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Abstract

The knowledge we have gained in recent years onptesence and effects of compounds discharged by
wastewater treatment plants (WWTPS) brings us fmiat where we must question the appropriateness of
current water quality evaluation methodologies.idereasing number of anthropogenic chemicals isaetl in
treated wastewater and there is increasing evidericadverse environmental effects related to WWTP
discharges. It has thus become clear that newegteat are needed to assess overall quality of cdiovel and
advanced treated wastewaters. There is an urgek foe multidisciplinary approaches combining exiser
from engineering, analytical and environmental cisény, (eco)toxicology, and microbiology. This rew
summarizes the current approaches used to assest®dir wastewater quality from the chemical and
ecotoxicological perspective. Discussed chemicalr@gches include target, non-target and suspedysima
sum parameters, identification and monitoring ehsformation products, computational modeling ali as
effect directed analysis and toxicity identificati@valuation. The discussed ecotoxicological metlagies
encompassn vitro testing (cytotoxicity, genotoxicity, mutagenicitgndocrine disruption, adaptive stress
response activation, toxicogenomics) andvivo tests (single and multi species, biomonitoringle @itically
discuss the benefits and limitations of the différenethodologies reviewed. Additionally, we provide
overview of the current state of research regartiegchemical and ecotoxicological evaluation afvamtional

as well as the most widely used advanced wastewatment technologiese., ozonation, advanced oxidation
processes, chlorination, activated carbon, and memebfiltration. In particular, possible directiofts future

research activities in this area are provided.

Keywords:

wastewater quality assessment; conventional anchraed treatment; sewage; environmental chemistry;

ecotoxicology; toxicity
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1. Introduction

The access to clean and safe water has becomef dhe major challenges of our modern society, du¢he
growing imbalance between freshwater availabilitgd @onsumption (Jackson et al., 2001). Water syanfien
results from the increasing use for agriculturadation, industry, and domestic purposes (Jaclgai., 2001).
Additionally, the quality of fresh water is threa&sl by a large number of pathogens (Rizzo et @L3pas well

as anthropogenic chemicals entering the urban arad water cycle (Schwarzenbach et al., 2006). lizisges
from municipal and industrial wastewater treatmglants (WWTPs) have been identified as one of tlagom
sources of aquatic pollution in industrialized coies (Reemtsma et al., 2006). Considering the ipied
growth rate of the global population and constaittyreasing number of people that are connecta\iéT Ps,

the amount of treated wastewater (WW) is likelyrterease in the future. Water shortages currergbessitate
indirect non-potable and even potable reuse ofade®/W. Advances in WWTP technologies are crucdinit

the burden of WW-originated contaminants, due &ithportance of WWTPs as point sources for micicdia
chemical contaminants entering surface waters. ate,®ne of the main challenges is to appropriaetuate
the different treatment technologies regardingrtpetential to minimize the toxicological risks fboth, biota
and human health.

In the past, advances in WW treatment in high-ineocountries have strongly improved the quality of
wastewater discharged into the aquatic environragntell as minimized wastewater related human ineisks.
More than 100 years ago the establishment of tis¢ WWTPs was driven by the outbreaks of waterborne
diseases such as cholera and typhoid, which wersedaby the contamination of drinking water resesnwith
pathogens originating from wastewater. Similarlyfrient removal stages were installed in the 19%&s$ 70s
after recognizing WW as major cause for the euticgilon of surface waters due the emission of ents such

as nitrogen and phosphorous. Until the beginninghef1990’ the scientific community focused on stent
organic pollutants (POP) such as PCBs, PAHs anglyheeetals to evaluate the quality of WW and sewage
sludge as well as the receiving waters. Today’s ViP&/Thowever, are generally able to substantiatiyge the
emission of these contaminants. In combination gitlurce control measures in most cases these *older
contaminants are thus less relevant todag,(Teijon et al., 2010). In recent years, the o@nee and severe
effects such as feminization in fish of the soe@ltontaminants of emerging concern (CECs) in W\Wielkas

in rivers and streams downstream of WWTP dischahgesled to an ongoing debate about the necessity f

upgrading WWTPs with advanced treatment steps (8mnmg005; Jobling et al., 1998). CECs are recently
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identifized hazardous or potentially hazardous coummols. These compounds are mainly synthetic bat als
naturally-occurring, which are not covered by roatimonitoring and regulatory programs. CECs ares thu
potential candidates for future regulation. Thisludes also their transformation products (TPséx in
different stages of the urban and rural water cgaleh as WW treatment (Escher and Fenner, 2011).

An assessment of the actual risks induced by W\hdige to surface water is challenging and oftengeaed

by relatively low concentrations of pollutants, faifilties in identifying relevant toxicity endpostand the
multiplicity of environmental parameters influengiecotoxicological effects (Joss et al., 2008; t8tabt al.,
2013). In a recent study, Malaj et al. (2014) psdinbut that organic chemicals were likely to exaverse
effects on sensitive aquatic species at up to 43%o0b 4,000 European freshwater monitoring siteee T
increasing knowledge about environmental and huhesith effects caused by CEC’s has already launahed
profound discussion about the upgrade of munidigsVTPs to improve CEC removal by additional treattnen

steps.

This review provides an overview of the various mfeal and ecotoxicological methodologies that aimestm
commonly used for the quality assessment of WW gusionventional and advanced treatment technologies.
Special emphasis thereby is placed on answerinfpllogving questions:

*  Which chemical and ecotoxicological tools are alad# to assess the quality of treated WW?

«  Are current approaches sufficient to appropriategess the quality of treated WW?

*  Which chemical and ecotoxicological parameterscaueial to determine the overall WW quality?

Due to the vastness of the topic of WW and WW iregit we do not aim at completeness, but to disthess
most important aspects. Some issues however, sughtiiotic resistance, are crucial and closelydd to WW
quality but will not be addressed in detail becatlsy are beyond the scope of this review. We ratsker to

other reviews in this field (e.g., Rizzo et al.,13).

2. Chemical and ecotoxicological methods for water quality
assessment

Progress in analytical chemistry has led to theeligpment of technologies that enable detectionBEE€down

to the low ng/L- or even pg/L-range. Similarly, ariety of ecotoxicological tools, in particular vitro andin

5



158 vivoassays, have been developed to detect (eco)togical effects on a variety of endpoints and tropévels.
159 In this chapter, the most commonly applied chemégal ecotoxicological methods used for the assedsaie
160  WW quality are introduced, their specific benefited limitations are discussed, and main futurearedeneeds

161  are highlighted.

162 2.1.Sampling and sample preparation

163 A basic requirement for the successful assessniafé quality are appropriate sampling strategiesvef as
164  proper sample handling, as both can result in eoos data and misleading interpretations. In asditample
165  preparation is crucial to increase sensitivitied Bmmove interfering compounds.

166
167 2.1.1. Sampling strategies and sample handling

168  Tailored sampling strategies according to the ugir research question(s), in particular samplingde and
169 frequency, are crucial to draw meaningful conclnsifrom obtained results. Grab sampling of raw tedted
170  WW is sufficient whenever the mere presence of CBCte applicability of a new analytical methodtlie
171  objective of a study. However, this sampling sggtés inappropriate to determine elimination efficties of
172  WWTPs, as CEC concentrations might vary signifigaoter time. As an example, concentrations of ¥-ra
173  contrast media show a specific weekly concentrgtattern, which reflects the common practice ofqening
174  X-ray examinations between Monday and Friday (Ofekenzel et al., 2000). Also meteorological coioais
175 during and before sampling can significantly attex results as.g, heavy rain events may lead to a significant
176  dilution of raw WW, a decrease of removal efficies; and a discharge of biomass from activatedgsludnks
177 (Rouleau et al.,, 1997). Consequently, flow propoi composite samples are essential when i) terdtm
178 efficiencies of WW treatment technologies are eatdd, ii) the data is used as input parametersadefing
179  approaches or iii) CEC loads are calculated taredé usage or consumption quantities of CECs (Wicél.,
180 2009; van Nuijs et al., 2011a). However, a recenview by Ort and co-authors (2010) evaluating WWTP
181  sampling practices applied in 87 peer-reviewed ipatibns, revealed that less than 5% of the revikstadies
182  explicitly follow internationally acknowledged gulines or methods for the experimental design ofiitoong
183 campaigns.

184 A second important aspect is sample handling beceappropriate storage can lead to a degradafi@ECs
185  (Baker and Kasprzyk-Hordern, 2011; Hillebrand ef 2013). Storage of samples over days or even sviesek

186 often inevitable, since limited laboratory capastiprevent an immediate sample analysis. Inhibitod

6



187  reduction of microbial activity can be achieved filiration (< 0.2 um), freezing, acidification, afod by the
188  addition of preservatives such as Nat copper sulfate. However, hydrophobic compoucals sorb to the
189 membranes (Ng and Cao, 2015), and freezing andfiaattbn might lead to chemical degradation of cfie
190 compoundse.g, via hydrolysis (Stangroom et al., 2000; Jewelhlet2014). Furthermore, acidification and the
191  addition of preservatives cannot be used if samphesdirectly used (i.e. without further pretreattefor
192  ecotoxicological analysis.

193
194 2.1.2. Sample enrichment

195 Sample extraction and enrichment is often necessamchieve sufficient sensitivities for both cheatiand
196 bioassay analysis to determine the removal of CEQ3 their effects during WW treatment. Additionally
197 sample pre-treatment substantially reduces maffects caused by interfering constituents such asiral
198 organic matter (NOM). This is particularly importawhen LC-MS is applied for the detection of CE@s,
199 matrix effects, caused by co-eluting compoundsnsfiy alter the ionization efficiencies of targetngpounds.
200 Solid phase extraction (SPE) has been most widedyl and a large spectrum of sorbents is availalolayt
201 enabling the selective enrichment of neutral, aigioor cationic compounds. Depending on the sampéix,
202 volumes are usually enriched ranging from severdlilitars to several liters. In recent years, ao@iSPE
203 methodologies have been developed, which allowhferdirect analysis of untreated samples aftenersample
204  cleanup and/or analyte enrichmeatq(, Viglino et al., 2008; Huntscha et al., 2012).tharmore, the elevated
205 sensitivities of recent LC/MS/MS instruments evdlova for a direct injection of water without anyreple
206  enrichment (Backe and Field, 2012). Other methaesl dor the extraction of CECs from aqueous madrare
207  liquid-liquid extraction (LLE) and solid-phase moextraction (SPME), which are predominantly used fo
208 hydrophobic compounds and/or volatiles/semi-vadati.g, Pena-Pereira et al., 2012; Pawliszyn and Pedersen
209 Bjergaard, 2006). As conventional LLE requires éaggnounts of organic solvents, liquid-phase midragetion
210 (LPME) is increasingly used and has been appliedh® analysis of pesticides, pharmaceuticals, @vidilter
211 substances in raw and treated WW (Wen et al., 2B04dijl et al., 2009; Lambropoulou and Albanis, 200br
212  SPME, a polymer-coated fused silica fiber is eitb@ectly immersed in a sample solution for exti@ttof
213  volatile and non-volatile analytes or to the headspabove the sample for the extraction of voRt&ME has
214  been used for the extraction of estrogenic compsupesticides, musk fragrances, siloxanes, bisphgnand

215 chlorophenols (Penalver et al., 2002; Kim et 212, Vallecillos et al., 2013; Xu et al., 2013).
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For bioanalyticaln vitro studies, enrichment of water samples is ofteniredquo exceed the limit of detection
as well as to provide optimum assay medium conubtiand to avoid contaminating bioassays with pahsg
Effect concentrations of enriched sample extraatslme translated into equivalent concentratiore iference
compound €.g, estrogen equivalents), which can then be extedpdlto the original sample (Wagner et al.,
2013b). Bioassays ideally target all contaminamésent in a sample. However, the enrichment of mastmples
generally entails the loss of a significant fraotiof the total contaminantg.g, Daughton, 2003). Enrichment
methods used for bioanalytical tests systems imcfogleze-drying, reverse-osmosis concentrationtfSgieal.,
2008), liquid-liquid extraction (Pan et al., 201gpssive sampling (Jin et al., 2013), SPE, or puang trap
methods (Stalter et al., 2015b). Among these ettmactechniques, SPE is most widely used with
polystyrene/divinyl benzene polymers being the mivejuently used type of sorbent (in particular the
hydrophilic-lipophilic-balanced reversed-phase sottHLB). As opposed to freeze drying and reveis®aasis,
SPE allows for a good recovery of organic contamisiavhile removing matrix components to a wide ekte
However, very polar or volatile compounds are kbsting extraction. Dosing and exposure in bioassdys
usually lead to the loss of volatile compounds. @gdingly, when volatile contaminants are expectedé
present in a sample, extraction and bioassay methedd to be adapted to avoid underestimatingahwle

toxicity (Stalter et al., 2013, 2015b).

Benefitsand limitations & future research needs

Further efforts should focus on the developmerstarfidardized sampling and sample handling stragedidis
would significantly enhance the accuracy of anabftidata which is important in terms of comparaili
between different studies and the modeling of dte 6f CECs in WWTPs. The substantially increased
sensitivities of modern LC/MS/MS instruments alfowdetection and quantification of CECs withouigpr
sample enrichment (direct-injection LC/MS/MS). Bavanalytical assessments the development of newlsa

enrichment methods is desirable to minimize the édwolatile and hydrophilic contaminants.

2.2.0verview of chemical analytical methods for water quality assessment

A number of different chemical methodologies haerb developed to assess WW quality including 1) the
analysis of known compounds (target analysis),c2¢ening for so far unknown compounds (non-target a

suspect analysis), 3) investigating the fate of poumds during WW treatment (formation of transfotiora
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products (TPs)), 4) computational modeling, andtt® identification of toxicants (effect-directedadysis
(EDA) and toxicity identfication evaluation (TIEEig. 1). All these approaches have specific stitengind
weaknesses, which will be further discussed. Howethes review does not aim to provide an exhaestiv
compilation of all available techniques. Rather,fatusses on most commonly used techniques among
researchers. Similarly, in the chapter on targetlysis we focus on emerging organic contaminantghase
have recently been shown to be an important clasmthropogenic compounds detected in the effluefts
WWTPs. For a detailed overview of other compoundshsas priority pollutants, we refer to a number of

reviews on these topics.g, Luo et al., 2014; Verlicchi et al., 2012).

2.2.1. Target analysis

The analysis of CECs in WW dates back more thany&frs (Hignite and Azarnoff, 1977). Due to the
complexity of the sample matrix and the large wgrigi CECs, numerous methods have been developid wi
gas chromatography (GC) and liquid chromatograph@) (being most widely used. The development of
powerful separation technologies has been accomgdni advances in detection methods, in partidaladem
mass spectrometry (MS/MS), which are specific ambiive enough to detect CECs at concentratiguisaily

observed in WW down to the lower ng/L range.

LC/tandem MS

Due to the high polarity of most compounds emiftetn WWTPs, most advances in this field have besset

on LC methodologies (Alder et al., 2006). The aggilon of LC-MS increased exponentially in recesans and

a large number of LC-MS methods have been develapéedtect and quantify a huge variety of organtCs
(e.g, Petrovic et al., 2003, Fatta-Kassinos et al.,120For chromatographic separation most frequently
reversed-phase (RP) columns are used, which allovthe retention of a wide spectrum of compoundth wi
different physico-chemical properties. However, &Pumns provide only poor retention of very hydriiph
compounds. The analysis of highly polar compoursdsfi major importance for the assessment of the WW
quality as these compounds might be formed in cemable quantities in different oxidative WW treatmh
processes. Examples include the formation of lowemdar weight aldehydes, carboxylic acids and @sin
during ozonationd.g, Alvares et al., 2001; Wert et al., 2007). To tacthis problem, alternative stationary
phases, in particular ion exchange chromatogral@ly fydrophilic interaction liquid chromatograp(iILIC),

and porous graphitic carbon chromatography have degeloped. IC coupled to MS enables the separafio

9
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charged molecules such as carboxylic acids on aewmhange columns (Bauer et al., 1999). HILIC eyplo
traditional stationary phases known from normalggh@\P) chromatography, but uses similar mobilespbas
RP-LC (Buszewski and Noga, 2012). Consequentlyalliws for an improved retention of highly polar
compounds compared to RP-LC, whereas hydrophohligpoands elute close to the void volume. Another
alternative are porous graphitic columns (Tornkeisal., 2003), which also provide exceptionallghhsorption
capacities for highly polar compounds. However, dhalysis of hydrophobic compounds might be limitiee

to irreversible sorption to the stationary phase.

GCI/MS

GC/MC is frequently used for the analysis of nomarged compounds as well as (semi)volatiles, with an
without derivatization (Fatta-Kassinos et al., 201These include endocrine disrupting compound (EDC
phenolic compounds, perfluorinated compounds, stafas, musk fragrances, and siloxareg,(Trinh et al.,
2011; Field et al., 1994; Bester, 2009). For ED@shsas hormones, phenols, and phthalates the Ieeliab
detection and quantification at very low conceira is crucial as these compounds have been stmweause
adverse effects already at ng/L to pg/L levels (Kéd al., 2007; Sumpter, 2005). Furthermore, twoettisional
gas chromatography (GCxGC) methodologies have Heeeloped to allow for detailed fingerprinting ofWW
samples (Gomez et al.,, 2011). However, the analgkipolar analytes is only possible after apprdpria
derivatization procedures. To overcome this problessent approaches used ionic liquids as GC gatatyo
phases, as these allow for the analysis of polapoainds such as nitrosamines and caffeine metabg¢ieyes-

Contreras et al., 2012).

Enantioselective and compound specific isotopeyaisl

Recently the enantioselective analysis of chirakmyimg contaminants has substantially increasedguscC,

LC and capillary electrophoresis (Wong, 2006). Daethe enantioselectivity of enzymes and biochemica
receptors, the separation of chiral compounds ixial in terms of biodegradation and ecotoxicityneT
enantiomeric ratio can also be used to assess rvdi¥charges into surface wateesg, Buser et al., 1999;
Fono and Sedlak, 2005). Furthermore, enantiomagifspanalysis allows for the differentiation betevebiotic
and abiotic degradation processes in contrast itialprocesses, biotic processes often discrirairsgtecific
enantiomers (Kasprzyk-Hordern, 2010). Another apphnois the application of compound specific isotope

analysis (CSIA) which allows for the differentiatitbetween i) abiotic and biotic processes, attablgt to the
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process dependent discrimination of light and heawtopes (Elsner et al., 2012), as well as iijows sources

of CECs such as different production facilitiesdBpet al., 2013).

Benefits, limitations & future research needs

Target analysis has become one of the major tomistfe chemical assessment of WW quality. Though
developments in recent years have substantiallydugal the capabilities of analytical instrumentsi&tect and
qguantify CECs at concentrations typically obserirecaw and treated WW, analytical chemists ard iting a
number of challenges. These include the i) devedopmorf highly sensitive analytical methods for tletection

of a specific compound or compound class knownlready show adverse environmental effects at vewy |
concentrations (e.g. Lifethinylestradiol), ii) development of multi-metlsodhich allow for the simultaneous
guantification of hundreds of CECs as well as thERs, iii) development of standardized protocols tfee
analysis of CECs, to improve the comparability nlgtical results obtained from different laboraites, iv)
development of strategies for the semi-quantificatof compounds for which no reference standards ar
available (e.g., TPs), and v) targeted approacloegte identification of new CECs based on prodarctiolume
data, reported toxicities, high stability (e.g.,mbiodegradable)/likelihood to be transformed irttxic TPs

(e.g., based on modeling; structural alerts).

