1.5. Summary of literature describing miRNA expression changes in BE/EAC. 

(Wherever needed, fold change values are calculated/adapted from the expression/fold change 

values described in the original article to have uniform format for the purpose of this literature 

review). 

Sample Size Up-regulated in BE/EAC Down-regulated in BE/EAC Ref. 

71 (BE-12, BE 

without dysplasia-

20, LGD-27, 

EAC/HGD-12)  

miR-192 (p<0.00001), miR-196a 

(p<0.05): Up-regulated in BE as 

compared to healthy tissue.  

miR-196a expression is correlated 

with progression from IM-LGD-

HGD-EAC (p<0.005) 

miR203 (p<0.00001): Down-

regulation in BE as compared 

to healthy tissue  

(295) 

22 (BE without 

dysplasia-11, BE 

with dysplasia-11) 

miR-15b (3.3 fold, p<0.05), miR-

203 (5.7 fold, p<0.05): Up-

regulated in dysplasia as compared 

to non-dysplastic BE  

miR-486-5p (4.8 fold, 

p<0.05),miR-let-7a (3.3 fold, 

p<0.05): Down-regulated in 

dysplasia as compared to non-

dysplastic BE  

(285) 

100 (EAC-100, 

Adjacent normal 

tissue as control) 

miR-21 (~3 fold, p<0.05), miR-223 

(~2 fold, p<0.05), miR-192 (~3.5 

fold, p<0.05), and miR-194 (~3.5 

fold, p<0.05): Up-regulated in EAC 

miR-203 (~3 fold, p<0.05): 

Down-regulated in EAC as 

compared to adjacent normal 

tissue  

(286) 
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Sample Size Up-regulated in BE/EAC Down-regulated in BE/EAC Ref. 

as compared to adjacent normal 

tissue  

25 (Healthy-9,BE-

5, HGD-1, EAC-

10) 

miR-192 (1.7 fold, FDR<1e-07), 

miR-194 (2 fold, FDR<1e-07), 

miR-21 (3.7 fold, FDR=0.0003), 

miR-200c (1.9 fold, FDR=0.0015), 

miR-93 (1.3 fold, FDR=0.0108): 

Up-regulated in EAC as compared 

to BE 

miR-27b (1.43 fold, 

FDR=0.0003), miR-342 (1.25 

fold, FDR=0.0015), miR-125b 

(2 fold, FDR=0.0108), miR-100 

(1.25 fold, FDR=0.011): Down-

regulated in EAC as compared 

to BE 

(279) 

75 (Healthy-15, 

BE-15, LGD-15, 

HGD-15, EAC-15)  

miR-215 (62.8 fold, p<1e-07), miR-

192 (6.34 fold, p<1e-07): Up-

regulated in BE in comparison with 

normal tissue and remained at 

similar levels with disease progress  

miR-205 (10 fold, p=1.39e-

0.5), let-7c (2.04 fold, p=3.11e-

05), miR-203 (6.67 fold, 

p=3.2e-0.5): Down-regulated in 

BE in comparison with normal 

tissue and remained at similar 

levels as disease progresses 

(289) 

91 (LGD-31, 

HGD-29, EAC-31, 

In all cases 

adjacent normal 

tissue used as a 

control) 

miR-200a (13.5 fold, p=0.02), miR-

513 (1.58 fold, p=0.03), miR-125b 

(9.2 fold, p=0.04), miR-101 (1.83 

fold, p=0.04), miR-197 (1.61 fold, 

p=0.04): Up-regulated in LGD to 

HGD transition  

 

miR-23b (1.45 fold, p=0.007), 

miR-20b (1.56 fold, p=0.01), 

miR-181b (2.22 fold, p=0.03), 

miR-203 (1.49 fold, p=0.03), 

miR-193b (2.70 fold, p=0.04), 

miR-636 (4.17 fold, p=0.04): 

Down-regulated in LGD to 

HGD transition.  

let-7a (1.75 fold, p=0.01), let-

7b (1.59 fold, p=0.009), let-7c 

(1.69 fold, p=0.03), let-7f (1.69 

fold, p=0.03), miR-345 (2 fold, 

p=0.02), miR-494 (1.72 fold, 

p=0.03), miR-193a (2.27 fold, 

p=0.05): Down-regulated in 

HGD-EAC development 

process  

(287) 

48 (BE-19, EAC-

29) 

miR-21 (~2.8 fold, p<0.05), miR-

143 (~11.3 fold, p<0.05), miR-145 

(~3.4 fold, p<0.05), miR-194 (~126 

fold, p<0.05), miR-215 (~18 fold, 

p<0.05): Up-regulated in BE as 

compared to adjacent normal tissue.  

miR-203 (~17 fold, p<0.05), 

miR-205 (~175 fold, p<0.05): 

Down-regulated in BE as 

compared to adjacent normal 

tissue.  

miR-143 (~3 fold, p<0.05), 

(284) 
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Sample Size Up-regulated in BE/EAC Down-regulated in BE/EAC Ref. 

 
miR-145 (~1.8 fold, p<0.05), 

miR-215 (~3.1 fold, p<0.05): 

Lower expression in EAC as 

compared to BE  

49 (IM-15, HGD-

14, and EAC-20, 

Adjacent normal 

tissue) 

- miR-31 (>4 fold, p<0.02), miR-

375 (>4 fold, p<0.001): Down-

regulated in transition from BE 

to EAC  

(296) 

37 (BE-17, EAC-

20, 9 adjacent 

normal tissue 

samples) 

- miR-141 (~2 fold, p=0.0126), 

miR-200a (~2.5 fold, 

p=0.0001), miR-200b (~2.1 

fold, p<0.0001), miR-200c 

(~1.9 fold, p=0.0014), miR-429 

(~1.8 fold, p=0.0031): Under-

expressed in EAC as compared 

to BE 

(280) 

11 (EAC-11, 

Different lesions 

were collected 

from these patients 

and classified into 

BE, LGD, HGD, 

EAC) 

miR-196a is over-expressed in early 

EAC (151 fold)>HGD (62.2 fold, 

p=0.00002)>LGD (31.1 fold, 

p=0.0005)>BE (28.9 fold, 

p=0.00001). Fold changes are 

calculated as compared to normal 

epithelium. 

- (282) 

45 (EAC patients 

undergoing 

surgery) 

miR-143 (p=0.0148), miR-199a_3p 

(p=0.0009), miR-199a_5p 

(p=0.0129), miR-100 (p=0.0022) 

and miR-145 (p=0.1176) expression 

predicted a worse survival followed 

by esophagectomy. 

Overexpression of miR-199a_3p/ 

_5p and 

miR-99b was associated with 

lymphnode metastasis 

Down-regulation of miR-143 

(p=0.0049) and miR-145 

(p=0.0069) in EAC as 

compared to adjacent normal 

tissue 

 

(297) 

24 (BE-24, 

Progression to 

EAC-7, Not 

Progressed to 

EAC-17 in at least 

5 year follow-up) 

miR-192 (AUROC=0.61), 194 

(AUROC=0.70), 196a 

(AUROC=0.80), and 196b 

(AUROC=0.74) showed 

significantly higher expression in 

BE samples from patients who 

- (298) 
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Sample Size Up-regulated in BE/EAC Down-regulated in BE/EAC Ref. 

progressed to EAC as compared 

with those who did not progress to 

EAC 

5 (EAC patients 

undergoing 

surgery. Adjacent 

benign tissue as a 

control) 

MiR-296 is over-expressed ~2 fold 

in EAC as compared to adjacent 

benign tissue.  

- (299) 

22 locally 

advanced EAC 

tumor patients 

undergoing 

surgery 

Negative association between miR-

148a expression and tumor 

differentiation (p<0.001). 

Significantly higher expression of 

miR-148a in tumors located in the 

lower esophagus as compared to 

tumors in the middle esophagus 

(p=0.021). 

- (300) 

99 EAC patient 

tissue samples 

undergoing 

surgery 

miR-30e (p=0.002) and miR-200a 

(p=0.044) expression were 

associated with poor overall 

survival. miR-16-2 (p=0.027) and 

miR-30e (p=0.002) expression were 

associated with poor disease-free 

survival. 

- (301) 

60 (Healthy-10, 

BE-10, Gastric 

metaplasia-10, 

LGD-10, HGD-10, 

EAC-10) 

- miR-125a-5p (p=0.008) and 

miR-125b were progressively 

down-regulated in lesions from 

IM to LGD/HGD to EAC. 

(302) 

32 (EAC-32, 

Adjacent normal 

tissue as control) 

miR-21 (FDR=0.000067) miR-203 (FDR=0.000201) (303) 

 

1.4.5 Glycoproteins 

 Protein glycosylation is a common post-translational modification with almost half of the 

proteins synthesized undergoing one of the two major types either N-linked or O-linked glycan 

modifications. The biosynthetic process of glycosylation is not template driven and occurs co- or 

post-translationally. N-glycosylation initiates (synthesis of N-glycan precursors) on the cytoplasmic 
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side of the rough endoplasmic reticulum and targets the asparagine in the sequence of Asn-X-

Ser/Thr, where X is any amino acid other than proline. The process continues when protein moves 

further along the secretory pathway and finally expresses one of the three common glycan types. 1. 

High Mannose, 2. Complex or 3. Hybrid type (Figure 1.4). In O-type glycosylation, the Ser/Thr 

residue of the protein is involved in making a glycosidic linkage with the glycan moiety (Figure 

1.4) (304). The process of glycosylation is regulated by the expression and localization of 

glycosyltransferases/glycosidases, protein trafficking, and the availability of substrate glycans 

(304). The other less common type of glycosylation is known as C-mannosylation where Trp is 

covalently attached to mannose residues (Figure 1.4). At least 10 different monosaccharides can 

participate in the process to generate diverse range of glycan structures with numerous possibilities 

for branching and anomeric linkages which make them difficult to study in comparison with 

proteins or nucleic acids (Figure 1.4) (304). Despite being heterogenous, glycan modification at 

each glycosylation site is very specific and stable for a given cell type and physiological state (305). 

Figure 1.4. Glycan-protein linkages, types of N-glycans and symbolic representation of 

common monnosaccharides found in nature. Asn, asparagine; Arg, arginine; Trp, tryptophan; 
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Thr, threonine; Ser, serine; Tyr, tyrosine; Hyl, hydoxylysine; Hyp, hydroxyproline. Adapted from 

Varki et al. (306) and Stanley et al. (307). 

 Aberrant glycosylation changes have previously been reported for several different cancers 

including breast cancer, prostate cancer, melanoma, pancreatic cancer and ovarian cancer (308, 

309). These changes include truncated forms of O-glycans, increased degree of branching in N-

glycans, and elevated sialylation, sulfation, and fucosylation with range of other possible variations 

(309). The differential glycosylation can alter protein interactions, stability, trafficking, 

immunogenicity and function (308). Tumor specific glycosylation changes are actively involved in 

neoplastic progression, namely metastasis, as glycoproteins are found abundantly on cell surfaces 

and extracellular matrices hence play vital role in cellular interactions.  

 Lectins are a family of glycan-binding proteins used by nature for cell-cell and cell-protein 

communication in humans and in host-pathogen interactions. Moreover, they are extensively used 

in glycobiology due to preferential binding of each lectin to recognize specific glycan structures on 

proteins, lipids and other biomolecules (309, 310). The first effort to identify differential 

glycosylation in the progression to BE and EAC was made in 1987 by Shimamoto and colleagues 

using differential binding pattern to 5 lectins in tissue specimens (167). The glycoconjugate 

expression profile in BE was found to be significantly different from normal esophageal epithelium. 

Interestingly, glycoconjugate expression between BE and normal duodenum was quite similar. 

There were minimal glycoconjugate expression changes between BE and LGD. However, EAC 

tissue samples showed significantly different lectin binding pattern than BE/LGD (167). Using 

rabbit esophageal epithelium Poorkhalkali and colleagues showed differential lectin binding in 

response to acid/pepsin exposure suggesting acid exposure can induce cell surface glycosylation 

changes (311). In 2008 Neumann and colleagues used 4 different lectins to identify pathological 

mucosal changes (168). They observed two distinct lectin binding patterns. One which is associated 

with the GERD while the other pattern was characteristic for BE mucosa. Specifically UEA (Ulex 

europaeus) lectin binding was up-regulated in BE tissue sections which suggests possible increase 

in fucosylation during the disease progress (168). A recently published study has concluded that 

dysplasia can alter glycan expression hence lectin binding pattern to the tissue samples. 

Fluorescently labeled WGA (Wheat germ agglutinin) lectin binding intensity was found to be 

inversely related to the degree of dysplasia (169). Furthermore, the authors used fluorescent capable 

endoscope ex vivo in the study and followed all the protocols in a manner that exactly mimics a 

clinical study in vivo. Followed by topical fluorescein-labeled WGA spray, the authors measured 

fluorescence in the tissue samples. Measurement of lectin fluorescence was more sensitive approach 

http://en.wikipedia.org/wiki/Triticum


47 

 

to identify dysplastic lesions as compared to white light endoscopic technique. Their data 

demonstrate clinical utility of such a lectin based endoscopic technique if developed further (169). 

In a phase III biomarker clinical trial study Bird–Liberman and colleagues combined 3 different 

abnormalities to predict EAC progression in BE patients. Along with using conventional LGD and 

DNA content abnormalities they used AOL (Aspergillus oryzae) lectin binding to the tissue samples 

which detects presence of α1-6 fucose on the cell surface (174). Thus, monitoring tissue glycan 

changes can be combined with existing biomarkers in order to improve the predictive power of the 

currently used biomarkers. 

 A potential mechanism responsible for these changes is considered to be bile acid exposure-

induced gene expression and secretory pathway changes in esophageal epithelium (312). Using 

carbohydrate specific lectins that detect N and O-linked glycosylation and core fucosylation, Byrne 

and colleagues have shown differential lectin binding to the cell surface and differential 

intracellular localization when normal squamous and barrett's metaplastic cell lines were treated 

with deoxycholic acid (312). Nancarrow and colleagues profiled mRNA expression in normal 

squamous esophageal epithelium, BE, and EAC and concluded that BE is a tissue with enhanced 

glycoprotein synthesis machinery in order to provide strong mucosal defense against acid exposure 

(291).  

1.4.6 Outlook - circulating biomarkers  

 Last four decades showed continuously increased EAC incidences and similar trend may be 

expected in future because of rising incidences of obesity and GERD in the population. Current 

endoscopic screening program might benefit the highest risk population to monitor disease 

progression. Monitoring dysplasia in the tissue samples has not provided fruitful outcome for early 

diagnosis, however inclusion of the genomic and cell cycle biomarkers has shown definite 

improvement in the predictive power over currently used histological technique. Any biomarker 

requiring tissue samples is going to be difficult to implement for population screening and will not 

be viable economically. An alternative to tissue-based techniques is to investigate changes in 

circulating biomarkers. Blood is relatively easy to access and, hence, can be monitored frequently 

ultimately increasing possibility of detecting early dysplastic changes.  

 Circulating tumor cells could be one source of biomarkers. Although readily found in the 

blood, technological advancements are required for sensitive early detection of the low number of 

tumor cells present in the circulation (313, 314). Alternatives to the detection of circulating tumor 

cells, Zhai and colleagues applied genome-wide DNA methylation profiling approach to cell free 
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circulating DNA. They found that cell free circulating DNA methylation profile is a replica of 

methylation profile found in matched tumor tissue samples and can discriminate between control, 

BE and EAC conditions (171). Kawakami and colleagues studied methylation of APC gene in 

matched tumor samples and plasma (172). Unlike tumor samples which showed hypermethylation 

of APC DNA early during the EAC development, matched plasma samples from patients suffering 

from BE and gastritis were found to be negative for APC methylation changes. Moreover, as 

compared to 92% (48/52) of EAC tissue samples, only 25% (13/52) plasma samples were positive 

for circulatory APC methylation changes. However, there was strong correlation between stage of 

the tumor and plasma positivity for methylated APC (172). In combination with DAPK methylation, 

measurement of pre-operative APC methylation in peripheral blood was able to discriminate 

between long (>2.5 years) and short survivors with a sensitivity of 99.9% and specificity of 57.1% 

(173). Taken together, tracking circulatory DNA methylation changes during EAC development 

may be an alternative approach to predict early EAC.  

 Tumor cell moulds the microenvironment to support oncogenesis by releasing soluble and 

vesicular components, including enzymes, microvesicles, proteoglycans, chemokines and cytokines 

(315). The tumor microenvironment components are shed into the circulation and may be extremely 

useful as an early diagnostic biomarker. This concept was demonstrated by Pitteri and colleagues 

using an inducible HER2/neu mouse model (316). They showed that plasma proteome profiling has 

ability to detect the cancer before it actually develops. Furthermore, a linear correlation was 

demonstrated for plasma levels of candidate biomarker proteins with the tumor progression, which 

were reversed upon tumor regression (316).  

 Both encapsulated miRNAs and secreted glycoproteins are prime candidates for circulating 

biomarkers released by the tumor microenvironment. Circulating miRNAs are secreted in 

nanometer-sized vesicles called exosomes or microvesicles. An advantage of circulating miRNA 

over protein biomarkers is the ability for amplification, increasing the sensitivity of detection. 

Comparative analysis of circulating miRNA can be performed using miRNA microarray and 

quantitative real-time PCR (294). Future studies should aim to discover and validate circulating 

miRNA changes associated with EAC development and progression.  

1.4.6.1 Glycan profiling 

 For BE and EAC, serum glycan profiling using mass spectrometry has identified differential 

expression of glycan structures in different disease states. Mechref and colleagues analysed N-

linked glycan diversity present in 84 patient serum samples (Healthy-18, BE-5, HGD-11, EAC-50) 
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(175). They identified 98 glycan features with different intensities in disease onsets and 26 of them 

correspond to known glycan structures. They demonstrated statistically significant glycan changes 

between 4 different conditions (Healthy/BE/HGD/EAC) with three of the known potential N-glycan 

biomarker predicted EAC with 94% sensitivity and 60% specificity (175). Another similar study 

used microchip electrophoresis with laser-induced fluorescence detection for N-glycan profiling and 

able to differentiate between the healthy, BE, HGD, and EAC conditions (176). Similar to above 

mentioned N-glycan profiling studies, very recently, Gaye and colleagues showed that ion mobility-

mass spectrometric analysis of serum N-glycan can also distinguish between normal and EAC 

phenotype (177). All of these studies unanimously suggest circulatory N-linked glycan changes 

during EAC pathogenesis. Mann and colleagues enriched fucosylated serum glycoproteins using 

lectins and then used shot gun proteomics to identify protein in different physiological states, 

including healthy, BE, and EAC (178). Although the study showed promising trends, the statistical 

power was not achieved due to the very low number of samples. To improve the throughput of 

glyco-centric proteomics studies, we have developed lectin magnetic bead array-mass spectrometry 

(LeMBA-MS), a high-throughput platform where a panel of lectins individually immobilized the 

magnetic beads is used to capture glycoproteins followed by on-bead trypsin digest and liquid-

chromatography-tandem mass spectrometry for protein identification (317, 318). Parallel screening 

of a panel of lectins may be helpful to identify differentially glycosylated circulating proteins during 

EAC pathogenesis. 

1.4.6.2 Metabolic profiling 

 In recent past, efforts have been made to profile metabolic changes associated with EAC 

pathogenesis. Metabolic profiling studies have identified changes associated with nucleoside 

metabolism, tri-carboxylic acid cycle, fatty acid and amino acid metabolism during EAC 

development in tissue samples and more importantly using easily accessible bio-fluids, blood and 

urine. Early metabolic changes in the histologically normal epithelium were observed, particularly 

for phosphocholine, glutamate, myo-inositol, adenosine-containing compounds, uridine-containing 

compounds and inosine (319). Djukovic and colleagues used targeted approach to profile eight 

different serum nucleosides between healthy subjects (n = 12) and EAC patients (n = 14) using 

high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass 

spectrometer. Amongst eight nucleosides they profiled, five were significantly different between the 

two groups. 3 out of 5 significantly different nucleosides namely 1-methyladenosine, N
2
,N

2
-

dimethylguanosine, N
2
-methylguanosine were methylated nucleosides indicating increased tRNA 

methylation, similar to DNA hypermethylation in EAC condition (181). Zhang and colleagues 



50 

 

studied serum metabolomic changes using NMR alone and NMR in combination with LC-MS in 

EAC (n = 67), HGD (n = 9), BE (n = 3) and healthy volunteers (n = 34). Their model based on 

PLS-DA was being able to distinguish between different phenotypes by achieving area under 

receiver operating characteristics curve (AUROC) of as high as 0.95. Based on candidate 

metabolites they identified altered pathways associated with EAC development to be energy 

metabolism, fatty acid metabolism and amino acid metabolism (182, 183). Urine metabolomics 

could also distinguish between healthy, BE and EAC phenotypes. Davis and colleagues generated 

urine metabolic signatures which was able to discriminate between healthy, BE and EAC 

phenotypes, as well as distinguish EAC from pancreatic cancer (184). These metabolic profiling 

studies open up new avenue to detect early EAC using circulatory biomarkers.  

1.5 Glycoproteins as cancer biomarkers 

 The majority of United States Food and Drug Administration (FDA) approved cancer 

protein biomarkers are glycoproteins (130). Currently total glycoprotein levels are monitored in 

circulation to make the informed diagnostic decisions e.g. serum carbohydrate antigen 125 (CA125) 

level > 35 units/mL indicates gynecological abnormalities in women hence patients are referred for 

further investigation (320). Similarly, serum prostate-specific antigen levels > 4 ng/mL indicate 

prostate related abnormalities in male (321). Positive test results for total prostate-specific antigen 

measurements may be due to either prostate cancer or other non-cancerous abnormalities such as 

benign prostatic hyperplasia (BPH) or prostate infection/inflammation hence its implementation as 

a screening tool lead to overdiagnosis and overtreatment of prostate cancer (130). Recent studies 

show that monitoring aberrant glycosylation of prostate-specific antigen (fucosylation and 

sialylation) is a more specific, better predictor of prostate cancer and showed better correlation with 

Gleason score (322-326). In the case of hepatocellular carcinoma (HCC), increase in tumor size is 

closely linked to circulatory α-fetoprotein (AFP) levels. But AFP levels remain unchanged during 

early pathogenesis of HCC making total AFP measurement to be impractical as an early diagnostic 

marker. However, fucosylated AFP level changes in the circulation due to increased expression of 

α1-6 fucosyltransferase during early HCC pathogenesis (327, 328). Fucosylated AFP measurement 

test for early detection of primary HCC has been approved by the FDA and produced into a 

microfluidic based clinical immunoanalyzer test μTASWako
®
i30 (commercialized by Wako 

diagnostics) by measuring Lens culinaris agglutinin (LCA) (Fucose specific) bound fraction of AFP 

(AFP-L3,  Figure 1.5) (329). Increased ratio of AFP-L3/total AFP indicates increased risk for HCC 

development hence patients are monitored extensively using ultrasound for further confirmation. 

This example suggests monitoring specific glycosylation change can serve as an early diagnostic 
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marker even before imaging modalities (330-332). For several other glycoprotein biomarkers, 

studies have shown that monitoring specific glycosylation changes are better biomarker candidates 

as compared to measuring total glycoprotein levels e.g. fucosylated haptoglobin (pancreatic cancer), 

elevated levels of glycoforms containing sialyl Lewis X on haptoglobin, α1-acid glycoprotein, α1-

antichymotrypsin and immunoglobulin G (Ig G) (ovarian cancer) and fucosylated Ig G (stomach 

cancer) (327). Taken together, aberrant glycosylation changes may turn out to be more specific and 

sensitive biomarkers as compared to monitoring total glycoprotein levels.   

Figure 1.5. FDA 

approved 

μTASWako
®
i30 

immunoanalyzer 

measures AFP-L3 to 

diagnose early HCC. 

LCA, Lens 

culinaris agglutinin; 

HCC, Hepatocellular 

carcinoma. 

 

 

 

 Three potential mechanisms may contribute to tumor specific glycan modifications. (i) 

Altered expression of glycan processing enzymes, (ii) tumor microenvironment and (iii) local or 

systemic activation of differential cell types which otherwise are not active. Over 400 proteins are 

estimated to be involved in carbohydrate binding and metabolism (333). Genomic abnormalities 

during tumor progression can alter expression of these proteins resulting in aberrant glycosylation 

(322). Several of these glycosyltransferase/glucosidase enzymes themselves are considered as 

potential biomarker. For example N-acetylglucosamine transferase V (GlcNAcT-V) is responsible 

for β1-6 branching of N-glycans and this particular glycan alteration in target proteins such as 

cadherin, integrin, and other cytokine receptors is responsible for tumor metastasis. Furthermore 

mice lacking GlcNAcT-V have shown reduced polyomavirus antigen induced tumor growth and 

metastasis which demonstrate GlcNAcT-V as a potential therapeutic target (334). Another enzyme 

N-acetylgalactosaminyltransferase is responsible for initial steps of mucin O-glycosylation. SNPs 

associated with this enzyme are inversely related to risk for developing ovarian cancer (335). Last 
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but not the least α-L-fucosidase activity in serum has shown to predict early development of 

hepatocellular carcinoma in liver cirrhosis patients (336). α-L-fucosidase activity has also been 

correlated with progression-free survival in patients undergoing trastuzumab monotherapy. This 

study extends use of enzyme activity of α-L-fucosidase in blood circulation as a predictive 

biomarker for treatment of breast cancer with monoclonal antibody therapy (337).  

 The other potential source for circulatory tumor specific glycoprotein is the tumor 

microenvironment. The stromal components co-evolve with the cancer cells and help tumor to 

metastasize, get nutrients, evade immune response and to attain other hallmark characteristics (338). 

The microenvironment consists of cancer associated fibroblast, extracellular matrix, secretome, 

inflammatory cells, glial cells, innate/adaptive immune cells, adipocytes, vasculature and 

specialized mesenchymal cells (339). The secretome component consists of proteins, receptors, 

proteoglycans, cytokines, chemokines, growth factors, angiogenesis factors, proteases etc (315). 

Aberrant angiogenesis leads to accumulation of tissue fluids in the tumor environment and this fluid 

extravasate from the tumor site and mixes with the circulation. This fluid is rich in proteins secreted 

through classical or non-classical secretory pathway of the tumor cells and may be extremely useful 

as a diagnostic purpose as these changes can be monitored in circulation and tumor specific. The 

microenvironment and their secretions vary with tumor progression and identification of stage 

specific biomarkers can be useful to monitor the disease progress and predict therapeutic outcome. 

In fact using inducible HER2/neu mouse model Pitteri and colleagues showed that plasma proteome 

profiling has ability to detect the cancer before it actually develops (316). They have shown linear 

correlation between plasma levels of the candidate proteins with the tumor progression and these 

changes are reversible as they return to the original level with tumor regression. The majority of 

those candidate plasma proteins were acute-phase proteins, immune cell proteins, cytoskeletal, 

extracellular matrix proteins and quite a few amongst them were glycoproteins (316).  

 Different cell types express different glycosylation machinery. For example, haptoglobin 

(HP) is an acute phase protein which is mainly synthesized in liver and its main function is 

clearance of hemoglobin at the site of inflammation. The β-chain of HP undergoes N-linked 

glycosylation and has a molecular weight of about 39 kDa. However, neutrophils during their 

specific stage of development also synthesize HP but with different glycosylation leading to an 

apparent molecular weight of 45-65 kDa on western blot (340). Furthermore, upon activation this 

differentially glycosylated HP is released along with all other granular contents (340). This explains 

one more possibility for specific glycan changes in the circulatory glycoproteins.  
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1.5.1 Methodologies for glycoprotein biomarker discovery 

 The common aims in glycoprotein studies are to identify substrate protein undergoing 

glycosylation, to determine the actual site of glycan modification and to elucidate the glycan 

structure for each site. HPLC coupled mass spectrometry is the most commonly used technique to 

study glycan modifications. Advancements in the bioinformatic tools and development of relevant 

databases such as GlycoGene database, lectin frontier database, GlycoProtein database, Glycan 

mass spectral database have facilitated the glycoprotein research (341). Overall glycoprotein studies 

are mainly driven by advancements in the chromatographic, mass spectrometric and bioinformatics 

techniques.  

 Biological samples are fairly complex and significant pre-processing is required before they 

can be used for glycoprotein analysis. In order to detect medium or low abundance glycoprotein, 

various enrichment techniques are developed. Followed by glycoprotein enrichment, there are two 

main approaches for glycoprotein detection, top-down workflow (glycoprotein based) or bottom-up 

workflow (glycopeptide based) analysis. As the name suggests the top-down workflow initially 

enrich glycoprotein followed by trypsin digest while for glycopeptide based techniques, the protein 

is typsin-digested first followed by glycopeptide enrichment. Tryptic peptides can be directly 

analyzed by LC-MS to identify the underlined proteins. An additional enzymatic glycan release step 

(i.e. PNGase F treatment for N-glycan release) is required before mass spectrometric analysis and 

glycan structural elucidation (342). Alternatively, glycosylation can be detected on the glycopeptide 

level to get the connectivity between the glycan and the peptide carrier (343). The following section 

briefly discusses glycoprotein/glycopeptide enrichment techniques.  

1.5.1.1 Using lectins in the glycoprotein enrichment workflows 

 The glycoprotein enrichment workflows can be broadly categorized into two different types. 

(i) Lectin based, and (ii) non-lectin based. Lectins are carbohydrate binding proteins and occur 

abundantly in nature. They generally recognize glycan structures with low affinity but with high 

avidity mainly through hydrogen bonding, hydrophobic interactions and van der Waals forces 

(344). A range of lectins for selective enrichment of glycan moiety are commercially available in 

different formats to suit specific experimental requirements, these have been reviewed previously 

(309, 310). To name few, lectins are available as immobilized on solid support such as agarose, 

silica or even magnetic beads. They are applied in different chromatographic settings such as tubes, 

columns and microfluidic channels. One single lectin can be used in isolation to enrich narrower 

range of glycoepitopes or multiple lectins can be used in combination in order to enrich broad range 
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of glycan structures (345). Multiple lectins with different carbohydrate specificity is used serially to 

enrich selective glycan structures in a process called serial lectin affinity chromatography. This 

particular approach was successfully applied particularly to isolate O-linked glycans (346). In order 

to facilitate high-throughput glycan analysis lectin microarrays have emerged where series of lectins 

are spotted on the solid support, samples are tagged with fluorophore and detection is carried out 

using fluorescence microarray scanners (347). Recently our laboratory developed lectin magnetic 

bead array-tandem mass spectrometry (LeMBA-MS/MS), a high-throughput platform where array 

of lectins are immobilized on the magnetic beads to capture glycoproteins followed by on bead 

trypsin digest in line with mass spectrometry (317, 318). These lectin based high-throughput 

techniques have been playing key role in glycobiomarker research.  

 Apart from using lectin biology for enrichment, chromatographic technique such as 

hydrophilic interaction chromatography (HILIC) (348) and chemical modification techniques have 

been developed for isolating glycopeptides. Based on hydrazide chemistry, Zhang and colleagues in 

2003 developed solid phase extraction method for isolating glycoprotein (349) and later modified it 

to make it suitable for glycopeptides (350). Utilizing fact that Boronic acid form stable cyclic esters 

with cis-diol containing carbohydrates at higher pH, Zhou and colleagues developed magnetic 

nanoparticles to capture glycoprotein/glycopeptides and being a reversible reaction, captured 

glycoprotein/glycopeptides can be released at lower pH simply by acid elution (351). The main 

difference between lectin-based and non-lectin based protocols is that there are many lectins which 

bind to different glycan groups but chemical methods are usually not selective for a particular class 

of glycan and enrich samples for glycoproteins as a whole.  

1.5.1.2 LeMBA 

 To improve the throughput of lectin based glycoprotein biomarker discovery platforms, our 

laboratory previously developed lectin magnetic bead array (LeMBA) workflow (Figure 1.6) (317, 

318). Unlike single, serial and multi lectin affinity chromatography, LeMBA uses 20 individual 

lectin coated magnetic beads in microplate format to enrich a sub-population of serum 

glycoproteins having high-affinity to bind with a particular lectin. Table 1.6 contains details of 

lectins used in LeMBA workflow along with their general glycan specificity. LeMBA incorporates 

following key steps: (i) coupling lectins with MyOne™ Tosylactivated Dynabeads® (magnetic 

beads), (ii) Spike serum samples with internal standard ovalbumin and sample denaturation, (iii) 

glycoprotein capture, (iv) removal of unbound proteins by several washing steps and (v) elution of 

bound proteins for western immunoblotting or on-bead trypsin digest for mass spectrometric 
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analysis. With the use of magnetic beads, LeMBA allows single-step isolation of serum 

glycoprotein using 20 individual lectin-coated magnetic beads. Composition of different buffers 

used during LeMBA protocol namely denaturation buffer, binding buffer and washing buffer were 

carefully optimized for salts and detergents to avoid co-isolation of protein complexes without 

adversely affecting lectin pull-down efficiency. Internal standard chicken ovalbumin can account 

for minor variations during sample processing and pull-down steps between different time points. 

Glycoprotein capture, washing and on-bead trypsin digestion steps are performed on liquid handler 

which makes LeMBA semi-automated and reproducible over several weeks of sample preparation. 

LeMBA is a versatile platform and can be coupled with diverse protein identification, 

characterization and quantitation techniques. When coupled with nano-HPLC-MS/MS to identify 

non-glycosylated peptides from the isolated glycoproteins with lectin exclusion list for protein 

identification, it has demonstrated nanomolar sensitivity and linearity. Last but not the least it is 

applicable across different species.  

Figure 1.6. Lectin magnetic bead array (LeMBA) workflow for serum glycoprotein biomarker 

discovery and development. Adapted from Choi et al. (317). 

Table 1.6. Glycan specificity of lectins used in LeMBA. Adapted from Choi et al (317). 

Carbohydrate Abbreviations Source  Ligand motif  Supplier 

Mannose 

ConA Jack bean α-Man, α-Glc, α-GlcNAc Sigma 

GNL Galanthus nivalis Manα1-3Man terminal Vector 

NPL Daffodil Manα1-6Man Vector 

N-

acetylglucosami

ne 

DSA Datura stramonium  β1-4GlcNAc oligomers Vector 

HAA Helix aspersa  α-GlcNAc and α-GalNAc Sigma 

STL Potato GlcNAcβ1-4GlcNAc oligomers Vector 

WGA Wheat germ GlcNAcβ1-4GlcNAc , Neu5Ac Sigma 
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Carbohydrate Abbreviations Source  Ligand motif  Supplier 

Galactose 

BPL Bauhinia purpurea  Galβ1-3GalNAc Vector 

ECA Erythrina cristagalli  Galβ1-4GlcNAc Sigma 

JAC Jackfruit (Jacalin) Galβ1-3GalNAc Vector 

N-

acetylgalactosa

mine 

SBA Soy bean GalNAcα1-3Gal Sigma 

HPA Helix pomatia α-GalNAc Sigma 

WFA Wisteria floribunda GalNAcα1-6Gal/α1-3GalNAc Sigma 

Fucose 

AAL Aleuria aurantia Fucα1-6GlcNAc Vector 

PSA Pisum sativum Fucα1-6GlcNAc Sigma 

UEA Ulex europaeus Fucα1-2Galβ1-4GlcNAc Vector 

Sialic acid 
MAA Maackia amurensis Neu5Acα2-3 Vector 

SNA Elderberry Neu5Acα2-6 Vector 

Others 

EPHA  
Erythroagglutinin 

Phaseolus vulgaris 
Bisecting GlcNAc Vector 

LPHA  
Leucoagglutinin 

Phaseolus vulgaris 

Tri/Tetra-antennary β1-

6GlcNAc 
Vector 

1.6 Thesis aims and significance 

 Current endoscopy-biopsy based clinical practice for diagnosis and management of EAC 

pathogenesis hasn't been able to curb morbidity and mortality related to this lethal malignancy. 

There is an urgent need to identify circulatory biomarkers which can be developed further into a 

blood based diagnostic test (1). Out of different classes of circulatory biomarkers, serum 

glycoproteins are potential candidates. In fact, serum glycan profile differs between healthy, BE, 

dysplastic and EAC patients (167-169, 174, 311). However, specific glycoprotein biomarker 

candidates showing differential glycosylation are not known. This study hypothesized that EAC 

pathogenesis is associated with changes in the glycosylation of serum proteins hence serum 

glycoprotein can act as a potential diagnostic biomarkers to monitor EAC pathogenesis. Based on 

this working hypothesis, this thesis has the following aims. 

 (i) To discover serum glycoprotein biomarker candidates using LeMBA workflow that 

distinguish between healthy, EAC and metaplastic BE phenotype. 

 (ii) To develop a targeted proteomics approach to measure biomarker candidates for a timely 

verification.           

 (iii) To verify serum glycoprotein candidates identified in Aim 1 (Chapter 3) using targeted 

proteomics approach developed in Aim 2 (Chapter 4) in an independent patient cohort. 

 (iv) The mass spectrometric approach employed to address Aim 1 to 3 is best suited for 

research laboratory but not for routine clinical diagnostic. So final aim of this project was to test 

feasibility of using electrochemical detection methodology for the glycoprotein detection.  
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 Chapter 3 describes extension of LeMBA with development of GlycoSelector database 

incorporating statistical analysis pipeline. Using this pipeline, lectin-glycoprotein biomarker 

candidates that distinguish between healthy, BE and EAC phenotype are reported. 

 Chapter 4 addresses Aim 2, which include development of targeted proteomics assay for a 

timely verification of biomarker candidates described in Chapter 3. It also describes testing linearity 

and reproducibility of the targeted proteomics assay. 

 By screening an independent cohort of serum samples using targeted proteomics approach 

described in Chapter 4, verified list of serum glycoprotein biomarker candidate has been described 

in Chapter 5.    

 The publication of Aim 4, described in Chapter 6, has reported the proof-of-concept work to 

use electrochemical detection method for glycoprotein detection.  

 Collectively, this thesis describes discovery and verification of serum glycoprotein 

biomarker candidates for BE/EAC diagnosis. The electrochemical method has been successfully 

applied for glycoprotein detection/quantitation and can be developed further as a clinically useful 

diagnostic platform.  



58 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2. 

 

MATERIALS AND METHODS  



59 

 

Chapter 2. Materials and methods 

 Materials and methods used frequently across different thesis chapters are described in this 

chapter. For methods belong to specific chapter please refer to respective chapter.   

2.1 Reagents 

 MyOne
TM

 Tosyl activated Dynabeads® were from life technologies. Lectins Aleuria 

aurantia lectin (AAL), Bauhinia purpurea lectin (BPL), Datura stramonium agglutinin (DSA), 

Erythroagglutinin Phaseolus vulgaris (E-PHA), Galanthus nivalis lectin (GNL), Jacalin (JAC), 

Leucoagglutinin Phaseolus vulgaris (L-PHA), Maackia amurensis agglutinin-II (MAA), Narcissus 

pseudonarcissus lectin (NPL), Sambucus nigra agglutinin (SNA), Solanum tuberosum lectin (STL) 

and Ulex europaeus agglutinin-I (UEA) were from Vector Laboratories. Modified sequencing grade 

trypsin was from Promega. Protein assay dye reagent (Bradford reagent), Triton X-100 and SDS 

solution were from Bio-rad. Tris base, glycine, sodium chloride and acrylamide/bis-acrylamide 

solution 40% w/v 29:1 were from Amresco. Glycerol, disodium hydrogen phosphate dihydrate, 

sodium dihydrogen phosphate dihydrate, calcium chloride dihydrate (CaCl2) and tween-20 were 

from Ajax Finechem. Magnesium chloride (MgCl2) and manganese chloride (MnCl2) were from 

Univar. Immobilon-P Polyvinylidene difluoride (PVDF) was from Millipore and SuperSignal West 

Pico Chemiluscent Substrate was from Thermo Scientific. Monoclonal anti-gelsolin antibody was 

from Epitomics (EP1940Y), polyclonal anti-haptoglobin was from Gen Way Biotech (GWB-

16A7EA) and HRP labeled anti-rabbit HRP was from Invitrogen (A10547). The developer and fixer 

for western blot development were from Kodak. For quadrupole time of flight runs, acetonitrile, 

isocratic HPLC grade was from Scharlau and for triple quadrupole runs, acetonitrile 

CHROMASOLV® gradient grade was from Sigma. Mass spectrometry reagents were from Agilent 

Technologies. All other reagents, including lectins not listed above, were from Sigma unless 

otherwise specified. 

2.2 Buffers and solutions 

2.2.1 LeMBA 

 Protease inhibitor cocktail (PI) 1000x stock (diluted to 1x in final solution) – 1 μg/μL 

Aprotinin, 1 μg/μL Antipain, 1 μg/μL Pepstatin A, 1 μg/μL Leupeptin and 250 mM Benzamidine  

 Lectin resuspension buffer – 20 mM sodium dihydrogen phosphate monohydrate, 80 mM 

disodium hydrogen phosphate dihydrate, 0.1 mM CaCl2, 0.1 mM MnCl2 

 Bead activation buffer – 3M ammonium sulfate (pH 7.9) 
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 Bead blocking buffer – 1 M Tris-HCl (pH 7.4), 1% w/v glycine 

 Bead storage buffer – 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM CaCl2, 1 mM 

MnCl2, 0.5% v/v Triton, 1x PI 

 Denaturation buffer – 20 mM Tris-HCl (pH 7.4), 20 mM DTT, 1% w/v SDS and 5% v/v 

Triton 

 Binding buffer A (for lectins EPHA, SNA and STL) – 20 mM Tris-HCl (pH 7.4), 0.2% w/v 

SDS, 1 mM DTT, 150 mM NaCl, 1 mM CaCl2, 1 mM MnCl2, 1% v/v Triton, 1x PI 

 Binding buffer B (for remaining all lectins) – 20 mM Tris-HCl (pH 7.4), 0.05% w/v SDS, 1 

mM DTT, 300 mM NaCl, 1 mM CaCl2, 1 mM MnCl2, 1% v/v Triton, 1x PI 

 Washing buffer A (for lectins EPHA, SNA and STL) – 20 mM Tris-HCl (pH 7.4), 0.2% w/v 

SDS, 1 mM DTT, 150 mM NaCl, 1 mM CaCl2, 1 mM MnCl2, 1% v/v Triton 

 Washing buffer B (for remaining all lectins) – 20 mM Tris-HCl (pH 7.4), 0.05% w/v SDS, 1 

mM DTT, 300 mM NaCl, 1 mM CaCl2, 1 mM MnCl2, 1% v/v Triton 

 50 mM ammonium bicarbonate for washing and trypsin resuspension  

2.2.2 SDS-PAGE and western immunoblotting 

 Laemmli sample buffer 5x stock (diluted to 1x for use) - 0.2 M Tris-HCl (pH 6.8), 10% w/v 

SDS, 50% v/v glycerol, 0.25 M DTT, 0.1% w/v bromophenol blue 

 Buffer A for resolving gel – 750 mM Tris-HCl (pH 8.8), 0.2% w/v SDS  

 Resolving gel – 

Ingredients 
Gel percentage 

6% 8% 10% 12% 15% 

MiliQ water 34.00% 29.00% 24.00% 19.00% 11.50% 

Acrylamide/Bis-acrylamide solution (40%) 15.00% 20.00% 25.00% 30.00% 37.50% 

Buffer A 50.00% 50.00% 50.00% 50.00% 50.00% 

Ammonium persulphate (APS) solution 

(10%) 
1.00% 1.00% 1.00% 1.00% 1.00% 

Tetramethylethylenediamine (TEMED) 0.05% 0.05% 0.05% 0.05% 0.05% 

 Buffer B for stacking gel – 250 mM Tris-HCl (pH 6.8), 0.2% w/v SDS  

 Stacking gel – 39% MiliQ water, 10% v/v Acrylamide/Bis-acrylamide solution (40% w/v), 

50% v/v Buffer B, 1% v/v of 10% w/v Ammonium persulphate (APS) solution, 0.1% v/v 

Tetramethylethylenediamine (TEMED) 
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 Gel running buffer 10x stock (diluted to 1x for use) – 250 mM Tris, 1.92 M glycine, 1% w/v 

SDS  

 Transfer buffer 10x stock (wet transfer) – 1.92 M glycine, 250 mM Tris  

 Transfer buffer 1x (wet transfer) – 10% v/v of 10x transfer buffer, 20% v/v methanol  

 Tris buffered saline (TBS) for western blotting (pH 7.4) 10x stock – 500 mM Tris, 1.5 M 

NaCl, approximately 0.3% v/v HCl to adjust pH 7.4 

 Tris buffered saline Tween 20 (TBST) for western blotting (pH 7.4) – 10% v/v of 10x TBS, 

0.1% v/v Tween 20   

 Strip solution – 1M glycine (or 5M sodium hydroxide), 5% v/v HCl, and 1% w/v SDS 

 Developer – 130 mL developer solution diluted in 270 ml of tap water  

 Fixer – 130 mL fixer solution diluted in 270 mL of tap water 

 Coomassie Brilliant Blue for membrane staining – 0.25% w/v Coomassie Brilliant Blue R-

250, 7% v/v acetic acid, 40% v/v methanol 

 Destain for membrane – 40% v/v methanol, 7% v/v acetic acid 

 Colloidal Coomassie blue for gel staining – 10% w/v ammonium sulfate, 10% v/v 

orthophosphoric acid, 0.12% w/v Coomassie Blue G-150, 20% v/v methanol 

 Destain for gel – 1% v/v acetic acid 

2.2.3 Mass spectrometry 

 Buffer A – 0.1% v/v mass spectrometry grade formic acid in MilliQ water 

 Buffer B – 90% v/v isocratic grade acetonitrile in 0.1% v/v mass spectrometry grade formic 

acid in MilliQ water for Chapter 3. 0.1% v/v mass spectrometry grade formic acid in gradient grade 

acetonitrile for Chapter 4 and Chapter 5. 

 Injector needle wash – 20% v/v methanol in 0.1% v/v formic acid made up in MiliQ water 

2.3 Sample collection 

 The study was approved by The University of Queensland Human and Animal Ethics 

Committees. Samples were randomized prior to all experiments. Serum samples from healthy, BE 

and EAC patients were acquired through the Australian Cancer Study (ACS) (352) and Study of 

Digestive Health (SDH) (353). All 29 serum samples (Healthy-9, BE-10 and EAC-10) used for 
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biomarker discovery phase and 79 serum samples (Healthy-20, BE-20, EAC-20 and population 

control-19) used for biomarker qualification study were age and gender matched. Healthy controls 

were individuals with no history of esophageal cancer and no evidence of esophageal histological 

abnormality at the time of sample collection. BE patients had a histologically confirmed diagnosis 

of Barrett's mucosa. EAC patients had histologically confirmed adenocarcinoma within the distal 

esophagus or gastro-esophageal junction. Although cancer staging for EAC patients was available 

for verification cohort, patients were not stratified according to disease progression due to relatively 

small sample size. The EAC cohort consists of patients from early to late stages of EAC. EAC 

patient sera were collected prior to the commencement of cancer treatment. Population controls 

were volunteers with no self-reported history of EAC or BE. All subjects signed written informed 

consent as a part of sample collection process. For categorical and numerical variables related to 

patient information, P values were calculated using Fisher's exact test and Kruskal-Wallis test 

respectively. 10 ml of serum was collected from each patient during the trial. The samples (50 μl for 

biomarker discovery and 500 μl for biomarker verification) were received from QIMR Berghofer 

Medical Research Institute and stored at -80 °C until use. Typically, samples were thawed once for 

protein estimation and at the same time samples were denatured. Particularly for biomarker 

verification, samples were aliquoted into two different tubes (50 μl each) during first freeze thaw 

for future use.      

2.4 Protein methods 

2.4.1 Bradford protein assay 

 Serum samples were diluted 1 in 100, 1 in 150 or 1 in 200 in MiliQ water. Bovine serum 

albumin (BSA) standard solutions at the concentration of 0 mg/mL (blank), 0.2 mg/mL, 0.4 mg/mL, 

0.6 mg/mL, 0.8 mg/mL and 1 mg/mL were made. 5 μL of BSA standard or 5 μL of diluted sera 

were arrayed at least in duplicate in a clear 96 well plate. Bradford reagent was diluted 5 times in 

MiliQ water and 200 μL of this dilution was added to each well. Whenever required, solution in 96 

well plate was mixed using liquid handler. Absorbance was measured at 595 nm using FLUOstar 

OPTIMA microplate reader (BMG Labtech). Raw absorbance values were exported to Microsoft 

excel. Standard curve using absorbance values of known BSA concentrations was plotted and 

protein concentration of samples was determined using slope and y-intercept of the standard curve.    

2.4.2 SDS-PAGE and western immunoblotting 

 Mini-PROTEAN
®
 tetra cell system coupled with wet transfer assembly from Bio-Rad was 

used. Protein samples were boiled in 1x Laemmli sample buffer at 95 °C for 5 min (354). For 
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LeMBA-immunoblotting, 2x or 3x concentration of sample buffer was used. The samples were 

resolved on appropriate SDS-PAGE gels and transferred to Immobilon-P polyvinylidene difluoride 

(PVDF) membranes using wet transfer. The membranes were blocked with either 5% w/v non-fat 

milk or 5% w/v BSA for 30 min at room temperature. The membranes were probed with primary 

antibody overnight at 4 °C. On next day, after washing membranes 5 times with 1x TBST for 5 min 

each, the membranes were probed with appropriate secondary antibody conjugated with horseradish 

peroxidase (HRP) for 2 hr at room temperature. After washing membranes at least 3 times with 1x 

TBST for 5 min each, the membranes were developed using SuperSignal West Pico 

chemiluminescence, and captured on film. Densitometric analysis was performed using ImageJ 

(NIH, USA) (355).    

2.5 Lectin magnetic bead array (LeMBA) 

 LeMBA was performed as described previously, with modifications (317, 318). 

2.5.1 Coupling of lectins with Dynabeads
®

 

 Lectins are supplied as lyophilized powder which may or may not contain necessary salts in 

the vials. Lectins were reconstituted using either MiliQ water (lectins supplied containing necessary 

salts) or lectin resuspension buffer (lectin supplied without any salts) and stored at -80 °C in 

aliquots. Lectins were covalently attached with Dynabeads via primary amine or sulphydryl group 

(https://tools.thermofisher.com/content/sfs/manuals/dynabeads_myone_tosylactivated_man.pdf). 