2.2.2. Non-target and suspect screening

The development and the application of so callezh*target” approaches are growing in responseddaige
compounds detected in environmental waters. Howeagrvery few studies on their applicability foreth
evaluation of wastewater quality exist so far, amlyrief introduction is provided here.

In non-target screening na “priori” information about the presence of individual coompas is available
(Krauss et al., 2010b). In contrast to non-targedlysis, suspect screening approaches analyze igfe h
resolution MS data by searching for compounds suisdeto be present in the samples but without ereete
standard at hand (Little et al., 2012). Advancesdosely linked to improvements in the accuracynofdern
mass spectrometry instruments, as the determinatioexact masses, and thus the assignment of chkemic
structures, is a major prerequisite for the idé&stfon of unknown compounds. The large amount afad
generated makes it necessary to use computatiofialase tools for further data processing suchwsraated
identification of peaks via comparison with onlindatabases, isotope pattern recognition, automatic

recalibration, and processing of mass spectra db aseautomated MS and MS/MS data interpretation
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(Katajamaa and Oresic, 2007). However, the apjbicaif non-target screening to WW samples is haegbéry
factors such as matrix effects which complicate ¢henparison between different samples such as ralv a
treated WW. Alternative approaches may include apgplication of analytical techniques, which aresles
influenced by the sample matrix, such as high fedgmmetric waveform ion mobility spectrometry (F8)

(Sultan and Gabryelski, 2006).

Benefits, limitations & future research needs

Non-target and suspect analysis can be very vatuabthe search for unknown CECs, including TPsdéfo
instruments allow for the simultaneous detectionhofusands of peaks within a single run by simaltarsly
providing MS spectral information of the most abamdmasses (data dependent acquisition). To fonlysan
the most abundant peaks might, however, be misigaa the ionization efficiencies strongly dependtiwe
chemical structure of the compounds as well as#mple matrix. The latter is particularly importanhen the
comparison of raw and treated wastewater is usedHte identification of compounds which are elinted
recalcitrant, or newly formed. As the chemical stawes of compounds are unknown, new methods loabe t

developed allowing for their (semi)quantification.

2.2.3. Sum parameters

General wastewater characteristics

Sum parameters such as total nitrogepNotal phosphorous (B, chemical and biological oxygen demand
(COD, BOD), total organic carbon (TOC), dissolveganmic carbon (DOC), and total suspended solidsSSJTS
were the first indicators used to determine thdiyuaf treated WW. These offer the great advanttige they
are i) easy to measure with standardized methodsiipraffordable with no sophisticated instrumeitat
needed. Consequently, they belong to the most érttjumeasured parameters. However, while theywalto
the determination of nutrient and organic emissioosts WWTPs, they do not provide any detailed infation

on the presence of toxic CECs.

CEC specific sum parameters
The specific UV absorbance at 254 nm (SU¥Ahas proven a useful parameter for the contradzmnation
processes and the assessment of the oxidationieaffic of aromatic compounds (Weishaar et al., 2003)

SUVA,s, or the fluorescence volume in excitation emissiatrix fluorescence spectra might be good indigator
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for potential ecotoxicological effects as sevenalnaatic compounds, in particular those containitgmlic
moieties, are known to frequently exhibit endocritisrupting effects, (Tang et al., 2014b). To fertlaid the
search for compounds containing heteroatoeng, (halogens or metals), GC- or LC-MS analysis shdéd
supplemented by complimentary techniques such ssrilable organic halogen (AOX) analysis and/or rothe
element specific analytical approaches (e.g. LC-M¥). AOX is appropriate to cover highly persistent
compounds of considerable health concern (Jekel Rwmiderts, 1980). Adsorbable organic fluoride (AOF)
measurements in surface waters recently indichtadn surface water samples only <5% of total A®EIld be
attributed to PFCs. This highlights the need taiife unknown CECs bearing fluorine atoms (Wagneale
2013a). In order to assess the formation potemtiatoxicological relevant N-nitrosamines formed idgr
oxidative (waste)water treatment via chlorinatisroponation, a total nitrosamine assay (TONO aslag)been
developed to identify N-nitrosamine precursors sashatural and anthropogenic WW constituents {Maed

Sedlak, 2004).

Benefits, limitations & future research needs

Sum parameters are very helpful to determine oVerastewater characteristics such as nutrient angaaic
loads. However, they do not provide any informationthe presence of CECs. To take up this challenge
sum parameters should be developed for toxicolbgielevant compounds such as phenols, aldehydes, or
nitrosamines (so called toxicophore assays). Tmsthods should be easy to apply and standardizslitdte

the routine application for WWTPs.

2.2.4. Identification and monitoring of transformation prducts

The analysis of CECs in raw and treated WW, usamnget, suspect, and non-target screening doeypioally
provide any information on the actual fate of CECfserved losses when comparing influent and eftlue
concentrations of WWTP can be caused by sorptionenalization, volatilization as well as transfoitioa to
stable TPs. The latter is not a “real” removal,csirthe toxicological potential of the formed TPs dze
significant. TP formation has to be consideredther mass balances might not close, and the toxiedyction
will likely be over-estimated. TPs can be formed &ywmber of different processes such as biodetjoada
(catalyzed by enzymes) or chemical oxidatierg( during ozonation or chlorination). A number offelient
methodologies exist to isolate and identify TPsmfed in laboratory experiments (exposure-driven)tar

monitor toxicity of the parent compound during stormation (effect-driven) (Escher and Fenner, 2011
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Laboratory transformation experiments

Transformation experiments are often carried oltaitth systems, whose controlled laboratory comuaitiallow
the investigation of factors influencing wastewatezatment, such as pH and redox potential. Elevate
concentrations of CECs are frequently used toehtifly TPs using a variety of methods such as hagolution
MS and NMR, ii) quantify TPs in samples taken fri?iVTPs and receiving waters, and iii) investigate fite

of TPs in subsequent WW treatment steps. Expersnantenvironmentally relevant concentrations should
always be conducted in parallel to better repredikely outcomes in the field. Furthermore, control
experimentsj.e., in the absence of the target compounds, are uséétermine if TPs formed are originated
from degradation of substances already presertténsample (e.g. NOM). Sterilized control experirseate
essential for biodegradation studies to differeatizetween biotic and abiotic degradation proceSd@s can be
achieved via irradiation with gamma rays, autocigviand/or antimicrobial additives (NgNantibiotics).
Autoclaving should be repeated several times to a&lssure the inactivation of spores. The additibrao
chemical additive (antimicrobial) should be consédeas least favorable option &g, NaN; can react as a

strong nucleophile with the target compounds.

Analytical tools to identify transformation prodact

The monitoring of the dissipation of CECs and tle¢edmination of (bio)degradation kinetics is penfed by
target analysis, whereas chemical structures ohemk TPs are typically identified by LC/MS/MS (witdnd
without ion trap), LC-HRMS, ICP-MS, and NMR. Amotigese, HRMS is most widely used as it allows tis¢ fa
scanning of samples over a wide range of m/z vabyesimultaneously providing information on fragrteion

of formed TPs (M% experiments). ICP-MS has been applied for thetifieation of TPs formed from the
artificial sweeteners cyclamate and acesulfameedisas the X-ray contrast medium diatrizoate (Scheat al.,
2012; Zwiener et al., 2009; Redecker et al., 20MHéwever, the results obtained from HRMS or ICP-bfteén
do not allow for an unambiguous identification bé tchemical structures (Creek et al., 2014; Schgkiaat al.,
2014a). Thus, comparison with a reference standariMR analysis is needed to elucidate the chemical
structure of TPs formed.

In cases where an unambiguous identification of BPdifficult, indirect approaches are used by otita

additional information on the presence of spedifinctional moieties. For instance, derivatizatidfes the
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possibility to identify the presence of specificn@tional moieties. Trimethylsilane (TMS) and suhsat
GC/MS analysis of derivatives can be used to detertie number of acidic hydrogens from acidicphfiic,
thiol, amine, and amide moieties. Furthermore, @idation is applied to detect the formation ofieties
which might be of toxicological relevance (toxopé®y such as aldehydes, amines and N-nitrosamangs (
Kataoka, 1996). The investigation of structural lagaes provides additional information on transfation

mechanismseg.g.,Wick et al., 2011).

Calculation of mass balances

The calculation of mass balances based on quaatidfit of both parent compounds and TPs in bothrktboy
experiments and real treatment systems is crugialssess whether the dominant TPs have been cathide
Incomplete mass balances indicate that i) the dséettion methods were unsuitable to identify ma@jes, ii) a
complete mineralization and/or microbial uptakewoed, and/or iii) sorption of TPs took place. Céddion of
mass balances based on MS peak areas is genedtllguitable, as the ionization efficiencies canfedif
substantially even for compounds with very simit@emical structures. HPLC-UV is suitable in thosseas
where the main chromophore(s) remain unchangegl, transformation only takes place at the side chain
attached to an aromatic ring system. In case obmeansformations of parent compounds referenaedstrds
are thus needed which often have to be synthesiz#tke laboratory due to the lack of commerciaNsitable

reference standards.

In cases when the mass balance is incomplete,aetilie €.g, °H, *“C) or stable isotope labeled compounds
(e.g, °C, ®™N) can be used to obtain further insights. The iappbn of radioactive labeled compounds offers
the advantage that also volatile compounds suéhi#3 or *CO, can be quantifiede(g, by trapping volatiles).
Furthermore, the aqueous phase can be analyzedlyliusing liquid scintillation counting (LSC) tcetermine
the total amount of radioactivity present (Rosléwak, 2007). For solids, samples can be combusted,the
released*CO, or *H,0 can be trapped and also analyzed via LSC. Howéverabeling position is crucial in
terms of the interpretation of the experimentalultss with both radioactive and stable isotope latel
compounds as the releaseldfO and"‘CO, from partially labeled compounds only indicatesiaeralization of
the labeled moiety but not the whole molecule. Bténtope labeled compounds can significantlylitate the
identification of TPs in laboratory experiments whbey are added together with their non-labelealcyues

due to the distinct isotope patterns observed inddtection (Badia-Fabregat et al., 2014). In addjtisotope
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fractionation visible in the relative abundance efy, carbon and nitrogen atoms present in CECs alfows
distinguishing between different degradation preeseqElsner et al., 2012) and identification of Gggrading

bacteria (Uhlik et al., 2013).

Benefits, limitations & future research needs

We are only at the very beginning in our understagaf the transformation of CECs in WW treatméhbst
studies conducted so far clearly revealed thatdfimination of CECs in most cases is leading tofthieation

of TPs. Future research should emphasize the dewadnt of methodologies targeting a more comprekiensi
investigation of transformation mechanisms. Funthere, high-throughput methodologies combining défie
analytical techniques such as HRMS and NMR areeck&nlallow for the unambiguous identification affied
TPs. Instead of focusing on TPs formed from indi&idCECs, further emphasis should be placed on odesth
enabling a simultaneous assessment of potentiaéradvenvironmental effects (e.g., by combinatioth wi
bioassays). Furthermore, approaches are neededetni-gquantify TP concentrations, which is crucial to

calculate mass balances and determine their enwemtal relevance.

2.2.5. Computational modeling

Computational tools for the assessment of WW qualie likely to be of increasing importance in fhture, as
these can be used for the prediction of i) (biojddgtion kinetics and elimination efficiencies dCs, ii) TP
formation, and iii) toxicities of CECs and their S.F5everal structure-based biodegradation estimatiethods
have been developed to predict of biodegradahilitprganic compounds (Raymond et al., 2001; Javeoetk
al., 2003). Quantitative structure biodegradabiligfationships (QSBRs) allow classification of chess
according to relative biodegradability and predictiof biodegradability for newly identified CECshése
models are using molecular descriptors or spedaifiieties, so called biophores, to predict biodeghbddy
(Mansouri et al., 2013). Similar approaches haww® dleen used to assess removal efficiencies ofiarga
compounds during oxidative treatment such as ommmat chlorination (Deborde and von Gunten, 2063 et
al., 2013). Associated uncertainties of the modedsstill relatively high, however, and the appiidity is often
limited to structurally similar compounds.

A second application field of computational modglapproaches is the prediction of TPs being forohathg
WW treatment. Prediction tools such as UM-PPS, KE@@GIgen, and PathPred have been successfullytosed

predict the formation of TPs from known compounsise( Ruecker et al., 2012 and references there@ser

16



485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

predictions are, in general, based on transformatides derived from known biochemical reactionsngcon
specific chemical functional groups. This inforneatican then be used in combination with HRMS teearfor
biotransformation TPs (Helbling et al., 2010). Ongjor current drawback of these predictions is thay often
lack of specificity and thus either result in agkover-prediction of formed TPs or that TPs arepnedicted at
all (Prasse et al., 2011). However, the increagimgwledge about transformation pathways of org&@#Cs
will most likely lead to further refinements of eeant environmental transformation reactions andg #higher
accuracy of TP predictions.

Finally, computational tools such as quantitatiteicture activity relationships (QSAR) and 3D tokope
mapping also have been utilized for the predicbbthe toxicological potential of CECs and theirsTH hese
include the prediction of binding of CECs to thér@gen receptor (Liu et al., 2006) as well as tentification
of toxicophores in pesticides as well as their {$aclair and Boxall, 2003). QSAR models have d&sen used
to assess mixture toxicity (Xu et al., 1998). Thasthods allow for the high-throughput screening dérge
number of compounds and can thus be used as anfifisition of potential toxicological effects. Hewer,
QSAR models require that each chemical must be hitarusly assigned to a specific mechanism of actio
because only chemicals with the same mechanismtiminashare a common QSAR equation (Schwoebel. et al
2011). Structural alerts, which are frequently usedhe assessment of the formation of toxic mditdzoin
toxicology, can also provide additional information potential toxicity mechanisms of TPs and camsed to
identify structural elements in CECs, which migddd to the formation of toxic TPs such as N,N-dimkemine

moieties, which are potential NMDA precursors (kssuet al., 2010a).

Benefits, limitations & future research needs

Computational approaches have been shown to be btape predict the elimination of CECs during
conventional and advanced WW treatment. For theif@nmental) risk assessment of chemicals, comigunzit
modeling already today plays an important role aitgl application is likely to increase in the future
Computational toxicity prediction may help to s@avsially reduce the number of animal tests andhisstalso
advantageous from an ethical point of view. Thennfiaiure challenge is related to its applicabilityterms of
both behavior (i.e., transformation) and effectC&Cs. Computational methods may support the ifiesatibn
of relevant CECs as they allow for the screenintaafe numbers of chemical substances for spesifigctural
alerts with known (eco)toxicological relevance. STl also true for the prediction of compounds iegdo the

formation of toxic TPs.
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2.2.6. Effect-directed analysis and toxicity identificatoevaluation

A general restriction of the methods focussing lun itlentification of unknown compounds is that tlieynot
provide any information on related (eco)toxicol@dieffects. Approaches to identify compounds wisblow
(eco)toxicological effects are effect directed gesl (EDA) and toxicity identification evaluatiorTIE)
(Burgess et al., 2013; Hewitt and Marvin, 2005)e3é have the advantage that the large number giamams
present in environmental samples is reduced tcetiadsch specifically interact with biological syste (Brack,
2003). The main difference between both approachdéisat TIE focuses on toxicological endpoints [®ng
whole organism toxicity tests, whereas EDA utilizesvitro assays to determine mode of actions such as
mutagenicity or genotoxicity (Burgess et al., 2013%tailed information on the (eco)toxicological thmeds are
provided in the next chapter (chapter 2.3). In @mitto TIE, sample extraction and enrichment aaally
performed for EDA to attain a sufficient sensityvitf applied bioassays. For EDA and TIE furtherlgsia is
only conducted in case of an observed (adverseltefi order to identify responsible compound($).tiis end,
sample fractionation or selective sample extradtaapplied to reduce sample complexity and renraretoxic
compounds (Hewitt and Marvin, 2005; Brack, 200)tHBBEDA and TIE have been successfully appliedfier
identification of toxic CECs in highly contaminatethtrices such as industrial WW (de Melo et al130For
municipal WW, however, so far only a limited numlzdrstudies exist showing a successful applicatmg,
Grung et al., 2007; Smital et al., 2011). This banattributed primarily to much lower concentratiaf toxic
CECs, which often go undetected by bioassays dimstdficient sensitivities. Even though sampleiegmment
via SPE is frequently used, this only allows fag #mrichment of compounds that can sorb apprec@bI$PE
materials. The use of different SPE materialg ( RP-C18, HLB polymers, activated carbon) mighowalifor
the enrichment of a broad spectrum of CE€g,(neutrals, anionic and cationic CECs). Elevatetteatrations

of co-extracted matrix components such as NOM, lvewecan lead to erroneous results.

Application of EDA/TIE in laboratory experiments

In addition to laboratory degradation experimersisduto elucidate the formation of TPs, the appboadf EDA
can provide valuable information (Fenner and EscB8d1). In cases where the toxic effect(s) of eepia
compound is known, EDA can be used to follow (ddjiwation during degradation (Dodd et al., 2009;
Mestankova et al., 2012). When the overall toxidgitgreases, it is indicated that toxic TPs are fmvhich

might trigger further studies to identity of thespensible compounds. It is important to note théd bnly
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provides information on the specific mode of act{MoA) covered by the used bioassay. If TP(s) arenéd

with different MoAs than the parent compound, thegy be missed.

Application of innovative bioanalytical tools foD&

To couple analytical and ecotoxicological tools @odncrease high-throughput capabilities, sevathlanced
methods have been developed in the last years.nAsxample, high performance thin-layer chromatolgyap
(HPTLC) with bioactivity screening and subsequen§ Mnalysis is increasingly used to identify toxic
compounds in complex mixtures and to elucidater tbeeémical structures (Eberz et al., 1996; Morlecid
Schwack, 2010). This approach has recently beeendgtl to the analysis of EDCs as well as antibatter
agents in environmental samples (Spira et al., 20&®is et al., 2012). Hyphenation with mass speogtry
thereby allows for the identification of those CE®Mst are responsible for observed effects (Morlackl
Schwack, 2010). Another methodology for the elutbca of EDCs is the application of receptor affinit
chromatography (Shang et al., 2014), with separatib estrogenic compounds being achieved by estroge

receptor ligand binding domain (LBD) immobilizediaity Ni-NTA columns (Jondeau-Cabaton et al., 2013

Benefits, limitations & future research needs

Thus far for EDA and TIE, very few examples existhie literature that successfully identified thEQZs)
causing the observed toxic effects. On the one ,hhede is a need for high-throughput proceduresrast of
the methods currently used are labor intensive tamé consuming. On the other hand, bioassays aes afot
sensitive enough to detect effects in the diffefiractions. Therefore, high sample enrichment fexc{ap to >5
orders of magnitude) are required for HPLC fractiion and subsequent bioanalytical assessment. ke
co-enriched matrix constituents can interfere witith, the sample separation as well as the bioassayilts.
Thus, highly specific and effective sample enrigitmeethods as well as more sensitive bioassayseapgred

to improve the success for the identification afently unknown toxic CECs.