For each lectin, 100 μL of 100 mg/mL MyOne tosyl activated Dynabeads
®
 were washed three times 

with lectin resuspension buffer using magnetic tube holder. To the beads, 100 μL of 3 M 

ammonium sulphate (pH 7.9) was added and beads were mixed using vortex. 100 μL of 5 mg/mL 

lectin was added to the activated beads and tubes were incubated rotating at 20 RPM for 24 hr at 37 

°C. On the next day, the supernatant was removed and non-reacted sites of the beads were blocked 

by incubation with 1 mL of 1 M Tris containing 1% w/v glycine for 16 hr at 37 °C. On third day, 

supernatant was removed and lectin-beads were washed three times using bead storage buffer. The 

beads were resuspended using 1 mL of bead storage buffer and stored at cold temperature. 50 μL of 

this lectin-bead conjugate is used for one pull-down experiment with 50 μg of denatured serum 

protein. To minimize experimental variation due to batch effect, lectin-beads sufficient for each 

phase of biomarker discovery and verification experiments were made at once and used within 3 

months. The lectin to Dynabeads coupling ratio is 10 mg of beads per 0.5 mg of lectin which is 

sufficient for 20 pull-downs after conjugation.   
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2.5.2 Serum sample preparation for LeMBA 

 The Bradford protein assay was performed to measure serum protein concentration. The 

serum samples were spiked with 10 picomole ovalbumin per reaction as an internal standard i.e. 50 

μg of serum proteins were spiked with 10 picomole of chicken ovalbumin. The serum protein 

mixture was denatured and reduced in denaturation buffer at 60 °C for 30 min followed by 

alkylation with 100 mM iodoacetamide for 1 hr at room temperature maintaining dark condition.    

2.5.3 Liquid handler assisted LeMBA pull-down and trypsin digestion 

 For each pull down experiment, lectins [all lectins (20 lectins plus control bead) for 

biomarker discovery or specified lectins for biomarker verification] were arrayed in each well of a 

96 well plate. The 20 different lectins were chosen to accommodate natural diversity of glycans. 

The lectins were selected according to glycan recognition epitopes as per literature and described by 

Choi et al (317). The Bradford protein assay was performed to measure serum protein 

concentration. The serum samples were spiked with 10 pmol ovalbumin per reaction as an internal 

standard. The serum protein mixture was denatured and reduced using denaturing buffer at 60°C for 

30 min followed by alkylation with 100 mM iodoacetamide for 1 hr at 37°C maintaining dark 

condition. 50 µg alkylated serum sample per reaction was incubated with lectin conjugated beads in 

100 µl binding buffer at 4°C for 1 hr on the plate shaker. Following glycoprotein capture, beads 

were washed (i) with binding buffer for 3 times then washed with (ii) 50 mM ammonium 

bicarbonate for seven times including changing plates three times in-between washes. For on-bead 

trypsin digest, 0.95 µg of sequencing grade trypsin in 20 µl of 50 mM ammonium bicarbonate was 

added to each reaction mixture and incubated at 37°C overnight. The next day, digested peptides 

were transferred to a new plate. Beads were washed with an equivalent volume of 50 mM 

ammonium bicarbonate, and supernatant was combined with digested peptides. Pooled peptide 

samples were dried under the vacuum and plates were stored at -80°C until further use. Bravo liquid 

handler (Agilent Technologies) was used to make the platform high throughput. 

2.5.4 LeMBA-western immunoblotting 

 LeMBA pull-down until glycoprotein capture step was performed as described above in 

section 2.5.3. After glycoprotein capture, beads were washed only with binding buffer for 3 times. 

All further washing steps with ammonium bicarbonate and trypsin digest were not required. Beads 

were directly boiled in 2x Laemmli sample buffer to elute captured glycoproteins, run on SDS-

PAGE and proteins were transferred to PVDF membrane using wet transfer. Western 

immunoblotting using antibody raised against target glycoprotein was performed as described in 
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section 2.4.2. To compare results across membranes, pull-down sample from one healthy patient 

serum (unrelated to samples used in screen) was loaded in equal amounts on all gels. Raw 

densitometric values were normalized using an internal control sample loaded onto each gel.  

2.6 Statistical analysis 

 Statistical analysis was performed using Microsoft Excel 2007, GraphPad Prism 6, R 

statistical programming language and web-based tools GlycoSelector for biomarker discovery 

(http://glycoselector.di.uq.edu.au/) and Shiny mixOmics for biomarker verification 

(http://mixomics-projects.di.uq.edu.au/Shiny). The details about steps followed for statistical 

analysis is explained in the respective result chapters. Both biomarker discovery and verification 

employed relative quantitation using internal standard chicken ovalbumin spiked at the step of 

sample denaturation. The common steps for GlycoSelector and Shiny mixOmics include, (i) 

uploading data, (ii) outlier detection, (iii) group binding difference analysis for GlycoSelector OR 

univariate statistical analysis including determination of AUROC for Shiny mixOmics, and (iv) 

Sparse partial least squares-discriminant analysis (sPLS-DA) for multivariate feature selection 

including stability assessment of a candidate using leave-one-out validation for GlycoSelector OR 

cross-validation for Shiny mixOmics.  

   

 

  

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
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Chapter 3. Serum glycoprotein biomarker discovery using LeMBA−GlycoSelector pipeline  

3.1 Introduction 

 Biomarker discovery is the first important step in the paradigm of biomarker discovery and 

development process (133, 356). In clinical practice, biomarkers can aid in prediction, cause, 

diagnosis, staging, regression, selection/monitoring of treatment or outcome of treatment for a 

disease (126, 357). The following considerations should be taken into account prior to biomarker 

discovery screen: (i) Unmet clinical need, (ii) rationale of using a particular class of biomolecule to 

be screened for biomarker purpose, (iii) biological sample to be used for screening, (iv) expected 

outcome of the screen. Usually clinical decisions are made not just based on one biomarker but it 

takes into consideration patient history, nature of illness and results from other available 

noninvasive medical imaging techniques, such as magnetic resonance imaging (MRI) and 

ultrasound (358). In the central dogma of molecular biology, DNA, RNA, protein or metabolite can 

serve as a biomarker candidate. The particular interest of using protein candidate as a biomarker 

candidate lies in the diversity of proteins found in the biology. The estimates suggest there are 

20,300 genes (359), 41,993 metabolites (360, 361) and 100,000 mRNA transcripts (358) present in 

a human being. Even with modest estimates considering the variety of post-translational 

modifications on proteins, the number of different protein species can easily be more than a million 

(362, 363). This enormous diversity of protein variants possesses an immense opportunity to 

identify biomarker candidates. At the same time, it is a challenge for available analytical 

methodologies to correctly identify and quantitate a specific protein variant in biological samples 

(358). 

 It is not surprising to know that protein biomarkers are already widely used in pathology 

laboratories to assist clinicians in decision making leading to better patient management hence 

improved health outcomes. Human plasma/serum has been described as the most comprehensive 

and complex proteome (362). It is a circulating representation of all body tissues and reflects both 

physiological and pathological processes. It is mainly composed of proteins secreted by solid 

tissues (mainly liver and intestine) that act in plasma, immunoglobulins, "long distance" receptor 

ligands that include classical peptide and protein hormones, "local receptor" ligands that include 

cytokines, temporary passengers e.g. lysosomal proteins that are secreted and then taken up via a 

receptor for sequestration in the lysosomes. It also contains tissue leakage products such as cardiac 

troponins, creatinine kinase, or myoglobin used in the diagnosis of myocardial infarction, secretions 

from blood or immune cells and foreign proteins e.g. protein originated from infectious organisms 
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or parasites (362). The remarkable progress in mass spectrometry, high-throughput antibody 

production, bioinformatics and biostatistics algorithms in the past couple of decades now enables 

the study of this complex plasma/serum proteome in a holistic manner (358). Almost half of the 

blood proteins are glycoproteins and it is a major contributor to the diversity of protein species 

observed/predicted in the serum/plasma proteome (362). As described in section 1.5.1.1 of the 

thesis, our laboratory recently developed LeMBA workflow which uses 20 naturally occurring 

glycan binding proteins lectins to enrich sub-glycoproteome from a serum sample. Here, LeMBA 

was combined with discovery proteomics platform and GlycoSelector data analysis pipeline for 

BE/EAC diagnostic biomarker discovery. 

3.1.1 Relative quantitation in proteomics based biomarker discovery pipeline 

 Three main steps in biomarker discovery pipelines are (i) sample preparation, (ii) mass 

spectrometric analysis for protein identification and quantitation, and (iii) data analysis. Sample 

preparation for glycoprotein biomarker discovery using LeMBA protocol is semi-automated, 

reproducible, and high-throughput hence suitable for screening enough number of patient samples 

required for biomarker discovery (317). Moreover, it uses serum sample as a source of biomarker 

discovery from beginning of the study (317, 318).   

 For mass spectrometry based discovery proteomics methods, the main objective is to 

identify as many candidates as possible in the sample with reliable relative quantitation approach to 

compare between different disease states. Two main approaches for protein identification exist 

based on mass spectrometry analysis (i) top-down proteomics (364-366), and (ii) bottom-up 

proteomics (367). Top-down proteomics aims for intact proteins and retain a lot of information 

about protein sequence, protein isoforms and post-translational modifications (364-366). Top-down 

proteomics of biological samples (e.g. serum) result in complex spectrum which is difficult to 

annotate hence limits the protein identification. On contrary, bottom-up proteomics is based on the 

identification of protein cleavage products (mainly peptides), and provide high sensitivity resulting 

into very high number of protein identifications in biological samples and remain the method of 

choice. Bottom-up proteomics involves the following steps: (i) protein digestion by proteolytic 

enzyme with known sequence specificity e.g. trypsin, (ii) peptide separation by LC, (iii) peptide 

ionization, (iv) peptide fragmentation, and (v) detection of mass-to-charge ratios (m/z) and 

abundance of peptide ions and their fragment ions (367). Two main types of modern day mass 

spectrometers are used for proteomics purposes. (i) Time-of-flight (TOF) analyzers combined with 

quadrupole for ion selection and electrospray ionization (ESI) source can provide high sensitivity, 
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high mass accuracy (2 to 5 ppm), high resolution (10,000 to 40,000 in MS1 and MS/MS modes 

respectively), and fast scan time (368). (ii) Combination of an Orbitrap analyzer with ion-trap for 

ion selection and ESI source provides high mass accuracy (1 to 5 ppm) in MS and MS/MS modes, 

resolution up to 240,000, and relatively fast scan speeds (369, 370). Latest instrument based on 

Fourier transform ion cyclotron resonance (LTQ-FTICR), offers capabilities of an Orbitrap with 

resolutions up to 750,000 (371, 372). 

 There are three main approaches for incorporating quantitation into biomarker discovery 

pipeline: (i) Metabolic and enzymatic labeling, (ii) chemical labeling, and (iii) Label-free 

quantitation. Stable isotope labeling with amino acids in cell culture (SILAC) is a common form of 

metabolic labeling whereby treated (experiment group) cells are grown in media containing heavy 

isotope-labeled (
13

C6 and 
15

N7) amino acids as compared to control cells which are grown in light 

isotope-lebaled (
12

C6 and 
14

N7) amino acids or vice versa. Upon more than 5 cell divisions in the 

respective media, these amino acids are incorporated into protein sequence during translation in the 

cells. Equimolar mixture of these cell lysates is mixed and analyzed by discovery proteomics 

methods using mass spectrometric analysis. The peptides from heavy labeled amino acids differ 

from light counterpart in terms of mass hence show mass shift in precursor ion m/z. The final result 

is reported in the form of ratio between heavy and light peptide levels (373). When 
18

O containing 

water (H2
18

O) instead of normal water (H2
16

O) is used during enzyme digestion, enzymatic labeling 

takes place. Exchange of two 
16

O atoms for two 
18

O atoms on C-terminal of peptides occurs which 

is observed in the form of mass shift of 4 Da (374). Chemical labeling can be accomplished using 

heavy or light isotope-labeled and chemically reactive tags. Example includes isotope-coded 

affinity tags (ICAT) that allow for labeling of cysteine residues in proteins with either heavy or light 

version, followed by affinity purification and mass spectrometric analysis to determine ratio of 

heavy and light isotope-labeled tags for quantification (375). Isobaric tags for relative and absolute 

quantification (iTRAQ) (376) or tandem mass tags (TMT) (377) produce reporter ions upon peptide 

fragmentation for quantitation and also allow multiplexing up to some extent. The limitation of 

metabolic or chemical labeling procedure is addition of one more step to already complex sample 

preparation workflow, with more chance for sample loss, inaccuracies and mix-ups. Moreover, 

labeling techniques are not plausible for screening many patient samples (358). Label-free 

quantitation offers a cheap alternative as opposed to labeling method, allows wider coverage of 

dynamic range, and suitable for screening large number of patient samples (378). Spectral counting 

or extracted ion chromatograms are two main options to implement label-free proteomics 

quantitation. It has also been demonstrated that addition of internal standard protein in complex 
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biological sample results into accurate relative quantitation using label-free proteomics workflow 

(378).  

 Most proteomics workflow generates list of peptides/proteins identified for each sample 

with some quantitative information. Many commonly used software tools can handle conventional 

proteomics data sets and spits out list of candidates that differentiate two groups being compared. 

Inclusion of 20 different lectin pull-down per sample to capture glycosylation differences adds one 

more dimension to LeMBA data sets hence development of appropriate data analysis platform is 

warranted. Generally multivariate approaches such as principal component analysis (PCA) and 

partial least squares (PLS) are employed for analyzing omics data sets (379). It is advisable to 

validate the multivariate analysis model using ideally an independent data set. In case when 

independent data is not available then internal validation such as leave-one-out or cross-validation 

approaches can be utilized (379, 380). 

 The aim of this chapter is to extend LeMBA workflow with development of GlycoSelector 

database incorporating statistical analysis pipeline. Using this LeMBA-GlycoSelector workflow, 

serum samples from healthy, BE and EAC patients were screened to identify diagnostic 

glycoprotein biomarker candidates. 

3.2 Experimental procedures 

3.2.1 Sample information 

 Serum samples from 29 patients (healthy - 9, BE - 10 and EAC - 10) were randomized 

across 8 plates in the given order for LeMBA pull-down and mass spectrometry analyses (Plate 1 - 

2, 30, 16, 24; Plate 2 - 14, 22, 8, 27; Plate 3 - 23, 3, 12, 9; Plate 4 - 10, 17, 28, 18; Plate 5 - 29, 6, 

19; Plate 6 - 13, 26, 4, 25; Plate 7 - 15, 5, 21, 1; and Plate 8 - 7, 11). Details regarding source of the 

serum samples is described in section 2.3. Table 3.1 contains information of the samples used for 

biomarker discovery. For categorical and numerical variables related to patient information, P 

values were calculated using Fisher's exact test and Kruskal-Wallis test respectively. Table 3.2 

summarizes clinical characteristics of the patient cohort for biomarker discovery. 

Table 3.1. Details of samples used for biomarker discovery. 

Sample 

number 

Mass 

spec run 

round 

GlycoSelector 

sample ID 

GlycoSelector 

run ID 

Study 

ID 

Patient 

phenotype 
Gender 

Ref 

age 

Protein 

(mg/mL) 

2 1 31 35 47024 SDH control M 43.02 80.63 
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Sample 

number 

Mass 

spec run 

round 

GlycoSelector 

sample ID 

GlycoSelector 

run ID 

Study 

ID 

Patient 

phenotype 
Gender 

Ref 

age 

Protein 

(mg/mL) 

3 1 32 36 45180 SDH control M 68.23 107.58 

4 3 52 56 43187 SDH control M 56.76 133.68 

5 2 45 49 92365 Population control M 76.46 67.92 

6 3 53 67 96191 Population control M 71.42 106.31 

7 3 54 58 94429 Population control M 56.72 94.80 

8 2 46 50 93411 Population control M 62.07 79.90 

9 1 33 37 95091 Population control M 66.35 88.01 

10 1 34 38 96190 Population control M 70.93 97.02 

1 2 44 48 43084 

SDH control (later 

on developed BE 

so classified as 

BE) 

M 67.81 65.57 

11 3 55 59 45004 BE no dysplasia M 76.07 87.17 

12 1 35 39 43026 BE no dysplasia M 72.19 99.81 

13 3 56 60 43004 BE no dysplasia M 72.81 106.76 

14 2 47 51 45052 BE no dysplasia M 78.07 83.86 

15 2 48 52 45050 BE no dysplasia M 33.91 86.92 

16 1 36 40 43113 BE no dysplasia M 55.95 107.58 

17 1 37 41 45137 BE no dysplasia M 39.07 82.68 

18 1 38 42 47007 BE no dysplasia M 55.10 83.46 

19 3 57 61 43115 BE no dysplasia M 56.64 77.16 

21 2 49 53 33100 EAC patient M 55.86 73.42 

22 2 50 54 33072 EAC patient M 56.53 106.63 

23 1 39 43 25017 EAC patient M 78.97 84.98 

24 1 40 44 61043 EAC patient M 65.25 81.84 

25 3 59 63, 68 25011 EAC patient M 65.97 67.40 

26 3 60 64 61040 EAC patient M 75.77 95.19 

27 2 51 55 21139 EAC patient M 69.74 97.71 

28 1 41 45 21113 EAC patient M 60.35 78.35 

29 3 61 65 40259 EAC patient M 66.78 70.72 

30 1 42 46 21233 EAC patient M 54.58 82.24 

Table 3.2. Clinical characteristics of the patient cohort for biomarker discovery.  

Variables Healthy BE EAC P value (Healthy vs 

BE vs EAC) 

Sample size 9 10 10  

Age (Median ± SD) 66 ± 10 62 ± 15 66 ± 8 0.9311 
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Variables Healthy BE EAC P value (Healthy vs 

BE vs EAC) 

Gender All male All male All male  

Protein concentration (μg/μL) 95 ± 19 85 ± 13 82 ± 13 0.3641 

Gastritis* 1 (11.1%) 1 (11.1%) 1 (10.0%) 1.0000 

Peptic ulcer 3 (33.3%) 2 (20.0%) 3 (30.0%) 0.8792 

Hiatus hernia 0 (0.0%) 4 (40.0%) 6 (60.0%) 0.0217 

Other malignancy 1 (11.1%)  2 (20.0%) 2 (20.0%) 1.0000 

*All the analyses were performed based on available patient information. Gastritis status for one BE patient was 

missing. 

3.2.2 LeMBA 

 LeMBA was performed as described in section 2.5. Figure 3.1 below display typical layout 

of a plate for LeMBA pull-down and mass spectrometry runs. The samples were run in following 

order on mass spectrometer: A1 to G1, A2 to G2, ....., and A12 to G12. 

 
1 2 3 4 5 6 7 8 9 10 11 12 

 
Sample 1 Sample 2 Sample 3 Sample 4 

A Ctrl WFA PSA Ctrl WFA PSA Ctrl WFA PSA Ctrl WFA PSA 

B NPL MAA SNA NPL MAA SNA NPL MAA SNA NPL MAA SNA 

C STL DSA LPHA STL DSA LPHA STL DSA LPHA STL DSA LPHA 

D UEA WGA JAC UEA WGA JAC UEA WGA JAC UEA WGA JAC 

E HAA SBA AAL HAA SBA AAL HAA SBA AAL HAA SBA AAL 

F HPA ECA EPHA HPA ECA EPHA HPA ECA EPHA HPA ECA EPHA 

G GNL BPL ConA GNL BPL ConA GNL BPL ConA GNL BPL ConA 

H Empty row 

Figure 3.1. Typical plate layout for LeMBA pull-down and mass spectrometric run for 

biomarker discovery. 

3.2.3 Nano-HPLC-MS/MS for biomarker discovery 

 After LeMBA pull-down and on-bead trypsin digestion, the peptide samples were 

resuspended in 20 µl of 0.1% v/v formic acid for HPLC-MS/MS (Agilent 6520 quadrupole time of 

flight [QTOF] coupled with a Chip Cube and 1200 HPLC). Optimal volume of sample injection for 

HPLC-MS/MS analysis was previously optimized: 9 μL were loaded for HAA, HPA and UEA, 6 

μL for NPL, STL, GNL, 5 μL for BPL, DSA, ECA, MAA, SBA, WFA, and WGA, 4 μL for AAL, 

SNA, LPHA, PSA and JAC, 1 μL for EPHA and ConA. The nano pump was set at 0.3 µL/min and 

the capillary pump at 4 µL/min. The HPLC-chip used contains 160 nl C1  trapping column, and 75 
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μm   150 mm 300 Å C18 analytical column (G4240-62010 Agilent Technologies). Buffer A was 

0.1% v/v formic acid and Buffer B was 90% v/v acetonitrile containing 0.1% v/v formic acid. 

Peptides were eluted from the column using a gradient from 6% B to 46% B at 45 min. Nano pump 

%B was increased to 95 %B at 45.5 min and plateaued till 55.5 min, then decreased to 6% B at 58.5 

min. The mass spectrometer was operated in 2 GHz extended dynamic range and programmed to 

acquire 8 precursor MS1 spectra per second and 4 MS/MS spectra for each MS1 spectra. Dynamic 

exclusion was applied after 2 MS/MS within 0.25 min. Exclusion for lectin peptides was applied as 

reported previously (317). The QTOF was tuned and calibrated prior to analysis. One hundred 

femtomole/μL of pre-digested bovine serum albumin peptides were used as quality control, before 

and after each plate. Levels of reference ions 299.2945 and 1221.9906 were maintained at minimum 

5000 and 1000 counts respectively. Blank injection was run after each sample injection to minimize 

sample carry over. After running each patient sample on mass spectrometer, long column clean-up 

was performed. The samples were run on mass spectrometer at three different time points. At each 

time point, similar number of patients from 3 patient groups were run to avoid possible bias arising 

from mass spectrometry analysis.  

3.2.4 Database search 

 The raw data was extracted and searched using Spectrum Mill MS proteomics workbench 

(Agilent Technologies, Rev.B.04.00.127) against Swissprot human database containing total 20,242 

entries (release 3
rd

 Jan 2012). Similar MS/MS spectra acquired on the precursor m/z within ± 1.4 

m/z and within ± 15 sec were merged. The following parameters were used for the search: 2 

maximum missed cleavages, minimum matched peak intensity of 50%, precursor mass tolerance of 

± 20 ppm, product mass tolerance of ± 50 ppm, calculate reversed database scores enabled and 

dynamic peak thresholding enabled. Carbamidomethylation was selected as fixed modification and 

oxidized methionine was selected as a variable modification. Precursor mass shift range from -17.0 

Da to 177.0 Da was allowed for variable modification. Results were filtered by protein score > 15, 

peptide score > 6, and % scored peak intensity (% SPI) > 60. Automatic validation was used to 

validate proteins and peptides with default settings and false discovery rates (FDRs) were calculated 

using reversed hits. The same data was searched once again against chicken ovalbumin sequence. 

3.2.5 Data normalization using internal standard chicken ovalbumin 

 To account for experimental variations between pull-downs and during the mass 

spectrometric analysis, 10 pmol ovalbumin per lectin pull-down was spiked in as an internal 

standard in the first step at the stage of sample denaturation. The intensities of at least three out of 
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seven ovalbumin peptides listed in Table 3.3 were used for normalization. Peptides were selected 

based on their ability to meet the following criteria: (i) peptide sequence should be unique to 

chicken ovalbumin, (ii) peptides being compared across samples should have the same charge, (iii) 

peptides being compared should have scores higher than 10 based on Spectrum Mill, and (iv) 

PrecursorAveragineChiSquared should be higher than 0.85 as suggested by Spectrum Mill. The 

intensities of ovalbumin peptides were extracted from Spectrum Mill. Lectins for which Spectrum 

Mill failed to identify at least 3 consistent peptides across all samples, ovalbumin peptides (mass 

over charge m/z) were extracted at MS1 level from the raw data acquisition files using Mass Hunter 

Qualitative Analysis B.05.00 and manually integrated to obtain abundance values. As intensities 

given from Spectrum Mill and the Qualitative software varied, only one out of two methods was 

chosen for each peptide. For each sample, all ovalbumin peptide intensities for all lectins were 

compiled into a single comma-separated value (.csv) file and uploaded to GlycoSelector. 

Normalization for each peptide was performed within GlycoSelector. Since each lectin binds to 

ovalbumin with different affinity, normalization was performed for each lectin separately across all 

samples. Two different normalization approaches were examined; (i) based upon total protein 

intensity whereby individual ovalbumin peptide intensity was summed to get the total protein 

intensity. This total protein intensity was then utilized to calculate the normalization factor or (ii) 

using individual ovalbumin peptide intensity whereby a normalization factor is calculated 

individually based on each peptide and averaged to derive the final normalization factor. Both 

methods gave comparable results, the second approach based on individual peptide intensity was 

considered for further analysis. 

Table 3.3. List of ovalbumin peptides selected for data normalization. 

Peptide sequence Charge m/z 
Delta 

m/z 
Lectin Name 

(K)ISQAVHAAHAEINEAGR(E) 3 591.9737 0.007 All lectins 

(K)AFKDEDTQAMPFR(V) 2 778.3669 0.008 

DSA, GNL, HAA, JAC, MAA, 

NPL, PSA, SNA, STL, WFA, 

WGA 

(K)LTEWTSSNVMEER(K) 2 791.3667 0.011 

AAL, BPL, ConA, ECA, 

EPHA, GNL, HPA, JAC, 

MAA, NPL, PSA, SBA, SNA, 

UEA, WFA, WGA 

(R)GGLEPINFQTAADQAR(E) 2 844.4261 0.019 

AAL, BPL, ConA, DSA, ECA, 

EPHA, GNL, HPA, JAC, 

LPHA, MAA, NPL, PSA, 

SBA, SNA, STL, WFA, WGA 
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Peptide sequence Charge m/z 
Delta 

m/z 
Lectin Name 

(R)NVLQPSSVDSQTAMVLVNAIVFK(G) 3 820.782 0.01 SBA, STL, WGA 

(R)VTEQESKPVQMMYQIGLFR(V) 3 762.0587 0.011 
EPHA, LPHA, MAA, NPL, 

PSA, STL, WFA, WGA 

(K)ISQAVHAAHAEINEAGR(E) 4 444.2327 0.004 All lectins 

3.2.6 GlycoSelector analysis 

 GlycoSelector (http://glycoselector.di.uq.edu.au), a customized web-based portal to store 

and analyze multidimensional LeMBA-MS/MS discovery data was developed to select a list of 

biomarkers for verification phase. The workflow of using GlycoSelector for data analysis is 

presented in Figure 3.2. GlycoSelector stores patient information including age, gender, unique 

hospital reference number and categorizes each patient according to their phenotype. For each 

patient, multiple sample runs could be stored. Each run is given a unique run ID and stored with 

informative details such as patient phenotype (normal/esophageal etc.), source of sample 

(tissue/serum/urine), and diagnosis (normal/benign/malignant etc.). This information is used to 

define patient groups for the downstream comparison/statistical analyses. As an input data file, 

GlycoSelector stores protein list file obtained through a Spectrum Mill search. This file contains the 

lectin name, list of proteins identified, along with the total intensity for each protein identified for 

every individual patient sample. An internal standard file is stored together with protein list file for 

each sample run. It contains abundance values for individual ovalbumin peptide to be used for data 

normalization. 

Figure 3.2. Steps followed for 

data analysis using 

GlycoSelector 

(http://glycoselector.di.uq.edu.a

u) platform for biomarker 

discovery. 

  

 

 

3.2.6.1 Group binding difference analysis  

 GlycoSelector was programmed with a feature called "group binding difference" to compare 

proteins identified in one group of patient samples and absent in another group for each lectin pull-

down. As the main purpose of the biomarker discovery phase is to identify candidate biomarkers for 

http://glycoselector.di.uq.edu.au/
http://glycoselector.di.uq.edu.au/
http://glycoselector.di.uq.edu.au/
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future verification, the criteria chosen for group comparisons were not very stringent. Lectin-protein 

combinations that were present in 60% of one patient group and absent in 40% of another group 

were selected. A comparison was made between healthy vs BE, BE vs EAC and healthy vs EAC 

patient cohorts.    

 An exclusion list of proteins was applied before group binding difference and statistical 

analysis in GlycoSelector. The exclusion list included common contaminant proteins like keratin, 

proteins like immunoglobulin and serum albumin which cannot be considered as biomarkers for 

clinical use hence eliminated from the analysis. 

3.2.6.2 Workflow for statistical analysis 

 The statistical tools for discovery and verification, namely GlycoSelector and Shiny 

mixOmics follow the same workflow. The first step is outlier detection, which aims to identify and 

therefore remove samples showing abnormally high or low protein intensities across many lectin 

pull-downs, thereby preventing any detrimental effect on downstream statistical analysis. Outliers 

may be due to improper sample handling, technical difficulties during mass spectrometric analysis, 

or due to batch/plate effect. Graphical outputs using unsupervised approaches, which do not take 

into account the patient phenotypes, were generated using lectin-protein intensities to visualize any 

potential outliers. Principal component analysis (PCA) (381) is a multivariate approach which 

highlights samples contributing to a large variance. Hierarchical clustering (using Euclidian 

distance and Ward agglomeration method) produces clusters amongst variables and samples that 

can be visually represented through a dendrogram on the left hand side (lectin-protein intensities) 

and the top (samples) of the heatmap, with red (green) color indicating low (high) intensities of the 

lectin-proteins. Boxplots of the scaled data enable to visualize the variability on each sample, and 

coefficient of variation for each sample across all lectin-proteins were calculated and represented in 

the form of barplots.   

 A supervised multivariate approach sparse partial least squares-discriminant analysis (sPLS-

DA) (382) was applied to select discriminative lectin-protein candidates able to classify patients 

into two different phenotypes. The approach outputs a selected ranked list of candidates per 

component along with sample representation to visualize the patient phenotypes. The method seeks 

for the best linear combination of lectin-proteins that can classify the sample into their respective 

groups. The model parameters (number of components in the model and number of variables to 

select on each component) are tuned using leave-one-out cross-validation (GlycoSelector) or 5-fold 

cross-validation repeated 1000 times (Shiny mixOmics). A stability measure that records the 
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frequency of each feature being selected across several data sets generated during the cross-

validation procedure. Candidates with high stability value (close to 100%) are robust biomarkers, as 

they are repeatedly selected across slight perturbations of the original data set. Only the robust 

lectin-protein candidates which passed an arbitrary cut-off of 70% were reported. Lectin-protein 

candidates that were not identified in more than 2/3
rd

 of the patient samples in at least one of the 

two groups being compared using sPLS-DA feature in GlycoSelector were eliminated from the 

analysis.  

3.3 Results  

3.3.1 LeMBA-GlycoSelector biomarker discovery pipeline 

 Prior to this study, Dr. Eunju Choi optimized LeMBA-nano-HPLC-MS/MS incorporating 

internal standard chicken ovalbumin at the very first step of sample preparation. As illustrated in the 

LeMBA workflow (Figure 1.6), serum samples were spiked with 10 picomole ovalbumin per lectin 

pull-down during sample denaturation. Internal standard chicken ovalbumin experimentally showed 

binding with all 20 lectins used in LeMBA. It was envisaged that total chicken ovalbumin intensity 

(sum of measured peptide intensity) can be used for normalization. Out of total 7 ovalbumin 

peptides listed in Table 3.3, anywhere between 3 and 7 peptides per lectin were selected for 

normalization e.g. 3 peptides for HAA while all 7 peptides for WGA. It was observed that amongst 

ovalbumin peptides qualified for using as an internal standard, raw peptide intensity varied in the 

magnitude up to 10 folds. This means that if total chicken ovalbumin intensity (sum of measured 

peptide intensity) is used for normalization then not all the peptides are given equal importance. In 

order to give equal weight to all the qualifying chicken ovalbumin peptide for purpose of internal 

standard normalization, second approach based on calculation of normalization factor using 

individual peptide was tried. As illustrated in Figure 3.3, normalization factor calculated by both 

approaches (i) based on total ovalbumin intensity and (ii) based on individual ovalbumin peptide 

intensity showed high correlation. The second approach based on individual peptide intensity was 

considered for further analysis as it gave equal weigh to individual peptides.  

Figure 3.3. Comparison of two normalization 

methods for biomarker discovery screen data. 

Normalization method 1 (Norm1) used the total 

protein intensity of ovalbumin protein (sum of 

minimum 3 individual peptide intensity) divided by 

the average total ovalbumin protein intensity of all 

samples for a particular lectin as normalization 

factor. Normalization method 2 (Norm 2) divided 

each ovalbumin peptide intensity with the average 
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peptide intensity across all samples for each lectin and has taken the average of at least 3 such 

normalization factors calculated for different ovalbumin peptides to determine final normalization 

factor. 

 To facilitate data analysis and biomarker candidate selection using LeMBA-MS/MS data, 

GlycoSelector database incorporating statistical analysis pipeline was developed. Prior to this 

thesis, Dr. Kim-Anh Lê Cao and Dr. David Chen with inputs from Dr. Eunju Choi created 

GlycoSelector which incorporated features like uploading raw LeMBA-MS/MS data including 

patient information, data normalization, outlier detection, group binding difference analysis and 

sPLS-DA. It was realized that along with multivariate feature selection using sPLS-DA, internal 

validation is required. So after several discussions with Dr. Lê Cao, leave-one-out cross-validation 

was incorporated into the statistical analysis pipeline and new GlycoSelector version was released. 

The leave-one-out cross-validation is repeated 1000 times by perturbation of original data set by 

leaving one sample out each time. The frequency of same feature selection across validation process 

is reported as a stability proportion where 100% (or stability value of 1) indicates selection of 

biomarker candidates all the time during cross-validation. Arbitrary cut-off of 70% was selected for 

the data analysis i.e. lectin-protein candidates showing stability proportion of more than 70% were 

selected for verification. On contrary to older version which used total ovalbumin intensity for data 

normalization, new GlycoSelector version uses normalization approach based on individual 

ovalbumin peptide intensity. Figure 3.2 illustrates steps followed to select lectin-protein biomarker 

candidates using GlycoSelector analysis.  

3.3.2 BE/EAC biomarker discovery 

 After inclusion of new features into GlycoSelector, serum samples from 29 patient samples 

were screened using LeMBA-GlycoSelector pipeline. Clinical characteristics of the patient cohort 

for biomarker discovery are described in Table 3.2. All samples were age matched and collected 

from male patients. BE and EAC patient groups had significantly higher proportion of patients with 

hiatus hernia compared to the healthy group, as has previously been reported (383), suggesting 

hiatus hernia to be a risk factor for BE/EAC. A total of 195 unique proteins were identified from the 

LeMBA-MS/MS screen. The glycoproteins bound several lectins suggesting heterogeneity and 

multiplicity of glycosylation. On average, 40 proteins per lectin pull-down were identified. Total 

number of proteins identified per lectin pull-down varied reflecting specificity of lectin-glycan 

interactions. HAA showed least binding (average number of proteins identified = 12) as compared 

to WGA which bound to maximum number of proteins (average number of proteins identified = 
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59). There was no difference between total number of proteins identified between healthy, BE and 

EAC patient groups (Figure 3.4). 

3.3.3 Glycoselector analysis 

 The results of main three steps followed using GlycoSelector data analysis platform are 

mentioned below.  

3.3.3.1 Outlier detection 

 The first step in GlycoSelector analysis is outlier detection using four different graphical 

visualization tools namely PCA, boxplots, hierarchical clustering, and barplots for coefficient of 

variation. Outlier may be due to improper sample collection and handling, differential sample 

preparation and LeMBA pull-down, technical difficulties during mass spectrometric analysis, or 

due to batch/plate effect. The main purpose of this analysis is to identify potentially an outlier 

sample run and to prevent its detrimental consequences on final statistical analysis.  

 When the outlier detection analysis was performed on biomarker discovery data set, sample 

run ID 63 was considered to be an outlier due to consistent anomalous results in all 4 graphical 

outputs (Figure 3.5A to 3.5D). This result was coincided with lower than cut-off scores and 

coverage for bovine serum albumin pre-digested quality control (QC) sample ran on mass 

spectrometer after the sample was run. The mass spectrometer was re-calibrated resulting into 

scores and coverage for QC above the threshold. The sample was analyzed again (run ID 68), 

resulting in no outliers being identified (Figure 3.5E to 3.5H). 

3.3.3.2 Group binding difference 

 A group binding difference feature identifies lectin-protein candidates present in one patient 

group and absent in the other. This feature was particularly useful for mass spectrometry data with 

many zeroes which either indicate a true absence of a protein in a sample, or the concentration was 

below the detection limit of the mass spectrometer. Lectin-protein candidates present in more than 

60% of one sample group but less than 40% of the other group and vice versa were identified. The 

analyses were performed comparing healthy vs BE, BE vs EAC and healthy vs EAC patient groups. 

The reason for choosing non-stringent cut-off for group binding difference analysis was to select as 

many candidates as possible for verification stage. Table 3.4 contains the list of biomarker 

candidates identified using group binding difference analysis. Total 37 unique lectin protein 

candidates were identified by this analysis. Except HAA, all 19 lectins appeared in the list and 

showed differential binding with one or more of 26 unique protein candidates. 
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Figure 3.4. Total number of proteins identified per individual lectin pull-down for each 

patient group for biomarker discovery screen. There was no statistical difference between the 

number of proteins identified between different phenotypes. The bar graph represents average 

(±SD) of total number of proteins identified for a particular lectin pull-down across patient samples. 
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Figure 3.5. Outlier detection feature of GlycoSelector allows the visualization of experimental 

errors using four different statistical tools. (A and E) Principal component analysis, (B and F) 

hierarchical clustering, (C and G) boxplots and (D and H) barplots representing the coefficient of 

variation. Unique numbers on the graph indicate the individual sample run identifier. Run number 
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63 (red arrow) in panel A to D was flagged as an outlier based on the visualization tools. The 

sample was re-analyzed on the mass spectrometer and outlier detection was performed again (panel 

E to H). 

Table 3.4. List of lectin-protein candidates identified using group binding difference analysis. 

The proteins are denoted using Uniprot accession numbers.  

Healthy vs BE BE vs EAC Healthy vs EAC 

AAL_P10909 AAL_P06396 GNL_P10643 AAL_P06396 EPHA_P02748 

AAL_P02747 AAL_O75636 HPA_P01042 JAC_P06396 GNL_P02746 

LPHA_P02774 GNL_P06396 LPHA_P01031 LPHA_P05090 HPA_P01042 

STL_P08519 JAC_P06396 LPHA_P02748 LPHA_P02774 HPA_P00450 

STL_O75636 JAC_P00748 SNA_P02748 PSA_P06396 HPA_P00747 

STL_P02765 LPHA_P05090 STL_P08519 STL_P06396 HPA_P00751 

AAL_O75636 PSA_P06396   STL_O75636 LPHA_P01031 

BPL_P0C0L5 SNA_P08697   UEA_P19823 LPHA_P02748 

EPHA_P02748 STL_P06396   WGA_P02746 MAA_P02748 

HPA_P00751 AAL_P02747   BPL_P0C0L5 NPL_P01008 

JAC_P00748 AAL_P10909   ConA_P02760 SNA_P02748 

NPL_P01008 ConA_P02760   DSA_P02748 WFA_P05546 

SBA_P04003 ECA_P00450   DSA_P04217   

SNA_P02743 GNL_P02746   ECA_P00450   

3.3.3.3 Statistical analysis 

 sPLS-DA combined with stability analysis based on leave-one-out validation was employed 

for multivariate feature selection. The methodology is unable to handle the dataset including many 

zero values. Hence lectin-protein candidates that were not identified in more than 2/3
rd

 of the patient 

samples in at least one of the two groups being compared were eliminated from sPLS-DA statistical 

analysis as they were already taken into consideration for group binding difference analysis. sPLS-

DA combined with stability analysis was performed to identify candidates that differentiate BE 

from healthy, EAC from BE and EAC from healthy phenotype. As illustrated in the sPLS-DA 

sample representation in Figure 3.6, top 100 lectin-protein candidates in the model, showed distinct 

clusters of samples according to their phenotype. To select the most consistent candidates across 

patients for taking to the second verification stage, stability analysis was employed, which utilizes a 

leave-one-out strategy to assess the robustness of each candidate biomarker. A relatively non-

stringent cut-off of 70% was chosen for this purpose. Out of the top 100 lectin-protein pairs, 57 

candidates passed the stability cut-off of 70% between healthy vs BE, 72 candidates passed for BE 
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vs EAC, and 76 candidates, passed for healthy vs EAC analysis (Figure 3.6). List of candidates 

identified using sPLS-DA along with stability values are presented in Table 3.5.  

 The summary of biomarker discovery screen results using GlycoSelector analysis is 

presented in Figure 3.7. Using sPLS-DA/stability analysis and group binding difference feature, the 

discovery screen identified 54 serum proteins with differential binding to one or more lectins 

between healthy, BE and EAC serum samples, resulting in a total of 183 unique lectin-protein 

combinations. Candidates identified using sPLS-DA and the group binding differences feature were 

complementary and showed no overlap between lectin-protein candidates, justifying the use of two 

different approaches for candidate selection. Each of the 20 lectins used in the biomarker discovery 

phase showed differential binding with at least one candidate protein glycoform, endorsing the use 

of multiple lectins for biomarker discovery (Figure 3.7A). There was considerable overlap between 

lectin protein candidates identified between healthy vs BE, BE vs EAC and healthy vs EAC patient 

groups (Figure 3.7B). 
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Figure 3.6. Results for sPLS-DA combined with stability analysis. (A), (C) and (E) Represent 

sPLS-DA plot for top 100 lectin-protein candidates. sPLS-DA differentiated (A) BE from healthy, 

(C) EAC from BE and (E) EAC from healthy phenotypes. Amongst these top 100 ranked lectin-

protein combinations identified using sPLS-DA, (B) 57 candidates for healthy vs BE, (D) 72 

candidates for BE vs EAC and (F) 76 candidates for healthy vs EAC passed the stability cut-off of 

70% based on leave-one-out cross-validation. 
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Table 3.5. Ranked list of lectin-protein candidates identified using sPLS-DA along with 

stability values. Proteins are represented using Uniprot accession numbers. 

Healthy vs BE BE vs EAC Healthy vs EAC 

sPLS-DA 

rank 

Candidate 

name 
Stability 

sPLS-

DA rank 

Candidate 

name 
Stability 

sPLS-

DA rank 

Candidate 

name 
Stability 

1 BPL_P01024 100.0% 1 STL_P02748 100.0% 1 EPHA_Q14624 100.0% 

2 NPL_P05155 100.0% 2 JAC_P00450 100.0% 2 MAA_Q14624 100.0% 

3 NPL_P19827 100.0% 3 PSA_Q14624 100.0% 3 EPHA_P00738 100.0% 

4 STL_P00450 100.0% 4 EPHA_Q14624 100.0% 4 JAC_P01031 100.0% 

5 EPHA_P01009 100.0% 5 WGA_P02765 100.0% 5 AAL_Q14624 100.0% 

6 STL_P04196 100.0% 6 AAL_Q14624 100.0% 6 WGA_P02765 100.0% 

7 JAC_P04004 100.0% 7 EPHA_P00738 100.0% 7 STL_P01031 100.0% 

8 PSA_P51884 100.0% 8 STL_P06681 100.0% 8 AAL_P02748 100.0% 

9 NPL_P01024 100.0% 9 HPA_P00747 100.0% 9 LPHA_P02765 100.0% 

10 NPL_P02774 100.0% 10 SNA_P02765 100.0% 10 SBA_P00738 100.0% 

11 ConA_P04114 100.0% 12 JAC_P00738 100.0% 11 STL_Q14624 100.0% 

12 NPL_P04217 100.0% 13 NPL_P02774 100.0% 12 STL_P08519 100.0% 

13 MAA_P01042 100.0% 14 NPL_P01031 100.0% 13 HPA_P08519 100.0% 

14 LPHA_P01009 100.0% 15 MAA_P00738 100.0% 14 HPA_P00734 100.0% 

15 STL_P10643 100.0% 16 SNA_P27169 100.0% 15 AAL_P01031 100.0% 

16 SNA_P04004 100.0% 17 BPL_P00738 100.0% 16 WGA_P03952 100.0% 

17 EPHA_P02760 100.0% 18 STL_P01031 100.0% 17 BPL_P00738 100.0% 

18 PSA_P0C0L5 100.0% 19 LPHA_P02749 100.0% 18 UEA_P01023 100.0% 

19 HPA_P08519 100.0% 20 AAL_P02748 100.0% 19 PSA_Q14624 100.0% 

20 NPL_P08603 100.0% 21 WGA_P02747 100.0% 20 NPL_P01031 100.0% 

21 EPHA_P02763 100.0% 22 WFA_P19823 100.0% 21 JAC_P00738 100.0% 

22 NPL_P02743 100.0% 23 LPHA_P00738 100.0% 22 PSA_P01031 100.0% 

23 LPHA_P04003 100.0% 24 JAC_P04003 100.0% 23 HAA_P01024 100.0% 

24 ConA_P0C0L5 100.0% 25 NPL_P19827 100.0% 25 SNA_P43652 100.0% 

25 WFA_Q5VTE0 94.7% 26 UEA_P01023 100.0% 26 LPHA_P01011 100.0% 

26 NPL_P02749 100.0% 27 NPL_P10643 100.0% 27 WGA_P02748 100.0% 

27 PSA_P02749 100.0% 28 UEA_P04196 100.0% 28 JAC_P00450 100.0% 

28 UEA_P62269 94.7% 29 JAC_P04004 100.0% 29 AAL_P02763 100.0% 

29 SNA_P08697 89.5% 30 JAC_P02765 100.0% 30 NPL_P02743 100.0% 

30 UEA_P04196 94.7% 31 LPHA_P01011 100.0% 31 AAL_P00738 100.0% 

31 NPL_P04196 100.0% 32 MAA_Q14624 100.0% 32 ECA_P00738 100.0% 

32 EPHA_Q14624 94.7% 33 NPL_P03952 100.0% 33 BPL_P01024 100.0% 

33 NPL_P02751 94.7% 34 WGA_P02748 100.0% 34 NPL_P02748 100.0% 

34 GNL_P03952 89.5% 35 SNA_P02743 100.0% 35 WGA_P06396 100.0% 

35 GNL_P02747 94.7% 36 SNA_P00738 100.0% 36 JAC_P02765 100.0% 

36 HPA_P04217 94.7% 37 NPL_P02765 100.0% 37 MAA_P10909 100.0% 

37 SBA_P01024 100.0% 38 JAC_Q14624 100.0% 38 MAA_P00738 100.0% 

38 NPL_P02787 94.7% 39 STL_Q14624 100.0% 39 ConA_P01008 100.0% 

40 NPL_P02790 89.5% 40 GNL_P02774 100.0% 40 SNA_P04004 100.0% 

41 NPL_P01011 94.7% 41 JAC_P01031 100.0% 41 NPL_P00450 100.0% 

42 STL_P06681 94.7% 42 JAC_Q7Z7A1 100.0% 42 NPL_Q14624 100.0% 

43 AAL_P04196 89.5% 43 STL_P10643 100.0% 43 DSA_P01031 100.0% 

44 HPA_P01009 84.2% 44 STL_P00738 100.0% 44 AAL_P0C0L5 100.0% 

45 DSA_P05546 89.5% 45 DSA_P00738 100.0% 45 GNL_P01031 100.0% 

46 ConA_P04004 89.5% 46 ConA_P02765 100.0% 46 LPHA_Q14624 100.0% 

47 STL_P02748 84.2% 47 UEA_P04275 100.0% 47 STL_P02748 94.7% 

49 PSA_P04217 79.0% 48 NPL_P02787 100.0% 48 ConA_P01011 100.0% 
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Healthy vs BE BE vs EAC Healthy vs EAC 

sPLS-DA 

rank 

Candidate 

name 
Stability 

sPLS-

DA rank 

Candidate 

name 
Stability 

sPLS-

DA rank 

Candidate 

name 
Stability 

50 ConA_P01023 73.7% 49 AAL_P01011 100.0% 49 UEA_Q969X6 89.5% 

51 AAL_P02751 79.0% 50 AAL_P00738 100.0% 50 AAL_P01011 100.0% 

52 AAL_P0C0L5 73.7% 51 AAL_P04196 100.0% 51 EPHA_P01011 100.0% 

53 ConA_P04003 73.7% 52 SNA_P10909 100.0% 52 WGA_P19823 89.5% 

54 ConA_P01011 89.5% 53 DSA_Q14624 100.0% 53 SNA_P02765 94.7% 

55 SBA_P01023 84.2% 54 MAA_P02790 100.0% 54 ConA_P02765 94.7% 

60 NPL_P01023 79.0% 55 STL_P00450 90.0% 55 PSA_P00738 100.0% 

61 GNL_P00751 73.7% 56 WFA_P02765 100.0% 56 PSA_P02765 100.0% 

65 ConA_P02749 84.2% 57 SNA_P43652 100.0% 57 EPHA_P02763 100.0% 

66 NPL_P06396 73.7% 60 JAC_P02748 90.0% 58 WGA_P00738 100.0% 

   
61 AAL_P02763 85.0% 59 WGA_P01009 100.0% 

   
62 DSA_P01023 85.0% 60 EPHA_P01031 100.0% 

   
63 ECA_P04004 85.0% 61 ConA_P00747 100.0% 

   
64 NPL_P01008 75.0% 62 AAL_P04217 100.0% 

   
65 DSA_P02760 80.0% 63 WFA_P01023 84.2% 

   
66 NPL_P19823 80.0% 64 UEA_P04196 84.2% 

   
67 WGA_P05090 80.0% 65 UEA_Q5VTE0 89.5% 

   
69 EPHA_P01023 70.0% 66 NPL_P00738 100.0% 

   
70 PSA_P02765 70.0% 67 EPHA_P01009 84.2% 

   
73 MAA_P05546 70.0% 69 PSA_P0C0L5 73.7% 

   
74 STL_P0C0L5 80.0% 70 BPL_P19823 79.0% 

   
76 MAA_P10909 75.0% 71 ConA_P00738 84.2% 

   
77 NPL_P06396 70.0% 72 GNL_P02748 89.5% 

   
79 JAC_P01011 80.0% 73 SNA_P00738 84.2% 

   
81 HPA_P00738 70.0% 75 LPHA_P00738 73.7% 

      
76 ConA_P05546 79.0% 

      
79 JAC_Q14624 73.7% 

      
84 JAC_P01011 89.5% 

      
86 HPA_P01011 79.0% 

Figure 3.7. 

Summary of 

biomarker 

discovery 

results. (A) 
Number of 

unique candidate 

proteins 

identified for 

each lectin in 

LeMBA-

GlycoSelector 

analysis. All 20 

lectins used for 

screening 

identified at least 

one protein candidate. (B) Overlap between lectin-protein candidates that differentiate BE from 

healthy, EAC from BE, and EAC from healthy phenotype.   
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3.3.4 LeMBA-western immunoblotting validation for top two candidates  

 Immunoblotting was used for orthogonal protein level confirmation of the LeMBA-MS/MS 

screen. Two protein candidates which showed altered binding to Aleuria aurantia lectin (AAL) and 

had antibodies available were chosen for protein level validation. AAL-haptoglobin (HP; Uniprot 

entry: P00738) was one of the top ranked candidates in sPLS-DA analysis for healthy vs EAC and 

BE vs EAC, while AAL-gelsolin (GSN; Uniprot entry: P06396) was identified using the group 

binding difference feature of GlycoSelector as on-off change between BE vs EAC and healthy vs 

EAC. Using the same set of discovery serum samples, LeMBA pull-down using AAL was 

performed. Haptoglobin and gelsolin binding was measured by immunoblotting in AAL pull-down. 

A control serum sample was loaded on every blot as a normalizer between membranes. LeMBA-

immunoblotting confirmed the MS/MS results (Figure 3.8), and showed higher sensitivity as it 

detected low levels of gelsolin in all patient samples, when some were undetectable by MS/MS 

[AAL-HP: label-free proteomics P value = 0.0868, western immunoblotting P value = 0.0267; 

AAL-GSN: label-free proteomics P value = 0.0254, western immunoblotting P value = 0.0019].   

Figure 3.8. Protein level 

validation for top two 

candidates using LeMBA-

western immunoblotting. 

(A) AAL-HP and (B) AAL-

GSN were the top two 

candidates identified using 

sPLS-DA and group binding 

difference tool, respectively. 

(A and B, top panel) 
Label-free proteomics 

relative quantitation results 

for AAL-HP and AAL-GSN 

respectively. (A and B, 

lower panel) Normalized 

intensity for AAL-HP and 

AAL-GSN using 

immunoblotting.   
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3.3.5 Lectin binding profile of candidates under different scenarios 

 Changes in the total glycoprotein candidate levels and/or a subtle change in the glycan 

structure may directly/indirectly induce a change in the binding pattern of lectins and create a lectin 

binding profile for each glycoprotein biomarker candidate. Figure 3.9 illustrates lectin binding 

profile of three such candidates namely haptoglobin (Figure 3.9A), gelsolin (Figure 3.9B) and α-2-

macroglobulin (A2M; Uniprot entry: P01023) (Figure 3.9C). For simplicity, only 8 out of total 20 

lectins are mentioned in the Figure 3.9. Haptoglobin was identified by sPLS-DA combined with 

stability analysis and showed differential binding with multiple lectins for BE vs EAC (EPHA, 

JAC, MAA, BPL, LPHA, SNA, STL, DSA, AAL, and HPA) and healthy vs EAC (EPHA, SBA, 

BPL, JAC, AAL, ECA, MAA, PSA, WGA, NPL, ConA, SNA, and LPHA) comparisons (Figure 

3.9A). For all the lectin pull-downs, as compared to healthy and BE patient groups, EAC samples 

showed higher levels of haptoglobin. This may be due to changes in the total protein levels of 

haptoglobin. Gelsolin was identified using the group binding difference analysis. It showed 

differential lectin binding for BE vs EAC (AAL, GNL, JAC, PSA, and STL) and healthy vs EAC 

(AAL, JAC, PSA, and STL) analysis (Figure 3.9B). Unlike haptoglobin which showed increased 

lectin binding in EAC samples, gelsolin showed reduced binding. In fact, gelsolin was not identified 

during the mass spectrometric analysis specifically in EAC patient sample lectin pull-downs which 

suggest that gelsolin was either absent in the samples or more likely it was present just below the 

detection limit of the mass spectrometer. Like haptoglobin, α-2-macroglobulin was identified using 

sPLS-DA combined with stability analysis. It showed differential binding with multiple lectins for 

all three, healthy vs BE (ConA, SBA, and NPL), BE vs EAC (UEA, DSA, and EPHA) and healthy 

vs EAC (UEA and WFA) comparisons (Figure 3.9C). The lectins with which it showed differential 

binding are different between all three comparisons suggesting progressive changes in glycosylation 

from healthy-BE-EAC development. A2M showed no difference between healthy, BE and EAC 

patient groups for AAL, JAC, and MAA lectin pull-downs. DSA-A2M was statistically 

significantly different between BE and EAC patient groups while UEA-A2M was significantly 

different in EAC patients as compared to healthy and BE patients. For the remaining lectin pull-

downs using EPHA, NPL and WFA, A2M was different according to sPLS-DA analysis but could 

not achieve statistical significance. It is noteworthy that although UEA and AAL lectin bind to 

similar glycan structure i.e. fucose, only UEA showed statistically significant differential binding 

with A2M while AAL showed no difference suggesting differential specificity of the lectins from 

the similar class to recognize the glycan structures.  
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Figure 3.9. Lectin binding signature of putative glycoprotein biomarker candidates. Log 

transformed normalized total intensity from LeMBA-GlycoSelector biomarker discovery screen for 

three candidates (A) haptoglobin, (B) gelsolin, and (C) α-2-macroglobulin is plotted against 8 
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different lectin pull-downs for all 29 samples belong to healthy, BE and EAC patient groups (
#
P < 

0.05 for BE vs EAC comparison; 
$
P < 0.05 for healthy vs EAC comparison).  
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3.4 Discussion 

3.4.1 Overview 

 This chapter describes identification of serum glycoproteins that show differential binding 

with one or more lectins between healthy, BE and EAC patient groups. Serum samples from 

healthy, BE and EAC patient samples were processed using LeMBA-LC-MS/MS workflow. 

GlycoSelector was upgraded with new normalization method and statistical analysis pipeline was 

modified to include internal validation in the form of stability analysis. GlycoSelector analysis 

identified total 183 unique lectin-protein pairs as potential diagnostic biomarker candidates. Mass 

spectrometric quantitation at peptide level was validated for top two candidates at protein level 

using western-immunoblotting. 

3.4.2 LeMBA-GlycoSelector biomarker discovery pipeline 

 Label-free quantitation was chosen for quantifying LeMBA results (317). Out of two main 

label-free approaches, (i) protein-based methods rely upon spectral count and related indices, and 

(ii) peptide-based methods rely upon ion intensities and protein correlation profiling (384), the latter 

was chosen for LeMBA workflow (317). Protein-based quantitation approaches using spectral count 

can be universally applied for diverse proteomics data sets. The main limitation of this approach is 

its limited applicability to relatively quantify proteins with few numbers of spectra. This situation 

arises in following two scenarios. (i) Very low abundance proteins yield only a few spectra, and (ii) 

Low molecular weight proteins result in fewer tryptic peptides hence only a few spectra (384, 385). 

On the contrary, peptide-based methods such as total ion intensities can cover extended dynamic 

range of quantitation (385). Peptide-based methods use MS/MS spectra from the discovery 

proteomics experiments to assign/identify a peptide sequences. The height or volume of a peak for 

each peptide ion is calculated by extracting a given m/z from corresponding MS spectrums and used 

for quantitation (384). Using this peptide-based intensities, Spectrum Mill search engine calculates 

mean and total protein intensities for each protein species. Earlier work by Dr. Choi and Dr. Lê Cao 

concluded that total protein intensity offers better quantitation over mean protein intensity (Dr. 

Eunju Choi, PhD thesis). 

 GlycoSelector data analysis platform uses sPLS-DA for multivariate analysis and to rank 

lectin-protein biomarker candidates. sPLS-DA cannot perform at its best when there are lots of zero 

values (when missing values are considered to be 0) which is the case for LeMBA-LC-MS/MS data. 

So during sPLS-DA analysis, cut-off was set to remove variables with many zero values. The 

removed variables with many zero values were separately analyzed using group binding difference 
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feature. Biomarker exploratory studies such as the one described in the present chapter analyze 

large number of variables in limited number of patient samples (133, 356). Considering its design, 

biomarker discovery studies are prone to false discovery due to low sample size and large number 

of variables analyzed. To keep the false discovery rate to minimum and to find out stable variables, 

leave-one-out cross-validation (386) was employed during sPLS-DA. 

 The result described in this chapter demonstrates the successful application of LeMBA-

GlycoSelector pipeline to discover diagnostic biomarker candidates for BE/EAC. Firstly, the assay 

is robust with % CV for the internal standard ovalbumin peptides below or around 40% for all the 

lectin pull-downs. Similar levels of variations have been observed by Plavina and colleagues in the 

multi-lectin chromatography platform they developed for plasma protein biomarker discovery 

(387). Compared to other established assays, the variation for internal standard appears to be high 

mainly because mass spectrometry technique employed was semi-quantitative. Secondly, the assay 

was consistent and reproducible, as demonstrated by similar number of protein candidates identified 

for each lectin pull-down across different patient samples. Thirdly, the outlier detection analysis 

successfully identified the outlier present in the dataset due to technical problem during the mass 

spectrometric run. Collectively, these three steps/results ensure that data acquired is of good enough 

quality for subsequent statistical analysis.  

 The tools incorporated in the GlycoSelector aimed to identify as many candidates as 

possible hence the criteria chosen to select a list of biomarkers were lenient. Out of total 54 unique 

glycoprotein candidates, 3 were identified by group binding difference analysis only, 28 identified 

by sPLS-DA analysis only and 23 by both sPLS-DA and group binding difference analysis. The 

complementary results justify the use of two methods for biomarker identification. 

3.4.3 Lectin binding signature of biomarker candidate 

 The glycoprotein biomarker candidates showed differential binding with one or more lectins 

under one of three possible scenarios. (i) Total glycoprotein level changes in the serum lead to 

overall increased/decreased binding with multiple lectins e.g. haptoglobin (Figure 3.9A). (ii) 

Changes in the glycan occupancy at a particular glycosylation site lead to differential binding with 

multiple lectins e.g. gelsolin (Figure 3.9B). (iii) Differential expression of a specific glycan 

structure altered binding of a glycoprotein to a particular lectin or a group of lectins (Figure 3.9C). 

Proof-of-concept LeMBA work published earlier suggested changes in the binding of glycoproteins 

with multiple lectins by neuraminidase treatment (317). Neuraminidase is an enzyme which cleaves 

the glycosidic linkages involving sialic acid residues. As expected, neuraminidase treatment led to 
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reduced binding of serum proteins with sialic acid binding lectins namely SNA and MAA. In 

addition, neuraminidase treatment led to considerable increase in binding of serum proteins with 

mannose, fucose and complex glycan structures binding lectins (317). Based on this it was proposed 

that disease related glycosylation changes will result in a differential binding of candidate 

glycoprotein with multiple lectins (lectin signature) due to impaired three-dimensional structure 

(317). Although many glycoprotein candidates identified in the biomarker discovery showed 

differential binding with multiple lectins, none of the candidates showed similar changes observed 

in the proof-of-concept work i.e. none of the candidate identified showed increased binding with 

one lectin and reduced binding with other lectins when comparing two different phenotypes. This 

suggests that the phenomena observed in the proof-of-concept work requires dramatic changes in 

the glycosylation, possible only with controlled experiments such as neuraminidase treatment as 

compared to subtle changes observed in the lectin binding between healthy, BE and EAC 

phenotypes.  

 Haptoglobin is a positive acute-phase hemoglobin scavenging protein primarily produced by 

liver in the body. It is a heterotetramer and consists of two α and two β chains. Haptoglobin binds 

free hemoglobin (388). The haptoglobin-hemoglobin complex is rapidly cleared by monocytes and 

macrophages via CD163 receptors present on their cell surface (389). The β Chain of haptoglobin 

harbor four sites for N-linked glycosylation and mainly express complex type glycans (390). 

Aberrant fucose and sialic acid expressing haptoglobin in serum has been demonstrated as potential 

biomarker for various cancers such as colon cancer (391), hepatocellular carcinoma (392), prostate 

cancer (393), and pancreatic cancer (394, 395). It would be interesting to study impact of this 

differential glycosylation on its functions mainly hemoglobin binding. The detailed mechanism of 

increased fucosylation of haptoglobin in pancreatic cancer is well studied. Apart from hepatocytes, 

pancreatic cancer cells themselves and infiltrating lymphocytes around pancreatic cancers express 

fucosylated haptoglobin (394). Mutations in oncogenic Ras are associated with pancreatic cancer 

(396). Activation of oncogenic Ras leads to expression of pro-inflammatory cytokine IL-6 (397) 

which exhibits two fold effects. IL-6 can induce expression of haptoglobin and it also up-regulates 

machinery related to fucosylation process resulting in increased serum fucosylated haptoglobin 

levels (394).  

 Gelsolin was not known to be glycosylated until very recently when Ma and colleagues 

using novel glycosite profiling strategy identified Asn at position 118 in the gelsolin sequence to be 

glycosylated (343). However, the detail glycan structure of gelsolin is remained to be characterized. 

In this biomarker discovery screen, gelsolin was identified in multiple lectin pull-downs (AAL, 
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DSA, EPHA, GNL, JAC, LPHA, MAA, NPL, PSA, SNA, STL, WFA, and WGA). Based on this 

result, it is very likely that gelsolin express complex type glycan structure. Gelsolin is a villin 

family member and exists in two forms namely plasma (mainly expressed by muscle cells) and 

cytoplasmic (ubiquitously expressed). It is a Ca
+2

 regulated actin filament severing, capping, and 

nucleating protein (398). Serum gelsolin levels are found to be low in patients with acute liver 

failure, myocardial infarction, sepsis, myonecrosis (399), and rheumatoid arthritis (400). Some of 

these pathological conditions involve tissue necrosis which causes release of actin. Free actin is 

neutralized by binding with gelsolin and these actin-gelsolin complexes are cleared by 

reticuloendothelial system leading to low levels of gelsolin in circulation (399, 401-403). 

Irrespective of the disease condition, low gelsolin levels is a marker of poorer patient prognosis 

(403). Cytoplasmic gelsolin has been found to be down-regulated in variety of cancers namely 

breast, colorectal, gastric, bladder, lung, prostate, kidney, ovarian, pancreatic, and oral cancers 

(398). As compared to cytoplasmic gelsolin, much less is known about plasma gelsolin. So once 

gelsolin is verified in an independent patient cohort, it would be interesting to characterize gelsolin 

glycan structure and its impact on function.   

 α-2-macroglobulin is a relatively large tetrameric molecule containing multiple 

glycosylation and cross-linking sites (404, 405). It is expressed by multiple cell types such as lung 

fibroblasts, monocytes, macrophages, hepatocytes, astrocytes and adrenocortical cells (404). Apart 

from rapid neutralization of proteinases released during tissue injury which is a primary function of 

A2M, presence of multiple reactive sites enable it to carry out secondary functions like binding, 

transportation and targeting of many biomolecules such as cytokines, hormones, and lipids (406). 

Due to its very complex physiological roles, it is not surprising to know that A2M level is altered in 

a variety of pathological conditions such as pancreatic cancer, rheumatoid arthritis, chronic liver 

disease, inflammatory joint disease, multiple sclerosis, myocardial infarction, pancreatitis and 

nephrotic syndrome etc (406, 407). From the A2M lectin binding signature between healthy, BE 

and EAC patients it is plausible that A2M is undergoing differential glycosylation without major 

changes at the total protein levels. 

 Collectively, lectin binding signatures for these three representative glycoprotein candidates 

suggest possible scenarios of differential lectin binding for the biomarker candidates identified. It is 

important to note that all three protein candidates mentioned vary significantly in terms of their 

molecular size with haptoglobin being smallest (42 kDa) and α-2-macroglobulin being largest (750 

kDa) while gelsolin being intermediate (90 kDa). Furthermore, gelsolin, haptoglobin and α-2-

macroglobulin contain 1, 4, and 8 known glycosylation sites suggesting LeMBA workflow is 
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applicable across heterogeneous species. Albeit at this moment it remained to be determined what 

are the exact glycosylation structures responsible for differential binding with the lectin-beads used 

in the LeMBA workflow. 

3.4.4 Protein level validation of mass spectrometric data        

 Many protein biomarker discovery workflows identify low abundant proteins as potential 

biomarker candidates using sophisticated sample preparation and proteomics technologies. Even 

though the candidates identified exhibit very high performance during the initial discovery stages, 

they are not suitable for further stages of biomarker development due to lack of high quality 

capture/detection affinity reagents such as antibodies required for assay development (408). 

Proteins identified in the LeMBA pull-down are medium to high abundant serum proteins for which 

well characterized antibodies are readily available commercially. Using the antibodies against two 

proteins, haptoglobin and gelsolin, two lectin-protein biomarker candidates were successfully 

validated. For AAL-HP, protein level validation using western immunoblotting showed very similar 

results as compared to mass spectrometric quantitation based on peptide level. AAL-GSN was 

identified using group binding difference analysis meaning gelsolin was not identified for many 

patient samples in AAL pull-down. Western immunoblotting results showed the presence of 

gelsolin in AAL pull-down for all patient samples although at lower levels and confirmed 

significant difference between EAC samples as compared to healthy and BE phenotypes. The total 

protein level changes in the glycoprotein candidates, if any, can be easily tested using 

unenriched/non-lectin bound sample approaches using techniques like LC-MS/MS, enzyme-linked 

immunosorbent assay (ELISA) or western immunoblotting. 

 In summary, this chapter describes identification of a list of lectin-protein diagnostic 

biomarker candidates using LeMBA-GlycoSelector pipeline. The next phase of this project went on 

to verify these candidates using targeted proteomics approach in an independent patient cohort.    
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Chapter 4. Development and validation of multiple reaction monitoring-mass spectrometry 

(MRM-MS) assay  

4.1 Introduction 

 Cancer biomarker discovery and development pipeline is formally divided into five phases 

(133). The goal of initial stages of biomarker discovery is to identify as many candidates as possible 

by screening relatively few numbers of clinical samples. Moving forward to later stages of 

development, the aim is to monitor a panel of biomarkers, packaged in the form of an in vitro 

diagnostic test (IVD), in large scale multi-center clinical trial to evaluate actual diagnostic 

performance in clinical setting (133, 356, 409). In the previous chapter, serum samples from 29 

patient samples were screened using LeMBA-GlycoSelector pipeline with a total 183 lectin-protein 

candidates discovered as potential biomarker candidates to distinguish between healthy, BE and 

EAC phenotype. The discovery proteomics technique employed in Chapter 3 is semi-quantitative. 

For biomarker verification, the aim is to screen relatively larger cohort of patient samples using 

targeted method which is quantitative, reproducible, rapid, and cost-effective. Multiple reaction 

monitoring-mass spectrometry (MRM-MS) has emerged as a preferred methodology for precise and 

accurate quantification of 10s to 100s of proteins in very short duration (410-413). The aim of this 

chapter is therefore to develop and validate MRM-MS assay for the glycoprotein candidates 

identified in Chapter 3.  

 Traditionally, antibody based methodologies have been extensively used for protein 

quantitation in complex backgrounds. As an example, enzyme-linked immunosorbent assay 

(ELISA) relies mainly on specificity of antibodies to recognize a particular protein epitope. 

According to Antibodypedia (http://www.antibodypedia.com/) (414), more than a million 

antibodies are now commercially available against 92% of the human genome. However, not all of 

these antibodies are of quality to be used for biomarker verification or in a diagnostic assay and the 

cost to screen the 100s of biomarker candidates using antibody based assay will be enormous. To 

monitor glycosylation status of a glycoprotein biomarker candidate, either capture or detection 

antibody in ELISA can be replaced with a particular lectin of interest. The lectin-antibody based 

assays are developed in a wide variety of formats using diverse chemistries for read-out e.g. 

antibody-overlay lectin microarray (ALM) (415), lectin-overlay antibody microarray (LAM) (416), 

lectin immunosorbent assay (417, 418), or AlphaLISA assay (419). Irrespective of chemistry of 

detection or assay platform, antibodies based assays lack multiplex capabilities and are unable to 

quantify 10s to 100s of protein analytes in a single assay, which is a primary requirement for 
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biomarker verification screen. Hence although antibody based methods are very precise, sensitive, 

and high-throughput, they are best suited for clinical laboratory but not for purpose of biomarker 

verification in research laboratories which requires quantitation of 10s to 100s of proteins (356). 

Earlier, it has been established that LeMBA platform is sensitive, high-throughput, semi-automated 

and able to meet the demand for sample preparation required for biomarker verification phase 

(317). When combine with powerful targeted proteomics technique such as MRM-MS, it can be 

used for biomarker verification. 

4.1.1 Multiple reaction monitoring-mass spectrometry (MRM-MS) 

 Multiple reaction monitoring-mass spectrometry (MRM-MS) has emerged from selected 

reaction monitoring (SRM) which was developed as targeted mass spectrometry technique to 

monitor mainly small molecules such as xenobiotics, metabolites or drugs (413). MRM-MS is 

usually coupled with liquid chromatography for best results whereby the chromatographic system is 

directly connected in-line with electrospray ionization (ESI) end of the mass spectrometer (Figure 

4.1). In a typical workflow (Figure 4.1), proteolytic digest of the complex biological sample is 

separated using liquid chromatography followed by ionization of the analytes. The ionized peptides 

undergo selection and fragmentation inside triple quadrupole mass spectrometer and fragmented 

ions are guided to electron multiplier detector which records the signal in digital format. The 

selection of ions occurs at two levels to provide assay specificity. (i) Precursor ions are gated in the 

first mass analyzer (Q1) which then undergoes fragmentation inside the collision cell (Q2) and (ii) 

resulting product ions are specifically selected inside the second quadrupole (Q3). The pair of 

precursor-product ion is called transition. The mass spectrometric data acquisition technology has 

improved remarkably in past few years. Modern day instruments allow repeated and sequential 

monitoring of several transitions that is fast as compared to chromatographic elution of an analyte 

(up to 200 transitions for 6490 triple quadrupole mass spectrometer, Agilent Technologies). These 

results in counts of number of fragment ions (also called intensity) in chromatographic time scale 

for several transitions that allow quantification of multiple analytes. 

 The major steps for configuring MRM-MS assays include (i) selection of peptides which are 

unique for the protein candidates and not shared with other proteins, (ii) selection of transitions for 

each peptide that do not show any interference (generally multiple product ions from same 

precursor ion are monitored), and (iii) determination of retention time to allow mass spectrometer to 

scan for a particular set of transitions in defined retention time window for improved multiplexing. 

Development of open-source software tool Skyline (http://skyline.maccosslab.org/) by MacLean 
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and colleagues of University of Washington is considered to be one of the key advancement in the 

field of targeted proteomics (420). Skyline is vendor neutral software that provides support not only 

for selecting peptides and optimization of transitions but also for downstream data analysis (420). 

 This chapter describes development of MRM-MS assay for candidates identified in Chapter 

3 for biomarker verification, including characterization of assay linearity and reproducibility.     

 

Figure 4.1. A typical workflow of LC-MRM-MS. The complex peptide mixture resulting from 

proteolytic digest of biological sample undergoes separation using reverse phase liquid 

chromatography. The LC is connected in-line with triple quadrupole mass spectrometer with 

electrospray ionization (ESI) interface. The molecular ions of a peptide of interest are selected in 

Q1 and fragmented in Q2 (Collision cell). The resulting product ions undergo selection in Q3 and 

travel to the electron multiplier detector which counts number of target fragments over a time 

resulting in MRM trace for each transition. Adapted from Picotti P. and Aebersold R. (411). 

4.2 Experimental procedures 

4.2.1 Comparison between nano-flow and standard-flow MRM-MS 

 Two instruments 1260 HPLC coupled with 6490 triple quadrupole mass spectrometer 

(Agilent Technologies, nano-flow HPLC-MRM-MS) and 1290 UHPLC coupled with 6490 triple 

quadrupole mass spectrometer (Agilent Technologies, standard-flow UHPLC-MRM-MS) were 

compared by running human serum albumin (HSA) peptides standard mix (Agilent Technologies, 

#G2455-85001). Peptide sequence LVNEVTEFAK (Transitions 575.3  937.5 and 575.3  

694.4; @ Collision energy (CE) 20 eV) was monitored. LC and mass spectrometer parameters for 

nano-flow and standard-flow MRM-MS are mentioned below.     

4.2.1.1 Nano-flow HPLC-MRM-MS parameters 

Chip detail: Polaris-HR-Chip-3C1  (G4240-62030, Agilent Technologies) contained 360 nl 

enrichment column and 75 μm   150 mm analytical column packed with Polaris C18-A, 1 0 Å, 3 μm 

stationary phase. 

LC parameters: 

Buffer A = 0.1% formic acid, Buffer B = 90% acetonitrile containing 0.1% formic acid 
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Capillary (loading) pump flow rate = 2.0 μL/min, Nano (analytical) pump flow rate = 0.3 μL/min 

LC gradient: 

Capillary pump Nano pump 

Time (min) Solvent % B Time (min) Solvent %B 

0.0 min 5% 0.0 min 3% 

0.5 min 5% 7.0 min 65% 

6.5 min 50% 7.5 min 95% 

7.0 min 5% 9.5 min 95% 

Stop time = 15 min 5% 10.5 min 3% 

  Stop time = 15.0 min 3% 

Chip cube parameter: 

Change inner valve position to enrichment = 11.0 min 

Source parameters: 

Gas temperature = 150 ˚C, Gas flow rate = 11 L/min, Capillary voltage = 1900 V       

4.2.1.2 Standard-flow UHPLC-MRM-MS parameters 

Column detail: ZORBAX Rapid resolution high definition Eclipse plus C18 2.1     50 mm, 1.8 µm 

(959757-902, Agilent Technologies) 

LC parameters: 

Buffer A = 0.1% formic acid, Buffer B = 0.1% formic acid in acetonitrile 

Flow rate = 400 μL/min, Column temperature = 50 ˚C 

LC gradient: 

Time (min) Solvent % B 

0.0 min 3% 

7.0 min 50% 

7.5 min 95% 

10.5 min 95% 

11.0 min 3% 

Stop time = 15 min 3% 

Source parameters: 

Gas temperature = 150 ˚C, Gas flow = 15 L/min, Nebulizer = 30 psi, Sheath gas heater = 250 ˚C, 

Sheath gas flow = 11 L/min, Capillary voltage = 3500 V, Nozzle voltage = 300 V 
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 HSA peptides standard mix was serially diluted 10 fold across 7 different concentrations 

ranging from 1 picomole/μL up to 1 attomole/μL. For nano-flow-HPLC-MRM-MS, HSA peptide 

standard mix ranging from 100 femtomole up to 1 attomole was injected in triplicate. While for 

standard-flow-UHPLC-MRM-MS, HSA peptide standard mix ranging from 1 picomole up to 10 

attomole was injected in triplicate. The peak area was extracted using Mass Hunter QQQ 

quantitative analysis software version B.05.02/Build 5.2.365.0. The retention time was compared 

using Skyline version 2.1.0.4936 (http://skyline.maccosslab.org/). 

4.2.2 MRM-MS assay development 

 MRM-MS assay was set up on the Agilent Technologies 6490 triple quadrupole mass 

spectrometer coupled with 1290 standard-flow Infinity UHPLC fitted with an ESI source (ESI Jet 

Stream). The following section describes details about assay development and validation.  Six 

lectins (AAL, EPHA, JAC, NPL, PSA, and WGA) were chosen for verification. MRM-MS assay 

was developed for 41 glycoprotein candidates identified in biomarker discovery. 

4.2.2.1 Selection of peptides and transitions 

 MRM selector function of Spectrum Mill was used to get a list of the top ten peptides per 

protein for MRM method development. A few runs from the LeMBA-QTOF discovery data set was 

used for this purpose. The parameters specified included 10 peptides per protein with a score of 

above 10 and % score peak intensity of 70%. The top four product y-ions for each precursor ion 

greater than precursor m/z were selected for MRM method development. The formula Collision 

energy (CE) = 0.036 m/z - 4.8 was used to calculate CE for each precursor. Multiple MRM methods 

consisting of maximum 200 transitions were created as a first step of method development. All 

methods were transferred across to Skyline for ease of data visualization and analysis (420). 

Subsequent steps of method refinement were performed using Skyline. Using LeMBA-MS/MS 

discovery data (.mzxml and .pepxml files), a reference spectral library was built in Skyline. This 

reference library was used to compare the peptide fragmentation pattern in the MRM method as 

compared to QTOF data, and also to rank transitions. LeMBA pull-down of multiple lectins was 

combined and run for each method to identify best MRM transitions. Each method incorporated 

transitions for internal standard chicken ovalbumin. Retention time prediction calculator iRT-C18 

of Skyline was used to increase confidence of peptide identification (421). iRT scale was calibrated 

using the known retention time of the peptides listed in Table 4.1. Based on the calibration plot, 

retention time for the peptides of interest was predicted.  
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 MRM transitions showing good response at the correct retention time without any 

interference were selected for the next step. After the first round of method development, three 

MRM methods were created and each of these methods was tested in triplicates to find transitions 

showing stable responses. Some product y-ions (greater than precursor m/z) showed considerably 

low response. So to find out transition with better response, up to five b- and y-ions less than 

precursor m/z were tried. Only transitions showing stable response during multiple runs were 

selected. Using retention time information for each peptide, one final dynamic MRM method was 

created incorporating a total of 145 peptides and 465 transitions with delta retention times of 2.5, 3 

or 4 min, to quantify 41 proteins. Table 4.2 contains a detailed list of transitions used in the method.    

Table 4.1. Peptides used as standards to plot retention time prediction calibration curve. 

Peptide sequence iRT value 

VASMASEK 0.00 

ISQAVHAAHAEINEAGR 33.91 

AVEVLPK 62.07 

GGLEPINFQTAADQAR 119.54 

LTEWTSSNVMEER 93.10 

VTSIQDWVQK 100.00 

4.2.2.2 LC and mass spectrometer parameters  

 The UHPLC system consisted of a reverse phase chromatographic column AdvanceBio 

Peptide Mapping (150   2.1 mm i.d., 2.7 µm, part number 653750-902, Agilent Technologies) with a 

5 mm long guard column, maintained at 60 °C temperature. Mobile phase A consisted of 0.1% 

formic acid, and mobile phase B consisted of 99.9% acetonitrile and 0.1% formic acid. The UHPLC 

system was operated at a flow rate of 0.4 mL/min. The gradient used for peptide separation was as 

follows: 3% B at 0 min; 30% B at 20 min; 40% B at 24 min; 95% B at 24.5 min; 95% B at 28.5 

min; 3% B at 29 min; followed by conditioning of column for 5 min at 3% B before injecting the 

next sample. 

 Agilent 6490 triple quadrupole mass spectrometer was operated in positive ion mode and 

controlled by MassHunter Workstation software (version B.06.00 build 6.0.6025.4 SP4, Agilent 

Technologies). The MRM acquisition parameters were 150 V high pressure RF, 60 V low pressure 

RF, 4000 V capillary voltage, 300 V nozzle voltage, 11 L/min sheath gas flow at a temperature of 

250 °C, 15 L/min drying gas flow at a temperature of 250 °C, 30 psi nebulizer gas flow, unit 

resolution [0.7 Da full width at half maximum in the first quadrupole (Q1) and the third quadrupole 
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(Q3)], and 200 V delta EMV (+). Fragmentor was set at 380 V and cell accelerator voltage was set 

at 5 V. 

4.2.3 Selection of heavy labeled internal standards and two-step normalization approach  

 Consistent with biomarker discovery, 10 pmol chicken ovalbumin was spiked-in as an 

internal standard per lectin pull-down. With the additional use of heavy labeled SIS ovalbumin 

peptide for MRM analysis, a two step normalization approach became feasible. These two steps 

separately accounted for variation due to mass spectrometry analysis and LeMBA pull-down. In 

step 1, the intensity of spiked-in internal standard chicken ovalbumin peptide was normalized using 

heavy labeled SIS ovalbumin peptide to account for mass spectrometric variation. In step 2, 

normalized intensity for all peptides for each sample was calculated based on the normalized 

intensity of spiked-in internal standard chicken ovalbumin, to account for variation during sample 

preparation steps. The two most consistent chicken ovalbumin peptides, based on discovery screen 

data, were selected for performing normalization (i) ISQAVHAAHAEINEAGR without methionine 

and (ii) VASMASEK which contains methionine. The reason for choosing the two separate 

peptides, one which contains methionine and another which does not, was to account for batch 

effect of methionine oxidation. To get normalized response of six methionine containing peptides in 

the final MRM-MS assay, ovalbumin peptide VASMASEK which includes methionine was used; 

while for normalization of the rest non-methionine containing peptides, ovalbumin peptide 

ISQAVHAAHAEINEAGR was used. C-terminal isotopic [
13

C6, 
15

N7] lysine or [
13

C6, 
15

N7] arginine 

labeled peptide for ISQAVHAAHAEINEAGR and VASMASEK with > 95% purity were obtained 

from Sigma. Two charge states +3 and +4 were monitored for natural and SIS 

ISQAVHAAHAEINEAGR peptide. The sum of both charge states was used for normalization. C-

terminal isotopic [
13

C6, 
15

N7] lysine labeled peptide AVEVLPK, which belongs to Gelsolin, and 

VTSIQDWVQK, which belongs to Haptoglobin were also incorporated as internal standard 

peptides. 

4.2.4 Determination of loading capacity for each lectin pull-down 

 Loading capacity for individual lectin pull-down was determined by injecting varying 

amounts of LeMBA pull-down and monitoring peptide responses using MRM-MS assay. Each 

LeMBA pull-down sample was resuspended in 20 μL 0.1% formic acid. 5 μL, 10 μL, and 15 μL of 

the LeMBA pull-down was injected into mass spectrometer for each lectin except EPHA (for EPHA 

2 μL, 4 μL, 6 μL,   μL, and 10 μL was injected). Using Skyline, individual peptide responses 

between different injection volumes were monitored carefully to look for peptides showing 
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saturated responses. Loading capacity for individual lectin pull-down was determined based on 

overall response for all the peptides monitored across different injection volumes.  

4.2.5 Determination of linearity and reproducibility of MRM-MR assay 

 Linearity of the MRM-MS method was determined by injecting varying concentrations of 

SIS peptides spiked-into combined LeMBA pull-down sample of multiple lectins. The amount of 

SIS peptide spiked-in for each of four peptides was adjusted in such a manner that the response 

from the 1X labeled peptide mix fell within a 5-fold range of the cognate natural peptide. The 

concentration of spiked-in SIS peptide varied from 0.008X to 25X covering 3125 fold linear range 

where 1X concentration indicates mixture of 150 femtomole of ISQAVHAAHAEINEAGR and 

VASMASEK each, 300 femtomole of VTSIQDWVQK, and 30 femtomole of AVEVLPK. All 

dilutions were run in triplicate on each day for three consecutive days (n = 9). The ratio of SIS 

peptide response/natural peptide response was plotted. 

 Reproducibility of MRM-MS assay was determined by injecting   μL of combined LeMBA 

pull-down sample of multiple lectins in quadruplicate on each day for four consecutive days (n = 

16). Percent coefficient of variation (% CV) between runs was calculated using peptide responses 

normalized with respect to ovalbumin peptide.  

Table 4.2. List of transitions included in the MRM-MS assay.  

Compound Name 
Precursor 

ion (m/z) 

Product 

ion (m/z) 

Ret 

Time 

(min) 

Delta 

Ret 

Time 

Collision 

Energy 

O75882_ALYVHGGYK 336.52 660.35 6.09 3 7.3 

O75882_ALYVHGGYK 336.52 561.28 6.09 3 7.3 

O75882_ALYVHGGYK 336.52 412.21 6.09 3 7.3 

O75882_GVKGDECQLCEVENR 598.27 806.35 6.94 3 16.7 

O75882_GVKGDECQLCEVENR 598.27 646.32 6.94 3 16.7 

O75882_GVKGDECQLCEVENR 598.27 517.27 6.94 3 16.7 

O75882_SEAACLAAGPGIR 636.82 641.37 9.46 3 18.1 

O75882_SEAACLAAGPGIR 636.82 499.30 9.46 3 18.1 

O75882_SEAACLAAGPGIR 636.82 288.20 9.46 3 18.1 

O75882_SVNNVVVR 443.76 700.41 6.37 3 11.2 

O75882_SVNNVVVR 443.76 586.37 6.37 3 11.2 

O75882_SVNNVVVR 443.76 472.32 6.37 3 11.2 

P00734_GQPSVLQVVNLPIVERPVCK 744.76 1024.09 18.14 3 22 

P00734_GQPSVLQVVNLPIVERPVCK 744.76 882.51 18.14 3 22 

P00734_GQPSVLQVVNLPIVERPVCK 744.76 683.06 18.14 3 22 

P00734_HQDFNSAVQLVENFCR 655.31 824.37 16.13 3 18.8 

P00734_HQDFNSAVQLVENFCR 655.31 800.33 16.13 3 18.8 

P00734_HQDFNSAVQLVENFCR 655.31 725.30 16.13 3 18.8 

P00734_SGIECQLWR 574.78 891.41 11.9 2.5 15.9 
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Compound Name 
Precursor 

ion (m/z) 

Product 

ion (m/z) 

Ret 

Time 

(min) 

Delta 

Ret 

Time 

Collision 

Energy 

P00734_SGIECQLWR 574.78 762.37 11.9 2.5 15.9 

P00734_SGIECQLWR 574.78 602.34 11.9 2.5 15.9 

P00738_FTDHLK 380.70 613.33 4.66 4 8.9 

P00738_FTDHLK 380.70 512.28 4.66 4 8.9 

P00738_FTDHLK 380.70 397.26 4.66 4 8.9 

P00738_ILGGHLDAK 308.52 349.19 6.79 3 6.3 

P00738_ILGGHLDAK 308.52 218.15 6.79 3 6.3 

P00738_ILGGHLDAK 308.52 109.58 6.79 3 6.3 

P00738_VGYVSGWGR 490.75 881.43 9.79 3 12.9 

P00738_VGYVSGWGR 490.75 661.34 9.79 3 12.9 

P00738_VGYVSGWGR 490.75 562.27 9.79 3 12.9 

P00738_VTSIQDWVQK 602.32 1003.52 11.8 2.5 16.9 

P00738_VTSIQDWVQK 602.32 803.40 11.8 2.5 16.9 

P00738_VTSIQDWVQK 602.32 675.35 11.8 2.5 16.9 

P00738_VTSIQDWVQK.heavy 606.33 1011.53 11.8 2.5 17 

P00738_VTSIQDWVQK.heavy 606.33 811.42 11.8 2.5 17 

P00738_VTSIQDWVQK.heavy 606.33 683.36 11.8 2.5 17 

P00747_LSSPAVITDK 515.79 917.49 9.02 3 13.8 

P00747_LSSPAVITDK 515.79 830.46 9.02 3 13.8 

P00747_LSSPAVITDK 515.79 743.43 9.02 3 13.8 

P00747_NLDENYCR 542.23 856.33 5.04 3 14.7 

P00747_NLDENYCR 542.23 741.30 5.04 3 14.7 

P00747_NLDENYCR 542.23 498.21 5.04 3 14.7 

P00747_VIPACLPSPNYVVADR 885.96 1117.56 14.89 2.5 27.1 

P00747_VIPACLPSPNYVVADR 885.96 933.48 14.89 2.5 27.1 

P00747_VIPACLPSPNYVVADR 885.96 779.89 14.89 2.5 27.1 

P00751_CLVNLIEK 494.78 715.43 13.16 2.5 13 

P00751_CLVNLIEK 494.78 616.37 13.16 2.5 13 

P00751_CLVNLIEK 494.78 389.24 13.16 2.5 13 

P00751_LEDSVTYHCSR 456.21 823.35 5.51 3 11.6 

P00751_LEDSVTYHCSR 456.21 627.26 5.51 3 11.6 

P00751_LEDSVTYHCSR 456.21 559.24 5.51 3 11.6 

P00751_YGLVTYATYPK 638.33 942.49 12.29 2.5 18.2 

P00751_YGLVTYATYPK 638.33 843.42 12.29 2.5 18.2 

P00751_YGLVTYATYPK 638.33 742.38 12.29 2.5 18.2 

P00751_YGQTIRPICLPCTEGTTR 708.35 921.41 12.13 2.5 20.7 

P00751_YGQTIRPICLPCTEGTTR 708.35 887.95 12.13 2.5 20.7 

P00751_YGQTIRPICLPCTEGTTR 708.35 837.43 12.13 2.5 20.7 

P01009_DTEEEDFHVDQVTTVK 631.29 838.39 10.51 2.5 17.9 

P01009_DTEEEDFHVDQVTTVK 631.29 773.87 10.51 2.5 17.9 

P01009_DTEEEDFHVDQVTTVK 631.29 709.35 10.51 2.5 17.9 

P01009_LSITGTYDLK 555.81 910.49 12.15 2.5 15.2 

P01009_LSITGTYDLK 555.81 797.40 12.15 2.5 15.2 

P01009_LSITGTYDLK 555.81 696.36 12.15 2.5 15.2 

P01009_SVLGQLGITK 508.31 829.51 13.39 2.5 13.5 

P01009_SVLGQLGITK 508.31 716.43 13.39 2.5 13.5 

P01009_SVLGQLGITK 508.31 531.35 13.39 2.5 13.5 
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Compound Name 
Precursor 

ion (m/z) 

Product 

ion (m/z) 

Ret 

Time 

(min) 

Delta 

Ret 

Time 

Collision 

Energy 

P01011_EIGELYLPK 531.30 819.46 13.44 2.5 14.3 

P01011_EIGELYLPK 531.30 633.40 13.44 2.5 14.3 

P01011_EIGELYLPK 531.30 520.31 13.44 2.5 14.3 

P01011_ITLLSALVETR 608.37 888.51 18.44 3 17.1 

P01011_ITLLSALVETR 608.37 775.43 18.44 3 17.1 

P01011_ITLLSALVETR 608.37 688.40 18.44 3 17.1 

P01011_NLAVSQVVHK 547.82 867.50 8.14 3 14.9 

P01011_NLAVSQVVHK 547.82 796.47 8.14 3 14.9 

P01011_NLAVSQVVHK 547.82 697.40 8.14 3 14.9 

P01012_AFKDEDTQAMPFR 778.36 850.42 10.21 2.5 23.2 

P01012_AFKDEDTQAMPFR 778.36 669.31 10.21 2.5 23.2 

P01012_AFKDEDTQAMPFR 778.36 419.24 10.21 2.5 23.2 

P01012_GGLEPINFQTAADQAR 844.42 1121.53 13.55 2.5 25.6 

P01012_GGLEPINFQTAADQAR 844.42 860.42 13.55 2.5 25.6 

P01012_GGLEPINFQTAADQAR 844.42 666.34 13.55 2.5 25.6 

P01012_ISQAVHAAHAEINEAGR 591.97 830.91 6.07 3 16.5 

P01012_ISQAVHAAHAEINEAGR 591.97 638.31 6.07 3 16.5 

P01012_ISQAVHAAHAEINEAGR 591.97 546.26 6.07 3 16.5 

P01012_ISQAVHAAHAEINEAGR 444.23 859.43 6.07 3 11.2 

P01012_ISQAVHAAHAEINEAGR 444.23 638.31 6.07 3 11.2 

P01012_ISQAVHAAHAEINEAGR 444.23 546.26 6.07 3 11.2 

P01012_ISQAVHAAHAEINEAGR.heavy 595.31 835.92 6.07 3 16.6 

P01012_ISQAVHAAHAEINEAGR.heavy 595.31 643.32 6.07 3 16.6 

P01012_ISQAVHAAHAEINEAGR.heavy 595.31 556.27 6.07 3 16.6 

P01012_ISQAVHAAHAEINEAGR.heavy 446.73 869.44 6.07 3 11.3 

P01012_ISQAVHAAHAEINEAGR.heavy 446.73 643.32 6.07 3 11.3 

P01012_ISQAVHAAHAEINEAGR.heavy 446.73 556.27 6.07 3 11.3 

P01012_LTEWTSSNVMEER 791.36 1052.47 11.22 2.5 23.7 

P01012_LTEWTSSNVMEER 791.36 951.42 11.22 2.5 23.7 

P01012_LTEWTSSNVMEER 791.36 564.24 11.22 2.5 23.7 

P01012_NVLQPSSVDSQTAMVLVNAIVFK 820.78 903.57 22.55 4 24.7 

P01012_NVLQPSSVDSQTAMVLVNAIVFK 820.78 790.48 22.55 4 24.7 

P01012_NVLQPSSVDSQTAMVLVNAIVFK 820.78 393.25 22.55 4 24.7 

P01012_VASMASEK 411.70 723.33 3.08 4 10 

P01012_VASMASEK 411.70 652.30 3.08 4 10 

P01012_VASMASEK 411.70 434.22 3.08 4 10 

P01012_VASMASEK.heavy 415.71 731.35 3.08 4 10.2 

P01012_VASMASEK.heavy 415.71 660.31 3.08 4 10.2 

P01012_VASMASEK.heavy 415.71 442.24 3.08 4 10.2 

P01012_YPILPEYLQCVK 761.90 1149.60 16.62 3 22.6 

P01012_YPILPEYLQCVK 761.90 1036.51 16.62 3 22.6 

P01012_YPILPEYLQCVK 761.90 324.18 16.62 3 22.6 

P01019_ALQDQLVLVAAK 634.88 956.58 14.34 2.5 18.1 

P01019_ALQDQLVLVAAK 634.88 600.41 14.34 2.5 18.1 

P01019_ALQDQLVLVAAK 634.88 501.34 14.34 2.5 18.1 

P01019_DPTFIPAPIQAK 649.36 837.52 14.57 2.5 18.6 

P01019_DPTFIPAPIQAK 649.36 724.44 14.57 2.5 18.6 
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Compound Name 
Precursor 

ion (m/z) 

Product 

ion (m/z) 

Ret 

Time 

(min) 

Delta 

Ret 

Time 

Collision 

Energy 

P01019_DPTFIPAPIQAK 649.36 556.35 14.57 2.5 18.6 

P01019_FMQAVTGWK 534.27 789.43 12.09 2.5 14.4 

P01019_FMQAVTGWK 534.27 661.37 12.09 2.5 14.4 

P01019_FMQAVTGWK 534.27 491.26 12.09 2.5 14.4 

P01019_LDTEDKLR 330.51 531.32 5.02 3 7.1 

P01019_LDTEDKLR 330.51 438.72 5.02 3 7.1 

P01019_LDTEDKLR 330.51 416.30 5.02 3 7.1 

P01019_SLDFTELDVAAEK 719.36 975.50 15.22 3 21.1 

P01019_SLDFTELDVAAEK 719.36 745.41 15.22 3 21.1 

P01019_SLDFTELDVAAEK 719.36 316.67 15.22 3 21.1 

P01023_LPPNVVEESAR 605.82 1000.51 8.98 3 17 

P01023_LPPNVVEESAR 605.82 903.45 8.98 3 17 

P01023_LPPNVVEESAR 605.82 690.34 8.98 3 17 

P01023_SLFTDLEAENDVLHCVAFAVPK 825.75 1064.52 21.06 4 24.9 

P01023_SLFTDLEAENDVLHCVAFAVPK 825.75 1014.00 21.06 4 24.9 

P01023_SLFTDLEAENDVLHCVAFAVPK 825.75 899.94 21.06 4 24.9 

P01023_SLFTDLEAENDVLHCVAFAVPK 825.75 835.42 21.06 4 24.9 

P01023_YSDASDCHGEDSQAFCEK 702.60 971.86 5.58 3 20.5 

P01023_YSDASDCHGEDSQAFCEK 702.60 928.35 5.58 3 20.5 

P01023_YSDASDCHGEDSQAFCEK 702.60 835.31 5.58 3 20.5 

P01024_AAVYHHFISDGVR 491.25 665.34 8.21 3 12.9 

P01024_AAVYHHFISDGVR 491.25 534.27 8.21 3 12.9 

P01024_AAVYHHFISDGVR 491.25 533.27 8.21 3 12.9 

P01024_EVVADSVWVDVK 673.35 1018.52 14.06 2.5 19.4 

P01024_EVVADSVWVDVK 673.35 646.36 14.06 2.5 19.4 

P01024_EVVADSVWVDVK 673.35 246.18 14.06 2.5 19.4 

P01024_LLPVGR 327.72 428.26 8.4 3 7 

P01024_LLPVGR 327.72 331.21 8.4 3 7 

P01024_LLPVGR 327.72 214.63 8.4 3 7 

P01024_SGIPIVTSPYQIHFTK 596.66 1033.55 15.88 3 16.7 

P01024_SGIPIVTSPYQIHFTK 596.66 765.92 15.88 3 16.7 

P01024_SGIPIVTSPYQIHFTK 596.66 660.85 15.88 3 16.7 

P01031_IDTQDIEASHYR 483.23 990.46 7.75 3 12.6 

P01031_IDTQDIEASHYR 483.23 762.35 7.75 3 12.6 

P01031_IDTQDIEASHYR 483.23 633.31 7.75 3 12.6 

P01031_IDTQDIEASHYR 483.23 562.27 7.75 3 12.6 

P01031_IVACASYKPSR 417.89 737.39 5.75 3 10.2 

P01031_IVACASYKPSR 417.89 520.25 5.75 3 10.2 

P01031_IVACASYKPSR 417.89 484.73 5.75 3 10.2 

P01031_TLLPVSKPEIR 418.26 729.43 11.55 2.5 10.3 

P01031_TLLPVSKPEIR 418.26 514.30 11.55 2.5 10.3 

P01031_TLLPVSKPEIR 418.26 463.28 11.55 2.5 10.3 

P01042_DIPTNSPELEETLTHTITK 713.70 955.99 15.21 3 20.9 

P01042_DIPTNSPELEETLTHTITK 713.70 856.94 15.21 3 20.9 

P01042_DIPTNSPELEETLTHTITK 713.70 756.40 15.21 3 20.9 

P01042_ENFLFLTPDCK 692.33 993.51 16.6 3 20.1 

P01042_ENFLFLTPDCK 692.33 880.42 16.6 3 20.1 
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Compound Name 
Precursor 

ion (m/z) 

Product 

ion (m/z) 

Ret 

Time 

(min) 