2.3.Overview of ecotoxicological methods for water quality assessment

The vast number and toxicological relevance of wukm contaminants in water samples (Stadler et@ll2;
Tang et al., 2013) emphasizes the need for biotcalywater quality assessment to complement chemic
analysis. Depending on the objectives, studiesexpériments are designed to assess single substHacts or

complex mixture interactions with different comptgxlevels of biological organizationi.¢., molecular,
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cellular, organ, single species, population, comitgurcosystem). The toxicological impact of substs is
mainly dependent on concentration, bioavailabildyration of exposure, critical windows of exposuaed
species-specific sensitivity. Regarding the lattififerent test designs, biological targets, ared pecies might
be selected to identify deficiencies in water gyali

In this chapter, we focus on water quality assessmethods, which are used to toxicologically ovlegically
characterize water samples. The most commonly appdoaches are categorized into four groups Witro
bioassays, iiJin vivo toxicity tests, iii)in situ exposure or active and passive bio-monitoring, afceffect
assessment on community level of aquatic organi¢basteria, plants, invertebrates, fish). Each group
encompasses a multitude of different test methodsamalysis strategies. Here we provide an overatthe
most common approaches, discuss advantages antaiiesy as well as general challenges, without grogi

an exhaustive list of all methods available.

2.3.1. In vitro bioassays

We refer toin vitro bioassays as cell or bacteria-based assays, whitive conducted in wells of microplates
aiming to assess toxicity and toxicity pathwalysvitro bioassays encompass simple cytotoxicity tests,(ISO
1998; Riss et al. 2011), sophisticated engineezpdrter gene assays to detect adaptive stresssespathways
(e.g, Escher et al., 2012) or receptor interactionsyels as biomarker studieg.g, Suares Rocha et al., 2010;
Gagne et al., 2013) and toxicogenomic or metabaanethods (Van Aggelen et al., 2010).vitro screening
methods are increasingly preferred compared tonihiia vivo approaches due to logistical, cost, and time
constraints as well as ethical considerations. taltilly, the level of simplification ofn vitro test systems
facilitates mechanistic studies to explore toxiggthways (Toxcast21, Martin et al., 2010) as thidtimde of
existing bioassays covers numerous different Mofsnf non-specific baseline toxicity to receptor-tiga
interactions. However, most challenging remaingxtrapolate fromn vitro test results to the relevance to
organisms and ecosystents. vitro effect concentrations are often correlated to esbi@ vivo effects €.g,
Schipper et al., 2009; Stalter et al., 2015a) amdigde a reliable indicator for the presence oficologically
relevant contaminants like EDCs (Schipper et alQ0® Escher et al., 2014) or photosynthesis inhipit
herbicides (Escher et al., 2011), while only a fefsthose compounds can explain more than 90% of the
observed effect (Escher et al., 2011). Furthernmibre,comparably simple to translate such veryc#fein vitro
endpoints to their environmental relevance, whiah then be easily confirmed with field studies €isex,

phytotoxicity, biomarker). However, less specifixitity endpoints €.g, baseline toxicity or reactive toxicity
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endpoints such as genotoxicity or oxidative strese)usually more challenging to tackle becauseynmaore

substances are able to trigger respective effestsher et al., 2013, Tang et al., 2013).

Benefits, limitations & future research needs

The chances to detect in short order unknown ptigrerof chemicals with the help of vitro assays are
excellent. Generallyjn vitro tests represent screening tools appropriate faghhsample throughput. The
possibilities to identify toxic CECs with vitro test systems in complex mixtures are higher coetptoin vivo
assays because of the former’s fast screening atdthroughput capabilities. Additionallyn vitro tests can
scan environmental samples for very specific M@/dch can indicate the presence of specificallyracCECs
in a mixture. However, the extrapolation framvitro test results to toxicological relevance in organssand
ecosystems is fraught with many uncertainties, b&eim vitro assays are neither designed to model nor to
assess systemic effects of substances. They dt# teséetermine biological activity, impact poté, and
MoAs but do not consider counter-regulatory proesssithin whole organisms. Furthermoie vitro assays do
not necessarily detect receptor-, cell-, tissuer, oogan-specific effects; metabolic mechanisms ating

biological activation; or detoxification.

2.3.1.1. Cytotoxicity

Cytotoxicity assays measure whether a compoundaommpke is toxic to cells—usually by determining cell
viability, cell number, or cell proliferation afterdefined exposure period—and are used as predicpmtential
toxicity in vivo (Riss et al., 2011). Cell viability can be measluby assessing the membrane integréyg(
lactate dehydrogenase and neutral red assay)pti@lodensity as an indicator for cell densitye ttaspase-3/7
activity as a marker for apoptosis, several markerglisturbances of metabolism and energy prodacg.g,
tetrazolium reduction using MTS, resazurin redutctidTP level, photosystem Il inhibition in algaellsp
Escher and Leusch 2011), and luminescence of lisoémt bacteria. Cytotoxicity is most commonly reddrto
as non-specific toxicity. However, only the measueadpoint is unspecific (viability or proliferatip whereas
the underlying MoA can be non-specifie.q, apolar narcosis or oxidative damage) as welligBly specific
(e.g, specific inhibition of photosystem Il or ATP shiase; Escher and Leusch, 2011).

A variety of different cell lines are used to asseffects on a cellular leved,g, mammalian or fish cell lines,

bacteria, or algae. One of the most commonly usebraost simple approaches to assess cytotoxicitiids
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633  measurement of bioluminescence inhibition of ndltysioluminescent bacteriae(g, Aliivibrio fischeri; 1SO,
634  1998).

635

636  Benefits, limitations & future research needs

637  Cytotoxicity tests provide a quick and easy procedo check vitality parameters of cells which arsually
638 affected by a broad range of substances and heneengportant initial screening tools for water qitgl
639 assessment. Additionally, cytotoxicity is importémtassess in combination with more specific asgays.,
640 mutagenicity or genotoxicity assays) to checkdtse-negative results due to cytotoxic effects.

641

642 2.3.1.2. Genotoxicity/mutagenicity

643  Genotoxicity can be defined as the property of dhehor physical stressors to cause DNA damage arduce
644  an adaptive stress response preventing DNA danggerr Direct DNA damage encompasses mutatinaes (
645 change in the DNA base-pair sequeneg, base pair substitutions or frame shifts), stmatand numerical
646  chromosomal aberrations, DNA alkylation, oxidatidamage, de-purination, formation of DNA adductsj an
647  various other mechanisms (Lindahl, 1993). In orgiausi DNA damage may be repaired or leads to apeptbs
648 left uncorrected, DNA damage can lead to uncomdltell proliferation and cancer. Thus, genotoyicit
649  assessment is of critical importance for public andironmental health, and genotoxicity assaysaareng the
650 most widely usedh vitro bioassays in (eco-)toxicology.

651 The Ames test (Ames et al., 1975) was one of thkestin vitro bioassays used for water quality assessment
652  and still plays a dominant role in genotoxicitytieg (Claxton et al., 2010). The Ames test usefouarbacterial
653 test strains to detect mutagenicity; some of thetea specific types of mutations.g, TA98 for frame shift
654  mutations; TA100 for base-pair substitutions; TAXOR oxidizing mutagens; Reifferscheid et al., 200ECD
655  Guideline); others detect alkylation (Yamada etl&97) or glutathione-conjugation mediated mutag@iser
656 et al., 1993). To avoid false negative resultss tecommended to use at least five different straf bacteria
657  with and without exogenous metabolic activatiornteyssuch as S9 (OECD, 1997).

658  The comet assay (Singh et al., 1988) and the miciens assays (Countryman and Heddle, 1976) agadrly
659  applied to detect chromosomal aberrations in mamamaind other cell-lines and are important tootsvater
660 quality assessment.

661  The most commonly applied assay to detect adapisfgonse to DNA damage is the bacterial umuC g$3ady

662 et al.,, 1985). For this assaySalmonellastrain was modified by fusing the reporter gen&Zléo the umuC
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operon, which is part of the SOS pathway cellulesponse to DNA damage that controls DNA repair
mechanisms. Additionally, the tumor suppressorginop53 is used to detect adaptive responses tonmatiam
DNA damage (Yeh et al., 2014; Stalter et al., 2Q01FBany case, a set of different genotoxicityagssshould be

chosen for water quality assessment as single assayrone to false negative results (Magdebuat,€2014).

Benefits, limitations & future research needs:

Positive genotoxicity data entail an inherent riek carcinogenesis wherefore genotoxicity assessimaf high
importance for human and environmental health. H@wenon-carcinogens can also induce positive tesul
genotoxicity assays and hence thevivo relevance of positivén vitro results needs to be evaluated for a
comprehensive assessment. Additionally, also naptggic mechanisms can play a role in carcinogenesi
which is not detected with moist vitro genotoxicity tests. Cell lines applied usually iderfrom malignant
tissue, e.g., deficient in p53 function or DNA riepahe latter suggests differences in vulnerapilibwards
genetic disorders between, e.g., tumor and healglg, what makes the extrapolation of data betwtbertwo
difficult. Beyond that it is an ongoing debate Wisgtprokaryote test findings can be transferrecetdaryotic
cells. To avoid false negative results a set dédiht genotoxicity assays and different strainbaufteria should

be applied.

2.3.1.3. Endocrine disruption

Since the discovery of hormone-like activity of mpagnvironmental contaminants and their implicatidois
human and wildlife healthe(g, Sonnenschein and Soto, 1998; Tyler et al., 1988hy bioanalytical test
systems have been developed as an alternativert@mlastudies to assess the endocrine disruptingnggt of
chemicals and environmental samples. EDCs carnfénéewith the endocrine system via direct receptoding
mimicking an endogenous hormone (agonism), by litackhe receptor causing an antagonistic effectyyor
indirect mechanisms such as interferences withhthenone biosynthesis (g, Escher and Leusch 2011). In
addition to genotoxicity and cytotoxicity assay&dssays detecting endocrine activity are probaixdymost
frequently appliedin vitro assays in environmental toxicology, with the majocus on aryl-hydrocarbon
receptor (AhR) agoniste(g, TCDD, PCBs, PAHSs) and steroid receptor agonigth antagonists. Among the
steroid hormone receptors, the estrogen (ER) addogan receptor (AR) are most commonly studied levhi
effects on the progesterone, glucocorticoid, andgemailocorticoid receptors gain increasing attentieffects on

the thyroid and retinoic acid receptor are alsmb@ng more and more relevant for water quality sssent.
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Thein vitro evaluation of environmental samples on endocriseugiting activity became popular with the
vitro screening methods developed in the 1990s incluthiage-screen assay on estrogenicity using the huma
MCF7 cell line (Soto et al., 1992), the yeast eggroand androgen screen (YES, YAS; Routledge antptu,
1996; Sohoni and Sumpter, 1998) as well as a peasen assay on AhR activity (Miller, 1997). Adaiitally, a
growing number of mammalian cell-based test systamge been develope@.§, ER-calux (Legler et al.,
1999), AR-calux, AhR calux (Murk et al., 1996), @rsen). Yeast assays are robust, simple, and fficiéset
tools, but they are also less sensitive comparadammalian cell based assays (Leusch et al., 2010jtro
tests on endocrine activity have been shown todoel gredictors fom vivoendocrine disruption (Sonneveld et
al., 2006; Jobling et al., 2009). In recent yedimanalytical studies investigating environmentamsgles
encompass more and more endocrine endpoints cgverntagonistic activities and a growing number of

receptors€.g, Martin et al., 2010; Escher et al., 2014).

Benefits, limitations & future research needs

Endocrine disrupters interfere with endocrine systeby a wide variety of direct and indirect MoAseT
majority of in vitro tests applied for endocrine disrupter detectiore drased on either hormone directed
transcription of reporter genes, proliferation inotmone-responsive mammalian cell lines, or subtzllu
receptor ligand binding. For these mechanismgitro tests can be very promising predictive tools. Heewe
the identification of indirect effects is not cosérby most of the establishadvitro assays, with the H295R
steroidogenesis assay as one of the rare excepf@BED guideline 456). Furthermore, transactivatiassays
are often composed of artificially-engineered (y€asells, many of which are provided with mammalia
hormone receptors in cellular environments foreigrthe species. This may affect the predictive pawesn
assay data are generated in the context of enviesrah research as endocrine systems, and recepfansn-

mammalian species could vary in structure and fionct

2.3.1.4. Adaptive stress response induction

In recent years, a high number of new reporter gessays have been developed to measure the
activation/inactivation of cellular stress respomsghways as reviewed by Simmons et al. (2009).pAda
stress response pathways are cellular processesh veim to minimize and repair damages to cellular
infrastructure €.g, nucleic acids, lipids, proteins, DNA, membranaganelles) with the final goal to restore

homeostasis (Simmons et al., 2009). The activabbsuch signal transduction pathways via envirortaden
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723  stressorsd.g, chemical toxicity, heat stress, radiation, osmetress) causes the activation of cyto-protective
724  genes and in the production of cyto-protective gires. Accordingly, their activation occurs at lovdases or
725  exposure times than those required to cause apixial effects €.g, apoptosis; Simmons et al., 2009). Adaptive
726  stress response induction is therefore regarded aarly warning signal of exposure to toxicants espective
727  assays are usually more sensitive than those nieg@pical endpoints such as cytotoxicity (Eschexl g 2012,
728 JEM). Commonly, adaptive stress response assayepogter gene assays where the reporter gewe for
729 luciferase) is activated along with the target geneoding for the stress response machinery. Ciyrehe
730 Nrf2-mediated oxidative stress response pathwayhés most frequently used stress response pathway in
731 bioassays for water quality assessment and is lyghel most responsive assay whenever a battepjoaksays
732 s applied €.g, Farré et al. 2013; Stalter et al., 2013; 2015&hEr et al. 2014).

733

734  Benefits, limitations & future research needs

735  Generally the biological function of stress respoissto protect the organism from harm to enhaheechances
736  of survival. Chronic exposure to stressors is knaavmesult in decrease of other energy-intensivections of
737  the body such as immune defense, reproductionylaelepair mechanism, etc., probably ending ugamcer
738 or infecundity. Consequently, the measurement aptik stress response markers provides early wgrni
739  signals as their production occurs prior to impaotsapical endpoints. They are thus an importart sensitive
740  screening tool in environmental science.

741

742 2.3.1.5. Toxicogenomics

743  Advances in molecular biology within the last deesthave dramatically increased the knowledge afene
744  structure and function which provides the basisanfincreasing database of genetic sequence infammat
745  (Aardema and MacGregor 2002) and allows investigatesponses of the gene transcript or metabolame o
746  environmental stress. This will support the underding of mechanisms of chemical toxicity and camubed to
747  monitor and characterize the effect of pollutaiMar( Aggelen et al., 2010). Hence, toxicogenomichoés are
748  increasingly applied in environmental risk assesgmesing microorganisms, cell-lines, or animals rfVa
749  Aggelen et al., 2010). One of the key challengesydver, is how to relate genome and metabolome tdata
750 toxicity pathways and ecological outcomes.

751

752  Benefits, limitations & future research needs
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Toxicogenomics offer a unique chance to explorentcomfeatures and differences between species.abhke t
would be to find out where species share similaxchémical reaction chains and where it is possitoe
extrapolate (eco)toxicological results across spsdb reduce the number of toxicity tests. Toxicoggcs may
provide support for the identification of unexpectaechanisms of action for toxicologically non-caeterized
substances by delivering their genomic effect [@afiHowever, before doing so the broad varietgritéria for
data interpretation and techniques applied suggesurgent need for standardization. A major chajlerwill

be to link genetic data and endpoints with advee$ects in test species and to establish causeteffe
relationships. Comprehensive genomic informatiomvailable for some selected species only and farta

from providing the relevant data for model or egpéally relevant organisms.

2.3.2. In vivo tests

In vivo bioassays aim to assess severity, time and dgendency of toxic effects in multiple standard aod-

standard whole organisms and communities. Studiesnepass dosing regimens from acute (exposure<ifte
h) to chronic (exposure time > 96 h) through te-lLificle experiments and several routes of expo@urthe

aquatic environment usually via food or percutasg¢otliesting of single species or biocoenoses isechput
either under laboratory or field conditione 6itu). Mesocosm studies represent something in betardrfocus
on exposures of artificial/wild species communitiggler semi-field conditions. Field monitoring sesican be
divided into passive and active. Whereas passiveitoting is focused on naturally occurring organgsim the

test area, active studies insert organisms undsraitied conditions into monitoring sites.

Benefits, limitations & future research needs

Whole organismic tests aim for the assessment wfedrative” or “apical” effects on, e.g., mortality
development, growth, reproduction, or behavior. tdear, they do not necessarily provide insights ithe
underlying molecular and biochemical reactions tiwe targets responsible for toxicant action.

A different approach to categorize biological effeof environmental pollution was proposed by Seghel.
(2014). The authors launched a discussion towardshange of paradigm in ecotoxicological research
appreciating cumulative impacts of multiple stresson a huge amount of biological targets at vasiou
biological organizational levels. Biological receps vary in sensitivity, vulnerability, responsendynics, and
function as part of interacting physiological netk® Therefore, Segner et al. (2014) encouragecasmn

properties of biological receptors rather than omperties of stressors. Segner et al. (2014) predds start a

26



783  tiered approach with an inventory of stressorsdeid by an inventory of affected biological recepto
784  “Multistressor response profiles” of receptors andtwork interactions should be assessed to integtata in a

785  yet to be developed framework for data structurmgl organizing in compliance with the “Adverse Quie

786  Pathway” concept of Ankley et al. (2010). Actudhig concept requires considerable research and|dpuent

787  work but represents a refreshingly different wayhafiking, probably shaping future assessment gietss

788

789 2.3.2.1. Single species tests

790  Results of tests with single species from diffeteophic levels are used for risk assessment aftanbese.qg,
791  according to the European Commission’s technicaance document (European Commission, 2003) dnen t
792  course of authorization procedures for chemicaéyyddd regulatory actions, single species tests therbasis
793  for general water quality assessment purposesieStadlow for the detection of measurable advefferis of
794  biological parameters in target organisms includaoginter-regulatory actions. Ideally, species setédor
795 laboratory or on-site tests.f, WWTPS) represent an ecologically relevant choicerganisms inhabiting both
796  the matrix (water, sediment, suspended solidsjedisas the water body section of interest (redidpecies).

797 In environmental research, the detection of effeetssed by hazardous substance often originated fieid
798  observations that were later verified in singlecigetests.