Delta 

Ret 

Time 

Collision 

Energy 

P01042_ENFLFLTPDCK 692.33 733.35 16.6 3 20.1 

P01042_IASFSQNCDIYPGK 800.38 966.43 10.84 2.5 24 

P01042_IASFSQNCDIYPGK 800.38 464.25 10.84 2.5 24 

P01042_IASFSQNCDIYPGK 800.38 301.19 10.84 2.5 24 

P01042_ICVGCPR 431.21 748.32 6.16 3 10.7 

P01042_ICVGCPR 431.21 588.29 6.16 3 10.7 

P01042_ICVGCPR 431.21 489.22 6.16 3 10.7 

P02748_AIEDYINEFSVR 728.36 1142.55 15.78 3 21.4 

P02748_AIEDYINEFSVR 728.36 864.46 15.78 3 21.4 

P02748_AIEDYINEFSVR 728.36 751.37 15.78 3 21.4 

P02748_FTPTETNKAEQCCEETASSISLHGK 707.07 859.72 9.18 3 20.7 

P02748_FTPTETNKAEQCCEETASSISLHGK 707.07 828.46 9.18 3 20.7 

P02748_FTPTETNKAEQCCEETASSISLHGK 707.07 741.43 9.18 3 20.7 

P02748_LSPIYNLVPVK 621.88 1042.63 16.82 3 17.6 

P02748_LSPIYNLVPVK 621.88 832.49 16.82 3 17.6 

P02748_LSPIYNLVPVK 621.88 521.82 16.82 3 17.6 

P02748_RPWNVASLIYETK 526.29 653.35 15.46 3 14.1 

P02748_RPWNVASLIYETK 526.29 540.27 15.46 3 14.1 

P02748_RPWNVASLIYETK 526.29 248.16 15.46 3 14.1 

P02749_TCPKPDDLPFSTVVPLK 638.67 927.42 16.51 3 18.2 

P02749_TCPKPDDLPFSTVVPLK 638.67 743.47 16.51 3 18.2 

P02749_TCPKPDDLPFSTVVPLK 638.67 743.47 16.51 3 18.2 

P02749_TCPKPDDLPFSTVVPLK 638.67 665.87 16.51 3 18.2 

P02749_TCPKPDDLPFSTVVPLK 638.67 665.87 16.51 3 18.2 

P02749_TFYEPGEEITYSCKPGYVSR 795.04 1067.99 11.88 2.5 23.8 

P02749_TFYEPGEEITYSCKPGYVSR 795.04 986.46 11.88 2.5 23.8 

P02749_TFYEPGEEITYSCKPGYVSR 795.04 921.94 11.88 2.5 23.8 

P02749_VCPFAGILENGAVR 751.89 928.52 16.53 3 22.3 

P02749_VCPFAGILENGAVR 751.89 758.42 16.53 3 22.3 

P02749_VCPFAGILENGAVR 751.89 622.34 16.53 3 22.3 

P02749_WSPELPVCAPIICPPPSIPTFATLR 940.49 805.46 22.63 4 29.1 

P02749_WSPELPVCAPIICPPPSIPTFATLR 940.49 648.87 22.63 4 29.1 

P02749_WSPELPVCAPIICPPPSIPTFATLR 940.49 600.34 22.63 4 29.1 

P02751_SYTITGLQPGTDYK 772.39 978.49 11.72 2.5 23 

P02751_SYTITGLQPGTDYK 772.39 808.38 11.72 2.5 23 

P02751_SYTITGLQPGTDYK 772.39 680.32 11.72 2.5 23 

P02751_VDVIPVNLPGEHGQR 543.96 893.46 13.56 2.5 14.8 

P02751_VDVIPVNLPGEHGQR 543.96 780.37 13.56 2.5 14.8 

P02751_VDVIPVNLPGEHGQR 543.96 602.32 13.56 2.5 14.8 

P02751_VTWAPPPSIDLTNFLVR 642.69 977.54 21.95 4 18.3 

P02751_VTWAPPPSIDLTNFLVR 642.69 749.43 21.95 4 18.3 

P02751_VTWAPPPSIDLTNFLVR 642.69 749.40 21.95 4 18.3 

P02751_VTWAPPPSIDLTNFLVR 642.69 734.91 21.95 4 18.3 

P02751_VTWAPPPSIDLTNFLVR 642.69 686.39 21.95 4 18.3 

P02765_CNLLAEK 424.22 573.36 7.38 3 10.5 

P02765_CNLLAEK 424.22 460.28 7.38 3 10.5 

P02765_CNLLAEK 424.22 347.19 7.38 3 10.5 
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Ret 
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P02765_EHAVEGDCDFQLLK 554.26 763.43 11.99 2.5 15.2 

P02765_EHAVEGDCDFQLLK 554.26 738.31 11.99 2.5 15.2 

P02765_EHAVEGDCDFQLLK 554.26 648.41 11.99 2.5 15.2 

P02765_FSVVYAK 407.23 666.38 9.54 3 9.9 

P02765_FSVVYAK 407.23 579.35 9.54 3 9.9 

P02765_FSVVYAK 407.23 480.28 9.54 3 9.9 

P02765_HTLNQIDEVK 598.82 1059.57 6.91 3 16.8 

P02765_HTLNQIDEVK 598.82 958.52 6.91 3 16.8 

P02765_HTLNQIDEVK 598.82 822.41 6.91 3 16.8 

P02774_SCESNSPFPVHPGTAECCTK 755.65 1009.40 9.4 3 22.4 

P02774_SCESNSPFPVHPGTAECCTK 755.65 944.92 9.4 3 22.4 

P02774_SCESNSPFPVHPGTAECCTK 755.65 800.87 9.4 3 22.4 

P02774_THLPEVFLSK 390.89 578.29 12.66 2.5 9.3 

P02774_THLPEVFLSK 390.89 494.30 12.66 2.5 9.3 

P02774_THLPEVFLSK 390.89 352.20 12.66 2.5 9.3 

P02774_VLEPTLK 400.25 700.42 9.03 3 9.6 

P02774_VLEPTLK 400.25 587.34 9.03 3 9.6 

P02774_VLEPTLK 400.25 458.30 9.03 3 9.6 

P02787_FDEFFSEGCAPGSK 789.33 1039.45 12.43 2.5 23.6 

P02787_FDEFFSEGCAPGSK 789.33 892.38 12.43 2.5 23.6 

P02787_FDEFFSEGCAPGSK 789.33 805.35 12.43 2.5 23.6 

P02787_IECVSAETTEDCIAK 863.39 1224.54 8.92 3 26.3 

P02787_IECVSAETTEDCIAK 863.39 1066.47 8.92 3 26.3 

P02787_IECVSAETTEDCIAK 863.39 937.43 8.92 3 26.3 

P02787_KPVEEYANCHLAR 529.60 841.41 6.11 3 14.3 

P02787_KPVEEYANCHLAR 529.60 770.37 6.11 3 14.3 

P02787_KPVEEYANCHLAR 529.60 729.84 6.11 3 14.3 

P02787_SAGWNIPIGLLYCDLPEPR 724.37 1049.47 22.07 4 21.3 

P02787_SAGWNIPIGLLYCDLPEPR 724.37 1009.55 22.07 4 21.3 

P02787_SAGWNIPIGLLYCDLPEPR 724.37 886.41 22.07 4 21.3 

P02787_SAGWNIPIGLLYCDLPEPR 724.37 771.90 22.07 4 21.3 

P02790_EVGTPHGIILDSVDAAFICPGSSR 833.42 1180.54 17.7 3 25.2 

P02790_EVGTPHGIILDSVDAAFICPGSSR 833.42 994.48 17.7 3 25.2 

P02790_EVGTPHGIILDSVDAAFICPGSSR 833.42 923.44 17.7 3 25.2 

P02790_LLQDEFPGIPSPLDAAVECHR 788.73 1351.64 18.29 3 23.6 

P02790_LLQDEFPGIPSPLDAAVECHR 788.73 957.42 18.29 3 23.6 

P02790_LLQDEFPGIPSPLDAAVECHR 788.73 883.44 18.29 3 23.6 

P02790_LLQDEFPGIPSPLDAAVECHR 788.73 809.90 18.29 3 23.6 

P02790_NFPSPVDAAFR 610.81 959.49 14.13 2.5 17.2 

P02790_NFPSPVDAAFR 610.81 862.44 14.13 2.5 17.2 

P02790_NFPSPVDAAFR 610.81 775.41 14.13 2.5 17.2 

P02790_YYCFQGNQFLR 748.34 1169.55 13.6 2.5 22.1 

P02790_YYCFQGNQFLR 748.34 1009.52 13.6 2.5 22.1 

P02790_YYCFQGNQFLR 748.34 862.45 13.6 2.5 22.1 

P03952_DSVTGTLPK 459.25 715.43 7.56 3 11.7 

P03952_DSVTGTLPK 459.25 616.37 7.56 3 11.7 

P03952_DSVTGTLPK 459.25 515.32 7.56 3 11.7 
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P03952_GVNVCQETCTK 648.29 926.37 5.22 3 18.5 

P03952_GVNVCQETCTK 648.29 766.34 5.22 3 18.5 

P03952_GVNVCQETCTK 648.29 509.24 5.22 3 18.5 

P03952_VLTPDAFVCR 589.31 864.40 13.04 2.5 16.4 

P03952_VLTPDAFVCR 589.31 483.23 13.04 2.5 16.4 

P03952_VLTPDAFVCR 589.31 432.71 13.04 2.5 16.4 

P04003_FSAICQGDGTWSPR 791.36 1163.49 11.3 2.5 23.7 

P04003_FSAICQGDGTWSPR 791.36 1003.46 11.3 2.5 23.7 

P04003_FSAICQGDGTWSPR 791.36 875.40 11.3 2.5 23.7 

P04003_LSLEIEQLELQR 735.91 1028.57 16.36 3 21.7 

P04003_LSLEIEQLELQR 735.91 915.49 16.36 3 21.7 

P04003_LSLEIEQLELQR 735.91 786.45 16.36 3 21.7 

P04004_DVWGIEGPIDAAFTR 823.91 1076.54 19.12 3 24.9 

P04004_DVWGIEGPIDAAFTR 823.91 947.49 19.12 3 24.9 

P04004_DVWGIEGPIDAAFTR 823.91 890.47 19.12 3 24.9 

P04004_FEDGVLDPDYPR 711.83 1146.54 12.33 2.5 20.8 

P04004_FEDGVLDPDYPR 711.83 875.43 12.33 2.5 20.8 

P04004_FEDGVLDPDYPR 711.83 762.34 12.33 2.5 20.8 

P04004_RVDTVDPPYPR 438.90 629.34 8.19 3 11 

P04004_RVDTVDPPYPR 438.90 532.29 8.19 3 11 

P04004_RVDTVDPPYPR 438.90 472.25 8.19 3 11 

P04004_VDTVDPPYPR 579.79 744.37 9.04 3 16.1 

P04004_VDTVDPPYPR 579.79 629.34 9.04 3 16.1 

P04004_VDTVDPPYPR 579.79 532.29 9.04 3 16.1 

P04114_GFEPTLEALFGK 654.85 975.55 19.33 3 18.8 

P04114_GFEPTLEALFGK 654.85 664.37 19.33 3 18.8 

P04114_GFEPTLEALFGK 654.85 535.32 19.33 3 18.8 

P04114_ILGEELGFASLHDLQLLGK 685.05 913.99 20.3 4 19.9 

P04114_ILGEELGFASLHDLQLLGK 685.05 756.43 20.3 4 19.9 

P04114_ILGEELGFASLHDLQLLGK 685.05 699.89 20.3 4 19.9 

P04114_ILGEELGFASLHDLQLLGK 685.05 317.22 20.3 4 19.9 

P04114_SPAFTDLHLR 386.21 653.37 11.84 2.5 9.1 

P04114_SPAFTDLHLR 386.21 538.35 11.84 2.5 9.1 

P04114_SPAFTDLHLR 386.21 425.26 11.84 2.5 9.1 

P04196_ALDLINKR 471.79 758.45 8.54 3 12.2 

P04196_ALDLINKR 471.79 643.42 8.54 3 12.2 

P04196_ALDLINKR 471.79 530.34 8.54 3 12.2 

P04196_DGYLFQLLR 562.81 789.50 19.07 3 15.5 

P04196_DGYLFQLLR 562.81 676.41 19.07 3 15.5 

P04196_DGYLFQLLR 562.81 529.35 19.07 3 15.5 

P04196_DSPVLIDFFEDTER 841.90 1284.61 20.25 4 25.5 

P04196_DSPVLIDFFEDTER 841.90 1171.53 20.25 4 25.5 

P04196_DSPVLIDFFEDTER 841.90 1058.44 20.25 4 25.5 

P04196_GGEGTGYFVDFSVR 745.85 1089.54 15.15 3 22.1 

P04196_GGEGTGYFVDFSVR 745.85 1032.51 15.15 3 22.1 

P04196_GGEGTGYFVDFSVR 745.85 869.45 15.15 3 22.1 

P04217_ATWSGAVLAGR 544.80 730.42 11.2 2.5 14.8 
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Precursor 
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ion (m/z) 
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Collision 

Energy 

P04217_ATWSGAVLAGR 544.80 643.39 11.2 2.5 14.8 

P04217_ATWSGAVLAGR 544.80 586.37 11.2 2.5 14.8 

P04217_CEGPIPDVTFELLR 823.42 1299.73 19.7 3 24.8 

P04217_CEGPIPDVTFELLR 823.42 1089.59 19.7 3 24.8 

P04217_CEGPIPDVTFELLR 823.42 877.51 19.7 3 24.8 

P05090_NILTSNNIDVK 615.84 1003.54 11.02 2.5 17.4 

P05090_NILTSNNIDVK 615.84 890.46 11.02 2.5 17.4 

P05090_NILTSNNIDVK 615.84 789.41 11.02 2.5 17.4 

P05090_VLNQELR 436.25 772.43 6.59 3 10.9 

P05090_VLNQELR 436.25 659.35 6.59 3 10.9 

P05090_VLNQELR 436.25 545.30 6.59 3 10.9 

P05090_WYEIEK 434.22 681.35 9.17 3 10.8 

P05090_WYEIEK 434.22 518.28 9.17 3 10.8 

P05090_WYEIEK 434.22 389.24 9.17 3 10.8 

P05090_WYEIEK 434.22 350.15 9.17 3 10.8 

P05155_FQPTLLTLPR 593.35 910.57 16.56 3 16.6 

P05155_FQPTLLTLPR 593.35 712.47 16.56 3 16.6 

P05155_FQPTLLTLPR 593.35 599.39 16.56 3 16.6 

P05155_GVTSVSQIFHSPDLAIR 609.66 835.95 16.26 3 17.1 

P05155_GVTSVSQIFHSPDLAIR 609.66 785.42 16.26 3 17.1 

P05155_GVTSVSQIFHSPDLAIR 609.66 692.37 16.26 3 17.1 

P05155_HRLEDMEQALSPSVFK 472.49 664.37 13.77 2.5 12.2 

P05155_HRLEDMEQALSPSVFK 472.49 651.32 13.77 2.5 12.2 

P05155_HRLEDMEQALSPSVFK 472.49 577.33 13.77 2.5 12.2 

P05155_LLDSLPSDTR 558.80 890.42 10.34 2.5 15.3 

P05155_LLDSLPSDTR 558.80 775.39 10.34 2.5 15.3 

P05155_LLDSLPSDTR 558.80 575.28 10.34 2.5 15.3 

P05546_QFPILLDFK 560.82 845.51 19.79 3 15.4 

P05546_QFPILLDFK 560.82 635.38 19.79 3 15.4 

P05546_QFPILLDFK 560.82 522.29 19.79 3 15.4 

P05546_TLEAQLTPR 514.79 814.44 9.24 3 13.7 

P05546_TLEAQLTPR 514.79 685.40 9.24 3 13.7 

P05546_TLEAQLTPR 514.79 486.30 9.24 3 13.7 

P05546_YEITTIHNLFR 469.59 549.31 14.52 2.5 12.1 

P05546_YEITTIHNLFR 469.59 501.28 14.52 2.5 12.1 

P05546_YEITTIHNLFR 469.59 343.69 14.52 2.5 12.1 

P06396_AVEVLPK 378.24 585.36 8.52 3 8.8 

P06396_AVEVLPK 378.24 456.32 8.52 3 8.8 

P06396_AVEVLPK 378.24 244.17 8.52 3 8.8 

P06396_AVEVLPK.heavy 382.24 593.37 8.52 3 9 

P06396_AVEVLPK.heavy 382.24 464.33 8.52 3 9 

P06396_AVEVLPK.heavy 382.24 252.18 8.52 3 9 

P06396_DSQEEEKTEALTSAK 555.93 732.36 5.81 3 15.2 

P06396_DSQEEEKTEALTSAK 555.93 668.34 5.81 3 15.2 

P06396_DSQEEEKTEALTSAK 555.93 590.35 5.81 3 15.2 

P06396_QTQVSVLPEGGETPLFK 915.49 1373.73 15.81 3 28.2 

P06396_QTQVSVLPEGGETPLFK 915.49 1187.63 15.81 3 28.2 
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P06396_QTQVSVLPEGGETPLFK 915.49 1074.55 15.81 3 28.2 

P06396_TGAQELLR 444.25 729.43 8.2 3 11.2 

P06396_TGAQELLR 444.25 658.39 8.2 3 11.2 

P06396_TGAQELLR 444.25 530.33 8.2 3 11.2 

P06396_VPFDAATLHTSTAMAAQHGMDDDGTGQK 719.08 893.06 11.79 2.5 21.1 

P06396_VPFDAATLHTSTAMAAQHGMDDDGTGQK 719.08 844.04 11.79 2.5 21.1 

P06396_VPFDAATLHTSTAMAAQHGMDDDGTGQK 719.08 360.66 11.79 2.5 21.1 

P06681_AVISPGFDVFAK 625.84 967.49 16.45 3 17.7 

P06681_AVISPGFDVFAK 625.84 880.46 16.45 3 17.7 

P06681_AVISPGFDVFAK 625.84 783.40 16.45 3 17.7 

P06681_DFHINLFR 354.52 549.31 15.45 3 8 

P06681_DFHINLFR 354.52 435.27 15.45 3 8 

P06681_DFHINLFR 354.52 400.23 15.45 3 8 

P08519_LFLEPTQADIALLK 786.46 1311.75 18.99 3 23.5 

P08519_LFLEPTQADIALLK 786.46 1198.67 18.99 3 23.5 

P08519_LFLEPTQADIALLK 786.46 1069.63 18.99 3 23.5 

P08519_NPDAVAAPYCYTR 749.34 1001.45 9.48 3 22.2 

P08519_NPDAVAAPYCYTR 749.34 930.41 9.48 3 22.2 

P08519_NPDAVAAPYCYTR 749.34 859.38 9.48 3 22.2 

P08603_IEGDEEMHCSDDGFWSK 681.27 964.86 16.76 3 19.7 

P08603_IEGDEEMHCSDDGFWSK 681.27 900.34 16.76 3 19.7 

P08603_IEGDEEMHCSDDGFWSK 681.27 685.27 16.76 3 19.7 

P08603_IEGDEEMHCSDDGFWSK 681.27 420.22 16.76 3 19.7 

P08603_LSYTCEGGFR 595.27 989.41 8.89 3 16.6 

P08603_LSYTCEGGFR 595.27 826.35 8.89 3 16.6 

P08603_LSYTCEGGFR 595.27 725.30 8.89 3 16.6 

P08603_SITCIHGVWTQLPQCVAIDK 776.06 930.47 15.93 3 23.1 

P08603_SITCIHGVWTQLPQCVAIDK 776.06 465.74 15.93 3 23.1 

P08603_SITCIHGVWTQLPQCVAIDK 776.06 262.14 15.93 3 23.1 

P08603_TGDEITYQCR 621.77 727.32 6.07 3 17.6 

P08603_TGDEITYQCR 621.77 463.21 6.07 3 17.6 

P08603_TGDEITYQCR 621.77 175.12 6.07 3 17.6 

P08603_VSVLCQENYLIQEGEEITCK 804.72 1206.57 16.93 3 24.2 

P08603_VSVLCQENYLIQEGEEITCK 804.72 1093.50 16.93 3 24.2 

P08603_VSVLCQENYLIQEGEEITCK 804.72 408.19 16.93 3 24.2 

P0C0L5_GLQDEDGYR 526.74 754.30 5.25 3 14.2 

P0C0L5_GLQDEDGYR 526.74 639.27 5.25 3 14.2 

P0C0L5_GLQDEDGYR 526.74 395.20 5.25 3 14.2 

P0C0L5_GSFEFPVGDAVSK 670.33 919.49 14.13 2.5 19.3 

P0C0L5_GSFEFPVGDAVSK 670.33 772.42 14.13 2.5 19.3 

P0C0L5_GSFEFPVGDAVSK 670.33 576.30 14.13 2.5 19.3 

P0C0L5_QGSFQGGFR 492.24 798.39 7.33 3 12.9 

P0C0L5_QGSFQGGFR 492.24 564.29 7.33 3 12.9 

P0C0L5_QGSFQGGFR 492.24 436.23 7.33 3 12.9 

P10643_ELSHLPSLYDYSAYR 605.30 774.34 14.25 2.5 17 

P10643_ELSHLPSLYDYSAYR 605.30 659.31 14.25 2.5 17 

P10643_ELSHLPSLYDYSAYR 605.30 496.25 14.25 2.5 17 
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P10643_ILPLTVCK 472.29 717.40 12.18 2.5 12.2 

P10643_ILPLTVCK 472.29 507.26 12.18 2.5 12.2 

P10643_ILPLTVCK 472.29 359.20 12.18 2.5 12.2 

P10643_LIDQYGTHYLQSGSLGGEYR 753.03 925.44 12.35 2.5 22.3 

P10643_LIDQYGTHYLQSGSLGGEYR 753.03 894.42 12.35 2.5 22.3 

P10643_LIDQYGTHYLQSGSLGGEYR 753.03 581.27 12.35 2.5 22.3 

P10643_LTPLYELVK 538.32 861.51 16.05 3 14.6 

P10643_LTPLYELVK 538.32 651.37 16.05 3 14.6 

P10643_LTPLYELVK 538.32 431.26 16.05 3 14.6 

P10909_FMETVAEK 477.73 807.39 7.5 3 12.4 

P10909_FMETVAEK 477.73 676.35 7.5 3 12.4 

P10909_FMETVAEK 477.73 547.31 7.5 3 12.4 

P10909_LFDSDPITVTVPVEVSR 937.50 1086.62 17.67 3 28.9 

P10909_LFDSDPITVTVPVEVSR 937.50 886.50 17.67 3 28.9 

P10909_LFDSDPITVTVPVEVSR 937.50 686.38 17.67 3 28.9 

P10909_VTTVASHTSDSDVPSGVTEVVVK 772.06 1201.53 11.55 2.5 23 

P10909_VTTVASHTSDSDVPSGVTEVVVK 772.06 1014.58 11.55 2.5 23 

P10909_VTTVASHTSDSDVPSGVTEVVVK 772.06 917.53 11.55 2.5 23 

P19823_FLHVPDTFEGHFDGVPVISK 747.72 872.93 16.75 3 22.1 

P19823_FLHVPDTFEGHFDGVPVISK 747.72 543.35 16.75 3 22.1 

P19823_FLHVPDTFEGHFDGVPVISK 747.72 398.22 16.75 3 22.1 

P19823_FYNQVSTPLLR 669.36 785.49 13.6 2.5 19.3 

P19823_FYNQVSTPLLR 669.36 686.42 13.6 2.5 19.3 

P19823_FYNQVSTPLLR 669.36 498.34 13.6 2.5 19.3 

P19823_IQPSGGTNINEALLR 791.93 1341.71 12.26 2.5 23.7 

P19823_IQPSGGTNINEALLR 791.93 1244.66 12.26 2.5 23.7 

P19823_IQPSGGTNINEALLR 791.93 1157.63 12.26 2.5 23.7 

P19827_AAISGENAGLVR 579.32 902.47 8.41 3 16.1 

P19827_AAISGENAGLVR 579.32 815.44 8.41 3 16.1 

P19827_AAISGENAGLVR 579.32 629.37 8.41 3 16.1 

P19827_EVAFDLEIPK 580.81 932.51 16.04 3 16.1 

P19827_EVAFDLEIPK 580.81 861.47 16.04 3 16.1 

P19827_EVAFDLEIPK 580.81 714.40 16.04 3 16.1 

P19827_FAHYVVTSQVVNTANEAR 669.34 874.44 10.78 2.5 19.3 

P19827_FAHYVVTSQVVNTANEAR 669.34 775.37 10.78 2.5 19.3 

P19827_FAHYVVTSQVVNTANEAR 669.34 661.33 10.78 2.5 19.3 

P27169_EVQPVELPNCNLVK 819.93 1086.56 13.39 2.5 24.7 

P27169_EVQPVELPNCNLVK 819.93 957.52 13.39 2.5 24.7 

P27169_EVQPVELPNCNLVK 819.93 844.43 13.39 2.5 24.7 

P27169_IQNILTEEPK 592.83 943.51 10.74 2.5 16.5 

P27169_IQNILTEEPK 592.83 716.38 10.74 2.5 16.5 

P27169_IQNILTEEPK 592.83 603.30 10.74 2.5 16.5 

P27169_YVYIAELLAHK 440.58 781.46 16.24 3 11.1 

P27169_YVYIAELLAHK 440.58 581.38 16.24 3 11.1 

P27169_YVYIAELLAHK 440.58 468.29 16.24 3 11.1 

P43652_AIPVTQYLK 516.81 848.49 12.99 2.5 13.8 

P43652_AIPVTQYLK 516.81 751.43 12.99 2.5 13.8 
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P43652_AIPVTQYLK 516.81 652.37 12.99 2.5 13.8 

P43652_ESLLNHFLYEVAR 530.95 637.33 18.46 3 14.3 

P43652_ESLLNHFLYEVAR 530.95 574.80 18.46 3 14.3 

P43652_ESLLNHFLYEVAR 530.95 517.77 18.46 3 14.3 

P51884_FNALQYLR 512.78 763.45 14.78 2.5 13.7 

P51884_FNALQYLR 512.78 692.41 14.78 2.5 13.7 

P51884_FNALQYLR 512.78 579.32 14.78 2.5 13.7 

P51884_ILGPLSYSK 489.29 864.48 11.63 2.5 12.8 

P51884_ILGPLSYSK 489.29 694.38 11.63 2.5 12.8 

P51884_ILGPLSYSK 489.29 597.32 11.63 2.5 12.8 

P51884_SVPMVPPGIK 512.80 610.39 12.41 2.5 13.7 

P51884_SVPMVPPGIK 512.80 511.32 12.41 2.5 13.7 

P51884_SVPMVPPGIK 512.80 419.75 12.41 2.5 13.7 

Q14624_EKAEAQAQYSAAVAK 522.27 908.48 5.54 3 14 

Q14624_EKAEAQAQYSAAVAK 522.27 709.39 5.54 3 14 

Q14624_EKAEAQAQYSAAVAK 522.27 546.32 5.54 3 14 

Q14624_EKAEAQAQYSAAVAK 522.27 459.29 5.54 3 14 

Q14624_ILDDLSPR 464.76 815.43 10.13 2.5 11.9 

Q14624_ILDDLSPR 464.76 702.34 10.13 2.5 11.9 

Q14624_ILDDLSPR 464.76 472.29 10.13 2.5 11.9 

Q14624_LGVYELLLK 524.33 934.56 17.84 3 14.1 

Q14624_LGVYELLLK 524.33 877.54 17.84 3 14.1 

Q14624_LGVYELLLK 524.33 778.47 17.84 3 14.1 

4.2.6 Determination of linearity of LeMBA pull-down 

 Serum sample (50 μg each) was spiked with 0.1 picomole, 0.5 picomole, 1 picomole, 10 

picomole, 100 picomole and 200 picomole of chicken ovalbumin per pull-down. Using this spiked-

in serum sample, LeMBA-MRM-MS was performed using NPL and JAC.    

4.2.7 Data processing 

 Raw data from MRM-MS experiment was processed using Skyline. All peaks were 

manually checked for correct integration, and peak area for each peptide (sum of all transitions) was 

exported for further analysis. For linearity experiments, the ratio of SIS:Natural peptide was 

calculated and plotted against SIS peptide spiked-in concentration. Median normalization was 

performed. Natural ovalbumin peptide peak intensity was first normalized with respective SIS 

labeled ovalbumin peptides. Next, using normalized intensity of natural ovalbumin peptide, the 

intensity of all other peptides was normalized. As mentioned in the methods above, methionine and 

non-methionine containing peptides were dealt with separately during normalization steps, to 

account for batch effects in methionine oxidation. For reproducibility experiments, the normalized 
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response with respect to ovalbumin peptide was calculated for each run, and the % CV of 16 

injections of the same sample run over a period of four days calculated.  

4.3 Results 

4.3.1 Nano-flow vs standard-flow LC-MRM-MS 

 The biomarker discovery was performed using LeMBA coupled with nano-HPLC-MS/MS 

(nano-HPLC-QTOF) system. For biomarker verification using LC-MRM-MS assay, two different 

systems were available. (i) nano-flow-HPLC-triple quadrupole mass spectrometer and (ii) standard-

flow-UHPLC-triple quadrupole mass spectrometer. The analytical performance of two instruments 

was compared for the MRM-MS based quantitation of a mix of 7 HSA peptide sample ran across 

range of dilutions. The chromatographic conditions for both instruments were optimized separately 

for this comparison. The result of one peptide is shown in Figure 4.2 as an example. Similar results 

were observed for the remaining 6 peptides, in terms of quantitation between nano-flow and 

standard-flow systems. Overall, the nano-flow system was found to be as much as 10-fold more 

sensitive as compared to standard-flow system.  

 Chromatographic peak shape and peak width are important analytical parameter to consider 

when comparing different chromatographic platforms. The chromatogram for peptide 

LVNEVTEFAK monitored using nano-flow and standard-flow MRM-MS is shown in Figure 4.3A 

and 4.3B respectively. The full width at half maxima (FWHM) for standard-flow chromatographic 

separation was 0.0333 min (2.00 sec) as compared to nano-flow chromatographic elution which was 

0.0961 min (5.77 sec) (Figure 4.3C). This means, in a complex biological sample such as human 

serum which contains ~10,000 proteins with a range of more than 10 order-of-magnitudes, 

standard-flow UHPLC will have better peak-to-peak resolution over nano-flow system. For the 

constant amount of sample injected, narrow and sharper peak over broader peak can be easy to 

distinguish from the background noise as well. It is proven that standard-flow UHPLC can handle 5 

to 10 times more samples in a single run as compared to nano-flow which means loss in analytical 

sensitivity can be compensated partly by injecting more amount of sample on column (422). It has 

also been demonstrated that along with narrower and sharper peak shapes, standard-flow UHPLC 

over nano-flow platform is less prone to interferences with the MRM transitions. Taken together, 

the appropriate system should be chosen based on sample availability i.e. if one is not limited by 

amount of sample than standard-flow UHPLC can provide equal sensitivity as compared to nano-

flow HPLC with additional benefits of robust and reproducible chromatography, better resolution 

and very low interferences for monitoring MRM transitions (422). LeMBA platform is not limited 
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by sample amount, so considering benefits of standard-flow system over nano-flow system; it was 

decided to set up MRM-MS assay on standard-flow-UHPLC coupled triple quadrupole mass 

spectrometer for biomarker verification.     

Figure 4.2. Comparison of nano-flow vs 

standard-flow coupled triple quadrupole mass 

spectrometer based on MRM-MS quantitation 

of HSA peptide LVNEVTEFAK.    

 

 

 

 

Figure 4.3. Chromatographic elution profile for nano-flow vs standard-flow LC-MRM-MS. 

Elution of HSA peptide LVNEVTEFAK (Transitions 575.3  937.5 and 575.3  694.4; @ 

Collision energy (CE) 20 eV) was monitored using MRM-MS for (A) nano-flow-HPLC and (B) 

standard-flow-UHPLC. (C) Demonstrates comparison between FWHM of 100 femtomole injection 

of HSA peptide mix on nano-flow and standard-flow LC-MRM-MS. 

4.3.2 MRM-MS assay development 

 Six lectins (AAL, EPHA, JAC, NPL, PSA, and WGA) were chosen for verification. The 

following three criteria were considered for choosing lectins. (i) Total number of candidates 

identified with each lectin in the biomarker discovery screen (Chapter 3), (ii) Previously published 

serum glycan profiling and lectin histochemistry studies that compared between healthy, BE and 

EAC phenotypes (169, 170, 175, 179), and (iii) Glycan reactivity group for each of the lectin. 

MRM-MS assay was developed for 41 glycoprotein candidates identified in biomarker discovery 

screen. Figure 4.4 illustrates the steps followed for developing MRM-MS assay. The discovery 
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proteomics data described earlier in Chapter 3 was used to select best possible peptides and 

transitions for developing MRM-MS assay. 

Figure 4.4. Steps followed for development of MRM-MS assay development.  

 To select 2-5 unique peptides per protein and 3 transitions per peptide for MRM-MS assay, 

a maximum of 10 peptides per protein and 5 transitions per peptide were imported from biomarker 

discovery data using MRM selector function of Spectrum Mill. Agilent triple quadrupole mass 

spectrometer can handle a maximum 200 transitions per MRM method. Collectively, 6 methods 

were created incorporating transitions to monitor peptides used as retention time prediction 

standards. LC gradient was kept constant throughout different stages of MRM method development. 

As a first step of method development, a combined LeMBA pull-down sample from multiple lectins 

was injected and around 1200 transitions in 6 different MRM methods were monitored. Peptides 

eluting at a retention time predicted by iRT and transitions showing no interferences were selected 

for the next round. In the second stage, 3 MRM methods were run in triplicates to qualify 

transitions showing reproducible responses and to determine retention time of each peptide. In the 

third and final step, MRM transitions were scheduled whereby retention time and delta retention 

time for each peptide was specified to create ultimate dynamic (schedule) MRM method. The 
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dynamic MRM method monitors 465 transitions in 34 min to quantify 145 peptides representing 41 

protein candidates. 

 Peptides with methionine in their sequence (which can undergo oxidation as variable 

modification) were excluded from MRM-MS assay as far as possible. For six of the proteins, 

peptides containing methionine showed stable response at least during the method development 

stages. So in final MRM-MS assay these six peptides containing methionine were chosen. It is 

important to highlight that for all of these six proteins at least two non-methionine containing 

peptides were monitored. In addition, four methionine containing peptides monitored were 

belonging to chicken ovalbumin. 

4.3.3 Retention time prediction 

 In a chromatographic separation, a peptide elutes at a particular retention time, adding one 

more dimension to the mass spectrometric data recordings. The peptide retention time parameter 

can be used as an independent way to qualify a peptide for MRM-MS assay development. The 

retention time of a peptide for a particular LC set up is determined by 3 factors (421). (i) Intrinsic 

properties of a peptide. It is determined by peptide sequence and structure along with the 

physicochemical interaction of the peptide with stationary phase and the solvent used for elution 

(423, 424), (ii) The set up of LC system which affects all peptides consistently and affected by 

parameters like column length, column temperature, mobile phase gradient, dead volume in the 

system (425), and (iii) variability in the LC system caused by varying amount of sample loading, 

variations due to pump pressure or column aging. In this thesis, the biomarker discovery was 

performed using nano-flow-HPLC-QTOF instrument while MRM-MS assay for biomarker 

verification was developed on standard-flow-UHPLC-triple quadrupole mass spectrometer. 

Considering the two LC platforms are different, it was anticipated that peptide retention time for the 

same peptide would vary between two systems. iRT retention time prediction tool (421) built in 

Skyline (420) was used as an independent parameter to qualify peptides and to increase peak 

identification confidence for MRM-MS assay development. The iRT scale was calibrated using 

known retention time of 6 peptides mentioned in Table 4.1. Transitions for each of these 6 peptides 

were monitored across all stages of MRM-MS assay development. 

 The serum/plasma proteome is complex hence it is possible to see interferences and similar 

looking peaks while selecting transitions for MRM-MS assay development. Figure 4.5A 

demonstrates practical application of retention time prediction tool. As can be seen from 

chromatogram, there are two identical looking peaks for peptide YGLVTYATYPK at retention 
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time 12.4 min and 13.7 min respectively. The predicted retention time according to iRT is 12.4 min 

suggesting response seen at 12.4 min is due to actual peptide YGLVTYATYPK while peak seen at 

13.7 min is due to interference. In the scenario where peptide retention time prediction tool would 

not be employed, this kind of transitions (or even peptides) would have been dropped from the 

MRM assay due to lack of confidence. Figure 4.5B and 4.5C shows regression analysis between 

iRT value and observed retention time of peptides for 1
st
 step of MRM-MS assay development and 

final MRM-MS assay. The majority of the peptides observed in 1
st
 stage of MRM-MS assay 

showed response at the retention time predicted by iRT. Peptides which didn't elute at the correct 

retention time were eliminated from the MRM-MS assay. The resulting dynamic MRM-MS assay 

showed a perfect correlation between iRT value and observed retention time in experiments. 

Figure 4.5. Implication of retention time prediction tool iRT on MRM-MS assay development. 

(A) Illustrates chromatographic elution profile of peptide YGLVTYATYPK [Transitions 638.3  

942.5, 843.4 and 742.4; @ Collision energy (CE) 18.2 eV]. Out of two peaks observed at retention 

time 12.4 min and 13.7 min, peak at 12.4 min corresponds with retention time predicted by iRT. 

Regression analysis between observed retention time and iRT value (B) for 1
st
 stage of MRM-MS 

assay development and, (C) for final dynamic MRM-MS assay.       

4.3.4 Incorporation of heavy labeled internal standard peptides 

 The nature of LC-MRM-MS assay allows incorporation of stable isotope labeled peptides 

(heavy amino acid labeled peptide bearing same sequence as natural peptide) as an internal 

standard. While synthesizing stable isotope standard (SIS) peptides, one or more amino acid in the 

natural peptide sequence is replaced with isotopic Carbon (
13

C6) and Nitrogen (
15

N7) atom counter 

parts. The resulting heavy labeled peptide carries same chemical properties as the natural peptide 

hence it elutes at the same time as the natural peptide during chromatography. However, SIS 

peptide differs in terms of its mass because of isotopic labeling. Trypsin is most commonly used 

proteolytic enzyme used in the proteomics workflows which digest proteins into peptides containing 

either lysine (K) or arginine (R) at C-terminus. Hence most common labeling for internal standard 

peptide uses either isotopically labeled lysine (K) or Arginine (R). In terms of mass, isotopic 
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Carbon and Nitrogen labeled lysine and arginine differ from natural peptide by 8 Da and 10 Da 

respectively. 

 SIS peptides are generally spiked-into the sample after the trypsin digest step and before 

mass spectrometric analysis. This allows absolute quantitation of peptides present in the samples 

using known concentration of spiked-in internal standard. Here, the purpose of incorporating SIS 

peptides into the workflow is to account for mass spectrometric variations over a period of time 

while screening patient samples for biomarker verification. Native chicken ovalbumin is spiked-in 

at the sample preparation step to account for variations due to sample processing and LeMBA pull-

down. In biomarker discovery (Chapter 3), ovalbumin peptides showed %CV around 40% which is 

accounted for variations due to sample preparation and LeMBA pull-down plus variations due to 

mass spectrometric analysis. For biomarker verification, the goal is to reduce this variation to allow 

better quantitation hence SIS peptides for chicken ovalbumin were incorporated into the workflow 

just before mass spectrometric analysis to separately account for mass spectrometric variation from 

variability arising due to sample preparation and LeMBA pull-down. Two ovalbumin peptides 

VASMASEK which contains methionine and ISQAVHAAHAEINEAGR without methionine were 

chosen. The methionine containing peptide was chosen to account for batch effect of methionine 

oxidation. Sum of two charge states +3 and +4 was used for normalization. In Chapter 3, gelsolin 

and haptoglobin were successfully validated using orthogonal technique LeMBA-western 

immunoblotting. So to be more confident, isotopic [
13

C6, 
15

N7] lysine labeled peptide AVEVLPK 

(belongs to gelsolin), and VTSIQDWVQK (belongs to haptoglobin) were also incorporated as 

internal standard peptides. Ideally, the concentration of spiked-in SIS peptide should be adjusted 

such that its response falls within 10-fold range of natural peptide (426). The optimized spiked-in 

amount was found to be 150 femtomole for ISQAVHAAHAEINEAGR and VASMASEK each, 

300 femtomole for VTSIQDWVQK, and 30 femtomole for AVEVLPK. Figure 4.6 illustrates 

examples of co-elution of SIS labeled peptides within 10-fold response of natural peptide. 
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Figure 4.6. Incorporation of stable isotope standard (SIS) peptides into MRM-MS assay. Co-

elution of heavy isotope labeled peptide and natural peptide for (A) VASMASEK, (B) 

ISQAVHAAHAEINEAGR, (C) AVEVLPK and (D) VTSIQDWVQK. Peak areas of heavy 

peptides fell within 10-fold of natural peptide levels.  

4.3.5 Linearity and reproducibility of MRM-MS assay 

 The linearity of the MRM-MS assay was evaluated by spiking a range of dilutions of 4 SIS 

peptides, spanning a 3125 fold dilution range, into a constant amount of LeMBA pull-down sample. 

As shown in Figure 4.7A, all 4 SIS peptides showed linear response from 25X dilution up to 

0.008X. The reproducibility of the MRM method was determined by running the same sample in 

quadruplicate for four consecutive days. As illustrated in Figure 4.7B, 86% of the peptides 

measured using MRM method showed percent coefficient of variation (%CV) below 10%, while 

9% of peptides showed %CV between 10-20%, and only 5% of the peptides were above 20%. Out 
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of 8 peptides that showed %CV greater than 20%, 7 of them were methionine containing peptides. 

The remaining peptide showed % CV of 20.1% which is just above empirical cut-off of 20%. 3 out 

of 10 methionine containing peptides showed %CV of 0.96% (VASMASEK), 3.84% 

(HRLEDMEQALSPSVFK) and 16.75% (NVLQPSSVDSQTAMVLVNAIVFK) suggesting 

variable oxidation of methionine may depend upon the peptide sequence. This experiment also 

determined the stability of the sample resuspended in 0.1% formic acid under the storage condition 

in the auto sampler. It was anticipated that once samples were resuspended in 96 well plates, they 

would be run within three days. Hence reproducibility was checked for four consecutive days after 

reconstituting samples. Taken together, MRM-MS assay developed was linear and reproducible. 

Figure 4.7. 

Determination of 

linearity and 

reproducibility of 

MRM-MS assay. 

(A) Linearity of 

MRM-MS assay 

was confirmed using 

SIS labeled peptide 

mix of 4 peptides 

diluted across 3125 

fold and spiked-into 

a constant amount of 

LeMBA pull-down sample. (B) Reproducibility of MRM-MS assay was determined for 16 replicate 

injections ran over 4 days period. 

4.3.6 Optimization of loading capacity for each lectin pull-down 

 Loading capacity (amount of peptide to be loaded on LC column) for each lectin pull-down 

was optimized individually. With increase in amount of peptide loaded on the column, the peak area 

from MRM-MS measurement show corresponding increase until certain threshold is reached. The 

optimal loading capacity is reached when the increase in sample amount no longer results in 

increase in the MRM-MS response (422). To determine the loading capacity for each lectin pull-

down, varying amount of LeMBA pull-down was mixed with SIS peptides and injected into the 

mass spectrometer. Peak areas across all peptides between different injection volumes were 

monitored to determine loading capacity for each lectin. Replicate comparison tool of Skyline was 

very useful to compare peak areas across different injection volumes. Based on this comparison, 

following protocol was used for final experiments.  10 μL of the LeMBA pull-down reconstituted in 

0.1% formic acid was mixed with 6 μL SIS peptide mixture containing 150 femtomole of 

ISQAVHAAHAEINEAGR and VASMASEK each, 300 femtomole of VTSIQDWVQK, and 30 
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femtomole of AVEVLPK. Out of the total 16 μL mixture, the optimized loading for AAL, JAC, 

NPL and PSA lectin was 13 μL, EPHA lectin was 11.5 μL and WGA lectin was found to be 12.5 

μL.     

4.3.7 Linearity of LeMBA pull-down 

 Earlier work from our laboratory determined linearity of LeMBA pull-down by spiking-in 

different amount of chicken ovalbumin into human serum, followed by pull-down using ConA 

lectin and nano-flow HPLC-MS/MS for quantitation (317). Here, the linearity of LeMBA pull-

down was tested by spiking 50 μg of serum proteins with 0.1 picomole (4.43 ng), 0.5 picomole 

(22.14 ng), 1 picomole (44.29 ng), 10 picomole (442. 7 ng), 100 picomole (4.43 μg) and 200 

picomole ( . 6 μg) of chicken ovalbumin at the time of sample denaturation. LeMBA pull-down 

was performed in triplicate using NPL and JAC lectin, followed by quantitation of ovalbumin 

peptide using standard-flow UHPLC-MRM-MS assay. As can be seen from graph in Figure 4.8, 

there was linear increase in MRM-MS response with increasing amount of ovalbumin titrated in the 

background of serum proteins. Below 0.5 picomole, the pull-down showed non-reproducible results 

while above 100 picomole the beads were getting saturated hence no more increase in response was 

observed.  

Figure 4.8. Linearity of LeMBA pull-down. The linearity of LeMBA pull-down was tested by 

titrating chicken ovalbumin in the background of serum protein for NPL and JAC LeMBA pull-

down. Quantitation was performed using standard-flow UHPLC-MRM-MS by monitoring 

transitions for peptides (A) VASMASEK, (B) ISQAVHAAHAEINEAGR, and (C) 

YPILPEYLQCVK. 
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4.4 Discussion 

4.4.1 Overview 

 While LeMBA-MS/MS using QTOF and GlycoSelector successfully identified candidate 

biomarkers (Chapter 3), QTOF is not optimal for biomarker verification as the measurements are 

semi-quantitative. Therefore, the aim of present chapter was to establish a targeted assay using 

MRM-MS for biomarker candidates identified in Chapter 3. MRM-MS assay was set up on 

UHPLC-coupled triple quadrupole mass spectrometer. Later on, SIS peptides were incorporated in 

the assay. The established MRM-MS assay demonstrated good linearity and reproducibility. After 

determining optimal loading for each lectin pull-down, linearity of LeMBA pull-down was also 

confirmed.  

4.4.2 Nano-flow vs standard-flow HPLC: Does it matter? 

 Nano-flow HPLC coupled mass spectrometry enables protein discovery using very minute 

quantity of biological sample. Now it has almost become a method of choice in protein biomarker 

discovery using limited quantity of available biological samples (427, 428). Compared with 

capillary (~50 μL/min) and standard-flow (~500 μL/min) HPLC, nano-flow HPLC (~500 nL/min) 

offers substantial increase in sensitivity and detection capabilities but at the cost of ease of use and 

system robustness (429). In addition, this technology is not mature enough to consistently analyze 

hundreds of samples in reproducible manner hence not ideal for biomarker verification purposes 

(429). Recently, it has been demonstrated that when sample amount is not limited, standard-flow 

UHPLC coupled triple quadrupole mass spectrometer can provide comparable sensitivity against 

nano-flow system with the additional benefits of increase in dynamic range (422). In my 

experience, standard-flow UHPLC coupled triple quadrupole mass spectrometer is very stable over 

a long period of time, requires less maintenance hence yield less system down time as compared to 

nano-flow coupled triple quadrupole mass spectrometer. Moreover, in agreement with observation 

made by Percy and colleagues (422), the result described in this chapter demonstrates narrow 

chromatographic peak width using standard-flow UHPLC over nano-flow HPLC and offers better 

quantitation and less interference while developing MRM-MS assay (422). 

 Running and maintaining sophisticated instruments like a mass spectrometer is very costly 

hence all possible efforts should be made during assay development to keep total run time of the 

method and overall screening as minimal as possible. With nano-flow HPLC coupled QTOF mass 

spectrometer used for biomarker discovery, blank had to be run after running each sample to reduce 

the carry-over of the sample which resulted in almost 30% increase in total time spent on the 
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instrument. Initial experiments using standard-flow UHPLC coupled mass spectrometer resulted in 

no carry-over of the sample during subsequent runs hence blank injection after each sample run was 

not required. Furthermore, over a long period of time, retention time reproducibility of the standard-

flow system is superior compared to the nano-flow system. This means the delta retention time for 

each transition can be minimized allowing better multiplexing, longer dwell time (amount of time 

spent to analyze and detect one ion) for each transition, and lower time for overall method. Taken 

together, as LeMBA methodology was not limited by sample size, it was decided to use standard-

flow UHPLC over nano-flow HPLC platform for biomarker verification study. 

4.4.3 MRM-MS assay  

 Multiple reaction monitoring has emerged as a practical alternative to antibody based 

platforms for accurate, rapid, reproducible and timely verification of protein biomarker candidates 

(410). This chapter demonstrates successful development of MRM-MS assay to monitor 41 

glycoprotein biomarker candidates in very short time duration of 34 min. iRT, a retention time 

prediction tool was successfully employed to predict peptide retention time and to increase 

confidence for peptide identification (421). Each peptide based on its sequence elutes at a specific 

retention time which can be predicted based upon its hydrophobicity. The most widely used 

algorithm to predict retention time was SSRCalc (430) until iRT was developed. iRT showed 

almost 4 times improvement over SSRCalc to predict retention time of the peptides (421). Skyline 

software version 1.2 and beyond incorporates iRT. Previous studies used a peptide mix of 

commercially available synthetic standards with different hydrophobicities (hence different 

retention times) to calibrate iRT scale (431). In contrast, the result described in this chapter used 

peptides from internal standard chicken ovalbumin that covered entire gradient and two other heavy 

labeled peptides to calibrate iRT scale, and lead to successful prediction of retention time. This 

result demonstrates an additional application of using internal standard such as chicken ovalbumin 

for retention time prediction. With the use of very powerful retention time prediction algorithm 

such as iRT it is very easy to transfer MRM methods across different instruments even from 

different vendors. This is very useful in later stages of biomarker development to conduct multi-

center evaluation of biomarker candidates in laboratories across the world with different instrument 

configurations (432). The iRT can also be applied to newly emerging data independent acquisition 

platforms such as SWATH-MS for biomarker discovery studies (433, 434).      
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4.4.3.1 Incorporation of relative quantitation in MRM-MS assay using stable isotope labeled 

peptides 

 Almost a decade after the entire human genome was sequenced, mass spectrometry based 

draft of the entire human proteome is now available (435, 436). With availability of this wealth of 

information and recent advancements in targeted proteomics techniques, it is now feasible to 

perform absolute or relative quantitation of proteins by accurately measuring the peptide 

constituents. Stable isotope labeled peptide standards (SIS) are widely used for the mass 

spectrometric quantitation purposes (437). One of the amino acid constituent of SIS peptide is 

labeled with isotopic carbon (
13

C6) and/or nitrogen (
15

N7) atom. This causes SIS peptide to share 

exactly same physicochemical properties as its light (natural) counterpart, with the exception of 

overall mass. Workflow such as stable isotope standards and capture by anti-peptide antibodies 

(SISCAPA) involves addition of SIS peptide to the sample as internal standard and uses a specific 

antibody to capture a target peptide from a tryptic digest of plasma (438). Although SISCAPA 

requires expertise to generate anti-peptide antibody of high quality, it is very sensitive, high-

throughput and has potential to overcome current limitations of immunoassays (439). In this 

chapter, SIS peptides for internal standard chicken ovalbumin were used to separately account for 

mass spectrometric variation from variation due to LeMBA pull-down. SIS peptides were spiked 

into the LeMBA pull-down at the time of reconstitution of the sample for mass spectrometric 

analysis. For best results, response of SIS peptide should fall within 10-fold of response observed 

for natural peptide (426). Each peptide based on its physicochemical properties has different 

ionization efficiency and column retention. This means, injecting same amount of different peptides 

sequences will result in varying responses hence the amount of each SIS peptide to be spiked-in was 

individually optimized with success as mentioned in the result section. 