799 A high degree of popularity achieved wildlife stegliat Lake Apopka (Florida), which was heavily eominated
800 with a large variety of chlorinated hydrocarboneicticides. Guillette et al. (1994) observed malfednmale
801 sexual organs illigator missippiensisaccompanied by lower plasma testosterone levalbotatory studies
802  with the red-eared slider turtl@rachemys scripta eleganeggs exposed to the pesticides toxaphene, dieldri
803  p,p'-DDD, cis-nonachlor, trans-nonachlor, p,p'-DBEJ chlordane in a concentration range detectadigator
804 eggs from Lake Apopka demonstrated that these dadsnare able to override a male-producing incobati
805 temperature in reptiles (Willingham and Crews, 199& a result, temperature-dependent sex detetimma
806 was undermined and resulted in enhanced femaldihgtcAt about the same time, the detection ofoggmic
807  effects undere.g, ethinylestradiol (EE2) and nonylphenol exposurgeieost species (Christiansen et al. 1998),
808 attracted the attention of the scientific communi®rst Jobling and Sumpter (1993) observed that WPW
809 effluents contain chemicals that induce vitellogesiynthesis in male fish. Shortly thereafter, aoreased
810 prevalence of hermaphroditism in roadRufilus rutilu§ colonizing near sewage treatment discharges was
811 detected (Sumpter and Jobling, 1995). Howeverygékponsible estrogenic compounds in the WWTP effie

812 inducing these effects were largely unknown. Subeet] single species tests checked a broad range of
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chemicals for cause-effect relationships. In palic alkylphenoles, pesticides, paints, and ofbenulations
came into focus. The alkylphenols formed in murati?WTPs sorb to activated sludge particles, sudpen
matter, and accumulate in aquatic organisms (Ekiektnal. 1990)In vivo studies revealed that nonylphenol
exposure induces elevated plasma vitellogenin $eirelfish €.g, Jobling et al. 1996). Altered vitellogenin
plasma levels in fish have proven to be linkedeeese disorders of spermatogenesis/oogenesis gradriment
of fertility. Meanwhile vitellogenin induction inigh is a well-established biomarker of exposuregstrogenic
substancese(g, Cheek et al., 2001; Christiansen et al., 1998)@ar and Jobling, 1995).

Tests prioritizing the functioning of ecosystemsynwnsider endpoints such as primary productiondfo
conversion rates, and impacts on behavior or ifmtarspecific competition. Adverse effects on thesdpoints
allow one to draw at least initial conclusions aemtial impacts on ecological cycles (food-, eyergxygen-,
nitrogen cycles). Little et al. (1990) demonstratiddt sub-lethal concentrations of pesticides attesr
spontaneous swimming activity, feeding behaviod aunnerability to predation in rainbow tro@ncorhynchus
mykissalready after 96-h exposures. Data suggestedsiimir effects will also appear in natural popigdas
inhabiting contaminated environments. Consequeaippsure-related modifications in behavior may d¥sd

to effects on the community level.

Benefits, limitations & future research needs

Single species tests enable the detection of aelveffects on biological parameters in target orgams
including counter-regulatory actions. They primgriperform their role in the context of regulatorgtians and
mono-substance testing. In case they are appliedhf® assessment of complex matrices (i.e., whiligent
testing) the choice of test species has to be datiecaution and respect to species’ ecology. Esfigcthe
application of laboratory animals which are sengtito nitrogen, salinity, or suspended organic carlzan
easily turn into a problem where the task is to imwrformation and removal of toxic substancesmnost of
these cases a differentiation between carbon/némogeffects and technological impacts on biological
parameters (e.g., biomass, growth, reproductionisossible.

It is difficult to extrapolate from mono-specie®daatory experiments to field conditions. The spsbdity of
species to toxic impacts of chemicals greatly \sarignfortunately, the number of adverse effectsidenably

exceeds the number of standardized test organibles@model this broad range of toxicological eouips.
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842 2.3.2.2. Micro- and mesocosm multi species tests

843  Micro-/ Mesocosm studies try to bridge the gap leetwfield and single or multi species laboratonyeziments
844  (Crossland and La Point 1992). The advantage isgbecies communities can be maintained under dtmse
845 natural conditions retaining the advantage of adrgroups and replications. The obtained data mategover
846  multiple direct and indirect effects and provide thasis for feeding predictive ecosystem modelseNbeless
847  micro-/mesocosm studies are not comparable to Baldies as exposure effects may also be linkesitéo
848  specific ecosystem characteristics that are outsidescope of these investigations. Microcosm studisually
849 represent small-scale indoor studies, whereas mossocstudies are carried out as larger outdoor.tests
850 Microcosm/mesocosm tests are part of higher te aissessment procedures (comp. EC 2003). Depeading
851 the test design, aquatic mesocosms are composge\aral) water enclosures equipped with natutéicaal
852  water, sediment, and biocoenoses.

853

854  Benefits, limitations & future research needs

855  Cost intensity of these tests normally limits tipplecation to higher tier risk assessment procegumifficult
856  recovery of species and natural fluctuations mdiee gystem prone to malfunction. Large predatorg. (éish,
857 some insect larvae) must be limited if not excludedll to prevent for collapse of the testing sniHabitat
858 sampling without disturbing populations is a chaliing exercise. Micro-/mesocosm studies integrater o
859  multiple direct and indirect effects and therebyilitate greater understanding of toxicological exffs on
860 ecological processes.

861

862 2.3.2.3. Passive and active biomonitoring

863  Biological monitoring means at most a multiple asystematic investigation of environmental paranseter
864  ecological processes, and biodiversity followindedined sampling protocol at natural sampling si@smmon
865 to all monitoring studies is that organisms or camities respond to environmental stressors by ahgng
866 somatic functions, population dynamics, and commsior intra- and interspecific interactions. Rigical
867  monitoring seeks to describe environmental staentify pressures and impacts, quality surveillareel early
868  warning for pollution accidents. The diversity afidelines is merely due to the large variety oftpeted goods,
869 sampling matrices, chemical/biological methodoloaryd parameters (for overview compare JAMP momitpri

870 webpage of OSPAR; OECD, 2012).
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According to van Gestel and van Brummelen (1996yjrenmental monitoring might be carried out atrfou
different levels of organization: the sub-organisifdetermined by biomarkers), the organismic (aeiteed by

in vivo bioassays), the population (determined by strectand abundance analyses), and community
(determined by changes in species composition,ddnaoe, and diversity). Community relevant studigsaily
require broadly based data mining and evaluatioostMf the data is taken from passive monitoringlists that,
e.g, aim at species richness inventory using diffdyefdcused community indices like SPEAR (Species at
Risk), Shannon Weaver (Biodiversity Index), etcor(foverview comp. Magurran, 2004). Community
composition and diversity at sampling sites aremrined by multifold variable(g, habitat quality, substance
concentrations, temperature, oxygen and organibocacontent). Therefore causalities are mostlyetlato
multivariate statistics and principle componentlgses that may provide indications for key factonpairing

biocoenoses.

Benefits, limitations & future research needs

Biological monitoring studies are of high ecolodicalevance but are time-consuming and require iplgitand
systematic investigations of environmental paranseted processes to offer more than a simple srapsh
environmental settings. Design, performance, araluadion of these studies are often subject of ouidal
shortcomings and over-interpretation of data as pamity composition and diversity at sampling siaee
determined by multifold variables. As a consequettoe derivation of clear cause-effect relationship the

exception rather than the rule.

3. Water quality assessment of individual treatment technologies

This chapter focuses on the evaluation of diffenater treatment technologies based on the cheraivdl
(eco)toxicological methodologies discussed in thevipus chapters. Particular focus is placed on the
applicability of these methods for the assessmétreated WW quality from the individual treatmesieps as
this is a major prerequisite for a valid comparidzetween conventional and new technologies cusgrentl
discussed and/or already implemented in WWTPs. Thisew does not provide a general overview of
eliminiation efficiencies of CECs in WWTPs. Forghive refer to a number of available reviews os thpic

(e.g, Verlicchi et al., 2012, Luo et al., 2014).
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3.1.Conventional wastewater treatment

We use the term conventional WW treatment for ptglschemical, and biological processes that rensolies,
pathogens, organic matter, and nutrients. Relegwartesses for the removal of CECs present in W\Mamily
include biodegradation, sorption to excess sludge, volatilization. Biodegradability, via both mietdic and
co-metabolic processes, strongly depends on thmiche structure of the molecules, their physicoraloal
properties, and the capability of microorganismsdégrade themi.e., the expression of relevant enzymes.
Sorption is the primary removal mechanism for mbyerophobic compounds, which tend to partition onto
primary and secondary sludge. lon exchange, comfdexation with metal ions, and polar hydrophilic
interactions can also lead to CEC binding to soéidd thus a removal from the liquid phase (RogE286).
Sorption is a reversible process, thus decreasingentrations in the water phase can result irarétjpning of
compounds from the solids back into the liquid ghagolatilization is only of minor importance forast
emerging contaminants. However, for volatile compisisuch as musk fragrances, stripping by aeration

aerobic sludge tanks can contribute significardglyhe overall elimination from WW (Simonich et &002).

Insufficient removal of most CECs in conventionehtment

The analysis of WWTP effluents using target analysis clearly shown that conventional WW treatnenbt
capable to sufficiently remove CECs from treatedens In the last two decades a large number dfesgithave
investigated the elimination of hundreds of antleggnic compounds, including pharmaceuticals andomed
care products (PPCPs), as well as industrial angétwld chemicals in conventional WW treatmenty(
Snyder et al.,, 2003; Verlicchi et al., 2012; Luoatt 2014). In raw WW, CECs are typically present
concentrations in the ng/L to pg/L range, but vgmgatly depending on the origin of the WW such amicipal
and industrial sources. Observed elimination edficies of CECs during conventional treatment vary
considerably with compounds such as caffeine, pheenticals such as ibuprofen and acetaminopherg bein
removed to a large extent (> 90%; Luo et al., 204H¢reas others, such as the pharmaceuticals carepme
and diclofenac, the artificial sweeteners aceswdfamd sucralose, X-ray contrast media as well €Ripgnated
chemicals are only eliminated to a small proport{en25%) (Stasinakis et al., 2013; Scheurer et24Q9;
Kormos et al., 2011).

Concentrations of EDCs such as estrogens, steaighdnes and phthalates are reduced substantiatiggdu
conventional treatment via both biodegradation @ndobrption (Schliisener and Bester, 2008; Debleidd.,

2011). For other EDCs, such as surfactants remeffigiencies vary widely as linear alkylbenzenefcutes
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are reported to be efficiently removed (>96%), whitean removal rates of nonylphenol ethoxylates were
significantly lower (<20%) (Camacho-Munoz et al.;12D Due to their low effect levels, the analysiE®Cs

in treated WW constitutes a particularly challemgtask, as the methods have to be sensitive enmudbtect
and quantify them at low ng/L or even pg/L levelhis is especially true for EDCs, which are regediaby
national or international law. For example, the dpgan Commission added the hormones-dthinylestradiol
(EE2) and 1B-estradiol (E2) to a new ‘watch list’ of emerginguatic pollutants, which will amend the revised
priority list of the Water Framework Directive thaturrently regulates 45 known pollutants. Although
environmental quality standard (EQS) concentratifimssubstances added to the priority list will rom set
before 2018, those discussed prior to the revifoEE2 (0.035 ng I annual average threshold concentration)
and E2 (0.4 ng £ annual average threshold concentration) are extirzary low (European Commission, 2012),
reflecting their high biological activitye(g, Kidd et al., 2007). Even though some of the magirogens in raw
WW are removed by conventional WWTPs to a high mixadready, the low EQS values would require to
guantify them at concentrations which only very famalytical methods can reach currently.

Antibiotics and antivirals are of considerable cenmc due to the potential development or prolifematof
resistant strains of bacteria and viruses (Singal. 007, Hirsch et al., 1999). Conventional timeent processes
significantly reduce the loads of several antilgi®tibut many have been reported to occur at coratemts
ranging from 10 to 1000 nglin treated effluents, includirfiflactams, sulfonamides, trimethoprim, macrolides,
fluoroquinolones, and tetracyclines (Le-Minh et &Q10). The same is true for antiviral drugs sush a
oseltamivir, zidovudine, nevirapine, and acycld#rasse et al., 2010). Cytostatic drugs have oaly vecently
been investigated in greater detail. They are kigbkic and have been shown to be cytotoxic, geficto
mutagenic, carcinogenic, and teratogenic (Zounlat\al., 2007). As cytostatic drugs are usually andsteéred in
very small amounts and thus are typically presemegy low concentrations in raw WW, their analyisisighly
challenging (Kosjek and Heath, 2011). Even thougty few studies exist so far, it is indicated thgtostatic
drugs are not significantly eliminated in convenibWW treatment plants (Buerge et al., 2006; Bedsal.,

2012).

WWTP %t WWTP y
Most studies so far have investigated the fateEEin individual or in a small number of WWTPs.véwer,
the overall load and composition of CECs entering/Wes is likely to vary considerably and dependsrsity

on a number of factors such as: i) the proportiomonicipal and industrial WW, ii) types of industs emitting
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WW, iii) demographics, and iv) the number of fa@é with an extended use of specific CE@gy{ for
pharmaceuticals: hospitals, elderly housings). dditéon, strong seasonal variations are expected € al.,
2013). As applied treatment processes in WWTPsatamdiffer (e.g., depending on the treatment stesesl as
well as on sludge age) it is so far widely unckeawhat extent the removal efficiencies of indivalCECs vary.
There is thus an urgent need for comprehensivemetiand international monitoring programs (Hopealet
2012; Glassmeyer et al., 2005; Ruel et al., 20R)an EU-wide study, Loos et al. (2013) investigathe
presence of 156 organic contaminants in efflueft®® WWTPs. Most of the compounds (80%) could be
detected in the effluents with concentrations ragdrom ng/L to pug/L with highest median concentnatevels

for the artificial sweeteners acesulfame and sasegl benzotriazoles, several organophosphate fatee
retardants, and plasticizers, pharmaceuticals asdarbamazepine, tramadol, and diclofenac, pasticas well
as perfluoroalkyl substances. Similar results vedrgerved in a state-wide survey of effluents from%2 largest
municipal WWTPs and water pollution control faddi in Oregon (USA) (Hope et al., 2012). In additto the
lack of sufficient monitoring data, the insufficterstandardization of analytical methods hampers the
generalization of results. Yet, the large numbe€CBfCs with a vast range of physico-chemical progemmakes

it impossible to analyze all compounds simultangoués result, a great variety of methods have been
developed for their analysis. In a recent inteelaltory comparison study including 25 laboratorigsmethods
were used to determine method accuracy and conifgrebr 22 target compounds in surface water and
drinking water (Vanderford et al., 2014). The résuévealed a high degree of variability in patacdor those
compounds for which several analytical methods wesed for quantification. Raw and treated WW regmés
even more challenging matrices due to high conagatrs of matrix constituents and biases are likelge even
higher. Thus, standardized methods are neededpimu®@ data quality, increase comparability betwstenies,

and help reduce false positive and false negasitesr

Searching for unknowns

In the EU, more than 100,000 chemicals are cugremil the market with 4,000 new compounds being ddde
every year (European Chemicals Agency, 2015). Smibmbers have been reported for the US with riae
84,000 industrial chemicals, 9,000 food additiv&@000 cosmetics ingredients, 1,000 pesticide active
ingredients, and 3,000 pharmaceutical drugs besed (Benotti et al., 2009; Muir and Howard, 20B3sed on
these numbers, it becomes clear that the CECshwidwe been analyzed so far, most likely represeiyt a

small fraction of the total number of anthropogeommpounds entering WWTPs. As a consequence, Ieliab
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methods capable of detecting and identifying adargmber of potentially hazardous compounds ardatkel o
tackle this challenge, the application of non-tared suspect-screening methods have been shoprmovae
valuable insights into the overall elimination afyanic compounds present in raw WW (van Stee £1809;
Gonsior et al., 2011; Gomez et al., 2010). By dpdiy searching for compounds containing speagfiements
such as sulfur, it could be shown that a greaetaof sulfur-containing compounds such as lindieyldenzene
sulfonates, their co-products as well as their égzdded metabolites are still present in the effisiéndicating
their insufficient removal during treatment (Gonsat al., 2011). A recent study conducted in Switzed, in
which the influents and effluents of ten WWTPs waralyzed using both target and non-target LC-@apit
MS, revealed that among the 30 most intensive pdatected in negative ion mode only 4 target apalytere
present (Schymanski et al., 2014b). This clearlyfioms that a much larger number of anthropogenic

compounds is present in conventionally treated W#htso far known.

Elimination# Mineralization

One crucial question is the actual fate of CECsoinventional WW treatment. In terms of the quatifyreated
WW it is of particular importance whether a giveBECis completely mineralized or only transformedhisT
guestion was addressed in a number of studies,lynbjnusing laboratory batch experiments with sesvag
sludge (see.g, references in Evgenidou et al., 2015). As it slagwn, degradation of CECs often leads to the
formation of a large variety of TPs, thus resultingan increased number of CECs present in WWThesfts.

In general, biotransformation reactions comprisepse biochemical reactions such as oxidation oftadts and
aldehydes to the respective carboxylic acids, Nky&sion, ester cleavage, and hydroxylation. A®sult, only
slight modifications of the parent compounds arpidglly observed. For bioactive compounds, such as
pharmaceuticals or biocides, this might imply ttiet bioactivity is being conserved.g, Boxall et al., 2004). In
addition, formed TPs often exhibit a higher poladhd an increased stability compared to parentpcomds,
which raises concerns in terms of their elevatedilitp in the urban water cycle. The relevance of a
ecotoxicological assessment of TPs can certainlyifferred from, e.g, the detection of innumerable
biotically/photochemically formed degradation prothuof pesticides detected in ground and surfadera/éfor
overview see Schulte-Oehlmann et al. 2011). Theetaiion of acute toxic TPs and parent compound
concentrations of selected pesticides and modelnisms (algae, daphnia, fish) demonstrated tha7®46 of
the substances a detoxification can be assumedea$h80% of the generic compounds are convertddP

that are comparable or even more toxic (Boxall.e2@04).
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1018 The identification and ecotoxicological assessneérkPs is a highly challenging task. Elevated comegions
1019 of target compounds are generally used to faalithe search for TPs in batch experiments. Dubedack of
1020 analytical standards of TPs it remains unclear @stncases how much TPs actually contribute to teeatl load
1021  of chemicals emitted by WWTP effluents. Very fewdies have isolated TPs in sufficient purity andmity to
1022 enable their quantification in WWTP effluents anaface waters and to assess their potential adeéfesets in
1023  ecotoxicological monosubstance testing (see Evgené al., 2015 and references therein). Typiocaldéwated
1024  concentrations (in the mg/L range) are used anuddrTPs are isolated using semi-preparative HPLiChik
1025 coupled to a fraction collector.

1026  Future efforts should thus focus on the developroéiternative strategies for the generation ofsté&hdards,
1027 in particular by using systems mimicking microhdglgradation. One promising approach thereby coelthb
1028 application of electrochemical systems, which arergasingly applied in pharmaceutical research ther
1029 generation of human metabolitesd, Baumann et al., 2009). Similarly, specific fraa of mammal liver cell
1030 homogenates (S9 fraction) containing major enzyafgshase | & Il metabolism as well as filamentousdi
1031 are used to mimic drug metabolism in mammals angrédluce sufficient amounts of metabolites and fPs
1032 structural confirmation (Aberg et al., 2009; Rudrak, 2008). These approaches offer the advarghgehigh
1033  degree of standardization and thus a higher repibiity, which ultimately enhances comparabilitiyabtained
1034  results. However, as the enzymatic inventory ofradcganisms inhabiting treatment plants and theatitju
1035 environment may differ from mammal hepatocytes famgji, the applicability of thes@ vitro systems to mimic
1036  environmental degradation processes still neets foroven.