4.4.3.2 Linearity and reproducibility of the assay 

 Plasma proteome is the most complex proteome and it extends over quantitative dynamic 

range of 10
10

 fold. High abundant proteins such as albumin is present at the level of 35 to 50 

mg/mL (3-5˟10
10 

pg/mL) while on the lower side interleukin-6 is present in the range of 

undetectable to 5 pg/mL levels (362). For the biomarker verification assay, it is necessary to cover 

at least part of this extended dynamic range. The result described in this chapter confirms linearity 

of the MRM-MS assay over 4 log10 range.  

 The acceptable %CV for a mass spectrometry based biomarker verification assay is less than 

20% (422). As mentioned in the result, the majority of the measured peptides show %CV of less 
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than 20% suggesting robust performance of MRM-MS. Figure 4.9 below shows further breakdown 

of the results of the MRM-MS reproducibility experiment. It is evident that normalizing raw peptide 

intensities using SIS peptide measurements resulted in lower % CV (better reproducibility) as 

compared to raw intensities itself. This means that small variations during mass spectrometry 

analysis are accounted for by inclusion of SIS peptides into the workflow. Over periods of time this 

will reduce the technical variations and improve the quantitation.  

Figure 4.9. Reproducibility of MRM-MS assay before 

and after normalization using SIS peptides.        

 

  

 

 

   

 Earlier work by Dr Choi optimized the amount of serum to be used for LeMBA pull-down 

while keeping amount of lectin-beads for pull-down constant. The amount of serum protein was 

optimized such that it falls within linear range of pull-down efficiency i.e. increase in amount of 

serum protein resulted into increased binding with the lectin-beads. This earlier work also 

determined linearity of LeMBA by spiking serum with increasing amount of chicken ovalbumin 

followed by pull-down using ConA lectin and nano-LC-MS/MS analysis (317). In this chapter, the 

linearity of LeMBA pull-down using NPL and JAC lectin has been tested. Chicken ovalbumin was 

spiked from 4.43 ng to  . 6 μg into 50 μg of serum proteins. A linear increase in response was 

observed up to 4.43 μg (100 picomole) of chicken ovalbumin amount, beyond which there was no 

increase in response suggesting saturation of lectin-beads at such a high concentration. According to 

an estimate, up to 50% of the proteins synthesized undergo glycosylation (327, 440). Except 

albumin which constitute ~50% of the proteome (362), if 50% of the remaining serum proteins are 

glycoproteins then approximately 12.5 μg out of 50 μg of serum proteins used per lectin pull-down 

are glycosylated.  . 6 μg of chicken ovalbumin is more than 50% of total serum glycoprotein used 

for the pull-down hence it was expected to see saturation of lectin-beads when ovalbumin was 

spiked-in at very high levels.  

 In conclusion, this chapter describes successful development of MRM-MS assay for 41 

glycoprotein candidates. The assay measures 2-5 peptides for each of 41 glycoprotein candidates in 



128 

 

a 34 min MRM-MS method. The assay showed linear response and was found to be reproducible. 

This targeted proteomics assay will be used for verification of biomarker candidates in an 

independent patient cohort.   
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VERIFICATION OF LECTIN−GLYCOPROTEIN BIOMARKER CANDIDATES 

USING LEMBA−COUPLED MRM-MS   
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Chapter 5. Verification of lectin−glycoprotein biomarker candidates using LeMBA−coupled 

MRM-MS 

5.1 Introduction 

 The translation of candidate biomarker discovered in research laboratory based discovery 

screen to clinical use involves several stages of validation. As the potential candidates move 

forward from initial discovery stages to later validation stages, the list of number of candidate 

biomarkers screened gets smaller while the number of patient samples screened increases (133, 

409). Generally, anywhere from dozens up to hundreds of protein candidate biomarkers are selected 

as potential biomarkers after completion of biomarker discovery phase. The sample size of the 

biomarker discovery is small hence interindividual and intraindividual variations are overlooked. 

Moreover, the distribution of physiological levels of candidate biomarkers in healthy population 

may result in a bias during biomarker discovery. The presence of confounding risk factors add 

another layer of complexity and result in identification of false-positive candidates at this initial 

stage (358). In the recent past, literature has been flooded with publications describing outcome of 

biomarker discovery studies but evidence of verified list of biomarker candidates ready for clinical 

validation are seldom (358, 362, 441). Hence, for translational outcome it is essential to verify the 

biomarker candidates identified during biomarker discovery in an independent patient cohort before 

conducting large scale clinical validation.   

 The main goal of biomarker verification is to evaluate performance of the biomarker 

candidates in an independent patient cohort and establish sensitivity, specificity, area under receiver 

operating characteristics curve (AUROC) and statistical significance of an individual candidate. The 

sensitivity of a biomarker is defined as the proportion of patients with disease who will have a 

positive readout for the biomarker measurement (442). The specificity of a test is defined as the 

percentage of cohort without underlying disease who will have negative results when tested for a 

particular biomarker candidate (442). For continuous variables such as mass spectrometric 

measurements, sensitivity and specificity values vary according to the cut-off (threshold) set for 

classifying patients into disease or healthy phenotypes. The ROC curve is generated by plotting 

sensitivity of all possible cut-off points for the test on y-axis against 1-specificity on x-axis (443). 

The ROC curve is a graphical representation for assessing the ability of a test to discriminate 

between disease and healthy patient groups (444). It is widely accepted as a method of choice to 

decide test cut-off for diagnostic purposes (444, 445). AUROC is a reflection of how good the test 

is at distinguishing between healthy and disease condition and can be used as a single measure to 
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measure the discriminative ability of a test (446). A perfect biomarker will show AUROC of 1.0 

while AUROC of 0.5 indicates biomarker of no use. The biomarker with AUROC > 0.9 has a high 

accuracy, between 0.7-0.9 has moderate accuracy while between 0.5-0.7 indicates low accuracy 

(446). Quiet often, a panel of complementary biomarker candidates is identified to improve the 

diagnostic value of a single biomarker candidate. Similar to single biomarker candidate, sensitivity, 

specificity, and AUROC value can be determined for a panel of biomarker candidates. 

 The present chapter describes verification of lectin-protein diagnostic biomarker candidates 

identified in Chapter 3 using targeted MRM-MS assay developed in Chapter 4 in an independent 

patient cohort. Statistical significance and AUROC values were calculated for individual biomarker 

candidates. Furthermore, multivariate analysis was performed to identify a biomarker panel which 

discriminate between BE and EAC.  

5.2 Experimental procedures 

5.2.1 Sample information 

 Serum samples from 61 patients (healthy-20, BE-21 and EAC-20) were randomized for 

LeMBA pull-down. 19 Population control samples were not randomized. Total 80 serum samples 

were divided across 7 plates for LeMBA pull down and mass spectrometry analyses (Plate 1 - A1, 

A2, A3, A4, A5, A6, A7, A8, A9, B1, I7; Plate 2 - E9, E4, C2, F2, E5, C3, F3, E6, C4, F5, E7, C5; 

Plate 3 - E8, C6, F9, F1, C7, G1, F4, C8, G2; Plate 4 - D1, G6, F8, D2, G7, G3, D3, G9, G5, D4, 

H1, G8; Plate 5 - D5, H3, H2, D6, H5, H4, D7, H6, H7, D8, I1, H8; Plate 6 - I2, H9, D9, I3, I5, E1, 

I4, I8, E2, I6, I9, E3; and Plate 7 - F6, C9, G4, B2, B3, B4, B5, B6, B7, B8, B9, C1). Details 

regarding source of the serum samples is described in section 2.3. Table 5.1 contains details of the 

samples used for biomarker verification. All samples were collected from male patients and 

matched for age. Sample I7 was found to be an outlier after LeMBA-MRM-MS data analysis so 

now onwards remaining 79 patient samples are considered for data analysis. For categorical and 

numerical variables related to patient information, P values were calculated using Fisher's exact test 

and Kruskal-Wallis test respectively. Table 5.2 summarizes clinical characteristics of the patient 

cohort for biomarker verification.    

Table 5.1. Details of samples used for biomarker verification. 

Sample ID Phenotype Age* Body mass 

index#  

Smoking 

status 

Cumulative 

smoking 

history 

Alcohol 

consumption$ 

Reflux 

frequency& 

F3 43168 BE negative 50.43 Obese I (-<35) Current 30+ pack yrs 21+ std Daily 
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smoker drinks/wk 

G7 43316 BE negative 56.41 Obese I (-<35) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Never 

G2 43280 BE negative 57.11 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

<Once/month 

G6 48024 BE negative 58.53 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

<1 std 

drink/wk 

Monthly (few 

times/mo) 

H4 43302 BE negative 58.55 Overweight(-<30) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

Monthly (few 

times/mo) 

H1 45295 BE negative 58.66 Obese I (-<35) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Never 

H9 48092 BE negative 62.77 Obese I (-<35) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Daily 

G1 45257 BE negative 64.04 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Monthly (few 

times/mo) 

H8 48077 BE negative 64.25 Obese I (-<35) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Never 

F9 43202 BE negative 64.31 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

1-6 std 

drinks/wk 

Never 

H7 48072 BE negative 64.39 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Weekly (few 

times/wk) 

G4 43291 BE negative 70.57 Healthy wt (-<25) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

<Once/month 

F2 45203 BE negative 71.85 Healthy wt (-<25) Ex-Smoker 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

<Once/month 

G9 43325 BE negative 71.93 Healthy wt (-<25) . 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

. 

I9 43668 BE negative 73.11 Healthy wt (-<25) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Monthly (few 

times/mo) 

I5 43552 BE negative 73.55 Obese I (-<35) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Weekly (few 

times/wk) 

H2 48051 BE negative 73.72 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

<1 std 

drink/wk 

Monthly (few 

times/mo) 

I8 43636 BE negative 74.66 Overweight(-<30) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Never 

E9 46070 BE negative 74.77 Overweight(-<30) Current 

smoker 

30+ pack yrs 7-20 std 

drinks/wk 

Monthly (few 

times/mo) 

F5 43211 BE negative 74.97 Healthy wt (-<25) Never 

Smoker 

Never smoked None Never 

F8 47034 BE positive 51.54 Overweight(-<30) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Daily 

H3 45303 BE positive 52.22 Overweight(-<30) Never 

Smoker 

Never smoked 21+ std 

drinks/wk 

Monthly (few 

times/mo) 

E7 43123 BE positive 55.16 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

1-6 std 

drinks/wk 

Never 

E5 43059 BE positive 55.89 Overweight(-<30) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Daily 

E4 43014 BE positive 55.92 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

<1 std 

drink/wk 

Monthly (few 

times/mo) 

F1 46010 BE positive 57.25 Overweight(-<30) Current 

smoker 

30+ pack yrs 21+ std 

drinks/wk 

Never 

F4 46077 BE positive 57.77 Healthy wt (-<25) Ex-Smoker 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

Weekly (few 

times/wk) 

E6 45062 BE positive 58.79 Overweight(-<30) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Monthly (few 

times/mo) 

E8 45159 BE positive 58.84 Overweight(-<30) Never Never smoked 21+ std Daily 
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Smoker drinks/wk 

I6 43563 BE positive 60.22 Healthy wt (-<25) Ex-Smoker 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

Monthly (few 

times/mo) 

H5 45328 BE positive 60.33 Obese I (-<35) Never 

Smoker 

Never smoked 21+ std 

drinks/wk 

<Once/month 

I2 43477 BE positive 63.45 Overweight(-<30) Current 

smoker 

1-29.9 pack 

yrs 

21+ std 

drinks/wk 

Daily 

I1 48094 BE positive 64.06 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

1-6 std 

drinks/wk 

Monthly (few 

times/mo) 

H6 43380 BE positive 64.72 Overweight(-<30) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

Never 

G5 48015 BE positive 70.47 Obese I (-<35) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Never 

I4 45421 BE positive 74 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

<1 std 

drink/wk 

<Once/month 

F6 45210 BE positive 74.34 Healthy wt (-<25) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

Daily 

G8 43315 BE positive 74.46 Healthy wt (-<25) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

<Once/month 

I3 45435 BE positive 74.75 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Monthly (few 

times/mo) 

G3 43269 BE positive 74.98 Healthy wt (-<25) Never 

Smoker 

Never smoked None Daily 

I7 46216 BE positive 74.65 Healthy wt (-<25) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

Monthly (few 

times/mo) 

A4 93136 Control 53.45 Overweight(-<30) Never 

Smoker 

Never smoked 21+ std 

drinks/wk 

Monthly (few 

times/mo) 

A3 94236 Control 53.95 Obese I (-<35) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

<Once/month 

B4 94424 Control 56.24 Obese I (-<35) Never 

Smoker 

Never smoked 21+ std 

drinks/wk 

<Once/month 

C1 95133 Control 56.61 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

<1 std 

drink/wk 

Never 

B9 94429 Control 56.72 Healthy wt (-<25) Current 

smoker 

30+ pack yrs 7-20 std 

drinks/wk 

<Once/month 

B5 95083 Control 58.84 Healthy wt (-<25) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

Monthly (few 

times/mo) 

B8 95101 Control 59.8 Overweight(-<30) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Never 

A1 96061 Control 60.66 Obese I (-<35) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Daily 

A6 94259 Control 61.31 Obese II (-<40) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Never 

A2 94126 Control 62.29 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

1-6 std 

drinks/wk 

Never 

A5 94261 Control 62.82 Healthy wt (-<25) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

<Once/month 

A7 94432 Control 63.11 Healthy wt (-<25) Ex-Smoker 30+ pack yrs 1-6 std 

drinks/wk 

<Once/month 

B3 95154 Control 70.57 Healthy wt (-<25) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Never 

A9 94449 Control 70.79 Overweight(-<30) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

<Once/month 

B7 96189 Control 72.76 Overweight(-<30) Ex-Smoker 30+ pack yrs 7-20 std 

drinks/wk 

Monthly (few 

times/mo) 

B6 92358 Control 73.05 Overweight(-<30) Ex-Smoker 1-29.9 pack 21+ std Monthly (few 
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yrs drinks/wk times/mo) 

B2 94452 Control 73.42 Healthy wt (-<25) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Never 

B1 94458 Control 74.18 Overweight(-<30) Never 

Smoker 

Never smoked None <Once/month 

A8 94461 Control 74.19 Healthy wt (-<25) Ex-Smoker 1-29.9 pack 

yrs 

1-6 std 

drinks/wk 

Never 

C2 42094 EAC 52.52 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Daily 

C3 61017 EAC 54.96 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Weekly (few 

times/wk) 

E1 50231 EAC 55.67 Healthy wt (-<25) Current 

smoker 

1-29.9 pack 

yrs 

21+ std 

drinks/wk 

Daily 

D8 61189 EAC 57.29 Obese II (-<40) Ex-Smoker 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

Weekly (few 

times/wk) 

D2 61093 EAC 57.51 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

1-6 std 

drinks/wk 

Weekly (few 

times/wk) 

D6 21416 EAC 57.59 Obese I (-<35) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Daily 

C9 21283 EAC 58.97 Obese I (-<35) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Daily 

D3 35022 EAC 60.09 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

Daily 

D9 21420 EAC 60.54 Obese I (-<35) Current 

smoker 

30+ pack yrs 1-6 std 

drinks/wk 

Daily 

D4 40270 EAC 60.88 Overweight(-<30) Never 

Smoker 

Never smoked 1-6 std 

drinks/wk 

Weekly (few 

times/wk) 

D7 33168 EAC 61.72 Obese III (>=40) Ex-Smoker 30+ pack yrs 1-6 std 

drinks/wk 

Weekly (few 

times/wk) 

E3 33189 EAC 63.1 Overweight(-<30) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Weekly (few 

times/wk) 

E2 50272 EAC 70.14 Overweight(-<30) Ex-Smoker 30+ pack yrs 1-6 std 

drinks/wk 

Weekly (few 

times/wk) 

C4 42112 EAC 70.45 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

Never 

C8 21252 EAC 70.46 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

21+ std 

drinks/wk 

Weekly (few 

times/wk) 

C5 40173 EAC 70.72 Obese I (-<35) Ex-Smoker 1-29.9 pack 

yrs 

1-6 std 

drinks/wk 

Monthly (few 

times/mo) 

D5 40304 EAC 71.11 Obese I (-<35) Ex-Smoker 30+ pack yrs 21+ std 

drinks/wk 

Daily 

D1 21330 EAC 73.62 Obese I (-<35) Never 

Smoker 

Never smoked 7-20 std 

drinks/wk 

Monthly (few 

times/mo) 

C6 61065 EAC 73.76 Obese I (-<35) Never 

Smoker 

Never smoked None Monthly (few 

times/mo) 

C7 33078 EAC 74.16 Overweight(-<30) Ex-Smoker 1-29.9 pack 

yrs 

7-20 std 

drinks/wk 

<Once/month 

*For cases, age represent age at the time of diagnosis. For controls, age represent age at 1
st
 letter 

sent. 

#
Body mass index is according to data available one year before diagnosis. It is categorized into 6 

categories according to WHO.   

$
Alcohol consumption represents average number of standard drinks per week. 
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&
Reflux frequency is according to 10 years before diagnosis. 

Table 5.2. Clinical characteristics of the patient cohort for biomarker verification.  

Variables Healthy BE EAC P value 

(Healthy vs 

BE vs EAC) 

Population 

Control 

P value 

(Healthy vs 

Pop. 

Control) 

Sample size 20 20 20  19  

Gender All male All male All male  All male  

Age in years (Median ± SD) 64 ± 8 60 ± 8 61 ± 7 0.4283 62 ± 7 0.2793 

Protein concentration (μg/μl) 83 ± 10 78 ± 12 85 ± 13 0.6486 89 ± 13 0.0785 

Reflux frequency* (10 years before diagnosis) 0.0108  0.2155 

   <Once/month 9 (47.4%) 7 (35.0%) 2 (10.0%)  14 (73.7%)  

   Monthly (few times/month) 6 (31.6%) 6 (30.0%) 3 (15.0%)  4 (21.1%)  

   Weekly or daily 4 (21.0%) 7 (35.0%) 15 (75.0%)  1 (5.3%)  

Body mass index 0.0076  0.6090 

   Healthy (<25) 5 (25.0%) 5 (25.0%) 1 (5.0%)  7 (36.8%)  

   Overweight (25-30) 8 (40.0%) 12 (60.0%) 5 (25.0%)  8 (42.1%)  

   Obese (>=30) 7 (35.0%) 3 (15.0%) 14 (70.0%)  4 (21.1%)  

Smoking history 0.6116  0.7813 

   Never smoked 8 (40.0%) 8 (40.0%) 4 (20.0%)  7 (36.8%)  

   1-29.9 pack per year 8 (40.0%) 9 (45.0%) 10 (50.0%)  6 (31.6%)  

   30+ pack per year 4 (20.0%) 3 (15.0%) 6 (30.0%)  6 (31.6%)  

Alcohol consumption 0.6637  0.8379 

   <1 standard drink/week 3 (15.0%) 3 (15.0%) 1 (5.0%)  2 (10.5%)  

   1-6 standard drink/week 3 (15.0%) 4 (20.0%) 6 (30.0%)  5 (26.3%)  

   7-20 standard drink/week 8 (40.0%) 4 (20.0%) 6 (30.0%)  6 (31.6%)  

   21+ standard drink/week 6 (30.0%) 9 (45.0%) 7 (35.0%)   6 (31.6%)   

*All the analyses were performed based on available patient information. Reflux frequency for one 

healthy patient was missing. 

5.2.2 LeMBA-UHPLC-MRM-MS 

 LeMBA using 6 lectins (AAL, EPHA, JAC, NPL, PSA, and WGA) was performed as 

described in section 2.5. Each plate for LeMBA pull-down could handle 12 patient samples, with a 
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total of 7 plates required to process 80 patient samples. To reduce the variability due to sample 

preparation step, all 80 serum samples were denatured at the same time and spiked with 10 

picomole of internal standard chicken ovalbumin per lectin pull-down. Sufficient volume of serum 

was available to allow processing of double quantity of sample than actual requirement. After 

denaturation, samples were aliquoted in half and stored at -80 ˚C for later use. Lectin-beads 

conjugated in single batch were used across LeMBA pull-downs to reduce variability. On the day of 

LeMBA pull-down, the denatured serum samples were diluted in binding buffer. Lectins were 

arranged in an alphabetical order in 96 well-plate where each raw represent an individual lectin. 

After trypsin digestion, peptides were quantified using UHPLC-MRM-MS assay mentioned in 

Chapter 4. The samples were run according to lectin pull-down on mass spectrometer i.e. LeMBA 

pull-down samples for the same lectin on each plate were run one after another. After running every 

6 LeMBA pull-down samples, a column flush was performed for cleaning and maintenance. 

Column flush method contains a mixture of gradient and isocratic flow of solvents as mentioned in 

the table below. 100 femtomole of HSA peptide standard mix was injected as QC after each column 

flush run to monitor instrument performance.     

Time (min) Solvent % B 

0.0 min 3% 

2.0 min 15% 

4.5 min 15% 

6.5 min 25% 

9.0 min 25% 

11.0 min 35% 

13.5 min 35% 

15.5 min 45% 

19.5 min 45% 

21.5 min 60% 

24.0 min 60% 

26.0 min 95% 

32.0 min 95% 

34.0 min 3% 

Stop time = 40.0 min 3% 

5.2.3 Shiny mixOmics analysis 

 The raw data processing and normalization was performed as mentioned earlier in sections 

4.2.3 and 4.2.7. Briefly, peak area for each peptide (sum of all transitions) was extracted using 

Skyline. All peaks were manually checked for correct integration. Median normalization of native 

chicken ovalbumin peptide ISQAVHAAHAEINEAGR and VASMASEK was performed using 
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their isotopically labeled counterparts. Using normalized intensity of natural ovalbumin peptides, 

median normalization was performed for all the peptides measured in MRM-MS assay. The major 

steps for statistical analysis include: (i) converting peptide intensity to protein intensity, (ii) outlier 

detection (for details see section 3.2.6.2), (iii) univariate analysis using non-parametric tests such as 

Kruskal-Wallis tests (significance level set to 0.05) and ROC analysis for each lectin-protein 

biomarker candidate, and (iv) multivariate analysis using sPLS-DA combined with stability 

analysis. Normalized peptide response was calculated as mentioned above, using Microsoft excel. 

Further downstream statistical analysis was performed with a dedicated web application Shiny 

mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny) using the R statistical software (447) and 

the R package mixOmics (448) implementing all the statistical data analysis steps described.    

 The first step in the data analysis pipeline is to infer protein measurements from normalized 

peptide intensities. 2 - 5 peptides per proteins were measured for each protein. In order to qualify 

for quantitation, more than 50% of the measured peptides from the same protein must have a 

Pearson correlation coefficient of more than 0.6. The normalized intensity for different peptides 

belonging to the same protein varied in the magnitude of more than 10 fold, suggesting simply 

summing up peptide intensity values to determine protein intensity values would lead to biased 

results. To overcome this problem, equal weight to each peptide was given irrespective of its 

absolute intensity when calculating a normalization factor. After converting peptide intensity into 

protein intensity, outlier detection was performed using the same approach as described previously 

during GlycoSelector analysis for biomarker discovery in section 3.2.6.2. 

 After removal of an outlier I7, univariate statistical analysis using non-parametric tests such 

as Kruskal-Wallis (significance level set to 0.05) and ROC analysis was performed between healthy 

vs BE, BE vs EAC, and healthy vs EAC patient groups, for each lectin-protein candidate. AUROC 

value determines the diagnostic ability of each individual lectin-protein candidate to differentiate 

between two different phenotypes. Sensitivity, specificity and likelihood ratio were calculated at a 

specified cut-off value for normalized protein response. A likelihood ratio of 10 indicates that the 

patients with the disease are 10 times more likely to be diagnosed compared to those without the 

disease (449).  

 Supervised multivariate approach sPLD-DA was applied to select a panel of biomarker 

candidate to distinguish patients into two different phenotypes. Stability analysis was carried out 

that measures frequency of each feature being selected across 5-fold cross-validation repeated 1000 

times. Only the robust lectin-protein candidates were reported. Besides the candidate selection and 

http://mixomics-projects.di.uq.edu.au/Shiny
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the stability analysis, another numerical output from sPLS-DA was the classification error rate 

resulting from the cross-validation procedure. Receiver Operating Characteristic curve (ROC) was 

also reported for a combination of lectin-protein candidates selected by sPLS-DA. The results of the 

multivariate analysis were summarized in the form of sPLS-DA sample representation on the first 

two components using 95% confidence interval ellipses (450). The efforts were made to find out a 

multimarker panel that distinguish BE from healthy and EAC from BE. Unfortunately, the cross-

validation error-rate for healthy vs. BE analysis was very high meaning failure to identify a panel of 

biomarker candidates with high diagnostic potential. 

5.2.4 Analysis for confounders 

 To check the impact of confounding covariates [reflux frequency, body mass index (BMI), 

smoking, and alcohol consumption] on biomarker candidates, an additional 19 population control 

(electoral roll) serum samples were measured using LeMBA-MRM-MS, to achieve sufficient 

number of disease-free samples for statistical analysis. Healthy and population control sample 

groups were merged and categorized according to reflux frequency, BMI, cumulative smoking 

history and alcohol consumption. Kruskal-Wallis test was applied to all the qualified candidates for 

each confounding factor. Candidates that showed P < 0.05 for BMI, reflux, cumulative smoking 

history or alcohol consumption were considered as false positives and removed prior to multivariate 

analysis. 

5.3 Results 

 Based on biomarker discovery results, six lectins (AAL, EPHA, JAC, NPL, PSA, and 

WGA) and 41 protein candidates were selected for biomarker verification. As described in Chapter 

4, targeted proteomics assay MRM-MS was developed for quantitation of potential biomarker 

candidates using LeMBA pull-down. Serum samples from 80 subjects (healthy-20, BE-21, EAC-20, 

and population control-19) were screened using LeMBA-UHPLC-MRM-MS assay. Table 5.1 and 

5.2 depicts patient information used in the screen. The prevalence of reflux and obesity was higher 

in BE/EAC patient groups as compared to the healthy group, which reiterates fact that reflux and 

obesity are major risk factors for BE/EAC (451). Age matched electoral roll control and healthy 

groups were very similar across all measured covariates (Table 5.2). 

5.3.1 LeMBA-UHPLC-MRM-MS screen: Quality check 

 When using modern day technology like LC-mass spectrometer which involves very 

complex and sophisticated instrumentation, it is necessary to perform enough quality checks to 



139 

 

build confidence in the actual data that is being acquired. This was achieved in following two ways. 

(i) 100 femtomole of HSA peptide mix was run routinely (after every 6 samples) to monitor 

instrument performance, and (ii) %CV for SIS and natural chicken ovalbumin peptides was 

calculated after the screen to check reproducibility of LeMBA pull-down and mass spectrometric 

analysis. 

 Figure 5.1 depicts response of 100 femtomole HSA peptide mix analyzed routinely during 

biomarker verification screen. Total 7 peptides were monitored and showed reproducible response 

throughout the time period of biomarker verification. In Figure 5.1, response for only one out of 

seven peptides is displayed for simplicity. Secondly, % CV of the entire LeMBA-MRM-MS screen 

was calculated based on response of heavy labeled SIS peptides and internal standard natural 

chicken ovalbumin peptides before and after normalization. All three SIS peptides, except 

methionine containing heavy labeled peptides, showed a % CV of less than 20% suggesting 

reproducibility of MRM-MS over entire period of biomarker verification. Initially, % CV for 

internal standard chicken ovalbumin peptide was found to be around 40-60% which was much 

higher than the expected 20%. To find out the reason for this very high % CV, internal standard 

ovalbumin responses were compared using replicate comparison tool in Skyline across all samples. 

Interestingly, ovalbumin response from samples belongs to one particular plate was much higher as 

compared to remaining plates suggesting technical error during LeMBA pull-down. Later on, using 

the second remaining half of the frozen denatured samples, LeMBA pull-down was performed 

again for the 12 samples. After repeating LeMBA pull-down for samples because of which 

ovalbumin % CV was found to be high, %CV for normalized as well as non-normalized intensity of 

natural internal standard ovalbumin peptide was around or below 20% (Table 5.3), suggesting 

robust performance (422) of LeMBA-MRM-MS screen over several weeks. Interestingly, 

normalized intensity of natural methionine containing peptide VASMASEK showed less % CV as 

compared to non-normalized intensity, suggesting SIS peptide VASMASEK containing methionine 

was able to correct for batch effects in methionine oxidation.  
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Figure 5.1. Response of HSA peptide mix (QC) during biomarker verification screen. The 

figure displays peak area for peptide LVNEVTEFAK (Transitions 575.3 m/z  937.5 m/z, 694.4 

m/z, and 595.3 m/z; @ Collision energy (CE) 20 eV) monitored during biomarker verification 

screen. Replicate nomenclature indicates plate number_lectin name_run number. 

Table 5.3. % CV for SIS and natural chicken ovalbumin peptides for BE/EAC biomarker 

verification screen. 

AAL NPL 

Protein name_peptide sequence %CV Protein name_peptide sequence %CV 

P00738_VTSIQDWVQK_Heavy 9.98 P00738_VTSIQDWVQK_Heavy 16.46 

P01012_ISQAVHAAHAEINEAGR_Sum 15.92 P01012_VASMASEK 24.77 

P01012_ISQAVHAAHAEINEAGR_Sum_Heavy 12.92 P01012_VASMASEK_Heavy 25.09 

P01012_VASMASEK 21.51 P01012_ISQAVHAAHAEINEAGR_Sum 13.12 

P01012_VASMASEK_Heavy 23.66 P01012_ISQAVHAAHAEINEAGR_Sum_Heavy 10.92 

P06396_AVEVLPK_Heavy 9.83 P06396_AVEVLPK_Heavy 5.88 

Normalized intensity of natural   Normalized intensity of natural   

P01012_ISQAVHAAHAEINEAGR_Sum 20.75 P01012_ISQAVHAAHAEINEAGR_Sum 17.23 

P01012_VASMASEK 16.99 P01012_VASMASEK 14.31 

EPHA PSA 

Protein name_peptide sequence %CV Protein name_peptide sequence %CV 

P00738_VTSIQDWVQK_Heavy 14.39 P00738_VTSIQDWVQK_Heavy 13.58 

P01012_VASMASEK 25.41 P01012_VASMASEK 26.15 

P01012_VASMASEK_Heavy 25.45 P01012_VASMASEK_Heavy 23.97 
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P01012_ISQAVHAAHAEINEAGR_Sum 16.23 P01012_ISQAVHAAHAEINEAGR_Sum 13.27 

P01012_ISQAVHAAHAEINEAGR_Heavy_Sum 13.34 P01012_ISQAVHAAHAEINEAGR_Heavy_Sum 12.62 

P06396_AVEVLPK_Heavy 5.38 P06396_AVEVLPK_Heavy 5.43 

Normalized intensity of natural   Normalized intensity of natural   

P01012_ISQAVHAAHAEINEAGR_Sum 20.96 P01012_ISQAVHAAHAEINEAGR_Sum 18.06 

P01012_VASMASEK 18.62 P01012_VASMASEK 14.28 

JAC WGA 

Protein name_peptide sequence %CV Protein name_peptide sequence %CV 

P00738_VTSIQDWVQK_Heavy 16.50 P00738_VTSIQDWVQK_Heavy 20.50 

P01012_VASMASEK 23.62 P01012_VASMASEK 32.97 

P01012_VASMASEK_Heavy 25.82 P01012_VASMASEK_Heavy 31.04 

P01012_ISQAVHAAHAEINEAGR_Sum 11.78 P01012_ISQAVHAAHAEINEAGR_Sum 22.81 

P01012_ISQAVHAAHAEINEAGR_Sum_Heavy 12.42 P01012_ISQAVHAAHAEINEAGR_Sum_Heavy 17.57 

P06396_AVEVLPK_Heavy 6.86 P06396_AVEVLPK_Heavy 14.44 

Normalized intensity of natural   Normalized intensity of natural   

P01012_ISQAVHAAHAEINEAGR_Sum 18.17 P01012_ISQAVHAAHAEINEAGR_Sum 17.05 

P01012_VASMASEK 16.00 P01012_VASMASEK 17.61 

5.3.2 Shiny mixOmics analysis 

 So far, it has been demonstrated that LeMBA-MRM-MS showed very high linearity and 

reproducibility and passed all the quality checks which means the data acquired is of high quality. 

For each protein, 2-5 peptides were measured for quantitation. Ideally, all the peptides belong to 

same protein should give similar results when used for quantitation. To test this, Pearson correlation 

was performed between peptide responses from same proteins across all patient samples. In order to 

qualify for quantitation, more than 50% of the measured peptides from the same protein must have 

a Pearson correlation coefficient of more than 0.6. Figure 5.2 depicts the percentage of lectin-

protein candidates quantified with decreasing cut-off for Pearson correlation co-efficient. As shown 

in the figure, using a correlation cut-off of 0.9, 0.8, 0.7 and 0.6, respectively, 55%, 85%, 95% and 

96% of the lectin-protein candidates were quantified. The remaining 4% of the candidates which 

did not meet the criteria were discarded from further analysis. The normalized intensity for different 

peptides belonging to the same protein varied in the magnitude of more than 10 fold, suggesting 

simply summing up peptide intensity values to determine protein intensity values would lead to 

biased results. To overcome this problem, equal weight was given to each peptide irrespective of its 

absolute intensity when calculating protein intensity. After converting peptide intensity into protein 
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intensity, outlier detection was performed using the same approach as described previously during 

GlycoSelector analysis for biomarker discovery. Sample I7 was found to be an outlier and removed 

from further analysis.   

Figure 5.2. Correlation between peptide responses for 

individual proteins as measured by Pearson 

correlation, showing % of quantifiable candidates. 

 

 

 

 

5.3.2.1 Candidate selection: Univariate analysis  

 Two sequential steps were used to evaluate and select candidate biomarkers from the 

verification data; first, Kruskal-Wallis non-parametric test to assess statistical significance of each 

individual candidate, then AUROC value was used to measure the diagnostic potential of each 

marker. Comparisons were made between healthy vs BE, BE vs EAC and healthy vs EAC 

phenotypes. Out of total 246 lectin-protein candidates, 45 candidates were significantly different 

between two groups (P value < 0.05) (Table 5.4). Amongst them, 26 lectin-protein candidates 

showed AUROC of more than 0.7 in at least one of the three phenotype comparisons. Boxplots and 

ROC curves of the top candidate for healthy vs BE, BE vs EAC and healthy vs EAC are shown in 

Figure 5.3A to 5.3F respectively. Apolipoprotein B-100 (APOB; Uniprot entry: P04114) showed 

differential binding with NPL lectin between healthy and BE patient groups (P value = 0.0231, 

AUROC = 0.71). It showed sensitivity of 30%, specificity of 95%, and likelihood ratio of 6.0 at cut-

off value of 569508. Complement component C9 (C9; Uniprot entry: P02748) was the top 

candidate to differentiate EAC from BE phenotype (P value = 0.0001, AUROC = 0.85) with 

sensitivity of 55%, specificity of 95%, and likelihood ratio of 11 at cut-off value > 420932. EPHA-

Gelsolin was statistically significantly different between healthy and EAC patient groups (P value = 

0.0014, AUROC = 0.80, Sensitivity = 35%, Specificity = 95%, Likelihood ratio = 7.0, and Cut-off 

= 110686). Figure 5.4 depicts Venn diagram of number of candidates that can differentiate between 

healthy vs BE, BE vs EAC and healthy vs EAC patient groups. Out of total 45 candidates that 

showed statistically significant difference, 16 candidates overlapped between healthy vs EAC and 

BE vs EAC analysis and might be of greatest interest as they can differentiate EAC from healthy as 
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well as BE phenotype. α-2-Macroglobulin (A2M; Uniprot entry: P01023) was statistically 

significantly different in both healthy vs BE and healthy vs EAC analysis. 

Table 5.4. Verified list of candidates shown by lectin affinity-protein ID that were significantly 

different for either healthy vs BE or BE vs EAC or healthy vs EAC analysis. Proteins are 

denoted using gene symbol; number in the bracket denotes Uniprot accession number. AUROC 

values of more than 0.7 are highlighted in bold.   

Lectin-Protein Healthy vs BE BE vs EAC Healthy vs EAC 

P value AUROC P value AUROC P value AUROC 

AAL-APOB (P04114) 0.1368 0.6375 0.0453 0.6850 0.9569 0.4950 

AAL-C5 (P01031) 0.6073 0.5475 0.0483 0.6825 0.2340 0.6100 

AAL-C7 (P10643) 0.2793 0.6000 0.0063 0.7525 0.3169 0.5925 

AAL-C9 (P02748) 0.2793 0.6000 0.0001 0.8525 0.0161 0.7225 

AAL-GSN (P06396) 0.7455 0.5300 0.0087 0.7425 0.0265 0.7050 

AAL-HP (P00738) 0.8711 0.4850 0.0398 0.6900 0.0583 0.6750 

EPHA-A2M (P01023) 0.0248 0.7075 0.9138 0.4900 0.0186 0.7175 

EPHA-AHSG (P02765) 0.5162 0.5600 0.1941 0.6200 0.0483 0.6825 

EPHA-C7 (P10643) 0.1368 0.6375 0.0398 0.6900 0.6849 0.5375 

EPHA-C9 (P02748) 0.0583 0.6750 0.0003 0.8375 0.0265 0.7050 

EPHA-GSN (P06396) 0.2036 0.6175 0.0200 0.7150 0.0014 0.7950 

EPHA-HP (P00738) 0.7455 0.5300 0.0200 0.7150 0.0305 0.7000 

EPHA-SERPINA3 (P01011) 0.4171 0.5750 0.0265 0.7050 0.0620 0.6725 

EPHA-TF (P02787) 0.7455 0.4700 0.0326 0.6975 0.0935 0.6550 

JAC-A1BG (P04217) 0.6263 0.5450 0.0483 0.6825 0.1231 0.6425 

JAC-APOB (P04114) 0.0305 0.7000 0.0699 0.6675 0.5700 0.5525 

JAC-C4BPA (P04003) 0.7251 0.5325 0.0935 0.6550 0.0128 0.7300 

JAC-C5 (P01031) 0.6073 0.4525 0.0425 0.6875 0.0483 0.6825 

JAC-C7 (P10643) 0.2914 0.5975 0.0094 0.7400 0.0834 0.6600 

JAC-C9 (P02748) 0.2914 0.5975 0.0007 0.8125 0.0029 0.7750 

JAC-CFB (P00751) 0.9353 0.5075 0.0373 0.6925 0.0373 0.6925 

JAC-GSN (P06396) 0.8498 0.5175 0.0305 0.7000 0.0215 0.7125 

JAC-HP (P00738) 0.9569 0.5050 0.0483 0.6825 0.0583 0.6750 

JAC-HPX (P02790) 0.7868 0.5250 0.0742 0.6650 0.0200 0.7150 

JAC-SERPINA1 (P01009) 0.3040 0.5950 0.0453 0.6850 0.2448 0.6075 
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JAC-SERPINA3 (P01011) 0.9569 0.5050 0.0102 0.7375 0.0305 0.7000 

JAC-SERPIND1 (P05546) 0.1368 0.6375 0.4819 0.5650 0.0483 0.6825 

JAC-SERPING1 (P05155) 0.5518 0.5550 0.2559 0.6050 0.0200 0.7150 

NPL-AFM (P43652) 0.5338 0.5575 0.0483 0.6825 0.1762 0.6250 

NPL-APOB (P04114) 0.0231 0.7100 0.0231 0.7100 0.8924 0.5125 

NPL-C4BPA (P04003) 0.0989 0.6525 0.6849 0.5375 0.0231 0.7100 

NPL-C9 (P02748) 0.5885 0.5500 0.0049 0.7600 0.0074 0.7475 

NPL-GSN (P06396) 0.8924 0.5125 0.0173 0.7200 0.0583 0.6750 

NPL-HP (P00738) 0.8077 0.5225 0.0884 0.6575 0.0326 0.6975 

NPL-SERPINA3 (P01011) 0.5518 0.5550 0.0989 0.6525 0.0305 0.7000 

PSA-C5 (P01031) 0.4017 0.5775 0.0453 0.6850 0.3040 0.5950 

PSA-C7 (P10643) 0.2914 0.5975 0.0019 0.7875 0.0742 0.6650 

PSA-C9 (P02748) 0.2036 0.6175 0.0008 0.8100 0.0161 0.7225 

PSA-GSN (P06396) 0.3577 0.5850 0.0483 0.6825 0.0110 0.7350 

PSA-HP (P00738) 0.8498 0.4825 0.0483 0.6825 0.0425 0.6875 

PSA-SERPINA3 (P01011) 0.8077 0.5225 0.0425 0.6875 0.0834 0.6600 

WGA-C9 (P02748) 0.4819 0.5650 0.0032 0.7725 0.0053 0.7575 

WGA-GSN (P06396) 0.7868 0.5250 0.0119 0.7325 0.0742 0.6650 

WGA-HP (P00738) 0.7455 0.5300 0.0483 0.6825 0.0215 0.7125 

WGA-SERPINA3 (P01011) 0.4819 0.5650 0.0989 0.6525 0.0063 0.7525 
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Figure 5.3. Boxplots and ROC curves of top biomarker candidate for healthy vs BE, BE vs 

EAC and healthy vs EAC comparison respectively. (A to C) Boxplots and (D to F) ROC curves 

of NPL-APOB, AAL-C9 and EPHA-GSN which were top biomarker candidate for healthy vs BE, 

BE vs EAC, and healthy vs EAC comparison, respectively.  

Figure 5.4. Overlap between lectin-protein candidates that 

differentiate BE from healthy, EAC from BE, and EAC from 

healthy phenotype. P values were calculated using Kruskal-Wallis 

test and P < 0.05 was considered to be statistically significant. 

 

 

 

5.3.3 Comparison between LeMBA-MRM-MS and LeMBA-western immunoblotting 

 Orthogonal qualification at protein level using LeMBA-immunoblotting (IB) was performed 

for AAL-HP and AAL-GSN using samples from the qualification cohort. The relative quantitation 

for natural (light) peptide was performed with respect to SIS heavy labeled peptide for LeMBA-

MRM-MS data. Once again, there was agreement between peptide level quantitation using MRM-

MS and protein level quantitation using western immunoblotting (Figure 5.5), validating the 

LeMBA-MRM-MS workflow [AAL-HP: MRM-MS P value = 0.0235, western immunoblotting P 
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value = 0.1037, MRM-MS AUROC = 0.69, western immunoblotting AUROC = 0.69; AAL-GSN: 

MRM-MS P value = 0.0120, western immunoblotting P value = 0.0203, MRM-MS AUROC = 

0.70, western immunoblotting AUROC = 0.73].  

Figure 5.5. Comparison between 

LeMBA-MRM-MS and LeMBA-

western-immunoblotting 

quantitation for AAL-HP (left 

column) and AAL-GSN (right 

column). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.4 Identification of candidates affected by confounding covariates 

 As expected from the known risk factors, healthy, BE and EAC patient groups significantly 

differ according to BMI and reflux frequency (Table 5.2). In comparison with healthy patients, BE 

and EAC patient groups had a higher proportion of patients experiencing frequent GERD and of 

patients with obesity. Therefore, it may be possible that some of the candidates identified are due to 

confounding covariates rather than the actual disease phenotype. To evaluate this hypothesis, firstly 
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the cohort size of healthy phenotype was increased by LeMBA-MRM-MS measurement of an 

additional 19 serum samples collected as electoral roll control samples. These disease-free patient 

samples were then classified according to potential confounding variables (reflux frequency, BMI, 

cumulative smoking history and alcohol consumption). The statistical significance of each 45 

lectin-protein candidates for each of the four covariates was assessed using a Kruskal-Wallis test 

(Table 5.5). Most of the candidate biomarkers were not significantly correlated with the covariates. 

As examples, boxplots of the data for the top 3 biomarker candidates of the disease-free cohort 

classified according to covariates are shown in Figure 5.6. Out of the four covariates studied, reflux 

frequency is perhaps the most important factor to be considered in the context of BE/EAC. Notably, 

none of the candidates were affected by reflux frequency, suggesting specificity of the candidates to 

diagnose disease phenotype. Five candidates significantly correlated with covariates (Figure 5.7). 

APOB showed differential binding with lectins AAL, JAC, and NPL according to BMI 

classification. This is most likely due to increased levels of total APOB with increase in BMI, 

suggesting underlying changes in the lipoprotein metabolism (452). Plasma protease C1 inhibitor 

(SERPING1; Uniprot entry: P05155) showed significantly reduced binding with JAC lectin in 

samples classified as overweight and obese as compared to healthy while JAC-alpha-1B-

glycpoprotein (A1BG; Uniprot entry: P04217) varied according to alcohol consumption. This 

covariate analysis leads to eliminate 5 candidates from the qualified biomarker list, leaving 40 

putative biomarker candidates for future studies. Out of the 5 candidates that were eliminated, JAC-

APOB was identified in healthy vs BE analysis, AAL-APOB and JAC-A1BG were identified in BE 

vs EAC analysis, JAC-SERPING1 was identified in healthy vs EAC analysis while NPL-APOB 

was significantly different in heatlhy vs BE and BE vs EAC analysis. Notably, none of the 16 

lectin-protein candidates that distinguish EAC from BE and healthy phenotype were identified as 

confounding candidates. 

Table 5.5. Effect of covariates reflux frequency, BMI, cumulative smoking history and alcohol 

consumption on lectin-protein candidates (Boxplots and ROC curves in Appendix III). 

Candidates 
Kruskal-Wallis test P value 

Reflux BMI Smoking Alcohol 

AAL-HP (P00738) 0.4452 0.6956 0.9445 0.8134 

AAL-C5 (P01031) 0.659 0.269 0.9029 0.3398 

AAL-C9 (P02748) 0.5822 0.4072 0.4915 0.4829 

AAL-APOB (P04114) 0.6243 0.0186 0.8123 0.9948 

AAL-GSN (P06396) 0.4123 0.8594 0.1478 0.6315 

AAL-C7 (P10643) 0.6758 0.0739 0.0501 0.6401 

EPHA-HP (P00738) 0.431 0.4362 0.9714 0.9552 
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Candidates 
Kruskal-Wallis test P value 

Reflux BMI Smoking Alcohol 

EPHA-SERPINA3 (P01011) 0.0579 0.2047 0.9103 0.535 

EPHA-A2M (P01023) 0.397 0.5303 0.5812 0.7236 

EPHA-C9 (P02748) 0.4827 0.4094 0.9293 0.4872 

EPHA-AHSG (P02765) 0.2708 0.511 0.7131 0.4888 

EPHA-TF (P02787) 0.563 0.452 0.9709 0.4174 

EPHA-GSN (P06396) 0.5456 0.5501 0.4477 0.8568 

EPHA-C7 (P10643) 0.864 0.3541 0.1908 0.3607 

JAC-HP (P00738) 0.6961 0.7152 0.9893 0.9481 

JAC-CFB (P00751) 0.5286 0.7001 0.4301 0.2691 

JAC-SERPINA1 (P01009) 0.4182 0.5653 0.5733 0.3476 

JAC-SERPINA3 (P01011) 0.2744 0.2339 0.621 0.7416 

JAC-C5 (P01031) 0.9924 0.4983 0.2901 0.226 

JAC-C9 (P02748) 0.4713 0.2519 0.4643 0.8035 

JAC-HPX (P02790) 0.5113 0.9854 0.2554 0.4262 

JAC-C4BPA (P04003) 0.3084 0.8952 0.6967 0.8589 

JAC-APOB (P04114) 0.4739 0.0125 0.9127 0.9694 

JAC-A1BG (P04217) 0.3763 0.8237 0.7572 0.0232 

JAC-SERPING1 (P05155) 0.3262 0.0059 0.8609 0.5831 

JAC-SERPIND1 (P05546) 0.7649 0.9412 0.6738 0.9743 

JAC-GSN (P06396) 0.986 0.9915 0.2739 0.3497 

JAC-C7 (P10643) 0.8268 0.1254 0.1019 0.7597 

NPL-HP (P00738) 0.7445 0.5826 0.9835 0.8753 

NPL-SERPINA3 (P01011) 0.4498 0.629 0.6827 0.3815 

NPL-C9 (P02748) 0.6141 0.2782 0.6845 0.8707 

NPL-C4BPA (P04003) 0.3259 0.9849 0.369 0.9051 

NPL-APOB (P04114) 0.2792 0.022 0.822 0.9886 

NPL-GSN (P06396) 0.9189 0.9762 0.2807 0.5319 

NPL-AFM (P43652) 0.0915 0.2721 0.6962 0.694 

PSA-HP (P00738) 0.6289 0.4362 0.8631 0.9842 

PSA-SERPINA3 (P01011) 0.2951 0.2194 0.9087 0.2117 

PSA-C5 (P01031) 0.554 0.6758 0.7538 0.3677 

PSA-C9 (P02748) 0.425 0.0947 0.839 0.5174 

PSA-GSN (P06396) 0.7811 0.8824 0.4982 0.4654 

PSA-C7 (P10643) 0.8628 0.0744 0.0784 0.6652 

WGA-HP (P00738) 0.623 0.472 0.9861 0.5777 

WGA-SERPINA3 (P01011) 0.266 0.3595 0.6288 0.6383 

WGA-C9 (P02748) 0.5639 0.0635 0.6448 0.7164 

WGA-GSN (P06396) 0.8165 0.9591 0.4524 0.5606 
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Figure 5.6. Assessing effect of confounding covariates on the top 3 biomarker candidates. 

Levels of NPL-APOB, AAL-C9 and EPHA-GSN were monitored in 39 serum samples (healthy-20 

and population control-19) using MRM-MS. Samples were categorized according to (A) reflux 

frequency, (B) BMI, (C) smoking history and (D) alcohol consumption. P < 0.05 using Kruskal-
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Wallis test was considered to be statistically significant. Out of the top 3 candidates, only NPL-

APOB was significantly different according BMI categorization. 