1037

1038 Modeling the fate of CECs in conventional treatment

1039 Models developed to predict the fate of CECs invemtional WW treatment focus on i) degradation ko
1040 and elimination efficiencies and ii) TP formatighlarge number of studies have been publisheddarneyears
1041 that employed various models to predict the dediawnlakinetics and elimination efficiencies of CEGs
1042  biological WW treatment (Pomies et al., 2013; Pleszal., 2013). In contrast to modeling the remoofl
1043  macropollutantsd.g, nutrients), the prediction of CEC eliminationcemplicated by the fact that co-metabolic
1044  degradation processes have to be considered dieitdow concentrations (Fischer and Majewski, £01n
1045 addition, removal efficiencies of CECs can vary @ldbetween different WWTPs (Helbling et al., 201Phus,
1046  models have to be as simple as possible, usingitet number of easily measured parameters, botcalsiplex

1047  enough to allow for the appropriate prediction afiations due to different process conditions.eimits of WW
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1048 regulation and process control, the applicatiomofiels is crucial, because the large number of QR&lses it
1049 impossible to investigate the elimination of evesipgle compound. In addition, models can help idgnt
1050 compounds which conventional treatment insuffidier@liminates, thus indicating potential threats fbe
1051 aquatic environment. This prioritization can them used to decide which CECs should be implememtd i
1052  monitoring programs. Most recent modelling appreascbonsider the formation of bio-TPs, as these baesm
1053 shown to be crucial for the assessment of the enriental persistence of CECs (Ng et al., 2011addition,
1054 these candidate TPs can also be used in suspeensty methods and substantially facilitate thectetor TPs
1055 formed in both laboratory experiments and WWTPdIglitey et al., 2010; Kern et al., 2009). One crleispect,
1056  which is not appropriately considered so far, is frediction of (eco)toxicological effects. Thisassential,
1057 however, to appropriately assess the potentiattsffef CECs and their TPs in the environment andelect
1058 compounds included in monitoring programs.

1059

1060 Ecotoxicological benefits and concerns

1061 The presence of CECs and their TPs at very lowenations in conventionally treated WW raises tjaes
1062 regarding their environmental relevance. An EDAdgtly Smital et al. (2011) has shown that convesatio
1063 activated sludge processes reduced the initiatityxdf raw WW to various extents, ranging from 2886 algal
1064  toxicity to 73% for estrogenic activity. In a suyvstudy of 39 WWTP effluents in Australia it wasosin that
1065 75% of samples elicited a genotoxic response (@list al., 2012). Even though a large number ofpmmds
1066  were identified in the effluents, none could bermhauously tied to the observed toxic effects. Réstudies
1067 demonstrated that 299 organic compounds analyz@dVihexplained less than 3% of the observed cytettyxi
1068 and 1% of oxidative stress responses (Tang e0aB;ZEscher et al. 2013). Toxicogenomic studiesdioa range
1069 of biological pathways impacted througffleent exposure (Martinovic-Weigelt et al., 2014; Beger et al.,
1070 2014).

1071 This demonstrates the significance of identifyilmxidologically relevant mixture activities of treat WW
1072 discharges. Considering the goal of any WW puriftcato be protection of human and ecological heahe
1073  assessment of biologically active contaminants dasewhole-effluent testing with organismic tessteyns has
1074 clear advantages. This is all the more relevanergithat conventionally treated WW has proven to be
1075 responsible for many adverse effects observedvieriabrates, fish, amphibians, birds, and mamniadsosure
1076  resulted in,e.g, immunosuppression, reproductive disorders, emu@atisruption, behavioral changes, and

1077  population decline (comp. Liney et al. 2006; Va@al. 2011; Stalter et al. 2013). Amphipods exgdaseWW
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significantly reduced their feeding rate and showegaired vitality parameters (Bundschuh et al. 1)1 As
leaf litter breakdown performed by these crustasearan important ecosystem function and factorefogrgy
supply in aquatic food webs, effects on decompasenmunities endanger the conditions for long-term
sustainability of the environment. The sensitivitl wild fish against sewage effluents has been rileesd
worldwide for a number of species.g, Nichols et al. 1998; Folmar et al. 2001). Speaify, estrogenic
compounds have been identified to induce interdéyua wild roach Rutilus rutilug populations. Rodgers-
Gray (2001) exposed juvenile roach for 150 daygrémled concentrations (0%, 12.5%, 25%, 50%, anéc)@®
treated WW effluents resulting in dose-dependetgllegenin (VTG) induction and feminization of male
gonoducts. Transplantation of primarily effluenpesed fish in clear water was able to reduce tasngh VTG
titers but not to restore alterations of feminizgmhital systems. Habitat loss and environmentdlufioh have
been identified as major factors threatening ba&cigs in Europe (Temple & Terry 2007). Several argh
observed an impact of WW effluents on bat poputetisearching for fodder along riversd, Abbott et al.
2009; Kalcounis-Rueppell et al. 2007). Bat activatyd prey captures d?ipistrellus pipistrellusand Myotis
daubentoniiwere recorded upstream and downstream from 19 gewecharges by Vaughan et al. (1996).
Overall and foraging activity was reduced belovatneent plant effluents by 11% (total reduction asges) and
28% (total reduction in buzzes). WhereRs pipistrellus types were less active downstream compared to
upstream sites (total reduction in activity was ¥§0Myotis spp. foraged more often at the downstream than
upstream site (increase in foraging rate 112%).dhot downstream activities of bat species near gewatfalls
may correlate well with preferences for insect pieynd more abundantly at these sites. Sewageeetfuthave
been shown to change macroinvertebrate speciesositign (Stalter et al. 2013), thus it is most lkthat prey
reduction or extinction will indirectly affect babpulations. Interestingly, Markmann et al. (20883cribed one
exceptional case where detrimental health effentsEuropean starlingsSturnus vulgaris feeding on
earthworms inhibiting sewage percolating filter exf treatment plants, seemed to be compensatesthiey
population relevant advantages. Male birds expdeethe hormone mimicking compounds identified ie th
worms sang longer, more often, and more complexpewed to controls. Although these behavioral change
promise male starlings to become more attractifertmles, their immune functions were reduced, vbic the
other hand could adversely affect offspring quaditg their survival.

All together, ecotoxicological effect studies inalie that industrial and municipal WWTP effluent®@id be
assessed for their overall biological water qualibgluding occurrence and probability of adverffieats on

aquatic organisms and their expected extent of danha vitro andin vivo bioassays (comp. chapters 2.3.1 and
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2.3.2) could provide helpful tools to check WW qtyabn-site before discharging into receiving watekctive
and passive biomonitoring approaches (comp. chapi2rR.3) provide appropriate sum measures for all
biologically active compounds including TPs. Fistddies downstream of WWTP discharges are idealted

for these approaches to provide information on humgpacts that are relevant at the population level

What's next? — Challenges for analytical chemistschecotoxicologists

The chemical perspective:

Our knowledge about the occurrence of CECs in radl @onventionally treated WW has increased subisignt

in the last two decades. Thousands of anthropogenigpounds are entering WWTPs. The presence ofahost
these compounds in WWTP discharges indicates ithaiifficient removal during conventional WW treatine
One of the main challenges for the future will be prioritization of compounds which are monitoried
WWTPs. These should include compounds which aly li& i) enter WWTPs in high concentrations, lipw a
low biodegradability, and/or iii) exhibit adversengronmental and human health effects. For thisdetiog
approaches for the prediction of the fate and ¢&fe¢ CECs will most likely play a key role as thedow for
the screening of a large number of compounds. Rergrioritization of industrial chemicals thereas urgent
need to increase the public accessibility to datapooduction volumes as well as information on tyjges of
chemicals used in the various commercial prodUeten though registration documents for chemicalg. (én
REACH dossiers in the EU) contain most of thisrimition, they are generally not publically availabl

The application of selected CECs as WW indicat®i@ni important means to determine the influenc&/8fTP
discharges on receiving waters (Dickenson et @112 Scheurer et al., 2011, Funke et al. 2015) driaking
water resources (Gasser et al.,, 2011). Easily bjpddable compounds such as caffeine can be used as
indicators for the emission of raw WW, e.g., viweseoverflows (Buerge et al., 2003). To confirm gfemeral
applicability of these markers, however, detailednitoring studies are necessary, which assess tesepce
and removal of proposed indicators on a broad scale

Finally, we need more detailed insight into degrémia and transformation processes taking place in
conventional WW treatment to better understandalality in the removal of CECs between different WA,
For this, detailed studies with a broad range ofmpmunds are necessary (Gulde et al., 2014). Inraleetter
understand underlying (enzymatic) processes aduitiefforts in biochemical research such as ‘omics’

technologies could help maximize biodegradatiol€BCs in WWTPs. This needs to be complemented by the
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1137 development of new and improvement of existing)t@doological screening methods to address poaénti
1138  adverse effects of formed TPs.

1139

1140 The ecotoxicological perspective:

1141  There is sufficient evidence that discharge of eatienally treated WW still leads to serious enmirental
1142  problems and impacts on aquatic life in receivingters. While it is not realistic to expect that angatment
1143 technology is able to provide a zero discharge olfutants, a more sophisticated adaptation of opem
1144  parameters in conventional activated sludge syst@nts, activated sludge age, temperature, bioraasigity,
1145 and process type) could help to enhance (wastejwptality without great technical efforts and maamgt
1146  expenses. A study by Koh et al. (2009), for exarsplggests that there is potential for enhancirgrégmoval of
1147 EDCs by up to 7-times in conventional WWTPs.

1148 A further alternative could be to defragment WWpd&al companies. In some cases the grouping oflemal
1149 purification plants by piping of WW in large-scalWWTPs already equipped with advanced treatment
1150 technology could result in economic advantagesdmiety and ecological benefits for the aquaticiremment.
1151 The implementation of advanced treatment processrdd mean a far-sighted landmark decision already
1152  addressing global change scenarios based on chgnd@mography, climate, and land use. It is realigt
1153 assume that plant upgrades will prioritize largexlc WWTPs on large watercourses. Neverthelessciedige
1154 small and medium size streams and headwaters gefastreams serve as important sources of aquatic
1155 biodiversity contributing to the whatershed as aolgh thus these locations should not be neglectethe
1156 upgrade process. If important hatcheries and bregdjrounds are excluded from either improved texdni
1157  processing, sewage discharge reduction by WW pipingadaptation of operating parameters, it is High

1158 questionable whether remarkable improvements itogtzal water quality can be realized.

1159 3.2.Advanced treatment

1160 End-of-pipe technologies - as final WW polishingp# prior to discharge into the environment - cqalad/ an
1161 important role for contamination reduction of highdolluted surface waters in the short term (Eggeml.,
1162  2014; Malaj et al., 2014). The term “advanced tremit” is used in the following for all processesled to
1163 conventional treatment which specifically focustbe removal of CECs and associated ecotoxicologiffatts.
1164  This includes the application of ozone or otheraambed oxidation processes (AOPS), activated cdithation,

1165 and dense membranes. Chlorination in WW treatmera disinfection process that is not designed fer t
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removal of CECs, but the formation of toxic by-puotlas well as related adverse environmental effant
relevant to this review. We focus on advanced tneat technologies, which already have been or hiawe
potential to be implemented in WWTPs worldwide. Tigb a number of other promising treatment techrietog
exist, such as wetlands or the irrigation of trdatW on agricultural fields, the applications oftdapend
strongly on other aspects such as geographicariaeind are thus not discussed in this review. Wewehe
discussed chemical and ecotoxicological methodektp assess quality of treated waters are aldcaple to
these and other emerging treatment technologies.

Advanced treatment technologies are the focus wérak national and international research projestd
numerous WWTPs have been upgraded with advancatineat steps. A growing public interest in reducing
pollution of surface waters and increasingly stiégfislation in places like Switzerland, indicabat increasing
numbers of WWTPs will be upgraded by further pafighsteps such as ozonation or activated carbaintent.
This trend is most notable in Japan, where by 20@4e than 60 WWTPs had already applied ozonation to
polish WWTP effluents starting in 1988 with thesfiozonation plant at WWTP Oita (Takahara et &0&). In
earlier years, the primary purpose of ozonation @exlorization, removal of odour, and disinfectiamereas
the decomposition of CECs is a more recent topmyv&tays, the reduction of trace organic CECs idthesr
for the recently launched upgrade of up to 100 W\&/irPSwitzerland with the goal to treat approxirhat)%
of the total Swiss WW load (Eggen et al., 2014).

The precautionary principle may give rise to mdreagent demands on WW treatment in the futureyisling
incentive for a widespread upgrade of WWTPs withiaated technologies. A thorough risk-benefit analis
critical to justify additional investments in a wthat adequately articulates environmental impeatsed by an
increase in energy use or infrastructure developraganded by the implementation of advanced erpigd
technologies. For example, a study by Papa eR@lly) demonstrated that the reduction of waterugioth by
ozonation is beneficial for human health to an eixten the same order of magnitude of damage cawgedr

pollution, casting the benefit of advanced WW tmeznt technologies into doubt.

3.2.1. Ozonation

Ozonation is efficient in oxidizing CECs containglgctron-rich moieties
Ozonation is one of the most effective advanced \W&dtment technologies as it is able to oxidizergd
spectrum of CECs and dissolved organic matter vetile providing disinfection properties. Ozone sebective

oxidizing agent, which readily reacts with electrich moieties such as double bonds and deprotdreaténes
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(von Gunten, 2003). Besides the chemical propedfethe CECs, the efficiency of ozone oxidatiorosgly
depends on water characteristics, such as pH,agdeamount of organic matter, and nitriteg( Wert et al.,
2009). The pH is of particular importance due ® decomposition of ozone, which is accelerated waltaline
conditions, leading to the formation of OH-radicafs a consequence, reactions with both ozone add O
radicals have to be considered (Elovitz and von t&un1999). In contrast to ozone, OH-radicals react
unspecifically with CECs and reaction rates areroffiffusion controlled (von Gunten and von Sonn2@f2).
However, their high reactivity leads to substansizdvenging of OH-radicals by WW organic matteru§;tthe
reaction with ozone is often more relevant for thenoval of CECs in WW (von Gunten and von Sonntag,
2012).

Many pollutants that are marginally affected duraemventional WW treatment, are oxidized with oz@raby

> 90% with ozone doses between 0.8 and 1.5 iy DOC €.g, diclofenac, carbamazepine, metoprolol;
Hollender et al., 2009; Huber et al., 2005a; Terteal., 2003). These also include CECs that angadicular
health concern such as EDCs and antimicrobials @Dxichl., 2009, Mestankova et al., 2012). As thdoerine
disrupting potential and antimicrobial potentialrobst of these CECs can be allocated to the plenaliety
(Kuch and Ballschmiter, 2001), the efficient oxidatof the latterge.g, via hydroxylation, causes the loss of
bioactivity (Hansen et al., 2010). However, a dethinvestigation of the correlation between thespnce of
phenolic moities and overall endocrine disrupti®sa far missing. The general affinity of ozonelectron-rich
moieties, in particular aromatic compounds, ha® dieen utilized to monitor treatment efficiencies v
monitoring of the specific UV absorbance at 254 (80VA.s,), a wavelength at which most organic aromatic
compounds absorb light (Weishaar et al., 2003; Tetrg., 2014b). In contrast to this, CECs lackahectron-
rich moieties such as X-ray contrast media, acjgh@rmaceuticals, mecoprop, atrazine, and the ciafifi

sweetener sucralose are only partially removechduwzonation (Huber et al., 2005a).

Elimination# Mineralization

Even though the application of ozonation can sigaiftly reduce CEC concentrations in treated waters
chemicals are normally not completely mineralizeat, transformed to countless intermediates, whiehrarely
identified (Klavarioti et al., 2009). This becomebvious from changes in overall WW characteristics,
particular SUVAs, and DOC. Even though a substantial reduction o¥&kd, is typically observed after the
ozonation step, decrease of DOC is usually muctedqivang et al., 2008; Reungoat et al., 2010). This be

attributed to partial oxidation of both CECs andnimacomponents via ozone or OH-radicals, thusilegtb the
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formation of reactive oxidation products (OPs) uthg aldehydes, ketones, keto aldehydes, carlmoagids,
keto acids, hydroxy acids, epoxides, peroxidesjigaiphenols, brominated organics, alcohols, atetesall of
which can be of toxicological relevance (see vom@n and von Sonntag (2012) and references thefssmn
example, concentrations of aldehydes such as fdehgtle, acetaldehyde, and glyoxal as well as cglicox
acids in ozonated WW are typically in the low todiuen pg/L range (Wert et al., 2007), but can readiL
concentrations in high organic load WWs (Mezzanettal., 2013). Thus, not only complex organic compls
might be causative agents for increased toxicitpamerous reactive substances of low molecular hidaym
during the ozonation process. Even though sevérileoformed compounds are likely to be readilyrdegble
in a subsequent biological step.d, sand filtration), it has been indicated that r@dafraction of formed OPs
only shows a low biodegradability as BDOC is tyflicincreasing only slightly, resulting in a DOCmeval of
<25% (Wang et al., 2008). It was also shown thatCBteatment prior and post ozonation did not result
increased DOC removal (Reungoat et al., 2011). Gasmost likely be attributed to the low moleculagight
and high polarity of many OPs, which are formedzsnation significantly shifts the molecular sizstidbution
to smaller sizes (Wang et al., 2008). This also faageaching implications regarding the used cleaimand
ecotoxicological assessment methodologies. In qdati, SPE is frequently used as sample pretreattoen
increase sensitivities. However, the increasedritieis of most OPs result in substantially lowetardation on
SPE sorbents. This becomes obvious by comparing B&tions retained on the most commonly applie& SP
materials with significantly lower DOC fractionssaitbed in ozone treated wastewater samples eastivated

carbon is used as sorbent (Fig. 1).

<< Figure1l>>

Among the toxic OPs known to form during ozonatitime formation of bromate from bromine containing
waters is of particular concern as it has beensifiad as a potential carcinogen (Heeb et al., 20The
formation of bromate takes place via a complicatedtistep reaction and involves both the reactidti W; and
OH-radicals (von Gunten and von Sonntag, 2012) c€wainations in the low pg/L-range are usually obseiin
low bromine WWs (Zimmermann et al., 2011; Wert let 2007). The reaction of intermediates formedirtyr
bromate formation such as HOBr can lead to the dtion of bromo-organic by-products (von Gunten, 200
Heeb et al., 2014). Another group of OPs of toxigatal relevance formed during ozonation are nénoisies,

in particular N-nitrosodimethylamine (NDMA), a st@ carcinogen. Precursors shown to yield NDMA dyrin
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ozonation include pesticides, pharmaceuticals, erhased water treatment polymers, industrial chalsyi@and

NOM (e.g, Mitch et al., 2003; Shah et al., 2012a; Schmidt Brauch, 2008).

Transformation products of individual CECs

The elucidation of the fate of individual CECs dhgriozonation in laboratory studies has revealeddimation

of a variety of ozonation OP&.¢, McDowell et al., 2005; Prasse et al., 2012). Buehe affinity of Q to
electrophilic moieties, reactions take place prilpaat double bonds, amines leading, amongst othershe
formation of aldehyde, carboxylic acid, or N-oxifienctional moieties. The frequent presence of react
functional groups such as aldehyde moieties gise to a potentially elevated toxicity comparedhe parent
compound (Benner and Ternes, 2009a, b). McDowellalet (2005) demonstrated that about 80% of
carbamazepine is transformed to three new OPs glumonation with unknown toxicity. For the estrogen
estrone, 1ff-estradiol, and lo-ethinylestradiol, numerous OPs could be identifiddber et al., 2004), and for
the beta-blockers metoprolol and propranolol Benaed Ternes (2009a, b) reported several by-products
occurring after the ozonation process. For prodanfive different OPs, including aldehydes, wédentified,
whereas at least eight others and their isomerairerd unidentified (Benner and Ternes, 2009b). &awjc et

al. (2009) detected nine OPs after ozonation of @h#biotics roxithromycin and trimethoprim. As Hee
examples suggest, it can be assumed that ozoraftMMwW will multiply the number of contaminants pess in
effluents, and contaminant “elimination” shouldhet be regarded as a replacement of known compdumds
unknown intermediates. It is however important ¢np out that the formation of intermediates repres the

usual way of pollutant decomposition and ozonatiast likely accelerates this process.

Existing models allow for the estimation of remaafdiciencies but not for the formation of OPs

Due to the strong correlation of CEC physico-chainzoperties with ozone reaction rates, severahtjtative
structure activity relationships (QSARs) have bekmveloped to predict the degradation rate constahts
electron-rich moieties such as phenols, anilinaed, @amines (Lee and von Gunten, 2012; Gerrity et28l12).
Good correlations between predicted and obsentedcomstants have been observed, allowing for thdigtion

of elimination efficiencies of specific CECs durimgzonation. Even though uncertainties were low for
compounds undergoing substantial or marginal ebtndm, uncertainties were significantly higher for
compounds with intermittent eliminations during paton (Lee and von Gunten, 2012). To estimate the

contribution of OH-radicals, the group contributiorethod (GCM) can simulate the reaction rates WiHCs
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(Minakata et al., 2009). However, due to the af@etioned dependence of thg &d OH-radical exposure on
the water composition, the estimation of the corbirffects of both reactive species in complex W¥irives
remains challenging. By determining both the ozand the OH-radical exposure.g, using indigo and para-
chlorobenzoic acid as in situ probes, predicticars lse made about the degradation of a CECs yian® OH-
radical reaction pathways (Lee et al., 2014). Hamvewno model for the prediction of OPs formed dgrin

ozonation is available as of yet.

Ecotoxicological benefits and concerns

Although ozonation only partly oxidizes chemicalngmounds, the diminishment of biological activity of
toxicants is well documented. A >90% removal ofr@gtnic activity in WW after ozonation is reported
several studiese(g, Escher et al. 2009, Reungoat et al. 2010; Staltexl. 2010b, 2011). Also anti-bacterial
compounds €.g, triclosan, tetracycline, sulfamethoxazole, péi}i are sufficiently structurally modified to
eliminate their anti-bacterial activities (Doddatt 2009). Photosystem Il inhibiting herbicidesddheir activity
by 80-90%, and acetylcholinesterase inhibiting vitgti (e.g, due to organophosphates or carbamates) is
diminished by up to 80% (Escher et al., 2009). Adjexicity removal of 80—-98% was shown by Reungdatl.
(2010) and Magdeburg et al. (2014). Retinoic aeiteptore. (RARa) agonistic activity was nearly completely
removed (Cao et al., 2009). Furthermore, anti-ageneity and aryl-hydrocarbon receptor (AhR) agbtais
activity is reduced by 78-96% as reported by Stadteal. (2011). The mentioned toxicity endpoints a
presumably of high environmental relevance, as,efample, the feminization of effluent exposed wikh
populations can lead to a reduced fertility (Jadplet al. 2002a, b). Consequently, technologies dffattively
reduce endocrine activity may be greatly benefiicabquatic wildlife.

EDC formation during ozonation is unlikely a resaftthe effective attack of functional groups, whiare
important for ligand binding activity (such as pbenwith a hydrophobic moiety in the case of estrog
Nishihara et al., 2000). Only a few studies empt®atiie generation of steroid-like EDCs during WVértation
(e.g, Schrank et al., 2009). However, an activity imse most likely occurs when antagonists are more
effectively oxidized than corresponding agonistsioe versaStalter et al., 2011).

Main concerns related to WW ozonation revolve adbilne potential formation of reactive OPs. OPslofilaric
acid and mono-chlorophenols revealed increasediti@d in bioassays witiibrio fischeriandDaphnia magna
(Rosal et al., 2009; Shang et al., 2006). Othetistufound that OPs of clofibric acid, propranosayclovir, and

metoprolol were more toxic than the parent compo(Rasal et al., 2009; Dantas et al., 2007; Prassd..e
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1316  2012; Sojic et al., 2012). Due to the reactive rataf many OPs, it can be assumed that the toxictiease is
1317 mainly a result of a non-specific reactive MoA. Fbat reason, the implementation of toxicity assayeering
1318 reactive toxicity endpoints is essential for theemsment of ozonated WW. Petala et al. (2006) arsdlret al.
1319 (2009) demonstrated a toxicity increase with tt@ushinescence inhibition assay using the marineebicy .
1320 fischeriand with theDaphnia magnaacute toxicity assay. In Stalter et al. (2010b) Maddeburg et al. (2012),
1321 the fish early life stage test (FELST) using rawbtout in a flow-through system resulted in a #igant
1322 developmental delay or increased mortality after W¥@nation. Likewise, WW ozonation caused a deegtas
1323  reproduction and biomass in theimbriculustoxicity test (Magdeburg et al. 2012; Stalter £t2010a). A
1324  significantly increased genotoxicity was detectdthwihe comet assay using haemocytes of the zebisseh
1325 (Stalter et al., 2010a) or rainbow trout (Magdebatal., 2014). These examples emphasize the paterit
1326  ozonation to elevate the non-specific reactivedioxiof WW due to the formation of reactive oxidati by-
1327  products.

1328 Reactive OPs after ozonation can also increasethiagenic potency of WW. Monarca et al. (2000) Bethla
1329 et al. (2008) observed elevated mutagenic effecsolid phase extracted WW samples after ozonatidab-
1330 scale experiments using the TA98 and TAXMImonellastrains. In a study by Magdeburg et al. (2014) an
1331 ozone-dose dependent increase of mutagenicity ei@eted with the Ames fluctuation assay using tl Y08
1332 strain in four different treatment plants. Sandrdtion following ozonation reduced the effectsyophrtly,
1333  which matched the effect pattern of the FELST erygdbin parallel. The genotoxicity decrease measwitl
1334 the umuC assay in the same study might reveal aansgistency because Reifferscheid and Heil (1996)
1335 demonstrated that chemicals, which induce uhmu operon, can be regarded as Ames mutagens witgha hi
1336  degree of certainty (86%) amite versaThe umuC assay detects the activation of DNAirgpachanisms by
1337 induction of theumuCoperon. Thus, this test system reacts rather gifgfadly on genotoxicants, whereas the
1338 Ames test detects very specific acting mutagengmltipg on the applied tester straéng, sensitive for base
1339 pair substitutions, frame shifts, or alkylating atg. Consequently, the genotoxicity decrease medswith the
1340 umu-test presumably masks the appearance of spaciing mutagens during ozonation. Therefore Atnes
1341 testis required to complement the genotoxicitylysisa and to detect a potential mutagenicity inseedue to OP
1342  formation (Magdeburg et al., 2014).

1343  Other studies found a removal of non-specific tixithrough WW ozonation. In a study by Margot ét a
1344  (2013) the authors found a clear reduction of tbxiafter ozonation using a combined algae assaly the

1345 FELST with rainbow trout in a flow-through systemrhe authors attributed discrepancies with previtusies
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1346  (Stalter et al., 2010b; Magdeburg et al., 2014dhw longer ozone reaction time promoting the desfad of
1347 labile intermediate products. No adverse effecterafzonation could be observed by Altmann et 2012)
1348 using a 21-day fish screening assay with Japanestaka. Studies by Bundschuh et al. (2011a, c, uhdo
1349 increased feeding rates and population sizeSafimarus fossarunndicating a reduced toxicity of WW
1350 through ozonation. Studies by Escher et al. (2@0@) Reungoat et al. (2010) reported a removal pnfspecific
1351 toxicity by WW ozonation measured with the biolussoence inhibition assay. Both studies used sdlasg
1352  extracted WW samples.

1353  Additionally, OPs formed during ozonation are suggmbto be readily degradable. Petala et al. (2006¢rved a
1354 complete toxicity removal of ozonated WW after 4&thrage time when applying thébrio fischeri bio-
1355 luminescence assay. In Magdeburg et al. (2014)#tome induced mutagenicity decreased over time with
1356 calculated half-life of mutagenic OPs of approxiehat5 days. Consequently, storage and transpontaitioe
1357  will lead to a significant loss of toxic OPs, atdi$, toxicity assays might deliver false negatasuits.

1358

1359  Post treatment of ozonation

1360 In order to limit the emission of toxic and reaetiby-products into receiving waters, a post-treatnséep such
1361 as sand filtration or activated carbon treatmenisgally implemented after ozonation (Stalter et28l10a,b).
1362  Sand filtration has been shown to only insufficigmemove ozone resistant CECs and bio-TPs frormezo
1363 treated effluents (Hollender et al., 2009; Nakatdal.e 2007). This is not surprising as these caimpls were not
1364  or only incompletely removed in prior activateddsdde treatment. However, as both DOC and BDOC paniar
1365 after sand filtration remain fairly constant, theéemsive formation of non-biodegradable TPs isdatid (Wang
1366 et al., 2008). Even though an efficient removal barexpected for products from cleavage of olefougs and
1367  aromatic rings, hydroxylamines and N-oxides TPdSchviare formed during ozonation of amines, ardyike be
1368 not or only incompletely removed during biologigabst treatment (HUbner et al., 201%). vivo studies
1369 demonstrated that adverse effects of ozonatioraotbow trout were mitigated by downstream sandafiibn
1370 (Magdeburg et al., 2012, 2014; Stalter et al., 201, indicating that sand filtration can be afe&fve barrier
1371 to toxic oxidation by-products. Wang & Summers (@P%ere able to demonstrate that sand filtratiaduces
1372  aldehyde concentrations affiliated with ozone agggion. An effective NDMA removal with sand filtiah was
1373  observed by Schmidt and Brauch (2008) and the lefv8lOC is highly reduced. Hacker et al. (1994) avable
1374  to demonstrate that this is mainly an effect oldmccal degradation. Biologically active activategrbon filters

1375 (compare chapter 3.2.3) or membrane bioreactonnfcahapter 3.2.4) can also act as efficient barrier
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1376  oxidation by-product removal (Mascolo et al., 20Reungoat et al.,, 2012). To reduce the discharge of
1377  biologically active oxidation by-products ozone bggtion should only be established in combinatieith a
1378 bioactive post treatment such as sand filtration.

1379

1380 Advanced oxidation processes (AOPs) might be oé&sing importance in the future

1381 In addition to ozonation, also advanced oxidatioocpsses (AOPSs) are objects of research for WWnhesat
1382 purposes (Klavarioti et al., 2009; Yang et al., 2050 far, AOPs have mostly been investigatecaboratory-
1383  and pilot-scale. As such, it is difficult to pretitand to which extent AOPs will be utilized inWVTPs in the
1384  future. In general, AOPs are aqueous phase oxidatiethods based on the pollutant degradation blghhig
1385 reactive oxygen species (ROS), in particular hygroexdicals. Most prominent AOPs in WW treatmergearch
1386 currently are photolysis via UV irradiation in cométion with ozone (UV/G), hydrogen peroxide addition
1387 (UV/H,0,), photo-catalysts such as Ti@UV/photocatalyst), photo-Fenton oxidation andc#lechemical
1388 AOPs. Due to the unspecific high reactivity of Gdthicals, AOPs exhibit effective removal capacité€ECs
1389 (Rosenfeldt and Linden, 2004; Rosario-Ortiz et2010). A number of different mechanisms are resitda for
1390 the often diffusion controlled reactivity of OH-iiadls, including H-abstraction and hydroxylatioracgons.
1391 Thus, compounds which are recalcitrant to oxidadittack via ozone such as X-ray contrast mediaasrazine,
1392 can be degraded (Katsoyiannis et al., 2011; derlz @t al., 2012; Prieto-Rodriguez et al., 2013 Ktral.,
1393 2009). Furthermore, AOPs have also been used forrédmoval of NMDA €.g., Landsman et al., 2007).
1394 However, depending on the type of AOPs, they cao ebntribute to the formation of NDMA&.@.,Zhao et al.,
1395 2008). As bromate is ans@pecific by-product, its formation can be prevdny the use of non-ozone based
1396 AOPs such as UV/HD, (von Gunten, 2003).

1397  The unspecific reactivity of OH-radicals also acusufor substantial scavenging via reaction witturad water
1398 constituents, in particular NOM (Keen et al., 2014% a consequence, elevated amounts of OH-radérals
1399 needed to ensure the sufficient oxidation of CB@sich is linked to elevated energy consumption &ngs
1400 costs (Rosenfeldt et al., 2006). Furtermore, thlie makes a complete mineralization of CECs, whiak been
1401 observed in laboratory experiments with ultrapuier €.g., Yang et al., 2008; Perez-Estrada et al., 2005),
1402  rather unlikely. Generally, the same methods a<ritei for the assessment of ozone treated waters a
1403 applicable. However, due to the unspecific reatstiagf OH-radicals generally a greater variety of Qi
1404  particular highly polar low molecular weight compais, are likely to be formed.
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What's next? — Challenges for analytical chemistschecotoxicologists

The chemical perspective:

Ozonation is one of the most promising advancedtritent technologies being discussed for application
WWTPs as it allows for the removal of a large spentof CECs. The same is true for AOPs even ththeghso
far have mainly been investigated on laboratory aildt scale. The increased application of ozonati@s not,
however, been accompanied by significant advancetémical methodologies to assess the qualityeated
waters. This is particularly true for the analysi§ formed OPs. Due to their high polarity they aften not
sufficiently sorbed by typical SPE materials andwmo retardation on conventional RP columns used f
chromatographic separation. This has far-reachimgplications regarding the applicability of EDA/ TIE
approaches as well as the toxicity evaluation @&ated waters as SPE is frequently applied for sampl
enrichment. Consequently, there is an urgent needhte development of appropriate extraction praged.
The use of alternative chromatographic separati@thads such as HILIC and IC is crucial for the arsd and
detection of formed OPs via target and non-targetlgtical approaches.

Even though NOM is present in much higher concétra than CECs, the knowledge about its relevdoce
the formation of (toxic) OPs is still scarce. Mddgl approaches need to be extended from the predicif
elimination efficiencies to the prediction of OP rrfation. In combination with toxicity and
biodegradation/sorption evaluations tools this willirther allow for the assessment of the potential
environmental effects and CEC removal efficienaiesubsequent treatment steps. To validate thesielsio
comprehensive studies on the fate and effects @sGHd their OPs are required, with a special engihan

the formation of toxicologically relevant OPs swhaldehydes and hydroxylamines.

The ecotoxicological perspective:

In vitro assays are a cost-effective way to assess theafiommof toxic OPs formed during ozonation. Sample
enrichment methods and bioassays should be carefelécted to avoid false-negative results. Readtixicity
assays should be used because in most of the staghierting a toxicity increase during ozonatiogsttsystems
that cover non-specific reactive toxicity endpoiwesre applied. Further research should focus onrraoval
capacity of filter systems to reduce the risk ofidoby-products entering the aquatic environmensoA
identification of the causative origin of an inceeal toxicity following WW ozonation might be indisgable for

a qualitative appraisal of advanced oxidation prsees and the respective post treatments. In péatiche

Ames assay with the tester strain YG7108 might Ipeoanising tool for an effect-directed identifiaati of
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mutagenic ozonation by-products and could serva lasv-cost but efficient tool to easily evaluate #fficiency
of post-treatment technologies for oxidation byepret removal (Magdeburg et al., 2014).

Finally, at this stage, a fair balance of pros aomhs of WW ozonation requires long-term on-siteenlaions
at WW receiving streams with a high WW load beéoré after establishing advanced treatment steps.aFo
conclusive evaluation of the risks and benefitezufnation, plant, macroinvertebrate, fish, and marganism
community analyses as well as biomarker responsdshésto-pathological endpoints in model organisns
suitable tools to draw environmentally relevant dosions. In particular, field monitoring studieseaessential
as they respresent “real world” scenarios in corgtao lab studies and they comprise multiple inflieg

variables (contaminant mixtures as well as biotid abiotic factors).

3.2.2Chlorination

Disinfection of wastewater

Chlorination is an oxidative treatment technologgtiently applied in WWTPs and includes the addité ChL

or Ca(OCI)/NaOCI to (conventionally treated) WW. In contrésiozonation, chlorination is primarily used for
disinfection purposes and not for the oxidationC&Cs. In general, chlorination offers the advantdmge the
reactive chlorine species.€.,, free chlorine) react significantly slower withganic compounds and do not
undergo self-decay, thus having a high stabilitylf® dioxide or sodium thiosulfate are frequentiged to
scavenge free chlorine before discharge of tred®d into the environment. WW disinfection is regatdes
critical for effluents affecting recreational watgeirrigation waters, shellfish-growing areas, amghicipal water
supplies to prevent waterborne diseases (CAEPA3;198cangelo and Trussell, 2002). In densely ptgdla
areas and in many high-income contries, WW disiidads common practice to inactivate bacteriajsés, and
protozoa. In North-America the most widely used hmeétis chlorine disinfection due to its low cosssveell as
disinfection efficiency while in Europe chlorinetetnatives such as UV and ozone are increasinghieap

(Jacangelo and Trussell, 2002).

CEC elimination as a beneficial side effect

The speciation of chlorine such as HOCI, Cland C} is strongly pH-dependent, and large differencethéir
reactivity with organic compounds have been obskriReactions are restricted to specific moietiess@nt in
CECs such as reducing nucleophilic and unsatursited as hypochlorous acid primarily reacts viedatibn

reactions, addition reactions to unsaturated boand, electrophilic substitution reactions at nuplatic sites
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(Deborde and von Gunten, 2008). Chlorine reactivéyally decreases in the order: reduced sulfuetiesi >
primary and secondary amines > phenols, tertiarin@sn> double bonds, other aromatics, carbonylsgdesn
(Deborde and von Gunten, 2008; Sharma, 2008). Rarnpaceuticals containing aromatic ether functional
groups such as tHeblockers atenolol and metoprolol, the rate of¢farmation is strongly affected by the other
substituents on the ring (Pinkston and Sedlak, p0Bunilar to this, higher reaction rates with HO@ve been
observed for the phenolate ion compared to theopatéd species due to the increased electron yerfsihe
ionic form (Pinkston and Sedlak, 2004). For sulfoige, tetracycline, and macrolide antibiotics reactwith
ClO, is likely to result in a substantial eliminatidduber et al., 2005b; Le-Minh et al., 2010; Wanglet2011).
The same is true for estrogens and other EDCs asidhiclosan, bisphenol-A, and nonylphenol (Hukeale

2005b; Noutsopoulus et al., 2013).