Figure 5.7. Boxplots of candidates identified as false positives according to covariates analysis. 

(A) AAL-APOB (P value = 0.0186), (B) JAC-APOB (P value = 0.0125), (C) NPL-APOB (P value 

= 0.022), and (D) JAC-SERPING1 (P value = 0.0059) were significantly different according to 

BMI status. (E) JAC-A1BG levels varied according to alcohol consumption (P value = 0.0232). P 

values are calculated using Kruskal-Wallis test.   

 

5.3.5 Multimarker panel to distinguish EAC from BE 

 An individual lectin-protein biomarker candidate showed maximum AUROC of 0.85 to 

differentiate between EAC and BE phenotypes. For clinical requirement, a panel of biomarker with 

AUROC close to 1.0 is required. So next, multivariate analysis was performed to examine the 

potential of protein glycoforms as complementary biomarkers, focusing on differential diagnosis of 

EAC and BE, as the most urgent clinical need. After removal of confounding candidates, sPLS-DA 

was used to derive a multimarker panel that distinguish BE and EAC (Figure 5.8). The biomarker 

panel (BE vs EAC) included four unique proteins namely complement component C9 (C9; Uniprot 

entry: P02748), alpha-1B-glycoprotein (A1BG; Uniprot entry: P04217), complement C4-B (C4B; 

Uniprot entry: P0C0L5) and complement C2 (C2; Uniprot entry: P06681) with each of the six 

lectins appearing at least once in the panel. Using 5-fold cross-validation repeated 1000 times on 
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this multimarker panel, the model showed cross-validation error rate of 37.47% and moderate 

separation of the BE and EAC sample representations (Figure 5.8A). The combined signature of the 

eight candidates gave an AUROC of 0.9425 with 95% specificity and 80% sensitivity (Figure 

5.8B). 

Figure 5.8. Multimarker panel to distinguish EAC from BE. (A) sPLS-DA and (B) ROC curve 

analysis of a multimarker panel consists of AAL-C9, EPHA-A1BG, EPHA-C9, JAC-C9, NPL-C2, 

NPL-C4B, PSA-C9, and WGA-C9. 

5.4 Discussion 

5.4.1 Overview  

 The results in this chapter describe verification of lectin-protein diagnostic biomarker 

candidates in an independent patient cohort. LeMBA-MRM-MS-Shiny mixOmics workflow has 

been utilized for biomarker verification. Candidates affected by confounding covariates were also 

identified. Multivariate analysis revealed a biomarker panel with very high diagnostic potential to 

distinguish between EAC and BE.  

5.4.2 Quality check for biomarker verification dataset 

 For any sophisticated analytical instrument such as mass spectrometer, it is important to 

perform enough quality checks to consistently monitor its performance while running the samples. 

The triple quadrupole mass spectrometer used for the targeted proteomics approach can 

isolate/quantify peptide/fragment ions up to 1400 m/z ratio. All the precursor ions in the MRM-MS 

assay were below 1000 m/z ratio while some of the fragment ions were between 1000 m/z to 1400 

m/z. So collectively, precursor and fragment ions cover entire mass range of the instrument. This 

means that QC sample should ideally consist of mixture of peptides (or small molecules) to cover 
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the entire mass range to allow holistic evaluation of the instrument performance. Commercially 

available HSA synthetic peptide mix consist of peptides which can cover this entire mass range 

hence it was used as a QC and showed very consistent response throughout.  

 The internal standard ovalbumin and corresponding SIS labeled peptide showed minimal 

possible variation for such a high-throughput, sensitive and multiplexed workflow (422). In 

addition, correlation analysis was performed amongst the peptide responses from the same protein 

to allow better quantitation. In line with the observation made by Domanski and colleagues (453), 

absolute response for individual peptide from the same protein varied significantly. Despite these 

large differences between peptide responses, 85% of the lectin-protein candidates showed Pearson 

correlation co-efficient of more than 0.8 amongst peptides emerging from the same protein 

suggesting reproducibility in the trypsin digestion across the entire assay. Furthermore, western 

immunoblotting quantitation gave comparable results with mass spectrometric quantitation which 

further validate the quantitation approached employed here. Taken together, the biomarker 

verification data is of sufficiently high quality to provide reliable results. 

5.4.3 Differential glycosylation in EAC 

 Univariate analysis using Kruskal-Wallis tests discovered lectin-protein candidates between 

the three phenotypes compared. It is evident from the results that EAC phenotype is associated with 

glycosylation changes as many serum proteins showed differential lectin binding between EAC vs 

healthy/BE phenotype. Only three candidates showed statistically significant difference between 

healthy and BE patient groups. Overall the results raise the possibility of major glycosylation 

changes taking place during progression of BE to EAC but not from healthy to BE. The findings 

from genomic sequencing studies concluded that except few key mutations, the majority of 

mutations observed in EAC lesions are already present in BE condition suggesting common 

mutations are acquired early during the pathogenesis. At this stage these two results seem to 

contrast each other raising possibility that more functional level changes [e.g. gene/protein 

expression (241, 256, 454-456), protein glycosylation, metabolic changes etc.] driven by 

environmental factors and/or early genomic alterations to be associated with development of 

dysplasia/carcinoma from metaplastic condition. In line with this, studies have shown differential 

expression of glycan structures in tissue and serum samples during metaplasia-dysplasia-carcinoma 

sequence (167-170, 174-180, 457). 
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5.4.4 Confounding covariates 

 Ideally, biomarker discovery and development should be performed using human biological 

materials which differ according to disease of interest and matched for all other confounding 

covariates (356, 458). Practically, it is very difficult to match the cohorts being compared across all 

the co-morbidities. In addition, some of the confounding covariates such as GERD and obesity are 

risk factors for BE/EAC hence will always be present. So it is inevitable that some of the candidates 

verified are actually due to confounding covariates and not associated with the disease phenotypes. 

It is very important that these false positive candidates are identified early during the biomarker 

development. In this chapter, 5 such false positive candidates were identified by screening 

additional serum samples from population control. The population control patients were not 

endoscopically confirmed negative for columnar lined esophagus i.e. BE, but it was assumed that 

all the population control samples, otherwise healthy, are negative for BE as its prevalence is low 

(35). Identification of APOB as a false positive candidate affected by BMI further validate the 

results of biomarker verification as it is well known that APOB level is associated with obesity/BMI 

(452).    

5.4.5 Multivariate analysis 

 Preferably, biomarker verification datasets should be divided into training and test sets. The 

biomarker panel identified using the training set should be tested using the independent test dataset 

to accurately estimate the error-rates and performance of the biomarker panel (459, 460). Like the 

biomarker verification study described here, it is not always possible to get enough number of 

patient samples to categorize into two separate datasets namely test and training. In this scenario, 

another popular validation method is n-fold cross-validation (461-463). In cross-validation, the 

entire verification dataset is randomly divided into n mutually exclusive equal subsets and the 

model is trained multiple times (100s or even 1000s) each time keeping one of the folds out as an 

validation set (386). This method is useful in small sample size because the entire data are used both 

as training and validation purposes without wasting of the data in a holdout validation set (386). In 

comparison to existing approaches (statistical methods and machine learning workflows) for 

selection of biomarkers, sPLS-DA is superior in terms of graphical outputs hence offer easy 

interpretation of the results and it has demonstrated similar classification performance to other 

workflows (382). So collectively, sPLS-DA was employed for multivariate analysis with 5-fold 

cross-validation. The multimarker panel showed AUROC of 0.94 showing improved performance 

of a combination of biomarkers over individual lectin-protein candidates. 
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 In conclusion, LeMBA-MRM-MS-Shiny mixOmics biomarker verification pipeline was 

able to successfully verify the candidates identified using LeMBA-GlycoSlector biomarker 

discovery pipeline. The diagnostic ability of an individual lectin-protein biomarker candidate was 

determined. The panel of biomarker showed very high diagnostic potential to differentiate between 

EAC and BE. The biomarkers verified require further evaluation in an independent large patient 

cohort including dysplastic samples.  
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ELECTROCHEMICAL DETECTION OF GLYCAN AND PROTEIN EPITOPES 

OF GLYCOPROTEINS IN SERUM  

  



156 

 

Chapter 6. Electrochemical detection of glycan and protein epitopes of glycoproteins in serum 

6.1 Manuscript information 

 Improvements in the lectin/non-lectin based glycoprotein enrichment methodologies along 

with rapid technological advancements in the chromatographic and mass spectrometry platforms led 

to identification of novel glycoprotein biomarker candidates for various diseases in the recent past 

including the work described so far in the thesis. However, these workflows are poorly suited for 

routine clinical use due to high complexity and cost. Alternatively, electrochemical detection 

methods can achieve rapid, cost-effective, sensitive, selective and accurate quantification of 

biomolecules (464-468). In fact commercially available glucose biosensors use the principle of 

electrochemical detection (468-470). Lectin based biosensors developed so far can monitor overall 

changes in the glycosylation profile but do not give any information about underlying glycoprotein 

to which glycan is attached (471-474). To increase the specificity and diagnostic applicability of 

lectin based biosensors, we developed label-free electrochemical detection method to monitor 

specific glycan event on a target glycoprotein (2). This chapter describes proof-of-concept study for 

interrogating glycan epitope of a model glycoprotein chicken ovalbumin using Sambucus nigra 

agglutinin (SNA lectin) and protein epitope by anti-ovalbumin antibody followed with label-free 

electrochemical detection in the background of diluted human serum. Chicken ovalbumin mainly 

express N-linked high mannose and hybrid type glycan (475, 476), with expression of terminal 

sialic acid modified complex glycan at very low levels (477, 478). SNA lectin used in the assay 

preferentially binds with α2-6 linked sialic acid residues (479). So only a fraction of total 

ovalbumin is anticipated to bind with SNA lectin. The ovalbumin and SNA lectin were chosen for 

this proof-of-concept study to test the ability of electrochemical detection to monitor minimal 

interaction between ovalbumin and SNA lectin.       

 The following manuscript was published in Analyst (2014), volume 139, issue 22, pages 

5970-5976. The candidate and first author on the paper, Alok K. Shah, was mainly responsible for 

conducting the research and writing the manuscript. The detailed contributions from co-authors 

namely Michelle M. Hill, Muhammad J. A. Shiddiky and Matt Trau is listed on page vii & viii of 

the thesis.  
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DISCUSSION AND FUTURE DIRECTIONS  
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Chapter 7. Discussion and future directions  

7.1.1 Overview of the thesis 

 This thesis has made significant contribution in the following areas of research. (i) It has 

filled a gap in the proteomics biomarker research with development of integrated biomarker 

discovery and verification pipeline using LeMBA platform. (ii) With the help of LeMBA-

GlycoSelector and LeMBA-Shiny mixOmics pipeline, lectin-glycoprotein diagnostic biomarker 

candidates for BE/EAC were discovered and verified. This study demonstrates utility of the pipeline 

including statistical methods for discovery and verification of biomarker candidates. (iii) Provided 

proof-of-concept demonstration for using electrochemical detection techniques for glycoprotein 

interrogation. Collectively, this thesis describes innovative translational biomarker research for 

diagnosis of BE/EAC.  

7.1.2 Biomarker discovery and verification pipeline 

 Blood based in vitro diagnostics employing cancer biomarkers hold promise for early 

diagnosis and improved patient outcomes, hence there is extensive research on the identification 

and development of novel cancer biomarkers (480). Discovery and development of new biomarkers 

is a long and challenging process requiring multi-disciplinary collaborations. Despite intensive 

efforts, the rate of introduction of new candidate biomarker into clinical practice is on the decline 

due to multitude of reasons (362, 481, 482). One of the main reasons for failure of cancer biomarker 

research to deliver clinically applicable diagnostic tests is attributed to unavailability of in-depth 

biomarker discovery and validation pipeline (482). In addition, large number of false positives, 

unavailability of high quality patient samples, poor study design, inappropriate statistical analysis, 

patient heterogeneity, limited understanding of cancer pathogenesis at molecular level and lack of 

follow-up verification studies have been adversely affecting outcome of cancer biomarker research 

(130, 441, 482, 483). 

 Recent technological advancements in proteomics have accelerated the discovery of 

biomarkers, leading to numerous biomarker publications over the years (441, 484). However, only a 

handful of new cancer biomarkers have completed the long journey allowing translation into 

clinical practice (130). One possible way to overcome this challenge is to develop biomarker 

discovery and development pipeline that allows seamless transition for biomarkers identified 

through biomarker discovery to further stages of development (485-490). To avoid the high 

complexity of serum/plasma proteome and the associated requisite multi-dimensional sample 

separation, most of these workflows focused on tissues or proximal fluids during the discovery 
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phase, with the goal of extending the findings to plasma. This approach often leads to failure when 

the candidates are not detected in plasma due to the limited sensitivity of the available analytical 

methods, or the absence of candidates in the plasma (483). 

 In this thesis, an alternative workflow to identify glycosylation changes in medium to high 

abundant glycoproteins has been presented which uses serum as the sample source throughout 

discovery and verification stages (Figure 7.1). The workflow was designed to enhance the 

feasibility of glycoprotein biomarker discovery and translation, through scientific rigor while 

managing the experimental cost. Firstly, serum is used as the sample source throughout discovery 

and verification, hence eliminating the risk of switching tissue type during biomarker development. 

Secondly, single step enrichment using liquid handler assisted LeMBA-system reduces sample 

processing variability. Thirdly, comparatively inexpensive approach of label-free proteomics has 

been employed using relative quantitation with respect to a spiked-in internal standard chicken 

ovalbumin. This approach achieved the necessary analytical linearity and reproducibility throughout 

the more than 2000 hr of total mass spectrometer run time performed in the study. This cost-

effective approach can be applied across other existing proteomics platforms to not only account for 

variations during sample processing but also to reduce the cost of at least initial stages of biomarker 

studies when many candidates are selected for verification and absolute quantification using SIS 

labeled peptide would be costly. Fourthly, a sequential filtering approach (459) has been applied in 

which many candidates were selected from biomarker discovery proteomics data, and verified using 

MRM-MS with increasing sample size in a cost-effective manner. 

 Using the biomarker discovery workflow, a total of 183 unique lectin-protein candidates 

were identified that can distinguish between healthy, BE, and EAC phenotypes. All 20 lectins used 

in the discovery phase showed differential binding with anywhere between one [e.g. Helix aspersa 

agglutinin (HAA)] to twenty five [e.g. NPL] glycoprotein candidates for pairwise comparison 

between patient phenotypes suggesting widespread changes in the serum glycosylation profile 

between healthy, BE and EAC samples. These results are in clear agreement with previous serum 

glycan profiling studies which identified widespread changes in serum glycan structures between 

healthy, BE, dysplastic and EAC phenotypes (175-177, 179, 457). Many of 41 protein candidates 

selected for verification were not identified during biomarker discovery in all 6 lectin-pull downs 

due to low sensitivity of QTOF mass spectrometer. With increased sensitivity of MRM-MS assay, 

all 41 protein candidates were identified in all 6 lectin pull-downs for all the patient samples. So out 

of the total 246 lectin-protein candidates measured for verification, 45 candidates (18.3%) were 

verified in an independent cohort of patients. Interestingly, only 3 out of 45 candidates were 
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significantly different between healthy vs BE comparison, with the other 42 candidates 

differentially present in EAC as compared to either healthy or BE samples. This suggests that EAC 

phenotype is significantly different from BE and healthy in terms of serum glycoprotein profile. 

 

Figure 7.1. Generalized workflow schematic for serum glycoprotein biomarker discovery and 

qualification. Serum samples from healthy, BE and EAC patient groups were enriched for sub-

glycoproteomes using 20 individual lectin coated magnetic beads, followed by on-bead trypsin 

digest and tandem mass spectrometry for label-free quantitation referencing to internal standard 
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chicken ovalbumin. In-house database and statistical analysis pipeline "GlycoSelector" 

(http://glycoselector.di.uq.edu.au/) identified lectin-protein pairs present in one patient group and 

absent in the other. Sparse partial least squares-discriminant analysis (sPLS-DA) combined with 

stability analysis was used to generate ranked lists of lectin-protein candidates. For biomarker 

verification, selected candidates were measured using multiple reaction monitoring-mass 

spectrometry (MRM-MS) in an independent patient cohort for a subgroup of lectin pull-downs. 

Dedicated statistical analysis tool "Shiny mixOmics" (http://mixomics-projects.di.uq.edu.au/Shiny) 

was developed incorporating features to plot ROC curve and to perform univariate/multivariate 

statistical analyses. LeMBA-immunoblotting was used as an orthogonal method to verify peptide 

level MS data for selected candidates at the protein level. 

7.1.3 Getting biological insights from the candidate biomarkers 

 Although the main aim of the present study was to discover and verify the glycoprotein 

biomarker candidates with promising diagnostic ability, the verified biomarker proteins can provide 

novel insights on pathophysiology of the disease. 

7.1.3.1 Functional annotation analysis 

 To begin to assess the main functional differences between BE and EAC, functional 

annotation analysis using online bioinformatics tool DAVID (the database for annotation, 

visualization and integrated discovery) (http://david.abcc.ncifcrf.gov/) (491, 492) was performed on 

a list of candidates that differentiated EAC from BE in biomarker verification dataset. The final 

candidates were selected using univariate Kruskal-Wallis test (P < 0.05) and multivariate analysis 

using sPLS-DA (stability > 70%), and consisted of 17 unique proteins (P00738, P00751, P01009, 

P01011, P01024, P01031, P02748, P02787, P04114, P04217, P05155, P05546, P06396, P06681, 

P0C0L5, P10643, P43652) from 59 lectin-protein pairs. Plasma proteome gene list (493) was 

converted to DAVID IDs and used as a background. Setting the adjusted FDR P-values < 0.05 for 

ontology categories and cluster scores over 3 using functional annotation clustering function, the 

top Annotation Cluster with an Enrichment Score of 10.4 was found to be SP_PIR_KEYWORD 

glycoprotein (P = 1.82E-08) and the UP_SEQ_FEATURE glycosylation site:N-linked (GlcNAc...) 

(P = 2.32E-06), in agreement with the glycoprotein enrichment strategy.   

 Additional clusters related to acute inflammation, complement cascade pathway, and 

endopeptidase inhibition, were over-represented within the 17 genes that discriminated BE and 

EAC. KEGG “Complement and coagulation cascades” pathway (hsa04610) was significantly over-

represented (P = 4.6E-18). 

 

 

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
http://david.abcc.ncifcrf.gov/
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7.1.3.2 Complement pathway in EAC 

 In early 2000s, the link between inflammation and cancer was proposed including novel 

roles of complement proteins in the malignancy (494). Like other cancer, EAC is no different in the 

sense that chronic inflammation plays central role in development of EAC (495-497) which is in 

agreement with the result of functional annotation analysis, and points to alterations in the 

complement cascade during EAC development. Classically, complement proteins have been 

considered as a central part of the innate immune response and it serves as first line defense of the 

body (498). Figure 7.2A illustrates the cascade of events during activation of complement system. 

The proteins highlighted in red are found as candidate proteins from the biomarker verification 

results.  

 

Figure 7.2. Overview of the complement cascade. (A) The complement system gets activated in 

tightly regulated fashion by one of the three pathways, alternative pathway, classical pathway or 

lectin pathway. All three pathways activate C3 by different mechanisms that lead to cleavage and 

activation of C5 into C5a and C5b. C5a is a potent anaphylactic peptide while C5b can initiate the 

terminal pathway of membrane attack complex formation which begins with the non-enzymatic 

assembly of the components C5b-C9. Adapted from Pio et al. (494) and Zipfel and Skerka (499). 

The complement proteins denoted in red [C5, C7, C9 and complement factor B (or CFB)] are found 
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to be up-regulated in one or more lectin pull-downs in EAC as compared to BE phenotype. (B) 

Denotes Kruskal-Wallis test P values of lectin-complement cascade protein biomarker candidates 

for BE vs EAC comparison.  

 There are three well-established pathways of complement activation namely the classical 

pathway, the lectin pathway and the alternative pathway (Figure 7.2A). All three pathways 

converge at complement C3 (C3) which eventually causes activation of complement C5 (C5) that 

leads to formation of membrane attack complex (MAC) consisting of complement C5b (C5b), 

complement component C6 (C6), complement component C7 (C7), complement component C8 

(C8) and complement component C9 (C9) and results in destruction of target antigen. The process 

of complement activation is kept under check by complement regulators namely plasma protease 

C1 inhibitor, factor I, C4b-binding protein, complement factor H, vitronectin, clusterin, complement 

receptor type 1, membrane cofactor protein (CD46), decay-accelerating factor (CD55), and CD59. 

It is very well accepted that complement proteins carry out effective immune surveillance to check 

tumor initiation and progression (494). Increased levels of complement proteins or activation of 

complement pathways in tumor tissue, tissue fluid and/or serum/plasma have been observed in lung 

cancer, ovarian cancer, colorectal cancer, neuroblastoma, myeloma, lymphoma and leukemia 

suggesting capacity of complement system to recognize malignant cells (494). At the same time, 

tumor cells express/secrete complement regulator molecules that help them to evade the 

complement surveillance (500). Many recently developed monoclonal antibodies based 

immunotherapy target the complement regulator proteins to facilitate complement mediated 

clearance of the tumor and also to increase effectiveness of conventional treatments (500).  

 In line with results described in this thesis, Narayanasamy and colleagues identified 

fucosylated complement component C9 in serum as a biomarker for squamous cell lung cancer 

(501). Very recently Song and colleagues (180) also identified changes in the glycosylation of 

complement proteins for EAC and HGD compared to healthy phenotype. They used lectin-affinity 

chromatography (a mix of fucose and sialic acid binding lectin) and hydrazide chemistry-based 

glycoprotein enrichment methods and identified complement C3 and complement C1r 

subcomponent as differentially present in HGD and EAC samples respectively, as compared to 

healthy blood serum. The differences between the complement proteins identified by Song and 

colleagues, and those that discriminate BE and EAC in this thesis may be the result of divergent 

sample processing steps. For example, Song and colleagues (180) used serum sample after 

depletion of the seven most abundant proteins as compared to the workflow mentioned in this thesis 

where the serum samples were denatured to break protein complexes without depletion of abundant 
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proteins. In the LeMBA workflow, an individual lectin has been used for enrichment of a particular 

type of glycan while Song and colleagues used a mixture of sialic acid binding SNA lectin and 

fucose specific AAL lectin for glycoprotein enrichment. Nonetheless, changes observed in the 

glycosylation or total protein levels of complement proteins may suggest a mechanism for 

inflammation and complement cascades in EAC pathogenesis (495). 

 Figure 7.2B summarizes statistical significance of all lectin-complement protein biomarker 

candidates for BE vs EAC analysis. It is interesting to observe that proteins belong to terminal 

complement cascade are showing differential binding with many lectins as compared to proteins 

involved in the initial steps of complement activation i.e. CFB showed differential binding with 

only one lectin whereas C5, C7, and C9 showed differential binding with 3, 4, and all 6 lectins 

respectively. The diverse cell/tissue types such as liver, blood monocytes, tissue macrophages, 

epithelial cells, cancer cells and fibroblasts can synthesize and secrete components of complement 

cascade (502). With activation of the complement cascade, it may be possible that same 

complement protein is now synthesized and secreted by a different cell/tissue type in addition to 

normal cell/tissue type with potentially different glycan expression resulting into differential lectin 

binding between two phenotypes. However, possibility of changes in total levels of the complement 

proteins between BE and EAC cannot be ruled out at this stage. Collectively, inflammation and 

complement cascade seems to be playing role in EAC development. Further studies in this regard 

may help understand the disease pathogenesis and it may allow targeting of EAC using currently 

available immunotherapy. Although altered glycosylation of complement proteins has been 

observed in quite a few cancers (180, 501, 503, 504) including EAC, the exact impact of 

glycosylation on complement cascade and function of complement proteins is yet to be determined.  

7.1.3.3 Bile acids, microbiome, diet and glycan: Is there a link? 

 Exposure of esophageal epithelium with bile acids due to gastroesophageal reflux can be a 

causative factor for changes in the expression of glycan. When Nehra and colleagues profiled 

esophageal aspirates in the patients suffering from erosive esophagitis and Barrett's esophagus and 

compared with that of healthy individuals, they found significantly increased proportion of 

secondary bile acids, deoxycholic acid and taurodeoxycholic acids to be present in patients with 

erosive esophagitis and BE (505). Bile acids (especially secondary bile acids) are known for their 

causative roles for many gastrointestinal cancers (506, 507). At physiological levels repeated and 

prolonged exposure of bile acids in esophageal tissue, which is not meant to deal with gastric/bile 

acid, can cause oxidative/nitrosative stress, DNA damage leading to generation of genomic 
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instability, apoptosis, and ultimately cancer (508, 509). In line with this fact, Byrne and colleagues 

demonstrated that secondary bile acid deoxycholic acid (DCA) exposure in cell lines derived from 

normal squamous epithelium (HET-1A) and Barrett’s metaplastic epithelium (QH) leads to 

disruption of Golgi structures and affects protein glycosylation suggesting possible mechanism for 

differential glycosylation at least at the tissue level (312). However, its impact on serum/plasma 

glycoproteome remains to be determined.  

 Bile acids are physiological detergents and enable absorption of lipids, cholesterol, and fat-

soluble vitamins from the gastrointestinal tract (507). Cholic acid and chenodeoxycholic acid are 

primary bile acids which are derived from cholesterol by a sequence of enzymatic reactions that 

involve 17 different enzymes and occur mainly in the liver (510). After synthesis they are 

conjugated with either glycine or taurine and excreted and then stored in the gall bladder. When 

dietary fat enters the proximal intestine, they are released into the intestinal tract and play a critical 

role for lipid absorption in the ileum. The majority of bile acids are reabsorbed in the terminal ileum 

by an active bile salt re-absorptive mechanism leaving less than 5% of bile acids to enter the colon 

(511). In the colon, they are converted into secondary bile acids namely deoxycholic acid and 

lithocholic acid by bacterial flora (512). Out of the two secondary bile acids, lithocholic acid is 

fairly insoluble and little of it is re-absorbed while deoxycholic acid is partly re-absorbed in the 

colon and enters the enterohepatic circulation (513). In the liver, it undergoes conjugation and is 

secreted again in the bile. So normally, the circulating bile acid pool is composed of 30-40% cholic 

and chenodeoxycholic acid (primary bile acid), 20-30% deoxycholic acid and 5% lithocholic acid 

(514). All the factors that affect bile composition leading to increased levels of secondary bile acid 

can create pro-cancerous phenotype. One of the well-known factors that affect the bile composition 

is diet. High fat diet can cause increased levels of bile acids in the gastrointestinal tract. Conversely, 

diets rich in fibers (fruits and vegetables) aid in excretion of secondary bile acid and lower the risk 

of cancer (515). In line with the fact that the diets rich in fruits and vegetables lower the risk for 

BE/EAC, it has been experimentally demonstrated that high animal fat intake enhances the 

development of BE/EAC and changes the composition of bile acid in an animal model (516).  

 Since decades ago when no "omics" techniques existed, it has been known that the 

microorganisms present in the large intestine are responsible for the conversion of primary bile 

acids into secondary (517). So any changes in this microbial flora can potentially affect bile 

composition and may have implications in EAC pathogenesis. Recent evidences suggest that food 

and obesity have huge impact on the intestinal microbiome and bile acid metabolism (518-521). 

However, the majority of studies published and cited in this section were conducted in the context 
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of colon cancer. So the implications of microbiome mediated changes in the bile composition on 

BE/EAC pathogenesis remains to be determined. Furthermore, the possible impact of changes in the 

bile composition on glycosylation changes both at tissue level and in the circulation has not been 

investigated.  

7.1.3.4 Diagnosis of BE/EAC: What does future look like? 

 The success of cancer screening programs in improving outcome for many cancer types in 

the past decades emphasize the importance of early diagnosis and the development of suitable 

screening/surveillance tools (6). Indeed, the lack of cost-effective screening/surveillance 

methodology to facilitate early diagnosis of EAC is one of the main reasons for the high mortality 

(522). Current endoscopy based screening is costly, requires specialist appointment, is not suitable 

for frequent large scale at risk population monitoring, hence not very effective (523). While white 

light endoscopy with biopsy is most widely used for screening/surveillance (524), several 

innovative methods are being evaluated for more economic screening, including advanced imaging, 

non-endoscopic sampling, and blood biomarkers. Novel advanced imaging techniques may improve 

yield of biopsies for dysplastic Barrett’s by targeting suspicious areas and may be more effective 

than random biopsies (525-527). These real time techniques like probe based confocal 

endomicroscopy (pCLE) (526, 527) with resolution up to 1 micron can potentially decrease 

sampling errors associated with endoscopic biopsies. Another potentially useful imaging technique 

is volumetric laser endomicroscopy (VLE). Based on the principle of backscattering of near infrared 

wavelength light to obtain an image of esophageal wall layers, which can scan 6 cm of esophagus in 

90 seconds to a depth of 2 mm with a resolution of 7 microns (525), VLE can potentially help target 

suspicious areas harbouring subsquamous glands which are proposed to be a risk for EAC (528). 

These imaging modalities can be performed during ongoing endoscopy and potentially improve 

surveillance and detection of dysplasia and EAC. While biomarkers could potentially risk stratify 

patient population, these invasive and expensive “red flagging” techniques could potentially benefit 

and improve screening and surveillance.  

 To enable safe, cheap, and minimally invasive diagnosis of BE in primary care setting, Lao-

Sirieix and colleagues developed a novel device called the capsule sponge, or Cytosponge (262, 

529). The gelatin capsule contains a polyurethane sponge and attached to a string. The capsule is 

swallowed which dissolves in the stomach within 5 min. The sponge is then retrieved by pulling out 

the string that samples cells from the stomach to the oropharynx. The cell samples obtained using 

Cytosponge can be subjected to histological characterization (524). Alternatively, Cytosponge 



174 

 

sample can be evaluated for more objective markers like expression level changes in TFF3 gene to 

diagnose underlying BE (262). In fact, Cytosponge sampling with immunohistochemical evaluation 

of trefoil factor 3 can diagnose BE > 2 cm in length with sensitivity of 90.0% and specificity of 

93.5% as compared to gastroscopy (524). As far as application of Cytosponge sampling in 

diagnosing dysplasia or EAC is concerned, because the majority of recurrently mutated genes in 

EAC are also mutated in BE (201, 204, 205), the opportunity to distinguish between BE and 

dysplasia/EAC based on genomic profiling alone might prove to be very limited. Validation of 

existing protein biomarkers in samples collected using Cytosponge may provide an alternative 

opportunity for diagnosis of dysplasia/EAC.  

 An ideal way to carry out routine screening/surveillance for BE/dysplasia/EAC will be by 

developing an in vitro diagnostic tool that uses blood as a sample type. Cell free circulating DNA, 

miRNA, glycan and metabolic changes have shown differential presence between healthy, BE, 

dysplastic and EAC phenotype in serum or plasma and all of them qualify for development of 

diagnostics (1, 530). In this thesis, serum glycoproteins showing differential binding with lectins 

have been identified to differentiate mainly between EAC and healthy/BE conditions. Now, the 

efforts are required to validate these changes using clinically applicable diagnostic tests in 

multicenter clinical trial to establish clear comparison between these circulatory biomarkers and 

existing endoscopy-biopsy screening. If found comparable, the blood based diagnostic can replace 

endoscopy-biopsy as a 1
st
 line screening/surveillance tool while there is no doubt that endoscopy-

biopsy will remain gold standard for confirmation and accurate staging of the disease.  

 Like other common cancers (531), it is likely that introduction of any new screening 

program for EAC will lead to false-positive identifications. However, blood based in vitro 

diagnostic will avoid endoscopy-biopsy in the patients who are currently monitored using these 

costly and inconvenient procedures multiple times per year. The cost-savings by avoiding frequent 

endoscopy-biopsy for monitoring purposes may compensate for an additional endoscopy-biopsy 

referred due to false-positive identifications. In this manner, using the same amount of funding, 

wider patient cohort can be screened that may lead to better patient outcomes and health benefits.     

7.1.4 Biomarker translation using electrochemical biosensor 

 Electrochemical methods were initially applied for accurate and sensitive detection of 

mainly redox analytes (532). The most successful application so far developed using 

electrochemical detection is glucose biosensor which is widely used in self-use point-of-care 

settings (533). Later on, electrochemical biosensors were modified for measurements of non-redox 
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analytes including protein biomarkers but their use is mainly confined to research laboratories (532, 

534). In this thesis, an electrochemical detection technique, faradaic electrochemical impedance 

spectroscopy (F-EIS), was successfully used for interrogation of a model glycoprotein chicken 

ovalbumin (2). While the study demonstrates the principle of electrochemical detection of a 

glycoprotein, several technological advancements and follow-up validation studies are required for 

using electrochemical biosensor as an in vitro diagnostic test in clinical application. (i) In the 

current format, macrodisk electrodes were reused after cleaning for all the experiments. This 

method worked for a proof-of-principle study but when it comes to testing actual biomarker 

candidates using real clinical sample, disposable electrodes are more suitable. (ii) The lectins and 

antibodies to monitor actual biomarker candidates need to be tested for interaction between glycans 

present on antibody surface and lectins. If there is any interaction, couple of strategies can be tried. 

Either un-reacted free lectin sites after glycoprotein capture can be blocked using unrelated IgG 

molecules (415) or alternatively, antibody glycans can be chemically oxidized to inhibit their 

interaction with the lectins (416). (iii) In the current format, biotin labeled bovine serum albumin 

(BSA) and multivalent streptavidin were used for capture of biotinylated lectins. Instead of BSA 

which is very large biomolecule, smaller chemical species such as thiol-PEG-biotin should be tested 

for enhanced performance of the biosensor. (iv) The electrochemical biosensor should be designed 

to allow multiplexing whereby multiple candidate biomarkers can be simultaneously monitored. 

Collectively, once the electrochemical detection technique is validated by monitoring actual 

biomarker using clinical sample and show comparable results with the mass spectrometric 

quantitation, they can replace the mass spectrometric quantitation in later phases of biomarker 

development. 

7.1.5 Limitations of the study 

 While lectins are very useful tool for glycoprotein studies, they are criticized for lack of 

specificity. Lectins generally recognize glycan structures with low affinity but with high avidity 

mainly through hydrogen bonding, hydrophobic interactions and van der Waals forces with a 

dissociation constant (Kd) value lies in the range of 10
-3

 M to 10
-7

 M as compared to antigen-

antibody interactions which shows Kd value in the range of 10
-6

 M to 10
-9

 M (344, 535). So only 

based on differential lectin binding it is difficult to predict structural changes in the glycosylation. 

The differential binding between serum glycoprotein biomarker candidates and lectins is indirect 

measure of glycosylation change. The lectin-based LeMBA workflow utilized in this thesis does not 

provide any direct evidence of changes in the expression of glyco-epitopes associated with the 

glycoprotein biomarker candidates. Moreover, the focus throughout this thesis was to identify 
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glycosylation changes in the medium to high abundant proteins meaning low abundant glycoprotein 

candidates could have been easily missed out.    

 A total of 29 and 60 samples were screened respectively from healthy, BE and EAC groups 

in biomarker discovery and verification phases. Although the number of samples is within a range 

of proposed sample size for biomarker discovery and verification (133), the verification phase did 

not include enough number of samples to divide them separately into training and validation sets for 

statistical analysis. Furthermore, samples from early or late dysplastic patients were not available 

for biomarker discovery and verification so at the moment relative timing of the changes in the 

biomarker levels in EAC development is not clear. The healthy along with population control 

samples (total n = 39) were combined to find out candidates affected by confounding covariates. 

Some of the subgroups for the statistical analyses had only few samples (e.g. n = 5 for patients with 

daily or weekly symptoms of reflux and n = 5 for patients with alcohol consumption with <1 

standard drink/week) resulting in limited statistical power. Even though reflux frequency was 

assessed as a confounding covariate, there was a lack of true inflammatory patient control group to 

confidently identify true EAC biomarker candidates from closely related inflammatory conditions. 

 Although electrochemical detection platform demonstrated applicability to monitor 

glycoprotein biomarker candidates in a proof-of-concept work, the reproducibility of measurements 

was far away from what is actually required for clinical assay. The biosensor construction relied 

upon reproducible adsorption of biomolecule bovine serum albumin that is relatively larger in size 

as compared to chemical based modifications. In addition, non-reacted electrode surface was not 

blocked so the possibility of non-specific interaction of proteins with the electrode surface in 

subsequent stages of the assay cannot be ruled out.            

7.1.6 Future opportunities 

7.1.6.1 Validation of lectin-protein biomarker candidates in an independent patient cohort 

including dysplastic samples 

 The findings of this study should be replicated in an independent patient cohort that include 

dysplastic patient samples to determine exact timing of change in the level of biomarker candidates 

during EAC development. Ideally, the patient cohort should be well characterized and findings of 

endoscopy-biopsy should be available for each patient to allow comparison between changes in the 

lectin-protein biomarker candidates in circulation with actual disease progression. Once the findings 

are replicated, the final biomarker panel can be evaluated in multi-centre prospective trial to 

determine actual positive predictive value of the test. 
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7.1.6.2 MRM-MS assay for biomarker discovery 

 The MRM-MS assay used for verification showed better reproducibility over discovery 

proteomics workflow employed in biomarker discovery. The MRM-MS assay includes transitions 

for proteins identified as candidates in biomarker discovery and excludes any additional proteins 

which are generally identified in LeMBA pull-down. The current MRM-MS assay can be optimized 

further to include transitions of these common proteins identified in LeMBA pull-down in addition 

to existing list of potential candidates and can be used for even biomarker discovery purposes. This 

may cause slight increase in the total duration of MRM-MS assay, but it will allow monitoring of 

many more candidates from LeMBA pull-down as compared to only significant ones at no extra 

cost. When an independent patient cohort that includes dysplastic patient samples will be screened 

using this proposed MRM-MS assay, it will widen the scope of the validation. This may lead to 

identification of new candidates specific for dysplasia which may not be present in the current list 

of candidates identified between healthy, BE and EAC phenotypes.  

7.1.6.3 Glycan/glycosite characterization of biomarker candidates 

 The biomarker candidate identified should be subjected to full glycomic characterization to 

determine the changes in the glycan structure and/or site of glycosylation between different disease 

states. This may help understand basis of the differential lectin binding between different 

phenotypes. 

7.1.6.4 Determine biological basis for changes in the biomarker levels 

 Along with screening serum samples, tissue samples from the matched patients (independent 

validation cohort) should be available to perform staining for candidate biomarkers in matched 

tissue sections. This will help to determine possible source of the biomarker candidates in the 

circulation i.e. tumor tissue or stromal components. This may also aid understand pathological basis 

of the cancer-associated glycosylation changes. 

7.1.7 Conclusions 

 The work presented in this thesis identified serum glycoprotein diagnostic biomarker 

candidates for Barrett's esophagus and esophageal adenocarcinoma using LeMBA-GlycoSelector 

pipeline. The targeted proteomics assay developed for candidate biomarkers demonstrated linearity 

and reproducibility for biomarker verification. The selected lectin-glycoprotein biomarker 

candidates were verified using LeMBA-MRM-MS-Shiny mixOmics workflow in an independent 

patient cohort leading to identification of a panel of serum glycoprotein biomarker candidate to 
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distinguish between BE and EAC. Lastly, results obtained using electrochemical detection 

methodology demonstrated the possibility of using electrochemical detection for developing cheap 

point-of-care diagnostics with high specificity and sensitivity for blood glycoprotein biomarkers. It 

is anticipated that this work will be extended further to develop an in vitro diagnostic test to screen 

and monitor patients at risk of EAC.      
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Review

Early Diagnostic Biomarkers for Esophageal
Adenocarcinoma—The Current State of Play

Alok Kishorkumar Shah1, Nicholas A. Saunders1, Andrew P. Barbour2, and Michelle M. Hill1

Abstract
Esophageal adenocarcinoma (EAC) is one of the two most common types of esophageal cancer with

alarming increase in incidence and very poor prognosis. Aiming to detect EAC early, currently high-risk

patients are monitored using an endoscopic-biopsy approach. However, this approach is prone to sampling

error and interobserver variability. Diagnostic tissue biomarkers related to genomic and cell-cycle abnormal-

ities have shown promising results, although with current technology these tests are difficult to implement in

the screening of high-risk patients for early neoplastic changes. Differential miRNA profiles and aberrant

protein glycosylation in tissue samples have been reported to improve performance of existing tissue-based

diagnostic biomarkers. In contrast to tissue biomarkers, circulating biomarkers are more amenable to

population-screening strategies, due to the ease and low cost of testing. Studies have already shown altered

circulating glycans and DNA methylation in BE/EAC, whereas disease-associated changes in circulating

miRNA remain to be determined. Future research should focus on identification and validation of these

circulating biomarkers in large-scale trials to develop in vitro diagnostic tools to screen population at risk for

EAC development. Cancer Epidemiol Biomarkers Prev; 22(7); 1185–209. �2013 AACR.

Introduction
Afterheart disease, cancer is the second leading cause of

death globally. Four major cancer sites account for half of
the cancer-related mortalities: lung, colorectal, prostate
in men, and breast in women. In past 2 decades, a steady
decrease in deaths of these 4 major site malignancies led
to an overall decrease in cancer-related death rates inmen
and women (1). In contrast, the incidence of esophageal
adenocarcinoma (EAC) is increasing faster than any other
cancer type. EAC togetherwith esophageal squamous cell
carcinoma (ESCC) is the eighth most-common cancer by
prevalence and sixth most-common cause of cancer-relat-
ed death globally (2). In 1970s, the incidence of EAC
represented less than 5% of total esophageal cancer, and
a majority of esophageal cancer cases diagnosed were
ESCC. Over a period of 3 decades, EAC incidences have
been increasing continuously, especially inwestern coun-
tries among Caucasians. Now almost half of the esoph-
ageal malignancy cases diagnosed are EAC (3, 4). EAC
and ESCC show marked differences in their geographic
spread. EAC is more common in developed countries
such as the United Kingdom (8 in 100,000 individuals;

ref. 5), Australia, and the United States. Within Europe,
southern Europe has the highest EAC incidence (5). On
the other side, ESCC is the most common type of esoph-
ageal cancer amongdevelopingAsian countries (6). Racial
disparity also occurs between the 2 types of esophageal
cancer. ESCC is more prevalent among Blacks, whereas
EAC is at least twice as common in Whites as compared
with other ethnic groups (7, 8). Once diagnosed, Black
patients showed poorer overall survival than Whites
(9, 10). Taken together, strong genetic and environmental
factors relating to ethnicity and geographic distribution
seem to be playing critical roles in the incidence of esoph-
ageal cancer. Studies also suggest possible links between
socioeconomic status and the prevalence of esophageal
cancer phenotype (6).

Risk Factors
In themajority of cases, EAC is diagnosed at a late stage,

leading to a poor 5-year survival of less than 15% (11).
Hence, recent research for EAC has focused on under-
standing risk factors and the identification of early diag-
nostic biomarkers.

Esophageal cancer is unlikely to develop in individuals
younger than 40 years of age; however, after that the
incidence increases significantly with each decade of life
(9). Changing lifestyle and food habits are primarily
responsible for the dramatic epidemiologic changes in
EAC as described in recent reviews (11–13). Known EAC
risk factors include accumulation of visceral fat in the
abdomen (14), male gender, high intake of dietary fat and
cholesterol with low intake of fruits and vegetables (15),
tobacco smoking (16), reduction in Helicobacter pylori
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infections (17), and Barrett’s esophagus (BE), a metaplas-
tic change to the esophageal lining. Individuals with
Barrett’s esophagus carry almost 30 to 125 times more
risk for EAC development, and 0.5% to 1% of patients
with Barrett’s esophagus are estimated to develop EAC
each year (18). Barrett’s esophagus is characterized by
replacement of normal stratified squamous epithelium
with metaplastic columnar epithelium and is considered
to be a successful adaptation of the distal esophagus in
response to chronic gastroesophageal reflux disorder
(GERD; ref. 19).

GERD is a very common condition in the western pop-
ulation with around 20% reporting weekly symptoms of
heartburn and acid regurgitation (20). Refluxate-contain-
ing bile acid, along with gastric acid, is considered to be
more harmful, leading to inflammation, ulceration, Bar-
rett’s esophagus, and ultimately EAC. Development of
Barrett’s esophagus is a slow process and distinctive
mucus-secreting goblet cell formation can take 5 to 10
years (21, 22). Typically, EAC develops through metapla-
sia–dysplasia–carcinoma sequence involving genetic and
epigenetic modifications, leading to uncontrolled cell
proliferation, and is characterized by the presence of
intestinal metaplasiawith low-grade (LGD) to high-grade
dysplasia (HGD), which eventuallymay progress to inva-
sive carcinoma (20).

Current Diagnosis Scenario
To detect pathologic changes leading to EAC develop-

ment before onset of disease, current clinical practice
involves endoscopic screening of patients with high-risk
GERD and to characterize the degree of dysplasia in
biopsy samples collected during endoscopy (23, 24).
Enrollment of patients into an endoscopic screening pro-
grammay be facilitated by a patient questionnaire of self-
evaluated symptoms/complications (25, 26). Once
enrolled into the screening program, a patient undergoes
endoscopy-biopsy every 3 months to 2 years depending
on the degree of dysplasia, during which 4 quadrant
biopsy samples are taken every 1 to 2 cm and evaluated
for histologic changes by expert pathologists (23, 24). As a
significant number of patients histologically diagnosed
with HGD develop EAC, endoscopic mucosal ablation or
esophageal resection (esophagectomy) are options to stop
further disease progression in those high-risk patients
(27, 28). Significantly improved survival is observed in
patients diagnosed at an early stage during surveillance
endoscopy program as compared with symptomatically
diagnosed EAC (29–32).

Although current screeningmethodology shows prom-
ise, outcome of endoscopy-biopsy in many cases is non-
reproducible due to interobserver variability and sam-
pling error (28, 33). Furthermore, histologic dysplastic
changes may be patchy and present heterogeneously in
the tissue sample. This makes the diagnosis challenging,
especially in the early stages of transition to LGD (28, 34).
In up to 40%of patients, invasive cancer has been found in
resected tissue despite negative endoscopic examination

for the malignancy (35). Moreover, false-positive results
also occur, meaning despite intramucosal carcinoma in a
biopsy, the subsequently resected tissue has no signs of
carcinoma (28). These evidence suggest dysplasia grading
is an imperfect measure of cancer risk.

Despite extensive screening with currently available
techniques, more than 80% of EACs are diagnosed with-
out any prior diagnosis of Barrett’s esophagus or GERD
(36, 37). According to an estimate, more than 80% of
Barrett’s esophagus cases are undiagnosed and therefore
are not getting the benefit of the screening program (38).
On the other hand, a large proportion of patients under-
going routine biopsy screening do not progress to EAC
(13). These suggest inability of current methodologies in
screening population to detect high-risk patients and to
distinguish between disease progressors from nonpro-
gressors. In addition, the screening procedure is not very
cost-effective (39). To overcome these challenges, adjunct
use of biomarker has been proposed to stratify the risk
associated with EAC development.

Biomarkers in EAC
According to United States’ NIH, a biomarker is "a

characteristic that is objectively measured and evaluated
as an indicator of normal biologic processes, pathogenic
processes, or pharmacologic responses to a therapeutic
intervention (40)."

In transit from intestinal metaplasia to LGD to HGD to
EAC, cells acquire abilities to become self-sufficient for
growth, evade apoptosis, proliferate uncontrollably, pro-
mote angiogenesis, invade underlined epithelium, and
start to metastasize. These changes are accompanied with
histologic changes in tissue architecture, genomic insta-
bility, development of tumor microenvironment, modu-
lation of immune response, and are therefore reflected in
body fluids (serum/plasma/mucus/urine) or tissue sam-
ples and differentiate in terms of their genome/prote-
ome/metabolome profile (41). Thus, a biomarker can be
from any of these sources and reflect underlying patho-
logic or homeostatic changes. Table 1 summarizes differ-
ent classes of biomarkers proposed for BE/EAC.

National Cancer Institute Early Detection Research
Network (EDRN) guidelines outline biomarker discovery
anddevelopment to a 5-phase process summarized below
(42) and depicted in Fig. 1.

Phase I—Preclinical exploratory study: it compares
normal versus cancer samples (body fluids/tissue)
using technologies such as genomics, microarray
expression, proteomics, immunohistochemistry, or
immunoblotting to detect significant changes in
proteins/genes/metabolites between the groups.

Phase II—Clinical assay development and validation: it is
aimed at developing a clinical assay using a minimally
invasive sample collection method. The assay is meant
to be robust, reproducible, and suitable for stored
clinical samples to be used in later phases of
development. At the end of this phase, one should
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expect high specificity and sensitivity for the assay.
However, it remains to be determined how early the
biomarker can predict the disease.

Phase III—Retrospective longitudinal repository studies:
the assay is applied on prospectively collected stored
samples to determine the ability of the biomarker to
detect the disease before clinical presentation. If so, then
criteria for positive screening is determined for future
use.

Phase IV—Prospective screening: the test is prospectively
applied to real population to detect the extent and
characteristic of disease detected by the biomarker. This
phase gives positive predictive value for the test and
gives an idea about feasibility for last phase of control
trials.

Phase V—Cancer control studies: it comprises large-scale
clinical trial to determine the impact of new screening
process on the disease burden in the community.

With respect to EAC, none of the biomarkers, including
high-grade dysplasia, have been evaluated in phase V,
whereas very feware evaluated in phase III and IV. Figure
1 summarizes proposed EAC biomarkers and how well
they are characterized in the process of biomarker dis-
covery. The following sections will discuss some of the
classes of BE/EAC biomarkers.

Genomic Instability
Many groups have studied genomic instability induced

by aneuploidy, tetraploidy, DNAmethylation, allelic loss
and shown some predictive power for these changes. A
role for hypermethylation in the promoter regions of
tumor-suppressor genes during the development of EAC
has also been well established. Table 2 summarizes DNA
methylation changes associated with metaplasia–dyspla-
sia–carcinoma development. In the majority of patients,
methylation changes are acquired very early during EAC
development, hence these alterations could be used as an
early diagnostic biomarker. Apart from discriminating
patients at different stages of EAC development, DNA
methylation signatures may be useful as predictors for
progression from Barrett’s esophagus to EAC (43, 44) and
for response to chemotherapy and survival in patients
with EAC (45, 46).