Disinfection by-product (DBP) formation

The reaction of chlorine with natural dissolvedamig matter (DOM) has been shown to lead to thedion of

a variety of undesired disinfection by-products @3, with some of them being of considerable candee to
their carcinogenicity, cytotoxicity, and genotoxyciRichardson et al., 2007; Krasner et al., 208Bah and
Mitch, 2012b). The discharge of chlorinated WW laaverse effects on the community structure of benth
invertebrates as well as fish up to 500 m downsirebithe WW discharge when chlorine residuals ectd®82
mg/L (CAEPA, 1993). Post treatment with dechlorimat agents such as sulphur dioxide, sodium
metabisulphite, sodium bisulphite, sodium sulphifedium thiosulphate, and hydrogen peroxide conzing
reduced adverse effects (CAEPA, 1993), and hendealénation should be applied after chlorine disation.

Our knowledge about the formation of DBPs in dnvtkiwater is much more detailed compared to WW, most
likely due to the potentially direct negative impaa humans. However, it has been shown that thne $2BPs
typically found in chlorine treated drinking wateain also be formed in WW (Huang et al., 2012; Tangl.,
2012). The elevated DOM content compared to dripkiater can result in much higher concentrationrBBIPs

in chlorine treated WW (Rebhun et al., 1997). Femtiore, emissions of DBP precursors by WWTPs niggd

to DBP formation if these compounds enter drinkireder treatment facilities utilizing chlorination.

To limit the formation of specific DBPs such ah&lomethanes and haloacetic acids, chloraminatiahlorine
dioxide are often used as alternative disinfectdBtsah and Mitch, 2012b; Le Roux et al., 2011). Easv,
chloramination has been shown to lead to formatibtoxic nitrosamines such as NDMA (Najm and Trilsse

2001; Mitch and Sedlak, 2002) with precursors idislg dimethylamine, NOM, as well as pharmaceutieald
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pesticides containing dimethylamine moietiegy( Mitch and Sedlak, 2004; Shen and Andrews, 20&1Rbux

et al., 2011). NDMA formation potentials up to 638§ L' have been determined in secondary effluents (Mitch
and Sedlak, 2004). During biological WW treatmentsabstantial decrease of NDMA precursors and
dimethylamine (DMA) was observed (0—75%). NDMA fation cannot be explained by the presence of DMA

alone, indicating the contribution of other, sodaknown, NDMA precursors (Mitch et al., 2003).

Formation of halogenated TPs from reaction with GEC

In addition to the formation of DBPs resulting fragactions with NOM, TP formation from reactionsvieeen
reactive chlorine species and individual CECs heenbstudied. Reaction of chlorine with benzophenbie
leading, amongst others, to the formation of momnld, and tri-chlorinated BP-4 analogues due toohe
substitution of BP-4 (Xiao et al., 2013). Similarighlorgemfibrozil has been identified as the m&ih during
reaction of free chlorine with gemfibrozil (Bullo@t al., 2012). In terms of the toxicity, chloriiwat has lead to
an increased toxicity of chlorinated analogues. &@mple, the reaction of triclosan with chloriesults in the
formation of 2,4-dichlorphenol and 2,4,6-trichlogmiol, both known to be toxic and exhibiting highdearine
disruptor-activity, as well as trihalomethanes (T§)MFiss et al., 2007). In the reaction of acetapiren with
hypochlorite, the formation of the toxic TPs 1,Abequinone and N-acetyl-p-benzoquinone imine were
reported (Bedner and MacCrehan, 2006). In contaghis, reaction of EE2 with both chlorine as wa#
chlorine dioxide has lead to several TPs, such@somand dichlorinated EE2 which exhibit a lowedecrine
activity than the parent compound (Lee et al., 30@milar to EDCs, reaction with antibiotics suek
trimethoprim exhibited a reduction of the toxicieity (Dodd and Huang, 2007). The formation of aimated
TPs during chlorination gB-lactam (Navalon et al., 2008) and fluoroquinol@mibiotics (Wang et al., 2010),
however, indicate that antibacterial activity midie conserved in some cases. Because of the oftesased
toxicity of chlorinated compounds, other toxic MoAsich as genotoxicity and mutagenicity have to be
considered. Furthermore, the formation of antieegnic TPs during chlorination of phenylalaninehtights
the necessity to also take other toxicological emip into account, because chlorinated compounigghtm
exhibit a different toxic mode of action than trergnt compounds (Wu et al., 2010).

The presence of iodine and bromine in chlorinatéd/ Van lead to the formation of iodinated and brated
DBPs (Sharma et al., 2014; Duirk et al., 2011). fdrenation of I-DBPs and Br-DBPs is of considerabéalth

concern, as they typically exhibit a highly enhahocsammalian cell cytotoxicity and genotoxicity asnpared
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to their chlorinated analogues (Richardson et24l(8). Furthermore, the presence of iodine and Im®man

influence the degradation kinetics of CECs (Vikadlat al., 2013; Heeb et al., 2014).

Unscrambling the pool of halogenated compounds

Even though hundreds of DBPs have been identifleese most likely account for only a small fractmfithe
total organic halogens (TOX) present in chlorinateaters (Richardson et al., 2007). The analysiBBPs is
challenging due to their complex chemistry and #teng dependence of their formation on the water
composition. For volatile low molecular weight comymds GC-based techniques such as GC-ECD and GC-MS
have been used most frequently (Weinberg, 1999eiGtompounds such as haloacetic acids or aldelardes
only amendable to GC after derivatization. Thus,-daed methods, in particular LC-MS are increaging|
applied (Zwiener and Richardson, 2005). Additionathe application of three-dimensional excitatiand
emission matrix fluorescence spectroscopy has progeful for the prediction of DBP formation (Habag,
2012). In general, the analysis of samples wittess\vcomplementary techniques is recommended iardmd
account for the larger spectrum of compounds likkelige present in chlorinated waters.

To identify halogenated compounds, specific isotpptierns can be used in non-target analytical cgubhes,
and substantially aid identification (Schymanskakt 2014b; Martinez-Bueno et al., 2012). Cleavafjmdine
(m/z 127) has been useful for the identificatiorianfinated compounds such as X-ray contrast metiatlaeir
degradation products (Putschew and Jekel, 2003X Afxlysis can be used to determine whether adlvegit
compounds have been considered. Even though omefeironmental studies exist so far, the applocatf
inductive coupled plasma-MS (ICP-MS) has succelsstided for investigating the fate of X-ray contrasedia,
iodophenols and gadolinium chelates (Profrock areh@e, 2012; Kinnemeyer et al., 2009; Redeker .et al
2014) as well as for assessing DBP formation (8Hi &dams, 2009). Current limitations are mainlyatedl to
sensitivity issues, in particular for chlorine, whi makes it difficult to detect chlorinated compdsinat
environmental concentrations. However, the appboaibf these methods in single substance degradatio
laboratory studies (at elevated concentrations)dcbalp to identify the chlorinated by-productsrzgiformed.
This would also help the development of specifid &mghly-sensitive analytical methods.q, using GC- or
LC-MS techniques) to determine the formation ostheompounds at environmental concentrations anelain
systems. Even though the molecular informatiomés in ICP-MS analysis, it can be used for the tjieation

of unknown compounds if no reference standard ala@ve, as the response of the detector is indigrerof the

chemical structure (Axelsson et al., 2001). Th@R-MS analysis is useful for calculating mass badanof
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halogen containing compounds even without an availaeference standard (Profrock and Prange, 2012,
Redeker et al., 2014). Together with structurabinfation obtained from other analytical technigsash as
ESI-MS, ICP-MS can be a powerful tool to identifiP§ (Meermann and Sperling, 2012). Consequentlgstat
developments have combined chromatographic separtig, CE, GC or LC) with both ESI-MS and ICP-MS

(Wind and Lehmann, 2004; Buchberger et al., 2003).

Modeling has been proven useful in assessing DBRafion

In order to predict the reaction of specific CEGthweactive chlorine, several QSARs have beenldpee and
good correlations between predicted and experirfigrtarived second order rate constants for thetiea of
CECs with CIQ and HOCI were obtained (Lee and von Gunten, 2(H&) phenols could be shown that second-
order rate constants for oxidation of the undissted forms of substituted phenols are about siersraf
magnitude smaller than the corresponding valuegli@noxide anions. This indicates that only thetiea of
phenoxide anions will be significant under the dgbads of water treatment with chlorine dioxide &tmyek and
Hoigne, 1994). For the prediction of DBP formatgrch as THMs during WW treatment, different modelge
been developed (see Chowdhury et al., 2009 foregmfes). Chen and Westerhoff (2010) developedrdifte
DBP formation potential models to predict the fotima of carbonaceous and nitrogenous DBPs using DOC
UVA 54 and bromide. DOC was used as a proxy represetitergelative amount of precursor material, UYA

to assess the precursors’ relative reactivity towenlorine-based disinfectants, and bromide wasl @se a
control for the distribution among chlorinated astdminated species. Similarly, Sohn et al. (200Z9evved a
good correlation between THM and HAA formation awrWWs using an empirical power function model. No

models for the prediction of toxic TPs from indivel CECs exist thus far.

Ecotoxicological benefits and concerns

Due to the rather transient effect of free chloramed simple Gl mitigation strategies, the main concern
revolving around chlorine application for wateridfsction is the formation of toxic DBPs. DBPs inWWcan
increase toxic effects iim vitro andin vivo bioassays. Blatchley et al. (1997) found in mastes that toxicity
increased with the water fl&eriodaphnia dubiafter WW disinfection according to the followingnk order of
decreasing toxicity: chlorination/dechlorinatiorozonation > UV irradiation. Monarca et al. (2000)dsed the
effect of chlorine, chlorine dioxide, ozone, petéreacid, and UV radiation and found increased daat

mutagenicity for all disinfectants. Many more stsglfound an effect increase after chlorine treatmeimg a
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variety of test system®(g, Chen et al., 2001; Fukushima et al. 2014; Schéiral. 2009; Pignata et al., 2012;
Wang et al., 2005; Wang et al., 2007; Wei et &l06). While some authors observed an effectiveattagion of
endocrine active chemicals (Noutsopoulos et all,320others found a consistent increase of antégshic
brominated DBPs (Tang et al., 2014a; Wu et al. 420%atson et al. (2012) concluded that DBPs foriimed
chlorinated WWs can be toxic and may have a déteterimpact on aquatic organisms, and therefore,
chlorination or chlorination/dechlorination may nbé adequate treatment strategies for the proteatio
receiving waters. Therefore, the application oflbarmful alternatives is desirable. UV disinfeatimight be
most suitable (Acher et al., 1997) because the d6om of halogenated DBPs can be excluded. Additign
two important protozoan intestine pathoge@sardia lamblia (elicitor of lambliasis) andCryptosporidium
parvum (elicitor of cryptosporidiosis), were found to besistant to traditional chemical disinfectants sash
chlorine, while UV irradiation and membrane filicat are much more effective for their inactivati@moval

(Jacangelo and Trussell, 2002).

What's next? Challenges for analytical chemists aadotoxicologists

The chemical perspective:

Similar to DBP research in drinking water, most DBftesent in chlorinated wastewater are still unknoDue

to the toxicological relevance of many halogenatechpounds, further improvements are needed fosytkeific
analysis of halogenated compounds, e.g., by cogipinand HRMS. Comparison with results from AOXustho
be used to assess to which proportion of presetdgleaated organic compounds have been detected. Thi
should be extended further by the application téraktive approaches such as ICP-MS as these cawide
details of the total sum of halogenated compoufide discrepancy between total content of halogehate
compounds determined by ICP-MS and AOX is mody lét&ibutable to highly polar compounds which aret

or insufficiently adsorbed by AOX sorbents. Thedlighlights the necessity to develop new analytieethods,
similar to ozonation, which are capable to detentl mjuantify highly polar TPs. The identification DBP
precursors is another challenging field requiringvestigation. While modeling approaches can faditthe
identification of potential precursors and the faton of TPs, further research is needed to prdudirt

applicability in the field.

The ecotoxicological perspective:
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One of the major challenges is the assessmenteofuttknown fraction of DBPs, since the known DBPs
insufficiently explain toxic effects observed iinking water and WW. Furthermore, volatile and veglar
DBPs are usually not considered in toxicologicablyses as those are lost during sample enrichmafith
respect to the well-known effect increase afteintistion with chlorine, further research shoulctis on the

assessment of alternative WW disinfection strasdgie UV treatment.

3.2.3. Activated carbon (GAC, PAC) and biological activated carbon
(BAC) filtration

Effective removal of non-polar and medium polar GEC

The application of activated carbon (AC) in WW traant takes advantage of its high sorption cafscitr a
great variety of pollutants due to the surface arfeap to 2,000 m2'§ (Boehler et al., 2012). Relevant sorption
mechanisms include- n-electron interactions (aromatic ring and graphemeets), formation of donor-acceptor
complexes, as well as electrostatic interactiorts lydrogen bonds (Rivera-Utrilla et al., 2013). Seuently,
sorption efficiency is affected by the propertidsboth the adsorbate g¢, pKa, molecular size, aromaticity
versus aliphaticity, and presence of specific fiomztl groups) and adsorbent (surface area, poeeasid texture,
surface chemistry, and mineral matter content) (Dabky et al., 2005; Kovalova et al., 2013a). Imegyal, AC
can be used in WW treatment in two different wagither as a packed bed filter in granular form (GACas
powder (PAC) which is directly added into the WWiaemoved in a subsequent filtration step (Snydex.e
2007; Boehler et al., 2012). GAC is regarded a®eeraconomic and sustainable alternative to PAGQumxzthe
required amount of activated carbon in fixed besteys is reduced, which results in lower energyirements
and operational costs (Joss et al., 2008; Walkdr\@eatherley, 1997). However, as AC adsorption $osv
process, equilibrium concentrations are often aitigined after several hours. The application o€RAfers the
additional advantage that the carbon can be ciedlaimilar to activated sludge, and thus remiinger in the
system than the water. WW treatment with powdertivated carbon (PAC) following a conventional aated
sludge system has similar efficiencies to ozonatorpollutant and effect diminishment. PAC dosé4©-20
mg/L are regarded as economically feasible (Josal.et2008) and sufficient for removal of many WW
contaminants (Mailler et al., 2015). However, omawback is that contaminated PAC contains highupentit
concentrations and thus has to be disposed as @aadter incinerated or extensively recycled aftsage. Both

the generation and recycling of PAC is energy-istem and the broad-scale application in WWTPs would
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require large amounts of PACe(, 1-2 t/d for a WWTP with a flow rate of 100,008/d). Moreover, it cannot
be excluded that contaminated PAC will enter theirenment as subsequent sand filtration is notigefit to
retain powdered carbon particles completely whiohld affect the habitat of benthic organisms. Sghset
membrane filtration for PAC removal is unlikely #isle due to higher requirements of energy andrieah
equipment (Joss et al., 2008; Margot et al., 2013).

A large variety of compounds can be removed effityeby AC adsorption, including non-polar and medi
polar pharmaceuticals and personal care produas€g et al., 2002) as well as industrial chemisatsh as
flame-retardants, acid dyes, and benzotriazolean@h& Zhou, 2005; Nowotny et al., 2007; Walker and
Weatherley, 1997; Ho et al., 2011; Grover et 012, Ek et al., 2014). In contrast to this, highllar CECs
such as X-ray contrast media, sulfamethoxazoleammttin, irgarol, mecoprop, oxybenzone, and cytiosta
drugs are only partially removed (Margot et al.120Kovalova et al., 2013b; Snyder et al., 2007%til#iotics in
general show good removal efficiencies, which dateewell with K, values €.g, Rivera-Utrilla et al., 2009).
The same is true for EDCs (Snyder et al., 2007wéi@r, as shown for steroid estrogens, removatieffties
are strongly affected by both the type of activatacbon and the composition of the water matrixwRell et
al., 2009). Besides energy- and cost-intensive aterbeous adsorbent materials also low-cost adsorben
alternatives have demonstrated good removal ratesrfianic contaminants such as pesticides (C20@6).
Due to the higher surface area, activated carbsnpgposed to be more effective.

Biological activated carbon (BAC) filtration comlgis biodegradation and sorption for the removal BCE
(Reungoat et al., 2011; Gerrity et al., 2011). IBAC filter, a fixed bed of granular activated canb(GAC) is
used to support the growth of bacteria on its sexf8AC has been shown to substantially reduce ROC
nitrogen load of secondary treated WW with sorptionrAC being dominant in the beginning and incregsi
importance of biodegradation over time (Reungoat.e2011). Within the Neptune project, a fixed! lsystem
with biologically activated coke as sorbent mafersas evaluated subsequent to conventional bioébgic
activated sludge treatment. The chemical analysigealed removal rates between 70-90% for many
pharmaceuticals including the hardly degradableppmmds diclofenac and carbamazepine (unpublish&a da
http://www.aqua-biocarbon.de/aktuelles.html). BA&Salso been shown to be a cost effective altemntdi UV
treatment for the removal of NDMA after ozonatidbefrity et al., 2014). The analysis of endocringvég
revealed similar results. Anti-androgenicity anglduwydrocarbon agonistic activity were eliminateg » 90%

via BAC treatment (Fig. 2). Estrogenicity is remdvey a lower rate of approximately 50% which cobkla
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result of the already very low estrogenicity lesEta. 0.3 ng/L E-EQ after conventional treatmdihiese results

are based on only two samples from each treatnemtasmd can thus not be regarded as representative.

<< Figure2>>

No formation of TPs

One great advantage of AC compared to the treatteehhologies described so far is that removablelg
based on sorption with no TPs being formed. Howesasrsorption capacity of AC is limited, it hastie
exchanged and/or regenerated in regular interlmbsddition, due to the above mentioned relevariaifferent
sorption mechanisms and removal efficiencies cag sanificantly. As electrostatic interactions ateongly

pH dependent, removal of compounds primarily a#dctby this mechanism such as acetaminophen,
sulfamethazine, and sulfamethoxoazole can vanyjfgigntly (Nam et al., 2014). Nguyen et al. (20Db®served

a breakthrough of negatively charged compounds sschetoprofen, naproxen, and diclofenac over time
whereas neutral compounds such as carbamazepimedho constant high removal. Furthermore, the DOC
concentration in treated WW is critical due to tieenpetition for sorption sites on the AC (Nowotrak, 2007;
Zietzschmann et al., 2014a). Even though DOC cdragons in GAC filter effluents can also be usedaa
surrogate (Xing et al., 2008), the low concentraiof many CECs might not lead to a significantéase in
DOC when breakthrough occurs. Thus, the monitooingighly polar compounds such as X-ray contrastlime
and anionic organic compounds should be used #&sabods to determine the loading of AC, as thegicglly
show the lowest removal efficiencies. If AC treahinés used as post-treatment of an oxidation steh |s
ozonation, TPs should be monitored as these nelesth may pass the AC filter as well (Prasse g2@al?2).
Due to the limited retention of anionic compoun@g&Cs containing carboxylic acid moieties are oftipalar
relevance. In addition, carboxylic acids are fredlyeformed during ozonation (von Sonntag and vamten,
2012). However, the high polarity of compounds whian be expected to be insufficiently removedrauAC
treatment also makes their analysis highly challengin comparison to LC analysis, IC-techniqueterof
superior separation capacities for anionic andoaticompounds (Mascolo et al., 2005; Scheuret.£2@12).
This is especially true for compounds carrying salvearboxylic acid moieties (Meyer et al., 200/ydrophilic
interaction chromatography (HILIC) has been appf@dthe environmental analysis of highly polar GE€Llich

as pharmaceuticals, pesticides, and illicit drugs(Nuijs et al., 2011b). In addition, the hyphé&vabf HILIC
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with RP chromatography allows for the comprehensind simultaneous analysis of compounds spanning a
wide range of polarities (Greco and Letzel, 2013).