Although the individual genomic abnormality has the
potential to diagnose disease at different stages, best
results are obtained when they are used in combination
(47–49). LOH at chromosome 9p and 17p locus are con-
sidered to be early events during Barrett’s esophagus
pathogenesis (50). If present with other chromosomal
alterations such as aneuploidy and tetraploidy, it
increases the 10-year risk for development of EAC from
12% to approximately 80% (51). However, with the cur-
rent flow cytometry technology, it is technically very
challenging for clinical laboratories to assess these geno-
mic biomarkers in the samples, which limits widespread
use of these biomarkers in the clinic.

Alternatively, genomic alterations canbedetected at the
protein level using immunohistochemistry. One of the
most common and earliest genomic abnormality occurs at
chromosome 17p, which codes for tumor-suppressor p53
protein. Loss of p53 protein expression in tissue samples
correlates with disease progression (52). However, as p53
expression only reflects alterations at one particular gene,
it has lower predictive value as comparedwith techniques
monitoring multiple genomic abnormalities. Further-
more, sensitivity drops as mutations or deletions at geno-
mic level may not necessarily be detected at the protein
level (53).

In line with the genomic abnormalities described ear-
lier, single-nucleotide polymorphism (SNP)–based geno-
typing can also stratify cancer risk in patients with Bar-
rett’s esophagus. As summarized in Table 3, in the past

None

Phase V: Cancer control
      studies

B
io

m
ar

ke
r d

is
co

ve
ry

 a
nd
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ev

el
op

m
en

t

Phase IV: Prospective
      screening

Phase III: Retrospective
   longitudinal repository studies

Phase I and II: Preclinical
   exploration, clinical assay
     development and
        validation

High-grade
dysplasis

DNA methylation, LOH,
ploidy, p53 loss, cyclin D1

PCNA, Ki-67, EGFR, COX-2,
miRNA, cMYC, HER2, NF-κB, Bcl-2,
VEGF, E-cadherin, p16 abnormalities,

β-catenin, glycoproteins, etc.

Figure 1. Summary of current BE/EAC Biomarkers with respect to EDRN
clinical phase of development.

Table 1. Comprehensive summary of different
classes of BE/EAC biomarkers

Biomarker class Ref.

Tissue biomarkers
Genomic abnormalities
(ploidy and LOH)

(47–51)

DNA methylation Refer to Table 2
SNPs/expression array studies Refer to Table 3

Inflammatory markers
COX-2 (69, 72–77)
NF-kB (78–81)
Cytokines (67, 79, 81–86)
MMPs (87–93)
Cell-cycle abnormalities (94, 95, 101)
miRNA Refer to Table 4
Glycosylation changes (121, 123–125)

Circulatory biomarkers
DNA methylation changes (130–132)
Glycan alterations (135–138)
Metabolic profiling (142–145)
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decade, several studies conducted using advanced geno-
mic techniques such as array-comparative genomic
hybridization (aCGH) and SNP arrays confirmed previ-
ously reported copy number alterations and identified
novel genomic loci undergoing changes during process of
metaplasia–dysplasia–carcinoma development (54–60). It
has been shown that as the disease progresses from early
to late stages, SNP abnormalities increase from approxi-
mately 2% to 30% (54, 57). The total number of SNP
alterations in tissue samples is tightly correlated with
previously reported DNA abnormalities such as aneu-
ploidy, copy number alterations, and LOH highlighting
the application of SNP-based genotyping to assess geno-
mic abnormalities (54–60). Thus, SNP-based genotyping
provides an alternative way to assess genomic abnormal-
ities during EAC pathogenesis.
Studies on gene expression changes in EAC have been

propelled by recent progress in genomic technologies,
each identifying unique sets of gene expression profile,
which can be used as a biomarker panel for disease
diagnosis, prognosis, or to predict response to therapy
(Table 3).Moreover, determination of the gene expression
changes has been extremely helpful to understand
detailed pathogenesis and will form basis for developing
future therapies. However, future validation using inde-
pendent sample cohorts will be necessary for themajority
of these potential biomarkers.
Apart from genomic abnormalities associated with the

disease progression, inheriting genetic factors are also
implicated for EAC development. Risk for BE/EAC and
GERD is increased by 2- to 4-fold when a first-degree
relative is already affected by any of these conditions (61).
Recently, a study conducted by The Esophageal Adeno-
carcinoma Genetics Consortium and TheWellcome Trust
Case Control Consortium identified link between SNPs at
the MHC locus and chromosome 16q24.1 with risk for
Barrett’s esophagus (62). They also identified SNPs asso-
ciated with body weight measures that were present with
more than expected frequency in Barrett’s esophagus
samples supporting epidemiologic findings about obesity
as a risk factor for Barrett’s esophagus and EAC (62). Wu
and colleagues examined the relationship between pres-
ence of risk genotypes and the onset of EAC. They iden-
tified 10 SNPs associatedwith the age of EAConset. Genes
associated with 5 of 10 SNPs identified were known to be
involved in apoptosis (63).
Recently, published cancer genome–sequencing stud-

ies have given deeper insights into the genomic abnor-
malities associated with the EAC pathogenesis. The com-
parative genomic analysis between EAC and ESCC
reported by Agrawal and colleagues (64) confirmed pre-
viously verywell-described association of p53 genemuta-
tions with esophageal cancer development. The authors
also conducted comparative genome-wide analysis
between matched Barrett’s esophagus and EAC patient
tissue samples and concluded that the majority of geno-
mic changes occur early during EAC development, at the
stageofBarrett’s esophagus (64). Similar conclusionswere

made by next-generation sequencing of biopsy samples
obtained from the same patient at the stage of Barrett’s
esophagus and EAC (65). The authors also identified
ARID1A as novel tumor-suppressor gene and around
15% of patientswith EAC showed loss of ARID1Aprotein
in tissue samples. In vitro studies suggested it to be
associated with cell growth, proliferation, and invasion
(65). Very recently published high-resolution methylome
analysis has provided first evidence for methylation
changes at genomic regions that encodenoncodingRNAs.
The authors identified longnoncodingRNA,AFAP1-AS1,
to be severely hypomethylated in Barrett’s esophagus and
EAC tissue samples, silencing of which significantly
reduced aggressiveness of EAC cell lines OE33 and
SKGT4 (66).

Taken together, genomic abnormalities play key roles
during each stage of transformation from normal squa-
mous epithelium to EAC.

Cancer-Related Inflammation
Gastric and bile acid exposure in the esophageal epi-

thelium leads to the development of chronic inflamma-
tory conditions mainly driven by elevated levels of proin-
flammatory cytokines. Chronic inflammatory responses
induce cell survival and increase cell proliferation, hence
play key roles in the development of EAC (67, 68). Expres-
sions of various inflammatory molecules such as COX-2,
NF-kB, interleukin (IL)-6, IL-8, and matrix metalloprotei-
nases (MMP) have been evaluated as prognostic biomar-
kers for BE/EAC development.

Exposure to gastric/bile acid and cytokines leads to
increased COX-2 expression (69). COX-2 is a rate-limiting
enzyme that regulates synthesis of prostaglandins from
arachidonic acid. COX-2 directly increases cell prolifera-
tion and promotes tumor invasion (69), andCOX-2–medi-
ated increase in prostaglandin synthesis could result in
tumor growth and angiogenesis (70). COX-2 expression
has been detected in disease-free esophageal tissue homo-
genates using immunoblotting (69). In comparison with
GERD, patients suffering from erosive reflux show slight-
ly higher gene expressions of this enzyme in tissue sam-
ples (71). Several studies have shown significantly
increased COX-2 expression correlating with the disease
progression from Barrett’s esophagus to dysplasia and
EAC (69, 72–75). Furthermore, expression levels of COX-2
have been shown to have a prognostic value in EAC with
higher levels associated with poor survival and increased
chances of tumor relapse (76, 77).

Another well-studied inflammatory biomarker NF-kB
is activated in response to exposure with bile acid and
elevated NF-kB expression levels are found during Bar-
rett’s esophagus, dysplasia, and adenocarcinoma (78–80).
Activated NF-kB translocates from cytoplasm to nucleus
and upregulates transcription of the genes involved
in inflammatory processes. Moreover, nuclear NF-kB
expression has been shown to be correlated with the
patient response to chemoradiotherapy.All of thepatients
who showed complete response to chemoradiotherapy
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had elevated NF-kB levels pretreatment and showed lack
of active NF-kB posttreatment (81).

In line with NF-kB and COX-2, expression of indi-
vidual or combinations of proinflammatory cytokines
IL-1b, IL-6, IL-8, and TNF-a is significantly increased in
Barrett’s esophagus and EAC as compared with squa-
mous epithelium (82–84). IL-1b and IL-8 expression
levels also correlate with the stage of EAC (79). Patients
who responded to neoadjuvant chemotherapy treat-
ment showed significantly reduced expressions of IL-
8 and IL-1b in postchemotherapy esophageal tissue
sections (81). IL-6 is activated in response to reflux and
the IL-6/STAT3 antiapoptotic pathway may underlie
the development of dysplasia and tumor (85). Serum IL-
6 levels were reported to provide 87% sensitivity and
92% specificity for EAC diagnosis in a recent retrospec-
tive study (86). However, the study only compared
between healthy and EAC groups. It would be interest-
ing to see how early it can diagnose EAC during the
process of metaplasia–dysplasia. Combination of cyto-
kines IFN-g , IL-1a, IL-8, IL-21, and IL-23 along with
platelet proteoglycan and miRNA-375 expression pro-
filing has been shown to build an inflammatory risk
model, which has clinical use to determine prognosis for
patients with EAC (67).

MMPs are a family of proteolytic enzymes involved in
the degradation of extracellular matrix components.
MMPs play a role in both inflammation and tumormetas-
tasis. Immunohistochemical staining forMMP-1, MMP-2,
MMP-7, andMMP-9 has been reported to be significantly
higher in EAC as compared with healthy individuals (87,
88). Higher level of MMP-1 expression has been associ-
ated with the lymph node metastases and possibly poor
patient survival (89). Expression ofMMP-9 is shown to be
an early event during the EAC transformation and its
expression levels are correlated with the progression of
the disease (90–92). Activity of MMPs is inhibited by a
family of proteins called tissue inhibitors of metallopro-
teinases (TIMP). Specifically, TIMP-3 gene is methylated
in EAC development and its reduced expression is asso-
ciated with stage of the tumor and patient survival (93).
On contrary, Salmela and colleagues described elevated
TIMP-1 and TIMP-3 expression in EAC tumor samples
(88).

Although the underlying tissue inflammation is very
closely associated with EAC development and several
inflammation-related biomarkers have been identified,
these remain to be validated in large-scale biomarker
studies.

Cell Cycle–Related Abnormalities
To compensate for the tissue damage induced by gas-

tric/bile acid, the underlying epithelium starts to prolif-
erate rapidly and become uncontrolled resulting in neo-
plasia. To meet the proliferation requirements, the cells
have to overcome cell-cycle checkpoints. Cyclin D1 over-
expression is one such means by which cells overcome
G1–S checkpoint, and cyclin D1 immunohistochemical

staining has been proposed to identify patients with Bar-
rett’s esophagus with an increased risk for EAC (94). In
contrast to cyclin D1, expression of p16 protein results in
cell-cycle arrest in G1 phase as it has been shown to inhibit
cyclin-dependent kinase–induced phosphorylation of
retinoblastoma protein. Early genomic abnormalities dur-
ing EAC development significantly affect p16 protein
expression,which can bedeterminedusing immunostain-
ing and implemented as a potential biomarker (95). Fur-
ther large-scale trials are required to confirm cell-cycle
abnormalities during EAC development to implement
them as a biomarker.

Bottom of the pyramid in Fig. 1 represents list of
biomarkers in the initial stages of development. Tumors
harboring overexpression of growth factor receptors [EGF
receptor (EGFR) and HER-2] are associated with poor
patient survival (96, 97), whereas those overexpressing
apoptosis regulator Bcl-2 protein showed prolonged sur-
vival (98). Incipient angiogenesis is a marked feature of
Barrett’s esophagus and underlining tissue expresses
angiogenesis markers VEGF and its receptors (99). Neo-
vascularization continues as the disease progresses from
Barrett’s esophagus to EAC. Measuring the degree of
neovascularization correlated with histopathologic grade
of the tumor and associated with the patient survival
(100). Expression of 2 prominent cell proliferation mar-
kers, PCNA and Ki-67, has been described to be altered
during BE–EAC development (101).

miRNA
miRNA was first discovered in Caenorhabditis elegans

(102) and since then it has beenwidely studied in a variety
of biologic phenomena. These short stretches of approx-
imately 21 nucleotides do not code for protein but play
important roles in gene regulation by either suppressing
protein synthesis or causing mRNA cleavage. Unlike
siRNA, miRNA can target multiple genes on remote loci
and therefore control diverse group of proteins. Several
key properties of carcinogenesis have been shown to be
regulated via miRNA, for example, angiogenesis and
metastasis (103).

With increased biologic understanding ofmiRNAs and
their role in cancer, they have been proposed in several
different clinical applications including cancer diagnosis
and tumor prognosis, tumor classification, and also as a
therapeutic target for disease intervention. Differential
tissue miRNA expression has been observed in several
different malignancies and these changes can be used for
diagnosis and classification of the tumors (103). miRNA
bioarrays were first used to show differential miRNA
expression in healthy, Barrett’s esophagus, and EAC
tissue samples (104). Since then, a number of different
studies have identified miRNA changes associated with
the development of the BE–EAC. Table 4 summarizes
primary findings of miRNA expression profiling studies
along with statistical significance and fold-change values.
Biologic significance for some of the miRNA-related
changes is discussed later.
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Smith and colleagues identified reduced expression of
miR-200 and miR-141 in Barrett’s esophagus and EAC
tissue samples. They conducted bioinformatics analysis
and correlated these miRNA expression changes with
cellular processes such as cell cycle, cell proliferation,
apoptosis, and cell migration (105). miR-196a, which is
describedas amarker of progression fromBarrett’s esoph-
agus to EAC, can increase cell proliferation and anchor-
age-independent growth and inhibit apoptosis in EAC
cell lines in vitro (106). The downstream targets for miR-
196a are verified to be Annexin A1, S100 calcium-binding
protein A9, small proline-rich protein 2C, and Keratin 5,
which showed reduced expression in EAC patient tissue
samples as compared with normal epithelium (106, 107).
Several studies described in Table 4 report overexpression
of miR-192 during EAC carcinogenesis. miR-192 has been
reported tobe a target of p53 andhas been able to suppress
cancer progression in osteosarcoma and colon cancer cell
lines throughp21 accumulation and cell-cycle arrest (108).
As shown in Table 4,miR-21 is overexpressed during BE/
EAC and it can function as an oncogene as shown in
tumors of breast, brain, lung, prostate, pancreas, colon,
liver, and chronic lymphocytic leukemia. It negatively
regulates tumor- and metastasis-suppressor genes PTEN,
TPM1, PDCD4, and Sprouty2 (109–112). miR-194 expres-
sion is regulated by hepatocyte nuclear factor (HNF)-1a
transcription factor, which is induced during BE/EAC
and may lead to upregulation of miR-194 (109). Higher
expression of miR-194 is also observed in metastatic
pancreatic cell lines (113). Among miRNAs found to be
downregulated during EAC development, let-7 family of
miRNAs is tumor-suppressive and negatively regulates
Ras oncogene. Fassan and colleagues confirmed upregu-
lation of HMGA2, which is one of the target of let-7
miRNA, using immunohistochemistry in tissue samples
(110, 112, 114). Further studies in the regards of miRNA
andmiRNA target geneswill improve the biologic under-
standing of EAC pathogenesis and may also provide
novel molecular targets for disease intervention.
Notably, miRNAs are found to be stable in serum

encapsulated in microvesicles and can be accessed easily
(115). In fact, circulating miRNA profiling has shown
distinct expression patterns in a number of cancers, other
than EAC (116). This opens up new avenues for circulat-
ing miRNA changes as a potential biomarker for EAC.

Glycoproteins
Protein glycosylation is a common posttranslational

modification with almost half of the proteins synthesized
undergoing 1 of the 2 major types either N-linked or O-
linked glycan modifications. The biosynthetic process of
glycosylation is regulated by the expression and localiza-
tion of glycosyltransferases/glycosidases and the avail-
ability of substrate glycans (117).
Aberrant glycosylation changes have previously been

reported in several different cancers namelybreast cancer,
prostate cancer, melanoma, pancreatic cancer, ovarian
cancer, etc. (118, 119). These changes include truncated

forms of O-glycans, increased degree of branching in N-
glycans, and elevated sialylation, sulfation, and fucosyla-
tion with a range of other possible variations (119). The
differential glycosylation can alter protein interactions,
stability, trafficking, immunogenicity, and function (118).
Tumor-specific glycosylation changes are actively
involved in neoplastic progression, namely metastasis,
as glycoproteins are found abundantly on cell surfaces
and extracellularmatrices and therefore play a vital role in
cellular interactions.

Lectins are a family of glycan-binding proteins exten-
sively used in glycobiology due to preferential binding of
each lectin to recognize specific glycan structures (119,
120). The first effort to identify differential glycosylation
in the progression to Barrett’s esophagus and EAC was
made in 1987 by Shimamoto and colleagues using differ-
ential binding pattern to 5 lectins in tissue specimens
(121). The glycoconjugate expression profile in Barrett’s
esophagus was found to be significantly different from
normal esophageal epithelium. Interestingly, glycoconju-
gate expression between Barrett’s esophagus and normal
duodenum was quite similar. There were minimal glyco-
conjugate expression changes between Barrett’s esopha-
gus and LGD. However, EAC tissue samples showed
significantly different lectin-binding pattern than BE/
LGD (121). Using rabbit esophageal epithelium, Poor-
khalkali and colleagues showeddifferential lectin binding
in response to acid/pepsin exposure suggesting acid
exposure can induce cell surface glycosylation changes
(122). In 2008, Neumann and colleagues used 4 different
lectins to identify pathologic mucosal changes (123). They
observed 2 distinct lectin-binding patterns. Onewas asso-
ciated with the GERD, whereas the other pattern was
characteristic for Barrett’s esophagus mucosa. Specifical-
ly,UEA (Ulex europaeus) lectin bindingwasupregulated in
Barrett’s esophagus tissue sections, which suggests pos-
sible increase in fucosylation during the disease progress
(123). A recently published study has concluded that
dysplasia can alter glycan expression and lectin binding
to the tissue samples. Fluorescently labeled WGA (wheat
germ agglutinin) lectin-binding intensity was found to be
inversely related to the degree of dysplasia (124). Further-
more, the authors used fluorescent-capable endoscope ex
vivo in the study and followed all the protocols in a
manner that exactly mimics a clinical study in vivo. Fol-
lowed by topical fluorescein-labeled WGA spray, the
authors measured fluorescence in the tissue samples.
Measurement of lectin fluorescence was a more sensitive
approach to identify dysplastic lesions as compared with
white light endoscopic technique. Their data show clinical
use of such a lectin-based endoscopic technique if devel-
oped further (124). In a phase III biomarker clinical trial
study, Bird-Liberman and colleagues combined 3 differ-
ent abnormalities to predict EAC progression in patients
with Barrett’s esophagus. Along with using conventional
LGD and DNA content abnormalities they used AOL
(Aspergillus oryzae) lectin binding to the tissue samples,
which detects presence of a1-6 fucose on the cell surface
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Table 4. Summary of literature describing miRNA expression changes in BE/EAC

Sample size Upregulated in BE/EAC Downregulated in BE/EAC Ref.

71 (BE-12, Barrett's
esophagus without
dysplasia-20, LGD-27,
EAC/HGD-12)

miR-192 (P < 0.00001), miR-196a (P < 0.05):
upregulated in Barrett's esophagus as
compared with healthy tissue.miR-196a
expression is correlated with progression
from IM-LGD-HGD-EAC (P < 0.005).

miR203 (P < 0.00001): downregulation in
Barrett's esophagus as compared with
healthy tissue.

(209)

22 (Barrett's esophagus
without dysplasia-11,
Barrett's esophagus with
dysplasia-11)

miR-15b (3.3-fold; P < 0.05), miR-203 (5.7-
fold; P < 0.05): upregulated in dysplasia as
compared with nondysplastic Barrett's
esophagus.

miR-486-5p (4.8-fold; P < 0.05), miR-let-7a
(3.3-fold; P < 0.05): downregulated in
dysplasia as compared with nondysplastic
Barrett's esophagus.

(110)

100 (EAC-100, adjacent
normal tissue as control)

miR-21 (�3-fold; P < 0.05), miR-223 (�2-fold;
P < 0.05), miR-192 (�3.5-fold; P < 0.05),
and miR-194 (�3.5-fold; P < 0.05):
upregulated in EAC as compared with
adjacent normal tissue.

miR-203 (�3-fold; P < 0.05): downregulated
in EAC as compared with adjacent normal
tissue.

(111)

25 (Healthy-9, BE-5,
HGD-1, EAC-10)

miR-192 (1.7-fold; FDR < 1 e�07), miR-194
(2-fold; FDR < 1e�07), miR-21 (3.7-fold;
FDR ¼ 0.0003), miR-200c (1.9-fold; FDR ¼
0.0015), miR-93 (1.3-fold; FDR ¼ 0.0108):
upregulated in EAC as compared with
Barrett's esophagus.

miR-27b (1.43-fold; FDR ¼ 0.0003), miR-342
(1.25-fold; FDR ¼ 0.0015), miR-125b (2-
fold; FDR ¼ 0.0108), miR-100 (1.25-fold;
FDR ¼ 0.011): downregulated in EAC as
compared with Barrett's esophagus.

(104)

75 (Healthy-15, BE-15,
LGD-15, HGD-15,
EAC-15)

miR-215 (62.8-fold; P < 1e�07), miR-192
(6.34-fold; P < 1e�07): upregulated in
Barrett's esophagus in comparison with
normal tissue and remained at similar levels
with disease progress.

miR-205 (10-fold; P ¼ 1.39e�0.5), let-7c
(2.04-fold; P ¼ 3.11e�05), miR-203 (6.67-
fold; P ¼ 3.2e�0.5): downregulated in
Barrett's esophagus in comparison with
normal tissue and remained at similar levels
as disease progresses.

(114)

91 (LGD-31, HGD-29, EAC-
31, In all cases adjacent
normal tissue used as a
control)

miR-200a (13.5-fold; P ¼ 0.02), miR-513
(1.58-fold; P ¼ 0.03), miR-125b (9.2-fold; P
¼ 0.04), miR-101 (1.83-fold; P¼ 0.04), miR-
197 (1.61-fold; P ¼ 0.04): upregulated in
LGD to HGD transition.

miR-23b (1.45-fold; P ¼ 0.007), miR-20b
(1.56-fold; P¼ 0.01), miR-181b (2.22-fold;P
¼ 0.03), miR-203 (1.49-fold; P¼ 0.03), miR-
193b (2.70-fold; P ¼ 0.04), miR-636 (4.17-
fold; P ¼ 0.04): downregulated in LGD to
HGD transition. let-7a (1.75-fold; P ¼ 0.01),
let-7b (1.59-fold; P ¼ 0.009), let-7c (1.69-
fold; P ¼ 0.03), let-7f (1.69-fold; P ¼ 0.03),
miR-345 (2-fold; P ¼ 0.02), miR-494 (1.72-
fold; P ¼ 0.03), miR-193a (2.27-fold; P ¼
0.05): downregulated in HGD-EAC
development process.

(112)

48 (BE-19, EAC-29) miR-21 (�2.8-fold; P < 0.05), miR-143
(�11.3-fold;P<0.05),miR-145 (�3.4-fold;P
< 0.05), miR-194 (�126-fold; P < 0.05), miR-
215 (�18-fold; P < 0.05): upregulated in
Barrett's esophagus as compared with
adjacent normal tissue.

miR-203 (�17-fold; P < 0.05), miR-205
(�175-fold; P < 0.05): downregulated in
Barrett's esophagus as compared with
adjacent normal tissue.miR-143 (�3-fold; P
< 0.05), miR-145 (�1.8-fold; P < 0.05), miR-
215 (�3.1-fold; P < 0.05): Lower expression
in EAC as compared with Barrett's
esophagus.

(109)

49 (IM-15, HGD-14, and
EAC-20, adjacent normal
tissue)

— miR-31 (>4-fold; P < 0.02), miR-375 (>4-fold;
P < 0.001): downregulated in transition
from Barrett's esophagus to EAC.

(210)

37 (BE-17, EAC-20, 9
adjacent normal tissue
samples)

— miR-141 (�2-fold; P ¼ 0.0126), miR-200a
(�2.5-fold; P ¼ 0.0001), miR-200b (�2.1-
fold; P < 0.0001), miR-200c (�1.9-fold; P ¼
0.0014), miR-429 (�1.8-fold; P ¼ 0.0031):
underexpressed in EAC as compared with
Barrett's esophagus.

(105)

(Continued on the following page)
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(125). Thus, monitoring tissue glycan changes can be
combined with existing biomarkers to improve the pre-
dictive power of the currently used biomarkers.
A potential mechanism responsible for these changes is

considered to be bile acid exposure-induced gene expres-
sion and secretory pathway changes in esophageal epi-
thelium. Using carbohydrate-specific lectins that detect
N- and O-linked glycosylation and core fucosylation,
Byrne and colleagues have shown differential lectin bind-
ing to the cell surface and differential intracellular local-
ization when normal squamous and Barrett’s metaplastic
cell lines were treated with deoxycholic acid (126). Nan-
carrowand colleagues profiledwhole-genome expression
in normal squamous esophageal epithelium, Barrett’s
esophagus, and EAC and concluded that Barrett’s esoph-

agus is a tissue with enhanced glycoprotein synthesis
machinery to provide strong mucosal defense against
acid exposure (127).

Outlook—Circulating Biomarkers
Last 3 decades showed continuously increased EAC

incidences and similar trend is expected in future because
of rising incidences of obesity and GERD in the popula-
tion.Current endoscopic screeningprogrammightbenefit
the highest risk population to monitor disease progres-
sion. Monitoring dysplasia in the tissue samples has not
provided fruitful outcome for early diagnosis; however,
inclusion of the genomic and cell-cycle biomarkers has
shown definite improvement in the predictive power
over currently used histologic technique. Any biomarker

Table 4. Summary of literature describing miRNA expression changes in BE/EAC (Cont'd)

Sample size Upregulated in BE/EAC Downregulated in BE/EAC Ref.

11 (EAC-11, different
lesions were collected
from these patients and
classified into Barrett's
esophagus, LGD, HGD,
and EAC)

miR-196a is overexpressed in early EAC
(151-fold) > HGD (62.2-fold; P ¼ 0.00002) >
LGD (31.1-fold; P ¼ 0.0005) > Barrett's
esophagus (28.9-fold; P ¼ 0.00001). Fold
changes are calculated as compared with
normal epithelium.

— (107)

45 (patients with EAC
undergoing surgery)

miR-143 (P ¼ 0.0148), miR-199a_3p (P ¼
0.0009), miR-199a_5p (P ¼ 0.0129), miR-
100 (P ¼ 0.0022) and miR-145 (P ¼ 0.1176)
expression predicted a worse survival
followed by esophagectomy.
Overexpression of miR-199a_3p/_5p and
miR-99b was associated with lymphnode
metastasis.

Downregulation of miR-143 (P ¼ 0.0049) and
miR-145 (P ¼ 0.0069) in EAC as compared
with adjacent normal tissue.

(211)

24 (BE-24, progression to
EAC-7, not progressed to
EAC-17 in at least 5-y
follow-up)

miR-192 (ROC AUC ¼ 0.61), 194 (ROC
AUC ¼ 0.70), 196a (ROC AUC ¼ 0.80), and
196b (ROC AUC ¼ 0.74) showed
significantly higher expression in Barrett's
esophagus samples from patients who
progressed to EAC as compared with those
who did not progress to EAC.

— (212)

5 (patients with EAC
undergoing surgery.
Adjacent benign tissue as
a control)

miR-296 is overexpressed �2-fold in EAC as
compared with adjacent benign tissue.

— (213)

22 patients with locally
advanced EAC tumor
undergoing surgery

Negative association between miR-148a
expression and tumor differentiation (P <
0.001). Significantly higher expression of
miR-148a in tumors located in the lower
esophagus as compared with tumors in the
middle esophagus (P ¼ 0.021).

— (214)

99 EAC patient tissue
samples undergoing
surgery

miR-30e (P ¼ 0.002) and miR-200a (P ¼
0.044) expression were associated with
poor overall survival. miR-16-2 (P ¼ 0.027)
and miR-30e (P ¼ 0.002) expression were
associated with poor disease-free survival.

— (215)

NOTE:Wherever needed, fold-change values are calculated/adapted from the expression/fold-change values described in the original
article to have uniform format for the purpose of this review.
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requiring tissue samples is going to be difficult to imple-
ment for population screening and will not be economi-
cally viable. An alternative to tissue-based techniques is to
investigate changes in circulating biomarkers. Blood is
relatively easy to access and can bemonitored frequently,
ultimately increasing the possibility of detecting early
dysplastic changes.

Circulating tumor cells could be one source of biomar-
kers. Although readily found in the blood, technological
advancements are required for sensitive early detection of
the low number of tumor cells present in the circulation
(128, 129).Alternative to thedetection of circulating tumor
cells, Zhai and colleagues applied genome-wide DNA
methylation profiling approach to cell-free circulating
DNA. They found that cell-free circulating DNA methyl-
ation profile is a replica of methylation profile found in
matched tumor tissue samples and can discriminate
between healthy, Barrett’s esophagus, and EAC condi-
tions (130). Kawakami and colleagues (131) studiedmeth-
ylation of APC gene in matched tumor samples and
plasma. Unlike tumor samples that showed hypermethy-
lation of APC DNA early during the EAC development,
matched plasma samples from patients suffering from
Barrett’s esophagus and gastritis were found to be neg-
ative for APC methylation changes. Moreover, as com-
paredwith 92% (48 of 52) of EAC tissue samples, only 25%
(13 of 52) of plasma samples were positive for circulatory
APC methylation changes. However, there was a strong
correlation between stage of the tumor and plasma pos-
itivity for methylated APC (131). In combination with
DAPK methylation, measurement of preoperative APC
methylation in peripheral blood was able to discriminate
between long (>2.5 years) and short survivors with a
sensitivity of 99.9% and specificity of 57.1% (132). Taken
together, tracking circulatory DNA methylation changes
during EACdevelopmentmay be an alternative approach
to predict early EAC.

Tumor cell moulds the microenvironment to support
oncogenesis by releasing soluble and vesicular compo-
nents, including enzymes, microvesicles, proteoglycans,
chemokines, and cytokines (133). The tumor microenvi-
ronment components are shed into the circulation and
may be extremely useful as an early diagnostic biomarker.
This concept was recently showed by Pitteri and collea-
gues using an inducible HER2/neu mouse model (134).
They showed that plasma proteome profiling has the
ability to detect cancer before it actually develops. Fur-
thermore, a linear correlationwas shown forplasma levels
of candidate biomarker proteins with the tumor progres-
sion, which were reversed upon tumor regression (134).

Both encapsulatedmiRNAs and secreted glycoproteins
are prime candidates for circulating biomarkers released
by the tumor microenvironment. Circulating miRNA is
secreted in nanometer-sized vesicles called exosomes or
microvesicles. An advantage of circulating miRNA over
protein biomarkers is the ability for amplication, increas-
ing the sensitivity of detection. Comparative analysis of
circulating miRNA can be conducted using miRNA

microarray and quantitative real-time PCR (116). Future
studies should aim to discover and validate circulating
miRNA changes associated with EAC development and
progression.

Glycan Profiling
For Barrett’s esophagus and EAC, serum glycan pro-

filing using mass spectrometry has identified differential
expression of glycan structures in different disease states.
Mechref and colleagues analyzed N-linked glycan diver-
sity present in 84 patient serum samples (Healthy-18, BE-
5, HGD-11, and EAC-50; ref. 135). They identified 98
glycan features with different intensities in disease onsets
and 26 of them correspond to known glycan structures.
They showed statistically significant glycan changes
between 4different conditions (Healthy/BE/HGD/EAC)
with 3 of the known potential N-glycan biomarkers pre-
dicting EAC with 94% sensitivity and 60% specificity
(135). Another study usedmicrochip electrophoresis with
laser-induced fluorescence detection for N-glycan profil-
ing and were able to differentiate between the healthy,
Barrett’s esophagus, HGD, and EAC conditions (136).
Similar to abovementioned N-glycan profiling studies,
very recently,Gaye andcolleagues showed that ionmobil-
ity-mass spectrometric analysis of serum N-glycan can
also distinguish between normal and EAC phenotype
(137). All of these studies unanimously suggest circula-
tory N-linked glycan changes during EAC pathogenesis.
Mann and colleagues enriched fucosylated serum glyco-
proteins using lectins and then used shot gun proteomics
to identify protein in different physiologic states, includ-
ing healthy samples, Barrett’s esophagus, and EAC (138).
Although the study showed promising trends, the statis-
tical power was not achieved because of the very low
number of samples. To improve the throughput of gly-
coproteomics studies, we developed lectin magnetic bead
array-mass spectrometry (LeMBA-MS), a high-through-
put platform where a panel of lectins individually immo-
bilized onmagnetic beads is used to capture glycoproteins
followed by on-bead trypsin digest and liquid chroma-
tography–tandem mass spectrometry for protein identi-
fication (139, 140). Parallel screening of a panel of lectins
may be helpful to identify differentially glycosylated
circulating proteins during EAC pathogenesis.

Metabolic Profiling
In recent past, efforts have been made to profile met-

abolic changes associated with EAC pathogenesis. Met-
abolic profiling studies have identified changes associ-
ated with nucleoside metabolism, tricarboxylic acid
cycle, fatty acid, and amino acid metabolism during EAC
development in tissue samples and more importantly
using easily accessible biofluids, blood and urine. Early
metabolic changes in the histologically normal epitheli-
um were observed, particularly for phosphocholine, glu-
tamate, myo-inositol, adenosine-containing compounds,
uridine-containing compounds, and inosine (141). Dju-
kovic and colleagues used targeted approach to profile 8
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different serum nucleosides between healthy subjects
(n ¼ 12) and patients with EAC (n ¼ 14) using high-
performance liquid chromatography coupled with triple
quadrupole mass spectrometer. Among 8 nucleosides
they profiled, 5 were significantly different between
the 2 groups. Three of 5 significantlydifferent nucleosides,
1-methyladenosine, N2,N2-dimethylguanosine, and N2

-methylguanosine, were methylated nucleosides indicat-
ing increased tRNA methylation, similar to DNA hyper-
methylation in EAC condition (142). Zhang and collea-
gues studied serum metabolomic changes using nuclear
magnetic resonance (NMR) alone and NMR in combina-
tion with liquid chromatography/mass spectrometry
(LC/MS) in EAC (n ¼ 67), HGD (n ¼ 9), Barrett’s esoph-
agus (n¼ 3), and healthy volunteers (n¼ 34). Their model
based on Partial Least Square Discrimination Analysis
was able to distinguish between different phenotypes by
achieving area under receiver operating characteristics
curve (AUROC) as high as 0.95. On the basis of candidate
metabolites, they identified altered pathways associated
with EAC development to be energy metabolism, fatty
acid metabolism, and amino acid metabolism (143, 144).
Urine metabolomics could also distinguish between
healthy, Barrett’s esophagus, and EACphenotypes. Davis
and colleagues generated urine metabolic signatures,
which were able to discriminate between healthy, Bar-
rett’s esophagus, and EAC phenotypes, as well as distin-
guish EAC from pancreatic cancer (145). These metabolic
profiling studiesopenupnewavenues todetect earlyEAC
using circulatory biomarkers.
Improved biologic understanding, in combinationwith

technical advancements in the field of genomics, proteo-
mics, glycomics, and metabolomics, has played key roles
in the identification and validation of circulatory biomar-
kers for EAC. Development of an assay platform, which
can be clinically used for these circulatory biomarkers,
will help to conduct the large scale multicentered trials
and transform the circulatory biomarkers into clinical use.

Summary and Future Perspectives
Clinical advancements in endoscopy and new tissue

sampling techniques such as brush cytology can improve
the endoscopic-biopsy management of BE/EAC in near
future. Genomic abnormalities and cell-cycle biomarkers
have already shown their potential use to diagnose early
pathologic changes using tissue samples.However,wider
clinical application will depend on the technical ability of
individual clinical pathology laboratories. As these
changes are detected in the tissue samples, it would be
difficult to implement them in large-scale high-risk pop-
ulation screening to identify early neoplastic changes.
Recent advancements in RNA sequencing, circulatory
DNAmethylation profiling, metabolic profiling, and gly-
coproteomics may provide ways for the development
of noninvasive in vitro diagnostic biomarker for routine
monitoring and identification of patients with non-
symptomatic BE/EAC. Future studies should focus to
combine different classes of circulatory biomarkers in
large-scale trials to improve the predictive power of the
individual marker. Development of novel cost-effective
assay platforms that can transform discoveries from
research laboratories to the clinics require equal empha-
sis for the widespread benefit from the circulatory
biomarkers.
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9.2 Appendix II: Research article entitled "Serum glycoprotein biomarker discovery and 

qualification pipeline reveals novel diagnostic biomarker candidates for esophageal 

adenocarcinoma"  
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Abbreviations 

A1BG Alpha-1B-glycoprotein 

A2M Alpha-2-macroglobulin 

AAL Aleuria aurantia lectin  

APOB Apolipoprotein B-100 

AUROC Area under receiver operating characteristic curve 

BE Barrett's esophagus 

BMI Body mass index 

BPL Bauhinia purpurea lectin 

C2 Complement C2 

C4B Complement C4-B 

C9 Complement component C9 

ConA Concanavalin A from Canavalia ensiformis 

CV Co-efficient of variation 

DSA Datura stramonium agglutinin 

EAC Esophageal adenocarcinoma 

ECA Erythrina cristagalli agglutinin 

EPHA Erythroagglutinin Phaseolus vulgaris  

GalNAc N-acetylgalactosamine 

GERD Gastroesophageal reflux disease 

GlcNAc N-acetylglucosamine 

GNL Galanthus nivalis lectin 

GSN Gelsolin 

HAA Helix aspersa agglutinin 
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HGD High grade dysplasia 

HP Haptoglobin 

HPA Helix pomatia agglutinin 

JAC Jacalin from Artocarpus integrifolia 

LeMBA Lectin magnetic bead array 

LPHA Leukoagglutinating phytohemagglutinin 

MAA Maackia amurensis agglutinin 

NPL Narcissus pseudonarcissus lectin 

PSA Pisum sativum agglutinin  

SBA Soybean agglutinin 

SERPING1 Plasma protease C1 inhibitor  

SIS Stable isotope standard 

SNA Sambucus nigra agglutinin 

sPLS-DA Sparse partial least squares-discriminant analysis 

STL Solanum tuberosum lectin 

UEA Ulex europeus agglutinin-I 

WFA Wisteria floribunda agglutinin 

WGA Wheat germ agglutinin  
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Summary 

 We report an integrated pipeline for efficient serum glycoprotein biomarker candidate 

discovery and qualification that may be used to facilitate cancer diagnosis and management. 

The discovery phase used semi-automated lectin magnetic bead array (LeMBA)-coupled 

tandem mass spectrometry with a dedicated data-housing and analysis pipeline; 

GlycoSelector (http://glycoselector.di.uq.edu.au). The qualification phase used LeMBA-

multiple reaction monitoring-mass spectrometry incorporating an interactive web-interface, 

Shiny mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny), for univariate and 

multivariate statistical analysis. Relative quantitation was performed by referencing to a 

spiked-in glycoprotein, chicken ovalbumin. We applied this workflow to identify diagnostic 

biomarkers for esophageal adenocarcinoma (EAC), a life threatening malignancy with poor 

prognosis in the advanced setting. EAC develops from metaplastic condition Barrett's 

esophagus (BE).  Currently diagnosis and monitoring of at-risk patients is through endoscopy 

and biopsy which is expensive and requires hospital admission. Hence there is a clinical need 

for a noninvasive diagnostic biomarker of EAC. In total 89 patient samples from healthy 

controls, and patients with BE or EAC were screened in discovery and qualification stages. 

Of the 246 glycoforms measured in the qualification stage, 40 glycoforms (as measured by 

lectin affinity) qualified as candidate serum markers. The top candidate for distinguishing 

healthy from BE patients' group was Narcissus pseudonarcissus lectin (NPL)-reactive 

Apolipoprotein B-100 (P value=0.0231; AUROC=0.71); BE vs EAC, Aleuria aurantia lectin 

(AAL)-reactive complement component C9 (P value=0.0001; AUROC=0.85); healthy vs 

EAC, Erythroagglutinin Phaseolus vulgaris (EPHA)-reactive gelsolin (P value=0.0014; 

AUROC=0.80). A panel of 8 glycoforms showed an improved AUROC of 0.94 to 

discriminate EAC from BE. Two biomarker candidates were independently verified by 

LeMBA-immunoblotting, confirming the validity of the relative quantitation approach. Thus, 

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
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we have identified candidate biomarkers which, following large-scale clinical evaluation, can 

be developed into diagnostic blood tests. A key feature of the pipeline is the potential for 

rapid translation of the candidate biomarkers to lectin-immunoassays.  
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Introduction 

 Biomarkers play a central role in health care by enabling accurate diagnosis and 

prognosis; hence there is extensive research on the identification and development of novel 

biomarkers. However, despite numerous biomarker publications over the years (1), only a 

handful of new cancer biomarkers have successfully completed the journey from discovery, 

qualification, to verification and validation (2-4). One possible way to overcome this 

challenge is to develop an integrated biomarker pipeline that facilitates the smooth and 

successful transition from discovery to validation (5-10). The first and foremost consideration 

in an integrated pipeline is the sample source. In general, most of the proteomics based 

workflows use tissues or proximal fluids during the discovery phase, with the goal of 

extending the findings to plasma. Although this approach avoid the high complexity 

serum/plasma proteome and the associated requisite multi-dimensional sample separation in 

discovery stages, it often leads to failure when the candidates are not detected in plasma due 

to the limited sensitivity of the available analytical methods, or the absence of candidates in 

the plasma (11). To overcome this pitfall, we have developed an integrated glycoprotein 

biomarker pipeline which can simply and rapidly isolate glycosylated proteins from serum to 

enable high throughput analysis of differentially glycosylated proteins in discovery and 

qualification stages.   

 The workflow utilizes naturally occurring glycan binding proteins, lectins, in a semi-

automated high throughput workflow called lectin magnetic bead array-tandem mass 

spectrometry (LeMBA-MS/MS) (12, 13). Although lectins have been well-utilized in 

glycobiology and biomarker discovery (14-17), the LeMBA-MS/MS workflow demonstrates 

several unique features. Firstly, serum glycoproteins are isolated in a single-step using 20 

individual lectin-coated magnetic beads in microplate format. Secondly, we have optimized 

the concentrations of salts and detergents for sample denaturation to avoid co-isolation of 
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protein complexes without adversely affecting lectin pull-down efficiency. Thirdly, a liquid 

handler is used for sample processing to facilitate high-throughput screening and increase 

reproducibility. In addition, we have optimized on-bead trypsin digestion and incorporated 

lectin-exclusion lists during nano-LC-MS/MS to identify non-glycosylated peptides from the 

isolated glycoproteins. With these innovations, LeMBA-MS/MS demonstrates nanomolar 

sensitivity and linearity, and applicability across species (12). Compared to existing single, 

serial or multi-lectin affinity chromatography (18, 19), LeMBA-MS/MS offers the capability 

to simultaneously screen 20 lectins in a semi-automated, high throughput manner. On the 

other hand, since LeMBA-MS/MS identifies the non-glycosylated peptides, it cannot be used 

for glycan site assignment and glycan structure elucidation (20-23). However, the main 

advantage of LeMBA, we believe, is as a part of an integrated translational biomarker 

pipeline leading to lectin immunoassays. The lack of glycan structure details is not critical for 

clinical translation, as exemplified by the alpha-fetoprotein-L3 (AFP-L3) test, which 

measures the Lens culinaris agglutinin (LCA) binding fraction of serum alpha-fetoprotein 

(24, 25), and has been approved by the U.S. Food and Drug Administration for detection of 

hepatocellular carcinoma.  

 In this study, we report the extension of the glycoprotein biomarker pipeline to the 

qualification phase with LeMBA-MRM-MS, and introduce statistical analysis pipelines 

GlycoSelector (http://glycoselector.di.uq.edu.au/) and Shiny mixOmics (http://mixomics-

projects.di.uq.edu.au/Shiny) for the discovery and qualification phases, respectively. The 

utility of this integrated serum glycoprotein biomarker pipeline is demonstrated using 

esophageal adenocarcinoma (EAC) with unmet clinical need for an in vitro diagnostic test. 

EAC is a lethal malignancy of the lower esophagus with very poor 5-year survival rate of less 

than 25% (26). EAC is becoming increasingly common and its incidence is associated with 

the prevalent precursor metaplastic condition Barrett's esophagus (BE), but with a low annual 

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
http://mixomics-projects.di.uq.edu.au/Shiny
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conversion rate of up to 1% (27). A common set of risk factors are described for BE and 

EAC, include gastroesophageal reflux disease (GERD), obesity, male gender, and smoking 

(28, 29). The current endoscopy-biopsy based diagnosis is invasive and costly, leading to an 

ineffective surveillance program. A blood test employing serum biomarkers that can 

distinguish patients with EAC from those with either BE or healthy tissue would, potentially, 

change the paradigm for the way in which BE and EAC are managed in the population (30). 

Serum glycan profiling studies have shown differential expression of glycan structures 

between healthy, BE, early dysplastic and EAC patients (31-35). However, diagnostic serum 

glycoproteins showing differential glycosylation hence differential lectin binding remain to 

be discovered, making it a suitable disease model for this study. 
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Experimental Procedures 

Study design and sample information 

 The overall biomarker study design was based on the strategy proposed by Rifai et al. 

(3), with the current work spanning discovery and qualification of the described four-phase 

paradigm. Serum samples were collected as part of the Australian Cancer Study (ACS) (36) 

and Study of Digestive Health (SDH) (37). All patients in these studies gave written, 

informed consent, and the studies were approved by the Human Research Ethics Committees 

of Queensland Institute for Medical Research, the University of Queensland, and all 

participating hospitals. Identical SOPs were followed for collecting samples for SDH and 

ACS, and processed by the same person. All 29 serum samples (Healthy-9, BE-10 and EAC-

10) used for biomarker discovery phase and 79 serum samples (Healthy-20, BE-20, EAC-20 

and population control-19) used for biomarker qualification study were matched by age; all 

selected patients were male considering the high male-dominance of EAC (29). The samples 

were stored at -80°C until use. Healthy controls were individuals with no history of 

esophageal cancer and no evidence of esophageal histological abnormality at the time of 

endoscopic sample collection. BE patients had a histologically confirmed diagnosis of 

Barrett's mucosa. EAC patients had histologically confirmed adenocarcinoma within the 

distal esophagus or gastro-esophageal junction. EAC patient sera were collected prior to the 

commencement of cancer treatment. Population controls were volunteers with no self-

reported history of EAC or BE. Samples were randomized prior to all experiments. Table 1 

and 2 describes patient information used in this study. For categorical and numerical 

variables related to patient information, P values were calculated using Fisher's exact test and 

Kruskal-Wallis test respectively. 
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Materials 

 MyOne
TM

 Tosyl activated Dynabeads were from Life Technologies. Lectins AAL, 

BPL, DSA, EPHA, GNL, JAC, LPHA, MAA, NPL, SNA, STL and UEA were from Vector 

Laboratories. Modified sequencing grade trypsin was from Promega. Protein assay Bradford 

reagent, Triton X-100 and sodium dodecyl sulfate solution were from Bio-rad. Tris base, 

glycine, sodium chloride and acrylamide/bis-acrylamide solution 40% 29:1 were from 

Amresco. Glycerol, disodium hydrogen phosphate dihydrate, sodium dihydrogen phosphate 

dihydrate, calcium chloride dihydrate and Tween-20 were from Ajax Finechem. Magnesium 

chloride and manganese chloride were from Univar. For quadrupole time of flight runs, 

acetonitrile, isocratic HPLC grade was from Scharlau and for triple quadrupole runs, 

acetonitrile CHROMASOLV
®
 gradient grade was from Sigma. Heavy labeled stable isotope-

labeled standard (SIS) peptides were from Sigma. All other reagents including lectins not 

listed above were from Sigma unless otherwise specified. 

Serum glycoprotein biomarker discovery and qualification pipeline 

 Figure 1 represents the integrated glycoprotein biomarker discovery and qualification 

pipeline developed using LeMBA. The discovery phase aimed to identify changes in the 

lectin binding of medium to high abundance serum proteins which can distinguish between 

different phenotypes. To enable economic and high throughput label-free quantitation while 

controlling for sample processing, including tryptic digestion, we employed a non-labeled 

spiked-in glycoprotein standard at the very first step of the workflow prior to denaturation 

(Figure 1). Pilot experiments identified chicken ovalbumin as a suitable internal standard, 

with low homology to species of interest (human or mouse) that bound to all 20 lectins 

experimentally. Optimization experiments determined that 10 picomole ovalbumin to be 

added to each sample (50 μg of serum) per lectin pull-down. Depending upon the individual 



12 
 

lectin, between 3 and 5 ovalbumin peptides (out of 7) were used for normalization 

(Supplemental Table 1). Details about the data normalization and statistical analyses 

platforms GlycoSelector and Shiny mixOmics can be found in Supplemental Methods.  

 Briefly, for discovery data, two different normalization approaches (i) based upon 

total ovalbumin protein intensity or (ii) using individual ovalbumin peptide intensity were 

evaluated (Supplemental Figure 1A). There was a strong correlation between the two 

normalization approaches (Supplemental Figure 1B), and we selected the second 

normalization method for the pipeline as it gave equal weighting to each peptide. For each 

patient sample in discovery stage, a two-dimensional dataset was generated, consisting of 

normalized intensity for proteins identified with each of the 20 lectin pull-down procedures. 

In general, glycoproteins bound several lectins, reflecting heterogeneity and multiplicity of 

glycosylation. GlycoSelector is a customized database with an incorporated statistical 

analysis pipeline coded in the R statistical programming language (38) and integrated in PHP 

server-side scripting language. The pipeline is based on tools developed in mixOmics (39), an 

R package dedicated to multivariate statistical analysis of ‘omics’ data, and includes several 

steps such as data normalization, sample outlier detection, multivariate statistical analysis and 

group binding analyses. The sample outlier detection step aims to identify possible errors in 

sample handling/processing (Supplemental Figure 2). As an example of its utility, sample run 

ID 63 shown in Supplemental Figure 2A to 2D was considered to be an outlier due to 

consistent anomalous results detected in all 4 graphical outputs. The error was at the mass 

spectrometry step, because when the sample was re-run after mass spectrometer re-

calibration, it was no longer detected as an outlier (Supplemental Figure 2E to 2H). To 

determine changes in the lectin binding of individual proteins between the different 

conditions, GlycoSelector was designed with two parallel approaches. Firstly, Group Binding 

Difference analyses were performed to identify on-off changes. In addition, multivariate 
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statistical analysis based on sparse partial least square-discriminant analysis (sPLS-DA) (40) 

coupled with stability analysis was used to identify qualitative changes, after the exclusion of 

common contaminant proteins (Supplemental Table 3).   

 Based on GlycoSelector analysis, a subset of 6 lectins and 41 glycoprotein candidates 

were selected for independent qualification (Figure 1). The steps included, (i) MRM-MS 

assay development including confirmation of linearity and reproducibility, (ii) screening an 

independent cohort of patient samples using customized LeMBA-MRM-MS, (iii) two-step 

data normalization (Supplemental Figure 1A and Supplemental Methods), and (iv) univariate 

and multivariate statistical analysis using Shiny mixOmics. 

Lectin magnetic bead array (LeMBA) 

 LeMBA was performed as previously reported (12, 13) with modifications detailed in 

Supplemental Methods section. 

LC-MS/MS and database search for biomarker discovery 

 The LeMBA pull-down samples were resuspended in 20 µl of 0.1% v/v formic acid 

for LC-MS/MS (Agilent 6520 quadrupole time of flight [QTOF] coupled with a Chip Cube 

and 1200 HPLC). Initial experiments were performed to determine the optimal amount of 

tryptic peptides for LC-MS/MS: 9 μl were loaded for HAA, HPA and UEA, 6 μl for NPL, 

STL, GNL, 5 μl for BPL, DSA, ECA, MAA, SBA, WFA, and WGA, 4 μl for AAL, SNA, 

LPHA, PSA and JAC, 1 μl for EPHA and ConA. The nano pump was set at 0.3 µL/min and 

the capillary pump at 4 µL/min. The HPLC-chip used contains 160 nl C1  trapping column, 

and  5 μm   150 mm 300 Å C18 analytical column (G4240-62010 Agilent Technologies). 

Buffer A was 0.1% v/v formic acid and Buffer B was 90% v/v acetonitrile containing 0.1% 

v/v formic acid. Peptides were eluted from the column using a gradient from 6% B to 46% B 
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at 45 min. Nano pump %B was increased to 95 %B at 45.5 min and plateaued till 55.5 min, 

then decreased to 6% B at 58.5 min. The mass spectrometer was operated in 2 GHz extended 

dynamic range and programmed to acquire 8 precursor MS1 spectra per second and 4 

MS/MS spectra for each MS1 spectra. Dynamic exclusion was applied after 2 MS/MS within 

0.25 min. Exclusion for lectin peptides was applied as reported previously (12). The QTOF 

was tuned and calibrated prior to analysis. One hundred femtomole/μl of pre-digested bovine 

serum albumin peptides were used as quality control, before and after each plate. Levels of 

reference ions 299.2945 and 1221.9906 were maintained at minimum 5000 and 1000 counts 

respectively. 

 The raw data was extracted and searched using Spectrum Mill MS proteomics 

workbench (Agilent Technologies, Rev.B.04.00.127) against Swissprot human database 

containing  20,242 entries (release 3
rd

 Jan 2012). Similar MS/MS spectra acquired on the 

precursor m/z within ± 1.4 m/z and within ± 15 sec were merged. The following parameters 

were used for the search: Trypsin for digestion of proteins, 2 maximum missed cleavages, 

minimum matched peak intensity of 50%, precursor mass tolerance of ± 20 ppm, product 

mass tolerance of ± 50 ppm, calculate reversed database scores enabled and dynamic peak 

thresholding enabled. Carbamidomethylation was selected as fixed modification and oxidized 

methionine was selected as a variable modification. Precursor mass shift range from -17.0 Da 

to 177.0 Da was allowed for variable modification. Results were filtered by protein score > 

15, peptide score > 6, and % scored peak intensity (% SPI) > 60. Automatic validation was 

used to validate proteins and peptides with default settings and false discovery rates (FDRs) 

were calculated using reversed hits.  
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BE-EAC biomarker qualification using LeMBA-MRM-MS 

 Multiple reaction monitoring-mass spectrometry (MRM-MS) assay was performed on 

Agilent Technologies 6490 triple quadrupole mass spectrometer coupled with 1290 standard-

flow infinity UHPLC fitted with a standard-flow ESI (Jet Stream) source to qualify candidate 

proteins for customized list of six lectin pull-downs (AAL, EPHA, JAC, NPL, PSA and 

WGA) in an independent patient cohort. LeMBA was performed as described in 

Supplemental Methods. During MRM method development and validation stages, LeMBA 

pull-down of multiple lectins was combined and injected.  

Protein, peptide and transition selection for MRM method development 

 Proteins identified using GlycoSelector with either of the above six lectins were 

selected for qualification. In addition, a few other proteins that were identified as candidate 

biomarkers with other lectins were also included for qualification.  

 MRM selector function of Spectrum Mill was used to retrieve the top ten peptides per 

protein for MRM method development, using several runs from the LeMBA-QTOF 

discovery data set. The parameters specified included 10 peptides per protein with a score of 

above 10 and % score peak intensity of 70%. The top four product y-ions for each precursor 

ion greater than precursor m/z were selected for MRM method development. The formula 

Collision energy (CE) = 0.036 m/z - 4.8 was used to calculate CE for each precursor. Multiple 

MRM methods consisting of maximum 200 transitions were created as a first step of method 

development. All methods were transferred across to Skyline software version 2.1.0.4936 

(http://skyline.maccosslab.org/) for visualization, subsequent method refinement and analysis 

(41). Using LeMBA-MS/MS discovery data (.mzxml and .pepxml files), a reference spectral 

library was built in Skyline. This reference library was used to compare the peptide 

fragmentation pattern in the MRM method as compared to QTOF data, and also to rank 

http://skyline.maccosslab.org/
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transitions. LeMBA pull-down from each of the 6 lectins was combined and run for each 

method to identify best MRM transitions. Each method incorporated transitions for internal 

standard chicken ovalbumin. Retention time prediction calculator iRT-C18 of Skyline was 

used to increase confidence of peptide identification (42). iRT scale was calibrated using the 

known retention time of the peptides and based on this calibration plot, retention time for the 

peptide of interest was predicted. MRM transitions showing good response at the correct 

retention time without any interference were selected for the next step. After the first round of 

method development, three MRM methods were created and each of these methods was run 

three times to find transitions showing stable responses. Some product y-ions (greater than 

precursor m/z) showed considerably low response. So to find out transition with higher 

response, up to five b- and y-ions less than precursor m/z were tried. Only transitions 

showing stable response during multiple runs were selected. Using retention time information 

for each peptide, one final dynamic MRM method was created incorporating a total of 145 

peptides and 465 transitions with delta retention times of 2.5, 3 or 4 min, to quantify 41 

proteins. Supplemental Table 6 contains a detailed list of transitions used in the method. 

LC method development 

 The UHPLC system consisted of a reverse phase chromatographic column 

AdvanceBio Peptide Mapping (150×2.1 mm i.d., 2.7 µm, part number 653750-902, Agilent 

Technologies) with a 5 mm long guard column. Mobile phase A consisted of 0.1% formic 

acid, and mobile phase B consisted of 100% acetonitrile and 0.1% formic acid. The UHPLC 

system was operated at 60°C, with a flow rate of 0.4 mL/min. The gradient used for peptide 

separation was as follows: 3% B at 0 min; 30% B at 20 min; 40% B at 24 min; 95% B at 24.5 

min; 95% B at 28.5 min; 3% B at 29 min; followed by conditioning of columns for 5 min at 

3% B before injecting the next sample.  
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Mass spectrometer settings 

 Agilent 6490 triple quadrupole mass spectrometer was operated in positive ion mode 

and controlled by Agilent’s MassHunter Workstation software (version B.06.00 build 

6.0.6025.4 SP4). The MRM acquisition parameters were 150 V high pressure RF, 60 V low 

pressure RF, 4000 V capillary voltage, 300 V nozzle voltage, 11 L/min sheath gas flow at a 

temperature of 250 °C, 15 L/min drying gas flow at a temperature of 250 °C, 30 psi nebulizer 

gas flow, unit resolution (0.7 Da full width at half maximum in the first quadrupole (Q1) and 

the third quadrupole (Q3), and 200 V delta EMV (+).  

Loading capacity determination 

 Loading capacity for individual lectin pull-down was determined by injecting varying 

amounts of LeMBA pull-down and monitoring peptide responses using MRM-MS assay. 

Each LeMBA pull-down sample was resuspended in 20 μl 0.1% formic acid. 10 μl of this 

reconstituted sample was mixed with 6 μl SIS peptide mixture containing 150 femtomole of 

ISQAVHAAHAEINEAGR and VASMASEK each, 300 femtomole of VTSIQDWVQK, and 

30 femtomole of AVEVLPK. Out of the total 16 μl mixture, the optimized loading for AAL, 

JAC, NPL and PSA lectin was 13 μl, EPHA lectin was 11.5 μl and WGA lectin was 12.5 μl. 

Linearity and reproducibility of MRM-MS 

 Linearity of the MRM-MS method was determined by injecting varying 

concentrations of aforementioned four SIS peptides spiked-into combined LeMBA pull-down 

sample of multiple lectins. The amount of SIS peptide spiked-in for each of four peptides was 

adjusted in such a manner that the response from the 1X labeled peptide mix fell within a 5-

fold range of the cognate natural peptide. The concentration of spiked-in SIS peptide varied 

from 0.008X to 25X covering 3125 fold linear range where 1X concentration indicates 
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mixture of 150 femtomole of ISQAVHAAHAEINEAGR and VASMASEK each, 300 

femtomole of VTSIQDWVQK, and 30 femtomole of AVEVLPK. All dilutions were run in 

triplicate on each day for three consecutive days (n = 9). The ratio of SIS peptide 

response/natural peptide response was plotted. 

 Reproducibility of MRM-MS assay was determined by injecting combined LeMBA 

pull-down sample from the 6 lectins in quadruplicate on each day for four consecutive days 

(n = 16). This experiment also determined the stability of the sample resuspended in 0.1% 

formic acid under the storage condition in the auto sampler. It was anticipated that once 

samples were resuspended in 96 well plates, they would be run within three days. Hence 

reproducibility was checked for four consecutive days after reconstituting samples. Percent 

coefficient of variation (% CV) between runs was calculated using peptide responses 

normalized with respect to ovalbumin peptide. 

Screening samples for LeMBA-MRM-MS qualification 

 Lectin-beads sufficient for biomarker qualification experiments were made in a single 

batch to minimize experimental variation. Serum samples were randomized for LeMBA-

MRM-MS experiments. % CV of the entire LeMBA-MRM-MS screen was calculated based 

on response of heavy labeled SIS peptides and internal standard natural chicken ovalbumin 

peptides. All three SIS peptides, except methionine containing heavy labeled peptides, 

showed a % CV of less than 20% while % CV for normalized intensity of natural internal 

standard ovalbumin peptide was around or below 20% (Supplemental Table 8), suggesting 

robustness (43) of the LeMBA pull-down and mass spectrometric measurement. 

Interestingly, normalized intensity of natural methionine containing peptide VASMASEK 

showed less variation as compared to non-normalized intensity, suggesting SIS peptide 

VASMASEK containing methionine was able to correct for batch effects in methionine 
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oxidation. One hundred femtomole of synthetic peptides mixture (G2455-85001, Agilent 

technologies) containing seven different human serum albumin peptides was run regularly to 

check linearity and reproducibility of the mass spectrometer results. When necessary, the 

mass spectrometer was tuned and calibrated. 

Data processing 

 Raw data from MRM-MS experiment was processed using Skyline. All peaks were 

manually checked for correct integration, and peak area for each peptide (sum of all 

transitions) was exported for further analysis. For linearity experiments, the ratio of 

SIS:Natural peptide was calculated and plotted against SIS peptide spiked-in concentration. 

Median normalization was performed for each lectin dataset separately (Supplemental Figure 

1A). Natural ovalbumin peptide peak intensity was first normalized with respective SIS 

labeled ovalbumin peptides. Next, using normalized intensity of natural ovalbumin peptide, 

the intensity of all other peptides was normalized. Methionine and non-methionine containing 

peptides were dealt with separately during normalization steps, to account for batch effects in 

methionine oxidation. For reproducibility experiments, the normalized response with respect 

to ovalbumin peptide was calculated for each run, and the % CV of 16 injections of the same 

sample run over a period of four days calculated. Detailed statistical analysis was performed 

using normalized peptide intensity in the computing environment R. Supplemental Table 7 

contains normalized intensity of LeMBA-MRM-MS data. 

Biomarker qualification at protein level using LeMBA-western immunoblotting 

 The top two candidates AAL-HP and AAL-GSN, identified using sPLS-DA/stability 

analysis and the on/off change function of GlycoSelector, respectively, were verified using 

LeMBA-western immunoblotting in two sets of patient cohorts, firstly using serum samples 

from the same patients used for the discovery phase, and secondly using an independent set 
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of 60 serum samples used for qualification. After AAL lectin pull-down, beads were directly 

boiled in 2X Laemmli sample buffer to elute captured glycoproteins. The denatured samples 

were separated by SDS-PAGE and proteins were transferred to polyvinylidene difluoride 

membrane (Millipore) using wet transfer. To compare results across membranes, an AAL 

pull-down sample from one healthy volunteer serum (unrelated to samples used in screen) 

was loaded in equal amounts on all gels. Membranes were blocked with 5% bovine serum 

albumin (BSA) in Tris-buffered saline-0.1% Tween-20 (TBST) for 1 hr, and then carefully 

cut into two halves. The upper part of the membrane was incubated overnight with anti-

gelsolin antibody (Epitomics #EP1940Y; 1: 3000 dilution in 5% BSA/TBST), while the 

lower portion was incubated with anti-haptoglobin antibody (Gen Way Biotech #GWB-

16A7EA; 1: 1000 dilution in 5% BSA/TBST) at 4 ºC overnight. This was followed by three 

TBST washes and incubation with 1: 3000 dilution of HRP-labeled anti-rabbit secondary 

antibody for 1 hr at room temperature (Invitrogen #A10547). The blots were developed using 

SuperSignal West Pico chemiluminescence (Thermo Scientific), and captured on film (Fuji 

film; Developer and fixer solutions were from Kodak). Densitometric analysis was performed 

using ImageJ (NIH, USA) (44). Raw densitometric values were normalized using the internal 

control sample loaded onto each gel. 

Analysis for confounders 

 To check the impact of confounding covariates [reflux frequency, body mass index 

(BMI), smoking, and alcohol consumption] on biomarker candidates, an additional 19 

population control (electoral roll) serum samples were measured using LeMBA-MRM-MS, 

to achieve sufficient number of disease-free samples for statistical analysis. Healthy and 

population control sample groups were merged and categorized according to reflux 

frequency, BMI, cumulative smoking history and alcohol consumption. Kruskal-Wallis test 

was applied to all the qualified candidates for each confounding factor. Candidates that 
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showed P < 0.05 for BMI, reflux, cumulative smoking history or alcohol consumption were 

considered as false positives and removed prior to multivariate analysis. 

Functional annotation analysis 

 A list of candidates that differentiated EAC from BE was determined based on 

univariate Kruskal-Wallis test (P < 0.05) or multivariate analysis using sPLS-DA (stability > 

70%) (Supplemental Table 10). The combined list of differential proteins was used in order 

to assess gene ontology differences between sample groups. We used the plasma proteome 

gene list (45), converted to DAVID IDs as a background in order to test for ontology 

differences by over-representation analysis using the DAVID (http://david.abcc.ncifcrf.gov/) 

website (46, 47) with default feature and algorithm settings. Ontology categories with 

adjusted FDR P-values < 0.05 were recorded. While we report individual ontologies, we 

applied the built-in functional annotation clustering function to help select representative 

ontologies for each main cluster (cluster scores over 3).  

 

  

http://david.abcc.ncifcrf.gov/
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Results  

Esophageal adenocarcinoma biomarker discovery 

 An overview of the integrated glycoprotein biomarker discovery and qualification 

pipeline is shown in Figure 1. The discovery phase used age-matched serum samples from 9 

healthy, 10 BE and 10 EAC male patients (Table 1). BE and EAC patient groups had a 

significantly higher proportions of patients with hiatus hernia compared to healthy controls, 

as has previously been reported (48). We identified a total of 195 unique proteins from the 

MS/MS data (Supplemental Table 2). There was no difference between total number of 

proteins identified between healthy, BE and EAC patient groups (Supplemental Figure 3). 

The discovery LeMBA-MS/MS data were uploaded to GlycoSelector for data housing and 

statistical analysis. The sPLS-DA sample representation, including the top 100 candidates 

(lectin-protein pairs) in the model, showed clear separation of the samples according to their 

phenotype (Figure 2A and Supplemental Figure 4).  

 To select the most consistent candidates across patients to the qualification stage, we 

used the stability function built into GlycoSelector, which utilizes a leave-one-out strategy to 

assess the utility of each candidate biomarker. A relatively non-stringent cut-off of 70% was 

chosen for this purpose. Out of the top 100 lectin-protein pairs, 57 candidates passed the 

stability cut-off of 70% between healthy vs BE, 72 candidates passed for BE vs EAC, and 76 

candidates, passed for healthy vs EAC (Figure 2B, Supplemental Figure 4, and Supplemental 

Table 4). A second, parallel approach used the group binding difference tool in 

GlycoSelector, to select on-off candidates which may not be selected by the statistical 

approach. Using relatively non-stringent criteria of 60%/40% presence/absence, this approach 

identified another 14, 20 and 26 candidates respectively for healthy vs BE, BE vs EAC and 

healthy vs EAC analyses (Supplemental Table 4). Candidates identified using sPLS-DA and 
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the group binding differences tools were complementary and showed no overlap between 

lectin-protein candidates, justifying the use of two different approaches for candidate 

selection. All 20 lectins used in the discovery phase showed differential binding with 

anywhere between one [e.g. Helix aspersa agglutinin (HAA)] to twenty five [e.g. Narcissus 

pseudonarcissus lectin (NPL)] glycoprotein candidates for pair-wise comparison between 

patient phenotypes (Figure 2C). This suggests widespread changes in the serum glycosylation 

profile between healthy, BE and EAC samples in agreement with previous studies (31-35). 

There was considerable overlap between glycoprotein candidates identified between healthy 

vs BE, BE vs EAC and healthy vs EAC patient groups (Figure 2D).  

 Immunoblotting was used for orthogonal protein level confirmation of the LeMBA-

MS/MS screen. We chose two protein candidates which showed altered binding to Aleuria 

aurantia lectin (AAL) and for which antibodies were commercially available. AAL-

haptoglobin (HP; Uniprot entry: P00738) was one of the top ranked candidates in sPLS-DA 

analysis for healthy vs EAC and BE vs EAC, while AAL-gelsolin (GSN; Uniprot entry: 

P06396) was identified using the group binding difference function of GlycoSelector as on-

off change between BE vs EAC and healthy vs EAC. Using the same set of discovery serum 

samples, we performed pull-down using AAL and measured haptoglobin and gelsolin binding 

by immunoblotting. A control serum sample was loaded on every blot as a normalizer 

between membranes. LeMBA-immunoblotting confirmed the MS/MS results (Figure 2E, 2F 

and Supplemental Table 5), and showed higher sensitivity as it detected low levels of gelsolin 

in all patient samples, when some were undetectable by MS/MS [AAL-HP: label-free 

proteomics P value = 0.0868, western immunoblotting P value = 0.0267; AAL-GSN: label-

free proteomics P value = 0.0254, western immunoblotting P value = 0.0019]. 
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Biomarker qualification 

 Multiple reaction monitoring-mass spectrometry (MRM-MS) assay was optimized for 

41 target protein candidates based on the GlycoSelector results with 2-3 peptides per protein 

and 2-3 transitions per peptide (Figure 3A,  list of transitions in Supplemental Table 6). The 

linearity of this multiplexed assay was evaluated by spiking 4 stable isotope standard (SIS) 

peptides spanning a 3125 fold dilution range (Figure 3B). The reproducibility of the MRM-

MS assay was determined by running the same sample in quadruplicate for four consecutive 

days. As illustrated in Figure 3C, 86% of the peptides measured using MRM-MS assay 

showed % CV below 10%, while 9% of peptides showed % CV between 10-20%, and only 

5% of the peptides were above 20% suggesting overall reproducibility of MRM-MS assay.  

 For the qualification cohort (20 healthy, 20 BE, and 20 EAC; Table 2), the prevalence 

of reflux and obesity was consistent with a previous report (49) showing higher frequency in 

BE/EAC patient groups compared to the healthy group. Age matched electoral roll control 

and healthy groups were very similar across all measured covariates (Table 2). Based on the 

GlycoSelector results, we selected 6 lectins (AAL, Erythroagglutinin Phaseolus vulgaris 

[EPHA], jacalin [JAC], NPL, Pisum sativum agglutinin [PSA], and wheat germ agglutinin 

[WGA]) for qualification in this independent cohort of samples using MRM-MS assay for 41 

target proteins, hence measuring a total of 246 lectin-protein candidates. 

 Two sequential steps were used to evaluate and select candidate biomarkers from the 

qualification data; first, Kruskal-Wallis non-parametric test to assess statistical significance 

of each individual candidate, then area under receiver operating characteristic (AUROC) 

curve was used to measure the diagnostic potential of each marker. Pairwise comparisons 

were made between the three phenotypes: healthy vs BE, BE vs EAC and healthy vs EAC. 

Out of 246 lectin-protein candidates, 45 candidates were significantly different between any 

two groups (FDR < 0.05) (Table 3). Amongst them, 26 lectin-protein candidates showed 
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AUROC of more than 0.7 in at least one of the three phenotype comparisons. Boxplots and 

ROC curves of the top candidates for healthy vs BE, BE vs EAC and healthy vs EAC are 

shown in Figure 4A to 4F respectively. Supplemental Figure 5 and 6 contain boxplots and 

ROC curves for all the candidates. As shown in Figure 4G, 16 candidates overlapped between 

healthy vs EAC and BE vs EAC analysis and might be of greatest interest as they can 

differentiate EAC from healthy as well as BE phenotype.  

Orthogonal qualification at protein level using LeMBA-immunoblotting (IB) was 

performed for AAL-HP and AAL-GSN using samples from the qualification cohort. Once 

again, there was agreement between peptide level quantitation using MRM-MS and protein 

level quantitation using IB (Supplemental Figure 7 and Supplemental Table 9), validating the 

LeMBA-MRM-MS workflow [AAL-HP: MRM-MS P value = 0.0235, western 

immunoblotting P value = 0.1037, MRM-MS AUROC = 0.69, western immunoblotting 

AUROC = 0.69; AAL-GSN: MRM-MS P value = 0.0120, western immunoblotting P value = 

0.0203, MRM-MS AUROC = 0.70, western immunoblotting AUROC = 0.73]. For further 

evaluation, we undertook functional enrichment analysis of the list of candidates that 

differentiated EAC from BE, which included 17 unique proteins from 59 lectin-protein pairs 

(Supplemental Table 10). In agreement with the glycoprotein enrichment strategy, the top 

Annotation Cluster with an Enrichment Score of 10.4 included SP_PIR_KEYWORD 

glycoprotein (P = 1.82E-08) and the UP_SEQ_FEATURE glycosylation site:N-linked 

(GlcNAc...) (P = 2.32E-06). Additional clusters related to acute inflammation, complement 

cascade pathway, and endopeptidase inhibition, were over-represented within the 17 genes 

that discriminated BE and EAC. KEGG "Complement and coagulation cascades” pathway 

(hsa04610) was significantly over-represented (P = 4.6E-18), including ten genes compared 

to the full list of plasma proteins. This result is in agreement with the involvement of 
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inflammation in BE to EAC pathogenesis (50, 51), and points to alterations in the 

complement cascade in EAC development. 

Identification of candidates affected by confounding covariates 

As expected from the known risk factors, healthy, BE and EAC patient groups 

significantly differ according to BMI and reflux frequency (Table 2). Compared to healthy 

patients, BE and EAC patient groups had a higher proportion of patients who were obese or 

experienced frequent GERD. Moreover, functional annotation analysis suggest enrichment of 

the pathways related to inflammation between BE and EAC. Therefore, it may be possible 

that some of the candidates identified are due to confounding covariates rather than the actual 

disease phenotype. To evaluate this hypothesis, firstly the cohort size of healthy phenotype 

was increased by LeMBA-MRM-MS measurement of an additional 19 control serum samples 

collected as disease-free, electoral roll samples. These 39 disease-free patient samples were 

then classified according to potential confounding variables (reflux frequency, BMI, 

cumulative smoking history and alcohol consumption). The statistical significance of each 45 

lectin-protein candidates for each of the four covariates was assessed using a Kruskal-Wallis 

test. Most of the candidate biomarkers were not significantly correlated with the covariates. 

As examples, boxplots of the data for the top 3 biomarker candidates of the disease-free 

cohort classified according to covariates are shown in Figure 5. Out of the four covariates 

studied, reflux frequency is perhaps the most important factor to be considered in the context 

of BE/EAC. Notably, none of the candidates were affected by reflux frequency, suggesting 

specificity of the candidates to diagnose disease phenotype. Five candidates significantly 

correlated with covariates (Supplemental Table 11 and Supplemental Figure 8). 

Apolipoprotein B-100 (APOB; Uniprot entry: P04114) showed differential binding with 

lectins AAL, JAC, and NPL according to BMI classification. This is most likely due to 

increased levels of total APOB with increase in BMI, suggesting underlying changes in the 
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lipoprotein metabolism (52). Plasma protease C1 inhibitor (SERPING1; Uniprot entry: 

P05155) showed significantly reduced binding with JAC lectin in samples classified as 

overweight and obese as compared to healthy while JAC-alpha-1B-glycpoprotein (A1BG; 

Uniprot entry: P04217) varied according to alcohol consumption. This covariate analysis led 

us to eliminate 5 candidates from the qualified biomarker list, leaving 40 biomarker 

candidates for future studies. Out of the 5 candidates that were eliminated, JAC-APOB was 

identified in healthy vs BE analysis, AAL-APOB and JAC-A1BG were identified in BE vs 

EAC analysis, JAC-SERPING1 was identified in healthy vs EAC analysis while NPL-APOB 

was significantly different in healthy vs BE and BE vs EAC analysis. Notably, none of the 16 

lectin-protein candidates that distinguish EAC from BE and healthy phenotype were 

identified as confounding candidates.  

Multimarker panel for EAC 

Next we examined the potential of protein glycoforms as complementary biomarkers, 

focusing on differential diagnosis of EAC and BE, since this is critical for making clinical 

decisions. After removal of confounding candidates, sPLS-DA was used to derive a 

multimarker panel that distinguish BE and EAC (Figure 6A). The biomarker panel (BE vs 

EAC) included four unique proteins namely complement component C9 (C9; Uniprot entry: 

P02748), alpha-1B-glycoprotein (A1BG; Uniprot entry: P04217), complement C4-B (C4B; 

Uniprot entry: P0C0L5) and complement C2 (C2; Uniprot entry: P06681) with each of the six 

lectins appearing at least once in the panel. Using 5-fold cross-validation repeated 1000 times 

on this multimarker panel, the model showed cross-validation error rate of 37.47% and 

moderate separation of the BE and EAC sample representations (Figure 6A). The combined 

signature of the eight candidates gave an AUROC of 0.9425 with 95% specificity and 80% 

sensitivity (Figure 6B). 
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Discussion 

 In this study we present an alternative workflow to identify glycosylation changes in 

medium to high abundant glycoproteins using serum as the sample source and lectins to 

interrogate glycan moieties throughout discovery and qualification. Our workflow was 

designed to enhance the feasibility of glycoprotein biomarker discovery and translation, 

through scientific rigor while managing the experimental cost. Firstly, serum was used as the 

sample source throughout discovery and qualification, hence eliminating the risk of switching 

tissue type during biomarker development. Secondly, single step enrichment using liquid 

handler assisted LeMBA-system reduced sample processing variability. Thirdly, we utilized 

the comparatively inexpensive approach of label-free proteomics using relative quantitation 

with respect to a spiked-in internal standard chicken ovalbumin. This approach achieved the 

necessary analytical linearity and reproducibility throughout the more than 2000 hr of total 

mass spectrometer run time performed in the study. This cost-effective strategy can be 

applied across other existing proteomics platforms to account for variations during sample 

processing and enable relative quantitation for a large number of candidates without costly 

SIS labeled peptides. Fourthly, we applied a sequential filtering approach (53) in which many 

candidates were selected from biomarker discovery proteomics data, and qualified using 

MRM-MS with increasing sample size in a cost-effective manner. Finally, we introduced 

software tools for data visualization and statistical analysis in the form of web-interfaces. 

Both GlycoSelector (http://glycoselector.di.uq.edu.au) and Shiny mixOmics 

(http://mixomics-projects.di.uq.edu.au/Shiny) platforms are publicly available, user-friendly 

and require minimal and no background in statistics or computer programming.  

The main feature of both these web-interfaces is the use of multivariate sPLS-DA 

method which enables data dimension reduction, insightful graphical outputs and the 

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
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identification of key discriminative features with respect to the biological outcome of interest. 

In Shiny mixOmics we have added important preliminary data mining steps for ‘omics’ data 

visualization such as sample boxplots, coefficient of variation barplots, hierarchical 

clustering, PCA in order to identify potential outliers prior to statistical analyses. The 

univariate statistical analysis step includes Krukal-Wallis, ANOVA tests as well as ROC 

analysis that can be performed efficiently on thousands of variables and results can also be 

output in a common file format. While similar sorts of analyses can be performed using 

commercially available software packages such as GraphPad Prism or Origin, these require 

additional computer programming skills in order to automate the analysis for hundreds of 

data points. Finally, the multivariate statistical analysis step with sPLS-DA (also separately 

available in the R package mixOmics) (39) has been shown to identify relevant biological 

features, with a classification performance similar to other statistical approaches (40). The 

major advantage of such an approach is graphical representation of the results that univariate 

approaches cannot provide. Importantly, in this study we have shown that such multivariate 

methods can be used efficiently and reliably on proteomics data characterized by highly 

skewed and non normal distributions. Collectively, the two web-interface statistical tools that 

we propose enable data mining, univariate and multivariate statistical analyses which can be 

applied to other ‘omics’ datasets.                   

 The success of cancer screening programs in improving outcomes for many cancer 

types emphasizes the importance of early diagnosis and the development of  

screening/surveillance tools (54). The lack of cost-effective screening/surveillance 

methodology to facilitate early diagnosis of EAC is one of the main reasons for the high 

mortality. Current endoscopy-based screening is costly, requires specialist appointment, and 

is not suitable for frequent large scale at risk population monitoring (27, 30). Several 

innovative screening methods are being evaluated, including advanced imaging (55, 56), non-
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endoscopic sampling (57, 58), and blood biomarkers (30). Recently conducted genome 

profiling studies using next-generation sequencing platforms have concluded that the 

majority of key mutations are already acquired at the metaplastic stage of BE and only few 

driver mutations lead to progression of dysplasia and EAC (59, 60). This suggests that 

genomics-based screening approaches may have limitations as a screening technology. 

Despite this, the evidence for limited genomic changes between BE and EAC raises the 

possibility that more functional level changes (e.g. protein expression, protein glycosylation, 

metabolic changes etc.) may be driving the development of dysplasia/carcinoma from 

metaplastic condition. In line with this, studies have shown differential expression of glycan 

structures in tissue and serum samples during metaplasia-dysplasia-carcinoma sequence (23, 

31-35, 61-65).  

 Out of the 246 lectin-protein candidates measured for qualification, 45 candidates 

(18.3%) were qualified in an independent cohort of patients. Interestingly, only 3 out of 45 

candidates were significantly different between healthy vs BE comparison, with the other 42 

candidates differentially present in EAC as compared to either healthy or BE samples. This 

suggests that EAC phenotype is significantly different from BE and healthy in terms of serum 

glycan expression. The lack of glycosylation changes between healthy and BE was somewhat 

surprising because genomic studies suggest that BE and EAC share a common mutational 

profile that differs from healthy samples (59, 60). The top candidate that differentiated 

between healthy and BE, NPL-APOB, was influenced by BMI. Hence, except EPHA-Alpha-

2-macroglobulin (A2M), this study did not find any candidate that can differentiate BE from 

healthy, suggesting little or no change in glycosylation of serum proteins in the development 

of BE. However, the critical diagnostic need is to identify patients at early dysplasia or early 

stages of EAC, or those at high risk of progression.  To progress towards this goal, the lectin-

protein biomarker candidates should be evaluated in a patient cohort including low grade 
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dysplasia (LGD) and high grade dysplasia (HGD) phenotypes to precisely determine what 

disease stage can actually be diagnosed by the glycoprotein biomarker candidates.   

 Previous serum glycan profiling studies found reductions in total N-linked 

fucosylation in EAC as compared to healthy patient groups (33, 35). Here we used two 

fucose specific lectins AAL and PSA, both of them showed differential binding with 6 

glycoproteins for BE vs EAC pair-wise comparison. Out of 6 glycoproteins that showed 

differential binding to fucose specific lectins, 4 showed increased levels in EAC samples for 

AAL lectin pull-down, while 5 candidates showed increased levels in EAC samples as 

compared to BE for PSA lectin pull-down. These data suggest that serum glycan changes are 

specific to the glycoprotein of origin, and this property could be exploited as a specific 

biomarker compared to overall changes in serum fucosylation.  

 Apart from the major goal of translating the biomarkers for diagnosis, the verified 

biomarkers could shed light on the pathogenesis of EAC. To this end, functional annotation 

analysis of the candidates was able to distinguish between EAC and BE through enrichment 

of "complement and coagulation cascades" pathway. Very recently Song and colleagues (23) 

also identified changes in the glycosylation of complement proteins for EAC and high grade 

dysplasia compared to a healthy phenotype. They used lectin-affinity chromatography (a mix 

of fucose and sialic acid binding lectin) and hydrazide chemistry-based glycoprotein 

enrichment methods to identify complement C3 and complement C1r subcomponent as 

differentially present in HGD and EAC samples respectively, as compared to serum from 

healthy cohort. The differences between these complement proteins, and those that 

discriminate BE and EAC, in our results, may be the result of divergent sample processing 

steps.  For example, Song et al. (23) used serum sample after depletion of the seven most 

abundant proteins as compared to our workflow where as we denatured the serum samples to 

break protein complexes without depletion of abundant proteins. In our workflow we used an 
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individual lectin for enrichment of a particular type of glycan while Song and colleagues used 

a mixture of sialic acid binding Sambucus nigra agglutinin (SNA) and fucose specific AAL 

lectin for glycoprotein enrichment. Nonetheless, changes observed in the glycosylation of 

complement proteins may suggest a role for inflammation in EAC pathogenesis (50).    

 While lectins are a useful tool for discovery and translation, a limitation of our 

pipeline is the lack of identification of the actual glycosylation sites and glycan structures. 

For rapid translation of the verified biomarkers using a simple lectin-immunoassay format 

that can be readily achieved, the only information required is the lectin affinity and the 

protein identity. Hence, we have not incorporated detailed glycosylation site or glycan 

structure analysis to the current pipeline. Following further clinical evaluation, the final 

glycoprotein candidates could be subjected to full glycomics characterization to determine 

the changes in the glycan structure and/or site of glycosylation between different disease 

states. This may provide additional insight into the pathological basis of the cancer-associated 

glycosylation changes. We anticipate 3 possible scenarios for a glycoprotein to show 

differential lectin binding in our LeMBA based workflow. (i) Total glycoprotein level 

changes would lead to overall increased/decreased binding with multiple lectins. (ii) Changes 

in the glycan occupancy at a particular glycosylation site will lead to differential binding with 

multiple lectins. (iii) Differential expression of a specific glycan structure will alter binding 

of a glycoprotein to a particular lectin or a group of lectins. Further studies following 

biomarker qualification will be required to identify the exact mechanism of differential lectin 

binding for each candidate. 

 In summary, we have developed novel tools for glycoprotein biomarker discovery 

using serum. The cross-sectional pre-clinical biomarker exploratory study conducted using 

our workflow has identified a list of serum glycoprotein candidate biomarkers that can 

distinguish EAC from healthy and BE phenotype. These candidates will need to be further 
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evaluated in independent cohorts of patient samples that include different disease grades and 

subtypes, prior to prospective trials. The pipeline developed can be applied to other diseases 

with software tools GlycoSelector and Shiny mixOmics available online at 

http://glycoselector.di.uq.edu.au/ and http://mixomics-projects.di.uq.edu.au/Shiny. 

 The raw mass spectrometry data along with database search results including 

sequence database used for searches have been deposited to the publicly accessible platform 

ProteomeXchange Consortium (66) via the PRIDE partner repository with the dataset 

identifier PXD002442. The peptide identification results can be viewed using MS-Viewer 

(http://prospector2.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer) (67), using 

search key jn7qafftux.   

  

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
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Figure Legends  

Figure 1. Generalized workflow schematic for serum glycoprotein biomarker discovery 

and qualification. Serum samples from respective patient groups were enriched for sub-

glycoproteomes using 20 individual lectin coated magnetic beads, followed by on-bead 

trypsin digest and tandem mass spectrometry for label-free quantitation referencing to 

internal standard chicken ovalbumin. In-house database and statistical analysis pipeline 

"GlycoSelector" (http://glycoselector.di.uq.edu.au/) identified lectin-protein pairs present in 

one patient group and absent in the other. Sparse partial least squares-discriminant analysis 

(sPLS-DA) combined with stability analysis was used to generate ranked lists of lectin-

protein candidates. For biomarker qualification, selected candidates were measured using 

multiple reaction monitoring-mass spectrometry (MRM-MS) in an independent patient cohort 

for a subgroup of lectin pull-downs. Dedicated statistical analysis tool "Shiny mixOmics" 

(http://mixomics-projects.di.uq.edu.au/Shiny) was developed incorporating tools to plot 

receiver operating characteristic (ROC) curve and to perform univariate/multivariate 

statistical analyses. LeMBA-immunoblotting (IB) was used as an orthogonal method to verify 

peptide level MS data for selected candidates at the protein level. 

Figure 2. Biomarker discovery and protein level qualification of two candidates. Serum 

samples from 29 patients (healthy-9, BE-10 and EAC-10) were screened using the LeMBA-

GlycoSelector pipeline. (A) The sPLS-DA sample representation based on the top 100 lectin-

protein candidates that differentiate EAC from BE. (B) Amongst the top 100 sPLS-DA 

candidates, 72 candidates passed the stability criteria of 70% based on leave-one-out cross-

validation. Results of sPLS-DA and stability analysis for healthy vs BE and healthy vs EAC 

are available in Supplemental Figure 4. (C) Number of unique candidate proteins identified 

for each lectin in LeMBA-GlycoSelector analysis. All 20 lectins used for screening identified 

http://glycoselector.di.uq.edu.au/
http://mixomics-projects.di.uq.edu.au/Shiny
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at least one protein candidate. (D) Overlap between lectin-protein candidates that differentiate 

BE from healthy, EAC from BE, and EAC from healthy phenotype. (E) AAL-HP and (F) 

AAL-GSN were the top two candidates identified using sPLS-DA and group binding 

difference tool, respectively. (E and F, top panel) Label-free proteomics relative quantitation 

results for AAL-HP and AAL-GSN respectively. (E and F, lower panel) Normalized 

intensity for AAL-HP and AAL-GSN using immunoblotting. Raw densitometry values are 

provided in Supplemental Table 5. 

Figure 3. Multiple reaction monitoring-mass spectrometry (MRM-MS) assay 

development outline including determination of assay linearity and reproducibility. (A) 

Outline of MRM-MS assay development. (B) Linearity of MRM-MS assay confirmed using 

SIS labeled peptide mix of 4 peptides diluted across 3125 fold and spiked-into a constant 

amount of LeMBA pull-down sample. (C) Reproducibility of MRM-MS assay for 16 

replicate injections ran over 4 days period. 

Figure 4. Qualification of lectin-protein biomarker candidates in an independent patient 

cohort. (A to F) Boxplots and ROC curves of top biomarker candidate for healthy vs BE, BE 

vs EAC, and healthy vs EAC comparison, respectively. (G) Overlap between lectin-protein 

candidates that differentiate BE from healthy, EAC from BE, and EAC from healthy 

phenotype. P values were calculated using Kruskal-Wallis test and P < 0.05 was considered 

to be statistically significant. 

Figure 5. Assessing effect of confounding covariates on the top 3 biomarker candidates. 

Levels of NPL-APOB, AAL-C9 and EPHA-GSN were monitored in 39 serum samples 

(healthy-20 and population control-19) using MRM-MS. Samples were categorized according 

to (A) reflux frequency, (B) BMI, (C) smoking history and (D) alcohol consumption. P < 

0.05 using Kruskal-Wallis test was considered to be statistically significant. Out of the top 3 

candidates, only NPL-APOB was significantly different according BMI categorization. 
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Figure 6. Multimarker panel to distinguish EAC from BE. (A) sPLS-DA and (B) ROC 

curve analysis of a multimarker panel consists of AAL-C9, EPHA-A1BG, EPHA-C9, JAC-

C9, NPL-C2, NPL-C4B, PSA-C9, and WGA-C9. 
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Tables 

Table 1. Clinical characteristics of the patient cohort for biomarker discovery. For categorical 

and numerical variables, P values were calculated using Fisher's exact test and Kruskal-

Wallis test respectively. 

Variables Healthy BE EAC 

P value 

(Healthy vs BE 

vs EAC) 

Sample size 9 10 10  

Age (Median ± SD) 66 ± 10 62 ± 15 66 ± 8 0.9311 

Gender All male All male All male  

Protein concentration 

(μg/μl) 
95 ± 19 85 ± 13 82 ± 13 0.3641 

Gastritis* 1 (11.1%) 1 (11.1%) 1 (10.0%) 1.0000 

Peptic ulcer 3 (33.3%) 2 (20.0%) 3 (30.0%) 0.8792 

Hiatus hernia 0 (0.0%) 4 (40.0%) 6 (60.0%) 0.0217 

Other malignancy 1 (11.1%)  2 (20.0%) 2 (20.0%) 1.0000 

*All the analyses were performed based on available patient information. Gastritis status for one BE 

patient was missing. 
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Table 2. Clinical characteristics of the patient cohort for biomarker qualification. For 

categorical and numerical variables, P values were calculated using Fisher's exact test and 

Kruskal-Wallis test respectively.  

Variables Healthy BE EAC 

P value 

(Healthy 

vs BE vs 

EAC) 

Population 

Control 

P value 

(Healthy 

vs Pop. 

Control) 

Sample size 20 20 20 

 

19 

 Gender All male All male All male 

 

All male 

 Age in years (Median ± SD) 64 ± 8 60 ± 8 61 ± 7 0.4283 62 ± 7 0.2793 

Protein concentration (μg/μl) 83 ± 10 78 ± 12 85 ± 13 0.6486 89 ± 13 0.0785 

Reflux frequency* (10 years before diagnosis) 

 

0.0108 

 

0.2155 

   <Once/month 9 (47.4%) 7 (35.0%) 2 (10.0%) 

 

14 (73.7%) 

    Monthly (few times/month) 6 (31.6%) 6 (30.0%) 3 (15.0%) 

 

4 (21.1%) 

    Weekly or daily 4 (21.0%) 7 (35.0%) 15 (75.0%) 

 

1 (5.3%) 

 Body mass index 

   

0.0076 

 

0.6090 

   Healthy (<25) 5 (25.0%) 5 (25.0%) 1 (5.0%) 

 

7 (36.8%) 

    Overweight (25-30) 8 (40.0%) 12 (60.0%) 5 (25.0%) 

 

8 (42.1%) 

    Obese (>=30) 7 (35.0%) 3 (15.0%) 14 (70.0%) 

 

4 (21.1%) 

 Smoking history 

   

0.6116 

 

0.7813 

   Never smoked 8 (40.0%) 8 (40.0%) 4 (20.0%) 

 

7 (36.8%) 

    1-29.9 pack per year 8 (40.0%) 9 (45.0%) 10 (50.0%) 

 

6 (31.6%) 

    30+ pack per year 4 (20.0%) 3 (15.0%) 6 (30.0%) 

 

6 (31.6%) 

 Alcohol consumption 

   

0.6637 

 

0.8379 

   <1 standard drink/week 3 (15.0%) 3 (15.0%) 1 (5.0%) 

 

2 (10.5%) 

    1-6 standard drink/week 3 (15.0%) 4 (20.0%) 6 (30.0%) 

 

5 (26.3%) 

    7-20 standard drink/week 8 (40.0%) 4 (20.0%) 6 (30.0%) 

 

6 (31.6%) 

    21+ standard drink/week 6 (30.0%) 9 (45.0%) 7 (35.0%)   6 (31.6%)   

*All the analyses were performed based on available patient information. Reflux frequency for one healthy 

patient was missing.  
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Table 3. Verified list of candidates shown by lectin affinity-protein ID that were significantly 

different for either healthy vs BE or BE vs EAC or healthy vs EAC analysis. Proteins are 

denoted using gene symbol; number in the bracket denotes Uniprot accession number. 

AUROC values of more than 0.7 are highlighted in bold.   

Lectin-Protein 
Healthy vs BE BE vs EAC Healthy vs EAC 

P value AUROC P value AUROC P value AUROC 

AAL-APOB (P04114) 0.1368 0.6375 0.0453 0.6850 0.9569 0.4950 

AAL-C5 (P01031) 0.6073 0.5475 0.0483 0.6825 0.2340 0.6100 

AAL-C7 (P10643) 0.2793 0.6000 0.0063 0.7525 0.3169 0.5925 

AAL-C9 (P02748) 0.2793 0.6000 0.0001 0.8525 0.0161 0.7225 

AAL-GSN (P06396) 0.7455 0.5300 0.0087 0.7425 0.0265 0.7050 

AAL-HP (P00738) 0.8711 0.4850 0.0398 0.6900 0.0583 0.6750 

EPHA-A2M (P01023) 0.0248 0.7075 0.9138 0.4900 0.0186 0.7175 

EPHA-AHSG (P02765) 0.5162 0.5600 0.1941 0.6200 0.0483 0.6825 

EPHA-C7 (P10643) 0.1368 0.6375 0.0398 0.6900 0.6849 0.5375 

EPHA-C9 (P02748) 0.0583 0.6750 0.0003 0.8375 0.0265 0.7050 

EPHA-GSN (P06396) 0.2036 0.6175 0.0200 0.7150 0.0014 0.7950 

EPHA-HP (P00738) 0.7455 0.5300 0.0200 0.7150 0.0305 0.7000 

EPHA-SERPINA3 (P01011) 0.4171 0.5750 0.0265 0.7050 0.0620 0.6725 

EPHA-TF (P02787) 0.7455 0.4700 0.0326 0.6975 0.0935 0.6550 

JAC-A1BG (P04217) 0.6263 0.5450 0.0483 0.6825 0.1231 0.6425 

JAC-APOB (P04114) 0.0305 0.7000 0.0699 0.6675 0.5700 0.5525 

JAC-C4BPA (P04003) 0.7251 0.5325 0.0935 0.6550 0.0128 0.7300 

JAC-C5 (P01031) 0.6073 0.4525 0.0425 0.6875 0.0483 0.6825 

JAC-C7 (P10643) 0.2914 0.5975 0.0094 0.7400 0.0834 0.6600 

JAC-C9 (P02748) 0.2914 0.5975 0.0007 0.8125 0.0029 0.7750 

JAC-CFB (P00751) 0.9353 0.5075 0.0373 0.6925 0.0373 0.6925 

JAC-GSN (P06396) 0.8498 0.5175 0.0305 0.7000 0.0215 0.7125 

JAC-HP (P00738) 0.9569 0.5050 0.0483 0.6825 0.0583 0.6750 

JAC-HPX (P02790) 0.7868 0.5250 0.0742 0.6650 0.0200 0.7150 

JAC-SERPINA1 (P01009) 0.3040 0.5950 0.0453 0.6850 0.2448 0.6075 

JAC-SERPINA3 (P01011) 0.9569 0.5050 0.0102 0.7375 0.0305 0.7000 

JAC-SERPIND1 (P05546) 0.1368 0.6375 0.4819 0.5650 0.0483 0.6825 

JAC-SERPING1 (P05155) 0.5518 0.5550 0.2559 0.6050 0.0200 0.7150 

NPL-AFM (P43652) 0.5338 0.5575 0.0483 0.6825 0.1762 0.6250 
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Lectin-Protein 
Healthy vs BE BE vs EAC Healthy vs EAC 

P value AUROC P value AUROC P value AUROC 

NPL-APOB (P04114) 0.0231 0.7100 0.0231 0.7100 0.8924 0.5125 

NPL-C4BPA (P04003) 0.0989 0.6525 0.6849 0.5375 0.0231 0.7100 

NPL-C9 (P02748) 0.5885 0.5500 0.0049 0.7600 0.0074 0.7475 

NPL-GSN (P06396) 0.8924 0.5125 0.0173 0.7200 0.0583 0.6750 

NPL-HP (P00738) 0.8077 0.5225 0.0884 0.6575 0.0326 0.6975 

NPL-SERPINA3 (P01011) 0.5518 0.5550 0.0989 0.6525 0.0305 0.7000 

PSA-C5 (P01031) 0.4017 0.5775 0.0453 0.6850 0.3040 0.5950 

PSA-C7 (P10643) 0.2914 0.5975 0.0019 0.7875 0.0742 0.6650 

PSA-C9 (P02748) 0.2036 0.6175 0.0008 0.8100 0.0161 0.7225 

PSA-GSN (P06396) 0.3577 0.5850 0.0483 0.6825 0.0110 0.7350 

PSA-HP (P00738) 0.8498 0.4825 0.0483 0.6825 0.0425 0.6875 

PSA-SERPINA3 (P01011) 0.8077 0.5225 0.0425 0.6875 0.0834 0.6600 

WGA-C9 (P02748) 0.4819 0.5650 0.0032 0.7725 0.0053 0.7575 

WGA-GSN (P06396) 0.7868 0.5250 0.0119 0.7325 0.0742 0.6650 

WGA-HP (P00738) 0.7455 0.5300 0.0483 0.6825 0.0215 0.7125 

WGA-SERPINA3 (P01011) 0.4819 0.5650 0.0989 0.6525 0.0063 0.7525 
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Figures  

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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9.3 Appendix III: Boxplots and ROC curves of the verified candidates  
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