Due to the formation of potentially toxic compourdiging oxidative treatmené.g, via ozone or chlorine, AC
treatment can also be applied prior to the oxigestep for the removal of precursors (Hanigan gt24112).
However, AC has also been shown to contribute éftimmation of N-nitrosamines from secondary amines
(Padhye et al., 2010). In addition, hydrophilic NGfdctions, which might pass AC filtration, haveebeshown

to exhibit higher DBP formation potentials relatieethe hydrophilic fractions (Kwon et al., 2005).

Modelling of AC performance

Due to the various mechanisms relevant for remoaal sorption, computational modelling of removal
efficiencies is complex. Using classical sorptisatherm models, it has been shown that sorptidrydfophilic
compounds to AC better fit to linear isotherms, welas hydrophobics fit better to Freundlich isothe idam et
al., 2014). Furthermore, also Langmuir isothermghaeen frequently used to describe the sorptid®EEs on
AC (Tahar et al., 2013). The application of QSARstmines parameters relevant for sorptive remoiV@ECs

on AC (Dickenson and Drewes, 2010). As an exanmpéglding et al. (2009) estimated the breakthrough be
volumes of 29 EDCs and PPCPs using QSARs with gmockelations for compound’s 8th-order simple Chi
index (8p), and the compound’s hydrophobic surface areaventer, GAC adsorption is strongly dependent on
the sample matrix and has been shown to dependdM@harticle size if NOM is present (Corwin and Suers)
2010). As a result, Nguyen (2013) recently obsemhed single-solute isotherm parameters did notaretnate
any discernible correlation individually with any the parameters that may govern adsorption ont€ Gich

as log D, number of hydrogen-bond donor/acceptaums, dipole moment, or aromaticity ratio of the
compounds. In addition, extrapolations of labonatasults are hampered by the fact that sorptia been
shown to be concentration dependent, which migid te a substantial overestimation of removal efficies in
cases where only high concentrations are usedbiordéory experiments (Yu et al., 2008). Thus, adéd
models only allow for a first estimate of AC perfaance, but further improvements are necessaryso al

account for temporal changes of AC sorption cajeit

Ecotoxicological benefits and concerns
The toxicity of WW is effectively reduced with agdited carbon filtration. Escher et al. (2009) diete@ non-

specific toxicity removal of 57-83% after PAC tmea&int (15 mg/L) compared to conventional treatment.
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Photosystem Il inhibitors were eliminated by mohart 80% while acetylcholinesterase inhibiting astiv
diminished by more than 70% (Escher et al., 200DBtalter et al. (2011) estrogenicity was remolgd’ 7%
(20 mg/L PAC) compared to conventional treatmertemgas ozone was slightly more effective with 88%
removal. Anti-androgenicity was reduced by an ageraf 63%, AhR agonistic activity by 82%, and
cytotoxicity by 61% compared to conventional treamtn(Stalter et al., 2011). The more effective spgreific
toxicity reductionin vitro via PAC treatment was confirmed with the FELi&Tvivo, where trout mortality was
significantly reduced compared to conventionaltiremt (Magdeburg et al., 2012). In addition, thenebassay
revealed an enhanced genotoxicity removal, wherafisr ozonation toxicity increased compared to
conventional treatment (Stalter et al., 2010a). PA&DH effectively reduced toxicity in @ammarus fossarum
feeding assay (Bundschuh et al., 2011d). GAC nigijdoxic effects of grey-water on aquatic inversé
organisms (Leal et al., 2012). Extensive ecotoxiaitalyses are lacking so far but are desirableguse GAC is

a promising pollutant removal technology and regdrds a more sustainable approach than PAC. Bakdy s
on an ecotoxicological perspective, activated carbeatment might be preferable compared to ozoeeta the
benefit of contaminant elimination without OP fotina, and hence the risk of toxicity increase can b
excluded.

Activated carbon addition to the activated sludgecpss is also under discussion. In this casetipogffects
on the cleaning capacity of WW are not only relateddsorption but also to enhanced biochemicatadkgion
processes (Winkler et al., 1987). However, the irgfuactivated carbon to activated sludge might entie
usage of sewage sludge as fertilizer impossibleragdires energy intensive sludge incineration t(Réibn et

al., 2008).

What's next? — Challenges for analytical chemistschecotoxicologists

The chemical perspective:

Activated carbon treatment offers the great advgatthat no TPs are formed. However, polar compowrds
often not sufficiently retained. This is of partenurelevance when AC is used as post-treatment after
oxidative treatment such as ozonation. Approprimdicators need to be developed which allow for the
evaluation of a potential breakthrough of compoundd the performance of AC over time. These incthde
analysis of polar CECs and TPs as well as surrogzdeameters such as fluorescence or UV absorbance

(Anumol et al., 2015; Zietzschmann et al., 201#bprder to accurately predict the sorption of CEtsboth
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GAC and PAC, further improvements of models aressary to consider molecular interactions betwe&CE

and the sorbent surface as well as aging of AC tuee.

The ecotoxicological perspective:

From an ecotoxicological point of view, activateattwon treatment is preferable compared to AOPs tdutne
benefit of contaminant elimination without reacti@#® formation, and hence the risk of toxicity irase is
minimal. Theoretically, TPs could be formed througicrobiological transformation processes on théwated
carbon but no studies are known which demonstratigity increase. Potential risks from the leakaaf CEC
loaded PAC particles into surface waters shouldcbesidered in future research. In terms of energd a
resource requirements, biological activated carbdoeatment is preferable to activated carbon filteat, but

further research regarding pollutant and toxicigmoval is desirable.

3.24. Pressure-driven membrane treatment technologies

CEC removal strongly depends on physico-chemiagpgnties and membrane characteristics

Pressure-driven membrane processes include mitcatifin (MF), ultrafiltration (UF), nanofiltrationNF),
forward osmosis (FO), and reverse osmosis (RO).avew for the removal of CECs, NF, FO, and RO apstm
important. The rejection thereby is primarily irdhced by both the physico-chemical properties ofC€E
(molecular weight (MW), molecular size, acid digasation constant (pKa), hydrophobicity/hydrophitlc(log
Kow)), and diffusion coefficient ([), as well as membrane characteristics (molecukght cut-off (MWCO),
pore size, surface charge, hydrophobicity/hydraoghil (measured as contact angle), and surface nodogy
(Bellona et al., 2004). Additionally, feeding watssmposition, such as pH, ionic strength, hardnasd, the
presence of organic matter, influences solute tiejec

In general, only compounds with a molecular sizlolwehe MWCO (molecular weight at which 80% of the
substances are prevented from membrane diffusienaiale to pass through the pores of specified mamels
and thus can be retrieved in the permeate. Gooentieh (> 80%) of charged compounds such as
sulfamethoxazole (positively charged at ambient, phjlofenac, and bezafibrate (both negatively ghdrat
ambient pH) are typically achieved, attributablestectrostatic repulsion as well as steric hindeafie et al.,
2014; Coday et al., 2014; Kimura et al., 2003).comtrast to this, retention of neutral compoundshsas
pentachlorophenol, caffeine, and atrazine varyiagmtly and depends strongly on the used memisr§vieon

et al., 2006; Xie et al.,, 2014). For FO it has betown that with the exception of hydrophilic naltr
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compounds, the rejection of CECs is increased bythsence of a fouling layer (Linares et al., 30This can
be attributed to several factors such as the higidrophilicity of the fouled membrane and thusimereased
adsorption capacity of hydrophilic compounds ardlioed mass transport capacity, membrane swellimdjtte
higher negative charge of the membrane surfacémfinoved removal of negatively charged compoundkus
typically observed. Though hydrophobic nonionic pomunds, such as chloroform, bromoform, and hormones
might initially be highly rejected by RO and NF digetheir sorption to the membrane, partitioningsofutes
through the membranes can result in decreasing vanefficiencies over time (Ng and Elimelech, 2004)
Similarly, formation of a colloidal cake layer ohet membrane surface can restrict back diffusiotoof
molecular weight organic compounds, resulting igngicant decline in their rejection (Ng and Elireeh,
2004). Antibiotics generally show high removal efincies in NF and RO (Le-Minh et al., 2010), wizere
rejection of hormones such as estrone, estradial,testosterone was lower (between 60 — 80 %) stilldd
water but increased significantly (>90 %) in thegance of humic substances (Kojuncu et al., 20083.can be
attributed to the binding of hormones to NOM and tbrmation of macromolecular complexes. Thus, neaho
efficiencies of >90 % are usually observed in WWky@er et al., 2007; Homem and Santos, 2011). (EB&Es
such as nonylphenol also show a good removal whérisphenol A is only insufficiently removed duribg-
(Yangali-Quintanilla et al., 2009). The same istfar the cytostatic drugs cytarabine and 5-fluoaoil. For RO

treatment, however, good removal of cyclophosphart#®0 %) has been reported (Wang et al., 2009).

Insufficient removal of small, uncharged molecules

For the removal of DBPs, RO has been shown to imslyfficiently remove NDMA (maximum 49 %; Fujioka e
al.,, 2012), whereas haloacetic acids typically skmigh elimination efficiencies (Linge et al., 201&mura et
al.,, 2003). The primary explanation for this istti@loacetic acids are charged at ambient pH and #ne
rejected via electrostatic repulsion. For other BBiach as haloketones and halomethane retardat®bden
more variable and is typically lower than for haletic acids (Linge et al., 2013; Agus and Sedldk,@. In
addition to the removal of DBPs themselves, resedras focused on the removal of DBP precursors by
membrane filtration. Small trihalomethane precwsssrch as resorcinol, phloroglucinol, and 3-hydh@nzoic
acid were removed by approximately 80 % using R @t al., 2007). Similar results were obtainedMiiych
and Sedlak (2004), who showed that NDMA precursoesefficiently eliminated by RO from WWTP efflusnt
Lin et al. (1999) observed that although the URteysis able to remove a significant portion of THRF

(trihalomethanes formation potential) in larger AMivéctions, the permeate THM in terms of mg THMs/mg
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carbon is still high. Cleaning of membranegy, via chlorination or chloramination used to remanembrane
fouling (seee.g, Linge et al., 2013; Li and Elimelech, 2004) caowever, substantially contribute to the

formation of DBPs.

Modelling of CEC rejection by membranes is challegg

Due to the variety of parameters influencing th@geaion of CECs by membranes, modelling is highly
challenging. CECs with molecular weights largemtiiae MWCO have been detected in the permeatedite!l

et al., 2004). Thus, molecular weights in geneeinot be used as sole criterion to exclude theepoesin
membrane treated waters. To accommodate this olbellenolecular width and length should be usedpsti
parameters rather than molecular weight. Usinglatesdransport model, Kim et al. (2007) were aldeshow
that the transport of most investigated DBPs aratrphceuticals through RO and NF membranes is daedna
by convection, whereas diffusion is important fooren hydrophobic non-polar compounds. QSARs analyses
were able to demonstrate that several variablels aschydrophobicity, salt rejection, surface chamarity,
size, and operating conditions can be used to gr&kC rejection in NF and RO (Yangali-Quintanidfal.,

2010; Libotean et al., 2008).

Ecotoxicological benefits and concerns

Cao et al. (2009) found little effect of UF on gtmacity, RARu activity, and acute invertebrate toxicity, while
RO was the most effective technology removing lgadal effects compared to ozonation and UF. ROeis/ v
effective in reducing toxicity often to blank levéike oxidative stress, genotoxicity, endocrine eef§,
photosynthesis inhibition, and cytotoxicity (Eschedral., 2011; Escher et al., 2014). Libralato let(2010)
observed enhanced toxicity removal with UF assessgdVibrio fischeriandCrassostrea gigadn a study by
Alzahrani et al. (2013), RO was considerably mdfective in removing toxic effectd/fbrio fischer) compared
to NF, while the latter still removed 48% of théaicorganic carbon.

Other approaches combine membrane filtration systeith GAC filtration. The post treatment with kbgical
membrane assisted carbon filtration (BIOMAC) sulboseq to conventional treatment revealed promising
pollutant removal rates (Weemaes et al., 2010)yogenicity and anti-androgenicity were effectivedgluced by
an average of 70% and 63% while GAC was esseriathe removal of endocrine activity (Weemas et al.

2010).
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Treatment of brines

An important aspect to consider with pressure-adriveembrane treatment is the potential environmental
implication of the waste stream. Membrane treatmestilts in the generation of retentates (brindsichvare
highly enriched in CECs, salts, and NOM. Brines aften discharged into water bodies without addio
treatment which is a non-sustainable practice fatiaus reasons. Furthermore, oxidative cleaningp(afation)

of membranes to oppose membrane fouling may welllrén the formation of toxic DBPs (compare chapte
3.2.2) originating from the reaction of reactivdarine species with biofilm-coated compounds. Daehigh
CEC concentrations, the safe discharge of brineldviequire a post treatment for pollutant remoWdde high
salt content makes biodegradation difficult butcelechemical oxidation is a promising option duehe high
electrical conductivity. However, the high salt centrations might also result in an increased féionaof toxic
by-products, in particular chlorinated and broma&ghtompounds (Radjenovic et al., 2011). In additibe
requirement of an additional treatment step after already energy intensive membrane filtration esal
sustainable and affordable broad-scale applicatimealistic (van der Bruggen et al., 2003; PerenZatez et

al., 2012).

What's next? — Challenges for analytical chemistschecotoxicologists

The chemical perspective:

While the assessment of CEC rejection by presstverd membrane technologies seems relatively easgy a
straight-forward, an accurate prediction is hamparby the great variability of the composition oédted
wastewaters. Thus, there is a need for compreherstivdies investigating the influence of the wastew
matrix. In particular, masking or complexation migtubstantially lower the rejection of charged nwoiles, for
which usually good removal is observed. The sanriésfor membrane fouling as this substantiallffuiences
the performance of membranes, leading to highdower removal efficiencies. A detailed understagdirf all
these factors is a major prerequisite to accurafelgdict the fate of CECs during membrane treatment

The analysis of brines constitutes a major chaliedge to the complexity and high concentrationsnafrix
components. To this end, an adequate sample pteteza is crucial. For the evaluation of brine trewnt
technologies, particular focus should be placedtloa potential formation of toxic TPs such as hataged
compounds, in particular if electrochemical treatrhés applied. The potential use of sum parametech as

AOX to assess the extent of TP formation needs torther investigated.
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The ecotoxicological perspective:

Reverse osmosis is one of the most effective Watneat technologies for toxicity removal. Although,
membrane technologies provide a direct pollutamagal without transformation processes, toxic DBRs be
formed during the required membrane disinfectionttirermore, the retentates require an addition&lattment

to avoid any ecotoxicological risk through the aisal of highly toxic brines. This has to be take&io iaccount,
together with energy, resource, and maintenancairements for a comprehensive evaluation of merngran
technologies.

The ecotoxicological assessment of reverse osmweesisr and retentates as native water samples withou
enrichment, as usually applied fam vivo assays, can be challenging due to too low or tagh hmatrix
concentrations. Therefore, the analysis of extrc@mples is the simplest approach to avoid mafifiects. To
also include compounds that are too polar for samgirichment, native RO water could be reconstituigh a
salt mix to avoid artefacts through low salinityorFa toxicological assessment of native retentatedes,

dilution with ultrapure water or the use of tesganisms resistant to high salinity could be feasibl

4. Conclusions

From the critical evaluation of current chemicatl &totoxicological methodologies used for the assest of
treated wastewater quality the following conclusican be drawn:

» Elimination of a large variety of CECs is currentised as the main basis for the evaluation of azh@n
wastewater treatment technologies.

« Information on the formation and toxicological n@ce of transformation products, which are formed
in both biological and oxidative wastewater treattngteps, is insufficient and it is widely uncldar
which extent transformation products contributeverall toxicities of treated waters.

» Capabilities of analytical methods need to be ededrto highly polar compounds as these are likely t
be i) formed in oxidative treatment steps andriguifficiently removed by activated carbon filtratio
The same is true for uncharged low molecular weightpounds which are likely to be only
insufficiently rejected by dense membranes.

» Sample enrichment steps for bioanalytical assessmesd to be extended to highly polar and volatile

compounds, which are commonly lost during converati@xtraction procedures.
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e There is a need for the development of new anddm@mnent of existing methods that allow for a more
specific assessment and continuous onsite monitoah waters treated by advanced treatment
technologies. This includes sum parameters foripgmtentially toxic moieties such as aldehydes
and nitrosamines as well as bioanalytical methods.

* On site monitoring of the aquatic community up- a@odvnstream of a discharger and comparison to a
reference site is highly desirable.

e Sensitivities and specificities of bioanalyticalok® need to be further improved to allow for the
allocation of ecotoxicological effects to the pmase of specific CEC(s) in treated waters, when
combined with chemical analysis.

» Systematic studies are needed to improve the angwfapredictions for both transformation kinetics
and formation of transformation products.

e The development of an interdisciplinary conceptHandling of realistic target values and well-defin
quality criteria could help to support the implertsgion of measures by practitioners and guaraizie t
ecologically relevant CECs, their TPs, as well estaxicological and microbiological endpoints are

taken into account appropriately.
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Fig.1. DOC concentrations in native influent and effluent samples of an ozonation
pilot plant receiving conventiona treated municipal wastewater compared to DOC
remaining in the water phase after solid-phase extraction using three different sorbent
materials (enriched water volume: 200 mL; sorbent amounts. Telos C18/ENV+:
200/500 mg; Oasis HLB: 200 mg; Supelco EnviCarb: 200 mg). The DOC fraction
retained on the cartridges in comparison to native samples is given in parenthesis.

Standard deviations (n=3) are given as error bars (own, unpublished data).
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Fig. 2. Estrogenic (A, estradiol
equivalents) and aryl-hydrocarbon agonistic activity (C, B-naphthoflavone
equivalents) before and after treatment with biologically activated carbon (BAC)
using coke as carbonaceous material. Displayed are the mean values of two sampling
campaigns (own, unpublished data). SC, after secondary clarifier subsequent to

conventional treatment.
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Resear ch Highlights:
- Review of chemica and ecotoxicological methods to assess wastewater quality
- Critical assessment of methods including benefits and limitations
- Critical evaluation of conventional and advanced treatment technol ogies

- Demand for multidisciplinary assessment approaches and future research identified



